Datasets:
license: mit
configs:
- config_name: table
data_files: hybridqa_table.jsonl
- config_name: test_query
data_files: hybridqa_query.jsonl
task_categories:
- table-question-answering
This Hugging Face dataset repository contains MultiTableQA-HybridQA, one of the datasets released as part of the comprehensive MultiTableQA benchmark, introduced in the paper RAG over Tables: Hierarchical Memory Index, Multi-Stage Retrieval, and Benchmarking.
π Paper | π¨π»βπ» Code
For MultiTableQA, we release a comprehensive benchmark, including five different datasets covering table fact-checking, single-hop QA, and multi-hop QA:
| Dataset | Link |
|---|---|
| MultiTableQA-TATQA | π€ dataset link |
| MultiTableQA-TabFact | π€ dataset link |
| MultiTableQA-SQA | π€ dataset link |
| MultiTableQA-WTQ | π€ dataset link |
| MultiTableQA-HybridQA | π€ dataset link |
MultiTableQA extends the traditional single-table QA setting into a multi-table retrieval and question answering benchmark, enabling more realistic and challenging evaluations.
Sample Usage
This section provides a quick guide to setting up the environment, preparing the MultiTableQA data, running T-RAG retrieval, and performing downstream inference with LLMs, based on the official T-RAG GitHub repository.
1. Installation
First, clone the repository and install the necessary dependencies:
git clone https://github.com/jiaruzouu/T-RAG.git
cd T-RAG
conda create -n trag python=3.11.9
conda activate trag
# Install dependencies
pip install -r requirements.txt
2. MultiTableQA Data Preparation
To download and preprocess the MultiTableQA benchmark:
cd table2graph
bash scripts/prepare_data.sh
This script will automatically fetch the source tables, apply decomposition (row/column splitting), and generate the benchmark splits.
3. Run T-RAG Retrieval
To run hierarchical index construction and multi-stage retrieval:
Stage 1 & 2: Table to Graph Construction & Coarse-grained Multi-way Retrieval
cd src
cd table2graph
bash scripts/table_cluster_run.sh # or python scripts/table_cluster_run.py
Stage 3: Fine-grained sub-graph Retrieval
cd src
cd table2graph
python scripts/subgraph_retrieve_run.py
Note: Our method supports different embedding methods such as E5, contriever, sentence-transformer, etc.
4. Downstream Inference with LLMs
Evaluate T-RAG with an (open/closed-source) LLM of your choice (e.g., GPT-4o, Claude-3.5, Qwen):
For Closed-source LLM, please first insert your key under key.json:
{
"openai": "<YOUR_OPENAI_API_KEY>",
"claude": "<YOUR_CLAUDE_API_KEY>"
}
To run end-to-end model inference and evaluation:
cd src
cd downstream_inference
bash scripts/overall_run.sh
Citation
If you find our work useful, please cite:
@misc{zou2025rag,
title={RAG over Tables: Hierarchical Memory Index, Multi-Stage Retrieval, and Benchmarking},
author={Jiaru Zou and Dongqi Fu and Sirui Chen and Xinrui He and Zihao Li and Yada Zhu and Jiawei Han and Jingrui He},
year={2025},
eprint={2504.01346},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2504.01346},
}