Datasets:
File size: 3,807 Bytes
c87807c 0ec9d3e c87807c 0ec9d3e c87807c 0ec9d3e c87807c 0ec9d3e 6cc5ff5 f730bdc 0ec9d3e f730bdc 0ec9d3e f730bdc 0ec9d3e f730bdc 0ec9d3e f730bdc 0ec9d3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
---
license: mit
configs:
- config_name: table
data_files: hybridqa_table.jsonl
- config_name: test_query
data_files: hybridqa_query.jsonl
task_categories:
- table-question-answering
---
This Hugging Face dataset repository contains **MultiTableQA-HybridQA**, one of the datasets released as part of the comprehensive **MultiTableQA** benchmark, introduced in the paper [RAG over Tables: Hierarchical Memory Index, Multi-Stage Retrieval, and Benchmarking](https://arxiv.org/abs/2504.01346).
π [Paper](https://arxiv.org/abs/2504.01346) | π¨π»βπ» [Code](https://github.com/jiaruzouu/T-RAG)
For MultiTableQA, we release a comprehensive benchmark, including five different datasets covering table fact-checking, single-hop QA, and multi-hop QA:
| Dataset | Link |
|-----------------------|------|
| MultiTableQA-TATQA | π€ [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_TATQA) |
| MultiTableQA-TabFact | π€ [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_TabFact) |
| MultiTableQA-SQA | π€ [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_SQA) |
| MultiTableQA-WTQ | π€ [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_WTQ) |
| MultiTableQA-HybridQA | π€ [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_HybridQA)|
MultiTableQA extends the traditional single-table QA setting into a multi-table retrieval and question answering benchmark, enabling more realistic and challenging evaluations.
---
### Sample Usage
This section provides a quick guide to setting up the environment, preparing the MultiTableQA data, running T-RAG retrieval, and performing downstream inference with LLMs, based on the official [T-RAG GitHub repository](https://github.com/jiaruzouu/T-RAG).
#### 1. Installation
First, clone the repository and install the necessary dependencies:
```bash
git clone https://github.com/jiaruzouu/T-RAG.git
cd T-RAG
conda create -n trag python=3.11.9
conda activate trag
# Install dependencies
pip install -r requirements.txt
```
#### 2. MultiTableQA Data Preparation
To download and preprocess the MultiTableQA benchmark:
```bash
cd table2graph
bash scripts/prepare_data.sh
```
This script will automatically fetch the source tables, apply decomposition (row/column splitting), and generate the benchmark splits.
#### 3. Run T-RAG Retrieval
To run hierarchical index construction and multi-stage retrieval:
**Stage 1 & 2: Table to Graph Construction & Coarse-grained Multi-way Retrieval**
```bash
cd src
cd table2graph
bash scripts/table_cluster_run.sh # or python scripts/table_cluster_run.py
```
**Stage 3: Fine-grained sub-graph Retrieval**
```bash
cd src
cd table2graph
python scripts/subgraph_retrieve_run.py
```
*Note: Our method supports different embedding methods such as E5, contriever, sentence-transformer, etc.*
#### 4. Downstream Inference with LLMs
Evaluate T-RAG with an (open/closed-source) LLM of your choice (e.g., GPT-4o, Claude-3.5, Qwen):
For Closed-source LLM, please first insert your key under `key.json`:
```json
{
"openai": "<YOUR_OPENAI_API_KEY>",
"claude": "<YOUR_CLAUDE_API_KEY>"
}
```
To run end-to-end model inference and evaluation:
```bash
cd src
cd downstream_inference
bash scripts/overall_run.sh
```
---
# Citation
If you find our work useful, please cite:
```bibtex
@misc{zou2025rag,
title={RAG over Tables: Hierarchical Memory Index, Multi-Stage Retrieval, and Benchmarking},
author={Jiaru Zou and Dongqi Fu and Sirui Chen and Xinrui He and Zihao Li and Yada Zhu and Jiawei Han and Jingrui He},
year={2025},
eprint={2504.01346},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2504.01346},
}
``` |