hz1919810 commited on
Commit
836ffab
Β·
verified Β·
1 Parent(s): 6449df0

Add dataset loader code

Browse files
Files changed (1) hide show
  1. short_metaworld_loader.py +241 -0
short_metaworld_loader.py ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Short-MetaWorld Dataset Loader
4
+ Loads the dataset with proper structure preservation and task prompts.
5
+ """
6
+
7
+ import os
8
+ import pickle
9
+ import json
10
+ import glob
11
+ from pathlib import Path
12
+ from PIL import Image
13
+ import torch
14
+ import torchvision.transforms as T
15
+ from torch.utils.data import Dataset
16
+
17
+ class ShortMetaWorldDataset(Dataset):
18
+ """
19
+ Short-MetaWorld dataset loader that preserves the original structure.
20
+
21
+ Args:
22
+ data_root (str): Path to the dataset root directory
23
+ task_list (list): List of tasks to load (default: all available tasks)
24
+ image_size (int): Target image size for transforms (default: 224)
25
+ transform (callable): Optional custom transform
26
+ load_prompts (bool): Whether to load task prompts (default: True)
27
+ """
28
+
29
+ def __init__(self, data_root, task_list=None, image_size=224, transform=None, load_prompts=True):
30
+ self.data_root = Path(data_root)
31
+ self.image_size = image_size
32
+
33
+ # Load task prompts
34
+ self.prompts = {}
35
+ if load_prompts:
36
+ prompt_file = self.data_root / "mt50_task_prompts.json"
37
+ if prompt_file.exists():
38
+ with open(prompt_file, 'r') as f:
39
+ self.prompts = json.load(f)
40
+ print(f"πŸ“– Loaded {len(self.prompts)} task prompts")
41
+ else:
42
+ print("⚠️ Task prompts not found, using fallback prompts")
43
+
44
+ # Set up paths
45
+ self.img_root = self.data_root / "short-MetaWorld" / "short-MetaWorld" / "img_only"
46
+ self.data_pkl_root = self.data_root / "short-MetaWorld" / "r3m-processed" / "r3m_MT10_20"
47
+
48
+ # Discover available tasks
49
+ available_tasks = []
50
+ if self.data_pkl_root.exists():
51
+ for pkl_file in self.data_pkl_root.glob("*.pkl"):
52
+ task_name = pkl_file.stem
53
+ if (self.img_root / task_name).exists():
54
+ available_tasks.append(task_name)
55
+
56
+ # Filter tasks if task_list provided
57
+ if task_list is not None:
58
+ self.tasks = [task for task in task_list if task in available_tasks]
59
+ else:
60
+ self.tasks = available_tasks
61
+
62
+ print(f"πŸ“Š Loading {len(self.tasks)} tasks: {self.tasks}")
63
+
64
+ # Default transform
65
+ if transform is None:
66
+ self.transform = T.Compose([
67
+ T.Resize((image_size, image_size)),
68
+ T.ToTensor(),
69
+ ])
70
+ else:
71
+ self.transform = transform
72
+
73
+ # Load all trajectories
74
+ self.trajectories = self._load_trajectories()
75
+ print(f"βœ… Loaded {len(self.trajectories)} trajectory steps")
76
+
77
+ def _load_trajectories(self):
78
+ """Load all trajectory data"""
79
+ all_trajectories = []
80
+
81
+ for task in self.tasks:
82
+ # Load pickle data
83
+ pkl_path = self.data_pkl_root / f"{task}.pkl"
84
+ if not pkl_path.exists():
85
+ print(f"⚠️ Pickle file not found: {pkl_path}")
86
+ continue
87
+
88
+ with open(pkl_path, "rb") as f:
89
+ data = pickle.load(f)
90
+
91
+ # Get image directories
92
+ task_img_dir = self.img_root / task
93
+ if not task_img_dir.exists():
94
+ print(f"⚠️ Image directory not found: {task_img_dir}")
95
+ continue
96
+
97
+ # Process each trajectory
98
+ traj_dirs = sorted(task_img_dir.glob("*"), key=lambda x: int(x.name))
99
+
100
+ for traj_idx, traj_dir in enumerate(traj_dirs):
101
+ if traj_idx >= len(data['actions']):
102
+ continue
103
+
104
+ # Get image paths
105
+ img_paths = sorted(traj_dir.glob("*.jpg"),
106
+ key=lambda x: int(x.stem))
107
+
108
+ num_steps = len(data['actions'][traj_idx])
109
+ num_images = len(img_paths)
110
+
111
+ # Use minimum length to handle mismatched data
112
+ min_steps = min(num_images, num_steps)
113
+ if min_steps < 1:
114
+ continue
115
+
116
+ # Create trajectory entries
117
+ for step_idx in range(min_steps):
118
+ trajectory_entry = {
119
+ 'task_name': task,
120
+ 'trajectory_id': traj_idx,
121
+ 'step_id': step_idx,
122
+ 'image_path': str(img_paths[step_idx]),
123
+ 'state': data['state'][traj_idx][step_idx][:7], # First 7 dims
124
+ 'action': data['actions'][traj_idx][step_idx],
125
+ 'prompt': self._get_prompt(task)
126
+ }
127
+ all_trajectories.append(trajectory_entry)
128
+
129
+ return all_trajectories
130
+
131
+ def _get_prompt(self, task_name):
132
+ """Get prompt for a task"""
133
+ if task_name in self.prompts:
134
+ # Use simple prompt by default
135
+ return self.prompts[task_name].get('simple', f"Perform the task: {task_name.replace('-', ' ')}")
136
+ else:
137
+ return f"Perform the task: {task_name.replace('-', ' ')}"
138
+
139
+ def get_task_info(self, task_name):
140
+ """Get comprehensive task information"""
141
+ if task_name in self.prompts:
142
+ return self.prompts[task_name]
143
+ return {"simple": f"Perform the task: {task_name.replace('-', ' ')}"}
144
+
145
+ def get_available_tasks(self):
146
+ """Get list of available tasks"""
147
+ return self.tasks.copy()
148
+
149
+ def get_dataset_stats(self):
150
+ """Get dataset statistics"""
151
+ task_counts = {}
152
+ for traj in self.trajectories:
153
+ task = traj['task_name']
154
+ task_counts[task] = task_counts.get(task, 0) + 1
155
+
156
+ return {
157
+ 'total_steps': len(self.trajectories),
158
+ 'num_tasks': len(self.tasks),
159
+ 'task_step_counts': task_counts,
160
+ 'tasks': self.tasks
161
+ }
162
+
163
+ def __len__(self):
164
+ return len(self.trajectories)
165
+
166
+ def __getitem__(self, idx):
167
+ """Get a single trajectory step"""
168
+ traj = self.trajectories[idx]
169
+
170
+ # Load and transform image
171
+ image = Image.open(traj['image_path']).convert("RGB")
172
+ image_tensor = self.transform(image)
173
+
174
+ # Convert to tensors
175
+ state = torch.tensor(traj['state'], dtype=torch.float32)
176
+ action = torch.tensor(traj['action'], dtype=torch.float32)
177
+
178
+ return {
179
+ 'image': image_tensor,
180
+ 'state': state,
181
+ 'action': action,
182
+ 'prompt': traj['prompt'],
183
+ 'task_name': traj['task_name'],
184
+ 'trajectory_id': traj['trajectory_id'],
185
+ 'step_id': traj['step_id']
186
+ }
187
+
188
+ # Example usage functions
189
+ def load_short_metaworld(data_root, tasks=None, image_size=224):
190
+ """
191
+ Convenience function to load the dataset.
192
+
193
+ Args:
194
+ data_root (str): Path to dataset root
195
+ tasks (list): List of tasks to load (None for all)
196
+ image_size (int): Image size for transforms
197
+
198
+ Returns:
199
+ ShortMetaWorldDataset: The loaded dataset
200
+ """
201
+ return ShortMetaWorldDataset(
202
+ data_root=data_root,
203
+ task_list=tasks,
204
+ image_size=image_size
205
+ )
206
+
207
+ def get_mt10_tasks():
208
+ """Get the MT10 task list"""
209
+ return [
210
+ "reach-v2", "push-v2", "pick-place-v2", "door-open-v2", "drawer-open-v2",
211
+ "drawer-close-v2", "button-press-topdown-v2", "button-press-v2",
212
+ "button-press-wall-v2", "button-press-topdown-wall-v2"
213
+ ]
214
+
215
+ def demo_usage():
216
+ """Demonstrate how to use the dataset"""
217
+ print("πŸ“– Short-MetaWorld Dataset Usage Example")
218
+ print("=" * 50)
219
+
220
+ # Load dataset
221
+ dataset = load_short_metaworld("./", tasks=get_mt10_tasks())
222
+
223
+ # Print stats
224
+ stats = dataset.get_dataset_stats()
225
+ print(f"πŸ“Š Dataset Statistics:")
226
+ print(f" Total steps: {stats['total_steps']}")
227
+ print(f" Number of tasks: {stats['num_tasks']}")
228
+ print(f" Available tasks: {stats['tasks']}")
229
+
230
+ # Get a sample
231
+ if len(dataset) > 0:
232
+ sample = dataset[0]
233
+ print(f"\nπŸ“‹ Sample data:")
234
+ print(f" Image shape: {sample['image'].shape}")
235
+ print(f" State shape: {sample['state'].shape}")
236
+ print(f" Action shape: {sample['action'].shape}")
237
+ print(f" Task: {sample['task_name']}")
238
+ print(f" Prompt: {sample['prompt']}")
239
+
240
+ if __name__ == "__main__":
241
+ demo_usage()