Add comprehensive dataset card
Browse files
README.md
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
task_categories:
|
| 4 |
+
- robotics
|
| 5 |
+
- reinforcement-learning
|
| 6 |
+
tags:
|
| 7 |
+
- metaworld
|
| 8 |
+
- robotics
|
| 9 |
+
- manipulation
|
| 10 |
+
- multi-task
|
| 11 |
+
- r3m
|
| 12 |
+
- vision-language
|
| 13 |
+
- imitation
|
| 14 |
+
size_categories:
|
| 15 |
+
- 1K<n<10K
|
| 16 |
+
language:
|
| 17 |
+
- en
|
| 18 |
+
pretty_name: Short-MetaWorld Dataset
|
| 19 |
+
dataset_info:
|
| 20 |
+
features:
|
| 21 |
+
- name: image
|
| 22 |
+
dtype: image
|
| 23 |
+
- name: state
|
| 24 |
+
dtype:
|
| 25 |
+
sequence: float32
|
| 26 |
+
- name: action
|
| 27 |
+
dtype:
|
| 28 |
+
sequence: float32
|
| 29 |
+
- name: prompt
|
| 30 |
+
dtype: string
|
| 31 |
+
- name: task_name
|
| 32 |
+
dtype: string
|
| 33 |
+
splits:
|
| 34 |
+
- name: train
|
| 35 |
+
num_bytes: 1900000000
|
| 36 |
+
num_examples: 40000
|
| 37 |
+
download_size: 1900000000
|
| 38 |
+
dataset_size: 1900000000
|
| 39 |
+
---
|
| 40 |
+
|
| 41 |
+
# Short-MetaWorld Dataset
|
| 42 |
+
|
| 43 |
+
## Overview
|
| 44 |
+
|
| 45 |
+
Short-MetaWorld is a curated dataset from Meta-World containing **Multi-Task 10 (MT10)** and **Meta-Learning 10 (ML10)** tasks with **100 successful trajectories per task** and **20 steps per trajectory**. This dataset is specifically designed for multi-task robot learning, imitation learning, and vision-language robotics research.
|
| 46 |
+
|
| 47 |
+
## π Quick Start
|
| 48 |
+
|
| 49 |
+
```python
|
| 50 |
+
from short_metaworld_loader import load_short_metaworld
|
| 51 |
+
from torch.utils.data import DataLoader
|
| 52 |
+
|
| 53 |
+
# Load the dataset
|
| 54 |
+
dataset = load_short_metaworld("./", image_size=224)
|
| 55 |
+
|
| 56 |
+
# Create a DataLoader
|
| 57 |
+
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
|
| 58 |
+
|
| 59 |
+
# Get a sample
|
| 60 |
+
sample = dataset[0]
|
| 61 |
+
print(f"Image shape: {sample['image'].shape}")
|
| 62 |
+
print(f"State: {sample['state']}")
|
| 63 |
+
print(f"Action: {sample['action']}")
|
| 64 |
+
print(f"Task: {sample['task_name']}")
|
| 65 |
+
print(f"Prompt: {sample['prompt']}")
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
## π Dataset Structure
|
| 69 |
+
|
| 70 |
+
```
|
| 71 |
+
short-MetaWorld/
|
| 72 |
+
βββ README.txt # Original dataset documentation
|
| 73 |
+
βββ short-MetaWorld/
|
| 74 |
+
β βββ img_only/ # 224x224 RGB images
|
| 75 |
+
β β βββ button-press-topdown-v2/
|
| 76 |
+
β β β βββ 0/ # Trajectory 0
|
| 77 |
+
β β β β βββ 0.jpg # Step 0
|
| 78 |
+
β β β β βββ 1.jpg # Step 1
|
| 79 |
+
β β β β βββ ...
|
| 80 |
+
β β β βββ 1/ # Trajectory 1
|
| 81 |
+
β β β βββ ...
|
| 82 |
+
β β βββ door-open-v2/
|
| 83 |
+
β β βββ ...
|
| 84 |
+
β βββ r3m-processed/ # R3M processed features
|
| 85 |
+
β βββ r3m_MT10_20/
|
| 86 |
+
β βββ button-press-topdown-v2.pkl
|
| 87 |
+
β βββ door-open-v2.pkl
|
| 88 |
+
β βββ ...
|
| 89 |
+
βββ r3m-processed/ # Additional R3M data
|
| 90 |
+
βββ r3m_MT10_20/
|
| 91 |
+
βββ mt50_task_prompts.json # Task descriptions & prompts
|
| 92 |
+
βββ short_metaworld_loader.py # Dataset loader
|
| 93 |
+
βββ requirements.txt
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
## π― Tasks Included
|
| 97 |
+
|
| 98 |
+
### Multi-Task 10 (MT10)
|
| 99 |
+
- `button-press-topdown-v2` - Press button from above
|
| 100 |
+
- `door-open-v2` - Open door by pulling handle
|
| 101 |
+
- `drawer-close-v2` - Close drawer
|
| 102 |
+
- `drawer-open-v2` - Open drawer
|
| 103 |
+
- `peg-insert-side-v2` - Insert peg into hole
|
| 104 |
+
- `pick-place-v2` - Pick up object and place on target
|
| 105 |
+
|
| 106 |
+
### Meta-Learning 10 (ML10)
|
| 107 |
+
Additional tasks for meta-learning evaluation.
|
| 108 |
+
|
| 109 |
+
## π Data Format
|
| 110 |
+
|
| 111 |
+
- **Images**: 224Γ224 RGB images in JPEG format
|
| 112 |
+
- **States**: 7-dimensional robot state vectors (joint positions)
|
| 113 |
+
- **Actions**: 4-dimensional continuous control actions
|
| 114 |
+
- **Prompts**: Natural language task descriptions in 3 styles:
|
| 115 |
+
- `simple`: Brief task description
|
| 116 |
+
- `detailed`: Comprehensive task explanation
|
| 117 |
+
- `task_specific`: Context-specific variations
|
| 118 |
+
- **R3M Features**: Pre-processed visual representations using R3M model
|
| 119 |
+
|
| 120 |
+
## πΎ Loading the Dataset
|
| 121 |
+
|
| 122 |
+
The dataset comes with a comprehensive loader (`short_metaworld_loader.py`):
|
| 123 |
+
|
| 124 |
+
```python
|
| 125 |
+
# Load specific tasks
|
| 126 |
+
mt10_tasks = [
|
| 127 |
+
"reach-v2", "push-v2", "pick-place-v2", "door-open-v2",
|
| 128 |
+
"drawer-open-v2", "drawer-close-v2", "button-press-topdown-v2",
|
| 129 |
+
"button-press-v2", "button-press-wall-v2", "button-press-topdown-wall-v2"
|
| 130 |
+
]
|
| 131 |
+
dataset = load_short_metaworld("./", tasks=mt10_tasks)
|
| 132 |
+
|
| 133 |
+
# Load all available tasks
|
| 134 |
+
dataset = load_short_metaworld("./")
|
| 135 |
+
|
| 136 |
+
# Get dataset statistics
|
| 137 |
+
stats = dataset.get_dataset_stats()
|
| 138 |
+
print(f"Total steps: {stats['total_steps']}")
|
| 139 |
+
print(f"Tasks: {stats['tasks']}")
|
| 140 |
+
|
| 141 |
+
# Get task-specific prompts
|
| 142 |
+
task_info = dataset.get_task_info("pick-place-v2")
|
| 143 |
+
print(task_info['detailed']) # Detailed task description
|
| 144 |
+
```
|
| 145 |
+
|
| 146 |
+
## π¬ Research Applications
|
| 147 |
+
|
| 148 |
+
This dataset is designed for:
|
| 149 |
+
|
| 150 |
+
- **Multi-task Reinforcement Learning**: Train policies across multiple manipulation tasks
|
| 151 |
+
- **Imitation Learning**: Learn from demonstration trajectories
|
| 152 |
+
- **Vision-Language Robotics**: Connect visual observations with natural language instructions
|
| 153 |
+
- **Meta-Learning**: Adapt quickly to new manipulation tasks
|
| 154 |
+
- **Robot Policy Training**: End-to-end visuomotor control
|
| 155 |
+
|
| 156 |
+
## π Dataset Statistics
|
| 157 |
+
|
| 158 |
+
- **Total trajectories**: 2,000 (100 per task Γ 20 tasks)
|
| 159 |
+
- **Total steps**: ~40,000 (20 steps per trajectory)
|
| 160 |
+
- **Image resolution**: 224Γ224 RGB
|
| 161 |
+
- **State dimension**: 7 (robot joint positions)
|
| 162 |
+
- **Action dimension**: 4 (continuous control)
|
| 163 |
+
- **Dataset size**: ~1.9GB
|
| 164 |
+
|
| 165 |
+
## π οΈ Installation
|
| 166 |
+
|
| 167 |
+
```bash
|
| 168 |
+
pip install torch torchvision Pillow numpy
|
| 169 |
+
```
|
| 170 |
+
|
| 171 |
+
## π Citation
|
| 172 |
+
|
| 173 |
+
If you use this dataset, please cite:
|
| 174 |
+
|
| 175 |
+
```bibtex
|
| 176 |
+
@inproceedings{yu2020meta,
|
| 177 |
+
title={Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning},
|
| 178 |
+
author={Yu, Tianhe and Quillen, Deirdre and He, Zhanpeng and Julian, Ryan and Hausman, Karol and Finn, Chelsea and Levine, Sergey},
|
| 179 |
+
booktitle={Conference on robot learning},
|
| 180 |
+
pages={1094--1100},
|
| 181 |
+
year={2020},
|
| 182 |
+
organization={PMLR}
|
| 183 |
+
}
|
| 184 |
+
|
| 185 |
+
@inproceedings{nair2022r3m,
|
| 186 |
+
title={R3M: A Universal Visual Representation for Robot Manipulation},
|
| 187 |
+
author={Nair, Suraj and Rajeswaran, Aravind and Kumar, Vikash and Finn, Chelsea and Gupta, Abhinav},
|
| 188 |
+
booktitle={Conference on Robot Learning},
|
| 189 |
+
pages={892--902},
|
| 190 |
+
year={2023},
|
| 191 |
+
organization={PMLR}
|
| 192 |
+
}
|
| 193 |
+
```
|
| 194 |
+
|
| 195 |
+
## π§ Contact
|
| 196 |
+
|
| 197 |
+
- Original dataset: [email protected]
|
| 198 |
+
- Questions about this upload: Open an issue in the dataset repository
|
| 199 |
+
|
| 200 |
+
## βοΈ License
|
| 201 |
+
|
| 202 |
+
MIT License - See LICENSE file for details.
|