Boasting over 10,000 hours of cumulative data and 1 million+ clips, it ranks as the largest open-source embodied intelligence dataset in the industry.
Compared with other datasets, it has the following advantages:
- Ample Data Volume & Strong Generalization
Each skill is supported by sufficient data, collected from over 3,000 households and nearly 10,000 distinct fine-grained targets. It avoids simple repetitions and ensures robust generalization.

- Authentic Scenarios & Focused Skills Captured from natural operations in real households, we avoid skill fragmentation that compromises quality. Instead, we focus on 10 key household scenarios and 30 core skills.
- Bimanual & Long-duration Tasks
Full recordings of the entire process of complex household chores and cleaning. Data collection by GenDAS Gripper.

- Multi-modal & High-quality Data Includes large-FOV raw images, trajectories, annotations and joint movements. Trajectory reconstruction ensures industry-leading precision and quality.
Dataset Statistics
| Attribute | Value |
|---|---|
| Median Clip Length | 210.0 seconds |
| Storage Size | 95 TB |
| Format | mcap |
| Resolution | 1600*1296 |
| Frame Rate | 30 fps |
| Camera Type | Large FOV Fisheye Camera |
| IMU | Yes 6-axis |
| Tactile Array Spatial | Yes |
| Array Spatial Resolution | 1 mm |
| Device | Gen DAS Gripper |
Stage 1 Content:
We have uploaded the data of Stage 1. This is only a small fraction and we will complete updates for the remaining skills as soon as possible. Stage 1 covers 12 skills across 4 major scenario tasks .Total duration: 950 hours, clips: 39,761, storage 3.45TB.
| Task | Skill |
|---|---|
| Folding_Clothes_and_Zipper_Operations | fold_and_store_clothes |
| zip_clothes | |
| Cooking_and_Kitchen_Clean | clean_container |
| unscrew_bottle_cap_and_pour | |
| clean_bowl | |
| Organize_Clutter | desktop_object_sorting |
| fold_towel | |
| fold_and_store_shopping_bag | |
| drawer_to_take_items | |
| drawer_to_place_items | |
| Shoes_Handling | lace_up_shoes_with_both_hands |
| organize_scattered_shoes |
And synchronize the progress across major social platforms.In addition to the data, we will also provide relevant support including format conversion and usage guidance,here is the link https://github.com/genrobot-ai/das-datakit.
Contact Us
Any questions, suggestions or desired data collection scenarios/skills are welcome during usage. Let’s co-build this project to digitize all human skills. X:https://x.com/GenrobotAI Linkin:https://www.linkedin.com/company/108767412/admin/dashboard/ Email:[email protected]
Dataset Structure
The mcap files are stored in the final leaf folders of the file directory structure.Note: Each mcap file represents one piece of task data.
Data Format
Dual-arm tasks: robot0 and robot1 represent the left and right grippers respectively. Each gripper contains the following topics:
/robot0/sensor/camera0/compressed # Fisheye camera image data — compressed and encoded in H.264 format.
/robot0/sensor/camera0/camera_info # Fisheye Intrinsic and Extrinsic Parameters
/robot0/sensor/imu # Inertial Measurement Unit (IMU) Data
/robot0/sensor/magnetic_encoder # Magnetic encoder data: gripper opening distance
/robot0/vio/eef_pose # Trajectory data
Topics are serialized using Protobuf for persistent storage
/robot0/sensor/camera0/compressed:
// A compressed image
message CompressedImage {
// Timestamp of image
google.protobuf.Timestamp timestamp = 1;
// frame id
string frame_id = 4;
// Compressed image data, h264 video stream
bytes data = 2;
// Image format
// Supported values: `webp`, `jpeg`, `png`, `h264`
string format = 3;
// common header, timestamp is inside it
Header header = 8;
}
message Header {
string module_name = 1;
uint32 sequence_num = 2;
uint64 timestamp = 3;
string topic_name = 4;
double expect_hz = 5;
repeated Input inputs = 6;
}
/robot0/sensor/camera0/camera_info:
// Camera calibration parameters
message CameraCalibration {
// not used
google.protobuf.Timestamp timestamp = 1;
// frame id
string frame_id = 9;
// Image width
fixed32 width = 2;
// Image height
fixed32 height = 3;
// Name of distortion model
string distortion_model = 4;
// Distortion parameters
repeated double D = 5;
// Intrinsic camera matrix (3x3 row-major matrix)
//
// A 3x3 row-major matrix for the raw (distorted) image.
//
// Projects 3D points in the camera coordinate frame to 2D pixel coordinates using the focal lengths (fx, fy) and principal point (cx, cy).
//
// ```
// [fx 0 cx]
// K = [ 0 fy cy]
// [ 0 0 1]
// ```
repeated double K = 6; // length 9
// Rectification matrix (stereo cameras only, 3x3 row-major matrix)
//
// A rotation matrix aligning the camera coordinate system to the ideal stereo image plane so that epipolar lines in both stereo images are parallel.
repeated double R = 7; // length 9
// Projection/camera matrix (stereo cameras only, 3x4 row-major matrix)
// [fx' 0 cx' Tx]
// P = [ 0 fy' cy' Ty]
// [ 0 0 1 0]
repeated double P = 8; // length 12
// transform from camera to base frame
repeated double T_b_c = 10; // length 7, [tx ty tz qx qy qz qw]
// common header
Header header = 11;
}
/robot0/sensor/imu:
// IMU message
message IMUMeasurement {
// common header
arnold.common.proto.Header header = 1;
// frame id
string frame_id = 2;
foxglove.Vector3 angular_velocity = 3;
// Acceleration data in g-force units
foxglove.Vector3 linear_acceleration = 4;
// float temperature = 5;
// repeated float angular_velocity_covariance = 6;
// repeated float linear_acceleration_covariance = 7;
}
/robot0/sensor/magnetic_encoder:
message MagneticEncoderMeasurement {
// common header
arnold.common.proto.Header header = 1;
// frame id
string frame_id = 2;
// Distance between gripper fingers, 0-0.103m, 0 means closed
double value = 3;
}
/robot0/vio/eef_pose:
// A timestamped pose for an object or reference frame in 3D space
message PoseInFrame {
// not used
google.protobuf.Timestamp timestamp = 1;
// Frame id
string frame_id = 2;
// Pose in 3D space
foxglove.Pose pose = 3;
// linear vel
foxglove.Vector3 linear_vel= 4;
// angular_vel
foxglove.Vector3 angular_vel = 5;
// common header
arnold.common.proto.Header header = 6;
}
How to Vis Data
web view tool;
https://monitor.genrobot.click/#/index
How to Load Data
reference:
https://github.com/genrobot-ai/das-datakit
- Downloads last month
- 93