|
|
--- |
|
|
language: |
|
|
- en |
|
|
- de |
|
|
- fr |
|
|
- it |
|
|
- pt |
|
|
- hi |
|
|
- es |
|
|
- th |
|
|
license: llama3.3 |
|
|
pipeline_tag: text-generation |
|
|
tags: |
|
|
- facebook |
|
|
- meta |
|
|
- pytorch |
|
|
- llama |
|
|
- llama-3 |
|
|
- neuralmagic |
|
|
- redhat |
|
|
- speculators |
|
|
- eagle3 |
|
|
--- |
|
|
|
|
|
# Llama-3.3-70B-Instruct-speculator.eagle3 |
|
|
|
|
|
## Model Overview |
|
|
- **Verifier:** meta-llama/Llama-3.3-70B-Instruct |
|
|
- **Speculative Decoding Algorithm:** EAGLE-3 |
|
|
- **Model Architecture:** Eagle3Speculator |
|
|
- **Release Date:** 09/15/2025 |
|
|
- **Version:** 1.0 |
|
|
- **Model Developers:** RedHat |
|
|
|
|
|
This is a speculator model designed for use with [meta-llama/Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct), based on the [EAGLE-3](https://arxiv.org/abs/2503.01840) speculative decoding algorithm. |
|
|
It was trained using the [speculators](https://github.com/vllm-project/speculators) library on a combination of the [Aeala/ShareGPT_Vicuna_unfiltered](https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered) and the `train_sft` split of [HuggingFaceH4/ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) datasets. |
|
|
This model should be used with the [meta-llama/Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) chat template, specifically through the `/chat/completions` endpoint. |
|
|
|
|
|
## Use with vLLM |
|
|
|
|
|
```bash |
|
|
vllm serve meta-llama/Llama-3.3-70B-Instruct \ |
|
|
-tp 4 \ |
|
|
--speculative-config '{ |
|
|
"model": "RedHatAI/Llama-3.3-70B-Instruct-speculator.eagle3", |
|
|
"num_speculative_tokens": 3, |
|
|
"method": "eagle3" |
|
|
}' |
|
|
``` |
|
|
|
|
|
## Evaluations |
|
|
|
|
|
<h3>Use cases</h3> |
|
|
<table> |
|
|
<thead> |
|
|
<tr> |
|
|
<th>Use Case</th> |
|
|
<th>Dataset</th> |
|
|
<th>Number of Samples</th> |
|
|
</tr> |
|
|
</thead> |
|
|
<tbody> |
|
|
<tr> |
|
|
<td>Coding</td> |
|
|
<td>HumanEval</td> |
|
|
<td>168</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Math Reasoning</td> |
|
|
<td>gsm8k</td> |
|
|
<td>80</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Text Summarization</td> |
|
|
<td>CNN/Daily Mail</td> |
|
|
<td>80</td> |
|
|
</tr> |
|
|
</tbody> |
|
|
</table> |
|
|
|
|
|
<h3>Acceptance lengths</h3> |
|
|
<table> |
|
|
<thead> |
|
|
<tr> |
|
|
<th>Use Case</th> |
|
|
<th>k=1</th> |
|
|
<th>k=2</th> |
|
|
<th>k=3</th> |
|
|
<th>k=4</th> |
|
|
<th>k=5</th> |
|
|
<th>k=6</th> |
|
|
<th>k=7</th> |
|
|
</tr> |
|
|
</thead> |
|
|
<tbody> |
|
|
<tr> |
|
|
<td>Coding</td> |
|
|
<td>1.84</td> |
|
|
<td>2.53</td> |
|
|
<td>3.07</td> |
|
|
<td>3.42</td> |
|
|
<td>3.71</td> |
|
|
<td>3.89</td> |
|
|
<td>4.00</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Math Reasoning</td> |
|
|
<td>1.81</td> |
|
|
<td>2.43</td> |
|
|
<td>2.88</td> |
|
|
<td>3.17</td> |
|
|
<td>3.30</td> |
|
|
<td>3.42</td> |
|
|
<td>3.53</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Text Summarization</td> |
|
|
<td>1.71</td> |
|
|
<td>2.21</td> |
|
|
<td>2.52</td> |
|
|
<td>2.74</td> |
|
|
<td>2.83</td> |
|
|
<td>2.87</td> |
|
|
<td>2.89</td> |
|
|
</tr> |
|
|
</tbody> |
|
|
</table> |
|
|
|
|
|
<h3>Performance benchmarking (4xA100)</h3> |
|
|
<div style="display: flex; justify-content: center; gap: 20px;"> |
|
|
|
|
|
<figure style="text-align: center;"> |
|
|
<img src="assets/Llama-3.3-70B-Instruct-HumanEval.png" alt="Coding" width="100%"> |
|
|
</figure> |
|
|
|
|
|
<figure style="text-align: center;"> |
|
|
<img src="assets/Llama-3.3-70B-Instruct-math_reasoning.png" alt="Coding" width="100%"> |
|
|
</figure> |
|
|
|
|
|
<figure style="text-align: center;"> |
|
|
<img src="assets/Llama-3.3-70B-Instruct-summarization.png" alt="Coding" width="100%"> |
|
|
</figure> |
|
|
</div> |
|
|
|
|
|
<details> <summary>Details</summary> |
|
|
<strong>Configuration</strong> |
|
|
|
|
|
- temperature: 0 |
|
|
- repetitions: 5 |
|
|
- time per experiment: 4min |
|
|
- hardware: 4xA100 |
|
|
- vLLM version: 0.11.0 |
|
|
- GuideLLM version: 0.3.0 |
|
|
|
|
|
<strong>Command</strong> |
|
|
```bash |
|
|
GUIDELLM__PREFERRED_ROUTE="chat_completions" \ |
|
|
guidellm benchmark \ |
|
|
--target "http://localhost:8000/v1" \ |
|
|
--data "RedHatAI/speculator_benchmarks" \ |
|
|
--data-args '{"data_files": "HumanEval.jsonl"}' \ |
|
|
--rate-type sweep \ |
|
|
--max-seconds 240 \ |
|
|
--output-path "Llama-3.3-70B-Instruct-HumanEval.json" \ |
|
|
--backend-args '{"extra_body": {"chat_completions": {"temperature":0.0}}}' |
|
|
</details> |
|
|
|