File size: 3,972 Bytes
8d36c47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef3a876
8d36c47
ba1c53f
 
 
 
e7dff4c
ba1c53f
 
 
 
 
 
 
8d36c47
 
e7dff4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d36c47
e7dff4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be5001b
 
 
84867e4
be5001b
 
 
e7dff4c
 
 
be5001b
 
 
 
 
 
 
e7dff4c
 
 
be5001b
 
 
 
 
 
 
e7dff4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f3485b
 
e7dff4c
 
 
a790d14
e7dff4c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
license: llama3.3
pipeline_tag: text-generation
tags:
- facebook
- meta
- pytorch
- llama
- llama-3
- neuralmagic
- redhat
- speculators
- eagle3
---

# Llama-3.3-70B-Instruct-speculator.eagle3

## Model Overview
- **Verifier:** meta-llama/Llama-3.3-70B-Instruct
- **Speculative Decoding Algorithm:** EAGLE-3
- **Model Architecture:** Eagle3Speculator
- **Release Date:** 09/15/2025
- **Version:** 1.0
- **Model Developers:** RedHat

This is a speculator model designed for use with [meta-llama/Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct), based on the [EAGLE-3](https://arxiv.org/abs/2503.01840) speculative decoding algorithm.
It was trained using the [speculators](https://github.com/vllm-project/speculators) library on a combination of the [Aeala/ShareGPT_Vicuna_unfiltered](https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered) and the `train_sft` split of [HuggingFaceH4/ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) datasets.
This model should be used with the [meta-llama/Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) chat template, specifically through the `/chat/completions` endpoint.

## Use with vLLM

```bash
vllm serve meta-llama/Llama-3.3-70B-Instruct \
  -tp 4 \
  --speculative-config '{
    "model": "RedHatAI/Llama-3.3-70B-Instruct-speculator.eagle3",
    "num_speculative_tokens": 3,
    "method": "eagle3"
  }'
```

## Evaluations

<h3>Use cases</h3>
<table>
  <thead>
    <tr>
      <th>Use Case</th>
      <th>Dataset</th>
      <th>Number of Samples</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>Coding</td>
      <td>HumanEval</td>
      <td>168</td>
    </tr>
    <tr>
      <td>Math Reasoning</td>
      <td>gsm8k</td>
      <td>80</td>
    </tr>
    <tr>
      <td>Text Summarization</td>
      <td>CNN/Daily Mail</td>
      <td>80</td>
    </tr>
  </tbody>
</table>

<h3>Acceptance lengths</h3>
<table>
  <thead>
    <tr>
      <th>Use Case</th>
      <th>k=1</th>
      <th>k=2</th>
      <th>k=3</th>
      <th>k=4</th>
      <th>k=5</th>
      <th>k=6</th>
      <th>k=7</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>Coding</td>
      <td>1.84</td>
      <td>2.53</td>
      <td>3.07</td>
      <td>3.42</td>
      <td>3.71</td>
      <td>3.89</td>
      <td>4.00</td>
    </tr>
    <tr>
      <td>Math Reasoning</td>
      <td>1.81</td>
      <td>2.43</td>
      <td>2.88</td>
      <td>3.17</td>
      <td>3.30</td>
      <td>3.42</td>
      <td>3.53</td>
    </tr>
    <tr>
      <td>Text Summarization</td>
      <td>1.71</td>
      <td>2.21</td>
      <td>2.52</td>
      <td>2.74</td>
      <td>2.83</td>
      <td>2.87</td>
      <td>2.89</td>
    </tr>
  </tbody>
</table>

<h3>Performance benchmarking (4xA100)</h3>
<div style="display: flex; justify-content: center; gap: 20px;">

  <figure style="text-align: center;">
    <img src="assets/Llama-3.3-70B-Instruct-HumanEval.png" alt="Coding" width="100%">
  </figure>

  <figure style="text-align: center;">
    <img src="assets/Llama-3.3-70B-Instruct-math_reasoning.png" alt="Coding" width="100%">
  </figure>

  <figure style="text-align: center;">
    <img src="assets/Llama-3.3-70B-Instruct-summarization.png" alt="Coding" width="100%">
  </figure>
</div>

<details> <summary>Details</summary>
<strong>Configuration</strong>

- temperature: 0
- repetitions: 5
- time per experiment: 4min
- hardware: 4xA100
- vLLM version: 0.11.0
- GuideLLM version: 0.3.0

<strong>Command</strong>
```bash
GUIDELLM__PREFERRED_ROUTE="chat_completions" \
guidellm benchmark \
  --target "http://localhost:8000/v1" \
  --data "RedHatAI/speculator_benchmarks" \
  --data-args '{"data_files": "HumanEval.jsonl"}' \
  --rate-type sweep \
  --max-seconds 240 \
  --output-path "Llama-3.3-70B-Instruct-HumanEval.json" \
  --backend-args '{"extra_body": {"chat_completions": {"temperature":0.0}}}'
</details>