metadata
license: cc-by-nc-4.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- loss:CosineSimilarityLoss
base_model: neuralmind/bert-large-portuguese-cased
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_dot
- spearman_dot
- pearson_euclidean
- spearman_euclidean
- pearson_manhattan
- spearman_manhattan
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on neuralmind/bert-large-portuguese-cased
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev dot
type: sts-dev-dot
metrics:
- type: pearson_dot
value: 0.18794469022476173
name: Pearson Dot
- type: spearman_dot
value: 0.17330642951334718
name: Spearman Dot
- type: pearson_dot
value: 0.18794469022476173
name: Pearson Dot
- type: spearman_dot
value: 0.17330642951334718
name: Spearman Dot
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev euclidian
type: sts-dev-euclidian
metrics:
- type: pearson_euclidean
value: 0.6901184462009367
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6918422814802583
name: Spearman Euclidean
- type: pearson_euclidean
value: 0.6901184462009367
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6918422814802583
name: Spearman Euclidean
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev manhattan
type: sts-dev-manhattan
metrics:
- type: pearson_manhattan
value: 0.6894045916517573
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6915146514062644
name: Spearman Manhattan
- type: pearson_manhattan
value: 0.6894045916517573
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6915146514062644
name: Spearman Manhattan
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev cosine
type: sts-dev-cosine
metrics:
- type: pearson_cosine
value: 0.6697919427315735
name: Pearson Cosine
- type: spearman_cosine
value: 0.6927776866317362
name: Spearman Cosine
- type: pearson_cosine
value: 0.6697919427315735
name: Pearson Cosine
- type: spearman_cosine
value: 0.6927776866317362
name: Spearman Cosine
SentenceTransformer based on neuralmind/bert-large-portuguese-cased
This is a sentence-transformers model finetuned from neuralmind/bert-large-portuguese-cased . It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
Model Type: Sentence Transformer
Base model: neuralmind/bert-large-portuguese-cased
Maximum Sequence Length: 512 tokens
Output Dimensionality: 1024 dimensions
Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("sentence_transformers_model_id" )
sentences = [
"o autor possuía..., " ,
"a parte autora é servidor pública..." ,
"a parte autora é..."
]
embeddings = model.encode(sentences)
print (embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print (similarities)
Evaluation
Metrics
Semantic Similarity
Metric
Value
pearson_dot
0.1879
spearman_dot
0.1733
Semantic Similarity
Metric
Value
pearson_euclidean
0.6901
spearman_euclidean
0.6918
Semantic Similarity
Metric
Value
pearson_manhattan
0.6894
spearman_manhattan
0.6915
Semantic Similarity
Metric
Value
pearson_cosine
0.6698
spearman_cosine
0.6928
Semantic Similarity
Metric
Value
pearson_dot
0.1879
spearman_dot
0.1733
Semantic Similarity
Metric
Value
pearson_euclidean
0.6901
spearman_euclidean
0.6918
Semantic Similarity
Metric
Value
pearson_manhattan
0.6894
spearman_manhattan
0.6915
Semantic Similarity
Metric
Value
pearson_cosine
0.6698
spearman_cosine
0.6928
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
learning_rate: 1e-05
num_train_epochs: 4
warmup_ratio: 0.1
fp16: True
resume_from_checkpoint: True
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 1e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 4
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: True
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
hub_revision: None
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
liger_kernel_config: None
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
router_mapping: {}
learning_rate_mapping: {}
Framework Versions
Python: 3.10.12
Sentence Transformers: 5.0.0
Transformers: 4.53.3
PyTorch: 2.7.1+cu126
Accelerate: 1.9.0
Datasets: 3.6.0
Tokenizers: 0.21.2
Authors
Diretoria de Inteligência Artificial, Ciência de Dados e Estatística do Tribunal de Justiça do Estado de Goiás (TJGO).
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
BERTIMBAU
@inproceedings{souza2020bertimbau,
author = {F{\'a}bio Souza and
Rodrigo Nogueira and
Roberto Lotufo},
title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
year = {2020}
}