--- license: cc-by-nc-4.0 tags: - sentence-transformers - sentence-similarity - feature-extraction - dense - generated_from_trainer - loss:CosineSimilarityLoss base_model: neuralmind/bert-large-portuguese-cased pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - pearson_dot - spearman_dot - pearson_euclidean - spearman_euclidean - pearson_manhattan - spearman_manhattan - pearson_cosine - spearman_cosine model-index: - name: SentenceTransformer based on neuralmind/bert-large-portuguese-cased results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev dot type: sts-dev-dot metrics: - type: pearson_dot value: 0.18794469022476173 name: Pearson Dot - type: spearman_dot value: 0.17330642951334718 name: Spearman Dot - type: pearson_dot value: 0.18794469022476173 name: Pearson Dot - type: spearman_dot value: 0.17330642951334718 name: Spearman Dot - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev euclidian type: sts-dev-euclidian metrics: - type: pearson_euclidean value: 0.6901184462009367 name: Pearson Euclidean - type: spearman_euclidean value: 0.6918422814802583 name: Spearman Euclidean - type: pearson_euclidean value: 0.6901184462009367 name: Pearson Euclidean - type: spearman_euclidean value: 0.6918422814802583 name: Spearman Euclidean - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev manhattan type: sts-dev-manhattan metrics: - type: pearson_manhattan value: 0.6894045916517573 name: Pearson Manhattan - type: spearman_manhattan value: 0.6915146514062644 name: Spearman Manhattan - type: pearson_manhattan value: 0.6894045916517573 name: Pearson Manhattan - type: spearman_manhattan value: 0.6915146514062644 name: Spearman Manhattan - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev cosine type: sts-dev-cosine metrics: - type: pearson_cosine value: 0.6697919427315735 name: Pearson Cosine - type: spearman_cosine value: 0.6927776866317362 name: Spearman Cosine - type: pearson_cosine value: 0.6697919427315735 name: Pearson Cosine - type: spearman_cosine value: 0.6927776866317362 name: Spearman Cosine --- # SentenceTransformer based on neuralmind/bert-large-portuguese-cased This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'}) (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ "o autor possuía..., ", "a parte autora é servidor pública...", "a parte autora é..." ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities) # tensor([[1.0000, 1.0000, 0.8019], # [1.0000, 1.0000, 0.8019], # [0.8019, 0.8019, 1.0000]]) ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-dev-dot` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:-----------------|:-----------| | pearson_dot | 0.1879 | | **spearman_dot** | **0.1733** | #### Semantic Similarity * Dataset: `sts-dev-euclidian` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:-----------------------|:-----------| | pearson_euclidean | 0.6901 | | **spearman_euclidean** | **0.6918** | #### Semantic Similarity * Dataset: `sts-dev-manhattan` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:-----------------------|:-----------| | pearson_manhattan | 0.6894 | | **spearman_manhattan** | **0.6915** | #### Semantic Similarity * Dataset: `sts-dev-cosine` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.6698 | | **spearman_cosine** | **0.6928** | #### Semantic Similarity * Dataset: `sts-dev-dot` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:-----------------|:-----------| | pearson_dot | 0.1879 | | **spearman_dot** | **0.1733** | #### Semantic Similarity * Dataset: `sts-dev-euclidian` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:-----------------------|:-----------| | pearson_euclidean | 0.6901 | | **spearman_euclidean** | **0.6918** | #### Semantic Similarity * Dataset: `sts-dev-manhattan` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:-----------------------|:-----------| | pearson_manhattan | 0.6894 | | **spearman_manhattan** | **0.6915** | #### Semantic Similarity * Dataset: `sts-dev-cosine` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.6698 | | **spearman_cosine** | **0.6928** | ## Training Details ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `learning_rate`: 1e-05 - `num_train_epochs`: 4 - `warmup_ratio`: 0.1 - `fp16`: True - `resume_from_checkpoint`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 1e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: True - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {}
### Framework Versions - Python: 3.10.12 - Sentence Transformers: 5.0.0 - Transformers: 4.53.3 - PyTorch: 2.7.1+cu126 - Accelerate: 1.9.0 - Datasets: 3.6.0 - Tokenizers: 0.21.2 - ## Authors *Diretoria de Inteligência Artificial, Ciência de Dados e Estatística do Tribunal de Justiça do Estado de Goiás (TJGO).* ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### BERTIMBAU ```bibtex @inproceedings{souza2020bertimbau, author = {F{\'a}bio Souza and Rodrigo Nogueira and Roberto Lotufo}, title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese}, booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)}, year = {2020} } ```