Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
11
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l-v2.0 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: PeftModelForFeatureExtraction
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Risk-based water quality monitoring framework',
'Development of a new risk-based framework to guide investment in water quality monitoring. ',
'Water quality monitoring strategies - A review and future perspectives. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
triplet-devTripletEvaluator| Metric | Value |
|---|---|
| cosine_accuracy | 0.72 |
anchor, positive, and negative| anchor | positive | negative | |
|---|---|---|---|
| type | string | string | string |
| details |
|
|
|
| anchor | positive | negative |
|---|---|---|
Pediatric Infectious Disease Control |
[Urgent tasks in scientific studies concerning the control of infectious diseases in children]. |
Pediatric workforce: a look at pediatric infectious diseases data from the American Board of Pediatrics. |
Thermal coefficient of phase shift |
Thermal characteristics of phase shift in jacketed optical fibers. |
Thermal effects. |
Renal biomarkers in heart failure |
Current and novel renal biomarkers in heart failure. |
Cardiac biomarkers of heart failure in chronic kidney disease. |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
eval_strategy: stepsper_device_train_batch_size: 256per_device_eval_batch_size: 256num_train_epochs: 1lr_scheduler_type: cosine_with_restartswarmup_ratio: 0.1bf16: Truebatch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 256per_device_eval_batch_size: 256per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: cosine_with_restartslr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | triplet-dev_cosine_accuracy |
|---|---|---|---|
| 0 | 0 | - | 0.58 |
| 0.025 | 1 | 1.922 | - |
| 0.05 | 2 | 1.7637 | - |
| 0.075 | 3 | 1.8049 | - |
| 0.1 | 4 | 1.4954 | - |
| 0.125 | 5 | 1.7383 | - |
| 0.15 | 6 | 1.4773 | - |
| 0.175 | 7 | 1.3947 | - |
| 0.2 | 8 | 1.5337 | - |
| 0.225 | 9 | 1.2705 | - |
| 0.25 | 10 | 1.167 | - |
| 0.275 | 11 | 1.3125 | - |
| 0.3 | 12 | 1.4049 | - |
| 0.325 | 13 | 1.3382 | - |
| 0.35 | 14 | 1.1542 | - |
| 0.375 | 15 | 1.2514 | - |
| 0.4 | 16 | 1.1141 | - |
| 0.425 | 17 | 1.2267 | - |
| 0.45 | 18 | 1.1781 | - |
| 0.475 | 19 | 1.269 | - |
| 0.5 | 20 | 1.0684 | - |
| 0.525 | 21 | 1.2045 | - |
| 0.55 | 22 | 0.9869 | - |
| 0.575 | 23 | 1.2933 | - |
| 0.6 | 24 | 1.0751 | - |
| 0.625 | 25 | 1.2671 | - |
| 0.65 | 26 | 1.1874 | - |
| 0.675 | 27 | 1.241 | - |
| 0.7 | 28 | 1.1735 | - |
| 0.725 | 29 | 1.247 | - |
| 0.75 | 30 | 1.1166 | - |
| 0.775 | 31 | 1.1484 | - |
| 0.8 | 32 | 1.2556 | - |
| 0.825 | 33 | 1.1028 | - |
| 0.85 | 34 | 1.215 | - |
| 0.875 | 35 | 1.3421 | - |
| 0.9 | 36 | 1.1762 | - |
| 0.925 | 37 | 1.2029 | - |
| 0.95 | 38 | 1.1283 | - |
| 0.975 | 39 | 1.0871 | - |
| 1.0 | 40 | 0.7317 | 0.72 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
Snowflake/snowflake-arctic-embed-l-v2.0