wanadzhar913's picture
Update README.md
59c6a22 verified
metadata
library_name: transformers
language:
  - en
base_model:
  - microsoft/deberta-v3-base
pipeline_tag: text-classification

Model Performance

Model Epoch Learning Rate Grad Norm (Mean) Training Loss Validation Loss Accuracy F1 Score (Weighted) F1 Score (Macro) Precision (Weighted) Precision (Macro) Recall (Weighted) Recall (Macro)
DeBERTaV3 (Text Only) 10 0.0000050 3.755 0.102 0.309 0.913 0.914 0.858 0.918 0.855 0.913 0.868

How to Use

from transformers import AutoTokenizer, AutoConfig, pipeline, \
                         DebertaV2ForSequenceClassification

config = AutoConfig.from_pretrained('wanadzhar913/debertav3-finetuned-banking-transaction-classification-text-only')
model = DebertaV2ForSequenceClassification.from_pretrained('wanadzhar913/debertav3-finetuned-banking-transaction-classification-text-only', config = config)
tokenizer = AutoTokenizer.from_pretrained('wanadzhar913/debertav3-finetuned-banking-transaction-classification-text-only')

pipe = pipeline(
    "text-classification",
    tokenizer = tokenizer,
    model=model,
    padding=True,
    device=0,
)

pipe([
    "Online Banking transfer from CHK 6479 Confirmation# 1425	",
    "DEPOSIT", # Supposed to be 'Payroll'
    "SELF LENDER AUSTIN TX 23267 Debit Card Purchase 09/23 10:20a #6410",
    "SECU Foundation",
    "RECURRING PAYMENT AUTHORIZED ON 06/02 GEICO *AUTO 1036 DC S583153489705993 111",
])
>>>[{'label': 'Internal Account Transfer', 'score': 0.9998998641967773},
>>> {'label': 'Transfer Deposit', 'score': 0.35954612493515015},
>>> {'label': 'Uncategorized', 'score': 0.9998960494995117},
>>> {'label': 'Restaurants', 'score': 0.6260305047035217},
>>> {'label': 'Insurance', 'score': 0.9998502731323242}]