ner-bge-small-en-v1_5_no_synth
This model is a fine-tuned version of BAAI/bge-small-en-v1.5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1245
- Precision: 0.9220
- Recall: 0.9330
- F1: 0.9275
- Accuracy: 0.9827
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.969409787289472e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.0397 | 1.0 | 2500 | 0.1019 | 0.8887 | 0.9209 | 0.9045 | 0.9785 |
| 0.045 | 2.0 | 5000 | 0.0998 | 0.9052 | 0.9162 | 0.9107 | 0.9794 |
| 0.0199 | 3.0 | 7500 | 0.1057 | 0.9004 | 0.9201 | 0.9101 | 0.9796 |
| 0.0187 | 4.0 | 10000 | 0.1091 | 0.9064 | 0.9244 | 0.9153 | 0.9811 |
| 0.0039 | 5.0 | 12500 | 0.1126 | 0.9156 | 0.9280 | 0.9218 | 0.9816 |
| 0.0021 | 6.0 | 15000 | 0.1138 | 0.9081 | 0.9330 | 0.9204 | 0.9810 |
| 0.0065 | 7.0 | 17500 | 0.1150 | 0.9170 | 0.9315 | 0.9242 | 0.9815 |
| 0.0051 | 8.0 | 20000 | 0.1196 | 0.9169 | 0.9308 | 0.9238 | 0.9819 |
| 0.0038 | 9.0 | 22500 | 0.1209 | 0.9185 | 0.9349 | 0.9266 | 0.9824 |
| 0.0003 | 10.0 | 25000 | 0.1245 | 0.9220 | 0.9330 | 0.9275 | 0.9827 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.2.0
- Tokenizers 0.22.1
- Downloads last month
- 7
Model tree for vladsanz239/ner-bge-small-en-v1_5_no_synth
Base model
BAAI/bge-small-en-v1.5