CrossEncoder based on Qwen/Qwen3-Embedding-0.6B
This is a Cross Encoder model finetuned from Qwen/Qwen3-Embedding-0.6B using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: Qwen/Qwen3-Embedding-0.6B
- Maximum Sequence Length: 32768 tokens
- Number of Output Labels: 1 label
Model Sources
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
model = CrossEncoder("vkimbris/qwen3_06b_items_reranker")
pairs = [
['Васаби порошок горчичный Премиум Fumiko Resfood 1кг, 10шт/кор, Кихай', 'Васаби Fumiko Premium грейд А, 85% хрена'],
['Соус Терияки Genso 1,5n/1,7кг, бшт/кор, Россия', 'Соус Терияки Genso'],
['Уксус рисовый Padam Prem Resfood 20л, Россия', 'Уксус рисовый Padam Premium'],
['Имбирь маринованный розовый Tabuko Restood 1,5 кг, вес сухого вещ-ва 1кг, 10шт/кор, Китай', 'Имбирь маринованный Tabuko розовый'],
["Паста Том Ям 'Genso' пакет (0,400 кг) упак. 24 шт. Тайланд", 'Паста Том Ям Genso'],
]
scores = model.predict(pairs)
print(scores.shape)
ranks = model.rank(
'Васаби порошок горчичный Премиум Fumiko Resfood 1кг, 10шт/кор, Кихай',
[
'Васаби Fumiko Premium грейд А, 85% хрена',
'Соус Терияки Genso',
'Уксус рисовый Padam Premium',
'Имбирь маринованный Tabuko розовый',
'Паста Том Ям Genso',
]
)
Evaluation
Metrics
Cross Encoder Classification
| Metric |
Value |
| accuracy |
0.9389 |
| accuracy_threshold |
0.7263 |
| f1 |
0.9392 |
| f1_threshold |
0.7263 |
| precision |
0.9356 |
| recall |
0.9427 |
| average_precision |
0.9509 |
Cross Encoder Classification
| Metric |
Value |
| accuracy |
0.9436 |
| accuracy_threshold |
0.8169 |
| f1 |
0.9447 |
| f1_threshold |
0.7355 |
| precision |
0.9267 |
| recall |
0.9634 |
| average_precision |
0.9544 |
Training Details
Training Dataset
Unnamed Dataset
Evaluation Dataset
Unnamed Dataset
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
learning_rate: 2e-05
num_train_epochs: 15
warmup_ratio: 0.1
fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 15
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
parallelism_config: None
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
project: huggingface
trackio_space_id: trackio
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
hub_revision: None
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: no
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
liger_kernel_config: None
eval_use_gather_object: False
average_tokens_across_devices: True
prompts: None
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
router_mapping: {}
learning_rate_mapping: {}
Training Logs
| Epoch |
Step |
Training Loss |
Validation Loss |
average_precision |
| 1.5152 |
100 |
0.4864 |
0.1104 |
0.8944 |
| 3.0303 |
200 |
0.1238 |
0.0983 |
0.9240 |
| 4.5455 |
300 |
0.1106 |
0.0934 |
0.9466 |
| 6.0606 |
400 |
0.1068 |
0.0939 |
0.9378 |
| 7.5758 |
500 |
0.1135 |
0.1023 |
0.9232 |
| 9.0909 |
600 |
0.1061 |
0.1187 |
0.9186 |
| 10.6061 |
700 |
0.1074 |
0.0808 |
0.9445 |
| 12.1212 |
800 |
0.1039 |
0.1153 |
0.9403 |
| 13.6364 |
900 |
0.1082 |
0.0900 |
0.9509 |
| -1 |
-1 |
- |
- |
0.9544 |
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.2.0
- Transformers: 4.57.3
- PyTorch: 2.9.1+cu128
- Accelerate: 1.12.0
- Datasets: 4.4.2
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}