bert-finetuned-ner-conll2003-generic
This model is a fine-tuned version of BAAI/bge-small-en-v1.5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0840
- Precision: 0.9839
- Recall: 0.9848
- F1: 0.9844
- Accuracy: 0.9826
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.2134 | 1.0 | 1250 | 0.1334 | 0.9721 | 0.9729 | 0.9725 | 0.9699 |
| 0.1022 | 2.0 | 2500 | 0.0997 | 0.9802 | 0.9806 | 0.9804 | 0.9783 |
| 0.0651 | 3.0 | 3750 | 0.0805 | 0.9819 | 0.9822 | 0.9820 | 0.9805 |
| 0.0503 | 4.0 | 5000 | 0.0788 | 0.9828 | 0.9832 | 0.9830 | 0.9813 |
| 0.0395 | 5.0 | 6250 | 0.0793 | 0.9833 | 0.9835 | 0.9834 | 0.9816 |
| 0.0324 | 6.0 | 7500 | 0.0782 | 0.9840 | 0.9842 | 0.9841 | 0.9824 |
| 0.0257 | 7.0 | 8750 | 0.0810 | 0.9835 | 0.9847 | 0.9841 | 0.9824 |
| 0.0201 | 8.0 | 10000 | 0.0821 | 0.9840 | 0.9846 | 0.9843 | 0.9825 |
| 0.0174 | 9.0 | 11250 | 0.0834 | 0.9838 | 0.9846 | 0.9842 | 0.9824 |
| 0.0151 | 10.0 | 12500 | 0.0840 | 0.9839 | 0.9848 | 0.9844 | 0.9826 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 10
Model tree for vdoninav/bert-finetuned-ner-conll2003-generic
Base model
BAAI/bge-small-en-v1.5