The model is trained on TDK Dictionary for Turkish Words for the full dataset.

Inference Code

# coding: utf-8
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import sys

def main():
    # Fix Unicode printing on Windows
    sys.stdout.reconfigure(encoding='utf-8')

    # 1. Configuration for Hugging Face Load
    hf_model_id = "uisikdag/qwen3-8b-tr-dict-full" 
    
    print(f"Loading model from Hugging Face: {hf_model_id}...")
    
    from huggingface_hub import hf_hub_download

    # Download one extra file from HF Repo
    filename = "utils_chat_templates.py"
    
    # This downloads the file and saves it to a specified local path
    local_file_path = hf_hub_download(
        repo_id=hf_model_id, 
        filename=filename,
        local_dir=".", # Downloads it directly to the current directory
    )

    print(f"Downloaded chat template utility to: {local_file_path}")
    
    # 2. Tokenizer Loading
    try:
        tokenizer = AutoTokenizer.from_pretrained(hf_model_id)
        from utils_chat_templates import get_chat_template
        tokenizer.chat_template = get_chat_template(hf_model_id)
    except OSError as e:
        print(f"Error: Could not find tokenizer at {hf_model_id}. Check the ID and access permissions.")
        print(f"Details: {e}")
        return

    # 3. Model Loading (with 4-bit Quantization)
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch.float16,
    )
    
    try:
        model = AutoModelForCausalLM.from_pretrained(
            hf_model_id, 
            quantization_config=bnb_config,
            device_map="auto",
            trust_remote_code=True 
        )
        
        base_model_name = "Qwen/Qwen3-8B" 
        base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
        from peft import PeftModel
        model = PeftModel.from_pretrained(base_model, hf_model_id) 
        
    except Exception as e:
        print(f"Error loading model from Hugging Face: {e}")
        return

    # 4. Test Cases (The rest of the logic remains the same)
    test_words = [
        "kalem",
        "bilgisayar",
        "sevgi",
        "okul",
        "kitap",
        "agac",
        "deniz"
    ]
    
    # Set model to evaluation mode
    model.eval()

    for word in test_words:
        prompt = f"Word: {word}\nDefinition:"
        
        inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
        
        with torch.no_grad():
            outputs = model.generate(
                **inputs, 
                max_new_tokens=100, 
                do_sample=True,
                temperature=0.5, 
                top_k=50,
                top_p=0.95,
                pad_token_id=tokenizer.eos_token_id
            )
        
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        # Extract just the definition part
        definition_part = response.split("Definition:")[-1].strip()
        
        print("-" * 30)
        print(f"Word: {word}")
        print("-" * 10)
        print(f"Definition: {definition_part}")
        print("-" * 30)

if __name__ == "__main__":
    main()
Downloads last month
100
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 1 Ask for provider support

Model tree for uisikdag/qwen3-8b-tr-dict-full

Base model

Qwen/Qwen3-8B-Base
Finetuned
Qwen/Qwen3-8B
Adapter
(463)
this model

Dataset used to train uisikdag/qwen3-8b-tr-dict-full