tasal9's picture
Add initial project files including README, model download script, inference example, and requirements
64f1938
|
raw
history blame
1.63 kB

ZamAI-Facebook-XLM-Pashto

Metadata

  • license: MIT
  • datasets: tasal9/ZamAI-Pashto-Dataset-Cleaned
  • language: ps (Pashto)
  • metrics: accuracy
  • base_model: facebook/xlm-roberta-base
  • pipeline_tag: fill-mask
  • library_name: transformers / adapter-transformers

Overview

This repository contains helper scripts to download and persist the base model facebook/xlm-roberta-base locally (into ./base_model/) and to run a small fill-mask inference example. Large model files should be handled using Git LFS; .gitattributes at the repo root already includes common model file patterns.

Quick start

  1. Create and activate a virtualenv:
python -m venv .venv
source .venv/bin/activate
  1. Install dependencies:
pip install -r requirements.txt
  1. Download and save the base model into ./base_model/:
python download_base_model.py
  1. Run the example inference (will load from ./base_model/ if present):
python inference.py

Files

  • download_base_model.py — downloads the Hugging Face model and saves to ./base_model/.
  • inference.py — small script to run a fill-mask example.
  • requirements.txt — Python dependencies.
  • .gitignore — common ignores.

If you want me to download the base model into the repository now (it will download ~0.5–1.2 GB depending on files), tell me and I'll run the script and save the model into ./base_model/

license: mit datasets:

  • tasal9/ZamAI-Pashto-Dataset-Cleaned language:
  • ps metrics:
  • accuracy base_model:
  • FacebookAI/xlm-roberta-base pipeline_tag: fill-mask library_name: adapter-transformers