jonathanjordan21's picture
Create utils.py
101c074 verified
from google.maps import areainsights_v1
from google.maps.areainsights_v1.types import ComputeInsightsRequest, Filter, LocationFilter, Insight
from google.type import latlng_pb2
import asyncio
# DATASET_COLUMNS = [
# 'Dining and Drinking', 'Community and Government', 'Retail',
# 'Business and Professional Services', 'Landmarks and Outdoors',
# 'Arts and Entertainment', 'Health and Medicine',
# 'Travel and Transportation', 'Sports and Recreation',
# 'Event'
# ]
DATASET_COLUMNS = [
'restaurant',
'bookstore',
'fast_food',
'clinic',
'school',
'bakery',
'convenience_store',
'shopping_mall',
'atm',
'bank',
'dentist',
'pharmacy',
'cafe',
'supermarket',
'hospital',
'gym',
'jewelry_store',
'charging_station',
'electronics_store',
'clothing_store',
'department_store',
'hotel',
'yoga',
'attraction',
'college',
'co_working',
'university',
'hostel',
'viewpoint'
]
GOOGLE_PLACE_TYPE_MAPPING = [
# Dining and Drinking
[
'restaurant', 'bar', 'cafe', 'bakery', 'night_club'
],
# Community and Government
[
'government_office', 'local_government_office', 'city_hall',
'courthouse', 'police', 'fire_station', 'post_office', 'library'
],
# Retail
[
'store', 'shopping_mall', 'grocery_store', 'pharmacy',
'supermarket', 'drugstore'
],
# Business and Professional Services
[
'bank', 'atm', 'corporate_office', 'accounting', 'lawyer',
# 'establishment'
],
# Landmarks and Outdoors
[
'park', 'tourist_attraction', 'national_park',
'historical_landmark', 'cultural_landmark'
],
# Arts and Entertainment
[
'movie_theater', 'museum', 'art_gallery',
'performing_arts_theater', 'amusement_park', 'aquarium', 'zoo'
],
# Health and Medicine
[
'hospital', 'doctor', 'dentist', 'pharmacy',
'physiotherapist', 'spa'
],
# Travel and Transportation
[
'airport', 'bus_station', 'train_station', 'transit_station',
'subway_station', 'parking', 'lodging'
],
# Sports and Recreation
[
'gym', 'stadium', 'bowling_alley', 'fitness_center',
'park', 'amusement_center'
],
# Event (Mapped to common event venues)
[
'event_venue', 'convention_center', 'banquet_hall', 'stadium'
]
]
# import os
GOOGLE_PLACE_TYPE_MAPPING = [
# Original Column: 'restaurant'
['restaurant'],
# Original Column: 'bookstore'
['book_store'],
# Original Column: 'fast_food'
['fast_food_restaurant'],
# Original Column: 'clinic'
['dental_clinic', 'doctor', 'medical_lab', 'skin_care_clinic'],
# Original Column: 'school'
['school', 'primary_school', 'secondary_school', 'preschool'],
# Original Column: 'bakery'
['bakery'],
# Original Column: 'convenience_store'
['convenience_store'],
# Original Column: 'shopping_mall'
['shopping_mall'],
# Original Column: 'atm'
['atm'],
# Original Column: 'bank'
['bank'],
# Original Column: 'dentist'
['dentist', 'dental_clinic'],
# Original Column: 'pharmacy'
['pharmacy', 'drugstore'],
# Original Column: 'cafe'
['cafe', 'coffee_shop'],
# Original Column: 'supermarket'
['supermarket'],
# Original Column: 'hospital'
['hospital'],
# Original Column: 'gym'
['gym', 'wellness_center'],
# Original Column: 'jewelry_store'
['jewelry_store'],
# Original Column: 'charging_station'
['electric_vehicle_charging_station'],
# Original Column: 'electronics_store'
['electronics_store'],
# Original Column: 'clothing_store'
['clothing_store', 'department_store'],
# Original Column: 'department_store'
['department_store'],
# Original Column: 'hotel'
['hotel', 'motel', 'resort_hotel'],
# Original Column: 'yoga'
['yoga_studio'],
# Original Column: 'attraction'
['tourist_attraction', 'amusement_park', 'museum', 'cultural_landmark'],
# Original Column: 'college'
['university'],
# Original Column: 'co_working' (No direct Place Type exists, using closest fit)
['corporate_office'],
# Original Column: 'university'
['university'],
# Original Column: 'hostel'
['hostel', 'budget_japanese_inn'],
# Original Column: 'viewpoint' (No direct Place Type exists, using closest fit)
['tourist_attraction', 'observation_deck']
]
async def compute_places_count_with_api_key(api_key, lat, lng, radius, places):
try:
client = areainsights_v1.AreaInsightsAsyncClient(
client_options={"api_key": api_key}
)
# 1. Define the geographic filter (a circle)
location_filter = LocationFilter(
circle=LocationFilter.Circle(
lat_lng=latlng_pb2.LatLng(latitude=lat, longitude=lng),
radius=radius
)
)
# 2. Define the place type filter
type_filter = areainsights_v1.TypeFilter(
included_types=places
)
# 3. Assemble the main request body
request = ComputeInsightsRequest(
# We want the total count of matching places
insights=[Insight.INSIGHT_COUNT],
filter=Filter(
location_filter=location_filter,
type_filter=type_filter
)
)
response = await client.compute_insights(request=request)
count = int(response.count)
return count
except Exception as e:
print(f"An error occurred: {e}")
return None
def compute_features(candidate_point, api_key, radius=5000):
lat, lon = candidate_point
features = {
'num_banks_in_radius':0,
# 'total_amenities':0,
# 'category_diversity':0
}
for i,places in enumerate(GOOGLE_PLACE_TYPE_MAPPING):
total_count = asyncio.run(compute_places_count_with_api_key(
api_key,
lat,
lon,
radius,
places
))
features[f'num_{DATASET_COLUMNS[i]}'] = total_count
n_banks = asyncio.run(compute_places_count_with_api_key(
api_key,
lat,
lon,
radius,
['atm']
))
features.update({
'num_banks_in_radius': n_banks,
# 'total_amenities': sum(v for v in features.values()),
# 'category_diversity': sum(bool(v) for v in features.values())
})
print(features)
return features