File size: 6,599 Bytes
101c074
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from google.maps import areainsights_v1
from google.maps.areainsights_v1.types import ComputeInsightsRequest, Filter, LocationFilter, Insight
from google.type import latlng_pb2
import asyncio

# DATASET_COLUMNS = [
#     'Dining and Drinking', 'Community and Government', 'Retail',
#        'Business and Professional Services', 'Landmarks and Outdoors',
#        'Arts and Entertainment', 'Health and Medicine',
#        'Travel and Transportation', 'Sports and Recreation',
#        'Event'
# ]

DATASET_COLUMNS = [
    'restaurant',
    'bookstore',
    'fast_food',
    'clinic',
    'school',
    'bakery',
    'convenience_store',
    'shopping_mall',
    'atm',
    'bank',
    'dentist',
    'pharmacy',
    'cafe',
    'supermarket',
    'hospital',
    'gym',
    'jewelry_store',
    'charging_station',
    'electronics_store',
    'clothing_store',
    'department_store',
    'hotel',
    'yoga',
    'attraction',
    'college',
    'co_working',
    'university',
    'hostel',
    'viewpoint'
]


GOOGLE_PLACE_TYPE_MAPPING = [
    # Dining and Drinking
    [
        'restaurant', 'bar', 'cafe', 'bakery', 'night_club'
    ],
    # Community and Government
    [
        'government_office', 'local_government_office', 'city_hall',
        'courthouse', 'police', 'fire_station', 'post_office', 'library'
    ],
    # Retail
    [
        'store', 'shopping_mall', 'grocery_store', 'pharmacy',
        'supermarket', 'drugstore'
    ],
    # Business and Professional Services
    [
        'bank', 'atm', 'corporate_office', 'accounting', 'lawyer',
        # 'establishment'
    ],
    # Landmarks and Outdoors
    [
        'park', 'tourist_attraction', 'national_park',
        'historical_landmark', 'cultural_landmark'
    ],
    # Arts and Entertainment
    [
        'movie_theater', 'museum', 'art_gallery',
        'performing_arts_theater', 'amusement_park', 'aquarium', 'zoo'
    ],
    # Health and Medicine
    [
        'hospital', 'doctor', 'dentist', 'pharmacy',
        'physiotherapist', 'spa'
    ],
    # Travel and Transportation
    [
        'airport', 'bus_station', 'train_station', 'transit_station',
        'subway_station', 'parking', 'lodging'
    ],
    # Sports and Recreation
    [
        'gym', 'stadium', 'bowling_alley', 'fitness_center',
        'park', 'amusement_center'
    ],
    # Event (Mapped to common event venues)
    [
        'event_venue', 'convention_center', 'banquet_hall', 'stadium'
    ]
]

# import os

GOOGLE_PLACE_TYPE_MAPPING = [
    # Original Column: 'restaurant'
    ['restaurant'],
    # Original Column: 'bookstore'
    ['book_store'],
    # Original Column: 'fast_food'
    ['fast_food_restaurant'],
    # Original Column: 'clinic'
    ['dental_clinic', 'doctor', 'medical_lab', 'skin_care_clinic'],
    # Original Column: 'school'
    ['school', 'primary_school', 'secondary_school', 'preschool'],
    # Original Column: 'bakery'
    ['bakery'],
    # Original Column: 'convenience_store'
    ['convenience_store'],
    # Original Column: 'shopping_mall'
    ['shopping_mall'],
    # Original Column: 'atm'
    ['atm'],
    # Original Column: 'bank'
    ['bank'],
    # Original Column: 'dentist'
    ['dentist', 'dental_clinic'],
    # Original Column: 'pharmacy'
    ['pharmacy', 'drugstore'],
    # Original Column: 'cafe'
    ['cafe', 'coffee_shop'],
    # Original Column: 'supermarket'
    ['supermarket'],
    # Original Column: 'hospital'
    ['hospital'],
    # Original Column: 'gym'
    ['gym', 'wellness_center'],
    # Original Column: 'jewelry_store'
    ['jewelry_store'],
    # Original Column: 'charging_station'
    ['electric_vehicle_charging_station'],
    # Original Column: 'electronics_store'
    ['electronics_store'],
    # Original Column: 'clothing_store'
    ['clothing_store', 'department_store'],
    # Original Column: 'department_store'
    ['department_store'],
    # Original Column: 'hotel'
    ['hotel', 'motel', 'resort_hotel'],
    # Original Column: 'yoga'
    ['yoga_studio'],
    # Original Column: 'attraction'
    ['tourist_attraction', 'amusement_park', 'museum', 'cultural_landmark'],
    # Original Column: 'college'
    ['university'],
    # Original Column: 'co_working' (No direct Place Type exists, using closest fit)
    ['corporate_office'],
    # Original Column: 'university'
    ['university'],
    # Original Column: 'hostel'
    ['hostel', 'budget_japanese_inn'],
    # Original Column: 'viewpoint' (No direct Place Type exists, using closest fit)
    ['tourist_attraction', 'observation_deck']
]



async def compute_places_count_with_api_key(api_key, lat, lng, radius, places):
    try:
        client = areainsights_v1.AreaInsightsAsyncClient(
            client_options={"api_key": api_key}
        )

        # 1. Define the geographic filter (a circle)
        location_filter = LocationFilter(
            circle=LocationFilter.Circle(
                lat_lng=latlng_pb2.LatLng(latitude=lat, longitude=lng),
                radius=radius
            )
        )

        # 2. Define the place type filter
        type_filter = areainsights_v1.TypeFilter(
            included_types=places
        )

        # 3. Assemble the main request body
        request = ComputeInsightsRequest(
            # We want the total count of matching places
            insights=[Insight.INSIGHT_COUNT],
            filter=Filter(
                location_filter=location_filter,
                type_filter=type_filter
            )
        )

        response = await client.compute_insights(request=request)

        count = int(response.count)

        return count
    except Exception as e:
        print(f"An error occurred: {e}")
        return None
        

def compute_features(candidate_point, api_key, radius=5000):
    lat, lon = candidate_point

    features = {
        'num_banks_in_radius':0,
        # 'total_amenities':0,
        # 'category_diversity':0
    }

    for i,places in enumerate(GOOGLE_PLACE_TYPE_MAPPING):
      total_count = asyncio.run(compute_places_count_with_api_key(
          api_key,
          lat,
          lon,
          radius,
          places
      ))

      features[f'num_{DATASET_COLUMNS[i]}'] = total_count


    n_banks = asyncio.run(compute_places_count_with_api_key(
          api_key,
          lat,
          lon,
          radius,
          ['atm']
    ))
    

    features.update({
        'num_banks_in_radius': n_banks,
        # 'total_amenities': sum(v for v in features.values()),
        # 'category_diversity': sum(bool(v) for v in features.values())
    })

    print(features)

    return features