Access_Khmer / app.py
ClaudBarbara's picture
Create app.py
66cf31b verified
import gradio as gr
from transformers import AutoModelForSeq2SeqLM, NllbTokenizerFast
import torch
# Load model
model_id = "ClaudBarbara/Open_Access_Khmer"
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
tokenizer = NllbTokenizerFast.from_pretrained(model_id)
def translate(text, direction):
if direction == "English to Khmer":
src_lang, tgt_lang = "eng_Latn", "khm_Khmr"
else:
src_lang, tgt_lang = "khm_Khmr", "eng_Latn"
tokenizer.src_lang = src_lang
inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True)
with torch.no_grad():
outputs = model.generate(
**inputs,
forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang),
max_length=512,
num_beams=4
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
demo = gr.Interface(
fn=translate,
inputs=[
gr.Textbox(label="Input Text", lines=5),
gr.Radio(["English to Khmer", "Khmer to English"], label="Direction", value="English to Khmer")
],
outputs=gr.Textbox(label="Translation", lines=5),
title="Khmer Legal Bridge",
description="English-Khmer Legal Translation"
)
demo.launch()