Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForSeq2SeqLM, NllbTokenizerFast
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
# Load model
|
| 6 |
+
model_id = "ClaudBarbara/Open_Access_Khmer"
|
| 7 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
| 8 |
+
tokenizer = NllbTokenizerFast.from_pretrained(model_id)
|
| 9 |
+
|
| 10 |
+
def translate(text, direction):
|
| 11 |
+
if direction == "English to Khmer":
|
| 12 |
+
src_lang, tgt_lang = "eng_Latn", "khm_Khmr"
|
| 13 |
+
else:
|
| 14 |
+
src_lang, tgt_lang = "khm_Khmr", "eng_Latn"
|
| 15 |
+
|
| 16 |
+
tokenizer.src_lang = src_lang
|
| 17 |
+
inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True)
|
| 18 |
+
|
| 19 |
+
with torch.no_grad():
|
| 20 |
+
outputs = model.generate(
|
| 21 |
+
**inputs,
|
| 22 |
+
forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang),
|
| 23 |
+
max_length=512,
|
| 24 |
+
num_beams=4
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 28 |
+
|
| 29 |
+
demo = gr.Interface(
|
| 30 |
+
fn=translate,
|
| 31 |
+
inputs=[
|
| 32 |
+
gr.Textbox(label="Input Text", lines=5),
|
| 33 |
+
gr.Radio(["English to Khmer", "Khmer to English"], label="Direction", value="English to Khmer")
|
| 34 |
+
],
|
| 35 |
+
outputs=gr.Textbox(label="Translation", lines=5),
|
| 36 |
+
title="Khmer Legal Bridge",
|
| 37 |
+
description="English-Khmer Legal Translation"
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
demo.launch()
|