Spaces:
Sleeping
Sleeping
File size: 14,649 Bytes
5dfb339 88cc76c 5dfb339 88cc76c 5dfb339 88cc76c 5dfb339 88cc76c e57a125 5dfb339 88cc76c 68b63d6 5dfb339 80ad49a 68b63d6 88cc76c 5dfb339 e57a125 88cc76c e57a125 88cc76c 5dfb339 88cc76c 5dfb339 b5f3034 5dfb339 b5f3034 88cc76c b5f3034 88cc76c 5dfb339 b5f3034 5dfb339 88cc76c b5f3034 88cc76c 5dfb339 88cc76c 5dfb339 88cc76c 5dfb339 88cc76c 5dfb339 68b63d6 80ad49a 88cc76c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
import json
import io
from string import Template
from fastapi import Depends, UploadFile
import asyncio
from PIL import Image
import sqlite3
from app.api.dto.kg_query import KGQueryRequest, QueryContext, PredictedLabel
from app.core.dependencies import get_all_models
from app.core.type import Node
from app.models.crop_clip import EfficientNetModule
from app.models.gemini_caller import GeminiGenerator
from app.models.knowledge_graph import KnowledgeGraphUtils
from app.utils.constant import EXTRACTED_NODES
from app.utils.data_mapping import VECTOR_EMBEDDINGS_DB_PATH, DataMapping
from app.utils.extract_entity import clean_text, extract_entities
from app.utils.prompt import EXTRACT_NODES_FROM_IMAGE_PROMPT, EXTRACT_NODES_FROM_TEXT_PROMPT, GET_CAPTION_FROM_IMAGE_PROMPT, GET_STATEMENT_FROM_DISEASE_KG, GET_STATEMENT_FROM_ENV_FACTORS_KG, INSTRUCTION
from app.utils.main import unique_captions_by_disease
class CustomJSONEncoder(json.JSONEncoder):
def default(self, obj):
if hasattr(obj, 'model_dump'): # Pydantic v2 BaseModel
return obj.model_dump()
elif hasattr(obj, 'dict'): # Pydantic v1 BaseModel
return obj.dict()
elif isinstance(obj, (list, tuple)):
return [self.default(item) if hasattr(item, 'model_dump') or hasattr(item, 'dict') else item for item in obj]
return super().default(obj)
def convert_to_json_serializable(obj):
"""Convert objects containing Node instances to JSON serializable format"""
try:
if hasattr(obj, 'model_dump'): # Pydantic v2 BaseModel
return obj.model_dump()
elif hasattr(obj, 'dict'): # Pydantic v1 BaseModel
return obj.dict()
elif isinstance(obj, list):
return [convert_to_json_serializable(item) for item in obj]
elif isinstance(obj, dict):
return {key: convert_to_json_serializable(value) for key, value in obj.items()}
elif isinstance(obj, tuple):
return [convert_to_json_serializable(item) for item in obj]
elif obj is None:
return None
else:
# Try to convert basic types
try:
json.dumps(obj) # Test if it's JSON serializable
return obj
except (TypeError, ValueError):
# If it's not serializable, convert to string as fallback
print(f"Warning: Converting non-serializable object {type(obj)} to string: {obj}")
return str(obj)
except Exception as e:
print(f"Error in convert_to_json_serializable for object {type(obj)}: {e}")
return str(obj)
extracted_nodes = [
Node(
id=node['id'],
label=node['label'],
name=node['name'],
properties={'description': node['description']},
score=None
) for node in EXTRACTED_NODES
]
class PredictService:
def __init__(self, models):
self.models = models
async def predict_image(self, image: UploadFile):
efficientnet_model: EfficientNetModule = self.models["efficientnet_model"]
image_content = image.file.read()
pil_image = Image.open(Image.io.BytesIO(image_content)).convert('RGB')
return efficientnet_model.predict_image(pil_image)
async def retrieve_kg(self, request: KGQueryRequest):
try:
kg: KnowledgeGraphUtils = self.models["knowledge_graph"]
if not request.context:
request.context = QueryContext()
if request.crop_id:
request.context.crop_id = request.crop_id
if request.additional_info:
additional_nodes = await self.__get_nodes_from_additional_info_async(
request.additional_info, self.models["data_mapper"]
)
if request.context.nodes is None:
request.context.nodes = []
request.context.nodes = request.context.nodes + additional_nodes
for node in request.context.nodes:
if node.score is None:
node.score = 0.9
env_task = asyncio.create_task(
kg.get_disease_from_env_factors(request.context.crop_id, request.context.nodes)
)
symptom_task = asyncio.create_task(
kg.get_disease_from_symptoms(request.context.crop_id, request.context.nodes)
)
env_results, symptom_results = await asyncio.gather(env_task, symptom_task)
context = request.context
context.nodes.extend([env_result["disease"] for env_result in env_results])
context.nodes.extend([symptom_result["disease"] for symptom_result in symptom_results])
print(context.nodes)
context.nodes.sort(key=lambda x: x.score, reverse=True)
# Tính toán final_labels bằng trung bình có trọng số
if context.predicted_labels:
print("Got predicted labels")
context.final_labels = self.calculate_final_labels(
context.predicted_labels,
env_results,
symptom_results,
context.crop_id
)
return {
"context": context,
"env_results": env_results,
"symptom_results": symptom_results
}
except Exception as e:
print(e)
raise e
def calculate_final_labels(self, predicted_labels, env_result, symptom_result, crop_id):
"""
Tính toán final_labels bằng trung bình có trọng số từ:
- predicted_labels: Kết quả từ CLIP model (weight: 0.4)
- env_result: Kết quả từ environmental factors (weight: 0.3)
- symptom_result: Kết quả từ symptoms (weight: 0.3)
"""
# Weight
ENV_WEIGHT = 0.3
SYMPTOM_WEIGHT = 0.2
# Dictionary để tích lũy scores cho mỗi disease/crop combination
label_scores = {}
# 1. Điểm từ CLIP model
for label in predicted_labels:
key = f"{label.crop_id}_{label.label}"
print(f"CLIP key: {key} score: {label.confidence}")
if key not in label_scores:
label_scores[key] = {
"crop_id": label.crop_id,
"label": label.label,
"total_score": 0,
"count": 0
}
label_scores[key]["total_score"] += label.confidence
label_scores[key]["count"] += 1
# 2. Điểm từ symptoms
for symptom in symptom_result:
disease = symptom.get("disease")
if disease and hasattr(disease, 'score'):
key = f"{crop_id}_{disease.id}"
print(f"Symptom key: {key} score: {disease.score}")
if key not in label_scores:
label_scores[key] = {
"crop_id": crop_id,
"label": disease.id,
"total_score": 0,
"count": 0
}
label_scores[key]["total_score"] += disease.score * SYMPTOM_WEIGHT * (1-label_scores[key]["total_score"])
# 3. Điểm từ environmental factors
for env in env_result:
disease = env.get("disease")
if disease and hasattr(disease, 'score'):
# Giả sử disease có thông tin về crop và label
key = f"{crop_id}_{disease.id}"
print(f"Env key: {key} score: {disease.score}")
if key not in label_scores:
label_scores[key] = {
"crop_id": crop_id,
"label": disease.id,
"total_score": 0,
"count": 0
}
label_scores[key]["total_score"] += disease.score * ENV_WEIGHT * (1-label_scores[key]["total_score"])
# Tạo final_labels từ kết quả tính toán
final_labels = []
for key, data in label_scores.items():
final_confidence = data["total_score"]
final_labels.append(PredictedLabel(
crop_id=data["crop_id"],
label=data["label"],
confidence=min(final_confidence, 1.0) # Đảm bảo không vượt quá 1.0
))
# Sắp xếp theo confidence giảm dần và lọc ngưỡng
final_labels.sort(key=lambda x: x.confidence, reverse=True)
print(final_labels)
return [label for label in final_labels if label.confidence > 0.1] # Lọc ngưỡng thấp
# TODO:
async def get_nodes_from_image(self, image: UploadFile):
try:
gemini = GeminiGenerator()
symptoms = self.models["data_mapper"].get_embedding_by_label("Symptom")
symptom_list = [f"- id:{node.id} - name:{node.name}" for node in symptoms]
symptom_list = "\n".join(symptom_list)
prompt = Template(EXTRACT_NODES_FROM_IMAGE_PROMPT).substitute(symptom_list=symptom_list)
image_content = image.file.read()
pil_image = Image.open(io.BytesIO(image_content)).convert('RGB')
ids = gemini.generate(prompt, image=pil_image)
ids = (json.loads(clean_text(ids.text)))["ids"]
print(ids)
nodes = []
for id in ids:
node = next((symptom for symptom in symptoms if symptom.id == id), None)
nodes.append(node)
return nodes
except Exception as e:
print(f"Error while extract knowledge entities from image: {str(e)}")
return []
async def __get_nodes_from_additional_info_async(self, additional_info: str, data_mapper: DataMapping):
entities = extract_entities(additional_info)
if not entities:
return []
tasks = []
for entity in entities:
task = asyncio.create_task(
data_mapper.get_top_result_by_text_async(entity.name, 3),
name=f"query_entity_{entity.name}"
)
tasks.append(task)
results = await asyncio.gather(*tasks, return_exceptions=True)
top_results: list[Node] = []
for i, result in enumerate(results):
if isinstance(result, Exception):
continue
for node in result:
top_results.append(node)
return top_results
def get_embedding_by_id_threadsafe(self, id):
# Mỗi thread tạo connection riêng
conn = sqlite3.connect(VECTOR_EMBEDDINGS_DB_PATH, check_same_thread=False)
cursor = conn.cursor()
try:
cursor.execute("SELECT * FROM embeddings WHERE e_index = ?", (id,))
result = cursor.fetchone()
return result
finally:
cursor.close() # Đóng connection sau khi dùng xong
conn.close()
async def retrieve_kg_text(self, request: KGQueryRequest):
try:
nodes = await self.get_nodes_from_text(request.additional_info)
kg: KnowledgeGraphUtils = self.models["knowledge_graph"]
env_task = asyncio.create_task(
kg.get_disease_from_env_factors(request.crop_id, nodes)
)
symptom_task = asyncio.create_task(
kg.get_disease_from_symptoms(request.crop_id, nodes)
)
env_results, symptom_results = await asyncio.gather(env_task, symptom_task)
best_label = request.context.predicted_labels[0].label
best_env_result = next((result for result in env_results if result["disease"].id == best_label), None)
best_env_result_str = str(best_env_result)
best_symptom_result = next((result for result in symptom_results if result["disease"].id == best_label), None)
best_symptom_result_str = str(best_symptom_result)
prompt1 = None
prompt2 = None
result1 = None
result2 = None
if best_env_result:
prompt1 = Template(GET_STATEMENT_FROM_ENV_FACTORS_KG).substitute(context=best_env_result_str)
if best_symptom_result:
prompt2 = Template(GET_STATEMENT_FROM_DISEASE_KG).substitute(context=best_symptom_result_str)
gemini = GeminiGenerator()
print(prompt1)
if prompt1:
result1 = gemini.generate(prompt1)
if prompt2:
result2 = gemini.generate(prompt2)
return {
"env_results": env_results,
"symptom_results": symptom_results,
"env_statement": result1.text if result1 else None,
"symptom_statement": result2.text if result2 else None
}
except Exception as e:
print(e)
raise e
async def get_nodes_from_text(self, text: str):
try:
gemini = GeminiGenerator()
node_list = [f" + id:{node.id}, name:{node.name}, description:{node.properties.get('description', '')}" for node in extracted_nodes]
prompt = Template(EXTRACT_NODES_FROM_TEXT_PROMPT).substitute(text=text, node_list=node_list)
ids = gemini.generate(prompt)
print(ids)
ids = (json.loads(clean_text(ids.text)))["ids"]
print(ids)
nodes = [next((node for node in extracted_nodes if node.id == id), None) for id in ids]
return nodes
except Exception as e:
print(e)
# async def get_all_nodes(self):
# try:
# kg: KnowledgeGraphUtils = self.models["knowledge_graph"]
# list_nodes = await kg.get_all_nodes()
# return [dict(node[0], **{"label": "Symptom"}) for node in list_nodes]
# except Exception as e:
# print(e)
# return []
async def get_caption(self, image: UploadFile):
try:
gemini = GeminiGenerator()
prompt = Template(GET_CAPTION_FROM_IMAGE_PROMPT).substitute(caption_list=unique_captions_by_disease)
image_content = image.file.read()
pil_image = Image.open(io.BytesIO(image_content)).convert('RGB')
return (json.loads(clean_text(gemini.generate(prompt, image=pil_image).text)))["caption"]
except Exception as e:
print(e)
return None
def get_predict_service(models = Depends(get_all_models)):
return PredictService(models)
|