File size: 17,571 Bytes
6da8668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
from datasets import load_dataset
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
from sentence_transformers import SentenceTransformer
import numpy as np
import random
import faiss
import json
import logging
import re
import streamlit as st
from datetime import datetime
import os

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# ============================
# DATA PREPARATION
# ============================

 
def prepare_dataset():
    """Load and prepare the emotion dataset"""
    print("πŸ“Š Loading emotion dataset...")
    
    # Load the dataset
    ds = load_dataset("cardiffnlp/tweet_eval", "emotion")
    
    # Define emotion labels (matching the dataset)
    emotion_labels = ["anger", "joy", "optimism", "sadness"]
    
    def clean_text(text):
        """Clean and preprocess text"""
        text = text.lower()
        text = re.sub(r"http\S+", "", text)  # remove URLs
        text = re.sub(r"[^\w\s]", "", text)  # remove special characters
        text = re.sub(r"\d+", "", text)  # remove numbers
        text = re.sub(r"\s+", " ", text)  # normalize whitespace
        return text.strip()
    
    # Sample and prepare training data
    train_data = ds['train']
    train_sample = random.sample(list(train_data), min(1000, len(train_data)))
    
    # Convert to RAG format
    rag_json = []
    for row in train_sample:
        cleaned_text = clean_text(row['text'])
        if len(cleaned_text) > 10:  # Filter out very short texts
            rag_json.append({
                "text": cleaned_text,
                "emotion": emotion_labels[row['label']],
                "original_text": row['text']
            })
    
    print(f"Dataset prepared with {len(rag_json)} samples")
    return rag_json

# ============================
# EMOTION DETECTION MODEL
# ============================

class EmotionDetector:
    def __init__(self):
        self.model_name = "bhadresh-savani/distilbert-base-uncased-emotion"
        
        try:
            self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
            self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name)
            self.classifier = pipeline(
                "text-classification", 
                model=self.model, 
                tokenizer=self.tokenizer, 
                return_all_scores=False
            )
        except Exception as e:
            st.error(f"❌ Error loading emotion model: {e}")
            raise
    
    def detect_emotion(self, text):
        """Detect emotion from text"""
        try:
            result = self.classifier(text)
            emotion = result[0]['label'].lower()
            confidence = result[0]['score']
            
            # Map model outputs to our emotion categories
            emotion_mapping = {
                'anger': 'anger',
                'joy': 'joy', 
                'love': 'joy',
                'happiness': 'joy',
                'sadness': 'sadness',
                'fear': 'sadness',
                'surprise': 'optimism',
                'optimism': 'optimism'
            }
            
            mapped_emotion = emotion_mapping.get(emotion, 'optimism')
            return mapped_emotion, confidence
            
        except Exception as e:
            logger.error(f"Error in emotion detection: {e}")
            return 'optimism', 0.5

# ============================
# RAG SYSTEM WITH FAISS
# ============================

class RAGSystem:
    def __init__(self, rag_data):
        self.rag_data = rag_data
        self.texts = [entry['text'] for entry in rag_data]
        
        # Initialize embedding model
        self.embed_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
        
        # Create embeddings
        self.embeddings = self.embed_model.encode(
            self.texts, 
            convert_to_numpy=True, 
            show_progress_bar=False
        )
        
        # Create FAISS index
        dimension = self.embeddings.shape[1]
        self.index = faiss.IndexFlatL2(dimension)
        self.index.add(self.embeddings)
        
    def retrieve_templates(self, user_input, detected_emotion, top_k=3):
        """Retrieve relevant templates based on emotion and similarity"""
        
        # Filter by emotion first
        emotion_filtered_indices = [
            i for i, entry in enumerate(self.rag_data) 
            if entry['emotion'] == detected_emotion
        ]
        
        if not emotion_filtered_indices:
            emotion_filtered_indices = list(range(len(self.rag_data)))
        
        # Get filtered embeddings
        filtered_embeddings = self.embeddings[emotion_filtered_indices]
        filtered_texts = [self.texts[i] for i in emotion_filtered_indices]
        
        # Create temporary index for filtered data
        temp_index = faiss.IndexFlatL2(filtered_embeddings.shape[1])
        temp_index.add(filtered_embeddings)
        
        # Search for similar templates
        user_embedding = self.embed_model.encode([user_input], convert_to_numpy=True)
        distances, indices = temp_index.search(
            user_embedding, 
            min(top_k, len(filtered_texts))
        )
        
        # Get top templates
        top_templates = [filtered_texts[i] for i in indices[0]]
        
        return top_templates

# ============================
# RESPONSE GENERATOR
# ============================

class ResponseGenerator:
    def __init__(self, emotion_detector, rag_system):
        self.emotion_detector = emotion_detector
        self.rag_system = rag_system
        
        # Empathetic response templates by emotion
        self.response_templates = {
            'anger': [
                "I can understand why you're feeling frustrated. It's completely valid to feel this way.",
                "Your anger is understandable. Sometimes situations can be really challenging.",
                "I hear that you're upset, and that's okay. These feelings are important."
            ],
            'sadness': [
                "I'm sorry you're going through a difficult time. Your feelings are valid.",
                "It sounds like you're dealing with something really tough right now.",
                "I can sense your sadness, and I want you to know that it's okay to feel this way."
            ],
            'joy': [
                "I'm so happy to hear about your positive experience! That's wonderful.",
                "Your joy is contagious! It's great to hear such positive news.",
                "I love hearing about things that make you happy. That sounds amazing!"
            ],
            'optimism': [
                "Your positive outlook is inspiring. That's a great way to look at things.",
                "I appreciate your hopeful perspective. That's really encouraging.",
                "It's wonderful to hear your optimistic thoughts. Keep that positive energy!"
            ]
        }
    
    def generate_response(self, user_input, top_k=3):
        """Generate empathetic response using RAG and few-shot prompting"""
        
        try:
            # Step 1: Detect emotion
            detected_emotion, confidence = self.emotion_detector.detect_emotion(user_input)
            
            # Step 2: Retrieve relevant templates
            templates = self.rag_system.retrieve_templates(
                user_input, detected_emotion, top_k=top_k
            )
            
            # Step 3: Create response using templates and emotion
            base_responses = self.response_templates.get(
                detected_emotion, 
                self.response_templates['optimism']
            )
            
            # Combine base response with context from templates
            selected_base = random.choice(base_responses)
            
            # Create contextual response
            if templates:
                context_template = random.choice(templates)
                # Enhanced response generation
                response = f"{selected_base} I can relate to what you're sharing - {context_template[:80]}. Remember that your feelings are important and valid."
            else:
                response = selected_base
            
            # Add disclaimer
            disclaimer = "\n\n⚠️ This is an automated response. For serious emotional concerns, please consult a mental health professional."
            
            return response + disclaimer, detected_emotion, confidence
            
        except Exception as e:
            error_msg = f"I apologize, but I encountered an error: {str(e)}"
            disclaimer = "\n\n⚠️ This is an automated response. Please consult a professional if needed."
            return error_msg + disclaimer, 'neutral', 0.0

# ============================
# STREAMLIT APP
# ============================

def main():
    # Page config
    st.set_page_config(
        page_title="Empathetic Chatbot",
        page_icon="πŸ’¬",
        layout="wide",
        initial_sidebar_state="expanded"
    )
    
    # Custom CSS
    st.markdown("""

    <style>

    .stApp {

        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);

    }

    .main-header {

        background: rgba(255,255,255,0.1);

        padding: 1rem;

        border-radius: 10px;

        text-align: center;

        margin-bottom: 2rem;

    }

    .chat-message {

    padding: 1rem;

    margin: 0.5rem 0;

    border-radius: 10px;

    background: rgba(255,255,255,0.9);

    max-width: 70%;       /* limit bubble width */

}



.user-message {

    background: rgba(100, 149, 237, 0.2);

    margin-left: auto;     /* push to right */

    margin-right: 1rem;    /* spacing from edge */

    text-align: left;      /* keep text aligned inside bubble */

}



.bot-message {

    background: rgba(50, 205, 50, 0.1);

    margin-left: 1rem;     /* spacing from left edge */

    margin-right: auto;    /* push to left */

    text-align: left;

}



    .emotion-badge {

        display: inline-block;

        padding: 0.25rem 0.5rem;

        border-radius: 15px;

        font-size: 0.8rem;

        font-weight: bold;

        margin: 0.25rem;

    }

    .anger { background-color: #ffebee; color: #c62828; }

    .sadness { background-color: #e3f2fd; color: #1565c0; }

    .joy { background-color: #f3e5f5; color: #7b1fa2; }

    .optimism { background-color: #e8f5e8; color: #2e7d32; }

    </style>

    """, unsafe_allow_html=True)
    
    # Header
    st.markdown("""

    <div class="main-header">

        <h1>πŸ’¬ Emotion-Aware Empathetic Chatbot</h1>

        <p>Your AI companion for emotional support and understanding</p>

    </div>

    """, unsafe_allow_html=True)
    
    # Initialize session state
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = []
    
    if "initialized" not in st.session_state:
        initialize_chatbot()
    
    # Sidebar
    with st.sidebar:
        st.header("πŸŽ›οΈ Controls")
        
        # Statistics
        if st.session_state.chat_history:
            emotions = [chat['emotion'] for chat in st.session_state.chat_history if 'emotion' in chat]
            if emotions:
                emotion_counts = {}
                for emotion in emotions:
                    emotion_counts[emotion] = emotion_counts.get(emotion, 0) + 1
                
                st.subheader("πŸ“Š Emotion Statistics")
                for emotion, count in emotion_counts.items():
                    st.markdown(f'<span class="emotion-badge {emotion}">{emotion.title()}: {count}</span>', unsafe_allow_html=True)
        
        st.markdown("---")
        
        # Test buttons
        if st.button("πŸ§ͺ Test Emotion Detection"):
            test_emotion_detection()
        
        if st.button("πŸ—‘οΈ Clear Chat History"):
            st.session_state.chat_history = []
            st.rerun()
        
        st.markdown("---")
        
        # Sample messages
        st.subheader("πŸ’‘ Try these sample messages:")
        sample_messages = [
            "I'm feeling really happy today!",
            "I'm so frustrated with everything",
            "I feel really sad and alone",
            " I’m really surprised about what happend!"
        ]
        
        for msg in sample_messages:
            if st.button(f"πŸ“ {msg[:20]}...", key=f"sample_{msg}"):
                process_message(msg)
    
    # Main chat interface
    col1, col2 = st.columns([3, 1])
    
    with col1:
        st.subheader("πŸ’­ Chat Interface")
        
        # Display chat history
        chat_container = st.container()
        with chat_container:
            if st.session_state.chat_history:
                for i, chat in enumerate(st.session_state.chat_history[-10:]):  # Show last 10, in chronological order
                    # User message
                    st.markdown(f"""

                    <div class="chat-message user-message">

                        <strong>πŸ§‘ You ({chat['timestamp']}):</strong><br>

                        πŸ’­ {chat['user']}

                    </div>

                    """, unsafe_allow_html=True)
                    
                    # Bot response with emotion
                    emotion_class = chat.get('emotion', 'optimism')
                    confidence = chat.get('confidence', 0.0)
                    
                    st.markdown(f"""

                    <div class="chat-message bot-message">

                        <strong>πŸ€– Bot:</strong>

                        <span class="emotion-badge {emotion_class}">

                            {emotion_class.title()} ({confidence:.2f})

                        </span><br>

                        πŸ’ {chat['bot']}

                    </div>

                    """, unsafe_allow_html=True)
                    
                    st.markdown("---")
        
        # User input at the bottom
        user_input = st.text_input(
            "Your message:",
            placeholder="Type how you're feeling...",
            key="user_input",
            help="Share your thoughts and emotions"
        )
        
        col_send = st.columns([1])[0]
        
        with col_send:
            if st.button("Send πŸ“€", type="primary", use_container_width=True):
                if user_input.strip():
                    process_message(user_input)
                    st.rerun()
                else:
                    st.warning("⚠️ Please enter a message.")
        
    with col2:
        st.subheader("ℹ️ About")
        st.info("""

        This chatbot uses:

        - **Emotion Detection**: Identifies your emotional state

        - **RAG System**: Retrieves relevant response templates

        - **Empathetic Responses**: Provides caring, supportive replies

        """)

def initialize_chatbot():
    """Initialize the chatbot systems"""
    try:
        with st.spinner("πŸš€ Initializing chatbot systems..."):
            # Prepare dataset
            rag_data = prepare_dataset()
            
            # Initialize systems
            emotion_detector = EmotionDetector()
            rag_system = RAGSystem(rag_data)
            response_generator = ResponseGenerator(emotion_detector, rag_system)
            
            # Store in session state
            st.session_state.response_generator = response_generator
            st.session_state.initialized = True
            
            st.success("βœ… Chatbot initialized successfully!")
            
    except Exception as e:
        st.error(f"❌ Initialization failed: {e}")
        st.stop()

def process_message(user_input):
    """Process user message and generate response"""
    if hasattr(st.session_state, 'response_generator'):
        with st.spinner("πŸ€” Generating response..."):
            response, emotion, confidence = st.session_state.response_generator.generate_response(user_input)
            
            # Add to chat history
            st.session_state.chat_history.append({
                "user": user_input,
                "bot": response,
                "emotion": emotion,
                "confidence": confidence,
                "timestamp": datetime.now().strftime("%H:%M:%S")
            })

def test_emotion_detection():
    """Test emotion detection functionality"""
    if hasattr(st.session_state, 'response_generator'):
        test_messages = [
            "I'm so happy today!",
            "I feel terrible and sad",
            "This makes me really angry",
            " I’m really surprised about what happend!"
        ]
        
        st.subheader("πŸ§ͺ Emotion Detection Test Results")
        
        for msg in test_messages:
            emotion, confidence = st.session_state.response_generator.emotion_detector.detect_emotion(msg)
            st.markdown(f"""

            **Message:** "{msg}"  

            **Emotion:** <span class="emotion-badge {emotion}">{emotion.title()} ({confidence:.3f})</span>

            """, unsafe_allow_html=True)

if __name__ == "__main__":
    main()