Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,473 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import load_dataset
|
| 2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
+
from sentence_transformers import SentenceTransformer
|
| 4 |
+
import numpy as np
|
| 5 |
+
import random
|
| 6 |
+
import faiss
|
| 7 |
+
import json
|
| 8 |
+
import logging
|
| 9 |
+
import re
|
| 10 |
+
import streamlit as st
|
| 11 |
+
from datetime import datetime
|
| 12 |
+
import os
|
| 13 |
+
|
| 14 |
+
# Set up logging
|
| 15 |
+
logging.basicConfig(level=logging.INFO)
|
| 16 |
+
logger = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
# ============================
|
| 19 |
+
# DATA PREPARATION
|
| 20 |
+
# ============================
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def prepare_dataset():
|
| 24 |
+
"""Load and prepare the emotion dataset"""
|
| 25 |
+
print("π Loading emotion dataset...")
|
| 26 |
+
|
| 27 |
+
# Load the dataset
|
| 28 |
+
ds = load_dataset("cardiffnlp/tweet_eval", "emotion")
|
| 29 |
+
|
| 30 |
+
# Define emotion labels (matching the dataset)
|
| 31 |
+
emotion_labels = ["anger", "joy", "optimism", "sadness"]
|
| 32 |
+
|
| 33 |
+
def clean_text(text):
|
| 34 |
+
"""Clean and preprocess text"""
|
| 35 |
+
text = text.lower()
|
| 36 |
+
text = re.sub(r"http\S+", "", text) # remove URLs
|
| 37 |
+
text = re.sub(r"[^\w\s]", "", text) # remove special characters
|
| 38 |
+
text = re.sub(r"\d+", "", text) # remove numbers
|
| 39 |
+
text = re.sub(r"\s+", " ", text) # normalize whitespace
|
| 40 |
+
return text.strip()
|
| 41 |
+
|
| 42 |
+
# Sample and prepare training data
|
| 43 |
+
train_data = ds['train']
|
| 44 |
+
train_sample = random.sample(list(train_data), min(1000, len(train_data)))
|
| 45 |
+
|
| 46 |
+
# Convert to RAG format
|
| 47 |
+
rag_json = []
|
| 48 |
+
for row in train_sample:
|
| 49 |
+
cleaned_text = clean_text(row['text'])
|
| 50 |
+
if len(cleaned_text) > 10: # Filter out very short texts
|
| 51 |
+
rag_json.append({
|
| 52 |
+
"text": cleaned_text,
|
| 53 |
+
"emotion": emotion_labels[row['label']],
|
| 54 |
+
"original_text": row['text']
|
| 55 |
+
})
|
| 56 |
+
|
| 57 |
+
print(f"Dataset prepared with {len(rag_json)} samples")
|
| 58 |
+
return rag_json
|
| 59 |
+
|
| 60 |
+
# ============================
|
| 61 |
+
# EMOTION DETECTION MODEL
|
| 62 |
+
# ============================
|
| 63 |
+
|
| 64 |
+
class EmotionDetector:
|
| 65 |
+
def __init__(self):
|
| 66 |
+
self.model_name = "bhadresh-savani/distilbert-base-uncased-emotion"
|
| 67 |
+
|
| 68 |
+
try:
|
| 69 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 70 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name)
|
| 71 |
+
self.classifier = pipeline(
|
| 72 |
+
"text-classification",
|
| 73 |
+
model=self.model,
|
| 74 |
+
tokenizer=self.tokenizer,
|
| 75 |
+
return_all_scores=False
|
| 76 |
+
)
|
| 77 |
+
except Exception as e:
|
| 78 |
+
st.error(f"β Error loading emotion model: {e}")
|
| 79 |
+
raise
|
| 80 |
+
|
| 81 |
+
def detect_emotion(self, text):
|
| 82 |
+
"""Detect emotion from text"""
|
| 83 |
+
try:
|
| 84 |
+
result = self.classifier(text)
|
| 85 |
+
emotion = result[0]['label'].lower()
|
| 86 |
+
confidence = result[0]['score']
|
| 87 |
+
|
| 88 |
+
# Map model outputs to our emotion categories
|
| 89 |
+
emotion_mapping = {
|
| 90 |
+
'anger': 'anger',
|
| 91 |
+
'joy': 'joy',
|
| 92 |
+
'love': 'joy',
|
| 93 |
+
'happiness': 'joy',
|
| 94 |
+
'sadness': 'sadness',
|
| 95 |
+
'fear': 'sadness',
|
| 96 |
+
'surprise': 'optimism',
|
| 97 |
+
'optimism': 'optimism'
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
mapped_emotion = emotion_mapping.get(emotion, 'optimism')
|
| 101 |
+
return mapped_emotion, confidence
|
| 102 |
+
|
| 103 |
+
except Exception as e:
|
| 104 |
+
logger.error(f"Error in emotion detection: {e}")
|
| 105 |
+
return 'optimism', 0.5
|
| 106 |
+
|
| 107 |
+
# ============================
|
| 108 |
+
# RAG SYSTEM WITH FAISS
|
| 109 |
+
# ============================
|
| 110 |
+
|
| 111 |
+
class RAGSystem:
|
| 112 |
+
def __init__(self, rag_data):
|
| 113 |
+
self.rag_data = rag_data
|
| 114 |
+
self.texts = [entry['text'] for entry in rag_data]
|
| 115 |
+
|
| 116 |
+
# Initialize embedding model
|
| 117 |
+
self.embed_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 118 |
+
|
| 119 |
+
# Create embeddings
|
| 120 |
+
self.embeddings = self.embed_model.encode(
|
| 121 |
+
self.texts,
|
| 122 |
+
convert_to_numpy=True,
|
| 123 |
+
show_progress_bar=False
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
# Create FAISS index
|
| 127 |
+
dimension = self.embeddings.shape[1]
|
| 128 |
+
self.index = faiss.IndexFlatL2(dimension)
|
| 129 |
+
self.index.add(self.embeddings)
|
| 130 |
+
|
| 131 |
+
def retrieve_templates(self, user_input, detected_emotion, top_k=3):
|
| 132 |
+
"""Retrieve relevant templates based on emotion and similarity"""
|
| 133 |
+
|
| 134 |
+
# Filter by emotion first
|
| 135 |
+
emotion_filtered_indices = [
|
| 136 |
+
i for i, entry in enumerate(self.rag_data)
|
| 137 |
+
if entry['emotion'] == detected_emotion
|
| 138 |
+
]
|
| 139 |
+
|
| 140 |
+
if not emotion_filtered_indices:
|
| 141 |
+
emotion_filtered_indices = list(range(len(self.rag_data)))
|
| 142 |
+
|
| 143 |
+
# Get filtered embeddings
|
| 144 |
+
filtered_embeddings = self.embeddings[emotion_filtered_indices]
|
| 145 |
+
filtered_texts = [self.texts[i] for i in emotion_filtered_indices]
|
| 146 |
+
|
| 147 |
+
# Create temporary index for filtered data
|
| 148 |
+
temp_index = faiss.IndexFlatL2(filtered_embeddings.shape[1])
|
| 149 |
+
temp_index.add(filtered_embeddings)
|
| 150 |
+
|
| 151 |
+
# Search for similar templates
|
| 152 |
+
user_embedding = self.embed_model.encode([user_input], convert_to_numpy=True)
|
| 153 |
+
distances, indices = temp_index.search(
|
| 154 |
+
user_embedding,
|
| 155 |
+
min(top_k, len(filtered_texts))
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
# Get top templates
|
| 159 |
+
top_templates = [filtered_texts[i] for i in indices[0]]
|
| 160 |
+
|
| 161 |
+
return top_templates
|
| 162 |
+
|
| 163 |
+
# ============================
|
| 164 |
+
# RESPONSE GENERATOR
|
| 165 |
+
# ============================
|
| 166 |
+
|
| 167 |
+
class ResponseGenerator:
|
| 168 |
+
def __init__(self, emotion_detector, rag_system):
|
| 169 |
+
self.emotion_detector = emotion_detector
|
| 170 |
+
self.rag_system = rag_system
|
| 171 |
+
|
| 172 |
+
# Empathetic response templates by emotion
|
| 173 |
+
self.response_templates = {
|
| 174 |
+
'anger': [
|
| 175 |
+
"I can understand why you're feeling frustrated. It's completely valid to feel this way.",
|
| 176 |
+
"Your anger is understandable. Sometimes situations can be really challenging.",
|
| 177 |
+
"I hear that you're upset, and that's okay. These feelings are important."
|
| 178 |
+
],
|
| 179 |
+
'sadness': [
|
| 180 |
+
"I'm sorry you're going through a difficult time. Your feelings are valid.",
|
| 181 |
+
"It sounds like you're dealing with something really tough right now.",
|
| 182 |
+
"I can sense your sadness, and I want you to know that it's okay to feel this way."
|
| 183 |
+
],
|
| 184 |
+
'joy': [
|
| 185 |
+
"I'm so happy to hear about your positive experience! That's wonderful.",
|
| 186 |
+
"Your joy is contagious! It's great to hear such positive news.",
|
| 187 |
+
"I love hearing about things that make you happy. That sounds amazing!"
|
| 188 |
+
],
|
| 189 |
+
'optimism': [
|
| 190 |
+
"Your positive outlook is inspiring. That's a great way to look at things.",
|
| 191 |
+
"I appreciate your hopeful perspective. That's really encouraging.",
|
| 192 |
+
"It's wonderful to hear your optimistic thoughts. Keep that positive energy!"
|
| 193 |
+
]
|
| 194 |
+
}
|
| 195 |
+
|
| 196 |
+
def generate_response(self, user_input, top_k=3):
|
| 197 |
+
"""Generate empathetic response using RAG and few-shot prompting"""
|
| 198 |
+
|
| 199 |
+
try:
|
| 200 |
+
# Step 1: Detect emotion
|
| 201 |
+
detected_emotion, confidence = self.emotion_detector.detect_emotion(user_input)
|
| 202 |
+
|
| 203 |
+
# Step 2: Retrieve relevant templates
|
| 204 |
+
templates = self.rag_system.retrieve_templates(
|
| 205 |
+
user_input, detected_emotion, top_k=top_k
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
# Step 3: Create response using templates and emotion
|
| 209 |
+
base_responses = self.response_templates.get(
|
| 210 |
+
detected_emotion,
|
| 211 |
+
self.response_templates['optimism']
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
# Combine base response with context from templates
|
| 215 |
+
selected_base = random.choice(base_responses)
|
| 216 |
+
|
| 217 |
+
# Create contextual response
|
| 218 |
+
if templates:
|
| 219 |
+
context_template = random.choice(templates)
|
| 220 |
+
# Enhanced response generation
|
| 221 |
+
response = f"{selected_base} I can relate to what you're sharing - {context_template[:80]}. Remember that your feelings are important and valid."
|
| 222 |
+
else:
|
| 223 |
+
response = selected_base
|
| 224 |
+
|
| 225 |
+
# Add disclaimer
|
| 226 |
+
disclaimer = "\n\nβ οΈ This is an automated response. For serious emotional concerns, please consult a mental health professional."
|
| 227 |
+
|
| 228 |
+
return response + disclaimer, detected_emotion, confidence
|
| 229 |
+
|
| 230 |
+
except Exception as e:
|
| 231 |
+
error_msg = f"I apologize, but I encountered an error: {str(e)}"
|
| 232 |
+
disclaimer = "\n\nβ οΈ This is an automated response. Please consult a professional if needed."
|
| 233 |
+
return error_msg + disclaimer, 'neutral', 0.0
|
| 234 |
+
|
| 235 |
+
# ============================
|
| 236 |
+
# STREAMLIT APP
|
| 237 |
+
# ============================
|
| 238 |
+
|
| 239 |
+
def main():
|
| 240 |
+
# Page config
|
| 241 |
+
st.set_page_config(
|
| 242 |
+
page_title="Empathetic Chatbot",
|
| 243 |
+
page_icon="π¬",
|
| 244 |
+
layout="wide",
|
| 245 |
+
initial_sidebar_state="expanded"
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
# Custom CSS
|
| 249 |
+
st.markdown("""
|
| 250 |
+
<style>
|
| 251 |
+
.stApp {
|
| 252 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 253 |
+
}
|
| 254 |
+
.main-header {
|
| 255 |
+
background: rgba(255,255,255,0.1);
|
| 256 |
+
padding: 1rem;
|
| 257 |
+
border-radius: 10px;
|
| 258 |
+
text-align: center;
|
| 259 |
+
margin-bottom: 2rem;
|
| 260 |
+
}
|
| 261 |
+
.chat-message {
|
| 262 |
+
padding: 1rem;
|
| 263 |
+
margin: 0.5rem 0;
|
| 264 |
+
border-radius: 10px;
|
| 265 |
+
background: rgba(255,255,255,0.9);
|
| 266 |
+
max-width: 70%; /* limit bubble width */
|
| 267 |
+
}
|
| 268 |
+
|
| 269 |
+
.user-message {
|
| 270 |
+
background: rgba(100, 149, 237, 0.2);
|
| 271 |
+
margin-left: auto; /* push to right */
|
| 272 |
+
margin-right: 1rem; /* spacing from edge */
|
| 273 |
+
text-align: left; /* keep text aligned inside bubble */
|
| 274 |
+
}
|
| 275 |
+
|
| 276 |
+
.bot-message {
|
| 277 |
+
background: rgba(50, 205, 50, 0.1);
|
| 278 |
+
margin-left: 1rem; /* spacing from left edge */
|
| 279 |
+
margin-right: auto; /* push to left */
|
| 280 |
+
text-align: left;
|
| 281 |
+
}
|
| 282 |
+
|
| 283 |
+
.emotion-badge {
|
| 284 |
+
display: inline-block;
|
| 285 |
+
padding: 0.25rem 0.5rem;
|
| 286 |
+
border-radius: 15px;
|
| 287 |
+
font-size: 0.8rem;
|
| 288 |
+
font-weight: bold;
|
| 289 |
+
margin: 0.25rem;
|
| 290 |
+
}
|
| 291 |
+
.anger { background-color: #ffebee; color: #c62828; }
|
| 292 |
+
.sadness { background-color: #e3f2fd; color: #1565c0; }
|
| 293 |
+
.joy { background-color: #f3e5f5; color: #7b1fa2; }
|
| 294 |
+
.optimism { background-color: #e8f5e8; color: #2e7d32; }
|
| 295 |
+
</style>
|
| 296 |
+
""", unsafe_allow_html=True)
|
| 297 |
+
|
| 298 |
+
# Header
|
| 299 |
+
st.markdown("""
|
| 300 |
+
<div class="main-header">
|
| 301 |
+
<h1>π¬ Emotion-Aware Empathetic Chatbot</h1>
|
| 302 |
+
<p>Your AI companion for emotional support and understanding</p>
|
| 303 |
+
</div>
|
| 304 |
+
""", unsafe_allow_html=True)
|
| 305 |
+
|
| 306 |
+
# Initialize session state
|
| 307 |
+
if "chat_history" not in st.session_state:
|
| 308 |
+
st.session_state.chat_history = []
|
| 309 |
+
|
| 310 |
+
if "initialized" not in st.session_state:
|
| 311 |
+
initialize_chatbot()
|
| 312 |
+
|
| 313 |
+
# Sidebar
|
| 314 |
+
with st.sidebar:
|
| 315 |
+
st.header("ποΈ Controls")
|
| 316 |
+
|
| 317 |
+
# Statistics
|
| 318 |
+
if st.session_state.chat_history:
|
| 319 |
+
emotions = [chat['emotion'] for chat in st.session_state.chat_history if 'emotion' in chat]
|
| 320 |
+
if emotions:
|
| 321 |
+
emotion_counts = {}
|
| 322 |
+
for emotion in emotions:
|
| 323 |
+
emotion_counts[emotion] = emotion_counts.get(emotion, 0) + 1
|
| 324 |
+
|
| 325 |
+
st.subheader("π Emotion Statistics")
|
| 326 |
+
for emotion, count in emotion_counts.items():
|
| 327 |
+
st.markdown(f'<span class="emotion-badge {emotion}">{emotion.title()}: {count}</span>', unsafe_allow_html=True)
|
| 328 |
+
|
| 329 |
+
st.markdown("---")
|
| 330 |
+
|
| 331 |
+
# Test buttons
|
| 332 |
+
if st.button("π§ͺ Test Emotion Detection"):
|
| 333 |
+
test_emotion_detection()
|
| 334 |
+
|
| 335 |
+
if st.button("ποΈ Clear Chat History"):
|
| 336 |
+
st.session_state.chat_history = []
|
| 337 |
+
st.rerun()
|
| 338 |
+
|
| 339 |
+
st.markdown("---")
|
| 340 |
+
|
| 341 |
+
# Sample messages
|
| 342 |
+
st.subheader("π‘ Try these sample messages:")
|
| 343 |
+
sample_messages = [
|
| 344 |
+
"I'm feeling really happy today!",
|
| 345 |
+
"I'm so frustrated with everything",
|
| 346 |
+
"I feel really sad and alone",
|
| 347 |
+
" Iβm really surprised about what happend!"
|
| 348 |
+
]
|
| 349 |
+
|
| 350 |
+
for msg in sample_messages:
|
| 351 |
+
if st.button(f"π {msg[:20]}...", key=f"sample_{msg}"):
|
| 352 |
+
process_message(msg)
|
| 353 |
+
|
| 354 |
+
# Main chat interface
|
| 355 |
+
col1, col2 = st.columns([3, 1])
|
| 356 |
+
|
| 357 |
+
with col1:
|
| 358 |
+
st.subheader("π Chat Interface")
|
| 359 |
+
|
| 360 |
+
# Display chat history
|
| 361 |
+
chat_container = st.container()
|
| 362 |
+
with chat_container:
|
| 363 |
+
if st.session_state.chat_history:
|
| 364 |
+
for i, chat in enumerate(st.session_state.chat_history[-10:]): # Show last 10, in chronological order
|
| 365 |
+
# User message
|
| 366 |
+
st.markdown(f"""
|
| 367 |
+
<div class="chat-message user-message">
|
| 368 |
+
<strong>π§ You ({chat['timestamp']}):</strong><br>
|
| 369 |
+
π {chat['user']}
|
| 370 |
+
</div>
|
| 371 |
+
""", unsafe_allow_html=True)
|
| 372 |
+
|
| 373 |
+
# Bot response with emotion
|
| 374 |
+
emotion_class = chat.get('emotion', 'optimism')
|
| 375 |
+
confidence = chat.get('confidence', 0.0)
|
| 376 |
+
|
| 377 |
+
st.markdown(f"""
|
| 378 |
+
<div class="chat-message bot-message">
|
| 379 |
+
<strong>π€ Bot:</strong>
|
| 380 |
+
<span class="emotion-badge {emotion_class}">
|
| 381 |
+
{emotion_class.title()} ({confidence:.2f})
|
| 382 |
+
</span><br>
|
| 383 |
+
π {chat['bot']}
|
| 384 |
+
</div>
|
| 385 |
+
""", unsafe_allow_html=True)
|
| 386 |
+
|
| 387 |
+
st.markdown("---")
|
| 388 |
+
|
| 389 |
+
# User input at the bottom
|
| 390 |
+
user_input = st.text_input(
|
| 391 |
+
"Your message:",
|
| 392 |
+
placeholder="Type how you're feeling...",
|
| 393 |
+
key="user_input",
|
| 394 |
+
help="Share your thoughts and emotions"
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
col_send = st.columns([1])[0]
|
| 398 |
+
|
| 399 |
+
with col_send:
|
| 400 |
+
if st.button("Send π€", type="primary", use_container_width=True):
|
| 401 |
+
if user_input.strip():
|
| 402 |
+
process_message(user_input)
|
| 403 |
+
st.rerun()
|
| 404 |
+
else:
|
| 405 |
+
st.warning("β οΈ Please enter a message.")
|
| 406 |
+
|
| 407 |
+
with col2:
|
| 408 |
+
st.subheader("βΉοΈ About")
|
| 409 |
+
st.info("""
|
| 410 |
+
This chatbot uses:
|
| 411 |
+
- **Emotion Detection**: Identifies your emotional state
|
| 412 |
+
- **RAG System**: Retrieves relevant response templates
|
| 413 |
+
- **Empathetic Responses**: Provides caring, supportive replies
|
| 414 |
+
""")
|
| 415 |
+
|
| 416 |
+
def initialize_chatbot():
|
| 417 |
+
"""Initialize the chatbot systems"""
|
| 418 |
+
try:
|
| 419 |
+
with st.spinner("π Initializing chatbot systems..."):
|
| 420 |
+
# Prepare dataset
|
| 421 |
+
rag_data = prepare_dataset()
|
| 422 |
+
|
| 423 |
+
# Initialize systems
|
| 424 |
+
emotion_detector = EmotionDetector()
|
| 425 |
+
rag_system = RAGSystem(rag_data)
|
| 426 |
+
response_generator = ResponseGenerator(emotion_detector, rag_system)
|
| 427 |
+
|
| 428 |
+
# Store in session state
|
| 429 |
+
st.session_state.response_generator = response_generator
|
| 430 |
+
st.session_state.initialized = True
|
| 431 |
+
|
| 432 |
+
st.success("β
Chatbot initialized successfully!")
|
| 433 |
+
|
| 434 |
+
except Exception as e:
|
| 435 |
+
st.error(f"β Initialization failed: {e}")
|
| 436 |
+
st.stop()
|
| 437 |
+
|
| 438 |
+
def process_message(user_input):
|
| 439 |
+
"""Process user message and generate response"""
|
| 440 |
+
if hasattr(st.session_state, 'response_generator'):
|
| 441 |
+
with st.spinner("π€ Generating response..."):
|
| 442 |
+
response, emotion, confidence = st.session_state.response_generator.generate_response(user_input)
|
| 443 |
+
|
| 444 |
+
# Add to chat history
|
| 445 |
+
st.session_state.chat_history.append({
|
| 446 |
+
"user": user_input,
|
| 447 |
+
"bot": response,
|
| 448 |
+
"emotion": emotion,
|
| 449 |
+
"confidence": confidence,
|
| 450 |
+
"timestamp": datetime.now().strftime("%H:%M:%S")
|
| 451 |
+
})
|
| 452 |
+
|
| 453 |
+
def test_emotion_detection():
|
| 454 |
+
"""Test emotion detection functionality"""
|
| 455 |
+
if hasattr(st.session_state, 'response_generator'):
|
| 456 |
+
test_messages = [
|
| 457 |
+
"I'm so happy today!",
|
| 458 |
+
"I feel terrible and sad",
|
| 459 |
+
"This makes me really angry",
|
| 460 |
+
" Iβm really surprised about what happend!"
|
| 461 |
+
]
|
| 462 |
+
|
| 463 |
+
st.subheader("π§ͺ Emotion Detection Test Results")
|
| 464 |
+
|
| 465 |
+
for msg in test_messages:
|
| 466 |
+
emotion, confidence = st.session_state.response_generator.emotion_detector.detect_emotion(msg)
|
| 467 |
+
st.markdown(f"""
|
| 468 |
+
**Message:** "{msg}"
|
| 469 |
+
**Emotion:** <span class="emotion-badge {emotion}">{emotion.title()} ({confidence:.3f})</span>
|
| 470 |
+
""", unsafe_allow_html=True)
|
| 471 |
+
|
| 472 |
+
if __name__ == "__main__":
|
| 473 |
+
main()
|