Model Card for ReactionT5v2-retrosynthesis
This is a ReactionT5 pre-trained to predict the reactants of reactions and fine-tuned on USPOT_50k's train split.
Base model before fine-tuning is here.
Model Sources
Uses
You can use this model for retrosynthesis prediction or fine-tune this model with your dataset.
How to Get Started with the Model
Use the code below to get started with the model.
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("sagawa/ReactionT5v2-retrosynthesis-USPTO_50k", return_tensors="pt")
model = AutoModelForSeq2SeqLM.from_pretrained("sagawa/ReactionT5v2-retrosynthesis-USPTO_50k")
inp = tokenizer('CCN(CC)CCNC(=S)NC1CCCc2cc(C)cnc21', return_tensors='pt')
output = model.generate(**inp, num_beams=1, num_return_sequences=1, return_dict_in_generate=True, output_scores=True)
output = tokenizer.decode(output['sequences'][0], skip_special_tokens=True).replace(' ', '').rstrip('.')
output
Training Details
Training Procedure
We used the USPTO_50k dataset for model finetuning.
The command used for training is the following. For more information, please refer to the paper and GitHub repository.
cd task_retrosynthesis
python finetune.py \
--output_dir='t5' \
--epochs=20 \
--lr=2e-5 \
--batch_size=32 \
--input_max_len=150 \
--target_max_len=150 \
--weight_decay=0.01 \
--evaluation_strategy='epoch' \
--save_strategy='epoch' \
--logging_strategy='epoch' \
--save_total_limit=10 \
--train_data_path='../data/USPTO_50k/train.csv' \
--valid_data_path='../data/USPTO_50k/val.csv' \
--disable_tqdm \
--model_name_or_path='sagawa/ReactionT5v2-retrosynthesis'
Results
| Model |
Training set |
Test set |
Top-1 [% acc.] |
Top-2 [% acc.] |
Top-3 [% acc.] |
Top-5 [% acc.] |
| Sequence-to-sequence |
USPTO_50k |
USPTO_50k |
37.4 |
- |
52.4 |
57.0 |
| Molecular Transformer |
USPTO_50k |
USPTO_50k |
43.5 |
- |
60.5 |
- |
| SCROP |
USPTO_50k |
USPTO_50k |
43.7 |
- |
60.0 |
65.2 |
| T5Chem |
USPTO_50k |
USPTO_50k |
46.5 |
- |
64.4 |
70.5 |
| CompoundT5 |
USPTO_50k |
USPTO_50k |
44,2 |
55.2 |
61.4 |
67.3 |
| ReactionT5 |
- |
USPTO_50k |
13.8 |
18.6 |
21.4 |
26.2 |
| ReactionT5 (This model) |
USPTO_50k |
USPTO_50k |
71.2 |
81.4 |
84.9 |
88.2 |
Performance comparison of Compound T5, ReactionT5, and other models in product prediction.
Citation
@article{Sagawa2025,
title = {ReactionT5: a pre-trained transformer model for accurate chemical reaction prediction with limited data},
author = {Sagawa, Tatsuya and Kojima, Ryosuke},
journal = {Journal of Cheminformatics},
year = {2025},
volume = {17},
number = {1},
pages = {126},
doi = {10.1186/s13321-025-01075-4},
url = {https://doi.org/10.1186/s13321-025-01075-4}
}