distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9232
- Accuracy: {'accuracy': 0.899}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| No log | 1.0 | 250 | 0.3636 | {'accuracy': 0.883} |
| 0.4385 | 2.0 | 500 | 0.5940 | {'accuracy': 0.852} |
| 0.4385 | 3.0 | 750 | 0.6047 | {'accuracy': 0.891} |
| 0.1953 | 4.0 | 1000 | 0.5980 | {'accuracy': 0.886} |
| 0.1953 | 5.0 | 1250 | 0.7089 | {'accuracy': 0.89} |
| 0.079 | 6.0 | 1500 | 0.8576 | {'accuracy': 0.888} |
| 0.079 | 7.0 | 1750 | 0.9140 | {'accuracy': 0.879} |
| 0.0241 | 8.0 | 2000 | 0.9769 | {'accuracy': 0.875} |
| 0.0241 | 9.0 | 2250 | 0.9283 | {'accuracy': 0.891} |
| 0.0101 | 10.0 | 2500 | 0.9232 | {'accuracy': 0.899} |
Framework versions
- PEFT 0.12.0
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for roobiii/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased