BEVFusion: Optimized for Mobile Deployment
Construct a bird’s eye view from sensors mounted on a vehicle
BeVFusion is a machine learning model for generating a birds eye view represenation from the sensors(cameras) mounted on a vehicle.
This model is an implementation of BEVFusion found here.
This repository provides scripts to run BEVFusion on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.driver_assistance
- Model Stats:
- Model checkpoint: camera-only-det.pth
- Input resolution: 1 x 6 x 3 x 256 x 704
- Number of parameters: 44M
- Model size: 171 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|---|---|---|---|---|---|---|---|---|
| BEVFusionEncoder1 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | PRECOMPILED_QNN_ONNX | 847.695 ms | 0 - 101 MB | NPU | Use Export Script |
| BEVFusionEncoder1 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 2332.065 ms | 9 - 18 MB | NPU | Use Export Script |
| BEVFusionEncoder1 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 529.22 ms | 12 - 31 MB | NPU | Use Export Script |
| BEVFusionEncoder1 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 628.085 ms | 31 - 49 MB | NPU | Use Export Script |
| BEVFusionEncoder1 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_CONTEXT_BINARY | 418.089 ms | 12 - 29 MB | NPU | Use Export Script |
| BEVFusionEncoder1 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 505.178 ms | 21 - 35 MB | NPU | Use Export Script |
| BEVFusionEncoder1 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_CONTEXT_BINARY | 371.182 ms | 14 - 25 MB | NPU | Use Export Script |
| BEVFusionEncoder1 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 429.551 ms | 50 - 60 MB | NPU | Use Export Script |
| BEVFusionEncoder1 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 686.665 ms | 12 - 12 MB | NPU | Use Export Script |
| BEVFusionEncoder1 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 817.418 ms | 97 - 97 MB | NPU | Use Export Script |
| BEVFusionEncoder2 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | PRECOMPILED_QNN_ONNX | 3405.452 ms | 586 - 588 MB | NPU | Use Export Script |
| BEVFusionEncoder2 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 3461.725 ms | 16 - 26 MB | NPU | Use Export Script |
| BEVFusionEncoder2 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 2792.723 ms | 17 - 31 MB | NPU | Use Export Script |
| BEVFusionEncoder2 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 2579.968 ms | 493 - 511 MB | NPU | Use Export Script |
| BEVFusionEncoder2 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_CONTEXT_BINARY | 2431.991 ms | 17 - 33 MB | NPU | Use Export Script |
| BEVFusionEncoder2 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 2393.946 ms | 433 - 447 MB | NPU | Use Export Script |
| BEVFusionEncoder2 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_CONTEXT_BINARY | 2164.259 ms | 17 - 27 MB | NPU | Use Export Script |
| BEVFusionEncoder2 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 2112.13 ms | 286 - 295 MB | NPU | Use Export Script |
| BEVFusionEncoder2 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 3489.403 ms | 17 - 17 MB | NPU | Use Export Script |
| BEVFusionEncoder2 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 3243.578 ms | 1058 - 1058 MB | NPU | Use Export Script |
| BEVFusionEncoder3 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | PRECOMPILED_QNN_ONNX | 552.451 ms | 608 - 611 MB | NPU | Use Export Script |
| BEVFusionEncoder3 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 717.337 ms | 608 - 618 MB | NPU | Use Export Script |
| BEVFusionEncoder3 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 589.592 ms | 608 - 628 MB | NPU | Use Export Script |
| BEVFusionEncoder3 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 455.062 ms | 587 - 607 MB | NPU | Use Export Script |
| BEVFusionEncoder3 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_CONTEXT_BINARY | 510.774 ms | 609 - 625 MB | NPU | Use Export Script |
| BEVFusionEncoder3 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 377.724 ms | 575 - 594 MB | NPU | Use Export Script |
| BEVFusionEncoder3 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_CONTEXT_BINARY | 369.834 ms | 609 - 623 MB | NPU | Use Export Script |
| BEVFusionEncoder3 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 332.66 ms | 608 - 622 MB | NPU | Use Export Script |
| BEVFusionEncoder3 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 698.904 ms | 610 - 610 MB | NPU | Use Export Script |
| BEVFusionEncoder3 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 514.14 ms | 610 - 610 MB | NPU | Use Export Script |
| BEVFusionEncoder4 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | PRECOMPILED_QNN_ONNX | 12.947 ms | 23 - 28 MB | NPU | Use Export Script |
| BEVFusionEncoder4 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 14.703 ms | 18 - 27 MB | NPU | Use Export Script |
| BEVFusionEncoder4 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 8.786 ms | 18 - 37 MB | NPU | Use Export Script |
| BEVFusionEncoder4 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 9.383 ms | 32 - 50 MB | NPU | Use Export Script |
| BEVFusionEncoder4 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_CONTEXT_BINARY | 7.875 ms | 2 - 18 MB | NPU | Use Export Script |
| BEVFusionEncoder4 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 8.115 ms | 12 - 26 MB | NPU | Use Export Script |
| BEVFusionEncoder4 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_CONTEXT_BINARY | 6.791 ms | 18 - 30 MB | NPU | Use Export Script |
| BEVFusionEncoder4 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 7.116 ms | 31 - 41 MB | NPU | Use Export Script |
| BEVFusionEncoder4 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 11.783 ms | 19 - 19 MB | NPU | Use Export Script |
| BEVFusionEncoder4 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 11.941 ms | 19 - 19 MB | NPU | Use Export Script |
| BEVFusionDecoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | PRECOMPILED_QNN_ONNX | 13.008 ms | 4 - 32 MB | NPU | Use Export Script |
| BEVFusionDecoder | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 107.319 ms | 1 - 11 MB | NPU | Use Export Script |
| BEVFusionDecoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 9.698 ms | 5 - 25 MB | NPU | Use Export Script |
| BEVFusionDecoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 9.93 ms | 16 - 35 MB | NPU | Use Export Script |
| BEVFusionDecoder | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_CONTEXT_BINARY | 7.689 ms | 5 - 22 MB | NPU | Use Export Script |
| BEVFusionDecoder | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 7.9 ms | 11 - 25 MB | NPU | Use Export Script |
| BEVFusionDecoder | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_CONTEXT_BINARY | 5.76 ms | 5 - 16 MB | NPU | Use Export Script |
| BEVFusionDecoder | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 6.22 ms | 17 - 27 MB | NPU | Use Export Script |
| BEVFusionDecoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 13.08 ms | 5 - 5 MB | NPU | Use Export Script |
| BEVFusionDecoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 13.249 ms | 24 - 24 MB | NPU | Use Export Script |
Installation
Install the package via pip:
# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install "qai-hub-models[bevfusion-det]"
Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub Workbench with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.bevfusion_det.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.bevfusion_det.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.bevfusion_det.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace and then call the submit_compile_job API.
import torch
import qai_hub as hub
from qai_hub_models.models.bevfusion_det import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tfliteexport): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.soexport ): This sample app provides instructions on how to use the.soshared library in an Android application.
View on Qualcomm® AI Hub
Get more details on BEVFusion's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of BEVFusion can be found here.
References
- BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation
- Source Model Implementation
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
