Add model card

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +72 -1
README.md CHANGED
@@ -1 +1,72 @@
1
- Image Tokenizers Needs Post-Training
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: image-feature-extraction
3
+ ---
4
+
5
+ # Image Tokenizer Needs Post-Training
6
+
7
+ This repository contains the official implementation and checkpoints for the paper [Image Tokenizer Needs Post-Training](https://huggingface.co/papers/2509.12474).
8
+
9
+ Project page: https://qiuk2.github.io/works/RobusTok/index.html
10
+ Code: https://github.com/qiuk2/RobusTok
11
+
12
+ <div align="center">
13
+ <img src="https://github.com/qiuk2/RobusTok/raw/main/assets/teaser.png" alt="Teaser" width="95%">
14
+ </div>
15
+
16
+ ---
17
+
18
+ ## TL;DR
19
+
20
+ We present RobusTok, a new image tokenizer with a two-stage training scheme:
21
+
22
+ Main training → constructs a robust latent space.
23
+
24
+ Post-training → aligns the generator’s latent distribution with its image space.
25
+
26
+ ## Key highlights of Post-Training
27
+
28
+ - 🚀 **Better generative quality**: gFID 1.60 → 1.36.
29
+ - 🔑 **Generalizability**: applicable to both autoregressive & diffusion models.
30
+ - ⚡ **Efficiency**: strong results with only ~400M generative models.
31
+
32
+ ---
33
+
34
+ ## Model Zoo
35
+ | Generator \ Tokenizer | RobusTok w/o. P.T([weights](https://huggingface.co/qiuk6/RobusTok/resolve/main/main-train.pt?download=true)) | RobusTok w/. P.T ([weights](https://huggingface.co/qiuk6/RobusTok/resolve/main/post-train.pt?download=true)) |
36
+ |---|---:|---:|
37
+ | Base ([weights](https://huggingface.co/qiuk6/RobusTok/resolve/main/rar_b.bin?download=true)) | gFID = 1.83 | gFID = 1.60 |
38
+ | Large ([weights](https://huggingface.co/qiuk6/RobusTok/resolve/main/rar_l.bin?download=true)) | gFID = 1.60 | gFID = 1.36 |
39
+
40
+ ---
41
+
42
+ ## Usage
43
+ For detailed installation, training, and inference instructions, please refer to the [GitHub repository](https://github.com/qiuk2/RobusTok).
44
+
45
+ ---
46
+
47
+ ## Visualization
48
+
49
+ <div align="center">
50
+ <img src="https://github.com/qiuk2/RobusTok/raw/main/assets/ft-diff.png" alt="vis" width="95%">
51
+ <p>
52
+ visualization of 256&times;256 image generation before (top) and after (bottom) post-training. Three improvements are observed: (a) OOD mitigation, (b) Color fidelity, (c) detail refinement.
53
+ </p>
54
+ </div>
55
+
56
+ ---
57
+
58
+ ## Citation
59
+
60
+ If our work assists your research, feel free to give us a star ⭐ or cite us using
61
+
62
+ ```bibtex
63
+ @misc{qiu2025imagetokenizerneedsposttraining,
64
+ title={Image Tokenizer Needs Post-Training},
65
+ author={Kai Qiu and Xiang Li and Hao Chen and Jason Kuen and Xiaohao Xu and Jiuxiang Gu and Yinyi Luo and Bhiksha Raj and Zhe Lin and Marios Savvides},
66
+ year={2025},
67
+ eprint={2509.12474},
68
+ archivePrefix={arXiv},
69
+ primaryClass={cs.CV},
70
+ url={https://arxiv.org/abs/2509.12474},
71
+ }
72
+ ```