AI & ML interests

None defined yet.

Recent Activity

danieldkย 
posted an update 24 days ago
view post
Post
2728
kernels 0.12 is out! ๐ŸŽ‰

Changes:

* Support for kernel version branches to gracefully roll out kernel API changes.
* Support for PyTorch 2.10.
* kernel-builder is now merged into the kernels repo.
* Initial support for standardized kernel benchmarks.

https://github.com/huggingface/kernels/releases/tag/v0.12.0
danieldkย 
posted an update 4 months ago
danieldkย 
posted an update 7 months ago
view post
Post
2060
kernels 0.8.0 is out: https://github.com/huggingface/kernels/releases/tag/v0.8.0

This release refines kernel selection in the kernelize function:

โ€ข You can now register kernels for certain CUDA capability ranges.
โ€ข Rather than doing exact mating of modes, fall back to other compatible modes. If you are kernelizing for inference, but you only registered a training + torch.compile kernel, it will use that kernel since it is compatible with inference as well.
  • 1 reply
ยท
danieldkย 
posted an update 7 months ago
danieldkย 
posted an update 7 months ago
view post
Post
381
Kernels 0.7.0 is out: https://github.com/huggingface/kernels/releases/tag/v0.7.0 ๐Ÿš€

This release makes it possible to register multiple kernels for a layer. Do you have a super-fast kernel for inference and another kernel for training? Register them both and kernelize will pick the kernel depending on whether you are going to do training or inference.
reach-vbย 
posted an update 8 months ago
view post
Post
6595
Excited to onboard FeatherlessAI on Hugging Face as an Inference Provider - they bring a fleet of 6,700+ LLMs on-demand on the Hugging Face Hub ๐Ÿคฏ

Starting today, you'd be able to access all those LLMs (OpenAI compatible) on HF model pages and via OpenAI client libraries too! ๐Ÿ’ฅ

Go, play with it today: https://huggingface.co/blog/inference-providers-featherless

P.S. They're also bringing on more GPUs to support all your concurrent requests!
  • 1 reply
ยท
danieldkย 
posted an update 9 months ago
view post
Post
1964
We have been working on a project called kernels. kernels makes it possible to load compute kernels directly from the Hub! ๐Ÿš€

We plan to give kernels a more proper introduction soon. But for those who have been following along, we are happy to announce a new release:

- New layer API with torch.compile support.
- Experimental support for loading Apple Silicon Metal ๐Ÿค˜ Kernels.
- Generate wheels from Hub kernels for legacy deployments.

Full release notes here: https://github.com/huggingface/kernels/releases/tag/v0.6.0
  • 2 replies
ยท
reach-vbย 
posted an update 9 months ago
view post
Post
4719
hey hey @mradermacher - VB from Hugging Face here, we'd love to onboard you over to our optimised xet backend! ๐Ÿ’ฅ

as you know we're in the process of upgrading our storage backend to xet (which helps us scale and offer blazingly fast upload/ download speeds too): https://huggingface.co/blog/xet-on-the-hub and now that we are certain that the backend can scale with even big models like Llama 4/ Qwen 3 - we;re moving to the next phase of inviting impactful orgs and users on the hub over as you are a big part of the open source ML community - we would love to onboard you next and create some excitement about it in the community too!

in terms of actual steps - it should be as simple as one of the org admins to join hf.co/join/xet - we'll take care of the rest.

p.s. you'd need to have a the latest hf_xet version of huggingface_hub lib but everything else should be the same: https://huggingface.co/docs/hub/storage-backends#using-xet-storage

p.p.s. this is fully backwards compatible so everything will work as it should! ๐Ÿค—
ยท
lewtunย 
posted an update 12 months ago
view post
Post
4396
Introducing OlympicCoder: a series of open reasoning models that can solve olympiad-level programming problems ๐Ÿง‘โ€๐Ÿ’ป

- 7B open-r1/OlympicCoder-7B
- 32B open-r1/OlympicCoder-32B

We find that OlympicCoder models outperform Claude 3.7 Sonnet, as well as others over 100x larger ๐Ÿ’ช

Together with the models, we are releasing:

๐Ÿ“ŠCodeForces-CoTs: new dataset of code problems from the most popular competitive coding platform, with R1 traces in C++ and Python open-r1/codeforces-cots

๐Ÿ† IOI'2024: a new benchmark of VERY hard programming problems where even frontier models struggle to match human performance open-r1/ioi

For links to the models and datasets, check out our latest progress report from Open R1: https://huggingface.co/blog/open-r1/update-3
  • 1 reply
ยท
lewtunย 
posted an update about 1 year ago
view post
Post
5513
Introducing OpenR1-Math-220k!

open-r1/OpenR1-Math-220k

The community has been busy distilling DeepSeek-R1 from inference providers, but we decided to have a go at doing it ourselves from scratch ๐Ÿ’ช

Whatโ€™s new compared to existing reasoning datasets?

โ™พ Based on AI-MO/NuminaMath-1.5: we focus on math reasoning traces and generate answers for problems in NuminaMath 1.5, an improved version of the popular NuminaMath-CoT dataset.

๐Ÿณ 800k R1 reasoning traces: We generate two answers for 400k problems using DeepSeek R1. The filtered dataset contains 220k problems with correct reasoning traces.

๐Ÿ“€ 512 H100s running locally: Instead of relying on an API, we leverage vLLM and SGLang to run generations locally on our science cluster, generating 180k reasoning traces per day.

โณ Automated filtering: We apply Math Verify to only retain problems with at least one correct answer. We also leverage Llama3.3-70B-Instruct as a judge to retrieve more correct examples (e.g for cases with malformed answers that canโ€™t be verified with a rules-based parser)

๐Ÿ“Š We match the performance of DeepSeek-Distill-Qwen-7B by finetuning Qwen-7B-Math-Instruct on our dataset.

๐Ÿ”Ž Read our blog post for all the nitty gritty details: https://huggingface.co/blog/open-r1/update-2
lewtunย 
posted an update about 1 year ago
view post
Post
10521
We are reproducing the full DeepSeek R1 data and training pipeline so everybody can use their recipe. Instead of doing it in secret we can do it together in the open!

๐Ÿงช Step 1: replicate the R1-Distill models by distilling a high-quality reasoning corpus from DeepSeek-R1.

๐Ÿง  Step 2: replicate the pure RL pipeline that DeepSeek used to create R1-Zero. This will involve curating new, large-scale datasets for math, reasoning, and code.

๐Ÿ”ฅ Step 3: show we can go from base model -> SFT -> RL via multi-stage training.

Follow along: https://github.com/huggingface/open-r1
ยท