vit5-base-v2-masked-paraphase_data
This model is a fine-tuned version of VietAI/vit5-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0781
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 1.3523 | 0.4250 | 3500 | 1.2567 |
| 1.2491 | 0.8501 | 7000 | 1.1676 |
| 1.2107 | 1.2751 | 10500 | 1.1382 |
| 1.1861 | 1.7001 | 14000 | 1.1190 |
| 1.1516 | 2.1251 | 17500 | 1.1055 |
| 1.1482 | 2.5501 | 21000 | 1.0943 |
| 1.1702 | 2.9752 | 24500 | 1.0878 |
| 1.1442 | 3.4001 | 28000 | 1.0838 |
| 1.134 | 3.8252 | 31500 | 1.0803 |
| 1.1373 | 4.2502 | 35000 | 1.0787 |
| 1.1207 | 4.6752 | 38500 | 1.0781 |
Framework versions
- PEFT 0.10.0
- Transformers 4.49.0
- Pytorch 2.4.1+cu118
- Datasets 4.1.1
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for nguyen10001/vit5-base-v2-masked-paraphase_data
Base model
VietAI/vit5-base