vit5-base-finetune-visp-paraphrase-lora
This model is a fine-tuned version of VietAI/vit5-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9093
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 1.2555 | 0.1378 | 3500 | 1.1542 |
| 1.1306 | 0.2757 | 7000 | 1.0637 |
| 1.0952 | 0.4135 | 10500 | 1.0265 |
| 1.0649 | 0.5513 | 14000 | 1.0053 |
| 1.0381 | 0.6891 | 17500 | 0.9880 |
| 1.0283 | 0.8270 | 21000 | 0.9768 |
| 1.0088 | 0.9648 | 24500 | 0.9663 |
| 0.9947 | 1.1026 | 28000 | 0.9581 |
| 0.9922 | 1.2404 | 31500 | 0.9511 |
| 0.9782 | 1.3782 | 35000 | 0.9457 |
| 0.9738 | 1.5161 | 38500 | 0.9402 |
| 0.9631 | 1.6539 | 42000 | 0.9416 |
| 0.9591 | 1.7917 | 45500 | 0.9339 |
| 0.9547 | 1.9295 | 49000 | 0.9313 |
| 0.9348 | 2.0673 | 52500 | 0.9283 |
| 0.9503 | 2.2052 | 56000 | 0.9259 |
| 0.9408 | 2.3430 | 59500 | 0.9268 |
| 0.9345 | 2.4808 | 63000 | 0.9222 |
| 0.9238 | 2.6186 | 66500 | 0.9197 |
| 0.9293 | 2.7565 | 70000 | 0.9181 |
| 0.9306 | 2.8943 | 73500 | 0.9168 |
| 0.9136 | 3.0321 | 77000 | 0.9153 |
| 0.9182 | 3.1699 | 80500 | 0.9147 |
| 0.9153 | 3.3077 | 84000 | 0.9144 |
| 0.9091 | 3.4456 | 87500 | 0.9153 |
| 0.9078 | 3.5834 | 91000 | 0.9132 |
| 0.9111 | 3.7212 | 94500 | 0.9110 |
| 0.9054 | 3.8590 | 98000 | 0.9110 |
| 0.9077 | 3.9969 | 101500 | 0.9102 |
| 0.8956 | 4.1347 | 105000 | 0.9109 |
| 0.8996 | 4.2725 | 108500 | 0.9095 |
| 0.9072 | 4.4103 | 112000 | 0.9096 |
| 0.9044 | 4.5482 | 115500 | 0.9093 |
| 0.9048 | 4.6860 | 119000 | 0.9093 |
| 0.9085 | 4.8238 | 122500 | 0.9093 |
| 0.9077 | 4.9616 | 126000 | 0.9093 |
Framework versions
- PEFT 0.10.0
- Transformers 4.49.0
- Pytorch 2.4.1+cu118
- Datasets 4.1.1
- Tokenizers 0.21.0
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for nguyen10001/vit5-base-finetune-visp-paraphrase-lora
Base model
VietAI/vit5-base