bert
This model is a fine-tuned version of BAAI/bge-small-en-v1.5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0946
- Precision: 0.8613
- Recall: 0.9053
- F1: 0.8827
- Accuracy: 0.9772
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.1151 | 1.0 | 313 | 0.1098 | 0.8524 | 0.8940 | 0.8727 | 0.9756 |
| 0.0892 | 2.0 | 626 | 0.0978 | 0.8653 | 0.8994 | 0.8820 | 0.9773 |
| 0.0852 | 3.0 | 939 | 0.0946 | 0.8613 | 0.9053 | 0.8827 | 0.9772 |
Framework versions
- Transformers 4.53.3
- Pytorch 2.6.0+cu124
- Datasets 4.1.1
- Tokenizers 0.21.2
- Downloads last month
- 4
Model tree for max5757/bert
Base model
BAAI/bge-small-en-v1.5