jina-vlm: Small Multilingual Vision Language Model
Blog | API | AWS | Azure | GCP | Arxiv
jina-vlm is a 2.4B parameter vision-language model that achieves state-of-the-art multilingual visual question answering among open 2B-scale VLMs. The model couples a SigLIP2 vision encoder with a Qwen3 language backbone through an attention-pooling connector that enables token-efficient processing of arbitrary-resolution images. Training data comprises approximately 5M multimodal samples and 12B text tokens across 29 languages, with roughly half in English and the remainder spanning high- and moderate-resource languages.
Built on Qwen3-1.7B-Base with SigLIP2-So400M, it processes images via overlapping tiling with attention-based token pooling that reduces visual tokens by 4x while preserving spatial information. The model achieves the highest average score (72.3) across eight VQA benchmarks while leading on multilingual multimodal understanding (MMMB: 78.8, Multilingual MMBench: 74.3).
| Model | Params | VQA Avg | MMMB | MM-Bench | RealWorld QA |
|---|---|---|---|---|---|
| jina-vlm | 2.4B | 72.3 | 78.8 | 74.3 | 68.2 |
| Qwen2-VL-2B | 2.2B | 66.4 | 71.3 | 69.4 | 62.9 |
| Qwen3-VL-2B | 2.2B | 71.6 | 75.0 | 72.3 | 63.9 |
| InternVL3-2B | 2.2B | 69.2 | 73.6 | 71.9 | 64.3 |
| InternVL3.5-2B | 2.2B | 71.6 | 74.6 | 70.9 | 62.0 |
Via Jina API
We provide an OpenAI-compatible API at https://api-beta-vlm.jina.ai. All requests require a Jina API key in the Authorization header, get your API key at jina.ai.
Image from URL
| Format | Example |
|---|---|
| HTTP/HTTPS URL | https://example.com/image.jpg |
| Base64 data URI | ... |
curl https://api-beta-vlm.jina.ai/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $JINA_API_KEY" \
-d '{
"model": "jina-vlm",
"messages": [{
"role": "user",
"content": [
{"type": "text", "text": "Describe this image"},
{"type": "image_url", "image_url": {"url": "https://example.com/photo.jpg"}}
]
}]
}'
Local image (base64)
curl https://api-beta-vlm.jina.ai/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $JINA_API_KEY" \
-d '{
"model": "jina-vlm",
"messages": [{
"role": "user",
"content": [
{"type": "text", "text": "What is in this image?"},
{"type": "image_url", "image_url": {"url": "data:image/jpeg;base64,'$(base64 -i image.jpg)'"}}
]
}]
}'
Text-only query
curl https://api-beta-vlm.jina.ai/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $JINA_API_KEY" \
-d '{
"model": "jina-vlm",
"messages": [{"role": "user", "content": "What is the capital of France?"}]
}'
Streaming response
Add "stream": true to receive tokens as they're generated:
curl https://api-beta-vlm.jina.ai/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $JINA_API_KEY" \
-d '{
"model": "jina-vlm",
"stream": true,
"messages": [{"role": "user", "content": "Write a haiku about coding"}]
}'
When the service is cold starting, you'll receive:
{
"error": {
"message": "Model is loading, please retry in 30-60 seconds. Cold start takes ~30s after the service scales up.",
"code": 503
}
}
Simply retry your request after waiting.
Local Installation
uv sync
For CUDA users with FlashAttention2 support:
uv sync --extra flash-attn
Using the CLI
You can directly chat with jina-vlm using the infer.py CLI:
# Single image
python infer.py -i image.jpg -p "What's in this image?"
# Streaming output
python infer.py -i image.jpg -p "Describe this image" --stream
# Multiple images
python infer.py -i img1.jpg -i img2.jpg -p "Compare these images"
# Text-only
python infer.py -p "What is the capital of France?"
Options:
-m, --model: Model path. Auto-detects local repo (ifconfig.jsonexists) or falls back tojinaai/jina-vlmfrom HuggingFace.-i, --image: Image path, URL, or glob pattern (can specify multiple times).-p, --prompt: Text prompt (can specify multiple times).--max-crops: Maximum crops (default: 12).--max-tokens: Maximum output tokens (default: 1024).--max-pixels: Max pixels per image, larger images are resized preserving aspect ratio.--stream: Enable streaming output.
Example:
python infer.py -i assets/the_persistence_of_memory.jpg -p "Describe this picture"
| Input | Output |
![]() |
|
Using Transformers
import torch
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
processor = AutoProcessor.from_pretrained(
'jinaai/jina-vlm', use_fast=False, trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
'jinaai/jina-vlm',
device_map='auto',
trust_remote_code=True
)
image = 'https://picsum.photos/800/600'
conversation = [
{
'role': 'user',
'content': [
{'type': 'image', 'image': image},
{'type': 'text', 'text': 'Describe this image'},
],
}
]
text = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(text=[text], images=[image], padding='longest', return_tensors='pt')
inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
output = model.generate(
**inputs,
generation_config=GenerationConfig(max_new_tokens=512, do_sample=False),
return_dict_in_generate=True,
use_model_defaults=True,
)
response = processor.tokenizer.decode(
output.sequences[0][inputs['input_ids'].shape[-1]:],
skip_special_tokens=True
)
print(response)
Multi-image inference
images = ['https://picsum.photos/id/1/800/600', 'https://picsum.photos/id/2/800/600']
conversation = [
{
'role': 'user',
'content': [
{'type': 'image', 'image': images[0]},
{'type': 'image', 'image': images[1]},
{'type': 'text', 'text': 'What is the difference between these images?'},
],
}
]
text = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(text=[text], images=images, padding='longest', return_tensors='pt')
inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
output = model.generate(
**inputs,
generation_config=GenerationConfig(max_new_tokens=512, do_sample=False),
return_dict_in_generate=True,
use_model_defaults=True,
)
response = processor.tokenizer.decode(
output.sequences[0][inputs['input_ids'].shape[-1]:],
skip_special_tokens=True
)
print(response)
Text-only inference
conversation = [
{
'role': 'user',
'content': [
{'type': 'text', 'text': 'Explain quantum computing in simple terms'},
],
}
]
text = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(text=[text], padding='longest', return_tensors='pt')
inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
output = model.generate(
**inputs,
generation_config=GenerationConfig(max_new_tokens=512, do_sample=False),
return_dict_in_generate=True,
use_model_defaults=True,
)
response = processor.tokenizer.decode(
output.sequences[0][inputs['input_ids'].shape[-1]:],
skip_special_tokens=True
)
print(response)
Batch inference
import torch
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
processor = AutoProcessor.from_pretrained(
'jinaai/jina-vlm', use_fast=False, trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
'jinaai/jina-vlm',
device_map='auto',
torch_dtype=torch.bfloat16,
attn_implementation='flash_attention_2',
trust_remote_code=True
)
images = [
'https://picsum.photos/id/22/800/600',
'https://picsum.photos/id/49/800/600'
]
conversations = [
[
{
'role': 'user',
'content': [
{'type': 'image', 'image': images[0]},
{'type': 'text', 'text': 'What is the man doing in this image?'},
],
}
],
[
{
'role': 'user',
'content': [
{'type': 'image', 'image': images[1]},
{'type': 'text', 'text': 'What country\'s flag is in this image?'},
],
}
],
]
texts = processor.apply_chat_template(conversations, add_generation_prompt=True)
inputs = processor(text=texts, images=images, padding='longest', return_tensors='pt')
inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
output = model.generate(
**inputs,
generation_config=GenerationConfig(max_new_tokens=512, do_sample=False),
return_dict_in_generate=True,
use_model_defaults=True,
)
for idx in range(len(output.sequences)):
gen_ids = output.sequences[idx][inputs['input_ids'].shape[-1]:]
response = processor.tokenizer.decode(gen_ids, skip_special_tokens=True)
print(f"Response {idx+1}: {response}")
Batch inference with mixed examples
import torch
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
processor = AutoProcessor.from_pretrained(
'jinaai/jina-vlm', use_fast=False, trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
'jinaai/jina-vlm',
device_map='auto',
torch_dtype=torch.bfloat16,
attn_implementation='flash_attention_2',
trust_remote_code=True
)
images = [
['https://picsum.photos/id/22/800/600'],
['https://picsum.photos/id/49/800/600'],
['https://picsum.photos/id/0/800/600', 'https://picsum.photos/id/2/800/600'],
[],
]
conversations = [
[
{
'role': 'user',
'content': [
{'type': 'image', 'image': images[0][0]},
{'type': 'text', 'text': 'What is the man doing in this image?'},
],
}
],
[
{
'role': 'user',
'content': [
{'type': 'image', 'image': images[1][0]},
{'type': 'text', 'text': 'What country\'s flag is in this image?'},
],
}
],
[
{
'role': 'user',
'content': [
{'type': 'image', 'image': images[2][0]},
{'type': 'image', 'image': images[2][1]},
{'type': 'text', 'text': 'What is the difference between these two images?'},
],
}
],
[
{
'role': 'user',
'content': [
{'type': 'text', 'text': 'Describe the concept of polymorphism in Computer Science'},
],
}
],
]
texts = processor.apply_chat_template(conversations, add_generation_prompt=True)
inputs = processor(text=texts, images=images, padding='longest', return_tensors='pt')
inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
output = model.generate(
**inputs,
generation_config=GenerationConfig(max_new_tokens=512, do_sample=False),
return_dict_in_generate=True,
use_model_defaults=True,
)
for idx in range(len(output.sequences)):
gen_ids = output.sequences[idx][inputs['input_ids'].shape[-1]:]
response = processor.tokenizer.decode(gen_ids, skip_special_tokens=True)
print(f"Response {idx+1}: {response}")
Evaluation
Multilingual Understanding
| Model | MMMB ar | MMMB cn | MMMB en | MMMB avg | MMBench avg | Overall |
|---|---|---|---|---|---|---|
| jina-vlm | 76.9 | 80.0 | 82.0 | 78.8 | 74.3 | 59.6 |
| Qwen2-VL-2B | 68.3 | 74.2 | 78.3 | 71.3 | 69.4 | 53.8 |
| Qwen3-VL-2B | 72.7 | 75.7 | 80.7 | 75.0 | 72.3 | 58.2 |
| InternVL3-2B | 68.6 | 78.3 | 81.9 | 73.6 | 71.9 | 57.4 |
| InternVL3.5-2B | 68.5 | 77.7 | 80.2 | 74.6 | 70.9 | 58.0 |
General VQA Tasks
| Model | AI2D | ChartQA | TextVQA | DocVQA | InfoVQA | OCRBench | SEED-2+ | CharXiv | Avg |
|---|---|---|---|---|---|---|---|---|---|
| jina-vlm | 82.0 | 81.9 | 83.2 | 90.6 | 71.6 | 778 | 67.2 | 32.3/63.5 | 72.3 |
| Qwen2-VL-2B | 74.7 | 73.5 | 79.7 | 89.2 | 64.0 | 809 | 62.4 | 23.3/55.0 | 66.4 |
| Qwen3-VL-2B | 76.9 | 77.2 | 79.5 | 92.3 | 71.9 | 858 | 67.3 | 28.8/62.3 | 71.6 |
| InternVL3-2B | 78.6 | 80.2 | 77.0 | 87.4 | 67.1 | 835 | 64.6 | 28.3/54.7 | 69.2 |
| InternVL3.5-2B | 78.8 | 80.7 | 76.5 | 88.5 | 69.3 | 836 | 68.0 | 31.6/65.0 | 71.6 |
Text-Only Performance
| Model | MMLU | MMLU-Pro | GSM-8K | ARC-C | HellaSwag |
|---|---|---|---|---|---|
| jina-vlm | 56.1 | 30.3 | 71.3 | 77.3 | 59.4 |
| Qwen3-1.7B | 62.6 | 46.4 | 75.3 | 73.4 | 59.0 |
Citation
If you find jina-vlm useful in your research, please cite our technical report:
@misc{koukounas2025jinavlm,
title={Jina-VLM: Small Multilingual Vision Language Model},
author={Andreas Koukounas and Georgios Mastrapas and Florian HΓΆnicke and Sedigheh Eslami and Guillaume Roncari and Scott Martens and Han Xiao},
year={2025},
eprint={2512.04032},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2512.04032},
}
License
jina-vlm is licensed under CC BY-NC 4.0. For commercial usage inquiries, feel free to contact us.
- Downloads last month
- 797
Model tree for jinaai/jina-vlm
Base model
Qwen/Qwen3-1.7B-Base
