samsum_42

This model is a fine-tuned version of google/t5-v1_1-small on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9718
  • Rouge1: 39.5535
  • Rouge2: 17.4631
  • Rougel: 33.6465
  • Rougelsum: 36.7565
  • Gen Len: 22.1125
  • Test Rougel: 33.6375
  • Df Rougel: 33.5734
  • Unlearn Overall Rougel: 0.5321
  • Unlearn Time: 910.6552

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Overall Rougel Unlearn Overall Rougel Time
No log 1.0 461 2.0248 38.9459 17.2481 33.5408 36.1357 21.4817 0.3060 0.3060 -1
No log 2.0 922 1.9718 39.5535 17.4631 33.5734 36.7565 22.1125 0.5321 0.5321 -1
2.8009 3.0 1383 1.9470 39.9413 17.7973 34.0641 37.1241 20.7824 0.4156 0.4156 -1
2.8009 4.0 1844 1.9346 39.7529 17.6133 33.8431 37.0585 20.9853 0.4706 0.4706 -1
2.6317 5.0 2305 1.9319 39.9807 17.7325 33.8786 37.1993 21.6932 0.5101 0.5101 -1

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.15.2
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for jialicheng/unlearn_samsum_t5-small_random_label_4_42

Finetuned
(58)
this model

Evaluation results