samsum_42

This model is a fine-tuned version of google/t5-v1_1-small on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1147
  • Rouge1: 39.0474
  • Rouge2: 16.9299
  • Rougel: 32.8695
  • Rougelsum: 36.1983
  • Gen Len: 24.7604
  • Test Rougel: 32.8695
  • Df Rougel: 32.4563
  • Unlearn Overall Rougel: 0.7066
  • Unlearn Time: 254.2657

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Overall Rougel Unlearn Overall Rougel Time
No log 1.0 19 2.1121 38.8443 16.9802 32.5031 36.0402 20.8081 0.6641 0.6641 -1
No log 2.0 38 2.1128 38.9733 16.9624 32.6111 36.146 22.4988 0.5832 0.5832 -1
No log 3.0 57 2.1147 39.0474 16.9299 32.4563 36.1983 24.7604 0.7066 0.7066 -1
No log 4.0 76 2.1195 38.7283 16.6506 32.1497 35.8362 27.3496 0.6566 0.6566 -1
No log 5.0 95 2.1226 38.3644 16.4887 31.8308 35.5077 29.0428 0.6913 0.6913 -1

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.15.2
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for jialicheng/unlearn_samsum_t5-small_neggrad_4_42

Finetuned
(58)
this model

Evaluation results