results

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6362
  • Accuracy: 0.845
  • F1: 0.8448

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.2945 1.0 125 1.2580 0.75 0.7472
0.4369 2.0 250 0.5464 0.84 0.8399
0.5558 3.0 375 0.5790 0.835 0.8346
0.4151 4.0 500 0.5570 0.84 0.8407
0.3419 5.0 625 0.5926 0.845 0.8445
0.961 6.0 750 0.5719 0.845 0.8453
0.7037 7.0 875 0.5773 0.85 0.8488
0.3564 8.0 1000 0.5968 0.845 0.8443
0.1346 9.0 1125 0.6553 0.845 0.8450
0.1296 10.0 1250 0.6024 0.86 0.8597
0.3354 11.0 1375 0.6269 0.845 0.8445
0.0289 12.0 1500 0.6367 0.835 0.8346
0.0785 13.0 1625 0.6362 0.845 0.8448

Framework versions

  • PEFT 0.18.0
  • Transformers 4.57.3
  • Pytorch 2.9.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for jakobtz/results

Adapter
(352)
this model

Evaluation results