results
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6362
- Accuracy: 0.845
- F1: 0.8448
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|---|---|---|---|---|---|
| 1.2945 | 1.0 | 125 | 1.2580 | 0.75 | 0.7472 |
| 0.4369 | 2.0 | 250 | 0.5464 | 0.84 | 0.8399 |
| 0.5558 | 3.0 | 375 | 0.5790 | 0.835 | 0.8346 |
| 0.4151 | 4.0 | 500 | 0.5570 | 0.84 | 0.8407 |
| 0.3419 | 5.0 | 625 | 0.5926 | 0.845 | 0.8445 |
| 0.961 | 6.0 | 750 | 0.5719 | 0.845 | 0.8453 |
| 0.7037 | 7.0 | 875 | 0.5773 | 0.85 | 0.8488 |
| 0.3564 | 8.0 | 1000 | 0.5968 | 0.845 | 0.8443 |
| 0.1346 | 9.0 | 1125 | 0.6553 | 0.845 | 0.8450 |
| 0.1296 | 10.0 | 1250 | 0.6024 | 0.86 | 0.8597 |
| 0.3354 | 11.0 | 1375 | 0.6269 | 0.845 | 0.8445 |
| 0.0289 | 12.0 | 1500 | 0.6367 | 0.835 | 0.8346 |
| 0.0785 | 13.0 | 1625 | 0.6362 | 0.845 | 0.8448 |
Framework versions
- PEFT 0.18.0
- Transformers 4.57.3
- Pytorch 2.9.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for jakobtz/results
Base model
distilbert/distilbert-base-uncased