ner_hse_hw
This model is a fine-tuned version of BAAI/bge-small-en-v1.5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2516
- Precision: 0.7010
- Recall: 0.7439
- F1: 0.7218
- Accuracy: 0.9518
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.489 | 1.0 | 157 | 0.4402 | 0.3978 | 0.5082 | 0.4463 | 0.9102 |
| 0.3019 | 2.0 | 314 | 0.2786 | 0.6774 | 0.7269 | 0.7013 | 0.9491 |
| 0.2722 | 3.0 | 471 | 0.2516 | 0.7010 | 0.7439 | 0.7218 | 0.9518 |
Framework versions
- Transformers 4.56.2
- Pytorch 2.8.0+cu128
- Datasets 4.1.1
- Tokenizers 0.22.1
- Downloads last month
- 4
Model tree for hellcatAI/ner_hse_hw
Base model
BAAI/bge-small-en-v1.5