SentenceTransformer based on Qwen/Qwen3-Embedding-0.6B
This is a sentence-transformers model finetuned from Qwen/Qwen3-Embedding-0.6B on the data1 dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Qwen/Qwen3-Embedding-0.6B
- Maximum Sequence Length: 32768 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 32768, 'do_lower_case': False, 'architecture': 'Qwen3Model'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("gromoboy/qwen3_06b_items_matcher")
queries = [
"\u041e\u0434\u0435\u0436\u0434\u0430 \u0434\u043b\u044f \u043d\u043e\u0432\u043e\u0440\u043e\u0436\u0434\u0435\u043d\u043d\u044b\u0445 \u043c\u0430\u043b\u044c\u0447\u0438\u043a\u043e\u0432 \u0441\u043b\u0438\u043f \u0434\u043b\u044f \u043c\u0430\u043b\u044b\u0448\u0435\u0439 \u043a\u043e\u043c\u0431\u0438\u043d\u0435\u0437\u043e\u043d \u043d\u0430\u0440\u044f\u0434\u043d\u044b\u0439 \u043d\u0430\u0442\u0435\u043b\u044c\u043d\u044b\u0439 \u0434\u043b\u044f \u0444\u043e\u0442\u043e\u0441\u0435\u0441\u0441\u0438\u0438",
]
documents = [
'Одежда для новорожденных мальчиков слипдля малышей комбинезон нарядный нательный для фотосесии',
'Шапка детская для мальчика и снуд',
'ТелескопРефрактор/Детский игровойнабор',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
Evaluation
Metrics
Triplet
| Metric |
Value |
| cosine_accuracy |
0.9423 |
Training Details
Training Dataset
data1
Evaluation Dataset
data1
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 32
per_device_eval_batch_size: 32
learning_rate: 2e-05
num_train_epochs: 5
warmup_ratio: 0.1
fp16: True
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 32
per_device_eval_batch_size: 32
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 5
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
hub_revision: None
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
liger_kernel_config: None
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
router_mapping: {}
learning_rate_mapping: {}
Training Logs
| Epoch |
Step |
Training Loss |
Validation Loss |
dev_cosine_accuracy |
| -1 |
-1 |
- |
- |
0.5848 |
| 0.3584 |
100 |
- |
0.0570 |
0.9030 |
| 0.7168 |
200 |
0.0638 |
0.0504 |
0.9008 |
| 1.0753 |
300 |
- |
0.0431 |
0.9331 |
| 1.4337 |
400 |
0.0067 |
0.0385 |
0.9292 |
| 1.7921 |
500 |
- |
0.0715 |
0.9191 |
| 2.1505 |
600 |
0.0045 |
0.0664 |
0.9309 |
| 2.5090 |
700 |
- |
0.0620 |
0.9414 |
| 2.8674 |
800 |
0.0029 |
0.0532 |
0.9467 |
| 3.2258 |
900 |
- |
0.0586 |
0.9432 |
| 3.5842 |
1000 |
0.0041 |
0.0431 |
0.9432 |
| 3.9427 |
1100 |
- |
0.0464 |
0.9432 |
| 4.3011 |
1200 |
0.0022 |
0.0611 |
0.9406 |
| 4.6595 |
1300 |
- |
0.0646 |
0.9423 |
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 5.0.0
- Transformers: 4.54.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}