ner-without
This model is a fine-tuned version of BAAI/bge-small-en-v1.5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0829
- Precision: 0.9106
- Recall: 0.9291
- F1: 0.9198
- Accuracy: 0.9826
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6524599759245336e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 5
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.1031 | 1.0 | 1250 | 0.1021 | 0.8331 | 0.9021 | 0.8662 | 0.9735 |
| 0.0664 | 2.0 | 2500 | 0.0878 | 0.8905 | 0.9130 | 0.9016 | 0.9795 |
| 0.0442 | 3.0 | 3750 | 0.0817 | 0.9017 | 0.9221 | 0.9118 | 0.9813 |
| 0.0287 | 4.0 | 5000 | 0.0859 | 0.9106 | 0.9256 | 0.9180 | 0.9823 |
| 0.0117 | 5.0 | 6250 | 0.0829 | 0.9106 | 0.9291 | 0.9198 | 0.9826 |
Framework versions
- Transformers 4.53.3
- Pytorch 2.6.0+cu124
- Datasets 4.1.1
- Tokenizers 0.21.2
- Downloads last month
- -
Model tree for elizkaveta/ner-without
Base model
BAAI/bge-small-en-v1.5