image
dict
question
stringlengths
17
259
choices
listlengths
2
5
answer
int8
0
4
hint
stringlengths
0
1.06k
lecture
stringclasses
65 values
solution
stringlengths
0
1.41k
answer_str
stringlengths
2
86
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAARsAAACNCAIAAAAIB0mcAAAyJklEQVR4nO19WZAkx3ne/2dV9T33sbOzOwtgsVgAJMglAZDUEuSCpySKlCyB1GGatsKUFHZY1oNtPjtC0psVtuTQg0MRVsg2JdpBEqItUgrSJC1RPECIB0BQAkAsiN3F7mLn2pnp6bu6Kn8/ZFd2VnXdXT3dA/QXE0Bvd1VmVvf/5X9mJhIRTDHF2EAAOO4xZAl93AOY4lULAur9PxgISMBDm0FxWXbjGi2mjJoiWxABERECIjIACFdBNlkaRgshJxsAERGjGhw7cGr1TTE8CDgRMdTUNy0y23a9wxsNq7rVeklDfatztWkfIGhScVnc1FlOvEZAm6xZY2Ulfwcn60TxbJ6Vy/q8gXmD5dXeOHFERGBH9HhJMGXUFKlBHAgBVZOsyzu7nZdvtp6/3blZs3br1v5hd1dc7NsEIiMKsvqQgBZz6wWtsphbX8itnyret5Rf1zHXHwFwImA4QdSaMmqKxCAgAEJAYYAR0Hb76o3Wczvtq7dal5t0aPEuJ1tnBkNNQ0Pe1ruDVH4RAPY+8pNEm7ocbIt3NdQ1ZlT0pbXC3Sv5O0+X7l3N3yFudzwxnAR3a8qoKRKAgEvBtai72Xrxcv3Jm+0fNayDhn2goaFjjjGGyETIgYTAgxLSU2N73GEROu8PqCvRFyIjIgLOye6SaQMva3NlfeFs+U1nSg+cKt4r1JSIhYyXV1NGTRENRykxAODED7qbL9a+81LrqR3zKgdbQ52hrqFOQMEmXHQfPXAIUVkIvfAEJ9smq0tdQH2j+Lozpfvvn31kRl/stUF8XKbglFFThIMISOglArrZev6p/S/d6rzQsmuMaYZWEJdQX/wHqSB1U/w+AQiAB/LKaRcRkQOZdrsL9oy+eGfpDW+Yf/fJwllJ/qPn1ZRRUwSCgAtnqUudy7Unnzn86q553SYrxwrImJtI4DAHFUtOvib3R77vePt2XRsqpAiMA9hgmbyjo3GicNdDCx84V35Q2IqAdJRRwSmjpvABAQERIrO4+UL9yR/UvrzTuYaIOuaVnCxTCMOgJ7Vc8ZMkYbibYDjAmIjR9D2uCDAbeJdMIr5evOfhhZ+5q/xGDQ3V/Rs1poyawgXJJQC40nj6if3Hd8xrGmoG5smxAAEI+jkl5robwC8Eob4PTvwBBwy7YFHkAy8Cxw8AjBA6vE1kny7df2n5l08W7gZ3WGV0mDJqij6kzO2Zr3xr79NXmk8jgs4KgmeOLgIABn01laqfHjxmIYUFJcDpM8oIpN4fIrKO3dRZ7lzloUeWPjxnrKghlhFhchkVf2C92pQphgMBR2Ambz1T/er3Dv6yTfU8K4Mz67tlPfMvXKoe5lh4wb8+KX+hsAEAGAF17MaMsfTI8kfurbzVYPmRBtknhVFElAkxsmrnNQU5c19vPvvEwWdvtp7Pa2UNNZFOAgD3f0cKjx0YYOSpEfZQ6jkXMpusLrXvKL7uPau/upQ/5dQxZf9EY2PUoOgTEeecc95sNjnnpmmapimv4ZzL12LMuq7n83nGWKlU0jRN07TBBqfsigQRF17T9/a/8O2Dz3Gwc6zIiTsWnax0ONJBAQAA9tSML2lIMQJDQ4YyqMGQmXbbYIV3rXz0gblLI7IAj5pRg1Jummaz2Wy1Wt1uV7BIvTiyNfFfTdMKhYJhGKVSqVQqFYvF8E6nEOBgM9D2ure+tvvJa81n8lpZ5J0A2FhLvNWQIHe/OfAvGU0Mbkv+ITAOVtc2z1fe8p4T/6ysz8kJJSscHaNUsbYsq9VqtdvtWq3W7XaFakIHvZHF4IBok4iIyLZtzrlgl2EYMzMz5XK5VCoZhjE4gClE4I4Bu9F69ss7//XQ2imwCu8JphZx81GD3NRS3gY3tYI1FfSVFTJgDau6Xrznfau/ulY8S70axWxwFIySokxErVarWq02Gg3TNImIMSZZlNVILMsCANu2ASCXy5VKpeXl5Xw+r+vTxWA9CNeciD9X/8Zf7/43ADSwwMF2DLyJmnc8OmpAU6maLCoGqFiAmmm3DCj89NpvnJt9iANnGT34Eekoy7JqtdrBwUG73RYEY4xBdizygBwIrQUA+Xx+fn5+aWlJ8uo1rLJEwAH/Zvd/PFX9YlGbUapZx2vsBYGUHHFArtdWrg0GVwiKiMR522o+uvKP37r8oawCgCNnVLfb3dvbq1arQnVomnaUdqZklHit6/rc3Nzy8nKhUDiaMUwahIXT4c1v7n36h4dfzbMKOLbQmEcWAdtJK4PCHjdiZKs81RcISAjdbuutiz/39pXHGCINTaoRMkpw6eDgwLIsTRuDaS60kCCV9Lhs2xa8WlpaEgGM146yEnRq2bUvbP7BK50X8qxME2fjBUGNpwdE93iYDpOXDK4XQcC2Wb9n5i0fOPUvcqwg8nKpBzoSRnHO9/f3d3d3BZeEKGfeS9IhSV6JQIimaYuLi6urq7quvxZIJQSlbdc/v/mfXulcduIQkxaEiIRUVgOaStqGEBH6G/S5GNda3dq52Yc+eOpfiRRwak2Vvaw3m83Nzc12uy2cpbFzSYBzLv8LwoYmsm07n8+vra3Nz8/Dq1pZ9bSTVfvC5h+8Yv6ooM04Gafj9bwyDK75l1bIN0JtP1/zkBFrW/W7Kw998NRvGiznaMLEyJJRnPOdnZ39/f3JFE0Zq/C8zzlfWFhYW1szDGMyRz4kBJ3adv3zW7//SvsFRzsdOzoJcKckyvZfeRWjRokUC1EFA61l1s9VHvzQxr/W0UinqTLLbbVarWvXru3u7sKkFtoJnTlYWsEY29/ff/HFF6vV6iQYqCPCN/c+c7P9owKr8LSz72SAOYyImhGCRRudDz33c7KLeuVy7Tvf3f0rAIguHPRtfBgBkjP63t7e9va2cE4SVbjKgEHqMSSF9KZEwkp9HwCWl5dPnDghIvuvDoiJ9mu7f/r04f8tsLIzK6dnlCcmgE7QXWqF0HW3mcATpQiAHauU1nsJAdqsw5uXTvzyW5Y+mCJKMZToCC//5s2bm5ubABDTa1LL84TekHleT9nEKBDk3Yl+t7e3r1692u12YWS5sqMEBxsBnzn86verf1VgJT505fjgneruRjJuyNyClfXPKfvEQE0VoxrRP/tGQEA5Vvj61qdfrH0fgVFQsD4AKRklpM00zZdffrlarcaZ1CVbBH80TRMv5EeD16QbWxwEUVfX9Xq9/tJLLzUajcm0XeODA2egXWv+8Bu3P1XQZ7grFpYMTCmmkCZjT5yxp6AGFx6OGKEPEqP2w/9zBsAIEXXMfeXWn2y3ryFoUftIu5tNMRML3dLpdK5fv26aZrilJyuMREpKXKlaemp1+WAhhTDSko4wJoThN9i+MF/vvPPOcrk8oq5HDWHs7Zm3/mLzP9bt2zoWnIdMwCgceNELC1icCJABERD2ippUsnlWxkdtwZIaaoGSt3lNY67QX3ATPnQhQM66dnu1eMdjG58o6jPxoxSJGeWhU7h2GlRB4EiwoIpkozAg5V3qNUJlyeqHbCFyU4PDFvQ+tqQiACTgn7v1H663/qGgVZyVTim1rlyyK/RScb6gGQgEiCB2E0MGXFp+5F0NPzKVJStgwcMLzql5YJLlVIME6xj/5Y0EwIGR1rSrb5x/90+d+o342yql0VHC2Iukk3BXVL9FMiqOQSUEXY1eiPr0bHnlyygYINXxiqpz4AzYdw++8I29/1VkM6lj5dK667tJCMTpL37/yepmk+kMwClhQiClNBAUGQ0ocMgW/eYRwbZoZjn/gd96sFjOcYv8GOOCj5pyqpUQscvN95/85w/MX4oZpUhQji2kKpJOnuUY6n89F4RDpZ9avZ5tobpw2AYVoKyuuHr16vHSVAScAXu59fd/t/+5PCulKIxAt25BAOaYdgzRIv7E488fvNKazEyD4PbsicJ7f/0Npdk8dTkKey14pDjIeSXewkD72tb/XCvetZzfiGP7JWBUHDoJiE+HjNp5fC2p5TL/IYUW9QTTBYS1KUl1LDQVAuvyzhP7f26DbYBBfQUTF+LLFZYeQwAAm0BjvQJ1xjBfzgG0NH1SCmJUIKLVtXNFnWms58CxMKuvd9cg4xgAA+Kkc71jN76+9elfOPPv4rhSCRhlWVa47zRo4A0JlT8iPCiNNNFRhr+oL1HFCi7O+ZUrV86ePVsqlbLqbkQQ9t7Th1+81f5Rkc2msPeYjCtgL5QnjD2U56shcJsDgG2NxLMdEkLwuOVwKIYnpxq3fTg3cuA5rfRS7ennqt+6f+7tkbZf3Og5EW1ubnY6Hd8qciHu4mEyD3xLXSfke0Slt0HThCTVzZs3ffXY5ECsyd3tXP9+9YuOvZf4h5CnXBD0y3XE70kAhD1NdQwgYzExvgOfq6T7CABEOst9c+fxhnWAwCiUoHEZtbu7W61WQwLlvbnBz8vPBDKDJEwv1bnKpPEQioqYZLPZvHHjBkx85veJvcfbdp2Bpky+ceHKmBIgAwQA3os6IPU11bHBMALifB0EpDGjam5/c/uzABCu8mIxqlar7e7uilUPrh6VPKkIxI10HZQnyBGUpR0FiEjX9YODg52dncl0pcQe5VcaT11pPZ1nZad4L+6MqeZwhRQKD4qwT0zEvr46Zohh+fp8rnx/RGSwwuXD72y1r4SrqehvvNvt3rp1C0LnZnW7iEFwzi0/pEiFgdtDC2qBiHx7DDHbVMM1qE1N027dulWv1xMN+2ggAxLOE7AI78EN6W7081YEIMqWOCABMccOPF5KSh1wMKlkMMaLfuUgMdTavP2N7c8ChK3zjY5MbG1tdbvdQQUFSmEeBIciiKhSqRQKhUH9VqvV1B35IuGJmwsPx3dUuq4vLCx4WhaxyiA+qCnmkAEQ0Y0bN86fPz9R1bTCXX6h/u3dzrWcVkqxMldJbvTytggADBg4wQoLUHM0WOR8j4BsPLoMEW2LUFNk3pMN8L0r6HN5OgIAEc+zwvXGcy/Vnj4786agEEUEow4ODg4PD33dJ08lhC+EcP/t3/7tCy+8IFYfyXsty3rXu961sbHR7Xbjk0r6Tmq2V/WCRI+3b9/+zGc+Y1mWaiKapnn69OlHH300xBX0zU15Hqfdbm9ubq6vr8cc8xEAgVlkPlP7KjKt90b/v5H39l+Q828CkDMGcUAE1FRPPaJNIiB7PLoMkQDAMjlxZ2KRyaXguJJ8LP8wel/RISf76f2v3DVzISjiF8aobre7vb0dJO5xfBgiMgzjs5/97OOPPy4iZr1BMsY5/6M/+qO77747hZpSo+qeMLro8fr167/zO7/T6XTkZZqm2bZ98eLFRx99FILrNiLzXYJUu7u7c3NzE5L2FZPlj2rf3mlfzWkl6m8bFPN2ZfNYUQVBoImULin2jUz3hipykWCdXyufuGvO6nJ058JIEdisCyl6/SCC3aW5k0XN0IhD/GmFgh6O1Jc8xwovN569Wn/mrsoFXzUVxqjd3d0ge08NkYfH3BBRbDyk67rKKFFiG9J7OCSRhErxqCnDMHK5XLfbldpVMMowjKBkLkRF/NTLRDD9/PnzqcefHQiBdbn5TPUrjGkOQZLF90BqJxIGG5CY32WtKXcCElHeGdOYbfGLH7n31//wvdXtJmqs55KJ5gkIgFOwlZUeqicIRGS2LW5zVHuKqpwIBFP1G9pk/WD/r++qXPC9KZBR9Xr94OAgxN4TbkzIMCQEkWzblqI85GZ9so5W8Mrj/wh6W5Yld2uRt0QmlGRtbqSaqtVqOzs7Kysr4y2kEDPrZufy7e51neVSyygCoGP0EAFDINZ7k2SgAuKSwO7YrcNuq97VNIYcuNBOHIB6IcR4x9YkhavqlQ06clFq0d/qQ881lGP5G83ndzvXfeuSAimxt7cX4k6MV4xU9ShHklWVRsxSDMbYzs6ObduTEEx/6uBLHOxeeDtVCkbqHlEk0cvkirpycJYQxjfUEBCRITJEQGQaagyZhkxHYAgMxXHyLPu/3vpVL52kjooeuB9cMzYx1NpW4/u3v+x7rT+j6vV6o9EYVEHoLLmNHtqIIeRYLnDKMNUL8cip63qr1drb24Px5XzFBLnbuX6rfdlgeaK4Z2sKKKkm5QxBDkSAtluBSMLFjsn32CfC7gRIPbtRll+AGqnPDAGNYbQHCMq34X+7AyIyWO5q44cN6xAHkt7+3AhRUL0ujiq1GgQ1LKG+MzxiencifzVuNUUA8OPa99p2HVFTk7QxIS5VjytE5uR2OaA0o+ShM5SgeWFGMugtTEQn1EHYX22VkeFHjsknG06DwPEMGH46Mw7NnSv1H8CA4PkwqtFo+CoocKysdMPNFjIPBgCDrlRWLYeDMTZeNYXACPhLze8x1JMKJzr+NgIwERzXFJnUgTGAQZLGllVS7hLrETn12AXkjkhnA7m7Uer4QzAGxkoEDLXLh98BAM9KRB/RqVarkeG7sTsPgtuO3ZyxFRqTHuKy/f19yMiLSwSx+cG1xg9vWzcMLZe4AAXAVn5+IuAcAIE0JZasCmfsZBSAE3NHAATbCfT1bCpySXV235oMKwQfixijicAPmOcNrrPcK60XdzvXAUA1/Lyy2Ol0arVa0K5Gk8AlAbWeELIW6JitMcbETi/VahXGoKYQAF5qPGWRSJEndknkDUQgXDCEXskaSTNKNpkoMiGa5cBtJ4oIPXsP3MZjRl9ZlA6NNx0Emox+DpaGWss6fOHwuwBA1OdrP3ou9JI4Ik2tb+g3m11ILRPIQ9yybTY+MWQWYW9vb25u7ohNYgS0oXuj+azB8pyklCZW173orzPN9pJFng34VK0V5/tWLu4dd4E9HSjeibEIMPFzKB0P/AosFqkCbVHxLO7MizD8bjVfJCCGfd+7zyghmvV6PXIXy0kglcwyjUKIE1l9jLFGo2FZ1lGe+CZc/dvtG027ihpTZD9uwYQ6q5Nzty02Y0FwBZ+lMZXkZ+fcMfwAyNngBbJ3nySiYnkxxq/GaXzgcaWA6yy33blW7+7PGIsyMeUSgnq93mw242xvNHZI/RCnwjVpy+DUScW5UiR8P/nJTz7zzDPFYnF0K8RcXTOwGrj6rvbcTxBviVIYVZVEo19FQL3SISb0lVivwRU9A86l8v04IwQgG1ADlNv5cUDqC3bWvOo/UNglUb2GahLvxwxYy6rdaD53/9wj8pt3HfjXaDSCKgZQOZVwEkglRygKIzI/BCQmMcQq/UKh8K1vfeuP//iPFxcXj2adr6azw93Wh+cf/sCjF2rNNvalNMFPI0wvYa9wR1OJw9NtEZHDXiqpR4lEoXPsLVjsnQEi6pgcoyyG+CcC9Zt2lwz1P4/B44jBDH6MSMCvN567f+4RchJuuvMRcs6FggoplYBJ0lHgyL1cTpIhqeLoKHDqG4moVCotLCzMz89LRqml8fJ6cm/qRO6tnXy/WxrYBwoAmI66XSwWiu5HThacIGkqUW8ZPAIg9jZs4agwSNIudoZXvYq4EzqHzDg0AGlY+f1qksFRCBydrywQILDbnVc42axXnK+E0k3TFIc++fc0MZkoCRGZAGds4x3eYO9q6lkdoafUUB05+cFzi/szdyg6obTKib0fcUAg6qWMZMM99SV1QDzOIgGXW+VRX97VuzP9wSjMqguNq6tXBT6cX/kxARkst2feum2+Ao7q7TOq2WxGCuWEKChQxDF+JV6ixo/GHRoW6PlHml+HO5zpKRAC4kCaEwAkx1qDWAFocC7ppXC4U3/kDG00NrGsvA2NnkdNB2GajHzDqMRQb1rV2+2b8v5+DXiz2YRQzoxCdtNB2kiY6f4tKmJmjcefoOubYcmK+iQQ+vaYSBwhAHAg7NU9oOAYATGnxxhtAvQUHQEQAneGlnVJKLlbDVBTSfy2RIYfEWmob7Z/DADCkep5ILZti5V/IYSRMYDoQY0YkesCh8TkHHYaAReX2TDiKrbmI9ksObEE7HlZgICD59eGgHqcJHBWW6UeXJzOHPL6fx4jPZ0squO6j223r6tdAQCYpilWvIbcihN2ru6IbLNERxaMWWm7LJn0mZ7eDC4MP+z9V+w2Ac5JL3KxYJw+hM8iAvEIrsqj9KP0h8ckDR5QDPAQXgW3gIhNq8rJFhHXHkNs25aOftBtE+JdSCEO34ApNZI2OE6rLwvZlG1wWSXkBBWEKyUiFiLSEDfWR0Du1fkU68zBdMCBF66ReBNrUW35DzKgBQLQUGvb9T3zFgAQkC4EotWK3hheiu/YU1JqQCLzmITnRTgmwQZWkOZHkRJPovrcSUOpikskl5jYfyL+E3Pgysa2qprKDuoU79ewqsNS578iohpok9XlHXFpLx8lzskMa9PZSMy27azEiHMulsonZYVw/HzNM7E3YOo0a1L3bMxKG4eQEgdyBu9pFbmGjnpeEDpaiwHYHGI9MQJjLjlUeZsdyM1Tv+9C0imq4zA/LCw7TBrqDetgu33tZPFuIodR7XY7cvjgTgENr6bK5fL8/Lw4PjRR7+CIsi+jSqVSpVJJN6QUem/MjqVr7kzrXQOAlEfqC2FvTwjq1bb2s1WRgyLgNnEiRr0NJrIrj+h3orwWO7QEh84h+oSOiHBgdC6r17u3UjasS8d7gaEZJZr6wQ9+UCwWIysJPXepQXzfvGo+n798+XI6NSUs2xGdp3gkSEMqKUzqPM0AkAPHvpLhBEwDiqGjdJ3linquoGv6EVjFnIhZpv/xn/F1lHp5ws+IgVY1twEAkekA0Ol0LMuK7EyK8vCJICGvv/d7v5fu9qQdJbo+UQBmQhJ0CtL+Ig4XmbMSUcTr5E5gvfkpKuklPmxUO7dePKjttZg2Okb1uEIEuoFzqwEHEcX23iI+D1ayYllHtbsDAAiogyMWcXQUOmdpZhKZGOmB8Ol0VArtNDF1JOQU3g1hOwCAW1P12kInYgERoicObvr6p579+qeeTT2M+ECGxGnt3Py//8ov+gyMlL8YCAteRMwj/SVSyZb0oANQbLBELaiYhFi8Cql+J21gYeiLgNQl2jCkkvOQy+WnXhiQRlVGNALQwIsY1/r/8FHPjH33M2GWXa3XnJi5OUukSGGP2epzLaTDIekUBHI0IIy29CFTULLCrIgy2djtJGaUtIvUuF+iRiYWSVPY5BxfP7ohRY3AE+jLuG3ZoprUOR4/dsKB8pAEdIymCEBugK5DKudBPRojNUbnR6Uo70ia24XRlxfGGIHn33LjvcziAUlMpwkDU7RqjGRUWLVExO3EgLXt3ilKOgwnGXL7lBRu1aS5K0k9KHmIweiGFAEft1smI7Mc1fGjEypVekn8qISf9TojIAPz4h89RsUapdqG48GjciJbotmdiD7xiU9cvHhRzUd5ovNqgzEbl/mo3/3d342splfvOq62qw+d4Bg5O6MCJSgoIeW/aXsjjfWCfGm275HxCbV8Vq4Pj5OqEtdcuHDhfe97n9geULwvdjxWT+6QSiOmxIuaCVGKEf+J0iV2xx+bcUW4QVFNGeuoY4ZB/2+YpmKEN9RYX49R6TxsdbmUxw8h9w4Kvmg2m4eHh7VaTbBI+mbyFrnZQ/zhiVrBRqOR9FnCh5rJ9dkDfX9vyn5dX0Ic2amhyNDmxDR3X9z5ZuINIexXlDnvqBZcVUjDRMN9HXp5XFp4s0wBOPVNnnvF7YkUTop9m9UYZqJb1H+qLzzq2tOy+o7va4+eV31Up0EgIj97ZSLUFB3VqaFi0TGXfcm6j3iLIyMCmNIEiNJ1CMid6iwdAAqFgq7rlmWlKCr3cEb1r8DZfCu8BVGEIW9Rj7o4mtBFOidq8BbxsKqxOmgADxLGN8UndbWaH5N3cc4ZYK9mX3XBlbGMi05MQ27Tgz9z9/t+40Kz2vFqj/RQg46KgCNwmwoVw1vuEdveC5OwmE0hEPC8VgQAEqs5hvQHBg08qVswdJ2iWJEBDovGZURJlZjoLs+XJh7TM4NItgz2GPK++iKotShnWtw1kmxvOBARgFbvmnv45+6pbjczqpQlN6PA8+jEqdPsAiTeayOCL2GLONSr0CbrROEuACDiPT8qn8+Lk9XTibUnKCcVVHhIXfJQRjWCRG0CMSmh/0CnaZyRiW7Hbhx0mtXOcIxSBZ7CsksIjKErXB47xBehgWI2ReTsHgB9Rqkxt9QYnFxDpn9JYNVrOmI6qWf1xkeKVZKjAjr7g/VLZNWBqWGvIxwUgqYh03Boq0/czp0CK2mHDcAb9owAOX9hu5zH03ic7KJWmTdOAAAC9sz0QqGQ4aSregueN11DcQcD0vkzwyCdvQeTEDf3wGcqVaVlMtRpMsjYAo+ld0jhQCZCFLcdJCCd5Yv6DAAAOnvK6rqeuUBPyizuBzVuNu6xjA6k/B074MDggx+EnIhc7JRuxLXkKMUYo+RkF7TynLEs/tmrrMvn8/l8/mh2wR87VFMznWaerMkiLAacpBRnsqDae8GDp4G/GCAAOzzJhM5FcVojbrB8XiuLTW56OsowjHw+Pyne9ugxzLr3yV0z7zModZXTRI7ZC2m9cfc7foNXbbzYUb7oqzz9RwAJaL14Tv67X+9TKpVg0mbfkWEYVkzoV+Q/T4cFnScMyckhlzQFBjxTIYkfgAic7OX8aWcczi7NAFCpVMa8NuEIMViJGxOTq6AgSA6l1zC2tG88SE9IHq0TY+8ilYYxEMs2TLKykogMll8t3inf6VfKFgqFfD7f6XRASdG++qBWNiRCeK4METVNS1QtNQyYhpqmIapnPAGAE0b3QsqIXEA1UVAzQ3b0JuWe7EDCXzL6jtheJwJaZC7mTy3m1pw7FUZpmlYoFFqt1kg3VJkEDONB+baGiO12++DgQOwQOtzoYkHT2WG11el0UGwAq7IqMDMjfX35euy/Mg0ozxiBcmnpUawyVtmT50XgdWFZKs9I0ObWYm4tr5WJuIicu04NnZmZOTg4eC1EltM9nS8VGWOtVuvixYuVSuUoz+G1G7hwodlquXc7VKd78FBGvBWaJz0ieGLiciTxPCjVzIs9N8YqpUhEJwAgQGDrpfO9DgBAPTUUAGZnZ3O5XLfbFTZM7IaPDVKndMEh4eC9jLFOp/Mrv/IrH//4x7MYY7zBAEdgl+vf/eKt/2IwzRuMsH2XxquSiANT/VHCQyfynQD871NzAUl+xlgeVGIDkjTUN0r3AoAcvGvFoaZps7OzOzs7uq6r63NfTUjnQQVtCg0AnPPZ2dlSqXT0uYc7ig/ktXLXbjDUXeKg5nK8UiovUyf5Uass9XvDAYWRiiIJu4/uILHSwy6ZJwp3zufWQPn6+owSc/Ds7Ozt27cnN5yVBdKFNH1vEU3Nz8/DOMI5OSicLt77Yu1JDQ3XwU7qjO9DFhyQZjnzj2j8ojt163Hu3lolXiiCKy0l+QFHMdUhom13TxbvMVheOlGgqnsZQy+Xy3JKfu3kfIMQzj3btovF4sLCAhx5sZ9Y4rZResAkCwa79rgq3s9AoZ2QAVtxI7jzggbuSgRSGCC7GCwhD3Wf1BGBO7wSA55Ucdh1UQPx3kGkoXFH+XX9UQGAx4AW0rOwsKCuyHiNlCYFgYiCKs2FgpqdndU07ei1OkMEgPMzDy/nN7q8g4PqRSVFYKqK+3FJRgJ9b0u4CMkbCCGlx8CR9a8F987TaWPlYffF8rFcQECbzJPFs3dW3ggAqPDIxSjBorm5OU/M6ngZgRmq1vB2iEjX9dXVVRhPNToS8DwrrxXOdalLvgabJFXgD6iaf6BYiqoCsd2U8HHOBsemdMzdO0zGuV1phhQPJ3koInrRYKAmDx0XMpO375q5wJBx92klA/EgIsbY0tKSumXsMbL9Mq+gD3p2RLRte3l5OZfLjXfGef3cI8zjR3kQvapDSqsqvOoyCp5AsbhaALeui6cO5FhUHZtcO0Ec8zCacz732GRV9IWzM2+CgcnUyyjx8cLCQrFYlPYeORubHAtqDRMi9zQS8rxCQS0vL8P4lksJS+9U4d6ThbMm72BIEFwSJBqk/HHwzuEU24mRGiK5zNCwp/aSItkRzSQoiu0BAS3eWS+eX8mfISCPve3zG0g1pQqlXOs6sRagPIA0k0GG00koqKWlpXw+P2RHwwEJOEPtdbPv4EBhQkiOmCaTVPVSlkRTqEZj7Ds8ERNQYpAJ7T3Pi0CkXKFIDI0Li+/27cSHUWLGXVpamp2dHTyoM872RuOCWv86jN6QzAy5oFAorK2tpe4iOyAA3F15sKzP2WCFqSFVUhODlMk8vgAm93vIHUuPrxHdXYrZI9atCemEgF1uLuXXN0r3g2MmqAhL4K6srIA7LKGu1Ys5AnJ2ydTdgCyMJTESoZ3UTWFFzQdjzNNj/EKQ8AckotXVVbHwechHGBJip7iSNvvA3KUObxFixIBIEbc0Yx/Z86ISwrDTqY4eKObDpfoGENGm7hsWHtVZjsjHkg5jVKVSWVlZUTfQA0WI4+95IurZLTfEO4kfyD0M+UIdCSJaltXtdsW58WqP4s3wZsMvEPbe4uKimG4mofRRjOHC3Htn9SWLW/5BPwk14iAXsh69zaE6a6o2GWK1cfywCUDKOQUBu7yzUjjzurlHIODXj9j3fHV1tVartdvtwXIkcm9x7lt7KuTv0qVLYqmIKvSmad5xxx1iS7NET+WReNmm1E6WZa2srHzsYx8zTVPuIImInU7n/PnzcgCDLUdGI8Q1hmGcPHky0ZhHCgQk4BV94fWzl564/Tldn7XIjvhdufu1PHZ31LWc5H6tlsjCUNWFgphRxRfKZ6moK7bme9Pie3OsyIkz9BlxxDevadr6+vqVK1d8xkakJn99z5AXzHnsscc++tGPerQZIh4eHnY6nTiMIuXUAtmR1FGeZrvd7vr6+m//9m97WhaDqdVqQV3EWTdl2/bGxkahUPCdQcYHBIA3zr3r7w+/1rGbGuocKJZ8emLmnjLaTEB+rXli4mreKTmk7RXNEUwT3HNuxS51lvLrD8xfAgBfOkEko4ioUqmcOHHi1q1bQU6IkHLbtn3LahGxVqtVq9XBj3pr5qKgaiFB4/DCPEGqnZ0d3498n8IzOwQ1a1nW8vLy0tISTIa9JyHU1Kyx/JaFD31t5880NDgQxVQ5ajwA3CIO7jh0UqgBP+bmj1RKw/llkq228k4Y7CEnC3xk9Rc1NETtv+8VEYwScrO6utpqtQ4ODoJ8cRkGlHepJ9Yk2tpf0EZYa3JLdNFm/JNvEFGEIuJ3GtmgbdulUml9fT1+s0cJEXR6w9ylfzj8+m3zpoH5ZFMxOYKuKqhBTQLxWqUBD019gQNvpkICr0l2l5bACKzDm3dWHrhn5mEACkn9xRX0kydPRu6SKSMEohpQxqClNaU6KqrNJt+X7atb8sdxb1IjZuaac65p2pkzZwzDGHt8LwBIwHOs+LbFD3GyIYUZpQaePbV+6qfx53jZgmwnMQkCG5aZpLhBQamKU/VOwHOs8LalnwWAsPKU+IzK5XIbGxsJRqAE3zzhQVC4B4pMq+RRr4zfaSKoA4hz8cbGRrlcnjD3yQUERkD3zvzEA3OPdniDAeNOTCvxbCRllilGmvwo8jfxrIGS12f3Y6oWZXSr5J4XEoIhM3nrLUs/c7p8f4i917s4ZqNEVCqVzpw5I0Nnce7yVTWSXZ6zYcAdvFY5OSLE3MWFc76+vr64uAgT5j4F4aGFnyppczZYCBg3ORMEVUfFZycfstdAkFK3G0sJy2wBpByPSOnOG2tvWnx/741QxGWULEsXpIpvgw0SQ9Vd0tI7YlNKVZLhEHRaW1ubVGPPBRGiWM6dfsfSR7q8I39+GiapOxlQtV1cwkqz0xrqyTnZ7177aEErE3CfVTNuJD4LUJAq/ejGDenmxZkUVDodC+0Ezlqd189duq9y0eRNhr2AX1x/Y8KgBkcSeE2gkG8IIDCTt9+8+P6zM2+m0ICERDJGeTRVymGOCVIlxlSwtm0fOzoJEBBD9u7Vj1W0xa7dlnKgaqpj8eNxtzpKoGOzCIEgMJM3Vwt3PrL6YYgdkUmZa1BJdSykTbpwMSeC40snEMV+wEv67HtO/FPGdBqYqCe00tkNcofx49JJDS0O8ZwIyMEuarPvO/mrOVak2FHO9IUfqk81yTInY4lx6CQrM06dOnXy5MnjSCcBBowDP1d56O2Lj7W7DaYke7k7yjCBykq6PwKxXXYlZJGFFrZ4591r/2SteJbHcJ8k0jNK+FTnzp0Tp2JPpuR5gorhEGlcxti5c+eOqXZSwYAR8IcXP3Bh7r0NqyodKgk1qzNEbDkzkHtIpCzmSqydhgMD1rYbb1v+R/fNXSTgLAlN0jNKSFuxWDx37tz8/Lwo7p4cERThh0RJLcuyKpXKfffdNzs7e9zp5AAB4NKJXzpTuL9t1T2laFJY+fhIxRXyDA4mAVQ6DgeGrG03zs+99e2rvwBOpCfB7cP2D2AYxh133LG2tibXKQ3fZmqo4YeYRBKWnm3bq6ur586dE8tyXxV0EsF0KmiVnz/9b07m7+5YbRyo9SNFGrk7GOD79SEA0xgAMJ35/gEAalHLtNw2GnfSyGkCCpJIWfxiDLW21Tg78+YPrP9LkTFP3EIGowAAgBMnTtxzzz25XE6e7pFVy3Eg80vSzIt5o6h/zeVy586d29jYePWd9yMyVAW98v61jxehbHEzZNL1uCFq8keCE3UaJgBwy+YWH/wDALJJzal6vlDPkkJZLZjM9yH360y0E2im3ZrPrf7k+q8ZLBcn+zSIBOWk4RBFFefPn9/a2tra2jqCndNV0U9RYCG8JgBYXl4+deqUKAJ+dagmDxAYAV8pnPnQ6d/6/I3/3LU7GssR+k868l1P5ZCjUggYvumn7z54pakbTC1xE18c07B5aG7cv2SZNjIcbATceillBEEdU0aBS4aayZszxvLPn/m3ZX0ustooCCOZkhuNxubmpjjmQ9d1ddnf8I0LuRcBRmnayRL1mBA3lkql06dPz8zMyGaHH97EQojIy41nP3/jDy0ydc3gwGNOwfIqcbBHYS7PtN76+8HSU4bYaXU7za7Y6VYqK0meRFvAeJ6hj0zdPoaayVsz+tJjZz6xmD85uMNRfGTPKHJWBx4cHGxtbTWbTbG4Q8qreJFIfCUhPauYUgxeOFrFYnFlZWVxcVFsB/vq5pIEJ5uh9nLj2c9f/8MOb+b1Egc76Y6UCGDZnJzF9+jWZuKfjKHGkJRPsxEyDl7VmQUYaC27Ppdb+fCZTyzm11NrJ4GR6ChJAMGr7e3ter3usQM9a+mlA6OutFfXR3maTTQe0ZpgY6FQkFyC14Bq8oCDzUC71frxV2/996321QIrc7R78pP2axhib4gkSJyfigUGWps3T5fu/cn1X1vInRiSTjAiRgmQsgVFtVrd39+vVqsi4SOPsfDtPeSjRJCbjQlOzs7OLi8vi23K4bXHJQlxkETTOvw/1//gRvP5kjbH0dFU0kSbkC9GdbYoY+4iICI2rcN7Zh7+4OnfNFh+eDrBSBkloAquWAh8cHDQarXE+9IazGoYUoNJIuXz+YWFhdnZWXF0N7yGuSQhdh1pWYf/b/NPn6s+UdBKgEDCktMGVvIeJdRoI8tykaIHolCryztvXnz/O1Z/MccKPGEmN7DlowkWq0LMOa/VarVardFotNttEe9W95yIyTF5vWd5CABompbL5SqVyszMTKVSMQwDFKMx+8c7hhDONwF/Yud//93uFxBQR3esYjhTMN2Y+v8dblFTOBhoXd7RWe7tqx9+cPH9nDgipg5FeDDm9Euz2Ww0Go1Go9VqtdttUOLg0jIMwuCVuVyuVCqVSqVyuVwqldTNLaZ6yQ/EgRiw56vf/putP2tZhzmtxMnRCzLyACM+VXRQC6UMBcYCQ9a2m3PGyk+t//pG+X4ONgLLik4wLkYNyreot2i326ZpNhoN27YtyzJNU9VsHo4JRcQYK5VK+Xy+UChomubZsGVKpEgIt+qwu/vlV/7kx/WnilpF5K/6V2CoERjz2yW3k0ZuFSQjuCPTSwDAkHGy23bzgflL7zzxSxV9IRPHyYMx6yjZ+6DcexYF+jLKd4ulqXWXFD0LkPiTu3/xndt/afJ2npUH14C4DEK5YRi4NwlTv3VPCYYablfLJUapkZxBIQB0eLOgVd65+kuvn3+nhqNK6E9W0Y06mERb+U35MyRE8QMCbrevfWP7M1fqzxgsp4HOg+RdXbokzyC0HfuQBtQaKe+PJtjgCwQUR1AD4PnZt7x1+WeX86eydZy8PU4Uo6YYK4iIEJlN9rMHX//Wzp/Xu/s5rSiWWkXcigDMMd48IXiWTdFdciADxsE2eWveOPGO1Y/cO/cTBAS9eohRTcFTRk3hAgEHQARs2off2f2rp/e/YnEzxwqDx2NOMhhoNlgdu1XSZ962/HOvn39nUasQcKCIcNfwmDJqCh/IbfK321e/d/tLL9a+b/JmjhUQNSBKscbhqIAiJdDhzSKr3Dd38cHFn1zIn3RU00hDls4IpoyawhfSswKAzdaVp/a+9OPa0x3e0DGvoQ4INDEqC4W7RGCTaVG3wMouLhHByLwmn8FMGTVFCKQRCAC7nRs/Onzy7/e/VrP2GTCD5RkyGqvKQkAEZlPXIpMAFnMn7597+71zb1vIrYF7Uji6IU0ZNUUk1OBYw6q+VH/q+eq3t1pX23ZDZwZDTUONCHwC7qMBA0YInGxOVpebs8bSUv7UGxfec2f5gZxWhDFxSWDKqCniQlhQiAwAONk7nes/rn3/hcO/q1sHbbvOQNOZwUCTRWQZ6i5p1xFwDtziJgAVtZm53OrZyoXXzb9j1lgW/CESO3ONLZsyZdQUySC8fCAQ1LKpu9N++WbrxRuNZ2+1XurYzS6ZAKAzQwdjQLK9whawtg8911hk2mQhoM6Msja3Vjx7qnTv6dL55cIZh0gESNJAHSOmjJoiJYSNpwTQqMNbW60rN5ovbLWuVM2dg+4WJ8u5GABAQ90j8YjME+HgwMVpPTKtpaOxnD81k1teK5w9VTq/UtjIsaIyjLEZeL6YMmqKYUHAiVynaHKyOrzVtA4Pu7t77Vfq9sFm6yUN9bq1b/K2Kv1dbhospzaVZ+WyPk/ATxbvzrPSWvFsSZ+dMRYNVlBv5MQRE2/9dQSYMmqKzCAMQiJCQPQ7prZp1Tq8qRADRZpLmnmCUSV9xrdxUdQLk6SRBjFl1BQjAfkVBMZTKb4hjfE7SDExZdQUR4lBafNZgn9cyOOL/w+z4p1vcJ9tzQAAAABJRU5ErkJggg==", "path": "image.png" }
Select the chemical formula for this molecule.
[ "HF", "HeF", "HF2O", "HF2" ]
0
Every substance around you is made up of atoms. Atoms can link together to form molecules. The links between atoms in a molecule are called chemical bonds. Different molecules are made up of different chemical elements, or types of atoms, bonded together. Scientists use both ball-and-stick models and chemical formulas to represent molecules. A ball-and-stick model of a molecule is shown below. The balls represent atoms. The sticks represent the chemical bonds between the atoms. Notice how each ball is labeled with a symbol made of one or more letters. The symbol is an abbreviation for a chemical element. The ball represents one atom of that element. Every chemical element is represented by its own symbol. For some elements, that symbol is one capital letter. For other elements, it is one capital letter followed by one lowercase letter. For example, the symbol for the element boron is B and the symbol for the element chlorine is Cl. The molecule shown above has one boron atom and three chlorine atoms. A chemical bond links each chlorine atom to the boron atom. The chemical formula for a molecule contains the symbol for each chemical element in the molecule. Many chemical formulas use subscripts. A subscript is text that is smaller and placed lower than the normal line of text. In chemical formulas, the subscripts are numbers. The subscript is always written after the symbol for an element. The subscript tells you how many atoms that symbol represents. If the symbol represents just one atom, then no subscript is included. The symbols in the chemical formula for a molecule match the symbols in the ball-and-stick model for that molecule. The ball-and-stick model shown before and the chemical formula shown above represent the same substance.
H is the symbol for hydrogen. F is the symbol for fluorine. This ball-and-stick model shows a molecule with one hydrogen atom and one fluorine atom. The chemical formula will contain the symbols H and F. There is one hydrogen atom, so H will not have a subscript. There is one fluorine atom, so F will not have a subscript. The correct formula is HF. The diagram below shows how each part of the chemical formula matches with each part of the model above.
HF
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABlzUlEQVR4nO29eZxdVZU2/Kx97lBzVVKpzAMVkhASEhIgggQMoBgIIQFBxUYQBQdo2+FtBkUFRZQOStuIryI2vGCL04cRlRkagUSUwQAJBEiAhMxzJTWkqu49Z6/vjz2cfe6tJFWpW7fqhvP8+BU3dzjTfs5azxr2PsTMKEGs2Ny0fPOuPR2ZPR3ZIuxuaFVZXVlq1piGsYMqi7C7GKWCmIc9ApWcudna2vGH5WuKM7r5GF1b+dGjDytLeP2y9xgDBzEPDwIlZm62tnbcu+ytTl821A0qqxk8pKayXKDcQ9pDWiAlkCIkBZICCYIAEgRBIOi/BBDpTanTlgzJrP8SAskBw2f2JQegrOSs5CzzzrbOTU3N67Y1BZLHN9R+fNq4/rsGMfofMQ8PDqK/D6BneGHd9k5fThg1smzomIpKoyfJDBoDBCIwgxlqQIn0f2qclXXVX7emNvyIWP3b0gEAo6Y8NX54/fTDx3iC3tm+5/UdLX1/rjEGLmIeHhxKzNys290KoDlZAyCUZQwzpIAaYDXY6kPW/4EB1sNnGOC4GP0Rk/q3K/rMt6rK08OG1AFYvm1PX51hjFJAzMODQ4mZm3TCA0As4cjRIngVmO8HgXTeiPEeRczDg0OJmZuxg6oABE1b0B9eJeP7O3Y3AxhTVd5npxijBBDz8OBQYubmfWOGpD2xo7l5x7pVmUyHfrfvvUo2kGu27Hr+9bVBwHUV6dlj6/v+XGMMXMQ8PDiUWGUKwJ6OzH3L125r7TjwV/sAo2orPnZ0Y8kVIGMUHDEPDwIlpm4A1JalJjXU9suuh1SVX3zshJIb4xh9gZiHB4FEfx/AwWPSyGGVg4cVp99h9Zam1zdsq0yn+u90YwxQxDzsPkpP3ViQ+6rPY+YAQEVZso/PKUbpIeZh91HC5iZEsSoCzsjHiJGHmIcHQgmbm+L3O5TuMMfoO8Q87D5K2dzYV7FXidF/iHnYfRwS5qZYXiVGjHzEPOw+StjchCiaVyldtxKjCIh5eCCUsLkpvlehEpaxMfoKMQ+7jxI2N+E1L5ZXiRGjC8Q87DZK0twMqyoHsLutXf87rgjE6A/EPOwpStLcqPZtPwj0v+OYOUZ/IOZhT1GS5iYXfe9V2juzMPSKEaNrxDw8EA4Jc9P3XqU9kwVQX1liy4vEKCpiHh4Ih4S5iWPmGAMBMQ8PhBI2N+FFL1bMLEo3aI7RZ4h52H2UsLkJUSyv4r6KESMXMQ8PhBI2N8X3KlSyXiVG3yHmYfdRwuYmRPFi5lL1KjGKgZiHB8IhYW6K5lVKOEkXo+8R8/BAKGFzE9r9uCIQo/8Q87D7KGFzE6J4XiVGjH0j5uGBcEiYm2J5ldItQMYoBmIeHgglbG6KXxEoYbcSo88Q87D7KGFzE6Lvvcqu1nYAY+oqinNCMUoSMQ8PhJI0N7XlSQAtnRn972J5lZK8WDH6DDEPe4qSPPLashSA5o6s/nfRKgIlGzPH6AvEPOwpStLc5CKuCMQYCIh5eCAcEuameBWBvj+XGKWLmIcHwiFhbmKvEmMgIObhgXBImJtieZUYMfaHmIcHwiFhborW7xAjxn4Q8/BAOCTMTexVYgwExDw8EA4JcxN7lRgDATEPD4TSNjdk/xd7lRj9h5iH3URpmxtdEexjr7KnIwOgujxVjFOKUYKIedhNlLa5KY5X8bMBgJRXqg/3idHXiHnYTZS4uSmKVzkEYuYYfYqYh91EiZsb+784Zo7Rf4h52E0cEuYm9iox+hUxD7uJUjU3NWVJAIF6GnxRvErpj3WMwiPmYY9QquamriwFoL2jAyiWVynpcY7RN4h52COUqrlR0Ecfx8wx+hUxD7uJ0jY3KGJFoJSdSow+RszD7qG0zU1cEYgxEBDzsJsobXNTnG7O0nYoMfoeMQ+7idI2NxqxV4kxEBDz8EA4JMxN7FViDATEPDwQStvcxDFzjIGAmIfdxCFhbmKvEqNfEfOwmyhtc6NRFK9S+q4lRh8j5uGBUNrmJvYqMQYCYh52E6VtbtzRBeKYOUY/IeZh91Da5oac0QVirxKjfxDzsJsobXMTe5UYAwIxD7uH0jY3sVeJMRAQ87CbKHFzE3uVGAMAMQ+7idI2NxrF8SqlP9gx+hYxDw+E0jY3ZP9XBK9S+lI2Rh8h5mE3UdrmJrT3fe9Vdu/tfGL1JvWsnxgxIoh52D0k+vsADgYrNjdtbW1Hl15FGK9iImoiEEInoUjgeJVw2I1XUb7JUa0MAH4gX1i/44X1O0bXVh4/rmHSkJoinGmMgYyYhz1FKZmbDj94cf2O59dv7/SlemfL3r0jU57HCSGE0PoVzCAR8SpwHY8ZVgaIiC0/lC9iBpAU8H3OBLzHZ0HY7Qe1NVWVVZUtLa1trXs37GnbsLytMp04ZmT9tBGDastK+KmGMQ4CXfJwRN/xUPKeLAviPaXPQ2JXrQ1U7OnILFmzddX2PWqAqyvKKmuqB9dVZbN+WSoJZk8QGEmPyoUo80RKUFpQUkCASDAzEakBJ9LBNEmAmTsld0oOmBnwJbcHnJESIMms/jJBSgZRIBmEjB80N7ft3LU78AN1bNNGDJo1pmFYVVl/XqAYRcEBeSgEESPlUVm3eciAVDwMOIDLQwZgeQhCUPo8HOjmRg3wis1N6p9VFWX19YMrK9KCiAgCEASCfk2hZCXovJuGm3EL9SmbMNv8S/1lZoZWwlK/YMn6tWSWQFtbx+49zS0tbWpLs8YMOalxWFmihB+oGmM/OGge2mSO/kuhwqGQgADCLA07KeRDjIcD2ty8sH7HkjVblCepq6mqb6grS6YI7BERIIgI2p/o10QMFkRgOK+ZiKxnIRsVg/XpqyCbtKJh/Vqq10wkJSsXZF8HzAwKWGb8oKmppWnXbgBJT8ydNGraiEH9fNViFBp5PBxUlkyGPBREzMK8hnlNhnsEh4HmL4xHVHxTn0rDVatotK2Jam1Wr0Mecsb3S4KHA9TcbG3teGLVxnW72wAMrqka3DAonUwIkCAIgoB1KaTdiFkvVtcZiay0ieoaN/NGjkcBQ8scdgQOAMn2nySVb2FlfSBZjTc6s9nNm7e3t3cCGF5TMW/y6AGuaWN0ExEe1lYNGjIonUh4goycgfF8ioEEo2uEo68jRSh366SL3rkax1gZDr0gJANa47A0NkgqHgKSOWBkBjwPB6K5Wbpm65I1WwGkU4lhQxuqq8qVJxHKk+gxNv6ECPo1ExGxiqRCXQMofwJyxKse6PCvq2vY6BpjZaxvURoHFLBkkJQsCYFkBvlS7mlu27Z1hyLHSY3DZo0ZMmA1bYzuII+HZQR4gojhdY+HBEfRRHloGYhe8ZAZioFa6QxwHg4sc7O1teOBleu2tXYAqB9cU18/KOV5guAZLSMIIupPbJwsXF1DQLSnKFSw7Bgeo2Pt14y0CQWOdN6xukb7Fla+hQOjdLKB3L5j157dLQCq08mPHt040NxLjO6gKx4KQeQRQomdz0PAyd2EzHTL5JTDwBweOnonykOSYDbquysesgQC1jInK+X27QORhwPI3Czf3PTg6+sBlKUSw4YNraxIJ5QPESSMJ+kyWlav4XiY3HxNaGvUgKpP9eswcpYmcnYVrBstR18brwJVTbB/2zoyWzZvy2SyCU8snDJ2UkMpdUbE6JKHQukaw0DPzRhGX8NhI7PJJ4LYUTf5DDRmh1XHDUHncYyikSZ3s79MolSKG/AlS2DvwOPhQDE3VrgOq6+tHVyX8oRHJAg2hlLRskAXXkVEq1FQXiXSOaVhX7vRsn0HCPUt6z/EUU8S8So2cpbKt7DSOAEjYN68ebuqF8w7cszRAzJvFyMf++OhK20AojCDE+UhgMjsg5zcjaNqNCK5G/MWR95ho68jPJSIZBKNxhm4PBwQ5uaB19erEuPYkUOrayqFVTShrjFxchg5OzEzR2pSpokzrAJYpaP8hq1Jhe87alZdEGV3orUqJ2aWodIJTI1AAoG0f8mXcvvO3bt27gZw5PC6c6aM7c9LHKMbiPKwSoD3x8P83I1Th9o/D6M2J8LGLnno1Kq6yN3sh4cBEEgeODzsZ3PT4QdPrN60YnNTyhPDhzdUV1d4KkLWcbLxKnqktScx7kX7EOs9XN8CbVk03PpUCEfLmDesfTGRs3o/ms2x9anAiZ+DaPys3EvTntatW7YDOGxw9blHjR04SbsYLvbJQ5AnuuahZzpucjKGIQ9N1YKMzKZ8YeMgzBxbHkJbHMtDaT5l030TlBQP+9PcdPjBvcve3tbakRRi9NiRlWUpQUgQCbAnhPrr1qQEWBAJ4zGU0tlXHUqEzQ3Ww6h38nSNJoCKlrvWNVCjbjqMrYex0bKtEUhQIKUE+cyS4Uu5t9PfsG6jZB5Ukb7kuAmxxRlo6IqHnCBhYnl26lBK6bBHwq1Dufkay0Obu4E2NWwi/VwGGtZFbkYZapxIrUqyVO8zIjx06lOGh4qBLCWTz9zekV3f3zzsN3Njx7g8lRg+cnhlWdIjUi7FUTdhFUAAnqo3RXP+SuNoixPtbnCVDnL1jvIe7mujXffRAcF6jCNKJzDxs3T8jPEqyrFwwOjM+hs2bMlksrXl6c/Mii3OAEIeD1MewfAwzNRYdaOjKmKrrCna7YX8XhutcWA+VO+HIifSd2r1daTNPdQ7VuzYaimUZXGqVIHTFxY4bOzMZjds2NqPPOwfc2PHuKY8PXz08HTCE4DK/yd0VpjCyNl4FYQdw3Z0bY8DEPUtOp4KY+awIqCOwS2Ly5zIuStdo/yJzRzDmUsVjZnJzsCSzt9MINev25TJZBuqyy+bNbH41zxGPvbPQ6VoIjwkeBFlncNDza48rZ2fuwHgFsFtrcphIPJ5aH2e4/lKiof9Y27+sHztqh3NteXpYaOHpzzPIyQEeU5OTnkVL6xJOZn/rvoaKPQhRryq04t6GKtxcucxuBNV0EVlyvUnroeJVKlkxKvYXJ0vdQidCeSat9dJ5sMbaj82bVzxL3uMHHTBQ6VrNA91otDrqufLKuvu8lBnc2DeyOFhRE2jOzx03tlPD47mIcNny8Ngzdvr+4WH/bC81uOrN63a0ZwSomFkQyqhbU2kGkXsEZT18bSHieaJdR7HqFwzf8q8hgckiBLKihElBam9JAhJITxCUqhPhWe+oz71iKyNszUIo7a0r8thngCrX3nCKnB9JJ7xk2ovSY9Gjx0liN7evueptduLf+VjuHB4ODRteBjaGkFCRffOyBI4Wvkml4GKmZqHBGHYmzDe1DBNJAiKk0khIiyFZmlC8VA5XVP/CvtCVEeIIHskHkHtN8dW2nNxzy7peWP6iYfFVje2h6px7MjKirS6zz3H1qirbEY3t6PBvtO1xlHTqew7KsJyujrzWx1Mrob0Qmuc20Ns/AlzXuRsGz3dbghbC7B6x9E47DOaW/Zu2rQVwOlHjD5u1OBiXvwYFlEelrm6xtznlDA5xBweRrKHmnsmnjLMzP8OzHf21XjDoZaJ8jAvX8OsZjaEuZucjjAOu29CNroax2fuFx4WVd1sbe14YvVGAGNGDq2sKFO2xlUBwlpoEmEtIOpJrMbxohrHMsaqCQ+UJBJG12gPQ8bPWE8ihND+hBKOH0hatbJPXZNXGbVHIiina0N7NqLqqvKhwxsA/O/qjRtb2ot5/WMo5PEQCWEZpbQA6XccBjp2J9Q4YZ7R8MQyx+Gh1dpCONxz2SgMG5OWn3YLFPJQq2knw+D2/kSPVlfWIneZs82aqvJhRedh8dRNhx/89NnXO33ZUFs9dMQQde+FkVROTcroFEG5miWcBQfdfWOq47rXMz+KRrTvhpzezS57iK2i0QuLmKg4pyJgNI4zuyovcg5MHscPfQv7kjdt3t7S0uZ59PnjjyiJddgOGfSMh2bVAZGnWaKvQ+uzHx5qfe3qGgemKnoAHloV49bCXR1kvqzVzX55iE2btxWTh8VTN/cue7vTl9XlqYYRQwSQIBLEiUi+RlvfMDesolOEr3NsuafyL05UrD0G2f4I7bWsHrEewMyCCSNk5TfCvLXVO9rzUCJU1HbNHSeKVoxUnopIR84mj5MQJIgNs8WIEQ0VleVBwL9d/m7RhiAGHB4OHdEggISrRq1q1v1fuSNLjpq2rxM5ekQzJyfr7NTU7TtwNYver2WmZzI4XshwzXY3XynC42TjocNowGo0q92suhGAJ1BkHhbJ3Lywfse21o7KdGLE6BGeuQoJil53ilgTIaDiF6LIHa6tUtTW6DtcWZBQeeZqXTsSEf1pChBu5s/anYj6tSw0NdFIPE9ubM8Jp19DWxzntUc0fESDINrV2v7Slt3FGYUYLg8jd2M4Uq41cfR1JJNoOGOZbCIjez8r2yHMXa1sTXQ74Spxju2A/r7lmCCX4Z7LTMr5LZntu/lsjp5XyElrGYvJw2KYmw4/WLJmC4ARw4cmPRG199r/O9GpGQ92o9NQ7zi2hgQ4EdoF1/Pk1LDc7I9bz4JROjl5mTBfY71KTobf8Xi5OSb3faei4fouCELK84YMHQLgsTfWd5gVZ2P0HfJ4aO89Z3ScWcFO3cf5azRO6I2IBMhWOSMMzKthRfVRuLJKzopO0UwlhJtVBIXWh6zmymNgDpMp946zeqqYPCyGuXli1aZOXzbUVKbK0wnnPPPOP/Qn9rUnYBWjJ+A56tdY/XwvEbnWbjZXqFqVE29H6w5dbMFGXjkaxyPHC4GF6DKPyLounqPVjdIZVFtVVp6Wku9/Y1MRBuI9jn3xUIQWhxNRHlL0tZ7NoO75aF1C5HEmjHS6sAL5bOyaga5fFF3y0ERnrj6ynSKWhwnHqop8HtYViYd9bm7WNbWt2NKUEqK2YXBO9GSte75VJqs12Fwdfa1tnkX9pRwto6+4ydeQ2RoA4fyl6GuXB8pxUa7eiUbdRu+E4+ccZ36+yeaJvLztjBwxFMCabU1v7Wzt67F4L8PloWv3XbXrhcpU50Ei7CK9spLnRGHmbjf3ea7FCS0FHKYhj5M537FZxTCDGWpz0+eleQiTzXEYyy6rQ+3jnK8TVREJYERReNjn5ubx1RsB1NfXliWT0XxYpBduX/4kvFKOdlV2nZx42I2YSCX+mfVfIgITwekrj7wm22MOwBQN3Pjc/IX1BmGUHrGVkZjZ9Ug5Kxi476SSiUGD6wA89OaGvh6L9zIcHibyfJ6btc29SyOcdHrEEo7NcnmisodWuQBmRrFl2r7ZKOxrtvwBhRbNZGfI6Sm1Gk3si4faouXkp93I0SOkEl4ReNi35kZl5ipSiUH1g0RklZCIZukyfgGbKxuxTUJQ+L7REZyzBbiehJlAMOs2mq7z3PetqkIXupfDsQzz/BBuNEdqX5HcDSG0OO4x2yyA8opDhtR5Ca+tI/PYW5v7dDjes3B4WGeVb07GzShZJkQ1RbjuRJi19YzKDnlilHUXPGS7EpNhHfbxmrWG6oqHXWguj+CprCKRF1X67rHlZA9z9ZfuORJF4GEfmhubmRs5YqgwswGcOy1UEKT9gJ5vma9rnNkMeT6HzLjC9Ri5f4Xz15lBbt7J+RvVO1GP52iWaB7KMEx/h8LjjNhWy3UTY8MjGjF8KICXNuwo0Wc/D2REeRjVNU7/W77PCzmpog+3qt21Hnd5uF82ugxE19+JaB8AkfslNz/ohRYw7HIWBJWLgOuPnW5Gcs5FbaevediH5kZl5obXVaXK0o6KC9cbNrYj6hOEVhl5uibXNru2JoyHtX4xo2g7x7uyO9bWhN8JO82d2b0wj5qJegalcUwFNKqwjK6B7gQzufBwjNnNGlRUlFVVVUrJf1u3s+9G5L2JCA+FYzsU95z5cRTmWViNoGe0iQDZXpUueGizdSEPXf0SMpC6wUBtg1z13VUEkOOPo9lM0wcrXFsTVl3cuV1uhFVZ2bc87Ctz0+EHq3bsAVA3ZLAX2g57nk5NJ7wnoeJbQUTs5vA4mt+J3NUqyjXRkDtmsCOtM2fs8iDKCfVa2Rqrb0MLBcu/aFRv7aY9zvz5NaHdMT4ERE4W2URndXU1AF7dvKOPRuS9iZCH9YPcDJqb9VPrKNko2+UYdJzCtmpOkRxweCdH9AjcaMis9waHaRTaEZefjtJB1BLl53RCjkV8uT1OjnBV7wv5d5/paDMxZp/ysK/MzartzZ2+bKgu9xIe5XTECYrchxy5dtoDCKfPMndd9DBagetJkONJAPP0QhCw779kVlTL+W2+h3G4GMn2C4GwVoWcbLc9xy5YEupbooqKdCqVDAL+x4ZdfTQo70GEPEwm8/pTNKMAd3SieVaoGErYUfbytIbDQ50ZNFYDTmwevo4wEFE25n8f0WxjhIeuJ3NiPdVVqDpI7EygaObB1sspYkO5r3nYV+bmhfXbAZRXV5NT/SUnb6ptRzRTY+2IcM5fOOMajjGQPypQiibPewBm0tQ+/nahehDxMG4UbcY4p3vQHC3lq98wio6cu9MNoK5A3aA6AM+t29ZHg/IehMND55ktzujk8xBOTBTGXNGaBnJ5SAfgIR+AgXC+k8fD3IjM5WEX52K8YBc8xD546K640pc87BNzs7W1Q638WlVdmadrnPWGTbTsWgdhO3GiEbJVlbm6JjIeMHYB1jqAnbp4pEYefR36HITbcTnUlcZxLWAkZgw9ldv7wxSOMYvoOQqgrrZKEO3tyKxvjmeKFwCWh5XVlY59N12jhocmBnf7YnJ6f3N8Xr6+7lJZRxl1QDZS3utcb6p4GDlaIrg8zDtm2Gy3+ZX+fmhxRHhG6rd9x8M+MTcvrNsOoGFwddT6RiOIXM0SyfDnjHHk+8gZiTBH43gSMAAix6nYB0+Z1xR5rb5vZ+t24WG60jgHOmatayj8Jkd572TviAioqq0C8NQ7W/tiXN5rsDzMyRU6EZO9V3XGkJxYOPLUF5HL0q51TVRZQ79WwuVg2BhatPysYq7GAUWP1tFxkW86d5z5C/tNrbX7iIeFNzcdfrBiSxOAytqa3KyqPme4usZeCyKnhziqeNFlviYaIXOYi4l4ErvaOSFcljH3tfY5rodxtrZfjWN7dsJoMdrZ6fofcs5FRM9R3QODB9UC2LCrOZ5F1UtEeRj1W8Z2INQIRBFO5n4fHMZQ2L+uscyBZhQz0wEZ6L7OUdxw7RryNQ7MubiZUPcOImMfHR2nvg99V1Lu+fYRDwtvbtSDwUbUVSWTiYgnQXQUOTx/a2tIeyEYKwtTFSLsK1+Tl6nJ8ySA9ST7+ut+02xBv7VfjQPXGjJ01YnMY7A4ymYTOeey2ckip5LJiopyAH/fEFfEe4U8HuZk6/fLQxgekq3ywPJQ1UP3pWssjVzNggMy0P2bo3GwHx4SmNU9bHp53BjCPAYrykOxPx5yn/Kw8OZm+eZdAKprqt15Q4JAxDZ3E8ZBUd8iyNaVra3pqqOha38SegbXY3Qf+/Ew+9I4ef01YcysyBrVNTorZPJ25OSbYTwS19TWAHhz257CjMd7FYqHNTU2ojd1KGaHUbnZQ81DN4eoNUWYbcU+dY2jjg2LDu7gQwYaLxvNKloeRiru2ivr2radq+nwMJpJdLRbOLfTKAOuqSs8Dwtvbra1dgDwysvcSAphjk1HH4hGy46CjfzK3snRTk241xqOPsz3JN3H/jxMV74FdufGV9hzJIq8Y3UNIueVY3H0++UVaQBNrXG2uFdQPBTlZdaah6NjeqlsNsT6djJ3oBnBkJm5mRS7hS4zhoD55kHCMtnROOb9nNkPlGN33HiQw75ZZVutVQXZmVzOHRpqnL7gYYHNzbqmNgB1FWlyLC6FqjVUKCIcs/AdV93ByXTY70RGmsgmZsjJ0RQE3dE4ZDWOed89/jyOAjBzZwB0kQXXnYRJz0ulkgBW7YjniB8kIjzMy5JajxVqHADm7u2iOhHlIXNO1nafGcPeg9nxgjl5HMBmLbvBQ3cV3RzF7XzTyXgkReF5WGBz8+7uVgDVleXuOFG0v5ZCtWL8fNgF58QmgIm8jC4193lOnOy87LGi2Re6o3GgRxFw8v85XYtCax+9NedqhN+haC2TwGUVZQBW724r0Nm85+Dw0F7tHB7qK281jptn3Q8Pnbs9wsMuM4a9h2V1F/lEpx+H83mYlxlEeEb5d2V4Ndw8TsF5mCjUhhTWNbUCSJSVA0wkQvsCwFpZYTWOep3XgxvppLR3KcHJz3HYDw73yYRSSgBs4B6b/dV+Iur8j8g82xDmCYdEJJkJFD7FmUhKqdapluaZG77kAMgGUhIFUpLwJEDC0/5QsiAEDCKQVBlKpX0kEZWly5rRsr6pBRhWwNF578DwsAyRWF7fvcoHkACiGifCQxXjw9yfDBKaA4qfbDIDIa+0XwSR5qFlo3tsveSh+3xx90n26ieSwYRAqjXSOXB4yER+FzyEIAqcmnoQzpYoPA8LbG62trYD6Mx2cEs2IShpnuklmBOCSEoi1vPliWxWWKip9IAAewAx2wyOJ4yHCWd+ExEIxCyJCCaksmOgEHk6anSMc0aanZ939akxltrogKFH2i6dbx/AwOGTwvXy9z67T4m3T//Rf32GL6XP8AMJzwtAPiMrOWAA2NMWp28OEoqHHZlOcNBJ7nNXpEcQUgqyT6An83xeCCI921ZNXwCTmaPkCYFcHkIzTbK2ZAfLQ/sdS7wuWaosmjF5cJ4uDcVAAOw8sR4gn6V5DAN882RXDp8Uot/xmdUTGrKBZM+TIF89rUECBeVhIc3N1taOTl+mBNra2jJESSE84qSgBFHS8zxw0tPPvpEESURAQggJCEESrKZ5QA28ELmKBsIqHYCYpVawzpC4GkcIEX0ieFgL69LbuK9d0wOw2q/UYwvLMLMVJU5ZeQZBkAwBkrqfiIlISklEkG6OQAoiYkmGuL7v+6BsIH0gGzAIUvKGlvbR1eUFHKP3AiwP9+5ty5pnqKrnVSY94QGWh+pvEOVh0vCQDsxDsNwfD13L4r6DPNa5v1VsyeOh/m0+DyXrHzLAimmah2x5qM9CSiEoCGTIQ6l4GK5FF7g8lAXmYSFzN0rBVnhE+gJKp3rNQti40ezbjJmtjkMnMmxcarIzttANkxsmYfMmFnb8cmwNnNHNeT8Hrldxv6YzdkQEYmYSYZSu9I1hJJy4WntCp/ZvzodZmIwj6d2oOmWYd/Q8D8CbO1p6OAgx8nno9F7sh4cU4aESNTbD2jUP4fLQZUuu97IfdYeHOdonykMOeShtXkJ/uB8eOtE6h2GltYZaqFEuD2F4uL0wPCykudna0g7AS3pqOAQJU/PWtX11iqQDZnuepqoNm+Wxq37obDybzBxMdl2yRF4dKt+r2I/yvUqmE5s3ytVvBKvfCHZul+6vcpQtbLaYWUVSLNlSTg2VGWnY1+TwNdy7bi8itusHqmEI7bLOdiWSHoB3d8XFqR7D4SFbHup8sPJDgOEhQh7qHI0eFwV7x0L3czEQjhQAVjzUcYz7KwCwOsV+tB+V7WLfPCRm/exoEsQyUo4lrbKFU0vVHKMotx2VrbvhyORucmrqmodNheFhIYMptQKYVBaEwCxJCJWTY2bhWRWqYD0J6TDYzRBDR6o2X8O2zgeo92023iJnLPO9ivq76vXg1Ve0iXGQrW8Qw0fi2Pclk6l9exVmlpK0etIEhI6fmWzeWkrlBY2y1dk4k0xUmln3QQhCIJ1amJREpBY66IynMvQcIQ/15WcSWmMys1BZGJeHQvPQiZuMFzHfJJ0J1vEUd7F6SQjLvX2p7Bz9khNt2Xe6VjdamzBLdY/ovavHbhKpnCZY6pOHTTPZKociIqvjF5Kl4y+NBgT5LIlIFJSHhTQ3WjUw0gAAQcJoMwihYxBbsTJXSlhhp16rDZEQdixtrQrWFxHyxwndyN1s2iCffiLT0ty1V9m5Xe7cjnVrMieclBjbmGuwmE2/shA6YrebIYJkIUQgpapZKOupTJFQlSlX5QLKq0hpVbfiitbzgdReVBbrkcqHEkIeEpCjHIVjU4QJMiSTp6uouTw0d2DIQ8VqlT8RXUdG+So75x3sN3eTY4+64KEqvgtyeUggpjB3o+8vQ60wd0MUSDa2U78jHcVnjsd8EwSoxHMBUNhUcTtMH3QkgtCjK5hBIqzbeYKYuWmrSAg0baG6ei5L06DBKCvTUYlVN9CdB4KR41UibmX/XuXNlf7TT2QPeBYtzfz4Q9lx48UHTkuk0uH7jleRREJ5FS1t2KgSQJpIEEarK2ZLyeZttTUhVZ5Y0cRUJa26gZAAOoNY3fQYUR66dzgsDyGITeFaGE5a+6LTIY6uEeovbPdwt3i4f5W9n3hqX+pG/zNPZZuUg9k+iCHzeSiE8KUR0jrB3C0eZgrEw0Kam0ygc70AABaka4cMo1aEUrMEoHmb2PQG7dlKft4azENHcOMROHySjlydsWcdightj7vvVbppayzefUc+0Zmdd07SvhN6Fa1XyXVOUkoVSxNI2iQT4HgVobowzD0grdY12QEQgSULQYHkhCcAdHb24JhjKBgeaoVocsMAtLcjYfpo1PciEZbSLwo5usbpJ1YaSoiDU9nodu6ma3UDw0MpEX5EpNSNUt/mOF0eciAFaU3t2GIBlvY7UHV9o9ZVB0CheFj4OVNETgZOpyvcrjwKOuntf3grHhc713dhawBs24znnuL/fUA27WDjYWBKUsYjOXG1xb4qAju3yx7ZGoXNG/kfS3znvHShQ41QxKLY/LET95lLoXI3wl4N85FmYSRH4Hgnq4MKpWPfa7B5wNBPmEywzaQCOn9hI1zSVGPDYcuxsJtcZRJDNbRvHnazQpqTS7af7lPduKqN9dEBrOMGqercYfraMNdYW0NQNjUcmPyOW9UytlUfW0F4WDBzo9bF8HTCAjoDpx1MeL/tbaKVTya2vUP72xYAYOsmPPEgr18jVRZWlyOh9Y4dFfcnrldxvcdjDx6kbX5tudy80ZyPrghodQM4kRFstBjJ/NuY2WiZSLFUXRPFEuNXTWXB+WpnEJubHiDkoULo54xXcO4oY4+kjv+13iRDJNdDsImhdE5ECQy5Xx7mR0w9zd3kb5xNGUxvQZtHp0IqBDtWKbwOCG2r2ZfJ9dgtG+/uajr1aUF4WDBzs62lA0BlwrYphNfC3m9+J73xpLe3qbvbzHTi6cd4y0Z9PwOmM6cnXmXV60Fry8FfqZdf1FFrF16F8r1KtF5GpqJBglk6gx/6GVM0YOtLlU0Ds/AIwNqmeOZUD2B5SF3zUFc8Ea02MLOucitTZOrdbnXbtOZYHvZYZcOxMvkZn5zvdE/d6IkYyhRqa5hXfdfbBOfykEFCaGtrrRXM/C+WarsF5GGBJzEA0Lk0XV3SM01IeMy8+q/JIHNgXZODpx8LzjrPq621VxkgdD938+rLftfb7R42b+SWZq6uycvwGR2rAyYpVT6YiHSXpz0S3RkoEJjcDYEDSSRM34RVQNARGYc+JyML4FXegzBGm4XpxrA8dH2VHlMhIrkMnR3Bhnd5904mUCYj02lKpjCuUVTXmNzNPmxHn+duyLEIZCMnJY6lrpCSzYUDbHkonUyN3ZrK9XCoDACdw3JsU0F4WHhzE/EqKucvBLPcsTq5d3ePbQ2ATCde/Ls8ba5HYaOf6bvpRkVg547eXqZ1a3jq0VZ6h+OtjkR7O5O7URrH/NT5vqlMsQ4Hw34HhL/SW1BbU5vwY2tzUMjjoapGqXqFlgOAqpAKVnel+hTc1kxvvoKN73K2U22M7d8Xnw2qa+jo42jCEQJRplnYdwred2P/SeF3dJqKWYf6qtIk1TaVYSGbh7JZ5FB/qf4vU9w3NX7z19qmgvCw8Klik4ALY2Ywy6y3ZeXB72v9Gt6yydzgTrR8wNzNpg0yd1s9RyYDsy+buzGJa5tTYlbcUhURAzt+Mszqwag/k7sxVX83cxnmbryDMdEx8nkYdtDo3A10M19YCSZi5vWr6ck/Y+0qGFuTi5ZmXvqk/PP/F7Q0c1/kbhC1Yl3nbmzcrXyYm7shYVgKRFQ2TOdtmHRk6dRYdSTF1ke6uZuC8LDA5samp0hl0UzqrXUbH0QY5WL9GjNrIaqE3e90mbvpPTZvlMjzKrBexcTMUkrzKRAWBbrK3ej+I6lNFRmtCxh9bmvkSBToLN5T6IqHKvYJowydrwljFjD4laVi2ZJ9GhoXu3bwn+8Ldu/Ue3E/6mXuBlE71bW6MR5Ln+2+czcOD03c1HXuRnMvJ3djTVNBeNgH5ibqVdQ5NG/qbdS27l1n+z2vCPQeOV6FXK+iK1N2nDjvVzqTZWio9Jdg+x1T77BexeaGYnVzEHB5KIz3DhWlsUSIWoS3XhYb3urBXjKdeOhP/q4dfECVbT/qae4GB6hMGfGu/XCost05qDZ3I3NUNlSuUNibSe/XXisUWGX3lboBbLaCAcr0Oqvd2tyrikDvQWTlaqTvxoZDOnej4l7ndzY7E/EqJKTN8xkRaGNv9VptpCLVB+n8Qx2unJCm7wbRqJZ1eKzvt+3r6K2Xe7yjTCeW/FXui4f90nejVbbTd6PKE6EvNNtjgATJ0H4pkwPDQ5POYaBAPCyYuRk7qBJAk29GESYnBwCcbSvAnd/aHPY7dDN3U11TgP2OGCX0vtjmbnL7btj03QCmLwPQ1dXcLmT1kaoRKKtiVwUErFcBVLZ4ZHVZ70/hvYOQhzb7q7Kk1is4dxSguCRBePOFg6TKrh287PlIj38vczf2V91QN2HfDUBkqmzatro8DK2YsJ6MzJ3ibDmMNE0+kQrIw754iqb22KpXWp1Ydm8BbvtMJlQ33czdVNdQVXVvdz18pN0XWZ0JwO270RUlZWfVbFv9a101l8arsOaKCJUwIveAlFJxRX2WEgW4dO9lWO8NQEplcUzuxoQQm99CRy8E+MoVkYpEL3M3OXWrLtQN5fFQ7/aAPFSaGtgXD8FGjmseoqA8LKS5SXsCQApSqxtTo5GMioYCVIgGDSHbRNj93M1h43t1jlXVNGKUUxDTI2T+oeyf0z9m6oiA8a4MG2eFNQEVRXPE80D3E5muM5jVRmL0CCEPTeeeqfqBKFwjxrCFmHnH+l7dS5lOvPtOyPA+z90oHSKEs9oOwpqDo270T8J4Py93wzqHqJW42ZrNc8mC8rCQ5mZYdTmApOmqlfZaELzk/n7YHaRSWg+rrXc/d3PUjF7FnFOnC7NNGK8izey+cMfKUsBR7PpYdEUg0m2s7gGr/pjsGAPKGxMFAQOoSPb6wr33kMdDBkgyM+lrC2h1oyJZIuqluQGgGjUU+jx3o3gotboxlVCT6w3XY9ceTlkf6ahsDn8gnJXqtD5QJRCVW5QF5WEhzU1tWQoAS8k6aSVMNg6VvVY3w0Ya7QAAjiJw0KVXqa6hY953kBanfghNnGy6ucxeSdhu4LBZCgyhM/x62GHUjR1pc+T6O2oeAxuLbD9VtVtljOoq48RNj6F5yNIm2+y9RzoTb+9wAqil142giHaT9jJ3A+xT3UR5aC2X6cow/e7sduWY/QI2RjMb1T3EFPo5a3fMkReWhwU1N+UpmEqMqvWyUXSVI3q7XsaYRnUD2xEK7brFvrzKsccn6of02H2lUjj5NC+VNr0z0J6FTc0boVdhXVFS61QTmQww2DDAzWTZd4yj0SMtHZUUSAmgKi5L9Ryah+ZuM6uXM6wfAqDzGsxg3y9wBrOXuRtE7VT4NdI5b81D2RUPwzygUdkOD8O9m6Sj0js2xZPDQwYVlocFDaaqygHszUpWRRWT2ZbMySquG3fwFqeyChOOUNrB+g1p9YLFfrzK/I+ke2RxUinMOydR36BrUjpjxuxGRk7M7HoV2PFTUbYeaaHG1XgVs/JjlCVqvhUxIAMJYHRNxUFdsPc0IjwEQCLM9JEIpIl5AVsRL+wB9FXuxlb0FQ/VHD1X49s561o1M4NcHurnUqltAa6KMeG/fXqaVoUyCFA4HhbSeQ6rLgPQFnAVAEAyeyQks0ckJTdMDVo2iSB7MEHycScK9RQxtquIksh5zhTyxtL1Huky+sgn0sueD1a8lM10tciOi6pq+tCZnrI1OgNn1Y3pQ3WW9dTUVfrFhlna4sBRN+ZQHa+iLA4xSzY5ZmWt1Fpc4+tic9NjWB5WAgAkS49IMphIsvT0XBPBDCZIRllVAXeuDYTiXmHnTEVVNpi5aSdv3sjr1koAWzbyoCGUSqGuHg0jacRYAMQmXx7hoVXZsCrb5BCl9nwMSMlMmtWF4mEhzU1tWaqmLNnckU2DMwwIbWuYAUFeeTDmfWLt33q8x2nHitGHwcbe4UhQ+HyfnLr4vmbiHnt8YtKR3lOPZ9S8hHykUph6tHfs8Qll7YnIzh8xVUHWWd6wmqgdDAkyT03UoxvmbpSXk9KoVtLqTCo2MBsro7xK4EswUklvUHmqp5crhuVhWchDeDpKFYFkzxPM9lHKSFUUQN0o7WxaeXJVds472G/upsvnTNl3FA+b98i//TWwizEpNO1gAFs34c0VXFmN6cfTsMOIiZlNvlxKIgo066DegfahMJEXW9tUcB4WODUwrq5qxZYmEUh4CSnZUxGEIMksBFWNDMYeT+ue60FRrXGSmHasrfCZ+WMwa62DdH+lrkDLA3qVqmqcfV66eY/cuV3u3MG7dnBnJ6dSqG8Q9UNobCOR61WiFW71psxRN4Y1KhezbRMn0lw1CBKQpgZJRIFOCOtxjXgVwEZYTJABB74EMLS6sjCj8t5DVzyERwjUivTmL5mooX4079zQq+LUcNULCl0b2pfK7lLd5CDn03wern49WPLkAVITbS34+xM8dhImz4KXBnJ4qOyLesd4QVeP9xEPC2xuxg6qWrGlqTMrpWAIIQFPRQ2k7c6gw4J0Jd5Z4gXdWGBvxgk0eZq+OGpFa/McHEj9HEvWs3oBwMzJ7oZXqa6h6hrvsMPhfprjVdQHKmtDOmQyHkbqbiglR99+I9iyiTesZXdqXyKNYWNp2OGoGw4TD4cPXpBSsnm+qnI1OoZiBiGb9QGMr68uzKi89xDy0GOQkIAHSHCChJTMnslNAAAk8+AxvTI3qRTGjdcrc0PPj9OZ6d6vd6N+Znn4zxeCl1/obhp03SrevZNmzQWlYNjl8NC8I6UqJ+fwkArOw0Krm0GVANolp5QnIdK5G2bPRMtVDcG0s3n7KrHx1X0mqkeMxdHvp+pq04ce8Qm6Wsz6SVXQVsfM8kAPvYqraZ1PCSbrRkZ9KDqZNbQYwJaNWP6iv3VTF7zxO7FxNW9cjUHDMX4WldeFWsZ0gkijXU1FAGBQwFIFZUc1xObmIBHyEKR5CPYgAimFEGHWjInBQoih43ndcnQebGPx8Sdpwc5R7hUgd0Pm2Q/MBKx6vQe2RqF5Jy//G6afquN0qbIzYF3PQUTdSA752Rc8LLC5sWFzreSMJyQzk4qcKZBSkCeZPSFEikdOl6OnB3s2enubaM9W3SxcW881g2nkWJSX60VflLpTvwJ0tpwEJLOwq3Lo51XqNbfc/gI70PvxKjlRdNdeRfV0m/VulXV46w357F8PPPZNW/DKoxh/HNWP17ExgED1UEkdV6tzVLZV+gAjlUyo/pEYBwGHhzLjeYaH7JEIpBSeJ/Wa0Dp/TEJMOlGuePxgCrWD6zFhsukFhcPDqGVRX+hO7qYLv8hEQHMzHzCG6hLb38U7L+GwGdpTBmEOEQFLVY0yPASrnLqUfcHDwrd1TGqofXH9Dt/3pSBByuKQjZnVfWXHY9BoWT+GxhEJwCMIgkdIECRgZ3ww6y4Az6lA544idAU6N2Y2xaD8UexSzVo7BZcfdmUzwNqyla8EL/ytu2PvZ7DqWRzOGDIezMjzKlrpqPHuzGQBNMaRVO9geRgI8rriocrBWrtQMwzjj+N3XuxZSJVK4YyFSXSXh2Hloec8xPNLD76VZP3rGHkkeykKTK8/m6aMwHQVF4GHhZ+iOX3EYAC7M1KY+r+KFAOpqmt2xoatBAMqpiCt6AJla42t0fUaUPhAZN2NDjsJSWtXClfYIdN/CdNtqZ4lZPVtZIxtrVF9KsyhmNo3TL+iStase6cHtsbi7b+L1l06pArUPExmyWyjZQZJRhAEAE4bP6yn24/hwvLQIwosD8nw0PZhWh4yRh3J46bvM5+Sj8pqmrswkSrTLIU2J+EMmygPlc3pIQ8VGK0teHfNwbfm+xlseZu0ltGbhNSPc6HA8NDclegjHhbe3AyrKhtaVeYzlctAgtS4Bhz2LwaS1W2m+5FMNKFtk2IALCcojCejnf5qBGG6mEyHEsDQT+yEGj8GQELY2Y/ukzGiUJ2aZgUmgq2zG4sDgDo7+G/diKG6xFtLPG1ZzD3gxMwkmbO+BKOqPFUXR1K9g8vDMCshTb+sYp3iX+gXedzRPPlETnRjhtCwkXT2RxODG8LuU+0Xw9lzxuIYsrGxMupeyHtauW2+Myy1logiU0APDjvWQd8jkRyi9u7W06t7to942BcLUGjHEmQDN8sdyFCnqSunKsfqArPxMMwswRLWI5mObNuZAsBEWMbOwMQ4ej6+ei6CjYzV94WrYBHqIoRfY/0kzJy8nVE36vBeXyEz3Vhcskt0tmLrG4LNuUvJkmEtMgOZziyAGSPrD3IHMRw4PLQ1FzLqhiVDPRnD5aFkHjYB7z+PG4/eZ/vf0BH0oQXe6Qu8VDqcl2stAwP2OZysPJ8pNZBdsVxlr52OO9uxA3LXVA5jtC376BTrPvZsNXUorWXAJuZgdTVCld1XPOyTKTmTGmqeWL1pSycPS3OWwSQCqWNmSaRuMEnwTH+RBITpZ7H6logC1quNqU8FCcnQD8sLo2LlUtQImX4HtyLg1q3sXkyFy4Z2sLk9O/MNMJZOqxsAIHr9lV7N/9r+JtVOZCaSgZShjlO6T6q5C9OH1fZmFzEUuuAh5/GQ4VGorHUtNUWNM/jwmbR3F3ZvJT8DQSBgUD2GjaB0uSAjEIz3cngIl4f5GUaHh8Kpe+bzkBweAp2dPYjy9gU/S5TQfJbMAefwUOduAsl9xMM+MTe1Zalpwwet2NIkO32ZTgXMQlkcT5iRZtU3Q0QM0tqSyCR6WK10R0SBNjCsoqHQKkn7jG3tF9jMQQfpJ21be6RzN6SfLa/q5SoLAwBmQSGYCrcwPXjQW9bdCiDatV0ecA7E/pFpQ2cbUVmg8/9sFSx3tGcBHD6kNq5JFQQOD7OKh57I8XyGh8KtSwizIgNX1ovqek4QCYJHJGC7OiwPdYU0ykNdFZWah+YzGB6y4185j4emt0tpbXUsrS0FuCCtO1E9XLNOAswIpLQ8NNlD2bE3g77hYZ8EUwBOHj8MwPZOmVD2kiWb3I2MKDcoQwvAvqm/AwoY0ry2dWKOziJDpHolnbXIjB4xuR6zF2Xjwudws/nLpqagc0CAjtfM/FoA69YUwMl07ALn9jtwwOxnAwBzJ43o/S5iKBgecsLoRyYKTGzl3GP69tNKU/NQ2SMV55LmIWxcb1aQgcND82mEh0pkmy5eqbnq9t0AgMtGa8tsvrKqEAWiRAqSJYOkoZzDQ1aZ44Dh+33Fw74yN8qxABC+HzBU3VcyApWtUOdm5jRy2O8PI3CUlVFTAcxIm3yqjsCdudcgq25Urk6tMxBGS5JZfWoUkFknEQj/hvwgnTzTs59gIt5Q8/YG7bvJ8J7VADOgXEpjLG0KiigPw7srykNTGya3YhXmGSUokGx5GEQyQZIdNwn91BQhrfcyqxqpDKPmIQwPTT2DATY8lNY7CrLHY31nb1A2SIJEwNLJ3Wj7KxlF4GEfLqdy8vhhK7Y07eqUg5PSZ5EUqr9TSOaAiSQLTwRGlwrlJVRFiKBCKKm7hFnJUFJ9E6R6/GjndrnpXd62ibc4E9WGj6Kx4xPjxnvV1TpmtpkdZYO0JVLvmoDJxsi6Y9h5PqmbpQYKY24YYDIMBjPgS/aDAMCZsbQpNCwPa5LwmV0eSqagCx4ysbIaNsjW+V0VJqmsouWhzQOAIaEicWniKf0cZ3SPh7DqJo+Hg4Zgy6ZeXYdUJWy3l5J1apa8zp0DDPhS9ikP+9Dc1JalJg6pWb2jOejIcnlZIFkIETCTetQAwQ8keUIQwt4/QOrWFlIWJ9DRrCocKU5gbyuv/Gew5s0u7v0tG3nLxuzzS7ITj0zMmOXV1OpFJJwoWuSvQqJrW5DIn4EJq35h2oB6C9YVAZKsczftbZ3gWNr0CSwPZXuGKkIeCu29yJdSPyNcZ1KEfs6GURmCKACU8FC9MJ6xQXamDgD1xDGpuooBsnOmVLUCMDzUdQwZPilIw5A9klFW749p9F5f3qvi1KAxNnpiGzoEkpkokDJQPNyb6VMe9lUwpXD6pJFpT+zMcMIPWHUTmaAxML0nqg3HalcbM5vMjo6rA4bSsVs34bE/dG1rXKx+3f/T7zp3bpcms0Om58LYGjLZQT07FrDRuBlj6cxYU19OpgqgaVNDlIKVasizWRkE0hMUS5s+guLh7iwLw0NWPSYmL2P73Nh09LMTuds6uuGhZSO73aoSumMzMGpZ1Tdg+uONBZFQ+kXYiN4y311PL9Ij0zCSKnv3TJGGI1gCvpTSqBtja/RdmfVl4EuP+pCHfWtuastSs8Y2AGjamzHnqSIISIbO5sBm6WxtkkOLA5XhY2V9313FSx8MuvNMVaiHHP6xc9MGaXvV1ewBk2kO9QtMvtnmbqRq/zEjoY4nYAw/rACXJVnDgZSKr76U7Xs7ALy/cXgsbfoIlodtHRmfpbT9bFEeRvM1UR5KZUcQ6N/qLfgmd6Nm9kt3JXazmp+bYbTWJ5wtafI6Gparloem7/z4Uw/+cQj145Gs1Jo6kBw4uRuTIeb2tg4A7x/fhzzsW3MD4OTGYTVlSZ8hO7KBzrTpmr9+LdkP7+qwMhX9S5J5905+9bme6clMJ558qHPntsD6Cus33O1bbqkMtLIFYZ3CMEwC5dVUXtUrJ5OslZyUOvvI1NHhM6OqPHXyuIbebDbG/nFy47ChVWUdAbxsoLknozxky0N0yUPbdxowfPMrpdCNeXLZotddCeuPdp0jsx1HR7O2WbYma2Ic6WirhpF02BEHc8OmKjH6GGntow6jTAeG4mF7UXjY5+YGwPnTGwG0ZKUIOHD7aJVlNTGkGTBTq1J6R8JUwWnZE+z3vJ0304kl/5sNpM7LwOTGHLWsK6ABs1otUdXsA30kYd4+YPiMScf2ytzUHBnoMSbKBDLbmQUw/4gxvdlmjO7g9ImjAOxq96Vy7zYyUrUqFVuFPDT+P6ycmtgKkCBfsmT4UteqAna/YyIvzSVEqrGGh0YxsVmJLfRwpgs/xy/i6BO92sE9O2svicM/IJFkc6ZGMdn7rog8LIa5GVZVdlLjMAB72ztN4kaNovEwKlaSbMvhQag49N93X+OO1oM8gF3b5eo3AnWtAzNrRprOi0BRwfZ0W3tk5rAFbsTOGDHh4AVOeohMjpABsyT4QdDe1g5g8ojBjYPjhfv6HGMHVR43ZgiAjrZOG1AEpjojpRlr6a555v6NaBwJ+AxJ5Ov+HR2SSDtPQgKwXNI9Ptbb6f66MIfA5j/tieHMLLU9aCKJ2fMTw8d1l36pSkz6kEwPgr2/fB09IWD2JSRRMXlYDHMD4OTGYWPrKtsDeJmMUjQBw9cdgPquNl05YcbOsThYv7JXJaHXX3ZyhNLNDcGMaMSrKOr42tZwAPgyzHAf/UEkeh7eiiTXHONrNS55b1uGJarLU+ceObo3pxaj+zh94sihVWWdEn675qFk+FIGjsoOGIHpeTPRjc7d2Hme9rUfyADw2ZgqwGeWJsLyWUJzSddAfK2k1MyeyCzC8L8wCovwUP2lFB9zujdhpjggA+vHY+pZnB5k7CBrb+pLrdyV9SkmD4tkbgDMnzIm7YkdHVJ2ZKwf8FmrG8nwTcUqmqUjydyyCwctbRSadsj2DuOdDBsCx6WoLhhf/5UBk+KfLzlg8pkDraIRSFlVL448iXpkcUSS60/Oikqd885kpO8HnqBPzhzfqxOL0UOcP/2wtCdaszLI+EE0d6N4GDAH0sRQbraYTZxlNIvmkkQA+LAKQt3PyreRykybzTJCnydzeBiYLudA8ZBcHlIg4fJw/DF00kfFpONFVV5sla7E8MmYOo8bT2RO6GDCzpXJyd10dgbF5OH+FkwtOFZtb/7DirUABlemRCohgKQgjyghSAAJITyCp157QgCCiABBtOV1rHmxt3s/7Zz00FGqM0LmPo0TQKQGqT2PzemYT508H7Bnp1z+CPxuTKHyKnjI+31UB8oTZrJBa0s7gIVHHTZlaE1vTyxGD2F5WFtdlkwIASSF8AiWh2qGlCeQFIIMDz1BYPbUO+Y1mIUgcrhq/rKwn5pJUeGTpk1tlMxqB7pY7jJNSgiKqCozpwmq896s3cOMll0y20kMVA3VCt0EdwhY2kgqG0hjxeBLzmRla2tReVg8dQNgUkONSuLsastks4EE+TqGtNfF5PBkJHeT7d2sSIUtG4KAkZVaVakrrrK/AbPPUJ8GWt2EVc9wvE02R+WPKweL486jhsMPEEjXHhkM+6BPNVKFkBlfj/GUkYNjW9MvmNRQo5I4ra0dnb4Ts0g7b0hrXl+G8/sCN3dj1I3K+MqwmMABkJVSRd9a6YTZA9Z62eRQfKVZJHxmX7If8lAGRFn1TTYxmsk2ykinKEugYhBVD0PVMLYVGN/opkCaTJNWTCyZAkYm4Na2dgBTi8jDYj8T9uTGYXvaMyu2NLW1dVZWEyW8wHQMEwsAkGBieMSSPSLAdIj3Ggz4DAJYRvpu2JkXp/o+YZ8kbfpxGLZLkFUnuJ7FnsLhszHqaOx8Fy1b0dnK7bsJQFkdexWoGCWT9VJUclbH4cgGsrVlLxjjh9QunBynbPoNp08c2ZkNVmxp2tvagaqysqSnOtd9qZ8/FSieCGKwp1aoAQUwT48hIoYg+JKFesi2WYdPzXLwJQtBgZSeEKp7mAjEFOj5ECBEu4p5HzyUIQ/1+2Cw7t+JrDQMVUWVKkNkU9cBbAUNvpQM8pkzvubh4UNqFxSRh/3wCOr5U8YAWLGlqa2lQ1SXwxNgTugn4AAAiHzJHtm5l+Fg9ga6HGbn2pp55MxmLq56AhiB1cqeqvlC9Yzqv2rUw9ntql0iUYGGyTz4CFVfC1TEHkgthXwdM7MvubWlHYy6ivTCKbGt6WfMnzKmww9W72ju3NvhVZVD5PEQ5DN70FP4WM9XCNeOQOQd9RMmIshwpRRfSlKTpiSTekaRsTL75yGRepJqHg/Z9ChLh4dOUSVgqfLfKieleRj2JbIvuaVlLxiHDan92PRxxbzmRQ2mLD40aeTQqjKfkdnb4TNLJhNPITAKNjB9DYG7VlovMHikCFhn4GzdwaxxYQaMTC3cJNjULL7w+1LX73Xu0PQv+M53VGVUDbCO1yQHjObmvVJybUX608dNKEscfIdojEJh/pQxQ6vKMgHaWzuUItCxDxs/oepW4fthP7E0MzxtXZUBCVKrcducQFjnNnUGXTtHhIe2Nmp4SL5kM7sCUkKynY/OEmzr9+x0Cfk6HiQbSUkmXdiS4V3W0rwXjJry9LlF93n9Y27KEt6Fxxw+tKqszedMa3unL3Wdz+S3fJam9gyfuXp0AcxNusp0OumKABmDYrtLw74bp+fQzdXB6dTS4bov2ZcyAGeD3HyQzv5IzgbcvKeNJdeUpz8T25oBA8vDzoD3tnZ0+rrvRlEx9B/W4jD80NNouxCaEtazXkx+R8XvbCpT4XxIZr0ClLVfhorWTkmO9N3A1q2sd7R+UfNQ+TaVOVJ2h+09pbM/iodSck15+tJZ/cDD/jE3iFqctta9WV/nt9SNqi0xtDpI1spk7/qPqgdTWbWwc0ZCr6I8ErT3YKebU4IdbxZWzVnn9lViTxcafcmSEKgODjPGigGZgJub25Su6ZcxjrEfuBantWWv8nzKYYTKFM5r5my0b0VanctuJUFzJuy7UX06RrM4PDQMtGzM6btxZn6GvanGckkmX0rf1NG1YpII/bdR2RlfKh7W9R8Pi1oI7xIPrFy/YktTQqC2ukJ4wtM1SPIIAvCEqohj52ve9lcPPoMzZY43YqJKPdt1BkwVXJfC1cLJbNZpj1THlZOBG0AZBWRbEwPDP5WNU2Tq9GVLcxsYExpqPzqtqHFyjO6jww/+sHztut1tHqGquiKVEB6RasswPCQBEgRBZF97goR54pDQ1LLPlSYiEmbVWpjFQ+2yOXad0CgPAb1EwT54yOaxAqYbNjD2TlWgAmv1pJRd8XDsoKrzpo3rL5/X/+YGwOOrN724fgeAQdVlXjLhERJCCLCyNR4REQtfvP2Xbj1ZPB9lVfT+jyfU06PIeRa4+lQXBlSng8nhqZUGc/pxTPURtstLmgkQyhc5lVQEzHvbs2q297SRg+fHdagBD+X5AFRXlqXTDg+JlJUh9QxYglqmSfXgeKrXxnTfqFoqGGq1bNV9Q07HjX6COIHz1ruRdtV00+POZg6ErVvpdSxlxNbYOEtFYX6gC1IqgmvvzO5t6wBwxNC6jxw1tn8uLoABYm4ALN/c9ODr6wHUlCUS5emkEKrfzyPlUuARdWwXG/7a4+gvkcLR8xJVQ4T7PA3jT1yLo+fshmsagcMqI7M0dShVawzH2E6W0eqGGcgGsrWtI5vxAcydPOaYkYMKdqVi9CWsxalMJ9IV6aSnHF6ospX0JqNoPBIEFkSCSEkbW7EiI2ZIaSBmGL3TBQ+dhj+Y2VW2B5WhF/RWi6KYCpTuALLRXKD5GarsrJStrZqHU4bVLZzan7YGA8fcAFi1vfmBles6A1mRoHRVRcIjj3RsRWDV69m6Vmx9vmcWZ+LJYvhEj8FCLyKon6mg9KoOo4y3gdE+ToaYVQeEO0PXzva0c2p8807AyARBa0u7DGRC0MKp4yY1xL18pYTlm5ueWLWxM5BlCSqrqkh6wj6JwfLQ9hlbuyOMxhEgo3GE7RpT4ZR5IkiEh3pVUZh4yuWhENJ0t2tDQyQVD6VeKWWfPAQyvuWhmHvEqOkj+t/nDSBzA2Bra8d9y9c0d2QTAlXlZYmyZMKoG0GklE7rGrHzZSG7EVUlUph0mlc7guxIh0+ninoPO+TuTAW2VUmnSMlmDTTrVYxL0dp1b3umvb0DjMp04uNHjx9WVdbXFy1GwbG1teOBleu2tXYkBMrKy8rKkiqVE/LQqhtBYHhG1QiKZHPsM17Mg1+Qz0DK46E0uZsueWj/uS8eqjS25eHgyvQ5U8cNEB4OLHMDoMMPXli/Y+marQDKEyJdVZ5KeGEeRxABwR7a8ZLo2L6/zHHdGBo9i8qrCXrUjVcxz6hymjndbk6tY6WUbBbBl9G+dQZJKaUz0qoikJXc0rxXPQ/s/YcNPWFsQ1yEKl10+METqzapwKoi6SUry9KWh0bpeCTcrI3VOGSUDpiFWgUZgH6OpqtuwjlTDNibUfEwME89s4vb2twwzGs/rKLaNRVkVqK1ZW/gBwCmDqv78BGjBg4PB5y5UbDuBUBdZVqkkyqbQ2E2hzq2UfsmattIflv4w2Qlasdg8OFUNsgE0mDdQY7Ic3vhzs9ku2ix61UAp/PKtgLa6qbNE2el7NibaW/vBFBbkT7vqIHiTGL0Equ2Nz++emNzRxZAVXkyZbKKhFDpWFujJ2camWNeqjmcBPUwV0H7yCGS7WblyFzNsAcVUR5Kp+KuxI7PvLeto1MdbTo5d9KogRbID1Bzo7BkzVYlczyByvJ0siylZujmx8zIkpfKnacL7U8grK1R2Roz0vbMjZVRM1AkRWeEa29jNa3jVXzJ7e2d7e2dYCSEOH5swwfGD+unqxWjT9DhB0vWbFWVU0+gqrI8kUrsi4fC0TWGh0IZGlCUhyZHEz51KFzDP4+HpkyBKA/N6qLsS+7oyLTv7VCcPqlx2KwxQwaOqLEY0OYGwJ6OzAMr16/b3QbAEygvS6fL0wmhqpIQIvQqwqkI2Jn+RsQiryIAuJUp3f6QU3101lKCo24kM5EfyI72zN72DsWUMbWVZ08dE69tfqhia2vHE6s2Wh5WlKdT5ekE5fEQpGMozUNhxLV6tpCtVRGHpiaHh8TMXfBQ524iPARRNsrDsXWVH5o0asCK64FubhRWbW9+Yf12Z7DLUulkIiFUFYAAIUBhRcB6GJhHhMPtgJDqudBh7oZCr6IrUyJgJ3cTdjroRZLa2zs72jvVFsbUVb5vTMNAU60x+gJd8LAsmfA8AjyC6utTcRYAz1SmoD2fmQtunl7PDg9hYyhCOBeczFNozPKjqucLJcvD0jA3Cuua2pas2aIGG0AqIVJl6bKypKdrk0KNqHBtjRpsuF4lfA58tPtGDW24Vr76h8rVSUYQyI7ObHt7p0oGAxhbV3ly4/Cxg+Jlht9byOdhsixdXpZMCEGmvdgTYd+N7j22hOwid6NbMiRMo400K6jbbgxmNSPcL2UelpK5UVjX1LZ8865V2/d0mstdmU5QKplMJNKphNU1+q8qQNqKgNO16T7vW4aalgIpKVxFjTPZIJv1s5lsJuOrL6c9MamhdvqIwSUxwDH6CPvnIfTqfzqPQ6ZiZbuKieyqkqrZRsdN5KweabvbDxkelp65sVi1vXn55l2rdzS7b6aSiVQ6mUonCZRKeroypcWs41UQVgRgCo0AJLPvy0DKbMbvzGT8bOBufOKQmukjBg9wvRqjyOg2D6Mq29TCjakhNh5QNdcckjwsYXOj0OEHq7Y3r2tq3drargrnLjyPhPCSWueSdSTGq2hkg0D6MlDPholiaFXZ2EFVw6rKJzXUDMBUf4wBggPxUAghuuBhdM7UIc/Dkjc3Ljr8YF1T27u7W7e1tHf4Qf6odwdDq8rKEp4a2rGDKkt3aGP0F2Ie7guHlLnJx56OzJ727NbW9g4/2M/XyhLesKry2vJkXMmO0ReIeahwiJubGDFiDBz022p+MWLEeK8hNjcxYsQoEmJzEyNGjCIhNjcxYsQoEmJzEyNGjCIhNjcxYsQoEmJzEyNGjCIhNjcxYsQoEmJzEyNGjCIhNjcxYsQoEmJzEyNGjCIhNjcxYsQoEmJzEyNGjCIhNjcxYsQoEmJzEyNGjCIhNjcxYsQoEmJzEyNGjCIhNjcxYsQoEmJzEyNGjCIhNjcxYsQoEgSAlpaWW2+99fTTT586depRRx01d+7cn/zkJ77vH/DHl19++YUXXtj3B9krDISD3Lt376JFi04++eTJkyefdtppt99+u5TSfnTdddcdd9xxkydPPv/881955ZXe7GjlypWNjY2PPfZYIY662Ih52Nfodx4mAFxyySXr16//yle+MmXKFN/3//a3v916663r169ftGhRb3bZGxx77LF/+tOfRo8e3V8HUFhcddVVzz333NVXX33YYYe98MILN998s+/7X/ziFwFcffXVL7744ne+851hw4bdc889F1988aOPPjp8+PD+PuR+QMzDvka/8zCxatWqZcuW/fSnPz3zzDPVW8cdd1w6nX700Ufb29vLy8sLu7/uYOPGjbt27Sr+fvsIu3fvXrJkyfXXX3/eeecBeN/73vfaa689/PDDX/ziF9euXfvggw/+4he/+NCHPgTg6KOPnjNnzi9/+curr766v4+62Ih52NcYCDwUQRAAECKSxPnCF77wxz/+0Y7x7373uw996EOTJk2aOXPml7/85R07drhfbm1tnTx58s9+9jP7TiaTmT59+s033wxgx44dX/3qV2fOnHnEEUcsXLjw2WefVd956623Ghsbn3vuucsvv3zq1KnHHXfct7/9bSnlP/7xj5NOOgnAySef/LnPfc7d0ZIlSxobG1966SX7zssvv9zY2PjMM88AePHFFz/2sY9Nnjx5ypQpn/jEJ7pUg1OmTLnjjjvsP6+55pqzzz7bHszSpUs/+clPTp48efbs2Q888MCrr766YMGCyZMnn3nmmStWrFA/8X3/P//zP2fPnj1p0qRTTjnlnnvusVtbtGjR4Ycfnr/Turq65cuXqzFWSKfT6oI/++yzyWTyAx/4gHo/mUyefPLJS5Ysyd/IF7/4xX/913/91a9+dfzxx0+ePPmyyy5rbm7+j//4j5kzZ86YMePb3/52/k9KCzEP8R7goTj88MPHjBlz9dVX//rXv84ZP4XFixd/7WtfW7hw4SOPPPJ//+//XbFixWc+8xn3YXhVVVWnnHLKo48+at/529/+1tLSsmDBgiAIPvWpTy1btuwnP/nJgw8+OGPGjEsuueTNN98EkEgkANxwww0XXnjhyy+/fMstt9xzzz0PP/zwsccee9tttwF44IEH/vM//9M9khNPPLG+vt7d0cMPP1xfXz979ux33nnnk5/8ZENDw+LFi3//+99XVVVdeOGFW7Zs2f/JW6iD+eEPf3jNNdcsW7Zs+vTp3/jGNxYtWvTjH//4+eefr6qquv7669U3b7zxxl/84hdf/epXH3300c9+9rPf+973fvOb36iPJkyYcNppp+1nLx0dHVu3bv3Nb37z0EMPXXbZZQDWrFkzfPjwVCp8ZOLYsWPXrFnT5REuW7bs3XffffLJJ++9996//vWv559/fkNDw7PPPrto0aJ77rlHcb10EfMQ7wEeilQq9d///d+NjY3f+MY3Zs2adfrpp99www2vvvqq/cadd9550kkn/du//dv48eNPPPHEb3zjGytWrFi2bJm7lfnz57/yyiv2sj700EOTJk2aPHnykiVLVq5cedNNN82ePXvChAnXX3/9mDFjXEs8d+7ck046KZlMzpkzZ+zYscuXL08mk9XV1QBqa2urqqrcvXied8YZZ+QM81lnneV53r333ptKpW655ZYpU6YcddRRP/jBDzKZzB/+8If9nHk+zjjjjGnTplVUVJx77rnNzc0f//jHDzvssJqamvnz569cuRJAS0vLr3/9689+9rPnn39+Y2PjhRde+JGPfOQXv/iF+vl5551nX3eJSy655IQTTviP//iPRYsWLVy4UG1QnaxFVVVVW1ubTeC52Lt371VXXVVZWXnsscceccQRUspLL720vLx87ty5dXV16ghLFzEPLQ5hHgoAkyZNuv/++x977LFvfvObY8eO/fWvf3322Wd/97vfBZDNZl9//fXjjjvO/uDoo48GkLPRD37wg+Xl5SoR7fv+E088oU7jlVde8Tzvfe97n96ZELNmzXIpMmXKFPu6pqZmz549+zlWAGefffbatWtXrVoF4LXXXlu/fr3a0YoVK6ZOnVpWVqa+VldXN3bs2J7egRMnTrRHkvPPzs7OTCazcuXKbDZ74okn2p+ccMIJa9asaWpq6s72v/3tb991110XXHDB1772tV/+8pc9OjYAY8eOtf6npqbGHp76Z3Nzc083ONAQ81DhEOZhwr6aOHHixIkTL7300tbW1uuvv/6uu+46++yzx48fz8y1tbX2a+p1a2uru5Xy8vIPfvCDjzzyyMUXX/z3v/999+7dCxYsUF8LgmDq1Kn2m77vDxo0yP7TDozCAR9YPmvWrIaGhkceeWTSpEkPPfTQ6NGjjznmGLWjsWPHut+sra3NOcgDIp1O7+efzKw2ePHFFxORelOZ/507d7ontS9Mnjx58uTJp556ajqd/v73v3/eeefV1tbmDE9zc3NVVVVOCqObh3fAAygJxDw8hHmYyGQyW7duHTNmjH2rqqrqyiuvXLx48cqVK6dOnSqEcI29ep0jvQDMnz//X//1X3fv3v3II4/MnDlT1Q6rq6vT6fSDDz7ofrPLc+gmhBBnnXXWo48++qUvfemRRx5RCTa1oxyPtGfPnhEjRuT83A6PQkdHR4/2rs76Rz/60eTJk9333auXjy1btixduvSMM86wmnzatGmdnZ2bN28eP3785s2bOzs77ZitWbNmwoQJPTqqQwMxD7uP0uWh+N73vjdv3ryc5JzKEjU0NCSTySOPPNKVnf/85z8BTJ8+PWdDp5xySllZ2TPPPPP4448rYQlgxowZnZ2dUsrDDcrKyvKvfpfYl5lUEezf//73d955x+5o2rRpr732Wmdnp/rnjh071q5dm3+QNTU1rqvpqco98sgjU6nUrl277OnU1dUNHjzYzbHlo6mp6aqrrnryySdz9jtq1KiTTjpJSvm///u/6v329vannnrqlFNO6dFRHRqIedh9lC4PE5deeunDDz983nnnXXbZZZMmTQqCYMWKFXfcccfUqVPnzJkD4HOf+9xXvvKVn//85/PmzVu/fv33vve9448/Pv8KptPp008//ec///nOnTvPOuss9ebs2bOnTJnyla985brrrhs1atSyZcu+9a1vfelLX7r00kv3c0xKJz/55JMnnHDCEUcckfPpMcccM3LkyBtvvPGII46wn1500UW/+tWvrrnmmi9+8YuZTObmm2+uqalxa34K06dPf/TRRz/1qU9VVFT84he/aGtry1HR+0d1dfUnPvGJH/3oR4MGDZoxY8aGDRtuuOGGUaNGqczc4sWLH3vssdtvvz3nV0ceeeScOXOuv/761tbWCRMmrFix4vbbb//Yxz5WXl4+atSo888//9vf/jYzNzQ0/PznP/c876KLLur+IXWJ1157zZW4ZWVlxx9/fC+32deIedj9a1W6PEyMHTt28eLFd9xxx5133rl169ZUKjV69OjLLrvsoosuUsZywYIFHR0dd9xxxw9/+MOamprTTz/92muv7XLr8+fPv+yyyz7wgQ8MGTJEveN53j333PP973//C1/4wt69e8eMGfPlL3/5M5/5zP6Pctq0aXPmzLnppptOOOGEu+++O+dTIpo3b95///d/uz1I48aNu/feexctWjR//nzP82bNmvXb3/62vr4+57fXXnvtNddcc9JJJ9XW1l500UXnnnvuX//6125dOYNvfvObNTU1N91007Zt2+rr6z/84Q9fc8016qPVq1c//vjjXf7qtttuu+222372s59t3759xIgRn/3sZ6+44gr10Xe/+91FixZdd911bW1tM2fOvPfeewcPHtyjQ8rHj3/8Y/efo0aNWrp0aS+32deIediTq1WqPKRDJsUYI0aMAY54RniMGDGKhNjcxIgRo0iIzU2MGDGKhNjcxIgRo0iIzU2MGDGKhNjcxIgRo0iIzU2MGDGKhNjcxIgRo0iIzU2MGDGKhNjcxIgRo0iIzU2MGDGKhNjcxIgRo0iIzU2MGDGKhNjcxIgRo0iIzU2MGDGKhNjcxIgRo0iIzU2MGDGKhNjcxIgRo0iIzU2MGDGKhNjcxIgRo0iIzU2MGDGKhNjcxIgRo0iIzU2MGDGKhNjcxIgRo0iIzU2MGDGKhP43N88///yll1567LHHHn744VOnTl24cOFvf/vb7vxww4YNjY2NjY2Nzc3NPd3plVde2djYeMMNN/T8eA+MW2+9VR3Yd7/73b7Yfoy+wO9///vzzjtv2rRphx9++MyZMy+++OLnn3++Oz+87777Ghsb582bdxA7PemkkxobGx977LGD+O2+cM899zQ6GD9+/PHHH3/JJZc899xzBdzLwaGfzc0//vGPf/mXf3nyyScrKyvf//73DxkyZPny5V//+tf/53/+p7A72rRpU2Nj41133aX+OWXKlFNPPXXixImF3YvCAw88oF48/PDD8TORSwK33XbbNddcs2zZsrFjx55wwglEtGTJkosvvnjFihWF3dHixYsbGxtXrlyp/nniiSeeeuqpDQ0Nhd0LgGQyOWPGjBkzZkydOnXv3r1PP/30v/zLv/S7xUn07+7/53/+JwiCuXPn3n777eqda6+99je/+c0999xz0UUXFXBH1gQofOYznzngE+kPDqtXr37rrbdqamoqKio2b9788ssvz5w5sy92FKOAuPvuuwFcf/31l1xyCYD29vbzzz9/5cqVv/vd76ZNm1bAHeXw8Oabby7gxl0MHTr0j3/8o3rd0tIyb968DRs23Hfffccff3wf7bE76Gd1o+KgQYMG2Xe+/vWvP/PMM668XLx48fz58ydPnjx16tSPf/zjzzzzTJebuuCCC1z98vTTTzc2Ns6aNQvA2WeffdNNNwH47ne/29jY2NbWlhNMZTKZW265Zc6cORMnTpw5c+YVV1zxzjvvqI9++ctfNjY2fv7zn3/uuefmzZt35JFHnnPOOa+99tq+zujBBx8EMGfOnA9+8IPIo1eMgYkcHpaXl991113PP//8jTfeqN7ZD0NyoEIYq18WLVrU2Nj4b//2b21tbY2NjX/9618BnHXWWWeffTbygqktW7ZceeWVs2bNmjhx4uzZs7/zne+0tLSoj6644orGxsb/9//+369+9asTTzxx2rRpX/jCF3bt2tWds6uurj766KMBdHR0HNTlKRj62dxMnToVwG9/+9t///d/f/zxx/fs2VNdXT1mzBgh9IHdfvvt//7v//7GG2+ceuqps2bNev755z/1qU89/vjjPdrLwoULR4wYAeB973vfpz/96WQymfOFz3/+8z/5yU9aWlrmz58/YsSIhx9++Nxzz924cSOAsrIyAO+8886VV145ZcqU+vr6V1555YorrvB9v8t9KXNzxhlnnHHGGYjjqRKB4uG111578803P/fcc5lMZtiwYW6Msx+GdBPJZPLTn/60er1gwYKFCxfmfGHXrl0f+chH/vCHP9TW1i5YsCAIgrvvvvuiiy5STFM8/Mtf/nLnnXeeeOKJQRA8+uij3//+97uz69bW1ldeeQVA/0ob9Lu5+cIXvqDs7uLFiz/3uc/NnDlz4cKFv/rVr9Qlbm5uvvXWWwHceOONP/vZz9TVB/CDH/ygR3u57LLLGhsbAcydO/e6665LpVLup0uWLHnqqaeI6L777vvRj370pz/9acqUKc3NzT//+c8BKMP31ltv/ehHP/rhD3+oVPe6deu6dG5vvvnmW2+9lU6nTznllBNOOKGurk7FUz2/MDGKihtvvLG+vn7v3r0/+9nPLrjggunTp3/6059++umn1af7Z0g3kUqlrrvuOkWnz3/+85dddlnOF+68887NmzePGzfugQceuOWWW+6///5UKvXKK68o7aN+uHbt2j//+c8//OEPr732WgBPPvnkvna3bdu2c88999xzz12wYMGJJ564ZcuWCy+88IILLujZdSk0+tnc1NXVLV68+I477rjgggvGjRvHzMuXL//Wt7519dVXA3jppZeU/FuwYIH6/llnnQVg9erVu3fvLtQxPPvsswCmTZs2fvx4AMlk8sMf/jCAF154wX5n+PDhxx13HIAJEyZUVlYC2Lp1a/6mHnroIQCnnHJKRUVFIpE4/fTTEcdTpYCjjjrq6aefvummm84888z6+vrOzs6nnnrqkksu+f3vf4/uMaT3UHuZO3euEjLDhw8/5phjcvYyZ86c6upqADNmzADQ1NSUzWa73Fo2m3355ZdffvnlFStWtLS0eJ737rvvvvnmmwU84INA/xfChRCnn376TTfd9NRTTy1dulSJzD/+8Y8bNmxoamoCkE6nKyoq1JcHDx6sXuzZs6dQB6D24uaP1F5ci+Z+Wl5eDkBKmb8pFUktW7Zs3rx58+bNU2mmOJ4qCVRWVl5wwQU//elPX3zxxfvvv1+FVz/+8Y/RPYb0Hj3ioSIh9sFDAKNGjVpj8OKLL37mM59ZunTpJz/5yYPoGikg+tPctLa2PvLII7feeqvNYI0aNeqWW25JJBIA3n333bq6OgCdnZ3t7e3qCzY35o6KglKbdlPdzKIBUHtRg+3+1pq2buKNN954++23AWzfvv31119//fXXlQKK46kBjk2bNv3hD39QYbLC0Ucffd111wHYuHGj7/s9YggRoV95mI/6+vovfelLAHbv3t2/VOxndfN//s//+a//+q9FixZlMhn1zhNPPKESN6NHjz7mmGPS6TSceORPf/oTgKOOOqqmpiZnUyqxp1JiAP7yl7+4nyoStLW15R/DiSeeCODVV19du3YtgEwm8/DDD9v3uw8VSR1zzDFrHMyZMwdxPDWwsXbt2iuvvPI73/nOn//8Z/VOEAQqYzJ8+PBEItEjhrg8bGtrU6UoiwPy8PHHH1f3wsaNG//5z3/uay89ha3nVlVV9X5rB43+7Lupqqq66qqrbrjhhrvvvvu+++4bNWrUnj17tmzZAuCcc84ZN24cgC996Us/+MEPvvnNby5dunTXrl1Lly71PO/rX/96/tZOPfXUP//5z4899tjll1/e0tKiKog2ihk+fDiAu+++e/369VdddZX7w5NPPvkDH/jAM88887GPfWzOnDkrVqx48803GxoaPv/5z/fodJS5yekuPfPMM59++umHH374m9/8pqJajIGG97///XPnzn300Ue//OUv33jjjYMHD96yZYuK1r/yla+ghww59dRTf/e73918881vvPHGsmXLRowYsX37dpeHGzdu/Na3vjV79uxvfetb7g8vvfTSxYsXr1mzZuHChSqXlM1mZ8+efdpppx3ESalUsXq9Z8+eNWvWAJg5c6ZK+vQX+lndfPrTn77zzjvnzJlTWVn59ttvt7S0zJgx4/rrr7e1pyuuuOLmm2+eMGHCI4888tJLL82ePfs3v/lNl/Z+wYIFl19++ZAhQ5YuXTpy5EjVMdHZ2ak+/exnPzthwoSWlpa///3vOeEuEd1xxx2XX355Op2+//77t2/ffs455/zxj38cMmRI90/ERlKq/m3x4Q9/2PO8zZs3v/TSSz25MDGKByK67bbbvvOd78ycOTMIgtWrVwsh5syZc9ddd3384x9HDxlyzTXXnHnmmYlE4qmnnvroRz/60Y9+FA4Pv/a1rw0ZMmTt2rVvvPFGzg/r6+sXL158zjnnbNu27f7770+n05dffvmdd955cF7KpopffvnlrVu3Tpw48atf/eovf/lL22LSL/j/AQQH/VANgiUXAAAAAElFTkSuQmCC", "path": "image.png" }
Which solution has a higher concentration of purple particles?
[ "Solution B", "Solution A", "neither; their concentrations are the same" ]
1
The diagram below is a model of two solutions. Each purple ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the purple particles represent the solute. To figure out which solution has a higher concentration of purple particles, look at both the number of purple particles and the volume of the solvent in each container. Use the concentration formula to find the number of purple particles per milliliter. Solution A has more purple particles per milliliter. So, Solution A has a higher concentration of purple particles.
Solution A
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABp0ElEQVR4nO19d3wc1dX2OXdmZ/uumrslI9wb2IDBjRhCwFQDoYdA6C2hhZYQQk/4KKbmTQIJxAQI1YYQgm1MqMYNMMVg4wIuki1bllW2l5l7vj/uzOyo2F7trlYSzJP8zGq1mpndefY59Z6LRAS9EKvqmr6sa2xJpFoS6SKcrq/PVeJSJlX2qSr1FuF0NnoLbB52Ctjr5GZHJDH3y43FubvtMTjoPW3/fVyy1C1nt9FzYPMwB/QyudkRSTy3ckNS5QGv11fSp9TnCjoVtwROCZwMFAYKgoOBg4GMwABkBIaAoP+LAIj6ocTb5gScSP8XQeOkEahEKicNMM0pzSlNFEqk6kPxrbtaWqLxffsEzxg/pPs+AxvdD5uHuYF19wV0Dh9v2ZlUeb/S0uCgof5AQHEoAABo3DQCQEAEIiACcUMR9f+L+yzUVX+5KbWZXyGJn006AACBW3EMKPOPHjLA41K+29mypiFclLdro4fC5mFu6GVys6U5AgAU7AcAGbeMwLilAOIGi5stfkn6/4EASL99BgMsJkb/FaH42er0Ga9yyFJJwAsAX9a3dNlbtNELYPMwN/QyuXHKEgAgcbC4o0WwKmC8XtO45QkbP1DYPMwNvUxuqkp9AKA1bYfusCopVW1oDgFApc/dZW/RRi+AzcPc0Mvk5uDKCqfEGkKhhi3rUqmE/mzXW5W0xjdub1yxZpOmUYnHOa2qvOvfq42eC5uHuaGXVaYAoCWReuXLTfWRxN5f2gUYFPScvn91rytA2ig4bB7mgF7m3QBA0KWM6BPsllNX+NznHjis191jG10Bm4c5QO7uC8gdIwb285b1czMoQr/D+u1Na2rrvU6l+96ujR4Km4fZo/d5NybQ+qjLY2YNADwuRxe/Jxu9DzYPs0cvlpsMilURsNx5Gzbawebh3tCL5ab4/Q699zbb6DrYPMwevVluzEe2VbHRfbB5mD2+F3JTLKtiw0Z72DzMHr1YbjIomlXpvWbFRhFg83Bv6MVyU3yrgr3YjbXRVbB5mD16sdxkPvNiWRUbNjqAzcOs0Svlpp/PDQDN0bj+s10RsNEdsHnYWfRKuRHt26qm6T/bMbON7oDNw86iV8pNW3S9VYkn02DQy4aNjmHzcG/4XshN11uVeCoNAOXeXjZexEZRYfNwb/heyI0dM9voCbB5uDf0YrnJfOjFiplZ7w2abXQZbB5mj14sNxkUy6pYH9mw0RY2D/eGXiw3xbcq2Gutio2ug83D7NGL5SaD4sXMvdWq2CgGbB7uDd8LuSmaVenFSTobXQ+bh3tDL5abjO7bFQEb3Qebh9mjF8tNBsWzKjZs7B42D/eG74XcFMuq9N4CpI1iwObh3tCL5ab4FYFebFZsdBlsHmaPXiw3GXS9VWmMxAGgssRTnDdko1fC5uHe0CvlJuh2AEA4mdJ/LpZV6ZUflo0ug83DzqJXXnnQpQBAKJHWfy5aRaDXxsw2ugI2DzuLXik3bWFXBGz0BNg83Bu+F3JTvIpA178XG70XNg/3hu+F3NhWxUZPgM3DveF7ITfFsio2bOwJNg/3hu+F3BSt38GGjT3A5uHe8L2QG9uq2OgJsHm4N3wv5Ma2KjZ6Amwe7g29W27Q/I9tVWx0H2weZoneLTd6RbCLrUpLIgUAfrdSjLdkoxfC5mGW6N1yUxyroqY1AFCk3rq5j42uhs3DLNHL5aYoVuV7EDPb6FLYPMwSvVxuzP/YMbON7oPNwyzxvZAb26rY6FbYPMwSvVVuAi4HAGhiN/iiWJXef69tFB42DzuF3io3JS4FAOKJBECxrEqvvs82ugY2DzuF3io3AvrV2zGzjW6FzcMs0bvlBopYEejNRsVGF8PmYXbo3XJjVwRs9ATYPMwSvVtuitPN2bsNio2uh83DLNG75UaHbVVs9ATYPNwbvhdyY1sVGz0BNg/3ht4tN3bMbKMnwOZhlvheyI1tVWx0K2weZoneLTc6imJVer9psdHFsHm4N/RuubGtio2eAJuHWaJ3y4317gLYMbONboLNw+zQu+UGLXcXwLYqNroHNg+zRO+WG9uq2OgRsHmYHXq33NhWxUZPgM3DLNHL5ca2KjZ6AGweZoneLTc6imNVev/NttG1sHm4N/RuuUHzP0WwKr3flbXRRbB5mCV6t9xk9L7rrUpzLPn2+m1irx8bNlrB5mF2kLv7AnLBqrqmHZE4dGhVmGFVjIgaERAyRkKQwGJVMrfdsCrCNlm8VgIAUDX+cU3DxzUNg4PeQ4b0GVERKMI7tdGTYfOws+hNcpNQtU9qGlbU7EyqXDyzPRYbqEgSyYwxpvuvQATIWlkVsBoe47YSACKSyQ9hi4gAwMFAVSmlUYtKDKFZ1YIBn9fnDYcj0UistiVa+2XU65QPGFg+fkBp0NWLdzW0kQOKzUNOLWliSC29n4dIVm+tp6Ilkfpw4451O1vEDfZ7XN6Av6zEl06rLsUBRBJDIHBI6GbMJTGFoZOhgwEDREZEiChuOKIeTCMHIKIkpyQnjYgAVE5xjVKcAyAnEv8SAucEiBonQEipWigU3dXYrKmauLbxA0onVfbp53N15wdkoyjYKw8ZQyRQJHRlzUMC4IKHGmlg5SEBgMlDQNB6Pw97utyIG7yqrkn86PO4ysvLvB4nQ0QEBsAQEPTHmHFZEfS8mw5rxi3jn5IRZhs/iX+JiED3hLn+gDjpjzkRB4hGE80toXA4Ko40qbJienU/l9yLN1S1sQfkzEMzmaP/ixkPBzMEBIBMloYsKeTvGQ97tNx8XNPw4cbtwpKUBHzlfUpcDgWBJEQEYIgIuj3RHyMSEEMEAstjQkTTsqAZFQPpb18E2ah7NKQ/5uIxIXJOwgSZjzUiAtSIp1StqSnc1NgMAA6JzRwxaPyA0m7+1GwUGu14WOpyODI8ZIhEzHgMxmM0uIdgYaDxLxgWUfBN/JYbXDU9Gl1rWvvaJB5neEgpVe0VPOyhcrMjknh73dYtzVEAKAv4yvqUOh0yA2QIDIGBaVJQNyPGvFi9zohoujat/Rpr5g0tFgUIdDeHLA4OAHAyf0QubAsJ9QFO4n5DMp2uq9sZjycBoH/Ac+yowT3cp7WRJVrxMOgrrSh1yrLE0HBnwLB8goEIhl/DLP51qyKU9eioF73b+jiGylDGCgInAN3HIW5oEBc8BOBEGkGqx/OwJ8rN4o07Pty4AwCcityvbx+/zy0sCROWRL/Hhj1BBP0xISKSiKQyfg2AsCeAFudVv9GZf61+DRl+jaEypm0RPg6gRpwAOSeOoHEiQJXzllC0fkeDIMf06n6TKit6rE9rIxu046ELASSGSCBlx0MEi0fTmocmAyEvHhKBYKDu6fRwHvYsudkRSbyxekt9JAEA5WWB8vJSRZIYgmT4MgyBtbYnZpzMrH4NArTuKcp4sGQRHsOPNV9muDYZB4dbnjH9Gt22kLAtpBmeTlrjOxsaW5rDAOB3Ok7bv7qnmRcb2aAjHjKGKCFkXOz2PASw5G4yzLSWybENA9vw0OLvtOYhciAyvO+OeEgcQCPdzUlzvnNnT+RhD5KbL+ua/rumBgBcityvX1+vxykLG8KQGZakw2hZPAaLhWmbr8lojbih4rf640zkzI3I2erBWqPl1o8NqwKimmD+G02kttfVp1JpWWInjqka0ac3dUbY6JCHTPg1BgMla8aw9WOwsJHIyCcCksW7ac9AQ3ZIdNwg6Hkcw6PhRu5mT5lELjxuAJUTB4j1PB72FLkxHdd+5cFgWYkiMQmRIZgxlIiWGXRgVVjrahQIq9Kqc0qH+dgaLZvPAGT8W9L/QWptSVpZFTNy5sK2kPBxNAKNqK5up6gXHDu6cv8embez0R574qHVtQFAzGRwWvMQAFqtPmiTu7F4NTpa5W6Mp6jVM2T41614yKFVJtHwcXouD3uE3LyxpkaUGKsG9vUHvMz0aDJ+jREnZyJnS8xMrWpSRhNnpgpgejrCbpg1qczzFm9WfCBCd1rXqiwxM894OppRI+AAGjf/RZXz+l3NTbuaAWB0/5KTxlR150dsIwu05qGPAe2Jh+1zN5Y61J552FpzWrGxQx5aalUd5G72wEMNQOO0c1dzY8/gYTfLTULV3l6/bVVdkyKx/v37+P0eSUTIepxsWBX9ThupfuKigmjExkZ+znxXemM4mTk51kpZ9Je1ytqYGTujMiXcWsp4Orr6aPpdB0DGjVhaNzUABEiIHFCYl6aWyI7tOwFgnzL/yeOqek7SzoYVu+UhoMQKxUMjtjIsH4CZutkzDy15HDB0B8DCQ+R6u6DhdAMQIEekHsbD7pSbhKo988n6hlhKZlheHlRkZloSGRERJATgnCECcQkZQzBqkJlMjcQYEDHGDNsCqFfHjayNxcJkFMeAbkk4z1gVTtvSWJdGH4NhTk2oCRrdnCJaJj2SIk6gck6ImsaFxHAi3bsxNEglbGoMEVGpx3neQcNsxelpaMXDiqAiSaZfIzNEIgkRyOQhMkTxW0RkqLOrLQ9Rj6f0qoWRqQGA3fEQEbmFh5xzI3eTqVQgosa5aQgzET2Ryrnwu414ijQSXjbpRasewMNukxvzHisSur1up4NJADLT42SLj5O5uxJDsxQlWm9Qv+Wo948LiQFAq/owBNK7+/Q7rRsVNJpriAAiGnuhQX4/LK9PtLoNw1zaBE/6lJJ0f4dmrUQaTo2Ik0EjbnTicA6ocTKDZ5WTyikSSaiqFnQ7L5hkK04PQhseuhyMdcTDT+KuLWnZ7KkZ6uT7eVIBpndmZHgIhIDMkBWj5p2xf++FHCujuD4umbmb/grN8KuHBVTdl0EAAkue2ChOmU1hRHpUxa08BF1fyMjdcM4RNU6q8aTKSeU8Ekl2Iw+7R27Me+yS0e1zCXsiMyYByBJDIpkxZoRUMmN6LcDMyTHdiwGi71Ly4rBszRPPCGojXJqInxnTLYlwcohzxhjn3MzNCZvz+A7l+V2OiIZ7uOZTSxO/qEj5GDeiZeGykqYRIaqci8qU6d1oxDUS8TOqnKtE4XBCU7U+fvdFk4YX4UO2sVe05qFbkRgjkiWms46okctzQ773oh1Xkaf70udWJEa4OAq/BlpVSE1fW3g9rzdKD9Y5d8cxn0Q/K09f1Ddp1KT0lXoZxQEQ/o5mPm92nAIRZfpuSM8Tt+KhalSsupeH3SM3L3/+3YbGiFtGl8/tYLqm6FYFQGKoGxaGEoKEwjwQQ2Ym/xninAbX/BZle7qDkT0+iX5WnjqrQg3ImRyeGTlb2h0opOGvN7k+jWYl88Oc2t2Dov0cmqVMQESgp+V0M9KBd2Pe6ZamKAEM7RM8ffyQQn+oNjqNPfBQQnimOTA/4tnrQU4rS1zVL9m6009YNz1jGOHs0o3udfG9z5Ya4dYeqEoMVHS3m+sZHMO1EW41gVjfILLFRpNxKx4uiTrfjSgRja1OOgCg0pGukLTBcno/Z3KAlFI5tTR3Dw+7QW4Wrq1dubVRRvD53YqsWxJGJDMmoeHdZLqqQGLMzP+LaPnbpPy7rd4OhcYKv0QP75Oc5NNM34eIDO8GACCk4QXfOtfGO+FS+hi9MDTkY1zcXWFzAJnGuXGzRWBl9W5025LmlFJ5JBQjgCn7Djhsnz45f4Y28kdbHgLIhncT5+xvLcGPY84sDzXMpf15SMwvcZG7MX0cBFiXkC7+zhXeo+NshV+iv1XHR3q4xjNZGzFlS/SFaeZqPtFxYwRZGueAuLBFebzBG+W7Pd1wJXW2v8lPaiQULT4Piy03Zg9V0OdSHJLMRIQMMiJDlBkKlZGMx2g0E+uRFOKCkONPOzyR3X+gbfCHIamTS1XRT8WQGe+XAPGX3yrvhDo98WeYS3ukMuJjJBJ1Rjite7amL8Mz3g03M3Yqp0Rai0YSAHDkyMEHDSrr7NltFATteIgSgpE9xId2lX6SyFZrBIa7tOeGxfT1mQZdI5ydvta9LZ0tVwX8Er05MhqQdUYRZR4I6THjLN3FJiKAFg1v3+b7Ir53PruRH+6JHO5oLj4Pizo8dEck8dbaGgAIeBRFkSQECVACPTsj8nOy7tOaEqPXHYX0fBGT/1+dN3utAYDfbVbeaZEkAAdjDLhsBGj/bpRy0BoA2JCQXmlyIhrXZvQ3i74M2ahomGsvZMYYkFBViaFLkd1eFwD8b/3WreF4DhdgI0+04yFJAHreEODZlkBntQYA1iekB7cpOnsRZUQZ4ZpNrs5qDQCENfz1ZjcDkhElAEn/UoieZkDd38/0FjKEKOH1tVlpDQDEib0ZDbycqCg+D4snNwlVe/bT9WkOXkVSnA5GJIlvLEMkko36NwOQkTEABOsKKUSgHar0u63eHE598xZlW5ohkIjLJAQJ4bG63KefvdzkjGq682Ws1gPEjOJIAGb6Sc+CI0mIEgADcCuSwyFxTs+t3NBLh872XnTEQzR52MjlbPI1HeKFRue6OJNRd5Q+iUifRHL8fn0cld4LK0K5xNFMG2zqDjPXLQPeW+f5Ntk527ki4XkzVVZkHhZPbp75ZH1KI5eELo9TfAMZGPZfMjpuEBxGx7DeKk7EEMUn+49drk75NSZCGv6x1iGh0DWGAG81S1tTuRxKIKLh/JCi6yAZK7nA9MJIZLuZmXsinRmmj+P1OmWHpGn0wpebc74MGzkgw0OvM9M3bPihc0O+fA7+RL2TAQl1eHanI59D/d92WUJgqFtHWcR6iBKQbLHBDOHlJufiSC628/24b5sjUEweFkluVmzZ2RBLOSVweZ0iYjK/kxJDRkZXFTIwP0c9a6OrT12aLWjJ3R95q1laHUPRiyUhvt2S75DmD8OK0BdrJpvpNochwKaU/HHMOTfkndvseSvq+yapSIZ1Errj8SgI0BiJf7a9Oc+LsZElWvGwXSUUgT5O5LVy+p2QHOVMQohwfDunUN3EN3FpaxIlRAnMDnsw+KNHAwwxqrGnduV+za/FSorJw2KMRk+o2gff1QGAx+1kIgoVtSdj1aXEmPgEEUhCZs23oRFP5abfVsxtlMd70owhccrHtRH4LCaJ7JLGRX2dM4acU5TY3CbnWyHXDrUDKT/AlZjliwyU0xzJIUkujzMeS771Tc3oCr/d+9fV2AsPEb5JOWM5uc9WfByRZpao33Sm3LnbQ8XkKmeajEVXYryxhsCQiRUMSPRBZC/9YnvGVtWxg1xlHl4cHhbDu1mwekuag9fBUEJDm434Ai3PZDoX9Pk1ljwxfBjJyzUFgGVhZswHgGXhArxxa+5GPF4Ydv58Y8kzjZ4OtQYAViZctzdUvBT2J0FCIpciSxLjnF77Zlv+12Njz9grDxu0AnzT1iYZQ/w4u06uPWNbChmasxCIZVaKcglBQpIYfBDO12NYHne7nEXiYZfLzZam6JqGsAwguRySkYURWVu9diN6bQyVMecQ6402+iQRWJ/M9/6tjjEQezYUCCJbLPQLAR6rd9+7Pauq2dtR34ON5SmUGILH6wSAjfVNG3ZFCnVhNtqjHQ+N+TUWHjZohXD2qdVM/nxgrPm0zrhABJKRiVoEA/g0lu81b9UUBlQcHna53MxfsxkAXC7ZIfLBZhVAzwfrPq2Z+8hMYARzZhpJiPl4jCaMNQ0wWClAt1GJTJLhl/1jl/uVpk6E0LWq48HG8iQwmaHidADAm2tr878kG7tDhodiTYwxb0CfS2vkbvI/kahyFAriO2JYYrBEALqnk//3ojYti5a3IvCwa+Vm2aYdjQlVYaA4HczyGSHp3eKb0w6GYg2U2b1i6SEGQGMVeEFAXJ+JM9iZL7F8EukLLIh/EFGebOh0uq5WdTwTKpEQ3S4HMowmUm9tqMvzqmx0iFY8tGTr0ej5kgAYQj8HL8jpEGCMuwCH0leQW5x9ZlFJEWHlf5Y46X6A2yV3NQ+7MFWcULXFm3YAgMft1D8yoF3c8UXcszjh3pxulYuZ6k3u71JnBpNBi6djlsMlhAEOXre3VQt7hfBuGOI4D88zfXOwR0/PxEh6eHuOpYEvku71KWWoI+l2O2PRxGe1DYcMLu8V2yH2IrTjITAkhua6XxFPIUPoJ6n5n26MmyNilVIAuZns1ZixPtPY1wgYAidiiNxYLZE/JEROJCF2NQ+70LtZuKYmzSHgQJRAQkgQeyMWvH1X3+fCgTZaAwBLos6/7PL+fFPpWxGX4ATqLUx6XD0o7/BnjIcDEUMGQGdUaHke7SdBVZQzXm92bMtDB+dGSxBAcTCHQ+acPtqyK88Ls9EGFh7qs7IYIEMjh4h6ZQoIJno0D8uXZlP8GgCN9VKeAbtfomkBnaWZleX6aqxMV3H+qHSk9X5l7HIedpXcJFRt/a4QAEguhSHGiT3Y3Off0UCM9nTGCMd7tnvv2eGLcDQrU+LBEf58ux6n+jkiEnEEGOfhU/y5259BCp1alhZq+HpzXkagVnU0cRkBHIoMAF/VNeRzNBttYOGhw5x1recEUe+ZkhiKfgsAmubNi2ZHBdUSiUSK9/SKvHylo0s0MYsSAcQizYzi6BEAMYSDvfkaztGOlDkXlQE4HF3Iw66SmzXbm9Ic/DICYoLYLY0DatRsv5bzQ85f1QTEl1nnB8FPgvk6umf14cZkfACA6wamcz7UVf0TwuBsS7N1iXxLZl+m3BKiLCOTmKbRstrGPA9ow4SFh4wZEb0ZraMxhQ+NaOXckrzqMhf101mKgBf3U/1Sjg6OX6LbK1MieY2iRGXM0DEmyenv4ieBfL8Xo11ptFRvZEcX8rCr5Gb55h0AAA45AeyRUN/4Hp2a9lifkO6s8+rpGyCGUOnQTi7NXSBOr9DGuDUxIU24oNMDPDfF+WlZ+rRSVZidbakCfIBJELUSvTSwfEt9/se0IWDy0KxymrXO1rNN9J6GQU46JZjjesUL+6an+FTTHwlKdFdVjoy9ozJVKgMAiYqJOGBmHq4xMY4hnlKeylnUAKBC0g52xaXWn0zX8bBL5GZ7ON6U1CQAySG9n/DXZu3XWPFGi/JuWEEiBvoEvyv7JXL7ZP0SXT8wzawTtogI4PqB6dPKO2ccDvFpD1YlRNWMGbWDPLE25WQICOR0SAgQS6S2hOyV4gWAhYfM9F/a9LCYNVAwdvi+qm9seudDqtEefvvgJEO9WCQk4vRy9bpBnfY+TitXz6zQiOt20fgX2yoOABCVSHR+n9wDwPNKwmJNH4PMbm5dx8MukZuPNmwFAI+TJYi9G/fnfJwHtrszcxgJhjjphWG5vP85w1JVLj2fr++8YaTZHq1OZe/jnFKWfml4HMylFQihQnQDAWRyCrJTBoD3v9tRkMP+wGHy0FimgEY8pe9cpkdS+q6YIKZ8IsAtAyITPZ2QidFu/vLwuMEuc6cyQIDr+ic75URf1Df9SHWKiJChaVqXhqUFzdIrjY6lEWGYMjP/GeLV/ZKj3LlkcA73JSZ7k2DsY5NR4S7jYeEL4QlVW9cUAwBU5BVJX2fDKCu2pdn/Qo6ZJSoa+5+OcWt/rY7fsCXb8Wh+ie6qSk8LcCBgxnR7czMN8e/1A9NTfNrsOmXp7kvjgxWaXRWf4ucEhAic9ObRErkAjQ9VckqsLEcApyKnk2ptYyihavYqqnxg5aGocuqdXEBmZcfIg+iQGAPiyJgf6a9V4Yd2uF/IonXzgj6pawekSmTU57cBifn8IArYiNcNTI/10K1bHLV7XKk3WKE7KlPHlKj6LjGcv9ToWNgsLWhu+yUd49bGuPmtg5MBpu/D+K+hsZ996+nUQq1qRb2kLIJGFZwx4JwED1mX8bDw0/yWbtz+3sb6gAOZW/lTuP+GdKcnFVlxbnnyloEJNPfPRASi1Qn5ko3uPd88ABis0D+Gp8Z7eNsd7NpB/GpVFF9skFYn5Jok1qZwsEKDFT7WrU3282NKVD0CQ3P/BiCizSk8bE3u7pvASf7w8Z5QWt/dmWJxNZ1KT67uf3h13zyP/EOGlYcORJmhLAZfMZQRP015vkk5NqaUVQm9J2N/V7q/g//Il5rhS0nGcL/taemBHe53d7M8+KiAemHf9BS/ZiwnNufwiw0UM8+IQvYLDdKLDXJ7qzbGw88o186oUANMN4eronh7rXNpZE/f84BEtw5KnlqWFtsQNWt40xbX26GslhZO8SSv7RP2MEpzrnJ9W3ExQb1LeVh4ufnrR183JbUyjwyyfFVjvlv2TfKq/xoaNXq3jb3fEQDg5UbH3+uVNR1NnB6s0MX91Iv7phjTp4UK53N3+/uY/g62fQ0CENcnHAu/ptXMaiCYvtq/tfMT26y4s7x+sENNcS5uc1KleDRR6nVfdoi9YUPuMHjoAIekCw2CQ2Jrk87HW0p37n415gCZX1QRO6k0Laa+SQhhDT+OOdYlZZN7gxU6KpgulQHMvcAZs+5aZxxMXxnBDEYhYouGqyJgcmycl4ISmftMIeKLu+TbapQs4/TJPu2v1fGgRJrGAXFBi/THbZ49jBD0MjqnNPbTkrhm7JKmAaY1Lkb3awQpjWv6XG2KRRMlXvflheNh4YOppqQGAJokyYXosBalH2u8CqDv3XN6mXpGubolicuicm1ST8cMcmhT/XyIC9p7NB16N2jhgdjOp/VryNyRSvzefKyPqwY4tTz1yPbcPbgKSdtHUVXRJypSDIwDQFPUzhbnBYOHTCZCI2vzbEtwYWwvA7TqVHbXdt9n8eTdA6OCcCUyzAymj0FVLxEw3X8BQmRIlh0yucFSMpbgtOdhgPHpQSTKtH2RJRczv1m+dlMn6LQsIv1sg/tfQ2MBCTnBUQH1YG94XqNjRVSqTUvWLo3p3tR0f3qKJ+ljpHEjO46ocWMVKAAHMPuVBQ+bC8rDAsvNxoYQAHgkAKCtWl6TigS2phmz7ocJALqF0e/fECdUOfWq09dxKaRBbQprU4DIxrh5iZzZEbXDeCqze6HlNQDQouHSsLSwRQRWrCaFU3waABwVVI8KpkXDqLikX5Qnn9qpZD9qvw1ODYT1/Bznoj1MYkx2yGpa/aYhMqoir+FyP1hYecjELFqEv4VKP4pnO3z2jRbn+qQ0b6gR+RCYnS+kd9+JJ8iqNczYA1PP3XQUxe/hmS1JvHZTp8u4q+PSZZs8z+0bYYhEUCLRLyqS51aIKf24LCINc2oepu8UIvZvQAQkZEicQGKoacQYaprQHVH54qwLeFhguVlf3wgADplJiFVyAaafDnJQpvLHjJuod0kAAhJATYo9WKcsC0s17bI5R5eox5Ty08tV2L13A/qGh0iGd/NCg/RQnbPN0UQgvTQi3bHVeWpZ+pp+ycFOTgSlMlzdL3X3tlwcnCGKepgnrpFuFZnYcZFIdkhqWt3QHLXlJjdYeSi8jOfDJdlrjcDahHzzVu//GxTVUy+6zaOMmBjdOoKH1q4uPYljia326mUDwLWbXbnVOpdFpEUh5ahgGhGIdJ9FYkicDvaqGoDKQfQia6RX0/XzAoD+em56Z0xMfeGF52GBC+E1zVEAAEkW9cX8MUjRzL4ms6MBje1NCei2GmXKV56Xd8nttQYAFjTLV29UTlnr+irGsG1cDQAZ30doTYizU9a6fr3Z1eHRTLzS6Dh2nfeVRkV4yxf2TeXQguhhdFffJr3Sb/jeSGLmMQJAbVO4s8e0ISB4SJIk1gGsTbnezqkh49/NyqstTlHPEjwEaMVDsQ2rSAzr8wYswVGbWF4cc3c8/CjE9lAb3Svu3uo0fH/U+wMp01WEAGLXo89jjoUh5dkmz6st7lUJZUeamVVw0Ou/ZLy+8DwssHfTmFQBkDNyMAkBJijxz1PufA44xq3p/qrRkSWAgC0qnLbeszqL4t+SMPvpN8pD+6SOK+N7yN20aHjKWmc2BwSAkIbXb3ER0GllaSL6/cB4WIMs6wIA4GF0T/8mv0SqZkbLwMWu9QSyDADQYqdvcoXgIRl7eM8Jl+d8qP/b4TqtNJWxeaILDM20nt5xRwDI9FxvpkSVnXcjnvl7fV7zKmvTbHVcGu3WuOG/MGScuLBhn8Uczzc5P+ioxFatqMf7o4e64wyBc325hOj5kQrNw0J6NzWNIZVQYSDmDSPgSEcyz2OeUmLc6YxVAQBo1uC09e4spQEAQhpe+K1zcQu2typmGHXKOlf2BxS4YYt7QZMMiEGJHt8n/ovyrN7veHd6TmXDMKcmZrWBUcAwrAoCAJMZ51Rrb0TVebTh4edJzy6ee+fI1jSb26SYKyR1HpJu+YVqNGv48i559lb59q3OC79zzd7m+Hu9siXZtlIhDtjeuxHPfBXL98v4VshButYAQyDiDDCs4SWb/ZfX+DvUGgDYmJIf2xX8ZV2fTWkHtvKGAAvNw0LKzaZdIj+nV6wBaLon6ma5L7w+2KuO8XCRptPvMOrl5+s2d1oaAOCCb52roq3kxrQ8t9Yoq3O63zfWultU3YO9ZVDifyNCR/h3G1j1k/kNfcMPDGj2M7AwQ/d+jTorMUSnQwGAb3ba8VSn0YaH69L5zm1ZHnWAkQM2h4OKvuHVcem09Z5xX/qu3ex6cLvz7/XKgmZ5dp1yW60y+SvPIas8bzZJJsfE0TrM3dSk2F77yPaKZRHJEkkBY2xNgl202Z/NgNGdmnRXQ9kHMbcZ1wNAwXlYyGBqeygGAJJDItR34/Yh/6k3/Fw4mNsBr+6bEPk4fbUIifoivtzkWJjTzi0hDW+rUeaOTJjPmBWBnF3ZkIaPbHf+fmAcEYFTpZP+NCTSorFFIXlrSqpJYVjDYU7Ny2iaN9lP1jgAJ+TEzVqGyNLp7g0XVX/uUBzxeGJLUwTAbvbrHNrwsFbLq9EUAP4XkoEIGQNdcXQX+7Za51M796RlNSm88FvnFJ/2j+GpoLTbyhQA1CQLkekEvVIGnBChWYXzN/mzr5nGOHuiucRZwic44wBdwsNCyk0omQYAbqyoFPfmaG94bUr5JNnpDM6V/RKT/ZrZcUP6zC0AogfrcifQkjD7KMSmBVpVvv9en5cB/EeDclX/RIDpvTkMWYDxk4IpDqCSvmu46KrS9P5AQBBVACs/EHXzyRljGhEAJNV8p5n8AJHhIQGTcF1+fe0AENKwVWUKWIuG1212LWzJykQtjUhHfu36x/DUWLcGu8nd5HmFJgwtA+Jw7iZfDv0ZT7aU3FimDpTSAIXnYSGDKfGppSjTmyscs8tLmoc4Ole4Obk0JVwbMvLEhicKS8JSnm7ni7syIiuO335ZSmexLCwbnUFmmlA/g5hYCoB1abYw7Ppno+eBev9fG73Pt3j/F3FFuQSgyygCodFPRJwDgFbonu8fAjI8xIJ9k43IV1ec22udWWqNQE0Kz1+vtGiZnHGb3M3gQgwbBb1iiwAwZ5drbU57XcWIPR8OQoaHBIXjYSG9m6aUBoCMZfIRwuv0SXRnn8Y/NwWXx7Nq/Du3LHHLwASAUdMDs1OAAUJuYZQVC5szt0FEUvmHzSui0sxgGgE46N0NoKfckIhWxh1PNrg/i3dM0DHO1E/94ZGOpJ6k4pwhpkgDgJRmezedRjseFgCGzUMgeGiH85XGTofeNSm8YINz3qhkh7mbIQVoiYXBir7kCgEfq8/dp1ubcq5Nu/aV4gwxRSoUjocF825UVVXJKN0b/f5oLMb3S/zmiqZrKlr6ynu67hEudc4+kd8OiIHZSGV2JRkLB1Yn8pUbaycVERUkbF4dl8Hi3YAR3oc0uHGr71c1gd1pDQCsTip3N5Q/GwqgxdOWJQYAyWTuE8V+mLDwkMTnObgQ7abmrJkWDZ/cY75mD1gSZi80SLvru8lnmq3AFJ/eNfJWi5xzm7vAkrhHdEhLrJA8LJh3Y1kHILLihncjNIcAGf7EE5/mSX2VUJbGnRtS8ndJ/ewHeNSRzvQkj3pUMM2MFVK6bgEQEBPVx0ySLl+Y6RsskPUDMwtD3OgHgzDHS7b4s5wuujDqW51yXlfaoIAqukLF82lOjgJuXPR9R4aHRtWvSk7nNuDNxE8CaXP9zMPbs1082SFmb3WcUa522HdzRoW6NJz7dfolOjKQFhW0RVn3f+0O61JO0md06J9nQXhYMLmJpdIAIInqkajyMuE6iSY6JlYh+JBP8yUP9SYlCRnpe0g5JMaIy4wBAIqZI2JrKRLtDYwsneOFumCBgmXpyOhhR+ScECCk4QWbstUagZq0489NZdeW7BQ90wJJW246gwwPjRWSE53xJYnOLV9og0O8qjkvYGEoL+WqSWFNilUq3Ko44vHRJZpfopy9kqOCaokMnBMi1uY903YXl0xfWzxTEB4WLJiqDycAwCuboQ+S2eutdyugMScGIsAWtDjvqQ9cWRv8VW3w0s3+27f7n210bU0x4jzTJ25EY7q/A0Y/QN6odGbudLAQkjvIyc314iJf8LutnrWdn5q+Lu18KRIU/pHTqQDA5qZoAa7vBwOTh6i7yDjSkSiXck89+CU6tUx4N7Q6Lm/NO803v0nqcM1UUKI7K3OM+/wS3TYoQfq3jEKFyDvXqA7RnlFAHhbMu8l8fAQo9sZlaAx1JqFriLg9Lf2rxbco0jYztjIO/2mB+3d4DvaqfxwYGeKyTmBkYgWDOFSAcYB8x4tVGXJDROM8PB+rIjDGqZnejcZpeUR+J1fH+N24/0fOcImkf6BpXmCH7vsNyyI4QAZE5JPoZF/L31vKcjvg+RXJgN6qyloKkTAN891OJji9LL0kLL28q9Pfyr/vEw8wjsCIOCKG1QK4ETHOiGW87ILwsGDejcUztKwMANMlIQBYFHX9qq6svdZYsSIq/2R9yZydTtDDb927MQ8/syTfnS6sOTnTj83zmEeVpMmyE9CfduZVaZgfLzEHnKq22nQGrXko5lrBoa7ogc5c2vBHubSr+iZAX6xIW/PexxUAvopih1oDAIj4yD7Jzo7rn12VmOI38kGIBFSQsvpIJYl6K0HBeFgwubH0aGcUB3QfhQDwf1HXww3BKM/qjH/Y7r6x1kNEImYmMFWWZua94ZRVXEyrks8BD/FplQ5u3u9mFT6O5uU2rkq5TKsi2XmbzqAND7k+qxwv63zz10iX+uy+Eb1aofOwMOhwzZT54yP7JG8fnNV2Ln6J/lYdP70sDUa3l6jk+qV85caNvM11FoSHBZMbJhK9AEZZCU2xAMR3oq5HdpV06oBzm5S76tzQLncTkOiCitxXfvolOsOyvaH4NKcF8tpU85p+CdD7HYCI/rebtXDZI05sQ0oRoahcqNrZDwMd8pCAvIzfXrFrrDPb5MhIl/rMPpGgmD1uGM5KRwG8hrEe3mHuxvrg4r6pFePje7CsfokuqEguHRs9ukTVh7Ejmrmbo/KOAEYqSTBniRWOhwXL3RjeoD50iIiAMWEQdqTZU82BHI45p8F5iFc9pkSz5m4Q4NcD0y835ThA766qdFDqwI99aEjiyDXuHI55fkVyqp+LioDI3dQWopGnkRyVEAfbu+kkrDy0VkiJyMO0u/s2vhjyvR72xHbvZfskOrcscWW/BOrr9QRJAIANKkSQUukk2k3uxlqrCjD+1NDEliTWJHFZVP46xkRT8hSfWumk04Q/TmSWZYg4op67+Yk/DZDX4JcJzrjwmArrZRdMbnSrQiDWxaG+ZgoA8OVIIMsYqj3+sM19dEmYAZqL4wgoyPiT1fHTN3g6e7TTK7QzWgfG5j0e4oK5IxJHrencTToqkL59cMq0KmhMt+7shbVHoyZz5ADgUQo/T/p7jAwPwaxamN1aSEQ/C0ZO8sfeiXmWxZxfJlr1pwx3qrOCqZNKEqUyENe/xoiZemilQqPd2pqcFgeYmOLT9pC7sT5DRFVOqnLSVH8rd96sgYoJCeKtZnI3RCUS/KI8+fSuHBuLyyVtmjueFp8A52I7gILwsGBUrir1AkCTCgEiQOS6dwObUvIHsU7rgonaNHulSdHnGwGIwXeAOMWvPTgk8evNncjIHl2iPbJPssM7LXrDxnnordHxU9Zlu4nVqWXpB6sSnDjqc4yQE0HhNrdIp1QAGOgvRH/7DwYZHgKA2DnD/A4bVsEn8ZP80VODMQSIA/s2KY90a0FGov/LwRgRoMSIOBg+tdFiSjODaj5yM6X13H7xJCJuTsBbLY75TUwMxgaAgERj3fzoEu3IQGqIKzPZ1lhFaLpw4sJQeDecc/Eer+yXnNusRHKKAM7yt4hrE3xOp9JQIB4WLHcjy6Zy6XNbiYgIVqfyvcqlERksuRsxqggBTi9LvzQsluU2vhf3U/8xLKM1W5I4v0mavc2xNCJtSSIaSyrHurVFo/cUMwv4JZo9JPFgVZzAwgC9mNS2Pz03DJD0LINi9/h1BhYeGrkbs7iiT+BDcwQoInqRT/Sk/YwAkYxdDxFFd7K120s4THhBRTKfPbmvH5huozUtGl69UZn8lefWGsfSSGbedkjDpRHptlpl6mrfNZucgqVgrvA03p4oRVl5KK45IPHnqnPplDnZHz7QlbCstNCvsyA8LKSj7kBIEyjACSRuxL2fJvOVm7dbZKgUFT5A0ouSwkGe4lOXjY0+uVN5sG632dkpfn7dgNT0IAHgCw3SSw3yklYTYR0AUKnQ0aXqBRWpIS6sVPhTQxNLwtKLu+RlEbnN6s3JPm1mUD2tLB2UdLvJiQMyMqwKAo5wqgD5Dj3o4+CQANlhb6TZaXTIQwD9i5OJQfSpTJnHwJATSYxxAlmswkGm+6sIDBgRBSW8fVDiui25ZEZOK1enBbhZRSKir2LslLXOva6KeLnRsbBFfmlYbJy5RyOY3o0e7Gmc61sr6FqGI13qHwfH/ljnzt7HOdQTP9kbUo1PiXPOmARQMB4WUm5KnVJ9QnMQJk3vBjGax6a9AiFN+IrA9PoAmZ08ohfzugGpC/uklkbkZRFJjEAHgADjUwN0dIkqfNctSXbNRmXJbkZP16TwbzscLzbIF/dNXzcwTURT/dpUv0aUAIAlYQkABis803tu+NgEgMhERs30bib78u3icSEfJGktAB5HvotffoDI8FDkboAIkADIOn4W9WUOQmXEt7Y2hQ2aLHYQDzIY69bMKErfGBORgE4rU7+Op/Y8WKs9xnj4XVVpsORlPgqxC77du9YIhDQ8eq33b9XxY0pU4whGUklseWXZ8co8y0nB1HBFvarGV5dFx9AVZS3T3bG0Jg6pR2cEDArHw0LKTcDpqE9oxDlJjHMCiRFATboAF7oliVVOMjofRCeErjximkyJjMeUqMeUqNaConlXHtjmmL1t75cR0nB2nVKTYrcPTpobGxLRFJ/KGOPG/h7GBFP9SjjnyJiYj8U5AYCP8R/70++Ec3/j45S4OFSJ107cdBo6D4kDMs6JJEb6cAEAMDpojKwqMNyWYq+GPIsjzrrWzbh+iX7iT/+0NDXFpwIRIhOrhYno9kHJkIbZj6EY4+HzRiaDkjCRSERfx6ULvu30as/rtrgqnfFxbk3/HmSiOiTOkRm5G04opqAgjHJpL+4benaX87kmV3Q3p/uxL3FaIFKGaQ3A+KwIADnnHBkUjoeFlJugW4GWhG7mGXIiBuhmPJ5rWcpEpdPo9xMLr8FYS9V6l8L2DwDgxV1yNlpj4qVd8lcxXDQ6bhoK4bsaK9aY2XOo/5ZZuGvMsr+pfzxnuXEhP9nbLIjks8tSnYfOQ9L3bMt4owCcSBKRiIhoGHu60TOvxRPhHXwPwxq+2qy82qwc4lVvGZgY69aEdyNW8j1YFZ/i126vde61sHBR3/RdVWlzFaFg5lUbHTmsLA9pePF37iVjwhmfGoCENhhT3PTndfvHCcAv0cV9EueXxz+NyZ/GHGEN1idlL/J9nVpfWTvYnXAjpTlXCYSRE1pGRIBMXHOheFhINg8IeGF7KJbmKBsVAYQqOb02lW8iA/Tvs4hT9T5PIe7WXZnN9JupQfOb5Ws25rIt4ew65df9k0bCW99RV++k0s8Bup/FOTB9ZanIMmqcD1Lw7LLEc4252IRjPCEXaKkkB4DBgdyLej9YtOMhIwLSbQczFIciJN21LfhlYu/0WB6Vz/7O+9d9YpO9qli1CAAAeHpZemZQfahOWdji6HBC28ygemdVulLh1nolIr7QIOU2hx8AalL4cpNyWlkaEbh5SDN3oysOJwDOOQGuSbAWDYcqqkfCCe70fu40J+BEGgEn0IgTYFoT8ReI6ySjoYcTTydVKBwPCyk3g8v8AHVRjXxAgIwDEEGFpK3N77Cj3BoY+0yBmY/Xu43ByJ5k9vcBI5IKcXZ7TY4Nvg/WKVN82hSfKvTNjN0yioO6WTHusagaAtdrH3RD//iahLwyiyH4Vhziih3mCmvAUukkAOxbYstNp2Hy0Au6N0oiGQGoaw1RhOTf7ijZmMrWAw1p+LNvvf8dERnj1lD3rQkAS2S4Y3DyjsHJr+PS1wlJdHgGJBjr1qYFuNXLtmZVntiR1/fuoTrn6eUigwPGIQ2aAhLQmrg8t1n+X4vSZpHXRLc6zZuaGUx49LYkAkCx9Ro3PC8y1kYLX76wPCxoqtjj8sgYU8EJkOJc5G5GORIfxfO61slea27MmPNnVP4YABFnjJmNCWB4Ny/s7GAb3+zx4i55ql8DAE76bu2mspApOQiiry/jfwJwIgIkogcGR66r9X2WteJMdsVO8TYTADKJOCkOqdSd73qIHyBMHroAUpxLEiNAIuDmtwvZE42+7LXGxFnfet8YEakSO8RDhmlENM7Dx7o1wUPj5ZkKlLXyXZNiObs2xhFwcwKqnK14KHI3zSr9YZt7XlPHtPksLn8Wl+c0uq+oiPzEnwRATmKEvMlbPckljlxwHhZ4096BXicAME0DRE5ARBOc8Xy2mgKA8ypSZmYEzBWfmNkjHBnjlEnCgWFJXmrMS0xfaXRsSRpZG8jMPDeiKCCgzDOG/2l0dhAH8En058rQaSV7X4vsZnyWL3x+oMnNOBGIedR9/XkNhfohoz0PxT0S36gv4453orlUskMa3rjFvRceGj1cYKlXgKVjuM1OZ7nhrZDSnodfx9jh3/h3pzUmIhzvq/ffv8OvqwznZHT0iRSpXsXrAh4WWG72KQ8AQFLlZs7Jg/wkbyjnA55ckqpUzCKReE5sW6DvES4eG5PY9dIgEeVvQwBgaUQytAYyfeIA5pXofasA3PA/CYFzo/JKwAGu7hd/YZ+mmYGkl1H7U7gZn+6O3Vm+8wRPCze+D6mUCgD7lueyrbUNsPJQ704A3btB5ESPNZXkfORlUVk0RuiZO9GzY+UhGTLUeiWU6d2s6fzQtfYIaUY8ByAM7Vcx9rNvPdmnnxdFnHfuCAjjbMRT+r8cSAyLKzgPC1z4GNa35O3v6uMaORE5EUckgpme8OKEN4eKuE+imwfEOWXywaSHLGisZ9E7mLm5Ul74IYgFGXhem2K6XwNGj4aZ+TdsJiKaca/I0gEi52R2snJOAxS4qW/khr70WVRen3JEOBJRuaSVM3WkI6kSqUQqRz3FgJRMJgFgXB9bbnJEBzwEEJHUFlXZqeX1hX+lSZnmT4hmF2RmRk/f6x2NVlxs59200Z08YdT1gYBaVDz7O29nS11Lo84nmO/80rCRGxYZHJ3nAJBMJqCgPCyw3BhhMwU5T0kSEXAETvC70oZrG/p1qiLuk+jpfcJ+yVj9aPRQG0kxI3fDmLAqembH0Jyv81tHJ1CTYqjv5ZJZjZKpCCAigcaN6FeoDKBGRILlRnZZ0+tWsJ9HHedOc4I05xwwpXGNZ6oApFtImTgpDjnoshM3OSLDQ42nJIkAdM+R8ONEvi0kK8Ky7khb+jBEZ1aGhwBgdKKaLBV/XpA1LgCZJRYAeOc2V24D2/8T9kxyJ0coSTI8dNPHwS7gYYGDKQAYWuYDAE3VOOjfNwJwo/bH8vqqrOcb+ST6x5DwaJemfwpGzAJgtBno8/2MddhG+6euAwCBvCcMAUBNMrP+CwCJk3Fe/Up0/xyIAJeFpX/ucv653vl6s/PjqMSNoUwinteXKBMR6fdVM2Jm8e7EV4IAUqk0AFTbkVR+yPCQdE9TfNpfJ/Nty6hNY4uGZt+Vma3rkIcZr1wfmgOjXQUYQepnptbA0jCb1/l9r0y80OKFTF2VCLuQh4XvIjtoSP9V9eGmlBZwOgiAA3FCQqiQ1FvLdz0TCr4f20uW7gCPeueAaJWTcwBmdtwgcgJmNFmJPcaEO0tETHTfGevFAaBSKYDLKiYhcS66uTkyNFXPTKo9ssM5r1HZmm5rW3yMDvWlTi1JDHNpogNCz/wL3uvKxQlA44bWEBBiIpEAgB/v2y//6/8hw8pDrqckkBhYW3FzxtcxNsXPRcnYiPQNHhKJdlRTZQiAGboDAPv58j8/TParYAz2fGVvueE9Y3VSqUuzcsb1yh3Xu1cTiRgUmoeF9276+92lTkkl9HDOM1YFCNCN2i9Lm2f32/VjX8LTUd70UG/qT5Whv1SGBiga17+ZmTwWoCj9GFbF0o3OiYtQSk8MIgYKsaasUml1Ll0jjN8ujUiHrfY9tsPZXmsAIMJxfsh54Zbgo/XuCJnrqkx/FTWLR6P7sQAikvK5lRI7ksoPrXlIltxEgWAUoU2GZLwb1Es8uncDAADImFCfSoUPzs8WDlJorJsb58XlkXydhk/iLvENNTmJKHUFD7ukR36/AWXvb9qpplVyMk7IgUisaUDkRPso6auczb+uYN+l5DhnMWIBiRDoQK/GACTGOBAHhkbhm6HeCcqJmL68zvRRCcFiVYwGQCIa74P891eY4tNA72BmBNzIFgMnunOrc05DVm753Gb3Z3HHAwNb3MhbR8goRhcZikOcMJVMAcCEgeX5XLYNAQsPFTN3UxDB8UtkqomolCKI3A0TITSaK/sYI2OqrMnbi/upt9XkHv6cVp42s87NGua/F82nCddPPBFDa7qQh4X3bgBg7MByANieJKdI31g8FA6giW8a0VBF3c+dnupN7udKTfCoRhZDjzu4sPyIGhAAfB1nZOkLAHPlCxjejbk41si2HF2aV/pmtIeP8XBjJnbGkyKA62vcWWqNwHdJ+fqtQeEZcSJNvDvOeatPBpkkJeIJANivXzCfK7ch0CEPPViApN5ot2bhIbXiIQC05qE1qhJV50sHaDk7OIMUOl90ogEA4Op4Ab7C1gxxl/KwS+Qm6FJGlnkBgCdVTqARcUJuqAyRyJKKZ3SnROxRKx6L99yi4rO7XFdv8Yz7qmT0VyUnb/CP+DIw7IvAzzZ4n6pXmlUAs/asz/jI5FPEPb5uQF6bQ1/URyS2rfVvJKIndyo5ZOa+S8l/afBwiy9jVK+QcxK6k0qqADC0ImjXpAqC1jwkUTGckNMOMFaMdGtm322GGyDWYTMytm2ATN+NORMLwVjl9/SIHDf/eKAyHpT1egk3+xfzBgcU8RTnXcjDLpEbADhiVCUA7ExyGbipmkJBxV0XdRkzl6F3fxp50+cbnSd+G5y9w/1uu83hlkelu7Y5f7Ta+3Cdw+g2Foqjv0DEtJxTlROuG5TjSPrJfn56uUrCTKGZIaJmDR/dnuM9eD3k+SIucyLRlWNWpsQnw5gUi8YBYOaIAbkd30Z7WHioc29/ZyLPY55ckuZmZR2wWYVXmhwXf+ec+rV38KeeypXewZ96j1zjumajsqBJ5pzMVjFzrQAijnFrD1d3WnEeGJKYEhAhuFiNUYi8NwBYIg+UupCHXSU3QZcyotQDACytaoamcNLVxPBuDK2xxBRhYr/d5n+0vuOZACZCGj683XnMN+4WzsRcZMO7MepWiAR0/UB1jKfTzrNfotsHJcWNpEw2mgDwHzvz2pH+PyHdwdE1V0RVRASQTKoAUG27NgVFax4SEbhBm+qK5XxAn0QnlqRILzLik/WOH632Xr/ZtbC51eDH1TH20i75gm+Vo9a4PmpBwXDQJ/wzUck6o0J9uDqr/aQAwC/R/VWJ08o1wzYLxYGDvQUoq+tZRU4EkOpKHnaV3ADAtGGDAKAxoTEgzfyOGT6byjnX10+DRhwAOUCIs6tr/Iuz3qdpTVw6Y50zxJmYbQ5GYwuZdxdo3uh0pxTHL9FLwxPiT0gATb+Mz82jwQEAVsSd29NMr0wZMRQH4ICJRBIAjrFdm0LDwkMQPDze05zzOr6flyf9EnHAZhXO3uD5w7a9jOP7OsZOW+d6YKukezcops2Krk48vUKbOyo9eW97nB3i4y8Mj59appo8zGRbAEbk3cgzwZXQisLDLpSb/n73kIBLJeTxFAfQjEobFxETosZJE50niBpxAPi/nd5vk50rlgnF0UuPhp0w8ywE6Ec+d1R6Znbb8h4V1JaMi4/1kpkINDsROEFBdqTfmHZwveKo5240olRCJU62a9MVaMtDTuUSP9/flMOhjgumLq1IaATNKpy70bsimm23xextjqu/dZjejdiVTJjGsW5t7sjkSyMSp5W3zR8PVuiUcvWF4YkXh8fHujkHMmr5mbwEJ5rkzXcTu/FKXORuupqHXSg3AHDcuH0cCM1pkjROImesaw1ohnfD9RliuCDkXBTOpeNzTVx6cJuDZ/LExqozI+cSYPyp4emXRyT34OYMVujFEYm/DU2IPByIRX1E1tVrzYXYJ3lzWtY/B+LC4wOQEomkxNB2bboIrXgIqBFNdMYvDHZOcYa5tGv7xYV/dNUW79pOrpJ5aZf0wFYZAPQ9grg+t0nE/lMD9FB1aun4eM2BsY/GxT8aG9tyYOyjcbEHhyQn+zUCMjISZn4TdfsNcFZZypfH5hCT3TEXco2IgCUSSQm7kIddO5sy6FIOGFS2vLYxEk+6vC40VEDl5GBM44RMLIJiQPRsU+7r3OfsdJzXJ10qEyAw1NfmEpGYCSC6OacG6a1AsibFXm6QtiRRRNpT/Fqlk0Y7tbFeMUIbzdyeNZMtdpJaES3A3GVR1DD8Gq4RiczclOr+tmvTRWjPQ41oqivmRnoyVJLNUr6jA8lbB8YRSAN8ot75SdZ+jRUPbpMn+/m0AOdtd9FsNRmnUuFfx6UHt7LVCRZSkQACEo128yP86dFestQ09Xxofwc/qyz1t525mGo348d5w8JLigoe7tuFPOzyUbg/HjH4qx3N0TT3pFVNkRkyjQiRqZzLjHEAJFA5/yThrldzd7VCGs5tdFzQNy1WJolVkeZKcXM9CyIOVvivB+rNpeY9JmN6hUVrEPQ1lmbUU5i1vBFNRJSoceKEmkaaqvncyqFD+uR/cBu7Q4c8PMCVGCLX/zsWXLz7hTX7OtWr+sQO8KickCG0qPCvxtxXXT20TZ7iT+pstHQe6/ER4ku75Ie3dTCKdFELPLpdGeSgX/ZPzgom9TqDkRK9sCL+blje0PnRFqf5Q6WoqoRqUXhYjMnbJ4yueuHLTY1xNSjLGhCTmMY5SowTaQQAwJAtieYrqMvD7Lw+gGK3VWM3dabPiIavohjmbGkLBmQc49b8EozzcNFlgGjMFiJ9prQeixEAiHwTB0CNYLi7AB1ibkloDeeIqkaxSBwAjh9Zmf+RbewZFh5KGhJDpnJeIcMlwaZT/eFv0sqncXeM65vRI+L+rtR0X3q4U2UIYj9NTvBGizO3rSkFlobZ13FptEtjTN+3gwsLCRTS2BlrlTV7bNvbmsaba1xPNzj+tk/Mx/TshDCWj1WGf1Xj/7YzinO6P3SIEtWKyMNiyE11RWB8X/+q+nAimnD7XIwIGWpcDK0BBFA5r1fzXeP0dkjmkEQAJDEvghjipjg8tl15q5m1Lh/IADBYoVPL1fP6qgEj7hW1QH3li/gRSF9kQMAB+ssFKDqWMVUj0gBUTYtHkwAwakBZdZk9uK/LYeFh0u1zMSREVIkQsVzSfiTHD/ckZMYkBJkhQ2CAYiQ+ADAAkWz5byhfu7igiY0eqImZJAAg7NzqGLv0O2eH89XbY21cOnOD777K6HCXZuQWwSfBI5Xh39X6vohn9aU+L9h8sDOmUVF52LWpYhPHj6sudUpJDmo8xQlUrvcU6b2egKuTBUiLaGK+PKDIpT1U55jxtfuVXVKHpcraFD5c5/jRV66Xd8kaJ5EVBkSRw9aIxNE0AFX8y2m4i+eTkxMY5khqBBpRMqlpGve7lZNHD87zmDayhJWHGoFqdCSIey36MzLPG76DqGaILF6n3IcOsTTMNE6ETFBO9I5ev1nJUmsEtqXxjm3uFtWaP+Y+Rg8ODt3QL9pP3pMbPlJJ/bGifrIrxgFUomSieDwsktwAwBkThzoQImmupVQCUDlpog+CQOUFCFIAxEYWoBE1a3jZd8pjdVltZXfTZuXurU6hUyrXsyoaobg8oYwqkQaoEv3In1fRcZAjXco0jUhVIZlISQx/PnHffA5oo7MwechTqq4vRoVU5dyoLoNq6Is51UAjCuW9YxoYY0b0yiwAB7j0W+eeY6gOsT4h3VTr1Wu7lr78I/3JP1e13NI/fIQ/Oc6VFqMXqhR1lDN1djByR5+GG8p3lUmq+KaoKiSTxeNh8XZNK/W4jhtd+drqmuZYKigzRZL0yhQAIivI7neqMcb8io2uTyKdONrTOx2c4DeDkmCu1c5UplDM6xP5nQvKE2825+6IHecNawCqCtFIDACOHzPEHjRRZLTiocQcsqQZswcQUeUkM1Q5oYRE5ECzXxQkhPWFWA+5IsJUMUGJCACWh9mKznDVis9i8qdReYJH5WKCkqE4HuRTPKmD3cKP5hqBxokDpDUubKfw34vPw+J5NwAwun/p/v2DABAJJxKqpgGKLgaV8yFyvq1KPomEM3JPrdIprRF4psExr1FOc9IA9TCK9JCKW/zV/go/vyLHRTfDldQ4Rzyl8kg0BgBjBpaN6RvI7VA28kGGh5FEUtU4gQbEwRLjA6ga16P+zKpaqC7EIL5JPs5FVz2BRjCnPq80wktNiuGCGdNqiKyaonHjGVGdIOCEKqeURoKHY4vIw6LKDQAcO2bIyDKvRhCLJFIaFzkRQhws57V6GwAO8KgaUU0K/7UrR52+b5uzWWMqF1pD5hAMvdzI9X6H8yoS+7s7LY6DHOmLgo1pjaKROHEaWhE8cZSdsuk2WHmY1LgwVKIjTPcFzMfC5BBxAG8hhlcQQJoTB0wTNanwTiivZNBHEaWFIxn7YepayYkTpDWuEWlARk5A1ziVyMrDWUXkYbHlBgB+OmHokIBLI0hE4yKDk+Z8hJLjenwTPwqonODButwHX4c1fK7BkVnbpYf05ipK1Ix4/s5BkX2dnTB0ZZJ2UaBRIS0SiROnfSoCp+83JOfrtFEQtOEhB31efSvvhkgl0DhpBgeqnfm64SNcGgdMc9IIloULMHTys6gjsybG8MhU471oHDSj1sEBVSKVk8HDYJF52A1yAwA/nTC0zCWnNIiFxZ3G/ZRYuZS7p9rfQdN9aouGH4Tzyka90eQwOsT1ZaViUk9mDTcHTuhB+mtV6KSSrKKq43yRm8p2ljI1Gk0Qp4DbefIYu8umR8DKw7SmxzjWbybXvRsQno7Kaao3X7t4fJlmasHaRAG+gN+mJAJQORdSIiprHEDjnBNqRCqRpns3pHGy8LDY/nX3yI1Lln5x8Mgyl5zUKBaJJ9OcA54byGXVnMB5FQmvRO/n55cCQF0at6aZma/hZkhl5G7MeREEcElF7I8DQ4d4dhsGjlBSN5c3HO0JObgWDsXVtBZwOy+cNMwlF2KQso280YqH0UQyzblYOSwyHZl+CFNx6DBvXuNyDvDyYU5V9I5yMPabzw9EpJKhJqKKSmQqpp6FBEhzntYoHO5OHhavMtUG4k7/8+N1u+JpNRwjv3u4kprsji3r/IbiRwVTx5SkNU516QKo59Yk9nNk1kyBMSWjzVweTsCBxrrSI/smd6SlVQl5pypvTEpuRuWSOkJJD5LTTtRUTmmNwuEYcSrxOM8/yNaanoX2PHQ5JOKEEiNOwMS8WmIEwIAD9JG1s0rjzzflsucvAFzYJyl8Z2asCM8fIuWscg6AKucEqHHQdOso+jmoh/Cw2+QGAFyydO6kES999u3WcCIajqPfc06gOc7ZF8lO5F/2dWpX9E2onDPEUL5hNQDA+qQ8waOai8vJWB/OAcmqNSLaIuKE5ZL2I4+qEXC/6N1A4b5qBOY9rir1nTJ+iK01PRDteag4GGgkIQCRpM9sI5VAAiSiYwOxpTHHpk5OSgGAY0rUiT5N5WKnQwIETyGiCxdylevzeTUj26iZ3o1eAu8RPOyeYMqEuNOjK/waQUsolkyol5Y2HeLOdtjaTwKpByojHhQ5eQgXogsrrAEXFXq9AmqshTNy/irp/xo+Ntc9WCPmT3Mu3Nd4Sg21RInTyL4lZ0/c19aaHos2PEwkVCMqAZEqVrnoAySNwAX8zv6hDncu2gMmeLSbByU0s8cPQeM0Ie9RNQAwxpU2eagZPFQBdB5SD+JhN8uNwEn7VY/tGwSAUDQRDcfP9jVdUtK058xxH5lf3Td6Td+oCzk3Jhz3dxSgTrmvk1t2wCDNojJpvWLKTQdV5PxMDdLMGqfGI7FkNBwHgDH9Sn46rir/C7PR1TB5GI4mYpF4mou920kFMNVH8MGN/M+DG4co2YrFzJL0I/vEBa80zsVsOQ4w1Kl581sW42FU5UirBks1g4em5YvEexAPuzOYsmLWuCH71DUtWlsbTaqapo3xwYSKxBdJ95dJZ43qqE3r11mlqPso6sGe9BRviiGqnCTGNM4lxjROrkJsIuRBzZg7ITLEJPo1zd0jOAEnrjePAwr2WFbfQErVYrGkmlZlxmaOHLTfgNL8r8pGcdCGhy6fR5EZcCCx8BdIAiRODMGNdHv/lvkhzxshV2z3c7X7OejcisQxJapGYi4KZfZlJQ6A03zqWy25d/od6E6qPNMXluEhYCrd43iIhclWFQg7IonXv9rUEEvJDFxul9vlkBAZgoSICBKihIgADEFiKPZFZYgSIgAxxHpVunBTXv2RHkbzhoWMFQyky4052p0ToLHHrt4KqE/k1/SiKcQT6Xg8QZzKvM6Txg7p58u9D8hGd6E9DxmitBse1qfZJ3HXu1FlsyWb42G0v1udGlCP9KcYIiIwbDVDC4z5thHOzv7WG81pqIWb0cMDdrmQW3ko8gA9k4c9S24AIKFqi9Zu/WpHMwB4HJLD63I5JASQEBmAxJABMIbiGTQeM/3249W1gU3J3EPTIwKpa/pGAZATNzeu0tdMcWPXmkzvn74CQ1QE0hrFYsl0Kg0AY/uVHDVykJ2s6b3oiIcyAmXsn+AkghiQI+wfYyyqgV8CoS/CIiJktEZs80qUWTMFQG+FlNl1uZS6LioLTfckTB6K9X09mYc9Tm4E1u0MvbWuNpxUAcDvVhSPU0aUGDJEBsAwoy+Z+42IiMujjvt25L7n++NVzf0cZFmfqYsLGW04uuIYP4oJsmnOE/FUPJYEAJ/TMXPEoBF97MVQ3wfsgYcIJDxrhoCADIExhkSoPwMo1IWIMUTQHyNDaDs5FIjowR3ed0KdC6mmeRIXloWsRVKVqIfzsIfKDQAkVO3DjTs+qWkAAImBz+uWFdnBmPBmTcWRDNsCpHs6t9cFVidyyUkdF0hcUBHnYhca66xizgEt69/I8HEAVE7JZDoWSxAnAJhe3W9SZUXPMSY28sfueCgYuAceCivIjEifABgggBFPMSSe+epxokfrve03cdwdpnoSF5SGjP6vXsPDnis3AjsiibfXbd3SHAUAiYHH7VJcisxQYq28GzOeQoAY4W+2lTR0cvLxEKd6/8CQmBtCXO8b5rqsGO6MvocEiXk9iUQqHk+KG1xV4v3JiEE9JEK2UXB0wEO3IjydVjw0tAZBxFNM6IseT4GetRGTbU2Y38F3wsqcXZ49JJ4BwM3ojEB4qjfRG3nY0+VGYN3O0Iot9TUtMciIjsMhSXruhqwZHELELWnHQ/W+7BWnSlFv7R92o8jRcHNWcYe5G43zZEKNxXVLUlniPbiyT0/zWm10BXbHQzByN5Lu0YjwSvdrAIAZMRQAICJxw7tBfSi/2FacE49yNj/k+iTm2JJq66EPdqgT3anDPVEPI8HDREKN9yoe9g65EdjSFP3guzpxswFAkZnicrr0+00MGUMAAJFLjmp4T32gpt09a4/pvuTPS6NeJnwZc0fUTC1cT9loPJ5IJ5MpTdUbgqpKvIdW968qtccM/7DQnocOl9Nt6A7LJIlBz90gMx9bvBsCUZ/Sd0YDIHNMOhCnnZq0M82ixIjAjVqZpJZLnABUjccTqWQy3Rt52JvkRmBLU/TLusZ1O1uSmt7U53XKqCgOWXIqsrUiAARL4q7Xmty7tI7dnJEu9cRAbIw7LTprxP4bwpcx1yuk0loqmdY0nkzqSzGdEhvRJ7jfgLJecYNtdBE6w0NijLXybogzZCJLKHZ/MXZSNHejz6zRg+8RD3uf3Jj4sq5p3c6W9Q0h65OKQ1acDsXpQEDFIYnGnM1J6YuEEtWgJu0AgFGutBtpgidZIWnmPj/iU+BEqso1ztMpNZVKp9Ot2kaHVwT2G1DWw/1VG0VG9jwkq3djBFFiXzOxn714TnSZfi952IvlRiChaut2hrY0RXZE4vWRtsMBJIkxxhwOmTGGmNnHrs3L0qrG9f+1/VVfn6uq1NfP5x7RJ9ADU/02eghy46GRutFh8JBzre1ynO8HD3u93FiRULUtTdHNzZH6cDyhau3vejbo63O5ZEnc2qpSb++9tTa6CzYPd4fvldy0R0si1RJP74jEE+qeFny6ZKmfzx10O+xdum10BWweCnzP5caGDRs9Bz1iAIUNGzZ+CLDlxoYNG0WCLTc2bNgoEmy5sWHDRpFgy40NGzaKBFtubNiwUSTYcmPDho0iwZYbGzZsFAm23NiwYaNIsOXGhg0bRYItNzZs2CgSbLmxYcNGkWDLjQ0bNooEW25s2LBRJNhyY8OGjSLBlhsbNmwUCbbc2LBho0iw5caGDRtFgi03NmzYKBJsubFhw0aRwAAgHA4/8sgjRx555NixY8eNGzdz5sw//elPqqru9Y8vv/zys88+u+svMi/0qItMJBKHHnro5MmTzWfGjh1b3Rr/+c9/cj7+6tWrq6ur33rrrUJcbLFh87Bo6C4eygBw3nnn1dTUXHPNNWPGjFFV9aOPPnrkkUdqamruvffenM+XJw488MB///vfgwcP7q4L6CI8/PDDdXV1FRUV4kciisViV1111ZQpU8zXDBs2rJuurpth87Bo6C4eyuvWrVu5cuWf//znY445Rjx10EEHOZ3OhQsXxuNxt9td8FPuFVu3bm1sbCz+ebsa33zzzZw5c0499dT33ntPPBONRgFg/PjxVjvzw4TNw6KhG3nINE0DAMZaJXEuu+yyV1991bzHL7744k9+8pMRI0ZMnDjx6quvbmhosL44EomMGjXqL3/5i/lMKpXab7/97rvvPgBoaGi49tprJ06cOHLkyBNPPHHJkiXiNRs2bKiurl6+fPnll18+duzYgw466Pbbb+ecL1u2bPr06QBw6KGHXnLJJdYTffjhh9XV1Z999pn5zOeff15dXf3BBx8AwCeffHL66aePGjVqzJgxZ5111hdffNH+3Y4ZM+aJJ54wf7zppptOOOEE82IWL17885//fNSoUdOmTXvjjTe++uqrWbNmjRo16phjjlm1apX4E1VVH3zwwWnTpo0YMeKwww57+umnzaPde++9Q4cO3d0HzTm/+eabf/GLX4wYMcL60QGA17v3LeV/9atf/fKXv3z22WcPOeSQUaNGXXTRRaFQ6P/9v/83ceLECRMm3H777Xs9Qg+HzUP4AfCQDR06tLKy8sYbb/zXv/7V5v4JzJs37ze/+c2JJ564YMGC//u//1u1atUFF1xg3QzP5/MddthhCxcuNJ/56KOPwuHwrFmzNE37xS9+sXLlyj/96U///e9/J0yYcN55561duxYAZFkGgDvvvPPss8/+/PPPZ8+e/fTTT8+fP//AAw987LHHAOCNN9548MEHrVcyderU8vJy64nmz59fXl4+bdq077777uc//3mfPn3mzZv30ksv+Xy+s88+e/v27Xv9+ATExTzwwAM33XTTypUr99tvv9/97nf33nvvo48+umLFCp/Pd9ttt4lX3n333X/729+uvfbahQsXXnzxxX/4wx+ef/558athw4b9+Mc/3t0pnnvuuZ07d15zzTXWJ4VVycZ0y7K8cuXKzZs3v/POO88999y777576qmn9unTZ8mSJffee+/TTz8tuN57YfMQfgA8ZIqi/P3vf6+urv7d7343adKkI4888s477/zqq6/MVzz55JPTp0+/8sor991336lTp/7ud79btWrVypUrrUc5/vjjv/jiC/NjffPNN0eMGDFq1KgPP/xw9erV99xzz7Rp04YNG3bbbbdVVlZalXjmzJnTp093OBwzZsyoqqr68ssvHQ6H3+8HgGAw6PP5rGeRJOnoo49uc5uPO+44SZKee+45RVFmz549ZsyYcePG3X///alUau7cuXv9+Kw4+uijx48f7/F4Tj755FAodMYZZ+yzzz6BQOD4449fvXo1AITD4X/9618XX3zxqaeeWl1dffbZZ//0pz/929/+Jv78lFNOMR+3QX19/f3333/nnXe2uaPCqsydO/ewww4bPXr00Ucf/fLLL+/u8mKx2A033OD1eg888MCRI0dyzi+88EK32z1z5sySkhJxhb0XNg9NfI95yABgxIgRr7322ltvvXXLLbdUVVX961//OuGEE+666y4ASKfTa9asOeigg8w/2H///QGgzUGPOOIIt9stEtGqqr799tsnnngiAHzxxReSJB188MH6yRibNGmSlSJjxowxHwcCgZaWlj1cKwCccMIJmzZtWrduHQB8/fXXNTU14kSrVq0aO3asy+USLyspKamqqursN3D48OHmlbT5MZlMplKp1atXp9PpqVOnmn8yefLkjRs3NjU17fnIt99++6GHHnr44Ye3eT6ZTPr9/u3bt992221z5sw5+OCDb7zxRtNMtUFVVZWiKOYlmZcnfgyFQp14qz0SNg8Fvsc8lK1vcvjw4RdeeGEkErntttueeuqpE044Yd999yWiYDBovkw8FnJowu12H3HEEQsWLDj33HOXLl3a3Nw8a9Ys8TJN08aOHWu+UlXV0tJS80fzxgjsdcPySZMm9enTZ8GCBSNGjHjzzTcHDx58wAEHiBNVVVVZXxkMBttc5F7hdDr38CMRiQOee+65iCie5JwDwK5du6xvqg3efffdjz76aNGiRe1/dfDBB3/55Zfmj4ccckhNTc0//vGPs846K4fL290F9C7YPPwe81BOpVI7duyorKw0n/L5fNdff/28efNWr149duxYxphV7MVj4Wdacfzxx//yl79sbm5esGDBxIkTRe3Q7/c7nc7//ve/1le2SQd2Coyx4447buHChVddddWCBQtEgk2cqI1FamlpGTBgQJs/N2+PQCKR6NTZxbt+6KGHRo0aZX3e+um1x5tvvhkKhcwSIxER0dChQ2+55Zbzzz+/zYtHjx69fPnyTl3V9wM2D7NH7+Uh+8Mf/nDssce2Sc5t3LgRAPr06eNwOEaPHm11Oz/99FMA2G+//doc6LDDDnO5XB988MGiRYuEYwkAEyZMSCaTnPOhBlwuV/tPv0PsTiZFBLt06dLvvvvOPNH48eO//vrrZDIpfmxoaNi0aVP7iwwEAlZT01kvd/To0YqiNDY2mm+npKSkrKzM9C07xHXXXbdgwYI3DVx66aUVFRVvvvnmSSedtGjRoiuvvDKVSpkv/uyzz9qYxx8IbB5mj97LQybSPKeccsozzzyzfPnyJUuWPP7441deeeXYsWNnzJgBAJdccsmHH374+OOP19TULFmy5A9/+MMhhxzS/hN0Op1HHnnk448/vmvXruOOO048OW3atDFjxlxzzTXLly+vra19/fXXjz322Oeee27P1yT85HfeeUfUDtrggAMOGDhw4N133z1y5MiRI0eKJ88555xUKnXTTTdt2LBh9erV119/fSAQOOWUU9r87X777bdw4cJdu3bF4/FHH31UJOSzh9/vP+ussx566KE33nijtrZ22bJl55xzzo033ih+O2/evMsuu6z9X/Xv33+kBX369JEkaeTIkaWlpVVVVYsWLbr00ksXL168bNmy3/72t8uWLbv88ss7dVXt8fXXX79vQa9wl2weZo/ey0O5qqpq3rx5TzzxxJNPPrljxw5FUQYPHnzRRRedc845QixnzZqVSCSeeOKJBx54IBAIHHnkkTfffHOHRz/++OMvuuiiH/3oR2a3oiRJTz/99B//+MfLLrssFotVVlZeffXVF1xwwZ6vcvz48TNmzLjnnnsmT548Z86cNr9FxGOPPfbvf/+7+fkCwJAhQ5577rl77733+OOPlyRp0qRJL7zwQnl5eZu/vfnmm2+66abp06cHg8Fzzjnn5JNPfvfddzvzAcItt9wSCATuueee+vr68vLyo4466qabbhK/Wr9+fYeB8R4wcuTIf/7znw8//PAvf/lLABg2bNhTTz3VPpPXWTz66KPWHwcNGrR48eI8j9nVsHnYmU+rt/IQvzcpRhs2bPRw2CvCbdiwUSTYcmPDho0iwZYbGzZsFAm23NiwYaNIsOXGhg0bRYItNzZs2CgSbLmxYcNGkWDLjQ0bNooEW25s2LBRJNhyY8OGjSLBlhsbNmwUCbbc2LBho0iw5caGDRtFgi03NmzYKBJsubFhw0aRYMuNDRs2igRbbmzYsFEk2HJjw4aNIsGWGxs2bBQJttzYsGGjSLDlxoYNG0WCLTc2bNgoEmy5sWHDRpFgy40NGzaKBFtubNiwUSR0v9ysWLHiwgsvPPDAA4cOHTp27NgTTzzxhRdeyOYPa2trq6urq6urQ6FQZ096/fXXV1dX33nnnZ2/3r3jkUceERd21113dcXxbXQFXnrppVNOOWX8+PFDhw6dOHHiueeeu2LFimz+8JVXXqmurj722GNzOOn06dOrq6vfeuutHP52d3j66aerLdh3330POeSQ8847rydsFd/NcrNs2bKf/exn77zzjtfrnTJlSkVFxZdffvnb3/72mWeeKeyJtm3bVl1d/dRTT4kfx4wZc/jhhw8fPrywZxF44403xIP58+fbeyL3Cjz22GM33XTTypUrq6qqJk+ejIgffvjhueeeu2rVqsKeaN68edXV1atXrxY/Tp069fDDD+/Tp09hzwIADodjwoQJEyZMGDt2bCwWe//993/2s591u+LI3Xv6Z555RtO0mTNn/vWvfxXP3Hzzzc8///zTTz99zjnnFPBEpgQIXHDBBXvdkT43rF+/fsOGDYFAwOPx1NXVff755xMnTuyKE9koIObMmQMAt91223nnnQcA8Xj81FNPXb169Ysvvjh+/PgCnqgND++7774CHtyKvn37vvrqq+JxOBw+9thja2trX3nllUMOOaSLzpgNutm7EXFQaWmp+cxvf/vbDz74wOpezps37/jjjx81atTYsWPPOOOMDz74oMNDnXnmmVb/5f3336+urp40aRIAnHDCCffccw8A3HXXXdXV1dFotE0wlUqlZs+ePWPGjOHDh0+cOPGKK6747rvvxK/++c9/VldXX3rppcuXLz/22GNHjx590kknff3117t7R//9738BYMaMGUcccQS0o5eNnok2PHS73U899dSKFSvuvvtu8cweGNIGIoQx/Zd77723urr6yiuvjEaj1dXV7777LgAcd9xxJ5xwArQLprZv33799ddPmjRp+PDh06ZNu+OOO8LhsPjVFVdcUV1d/Y9//OPZZ5+dOnXq+PHjL7vsssbGxmzend/v33///QEgkUjk9PEUDN0sN2PHjgWAF1544brrrlu0aFFLS4vf76+srGRMv7C//vWv11133TfffHP44YdPmjRpxYoVv/jFLxYtWtSps5x44okDBgwAgIMPPvj88893OBxtXnDppZf+6U9/CofDxx9//IABA+bPn3/yySdv3boVAFwuFwB89913119//ZgxY8rLy7/44osrrrhCVdUOzyXk5uijjz766KPBjqd6CQQPb7755vvuu2/58uWpVKpfv37WGGcPDMkSDofj/PPPF49nzZp14okntnlBY2PjT3/607lz5waDwVmzZmmaNmfOnHPOOUcwTfDwP//5z5NPPjl16lRN0xYuXPjHP/4xm1NHIpEvvvgCALrXtYFul5vLLrtM6O68efMuueSSiRMnnnjiic8++6z4iEOh0COPPAIAd99991/+8hfx6QPA/fff36mzXHTRRdXV1QAwc+bMW2+9VVEU628//PDD9957DxFfeeWVhx566N///veYMWNCodDjjz8OAEL4NmzY8NBDDz3wwAPC696yZUuHxm3t2rUbNmxwOp2HHXbY5MmTS0pKRDzV+Q/GRlFx9913l5eXx2Kxv/zlL2eeeeZ+++13/vnnv//+++K3e2ZIllAU5dZbbxV0uvTSSy+66KI2L3jyySfr6uqGDBnyxhtvzJ49+7XXXlMU5YsvvhC+j/jDTZs2vf766w888MDNN98MAO+8887uTldfX3/yySeffPLJs2bNmjp16vbt288+++wzzzyzc59LodHNclNSUjJv3rwnnnjizDPPHDJkCBF9+eWXv//972+88UYA+Oyzz4T7N2vWLPH64447DgDWr1/f3NxcqGtYsmQJAIwfP37fffcFAIfDcdRRRwHAxx9/bL6mf//+Bx10EAAMGzbM6/UCwI4dO9of6s033wSAww47zOPxyLJ85JFHgh1P9QaMGzfu/fffv+eee4455pjy8vJkMvnee++dd955L730EmTHkPwhzjJz5kzhyPTv3/+AAw5oc5YZM2b4/X4AmDBhAgA0NTWl0+kOj5ZOpz///PPPP/981apV4XBYkqTNmzevXbu2gBecA7q/EM4YO/LII++555733ntv8eLFwsl89dVXa2trm5qaAMDpdHo8HvHisrIy8aClpaVQFyDOYs0fibNYFc36W7fbDQCc8/aHEpHUypUrjz322GOPPVakmex4qlfA6/WeeeaZf/7znz/55JPXXntNhFePPvooZMeQ/NEpHgoSwm54CACDBg3aaOCTTz654IILFi9e/POf/zyHrpECojvlJhKJLFiw4JFHHjEzWIMGDZo9e7YsywCwefPmkpISAEgmk/F4XLzAzI1Z74qA8DbNQ2WZRQMAcRZxs61/a0pblvjmm2++/fZbANi5c+eaNWvWrFkjPCA7nurh2LZt29y5c0WYLLD//vvfeuutALB161ZVVTvFEESEbuVhe5SXl1911VUA0Nzc3L1U7Gbv5te//vXDDz987733plIp8czbb78tEjeDBw8+4IADnE4nWOKRf//73wAwbty4QCDQ5lAisSdSYgDwn//8x/pbQYJoNNr+GqZOnQoAX3311aZNmwAglUrNnz/ffD57iEjqgAMO2GjBjBkzwI6nejY2bdp0/fXX33HHHa+//rp4RtM0kTHp37+/LMudYoiVh9FoVJSiTOyVh4sWLRLfha1bt3766ae7O0tnYdZzfT5f/kfLGd3Zd+Pz+W644YY777xzzpw5r7zyyqBBg1paWrZv3w4AJ5100pAhQwDgqquuuv/++2+55ZbFixc3NjYuXrxYkqTf/va37Y92+OGHv/7662+99dbll18eDodFBdGMYvr37w8Ac+bMqampueGGG6x/eOihh/7oRz/64IMPTj/99BkzZqxatWrt2rV9+vS59NJLO/V2hNy06S495phj3n///fnz599yyy2CajZ6GqZMmTJz5syFCxdeffXVd999d1lZ2fbt20W0fs0110AnGXL44Ye/+OKL99133zfffLNy5coBAwbs3LnTysOtW7f+/ve/nzZt2u9//3vrH1544YXz5s3buHHjiSeeKHJJ6XR62rRpP/7xj3N4UyJVLB63tLRs3LgRACZOnCiSPt2FbvZuzj///CeffHLGjBler/fbb78Nh8MTJky47bbbzNrTFVdccd999w0bNmzBggWfffbZtGnTnn/++Q71ftasWZdffnlFRcXixYsHDhwoOiaSyaT47cUXXzxs2LBwOLx06dI24S4iPvHEE5dffrnT6Xzttdd27tx50kknvfrqqxUVFdm/ETOSEvVvE0cddZQkSXV1dZ999llnPhgbxQMiPvbYY3fcccfEiRM1TVu/fj1jbMaMGU899dQZZ5wBnWTITTfddMwxx8iy/N5775122mmnnXYaWHj4m9/8pqKiYtOmTd98802bPywvL583b95JJ51UX1//2muvOZ3Oyy+//Mknn8zNSpmp4s8//3zHjh3Dhw+/9tpr//nPf5otJt2C/w8IEU8niRsUmgAAAABJRU5ErkJggg==", "path": "image.png" }
Which solution has a higher concentration of blue particles?
[ "Solution A", "Solution B", "neither; their concentrations are the same" ]
2
The diagram below is a model of two solutions. Each blue ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the blue particles represent the solute. To figure out which solution has a higher concentration of blue particles, look at both the number of blue particles and the volume of the solvent in each container. Use the concentration formula to find the number of blue particles per milliliter. Solution A and Solution B have the same number of blue particles per milliliter. So, their concentrations are the same.
neither; their concentrations are the same
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAATMAAADeCAIAAADel3DhAABJnUlEQVR4nO29eZwkVZ0v+jsnIvesvaqrequmu7FFGlpQVJpGRBQVlVXG4Q5cZETAQb3z1Jl56n33jctzH/UhIy7TIuM4T68iq4KyjCBLN7QI3SII9EZ3V3ftVbkvEXF+749f5qmTkZGRkVmZVdV0fD/9gazMEydORJxv/NbzOwwRwcfRCgQAcHuCDBgAsAUajo/WQV/sAfjwDgTEOR4yBoyXPtQ5DkvHlo5iPleXPpgvM5c2ymxk3IGBRg6EhbmZOdaZBeB6ibGALNQJgTDoYYdjhQUAzt36WALwmbk0gSDEnFQkGHmcOQDTB3D2IMwcxNQ4ZqbAKkBqfE6QIs4xDRGivRCKsnA3xPtY90rWM4w9w6x3DYt0VzRD4VN0qcFn5hKDEMBgjpBGFsdfwpFdOLILJ16CzBQU0oAInAMAaAEADlptk0RYgAKEWZKQKDAYhXAn610DK07mq17LhjayWF+pMYpyzz5FFx8+M5cIEISYY0U+hQefEi89jCM7YXYEzAJwDnoIuA5co+bAyqajRw8QiUQiqllEYQLjGF8Gyzbw9Wdq67ewrhWlligAoEJc+1hw+MxcbJB7hmggLDy8S+y6Cw/sgMQRQAGBEOhBAA4MAAUwBARgJaes0kn5v9U/VYM8QIwBIggDjYIQFkS72fKTtde8Q9vwVgjFy/YtlISzjwWHz8xFBIIo66X5pHjuN+LZX8HY82CZEAyDHgTOAAVRzZlxWPWBKSz18mDLLEXLRDMvhMl6hvn6s/RTLmb96wF8+blo8Jm5KCAHDwfGIDUmnvqZ+MsDMHsQtCAEIsAZgACGkmUlTysAVJqAQvmz4imi0sLr42XAGQATZlEUMxDp0taeob3u/Xz16wCIn8x3ES0kfGYuOKQUyies7T/GXXdAdgqCEQiGyAcj5z8ZnaIsCHkNHdb2Jx0y91VDIhQAGEPGhbBEIcP0AF+7WT/jGr58Y4XW7aP98Jm5kChHJi1DPH2r+MNPYeYAhGMQCJDWavOK1pVQWCVCoUzjCibSH8KbFSqPYBwBRCEFgYh+4nn6lmtZxzJfuV0w+MxcKJTnNI7sFP/1LTz0NISjEAgxFAAos3LmqS/a7M0KiopyC88P3AIApiFakE9BvD9w5oe1Uy4BxkFYJRexj7bBZ+aCgKZyMWM98l18+heAAsIxxgTDknenHQYcloWqpCQAgAXAvdqfZRYzwTlYRSzm+fDrgm//J7ZsAwjLT05oK3xmthmUYcM1HNklfvN5nHwJol2MMYaiHiE9q561zqxITpAfpNfIrvK69WNBOU23kAYtqJ/9Mf31/823PNsKn5ntRNmlKZ76mfj9jYAGC8VAmKyOnFQ5ycsyj5eZxBVKeWKvJGOF8ISy5KzXgSS2AACmAVqYT+kbz9PP/RSLdPmabZvgM7NtoCmbT1r3fwWfuweiccY0QOGa/KYSFittTyz/agFApafWk28HK+VnhST1MAXEnMuXAeeYTfCBtYH3fIEv3+iTsx3wmdkeCAu4hjMHrF/9LzjyDMR6mLC0Km+qAikJmcI6qSiq2T1Y2V7akl7JyaQAlJwU7seVr0lty3UopkGPBM77X9oJ54Kw/ITb1sJnZhtAtBzZZd39GUgdgVgnt0wn9VUVj1xJKOBlpqlko8aWEubE8iE2f47bA7VFN+fctg3ZnKURaSAMMAv6Wz+uv+FyPxuhtfCZ2WoQLfdus+78RwCTB8NMWLXlJCgqq9qqtnCdawAKRRFA6pNWZRuHI+3ZB6LSjVsb9sgLYwAMs9OBMz6kn/33gMJflt0q+MxsKYQJXMe926y7/hGYYHqQO9NSK0s8pnCsaaDCZJt6WvPhCoXWFc0bszmhbHbO6Js/GPDJ2Tr4Lu/WAS3gOu593LrzHxkTTAs40VLOWq3qm6Zh8xsJ5bHW6bxkGnLwYKXWAoKwWLTHevxm86FvA+Ouq9J8eIXPzBZBWMA03LfNuvOfgAvQAhxFJSfkX1obbrtkIC/zTPUk1SSnopcCaF7fElx5r5QgLIj1GNu2Gg/dAIyXEp58zAM+M1sByiWY2G3d/SlgjrQk1E+MxXn9Y1jilrQHWS1pqNJ3bhysgRlhbygsFu01H99qPvmTUgafj3nAtzPnDSq9k5owf/YhyIyyQIRcPpW008r0qBf3m5dvE+kkAi0EerCMUfYOc3xTVFilpSCnPR2h1pkcGzJgDIrZwAVf1E54hx/nnA98Zs4TCMDAzFu3/j0e3MGinZqDrGBlQtZnnWGKpp+HxpnGATgDjZX+CwgCwLLAQEuYCKAxZuO+nWOeyQl2VxAAADAGwgKuB//6O3z5SaXaXz4ah8/M+UFYwDXr/q/iU/8JHX1cmFXTUKqNbrREBKaxmXTx7BufPpwoBnXWxGOJBXhEZ/Gw1h0JdEcDPVHthIHwq5Z1HD8QPq4/pEc5AIOCZZmCMeBlgqrpBiXF1/LqDULH3HjGwchCz5rQ5TezSGdFOT8fnuFXgp4H0AKuiT//Gp/+OcR6mDCdXD71aSmbC4FjyeJk2qAaPa1CJMDX9oW2HNdx3ok957y6p6s3DJYQeQsY8LIEFUqiw9zYmxsDCgjGcXK3cf9Xgxd80UNs1ocDfJnZLFAA4zi11/rPDwEWmKZxxMoJyL17VBCB6WwqWTj5y08eSRq8qdBD+U3AShXzSB4iIKJMyhvq0N9/av91W4ZOXNuFJoqixTmDcm4RquFN5igQHeAsYrkGuVntbf8UeMPf+AZnE/BtgGbBGCCK+74CxQTTA1W0lAKzMYbJOpVN/BMIAsFCtASaAk2BlkCBSLJR40xjbDRlfvv3o6d+beff/tufD4xntViAjtJsHtqG7oTjt0JAKG48fJM1+gJwzY+jNAqfmU0BLQAmnvwxHtgBkQ5m9/rwyrjiIgMRBKIp0ELkDHTODIG37Jjc9JWnv/vbl7UQB42JaseTt3wgqHmRCFwHK1988BsA/jLOhuHfr8aBCEzDmQNix39AOMrta6DVdJxWgtX75wUCwRSICBpn6YK4/tZ97//us7mipQU1S5QLEalpC/WALnaksHg4jgf+YPzxNgDwxWZD8JnZBBAAxO9vgtwk6AFwMC/bIi3rZhoQGAONM50zjTNeewiWQATUOfvFzul3fHvXRKqoBzUhsDQhpJ1a7yJqpjKUBi1YMFx85PsiccRP3GsIPjMbBDl+9jyKLzwIkS4mrMo76ClG0hxofz2Xf6UBIlhzRiYwxnRuj2HKlqbAAGfb9qfP/86fZrOGFuBCXYfSCI+cLxiR6UFIjxcfu7ncrw9P8KMmDYJxQCG2/4hmotN0FC2XmSSUfnrla97yqt5UweROPEMEQ4h8UaQK5mii8MJE7sXx7Pb9yX3TBUpe0DgTwkFmGQJ1jT1xIPOBW/5y5/UnkV8XmeqrrT88Xp1yICEsHukw//wbccqFfIWfe+AVPjMbAVrANHz2V3jwKYh3c6x2/EjlrqUykwEgrOoLD62ID+QMzUVJZQwYAGfAGFiimDV2Hkz97I9jP94xNpkxOWelEEolTAt1zu56duarvznwf56/tpAxNM4aEm/uFGZcw2yy8NiPIn/1jaXgEjsq4L+9vAOBaWAWxFP/GwIhVpYrZajWVqvvKmXDmghFIdz+WaJgWjnTzBhmumjlzKDOT9vQ+43LT/zL//Wmf3zrKg0AEBxFroUIAF/4zcHn9idDIY1iLXNXVg/2zHj7+C0tGrf2PGYdfAYY811BXuAz0zMQAUC89BCOPQ+hMKAtztBOC4o0ZwbAgLv9YxS31MseIEQQedPMGD2doa9d8eoHP3ryUGdQIFYLXUTQOcsUxVfuOwi2n71dmftMYpyjWTCe+oXnaz7W4TPTMxgHANx1J2gcHLJ7GkhbXzAwKPlpwbTMpPHmTQP3f+zkoY6gcEpltQQCwK3PTD53IBUMaoIY6flq3PnL0OLhmLnnMTGxx3fSeoHPTG9AAQB46Gk88AcIRJnz8sulmyDKGdc1bqSKG9d2/ecHNnAKyla2QQCds5yBtz0zCdJJK7xqs3W9RYzrmJkxdt4J4Mc268NnpkcgAIjnfguWIWVmJTxXBFg0sIDGzFTxnFP6r9syBAC8SqklNv7muRnIWxpJVc+lKnm9yYQoWDBqvvQI5lPANT+C4g6fmR6ACEyDzBS+9BAEI1Xve7WMwJJFKTmdcwAD/8c5q8I6swRWiU0EgOfHsiMz+YBciebtyuryjDOEQEhM7bdeehgAQCzxO7bI8JnpASgAQOz+PaTGIBBkgE53bYnPs1JNIM6YKFonrIyds6ELqsQmInDGprPWc2NZ0LkQ2EINnTFggMC48dwDAOBHNd3h3x0PIN/P7t8Dq95dFsoW1hK/k3IdGCACaOydr+lxbEc67IGZAnDWkHruaVkNIguErcN/EonD0NpFqK84LPH5tASACIxhYgRHdkEoDOW1jpVY+rcRlTeIBggnL48B1KTGeLIIsjKQ5xOAK5HpRoIWwPSUtfcJAN8P5IalP6UWGzR7Xv4DZKdBCwCz22ZlabHEd/Xg5f8KxiywxHBPMBpgQtl8nkB/TWeM0h+NTBB3sVlO7kXgmvnS70tf+agBn5n1wBgAiIN/LP3lwD/0FjVYXEhJjwwABMZDeiRQs85Apmg1ek1eEvkRKcc9JMZexMy0H9h0gc9MdyAwDsUsHt4JesjVnbiUX/+oFNMqjbPOFgdSN21Qm/XQDkELiOSoNfZCQ8cda/CZ6QpEAMCpfZAcBy1AAsdJm4WlHcyUaa0cgCMwYGBYaNUuoBkNao1SxrmOnm0crPw/YYmDOwFqW7rHPHxmuoKYefhZKGZA04A7zjy6h55LQS4CUKlZKQAQOJ/MGMm8VfqxsikADHQE5w5q7bIZRmJTt0Z2AoBfuasWfGa6glwWo38GpgFDqMpoA4DKghtLlpxyMz9ERNDYvsmCQNA4cxzx8q4QkMOmHeYzItOCYuplzCfpz1af4JUAn5muoGj41H7QNEolcAqZNFgEcqGBtg8IAAyeOJAEJ3FIpbrW9YXAxJa/beaqT3MNcwkx9XKLT/AKgs/M2qB3eXoC0xPAA/LVXjWPaLoJ5fMSgYxhVmilOmeYMx94YRbKibISjAECDHYEThiKgiE4NrB+2uNMKt1FrmEhjTOHlK98VMBnpgsQADA7Ddlp4DpttOXkrVQTgJYUM6vXPqMlEELaI7sTfziQYQC28iO0qPoNw/H+rlDRQuY5RutR563wbTMuZg566v2YhM/Mepg9DMIqSZOai6JwSfpm5+rpAQBJdcYYIH7t/oPgtNaE8O6NvaBzgehdPfeo9tqko5j2mVkTPjNrgxyzqTEQlo11Nh1QCRUuKcWMKQotAKBhIY8Htj488uvnZjljtqgJY2AJ7I3q7z25F4pC46yhV42X1Pe5nB9EYByz0wB+arsz/JtSD8lREJZqS1aJTclJz7vbLRDUdAE0LAzEA9ufn/rEL/dBecGXClqQeempfasHo4VC9T72dc7k5bLV6puM65idBbNYdgH7qIDPzNqgkEkxA5wDlNRV17WY6E1yLABQ/WcJyxQi0BncuWf24u8/nyoKXrXMgwGYAiMB9tGzV4CBDDyzrQwvM4n2XymNkHMspNEslMbroxI+M2uDXu+pMeA61DG6VE4uhV3QLQQUCKYQApGHdT2q3/boyNu+/exoyuDM7pIFAKqU+eE3Lz95TVehvEGYd3hJACKUZCYicB0z01hINXSiYwd+vdl6qMy6pjVgTu8zdSq3RXJaAkEI06mas3JeYMA4A6YxpiPTg8wQO/fMfOG3B3+5a5oz5kxLxkyBr14W/r/PW4MFi5O7q5GMWY/6qCIzAQCBaUtDxViK8JnZCBAoQc+VeaxsirZMH6HJHIjo0BHUNVazErRcT2lCLlPYM5n//e7kL3dOPrI3aVjIOUOnMtCcgUAMcvjB37yquzPURBlo8MziqsXSvhZbEz4z6wGF4rUAKNeDdCKndBO1eq0mAgD8dufk6FQhW7RspZxpq0zTsnKGmM2ZB6dzL07mD88W9k0XSDwyxjRu98SWRsyAMSYQb/zr48/a2FdIG5rGGnUze8/hs78XEPzF07XgM9MFDADAUuxGBABA52gCVjqGbLHEFuDzv3250UNIuloCLcdMfFb69VuXrL32basKKUODxvRYgvfmlTKTASCUth5dIp6zJQSfmbWBCIyBHrS/6tGFnNJ3yytzg1oAzXHbA6dBAAAiCgSXdV46Z6ZAncP3L1v/oXNWF9Ll7VJQ6cUbvAtMuyrLOGgBAPBpWQ2fmbUh068llFQfVJs4HCbKtGyZNHChWUMgBpoCV3cHf3zlhrNP7i9kjFJ1WauZdAkOYHpr6WfIeofPzHpQZ1OZYlKuVC0uxPLsZkqOOyr/XTQwBhpjApH2lr7qDQNfu3T9QE+4JC3VYXoGehaYUFZBKsjpE7U2fGbWBs3U6qW9ZYrxmmyTX2OFnF1YMCilRnDGBIJANBEB4K2v6vzcecNvPqnPMkQha2haWQdofBGb95VvpMraaalxPzWvFnxm1gYKYBrrXoXCABniKzMO2ZzC6tJFedNX6bBtXnJ6tDOhTBUhEBEQSltm9kb1d5/Yfe0ZQ2ee0MM0Xsya5LOdO6ZxCdbQERW0ZAysIutZySJdAL6Z6QCfmfUQCFdMHGFf8lXD4FR5zKoiC9iEf6hRO1Nj0BHW1veF37Am/rYN3Wcf39U/EAEEK2+ZRdPu72lclSV4zzGwH4fI9BDT/BnoDP++1EP3qlJ2nkSZU8xNVa2e8qxC5tq/rM+MM9d1DXYEDKtctVV5JzCGnLGOIOuN6T2RQF8s0N8RWNcbWtMb7usM8rAOAFC0jKwJABpnAcaQ2OIY6PEMrJlCXA+MoWWyeB9w3d8f3hE+M2uDMQBgHYP2gsVlugkEzuqKP0lOW9EDBmCVVdx6i1QYAMJX37f2jE0DVtbSOCjMLJ+FVSXuCAQTwRJmxoByvoH9yKYcP65jdWpsj5eUvuYdg6WffW22Cj4z66FjGehhe6pK2Wyk+cZV+WWHFJ5c+VOrZGMdzZaIY+YFpE0rVyy3reATVh3CGDBgjIHOmepERXnA/Nyk3h1GzsxEZL2rGz7rMQOfmS5gAMBi/dAxAIkj9pQDBAAqeD6n0blWaJQyUybWovJZ1JVcnAvgoHGmzbHYk6yxGbhzX0njt3GBKRep1j0U0amANgIwznt8ZtaEr9/XBkXfwh3QMQjCrOnlobYN+BfJVWs5caLuPG/MrEPFFMRqaal6qRrsFhpZ9lXlU2YgTBbpLDHT393ECT4zXYHCAsD+V4FlOkygsn6qzvO6PSqfZThQOpI8uTk9DbxSHAobLVlVC89oNOrpoMoyAGGyWD/vWQXgM9MZPjNrwrIsRNQA9OHXgqZVZ8+WJF/5LwnPc1fVMa1WLblWJaJdkssTNlsXxa4Ve4CDKss4mgU+uEFoAcAaNc+OefjMdIAQAhE1TQPGH93+5Jd+eHsWgxqr8mJIO1GUaLu4paCxShDOfa729zRLS+/HOVuYZWgrT+YAQgjLWgpVIJYcfA9QBSzL4pxzzhHx0Ucf3bp16yOPPgooLr5i+YlRQKtK81LsNCp3oMYgFlIWqOeVZxeg/K2m8TaFJg6t4ZUVLBD+3L/98szk0HlvPxuAzb0KfZThM7ME4qSmaaZpbt++fevWrY8++igidnXEZwu447Bx4qCGhtORlZETrCJJW9US+WZgVTKtIqLSiClcC1L+eezD0X5EhJCG+1PaL/7rqX//zZVnbtny4Q9/+KyzztI0zeenirYzExGZNxOfKmF4bNwqIKIQgjhpGMY999xzyy23PPvss0KIeDwOAJYQgPj4IfMDm2rLQCxnDZA3qNzO5tVpx4VJ8Wgp33DJQdWI8xjlqHcujx3U0mMFQFBjfxwtGoF4f5xt27bt8ccf37x58/XXX/+Wt7wFAIQQAMD5sW5ntYWZKsck0xCRLApEVOmq63p1S2g/RW2cvPfee7du3bpr165AIBCNRqE8RRhAWGdPj5oHk9bqODeqFdpSd+V/xM/ysiq19EhTEQrn8zh+I9VXIQ1gVvVbsye1ffACR3IyAEvAQwcMBogIXV1diLh9+/bt27e/5z3vue6661772tfCYvPToVxSJRZAfrSSmZJv9F/LsgqFQj6fLxaLhULBsqxqZiIicSNURjQaVfUZ7yK3oXFSt5qmJRKJe++992c/+9nTTz8dCoW6u7uJsXONAYIcxrNi2yFz9ckhYWFNZQsrRKTcrUdVa+XWP8JtEZknCCW1ryJfHiv/btRvUwUsy+SGfD+OcxsRQhocTIqnx8yIzhBLSkZXV5cQ4u67777//vvf8Y53XHvttQvPT3WmeZ9y7ZifhNYwk8ZHQywUCtlsNp1O5/N50zSFEO4XbFmWYRi5XI5aapoWiUTi8Xg8Hg+Hw5LALbl+KSc556lU6he/+MVPfvKT3bt3h8Phnp4eKdWrwRn8137j/SeG3GYnVlGN2T/agiusxnG1uoeyHFZPWCFFhSIeq03PptBo1LMWLWl0IZ1tP1wcy4juEJPViej59vb2mqZ511133XfffTZ+LoD9SRNMCFEsFmlOGobBGJPvcfpvMBjUdT0YDAYCAahU9FpL0fkyU3ISEZPJZDKZzGQylmWxMnRdB1f1QBWzxJxUKpVIJDRNi8Vi3d3dnZ2d9FTmc/HUs6ZpmqZNT0/fcccdP/nJT/bs2ROJRPr6+tx99xZCNMC2jRjPT5qv6dcNA+uPQgkpUgafLWah2p8e573N76pSdK5HGy3nHcNplJaEWkYmByhYcNdLRc2pbia9NF34Ca2Tn+pcsiwrl8vlcrlsNlssFoUQpulcPkXaWaToRSKRaDQaj8eDwWDLKdo8M+UohRAzMzOzs7OFQgEAOOe6rksq1lXZbc3omoUQQgiieigU6u3t7evra+6tSW9c6nZsbOyWW2654447jhw5QnLS5TGo0DnM5PA3e4zXDOpWEXSXO68SjpU8syjFIqtoZXPkeq0PAOUQJShiV03FxXlZleqJmuimpsBEiAbYM2PmznEzGmC1VpsSP3t6eizLagc/pSwRQmSz2UQikc1mDcOQ30tx4t6JaZqJRGJmZoZzHgqFOjs7u7u7Q6FQq7S8Jpkp5fv09PT09HShUCAVUf46nzFJI5BzLoQwDOPIkSNTU1P9/f19fX0UbPRy2SUXDmOc89HR0R//+Mc///nPx8fH4/F4d3d3QzFugRDW2T17in/72lAswLyuW8KqmldM/WgXnu40sEdBVAZipaNp3qISoOEYSalxbVUWAXQOd79UTBexJ8Is16ullynJzzvvvLMl+q3knmEYiURidna2WCxCeYbQfJYt6/ZG73oAsCwrn89ns9mJiYl4PN7b29vR0SF7a5qfzTCTrjCXy42OjmazWZuQbCHolgEA59w0zcOHD8/MzKxcuTIWi7kfqL5Z9+7de+uttxInOzo6+vr6pC/KOxAhosPuaeu+vcb7TwrlC6h53MOO7gqvzCuX+m3DVZfL0lIGMeUpbC6f+UF6lRs7qrrYj/JTWIN9Ces3+4rxIHPJDVJB8rOvr88wjPnbn8RJ0u8MwyBqNarcVV4UAoBMTbEsK5lMJhKJWCw2MDDQ2dk5H7HZGDOlsJqYmJicnERE4mQ7aEkgcpJzSNf1QqGwZ8+egYGBwcFBR+Gpmrgvvvji1q1b77333mQyGYvFent7PequjkAAjcNtLxQuOiHYmEcVK1NiVUsRwBYCrdkDlOmiSlimULRFT8Am0ltlYQqEUID9do8xmhY9YeZYmbp2n0LTNNJvpfy87rrrNm3aBJ71W9LvJicnTdOUsqSF85a0PBKV2Wx2//79HR0dQ0NDFIFrAg0wk2hgGMbhw4fT6bQcR/UQpRyXSm9zg5MdEjmlNjI2NpbJZFavXh0KhSQ5iZP0BiVO3nPPPel0mhSMJuSkDQIhFmA7Dpu/22+88/hgpoDBxrZ+rfL5sErZJGqrs+rSEFDcPK0Tkuq4oFlOuuixQR0mMuJnz+cjAdacCSz124bsT5oe+Xx+dHQ0k8m0g5MSNFHl5E+n01KKNCE8vTKTrjCTyYyMjJim6ai+qtERSUv1+6Zvh0pOAAgEAtlsdvfu3atXr+7s7FQ5+cQTT/zwhz/ctm1bKpXq6Ojo7u62LKtpOek0Erh5Z/6c4wKcgQXQ8F5WWPXZu8NGuol41ZetQ/0V3I5HCddgiYBIkP1oV37frKhrYbqD+OndP8QYm5qaGh8fXwD9DpRAA6nZiDg2NpZKpVavXh0OhxtyC3kyJajHVCp14MABy7JU7VwOiLRt6VBmCuh7KDO2OeVb2pw0HvLf7t27d3Z2lnxFTz755NVXX33FFVfcf//9ANDd3Q0ArV3HIBDiAfbEiPnLvxQjIWaJVnhAVfFU1wXUXBDD8yiak8Eu5iX9GtbZ3lnrll2FmGcLs94ZS/IzGAzeeeedl1566Uc+8pFdu3bRJJS+PSHEoUOHRkdHVWmmQs5GdbrC/FJ8bP4kXddzudyePXtmZ2cb0h/ry0xJy0OHDkmPsDoOR9apYlONec7njSUlJwCYpqlpWldX14EDB7Zv33777bc/+OCDQghyi7VvbREChDT4913589YHIzpYKCMj8+53kaAGbNqRzCIAQgH4ybP58azoDs9LYNp7Lsc/HeVnPp8/dOhQoVCopd/JmUmklVqoqu41N11Jg6P1vVJ4vvzyy/l8fmhoyGMn9eM2Nlrarg2q8mNtbaBSyyVfjkx/a/TKOeeku3Z0dGSz2fvuu++uu+56/vnnAYA42e7FfgIhEmDPTVg/fCb3iTOi6RxyPlcD76iDTUg2MQ1pEaZLDDMeYE+OGD/9cz4eYKbVllxLW37Cu971rquuumpoaIhEKK0iku1pAPSNTZY49ty0OJH2lxSeY2NjiLh8+XIvaq0bM+n4dDrtSEuZdid/8uK/lo5WNelJnk5U6jpSDZagJSCZTOb++++/++67//KXv3DOF4aTyhigM8R+tLNw7trgycv0rIFa/dqWnsAAaOcfjVcs02YMTMtD4lGDUOVkczLbsupsIsQZFAV8bVs6Z4iOEBdYkcjZQqj5CXfccce99967ZcuW973vfeS/zWazUsl0FCTVf6rqHn3ZKD+l+JWH67o+Pj4OAMuXL697uBszGWOFQmFkZKT6ewDo7OwMBoPqidPptMcQrbxsVXgGg8FoNCp7YIzl8/l8Pi9vDSmrDzzwwI9//GN6WVBgU7TEdvEMBOAMEnnra49nbrmwiym0bCIGqEIgmkIAgCWwkpkMAMwW7QUGlelD0Cwt6z5qU0B3hP3bH7PbDhk9EWZaQp3l7eCn6h966KGHtm3btnnz5ksuueSUU05BxEKh4P2ktmZNi01V5DZETjdmCiEOHz5sc/nQiCORyA033LBt2zbikmma3d3dn/3sZ+PxOGmb7mdVTVOyCWOx2LZt22688cZYLEbxq2Qyefnll1944YWpVIokbTQaffDBB7/85S8zxtSFWgsMIYQpRFyH3+0v3PxM9prTopkcaryi0nPDM44BIoR0/o4TeiYzZqCqtIklcCAeBDFfyVnt5mlOgwXXMAmQHhtkz0+Y396RkakFNItUQdRyckKZn11dXaZpEj9PP/30yy+/fOPGjSQ81Za2Y2sJT8fGjqe2fUPqtNqA1Fpd1wcGBlzUWjdmjo+PZ7NZmwFNrwFN055++ulHH31ULkWnRA3bODxegxzu448/TqazruumaZ555pmBQIC030AgMDExcdNNN9GSsYUvHiMlPI2cZt4NT+ZOWxE6dbmeLQjaKETysyHhyQAsgZ0R/T8+uLEWra2CZRrC87ZDdTBP+es+SxFB5yxnwf98KJUqYjxgTy0gSSJNm3as86JZSkG1hx9++PHHH//nf/7nt7/97fSipza0XkSCsrVt/RA5SROWcbtakIuNJSixoWJdIaKu60eOHKFs21rkrMnMdDo9PT1tk5ZqF3RVFCAhT2lDTmH1PaQa5WSsUtUPeQeFEJFI5O67756YmOjq6lpgWhIn7YEirgUZjk4nP3ZX/o7/tqwroptoT4JlDQpPRChkHSuaAABwJ1IigECgPF75s0BgDDgoaYA05laEXRCh7u1HxoPM+H8ey+84YnWHmFkrMajscaAP7ZCfAKBpWnd3dy6X+9a3vrVhw4bBwUFa3kUrMVRVMxQKRSIR90A91Bae5CulzuWX8XjcxkzZ+NChQ+vXrw+FQo69OTPTsqyxsTFHZ6ykH53Msiz5wbGrurBZ2JSsY7sF5OB57rnnHKNS7QO92m23ld5WqVQSAM59yxmXXHF1eGVR3PdZCEalKFF1xYb4ObdtXj2Q1RnUADRWEtDyCeilipsosCAAAKSPaj60xOqtaR0HBjzGCo/N9PzwmUlu5kSoU9Nq+udU/VZ9QbcWQohYLDY5Ofnggw9effXV+Xw+Go2+/PLLl156aSqV0nWdc55IJK688sqvfvWrtALRcZzup+jo6PjEJz5xzz33kPAg2Xj77bcPDw/b6AoAnHPDMEZGRtatW+fYoZ2ZdI+mpqby+byqx7bvlQYejA3OeaFQUPWQdoPYqHKSlaOpqVQKEbds2fLhD3/4zW9+M2cAjJu5MfG7GyDWC6I0BVGhpc3jMt+xIXAGwSADgNGE9dSolTHEywlxJC1o8+jVXfz4bm1tj7Ysxvs6OFqQN0g3af6kskRlnSnKdZZLFNe87vSP3PCzd+/6wfduevj3j5BHXY2WOfVf6rdN8lMIEQqFnn322VwuR7NICJHJZHK5nFSnVXejDTZvbTVRsZwGCADpdFpm29fydRFvE4nE5ORkf39/tU5rZyZjrFgszszMVHt92sRMGaJ0adMmV16tcznKSSFEIpEIBAJnnHEGlXsrua8Eahz1zVfjzEFz5x0s2gNiLhkQld3hoRWRFSEgGGKmife8WLhnj/HUqDmeEQLBEiD3OzEFBHWIB1hfhL37+NB56wMbl+lFCw0LtPmRsw64BsUs7x0Onf95Holt2Xz6ljM2P/bYY9///vcfeeQRRIzH49X3Vunf4QSteujEhJGRkWw2SzEFNYLiZYa70NI2Wqlayg4d46I0pNHRUQpz2Lpy0Ganp6erU/Daxwov/lXvzrGmIVV021XTiyORSITD4Ysuuujqq6/etGkTCU/yIdPRABB45//E5BGx/wmIVJATFB2SKRWAoHEpigjBENt+0PjWk7mnxyzDwkiAxYOMUUGw8sAZA4FgIRxO4407cv++K//eVwU/9obIik6eKWAT5KwbtwQA4BzMAgRC4Yu/xLtXgLAEMEDcsmXLGWec8fjjj//Lv/zLE088EQqFYrGYOz9tcxpaN/1M06wOUUrOuE8w1SdSq6VLh46U5pwXi8XR0dHh4WGb2LS/wWlRqc2ca5+8YgpcmmF5LXWbyEkThWwDOTBd18lJYFnWhRde+Mtf/vLGG2885ZRTQClOK68DEEELBC/+Fz58GuZmgdd0rQkAU9lvSMYw6r6fECEQZDf/Mf/f70o9NWpGdOgKMZ1IKMAUYGHpnylAIDCAEIeeMGMA//Gn/FV3JP40argUE3AerfBGS8bBLIIWiFz6DW35iSAs4JpMwSHl/+c///n3vve9jRs3zszMZLNZynaufbEolZdqadMc2LzzQ6GSnw2dulZvuq5PT0+TUq3+xNVGAJBMJk3TVBu1VZVVT+1yy8g3OzQ05CVY2hBI9Nk4Sbrr1NRUMBi86qqrbr311n/913/dtGkTNa7kZBmMAQoIdQQu+ZY2/HrMzTiSU71C2hVFVC66ROUb+U8AGAiBEPvPPxU++2g2orN4gJFUdJ9lAkptlkX5SzPmB+5M7JmxwrpXcrqnqivXroFVBC0Q+atvase9gWgpfyQGkhZ2wQUX3HHHHd/97nc3btw4Oztbl59QfmkS5kkqIUQ4HG76/d4mIpD+RekHFeFJ9cSI6CgwWzsUG+Tb0eVEZNGtXbu2Vb5Zet5U2k+qVayciDw9PR0IBK655ppf/epXX/ziF4mTcmOFmp0yDihYuCPwvv9XGz4NapDTPpIy97BMVFWWlliKENRgLCVu3JGLBRhj0NDKYwAwBHSG2Hja+tzDKS++YgqNuOcSlMA1MPOgBSKXflNbc5qNlhI2ft5222033XRTc/xsLr2EYnsrVqyIRqNCqefYaCfQLEXdxSaVPnHQZmm6Z7NZR/dU+8jp0bVDfqlNmzZ1dHTMP5gpH7Pav67rVIoiEol86EMfuueeez73uc+tXr2awkLOctJhoBxQsFA8eMk3+Zo3QW7GcZrax1P+r01OytXRJoCms9v/UhhNi7AOzWXpGRZ0hvgTh4xnxoxIbZ2WfLDu6y3nwHUwchCMRi79pnZcTVpKyMI5uq6T/GyCn6AYct5Bgbd169aFw+H5pI55NEobAhXTmZ6eVrutuBGJRKJadrVVZnq0YBljhUJheHj4lFNOkV7vJkCiT9VdaZG7YRhUAezTn/70/fff//nPf544SY7vxk7HOKCAcEfwr2/imy7GzDQw3ly8oiL2yOD5KQs8hBNdwDmkDbFzzIAaCq1cOOLpLJqOuQTrXhX9wC1eaElg5aocqn5L/PRif0L5IaJT+of7UcFg8JRTTrEZaw1hnmx0Oa+mabOzs2obLo9BRJr01apsW2Umes5L1DTt7LPPbu4sUndVOalpWj6fJ05+5jOf+fWvf/3Rj360v7+f5GTDnJRgHBCB8eC7/znw1v8D8ymwTC+z1h2ecxDcgFi92WAJDYhKxoBxTE/q6zdHr/wh7xv2SEulAyblp9Rvyf70zs9qH4HL6YrF4sqVK0844QTKa/c+VBuas6e8jDCbzaZSKdl4zhAqFAo2TVfttE3klEZm3Zac82w2u3nz5le/+tW7d++ORCIedZJqy4RiIVT8d+PGjRdffPFll13W29uLiGrhknmByCksffMHofc447dfZrkZCHfYoikNoU0hI5KTjLntdVkBroFZBLMQ3PLB0NkfBdqdtqn3jvS3S/323e9+9z333PODH/zg6aefDgaD7vEVKFtDqvfOecicFwqF97znPT09PalUqunJ7CWkWetALz0nk8mOjo7SmEExMh0t43Z7gOSrse6JyEN7+eWXe7kvqpxUz0Vycnp6et26dd/85jfvvvvu66+/nkpCN6O7uoAx4BoIS3/1OeH/fjOsOlVkpkjatKb/+YGVIyJktnujJQOuYS4FwWj4fV8Lve3jwDVAMc8rYuXawlJ+3n777d7lp805VD03yBRas2bNeeedVx2c8A5Vf25H9I4xlk6nQaaRy0+UWFQ9mjaFEEHJgPNoMHDO0+n0li1bzjrrrGQyWUuyyeCkjZOc80wmk0gk1q9fT5y87LLL5LKVOn7XpsE1EBbrWR2+7Cb9jOusQgELWdC0eWXKzR8IluJ39fSEuQ7CxOysvu5N0Q/8SD/hbSDM1r5obPrt7bff7t3+VOOftumkaVo2m73gggt6e3ur81e9w2OqkMsI3RtwzvP5PG10ADZt1lFMu8czVNCuId7by5U1UPaq1z2EfN/XXHPNCy+8QPFGlX7y2djOAgCZTEYIsXnz5quuuurss8+mJQVVCQPtAQkWrgXP/oh2/JnFB75pHXpGi3aApssk2wUECgTavt7rG5dzAMDsDOtYFjrn74On/VXJy+UhJtQobPrthRde+J73vMe7fqsKNJpdmqZlMpkTTzzxHe94B1Utb3ps0qxrOmxT90DTNDOZDNVqLd1cKv3oosq68I1GPDs7e8kllzQXxiU1MplMQr01K6SZrFix4pOf/ORnPvMZer/SO7Ja8JKxnslkEPGNb3zjddddd8455/ByOW16jzQ61CbBaFdNoa16bfiKfzOe+rnx2M2YmmaRDk3XFpSfTFl1Uvf9yTgwhoU0AAtsem/o7I+yriFAMX8Ntt4Y7f6hd73rXffee+8PfvCDZ555xov9CeUZSxVYP/axj/X09FC9WfdDSOQ6TnVRLmHlOMO9+KLcDVT6Vaquc8x0HBCWixTVFYOWZe3du9e9TUugaVo6nX7961//D//wD1//+tdN0wwGg7abQmNOp9PBYPC000774Ac/eN5559GVL5CcdAAjNwvT9OCbrtA3nG08+f8Zz9xu5tMs3ME5Z143HJofUPmv22A5AICRQ6uoHfeG0JnXase9AQABLWALV41MjX9eeOGF0j+0c+dOWZvGhZ9CiFwu96lPferUU091MX8kAoFALBYzDKPWKjD532qCWZYVj8drbVXkxTollpE2yxjTsVx53VZiTL08j1HHedpp3m1aMjjPOeecjo6Ob3zjGyMjI7FYTC4nF0Kk02laFHLRRRedfPLJa9eulQG0xeBkxdABEITg3StD7/ynwKYLittvMV54WBg5Ho6BFmCAgIKxkh1KSyLbVGPWCQw4BxRYyAAIbflJwTf9jX7C20oOWGDAFuHuVeu3t99++/e+972XXnopEAiQl942c2jlfTqdvuaaay644IJUKuXluU9OTu7YsSOdTlfPZBszq48VQsRisUQiUauBF7DyOjKwrTVxkbZexOZ8UisaBWMslUqddtppX//613/605/u2LFjZmaGtnaKRCJbtmy56KKLNm3aRM0ymUwkElmwtZ31wIAzQAEC+fITwhd/JTD6vPnMncbzD2B6EvQgC0QYY2gJwFLVH0s0uOdzLdTUYBnQy8AsYiHHtKC+/vTA6/5KX3c66CFA0Wi4suVQ9Vtd19/73vdu3Ljx4Ycfvu2221544YVAIECbINMsFUKkUqloNHr99ddfeeWVjkyzgWyo++6777777pv/aB3Vz7q6N5QTlUiENLB7AiWp0Z/tDqV4Aam1g4ODn/zkJ6empv785z8fOHBgYGBg5cqVJ510EiJS5GqRdNd6YBwYAAoA0IZeo73rNcEz/tb482/N5+8Xo88Ly2SBMOghZAwQEQR4zMvxCuqLkXcHLAMLOQDknUOBUy7STzpPW3FSqX6BsIDzJRLpgbJeRlVCzj///Le+9a2/+93vbrvtthdffJHmp2VZ4XD49NNP/7u/+7tXvepV2Wy2of7nObHdBZuXfAPa7nqOme5xCykwHXlPp+zu7t66dSsVLHO8PDk4qR7L3oQQHR0d991335e+9CXHoim1RkXL2xCxs7Pz7LPPpm5pb3lSzskHsJDCvDHQjEcBAKxzMLj5yuCb/sbc/wfrxYesfU9YMwfBMpkWAC0EXG9BoIUWcTIOXAcwwCoiWTXxvsC6zdqGt+jHb2HRXgBQOLn0XmoAZM4lk0nO+fnnn/+Wt7xl+/btO3fuTCQSq1ateuMb33jyySeTV7YhRcmj1eYOF3I2NAZd/u3xrKzGIjdd10844QSqoGfrTbWbJSfVHizL6unpee655zyORLX7qUPTNA3DkCPkysYSLbnd7QUrb0yNAriurztdX3c6FnPi0E5z3xPWwaetyZchlwDTmK/rBQEYQyMP2SJilHWv1FedrA2fpq99I+tYVmojrFKUcklyUoUsNKHr+rnnnnvuueeSO9A0zVwuB2UD1fvTb2v03vsY6EMD2mzdBrlcLpPJVMtM1W4mlcMmxCzLCgaDMsbqZTC28bjTb6kzk8DK/hUSocGItu50bd3pgMKYOQyJ3fzZG/DFP0M4Qg2aOgMHM6cNvwnee3G0a0NwcD3o5cJtKMridKkTEpTZKOOflHFK2adM2crS46Onxj09PbSSoblRcc7379/vmP1X1yurNkA1b9bLqwKV1PNaaVAyk4ZVVjSSp6f7aNMx6BuPioeXodqGt+gvwsYgjTpiC9d413LoXcUH7gbzj8Ca3CkVAIBzLGYDrzkXTryImyboOggBgMB4ye49SlA99eXkUX0KthnoAjJQ3/nOd37nO9+ZnZ1V09ZdYpgqLMvq6uq64oorHnjgAZvsEeWtX10up1rFK0UaPFaLJXa5LzxV7UlQbmKrjD0vKodsQB9sBX+PGki2oADQWuMCotoLpT5L+T1HHTxOVCkS6EsvwYVCoVAoFIjnDSm3lmUVi8XqSY5luJzdkfklmVldW7ruOGqdgNZP2SzS1kqthnQDxhgx8+jQaR1BUrQl4yeVFWDpuFubg8cZVb3MCDyscJLuSe9zppY95VEbrf5yrox8o4l1jo1lkrps0FqruiGBSZ8DgUCtzIxjEEfx60lBdQ1IR1QzUJVO1RNJftNyZ767jqkOSdM0urq5+KTcQaTp06MC0bqSZ9X9N3SIz0wVR5nJXQONPlA1s1ouRqklWtoxad0bqJ+l9jq3PnOe9VHaDe+0VO0KRAyHw/BKmZHzx9EuM2n8wWDQi1tEBTqhug0srOUFtafrnLFB+94t2Rlss+ZrofqdF4/H2zisow1L9vk2BNKD5lloq4XjaRUQUW5ANLdyOhqNes+/WUhIT6+Xsdl0A03T6I1ztMsKHyo456FQaJ7G11KAze7lnNN0BbV2HqXtm2bzhWraBGm41m1pE5hCiHA4HIlE2jk6HwsNesS0A/Jij2VesGnU5BOh6cpY2XVOLWhDmKUm6L1LS7UZOb6p3tFSuyIf8wHJyVgsRvnfiz2c5qFyjaZrNBqVsfeKtSNdXV1UpHxRBloNbKSmqI295Obq6ekBX5V9JSISidhqzRxdcFQDVUFSEW6mfZo8yqiFQaP+WAl6A0mt3QfhlfGSQkTGGO30vkQUokZ9xY6ChJg5FzVR0dfXB54VyHbDu2pta0m3qb+/H3xVthKvjLtBc7e7u3vp+Cwbokz1dLUsKxaLqT4ROzPj8TiVb1gi5PSCasWAls92d3fDK0VK+KhGJBKJxWJUBGCxx1KCd0FS/WVvb6/6k8OaD9qbGpaM5HRHNS1JYA4MDLRq4zAfSxD0ZHt6euRcXcSReE+DAaeQuxAiEonYBEkFM6WSIHcyW0hyNsEiRKy2NChYQmq5LzBfqZBzdXFVPPle8O4QqVZlhRD9/f02QeJQI4wxNjg4qJ7V0c6mhXC6rlMS4zxr7cjbqpcByiLPWkdVj4quc/ny5e3boNrHEgHNjb6+PilFFlitlZF277R0FJiOgsTOTPqts7OTtvpwWSpNhepM06TkBCq304SMkjeUyGmWAeUaZLWuufo1SWVHuru7SWX3BWY1Xkn3hK6lt7c3Go3SFHLUodoBrMqM916vR/2TXijLli2rFiQ1c/aXL1+eTqdl6RAs75NFi0pN0zz33HOHhoYoAdc0zY6OjoZy4umSpFTM5/Nr1qy57LLLSDmhPUhOOukkuYzVhloLRHVdX7VqlccxHIN45ekRjLGhoaF9+/bRn1gu8timd5CkYqM5OY6CxLKsjo6OgYEBqOJ2zZLSuq6vXLly//796gGSn4VC4fLLL1eXySFiIpHwIjbVC5PrU/P5/MaNG9/0pjepWRHZbNZxLwrH9AO6zuHhYdoW4pUkHHy4o6Ojo6+vb3JyUtd1dV7V5SdNLap0QxPbnWxSeazVshSK5BzKJa/UtdrVvXHOawkSZ2ZKnXZgYGB8fJwuWO0REWdmZmz1S6hkSfXpZRt1nXj1+6NYLE5MTKhfVhcHquUEIz122bJlfX19Pi2PQQwNDaXT6WKxSH4U23yrnkVQZUaBq0Jhc8C6WFigbG8n1V2ivdqSZuzKlStpD4jqGVtnBery5csLhQIVDrSNRl6t/GBrIP9UueSiAzDG6q6IrSUtSZ2m149Py2MQmqatWrVq7969NhEi/8uUDfY454ZhLFu27OabbyZ7jabQ4OAgbbsOTunm7uKU9L6Pf/zjH/jAByRZyEFVvcu1dIgMDQ1BjRlbf2346tWrafOwanKq1w+KeFRlfaNZSy5wUWKj0ShtXtKSE/k4GhGLxZYvXz4yMlI9UaVyq34fCoU2b94MCjEMw8jn87IIkHSFgAf7nMh24oknqmcXQtD2kLaWlAkzPDzs0mF9Zmqatnbt2n379rmQU6Ja1reElrUc03SRkUjk+OOPP1oL5PloHfr7+/P5/NTUlONErU5VpQ2CVItMpvup8sbj2RljuVxOPbB6Fy86F+d8zZo1gUDAxfLyVECNyBmLxWrtjNBW0A6CtZRYSctWSeajDqwGFntci4NVq1b19fV5mahY3jEAlMp33oOTjmDl/QHoT0fnJQCsX7+eVly6DNJrpSMi5/79+9PpdF3J2Spg7VVgRMtYLLZ+/Xr3d88rD+p8oqxR1Ych7wNt4y1VOPJ2HAt3idwNtSRnu1ErG4mUZMbY+vXrOzo66s7YBmqQaZq2bt26w4cPT0xMUIWv9l22CycJpmn29fUNDw973Hj3FQDp/TYMg/ZZAoBoNBqJRMLhMN0EXddpfxchRC6Xy+fz+XyedkOjR7ZktipsL4icFEdZyPO2ipbQEDPpBCtXroxEIocOHULElr+TpDvbxX9Luvvw8DDFZ+EYkAN0NwqFwuzsbCwWGxwcXL9+/Zo1a1atWjUwMNDd3d3V1UVtpJlkWdb4+HgymRwZGRkZGdm7d+++fftSqVQymZTpMot7Ue3GqlWrNE0bHx9XFYf2wUUNJv0uFAodd9xxdZVYiYbfKIhI+VAjIyOJRCIQCLTksm3xomrQW8c0zc7OztWrV0cikWNEVELZXFm/fv2111571llnrVy5kpYmAoBlWbW2Iezu7pabYuTz+bGxsd27dz/00EO0PFfGBl7B93D58uXhcHhkZMQ0zfZptnX1O8Mwuru767p8bGhGI5VxkcnJydHRUcMwdF1vTk2SVHRJ66Nz0QZsQ0NDAwMDrJFtno5SyAu0LGt2djaZTJK7yzTNYrFIecWqD8OxB/mZFF0q9l0oFGKxWG9vL5XSWZjLWRRgOfHz4MGDFFlooQnmRZaQfjc0NDQ4ONjopJ3vQA3DmJiYmJycpI1yVceUSyBIBldczi59ZbSHX29v77Jly4LBoHRwz2fYSxny+RmGMT09nUgkDMOQCV9Nu15RySwj12UkEunv7+/u7n7F30xEHB8fHx0dFULMM7omp667LCGDMx6Pr1q1KhaLNSFI5sVMdQ5NTU1NT0/LHUVt47C9v90JSYylKw+Hwz09PX19fVQh9xUvKgmmaU5NTc3Ozpqm6XGbtoYgFzQiYiQSGRwc7OrqamH/SxP5fP7w4cOJRIJcJA3tCskq9+pzt7mEEKFQaHBwsL+/v2n9rgWPXNW70un01NRUOp0mD6H38JpUDEgsBAIB0rg6Oztp5ecxwkkASCQS4+PjxWKxHZyUkPOMHEKdnZ0rVqzwuJPP0Qg5fzKZzPj4eCKRIFVT3QPXkXjSrVpXnNAtDYVCAwMD/f39cmFXc/O2lWq3HAFl86XTaUoyruWiUME513U9GAzGYrF4PB6LxaTWcSxwUiqZo6OjyWSSwhvtdiciogxyWpaladqKFSuoDugrFXIu5fP5ycnJRCKRz+cRkfgpp1ndOy9bSpespmmxWKyvr49Kw8K8522LX8nVLwnDMCgd0TAMud+7OuhgMBgMBsPhMG1WYbs7r3hOQvluZDKZI0eOFAqFul7E6nd805DxN+rNsqze3t4VK1bIHVDn2f8ShDqvhBDJZDKZTJIIkYt+5b7pjoer/hGqqh6Px3t6emitMrRIlrRLWZoPr16pc8IF09PTY2NjUJV1LeF4Q6RNPp9Tq8FxVk54HB4eltkL8+n8aAEi5nK5bDZL6RmGYZim6bg6n3aaDYVCkUiEivepLqUW3rE25vFIeDzFMTIJqjExMTE+Pl5dSIkpy3BVyPtZzczmnqaNnJZl6bq+du3aYyFo7ChCKCIgmaneBHIdVS/4bPldWghm+nAEPc7x8fGJiYlatKyVTye1WUnOum5Dd9jIKYSgTOljgZwSDSl67ba2fGYuDlRa2gxL6YqwPZpaLIXK4jTVB6rNbK44tRyGGhU4Zsm5dOAzcxFAE91RiVXjTNFoVPW8m6ZJ4eJafUpaOj5TcuhTkSR5rmw2KxdM2TI/JTnXrVt3TNmcSwQ+MxcaNMWTyeShQ4eql9VKIOLOnTvT6TSJNSpOsWnTJvfnhTWWBCBiIBDYt2/f/v37ZfamaZonnXSSXM2IVfmfrLz6fv369fOsJ+yjUfjMXAQUCoX9+/fb6gwSIck3yzkvFovnn3/+nj17ZF7eqaeeettttxmG4T1tQz5cCod84Qtf+O53v6vrummatCpl69at73znOxOJhAzB2RySROCenh730hg+Wo5jYrXekgIiHjlyxFaHgjFGWcfqN7S2UHoCG8omc4R09lZ7F9UGtt50XZ+enqayhv57fMHgM3PhQNN6cnIyk8moNbml+mprr5ZIBNflOCrUdEgb06SuW2uBb/UhUCbn6OgoVa/yMgYf84fPzIUDeVympqZstATFH9va07XqKPIGHTp0aN6D8uEVPjMXFBMTE9Vl7NtU6r85tjvGZkhsplKpqakp8HXaBYHPzIVDMpnMZDJq/p2jzjl/zCfC4cJnzvnY2JgfPlkY+MxcOExNTVXP6TZJS+mYlYkE3k9UKxyq6zpVc63VxkcL4TOz7aBJnEqlcrmcLUxSy0faEshzOWYUeTmwGpzziYkJX2wuAHxmth00iWdnZ6E9EtLlpNLr25LzIqKmablcjkqb+2KzrfCZuRAoFArVFma7WWpLNvAOl7HR96TQ+mKzrfCZ2V4QMZLJpM0li65l71py3kaVWPVYl181TUun0/l8vvnB+fAAn5ntBdEjlUrZcglYKxY91z2vys9WvQUoXy+VSoGv0LYTPjPbjkKhUCwWHb2ybZKZkvPtcy8RM32Ftn3wmdlGED2y2Wz1lsPQToGjLhyRsRPvp6vbknOeyWSoGrWPNmFB92M51kBszGaztVLeGuoNEU3T9LhRorpWk1aQeKlgKAfm3pIxZhhGLpfzuHmOjybgM7O9QETaDLxaEKmZAO6gNoFAoL+/3+MqMKisYGCa5sDAQDQa9ThsdxlLv2YyGdoixUc74DOzvTBN05FLDdmBRLAjR47ccMMNXuQeKvWBZA+xWGzHjh3gec1KXRSLxZb048MRPjPbC8MwqlPYocEcACLYoUOHPvvZz85/SO7MlPLWvQ1jjAInvirbJvjMbBdo+hqG4Ug/WwTFS4e0uno+Q3JZlqmexbHOqoRUwmtdmo+WwPfNthdH3fT16MIlAvsKbfvgy8z2wktBLY+8Jd9sa4blehbvLf1Mg/bBZ+aigSpxkQfV3RVEFumyZcve+9731lJH5fYk4MQuIUQkEnniiSd27dold4x3GZiX8S9A6u+xDJ+Z7YU7B6RzSG5Z69iMc25Z1po1a77xjW/UipqQDSkL7dl+pajJpz/9aS/M9AhfZrYVPjPbi4akSi2LlAhgGAbt7W3LjFdVYqJcNWEsy0LEbDZbdwB11W+fjQsDn5mLDBmlqLsxHmOM9llQVVZbkMNl9ZaXXZarS0i7wNdm2wrfN9teeBEyMjEAvHFDNlAPhEacN+7dukBVg3352Vb4MrO9oM2M6zajWc7KNdprTXr5k+yzISlXdwxeBik/a5pGtap9tAP+nW0vaBMRj40p9VyuFHFsQ76iVsnJ6gF4b+wzs63w72y7QGItFApBgzNectJ2FNFVSssWctLjMm7VmhVC0KX5aBN8O7O90HVd1/UmohS1tFnbXnotgYv+XGtIkpm+qdkm+MxsLyQzl6wbkzhZ991hoy5jLBwOt3loxzR8ZrYRNJWj0ehSFix110kT1Esg9088Hgd/rUnb4DOz7YjFYks2wEA+Jy96rMpeUmV9O7Ot8JnZRpA8icViuq67L61aLHgMuqi0JHdRLBZrqLaQj0bhM7Pt0HU9Go0uTWZ6gSN7u7q6FmUwxw58ZrYXNKe7u7u9eFmWJmy0pGUrVAHINzLbB5+Z7QXN3Xg8HgqFLMs66shZ7ZIVQnR1dak7QfhoB3xmth2IqOt6V1dXO0KRbUW1nCevbG9vL/gCs83wmdl20Azu6emhlSJefKFLBDYLkyqMdHV1RSKRRRzVMQKfmQsBRAyHw11dXZQW66VSVjvG0FAGb7XjBxE558uWLWvD6HzY4TNzIUBic2BggBZhOs77WkfJZZBNa490OvkuYGW4H2V7d5DA7O7ujsVizQ3DR0PwmblAQMRQKNTf3y/3OKnrEJIFCtBDDViXTmzZtnWzZB3dyEIITdOWL1/exBh8NAF/rckCQYrNZDJJ+ymAUlbLsVQ0WXRk1DW6VYG6klMSMhwOU7eWZXHO0+m0WiRBolqek8BcuXJlOByubu+jHfDTOBYaqVRq//79tsnNOa/mZz6fV2UX59xLErlNNsrvGWPFYtFWRigUCpGCLY+triREtIzFYhs2bPA5uWDwmbmgIIEzOjo6NjZG8kr9lWoayM+2iuzuuQoqu2opq2r/BJt4dHRNkeNnw4YNvkt2IeFrswsKkjmDg4PZbDadTqvyCpSaBhTHN03Tpjraquap1YNk2S53A9JWS1pdh+14LAnM4eHhSCTi67ELCV9mLg4Mw9i9e7dhGDZyStgIqW5PhMpmtfNxDqlwjLLS5iVDQ0OrVq3yabnA8Jm5aMjlcvv27SNnjJenUKv++vzhqMQyxkzT7OvrO+6441p+Rh914TNzcUAiqFFythy0AsZRWvq0XFz48czFAemikUhk7dq1mqYtfDkSmSdYS4klWvov7sWCLzMXE6rkNE2zls3ZjvO6rBelTVCGh4d9w3IR4TNzkYHlDXAPHDiQSqUaqk/bBFxSdimhFxFXrlw5ODjou3wWFz4zlwoQ8ciRI+Pj45qmtdzslMEVFz+waZqhUGh4eLizs9On5aLDZ+bSQjKZPHToUKFQCAQCLSm0gwocG8i1L319fatWrXLM1/Ox8PCZuYRAlLAs68iRI5OTk4hIG3g1+ow8Zq4TJy3LikajK1as6O7ulmOY33X4aAF8Zi4tSGLkcrmxsbHZ2VnLsmwb7LkENqXW6nIKuW8K5bgPDAz09fXV3SPQxwLDZ+ZShMrPycnJmZkZykSXie9qlqw8yl37latbKEITjUb7+vp6e3spO9en5VKDz8yjAIZhJBKJmZmZbDZLia9Mgfuxqu+Hcx4IBDo7O3t6euLxuJS9PieXIHxmLmnIFFn6s1AopNPpdDqdzWaLxSJZibV4RZTTNE3TtHA4HIvFOjo6otGoXMLic3Ipw2fm0QEbi2jVSKFQKBQKhmEUi0WprJJFyhgLhUK6rofD4WAwqC4os7Hdx9KEz8yjDE3zyifk0QWfmUcxPD47n41HI/5/GYKCSgarho0AAAAASUVORK5CYII=", "path": "image.png" }
Select the chemical formula for this molecule.
[ "H4", "P2H4", "H3", "PH3" ]
3
Every substance around you is made up of atoms. Atoms can link together to form molecules. The links between atoms in a molecule are called chemical bonds. Different molecules are made up of different chemical elements, or types of atoms, bonded together. Scientists use both ball-and-stick models and chemical formulas to represent molecules. A ball-and-stick model of a molecule is shown below. The balls represent atoms. The sticks represent the chemical bonds between the atoms. Notice how each ball is labeled with a symbol made of one or more letters. The symbol is an abbreviation for a chemical element. The ball represents one atom of that element. Every chemical element is represented by its own symbol. For some elements, that symbol is one capital letter. For other elements, it is one capital letter followed by one lowercase letter. For example, the symbol for the element boron is B and the symbol for the element chlorine is Cl. The molecule shown above has one boron atom and three chlorine atoms. A chemical bond links each chlorine atom to the boron atom. The chemical formula for a molecule contains the symbol for each chemical element in the molecule. Many chemical formulas use subscripts. A subscript is text that is smaller and placed lower than the normal line of text. In chemical formulas, the subscripts are numbers. The subscript is always written after the symbol for an element. The subscript tells you how many atoms that symbol represents. If the symbol represents just one atom, then no subscript is included. The symbols in the chemical formula for a molecule match the symbols in the ball-and-stick model for that molecule. The ball-and-stick model shown before and the chemical formula shown above represent the same substance.
P is the symbol for phosphorus. H is the symbol for hydrogen. This ball-and-stick model shows a molecule with one phosphorus atom and three hydrogen atoms. The chemical formula will contain the symbols P and H. There is one phosphorus atom, so P will not have a subscript. There are three hydrogen atoms, so H will have a subscript of 3. The correct formula is PH3. The diagram below shows how each part of the chemical formula matches with each part of the model above.
PH3
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAS4AAACsCAIAAABKLdZzAAA+T0lEQVR4nO19eZwcZZn/932rqs+Z6e65kplkMiEJhwgE5PYAEUJgZQVE2RVlgZ+4HCYcGgLhkmOFsIHIpSiscokogqzocizHqpyiHIIgISSE3HP2fVe97++Pt7umurq6u/qYSULq+8ln0kf1W+9b9XzrOd7nfV7COYeDHQWcQ9yvKneNEPNfBzsC5G3dAQdVwTkYAwBCJv7V9XPxr4HfOphaEEcrbnfQ+SNJJZ+reYyN8bExpNN83YdIpUApAGRScHuKNONkcBf4/aSnB6Eu+P0lLTAGzkGpw8ntEI5W3J7AGMBBpQJVOMfwMHv371i7lq9ehQ0beDyGSATZjNWPOcABAgCUIBRCWxvp6cXcXcmue5Dddidz5kBxTZyonOoOtikcrbgdQFihurJKp/nq1fzlF/nrf+UfrUMkCjUPRQaVIMuQZRBSoFzlFqGq0PJQ89DynHPS1s6n92PPT0qHHUE+sRfp6Smci2kgBIROwSgdVIdDxW0KoyMH8NXv82efZn/6A9atg5qHrMDlKnLPYLjagR62EZzV8sjnkM1yibKOID30M/SIo6RDPgO3GwA0zbFatzkcKm4jGDVhOs3+9Af++9/xt95EKgWPB243CBHEa9kdIgAFOOOqinSagWPurtLhX5D++QTSP3OC5NTRkNsGDhW3BXSzMJPhTz+lPfQgVr0HSYbXC0kSjpywQbmgT/F3RV+w8IIbvrIHDnCQgh7mmYyWTqGzS/qnf5ZP/jrpn2HS0g6mEg4VpxZC1ilFJsOefor96kG8vwouF7xeoSeF6hIgBsqRCqxjhq9s30hW+EsIpxJX81oiTkJd0j/9s/wvXyd9/YXpE0c9Ti0cKk4hGAMBCOV/eZX98Bb+7jtwueH1EsYI5wBqRmN0cMORglh0gmE2G+D6sVySmKqyRJx0dsvfOF0+6V/g8zkO5BTDoeKUgHNwBiohHmM/uYP95mEQwOcXJLTPwIrNG+xVXmrH1vodKxxFiEop1DxicbLf/soFF9G99gHTAOKox6mBQ8XJR9Eo5X9+WVt5Iz5ci/Z2QghhrHkSmk9V5Bax60xyQBOvGMAIgSQhEYfLLZ9yunz6N+FyQdOcGcgpgEPFSYYIk2oa+9ld7J6fgVLi8RBNg8EnbC10xUiNNmgNaIKzBSZTCsZ4NCod9Gnlsu+RmQMOG6cADhUnE0KCh4a066/lLz5POgKEEMrssaNpGFWijVNq+uEawIV6jEVJqFu+5Arp8CMc13Gy4VBx0qBpkCT+4Vp20Xf4+o8QDEqqOvWCPGGA1gCbiOLoP5Ek5HI8nVYuvkI+6WQw5sxzTB4cKk4OBA///Ip26VLkcsTrJaq6TaIftqlYGlPVf0UpwPlYVP76acqSpQ4bJw8OFScBBR6+rF2ylDANiosybRsKr7jBzPC6MiacxgkCEwJKMRKWvv5vykUXO2ycJDhUbDUED199Rbt4CWFMUhRMlXNYBYZZi5oHTujGCfeRAETCSFj6xr8pF11cSJFz2NhSOFNGLYWuDy9eAsbo9sFDAQrQ2nMnxJhoMCEcHGAaekLqA/flVyzX82Mnr7c7IRyt2DoIHv79bW3xOWCMKi7K7Llp9kGKE+6WZTWMRTTEisRSGHMAqmJCiTJz9FXC6Jh81jnyt89zZjhaC4eKLQJjoJSvX69duBhDW6nXS7XW8VDMImga1DyyOTAGSYJEzQsXGQNnUDVQApcbigJJmijJIQ6xlbA6YaYyM3UJGEEiqVx2hXTiSQ4bWwiHiq2AWM2QzWqLz+F/e5N0BCRNbU3LlIJzZDLI5eDzYXof5s7DrFkYnI3OLvjb4HYVzMVcFokkxsew/iNsWI81a7B5M1IJuNzweESaAeqgIoyKsYSNjEBl0FTltjukAw4s5DA4aBoOFVsBxkCp9oMb+S9+TkMhqraCh4KEiQQUBbvvgc8ehoMOxty58Hht/Tybwdq1ePXPeP6P+Me70FT420AIGCuzOS0xYaOWRHLEe1CkMmTGTNddPyNdXYUnkYPm4FCxaQgX8X+f0r53KfG3gbFmLTaxlDGZgKLgc4fjpK9i/r4TdqCxBpwFOLjBpQSgqXjjDTzya7zwJ0FITWMEvJbHOKEYzVQUHxOJR6L06IXuG250FGNL4FCxOXAOQviWLdrZ30Q4TBWFNnk9KYWqIpXCoZ/Gt87GXnsXzqLP5tnUP3r1DT1b7c038JMf4bW/srY2iCzT2mycUIwlcyG8wEYWiShXXq182XEaWwCHis1BmKZXXsaffJwEAlRrbipfkpBOw+PBOYvw5a8Ie7JQA84IPXxqGUEtV1D6UmBNxa8e5Hf+mGsa93h47cDShJ+omXjLAEagaczn89x9H5054JipTcKxK5oAY6CUPfk4/98nSEdHC3iYTKKvD7fdgZO+OlH8xshDxqBpBd1IKSSp5B+lBR5qWsl8pvicMRCKU07FLbeTrm6aTNalx8xzkgQAh6JgdDT7g5uaGbcDAUcrNgqhBGJR9YxTMTJMFJfUzJWUJCQS2HU3rFiJadMtlkEY083yeWzdis2bMDqCSASqCkVGIIieXvTPwPTpkOVCD4WBauyzmAjZuIEv/Q5b9yH3t6GabpzQihb5OgzQACppibj7+8vlY451nMZm4FCxUWgaJInd+WN25x0k1Em1JlZdUIp0CgODuPVH6O0F00o0oc4ozvHO3/Hs03jzDaxfj0wamgZNKzwUhGL0ejFrEPt9CkcdjT32BIFFyqjw6zZvZhcsYps3weOpnBJUOY4qPlIBSnkmw3fZxXvPz4nH45ipDcOhYkMQAjcyrJ55OqJRKkmNR2sIgarC58Ntd2Derub4h87Dt/6Gu3+K1/6CTBqKCy5XQW3qci+OZAy5HPI5eL04+FCc8U184pOV2Mjfe4+dfy7PZguZAFbj1Amo87DkOA1ggCSpsZj7yquUE77sxG8ahmNONATOAbBHf4Mtm4mikGYeZ4Qgl8OFSyx4KCikqrj9Vnz7LLz8IhQFgSC83sK0vnAdxT+R6UYIvF4EgpAU/PEPOPtM/NdPCp8bOylJ0DSyxx70/O8gm62sx4j+l1imsNLC1SCKknvol8jlKrPaQQ04VKwfQk0ND7HfPwavT1RMbBCShFgM/3Qcjj6m4MXpEH5XLIal38Xd/wWXC+3t4NwckimH4Cc4Ojogy/jxD7FsKZIJCzYyRv7pOLLwWMTjlVVZyeAssloBMEa9Xv6Pf+Sf+J9CBxzUD4eK9YMzAOy3j2LrZrhcjatEoQ+nTcOZZxXeTpyCg1IkElj6Hbz4PLq6wFE1vmIFTQMHOrvw3DNYdjHSaTMbCQEgnXUuenqQy9nx8SrVxSKcQ1HyD/0K+byjGBuDQ8U6wTmohFSKPfcM3J6mVCKlSKXw1X9FX19hisKE/7gar/0VoRBUtY6CwyaoKjo78dILWP5981cixbyvj570VaTTlYOfxPgfN30jPmWMer3a+++pr7wMlC0ZcWADDhXrBOcA+MsvYu1auN2iimkjIATZLGYN4oQTgdJ5eeEi3nc3nvnfIg+bg6oiFMLjv8dDvyqmDRRBKQBy/JcxY2ZNp5HrryqNSGPq479vtrc7KxwqNgL23LMAmlrHTikyaSw8Bh2BEpUoXMQP1+K+e9DeXrdRWgmMwe/Hz+7E+o8K8yIChEDTSGcnPXohMuWKkRtfWFinho8IY9TnU199lW/dWnIKB/bgULEeiMrCmzby1/8Kr5fwRuMTIi7aEcSChYW3JtzzM8RjkOWWCTTnUBSMj+P+ewtvjZ0ByNHHoL0D5rVdxPTCIm1VpyLnRJb52Ij63DOAE7ypGw4V6wFjAPjrr2FkBIoCzhu8fIQgncb8+dhlTklCjFCJq97Dn/6AGnkw9UPT4G/D/z2LD9cW8uAEKAXnZO48stfeSGfKFGM9ip9zyIr64gsAnNnFeuFQsR6IDUlfeVnoq8atU+GwfeZzgJX2ePJxJBOTIsqyhFgUTz4OlCpGxgCQQz8DTa249gpApQjqRJYBJ2639v4qvnWr+RQOasGhom0I9RUO83f+DpcLvOaSv8rQNLS1Yb/9AZSky1CKdBovvShisy3qtwGMweXGC8/DlGEjbNT9PoW2jjJVXDJKi/GSEhsVisJHRtTX/lo4nQPbcKhoGyJ2unYNhrYKKjbYDqXIZTFrNmbMBEqpCODvb2PTxqbarwLO4XZj/UdY9d7EGYt9IHPmkr7pZROM3Mg2C5VooGrxIMLefF1v1oFNOFS0DUHFN17XA54N7gNFCHJ5zJ0Dl1KYtzC0j7f/hmy5w9Y6UIpsBm+8PnFGFA1mRcGuuyOfL6WQeYiVwjaFrziHomjvvOOs0qgXzsWyDeEofvC+LqkNPvNFRui83QqvdQjBfefvkJXJ9bII5atXTZxR7xVAZu9S5i5O7A1n3adSrUg4Jy4XG9rKNm4AHBu1DjhUtAfdkdu4UWizpmwvQjBrsPBCb58QZDLYvHlyE8cY4y4X1n5Y0H6mEw0OwuU2fMiLBmrx1+UNmi4E55AkHgnzTZta2/GPPRwq1oNohG/eJKYxGueKcNh6ekyfAsDoKCLhwsLfSQORJITHEB4v/ZQAINP74HKVqrKSsI21r2j6lBBwrq35AHCCqHXAoaI9CEdxw3rk8yAUALG7i2gpxOR+IIhgqPC20D4AYHwU0WgrZ/bLIdR7NouxscJbvWMACQQrnH1iit8i4ab8cMbZmjUt7PXOAIeK9iCouGWzMcBoKYS1wRi8Xvh8Fl9FolPgXHFCkM3ycBgo01p+P3y+kmBSWQVjiyHT0q+EjTo6AljVvHJQAc6VsgchsiOjUPO6eDUUQSXgDG433G7TCQAgmWh8BYY9cIBTynNZHotafO12oa3d8Diw0ILWjZa+JJLEYzFrd9RBBThUtAdBv/ExSAX7jVsmZNaE0KSyXHAITQZqLj/JTCyejXOSy1l8IcuFUjdEX79vs1RqSeuQJT42xlOpVnV4Z4BDRXsQMxljoy1Yc2AsE2xC3ooeLUVxzSHhlmuvCCUTFa640Tqt+NwpV5ycQ5J5JAyHivVgcoN1HzdIUvnS2VaitfnfVpio2lb7gVLiLlZzYU3ZNii4i6BOtk0dcLRiPShVZfb2gSlvpPLEt6I00J4dcMO/wi23nDLhnBdWfrGi6VnoqsUSfquzOGgYDhXrQTYjZjJ0mEuD2gIp1Ggr/QwAXO5W69mS5mG0My1pr2rIZkGpoQrxBCoaqBbnI2CMF9xRh6G24FCxHkjmObe6g6icgxLkc8hlC28nWgL8/pbbvIXTAjCapopC2totjsvnkEyCkmKxxYmfV+STIfBk2PiNgxBSWOflmKm24FCxHpT5io3EUQlFOoN0xuKrjo7Jk9uJZDbG4PYgVJpjIJBKIREHlcC12vreMnyqQxQsd2AbDhXrgjlcWLeByjlkGbEYopHCWyM6O1u/eF+cVg+GikUYbhdCnYB5iRaPRaFqhtQaw3/lLVq176BhOFSsB8yCJHWrMUqRShbyziZaIQDQ3YNQJ9RKS+kbgYXeYgxt7aSrq/xgPjyEnKj7Zlb+ZpBi68V3pYY7KVQrd2AbDhXtgTMApHeaZcmJuiWOM2zeBJSmgHKO9nZ091jXRG0C+uQgFyfK58jgbHi9JVvNiJ589FEhbFOhkUofleaME6gq6eqGv61VQ9gZ4FDRHhgHgI4OMDMVzTmaNSE0xur3zZ8LMnxiT6j5llBRN57LeKJh3jygdE5F5DB8tA7UItG9po1qVomaRjo6iMfTRPd3OjhUtAfBjb4ZUJTyWUFWl7PEOSQZa9cCMG8aBWCf+S1cr0jKnxScQ1Ho/P2A0piNyCJa9R5cLhi2Bq8YlzLvQlxyWq6qpKsLigLOWqvhP8ZwqGgPYg1RX79YrFj+fR2hVLFece0aDA8X3goIs3Cf+eiZVlbVom4Ynw4lKjGfR+808sm9Cm8LRzMA/KN1fPNGKPLErIfp50YYvEPzwAnAGBELMpnjLtqFQ0V7EFScMRMet2XwBnVpRVlGJIy33gQMVqIwXDs7sf8BVoW664AxVFPSK0qRTtMDD0IwWF5Wh7/1N0TGIZck2VY0TQ2xZDMVOUAJnTO34f7vnHCoWAd4IIi+Gchb7C2hK5AqM20TIARMw0svFV6bsPDYhsvbsOLuo9xyooVzuFzk2C9a9AfgL71gTHbXswLM/eCGcxiOLDmCUElQ0bFObcOhoj0QAqYRt5sMzkYua5nobGEQVgJj8Hjx2qsYLV3qITThIYdiv/2RTNarGHkx+8c6X5RSJBPkgAPJp/YvKUkuXm/ezP/2OsQO3vXY29wkQ4RAVWl3NxkYKLx1YA8OFW1DCOZue1SZ2Lc2Cy2O41Bc2LoFz/8RKMyUFCDs1X87o95UFeODwDodj3PICj3tjMLr0jOy557B6DAU2a51qv8aKLHXxWTJ9D7a119468AeHCrahnAX5+/HXW6winaobhnWWrfBISv4/e+gqqAG1ondLA46CMd/GdGIzZJTJTOHllalLCMWpSd8mey3f0mFUrGaKZ3mTzwGj7tAy0qWtm6alg62BITwfF7ae2/AqbxYHxwq2oag4i5zeO805Cvu0atHNPS/1pQVFW7efRv/9xxQulJRtHzuIuw9H7FYJTbyUk2oVfFUZRmxGNlnP/rt8yba17sBsCf/h3+wWrdO9c5XO2U1EGnv+QCcbJu64FDRNggBY6S9g3zqAJ7NglSTSlb6ouJxVMID9yGTMe9gwTn8flxzHWYOIB4vZ6PRKa0RKJJlxOOYMYNe+/3SYhlFlRiPsV/eD5ciJh54FcZRcy3wcpWIXI729UkHHgg4Nabqg3Ox6oFgy6cOUFXVsA9vhWNLp8EtDmUMPh/efQe/fKDwVoeY2Jg5EytvwexdeDgMSSrEOYutGUtBVZj6I5AkRMKYvYv0g9tJ/wxz8XzOAGj3340P1wiVWGM8pWeyOC+lLJPhc+ehs6skq86BDThUrAOcEAYonz3cO2cusllOKsZvjGCGf0ZmchQ3A77/XrzzNiSpxEwVTuOsQdz+Y/KFI3kkwnI5SBIoZUVOWlukhIBSSBJyOUQi5AtHSbf/mMyaZeahpoFK/LW/8F/9HG2F7Y2rTcaUfmd5JOPcS2nbwmMBsOb3Ld/J4FDRLhhjjHMKvLFp8yWjsRwgEXAbzpPRo+PFkKMIcnLOuSTxTIYvvw7RKCSpRDcKNnZ14foV+N61vH+GFouyZJJrGqcUksSpxCmF+CdJkCRQCZqGZBLRKPr76VXXStf9J+nsNPOQMUgSRkfZ8mugMVCqU8t6PKxUEVtBBToo/WUmd+bjT4yOjFBF0TStmSrqOxuIc7HsQNM0SimAH/7whzf953+O5PL/r7fzlp4OlYMUXKjaxlj5/kyF7DFJQiyGz36OLl8BxVVmRvLC1F8ywZ97lj/zNFu9CuPjYJqpugc4A6UIdZLddidHHU2POBJtbQXn0BSqoRTplLbkPP76X4RK1AxxJjOMNC39YOL6AB2UPpNKfWtofCQcnjM46+Zbbz3yC19gjAGgjtNoAw4Va4BzzhiTJGnjxo2XXHLJ73//+1Ao5KJ0KK8u7Wy/tDuQZUwCrcu+KOcklyQSjWDBQnrVf0BRoGnmeUUDP/nWLVi1im/cwIeHEA4jn4eiIBQiPdPIwAB234NMny66XtB+Je1ooBJSKe3ypfzFP6IjAE3jVcJLZXYwL1OQDPARsjqf/9KmoRhjbYqSSKc5Y2ecccb3vvc9n8+naZrkrOivBYeK1aA/1B977LHLL7988+bNoVBI0zSx+3eS8bv7Oo9t82QYZDQoahMFoCQJ0Sj99GfoVf+BYBCaZi6XKqhVqYaqEZZHFpnJR4bZ95bx11418rDaJGkp80zzpSLbRgNO2DL8VibXRqACEiEgJBwOH3DAAStWrNh///0d9VgTDhWtoSvDSCRyzTXX3HPPPX6/3+PxqMVoBAXyHH5K/ntG1+5uOcdA69SNFpAkxGNkcBe67HKy737gvLDIyGyI8oJLaeKkuJXlXC20Q0EIf+2v2nVXYfMGtHVAU2ss7zKn0hQ+M6nEDkouHIvcF08GCckZFu/LspxIJAghV1xxxaJFiwghjnqsAoeKFmCMcc4lSXrttdfOO++8f/zjH52dnYKcxsMkIMb4gR7XQ/1dHgKGOvzGipAkZNIglJz8r9KppyEQLPiKgNnlq4nSH/JolN/3U/brB8E5PB6hD6vFYrh5USIz/BVQgSAlDyRS549GgpRoxUeYLlSSJGmaFovFPv/5z99888277LKLpmmEEEc9lsOhYgl0Zaiq6o033njrrbdyztva2tQKoXmFYFhl3w62fb83mGVMAoCmKw6KBPF4HDMH6ElfJcd+kXR2FqbpOCusAKxESyP9RDuEIBplT/yO/fpBbPgI7R0ghDNGqq945kUqFlFeEEAD/ISszqsnDo2mGJfJxFeCjUK0BPGi0WhPT89VV111yimn6Be58Uv0cYRDxQnoyvCDDz5YunTpc88919nZSQhhVXMpKZDi+K/poS+2eYtsJObMlAYgSchmkU6jr5989nP080eQPfdCWz3VYtJp/u47/I/Psef/D5s2wOOB21MjSCNgNa1h6SIC+Nrw2J+zuXZCyhdxMsb0SydJUj6fj0ajp5xyyvXXX9/V1SWC0sRJAyjCoWIBumT84he/uOqqq8LhcDAYrKQMjaBAjvOQRB+b0T1bkXOc08LHaNZYFZotl0M6DUVG3wyy2+7kE3ti1iDp7yeBALw+KEohUU7NI5XmsSjfshkb1vP33uWr3sOmDchl4PHC7RYl2KrltQnwIu1K1+mXz14EKL1iPPKjWKKT0kqXyaQeJUkKh8ODg4M33njjggULnFiOEQ4VJ4zSkZGRSy+99Ne//nUgEFAURbNdj1QCoowf4XM/2N/JuE4+8T81vG4IuqmZzSKfh6ZCktHWBpcbigxaVL9Mhaoim0MyjnwOsgxFgcsFOlEH0ZQuZw1mpl25S6kBAUp+k0yfMxpuI6R6whHn3HglZVlOp9Oqqp5zzjmXX3652+12YjkCOzsV9Qfz888/f/7553/00UednZ0NpInIwDhjV3cFFnW2ZxgrW0zRipL1wj8UOpBp0BhEtk8BHFTkncogAGcTfqNV5qoZxoSgqqYpA9yEbFa1E4dGxzTNVYuKEElFhqAXpZRzHolEDj744BUrVuy7775OLAc7ORXF8ziXy91www233Xaby+Xyer12jNJy6BULH+7vOsDryjAulTCPGv62BMS4hVoJk8puKCt7YQ212IahXYtEU6CdkrNHw48k0iFK7F8sU3BVluV4PO52u6+44op///d/p5Tu5OpxJ6WiHqF56623li5d+uqrr4ZCIRSVZGMQcxuH+9wP9HWKT8o8RZ2QvJhn1pie1IlHigmtsDQ5a0xXGI+zCqeWf6YCQUr/K5a4ZDwSpLSBHQWMFgellDEWiUSOPvrolStXDg4OqqoqSdLOGcvZGU0CYQ5JknTXXXcdf/zxb7zxRldXlzHc12CzQIdEnkmk7wwnXJTmeblWEe/U4iyB6XsTl3jpPz0jmxk4okdXzDw0/rKGXJcvGyn20qQSWWH2Iv+f0bif0MYuliRJeuCUMUYI6e7ufu655xYuXPjQQw/JsgzAvpf+ccLOpRWNCaVXXnnlI488EgqFZFluyb0X/pDGOTh+O9i7v9edMpipZRrQtFaeFt8yQCq1OVF8Uc4pawYaKxHXuLtlJIR5QrHkWC8h3xoZ/59UOtCQSpw4Ran3KNyEVCr1jW9849prrxXZhTvbVMdOREU9NvDEE09897vfHR4eFre8JVdAV6oSEGPssz7Pb2ZNUzk3mqGkhkmq25nGQ+rom3G2sPbPjLq29GPLlFRhmj4QTy4eC3c2x0MdxqkOQbzx8fG5c+euXLnyiCOOEM/Hncd73CmoqCvDZDJ59dVX//SnP/X5fMaE0iYbN+XESQRRjX2vJ3RBdyBZmPQH9DWKBq+gmWe+rkONn8Amd60m8atMOTLAQ8iH+fxXtoxEAIWQVglN+VRHKpXinJ977rlLlixpa2ubVPVYSfi3iTaeOirq87x2DrNzpE3oEZpXXnnl4osvfvvttzs7O42hvGZgigoK6DllTw5O29vjSjFu8shJ6YsG/HUjYUxGaY2fkWJmadnRlexSABrQTsk3t44+kkh2SRJvKTdM11BMaYyPjx966KErV67ca6+9WjjVwTmvt+c25bZ5TC4Va46cMVblEjd/FUR8XFXVW2+9deXKlaqqtre3t0QZogIPBSQgythxbb77Z/SkYKaiEaSUmcy4bKrIUiPTjJrQLgN16AndVkYpKjQlEmt+m0j+v62j7bSQ4EYpbeE0oLiGunoUQbVYLOZ2uy+77LJzzz23mVUdllKkqqqmafl8XnwrTBsx4QlAURRJkhRFMf2qASbbR+upWN5dVVWz2Wwul8vlcqqq5nI53ZzTz84Yc7lckiS5XC632+1yuTwej/Fm13sVdKN0zZo1y5Yte+qpp7q6umomlNbVePVLR4EkYz/r6/1SwJ/UVMmqoLgJJmfRSD9e+lUd90z/JSuzaAFUTwoHOCATkuT8ixu2fKiqXsOEvtBUrVWPpliOWNVxzDHHXH/99XPmzKnLWDUJDGMsk8mk0+lMJiPkkDFmGSkQNpQYncvlcrlcPp/P5/MZmTkZnGwlFY39Y4xls9lEIiEGL8YsDqg0Bv1OiAMURfF4PO3t7X6/3+VyiQ9tXgLdpHnooYeWLVsWj8cDgcAUKEMjKJCldBD8t71dXX6/Co1M8cyR6CAzsLHsy5qzjhqlAc6Xj44vT6RCgFo2asGNFspledpqJBKZNm3a97///ZNOOkl3N6q0YBQSTdPi8XgymUyn0/l8XkiX3uEqoqj3RD+jx+Px+/0dHR0+n69VgzWiNVQ0Dj6dTsfj8Xg8ns1mxee6ctPpZN0Vw3UR3rwgsCRJXq83GAx2dHQoiqK3YHkddWUYDocvvfTSX/7yl+JXrZqusO9kyrIcDYf9vb2P7/PJvdd+kGrvoKJ0anMp4vY6WhqBsXILdZ5WgyQhmSQdHV8cDb/64bppnZ2a1fCnQD3mcrlEIvH1r3/9uuuuqzLVYRSMVCoViUSSyaSwQo2PDPsyrx8vVKjwp3w+XyAQCIVC4onQKg3ZMq3IOY/H42LwuvYjpNn29avAOXe5XB0dHZ2dnV6vF1aXQE8offbZZy+99NI1a9YEg8FWRWhQmilSBcLlCIfDhx922E0/+MHuAzNzNyxnv30Ufj9kGZoGaRJyK4zRm6pVillNBqKQg86jUTpnrv/a67b09F520ZJHHn20ra2t0nOttd4jrBY9RiKRXXfd9YYbbvhC5QJWnPNEIjE2NpZOp1soh3rjRmkMBoPd3d1CPTSPFnSRcx6LxcbHx9PpNIoWS2tdUHFL9MdSIBDo6ekxElJXhplMZsWKFT/84Q8lSfL5fK0ySo1iUR2iigSl9IILLliyZImiKJwxQqn66CP5lTcinSaiCpvOFWqY3recxrdEecTGqAOtulllrsIMSUI+z+Nx5Z+Pd19yKWlvFxf57rvvvuaaa2KxWEdHh+VTaTLUoyltVTzoFy9evHTpUo/HY1KPiURidHQ0lUphcuRQQDdcGWOKooRCoZ6eHlmWm1SPzfY1lUoNDw+LwUuSNHnxWN1iEZyklHZ2dvb29iqKooe/3n333Ysuuuj555/v6elBcwmlRthUhkIQw+HwvHnzVq5cefjhhxdcVrGWglL2/vvZG65jf/2L1NEOaih5alxHZfyL0kCNeMEMSay8+JZU04R1kJBSEMJjUdLZ5V58vnL8iWJ5BysGM1avXn3hhRf+4Q9/CIVCIoO0/CK0fI2FkZCi5bGxsYMOOujWW2/da6+9BAFyudzw8HA8HheS0MKzW0LwUEQBRcRx+vTpIo25YTRCRTF4xtjIyMj4+Li4SZNHQuN5jXEdVVXFJQgGg4SQn/70p1dddVU+n5+a6QoTxCr1RCJxxhlnXHvtte3t7WZ/RtRT1LTcz+9V77qTpFOkrR2AebslU/AUpVTU/9qIpRp1ZO1pD0JAJWQzPJ2Sj1zg/u5S2t9vqjqnzwzdfPPNK1euzOfzlUqNTIF6jMfjPp9vyZIlZ511ViaT2bp1q6qqIoV1CkQRRZUAQCdkMBicPn262+1uTD3WTUVxmlQqtWXLlmw2O/VrzPQUM3EJNE3r7++/+uqr77777r6+PmwLZSiiRN3d3cuXL//KV76iW8vlXQcAStmHa3O3/EB78XnCQfx+EEJalABtnPyoUTXDMABQimyWJ5N07jz32efKRx0NiVrUYjXkS7z88ssXXXTR22+/HQwGYXXNW85GlN4RWZZFZP6+++7bbbfd0um0MBFbeLqaMHmzqqoqijJjxoxAINBAa41oxbGxseHhYRTjExWbNkzCNNCzKjCuouCcy7L8+uuvL1++PBqNtuR+1KUMxdzXwoULb7jhBlHRrIYIigqlnKt/fiV//73qq38mnFOfjwrHhvOG103pc4ewOfEoNF42y1MpOnu26+SvycefUHRlK+4DpT9oEonE1Vdffdddd3m93kpZhC2P5ei3hhCSyWSuv/76BQsWCOe8/ODqD4IWBnJ0NorXvb2900VV6HpQHxUZY1u3bg2Hw5UmdkzTNbqm1ufW9ShLvR01whTsZox1dna+8MILF110kSzLTbZvf7WUMJM8Hs8ll1yyaNEiFE04O+fQ1+Orf34l//N71VdfJfk8fD6iKOCcFBfg6zZpJeNUH2dtE1SHUIOM8XQa+TwdHFRO/lflhBOJv21iU4BaMObWX3LJJevWrQuFQpbPr8kwVgkh0Wj0nHPOOfvss+PxeDkP9dMZtYUQDPFX/7AlD25jSFmox0AgMDAwUFd6UB1SyxjbsGFDIpGopHn0eRuTthSetFG+bUYjq8AYxQGgqmooFHrwwQdXrlwp4nsNt2nTKCWEjI+Pz58//+abbz7ggAMayZPUNFACQsGY9uYb+cf+W3vpRTY8TGQZHo/YU5EUa0MVzqt3ta6BARPFOBhDLsczGeLxSPt9Sj56oXzkUaQjUEfpcb0PRfW4ZcuWZcuWPVp5qqO1sRxJkqLR6IIFC5YvXy5KHht5rk9dCCE0ZoYYqQgDCZuXRjFkI+dFiuXg4KB9NtqlYnUe6oHj8oefaeJef2G6HA3ANMHAOfd6vddcc80TTzxhs1ibqTX7yjCTyWQymUWLFl166aVer7epShCG7WX4yLD6xz+qTz+lvb+KRyIAiNsNRQGVxL5TE8Uyqlw3/YLrtVIZg6bxTAaaRnw+Mn26fMQX5C8skPbcs1gppz4SGqEb5Pfee+8VV1yRTCY7OjomL5ZDKc1kMgMDA3fccYff71dV1cjw8kyaShEUk+A1KZAmxQADG2fPnm3zGWSLioKHyWTSFCk1PoFgL2/bZKA2eQmMbBThhFwud8EFF6xatcrn89mkVl3KUJKk8fHxgYGBFStWHHvssZUmmuuG0T1jjG/epP7lL9orL2urV/HNm3kuC8YgK0SWC3ueFnc+tYCmgXNoGjSV5/NgnLjdCAakebvSvfaRD/88nTOXeL1i5M2QUIeuHlevXr1o0aKXXnopFAoRq3TfJtWj7ozdfPPN+++/fzweF0/AcgbWCyORGlYPpjhfvWysTUVLfagPW78E5VqlepESI4Usb5vNNo3HaJrm9/tXr169ePFi8bysObq6IjSqqkaj0ZNOOun666/v6+trfSGWcm6kUtrateyD99kHH7CP1rGNG5FM8FyOx2JQVUsKkfZ2KAppayc9PdLgIJm9C919D2nePNLVPXF81cBMYxCmQTqdvu2221asWAGg5VMdlNJkMnn22Wd/85vfjMVigoe6IWqyVMsD4HLZPuoCJgZWeYJXb7NcXOtiY20qbtq0KRKJmOxS03OIc+73+8WMin5MPB5XVbXSFTceaUkGYXB6vV4j/+PxeD6fNxm9xp9rmhYMBh9++OHly5d3dHRUV4x1GaXRaDQYDC5btuzMM88kk70Ti+CkiK+UfsiHhngyybZsQTYDQgCCTApuj04z2tcHr4/298PjsW6z3r03bEO3Ef70pz9ddNFF7733XjAYtPTEGlCPYtnU5z73uZUrV6ZSKaMOtCS2cFyNBBMJAJaN2zHTOOdtbW0ul8t4cDweNwbzyyVZsLG7u3vGjBmVrOXCkdWpODo6Ojw8bGmX6lTknLtcrldeeWXVqlXGji5YsKCrq6sKG40DgCHKqrf51ltvvfnmm6JNMaTPf/7zM2bMMLKxfPyMMa/Xe+211z711FNiqr3SSe0oQ2PRzltuuWXPPfec0qKdooe6EquXQoxNqNkpWZmuG6vJZPKyyy675557fD6fy+WyvAv2bQpCSD6fDwaDt99++8yZM8WEdhW7lBDy7LPPDg0NiQRRYS4tXLjQKJ/lPUdlKnLOZVl+4YUX1q1bJxrhnCuKcvTRR4tSA6SYfWn53Mnn8zNnzuzu7q7CRmuVLZBMJkdGRkxmXrklIGjz8MMPP/zww2KeTXy+55579vX1mZSYJUR81UQnj8fz9NNP33HHHaJNccydd945Z86cXC6nt6n7q8Yeqqq6ePHid955Z2hoyO12m1RfXcpQ1HdYsmTJJZdcIkRqSqutiGEazyiCNzXDNuJJIfYGn0IId1rTNJ/Pd/PNNx911FFLly7duHGj2CTDJKb6Q62mhAhpvvDCC+fOnRuNRvVbYBJFGIIRP/rRj/72t78J6eWc9/T0HHbYYWL+0/J0xGqqwwhZln/+858/99xzkiQJcfV6vQcccEAwGNTTbkQ1V9MPRRRjy5Ytfr9fJE5bouJ90jRty5Yt5d2tdAlcLpforoAkSTaz4ap428Y2dcfAYgyl88iEkFwu19XVde6556LU9OfFnHI7vZIkaXR0dNasWQ8//PCVV14pbsC2r3okrFZJqvhvyulXDnGVNE077rjjnnrqqeOOO258fNzy6tkxT4Rp+qUvfenoo4/WXcRylSCgi5NReAAoilLbWzOYu5YMN7ZJCJFl2dRmJXNJPBE2btxYZaQVOzc8PJzL5UwiToso76WQb7WIuiqp6Y9GU8vGNk1TN5aN6K8lSYrH40ceeeQpp5wiAr+oP0IzPj5+2mmnPfnkk4cddphQyzt5Jfm6oKuImTNn/uIXv7jpppsAiOBfuZRXeT5SStPp9O677/7tb3/b6CLWvB1CYITwiBc2u12J5KY2Oefib3kL5T8UijGRSAwNDaGCGFsPJpFIRCKR8ghkpS62BM00Xv5DSqlIzp4/f34ikYC9nFLxqItGo4FA4Mc//vHtt98uttDYaUtWNwNhWQimnXnmmc8888xBBx2kp0yaDmaMWUo255xSev7554dCId22nFQ55IYUscZasHxGCN9yeHg4k8lYtmz9G3G9TCCTs/pLPykqT8jagen2CEUty/LixYs9Ho8dl1XIzdjY2OGHH/7EE0+ccsopO1spzskApVR4j3vsscejjz66bNmyXC4nsrfLDxbqURczYd2cfPLJhxxyiGWC2ySBF3NKm/l5OQghmqZt3rzZ8luzqQkgEomk0+lyI7iZztmBcJcbe+ARq0IJlNJUKjV//vzTTz89mUxWv5FiWaqmaVddddUjjzwye/bsnbBA9eRBeNqyLF9++eW/+c1vBgcHx8fHLW0NZihdkUwm991337PPPtt4+yZVJZrQmChWkjQRho3FYslkEuXiamqFMTY+Pl4eNW2sW/WiSRu1/Lfisfq1r33tsMMO0z1+E8Rje2RkZM8993zssce+853vABAxBoeHLYTw7jRN+/SnP/3MM8+ceeaZY2Nj+XzeUj1yzvP5vNvtvvDCC0Veq9E0nez7wg05qw3/3PIrMREgrE7TMSXVDQFEo9FMJmOZ6j6p49cvccM2cKUfiqXGF1xwQXd3t3EWRECW5Ww2G4lEFi1a9Lvf/U4kdjsRmkmC8B4ZY+3t7TfddNP999/f2dkpFvqY5ZLSeDz+jW98Y99999UDb1PDQ12tNbzwtYoYC8UoDE/TVyUBUgDRaJSUTdNNjZ2mG5mNsbESeUQIbpdddvna175mNLxJMaF0+vTp99577/Lly8VcraMMJxtCnDRNO+GEE5555pljjjkmHA4bpzqEabr33nufeuqpJltmykSxmbBI9eeFsD1HR0dRqj9KxDeRSKRSqQZWYbYEDZNQR6VOiompr3zlKwcffLBYZiqezeFw+LjjjnvyySePP/54fae3ZjrgwCZIMRNg+vTpDz744C233MI5j8ViYqqDMSZMU8v0jCnoXkuCiFW+pZRGIhHd6i58aDxCJOmZWiGV8w9aCz1sNRnGoQgln3XWWV6vV8xzUEpvvPHGBx54YNq0aY4y3CYQIWvG2Omnn/7UU08dcsgho6OjImnuhBNOOPDAA02KYcoCNkIUm5HD6hPgYglRNBo1HjlxMk3ThICWZ99NjaOsn6vl7iIAsWhgn332OfHEE9etW3fIIYc8+eST3/rWt5zpim0LPZaz1157PfbYYxdffHE8Hu/u7j7ttNPK59+mQB+gFSrRZj/D4TAM+lPWzyoqmW/DcEWTvqKuVCv9nFKazWYXLlzY39+/ePFiv9+/k2/+vp1Aj+UQQi6//PKDDz743Xff7e3tLZ9/mjLhJMV1f5NEfmH6pdNpvUodBBXFiXXrtDxm08wTwn7nLDPi60W1HD9Kc7lcf3//kUce6fF4touEUgdFCDHTNG3BggV777332NhY+bq8JmfebaLJmI1NCMWQTCYDgYDg18RjRtgDlplHO4oTVbOfInA3MjJi52AHUwzdiYpEIpXWEuwQk0w1HTrd9BNz/QIF5Sh2XKtSOasBsCJsHs8NBULED+t6ONl8mImnERwqbn8QD/1sNssq77rZjGLQBbJmC7rs6RJVlyTXhD5BKrKjRX8Khf5FdVfLJN2GDVSv19vW1mYzIsoN9S2FoSJWYds/nZ1Ub/HXZKM72K6gb0BWHj4ULxqjIiHE5/OJylRVWtD1lSlmwRjz+Xw2PRo78Q5e3F9AF8WCOFYaP5rQHuedd57f76/3WaJ3Q5blTZs2oZ6ppOrj13NcxXazDhW3NwhJK8+I0tGYdSqkYnx8/OSTT26mYjWldM2aNbAnkDYVQz6fn6CiPv4qjZIKhRWrY9WqVXUdX6UDLWkHRSOWMZbJZETVHMdM3d4g3AdLlaDblg3ctXw+//bbb7ekhzXFxv6cHOc8k8l4PB7OeUEzCK1tOf6G5bV5D9v+xIbNI3lxlXOVR4+DbQjhm1jKGy9uV9pw41MjkPYlVpBLX9NcmFesZEDz5rbIal7ntFAlGp2NfD7fqmYdtBD6Ht2VDpi8ZDQ7aJU0GtvJZDLihYziCrFKP2Ol25fbx9SkC+qo6zKJR5FjnW6HqHIfjQWgG7h3LdkE3g4as+ZshS5MgV2bV+HQQw8VBfMrHV+lu5xzRVHef//9NWvW2J9ynZrEKAeTCpu3W9cQNpt1u92f+cxnjJVRddh0bcSGZcPDwzUdRTutlX9YRxSx3lyHa6+99sADD6y0fL5S1FhA07RQKHT11VffdNNNlgXtLPvmYEeH/WkA+3IouB0KhX7yk59Y6gZj9d1KZ2eM+f3+U0899fHHH6dW2y2beminSyhlU8FAtWmC15V8FI/Hw+Gw5aor4xktRyW4p5vR1WFS2tUPQ2ntYwfbFWxS0ehP2uQkY0yshDBRUczd6+VSq/xcpME033+UymqJgSoCUzXdZfFCT9pGrasgFSGoaDy9ncC0/kM7qEsrNhmLcjB5oMUtyWoeaUpatkPI8tq8nHNL+bQ8XauW0RnpalSBtPwjOw3px9vngN6++Lmd8duEzeeQY8Ru/7B/m4RdoyeyccPWt3YaN52oVXLYjJjJdXWFl+4UafT3LA9G6Zj1i0VatxzZ5vhNBzi03G5hRyvqmtDo49hUkiaJbdU6DCGEdh4HFYsvo1iH1874dTOdFHe600lViY3icz2bVr92rSJDA9Y5AJHd6hBye4PL5SpfvF4JrLi7pm6mladxG6ELsPHbVkUNGovzE0L0XTQoitUH7culcdlEFSaYrotu0LaWAA1Yp5zzuhLNHUwZSHF9rM3jTaaZURmWN6Knjk2SKNpx8UxyKLSgeFsYtizLdhaPVGq6+pB0+6Hlg7f5SDONn1Lqdrtb2A0HLYTL5WpAFHWNV2V5ndipoYH1d3bObnNbJBMIIUIUib50uDHR1HloOTajM91yEqIebpuOoZR6PB442TbbGcRtMm2Y20ALdny2FqIu2S63znQDrUBFkRvecpU1qc6YfR6axi9JkmOgbrcQWmHHcuMbFkWXyzVhoArN4PF46rLRtznsP/lMXnJda0AdTCWEKIq7s2OJos3eGiVW2Ix+vx9FES1oRZfL5Xa7K61P2d5Qb50O0yc+n8/ycwfbAxRF2YFE0b5KsDQS29ra9NcT8+xixf12K6B6x4yTSDVhGpGI2XR0dMBxFLdLiJsldkz4mCUnmiSWMeZyuYRWFKI4kf8lCLrdUlHATsC2/HjjW5fLJWI2DrZDCKEUJZG2Z8WgozEvUYzO6/Uaq7pMLP3y+Xwul8ty59ftB5WitZUOLh9/e3v7juWK7ITw+Xxer7euPeS3Fbi9jFHLgYRCIeNXEzmokiR1dHTsEI8imzBZOOKqdXZ2bqv+OLADcZs6OjrqtYC2W5T7k8I6DQQCMDhKEzucAQgEAiKOut0S0n6vyofAOff5fMIOdxzF7Ra6KIq0k+1WFG2inIfCOgsGg6Zs05K1Qn6/X+wkMRkz8lOJSuMXKnGHHtpOAo/HI4I3HwNRLFcJlFIhikaVYN51OBQKcQPsn1JffNhAFZyaLdfVpmXPhUkgrHNHJe4Q6OrqaiZZ1CiQaO6mm85uv81ylS5UQkdHh4idGmHedTgYDPp8PmPOe13dbYDDVRpsoE3LgwkhmqZ1dXVZljZxsH2ira2to6ND1HNowEw1Cg+aM4VEI3oYyWabOonKezVt2rTyn1PTcYSQnp4eXlxyYv8SiFQydxEul6vJ55CIJBnbRHG/oSo/tOyzUIk9PT1wVOIOhZ6eHr3URb1+o8vlQlF4KKXibb3QPR1xaqOQi1SEKmujKqmEQCBgGbCwbmjNmjXJZFIP+osyB1WEmBCSSCTS6bTxmEAg0LAWEht4JBKJZDJpXP4fCARcLleVwVuaBKqqzpw5c9q0adwpB76jYePGjcYN3sQqKjs3MRqN5vP5ifgkpcFgsIEFH3pKCSEkFotls1m9EUJIMBi0LM5SJSFst912E/leJlhTMZFIfPjhhyU+ZS02lpeiaWCKkhfXGeuPAFOyaPU2y2eixHPI6/XuvvvuTj2bHRH5fP6DDz4w1oYiBlT5oSzLpuWLeh3umqgULrEp5FVUQn9/f19fn6VKqLih4tatW4eGhozxVn3wlYopmptu4gnUQJuVnkOc83nz5rW3tzsqcYeDuGWRSOSjjz4yiaJ4UUVDNiyQlkSy36aliyhUgs/n22233SqpBIs6qKL13t7eeDyeTqf1X+quqmX4qLFlx6RY+o1bpdXav3aWhVLFc6ivr8/h4Q4KPZQYi8XC4bDORuPDmlcoi1rX7dbNMVK16pKdkGklfUApHRgYqGKaVf6C0pkzZ5p+KbooUnWbnHvVfXHe6ApovR3L3woetre3T58+HU60ZgfHjBkzRCqc6T4K+dGl0dKqrAT9YL0RNLfIthIPhUrs7+/3+/1VGq/mPnm93r6+PsvlKqLrgkLVL4HpAWZ57WqPsgKq2BKMMUVRBgcHHRfxYwBJkoRiKJd1Xa6MEmUSS9OHxoMb4HA5qqgToRK6u7t7e3tRVSVUK9TPOe/q6spkMiMjI5ViocxQhsRoKpgmZ5uZq63SvSrPMM757NmzRXUGRyXu6OCc+3y+GTNmrF+/vtKyb5N0GcM8+gG6uLZQDstPbeyDMM0GBgZqNlKNiqLT/f39qqpGIpFKBRqNH5Zzr/yYlqA6Dxljs2bNctYlfmxAivtecM43btxoc0t50wvLt02iihwKu7StrW3OnDl2Omx3b9QNGzYY/eZtCN2uqHQAY2xwcLCrq8vRhx8ziBs6Pj5uk42T3Zkqcij0YVtb27x582xWb7G1kxQhZGBggHNeRTdODaorQxT1ocPDjyXEDRWJ1NuWjdXlUOfh3Llz7VdRsrupGyFk1qxZAMLh8DbJ5KzuW+tpeoODg93d3Q4PP8bgnOtsJHWWMG7J2avHeHT/cM6cOUJv2RTF+jYM4Jxv3bp1eHh4iium8QozhwLCKJckafbs2YFAwOHhxx7iFieTyfXr1+dyuamx1HhxSrOKUSoEtbe3106cxvzzeqlICAmHwxs3bmSMTfYlMD5+KilDMfi2trbBwUFRzdXh4c4DVVXXr18fi8VEmtvkSaNlDo0RQhnKsjwwMNBYpYi6ey9kPZPJbNiwIZFIKIoySZegSkKtgFCGAHp7e/v7+4Wh4vBw5wEv7p40MjKydetWzrmo2tTaCTPUmvcXfVBVNRAIDAwMNKwPGmcR53xoaGh4eFjTNFmWW2Wy68OuOXiR5z0wMNDe3t78eR3soNB1w8aNG+PxODFsCNNMm9UdQgFdDhVF6evrE6vwGtYHzSq0TCazadOmaDRKCBHhnMaSUXX61Ry80JaSJE2bNq23t1es5HKUoQMA4XB469atqVRKLKHQDaWaEiIEz5iAalMOZVkOhULTp08Xa/eakcOmqKifOx6PDw0NxWIxYSSUJzroL1hxl0VhXurjr9HL4q6MYvBdXV29vb36wkWHhw50SeCch8PhoaGhdDrNORe7dhtlTN/u2ig8NlOg9XULnHNFUYLBYG9vryir27w+aKWbl0gkxsbGIpGIWF1m3Fe9gWwjI3vFlfJ4PJ2dnZ2dnfoOJw4JHRihiwTnPB6Pj42NxePxfD4PQChJNCqEvJi5Sin1+XzBYFDUZzGdtxm0bPdjvSu5XC4SiYTD4UwmIxZrClqidGCorM2MvrIw/dvb20OhUEdHh341HRI6qASTNEaj0Xg8nkwm8/m8LngmgSxvAaUBfEmSRBE6UQ5DJ3wL5bCVWtFEsEwmk0gkEolEKpXKZrP6wCxXl6E4cnGNxMh9Pp+ojaU74g4JHdiESRpVVU2lUkIa8/l8Pp+vXn2cUirLstjWqa2tzefzeTwe08qH1nZ4UuYhTB1ljOVyuWw2m8lk8vl8NpvVTXOh8cVPXC6XoihiTwtRxsfYiENCB42hXHIYY6qqapqWyWSMhSP0w4QoyrJsCsZOamxiEmdF0VzX9Y45DHTQEjQgUVMphJNLRSNqjsrhnoMpRvW566nsCYD/D1aDHiUVUW7OAAAAAElFTkSuQmCC", "path": "image.png" }
Complete the statement. Water is ().
[ "a compound", "an elementary substance" ]
0
The model below represents a molecule of water. Over 98% of the molecules in your body are water molecules.
All substances are made of one or more chemical elements, or types of atoms. Substances that are made of only one chemical element are elementary substances. Substances that are made of two or more chemical elements bonded together are compounds. Every chemical element is represented by its own symbol. For some elements, the symbol is one capital letter. For other elements, the symbol is one capital letter and one lowercase letter. For example, the symbol for the chemical element boron is B, and the symbol for the chemical element chlorine is Cl. Scientists can use models to represent molecules. A ball-and-stick model of a molecule is shown below. This model represents a molecule of the compound boron trichloride. In a ball-and-stick model, the balls represent atoms, and the sticks represent chemical bonds. Notice how each ball is labeled with a symbol for a chemical element. The ball represents one atom of that element.
Count the number of chemical elements represented in the model. Then, decide if water is an elementary substance or a compound. In this model, each ball is labeled with H for hydrogen or O for oxygen. So, the model shows you that water is made of two chemical elements bonded together. Substances made of two or more chemical elements bonded together are compounds. So, water is a compound.
a compound
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABVmElEQVR4nO19eZwUxd3+Uz07O7PsCcu9sGYVEDkUVARBgyYiiAga8UiMJxiPGG8lMSpeicEzxrzxxFeMxuOnaBIV0LxGhXjF4IHggREUkFOWvefs+v1RR1f39Ny9s7NQz8cPzlRXV1VXPft9nqqu7iGUUmSAUCy+rTW0taWjKRTZ2tIBYGtrRzhmZnKuhueoDvr7VZQdNWxgdbC0q9tSUGgeFhWy5SFJHW6+2NH8xfamrS0d21pDHrVQwzMESow5hwzbEyIO4+E3ja1NoWhXt0XDicx56B5uQrH4+xt2fLx5pxxdgxiBYJnfX+ovLa0qryAEwYA/6C/1ERDAIPARGAQGYKgpgEFgEBAKQvhnAyAAsWcmsD6wfwEYACEg4igRJ7J/QflniERQQGRmHygFIQB4NhVU/I+CEkJYN1BQ8LMIS6CU56SUskSZU34GgZLNOsRSTEopSJxSk8Kk1ARMijilFIhTxCmNU2qCmEoGSvlZJkQihQlKQdjXcDS2fsPmUDg6un/PGSMGpx3mbgrGw/c2bJf+RfOwW/OwxDV1+bqt72/YAcAo8Vf17FPWo6IsGJSjyEbURwDCOlYBAaXWOInLtoZKdKKVgRBrMOSAUDFUUE6RR1ktagnOYuUYKyexDBQWPyg7RgkVxwgIBSVEDioBoYQNGCGUUgoIThCAskIoVQrnFVLrfyCUUutyRCYlzhNKKaW8UqkAFFILeLtYNgD+Et+ggf2+XLdxa2uH6wjuHvjH2m9XbW4EUFIarKjupXnY3XnoEm6YpBBi9BzYEOxRbgA+cQEsxlug9q8ihYL3Jog4hYIyTlCeIkeO0UItgRIY4jOIvRYlhYjMoLZaZDqvRSQSMdqEEKu3KQAqNMRFVUBlTnGieibvFmIbNbVs8PJNxnclEyFWRkIIASUgpuI2CeSYU9lOwpSOkGDAD2A3nuRubQ2t2tyoebg78dBITGITKMNf6g+WyzplYLbNvYj9q0iRNhLiLNVbyhgsr9ZRpnX5qijA9pm3xC5WcFUVYisAwq8Sq0CiRm/RJEpEAlFOpJQS9UxeNVVVzlY2YFMV5YqSqopItauKzMbNddw0AQR8LiO4eyAcjQMoCZRpHu42PHTJ1K8iGPAZ8UgoFg3JOl1UhSrhHFaiTVXEWaBWolQVfgZ1FkvVkVPKgb1MW7HCJ1O1EMIlyEZFMU4OVVHOS6Eq0sFCvUTCRCGhlRT2nLKtjuNMLoSI2FXF1i5CBA0IaWsLAajvWYHdFH0rgwCioTbNw92Gh+4xaVx9HwA7N34Zi0ZElexKobZCSoSFDFQFcFEVtRCijByUchyfE1VF8kOqClSpEfUVTFWcX+2qomTLWlU6QpGNm7cB2Gv3DTfBEt9hDf0A7Nz4ZTweZ4mah92ah0lvhD/78fq1O5p9Jf6aPnUVlVVsTc5HEI9FI6GOSDQcCYcj4XA4Eo7GYpnUpOE5RvfvedSwgcESX1c3pBOheVj8yJyHScNNKBZ/7uP13+xqAxAI9iirqIiGwqGOtnhcD2qx4Fc/2L+rm9DpUHnYo7K6NBDQPCw2ZM7DNNv8Pt7c+I8vNoXjyq5NQkoCPUr8gdJAoDQQDAQCgdJSdtfAB/gMsM9yv0OJSCEshcIwwHZJMJkCUCK8qE/sbjAAwwChfH8EiLUnghCxDwKWRyViGwVVrSK3mDYfSxPuCFB5R0BMkNU5M81ovwOf68pCqDDVANRtDup+B5NSEyTFfgeTghKo+x1MCgpiUvrRp19lNczdHZqHuwcP3ffdSOw/oOewPlXPfbz+68a2HpVVfXv3LSvrYY0igQ8g6vYqticCymexY4p/FuOhppPE7VUEoDAMPoQELv9B3V7FR0JZ6nMbY4CvsVnreQTWfgexuYHNmTlTbPsdBCfkmWzdjc9k5Y1MOeu3Q2kSIOoF1Dmzdc8RfAGCfyL8XmtqedhdwXj4xMr/bm0JaR52Xx6mv30VLPEd3tCfEITbW/2BgLV6L9a3rQV2a3XeeUeAyIPKKRDFyB6wUqhy10BdFFSQsLAP27K8LNd+R4CmuCNgVxV5yyHDOwIQmybcx1jtH6vrxICLOwJQh9FiLZW1EWLvhT0GwRLflKF1mofdmocZ3S2v71leX1Nummbjdzus1XthFq0FdmUt2/ZV9ZbKKRDFwN4xTokgAHifq0hY2Hfem7AqVpNT3BEQy/+8t8UtB5Ez5R0BAPwmApxVygTi/OCuKspZjjsC7JRINAagKuh31rK7Q/OQndl9eZjpJrHDG/oDaNy5PRaLJKoKscuIQ1WgZk+uKol7K1RVoY4Bo+6qQpQMvNwEcnSKqiClqihiwufWdlVh/0pVkTW4qko0GgNQswc8mZkIzcNuzcNMw019z/LR/Xuaprl961ZLVVgTKN/jkEJVkLAJQsLiDLWnOFQFbtKToCrUniFxginZUxhVoWplBOB/Erw7qK0riVQVWYOrqjgvaU+C5mG35mEWW+AP37sfgKbmxlgsYk3/kqiKLZxTrjOJUiMTXFVF/U4hxErNZFcVJKiK1AYrOXdVQQ6qQtTKhKoQ0R25qYqzB/cwaB52Xx5mEW6qg6Wj+/cEsHXrVmv6l0RVoHpOkl5VlAhqqYqTE+qOSWJPEcqTqCoO95uHqsBTVSHa3eQGzcPuy8PsHvBjwrKrqbEjFEqjKupXyq8whapQ5RaApSoOTqgp1K4z4kSr5s5TFaXheagKVVSFn6XdTYbQPOymPMwu3FQHS9ljLJs3b1LHwKEqzoYQoTMq7BpClFcBkIQ81leFSQRJVUVtTIaqQnn3E9aTqVRFaXgGqqKwM6mq8LO0u8kQmofdlIdZv75g3ODeAZ/R1t7W1tpmNdCuGFT5l39ykwgRtQE3VWF5HKfIK6dCVVQFS1QV1rZMVIXw7qesJ71TFUtMlEYS+3IiP0u7m8yhedgdeZh1uAmW+Njz4pu3bbEa6KYqVnOEAthgRW0gM1XhMkJ4fiILEecUs6oIsRDcIURtAfug3U3m0DzsjjzM5eVMTFha29uamptFWGXXxDMkqgpXABVuqgLHifZTWCGUR37+Va2ad2nCXlIoEbwzVAViBNOoCq/foSpW07S7yQqah9aZakuLmIe5hJtgie+oYXUANmzeJMIqgOxUhVhXrHx1nJhEVYhQFfUsCFWh1EYPtRZ0jqrwllovgnVXFUqpU1WI2n7xyIx2N5lB89A6U21pEfMwx1dP7j+gZ1XQH4lGW9rakERV1D7gqkJtKTZVgaIqSqxWY2iiqtj9qV1VZBnEXnNnq4otWVEVLgiUCh6xdOUCuaqAn6HdTXpoHnYvHub+plt187Ij0sm2ye9cVYgtxaEq1ukqP+yi4aIqjnqJi6rYanaIQ8FUBYqq0PSqIq9F6UGuKrG4CWBP+HmpTKB5qDa7yHnozYu1HZHOoSrW/FbJkagq1sFkqiKGK4WqMB5QpRxXVbHEoZNVhV+hN6rCLod0hMIAqst0uHFC87DIedgp7/En0rzxlnFBUAJoKlWRX4hDr0SZRPnPqSqwVEVd87OpCrxTFaUKV1WR6uGFqrCrsyu4RnJoHiptKgoedkq4oYoCIKWqyHGijvOVPLZ0qSriP+LoazGQEBShdrowEiRXFWSnKpLKSKIq1EVVrMvLSVWc3a2RBJqHSpuLgoeFczc2BRCqIsngoipsRO2qIY8QqSGOvk5QFSKMq2xMSlWB56rC1v9VVYH8M9DupjOheai0uSh46GW4Ua+ZXYaM7lIBZI5kqkISk2ClyCNUaojVc1aKShFWUReqimXYFVXhl6ndTSdA87BoeehluFGvmV2GQwQcqgJ1dNVCEoWG2M5SVcUKvQ6S5a0q1ENVkVNl7W46H5qHRcvDznU3TFjkfw5VgUxRVu8SVUVNSVQVGXqdJLOrilVzxqpCElQFyq84560qJK2qUO1ucoLmYdHysHPdDROWVKpCbV9Ff4gvMk8GqmJdvj2FQI3ceakK5K8sy+82ZmelKjSFqsg+dFUV9daKRiI0D4uWhx6FG3tHy+UtWPf1uao457f2r6I/rDLhpipcrESiQ1UcKQVTFeKuKiB2plmqojSVHSHKwKZQFfXWioYNmofFzUOPwg2xLYNBbt+07utzVXHOb9OpCi9W1RkhVjIxrapA6fiCqwocN1ItVeFHraza3eQLzcPi5qFn7kZdBoPY4JBCVRiIte7Okx2qwotVdYaI3lFUxUayBFWB0vFdoCrKVNlqj1AVJa92N3lD87C4eeidu1EvRSiJQ1WsKWKC3c1cVXixCYW4qIpSlYeqYlWTSlUs7XFMlVkVUlVEBpGYoCpU7SCAUhqLxwFk8gvwexw0D4ubh965GykR4isTFlVVrCliSlWRkRRuqsKLTShE9j+VOqNUlZ2qIJWqWNecSlUs7XHcCGBVqKoiynRRFRDIZrAiCSHhcARAv4qyNIOyB0LzsLh56LG7UefALqqiKo9AoqqoymNTFfUU2BJVVRHBOA9VQY6qImrNXFWIQ1XU0vn4yg4ivITEPtTg0Dwsbh52uruBiLEirPIU+T8XVVFEgwqiqHBIEyQboJwiCnGqiqoA8FhVlKZTJZeVMUFV5M5y0Qyl9GSqQhzdoSGheVjcPOx0dwNbjLXNZkWYtKkKoIRmKRH22tKqSmIedTzyVBWqFJ2JqiiNIl2lKnsKNA+Lm4eFczdSQ+Rs1qkqyiaItKpiTaTlKYqqIEF51PHIU1WIUnSWqiJvKCht1e7GQ2geFjcPvXQ3QEpVka6NqnFaURVFAYhVsFIsrAyOiXTSUxJ6pEtURTTPUhWw/MlVRbRDu5tsoHlY3Dz0ItxQmyCwlFSqAjVOKymKAlClbCi9yTPArirMwRK3UxJ6JENVAeCNqoiiElVFls8KpHZVgfgDgBeqskdA87DoeehFuCFJVYVYx23D4FAVqnxFBqoCx20C9pW6nZKrqgDIQFWsHk+qKqIod1WBpSokiarAC1XZI6B5WPQ89N7dqEGQWsdtwyDjNBWqAjVDMolQanSoCu8FGbGp1ZLExiaqCtiIZa0qVo/bVQWOirtcVfYIaB4WPQ+9dzdqEEyrKq4KkFQilBrt4RcEls4QkcExr5YFJqoK2Ih5pipwVJyBqhDtbvKF5mHR87AT3A2cqgLH5ku7qsDqV5HBTVXs8db5lcLSkGJWFShttKsK1e4mX2geFj0PPXI3Svi3Qi4PnoDj0ZJ0qsIzKWmUOmUkraoAqVXFphUolKqovWWpCrS78QKah0XPQ4/cjRr+RZpsYaKqyEwuqmIfclaOpSoij01n3FQFSK0qNq1A3qoCSnNWFZacQlWoXVXaOkIA6nuWO69tD4fmIYqdhx67GyjDJP1XoqrITC6q4jC0cM9j05kUquLW2MxVRQZ0mTOZqoCQDFVFNlTdyMAqdwqGaCuBerb2NkmgeYhi56EH4cY+LjmqiqUAbqqCBOVxVRUri9QZpRZZYOaqIuO+zJm/qsh2q6rCKndOh1VVsc62ZdGQ0DxkJxUzDz0IN/ZxcaoKQUaqYs1vHaxJoipWiiiHqsMpdUapRZaWkaoQqSpEzZmTqpAEVQG0u/EamofspGLmYae4GxZbqez61KpC3VTFCr52Gil5kqmKLUWVBXkqpelVhUpVoWrOnFSFuqqKeoVpVYVaZ2t34w7NQ6DYedgp7obF1mSqAqKMpUh3qooiGjYaJVcVqF0rdYZaR5UaSTGoinqFaVVF6SjtbtyheQgUOw8L5G7UoQVVxlKcmYmqOPKoXx1Uk6qC4lAV23dxYVQ5nomqUO1uUkLzECh2HuYbbgicXeyqKrarTqYqVhIIcVEVS3kgTiHOPGolPKkzVIWflamq2K7Qui7rTbHJVIUqqkK0u0kOzUNRblHzMPdwEyjxAQhFIpmqigTreiLOkhIBqyCqPI0iukKREfBT7Cc5pUsmea8q/KwsVEWZKstU602xvPIEVSF2VaG2ntIANA+7FQ9zDzf9KssAhKMRp4Ek6VQFALUGL5WqWEFehFi7qthPUmJ691QVp2QkqAqx9ZQGoHnYrXiY99qNuC4rmFI3VXHATVWIUlCiqsDx9K2iKpJFRJEvax2ts1QF3UhVdn9oHoqPxczDvMONmNxawTRBVeyjA8BdVayByUxVoHhXqSpWzJYUyEhVSPaqgjSqouostLvpZGgeio/FzEMv3I0jmPJYaKlKwuhYnZCoKlRRFWvwREUOvliqIgN3gqo4TkqiKjS9qgDZqYp1mk1VlN2huahKezgCoG9FEBoqNA/Fx2LmoTfuxjFVlCnJVEWmSFWBHCq1WPZRVRU7EgtJVBUHyXJXFSAHVaFSChUxkR8yURVqVxUaN6F/QjMRmofiYzHzsBPcDawUVVVsU2JFEBwDQ9Vi2Udqq0hFYiFWu1RVUXUBBVUVIqVQstlNVXh64n4HvhOUqp2p4QLNQ/GxmHnogbsBkquK+I8q/Y7MVAUyj6IqDmFxURV7w/gYE3tyV6sKY4eiKgSySuclEIeqJF6oBqB5KI8UNQ89cDesnS6qIqJgMlUhct8AxPwQ9nLYR8cjLfYMtkISGkbhnGlnqSqOrk+vKlSWa6kKrItRxERRFesKbeuJ2t1kDs1D8bGYedgp7oaniCiYTFWo3DcALhpWAXZVIUpFsGewFZLQsLxVxWEs06sKkeVaqgLrYtKrijKO2t1kDs1D8bGYedgp7oanZKwqqmikUBXIQpQMiarirKj7qAqV7FDapt1NRtA8FB+LmYcFcjdSNFxURclglcMKYUfVTeJ2VbGqVjuHOjMUUlVkq3NQFSLZobSNT9y1u0kNzUPxsZh56Jm7ERIgWihNpgjcSVVFyWDFazWPukncrioAkFJVYGeJqKsTVcXqCLuqJN4IoOq1plQVaHeTFpqH4mMx89Cb3whXg6mVIiTFVVVA0qgKuzjbRNpNVWBXFUJcVEXtmq5SlUQxEZsz5eCmUhVod5MBNA+LnIfehJsMVUVOX2WKqipIVBVilSOLdYiGQ1UodVcVtdgEVUFhVEWICeQHkcFSFds4KqoC7W4ygOZhkfPQm3Aj2pRGVeT01VVVmIyoqoKES5c6k0xVLPmyN81WrFNVUFhVgfwgMliqYhtH7W5ygOZhEfPQu3BDoAa9DFUFxPpKRRkM1F6OLJaohyF4pJyWoBiJqpKYJ1NVARvbgqkKdapKeygCoG9lGTRcoXlYxDz01N0kBD01QVUVdkyGYEtVHOHf5dJFDyuq4pCRBMVIVBWx5GXlYW8wo2lVBWxss1AVeSahoNyoZ64qxFIV9k8sHod+ZioFNA+LmIed5W4Y1ASpKjKcu6qKOjZwufQEVRF5bF+JLQ9RulsRNLVo9n5W4rmqWBWAEhCVlNmqiqNvNdyheVjEPPTa3djhkBkrgIqv1pXJhTRlbJCBqpCESbIa2WWKpEJnqgoSVQVyqkwsVYGsJXtV0UgDzcMi5qGX7iaxGdQxcqqqwJoAp1YVFsSts9TD9iG0hMihKvZInbOq0DSqYq9bKZm306YqYqlRuxtvoXlYxDz00t1QZ4JQFSW6w3YdSvRPriosiBP7KRKqqlglJ6iKlR+5q4q1QyEXVQHl3OENSFQVZ1uh3U320DwsYh52mrsR9wUdqmJFZH4SkKgqSgy1qYoYF1VGLFVRZ6mKqtBCqYos19Eau6pQmVFRFfXy7IOp3U220DwsYh56Fm6Ioxliwd+hKlZEZiniXKhjrMRQm6qIDlFlxFIVK47bynXEYk9UhdrHSJxEkqoKSaEq6sVrd5MvNA+LmYeehRvqaIaIsO6q4hgnUQIvJXtVsc3Gqa3HHLHYE1WRk/1MVYUz3lVV1IsXZthqrnY32UHzsJh52InuBrCrhqoqjnGSuRJUBXCqCoiLqlgTT6UppJhUBRmris3GaneTJTQPi5mHnehuAPtgqxqSUlVs10/FQMqzaEaqIs1tZ6uKKCC9qrDmOlRFUQztbjyA5mEx87Bz3Y0SMvmHTFTF5u6IohhJVIVXZFcVuXRnZ5r3qiIKSK8qIKAyo9UHIoN2N15A87CYeeidu6FWpwM2G2n1sYymWaoKEYSQKSyDNVjpVMXWrsxUBWwYPVUVIjNafSAyZKYqkUgUQHWw1G0QNDQPi5qH3rkboowEMlUVdfYo432iqlDYOCSHVonFNlUhDrHKSVXAhjF/VZFU9UJVorEYgBodbpJA87CYedjp7kbGRJbIw26izijxPo2qiGLVibRDVagUKzkgars6RVXUy4PaGiKp6oWqaKSG5mEx89BLdwM3VZExkSXysJtMVQDIsJxSVahCCCSoCqSqJGxp7zRVUS9PrdhjVdFIDc3DYuahl+4GuaqKcgYgw3KGqiJTLIXgKaqqWO20mpG7qlhtTK8qoul2VVGK1e7GS2geFjMPO9fdQMR7mehUFXXwZIpSIMRY2BwyXFTFXmrnqorVxvSqwjXEoSpKsTZVoW6q4lx60EgOzcNi5mFJ7qcCAExqxmIxg8AEfATsg0FgsH9ZChWfAYPAJDBAKP8Ag4dUahjEAAgB+5edRQDDIASIi5E25Hibwhtyh0hMAJQSgBgiFJuAYes3Gf2pZBAgQ3uiqlA3VRFJbqpC1bz8I7FUl5gmVxibqpicH4QQU6mRqQpRqaXhBs3DbsHDfMNNJBxuaWkxCHwEhFKijK4BEFACPpYE1GcQQikbApEIUOoz+ESSDSpMymyqjxCAshDMCzcIm1Uy0yqiM2XDTEEN7vn4L/7ZgrsYblMs7lHZ7wAFpZQyH0uUuxsmpQYhJuVu2zQpeK8TPlh81Lh+chFgvwFGYQJxdg4hMdM0KUBInNKYyZfqYiY1ARMwKUxKTQq2IBA3TZOCEv6BnWVSGo1G8xyy3RKah92Ch/mGGwlKYRBCIDwYBQUljl6mIIRQUEKFo2Mjx8ybwbcosDEm/HdCxVAlTJKpyQ/x+bI8hYgZNJ8GczawQyalPCMbN7uqsFayPKIomNQGYhimSSk11SaZjDuEUMrX8OQ0OW6aFKCExEwTxIhTGo+bJogJmJTGKTVB4iY1wcaYmJSagGmafOBZA2Qe0/RqyHZLaB4WMw893XfDr49951HcsnKUx2MiQj2R6bx7pTVk3UfllJQ7RFj/Qb1VKVawKLX9DimlllWUhwwR73lz7XNmNkQsD2OGyajGr5HwKS5/nF9eCohB5AUBIMQQB8ScGQBgmibz2EKKRDfIzWCUUmparlvcEVCaqpEKmofFzENP992weM5mq1SMn5jiqqoixkWki8Uw8BSuKsJtClWBzS5aJYieIny0pLxYHpbw/gJTDMKdsTXF5VpE2ATWUhWDEBtTxQDzWazgETVtw0apKQ4AygAZhkEBalICSQueTfYSIYZjzmyJnkY6aB4WMw89djdQxkCqioyXlqqwU8DThXlUrw6Uz67lV0VViG29ylIVPlpdrCqU0nSqYiiqwrNpd+MJNA+LmYcehRvKVQXKGKRQFZbCLozwpTPBDrBEvjaufHVRFX5UqIpBikJVCCFOVRGtJYRQgFJTVRXKp9vi5JSqYlIACPj1D7+4QfOwuHnoUbghSVVFjZfsX7Y+BjH8bGDAdj0KOFSFpThVRWSXqmLSBFWx5uFdoCpUNFrSlS0qECJVhfBiM1aVuEkB9KsI5jxWuzM0D4ubhx6EG96vSVRFjZdAKlWRCkCFjEhVYcU6VUWG6hSqIhqTVFU4OkVViGi0qIgtOhJFVTj19dpN/tA8RNHz0INww/vV0o20qiIHmKc7VIVwVUFKVbFESKgKdVMV3pikqsLRSaoCoSpU1pKnqmgkg+Yhip6H3rkbSzesywUUVRGXRK0BZqdnqiqQwkKVaixVIfmoCi8njaogS1VBzqoizbd2NxlC8xBFz8NOcTfycgFFVcQlJaoKy55WVSCFhVhiJEtOVBXZNmSgKpyraVQF2akK0qmKMPaqqpjUtBy6djcZQ/MQRc/DArkbIjqEeUuHqrDsGakKtVSFi0ZyVXG0TVUVHuoVVaGdoSqQ6sALsFSFPfAijL2qKoZ2NzlB8xBFz0Pv3Q2UywXE2IgOYd4yraqwYh2qQsUOTqkqql6lUBWSoCo81PN2oHNVRaTaVIVSQkSJ2t14Ac1DFD0PvXc3UC4XSKoqymDbVcXywE5VIYmqwquzVEWObBaqwq1356qKJQ7a3XQONA9R9Dz04BFNGex5pGQuVFyYmLLyZEqpIUbLEKrCOw7iQTgeX+ETD8vJigyD8wbSrcp6KWVP+bMU8cSdi6qYVKiKiOighICaoIQ3jDCBYqoiR5oQUGqpCgVA+CnEINQUzaSUGAYFr0donhAHgBCDmiYhfK8Uka2XqkIMfh4h1DQtVdERJzm6ioe+jtWBlmUloTVGvAkE1KiOlY2IV081g6M0Dx3wINzwjuIv9LCMm4gCAFMVKlWFGkIiCLFUxRCqIVgCPvAM1BIiUPYmEX5U8IkYrFoQQggbHkKEpyRcJbhiwLRE0KEq4klcNtKG0rdCVQzKVvmEZEGoCh9EAqkqkqWsYEYOapqEENOklvxS2SHEgGECVLSLiJZzUmgkQeF5GGx8pmLH3UZkg6Ml/pal2HaXWTo43PfySM+TNA8lvFm74dHTdc5s5eGGTUyVnXNmU8xg5ZzZuscIPveGvHEndEqWQPkcWLgba85MXObMjERJ58xGbnNmUZVjzkxEI51zZquj3ObMrF167SZDFJKHhtlU+9XRVd9enhhrJIzIhrKNl1WsPZrEmzQPeZ/kfqoAEU5NTkG5JjhmvGJmK6bKzjmzIU5ngYQNBEuBSAGfqvKzpLthKUTOmcXLiiT7nHNmRqKkc2YztzmzqIrPmS0z5pwz891fDlWBfc4sVQV67SYDFIyHpeHVvf47tSS0JpNW+UJrytdO9YU+0TyEN89MEbuqiFsArqoCSssin5SFP3GoCiF2VREDwVJksZDG0+5uiOJuWAqbM3Pf3EWqIlqbqCokN1WJxiiA+ppyD0Zt90OWPJSrOVnx0DCbqr69zBdNampc2hXZENhwGTGbNQ+9eJsf7zQxZ7YW/Kl0IFWht3q3PFPZ8XZpzBqnuFHVWjGtvezQluqT+fRHzpmpUgInEYR3AcAnpownfB4uVYmt3ZjUMAj3zSCGYZ8zU1OsziWoClhH5z5nhpgzCy4LVaEma4DSElYspXrtJn9kwEMiFoBFdytrN1KoUvKwetPl/sx8jQpfaE3Z+jntez+7h/PQI3dDHapCuaoQlEc+2e/bE/f9dnZtyzNqrAHgM5urm58ZsPWywRtm9+h4W05/FHJk4m5EhE7mbnho8lhVINqaqCpQVEVtEm+qaD+RpfClRJ5uUhNez5n3CKTkIQOVm2pUd8MSxF9jCh6Wtr0VbF2WW+t8bW+XtL21h/PQi3AjVEW4Utlu2rfl6f02z64MvZ26gLKOt+s2nFTd8gw7XQYSPgxi4ul0N5wMYv4paiXEIo0sxvM5M0RbE+fMsObMfCZnNdi6l0mooLRUFYg5M4SqCHbqtZsMkJyHsuusyCP6Uw6m5W74jXEXHpbvfDifBpZuvWsP56GX7gZ2VenX+syQHZeVmM0ZFtN3y+U1jQ+lcDcsiWVO6m74A7hF4m5gVxVhyy1V4WxLpipEu5vMkYSHqruBnJIo7kYsBKdxN4bZFGzJ0dow+NreRmzXnsxDz9ZuxOCwPiQV0U+G7rg025Jqt98Y9w9uq5zGX5Gv7JiQy4AsZ9K1G0pZj1trN2I1J6s5sy+6wd/0ii+8Rt7pjPQ4NBrcL1Q+RQwBdVMVwDZnBjEI2LBx58VXImVLeJhMMmemeu0mc7jx0LF2Y/1fWbsR6Za7IWJkVR76O1bn38aS5mXRnifnsnaj7DQUUtv9eOhFuLE6gspQOmLr2bkV1nvr5aEeh9KSasDiBKtF/E8JzyLME3G/k4hN2dLdUPAFY6kq/Md6KKh8yb6ym9PX9lbF9t+XtDkngP72dwCYvqr2nue01ZwVN6oB4tjNKaw7380JMVUW/pY1m38lIGwPFluvNJXdnPLRF0KIqe7m1EgBNx5S5afl+DG7brHs4Hv5CHM3BgExeKwBOA8DoXc8aGNkQ4Y8pIBBDJM/Z+Cyq1g0Hd2Ih56t3bBGsa+DWx4KxDbm2KB4c9WuhSJWKzumJZMgQjdPtK3dULe1G8UNppkz99h0WeX6UxJjjdq8ih2/77Pu+/7wmvRzZlhzZgbCH8wTH5gy6bUbT5DAQ+ZuIAcJgJyOE+WPJmHtRkxp4MLD/JDN2g2xrd0YzrUbq+ndh4derd2wFvMpaN/Wp/Mpr6rxYUVV7Gs33ECqDLKt3RiGc+2GLYalXbsx4k2V/51auuvZTFpoxJtrN/64tP2dNHNmS1U4hKqIDwR67cYzJPCQUmtaIUGp+j/2mf0j3bHKC1aywsP8kM0aIrWt3ZjOtRur6WnXboqGh165GyJVJRj9piKS9cYEW5vizaWh1UAG7gYAeIhh7sY0ne6GTbsSVYXYVaVs4+W+bPZTGPHmXt+e5w+t8VZVADhUBdrdZAg7D93dDe9npbutP0Px52dbS2F5KAhMUpl/G9PysEjcDTqHh967m2Asiw2XydCjdRlYqHaqiou7YSHG4W6IkIBk7oYqqhLcdre/5ZVsG2nEm2u/Pc8Xb0JGqsJk06kqTL6Ite4AUzzSS8TCnnY3GcHd3VCbNvF+Vrrb+jO03A3s7obxMFw+Mf82xnpMSMHDgribruSh9+6mJpxml00WBZuJc+aM3A3bu4lk7obYVIXEmkq/y3E/hS+6sXzX/yIjVaF8dcmuKoQPv1NV4Koq2uCkgLu7ITZtSuJu5B8wNV3cDeNhNDDSNPIyONSoNCsnJeNhodxNV/KwE9ZuvIObu0Em7sY0uZeBq7uhNlUJ7FxI4pluDkpExa7/RaFUJRyPA6jvWZFza3dnZOZuZFblLOsPmBh2d8OyCB529Dw5nwbGqqel4GE3cjc589BLd8NGJUaqPCiTFezibpDobkgydyMWvVK7m5KmJfk00og3l7UuS6YqarNdVAUZqQrVazeZwM7DZO5G/I8oZ7m6G0s8JQ9be1+Rs8GhRmWk3+UpeNip7kZtSBfy0Jtf0WQNZaPSWjoy/wLZoCa5Noe7YV0s3A1R3A2beAsBcVUVEvnGF/o0z9b6w586VMUWD0WzXVQFTFWM1KpC9NpNZlB5KL4mcTeSPzwnEtyN1d2Sh6avurnfjbm1Ldr/CtNfX2B3U2w89CbcMBVhqtJaOir/AtsrpoLHVNsOCQBcEFR1Yve8uSC4uRuS1N0YkRz3B6kItL/jUBV7POQNlarCOKeoini9IwDtbvKAykPxlcD+Lj7xP6KmuLob6ySFhx01J3dUz862YdGeJ4Vr56bgoWiJu7sBkJu7KTYeeuZuIDxnzKhuLR2RT2kx/6CYvx5CVZwrQkwQFHVyuBvA6W6QZO3GNM182mlrVHJV4dqlqArjnENV5AVJVYF3qrKHQOUhFHdjUSiFu6GWuyFKViTwsKnu9+21czJvVbTnSaHBv0/Pw+TuBozSVntgBRp2pliqLHIeeuZuAEtVvqm+Ip/SGmsvZx8ydzeEWO4G1OlukGTtxjC8uXykVBXBhKxVBYqqQLubDODgIRGLnxaFhLshhKgphPA/YiZUVMkKNx629LuxecCdNN06DjUqO+ruCg36PTLhoXQ3JAd3Q9O6m2LgoffuBsD2Hsc0BQ/NraiYf1BrNV//51E6A3dDqeJuSKHdTdxf56YqfNw8URVod5MBXN0Nu5PAIdwNpVRNke7GSOJuEnnY0fOUHUPfae97eSy4n0tLSgeF+13esu870V6nZMpD6W6ot+6miHjoxSOaqqqY/BmQL/r8fuzGo0poS1blmEbl1rqF8itTFSPR3bCgwt0LUzP+i8smpYZ4dx/Ek648nMsnwglh76A3iBGv8GDvVjQwwvEkrkNVKKVSUU2xbm2K3KZUFQqwB/NsPSB4qZ8IT4dEHhICalKLQqq7ocLEEMgFFNOkPv7CPae7SeQhSqrb+1zR3udyX/QbX2Sjz2wGKDVqaGBQ3D9Y/gBDJjwUbRPuBoQA8olw8Dho1SyWnxhpEtduUJw89CbcyHYQoSoh3+DVdYtHbvpRVhFne/+7IoFRkhRyvFQfK8RKOGSxdsN+/jATd2NKVaGmYRjRqqn+5rzeY9JecbTjSVzweMgXlVhDKTU5t+VT/6AUlBgGMU2IsWVP4soegCnvhubTxj0CiTyk7A/VtNiibo/gKcLdEIMLlfU2AZYlHQ9Nfz0trY+JeRlBLjwEAX8inPI37NmeCDdTPxHODVuR89Bjd0PEBJUQtJaMXDPwuX23npPJ0+GmUflt/bPh0pEG63K20cExZ6Y8uBjp3A1/O0gqVaGE8NlprDKvcBMuGx/3D85EVdhnRVXAcpumdjfewJWHbu4GmbibAvPQ1d342972tb0DgJjNZsmgaHBEpMeEPN0Nuo6HHrsb6y0agGGQVv+oVXWvDmh+uK7xzhSnN1edtKPvjaZRxVSFUsqCKmOLddeSqUSCuxFLY2wlizAqpFMVSFWJ9Dq59LuHct5901J7CVKpCuG/SygaalcVMFVBElWBdjfZIBkP07obANR0upsC81B1N77oN8Ftv/e3LHPd7x4Ljmjqf3s0ODIbd1MUPOxEd8NUJW5Ub+p5xXeVJ1V1vFXTviwQ21AWXgMgFBhhGlWtFdNaK6bG/PWg1EeSqgqXIpuqCFDmXLmq8H5UVEX8nGYqVekYdHfFl9NyuPD2qh+FehyKVKpCM1EVJFEVaHeTDVLwUNyWUXIq7gZi91Zqd9PZPGSBoWz73YHvUj1YUxJaU7v+2LZe57T2uiRuVGXmboqCh166G3aZDlWhACGIlNR/Vzm4seoU5v8MAgMgbPnNpIa4IyB+rRkOVRGzTsBSFUEgN1Xha/IA+M+ApFGVeHBUR92dZZuyu38fDezX1Hc+Gx1XVWHjk1ZV+A3LtKoCxOIUQL+KshzGaE9AWh6qOW0iTRLdTRfwEJSUb7zUn9lLl8p3PhJseWXnwAeiwZGp3U3x8NDLfTfW3TgWxfmrZ5w5+TIe+66oCiFi/MRRqoZpcY6jWD7ZJSBydsqZxWe48p2srDCx3wHEvt8h3PPk9rpUMz4HImXjvxv8pGlU2VWFCl7LrRDKFg/WDME5LpNMMS1a2vY7cFUB+5cXGSzxZd7OPQrdnYfBzddnGGsYfNGNtRt/bMR3yXXgIuehl/turGumlFL2inIhCDKnSeVYsv8xbyZ+qh2AdcncG0tOKKoiiyVCVWT3SVVhJyeqCpWqYt/vEK45qWXIUrN0UNrrbe19yY7BT5m+GovZYr+DIJjcCqFs8QA354zQRAiNmGDzPOp+B3ETwroVoZEC3ZqH/uYlge8eyfaSjXhzr03ndxceerl2wxoFZc5MxM5GGTLZU2CQaVxVqEkh5sz8ktl7OAhACfhPCDrmzOwr5WWyoMFcIp9kEwIKE5nOmQkh8eCo5mHv+BufDuz6fyVtzldhm/66cNn41j6XxUoG80l8wpzZcu2KqlBKg5E1ZR3vVLX/H4CK8Ltt/uFxo6rFv993waN2+sdlNGd2/MVoJKD78pDEm7Kdy0uUdrxTsfPhlp5zkAEPRUep+26EuzFpZ/PQ07UbZe7M5szsk83HCpenqgox2JqamDMz08XjsvUrf/YVfl4sr5XFcbuqsET2wo+0c2a+34GAUkR7nhKuOYnEm30dq01KfdFNcX+d6auKBUea/F0EYhKfMGcGKDX5Sw3Y+JREvx6441c9Qu+qPVYe/QxAVfi9utZFIV/dmurffuc/hB1yzJmpMmfWSI3uy8Ng4zP5vXTp0daec1LzkFJ79ABfMGbuxhRdl2ztxhMeeu1uCH+gyVVVuOJkoCosxLqrCt+/IL4CBiFG5GvDbImXjcrT3YgobxIQ06gyyw8FQYxy4lKr4YJ7zjmzU1WqWp7tv31e6t4LxjcduPPMb8uOX1V1KxJUhVj7wbS7SYMu5yFydTcljc/kc+G+6MaS8Bp1d3uiu7F3FHc37NKFu7GcGjqHh967G/5X6KYqPLzbVYWNh0NViDXrTKoqpe1vlba84u9Y7Quvlspglg6Olx8a6T0nHhzlUBWWIRN349jNKdfYiH03J7u2FO6m/9YrK1ufz7APB3a8UBH97N81i0KkQrub3NAlPFTdjZh/Cc64uRtWhspDGmv0deT1awIAerS+0hQYkcLdqBFHuhu21KS4G8DkWTvD3Xh6ZwqEiA2aRNyft0ZUWgiuGCyJL7LxYC9X71geyhdH+OgLP0HiTVXfXla9/uSy7x4uaX9bdaFGZIO/8ZnytVPLv5pNot+odwRYhmR3phR343wSVxYu3I1oIyEJ7kbeEUBl87OZxxqGqthnw1tvddwRIModAY3UKDAPAWGaIJY/BDPEQjQB+F96Ch6WhPN9wRsAX3QD3HiYzN1wFySoJUIPD49IuDPlCQ89vTMl/nD5HQER/mX7uPAwxeBJfPDVOwJijY6xRoZlfk6wZWnt2kMDu/5f6ib52t6u+OxQf+PT8o4Av+Dkd6b4hCnhSVxZpqSTzd2wQ/Y7AiWxDX3TzaFcURd6YWDHc9Z3YZ7yvCOwh6CQPJTFQl27YSmKu+F/xsqdKVahykPqxZsJSqKbkMBDq6GQlyScnNBXRi2qLBKwrI47U57w0GN3AwhVEe7AVVUsY+emKnJ5PFFVynY9U73x3MwX1YIbL/ftfFppYYHcTd9tV2fdiQIj2hb4TXGBnLja3WSEgvEQirshVgGiXkMucFjzmBTuhnjx3qVkLtvubqi81gR3g7TuJn8edpq7UbYVJaqKGDmnqsBKdKgKBUiwZUnVt5dn27bg5huMjk8K5m5AEAivDna8l207Jfxmy6CQmIUJVdFrN5mgMDwUhdhMk+puqFjvoyicuzGNKth52BnuphjWbmgKVYEcnxSqYqdFoqoAxIjvqtqcy8YEEm8ObLisYO4GFEH7Pe8c0Cvyb1klX6fU7iY9CsFD6wzF3QhbYNXLjwp3Q5DK3ZhVh+V/8dHgCNh5aHc38pKsRfQc3E2ePPQk3JDMVYWKP1mbqthpkagqAC1vfMTIdWOCL7TG991TrM7k7oZ45W7KW1/NrZ0S/SP/J6uUqgJB2eoyf57l76YoBA8d7kYmCe/D63W4GznVomKxx8HDeFler/cGECkbj+TuRkRQfndeSmuiu6GKu1G6whsedoq7Ye8BcVUVuXqfVlW4OxWqUrYrr40JgW13szqTuxuaxN2ob2xFJu7GuuD8oagKgLgJANXBUu8q2J1QCB7a3I2SlNbdiBtkxJWH0dq5+Vx53F9nfzOB092IsCEeNKXWP9LdUJM/pyndjdIV3vAw33DDpoUOVTHNjFWFewTYVAVilixUpbT1X75oXr/QQiIbSGQDcnE36htbxRWndDf5LNxI1EbeY1WqqqKRDIXhoXUjSiTKQqS7YUWp7oayZ7ONVO4mVj2NZvCwXjI0116ayMPU7kZEEMvdEINk6G5yRr7hhs0D+XpYclURcTZBVbhHgE1V4FQVfzjfTVAAfB2fQFKhM91NODA8/9a2+wayKlVV0UiGwvAQfCxYIe7uhhWluhtChHdQ3I2Dh9RX3dF/fm7XHqqY0l41281lp3I3kIvi2bubnOGdu2HRHABcVEVcV6aqokylQQDDzHHVRoUR+hSSCp3pbqgXP1vc4RvEqtTuJhMUhofgY8EKEe6GSk6Ieh1rN9I7KO4mkYfR6mPC2fx8Fa/LqGzsd7srD13cDVHcjeyZbu1ugIxUxbJ3bqqiTKXh3d+Zi6pYyR66m2C+y37NJfvKKrW7yQQF4qGruxF/zdLdyN9PUXf9pHY3rLLQgBvCtedkftXRwH7bGpbTkpoka4hEqKI1zRPuBlbskO6GWu6GdgN3I8bVoSpwUxXL3qVWFQ/hq0JB3E0ocEieLd0hng7X7iZDFIiH6iMOirvh0U5xN0DW7oYlhwbc1PK9p+Nuv13lQKhiys7BT5q+6mQ8ZLYlibuBi7shlrshxe1uhBCwQu2qggxVxV6sYh34FqY8EQ+OhKIqAM3Z3ViEc1OVtoqpMX9dPk1d3+MMWaV2N5mgMDyE+vIt4W6QxN1Qu7sBdXc3iTyMV0xsGfJqqO/lyX6lM1xx9M7Bf9k16KG4UY3kPEx0N9Q0E90NtZu4TnU3+T4RbqmKYc1iTZMaxLKUEEcIf2yfJUGIA0shzpGm/FleAJEeOf4mpwqzdDAAIp7EBSWmqT4RDpOaxOWJcFN2MRGPjLBsXFVY2JfviAWFSRt7XtxnWy7PTAHYGJjVbtTJkEZNU7ubtCgMD6W7IWIzDoSNAaxQxd+CDlBQsZmYhzrV3aTmYUefy0J9L6exRl9ojb/tHRY/ImXjo8ER1FdtiudOU/OQEGJa1gaEGPy1B+xaDAPsxzl5EQSg1OTxMy5/jRSe8TDfcJOgKswREEIpHz8W5Fnfs5FTF/QJj80gzs3RRA4jEC0bFfcPyudeeKxqKi0dTISqMBFIsqvY8euFhuxiubwo3Q11qgrvh+bK2cH2d7J9IhxAh2/gZ5XX8D6B5De1UjTcUBgeghCTmj7LBxEQq0K5PCvcDRF3prj/oEQ+JEEy5aGvJtrj0GiPQ8EvhU34kSEPWWwzxbSRUpMQyWcRQSBMl7gzxd7qx9934ykPPVi74bNZ55xZTCfl/BbiniKDoipssB0Xwbyn/NLaJ+unpVTEqqY65sxgv3SBXNZuLDudfM68vfe14dLs7ojHSMUH1X8MkwrP58y7PQrGQ0PU4uJuRFZ5F5oqz6PzP+mEtZvO5qEMsyAghiiQAOyHpXj7RRnFv3ajqIc1d7VGlAdgPie05n5SXZhWJDz65VCVjoqjTX+O+6Di5RPitaemnDPDw7UbpirUqN448ImOYKbLxiHfwH/3eqypZL/OmDPv9igYD035GmOxdkOtnDyrtDnCv0C2I93ajfc8FH4OYM+OsgIphLsBdzeEdI87U4mqQtWAK1SFT1QzVhXIk9n5JTWNgxbm0EJqVIYG351OVdAZqkKNmo0Dn9zR8xdx4r7mJ7G57Pi3ej3fXLJfClVhk7uqoH5gygUF4yFzNzxwEPWY4m7EUg2l/HcggAzdTafwUHE3JNHdyJ6S7gYp3U0+POwUd0PUgJtcVXgH2VVFpYFDVWJlI5sH3pVd84zKjn2eNf31XaIqJjUpsL364rWD/rm95uKOhLlVuGTgpooz/937+TXVv4v7qpBSVeJxAKjRD0y5oZA8VN0NFccIUdwNcbobVqIIC13DQ4e7oVR58YV8zku8QbSTeOjBnSneUOWOABsHvhqnGBRDcoJlEsMmCyEWVaRysEHgK/wdNSdTo7Lq28uJ2ZK2bfHyCeGBN8aDo8RwcFVxuyMAAuLhnSl2R8AghgkKArOkZmvNLzZX/8IEenS8QwHTRIt/eIRUmQBbkKNC4TrjjsBujwLzUAYsItwNCwEyEonbPFR5gQnpch4S+Up23mMGTBHkeJjrXB7m7m7Yb+i1h8NcECiVQ5SoKhAjJiK6XVWswU6uKmLvVKhy2ndD3wlXTk3RNmpUhgbMb9/nuXjZKDk57TxVoclVBSAOVWkJjG8uPaQ5OD5mVLExd6gK0Ws32aCreEgFG5K5G/7nbVK1kOLhocPdFIaHubub0QN6Lv9qS0c43BGO9gj4+RClUBXYVEXMKm2qAgprqmvlAij/CTFuUH3VLfUL26PfBFqWlTYvM6IbjchGalTGy0bGy0aawZHRyqnEXyPO5zTiE9hOUBUAyEZVxGoB54xDVcwkqhI1Tei3TySgC3kI6W6Ii7thUzPmbjQPGXIPN8ES3+F79//H2m837Ng2dMAAHzEgIrdYcRMxXRkxQ7CBCmfFYzOlhug+Vgz7iVAiTjNN0zCIoQxY3F/f0evcUO258vYdK5wYBBSmSQ2DyBaIlblk+x1UVcl6342iKlBVJc5+OoNSXilMUMLWAZXhJqZpMlURmmTIyqDsd2gPRwEM61Od85DtluhyHgIgbI8N2PZBUbhBCIjmoYq8lorHDe5dX1NumnT9tm3ReFwaUAq5SA8ZHy0LatMLkZWIoMGtLc/FOoTaVYXYVYXfU2CqYjhVBQmq4vkdAQJ5R4BpFBXkNLhgsTsCUJ7HJaJT2HKAckeAut0RaO6Ixk30rQgO6+PB8xy7GTQPuwsP870zdeL+3+tbEQxHY2s3b+mIxXjbrGmsGEwxKnLOLOKqNWeWkZUdZnNTPgsWc2Z2hFoGUMyZxb1JZgDd58y0AHNmE+JuBXHMmQmh8lyqPm5DzHRz5vZIvDUUAzBjRH2e47W7QvOwW/Aw33ATLPGdduA+fSuCpkn/u2XrzrZ2iDFKVBUIBUBmqkIMp6qwI1mpikWjQqkKsRy7wUnKfgdWnpuNqrRH4o1tEQBHDR3YryKY53jtrtA87BY89OBdxepIf7Nj55ZdzdFYXFyEpSqAi6rI3nRVFfYLymlVxTBSqYpFo5xURV2Kz1VV2MxaKCUsVWHXnEJVmtqj37VGAIzu33Pc4N75D9ZuDM3D4uehlxs6lq/bumLdVva5tqLH4J5VwRKfQWAA7D1hbEWNpbDAyrrZEE/TgecEYWcZ/DfbiUxnjZZxmZFACdOGwdfAlDmzMMyi8zhhxG+Em6LTxV0AsJGG2EMpl+LAfphBDBxjgRxp02Rjxlb0+e+3m5TGKShgUho3KRUpJhA3qUkRp5QSEmdHAUr5fof2SPy7tkgoZgI4rKHf4Q39vBqm3R6ah0XLQ4/3j33T2LZ83ZZvdrWxr1XB0oHVlb3LgwZhbg0GIYRSg/CBBKgBwlb+5dgTWCPNVMUwCDVN4WOpus5FCAwhJvLOFAG/MwXwaSe/WnlfwKQQkVzoj2W81TsC0mnzqS41ISQL9jsCVEyH+a+7UxqnACFx02SP5MYppSBxSk0TJhCnNE4pJUbMNCmFCWpSmBQtkfjOtnBH1AQQ8Bmz92+o71nu4RjtCdA8LE4edsp21W8a297bsH3tDusFw9XB0p49AhWl/jJ/SVWgxJCjCOSsKtYHan21VIWwBXigaFWFUtPkqtIajbeH463RWEsoxigU8Bnj6vuMG9ybbWPTyAGah8XGw07cHd8Uiny8ufGL7U3bWkOOQ8ESo8xfUub3lftLCFAV8Pt9xAB6lPrKS3wOVSF8MpxKVUyTkkRVIXzhTqyj0a5RFWqyF4g0RcyoSU1KOyJmKG6aoE2hWIxSJiASfSuC+w/oNXpATx1oPIHmYfHwsBAP44Ri8W8a27a2dmxt6djS2tESimZylt8gNUG/UASuD+Wlvkp/iZwNy9Uz64PQEWVlzTrGD4pLpmKHpbVgJrIqa2iUr9PzU2Arg5BwLL4rHOOHiK2UqEmbI/FMLrYq6O9XUbZXz4phfar0vuFOguZhWnQ2D7vm2b+mUKSpI7orFGkKRQBsbekIx+IAGjvCLeFY4dtTGPStCDKhqA6WVpeVAtirpiLg9+nb210FzcMC87B4HzUOxeLbWpzuVzKjeBAs8fWrKHM9pEPJbgDNQw9RvOFGQ0NjN4MH2/w0NDQ0MoEONxoaGgWCDjcaGhoFgg43GhoaBYIONxoaGgWCDjcaGhoFgg43GhoaBYIONxoaGgWCDjcaGhoFgg43GhoaBYIONxoaGgWCDjcaGhoFgg43GhoaBYIONxoaGgWCDjcaGhoFgg43GhoaBYIONxoaGgWCDjcaGhoFgg43GhoaBYIONxoaGgWCDjcaGhoFgg43GhoaBYIONxoaGgWCDjcaGhoFggGgpaXlnnvumTJlysiRI0eNGjV16tQ//vGPsVj6Hy294IILTjvttM5vZF4ohka2t7cvWLDg8MMPHz58+A9+8IP777/fNE156Prrrz/44IOHDx8+e/bsjz76KJ+K1qxZ09DQ8Morr3jR6kJD87Cz0eU8LAFw1llnbdiw4dJLLx0xYkQsFvvXv/51zz33bNiwYcGCBflUmQ8OOuigv/71r4MGDeqqBniLq6666t1337366qu/973v/fvf/77ttttisdhFF10E4Oqrr37//fdvvPHGfv36LVq06Iwzzli2bFn//v27usldAM3DzkaX87Dkiy++WLly5Z/+9KdjjjmGJR188MGBQGDZsmUdHR1lZe6/Otyp2LRp086dOwtfbydh165dy5cvnz9//oknngjgkEMOWb169ZIlSy666KL169e/9NJLDz300FFHHQXggAMOmDx58mOPPXb11Vd3dasLDc3DzkYx8NCIx+MADMO2iHP++ec///zzcoyffvrpo446atiwYWPHjr3kkkt27NihZm5tbR0+fPh9990nUyKRyP7773/bbbcB2LFjx2WXXTZ27Nh999131qxZb731Fsvz5ZdfNjQ0vPvuuxdccMHIkSMPPvjgG264wTTNd95557DDDgNw+OGH/+xnP1MrWr58eUNDwwcffCBTPvzww4aGhjfffBPA+++/f/LJJw8fPnzEiBE//vGPXd3giBEjHnzwQfl13rx5xx13nGzMihUrfvrTnw4fPnzSpEkvvvjiJ598MnPmzOHDhx9zzDGrVq1ip8RisbvuumvSpEnDhg074ogjFi1aJEtbsGDBPvvsk1hpTU3Nxx9/zMaYIRAIsA5/6623/H7/97//fZbu9/sPP/zw5cuXJxZy0UUX/fznP3/88cfHjx8/fPjwuXPnNjc3/+53vxs7duyYMWNuuOGGxFO6FzQPsQfw0Nhnn30GDx589dVX/+Uvf3GMH8PixYt/+ctfzpo1a+nSpf/zP/+zatWqc845h1IqM1RUVBxxxBHLli2TKf/6179aWlpmzpwZj8fPPPPMlStX/vGPf3zppZfGjBlz1llnff755wBKSkoA3HTTTaeddtqHH3545513Llq0aMmSJQcddNC9994L4MUXX7zrrrvUlkycOLG2tlataMmSJbW1tZMmTfrqq69++tOf9unTZ/Hixc8880xFRcVpp522ZcuW1BcvwRpzxx13zJs3b+XKlfvvv/+vf/3rBQsW/OEPf3jvvfcqKirmz5/Pct5yyy0PPfTQZZddtmzZsnPPPfc3v/nNk08+yQ4NGTLkBz/4QYpaQqHQ1q1bn3zyyZdffnnu3LkA1q1b179//9LSUpmnvr5+3bp1ri1cuXLl119//dprrz3xxBP//Oc/Z8+e3adPn7feemvBggWLFi1iXO++0DzEHsBDo7S09OGHH25oaPj1r389bty4KVOm3HTTTZ988onMsXDhwsMOO+wXv/jF3nvvPXHixF//+terVq1auXKlWsqMGTM++ugj2a0vv/zysGHDhg8fvnz58jVr1tx6662TJk0aMmTI/PnzBw8erEbiqVOnHnbYYX6/f/LkyfX19R9//LHf76+srARQXV1dUVGh1uLz+aZNm+YY5mOPPdbn8z3xxBOlpaV33nnniBEjRo0adfvtt0cikeeeey7FlSdi2rRpo0eP7tGjxwknnNDc3HzKKad873vfq6qqmjFjxpo1awC0tLT85S9/Offcc2fPnt3Q0HDaaaf96Ec/euihh9jpJ554ovzsirPOOmvChAm/+93vFixYMGvWLFYgu1iJioqKtrY2uYCnor29/aqrriovLz/ooIP23Xdf0zTnzJlTVlY2derUmpoa1sLuC81Did2YhwaAYcOGvfDCC6+88sq1115bX1//l7/85bjjjrv55psBRKPRTz/99OCDD5YnHHDAAQAchf7whz8sKytjC9GxWOwf//gHu4yPPvrI5/MdcsghvDLDGDdunEqRESNGyM9VVVVNTU0p2grguOOOW79+/RdffAFg9erVGzZsYBWtWrVq5MiRwWCQZaupqamvr8/2L3Do0KGyJY6v4XA4EomsWbMmGo1OnDhRnjJhwoR169Y1NjZmUv4NN9zwyCOPnHrqqb/85S8fe+yxrNoGoL6+XupPVVWVbB772tzcnG2BxQbNQ4bdmIcl8tPQoUOHDh06Z86c1tbW+fPnP/LII8cdd9zee+9NKa2urpbZ2OfW1la1lLKysh/+8IdLly4944wz3n777V27ds2cOZNli8fjI0eOlDljsVjPnj3lVzkwDKo3dsW4ceP69OmzdOnSYcOGvfzyy4MGDTrwwANZRfX19WrO6upqRyPTIhAIpPhKKWUFnnHGGYQQlsjC/3fffadeVDIMHz58+PDhRx55ZCAQ+O1vf3viiSdWV1c7hqe5ubmiosKxhJFh89I2oFtA83A35mFJJBLZunXr4MGDZVJFRcWVV165ePHiNWvWjBw50jAMNdizzw7rBWDGjBk///nPd+3atXTp0rFjx7J7h5WVlYFA4KWXXlJzul5DhjAM49hjj122bNnFF1+8dOlStsDGKnIoUlNT04ABAxyny+FhCIVCWdXOrvruu+8ePny4mq72XiK2bNmyYsWKadOmSU8+evTocDi8efPmvffee/PmzeFwWI7ZunXrhgwZklWrdg9oHmaO7stD4ze/+c306dMdi3NslahPnz5+v3+//fZTbed//vMfAPvvv7+joCOOOCIYDL755puvvvoqM5YAxowZEw6HTdPcRyAYDCb2viuShUk2g3377be/+uorWdHo0aNXr14dDofZ1x07dqxfvz6xkVVVVarUZOty99tvv9LS0p07d8rLqamp6dWrl7rGlojGxsarrrrqtddec9RbV1d32GGHmab5f//3fyy9o6Pj9ddfP+KII7Jq1e4BzcPM0X15WDJnzpwlS5aceOKJc+fOHTZsWDweX7Vq1YMPPjhy5MjJkycD+NnPfnbppZc+8MAD06dP37Bhw29+85vx48cn9mAgEJgyZcoDDzzw3XffHXvssSxx0qRJI0aMuPTSS6+//vq6urqVK1ded911F1988Zw5c1K0ifnk1157bcKECfvuu6/j6IEHHjhw4MBbbrll3333lUdPP/30xx9/fN68eRdddFEkErntttuqqqrUe34M+++//7Jly84888wePXo89NBDbW1tDhedGpWVlT/+8Y/vvvvunj17jhkzZuPGjTfddFNdXR1bmVu8ePErr7xy//33O87ab7/9Jk+ePH/+/NbW1iFDhqxater+++8/+eSTy8rK6urqZs+efcMNN1BK+/Tp88ADD/h8vtNPPz3zJrli9erVqsUNBoPjx4/Ps8zOhuZh5n3VfXlYUl9fv3jx4gcffHDhwoVbt24tLS0dNGjQ3LlzTz/9dBYsZ86cGQqFHnzwwTvuuKOqqmrKlCnXXHONa+kzZsyYO3fu97///d69e7MUn8+3aNGi3/72t+eff357e/vgwYMvueSSc845J3UrR48ePXny5FtvvXXChAmPPvqo4yghZPr06Q8//LC6B2mvvfZ64oknFixYMGPGDJ/PN27cuKeeeqq2ttZx7jXXXDNv3rzDDjusurr69NNPP+GEE/75z39m1HMC1157bVVV1a233rpt27ba2tqjjz563rx57NDatWtfffVV17Puvffee++997777tu+ffuAAQPOPffcCy+8kB26+eabFyxYcP3117e1tY0dO/aJJ57o1atXVk1KxB/+8Af1a11d3YoVK/Iss7OheZhNb3VXHpLdZolRQ0OjyKGfCNfQ0CgQdLjR0NAoEHS40dDQKBB0uNHQ0CgQdLjR0NAoEHS40dDQKBB0uNHQ0CgQdLjR0NAoEHS40dDQKBB0uNHQ0CgQdLjR0NAoEHS40dDQKBB0uNHQ0CgQdLjR0NAoEHS40dDQKBB0uNHQ0CgQdLjR0NAoEHS40dDQKBB0uNHQ0CgQdLjR0NAoEHS40dDQKBB0uNHQ0CgQdLjR0NAoEHS40dDQKBB0uNHQ0CgQuj7cvPfee3PmzDnooIP22WefkSNHzpo166mnnsrkxI0bNzY0NDQ0NDQ3N2db6ZVXXtnQ0HDTTTdl3970uOeee1jDbr755s4oX6Mz8Mwzz5x44omjR4/eZ599xo4de8YZZ7z33nuZnPjss882NDRMnz49h0oPO+ywhoaGV155JYdzk2HRokUNCvbee+/x48efddZZ7777roe15IYuDjfvvPPOT37yk9dee628vPzQQw/t3bv3xx9//Ktf/erPf/6ztxV9++23DQ0NjzzyCPs6YsSII488cujQod7WwvDiiy+yD0uWLNG/idwtcO+9986bN2/lypX19fUTJkwghCxfvvyMM85YtWqVtxUtXry4oaFhzZo17OvEiROPPPLIPn36eFsLAL/fP2bMmDFjxowcObK9vf2NN974yU9+0uURp6Rrq//zn/8cj8enTp16//33s5RrrrnmySefXLRo0emnn+5hRTIEMJxzzjlpf5E+N6xdu/bLL7+sqqrq0aPH5s2bP/zww7Fjx3ZGRRoe4tFHHwUwf/78s846C0BHR8fs2bPXrFnz9NNPjx492sOKHDy87bbbPCxcRd++fZ9//nn2uaWlZfr06Rs3bnz22WfHjx/fSTVmgi52N2we1LNnT5nyq1/96s0331Tt5eLFi2fMmDF8+PCRI0eecsopb775pmtRp556qupf3njjjYaGhnHjxgE47rjjbr31VgA333xzQ0NDW1ubYzIViUTuvPPOyZMnDx06dOzYsRdeeOFXX33FDj322GMNDQ3nnXfeu+++O3369P322+/4449fvXp1sit66aWXAEyePPmHP/whEuilUZxw8LCsrOyRRx557733brnlFpaSgiEOsCmM9C8LFixoaGj4xS9+0dbW1tDQ8M9//hPAsccee9xxxyFhMrVly5Yrr7xy3LhxQ4cOnTRp0o033tjS0sIOXXjhhQ0NDf/7v//7+OOPT5w4cfTo0eeff/7OnTszubrKysoDDjgAQCgUyql7PEMXh5uRI0cCeOqpp6644opXX321qampsrJy8ODBhsEbdv/9919xxRWfffbZkUceOW7cuPfee+/MM8989dVXs6pl1qxZAwYMAHDIIYecffbZfr/fkeG888774x//2NLSMmPGjAEDBixZsuSEE07YtGkTgGAwCOCrr7668sorR4wYUVtb+9FHH1144YWxWMy1LhZupk2bNm3aNOj5VDcB4+E111xz2223vfvuu5FIpF+/fuocJwVDMoTf7z/77LPZ55kzZ86aNcuRYefOnT/60Y+ee+656urqmTNnxuPxRx999PTTT2dMYzz8+9//vnDhwokTJ8bj8WXLlv32t7/NpOrW1taPPvoIQNdaG3R5uDn//PNZ3F28ePHPfvazsWPHzpo16/HHH2dd3NzcfM899wC45ZZb7rvvPtb7AG6//fasapk7d25DQwOAqVOnXn/99aWlperR5cuXv/7664SQZ5999u677/7rX/86YsSI5ubmBx54AAALfF9++eXdd999xx13MNf9zTffuIrb559//uWXXwYCgSOOOGLChAk1NTVsPpV9x2gUFLfcckttbW17e/t999136qmn7r///mefffYbb7zBjqZmSIYoLS29/vrrGZ3OO++8uXPnOjIsXLhw8+bNe+2114svvnjnnXe+8MILpaWlH330EfM+7MT169f/7W9/u+OOO6655hoAr732WrLqtm3bdsIJJ5xwwgkzZ86cOHHili1bTjvttFNPPTW7fvEaXRxuampqFi9e/OCDD5566ql77bUXpfTjjz++7rrrrr76agAffPABs38zZ85k+Y899lgAa9eu3bVrl1dteOuttwCMHj167733BuD3+48++mgA//73v2We/v37H3zwwQCGDBlSXl4OYOvWrYlFvfzyywCOOOKIHj16lJSUTJkyBXo+1R0watSoN95449Zbbz3mmGNqa2vD4fDrr79+1llnPfPMM8iMIfmD1TJ16lRmZPr373/ggQc6apk8eXJlZSWAMWPGAGhsbIxGo66lRaPRDz/88MMPP1y1alVLS4vP5/v6668///xzDxucA7r+RrhhGFOmTLn11ltff/31FStWMJP5/PPPb9y4sbGxEUAgEOjRowfL3KtXL/ahqanJqwawWtT1I1aLGtHUo2VlZQBM00wsis2kVq5cOX369OnTp7NlJj2f6hYoLy8/9dRT//SnP73//vsvvPACm1794Q9/QGYMyR9Z8ZCREEl4CKCurm6dwPvvv3/OOeesWLHipz/9aQ67RjxEV4ab1tbWpUuX3nPPPXIFq66u7s477ywpKQHw9ddf19TUAAiHwx0dHSyDXBtTR4WBuU1ZVIaraABYLWyw1XNlaMsQn3322X//+18A27dv//TTTz/99FPmgPR8qsjx7bffPvfcc2yazHDAAQdcf/31ADZt2hSLxbJiCCEEXcrDRNTW1l588cUAdu3a1bVU7GJ3c/nll//+979fsGBBJBJhKf/4xz/Yws2gQYMOPPDAQCAAZT7y17/+FcCoUaOqqqocRbGFPbYkBuDvf/+7epSRoK2tLbENEydOBPDJJ5+sX78eQCQSWbJkiUzPHGwmdeCBB65TMHnyZOj5VHFj/fr1V1555Y033vi3v/2NpcTjcbZi0r9//5KSkqwYovKwra2N3YqSSMvDV199lf0tbNq06T//+U+yWrKFvJ9bUVGRf2k5oyv33VRUVFx11VU33XTTo48++uyzz9bV1TU1NW3ZsgXA8ccfv9deewG4+OKLb7/99muvvXbFihU7d+5csWKFz+f71a9+lVjakUce+be//e2VV1654IILWlpa2B1EOYvp378/gEcffXTDhg1XXXWVeuLhhx/+/e9//8033zz55JMnT568atWqzz//vE+fPuedd15Wl8PCjWN36THHHPPGG28sWbLk2muvZVTTKDYceuihU6dOXbZs2SWXXHLLLbf06tVry5YtbLZ+6aWXIkuGHHnkkU8//fRtt9322WefrVy5csCAAdu3b1d5uGnTpuuuu27SpEnXXXedeuKcOXMWL168bt26WbNmsbWkaDQ6adKkH/zgBzlcFFsqZp+bmprWrVsHYOzYsWzRp6vQxe7m7LPPXrhw4eTJk8vLy//73/+2tLSMGTNm/vz58t7ThRdeeNtttw0ZMmTp0qUffPDBpEmTnnzySdd4P3PmzAsuuKB3794rVqwYOHAg2zERDofZ0XPPPXfIkCEtLS1vv/22Y7pLCHnwwQcvuOCCQCDwwgsvbN++/fjjj3/++ed79+6d+YXImRS7/y1x9NFH+3y+zZs3f/DBB9l0jEbhQAi59957b7zxxrFjx8bj8bVr1xqGMXny5EceeeSUU05BlgyZN2/eMcccU1JS8vrrr5900kknnXQSFB7+8pe/7N279/r16z/77DPHibW1tYsXLz7++OO3bdv2wgsvBAKBCy64YOHChbmplFwq/vDDD7du3Tp06NDLLrvssccek1tMugT/H4N2K4eYOLpnAAAAAElFTkSuQmCC", "path": "image.png" }
Which solution has a higher concentration of yellow particles?
[ "Solution B", "neither; their concentrations are the same", "Solution A" ]
2
The diagram below is a model of two solutions. Each yellow ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the yellow particles represent the solute. To figure out which solution has a higher concentration of yellow particles, look at both the number of yellow particles and the volume of the solvent in each container. Use the concentration formula to find the number of yellow particles per milliliter. Solution A has more yellow particles per milliliter. So, Solution A has a higher concentration of yellow particles.
Solution A
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAIAAACmkWkFAAA77UlEQVR4nO2dd5gUVdr271PVOU1PkjgDTRIZiYogoIAugkRdXcMqZkF0Ta8oKwZWxeUFdTG9a4QFc8SEArKfiqICKkFwAMmShjR5Oled749TXdPMDEOH6u5qOL+LS6urK5yuc8/9PCdUFaGUItv4o7LuuNsUu+1pKAnnZIbrMF4MmS5AQ/xhacuh6t8PVfnDUpU/WOUPZbpEcWM2CC0c1hyrqYXD2r1VrsUgZrpEnLjhOkwFRFfZzYFa/5urtwbCcvOb5TrsBABACAiUfyBQVgIEOFLnC0rHOU4aMBuES7t7inN5iMsmuA5ThL7sZs6q3w/W+k0Wu9OdZzaZLEajxWwyEhgEiIBBgIHAQCAQZUGMLIsEAiBG1rBlIbKsLhCARJYphQxIlFJAkmnUsrJeppApjVquX69sqSwj+ggyEAxLXl+wzh+srvPW1HrNBuF/zj0905eWEwdchylCyOzpG1DlCwLIbd3e5sq1WO1GkwkAs0NCIktQogeNLNdvELVcb6JsmYJG7UmV7SkhhFIQQgCwZbD1bFMSFa4IaGQ9IYRG1hMCSikiRwCFQRQddkthvqt92xYAjhskOXqD6zBF6MtuinMdAPx11ezqssRLqRoaWYqqYLZcv0HUcmRbgEaluJE9ibI9oZQq9QSwZSYHpgq2UWQZJLKeUkoi6xWVRI6gHppS+IIhAKc4LBpfJk6K4TpMEfqym3a5DgDBulp2dRsEimyJKpFlVFRUI6JdThbBdZgi9GU3XQpdZlHw1Vb4a6uzPap4/cEjFdUAerTK0/xCcVIK12GK0Jfd5FhM53RoCeBw2R+yJGVvVJFkeefu/QAGeVq00EESy4kLrsMUoS+7AdC3qKBzgYvK8r4/toUlCVkYVcKS9PuOfcGQVOy2n+NpkYqrxEk1XIepQHd2A2B0t6JChyUY8O/etc0f8GdXVPH6g+u37PIFgi6L8ZIe7VNxfTjpgetQc/Q170bFH5beXL3tYK1fEIRTCgpzc3KcFoue5zsEQlKF13e4sraiplaSaOcC1+huRXqYx8lJBq5DbdGp3TAWlu5eX1aR6VLEzSBPC53krhxN4DrUCl3bDYA/Kuo2H676efeh+hazPqGUAsO6tCnOdeihT46jLVyHmqC7WzQbUJxrL861/7z7MIDxZ/dgKSgBCJSFBh8RtR6RrJVQZb26hi3IFBSQKaUAZcugFESmFMp6wr6VKSJrlL2o+i1BSJY/WLVZJKRvUUEGrhEn9XAdaoIeu4qPSaSDjdUrQVQn/9EjAupHtj0I60ir/zYyIgAKymqd9cApYwRKkIikfvVr1MNSZXvWPxclI86JD9dhomSV3UTGACjq/6lVFz0ioH5k24OyYUIcVfVKbCFKzVFlXFLp7SfKMjtWZI16WKJsT0EIkWUKQCQ6rmeOhnAdJkpW2Y1eowpVoop+q5mjJVyHiZJVdqPbqAIZANFzFsvREK7DRMkqu9F7VEnRz+boDK7DRMkqu9FtVKEy9N1m5mgJ12GiZJXd6DeqEOi7zczREq7DRMkqu9FrVJEohb6rmaMlXIeJklV2o9eowspAdFzNHC3hOkyUrLIbvUaVSJs5Vb+boy+4DhMlq+xGr1FF//MdOFrCdZgoWWU3eo0q+m8zc7SE6zBRsspu9BpVoPuowtESrsNEySq70WtUYbM5BT3Pr+JoCNdhomSV3eg1quh/NidHS7gOEyWr7Ea3UUX3SSxHS7gOEyWr7Ea/UUXvXXQcLeE6TJSsshvdRhVZ79XM0RKuw0TJKrvRbVQBoO82M0dLuA4TJavsRrdRhcrQd1ThaAnXYaJkld3oNqro/k5cjpZwHSZKVtmNzqOKnrNYjoZwHSZKVtmNfqMKoO+owtESrsNEySq70WtUiQxApup3c/QF12GiZJXd6DeqsGrWcT1zNITrMFGyym70GlX0P5uToyVch4mSVXaj16gi6z6qcLSE6zBRsspu9BpV9N9m5mgJ12GiZJXd6DWqsHV6jiocLeE6TJSsshu9RhVJ9/MdOFrCdZgoWWU3uo0qup/NydESrsNEySq70WtU0f+9Khwt4TpMlKyyG91GFRnQ9ws3OFrCdZgoWWU3uo0qrCA6jiocLeE6TJSsshvdRhXdz3fgaAnXYaJkld3oNaqwI+i5mjlawnWYKFllN/qOKqKOq5mjJVyHiZJVdqPXqBKZPJ6q383RF1yHiZJVdqPfqAIARM/1zNEQrsNEySq70W9U0ft8B46WcB0mSlbZjX6jCoG+28wcLeE6TJSsshu9RhVJ921mjpZwHSZKVtmNXqMKK4Sek1iOlnAdJkpW2Y1eo4r+317I0RKuw0TJArspq/EBsBgNuo0qVqNBLSfnRIXrMHmywG5KD1QCaJefo9uoUpTvAvDbgYrUXACOLuA6TJ6ssZvifLduo0qbXIdBIPurfdX+YIouAifjcB0mj97tZl+1tyYQshgNpzhtuo0qgkDa5rkArC+rTNF14GQWrkNN0LvdbGQZbIEbhOg2qhCQojwngF/3l6fmMnAyDNehJujdbjaUVQJol+eur1H9RRUK2tLtMIpCpS94sNafmivBySRch5qga7vZU+X1hsI2k7HAaauvUV1GFQIU5ecg0sLnnEhwHWqFru2GZbBFBW5E16guowohpDjfCWBDmX7HBTiJwXWoFfq1G0qpMhaQl4PoGtVlVKGUFjisVqOhJhDaW+VNyRXhZAKuQw3Rr93srvJ6Q2GryZjvsCEbogohpKiATXyoTMkV4WQCrkMN0a/dbDxYCaBdvjsSS/QeVQAU5ToBbDxQIdefnpPdcB1qiE7thlK66UAVgKJ8dySW6D2qAMh1WO1mozck/VFRl4Krwkk3XIfaolO7+aOyjmWwuXZrFkUVSmlxfg70PZGcEztch9qiU7thYwHtC3JRH0uyIKoQQorynQA2HqySZH3lsZwE4DrUFj3ajUxp6cEqAG3z3aiPJdkRVRwWs9tmCUnytiM1ml8ZTjrhOtQcPdrNroq6QFiym01umwXZFlUA2lb3N+ZyYoHrUHP0aDdsLKA4P5d9zK6oApDiPCeALYerw5Ks6YXhpBWuQ83Rnd3IlG46WAWgqCCHrcm6qGI2GfOdNkmmmw9Va3x1OOmC6zAV6M5udpbXsgzWabGwNVkXVUBp2zwndJbHcuKC6zAV6M5uSlkGW5CrhoWsiyogpHWuE8D2IzW+UFjLq8NJF1yHqUBfdiPJdHNkLEANC9kYVcwGsUWOnQKbdJPHcmKH6zBF6MtudpTXBCXZZbM4LOasjioUaJPnBFCqyxtzOc3DdZgi9GU3G1lIyXMjKixkY1QhQCu3UyDkj8q6uqAu8lhO7HAdpggd2Y0k098P1VdztkcVgyi0cDsA/KaPwMKJEa7D1KEju9lWXhOU5By71WYxIfujCqVgz6nW4XMAOM3AdZg6dGQ37P6U1rnKe3yyPaoQglNy7KJAymp8Fd6AhheKk1K4DlOHXuzmqAyWVVj2RxWBkFa5TgC/HazU7lJxUgjXYUrRi91sPVIdlqnbZrWaTSdMVAHQNi8HwPr9mW82c2KB6zCl6MVu2ONgW+W5WRDACRFVAOQ5LCaDqNsXcXAawHWYUnRhNyFJ3nq4GkDrvBwWBHCiRBVBEFrn6u7GXE6TcB2mGl3YzdYjNWGZ5tptVpPpBIsqlNJWeWwYslKz68VJDVyHqUYXdrNRzWCBEyyqEEJy7Vaz0VATCO2p0teDYzkN4DpMNZm3m5AkbzlcBZbBAideVAHQRjcTHzjHguswDWTebrYcrpYp8hx2k9EInIBRBUBr5b6VSr29iIOjwnWYBjJvN2wsoGVujnIBT8So4rSYHRaTPyztqqjV4ppxtIfrMA1k2G4CYWnbkWoALfNylAt4IkYVELTK5e0p/cJ1mB4ybDf1GazBeAJHFVDlOQCbdPYiDg6D6zA9ZNhu2FhAi1x3veWfoFHFYjLm2CwhSd56RBcPOuJEw3WYHjJpN4GwtL28BkCrvJx6yz9BowoAdt9KKW9P6Qyuw7SRSbvZfKhapshzOgyi4YSPKgBa5iov4giGpeSvHkcruA7TRibt5qgM9iSIKiajmOe0STL9/TBvT+kIrsO0kTG78YXCO8prALRwu46y/BM3qhCQlrkO8PEpPcF1mE4yZjebD1VTIM/pNBoMJ0lUoaAt3C4C7NDNizg4XIcaXMSYyZjdsDeitsh1Azh5oopBIAU5Dhp5+DYn43AdJnkB4yIzduMLhXeV1xKg0O0CcPJEFRDSgo9P6QauwzTrMDN2s+lgFQVyXU6DKOJkiiqgtNBlFwjZrY8XcZzkcB2mWYeZsRv2RtRTct3s40kVVQSBnOJ2ANiggxdxnORwHSK9OsyA3fhC4T8q6ghQkONia06qqEJATnHz9lTm4TpMvw4zYDelB6oA5OW4jKLI1pxUUYWCFrhsBlHQw4s4Tma4DtOvwwzYDRsLKHS76yviJIsqAFFebMgTnMzBdZh+HabbbuqCod2VdQTIz3HVV8RJFlUIActj1/PumwzBdZgRHabbbjYqGWyOQRBO2qhCKdwOq9EgVvqCB2p8yVxPTmJwHWZEh+m2GzYWUOB20/oKOhmjCoAW/IFbmYPrMCM6TKvd1AVDe6u8AiF5Liepr6CTMaoQojSb+fhU+uE6zJQO02o37B03uTkuURBO8qhCKXXaLBaToSYQ2s1fCJNeuA4zpcO02g27QSPf7UZ98ABO1qgC0BZ5OQBK+Rvv0gvXYaZ0mD67qfYH91V7BULynE7UBw/gZI0qADklR8lj+Qth0gbXYQZ1mD67KT1YBSA3J0cQBPCoQghAbRYTexHHTv5CmHTBdZhBHabPbtgz0/LdbjVK8KhCKS3IdYG3p9II12EGdZgmu6n2B8tqfIIguF1ONUrwqEKIksduOsRfCJMOuA6RUR2myW7YqH6eK0eIXCgeVdjxzSaDy2YNSfIW/kKY1MN1iIzqME12w0b183JyELF2HlXU4xfmOsDbU2mB6xAZ1WE67KbcGzhY6xcEweV0ImLtPKqoxy/IcQDYcriKvxAmpXAdZlyH6bCbjepYACE8qjSOKkaD6HbaZIrN/IUwqYTrMOM6TIvdKBmsGwCPKo2jCqUozOHtqZTDdZhxHabcbsq9gUN1flEQXQ4HAB5VGkcVQpDnchBCdpTzF8KkCq7DSOkzqcOU2w3rnHPn5JBIPfCo0jiqGEQhz2Wj/IUwKYPrMFL6TOow5XbDHrzsZhkseFRpOqpQoCDHCd6eShlch5HSZ1KHqbWbQ3X+Cl9QFESn3a6s4lGlqahCALfTJghkd1VdtT+YyLXmHBuuQ53oMLV2wzrn3G43UU2eR5VjRBVREPJYRx1vT2kN16FOdGjQ/IjRsAaz2Wiqra0VCQRAIBAJSPQCqCgQtiAQIgCERBZACWAQCCglBJHNIBAIhLBvWeUKhNSvUY5PAMoW2BpQCJHIJRBCKWRKZVBKqUxBAZlSCkIBSilblillHymIJMsgRKaQKQWBHNmLAsqhIntRSikgR1Yi+lwg7Kbb6OOzWeMypRYBAErLKvoXF6a0Xk42uA51osMU2s2BWiWDtVqs9WuJkqUSQKZUJIQQErkUoEpGqOSHDJlSgcUGmbKalykopUJELkSpCQqAAgJACKFUBkAIkalMZBBCCKgMRTFSVJ4pyxSEUJntLisVCchUVqtfqQlZZrVCAVmWQQRJlmVQtaZpVP0BkGQKQiRJkikFiBylHiYUph7lmJSaRAiEHKj1V3gDuTZz6qrmpILrUD86TGFjimWwNrW1zIhqMwuEAKCURqeHhOWSx2gzs9qMbjOToxrCkY2p2tqlkQMqeaWSNx7dZqZUaQOrDW+1TUspbdBmZpEGBDKV1cIdq80syzKUVJk232Zm2C0GABv4E0W1g+sQutFhCu2GjQU47I76BjOOajMz62VRRa1WFlFwjDYzy0ej28z0qIZwZGOitnZJ5IDKlVeu7NFtZkKUNrDa8FbbtISQBm1mQgj7GQIR1MIdq83MHqrCGtXNt5nZ7g6LEfx9vprCdQjd6DBVjamyGl9NICQIotlkicQNAOwisP9DjEQVQSDqjyUgIBGvre/eUiqGmTFrA0dFFVUJVI0qiGwvEHbAyJWPtKWjowrLKtVYFJEgUbJXSkkkL1WiCkF9VKFNRxU172U/SlajCo2c8eiowiRoNoiiQCp9wbIaX0tnVPLPSQg96zC0OxzaEpa9LEuBmAuhs1HIJyewDlNlN6xzzu5wCMLRXfXNtpkJ+/unzKeVPdTto6OKekQaqVo1qrBMVRENSxqVKlZMhX1HlCFJIlNKCKEyJSzCUSWqUKq4PlU0p9SQKkOBCJIssx/F0lRl/8iWoBAEQZJlJapQJamWI1sSopRHVgIpIaB2i7HaGyw9UMntJnl0qENaJ9d8E/T9GJCOyI3K6xfbCpYhJkN/4wmpw9Tajc3moBT1cwqQkqgi7wkTn3LNCCB0Meghu0E5bBtlSyk17Yz8ciDshq89reuKmi5NRxVKYTcbq73B9fvLh3ZseVT+z4mfdOowluwmuDlU9XId9aotr4ZIe+S6N/ziN0HLVVbShmQqu0mRDlNiN/uqvSyDtZgthETXhJZRRT4i08V+eUuYljeMEsYeRst5ZmMXQ0ayG+In1h8k2/9rHLtgqIRzLZxrkdOeHD6Xets3EVVMBsEgEG9I2lPlLXLbGx+EEyPp0WHs2U3gx2DNa95YSi7tkb3P1llutwlthUxlN6nQYUq6itlYgN3ugGrDKpqMCHgpXeALP1ItrQw29hoAoV9DNU/X1syuDe0Op3lEQNwP16vhJr0mGutOFL1G3CvqowoiUQWAzWIEf8Fm0qRch4j+p8Z/Ur9x1MhU7F6jFNAH/3NeabeUmA7V7IYend3EMjKVOh2mxG42lFUCsNocgNqFHiH5EQEflZ6vlZcFjluM0JZw9dO1wc2htI0IGPbD9UrYsP+YqXIDWnxJWi4RokcEWAHYuMBG/kKY5EitDuMZmZL2yLUfxP0SbupDcI6fejMwMpUiHWpvN3uqvN5QWBBFs9kCzaNKnUyfr8XeWJ82Rr206una8B4pDdkN8cL+epj447tceT8hZx1pEFVEApNB8IelHeX8hTAJklodxpnd1L7vbaa/phnkchpeFspUdqO5DrW3G2VWlc3JPmocVeZ6Y/calcrZtdJhmursxvK5JFTGWzQAaPsZMVQqQUkplSBYTQbwN4gnQWp1GE92E/o9HN6S+ONjwsuCxJeZ7EZzHWpsN5RSVjKWwULbqPJTkGxLpNqoj9Z97ktpdiPslU2rj9Nf0wwtvlUuhVIqWbZbjAA2H6oKS4kf9qQltTqMM7sJrEju1mofwutDGcluNNehxnazO5LBmszKrRYaRhWyOM6GShT+FcHg5lDqshvT90k1bnPXQ/SR6KgiEJiNYkiStx6pSebIJycp1WG82U0yqY1yxA1yprIbbXWosd1sPFgJwGpzqTFBq6iC9SHS1CBU7ATWhVOX3RhKk314vWvLUVGFEMHC21OJkjodJpDdyE1M54sP6s1M343mOtTSbiilmw5UAbDYHGpM0CqqCEmHiMCvwRRlN8J+Gm8PcWOsZUdlN5TKNrMB/IUw8ZNSHcab3cjJxUjliPukTGU32upQS7v5o7LOGwqLosFoMmmf3exL9qdKR+QUZTckjukUx8RysGFUIYDFJMoUmw/xF8LEQUp1mEB2owGs8BnKbjTUoZZ2w8YCzDYnKDSPKpoQ2i2lqO9GExpEFUKIxWgAn+8XJynVYbzZjaFAgz8x0kbMYHajoQ41u4lBppQ9vd1ic4CA2SuYDYMSgpzVAcdOybY9ZKxU0kspVwh0MAY7iIG+ZvXHHuteFVRokJTKXqpc36Ozm+TvmdKEBlFFlmWLWUQddpbX+EJhqzG1j148MTiuDhViu2eKlMuG30LGDSGoOrQS9DDSDiIKRBLjPVNWQn1JSYRY1ewmffdMIQU61EzBf1TU+cOSYDAajCZQkIinE4K8NcGWX/lUl1ERK2TbLwHbL5D+6/cOs/jPNBH290+ZTyubKYLJFZB0M9jYVqQpuGeK2pIsFwD4TwEhkYadIMiyTAghFBaTwR8Mlx6oOqNtvganOdFpRodx3TMl7AvbP/WJTU682BAiAPqZ5OEWIV9Qs6HoNEg5OCEE1NjTGExuLFzowe7+O44O0dQ9U4Ifhn0UhAROoWFLHPdMpUKHmtlN6cFKABY2qyoqqhR9WJe/9jg3HIgVsvM9r2l7uG60ldiFprMbqwYtFsGuRB1tsxu5FaEWJNlb7GtJG0cVEFhMgj+I0gMV3G5i4Vg6jCu7sS7125YepzrpyiBWBulfbaS/qfnsxtzflKzdlIjxZjeG7TCvlkylcrQsJTfCblrXFVX948tutNKhNn03MqWb1QwW9XV52r+rjus1Kuafg66Xa+GVm2wz007JOqO5p5GqPW1a992Eu4lJFq+6cxNtZlCYjQZCsKfKy18Ic1yOpUPE03fjeNd7XK+pP+NbXunrQDN9N4TA2MVg7JxEA2SEkdhj1SEhhJTD+arkejVsXi03CIFiJcw7kbcYbV6k1h1x9N1opUNt7GZnea0/LAlGk2AwAUpU8XxUZyuLbzjJsE+yfeZvckRAPt2YZCFNnQ0pGpkCRbBPUslXRXdI1obZjRq+IhMfqpI5xclAkzpkxDgy5fjEb/klvj8n6SOfvDLY/MiU7S8JPqGKWGAYbI5dh8JW2flcyLD9OF1FpjK0fo0WLIlpZEpDHWpjN2xWlcnqJJGfXbg2UBBzXhON6eeA8acgGo8I5Au0rynhEgr5gu18c1zZjXxExjYZ5YglqsidhGCfxC/mgXOVANs4qhCo4wIVCR//JKGxDuPKbswbQrbvE2kSh9/0ykfUyNowuwFgLDI4rom7h49YYLnDRmyxZtmGUtn+ahw3CbtXouWnsWY3muhQg74bSaabDlYBMFvtikEStP0m7tvtVSxf+mv7mhr03VCAjrCQ9SH4E+nkd15qVRym2ZEpuQ7h9aHAN0F5z1Hd0qSjQFsL6CvS1vVm36DN7B8lijtkMf662DOGht2UHaRxm5lSajQKhOAgfyFMszSpw7j6bpyfJT6BKvym13QHuz+r0cgUAaXUeraZALE/8oZYYLnZStoQGlsfIjkC8/txT4V1rkXYRA4MP37fjSY61CC72VFRG5Rk0WgSDCZWhXkbg+ZG41BxlKlCNv4UbGK+Q55A/5rIIJC5v8ncy8QcppnsJrgiXPuPGt8b/gZeA4Buk/FdGP8KCEvDxNd0m5na4L3aQC3xla2yB6p60uajCqDksRv4G8SPTWMdxpXd2H4JiklMtpC2hOU9knLWRtkNGw6y9DflTHSQGAY9xDaC7U670FmMvQ/R/F6YJBTic1fBciCm7AZJ61ADu2GzqgxWp5oy5G0KJXlMcVu4Qd8NmwtBuxsQp+OY+5td19pUhzlW303t637vGz563ApbEhJn+8lWCU3N5gy3QvXNhnDLWPtxDg6j+8bKzbeZ2dQss5m994e3p45JYx3G1XdjSuhhA9HIyn02TfTd0Mh7psy9DIWP5ThGW4RjmI6QJ9iuttj/bhfaCrH3IQrbZXFH4l5ZsIwVMuU61KAx9fuhKgAmm0P5g6awlyVbc8Zt4VBUdkNY/VEQQkg/E6yEvumNpVVlHWqxX2aJWI3SZGo876b2dX9wZcwdhBVUnB+UJ5qENmLj+Q5SK1p9s8H8vWT/qrnq97XD4cHU255Abm6+gzo/wiiKgkAqfcFyXzDPmngf1glMYx3GNe/GUppsjJR+DRmHmhvPu0Eku1GSEzt1jLY6RlnCeyT/uhBRGnqABaZeRpJLKCAjvvlf4ndJFd6xGcZKEnTTVOswWbv5/XB1UJIFo1kQjZE/aNgPJHt/E6mQG/fdkMgtHkIPI+nkkj/yyauO6RGGTgbraIupiyFSL5H2U6O+G+8XgbifSOKD4aVg8E4T8kjj2ZzUQn3nC77egrlUsqyhxrL6/UJu+NrB2xU1p1Ia23wHddaWSAQZkjcY4nbTmCZ1GFffjZBQn+BR+NX2WUzvmTIWiaYikdlK9DvCE5j/ZSpNdgasczMOn5VyHSZrN5EM1gH1QiZda4zovpvo7EZpdduIeLXN8Gcr3RCSfw/TcpltTmzE0Nlg6mUy5LM6Pc6bGEKbJe/niYygER9M74f9E4zAUdmNOpsTeagbINQNJJIsN343c4yzOWm9wti0UgTC/GlbTdC0DmPObkwVGqi2Qd/NsbKbZrJsktDsdnFb8mWHqZJEXlCeQh0maze7K+sAGC0ORDpEYu23OB7NZDdEvVfFRsR+ZvQzEUAghIASRVjK7k1GlejspvbzxOcCk22ysF2WO5AG2Q20u1clOqoQQQDkIH+4X1M0rcOYsxspTyvZIvbsppkR0riyGwoNJGE+kA4dJttVHBnoUdyXVaHfnexh5VyhiZGpOJ+ihkhUUfqZG41MSYflUHKP0RF/jvTdKBIirJTqpUjyTlw2IqCaLAA/f/ZNUzSpw7hGppJHUCa+x61DoLn5XzjeyBTRaPZcGnSYbEGVkwtHDfdUt0t2BnC4o6HpkSka33NG1BEBtWajR6YC65IeQWMP8UvNc0aiRwRUbwpwu2mKJnUY18hUqFWyt6GQPEE5a5w6RCS7UWtczW5iGZnSJLtBWnSYvN0AUFoOqlVXtU+2jSZ1NKQhuwntSbpL2wdSnqbshpXcJKbk1WDZTpM6jCu78ZckGyOFLpnJbtBag/HlQIt06DBZ7QrMB6iEKKuu6GoKJNGeknOFcIkxDdlNU++EjxtSQdOT3UgSBZDPZxU3RZM6jCu78fZJaryPWIjY3aicNb3ZjWyV5dxk+57q2tM06DBZu3FZjQDkYABRVh22kD1DErwnDYD/Agu11Yei1GU3mpGW7Ia9eSPfFue05ZODJnUYV3Yj54u+MxK3csNIC7HVR8Z0ZjcCEeRuSf0hy2Z4i9Ohw2TtpijHDkAOB3B0VDnUy3y4VyKVFyoxhvqagPq4lLrsRjNSn92wMXSREIeZP9OvCY6lw9izG0ppzRirlJvIXwRpIxqGqn9+ac9uqBw+J6mOp/J+VLLGlN0kqcNk7aat245jRJU/Rti8LeO7CuFWYt1lNuaxachuTF00+NOluSQN2U0gRAEUOnhq0zTN6JBx3OyGECJbSdW1dmqJM+/NE4y3O5LMspPMbmguCf4pQceRzajolyYdJms3bVw2AFLIL0vhBlFFspLfr3dVdY21SRwsMVZPdMDGmuHpyG7E/OQH7AnNS0d24w8GAXTMdyZZ4BOVZnTIiCW7IQTh1oaqWxyxOw5pIxpvdxAbSTLLTv65S+GBotwqkQ6CvZdDsqRJh8n+vZkNYucCF4BgbWXjqCJZyY6rHPsutEnm5i4EtZDaMdaqa+3UpgaBdGQ3lh7GWG7PbQalzZzi7CYsSaGQDIA/P/RYNK9DxJbdMGmEWosVf3eFOsSQ+Z5lEv7mQL6QfB9iktkNKKgNvgnGeB3nwDj42qdPhxq0Jga2P2XL4epAXZXNmUeJMvOBhXkAlOLQ2ebK3qacTcGcjSHHxqOmuvi6Gf0lxlCJCTblaQ5Rk7PVmgAiFcPMnqizipXsRlVOfLM5iZ1Y+5u8XydyEwNDaTOneFaxPyABOLUwx25KdrD2BOa4Ojzu827UZxVTG6mb5DRsC5l+Dho3hMjRt1PRPAEdDWSERSwQNNEhItlNks/MplbU3WQw/T/Z/MPxZ3jIZhwegeqeadWhBnbTymXz5Dl2lNd6q8tdeQUs5Whwr4pkRVUfc00fsyBAAARAJACoSIhIQAAhIozIrSVHZTekUXYDqP895hPwEYkqzdyr4hhl8f0YpAndnicNMtBcls6g8T1TLNERBEGSZSW7oUpSHdc9U7JEvYEQgDPbFiRUPycLsegwoholuyGRP+nGb2KgoFJHg7+TIUQgbmWve4YACDaCNiIh9bmAJjpM5p6p6DcxwE78Y4RQN2L9XBL3H1PVNT1xZDhhL2ZIpw61mTN2QZc2IiGBusqAzwsk0mZW899IEzddI1N2OK9NZMyetiKhsaJauBT13VDQilo/pehS6CrOtSdQzpOKFOlQ7mSQOxnQyUA7GeQ2Yip0mHzfjXIUSgGEOqDqdkPVjWLdSMHXWwi3BIBAe+LrSiqG448pOHwxkawZ0CE5qg6SYM2+8sWb9hBByG9ZbBBEkWUxBCKBABBQtnDM7IZQAmUXASAEYqTFxNYI7COJLETWNPgItn0kqggsZaWKYasuDiWsgQKSLPtXhmpfi+NRaLS1EJpghF2QZFlWmuKQKaWAes83AEmmIE3fEQ6ibCnJMmUliezOSiXLMgWpqPN7/WG31XTTWV2MfD5xDGS1DkEI04oMKtPIhCBVEkqbSlWaohOQrNGhZgru3TqvS6GLynLVkbLoQKLz7IZFFXM/o/NOuxDbbcG0gyDdYoI95e9mrvEFvf6wQSCX9fRwr4mRrNahVtmNbnWopYhHnVaUZzWHAv7yA3spVe4PiH1EQG0Dp21kCkoFgBBi7CzmPOo0j2x22N4CeoVRvtUMW/2IgHIUrUemKmr91d4ggD93b89vXIiLrNYhEh2ZUo6ibx1q1phi+ELhN1ZvO1wXEEQxP7+FzWoVAAFUzWaFSHZavwAqCoQtEEAkhEQltASRbJaAPbtVJCQ6fRUiPfwNnnejLqgbELDhCiAyIkCPfooaSyClIzS8JSQfkaUtsrxXAkDaCMgTUCLQ7qKS4pKjUtwGGWwkHUUka1VSXBn1+a2azUZnyGw5LMuHqn2BkGwQyJW9OrAJbJy4OAF0yCwpuqVDI5pR1ZV1OtTYbgAEJfndtdv3VHkBOBzO/LwCoyDwNnOMbeYqX+hIjY9SmA3CFb06tHZp8frxkxKuQx3qUHu7Yfy46+DyHQfCMgXgsDtynE6L0WgSRVEgPKrg6KgSCMthmdb4gtW+EPu2a2HOn7q0dpr5LJtk4TrUlQ5TZTcAagPh5TvKfjtQyZ93GTsd8pxnFRd68hyZLsiJA9dhAqRIhym0G5WNByp3VdQeqvMfqvUHeJUfjdkgFNgs+XZz6xx7t1PcZgMfgUoVXIfNkB4dpsNuOBwOB9oOhHM4HE4zcLvhcDhpgtsNh8NJE9xuOBxOmuB2w+Fw0gS3Gw6Hkya43XA4nDTB7YbD4aQJbjccDidNcLvhcDhpgtsNh8NJE9xuOBxOmuB2w+Fw0gS3Gw6Hkya43XA4nDTB7YbD4aQJbjccDidNcLvhcDhpQgBQU1PzzDPPDBs2rKSk5PTTTx8+fPjzzz8fDoePu/OkSZOuuuqq1BcyKfRQSEmSXnnllfPOO69r167nnXfeiy++KEkS+6qkpMRzNJ999lnCJyotLfV4PF9++aVGBU8rXIepJuM6NAC47rrrdu/efdddd3Xr1i0cDn///ffPPPPM7t27Z86cmfD5kuSMM8745JNP2rZtm6kCaMvs2bNfeeWVe+65p2fPnj/99NOsWbMEQZgwYQKl1Ov13nHHHWeffba6cadOnTJY1AzCdZhqMq5Dw++//7569ep///vfF154IVt15plnms3mJUuW+Hw+q9Wq+SmPy969e8vLy9N/3hQRDofnz59/4403TpgwAUC/fv02btz46aefTpgwoa6uDkD37t379++f6WJmGK7DVKMHHQosm2KvEFa55ZZbPvroI7WO33333T/96U9dunTp3bv3nXfeefjw4eiNa2tru3bt+sILL6hrgsFgjx49Zs2aBeDw4cN333137969Tz311HHjxv3www9sm61bt3o8npUrV06aNKmkpOTMM8/8xz/+IcvyihUrBg0aBOCcc85h10Xlu+++83g8a9asUdesXbvW4/F8++23AH7++efLLrusa9eu3bp1u/LKK9etW9f413br1u3ll19WP06ZMmXMmDFqYZYvX3711Vd37dp14MCBCxcu3LBhw9ixY7t27XrhhReuX7+e7RIOh//1r38NHDiwS5cuQ4YMmT9/vnq0mTNnduzYsYlLLAifffbZxIkT1TWtWrViOq6trQVgtx//dah/+9vfbrvttjfeeKNfv35du3a96aabqqur//d//7d37969evX6xz/+cdwj6ByuQ5wEOhQ6duxYVFR03333vfXWWw3qj7FgwYK///3v48aNW7x48f/93/+tX7/+hhtuiH5djMPhGDJkyJIlS9Q133//fU1NzdixYyVJuvbaa1evXv38889//vnnvXr1uu666zZv3gzAYDAAePTRR6+66qq1a9c+9dRT8+fPX7Ro0RlnnPHcc88BWLhw4b/+9a/okgwYMCA/Pz/6RIsWLcrPzx84cOD27duvvvrqwsLCBQsWvPfeew6H46qrriorKzvu5WOwwjz55JNTpkxZvXp1jx49HnjggZkzZz777LOrVq1yOBzTpk1jW06fPv2VV165++67lyxZcvPNNz/++ONvv/02+6pTp07nnXdeE5dYENq3b5+Tk8M+hsPh5cuXn3nmmQBYVIkldBsMhtWrV+/ateurr7568803v/7660svvbSwsPCHH36YOXPm/PnzmdazF65DnAQ6FEwm06uvvurxeB544IG+ffsOGzbs0Ucf3bBhg7rFnDlzBg0adPvtt3fo0GHAgAEPPPDA+vXrV69eHX2U0aNHr1u3Tr2sX3zxRZcuXbp27frdd9+VlpbOmDFj4MCBnTp1mjZtWlFRUbQTDx8+fNCgQUajcfDgwcXFxb/++qvRaHQ6nQBycnIcjqNe4ieK4ogRIxpU86hRo0RRfPPNN00m01NPPdWtW7fTTz/9iSeeCAaDH3744XEvXzQjRozo3r27zWa7+OKLq6urL7/88vbt27tcrtGjR5eWlgKoqal56623br755ksvvdTj8Vx11VV//vOfX3nlFbb7JZdcoi43w6xZs3bt2nXXXXchElU+/PDDIUOGnHbaaSNGjHj//fePtaPX67333nvtdvsZZ5xx6qmnyrJ84403Wq3W4cOHu91uVsLshetQ5QTWoQCgS5cuH3/88Zdffvnggw8WFxe/9dZbY8aMeeyxxwCEQqGNGzcyC2T07NkTQIODnn/++VarlXVEh8Ph//73v+PGjQOwbt06URTPOuss5WSC0Ldv32iJdOvWTV12uVxVVVXNX6MxY8bs3Lnz999/B/Dbb7/t3r2bnWj9+vUlJSUWi4Vt5na7i4uL4/0L7Ny5s1qSBh8DgUAwGCwtLQ2FQgMGDFB36d+//44dOyoqKmI8xcyZM+fNm/fcc8916NABQCAQcDqdZWVl06ZNmzdv3llnnXXfffepYaoBxcXFJpNJLZJaPPaxuro6rh+rQ7gOGSewDg3RP7Jz58433nhjbW3ttGnT5s6dO2bMmA4dOlBK1QQMAFtmdqhitVrPP//8xYsXX3PNNT/++GNlZeXYsWPZZpIklZSUqFuGw+Hc3Fz1o1oxjOO+0rNv376FhYWLFy/u0qXLF1980bZt2z59+rATFRcXR2+Zk5PToJDHxWw2N/ORUsoOeM011xCivFNelmUAR44cif5RTSLL8tSpUxcuXDh37lzWKQDgrLPO+vXXX9Vt+vXrt3v37v/85z9XXnllAsVrvgDZAtfhCaxDQzAYPHDgQFFRkbrK4XBMnjx5wYIFpaWlJSUlgiBEmz1bZnlmNKNHj77tttsqKysXL17cu3dvNnbodDrNZvPnn38evWWD7sC4EARh1KhRS5YsueOOOxYvXsw62NiJGkSkqqqqVq1aNdhdrR6G3++P6+zsV8+ePbtr167R66Ov3rGYNm3akiVL3nnnndNPP72ZzU477bSVK1fGVaoTA67D2MleHQqPP/74yJEjG3TO7dixA0BhYaHRaDzttNOi085ffvkFQI8ePRocaMiQIRaL5dtvv126dClLLAH06tUrEAjIstwxgsViaXz1m+RYNslasD/++OP27dvVE3Xv3v23334LBALs4+HDh3fu3Nm4kC6XKzrUxJvlnnbaaSaTqby8XP05brc7Ly9PzS2PxYcffvj+++/Pnz+/QR0vXbr09ttvDwaD6po1a9Y0CI8nCVyHsZO9OhRYN88ll1zy+uuvr1y58ocffnjppZduv/32kpKSwYMHA5gwYcJ333330ksv7d69+4cffnj88cf79evX+AqazeZhw4a99NJLR44cGTVqFFs5cODAbt263XXXXStXrtyzZ8+nn346cuTIN998s/kysTz5q6++YmMHDejTp0/r1q2nT59+6qmnnnrqqWzl+PHjg8HglClTtm7dWlpaOnnyZJfLdckllzTYt0ePHkuWLDly5IjP53v22WdZh3zsOJ3OK6+8cvbs2QsXLtyzZ8+KFSvGjx9/3333sW8XLFhwyy23NN7L7/c/+eST559/vtfrXRFFMBgsLi5eunTpxIkTly9fvmLFivvvv3/FihWTJk2Kq1SN+e2335ZFkRXpEtdh7GSvDg3FxcULFix4+eWX58yZc+DAAZPJ1LZt25tuumn8+PHMLMeOHev3+19++eUnn3zS5XINGzZs6tSpTR599OjRN91007nnnltQUMDWiKI4f/78f/7zn7fccovX6y0qKrrzzjtvuOGG5kvZvXv3wYMHz5gxo3///vPmzWvwLSFk5MiRr776qnp9AbRr1+7NN9+cOXPm6NGjRVHs27fvO++8k5+f32DfqVOnTpkyZdCgQTk5OePHj7/44ou//vrreC4gHnzwQZfLNWPGjIMHD+bn519wwQVTpkxhX23ZsmXp0qWNd9m+fXtZWdkXX3zxxRdfRK9ftWrVqaee+tprrz399NO33XYbgE6dOs2dO3fo0KFxFakxzz77bPTHNm3aLF++PMljphquw3iuVrbqkJwwXYwcDkfn8DvCORxOmuB2w+Fw0gS3Gw6Hkya43XA4nDTB7YbD4aQJbjccDidNcLvhcDhpgtsNh8NJE9xuOBxOmuB2w+Fw0gS3Gw6Hkya43XA4nDTB7YbD4aQJbjccDidNcLvhcDhpgtsNh8NJE9xuOBxOmuB2w+Fw0gS3Gw6Hkya43XA4nDTB7YbD4aQJbjccDidNcLvhcDhpgtsNh8NJE9xuOBxOmsi83axaterGG28844wzOnbsWFJSMm7cuHfeeSeWHffs2ePxeDweT3V1dbwnnTx5ssfjefTRR+Mv7/F55plnWMEee+yxVByfkwree++9Sy65pHv37h07duzdu/c111yzatWqWHb84IMPPB7PyJEjEzjpoEGDPB7Pl19+mcC+x2L+/PmeKDp06NCvX7/rrrtOD6+Kz7DdrFix4q9//etXX31lt9vPPvvsgoKCX3/99f7773/99de1PdG+ffs8Hs/cuXPZx27dug0dOrRz587anoWxcOFCtrBo0SL+TuSs4LnnnpsyZcrq1auLi4v79+9PCPnuu++uueaa9evXa3uiBQsWeDye0tJS9nHAgAFDhw4tLCzU9iwAjEZjr169evXqVVJS4vV6ly1b9te//jXjjmPI7Olff/11SZKGDx/+4osvsjVTp059++2358+fP378eA1PpFoA44YbbjjuG+kTY8uWLVu3bnW5XDabbf/+/WvXru3du3cqTsTRkHnz5gGYNm3addddB8Dn81166aWlpaXvvvtu9+7dNTxRAx3OmjVLw4NHc8opp3z00UdsuaamZuTIkXv27Pnggw/69euXojPGQoazG9YOys3NVdfcf//93377bXR6uWDBgtGjR3ft2rWkpOTyyy//9ttvmzzUFVdcEZ2/LFu2zOPx9O3bF8CYMWNmzJgB4LHHHvN4PHV1dQ0aU8Fg8Kmnnho8eHDnzp179+596623bt++nX312muveTyeiRMnrly5cuTIkaeddtpFF13022+/HesXff755wAGDx58/vnno5G8OPqkgQ6tVuvcuXNXrVo1ffp0tqYZhTSANWHU/GXmzJkej+f222+vq6vzeDxff/01gFGjRo0ZMwaNGlNlZWWTJ0/u27dv586dBw4c+Mgjj9TU1LCvbr31Vo/H85///OeNN94YMGBA9+7db7nllvLy8lh+ndPp7NmzJwC/35/Q5dGMDNtNSUkJgHfeeeeee+5ZunRpVVWV0+ksKioSBKVgL7744j333LNp06ahQ4f27dt31apV11577dKlS+M6y7hx41q1agXgrLPOuv76641GY4MNJk6c+Pzzz9fU1IwePbpVq1aLFi26+OKL9+7dC8BisQDYvn375MmTu3Xrlp+fv27dultvvTUcDjd5LmY3I0aMGDFiBHh7KktgOpw6deqsWbNWrlwZDAZbtGgR3cZpRiExYjQar7/+erY8duzYcePGNdigvLz8z3/+84cffpiTkzN27FhJkubNmzd+/HimNKbDzz77bM6cOQMGDJAkacmSJf/85z9jOXVtbe26desAZDa1Qcbt5pZbbmG+u2DBggkTJvTu3XvcuHFvvPEGu8TV1dXPPPMMgOnTp7/wwgvs6gN44okn4jrLTTfd5PF4AAwfPvzhhx82mUzR33733XfffPMNIeSDDz6YPXv2J5980q1bt+rq6pdeegkAM76tW7fOnj37ySefZFn3H3/80WRw27x589atW81m85AhQ/r37+92u1l7Kv4Lw0kr06dPz8/P93q9L7zwwhVXXNGjR4/rr79+2bJl7NvmFRIjJpPp4YcfZnKaOHHiTTfd1GCDOXPm7N+/v127dgsXLnzqqac+/vhjk8m0bt06lvuwHXfu3Pnpp58++eSTU6dOBfDVV18d63QHDx68+OKLL7744rFjxw4YMKCsrOyqq6664oor4rsuWpNhu3G73QsWLHj55ZevuOKKdu3aUUp//fXXhx566L777gOwZs0alv6NHTuWbT9q1CgAW7Zsqays1KoMP/zwA4Du3bt36NABgNFovOCCCwD89NNP6jYtW7Y888wzAXTq1MlutwM4cOBA40N98cUXAIYMGWKz2QwGw7Bhw8DbU9nA6aefvmzZshkzZlx44YX5+fmBQOCbb7657rrr3nvvPcSmkORhZxk+fDhLZFq2bNmnT58GZxk8eLDT6QTQq1cvABUVFaFQqMmjhUKhtWvXrl27dv369TU1NaIo7tq1a/PmzRoWOAEyPxAuCMKwYcNmzJjxzTffLF++nCWZH3300Z49eyoqKgCYzWabzcY2zsvLYwtVVVVaFYCdJbr/iJ0l2tGiv7VarQBkWW58KNaSWr169ciRI0eOHMm6mXh7Kiuw2+1XXHHFv//9759//vnjjz9mzatnn30WsSkkeeLSIRMhjqFDAG3atNkR4eeff77hhhuWL19+9dVXJzBrREMyaTe1tbWLFy9+5pln1B6sNm3aPPXUUwaDAcCuXbvcbjeAQCDg8/nYBmrfWHStMFi2qR4qxl40AOwsrLKj91WtLUY2bdq0bds2AIcOHdq4cePGjRtZBsTbUzpn3759H374IWsmM3r27Pnwww8D2Lt3bzgcjkshhBBkVIeNyc/Pv+OOOwBUVlZmVooZzm7+53/+5+mnn545c2YwGGRr/vvf/7KOm7Zt2/bp08dsNiOqPfLJJ58AOP30010uV4NDsY491iUG4LPPPov+lomgrq6ucRkGDBgAYMOGDTt37gQQDAYXLVqkro8d1pLq06fPjigGDx4M3p7SNzt37pw8efIjjzzy6aefsjWSJLEek5YtWxoMhrgUEq3Duro6NhSlclwdLl26lP0t7N2795dffjnWWeJFHc91OBzJHy1hMjnvxuFw3HvvvY8++ui8efM++OCDNm3aVFVVlZWVAbjooovatWsH4I477njiiScefPDB5cuXl5eXL1++XBTF+++/v/HRhg4d+umnn3755ZeTJk2qqalhI4hqK6Zly5YA5s2bt3v37nvvvTd6x3POOefcc8/99ttvL7vsssGDB69fv37z5s2FhYUTJ06M6+cwu2kwu/TCCy9ctmzZokWLHnzwQSY1jt44++yzhw8fvmTJkjvvvHP69Ol5eXllZWWstX7XXXchToUMHTr03XffnTVr1qZNm1avXt2qVatDhw5F63Dv3r0PPfTQwIEDH3rooegdb7zxxgULFuzYsWPcuHGsLykUCg0cOPC8885L4EexrmK2XFVVtWPHDgC9e/dmnT6ZIsPZzfXXXz9nzpzBgwfb7fZt27bV1NT06tVr2rRp6tjTrbfeOmvWrE6dOi1evHjNmjUDBw58++23m/T7sWPHTpo0qaCgYPny5a1bt2YzJgKBAPv25ptv7tSpU01NzY8//tiguUsIefnllydNmmQ2mz/++ONDhw5ddNFFH330UUFBQew/RG1JsfFvlQsuuEAUxf37969ZsyaeC8NJH4SQ55577pFHHundu7ckSVu2bBEEYfDgwXPnzr388ssRp0KmTJly4YUXGgyGb7755i9/+ctf/vIXROnw73//e0FBwc6dOzdt2tRgx/z8/AULFlx00UUHDx78+OOPzWbzpEmT5syZk1iUUruK165de+DAgc6dO999992vvfaaOsUkI/x/Hmiy2/G5GYkAAAAASUVORK5CYII=", "path": "image.png" }
Which solution has a higher concentration of pink particles?
[ "neither; their concentrations are the same", "Solution B", "Solution A" ]
2
The diagram below is a model of two solutions. Each pink ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the pink particles represent the solute. To figure out which solution has a higher concentration of pink particles, look at both the number of pink particles and the volume of the solvent in each container. Use the concentration formula to find the number of pink particles per milliliter. Solution A has more pink particles per milliliter. So, Solution A has a higher concentration of pink particles.
Solution A
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABqQ0lEQVR4nO19d5wdVfn+856Z27Ynm0oaC0kIKZAAoSRAQMVAKAGpfinSVMAGgqCIdEVQpOjPAoJERIoQEGkBRJqBRDokEAjpIb1su3XmvL8/TrmzJcmWu3d3YR75xLt3787MnfPMc9523kPMjF6I99dseW/N5tp0tjadK8LpBpTFq+LRycP6D+9TWoTThegtCHnYLlCvk5t1DelH3ltanNFtiaGVpSfuuXPcdbrl7CF6DkIedgC9TG7WNaTve2txxpMVpaVlVf37lMUrY9GEg5iDmEBUIEqICEQEXIIAXIIgEPS/BBDpQ6mvLRmSWf9L8CX7DI/Zk+yDcpJzknPMdens+rrU6k21tY2pXfpXnjxhRPfdgxDdj5CHHYPo7gtoH/63YkPGkwP79Kkcsmt5RUU0EgUAMoPGAIEIzGCGGlAi/Z8aZ6Wu+uNWavO/IlY/WzoAYCSikcF9y3cfMbgkHl2yofbDjfVF+boheihCHnYMvUxuVmxtAMCVAwHkzTKGGVJADbAabPVL1v+BAdbDZxgQmGL0r5jUz0Gjz3wq4jpVFaUA3ltf22VfMUQvQMjDjqGXyU3MdQAQSwTM0SLMKjCf930ZeCPEFxQhDzuGXiY3w/uUAfC3rEV3zCpZz9u4tQ7AsLJEl33FEL0AIQ87hl4mN/sO6xdzxMa6uo0rPs5m0/rdrp9Vcr5cunbz/A+X+T5XlcSmDq/u+u8aouci5GHH0MsyUwBq09mH31u2viG94492AYZUlpy0Z02vS0CGKDhCHnYAvcy6AVAZj47uX9ktp+5Xljhj75G9boxDdAVCHnYAbndfQMcxeqeBpX0HJgSKUO/wydotH65aXxqLdt/XDdFDEfKw7eh91o0FBV91uc/sAyiJR7r4O4XofQh52Hb0YrnJo1gZgcDIhwjRAiEPd4ReLDfFr3fovcMcousQ8rDt6M1yY1+Fs0qI7kPIw7bjcyE3xZpVQoRoiZCHbUcvlps8ijar9N5pJUQREPJwR+jFclP8WYV6sRkboqsQ8rDt6MVyk7/nxZpVQoRoBSEP24xeKTcDyxIAtjam9M9hRiBEdyDkYXvRK+VGlW97vq9/Dn3mEN2BkIftRa+Um+bo+lkllcnB0CtEiNYR8nBH+FzITdfPKqlsDkB1aS9rLxKiqAh5uCN8LuQm9JlD9ASEPNwRerHc5G96sXxm0Xud5hBdhpCHbUcvlps8ijWrBF+FCNEcIQ93hF4sN8WfVajXziohug4hD9uOXiw3eRTPZ+6ts0qIYiDk4Y7wuZCbos0qvThIF6LrEfJwR+jFcpPX/TAjEKL7EPKw7ejFcpNH8WaVECG2jZCHO8LnQm6KNav03gRkiGIg5OGO0IvlpvgZgV48rYToMoQ8bDt6sdzk0fWzyuaGFIBhVSXF+UIheiVCHu4IvVJuKhMRAPWZrP65WLNKr7xZIboMIQ/bi1555ZXxKIC6dE7/XLSMQK/1mUN0BUIethe9Um6aI8wIhOgJCHm4I3wu5KZ4GYGu/y4hei9CHu4Inwu5CWeVED0BIQ93hM+F3BRrVgkRYnsIebgjfC7kpmj1DiFCbAchD3eEz4XchLNKiJ6AkIc7wudCbsJZJURPQMjDHaF3yw3Z/wtnlRDdh5CHbUTvlhudEeziWaU2nQVQnogW4yuF6IUIedhG9G65Kc6s4uV8AFGnt27uE6KrEfKwjejlclOUWeVz4DOH6FKEPGwjernc2P8LfeYQ3YeQh23E50JuwlklRLci5GEb0VvlpiIeAeCr3eCLMqv0/rEOUXiEPGwXeqvcVMWjAFLpNFCsWaVXj3OIrkHIw3aht8qNgr760GcO0a0IedhG9G65QREzAr15UgnRxQh52Db0brkJMwIhegJCHrYRvVtuilPN2bsnlBBdj5CHbUTvlhuNcFYJ0RMQ8nBH+FzITTirhOgJCHm4I/RuuQl95hA9ASEP24jPhdyEs0qIbkXIwzaid8uNRlFmld4/tYToYoQ83BF6t9yEs0qInoCQh21E75ab4OgCoc8copsQ8rBt6N1yQ4HRBcJZJUT3IORhG9G75SacVUL0CIQ8bBt6t9yEs0qInoCQh21EL5ebcFYJ0QMQ8rCN6N1yo1GcWaX3D3aIrkXIwx2hd8sN2f8rwqzS+03ZEF2EkIdtRO+Wm7zed/2ssjWZef6Tz9RePyFCNEHIw7bB7e4L6AjeX7NlXUMKNkQXnFWEmVWMR00EQn6SUCQIzCr5YTezipqbIH2ZyWRT2VxDfSMAz5f/W7nxfys3Dq0s3W9E/9H9Kor4jUP0RIQ8bC+Ig/LZs5H2/DdWbpy/ckPGk+qd/n3KB1WUVsRjcdctibgRR8QERR2KOhQR5BC5BEEg6H+bjDcAQDI83/cl+1J6LLM5L53zWPqNWa/Rk/UeA7ymIbehIRWLx9LpTDabUzesNObutVP1hMF9KuO9eFfDEB1AqzwcWFFa2YU8lGCsacxtaEjFYrF0prfysHfITW06+8rSdYvWb836DCAecaLxWGlJ1Pdl1HUIcASBERGUcETCEVFHRAVFBTlCOA6YSRDAkJACgpklJCRy0s/4nJWck0yErM8ZRtaXIJLMDD07+VKCyJfMBM+X6XQumUpLX9+3CYP7TB7Wf2BZvFvvUIhiYIc8FIKoTTxkAZIsGdwBHoKQ65087OlyU5vOvrxk7Qdrt6ofYxGnpDQRizoOEQGCSBCEea3tVZAgApiIiCCImJlIgJmIWMXuVKCO2UTm9CvJrMYYgGQwswSYmQHJUGPvMzMjk/PT6WzauNCTh/U7sGZg3O3FG6qG2A7ayEMATpCHghTrDA9BpKIzTZ67IA/VI9mShwxNv17Nwx4tN/NXbHhl6Vo1kyRikdLSWMTYMqTG1cwnjiBA6w4ZBjBYMYD0v2DJQgiW2gZmgJnJjCurMZYMgpQ2qKdnFSmZQT5LZvh6vOH5MpXJpRrTACKOmD56yITBfbrrdoXoImyTh0RKaAI8FAAHeUhEBBZCKKapd6SUQuhHz6SomKC5Z3goAWPdAMzwWRIJT0oo0QH7UguQJ2UylUslezoPe6jcrGtIP/vRylV1KQAlsUhJacx1hCAyk4meQwSRAIQgMIQgAW3UKOtGEBGIzAzDzKLJrGLG20T/mSGZKag1zPm5Bfp930wyPrNkSMDz/fr6dC7nARhUUTJjzNAebtOGaCNa8tBxhEskLA+FILAACYIQAsxKgKDN7QAPjcVtosRsY8tKX5h1yJhZp8YDWmN5SJJZMjORL6U1dvxewsOeKDevLFn76rL1AFyHykpL4jGXwA6RVRklOo6yXYUA2FEjLYxXZSyavFcFEBFLJkEs8/6UVNaNlNB+FvlSqtuSN1+lBAlfSsDaNWr4IQFPSibyJacyucaGlLqdB9YMnDysX4+1aUO0BS14aC0a7T11mIf1Hl5rjLzT4HyaEUsymiR7JPxd4rkJCXlAabYpD1kxrVUeMsNnsOGh58t0xmts7KE87Flys64h/fgHyzYmswBKEpGSkpgrhKNMGMrbrgIQQghAGzjKXiUyblR+jLXKMOu5xeYXAQTKqwLTC+ctWBO4kQwlPVJPL1KynlVkYHrxmT3mZDKbTmUAlMciJ+5Z09OmlxBtQSs8JOEIbU3neajta2qVh0QQ1MS3Ujx8eHP03o3RBn+b5Xp7JLzTqtN7lvraym6dh9bWbsZD9hk9loc9SG7eW7PlyQ9XAog4VFpaEosKNbquIBGI1+hx1XMLCyEI7JCA8p/zPrOOyWkLFiAQMwuhvWJ1UhOl0yE6ELGUTaJ0+diNZJDPrAbejrGvZhUpJciXLIFMzk8mM17Ocx0xc+zw0f17U2VEiFZ56ED7Tc2tbCKHSNk1NkMqjKevZjgAKlLTIMWVKxPvJNtka5zfP/W1vlmbpmCwL/PWt7FrpDZ88jxkBjzJEsjm/MYexsOeIjfWcC1PRCLxaMQRDpGjLRo4JkajgzVEQpgXJiMgtHeMYBZAxXHYxG6052zqP22UTl2Did1oT4pNTsoOuRpRKZXQsNS6o4N2Oo4jWQI+c2NjNp3OAJix+7A9e2TcLkRLBHkYTUQjQij6qXnOIShNsTx0jN8kmtoygOUhq6BigxQXLosvTrfDr/lqRfbSwalWeagy4s15yOzD2NqSJcGXPYuHPUJuHl+wfMG6WgBVZfFoPCKYXSGUsepAj6ijbRxhxjuQ/zbRYlO4qdWHmVX0zmSmVEZAMEvAhuq092SECNJYOrZAVMp8BYQaWjW3KAPH8yWIPGP76JEGPOZkWietdh9UdezY4d11e0O0Ea3ycJPvvJuJL8pGktJROjLA9SeUePuXZiscBHkIY920ysMzP0182h6tUbhgQPr4PhnskIcBKzvAQylBPYqH3Sw3ac9/5sMVH26odwmlpfFYzG1m1AT9ZIeEdZgdm2VU1o2ubjAr4PKROW3QBG0cHSemYOwGUCmq/PuUn1IYTNr2QT4+F3Sp2PxoInZSe9HprNdQnwKwc9/y48YP7zlBuxBBtOBhxCFs9p17aqsWZbdZrfuV8szp1enBEblDHt69IXb3+g5W/d65c8PIuK9ceLSDh9q66VE87E65SXv+vW98sjGZdQml5YlYxHEIrhDE7ArhmDy36+jojCBt41jvKZAL0FaM1SAySXFASw4FFccgGK8xrxkEU4mjg3NkqjmD0Ts1q+jMlC8lyGeWzL5kNauo3+Yk6mobmblPSezMfUaGitPT0JSHJbGIcIAXUuUP1pW35c9/NDg5vTzTnIekV3MTod6n4z8p3U5sePuYWOLdNrwxwEOpVlRZ+7rOp9caIu+l3PWeszTr9nf9/o4/PJIbHc0Oifgx+D6zz5yTqNvazTzsNrlJe/5f//fxplQu6lCiNKHG2BV5o8YxVozykIXxmXXMH2RNVjWrCEFaYgAKqo+quwExjOKYDgHGY2L7o2xS9aftHbW4V/02WHll3Waf4Zt0lc86ZuzbdJVkT3JDY8bLeZWJ2NmTQ8XpQWjGw3hECGBWXZ+5qUTbD3LBgNRJfbM2NqzqbkzZDe7aEPtzR00bhQd3rR8ckYEaHF2PWi/p0S2x2VvjjbJ1Levn+CdX1k+MpQ0PZUNjtht52D0NKNKeP2v+ok2pXNyl0vJ4PCIcsCvIASJCOICrFYccQkSQY/JT6j9b+0CAQyCwidjBaBNbhSJTeeUYu4nMel2VU1dxaGX9KtvKFhOa7KapsBABCwv2XHDVMjyjlYLZuIRwAFcIV1BZWcyNuLWpzN/eXtIt9zxESzTlYSIeEYL5yWRFu7QGwO/XJ+bURW3eKp8mBxxBL9V19qn+b0NUCCKwiVULApZm3QuWV9y7ObEtrQGw0Xf+3+aq32+p2uw5riBXiO7lYffIzWPvLtmc9hIuJcoSESEE2BXCqoNjnltXkCvIIZUFZzuKRinYCWoBaTHS77AeG1cIB1oFIkIIZleQS0oj4AqtOPYs+l9b4EPqLKyOmT+7OZ0+jvL7iByC6wjH2miCBNQZqawsRkQb6lMPvb+8W257iGZoykMS4MVe/PH6sg4c6obPEutyyutXxNAVOsT8SfsjxM3wSr0r8jwnYl6ScX64smyt16bn9+10/LrN/VbnIpqHpd3Gw26Qm6cWLl9am3IJsZJ4RD/zQjC7RA4QcbRX5QjSI0eklEWA8ysYTPYxrwXaHtHWisptRQjabiIoPqnja7uDtN1k3mHXjKgAi8C5dOg6mPWEzUpoW0YrIwmBZtZN3gIqrygRRJ9uqH1x2Ybi3/kQQTTnIeAKcX99x4tTfvFZQtkdQR6u8wrhsJj+FQ4REa/znAtXlDVs26hpiZQUv97SNy3JEeSKbuNhseXmzRXr311bC6C0NB4xVoCa/+3zrD0UU0acz3abH40i2DEQ5pkn+4Qr7dAqALgEAWPdUNC6UTyDS+QSCXDE2FOOWX3n5DuVsDmvrrwgQNUZ2opErZ4trBv1jSICJaVxAK8tWfPG6s1FvvkhLFrwkBxBb6diq3KRDh/zraT7SUqYpCoUu9ZlOxghDmJtVgStm8tXl7RLaxRSUsyqq1KWfsTpHh4WVW4+q238z5K1ACpKotGo46iyGhUxMXFiqwK2HZF52pvHUwJRFbYWikuktUaYhDqz0qCIEALSvu8Yuzdv3RC0Z0fmaCATtSGja3ZthLk25mB8x9oy6rfazrL2jqBY1CktTwD49yerV9eninn/Qyi04CE7gAO8k21fyKYlXmmIaBISuQQHGBYrQCpmp6g0Vjye3BptV61gEG+n4+9mEio+0C08LJ7cpD3/729/mpMojTrRWESpgLZo2M7/6l8hdNuaYC0f52O0yMdTBHHERIUd/YRrz8s1kdpAXEZ710Zx1Bmt72OVS8d3HIJD6toCZwzYOAElgllXYfUraN0Ih1idUQAxV8RiUSn5vrcW99Kms70XrfFQW9ZvpmOdPPgbDY5rTGwBOIThMdn5a1YEU3PYXRs6tfppbjLudh8Piyc3s+YvyknEHYqXxPKxYTX/O8LkuREJRoWhbQcRiNTaiIkb0AtXWSswERnCx2n3sc3u79ZGfrvGfb7W/TAp1BGUJaX+s2vqTNyXXUGClTfHwphLwSiPXoMHFtbmspmswDGtL6YroVkrlLVxEgk3Fo/6Pj/wXhg2LiryPCyN5TOYBAGkZGcfh7VZIRQPVfaA4JIYk+is4uxb5qu5c11OrMl1yjt7OxNPSWHm5mLzsEit0f/76Web017MQbw0pjwm+0w6ggSzidcIWBWAjdRwPnajEtiwUVv9PJs+I1Tn468bIrM3R1a15jNPr/KvGJobHiO1gEGa9Q1MUP2tmdkRphoQYJhSTgACUjIJVe9HqjRHAo4QklkQSWZBADOR8JkdAkAQ8HzpCuFJ6QhiyQ6ImR2iWMzJZWhzQ+rttVsnDaoqzkB8wdGEh4HVv45eadlZrM7paQaBNVP7l/kfpTolZIdVegIA4c1kAR7Y1X5klMg4BAaKzMNiWDfJbO61lRsBlCRiamit92T1QhjbwWadTBVf096gdmVD3uKAPdrztc6XFpbcvjbaqtYAmLPVOeiD+K2fuTZfnvfXkLdEzAI8CJCJ+Wm/TJhIto3dgI29Y/JWMBaTtd0oMIvaJRoRx0mUxQE8+9HKtOcXYSC+4NgBDwugNoAhkl3P6Qo6e4DXmQPuW+aPS0jlia/NFeCBXZGLOIHnqJg8LIbcPPHekpxEaUSQQyYPZfwLCryTf1ahn/98nFhnhVz9kLOJ0ehYLzHP2hi9YGm8rg2l4resiUx9P/5hSljPSOuOILCO7wRqfGyXExCkyZfDoSaxm5bRa9UyWcWMjOfYNPbEHHVENBqRkh/76LMiDMQXHDvkYedPMSbhC9MWRwVcwLxznDujOD8YmFVVZmo+6zzSLPI8FETMUbdIPOxyuVn02cZP6zIu4MQjNs6qorZ6/ic9/+crC4I5b84/1TaeYuMgev0U82/Xx3++uh114iuzdO7iaJ3UXhhUNIfZEQRzhfkaH5N7UjFsHVkEHHN2q4/qW1jrhnQdYNC6CSosCUI8EQGwdP2WxZsaumgIQqAVHuazB5aHO0c7ZYYAGBZlYtgUqq0Avniov3tJRyI4Z/XPHlDh5/Ohnbw+AAARbCWtqdLg4vCwy+Xm35+uARCPuxEn8Kzm48EUfJ7ts2qf9rz1YeOsJuZvYzr/a4zcvqbd5RJKcfSaXb3ChcDsmPWfwuywaq/B1IyyWdKlagiFsb+sdSMC1698PaH69RDla8BsjqykNAHgqUWrCn3vQ+SR56HqYWLWrxjblhyiKSWZTp7lsErPlmtRoINfpZB3j8yVO+1Liu9XJq8elrNTl0OoKETN4EDXD9jsenYvDg+7Vm5e/nhlbY6jAtFYRJhaOIeIGPnMFKkufBx8Vq2Wk1mjpJ5z62YHK3F+tKKD+cvX6sVDm5S7BtW7WGh+AIHOpE3z8brK2dpZxDK4liIfuzH5LydQB2h0KtC7hyjikuM6jenss4vXFOrOhwiiCQ8D1jGZmi8HEISvlKc7c5Zyhw/vI8lqDXRcT60WHh6Vz43Ljm2zjXNCtfeP3dIwE57i3rhEAWIr42JZmyG1sUiHKOKiq3nYhXKTzObmf7YFQEkiln9K8/EO1l3RdLRVkOkU0bSiDyIwFzm2ltd85pHN7upOFG7esjoC7QcRAWq3BmKd1QZzIC/WNEdmAjG2is9EnXS0Wxky1mISxoI1YSmbQWeHUFqaAPD2qo1hGU7B0YKHENQ6Dwe5/lfKO27gnDPAqxSSTPtaGF+bTCZheEzO3j138ZAduGxDo3zziMytO2eJWRgHSnHvgHK/vSZSMwxw5U5RFnqVcpNKDoeotDSOruRhF8rNUx8sy0lURIgcs35SxV/MqlZhV1QKAUid8zYZbjLPsxNYgUJmXxerOA9v6tTS/pVZWqCTlAzonrKGLXkPy5wx4Dfl7ax87V9QMYVqXsosTDxIqa0TjN3kbSJZUpKQkv+7YlNn73uIpgjwkBxh1k/mV94KNZRgOCTOr64f6HYkyLJ7iTy7f1YIwyWdDleRQVbtTQhU6fCPhvjz9khfMsRvaelMr/R/U5OdNyF1Sn/fWtmwnbqYBdHxfXKduBmYWZnST6L269lkhNUEyYmSeNfxsKvkJpnNLatLAXDiUZuvMYpjVn5rj0nN/8JqLTXNTIm8ZWFj/tqOIKJ5DZ39CnO2OES6iJmNOpBxsezeQNSkui+/ItyskcnXGQsR+BaaJQLBdV4mCyZEvhY5EnUBfLBmYye/ToggAjyMCLvil3RdhWOi+GQ6mVc6uHZwXalonwVR7vCDI1NVLpjVrEkEBusmSmT8axUlZJYj4rh4p+wL47JrJqfWTE49Oza9ZnJqzT6pv4zKnFLtk+Wh6UOqOk0qHl60U7tjQBYlgg8rTzmBGhRBBA6sQwaiXcnDrpKbd1esy0mUu4RAFiD4NKqRJuOh5C0IoW0Ek6uDIBImP2WcFP2Z1+oKcP0LkqpNMcP2GAWBrQdOTRUneCWk9FH7d0JHl2zkm0yuTWWvENgzRMd0GA5IKQ6zF4lGfJ9fXxUu3SwYAjwUoqlHr6L4qkaUkOfh6Jh329C60jY/0rsn5AMjU1Uu7LwCpTgEgOtZzK0jGzO2HBNEtif/hFLO97QN8pAsD0nnNIgqhbxyaAc9vqsH1VU4MN49qWdNqa19Qpn9ruNhV1UVv71mCwBEXJtdMvkdYaKkupewjt0IIvNUW04Yc4YVM8g07LPusfV6OoNan0xTWR27UXYsqx6Neu+OJns5CJAkJgbAjiCfobpms+pAKoQvWRlobGYqKTXDBCBY6Qs7RJKlQ5AMhygWj+ayuXkr1u8/tG/nv1cItI2HojkPMTruPVyz5fLPKt7eURXv8X29K4emqxxAe+KSiBYkxT82OwuSzoIk2UKwYVE+oEIe0UceXuURkcx3lYTqMKn2qW8LD0/sk1uYFH/Z0L4wwo8G1u9V4vlKy4I8lJqHgkiqevcu42GXyM2SdZtqc+wATsTR8wZEMHdDULFhVikgRxCUmgBCCGKpPWptKQgT02GCzk/Dbu9eEJh9VKlJd1E1wsQsCYKhx8OE7iAAScRSOiSYWajejlpZ9ESlIj4sJRGBpQAYZCM+kqwSgfSaVUqmsyvqUsMrOrs6OUSAh8LYL8Znb8JD7TgLy0NGpYPfD6t9NxV9YHPsjVSkWafhcocPq/TO6Z8bl/DV00sQzFwvnd985v55fStlGSuztHKj89BGZ1yJc+vOuT3KIPUGmYEja4FhUju+kuGham4LzUMiumpIptLBXRsi9W1rgXzZwIbDK3KeVHYc9BfVnTCF9H0BHX/0WXYdD7tEbuYvXw+gJCZMPJWajjEcIRp8Wu5FiMgBRsa8SoeUKsHka0xaSis6sd5nSnUWVuZIZaEuX1tJZldf07+Zmkw5wf2qIEASTMxCr5lS+z2AmV1BOamWYYFALFkIYsmCyFcxHYYwa6wEw/xLDMRL4snG1EtL1p0+cecCfbcvLlry0PhTNoYo1GOngnGqtzmZ+i+HaHKpt3+Z5xDebIyQaY9dFcH4Emk3XYDxuOfURn64LLrDuvYFSXHYwtitNdlT+vl26rQgYyM35yECO8EyE9GFgzJf65P90crEvIbtVeOMjHvf75+cmPB8yY4gXzIRIKF5qGY7QeTbdX8kgXhpPNlQeB4WXm4a0pmlDTkAFHWJbO5Jzy3rfWdOfem8xvh6v8k9GuTKg8szJ1alh8dgq1SCM1I+dqs9KBZEBSlDmFLu2y1gSJCyRPTmdzoxxURC2ckMJoLqUq3U05fa7lX+kYC2SNUhlV3mS6ncd/tJn9ghkr6dbYiYCXBdArBqc13a88MO6p1BUx7my6Aso5Ls/K8+Oi8Vb5TivXQEwK4xb7DrTyrxDy7LGB5qAu9bmjOd+tRTbzqfGy/7H5ujP1zWjvqvC5dGgezJ1Topro11s5E0UQseQr0jGFIIvTPa8Bg/MDL5zFb3kc3uhyl3ddPF4tPKstMqckeUZyXY523wUHv0LASUv69ika7TJTws/E4MLy1aMXf11ooIiUQ0ovoNE1xBGXbuq6t8KVWy/T8/siJzycBknwgcnQLXW/TqvI8N2Zpp5cSPE69vV913iLt2zRxR5ZHZI1yPsRq4wN0xlm9gxzu9eTMk8nv9+JKl2WdKMqmtf9Tu8dLuCgTkpPQk+4ycL33Ak5xj9hk5yZksp1Pp/WsGHVozoDPf6wuO1nlIpKg4J1n2RENJ47Y7ThxZmblkQLKPm19S25yHYBPBxWsNzsmfdMTpeHh0empFPh1uzeft8RBg2RoPAcn8Wr3LzIOjcpDrq92HfLvBJjOD1JYhrfBQSp+7nIeFt24WrK8F4EYc2L1ZgI2ee1tt9Yo2dGZ8si72Sda5bWjj8JjUkmI2eGEbJCYoyQfjpH5eZ+RmaJRn9PGVlHCg6tyaOwSWzEIIHfEN7LcJgmD4Kp4vpc04SD17qLQnBNEWD/9tjK3JijWeszYndonlEpBj47ndIhkhSPrSWjcExGLRdCq9aH1tKDedgeGhqzRBW5GClucif6rts3xHVHyyNvZyffSunevHJXwVPLE8tJ9RPBREFy/vYMursz+Nzd8jXelwU9ZpHiJPNRNRFoKlJGGiyIakAvB9KYj2L8ux3qs+z0YdmSLypFybc9bkBAMSPD6WUx6l9KUKDggikk14+FFBeVhguZFS1uYYgO84rupZA6Tg/GzTgCS3NWn9cdo9aWnFc6Nqq1xtYaranPxIK+uSQYTpld7Q6DY7TuwQ3xzoWfMV3HzUg1tQaa/KvFa7TwEqCqPUkAWIoT0p5Ruv8cRdGxPP1DUxs99PRwCgFiVCHlHa+JWSxhj5ymcWBB8egC2NYV/RjiPAQ+Eyk4narMhFfr65X7JtbbTqJZ20pOL6IY0n9MnZZVAq1mNz1iToznUdp1+dT3eucy8enDUzqz5OYMdXnXRQHG2yO6O0OQ2VDiWpKn10JNjMfAAT3k66T9XGXmmINmtyXBP1DilJHVyaisEXgISNKpIPH8DWgvKwwHU3iz7bCKDEgVlpCQJ+uaVf27VGod6nM5eV1/lqPQHl98MEYGYV9fxXOXxVR8sQxpbIbw7IWvMVdlYJQEfpDAPUeVVCTLl0nF8RTmodg8qUE/BkbfTEJVXNtCaIpBSP1Jf/bGP/lV7UWDfMzKrk76ON4RrxDqIZDwVAhCRT27XG4sa1JR+mHeiMAUw8xVTWMD+0pVNz9p3r3FZYZ9/RWyhq6waWhyajZabjIA8BW18K+jjjXLCi/HsrK56ui7VsqL406/5la/l31vSb3VAO7UlonjPLSDSCgvKwwHKzZFMtgIgrTMUwHk9Wrsx1ZJ3BR2nnr5ti5glXuq5+o70eGC2f0cc/obrdrQPKHf7Lrhk7q2gPLWhDKT85mIk0Xf4Ck5DpX0GArdEUROCrPyu9bk1pW65ko+/cuKl6bqZUmJSbGubFWxvb+6VCKDTnIYGA27e2W2sA1Pv03eWleR6iCQ8XppwPk516iOp8+iApLOta5SFa4yECPMQ2ePhGo3PeivK3dlQ9lJTi4bqyO7b2SUphLUFiXeleQB4WWG4+q08DgOMqdUjCeTbZkU3CFGZtitX6+R2+YWcV6HoFbXdIedvOmRPbozjlDs/eLTM8ZsNtCMTn8u9QPheO4J6/CMxvzcZevfPHjYknatshskkWD9RVrvIjanWoKk5dtaW+7UcIEYTiITuOWQdAH2VjH2U72DlgdU7cszFKpggjyMPaznbIAYC59Y61XFpa2SbFaRXHzL4I8tAwE7CaOL/BOXd5eRsLcwC8kkrcvqWvqoYjXTpQYB4WUm48z9uakwCk0PUL72YSqXa6UUHU+/Tolpj2V5usYzLRHBPEYylvHZF+eHR6aHTHibYDyuXs3TLjSyQC42o9o+A8o0Y/X20l2VjU2qEDm9owfVUA8EJ99A/r2x07TLH49eZ+KQgAjsMAasPwTYdgecjCrIkBP5cq78wxZ22MIeBNk3nWX28sQPSzzkersRv1Op+rsoojJQJZFNgVVaZ2kUAfpp3vr2z3TP9RNnp3XV/7oBWch4WUm5Wb6zymqIBDah0KvZ3pbEnivAbHaLmdVQD1oAdrwIkAHFDmPTc2dfFO21wyO7ZE3lqTnb1berxZjBtMPaLFrGKcWKtr+rwwDrWK2KmxF1DjjV+u6eC3TrH4T6pMEEkpHdeRkleFG1G1Hy14iCScTlJxVU58mHbzPDShnEJVkQRjN61Y2dbDsvMrGx4CMOVhsCv+gBvWJNpu1wTx31TJoqzu1FFwHhYyM7VsUx2AEkerLMArvU51hwAwP+nqnHew6I5t4UN+bJR5UiHkxYOzl+yUe7+RVmbFwpSYW+9MKfeHxXhcQuq1cAEEYzfN/KmmL6yuCbXUFzDpArtzAzMRHtkc/awT/aufbKw4OF4fJYpFo0kv9dGG+qHl4WqG9qEFD9GZvTEtXqt3xqqkuAqoMpMNnnQarcZumHluvfOPzZEPkrQwpas9xib8cQk5LMrH98kOj+tHgJvycF6j+79OmF3/aii/qE9a1XAUloeFlJt19SkATsQx6xLFJtnZesQ6X8dP1KzCNmKii1oCa2cDUwQzTyjF+BJvRh8Ccmgxivb4wb9tdVZR7+sso13Fa9ICDDBLsquiJP+7trPMfj+b2DvSEIlGkUyt2NIAhNU37UNrPCwAz+uZbPGvVZnd4wWoax8Wa849Inq/kS5aHrcqY7Ew5ag3/7whctHA7DkDssqckaoeRzIRzWrn6s1mWJSLbfSdKvLBsrA8LKQz1ZDzAUjlU4h8hVJnoapdAhGTQJS+iYI0c3e3WcsQwA5jN/mjGWtWh461Kc2ChHpHWTfP13dWbj7OxoRpup8JN4RpP/I8VJE18Ea/EBEWzzYOMG4U85TyAgzQ2LjfjKsPbHSmf1TSUmuaXI9P13wWO3xRyYKUAzDp/jgE5nmd3o7qvUwJwAXnYSHlRkoJIMtN4imdh44Tqx+MVlitQTPntoUVE5wxWskv7jh20+QsttpKx25AzBK65pBqO+QtN8Nm6drr8Qu9xOSLgDwPjctTQgXYObfShc2Fa/OWqMLh/cs69SiOLWnu49+xLvLDNpcpL0w5Jy9OLEy5NnazMO12LGoTxEovEnwuCsXDgsmN53m1HkPZNSZ2M8ztbMfTIRG2nT50PgrIZ4LMnNBatKWt1g22UXfTzGgKZMGbNFkL5On5o+1OR21EiklFiwFk/dC6aR9a5eHwTvMQNuls1q9YHp5Y3alunidX+wiw9Omt7tWr2ucK1fl08uLEqqxQPKwrRG5+k3Sh65ILycOCyU02m/U4nyRWs8ru0c7upLFfWU5rjZ5V9Dns4jS0MEPQTuvGvthORgCtWDeqPCGwxqpA1lwJqWgRA8hkOkXlLyACPMxnEvq7BXgE9y/1AtZ1nocn983t3tHOBGNL5LcG5mA4tjyNi5Z1JOxS59MlKxImP9Wxa2kKs2pcUCF5WEjrRr1QsqBmld06LTeHVXiMfBZcRWeDFTdoYYagndZNW2I3aMW6IQYzdK5KjfQBhfDkoeLfUl9nTvL2PxwiiDwPYawbRn/HHx7p1ANT7vABZX4+a0EUtLLvqkl1oH9wucO37ZxFYGK7a8OO2+VsC683unPrhVlj1WmQWnulrWwUiIeFs24kA3BM9kjdwX1iqTGdUJwxCX96ZZZU70QjGnZW6e7YjcqDql5/+bVzndyXA0BfR7UK0D9mQrlpD/I8NBXeKspyeGmnSmOP76PcMVbTTDMre1hUPjyq3Yrzl12b1JrW+vTQpk6FeB/eEgXz0FgBAlXDnEyzCGxBeFgwudnYmAVQ6lrXR69kO6Gs48N85eC07aSn81xNZ5XujN0oEUTek1L+41cqOmt27hlNKVspFosCWL4lXDnVDlgemsI3xRw+JJHq73TQ9ix3+AcDM0142MLKHpfw2644Y0tks043RPTfOtFh00bhkc0REA2NyCFtqK3fPnaL5XRcnFFAHhZMbvKPMdunHQQaG8ucWN4RxTmzOrNfWY5NZ2itAkZogpZLUWM3gXW6qicBmzixyqB1chugBMlJsVTwOkNnql0IDJ+JIeo7yT/q28G9k64YnKp0pJ5gzNFg/s9a2eMS/rzxyXP6by8sXe7wJUO8f49NH1jZZFiZeWGqAA/jwqQgosMqOhsa3y2aVty2VnbPcqYCRkHAQwEDOLGi/pDS9hVBH1eV/dlOKdNjRHWZ0Ydnc7qg/VK82I36rYndAEwktI3NTET7l+b2Le14BOeUilpjMekFE16oNu1BUx6qKlD9xs5R73t9t7b3gN8fmD6hbzZoZRPy5cTNrOwKIa8dlv1wYvLqodkDyqVdwXdAufzmQO+aYbl/j8uo7jZBHirmzK0vQFpzZc5h8Fn9sp1x6o8tqy8lw3zzFBeEhwWrKg481SABZiYhdDke4wd9awe7/v21bVoz9t0BqR8MzEAPAwCRt25MAQ4Hnv/txG6C49ryHftJGw9rad0ErR4yvjr0It18VTFYEpFkBtHlg5OnLS1raL9hPCySmxprzHGTWcUpTL7ri4JmPJSsdonUpvGXStOCtt65paKNnSguH5w6p18GDCYmCIbevYcC61iC86s6e4WQ3xyQVSmnlnMY0DozC/L1K4Qk0NCoPKtf9vZ1HVkBnxDysJLGZn4DCsTDglk3artSgooT2zuoimUI4K9XNvxiwOYJ8e35GvuUePeMqPtu/7SOOFPeumkSu7FVxd0SuwGax26sdQMw87gSefngdi9pSwj5476bYK/ZrLVzC5Rf/4KgVR6y6YcG8JdL078csGX7PASwU0TO2rn+rOpMMx62sLILliGt7HSSAchnab43INUxK/uiqs2ljurbq63sAvKwwNaNjs+pPSuEgJ7/tYe7ZyI3KbF5mRd5Lx2dm4wBWJdzBkd8ItqnJPvlcm9cwlN7cajDmWJiPasAgXqH1maVloZJG60bbDt209y6YfMlm1o3bKwbIvIlf60qK5mvWN2m9loAhkdy36rcWkpSecgcqOIJrZt2IchD5K1sNb4ABDPvEsvdNGjzB5nos/WJuclYY6DHXZnDkxO5L1fkju+bJWUgNbOyjVnTLEPa0spekaE5W905te7KDK3MUoXD40t4fKkcl5DTq/wqtzkPx5XIZ7Z22p9iaB6C/t/whtOWli1Kt+OY5/et3T2W8Vk/swW3sgsmN3pWYb0HoNpwW88y0E8pM0PQrlFvdNw/sTLpCBJEDqkW+crQsvtdqKEjALoHsFkcx2Ayfk2zqMq2rJtWYr0GzWak4Ge2FbuxWqAIbNaIk/XL1HgfV5XdLe5/f0XZmh0tEB8by17cd0sUvq/vkiQilqwKOkuiXbXT6ecSeR4C0DOfCbEoL0bo9kV7xnN7JTxCnSPEu6mIINq3JOsK4RA7RCx1dpUIyE/sysYR2ohoarlYhtRJcdXKaLOsdp1Pc+tpbr0AUOHwJTt53xyoLSz1V2MTBUhgH1DuKytbgitd+mtNw09WJV6o33HpYIngS6u3jIlmckp87VwupWRGgXhYMCoP71MKYIuHCmaoKIYQALToGK1RYy8lu+Y1M4OEZOkIoS0jHX/Vf0stYzfbnVXQfuumfbGbgHUDQLIkEtLGbpD3uXaL+U+O3PrP2th9m2OL063c6v0TmSMrkmMiGR/I+loUAXUc5LIegJ3KO9jl/4uJPA8BEGTATrSzQp6HzK6gj9POO6kIAe+mI8Rc6WLfEm98qdSr4YDAxKnrbsismWrJww+S4sRPEttPadf5dOXKyDNbnWuGZceX6Pl1Rh+/3OHOLHf6aoXHpiZD8bDSwW+HN87ekvv9hsR2pr0vlaVPrmzoS57PBEg2+0EpPueyORSIhwWTG9e1hyIbx2UQm/FSY0xCd42QzI7QWR5mSUIoHthdU+yswjZ2Q7oF9LZmlZYvEFCQHcZumvlTbbZumqiYUkaZPw0dWZE5vCKzMkNrcs6itNMgaYDr93f8CfGsZOQke5zvEwiCse+0AkZF6E21AwEews5ezM15CIF6Sf+sK3mkNtHqblNDIvKM6sxZ/dKKdWgbDx/c5F69KtbG8pm59eL4RbFHdssoxQFweJX/j05U+p3VP9MqD2dWZY+szM5rcP7TEP047QJYkxMDI34Zyf1Ls+NjmQGu1Dw0pqCya4gIBeVhIQ31CCHHiEIyHGn8XgA6Yc9mH1IiZhYi0BpPCCml4whj/TbZUjCfaQZImTu2m2dRYzcIWDfmkIBkCRKqnyMzE8gun7VxK5ZypwgGurk94jm1B55nPm8vm61dQyQlO44DvV1XiPZhWzzUbGMG0Xup6HUbKrezrd3qnLhhbeKvm2K/H9E4PuEzQUBYtgCtWDcfJEXbtUahzielOOMSPhFdMzTzzFanYwbOfqX+AeW+lHnrRgZ5CN6nzN8z0ShBev9Ftc+ilEzCk+rO6PvD5i5JKYUoJA8LKTd9Ys76tB9hyljrRj+fYGYWIhDBEXlNsVEPZiGIWecaA9uiqjsIvXe8jtZiq0/P1UYWpMSCpL4X40vl2Lh/eB9Z5eZ1pHCxm8Bvm6ohs+53AzurSDPWpDsemQJF9RkQyJf68yYmR3a8iYhZACiJFKAN3RcNeR5a60YF9U372ecbE7dtqmzLoVbnxGlLy64YnDqxb45NFlKFGdWwBa2bi1bEO1AWXOfTlSsis8dIAFUurh2Wvag9m/8qlDt8xy5Jm4lDPkrANi2XVyICS7USQ8U9JOycZ+oXWa3OIcEoJA8LKTcVscj6tM9SsiOkZDiCAWZrwZr1JiSYJdSSZ/U9hZAsBYnAJ3VGAIDys8hYNwCtyNCta2P/2Nz8FrzW4ACRi5bjpGrv4p1yw6KyULEbIYRsErvJ902WUpIQkHp0ARMvaDpLsA5fBmxdQewrP1mqeJa+VyAppYQAUFUaBm7aDc1DliAhJXOQh8C/G+O/3dwmrVGo9+myVSVj4/XjS9lkLdSEF7CygX9sjizs6A4wrzU4D2x0TunnA1C7hrdLccodfnBkqoIkkZDKapZMRD7rLURgeMhSkrF6FJPVO/a30Ca5sbWllFRIHhZSbioTUdSm9XOmojA6nArJ7OiSmSbWjXqyJUtl0SgL0IH2t4nyto+eTgj/2ORevGIHbVMf2uQ+tMm9tSZ7crVXkNhNwGbO9yo2apj3EEGQEnpWgS7L0bNK3paxY8lKa9jonbUErZ9VFqal2g/NQ2bJcIK+ObAk6969taIDxzx1adm/RjUMj5kOR/lexSpXhd+s6eCuMgr/2BRRckNEJ1d75YIvWh5ri1dV7vCDI5NjE76ZyTQPa3N4vj76fJ27KussSjtlDo+O+qPi3q4xb494boDrI+C/MyCZmSClVSKdw1GPS6F4WEg2D64oxdq6ZE6Sa2Z4Apv4tmQ4yiwgHRUOeFsqQixU5FUyC2OvglmYShxm3Lo2dsvatjYEuXBpdEGSrh2m042did2oHXWJTK9imDEBWEoIwVLC7Ofra1vGzBIm6uZLycFZxcSD8ywBJOs7lsvkAAytKOnkoHwB0YKHglX1BOOe2u3Fa7aDOp9uWx//9dAkBSJ3MKVhH6ScDu/bqzC3XqzI0NCItrJn9PGnlCdv/ixy13a7Dp/dL3vR4GyFwwD5Zu/wWl/8ZUPkt023Hmrw6a2U+1bKBVAm+Piq1Gl9kgAxVNWF4iEUDzV1QZJlLuOhcDwspNwM7VsOrGn0uQwMElJdtLZu4OhNwYx1I5mFGjBIqaM2yhYQBOW5UFAjwI9sibZdaxTuXBcZV8LKQO1o7EYTjGCqVK0jxcw2tq1VFdJ8R23dgJR928TGUXaQnlV0RJlN4TQziEQ2lwGwS1UoN+2G5WGp6UakBmJBJr4w0/Ge4bM3Ry4cKJSHno8hEoH5tYIsd8rQsGi+8rjKpWuHZQ+v8l9rcBYkxQKjaOUOq0LBr1Zkh8dUaEZNagTGwpR7/rLEqu2WejVImrW55JXG6Lf7NkyI5ywPYXgIw8mC87CgoeKSeIlLSQ8xICulid0oD1JZazouoy0C/YwRCZKShSMC1q/2ISXYEYKZP0y7l+zIh2oVFy6NDo3IAytbyVWhDbEbAJKhdmu3ymLDbyCour68/am+aX6WYCLhS2PFUH4OCaqP/rKsj0zCYcnRiNMn0dmdc76AsDyMA1kpHUcwiBlvZDrl7wB4dmvknAFZtmNvSFLXYu/tDuC1Bkc1Wg+ydEq5f0CZZ3iounkGqi4CPGQpP8xETl2yg5IfiyUZ97I1VRf2q/tyeUYdRlq7pst4WOBNe3cqjQEQvg8iyeZBys/kynsydYBQG4Rqz0vdQVUUaXQK9sm8dnXHg1W/WRNFG2I3CEiM/dV/652HN0duXhO9ZU3smS3OyqwwXpSaVUz82Nif1oKTgFS2Gxs9ApmxZGXTWU+TbUZAte6SDGBAeVvXQIRohlZ5+Fams1P0vEYHNnJnzJt867dCwIYRm/HQxqSDe9UHeVgnxdcXt1VrLG7dWLE47TTjIXcZDwscidy5umJxbTrjSSkYjr56Y9eAhc29sSvyVq6J3ZA0+0ZBr1fQ8aoFSTGvseP26tx68UFSjC+RbY/d1Pr0mzWROVsjK1vzyadXej/bKT00pkpqVBY/7xPpGDCYGapZmwzEiYG8t6XsIMlS/a00cbts1gOwS3Wn9pn9IiPPQ0dnJJix0e+sy7MqJxBYTwPt+YJ39IdthGVmK/MiIKGsbLty0lS0gYhwSYfS8ABuWF/1/3Zab9gIVZWjIscF52GBrZuRA6oApHxdRyPztUMmwaZqpPUTaPRIMswTa+Z8SFOiIpkf2dLZtP+DG50dxm7srPLgJnf/D0r+vD7aqtYAmFPrzvi49NY1UdYr4tR3tHkBkszG0G3y7QIqY23XvO4o8WVCJpMBML5/KDcdRCs8LMRhP0w5Zi6ELcFlxrBoIfp1xvIWTd660YvRm6w7l3mvXJfwza0Xz9d18BlZ74uH6srsswm96p0AKjgPCyw3ym1O+Yir7AxDBrItknU81Zf5WKl+Po1nwfbJNA8kCAtTnbXC5taLZjaqgtUgKzo/WBb74fIdTxR1Pt26Lnbkx6VbcgBgPUQG+epbKGdKa6uO/LOJNOvq4bwKK4ViZhbksuRoxK2Mh4GbDiLPQ19nCQugBwrKTlevTC/kwqyuDOxXleeqTjkQ2dqZfK1p3lr+y4ZOhaVebEhw4DlV/xI5BedhgeUGwK59ywD4ni+hrZvm87lVaJN7M7EbMMhXuoO8eEvG/E54UgoLksKOU7AStFns5mcrIu1atPJhyjltaelW3+gF2aw/S+h+fPrbmYobHRKGypfD/hWbWE82mwNQE3pSnUOehwFLs5MYk/ClWX9r666YMa4k37ivYxga5eExPeEhPwuqcsJ8GiyQYaC8mc78XF2n5uMNvrM068Kysct4WHi52WfEIABbsr5QYqELps0TJaFtHCJpPkBEkiWb9bu+4YcMeLOdhxCCmdW/MEe2x2fmufXO9sscWsWHKeeCZaUmCgNl3UiAmXSM0lg91mrT/qPJXgUVlonS6QyAL+0ysFBf/IuJPA9JmdhcLTq7Lc9QV8LMCjq0D1Y2zknVndrK6uIh+WYUyFfS29+TVR+2sxfpIPFrDQVIwy/MxqSqs5VK20RX8LDwcjOoPNEn5nhMJVIG3CIz/1s/wtYvAr6pkYPyREDaMoL+q4JcmDRaQ0R2PZb1kInowvavVVGY3+g8XxdR387PK4vKypEvA9ZvXnnVN7XZKy2vypMqS0SrQk+qc2jKQ2bGxFiyk8ecXObnG4Qbl0rpw9kDOt4eeGiUT6m227SZ5eZmlQ8AE3MIVoTq8zJo5Y4aKrUFGzwR5KTypArOw8LLDYA9BvcF4OVUZ4Wm/oKez6XJUOq6ODP/M7TWkGRjB4HKCtFXMV+zgHya3do2D2xyO1MYeuOaRNC6gRURZiLjIeo7kFcctU7KKA5LRjqdBTBxp+rOf98QAR5CAvvHOrt1yZfKs9AjpedA1vEBrnTwmxEd3FLtLyMzQWWB9frtJ1SiVqkM8lUjyg1YnSnAU9zIwmhNF/KwS+Rm3E7VANZmOKaNlLxdI/Pzv34mOZ+7Uaok2ayRl8o6AO9X0tlNVw8ol9KsOzfRGsAUa4HoznWd8n5X58TClFDfziqp+nY+a21VmTjJrLwtKaVscmdIOE46lQawx8DKTn7fEGjBw6FubnSk45ssntY3MzTKgRyiWY8CrQKH9/FvHpFu72FvrcmOL5GWh7qvRbCeSwdAjdbYGlFAMaqsEA9xP8cvAg+7RG4q49Hd+pYCkBlPsuqskbdfmPWqIr0EmgEy3RiMpWOtG18yM/Yp7azcHF4lzZ7H+VE0PjDVetTh5bwW/6mPBGPA1ouEXvtvcnOBWiT9TaWuuMlmPAC79qsMc1IFQVMess98ZsXmBHUki1Tm8PkDM36Aw2wqG/J2h+ST+8k7d8m03au6tSZ7cj/f8tCWZuUrRWyUqJnW2FmKMSZRgB3Q8xEP2YU87BK5AfDlMcMAbMhIF9KqZj66YdcrBnI35lnV99EHlIHjMw4pz3XSnzqirx+wblSRFkGtgWIsSBagLnRVVqgLRtOao+C3U3a48qFsZkrdGSGcZGMKwPTRgzt/MSEUAjxkBvoI78yKLe09SJnDd45oKBNS+RowzLSrVWwEV7I8vMp7fUL6hB1Fjg8ol/P3yJzcT61aCCzMMyt+gtluUxdtziKN6hEY2CnSEQFthlFuRtnm5HQhD7tKbirj0dF9SgCInOcH6m6UmhjrxmhNsyiyiqow+8oWIAyOyNOrO74x4MVDvGFRVn2wdAcJXSkDO6Kdx2c5oeY908cIDDbfSDLgmyokaTXXVnACmYwHoCY0bQqKpjxkZkyMJs+q2Nz2I5Q6fONODSOjntQjSL5dnYNAzNHsMsZAhcO37Jx5aHT6nAG5A8pl0NgZGuWT+smHd8s8untumNnMW+W29LoBsK6DDcxSAAUUrWmuk7FTVO7TiZ0UASSEHB3NqNq3bFfysAvbqUwdOeTj/32yOe1XRNhnIoLPLEhIhiDypCS9JhM+S4eEBAh2RTiEbl4Bn+EA/9c3/e869+P27GKhMDTK5w70QDDdy6VdfaJmjMDigs5Cz36aDSxZZ6Zs9MqXbAKN5GsfSkpAQue/jwhNm0IjwMOIzyDCAbHGnau9326t3uGyhl1j3hWDk2PivgR8Ccf0KlCdX5HPP5j1k1LvUMSMA8rllAoG54hoZZZWZcWUct9WfqlZthkPbQP29xvo4S2RDxoFgIUpocoID6vwD6vKDYlCcdjWaknGMVXZNxo7soBZYUo8qWe+LuZhF8rNoPLEiIr48rq0TGWpJO4zBJHPLEC+ZHKEL5kEiMkR5LN0SUhmEmZXA1jPmACUOXzdkOQ5y9q3O2W5w3eNzFY6trqXhRBm/be2cchsUdZ5WO+XqamfKKXqC6uNcJCvI+JSvc5mfJYcmjZdgeY8lCyEGOJkbx6w7rGG8leSJa2Kzi4x78Sq1JGVObU0SXd4Y3btPlOkVi2pTv46/ygESYaAXlVlIr48LEbDor5ZbyWklELoWpAgDyXza/Xi6lWxZpHE1xsc9e91n0UPq/R+slN6SETquARDAkdXZe/dFP2k/ZMxgISQhyQabPSwS3nYfA1RYVGbzt752kc5Rr+yGDvCIbiCXKKIQwJwhXCJXEEOQRAJ+y/yrwkkCA7pfz/OOOcsLW2j4pQ7/PBu2fGlbBbSse0goUqbA9lMDHuzs8uFz+6XPqs65evqIV1z5DNLyT7Ik9Jn9iT7DE+/YI+RkyxZ1NU2OIK+vf9uodx0BVryMCJIUVEQVvmxFV5kk+8QIIgGuv7ERG6niLScJMVGRUXAEeQQCBAEh8TqLD22JTK/0Z0XKLfbv8w/oFye0M8fFpUi0DNb7/lrojAm8a0NmwuXRh5uW1H7L4alZ1Zl2XY4Z/4o7Zy2pCMVwOdVbZ4QTeV5SPTtA7qKh10rNwBe+HjVvFWb4w7ipXFXkEuICCHUv4AryBEUEUKAHSEIcAQR69eCQASHBIEFkUNwiBp8umhl6Rs7Wtawf7m8c9dMn0hg1UJghZT9GJt+N9M/SnzYueTUbcPqJyZyNoIopY7L+IDnS5+hJMZn9hk5KX1QTsqc5GRj1vf8A3cdfNCI/p25gBDbQXt4SARyBUHxkKD2undEEx4Kwmc58cf18X9ud/3widX+hYOzIxI75uGJH8dfr28HA88fmDmvf1pFGyTgS/lkXez6z9o3ax6QSJ5RsTUnpSe5set52FWhYosvjR5aGhFpX8fqpKkb9qxnwfDyefFgNSDnc8bmufWBUof/XNNwV03jl8pb3+b5sErv/tHpB0alKhw2q7EY+Th0oN7HRt2ITujbqWDboIicmPBU9M6umVKute8rj0nXHPmqMkDFbph8H77nlyWiodZ0KdrDQ22Wau7pqHCAhwyfsTDlnLS4bPtaA+Afm5wjPoz/t5ZoGzwEwMwXLYu1S2sA/GFd7NEtUV8bOMxER1Rkfz6kcaDb1kTVyeV136jYqnjoFYWHXW7dAFi6se6B95YBqCyPu4IijnDAriOMXapnFddR84wAsyOICAKk7R1AEBEgBAnAISKCMmjfTLpgvJF09yv1ATqg3FPrE1RmUe1mZRcqqC6lymcmUxuu4ny1vjjog3iH9zD88aDGwyuyMpBpUiXROal3lfIBX7JnyJrzpU+U9bihrhHAKRN3rekbNtPqWgR4GHMdoVgXEdrHF4SIcCwPHSFI8VBb2eSQ4SHh5YboZSvbZ0f8aufsSf18CvDQdsv/xyb3kmUddF4eHVk/OOLrChIiKWWdFH/ZGJ+9dXvt6Kod/+zKraOimZzPxeRhMeQGwBMfLH1/fX1MIFEWjzjCFeQALpGSGzXeDpErSBAJQHvLRALQ/rMZafXC0VEe/TFl5RKR6g+oV2MSARDC9ENinQsHEMgIwMZy/rHJuWx5R5ZNTSzxbh1a33TNFKtp0JPsSSlBvpTWh/KZc5I9KRsbMr4vxwzue9zuQwt3s0NsE815SEplNAkdIjegPgJkAjc6dqPo92nW/e6K9qUsAFQ4fP/ozPhSPcPZeE2tTwe9377N8II4uDz3y6GN+ZUxrGe7j9POs3WxxVn304yTNL1NE4LHRjNTS9ITYymP2ZPwmXNF5GGR5AbAH/+7YEvGL4uIWGlcjzHUuFJECAJrX9oRxCyEEEpZAEcIgLX0BC0dItIRH3ZIf8b+VmUSBAlgBz6zyhyp9y9dEX90c/uydaWC/7xz3QDHR94CB0NHajzJUsVutHUDEyGW6bSXSWfLE9HvHjCmsLc6xHZgeRgtjTuEiBAO2FrZBHaFcAQi2spuhYcnLalc26FVkUOj/PKEtOah3r0Dd6+PXL+qU93jHtqlbnBUqnWIqjpfdaeT2lvkz7K0JidGRLwYfF8zM8DDlJfJFImHXR67sTh50q4RQkNO+llPP42qbkr7zPCYJaB9aWazmpysF51f2WDjICCPWYI8HZeFiYzo4/imwoWbVdbpemXr+5Cq4PrFsPTMvu0oCS91+Nbh9QNdma8BD2iN/nYqdqO/rxlpD5l01hF02qRduu6eh2gJy0OZ9VTsxteer+ahyvV4prrddjVQXHqyNtoxrQGwKkv/2OjYqnpFwvaGbFri5YZIk7r8fE87Ujzs58qxsVwMfssYouchkykeD4snN31K4kfuPgzA1mQ250ulAr5er0ie1DXHVjtMjR8HnmS75ii4JoBykn2CJ+EBKpzsmfo6qzueObLSL60FIBVJ8VT+iFkC1w9N3TIiPTiyY6NvzxLvzhF1u0Q8o4b635yUaix9Zp8lExl/iqW6PA+NDUkAR40dETaaKDKa8NDzLQfMLKW1RgJeYF2SrYz/x5ZO7Sd5+5qIhOEDw2c8X9vZbjWvNERkfvVPvoLfWjHqP83DwGxdfB4WT24A7D6oz56DKgE01KfTnu9rm8JaItK3r6VeNs2m6t+sEddVuaqi3K6BsLaSJ9mT8IGcrnZhSaTVREqp3mejMroKRq/M8ln/1SEVub+PbDxl28smdo37lw1O3jK0fqAjOdA9w+qaz9KXSi7Jk1JZVcqOzXqyoTEJYOxOfccOqCjazQ9hkedhQzrj+ZLhw46d0R1fat3Jr6rF6pxYkumUOqzO0rIUtOIw/IJEMnR/yKAfoOdOn9mX5h0pJZHHkEye5KzPiofjisjDYu8JO2PsiHT200WbG5MNaSpPkCsgOeIITzLUTtuOYMmmXFwtFtE1UaaZItTmF8LUcTJLQUKa4BsDqpZcMgsSvlpAwbA15iZCbCqsiKTU+Sm9ehsoFfKHg9IXDUovSjurM7Q447zZ6OxV6g90/T0T3kDXVwY2k+7do0bazI2SVaWf5i7lpJRMPiPnc2NDiiXv2q9y5pgwPNxtaMbDGAmw5SHleSgo3/GRaHGHynabYV6jMyiaU/z8XyEa8S3OOMyqz4nwWQZ5KAEf1l5TGkcec5CHxxSRh92wBfXXJu769zc+Xl6XTjemnPISCIKULgmfmYg8XzqCPMlMcKCXr1ntkGbBrBB6PYSqIvdZEhExCCDoyj0iUp1JYWrM1b9N92nXyyjBYLY99xhm55aRMW+XKA4qz51ZrSomTPwfMFkAktqQYd/01vBYahfa+nHMnuSGhhRL3rlfxUl7jCj+nQ8RRDMekqBcMx4SecwMcvQSPl6SLcDzsipDyrMGMLAQi7kHRqRv1qabfi8w/pr0JZQL77fCw8oi87CozpTF1ybu2jfuZn0k61NWd5V3I8nEcQL+jq89FNYt/oh8aZYIQEX1SPtc+f6B+vO+zFsZyp4MxIzUkU0nGmYm5QOTCe5AderJr+GWUHaKCv6zOYL1k1XsRjJUYFh5eSpi19iYZskVidhxY4d1y20P0QxBHuZ8KU3k2M4QdhZR4ysL4fswWS3gQW0IEe4QpUJZ1tILrJJRdcaSyWf2mG1U1JdBHhbbvu4euYm7zjf23a1v3M34nGxIZXJSjW6+3p+lDeh6Ut8vtd5agtX6AKU4avmcZ1cMBGp2bX8As65EBjMC0mSjTARaq0+gLwRsnMj2zbJVfCoFYKNCPsxIa6YaYwfwJOd8rq9LeTm/IhE7Z/LIuFsAEzpE59GEh43pTM7MRoHMZpCHshC9A1hzUkqQBLclKbF97BL1bH5WZTxMBQbZslIfyEmZ87m+vjt52D1yAzPS1YlIxuOG+mTa87WNoNWB8ksZAY/ZY85JFfeynY1MjN1UHEgbMwvE/FQ/QFuDwC2y6QG7KZChZJawBo7pUIO8pWNT3TlrlwG+nhulTXhpralP+r6sKgm1psehOQ9zujJFWdnBcfSZh0cK0DevVKicl57nDqpofS1O2zEunlM81D4Uw9fZEukHrOyewMNukxsAcdc5Y/LoIeVxn9FYn8rk8s+ql89V6zuYr00ySSvfdN5UGT7T+4N901mGVf6SYI6T933yVZiBDKK0fb+McllPWFpVCtYsSBWTI5s91bkw4yGr2HB9fZIlD+9TdtY+odb0RLTKw5zPTXnIHvPwSGelAcCeJZ6dESXjpOpOHXOAKyeXZCwPtd/XNFLTc3jYnXIDM9K79yv3GbV1yUza03lrhhfMVZsKGvsrdU+ltV+UZ2RK+IIVfSa7CR2XsbEbyQEbBz44HyGCjc6AA7aPOpqn/Tvr1UttwRqf384qqaxXV9vIkncbUHXqpF1CremxaMbDdNozXgk8hi/Zk5CMauH3czoV3B0U4VEJ9qWUBF+yDx7oysOrOq44J/VpNFFOqetIFUvz9V89iIfdLDcKx+5RM25AJYC6xnRjfSon8xGvQHxExYyRj4epJz+vODAmSSAGLG0Hcq01+RXACFouSlzIxonZ1Pj4AZXJ6T4S0hqoKuZnNUjV+0hQzpcNyUxjfQrA2IFVXxs/vLvvcYgdw/KwvjGdbEjlJCuyebp2lH3G8ZUNnTnFEX1yvqrDkpZ1+M6A9MAORXAmJzLTSjIqGGzzFTY7oWa+hlQP4mHx1kztEO+t2fLcolVZyXGX4mUlUUfo3iJmFbho0oWL7JoptbYFMB251GopEAOCCDC90IkkS0GCWdq+9mi6Zkq9DnS6B4NV72G7e4T5L+B/aW9O2U3Ien4ymfFynivE9N2G7DG4T3ff2hDtQHMeusJRjbUMDy9a02+j35F5emCEHxjZQETMkgwP1fLgT1LiopUlje1ZqDki6l01cGuCuHUeAtlcj+NhD5IbAOsa0o9/sGxjMusKxBPxRDxi+/gRwck3AdBdKYhIrQ7XazjVEnDbfSLfiSK/Ozjbnd4psCLcFNroSj+Ve9LrZfKbDqv9W6wl5ZtFFdoIUoZrOpdKpVly39LYseNGDCzrVM17iG5BSx7arlpEWOVFbtjQJyXbvYb7jzs3jkrIZgy0a4Y/STuXtFlxxsZzP+xXWyK4JQ9VHKBn8rBnyQ2AtOc/t2j1B+u2AiiJOJHSeDzikLJuoGcYtS7cMR1wgmvEgXy3R2YWZhWv2eOFSRBLXS0IvcOG3TvBdD8CSZZs1+apPT/tOs8m/hc8KQHypMz5nExmctkcgHEDq76625AwWNN70RoPXQKr+W9uKnHX5vYV/v9wUOqrlTkiVRIvm/ZC0Tus1Xn8pw0l/67b3gLxhOAjK1Jfq2iUTbMcxq7p0TzscXKj8PGGumc/XlWf8QCUJ6LRkphqjtOyA456Dd1zK2/mqH43yvwx/c/zKxgUAtZNk918jHWj3mnSLsusDNY/qnVbOSnTqWwqmQFQFotMHz1kdP9wMdTnAdvh4dup2N1bK9pi45QIvnBgakq5p7plo9UuKKaKHcB7Sfff9dF5jZFk04MPj3pjY7np5anAjpd5Hkpmj7mH87CHyg2AtOe/snTdGys3AnAEykoTbtSNCEGUj+MoGweAI3TvvoCNAwBqz0wBUrvzNut3w4Fexca6oeCuGsrAkYFVUWZ9sF7H4EnOZHLJZFp1ZjuwZuDkYf16zmQSovPYFg8FYZPv3LO1clFme8bIuIT33f6Ng6OseQgOWNn5R0+2xsN1OWd9TigTe0TUS8BvxkPbI6G38LDnyo3Cuob08x+vXrG1EYAjUJKIR+NR1cg6aN3ku2qZToAw+4Ar60YEYzdmp5e87uilUrqPrArhsG2PBmPOSLvKAZ7kdDqbSmXUAA+vKv3K6CE9xEMOUXC0wsNEVFk6K3Pua8n426n4pkD8uJ8r90lk9i31xiVyQR4GIon5gzfloVr61IKHwaa0vZaHPV1uFD7eUDd/xfqVtUnkRScScRwdu+FgBIdJ+1BQ0WIg36uYA72KFXQ2iiXZvRBVpIZ5W7EbX8pM2kum9EwyrKp032H9e5rVGqIrsC0ewnTUdmyyAipxke9gC7sTAxFLY93Y1cLIW9bcOg/Z1xlShuFhOu2lehUPe4fcKKzY0vjykjVqsAFEXRGNx+J6vFmQ0A4U8h3RycRxgvkpfTibmTL9BSSzUR+dmWoSsvFlKp3LZLK+p/dsGF5VelDNoOF9wpbmXyy05GEkHksY3bHmts2KChLBDGmehyo/pePEAOsNyBl6416pcxdgtbGHahTpy1Q6m8nkeiMPe5PcKKzY0vjems0fb6jN+Lq+szTmUjQacZ1Y1KX8YNudGPSsIkzdjWqkY/rdoGlmivwmdTeczfnZTM73ZSaju23FHDG6f+Ueg/v2igEO0UVoDw9ZCNHEutE8zNfd5Ge+vMrorAU+RzzsfXJj8d6aLR9vqP1kY13wzWjEjcYi0ViEQNGI07p1Y+L9tiEXm23CJbPnSV/KXNbLZnO5XJMleaP6VewxuG8Pt1dDFBkd5GF+B5B8Zkq9JwH+nPKwF8uNQtrzP95Qt2JLw7qG1PqGdLPfOo4QQkQirhBC7bbRLAepkPN8qf/X/FcDyuLD+5QNLEuM7l/RA0P9IXoIOsZDE7rRMDyU0lhMFp8PHvZ6uQki7fkrtjQu39qwvj6V9vyWo94WDCiLx11HDe3wPqW9d2hDdBdCHm4Lnyu5aYnadLY2lVvXkEqbuFqriLvOwLJEZSLSRTuxh/iCI+ShwudcbkKECNFz0CMaUIQIEeKLgFBuQoQIUSSEchMiRIgiIZSbECFCFAmh3IQIEaJICOUmRIgQRUIoNyFChCgSQrkJESJEkRDKTYgQIYqEUG5ChAhRJIRyEyJEiCIhlJsQIUIUCaHchAgRokgI5SZEiBBFQig3IUKEKBJCuQkRIkSREMpNiBAhioRQbkKECFEkhHITIkSIIiGUmxAhQhQJAkB9ff1tt9122GGHjRs3bvz48dOnT//d737ned4O//j8888/9dRTu/4iO4WecJHnnHNOTVP89Kc/Vb9KJpNXXnnlPvvsM2bMmBNOOOHdd9/tzIkWLlxYU1Pz7LPPFuKqi42Qh12NbuehC+DMM89cuXLlhRdeOHbsWM/z/vvf/952220rV6688cYbO3PKzmDvvff+5z//OXTo0O66gMKisbHxK1/5yjnnnGPfGTBggHpx6aWXvvHGG9dcc83AgQNnzZp1xhlnzJkzZ9CgQd10pd2JkIddjW7nofvxxx+/9dZbv//974844gj11j777BOLxebMmZNKpRKJRGHP1xasXr168+bNxT9v16GhoWH8+PH7779/s/eXLVv25JNP3nnnnV/5ylcA7LnnntOmTfvrX/966aWXdsdldidCHhYB3c5D4fs+ACGaBHHOO++8Rx991I7xgw8++JWvfGX06NGTJk36wQ9+sHHjxmbfYcyYMX/4wx/sO9lsdo899rjpppsAbNy48aKLLpo0adJuu+02c+bMuXPnqs8sXry4pqZm3rx5559//rhx4/bZZ5+rr75aSvn6668feOCBAA466KBvfetbwRO98sorNTU1b7/9tn3nnXfeqampefnllwG88cYbJ5100pgxY8aOHfv1r3+9VWtw7Nixd9xxh/3xsssuO/roo+3FvPrqq6eddtqYMWOmTp36xBNPfPDBB8ccc8yYMWOOOOKI999/X/2J53m/+c1vpk6dOnr06EMOOWTWrFn2aDfeeOOuu+7a6l1uaGgoLW1l3/i5c+dGIpGDDz5Y/RiJRA466KBXXnml5Se/+93vfuc73/nb3/623377jRkz5txzz62rq/vlL385adKkiRMnXn311a2etxch5CG+ADwUu+6667Bhwy699NK///3vzcZPYfbs2T/+8Y9nzpz5zDPP/L//9//ef//9s88+O7gZXllZ2SGHHDJnzhz7zn//+9/6+vpjjjnG9/1vfOMbb7311u9+97snn3xy4sSJZ5555qJFiwC4rgvg2muvPfXUU995552bb7551qxZTz/99N577/3b3/4WwBNPPPGb3/wmeCVTpkyprq4Onujpp5+urq6eOnXqkiVLTjvttP79+8+ePfuhhx4qKys79dRT165du/0vb6Eu5te//vVll1321ltv7bHHHj/96U9vvPHG22+/ff78+WVlZVdddZX65PXXX3/nnXdedNFFc+bM+eY3v/nzn//8/vvvV78aOXLkl770pVaP39jY2Or8vHTp0kGDBkWj+S0Thw8fvnTp0lav8K233lq+fPkLL7xw3333/ec//znhhBP69+8/d+7cG2+8cdasWYrrvRchD/EF4KGIRqN//vOfVdBo8uTJhx122LXXXvvBBx/YT9x1110HHnjg9773vV122WXKlCk//elP33///bfeeit4lKOOOurdd9+1t/Wpp54aPXr0mDFjXnnllYULF95www1Tp04dOXLkVVddNWzYsKAST58+/cADD4xEItOmTRs+fPh7770XiUTKy8sBVFZWlpWVBc/iOM7hhx/ebJiPPPJIx3Huu+++aDR68803jx07dvz48b/61a+y2ewjjzyynW/eEocffviECRNKSkqOO+64urq6k08+eeedd66oqDjqqKMWLlwIoL6+/u9///s3v/nNE044oaam5tRTT/3a17525513qj8//vjj7etmaGhoeO+992bOnDl27NiDDz74xhtvTKVS6oDqy1qUlZU1NjZK2XxHegDJZPJHP/pRaWnp3nvvvdtuu0kpzznnnEQiMX369KqqKnWFvRchDy0+xzwUAEaPHv3YY489++yzV1xxxfDhw//+978fffTR1113HYBcLvfhhx/us88+9g/23HNPAM0O+uUvfzmRSKhAtOd5zz///MyZMwG8++67juPsu++++mRCTJ48OUiRsWPH2tcVFRW1tbXbuVYARx999LJlyz7++GMACxYsWLlypTrR+++/P27cuHg8rj5WVVU1fPjw9j6Bo0aNslfS7MdMJpPNZhcuXJjL5aZMmWL/ZP/991+6dOmWLVu2c1gpZTQaXb58+TnnnHPvvfeefvrps2bN+vGPf9yuawMwfPhwO/9UVFTYy1M/1tXVtfeAPQ0hDxU+xzx07atRo0aNGjXqnHPOaWhouOqqq+6+++6jjz56l112YebKykr7MfW6oaEheJREIvHlL3/5mWeeOeOMM1577bWtW7cec8wx6mO+748bN85+0vO8Pn362B/twCjscMPyyZMn9+/f/5lnnhk9evRTTz01dOjQvfbaS51o+PDhwU9WVlY2u8gdIhaLbedHZlYHPOOMM4hIvankf9OmTcEv1QxCiKADv/fee0spf/nLX1511VWVlZXNhqeurq6srKxZCKONl7fdL9drEPLwc8xDN5vNrlu3btiwYfatsrKySy65ZPbs2QsXLhw3bpwQIij26nUz0wvAUUcd9Z3vfGfr1q3PPPPMpEmTVO6wvLw8Fos9+eSTzb72di5o+xBCHHnkkXPmzPn+97//zDPPqACbOlGzGam2tnbw4MHN/twOj0I6nW7X2dW3vuWWW8aMGRN8P3j32oLdd98dwKpVq3bZZZc1a9ZkMhk7ZkuXLh05cmS7jvb5QMjDtqP38lD8/Oc/nzFjRrPgnIoS9e/fPxKJ7L777kGz88033wSwxx57NDvQIYccEo/HX3755eeee04ZlgAmTpyYyWSklLsaxOPxlne/VWxLJpUH+9prry1ZssSeaMKECQsWLMhkMurHjRs3Llu2rOVFVlRUBKea9lq5u+++ezQa3bx5s/06VVVVffv2DcbYWmLJkiXnn3++MrwV3n77bSIaOnTogQceKKX897//rd5PpVIvvvjiIYcc0q6r+nwg5GHb0Xt5KFSY5/jjj7/33nvnzZs3d+7cP/3pT9/73vfGjRs3bdo0AN/61rdeeeWVP/3pTytXrpw7d+7Pf/7z/fbbr+UdjMVihx122J/+9KdNmzYdeeSR6s2pU6eOHTv2wgsvnDdv3qpVqx5//PEZM2bcd999278mZSe/8MILKnfQDHvttddOO+10/fXX77bbbrvttpt68/TTT89ms5dddtnixYsXLlx4ySWXVFRUHH/88c3+do899pgzZ86mTZtSqdTtt9/e2NjYrptVXl7+9a9//ZZbbnniiSdWrVr1+uuvn3766bY2Yfbs2eedd17Lvxo6dOiCBQvOP//8p5566s033/zjH//4hz/84eSTT+7bt++QIUNOOOGEq6+++sknn5w/f/53v/tdx3FOP/30dl1VSyxYsOClAObNm9fJAxYBIQ/bjt7LQ3f48OGzZ8++44477rrrrnXr1kWj0aFDh5577rmnn366EstjjjkmnU7fcccdv/71rysqKg477LDLL7+81aMfddRR55577sEHH9yvXz/1juM4s2bN+sUvfnHeeeclk8lhw4b94Ac/OPvss7d/lRMmTJg2bdoNN9yw//7733PPPc1+S0QzZsz485//HKxBGjFixH333XfjjTceddRRjuNMnjz5gQceqK6ubva3l19++WWXXXbggQdWVlaefvrpxx133H/+85/23EBcccUVFRUVN9xww/r166urq7/61a9edtll6leffPLJc8891/JPotHo/fff/6tf/eqqq66qr68fMWLEpZdeesYZZ6jfXnfddTfeeOOVV17Z2Ng4adKk++67r2/fvu26pJa4/fbbgz8OGTLk1Vdf7eQxuxohD9tzt3orD+lzE2IMESJED0e4IjxEiBBFQig3IUKEKBJCuQkRIkSREMpNiBAhioRQbkKECFEkhHITIkSIIiGUmxAhQhQJodyECBGiSAjlJkSIEEVCKDchQoQoEkK5CREiRJEQyk2IECGKhFBuQoQIUSSEchMiRIgiIZSbECFCFAmh3IQIEaJICOUmRIgQRUIoNyFChCgSQrkJESJEkRDKTYgQIYqEUG5ChAhRJIRyEyJEiCIhlJsQIUIUCaHchAgRokgI5SZEiBBFQvfLzfz5888555y999571113HTdu3MyZMx944IG2/OGqVatqampqamrq6urae9JLLrmkpqbm2muvbf/17hi33XaburDrrruuK44foivw0EMPHX/88RMmTNh1110nTZp0xhlnzJ8/vy1/+PDDD9fU1MyYMaMDJz3wwANramqeffbZDvzttjBr1qyaAHbZZZf99tvvzDPP7AlbxXez3Lz++uv/93//98ILL5SWlh5wwAH9+vV77733fvKTn9x7772FPdFnn31WU1Nz9913qx/Hjh176KGHjho1qrBnUXjiiSfUi6effjrcE7lX4Le//e1ll1321ltvDR8+fP/99yeiV1555Ywzznj//fcLe6LZs2fX1NQsXLhQ/ThlypRDDz20f//+hT0LgEgkMnHixIkTJ44bNy6ZTL700kv/93//1+2K43bv6e+9917f96dPn/7HP/5RvXP55Zfff//9s2bNOv300wt4IisBCmefffYOd6TvGD755JPFixdXVFSUlJSsWbPmnXfemTRpUlecKEQBcc899wC46qqrzjzzTACpVOqEE05YuHDhgw8+OGHChAKeqBkPb7rppgIePIgBAwY8+uij6nV9ff2MGTNWrVr18MMP77fffl10xragm60b5Qf16dPHvvOTn/zk5ZdfDpqXs2fPPuqoo8aMGTNu3LiTTz755ZdfbvVQp5xyStB+eemll2pqaiZPngzg6KOPvuGGGwBcd911NTU1jY2NzZypbDZ78803T5s2bdSoUZMmTbrggguWLFmifvXXv/61pqbm29/+9rx582bMmLH77rsfe+yxCxYs2NY3evLJJwFMmzbty1/+MlrQK0TPRDMeJhKJu+++e/78+ddff716ZzsMaQblwlj75cYbb6ypqfne977X2NhYU1Pzn//8B8CRRx559NFHo4UztXbt2ksuuWTy5MmjRo2aOnXqNddcU19fr351wQUX1NTU/OUvf/nb3/42ZcqUCRMmnHfeeZs3b27LtysvL99zzz0BpNPpDt2egqGb5WbcuHEAHnjggYsvvvi5556rra0tLy8fNmyYEPrC/vjHP1588cUfffTRoYceOnny5Pnz53/jG9947rnn2nWWmTNnDh48GMC+++571llnRSKRZh/49re//bvf/a6+vv6oo44aPHjw008/fdxxx61evRpAPB4HsGTJkksuuWTs2LHV1dXvvvvuBRdc4Hleq+dScnP44YcffvjhCP2pXgLFw8svv/ymm26aN29eNpsdOHBg0MfZDkPaiEgkctZZZ6nXxxxzzMyZM5t9YPPmzV/72tceeeSRysrKY445xvf9e+655/TTT1dMUzz817/+ddddd02ZMsX3/Tlz5vziF79oy6kbGhreffddAN1r2qDb5ea8885Tujt79uxvfetbkyZNmjlz5t/+9jd1i+vq6m677TYA119//R/+8Ad19wH86le/atdZzj333JqaGgDTp0+/8soro9Fo8LevvPLKiy++SEQPP/zwLbfc8s9//nPs2LF1dXV/+tOfACjhW7x48S233PLrX/9aWd0rVqxodXJbtGjR4sWLY7HYIYccsv/++1dVVSl/qv03JkRRcf3111dXVyeTyT/84Q+nnHLKHnvscdZZZ7300kvqt9tnSBsRjUavvPJKRadvf/vb5557brMP3HXXXWvWrBkxYsQTTzxx8803P/bYY9Fo9N1331W2j/rDZcuWPf7447/+9a8vv/xyAC+88MK2Trd+/frjjjvuuOOOO+aYY6ZMmbJ27dpTTz31lFNOad99KTS6WW6qqqpmz559xx13nHLKKSNGjGDm995772c/+9mll14K4O2331bm3zHHHKM+f+SRRwL45JNPtm7dWqhrmDt3LoAJEybssssuACKRyFe/+lUA//vf/+xnBg0atM8++wAYOXJkaWkpgHXr1rU81FNPPQXgkEMOKSkpcV33sMMOQ+hP9QaMHz/+pZdeuuGGG4444ojq6upMJvPiiy+eeeaZDz30ENrGkM5DnWX69OnKkBk0aNBee+3V7CzTpk0rLy8HMHHiRABbtmzJ5XKtHi2Xy73zzjvvvPPO+++/X19f7zjO8uXLFy1aVMAL7gC6PxEuhDjssMNuuOGGF1988dVXX1VG5qOPPrpq1aotW7YAiMViJSUl6sN9+/ZVL2prawt1AeoswfiROktQ0YK/TSQSAKSULQ+lPKm33nprxowZM2bMUGGm0J/qFSgtLT3llFN+//vfv/HGG4899phyr26//Xa0jSGdR7t4qEiIbfAQwJAhQ5YavPHGG2efffarr7562mmndaBqpIDoTrlpaGh45plnbrvtNhvBGjJkyM033+y6LoDly5dXVVUByGQyqVRKfcDGxoKjoqCsTXuoNkbRAKizqMEO/q2Vtjbio48++vTTTwFs2LDhww8//PDDD5UFFPpTPRyfffbZI488otxkhT333PPKK68EsHr1as/z2sUQIkK38rAlqqurv//97wPYunVr91Kxm62bH/7wh7feeuuNN96YzWbVO88//7wK3AwdOnSvvfaKxWII+CP//Oc/AYwfP76ioqLZoVRgT4XEAPzrX/8K/laRoLGxseU1TJkyBcAHH3ywbNkyANls9umnn7bvtx3Kk9prr72WBjBt2jSE/lTPxrJlyy655JJrrrnm8ccfV+/4vq8iJoMGDXJdt10MCfKwsbFRpaIsdsjD5557Tj0Lq1evfvPNN7d1lvbC5nPLyso6f7QOozvrbsrKyn70ox9de+2199xzz8MPPzxkyJDa2tq1a9cCOPbYY0eMGAHg+9///q9+9asrrrji1Vdf3bx586uvvuo4zk9+8pOWRzv00EMff/zxZ5999vzzz6+vr1cZROvFDBo0CMA999yzcuXKH/3oR8E/POiggw4++OCXX375pJNOmjZt2vvvv79o0aL+/ft/+9vfbtfXUXLTrLr0iCOOeOmll55++ukrrrhCUS1ET8MBBxwwffr0OXPm/OAHP7j++uv79u27du1a5a1feOGFaCdDDj300AcffPCmm2766KOP3nrrrcGDB2/YsCHIw9WrV//sZz+bOnXqz372s+AfnnPOObNnz166dOnMmTNVLCmXy02dOvVLX/pSB76UChWr17W1tUuXLgUwadIkFfTpLnSzdXPWWWfddddd06ZNKy0t/fTTT+vr6ydOnHjVVVfZ3NMFF1xw0003jRw58plnnnn77benTp16//33t6r3xxxzzPnnn9+vX79XX311p512UhUTmUxG/fab3/zmyJEj6+vrX3vttWbuLhHdcccd559/fiwWe+yxxzZs2HDsscc++uij/fr1a/sXsZ6Uyn9bfPWrX3UcZ82aNW+//XZ7bkyI4oGIfvvb315zzTWTJk3yff+TTz4RQkybNu3uu+8++eST0U6GXHbZZUcccYTrui+++OKJJ5544oknIsDDH//4x/369Vu2bNlHH33U7A+rq6tnz5597LHHrl+//rHHHovFYueff/5dd93VsVnKhorfeeeddevWjRo16qKLLvrrX/9qS0y6Bf8f2JttaqtWHlkAAAAASUVORK5CYII=", "path": "image.png" }
Which solution has a higher concentration of blue particles?
[ "neither; their concentrations are the same", "Solution A", "Solution B" ]
2
The diagram below is a model of two solutions. Each blue ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the blue particles represent the solute. To figure out which solution has a higher concentration of blue particles, look at both the number of blue particles and the volume of the solvent in each container. Use the concentration formula to find the number of blue particles per milliliter. Solution B has more blue particles per milliliter. So, Solution B has a higher concentration of blue particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAVYAAAHFCAIAAAAmP0Y5AAAkKElEQVR4nO3d32/bVton8EcSSUWySDuixn6tJKi84yTrbmWgtpsiCbCxb2JggfZmgl68QO8XM/t/vXsTLLAdYFHf1L5IimkSF6+VQZraHWnQRIFSUbZFWzJFStwLZVzHdmT+kvjjfD9XbSomp7H45TmH5zwnZprmX0tHBADsuVUQOJPo//0dEQDAoo/kRNzvNgCAnxABAEzjTv7LUkFYLCT9agqM2JFBG//oEtHHk/FrEzG/mwMj8lbt/p9nreN/RS8AgGmIAACmIQIAmIYIYNfxzz4Wx0QAu7iLPwIRJXC0eiPhdyvAZ+gFADANEQDANEQAANMQAQBMw3Qguzpd+s9qj4g+ysYmx/BSgFHoBQSdUtWbdX0Yv3PPpEbbbLRNbSi/PYQDegFBpFT1fz4/bNaNtto9/kU5z4syP7uY4ZN4YoNnEAHBomvmzrODSql19j8pVV2p6q9+bs/fG5+awW4u8AYiIECadX1zbf/kk/8sQzM31/amZpIL9ydG1S6IMswFBIWumRfe/8dqZW376eGwmwQsQAQExYvHqsX7v2/n2cGQpgmBKYiAQKiVtdc/t+1eVdpQh9EYYAoiIBAc3P9E1KzrShUdAXAFERAIzbrh7MJGteNtS4A1eCPgP10z2wc2ZgFOsjV9cAoXpz/KcSIav+T494DQQwT4r6k47AKQ6wiYlbHKiHUYCPiPF/xuATAMEeA/Kce7uBb9OHAFERAIkuzwThadXgjQN8QvUEvtqoqhKjoRZfPCpUwiLaJS3flEmXc2I+A4O4jI6FFl1ySiyTGSLmFSgFFDiYDKVmt788DQzBO/dkhEXDJ2fTFTKKaH8YeG2twd8W3lSO+YF3/0hEIx7WYQYfToF6VHRMlEXMJLAVZ5PBBoqd0fvmm8+F59//5/x9DMF4/VH75ptFzMY0cSn4wVl8dtXZLKJGYXM0NqD7DDywhQqvqjh8qF69X6H8P69lOmZpJTdg50LK6Mo3AAuOdZBOiaWVrfP/fhf5ahmZtr+7q1D7NjYXXCyoM9lUnc+iIr550PAQCOeRYBdje6tdXuzrMDr/70yLi+NHb3T9kBk3yFYvruAxn3P3jFm+lAZxvdKqXWZOESvs2nSDn+7gNZqepqXW8q72qHSTlOlDlJ5tzM/wGc5U0ENN443KzSqHYQAeeS8zz+ZmAEvBkION7o1l81AAB+8SYCHN/JbnbIAIB73kSA3TUtx9xsdAMA97yZC+CFmLMUSGWwZNg3l3C4OHjVCxBlhxNX2OgG4C9vIsDxnew4OwDAE95EQHbaYdWLbB7lMgD85E0E2F3f3lcopvHqG8Bfni0QLi6P25rbw0Y33x0Z9O3P3W9/7v66h80a7PIsAvhkrLgyzguW9q7xQgwb3QCCwMvNwnKev/NAvnBeIDst3MFGF4Bg8PidXFpMfP7l5cpWa+fZwdmVArwQm13MFOZRNQggKIbyWr4wny7Mp1tqV60b/SXAksyJOQ61A4FZ/UpZAbwFhrgyJy0m0mJiasb2mwKAaNA185/PDxvVzr5i9KvpcMnYuMyJMv9RMR2QOMDiPBgFparHYiZTVaRrZW1r43QdLUMzlaquVPVXP7cDUkoXEQDDomvmT9+rTcU4WSey/xj86JOxCHcPdc0sbezXytqAz/RL6b6tHH16/7K/r8YQATAU5z4D6ffH4N7UTLJ4L5ovhneeHQy+/48pVf3Htd1bX2SH3aQBcJoQeG/z273Ntb3BtWRrZW39P367sN506ChVvVJq2fv8lo3Pew4RwC4hQZ9dS3x2LTGZ8fJRvP30sFax9Aw0NHNzbTdKhaR1zdxc27V71fbmgY8nayAC2BWPUTZF2RQlvRsONuu6rcLQhmaWNvY9++P99vpl22Id/ZMMzXz98mgY7bECEQBeKq037V5SK2sWR87B1z5w+DBvVB0W4HUPEQCeUaq6s2KQtgbPQea4jm6z4ducCCIAPKM6PSTOxxvAW46r6Rua6decCCKAXUaPdhRzRzGbR958+RzXgzY0MxonzVrcKXv+tT69H0UEsKt/uPgvSm/fo6koN/Wg22rPm0b4ynEhPB/r6CICADzjuBCej3V0EQHgGTeVIKNRPyIlOryhHFffdA8RAJ4ZcCDykC4Mmqs3Uw7+X1KZxJWbqWG0xwpEAHhGRC15ok9XJ+xOCvpbRA8RAJ5Ji05KwvJCbO6OOIz2+MLuX4LvdbQRAeCl60tjdnvCxeWo7RcszKfnbotW+gKzixnf4w8RAB4rLkvWPzxVSEaycEBhPj24lK4kc3f/lL2+NDbKVp0rItMwEBxSjr/7p2xpvXnhSqHZxUwQ7oEh6ZfSVap6o9pRFb2/dljKcaLMSzIXnOBDBLArHqNsKkZESa+HolKOv/tA3n56+KFdg5LMFZclKRedWcAPkfN8wN93IgLO0VK7u286bbXbqHb0DqXEuCRz2bwgZvkojVqFBH12bYgjwetLY1duXupXkVYVXddMKcelMgkxF/S7gimIgNPOPruadaqVNaJDLhlbuH8ZX1/rUEU6+BABv2vW9dKG2vzwdjdDM3/4plEopmcXM1HqDgDL8EbgnZba/dtfdwfc/8cqpdaP9otDAQQTIuCd0ndN6yWffC/5COAVDASIiLafHtot9vDiezWb50M9p31k0MY/ukT08WT82gTGNYxCL4B0zbRV8fLYzrNDzxsDMGKIAOe1bhSnVaIAggMR4LziXWTKXQHLEAHOewFEpDqtGAsQEIgAVxXv9E4UKt4ByxABrspdRabcDTALEeDqNg71S0EAQgSQi3JX6AJABCACKC0mnNVvvXLDt5KPAF5BBBARFVckuyUfs9NCYT49pPaMxpAOF4dwQQQQEaXFxH+1U8KNF2LFFRvlsYJpGIeLQ+ggAt65ejNlsfArL8Q+Xb2cFn07AQrAQ8j/311fGsvmhdJ3+wNOiZ8qJKNX8RZYhgh4j5zn7z6QK6VWv+Sj3nm3fTiVSUg57sqNFArgQMQgAk7jk7HrS2NEY0TUUrtttSfJXCQf+0aPKrsmEU2OkXQpgv+DYAUiYJB+6Tu/WzEs/cPFiSiZiEuX/G4N+ATTgQBMG1EEYFMtQDANcSDw6mV7943eVIzjmpxynhdlPjstYFINICCGEgG6Zv64tqtUT5fiUKq6UtUrpdbUTLJ4D6/WAPznfQTUytrWxv7gary1stasK8XlcRzLAeAvj+cCmnV9c23PSjXuttrdXNvFHAGAv7yMAF0zSxuq9c8bmvl8fd/DBgCAXV5GwM6zAyun8ZyEMzkA/OVlBFRKTm7mynNEgD/6h4tnUzHPDxeHEPFsOvDs/L9FbbWraybeDozesA8Xh1Dw7BvQVp2X03ZTxhsA3PAsAlQXt3GjimN5APzhWQRwgvPfym7RLgAH8Ab6XJ7NBaRE5xEgohS3H3om7R0REY3xka0ddu4q9WxeuDydxLK0Ps9+8m4qauOH4YtOl578GtnDxVtq9/n6/odWqRMdForp2cUM5qG9i4Aczwux4zI71qUykd2QD3559bL94nt18CrVSqnVeKMX74mMnwfj5Tshi+U3T5mzU7oX4EK1slZab1pZpd6s65tr+7qFT0aYlxFQmE/bPZNjqpDExmHwkK6ZWxs2Vp231e5P39tY1R49Hq8MsXUmBy/Eisvj3jYAGFdav2CX6lmvXrZrZW1I7Qk+jyMgLSZufXHZytRgdlq480DGZAx4qKV2axUnN7Ozte3R4P36UCnH330gF4qDDtuaXcx8/iVO4wCPqXWH69Mab9hdnDas18Fzd8QrNy41qnpTMVRFbypGdlpIiQlJ5iZnkrj5YRjcrDRv1nU2Xw0McUWIlOPZ/DsFv7hZad5We1LOw7aEBjaKQXRgasmBiK4LBQv6h4sT0VhU+mqizDubDiQiMcfovYBeALuid7h4Nm9vWcoxXogxOz+FCIDocLxRRZSj0hGyDxEA0cEnY4PfRn/I7JKTte3RgAiASJldzNjdeFYoplneq4oIYFenS09+7T35tff2MDr7ZPhkbGHVxqpzSeYY36iGCGBXz6RG22y0Tc1h5deAknL8rS+yVvaqZKeFT1cnht+iQEMEQATJef7ev/9hqjBoE+rcbRGr1AnrAiCq+GRsYXWiWddrlY6q6M260T7oEtGVG6lsns/mBdz8fYgAiDKsUr8QBgIATEMEADANEQDANEQAANMwHRhQSlVXFV1VjLZqcMm4JHPZvHApk8A8NngLERA4SlUvre+33z/9qlbWiA6JaO6O6GwZ/FlcnP4ox4lo/JInvx+EEiIgQHTN3Hl2MLiU5YvH6tvK0SfL4+67A1ycZmXU2GAd5gICZPPbPSulbJWq/uihgkMywROIgKCobLWs17E1NPP5uo0DMwA+BBEQCC21u715YOsSpapXttitfg9eQQQEwk+PLzgD81x2U+OUnkmNNjXapDkvvQ2hhwgIBGfVrw3NPHt4tnX9w8Wf/Np9exCdegFgF94I+K+ldh0cyt6n1nWWK95EjFLVd99ojWqnpfbaajclJqQcJ8nc5enk8H7KiAD/OT4Gi9ydnwPBce774Lbabavd/pKQQjE9u5gZxkEJiAD/6Z2e42vbeDUYfucuBjulUmo13ujFe6Lne58xF+C/lOg8iB1XzoeAaKndzbVdK1HerOt/++uubn/aeLAo9AJ0zVQberNuqIqREuOizIsyF6K19G6GeY4r50NAlL5rWn8ZZGjmj2u7t77IetiAcH+BWmr3+fr+ubPiXDI2f298amZQ9bjgkGTO2aie2WOwomH76aHdc83760EK897sE6FQDwRqZe3RQ+VDb8UMzdxc2yutNz3vOA3DlRspB1dlp1EAL9x2njlZ2VF57uWSsLBGwIvH6uba3oU9qFcv248eKsFPgcJ8Ojttb1TPC7HiijSk9sAINOsO13S01a6HX+lQRoBS1a1sp+lrq93SRgiW0xdXJCul74/NLmbQBQg1Ny90PXwZHL4I0DVzc23X1iW1slYrOzxzemTSYqK4PG4xBQrFtPvR4CWOVm8kVm8krk1gy7AP2qrzl8HOlpOeK3wR8MLRcvqtMHQEpmaSdx7Ig0cEqUzi1hdZxs/AAg+Fbz7ZzXL64K+lTYuJz7+8/Opl+/XLI1XRTy4czk4L2bxQKKaHsUQMRi8lOn8Ae7geJHwR0D8TxoEQLae/ejN19WaKiFpqt632eIFwHkb0uFnT4eF6kJBFgJuNcWFcTp8WUS80shzHeiqT8LAnGLK5AEPDcnrPRPJw8XCZXcw4uMqr+rF9IYsALum8wRIW0r0vqoeLh8j1pTG7XfrstODh0kAKXQS4GcyLWE4PwVNctrEeZBjrwUIWAeRiIsTNhjyAIZFy/Kerl1OZi2d8UpnErS8uez43FL4ImCw4OfgilUmE5XUAsEbO83cfyIP3iRSK6bsP5GG8GArfg/H60tjbypHd6f3iyviQ2gPgHp+Mza9IV26mGtVOo9rpLwnhhZgo89m8kM0LKBz2nuKy9Ohhw/rnC8U0ugAQfHKel/M80dgo/9DwDQSISMrxxWWrkyLZacHZqxcAFoSyF0BEV2+mJJkrrTcHjwjmbovevkEBiJiwRgARSTn+1hfZnWcHtbJ2dtXwVCE5uziGdbUAg4U4AoiIT8bm7ohzd0RdM5uK0ah2UmJckjnc+VbgcHGgsEfAMT4Z+9dUCliFw8WBQjodCABeQQQAMA0RAMC0iMwFgAM9k2oHJhGNX4qneewXZhQigF2dLm296RHRx5OURgVRVmEgAMA0RAAA0xABAEx7by5AOejtvEURKVb0zNgYT0S01+pqHUwHsmK//V4BzvcioFw3yvXwldkFAMcwEABgGiIAgGkx0zR/O3BenB8Awms8FY+ZJuaBANiFgQAA0xABAExDBAAwDREAwDREAADTEAEATEMEADANEQDANEQAANMQAQBMQwQAMA0RAMA0RAAA0xABAExDBAAwDREAwDREAADTEAEATEMEADANEQDANEQAANMQAUz7+uuvv/766ydPnvjdEPANd/FHIKI6nc7R0RERdbtdv9sCvkEvAIBpiAAApiECAJiGCABgGiIAgGmIAACmIQIAmIYIAGAaIgCAaYgAAKYhAgCYhggAYBoiAIBpiAAApiECAJiGCABgGiIAgGmIAACmIQIAmIYIAGAaIgCAaYgAAKYhAgCYhggAYBoiAIBpiAAApiECAJiGCABgGiIAgGmIAACmIQIAmIYIAGAaIgCAaYgAAKYhAgCYhggAYBoiAIBpiAAApsVM0/S7DTAib9++/ctf/nLhx/785z+vrKyMoD0QBOgFMGRycvLevXuDP5PL5XD/MwURwJavvvrK5QcgYhABbBncEUAXgEGIAOYMeM6jC8AgRABzPtQRQBeATYgAFp37tEcXgE2IABad7QigC8AsRACjTj3z0QVgFiKAUSc7AugCsAwRwK7jJz+6ACxDBLCr3xFAF4BxnN8NAD999dVXf//73/1uBfgJ24QAmIaBAADTEAEATEMEADANEQDANEQAANMQAQBMQwQAMA0RAMA0RAAA0xABAExDBAAwDREAwDREAADTEAEATEMEADANEQDANEQAANMQAQBMQwQAMA0RAMA0RAAA0zgi+u2g53czAMAH46l4rGea/+t/7/ndEgDwwf/872MYCAAwDREAwLT3DhSbyXH/ZRJHjLGiZ8betoiIxpOU4nCoFCv2272n5c7xv753w8uZ+OwkP/ImgT+ODCrvd4noo8vxaxMxv5sDI/JW7Z6MAAwEAJiGCABgGiIAgGmY/GOXkKD56TgRjV+KE2E6kFGIAHbFYzQt9mcBcf+zCwMBAKYhAgCYhggAYBrmAthl9KiyaxLR5BhJl7A0iFGIAHYZPfpF6RFRMhGXLvndGvAJBgIATEMvACKipXZVxVAVvakYRCTJXDYviFmeT2KMMwgiAEJP18zSxn6trJ38xVpZIzokokIxPbuYQRB8yIgiQKnqqqKrinGc0Ckxns0L2WlhNA2AqKqVta2NfUP74OqmSqlVq2gL98elHHbBnmPoEdBSu8/X95WqfvIXm/X+vx7Kef6T5fG0mBh2MyCSKlutF9+rF36srXYfPWws3J+YmkmOoFXhMtzpwMpW69FD5dT9f5JS1R89VCql1lCbAZHUUrvbmwfWP7+1sa9/uLPArCFGQD+hB/TQ+gzNfPFY3X56OLyWQCT9+O3ehd+ukwzNLG3sD689ITWsCGjWdVsJvfPs4F+jA4CLVbZa/XklW2plbUCflE3DioDSetNWQhNRaePiQR14KB6jbCqWTcWSIZwmc3D/972tHHnbkrAbynTgq5dtBz+hZl2vbLUK8+lhNAnOEhL02bWwrg1TFYcP82bdYXZE1VC+AarThHYc7cAax1+VZgMDgfcMJQIcB63aQATAxVpq1/G1dsenkTeUgUDjTefiD52H2RlBXTPVht6odpqKYWg9IsrmBVHmRZnDoomz3PydSDJWxL4Hfx3+O3d9W3/imkvGri9mCkXMj5yWnRacPWk4IazTH0MylAiQZM7ZUC2VYeuJd+7i9pP6iybeVo6GsYbyyKCNf3SJ6OPJ8B0lIuU4ZxEwVcACwfcMJRFF2eFbJinHVq/kh28aA+7/Y/01lFjZdtJkwWGFgys3U962JOyGEgGOh1uOsyOMXjxWrfeVsLLtFDnPOxgfzd0WsWXwlKFEwJWbKV6w/RfNC7ErN1kpXqNUdbs7I2plzUqXgR2zixlbD5vstIBVJ2cNJQL4ZKy4PG73qtnFDDuz3z89bjq4agsdgRP4ZKy4LFmcP5JkbmF1YsgtCqVhzY5OzSRtzbuwltDOpksNzXTzSjx6pBx/94F85cYFw/vZxczdBzKGAOca4vRbcXlc/3bPyrRtdlpgKqHd7FRR6wY7fSUr+GRsfkWaKiQrpdapLxsvxLJ5YXZxDMVCBhhiBPDJ2OdfXq5stXaeHeid82ezeSE2u5hh6vlPRKqLFVBNxUDdi7OmZpL9v5aW2lXrBpeMp8Q4stKKob+EK8ynJ2eS/yy1mnXjZEhnpwUpx31UTDP4c/pQIFrRxkBgoLSYYPAb5cYo3sOnxcTcHbH/z/0lwIx3zLJ5gZ45vBbrW8Fbo/4+MX7z96VE57Owond/gUKCPruWIKIx/EwYhkeKD9JighdizoYDct6z+zUeoyxWyjEPWyb88VFxzMFVWN8OnkME+OP60pjdUT0vOFlwBTAYIsA3xWXJ1uc/Xb2MxS3gOUSAb6QcX1yWLG6mmLstejgL0Gf0aEcxdxSzeYQ9iOzCdKCfrt5MZfNC6bvmgDWUkswVl6VhvEnB4eJAiADfpcXE519efvWy/frlkarox68JeCEmynw2L1xfcjJxCGARIiAQrt5MXb2ZIqKW2m2rPSxuhZFBBAQL1rfCiGE6EIBpiAAApiECAJiGCABgGiIAgGl4I8Cu/uHiRBTGw8XBK4gAdoX6cHHwCr4BAExDLwAgrJp1XW0YzbqhKnpK5ESZk3Jcdlqw9ZsgAgDCp1nXSxtq871S1O/+mUvG5m6LVy0fnYgIYFfPpL0jIqIxnpL4IoTH9tPDnWcHH/qvhmaW1ptv/6kV741bKTCBuQB2dbr05Nfuk1+7bw9QLyA0/vZ/dwfc/8dqZW39P36zcho1IgAgNCpbp09MGsDiadSIAIBwaKnd7c2Ln/8nWTmNGhEAEA4/PVYNCx37Uy48jRoRABAOjarVIcBJhmYOPsYWEQAQAi216/goyrY66CR7RABACKj1QbfxBdcqiACAkHNzonRzYHwgAgBCwM1xstn8oCXDiACAEHBzkMzgo+uwLpRdOFw8XFKZRPvAyXBAzA26zdELYFf/cPFsChsEwuGK5Z0/J2WnhcFl6REBAOHg8DTqlQtOr0UEAISG3dOoZxczF55MgwgACA1bp1FfuZEqzKcv/BhGgezqdOk/qz0i+igbmxyz9K0C3129mZJkrrTebH54wQ8vxIrL41MzSSu/ISKAXT2TGm2TiP5Nx/0fJlKOv/tA3n562Kh2Tu0dTmUS2bwwd0e0UiykDxEAEErXl8aIxoioWdfbao9Lxp2tHUAEAISblOOlnPPLMR0IwDREAADTMBAg+lc99rbaTYkJMctJLrZkAIQL0xHQUrvP1/fPraki5/lPlscvXFYBEHbsDgQqW61HD5UP1VRSqvqjh0ql1BpxqwBGjNEI2Pqu+eL7C4oxGpr54rG6ubY3qkYB+IDFCKhstV7/3Lb44VpZq2xFsy/AxemPcvyPcnz8kt9NAf8wNxfgoBj79ubB5EwyevMCXJxmZawLZB1zvYDSd027xdgNzXy+fvGpLABhxFwEWD+P6aTBldgBwoutgYCbO1mp6m7qt0HAKVVdVXRVMZqKwQskynxKTGSn+cgvEmErAtS68whQ61GLABwu3tes66UNtfn+d+P4aTE1k7R4SndIsfWTd3wei8trg6l/uDgRfTwZvzYR2a/4YJWt1ovv1QEfqJU1pfrb/D2r2+9Dh625AIvlVjy/lh1KVW+5OPRixF48Vgff/32GZm6u7V14RG9IsdULcHMeg5tro61W1l5vt9tq77gvzSVj4zI3Wbh05UYqsF1oparbWv25tbG/nP9DYP93HGMrAtwM5iM2EeAJXTNLG/tnH4/902z799jC/fEAzqjpmlmy+aLX0MzSxv7C/YnhtMg3bA0EiCg7PehwJW+virZmXX/0UBncPW6r3UcPGzvP7K3FGoHXL9sOTumrlbXovR5mLgKKK1YLsB6zUoydNbpm/u2vuxbvou2nh0FbZO1seQgRNaoOLwws5iIgLSZmFzO2LrFSjJ01pfV9W4sstzcPAjVNOPiw3QFUBb2A8CvMp6cKVl/wTBWSVoqxM6VW1moVe9PjgVpkrWums8P5iGhA6e6QYjECiGhhdWLutjh4RMALsbnb4sLqxKgaFRrOyigoVb3pYmmWh/ROz/G1hub82mBi643ASYX59ORMsvRd89xhoSRzn65OoP9/LscD6bbac1Pr1itufqyiHLi3Gy6xGwFElBYTn395mfrrw+u63jF5ISbmeEbe/13iaPWG7ZvBzZO8qRgBWWOXnRacBZk08KDuMIra/48zcp6V2949N4PhRrXTP/3Cd1KOcxYBos2zfYOP0bkAcCwlOr8HgrO07soNJ5WSeCE2VYhaiSVEANhj94j7k4IzkJZyvN13w0T06erl4KSYVxABYA+fjDneMZXNB2iR5fWlMVtxViimIzlaRASwq9OlJ7/2nvzae3tobx+04zvZTQ9iGIrLksUmTRWSDnoNoYAIYFf/cPFG29RszvHPLjqZ0ptdzAStF90/pXvwvc0LsYX7EwurE0FrvFeClcoQClKOn7stWtlp//slMnd9KRDvAs66vjQ2VRAqpbaq6Cffd2SnBSnHfVRMR3t5CCIAnCjMp2sVzfp7teJyoPdZSTl+fuXdOF+p6rxAAdzgPCQYCIBDC6sTheLFuyckmbv7p2yI7ig5H/2SoSehFwAO8cnY3B0xOy2U1vc/VFixUEzP3RFH3DCwBREArkzNJLP5PzSqnaZiqIrerBspMSHlOFHmJBnHtIcAIgDc4pOxqZlkQBb/g12YCwBgGiIAgGkYCLCrf7g4EeFwcZYhAtiFw8WBMBAAYBwiAIBpiAAApmEugF04XBwIEcAyHC4OhIEAAOMQAQBMQwQAMA0RAMA0L6cDdc1svOn0qy816wafjEsyJ8pcdpqtGgwAIeJZBDTr+uba/skD59tq9/jwqamZZPHeeFQLMAKElzcRsP30cOfZwYAP1MqaUv1t/t44dpUDBIoHcwEvHquD7/8+QzM31/ZqZXvn0gPAULmNgFpZs3Xa/NbGvq7ZO7gCAIbH1UBA18ytjX1blxiaWdrYX7g/4ebPBU84O1wcIsZVL6BSahn2H+m1submjHoA8JCrCGhUnZzQTkS1isMLAcBbriJAVRw+zE++OwQAHzmPgJba/dABEhdSG8bFHwKA4XM+HWhoPcfX6kfOrwWvHBm08Q9sFmad816AmzW/qUgf1QoQIq7mArLTgsML8w4vBABvuYoAxw9zSUa1IoBAcHUrFoqp1z+37V6VyiTQCzhLqeqqohudHifEpRznuIcFYIurCJBy/OxixsoGgZOKK9gy+LuW2n2+vq9Uz3m9Kuf5T5bH05g3gWFyu0fg+tKYrV797GJGzqN2wDuVrdajh8q59z8RKVX90UPF1hYMALs82ClYXJYspsCVG6nrS2Pu/8Ro2Px278X36uAV1oZmvnisbq7tjapRwBwPIkDK8XcfyLOLmQGf4YXYwv2J+RXJ/R8XDZWtVq1idd90raxVttAXgKHwbGb++tLYVEF4/fNRs2403rzbAsALMVHms3mhUExj/H+spXa3N+1NoGxvHkzOJDEvAJ7z8uWclPu9RmCzrnPJOL6y5/rx2z27OywNzXy+vn/ri6yHzcDh4h5SqvruG61R7ewrhqGZUo5PiXFJ5vI3UgG/C4b1fh71QgdoKk62SHxo1tAxHC7uCV0zSxv7p8phNet6s061srb99HDujlgopv1q3oWwRGfU3NzJSlXH+5RAqZW1rY39wX26F4/Vt5WjwL7fxTkCo6a6KJfi5lrwnFLVN9csjemUqv7DN7vBLJmHCBg1xzusXV4L3tI1s7Ruo2peW+3aXUQ3GoiAUeMF58NvN9eeZfRoRzF3FLN5hGSxbefZgd3KN5VSy/MJHfcQAaMmupgodXPtWUaPflF6vyi9/SMPf1cmtNSus1WbO08D1xFABIyam/k8zAUGRFt1WPPmeMlMcCACfOBsFyD2DgaH48K5RNQKWOFMRIAPiiuS3VE9L8SKWF4dGI4L5xKRWg9W4UxEgA/SYmLwloqzZhczwXyrDGGHCPBHYT49VbB6wupUIVmYD+7yMgaJspvCmcG66YLVGqYsrE7M3RYHjwh4ITZ3W1xYnRhVo8ASN2WvgrZ2HguE/VSYT0/OJEvfNc+dKM5OC8UVCf3/AHL8JA/gnC4iwGdpMfH5l5eJSKnqbdVoq72UGE+JHN7/BVlaTBSKaQdLA2aX7M0BjQAiICjkPE800ts+HqNsKkZESaSNfbOLmVpZax/YeMNXKKYDmOyYC2CXkKDPrsU/uxafHMOWYdv4ZKy4Mm7986mM7ddAo4EIAHBIzvPFZUtLPCSZW1gNaOFsDAQAnLt6M5XNCx+a0O2bXcwEuWouIgDAlf6E7quXbVUxjgtnpjKJlJjI5oWpghC0t4CnIAIAPHD1ZsrvJjiECGCX1qX1X7pE9N/+LXEV+w9YhelAdpn/KhRi9lAyhF2IAACmIQIAmIYIAGDae9OBTyudp5XAFTaCYatU/W4B+Ae9AACmIQIAmMbFiP7HJzhWEoBFU2Li/wPMFY1MRUru/AAAAABJRU5ErkJggg==", "path": "image.png" }
Complete the text to describe the diagram. Solute particles moved in both directions across the permeable membrane. But more solute particles moved across the membrane (). When there was an equal concentration on both sides, the particles reached equilibrium.
[ "to the left than to the right", "to the right than to the left" ]
1
The diagram below shows a solution with one solute. Each solute particle is represented by a purple ball. The solution fills a closed container that is divided in half by a membrane. The membrane, represented by a dotted line, is permeable to the solute particles. The diagram shows how the solution can change over time during the process of diffusion.
In a solution, solute particles move and spread throughout the solvent. The diagram below shows how a solution can change over time. Solute particles move from the area where they are at a higher concentration to the area where they are at a lower concentration. This movement happens through the process of diffusion. As a result of diffusion, the concentration of solute particles becomes equal throughout the solution. When this happens, the solute particles reach equilibrium. At equilibrium, the solute particles do not stop moving. But their concentration throughout the solution stays the same. Membranes, or thin boundaries, can divide solutions into parts. A membrane is permeable to a solute when particles of the solute can pass through gaps in the membrane. In this case, solute particles can move freely across the membrane from one side to the other. So, for the solute particles to reach equilibrium, more particles will move across a permeable membrane from the side with a higher concentration of solute particles to the side with a lower concentration. At equilibrium, the concentration on both sides of the membrane is equal.
Look at the diagram again. It shows you how the solution changed during the process of diffusion. Before the solute particles reached equilibrium, there were 6 solute particles on the left side of the membrane and 4 solute particles on the right side of the membrane. When the solute particles reached equilibrium, there were 5 solute particles on each side of the membrane. There was 1 more solute particle on the right side of the membrane than before. So, for the solute particles to reach equilibrium, more solute particles must have moved across the membrane to the right than to the left.
to the right than to the left
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABlm0lEQVR4nO1dd3wVxdp+Z5OTelIwFRJCDgiGhCDFQKRIUaRIsaDgtQP2htfuRVDAq2C7ls+CouC14VVEQQFRiiAQQKQGECShk4CQdkLa2fn+mLKze0pO2RRgnp8/OWfP7szszpP3ed6Z2V2EMQYvUFXnKK6oKio/U1pVU1R+BgCKKs5U16neHCthOmLCLEnW8Cs6tIoJC2nqtjQqJA+bFXzlIfIcbv48WfbnidKi8jPFFVUmtVDCNIQGK+N7dDgfIg7h4cHTFaVVtU3dFgkjvOeh63BTVefYdOjktmOneO8qSAkNC7dYQiwhIdGRVoQgLNQSZgkJQoAAFARBCBQECoAibgFQECgIEAaE6GcFAAEg/c4ItA/k/wCgACAEiP2K2IHk/4DpZ2AbAQOwnckHjAEhAKC7icDsHwwYIUQuAwYM9ChENmBM98QYk418T/4ZEAi7aT+RLSrGGJADYxWDirEKoGJwYIwBHBgcGDswVgGpwg4Y06NUYBsxqIAxIPK1urau8NCxqura7OQWwzNb19vNZykIDzccOsH9i+ThWc3DYJdbVxcUbTp0EgCUYEt0i4TwCGt4WBjvRdKjQQgAkQsrAAHGWj+x09a6il1EbQeEtM7gHYJZV4FwCP+V1CKWYCyW97FwENkBg8YPTH7DCLPfECAMGCHeqQgQRqTDEMIYYwDGCQSASSEYC4XTCrH2DyCMsXY6bCchziOMMca0Uq4AGLgW0HaR3QDAEhyU2ippX8HhooozLnvw3MDPe49uP3YaAIJDwqwxF0genu08dBFuiKQgpLRoZQuLiFQAgtgJkBivAeu/si0Y6NUExA7BgAknMN3Ce47QQiwBI1DYZ0D6WoQtiO0MWFcL305rYRsR622EkHa1MQBgpiEuVAUw35MdKB5JLwvS9ZpYNtDyVcJ3YSeEtB0RQggwAqQKbhMB73PM24mI0iEUFmoBgHM4yS2qqNp+7LTk4bnEQ8V5E0mgFEuIJSyS18kDsy73QvqvbAu3kcCOEr0lj8H8bA1laqcvigLoPtOW6MUKXKoK0hUAzK8irUAkRm/WJIzYBiQciDFG4pG0aiyqnK5sAJ2qCGfkVlXYVr2q8N2ouXaoKgCEBrnowXMD1bUOAAgODZc8PGd46GKnJGtYaJDiqKmqq63idbpQFSyEc9A26lSFHQVY28hVhR6BjcViseeEckBfpq5Y5pOxWAiiEqSjIusng6oIx3lQFe5gQTxFRETBqZUY9Hvythp+J3LBRESvKrp2IcRogJDdXgUAaS2scI4iMSoMAGqr7JKH5wwPXceknLQEADh1eF9dbQ2rkpwpiK3gEqHBC1UBcKEqYiFI6DkQyjF8dlYVzg+uKiBKDauv0VTF+FWvKsJuPqvKmaqaw8eKAaDNuRtuwoKD+tiSAODU4X0Oh4NslDw8q3nodiL8622Fe0+WBQVbYhNSrFHRZEwuCIGjrram6kxNbXVNdXVNdXV1TXVtXZ03NUmYjuzkFld0aBUWHNTUDWlASB42f3jPQ7fhpqrO8c22woMldgAIDYsIt1prq6qrztgdDtmpzQVPD+zc1E1ocIg8jIiKCQkNlTxsbvCeh/Us89t27PTPfx6pdgirNhEKDo0ItoSGhIaGhIaFhoaGhoSQWYMggCAFyGe+3iGYbUFkCwZFAbJKgsgUAAQzLxrEVjcoAIoCCNP1EYC0NREIsXUQoHlUxJZRYNEqUoup87HYaUYA8xkBliCLOTP2ar0DzXV5IZiZagAQlzmI6x1UjFVAHtY7qBgwAnG9g4oBA1Ix3rprv0/dfLZD8vDc4KHrdTccnVu26JAQ/c22wgOn7RFR0YnxieHhEVovIggCQOLyKrImAoTPbMUU/cz6Q9yOnJdXIQAMikK7EIGL/0BcXkV7Qhjqc9XHAHSMTRvPQ6Ctd2CLG0jOTJmiW+/AOMGPJONuNJPlE5k869dDaBIAqxdAzJm1OUegAxD0E6JzrZ7l4VwF4eFnm/8qKq+SPDx7eVj/9FVYcFBfWzJCUF1ZYQkN1Ubv2fi2NsCujc4bZwQQ/1E4BFgx/ApoW7AwayAOCgpwGtgH3bA8L1c/I4A9zAjoVYVPOXg5IwBs0YTrPhavj3bpWIezGQEQu1FjLea1IaS/CucNwoKDBrVPkTw8q3no1Wx5WovItNhIVVVP/31SG71nZlEbYBfGsnVfRW8pHAKsGNBfGKNEIACg11yE08C+cW5Cq1jc7GFGgA3/06vNphzYnh5nBACATiKAsUq+ARk/uFYV4SjDjAA5pKa2DgCiwyzGWs51SB6SI89eHnq7SKyvLRkATp86UVdX46wqSC8jBlUBcXf3quK8tkJUFWzoMOxaVZCwAy3XiRwNoirgUVUEMaG5tV5VyP+5qvAaXKpKbW0dAMSeB3dmOkPy8KzmobfhJq1FZHZyC1VVTxQVaapCmoDpGgcPqgJOiyA4NM5g/RaDqoAr6XFSFazfwTnB5OxpHFXBYmUIgP5J0MuBdZcScVXhNbhUFeMpnU+QPDyreejDEvi+bZMAoLTsdF1djZb+uVEVXTjHVGecpYZvcKkq4ncMTKzEnfSqAk6qwrVB2+y/qoAfqoLEypiqIHY5/FMV4xU8zyB5ePby0IdwExMWkp3cAgCKioq09M+NqoDoOVH9qiJEUE1VjJwQV0wi/RamPM6qYnC/AagKmKoqSLob/yB5ePby0Lcb/IiwlJSePlNVVY+qiF8xPUMPqoKFKQBNVQycELdgvc6wA7WaG05VhIYHoCpYUBV6lHQ3XkLy8CzloW/hJiYshNzGcuzYEbEPDKpibAhiOiNCryFIeBQActpH+yowCYFbVREb46WqYHr5EbmSnlRFaLgXqiKw062q0KOku/ESkodnKQ99fnxBTuv40CDFXmm3V9i1BuoVAwv/p59cSQSL2gCuVIXsYziEnzlmqiIqmLOqkLZ5oyqIXn5MrqR5qqKJidBIpB9OpEdJd+M9JA/PRh76HG7CgoPI/eLHio9rDXSlKlpzmALooEVtAO9UhcoIovsjXgg7pjmrChMLxh2ExBaQD9LdeA/Jw7ORh/48nIkIS0WlvbSsjIVVck50B2dVoQogwpWqgOFA/SGkEEwjP/0qVk0vqdNaUhAieEOoCrAerEdVaP0GVdGaJt2NT5A81I4UW9qMeehPuAkLDrqiQwoAHDp2hIVVAPBNVZB2xsJXw4FuVAUxVRGPAqYqGOvoIdYCDaMqtKXag2BdqwrG2KgqSGw/u2VGuhvvIHmoHSm2tBnz0M9HT3Zu2SI6zFJTW1tut4MbVRGvAVUVrNuiUxUQVEWI1WIMdVYVvT/VqwovA+lrbmhV0W0WVIUKAsaMR2S7cIJUVYAeId1N/ZA8PLt46P+TbsXFy4ZIx9vGv1NVQbotBlXRDhf5oRcNF6piqBe5UBVdzQZxaDRVAUFVcP2qws9FuIJUVeocKgCcD6+X8gaSh2KzmzkPzXmwtiHSGVRFy2+FPZxVRfvRnaqw7vKgKoQHWCjHpapo4tDAqkLP0BxVIaeDzlRVA0BMuAw3RkgeNnMeNshz/BE3b7RlVBCEAOpJVfgXZNArViYS/jOqCmiqIo756VQFzFMVoQqXqsLVwwxVIWenV3AJ95A8FNrULHjYIOEGCwoAHlWF9xM2HC/so9vOVYX9hwzXmnUkMIpgPV0ICdyrCvimKpzK4EZVsAtV0U7PL1UxXm4JN5A8FNrcLHjYeO5GpwBMVTgZXKgK6VG9avBfENcQw7V2UhXEjCtvjEdVAdNVhYz/i6oC/M9AupuGhOSh0OZmwUMzw414zuQ0eHTnCsD3cKcqyHkTaFv4L5hriHbltC0iRUhFTagqmmEXVIWepnQ3DQDJw2bLQzPDjXjO5DQMImBQFRB7VyzEWWiQ7ihRVbTQayBZwKqCTVQVnipLd9PwkDxstjxsWHdDhIX/Z1AV4FuE0TtnVRG3OKsKD71GkulVRavZa1VBTqoCwlucA1YVVK+qYOlu/ILkYbPlYcO6GyIsnlQF676y68G+8H28UBXt9PVbEIiROyBVAf6WZf5dx2yfVAV7UBV+DV2qiji1IuEMycNmy0OTwo3+QvPhLdDm9amqGPNb/Vd2PbQywZWqULFiGw2qYtjSaKqCXKsKID3TNFURmkp+QULHelAVcWpFQgfJw+bNQ5PCDdINgwFfvqnN61NVMea39akKLVbUGSZWfGO9qgLChW90VQHDRKqmKvRXbVfpbgKF5GHz5qFp7kYcBgO2wMGDqhAgbdydbjaoCi1W1BnEro6gKjqSOakKCBe+CVRFSJW19jBVEfaV7iZgSB42bx6a527EU2FKYlAVLUV0srveqwot1qkQF6oiVGWiqmjVeFIVTXsMqTKpgqsK24FtdFIVLF4gAIxxncMBAN68Af68g+Rh8+ahee6GSwT7SoRFVBUtRfSoKjySgitVocU6FcKvP+Y6I1Tlm6qAJ1XRztmTqmjaY5gIIFWIqsLKdKEqgIA3gxSJEKqurgGAJGt4PZ1yHkLysHnz0GR3I+bALlRFVB4GZ1URlUenKuIhoNsoqgoLxgGoCvipKqxW71UFGVRFLJ32L79AiJbgfA0lKCQPmzcPG9zdAIuxLKzSLfwfF6oiiAZmRBFhkCbgbADhEFaIUVVEBQCTVUVoOhb20nZ0UhW+spw1Qyjdnaogw+WQ4JA8bN48bHB3A7oYq8tmWZjUqQqAEJq5ROhrq1dVnPcR+yNAVcFC0d6oitAo1FSqcr5A8rB587Dx3A3XEJ7NGlVFWARRr6poiTQ/RFAVcFIesT8CVBUkFO2jqvAJBaGt0t2YCMnD5s1DM90NgEdV4a4Ni3FaUBVBAZBWsFAsaDsYEmm3hzhdkSZRFdY8TVWA7O9eVVg7pLvxBZKHzZuHZoQbrBMEssWTqoAYp4UtggJgoWwQribdAfSqQhwscnWI0xXxUlUAwBxVYUU5qwovnxSI9aoC7A8AzFCV8wKSh82eh2aEG+RWVZD2u64bDKqCha/ghaqAYZqAfMWuDvFXVQDAC1XRrrhbVWFFuVYV0FQFuVEVMENVzgtIHjZ7HprvbsQgiLXfdd3A4zRmqgLiDu4kQqjRoCr0KvCIjbWWODfWWVWA9JjPqqJdcb2qgKHiJleV8wKSh82eh+a7GzEI1qsqLhXArUQINerDLyDQdAaxHQx5NS/QWVWA9JhpqgKGir1QFSTdTaCQPGz2PGwAdwNGVQHD4ku9qoB2XdkOrlRFH2+NXzFoGtKcVQWENupVBUt3EygkD5s9D01yN0L410IuDZ4AhltL6lMVupOwDWOjjNSrKgCeVUWnFdBYqiJeLU1VQLobMyB52Ox5aJK7EcM/28Zb6KwqfCcXqqLvclKOpipsH53OuFIVAM+qotMKCFhVAGO/VYVs9qAqWK8q9jNVAJDWItJ4buc5JA+hufPQZHcDQjdx/+WsKnwnF6piMLTgeh+dznhQFVeN9V5VeEDne7pTFUDIS1XhDRUXMpDKjYLB2opAPFp6GzeQPITmzkMTwo2+X/xUFU0BXKkKOCmPS1XRduE6I9TCC/ReVXjc53sGriq83aKqkMqN6bCoKtrRul0kOCQPyUHNmYcmhBt9vxhVBYFXqqLltwbWuFEVbQsrB4vdyXVGqIWX5pWqIK4qSNzTL1VBTqoCIN2N2ZA8JAc1Zx42iLshsRXzS+9ZVbArVdGCr55Gwj7uVEW3RZQFfijG9asK5qqCxT39UhXsUlXEM6xXVbB2tHQ3riF5CNDcedgg7obEVneqAkjoS7bdqCqCaOho5F5VQLy0XGew9qtQI2oOqiKeYb2qIlwo6W5cQ/IQoLnzsJHcjdi1gIW+ZEd6oyqGfcSvBqpxVYHmoSq67+zEsPC7N6qCpbvxCMlDgObOw0DDDQLjJXapKrqzdqcq2iZAyIWqaMoD7BBk3EeshG5qCFWhR3mrKroz1M5Le1KsO1XBgqog6W7cQ/KQlduseeh/uAkNDgKAqpoab1WFg1x6xI7iEgFaQVi4G4VdCkFGgB6iP8goXXyT+apCj/JBVYRUmW/VnhRLK3dSFaRXFay7UhIAkodnFQ/9DzdJUeEAUF1bYzSQqD5VAQCsdZ4nVdGCPAuxelXRHyTE9LNTVYyS4aQqSHelJAAkD88qHgY8dsPOSwum2JWqGOBKVZBQkLOqgOHuW0FVOIuQIF/aOFpDqQqcRapy7kPykH1szjwMONyw5FYLpk6qou8dAHCtKlrHeKcqIHhXripazOYU8EpVkO+qAvWoiqizIN1NA0PykH1szjw0w90YgimNhZqqOPWOdhGcVQULqqJ1HqvIwBdNVXjgdlIVw0FuVAXXryoAvqmKdphOVYTVof6oSmV1DQAkWsNAQoTkIfvYnHlojrsxpIp8iztV4Vu4qgDvKrFY8lFUFT2cC3FWFQPJ/FcVAD9UBXMpFMSEf/BGVbBeVbBDBfkKTWdIHrKPzZmHwT7t7QLOqoK0LRgDRoABFL2rxCzOYQCkN6v0m15ViJ7wLRzIqRCtXUzcEP/MdiYKoFcV1zkzsL7mpXIdoJVwZ6qqgBAGwA4VE5OOAQOoGKsYqxgcGGNAKsbkQ52qOjAGpNSpqkPFdSpWAWNAGGMVQMXAjlLJUSoGh4pVwDU1tf500zkPyUPyqXnzMNBwU+eoO3PmDAIIQoAABykIYYwAFARBCBQABFhBAKB9VgDIFoSxggAhRgIV88/kA2ZFKaSfacjGCEBRaCcgJgwIaAfRRUoIAGPax2xn8qtK7/7ADlVFCJHIzQYTkYoxAFYxZlKDAGMH6UUVq1gllMGcE8yoq6Q0AFXFgJCKVdbToJI+BnCoKgbkYJ3tIJ1Kel3FAKACPcShqir7AIBUjDFCDlWtrnXSVgnJw7OEhwGHm7q6qqoqBQHtaYwVRDoGQMVBChK7FrHORkJn0w8YBynMUAJGAEEKta20UzFGCBSEWN8j3t8kodQ6nsmBopD8FmMH2Q2zPgZgwkB7DoD0ItEvoir0ThpVpXtillojhFVqZTEGxOyroih0M38yCBUr5lRV2gDgbCPNU1WWNgtH0iZyAUQqa16AXXZOQvLwrOChCauKAWiqKCSTgDEoCgIW9TFLifkSacyPIuFcQaqKsfDoVu4eqXelKaiuYlosq1f0m0hhmzAtjYiNwq6a0GBdzqxtozuwnB0hMWcmXxHPcxFSVZVktrRKQ5MYIZj+YZ4zI0UBNvivmy1FQBvGeOxi2EACACQPzxIeBhpueE9glnYC20KiIGZpMLlafIk04kcBIq5RUcSxduZFuV3knSNUTItlh1H3Sq6vyjYh7RIDAFMVLDSYyQW7w0WoThs246pC92TdwrJorCgKpRyz3LxJpK2Y5upUVfiMgKAq2gAeO0eiY4RGQuovoYfk4VnBw4CHikl7MCj0NLQtxIVyTcBsmk1hxo4fpSBEVAUh6myBxWPEVYUVS8HcnLOqkG9EVWhI1quKSsfYMbORbE8ECIBcTEx6SjOpwLJr4ngpOxG/v4SoCpksJGQhflSvKqqqUunCmOXngBQFVBWrgABUg6pghLFK7LKiIIeqmtJf5yrq5eEfp7ZvPbmD/Kgg6B7XqVt8J8nDRuOhCTNTQEM7IBpU6BYeRDEAYgERMbuosPhNXaVKcmYqOKQIkidjDOzBPsAzUBD7m9VLXSLpIRUjhftl/hNyoyqASCbMZzcwb4JRVTznzKxUY87MOSPmzPQSYqoqKgbKDu3aMuWRYzee4ZGHRWeKP9n7xW/H8yrq7OJBHwBEBUf2b9nzrovGpEYmSR42NA9NczdA82Fti4I8uRuyxYOq8KQZ8Y53pSpa8g1U1lyqCjS1qohiYvyAFED1qAqW7sYLuOThe7s+nF+w0N0h5XX2hYeWLzy0/B9tRzzZebzkYYPy0IxHo3NV0efM5BphGhwBkXUQ/PZ2niUimjMjMWcGmu7ShFSoiGXSfJMuZ8bMRpGcmWS4JJN2nzODiTmzlqbrc2YhVQbjB6zlzAKlNVVBiBhgOXZTDww8rKiteH7zCx5ijYjP9y+cmPdiaVW55GHD8dCccEPahFl0B2AjVcJ6BIwBY+AzAtzwYrKPQucAtPNgCTDoVYVedW2TPmfm832IaQW9XB5mBADMmxFgamicERAmAsD4ASmC/derCq0RsJyZ8hICD1/d9sba43neH7riWN6UrW9LHjYcD81JpkibEK5n7AYhQJhdUKxl2iTaI4XZRVogzcVAWACu5YyCqiC6VIElxgqQiI8AITYJCrqcmSXnelWpN2feWbr/pyMb1/+dn19SWFZrB4DMmDYpkYlXJPe4PKlbdGiU55wZaKoMTh+0nFlw55TBLDgjh4oBoTpVBYDEqHDTOu4cA+Ph+7s/WFfkQ6whWH40b8b22U9lj2/OPARxlMf3sRtoOh4GHm60Nok5M7AzFLNoDACA6dJMwd2QsRtyITW7xVRFzJlJfTTqs/5WhQjNDyGZGwneGAA55czE5rKeJt2JFUAuc+aD9uLHfv+/dSd2Gk4+v/RAfumBZUc3Rlsib2079La2Q62WSH3OzK4GyyO5B9Z0RsiZXax3UGnOjBSkqipZDCbvmXKCjofFZ4q+K/Qqh3LGp38turnt8DRrMiuwGfEQs0wNmAfzeuyGNrtpeRh4MoX4vwjElFcbu6G/s7EblQ3o8UwbkxSXxU/tADDmzNrvwiaFDeshfgiig3NCkWLOTOIdMqgK6zljzjyvcMWwXx53jjUiymrtb+/5+ta1U8tq7GLODNo/GIirw9z30So85cxYy5nJYlCZTbmBjoef7/sikLLe3TOvGfLQ2d14P3bTTHgYeLjRqYr4Ax+7ob+TuE3dDdkC9Jz52I1QnsucWfuds4us42JV0EPI1UfCFhBzZkyJoM+ZMbB7W1j5GOOvDqx4dNPbpbW6CVR32FV6YNDPD+WXFvCcmdOLtgcw7TNWcz05M9JyZqSwO3clXEDHw/VF6wMp67uDK5obDw1jN2yjy7EbNggtjN00Ex6a62500NwND7aiu6E2s353Q8KtkCOT0nktmqpoQmRQFZZOg4+qsvTohn9ufNuny1FWZ5+05d2ymnKxZODk01QF/FMVnxpzPkHj4Y5T2+x1lQEWt+HkdlZg0/PQ4G74+Isbd4P4H5zobkQebj6V3yQ8NHfsRh9x+NiNFmwR0FvgBIenH7txqSqK/tzFWoiqIOEQshNXFeSkKl7mzKXVFb7GGoJdpQde2vnf6V3uYSWrwN04GTJXkMPBu1/LmdkeutMz5Mx+tOf8gNb1+8sKAy9u48kdPeI7ATQ2D7ef3l9WXYGQkhIRn2ZNcjl2A3QljbuxG6wFIjZ2U1Zr/+7Qqk1/71pRtEk8zS4tOvZJ7D6oZd/w4IhG4GHg4UZwN6LDIpGDrKzBdIwGIXqVNRlg7obPTAECUOkPwFYJ0gDMvKE2/MxUBat8rQKzqCqdESAhHDnNCFA5EGO/fr3Da/nzvMyhnLHg0Kp721/bKiKRlEyMKJCTw/TGHAfTIJUKIJ2l0PlYYUZAle7GEzRK2esqzCkSNxIPy2oq5hWs+PFI3triHWL9MZbIIa16jLb175WQjV25G5czU9yesLgE7/z59af7l5TXuSDzltO7tpzeNeev+demDflH22sbmoemjd3oWwc079TnnxiDqmpjN0D7CfPsk5bCsklg4zsIhHIE8UBizszkQwsmTFWAmggfcubS2ooP9/4QyHV5Z+83vGRAzFoDdTdcCbHWVO2shcsox268hGEsxQw0Cg9/PLTu8qX/nPTHbEOsAYDSWvu8AyuuXzll9Mpnd5YW8rEbPpeEqVfSjd3wwReMcVmN/eFNr7775zcuYw1HRV3lJ/vn35/3TEWdvUF5aNrYjTGTEtyNOHajKFTM+cEk1SR2kZbCskkw5MysE51VhcZiPn/Ag4lu4N2HnHldsad5KG+w4tjvvGR6AnTin7obfpYsvaffdV0px268hWEsxQw0PA//tfmD23+bcdBe7Lkh607svGHl5CVH8kDvbhAdANaN3XB3U15rv33d1F+Ob/JUtIC/yg8+vfnfdhKYGoaHDehutD9mZ3cj9BPReXfuBsCoKpoREFQFYxeqggJwNztLCwK8LmV19t1lhdzdgNfuRteV0t14C42HnS7oFHhxGdG2hubhA3lvzPpzkZftKa21T1g383+FK7x3Ny/u/GR36QGfznp/xcF/b3+TNLQheGja2A02hC5x1R8fuwHqbhR2HHc3gDEZLQaFjwGRUTKWTLKcWTMCgqqwVFnLmQFjjBF9eBpTFe/HbtYG7G4AoLzWzsduAPhT1HRjNwBsWIflzLq+lGM33kLjYecLOgdeXE5CJ200yImH605uzyvecdhefLjyRHRIZFZMepo1aXBKjxhLpJc8fHf39/MKlvvaqqnb5nSMTc+MSQc2NqOysRtWKXU33x5cteDQKj9OfHvJri8K549Nv64heGjazJToS8h34vTEmSlQkKoaZ6bIFtHdsHKoRGAMSKGxZmfJ/vIaOwD0SswGbSAPAwak6FSFh3zSJBXTMSMvZ6bMA8JknSYAUpBDxQgh+oGrJDlNNiOABNmUM1NeQ8fD3MSe64t9voOBY2DLHtEWK3G7Ig/L6yrm7F348b5FZfo5hKVHaF1DUnpO7TKudWSi1hRXPDxYUfTsH7P9aFhprf3x3//vx4GvYGrO6Yo7cWYKqxghePvP//l58gALD/00otXgiJBI03lonrvBwmPugbobRe9uAPvjbo5UFs3d90Peye35JYVixa0jEgen9JzQfnhaVBJAPe5G8XVmyjTo3I2CkANrH7Sr47W7UR0YAGLCQsxs47kAHQ/v6jghkHBzX8ZYQEYe7iotuG/dS4crPY2zLDmSt+RI3tSu4+9sP9wDD2fu+NLvtu0sKfzfgeXXpfX34G6WHdtwtPKk31XY6yrz/t7cP7mvtskkHpo3doN0Y/XA1iySz0CHs4xjN4CMYzfCODIGgDd3fznyl0c/3rfQEGsA4FBl8Yd7F+b+ePfEvDdKqiv0OTMdrxNVxaexm16JWQFfGVYyiSVkyIbMhirak7E1d+Pd2A1ZJBkrw40ROh4mhieNSh/hX0E3txueEWsz8PCbA8tv/vVZz7GGY/IfsydueNMdD8tq7V/6nkaJ+PrASnAauwHubjD8cszb4WF3yDvxe0Pw0LyZKawbqwe2ZpHP33N3o7vbARtnpngsKquxj/rlkbfy55XVt/jlq8IVN6x6dsfp/cKMAOtqJlGKjzNTqRGJAV6XqOCInLgsIE+AwxiYqcH8A78EIAxIyZkpP2Hk4d0d72wbbfO1lIti0p/sPEHkIQDaVVrw720f1ctDEfMKV0za/KFLHv5wKKAbLABg/cn8spoKw8wUJz9CsCvghY55f29u3jNT1MKwzczdYGx0N+ReTr6bzt2wEstqKm5dPWlXaaGXjdhRUjh6xbOHyo+TMvnlZ+m3zzNTQ1J6+H9JAAAgJ74jLdlUdxNgq85duODhzJ4v+BRxLoqxze49XeQhAJTVlN/y67M+xRqCD/5c9OOhdc48PHzmhK9FOSO/rNCNuwGMwdcJKZdoCB6a6W7AX3cD3N2wEh/Ie8n7WENQWmsft/al0poKNiyjUxVf193EWKzXtxng1wWhuMU2lJ+js7vRRsuluzEHLnhotVjf6/PGNd5lVSPTBn7Ye1qUJVLkIQDM/cs4MOw9pmz52JmH20/t9680A0igceluTMHZ524A6nM3QNdiiu5m/oHlG0/6Mw+9o6Twg72LAExwN4Dg0awb/GgDQU5cZk48G/2hc186dyPM4uncDZbuxk+45eH9WXe+mjv9YveLcbrHZc3qPe25Lg9Gh1idXfYn+7xdGuOMg/biWXsWGXhYVhvo7aMAkF9ygAQal+7GFDTPdTcULsZuQHA3SOduEJ2NoTNTAPQ0AOOymop3ds/zuxkf/rlobPrAtKgkwHT9HOlpX9fdAIbUiMTnLh733NaPfG1DlCXi3/T+THopCBkwxoqiOFRM7qNR+c/CzBRpodaZct2Nj3DJwy5x2d16ZdtrKn4ryiuqKq6otSOAKEtEy/DEAck9o0Ot/F2anIcAgACWH9/gt7Uh+O3E9rszRog8zIpN/83pfgVfkRnbhg1WGGamACHoEZe54e/8QMqPDA4XBstN46Fp4YZ6CS0pIB5GMxBk3Q0m618Q7U4wrLsB2HhyxxHvxv9dorTWvuTIhjsvGs6e6uHC3Xh5RzgCNKH9VTtLCv53YIX3DYiyRMzpNTklMok8ihEQExwECBB5GzQi9/KxK0f+R9bdUMnSrI9cd+MbPPDQarEObX05Ym8QJ0+VVNzwEAAwhrwTgcaFJUc2GHgYG2oNsEwAiLZYubsh/NXcjQoZMW0CDDc94rs3BA9NezQ6z5lpN9Mb4IVBYTrxpI3d0LF6/djNL0c3BNiSxUfWM//i/9gNG3tCr+c88Eimt1lVlCVibq8pmTE24ONTmLobco70DYd0jR+7UqCl3DQh5yXKsRsfYRYPSSFHA1A+joP2IpGHvRICXWMRbYnIjEkXx27YbCwlUo/4zACryI7t2BA8NC3c8JyZr7XRJSvAXZ82dqO5HmHs5khlUYAtWXtiJ11tKQxK+zF2g9hSzUczx3xw6eOpEQme672mdb9frnirY0wbzMwMPUl+6xh/fzMZL2ebyf/42A0A1jpTjt34CLN4SAsxo0kH7cUiD/skdY62RARS4JWtevBAQ4KOuOgMY7iiZY9WEfF+l58YFjcguW9D8LBh3A3WqYqm265UhY0oU1Xxb5DYAH7/BHeDfrsbcjaDW/X8bei7r3S/b1DLSwxcSYmIv63dsOVXvP1St/uiQ6wA7CBv3Q3dTbobU2AWD2khZjTJmYf3ZIwMpMCJGdfzQOPS3QDAi13u87v8senXNhAPTR67AdDSZj5cjuk4qDB2A5q/JR2sCKoSOEpqyluERmGsXTH/xm4wNSqkN9H16QOvSxtAtDG/tDAqODIlMgGYUVFVElewqmKkKMBcFHcuCPGxGwUbsl85dmMSzOWhKYzMirEZXPbdHUa8t/t7/6aoRrcZ0NqapJIHa7kZuwEEPeIzR6Ve9t3hX30tf2Byn8tb9lUbhocmuRus9ZHQ325VRZytRIiFZUAA0Kq+nMUbxIZEmetuyOmI9rVjdHpqZIKzqgAgRVGM7obPepAHM2NVdDeYTSiAF+6GDDGHWuSLX1zBPB4SdIy1BdiiaEtEbKjVwMOYEOuCgdP9SKkyY9Mnd75N5KE7dwOAXup2/8Dk7j6Vb7Om3dn+JmgwHpoUbvjIHGgLbWj36UYlaM4srsXCNBGkr0BPCfjugWhLhDZ2o+Xh/o/d0EEYcr095sykKlVVyU+0fM3dKCT9RUhhlgjRC+X12I1DxQCQZA0L8CqdmzCPhwQ5cYEO6w5NzXXJw84XtJvedbxPRaVGJHyQ+0RsaJT3PHy7xxOjWl/mZfmDWvZ9u+cLkcGR0GA8NCHc8KlH8StrsWFUwpOqEAXICFhPeiV20sZuWGPcuhsKn92NB1Xh7oa6J77EB6tEIAR3Q6kvx24Ch7k8BAAMMCglNyUwuz0mvb87Ht7Y9orlg1/z0uNkxqYvueKV1pGJvvLwhYvvfeOSf7YK9zRynBQe91jmXf/MvKuheWhCuBHnYfhX8KQq4EFVrm4zMMD2DE3pKbgb2hi37oaigdwNH7vBYJK7CfDinMMwl4cAtG8fyBjrd5N6JWT1SersgYfZLdr9Pvz9MekDPBQSbYl47ZIHll7xamyIFfzi4YCknCVXvP1a90eGp1zW/YKOvOQLo9sMadV3WpeJn/d588pWlzUCD00YKqaqwmd+2QfiL7R4yf60MHsODhm606sK7hjTNic+y+/5qdTIhDG2yxHrV8RZ6G5VMQVJ7124G+6DWXTCCCmYreakqsLsCelwfl8YHXZkj6ol7gYDYFVlCzF07gaTPYVJcpCrir2GuTwEAAygILg2feDcvxbu9vEOPgCItkRM6za+Xh7GhEa9lfvw453G/la0Y/GR9aW1lTtLCqJDIltHJLaOTBzSqkfP+MzY0CgcMA8HJOX0T+6BAepUFQNSARyqqmKkAqi4kXhoQrjBurv1AbMup4kIYjMCgElIVhDvYLI/s4Usmj7Qccxtqyf715ipXcYR1ik0f3GhKsaZKQDSV2p9M1OkGM8zAiDMTOncDUIIKWRIHyGFvHyK9C0tmc1MketHKS9npryG6TzkjuHTvtNGLf/nkUrf7uSe1nV8VqwNecfDNGtSakTiGNtAAKxirCBFZY8BJTHl3OCheWM3wleuKgBUVRASVEWbqSH70905VXLis5/OHudHS8akDxyakktUhOUvPLHVjd1grBrGbrAbd6MfuwHfxm5Ay9jBMHZD7vzWqwrQEQRkUBU5duMNTOch6VuEICrE+mnfaR1j071vzH9yHhxju1zy0ADzx26ANVHMmTFbU4WFZ/FyVSG7iznzbe1HXJPmKaF1xqUJWa/3eBCoCGBRVXhuBSxnRkjRxm4QCE7c89gN+DZ2A5qmYTJkw8duiMNHlPpizkyawTgjx268RUPwEBgfUiOTPus77TovBhZTIxN+uvK1MbaBkofOMN/dgNZPnlRF6Gy9qrCiXrrkoWe89jg3pA+YP/AFeoedr+6G0K+BVQUxMZHupoHQQDxkQyEQHWJ9Oeehz/tNHdSqh8vppKxY2+s5D24c/kHnFm0lD13C/LEbIC5UyJmBnY6YM2Pxln8xZ+aDqBhubz8iMzb9rV3z8tyPHGfG2p7vckfvxGySdSIA8rZxdsedC1VRaVxnYzcIADfk2A3PvcWcWVURAlUjuhy7CRQNx0Px1eC5Cdm58dlBClpXvK281p5fWhgdFJl1QXpaRFLryETek5KHLmHOzBRiXUu3AG0xYj8gBOQWfBLdFaYqJF6S3en6ccxZAoCgZ0J2bmL27tKCZUfz1hfvKK+rzC8pyIxNj7ZEZsamD03p2SuxM4/qCqkWANE3kSNE5rsRMryJgaoKaa5HVeEmW1AVtzMCKsYgzghwh4to/yM+M4XEN9vpZgQQBhUAs3ZR6yxnpuqDKTwsqynfW3bgaGXx0crilMjE1IiEjjHpMaFWzTWxnspNyEYAQ1IvxaqqIMGiSB66hznuBiNdVqZTFbaPqCogiAZXFf5CGK4q/JwyY9tmxtoe7giKghBm4qM1AAvd4awqTA5EVVEUrGKaWrtQFYQR9kNVCImdVIWV46OqkHZJd+MlAuThdwd++WK/6wnvK1r1vL3dVbmJ2QB0cIS8+Izzivaz5GF9MMPdgF5VtJQY8yDIVQWQtt7Xk7vB/ERZ0WQL60wFIaIqQJQKsMLkhaqKihVF869GVVFV5l9dqgo2RVXoGfLxQk1VsHQ3psNvHu4u2T91y5t73K+s+flo3s9H83omdHr/0qeiLZGSh37z0Ix7ppDOwfIpALFNLIxopgULNy4Cs53kcMQKYYN1WrF8HIyrCv1Mu4ENCzJVoSzQqwoGjBSFdCTwnQCEGQHk34wAqYrPCLDWklF9cUaAch2zkl3OCJB2kZMiqlJTqwJAWmykCb127sEvHq44uv6etc96iDUceSd2DP/5n/mlBZKHfvPQjHDDwqv2lakK38oCOE9JaRAFFl4we6kupYM2wM6KZu6GFYNI7wK7XwEhLYEmMRtYYMZ0lSQGPiOgqsCNlUdV4acmqArinW2YEWBeld0RzgSJtExbVSw4cF4ybzmfEeCqguTMlDfwnYe/n9z++MaXyr1+GvHhyuJ/rHr2SGVRA/FwR8n+tcU7zmEemvG8G6QlwOwrxoAU7RLx3tG5GxLqaIpIbCfif/S68nkt/LHVwpViEVpjgE5VSKw3PWembXKVM2P+vBuWN4s5M+9aBKDSBiME9AE4mP5xuM6ZcZ0cu3EPH3l4rLLoiQ0v+VpJWa397nUvfdlverSF3jkdIA/XHN82r2D52hM7D9q1B5XGWCKHtOrRKyn7+vT+pvOwoq5y5fFNq4o3bf57V0Wd9sydXondO8Vm9E/sE2mJbCAemhFutNs0+Fd2ZYEGC8QGgFlqqJkXzd2wmUkM+oiDeXfp3Q3NmaknVNhtC8RqkpyZGUP2kmbzcmYa913lzEhBTFVIfFRZzox5zoiEu2a4qvCcmasKZ6ccu6kfPvLw9Z2zy+v8ectCfknhR3sXTswcC4Hx8FBF8UMb3nT5VobSWvu8AyvmHVjxyo4vX8u5v1ditlk8XHho1ft7vznm6tV6a4t/X1v8+2f7vx2ZOniM7dqG4KFJYzeY5XjAVAVrf84Emr4wd0OTaGB/fqqQXLlyNwAuc2ZNVUhHkAxTy5mdVMWUnBl4W51yZqzlzKCpCk+VefvJuSP+V0G30wtC/pOrir2HLzz8s/SvX4/7/xD+j/YuKqupgAB4uO7EjoFLH6n3DTCHKouvXzXlwz8XmsLDyVvefW7bey5jDYe9rvKLwm8n/fHvitoKMJuHJo3dkFPSvjJbILTKeeyGdoLgbhALx9qBWs5K/l9fzkwUTMyZWTjzkDN7GrtBvGaMtZbRoFFfzkw7nuXM2rAid+CkIkPODHpVkWM3XsEXHv54aEUgVZXV2n86ugH85eGPh9eP+mVSqddjRlO2fvzc1o8C5OGY1U8tOuLts0R3lOyasvUle63dXB6a5m4A16cq+ngB4MLd0D96ACHL0bsb9g9VCRbmPauK6AZ9djfsvLiqaE33093Q8EoSbuluTIMvPFx1fH2Ata0/sQP84uGOkoIH17/pa3Wz9/7wv8IV4C8PJ/3xzp9lB3yqsaDi4Mydb5417oZFEgqkz4YA6nc39KqK7oaNlJPxM6BJrKYq4EpV+PUCr9wNMs3dgOZuQDPeTOWY8kh3Yw584eFxH58m4YzD9mLwi4cP5r3pva8R8fzWj0trKvzg4fLjG7/3/RnpALCzZNdXB75thu4GO6sKiyQU9bobdlS97oYyiJ2zTlXoeJmgKgj56m6wae4GNHfDz1F0N+RspLsxB17zsLy2IvDa8ksLwXcefv7XzztOF/hXY2mt/fltc/zg4cydn/h9mosPL6usszc3d4PqURWq3sJyGixGENGU+uJuAACwomiqgrFRVUhq7exuULN0N8DtHms8SHfjJbzmYYUZ4Ya8O9xXHs7auyiQSr8+sNJXHv5ybOPRMyf9rtHuqFxZ9JtZPGw4d4N1qkLVm4k4CHFEcDe6KMP30Z2aC3ejqi5UhUuAO3eDG9vdCKZGqAUDC2rswvA/DtJ4kO7GS3jNw5YRyYHXlhufBT7ysKSmwm9rw/HT0Q0+8XDjqYBeFg4Au0p3mcXDhnM3yFlVnN0Nv3A0ZOrdDY01ulPzyt0o7Iq4djeoSdyNYGqEWugiLid3wxuvUxV96JXQwRceWgN7bS4ARIdEgI883FkSaKwBgJ3kLgqvebin5ECANW76+w+zeNh47ob/JhwF/MLRkImFfcGluwFv3I24EsmFu8Fnq7upqqsDgLQWVp/76HyALzy8LDk3wNpy47PBRx6W1PgzQmwAU0lvebi7PNBwA+bx0Ex3Q6ODG1Vh/yDhKJfuRjBqLtwNOLsb5E5V2OBrE7obArfuhp2IZ3cD0t14A194eFlyzwBruzIlB3zkoSnuZl3xDp94WO7Xq4ENqKitMIWH5rxFk/4psmDiyd3wnqd7gpO70Z+JiyTR4G7Io+yZqoCgKgiABprGdjfMzWjXx7W7oSeiezO1s7sBnjO7uhwSHN7zsF9yz/YxNr8rGt1mQGpkMvjIw6wAauS4NLGTTzyMCjhtBACrxWoKD80JN/RPkQUTriraX5wrdwPg2t3oi9Zknx2ISZylwYLcD8IqJVHe6G5Y7AAf3Q1poR/uhrkZ7fqI7gaLU1SAMNaFJ+lu/IZPPHwky5+3fQBAlCViYuYYP3gYG2rCk0MYMb3lYUZUGxMqNYmHprkbABeqouVFHtwN1twNEnZlRYvJFTkQkThLgwUyqgqAUVXAzdgNfSiZe3dDWujR3SB3qqLFVa6xrHAkLsBh7oZfGFE6pLvxCT7xsFtc9iNZvr2lm2BWr6dSI5P84GFv8jzAwDC4VU+feHhRbKDh5pK4rmbx0DR3A+CkKvSmWADQVIU7T83dIASsY7CwKyvaK3eDkKYqgI2qAm7GbhRFYRVi5mt8dTfYnapocZWPIPjobkBQFZDuxgv4ysMb2424se1wn6qY2f3B3IRsAD95ODSlRyAnGG2JyIxJ94mHORdkBlIjAHSM6WgWDxvQ3ZCRMwqmKphv0rsbxY274TmpsMmFqmAsqAry192wUkxyNywnMsPdgHQ3XsAPHj6aPeG5rg96U3iUJeLzftNGp7NXTfnFw7svGhHICY5vf5WvPLy8ZY9W4fF+1xgRHN4vqbdZPGxAd4NVr9wNyXipu9HCtraXt+4GdKrC/2x9cjdApckUd4P5xdG7G/DP3aiqsJOEK/jHwxFpl/8w6P2RaW5fWRdliXgwc8yvQ96nvoYe6A8P+yR17pWQ5d/ZpUYkjGt3lR88nNblHv9qBIDr066JDI40i4dmPF6L/1WIqkIMC+9pxgCe1oruBin0sUPak88YyJ+tGHGYWBlzZnZ/df3uhj/NT8WqoiiAgD7Njz6DBpD4ND8MfKPQfK4qoKmK8BQ1QJrgUHqQXZm70Z6tBRgpClJVYA9Iw8KAOkIIyCoeeveNdDee4DcPW0YkPd/lwcc7jdv8947dpQV7SgvKa+0pEYmpkYkdY9IHtcp1vvZ+8/C/lz3Tf8nEQ3af7xGd3evJmBAr+M7DnLiskamX+XGXZk5ct2GpV5LnW5rCQ3PCDb/iYt6BVaw9yVEYyADB8fLpIVXFQfRBZ3SJFL+cOmkixSqImAKEEJ0RoH/GgDFGbAt5JxjGusfNMHeDEQIFObkbNmasczeMoExVEKMtmxHAmKiK+BQ1Sj6BZ6wBwD+Qa6byoWW2hXcm1mKtdDf1I0AeRodY+yf3vLxVLrBXUAF/PZF5PIy2RH7S95lRv/yrzJcVMa/lPJAZa8MY+8fDaV3uLau1ryz63fsa061pD2TcSc/YJB6a7G60x2F6pyoAgFWju8HkhVN8L352hEtOqkLr4xkl0t0S4cbdIO/dDbB0zC93g1jgQYQHencDxN2AG3cD0t34gsbnYWlN+bJjGw/bi9af3LnzdEFprT3GEpnVwpYVY7vrouGtIxJd8jC7RdvvLn/hgbw3d3pxC1W0JWJ2rydzEzoFyMPXuj86eet7Xj5hq0dctwcyJkRYIh10fPMscTdIvCxOqgJYG7vx4G7oQTpVYREEAygIgaYqoFcV9hrDANwNsKXp/rgb7XZwD+6GXw3QuxuQ7sYXNDIPlx3Le2zj24aH15TW2tcW71hbvOODvQt7J3b6T84DbazJzjzMirV9N3D6+3u+f3/PQg8254b0AY90vKF1ZCKYwcOpXe7tn9T91V3/Peb+HvHI4PDxF948ILkvBtAegN4M3Q3ifSeois6FiqpCgJxVBTAGg6pgYVyMTzR4cDcgDL2yJ1U3gbtBGGMv3A0NcfW6G4TqHCoAJFnDA+uucxaNxsPD9qLHN7297kQ9Txr+rXjHFT89Oq3ruLFtL3fmYbQl8onsf9zVfsSPh9cvObrhoL14Z0khAKRGJrSOSBzSqufQlB6p1kQ222UOD/sn9+iblLPi+MZfi3/ffCr/OIs7kcHhnVt07BnfvUdct0hLpIobhIdmuhvMJrpcqIqwJ5nqwawLnVQFOF2AqwpoxxjcDSYzAuIj+1ikx4AQBhUa1d1gDOReFUxf08fdjWZqtA8sCHnpbkgLwoKDTOm1cw+Nw8P80wU3/vpsmXdP5CuttT+04S0AGGMb6JKHsaHWG9tdcWO7K1SVRRQAHt8aiIf9k3P6JuU4VBUj5MDgwBgDOFTswKDSChuEh2auu+EpHU0c+NuRxT1VfjJA/iHaz15mCiD0MduFWWDB3TAZY+P0dE0AK5qLGXLhbjBbi+Fi3Q2bPAJh3Q0wc0JLpG0EABfrHRACvu6GtJcThAZH8QMfbhDSYd2iBsYh4K/9k3CPRuBhWU3F3ete8jLWcDy04a114rONz1cemrnuhie6ZASe9B8STgCArk0Avo2qClaZVQFOF0oZoddJlFYxzaJVwZYg3llMiYDOYKvaJcagrbvByOW6G0DIad0NUGvNVQW0zuZRn613IKrChpEA2GsYgFKNhkX6gQ8iiL5VJDknAX+psYR7NAIPH9/01uFK7f1z3uO21S+V1lSc5zw01d3o5owFVUH6XV2oCnKhKpQyTu6GU4qv0mHuBjSakLyrCd0Nc18Bqwp3btLd1IuG5uG6E9uXHfPz7VSltfb3/1x4nvPQbHfDljC4VBV6rl6oimCIndwNpxR7CixqMnfDzhk8qYpwfTRV4fxBmr5o3NGuLGYz+tLdeIGG5uE3hSsCad6sPYvKau3nMw/NdzeY3zbipCr0XPWqQvYwqIoWY7xzN6B1Fm2Qs7uhJ+yHqgCt16AqVBDqUxXh+miqQg5gqkJpzZ2xdmWlu/EFDc3Dn44G9Haq0lr7mqLt5PP5yUNTZ6YwkCkAugSGDbLw1mFM18gAW4jFnYiKQZwRoDEGAdmTPh1PtzqTzlyyIjHtLHrR6VUH/cwUGFTF5cwUbZ/G3SWH83aWFB6uLC6trcyMbpMZa8uIbpMSkUDLZEkv0s0IAKYvIdY6GAszU6SR1FqrTFUoYXQzAojeKM9eaizhHg3Kw52lBYE/GW9naeGw1Fzwi4dChgisWQjYu8n95uGW07sSwuKTwhMagYemrruhZg+0DgWMeY8KoVvre0R9oIIAs/UOWh8DLDu2fk9J4ZHKE4cri1MjElIjE7NibINTexrcDS1Gs8tsBSACRYjrUO+6GyYOGOGyGvtzWz5aenSjuI6LvKoVAKItkZOyb7+2TX9NVVRCFKyqKrXyVDJo5QpCDq4qGEiI1NZMqfS8DesdsKqSGVDpbuqFNzz89fj6v8oK//h7BwAgBK3CEy+KtQ1I7pESkeiBh4DMeTvVmuPbH88aC77wUFv/RRqCOOXBtbupj4f2OvvCI6s3n9p1rLJ4b/lB3rbOLTr2TOjW44JuieEJDcRDk90NcFVhKaJLVdH60ZWqAIay2or/2/XV3L8Wuqvxn5ljxl14VWxolOZuEJDOIy3CLOL4527mFSx/bsvHHt52WFZrf2Lz/31zcOWMbvelRCTUpyqAMa3ayd1AvaoCAFi6Gy/ggYf2uopvChb+b//Cijpdn/4OsPAQvLJ99iXxne7JuCEnLlvkoehuTGwheMfD34q3IYxUwAAQHRKZGWODQN0NbDq587lt77lcVbzt9K5tp3d9HvztiNTBY9KvaQgeNpi7oYMm+vyXJ6aIDRrp3Q3Z7duDy1/a9pHnpQ2v5c+bvXfRqzkPDE3J5e4G2IXAgJUA3M0HexdN2fKRNyeed3Jn/5/uf6nrfde26U9XcwLGDeBusHQ3XsAdD/eV/fXPdZMMgcaATSd3TFiz45Z2I57IHidYb83dmIJo9uRgDzxcU7z9f4UrlxzZYFC7GEvkla1yxrUfnhmTXq+7ceZheW35lG2zVhZt8txCe13ll4Xf5p38/fmLn4qwsHctmMRDU4aKtQWLAGxGQHiCkc7dsFkkHhjoSDor5JN9C5/5/S1vllGV1tonrJ0xr3A5n5Xi0kFrR4BAm5kiP9U7I+B9rOF46o938k7sYOdhmBGg1wRoS+gwIABZ88xmTDB4mBEgpyZnpuqDax4uOfTzXasf8RxrOP7718KJG15i5Qm+xqRrn31BW/LBJQ9La8qvXTl59Mop8wpXODvr0lr7/w6sHPrzY49ufLusphwA2PAyG6kE4DNTBh6W1VbclfdCvbGGo6Di4JStL9l5G0zioSnhBmlzdcBmBMQn1PP92N+gJt/M3ZAAseDA8pe2+/an/s+Nb80r+IXXy2rEbKhNm/wjdbqfEUAY4x0l+32NNQT3b3i1tLqChFJxRoBqEPFZCtKMsjYjQE0xFmYExEydmGc2vIcBICbc4kcLzwO44OG+sr9e3vamT6X8cjRv0uY3AYzuRvdsLX+RGp7gjoc7Sgt6/HDv2uJ67sMCgK8PrrxxzdT80gLX7ob+Pel4+MjGV/eUHfCpqQUVB2fufIN+MYmHDeJu2HNAXLgbPonn7G72lBVM+uMtP6p/bstHhyqK3LkbtuyC1une3WCE0MQN/jQAAMpq7S/u/MRZVahhQQAYVDZsY3A3WKUpN3c3/EREVcEYO1QAgJiwEP8aea7DyMNKh/3x9ZP8KGjBwRWf7FtIYg3XTAwwqFVATxoGgKta57rk4Y7T+69b/qyHsUID8ksLb/z1+bIaO3jhbhYcWrXp1C4/WruzZPf/DnwLYBoPAw03CMBZVVTVa3dDYzMgQC9tne1fG0pr7VO2fgxgdDeYrO1WvHU3vxVvJ7fk+odvD606WnmiXnfDRt00d4MU5KW78btt5zxc8nB+wfde5lDOeGf3vLKaCm3xCQIEcMeFvj1H3YCxtoHRlkhnHp6uKnso703vYw1BWa39H2ueK6upqNfdzNz5id9tXnx4mb3ObhYPAw03ZNCbZi7u3Q1ngNHdsHHTXaX7N/290+9mLDmSt6OkwOBukHBrFXc32L27+apwpd8NIFh2bGO97gbYHJkf7ibA5p3DcOahva5iQYHbmc16UVZr//bgCoO7yU3s3DPezycNR1siHs8a45KHr+Z/tcMvncsvPfDx/h89u5tfjm0or/N/uZDdUbmq6DezeGieuxHu8Xd2NzwSuXM33x9cHmBLlhzJ44NYWPDVBneD3LubtfU9vqReLD++ybW7AcHd8Csj3Y15cObhtr+3+21tCL47uBwx6tK4g/HLlzzo33spp3cdn2ZNcubhgfKiWX8u8ruRc/5aXFpd7sHdfHd4ld+FE+wq3dV83Q2AV+5GmOpFgGH5sbwAW7K2eIfCbAESfLX37uaw70+rNqC8zk5UhUdWxlXuboB7fs3dYM3dYOlu/IIzD9cVBcqoXaWFmFGXZlUIpUYmftDrqWgfI85Y28Ax6QPBFQ+XHPXznk+Cslr7z8c3uXM3gNCRSrcP7vMSu0r2NEt3wzYa3A24cjfCAmAMCI5WBvqnnl9SyJ7746e7CbABALCr9ABRFR5ZndwNuHA3SHM3SLobv+DMw6Iz/jwmwoDdpQW6Py6MEUI947O/7Dfdy4gTbYmY1nX8mz0ecsfDLwoC9fU/Hd3gzt0Axr5OSDnD7qhsbu6GhX9SqN7dgBfuJnCU1tqJu8F6dwPYtbsBwAZ3Y0IjAFy6G1K8wd1g3bycdDcBwSUPA0dZTYXuj4stBM+Mtf14+atX1jdRNSSlxy9Xvnb3RSM88HBnSUGAjTx65qQHdxNg4RQm8TDQVcWaqijammdVxYqwqhiASTe9wZJsogdrWwIGediwgtiqYjolZFQVtpoTVFVczWkCMmLaUFUhiRLZioBcIkVBDgyAyasXMGsWCS4Yq9Td8Kc3AgAIqzmlu/EAlzw0BfwPmXwhM54IQWtr8oe9n84vKfhf4fJ1J3bkC2O9lyZkdYq19U7sNCS1Z708DLyF+aWFOndjWFVsCkziYaDhxq27wRgLN57QHfh7BYHNTiG2aiBgpEYm8JdXspkpOkGEEX2wALDtrtwNZMWmBzIRDgAZ0elEVUhNqpY2YgTIQR4uDQirKpA/ChJp2MwUe2Yx4mLIZs0ByXumPKKB3E1KRCJi7AUAQEjFahDSbibPirVlXjxOURBgyC8tiAmOaG1NYkJLurFeHpoBPhfO7pniPLwouk2A+VQba5pZPDRh7IbEe6exG7bojqVR5KMm3IK7AQQXxdgCbEmnGBumhWkZJm+Hc84M5I0roI3dXOrv21Q5Osak85yZh1lyjTCJbmTsRlFotZhNYcmxm8DgzMPOcZ0CLDPKEpESmYSFORDAWOG1sOE+hY0GZMXYWluTWA96z8NAEWWJ8DB2kxHdJsDyE0LjmtHYDXcxmrvRriyzMoiOTWht5S4HIcAwsGWg6zUvTeyE2EAQ1w2th+sZuwEMeIzN7VuivUGUJeLq1L48Z2Z+jg7SIP4+Kepu6EwHYg8ukmM3gcCZh5cm5QZY5uUtewKjLgV9gwITTgzAbsoDxm3NsnvHw9aRCQG2MzMm3cPYzcDkSwIs/7KkPs1oZsrZ3WA2JkH3IEOl2JO7GeX+hfBeYmirHiQAU1XhuuGVuwEEKCsmfUirHL8bcFvbYTGhUW7cDTi7GwB6pbi7AY/uhmyKDpM3TLmAMw/bRbdNCg/oL/maNgPIB2d3QwMHdzf0RzIDCT7xsFfAt2J1jEn34G4GJue0Co/3u/CEsLicuO5m8bBB3A0bkKnH3ZBPRAhaRSSOShvgdzMezRqTak1CyKgqAELCUp+7QQhN7TLe1yUVBBkxbW5rO1RUFXfuBmMg7oZeBMHdgEd3U1eHASBW3jDlCi55eE/HCX4XmBOX1SM+G/gYDIGTu8HaIwcEd+MLD4em+K9wBNeRZ7y5cTcI4ImsW/0u/La2/yCNN4WHjeRugE1Oie4G0+00q3ii0zj/1mumRiZMaD/craposa8ed4Mxbm1N/E/Og742IMoSMaPb/VEWq6gq7JJgg7tBCPxzN3LsxgNc8rBXcm6vRH+S9ChLxFMXj+clG9wNgCacSHtNa33uxg0Ph6VemhWb7tdJAwD0jMvsGO3J3WCAy5N73GQb4kfh/ZP65MR3J21v4rEb8g69yupqjPmcLoWzuwE+E8XG1XTuBgBjHBNindN3uq8RJ9oS8VHvp2NCrFxVSPUqe08DHyTxxt0AoKGpua/nPOC9x4myRHza57mO0enOqkInmjy6G3ByNyDHbnyBZx4+fvHD7aJ9noV4oduDGewoo7tRacDAzLm6czfe83B6t/F+n/6kzreTPzYgzxJ25W4w4Ceybh+RcplPJWfFZDzQ8S76pcnHbrJbtggNUs5UV5+pruUXkrbNpbvhncQ2G9wNBrgo2vZW7lPeR5xoS8T/+k/PirGBoCqkeoU9yZhPAdGBFI/uhpQx1nZ53lXvDfZiHKdnfObC/jMzyYSUk6q4czfA0n6SAxjcDbhxN3UqBvn0CSd45mFksPW13Be8jzhRlohpXR8c2DJXN6UhuhttlltwN8iFu/Geh5fGZz3eaYwf5z6z232ZMemYzYKTmtzx8Pku9wxP9TbijEm/emrXp03nYUCxauOhkz/vPaooqH3LlpYgBQEEIVAQKAAIMFmyrwAoCBQECGMACFIQwvSdzQpVd0AY068IAMOesoKXts3ecLKeG8Rz47Ne7/FgmjWJTyPThxaTdX6sp1lgZisdiA6oGJijYPrDTBf5jEHFeN2JHVO2fpzvajHOoORLrm0zYFDLHJLPk2PoXRQIYSBPpgYMyEHWRwHUYRVj5MBYxVgF5MBYBVAB1akqxqACVjFdeoMBHKqqYlDZ4h0VQ1HpGYcK12Wnd0iI9rvLzkl4w8N38j/8ur4bxC+KSZ/W7aHMGBvhITkQIWA3n4CiIKyqioIUZk/I8C9Zzh4gDx9c/8Y8X95jdceFwyZ1uh2AGWTveLjpb7fPKiboFJvxUMad8WEJDcHDQC36Z5v/OlhiD7UEpycmhAYF0cgCGGEIUhDpbBJxAGOFdR7dQs0VVuh9D1js4wUHls/Zt3B3aaFzpbnxWRM6DB+Skqu5By01oz6FqwofROO6x59sRJ4Rq2ozmiqia0YR0SpuM3ac3p9feuBQZVFUUGRmbJuU8ISUiETqoamSgaqSLlexyvoekArYgTEGRG4SJ7HGgUEFcKhYxaACqAAOjB3s2aIs7tBfCUtKz9RWVNUlWsPG9+gQSH+dq/CGh0WVRXP2frn62PoKpwcydI/LGpk28Oq0gc48JP6fc0zhTBM2msXDWXsWTvbuYZIvd7tvdPoA6jjAZx5u/HvHosOrj1We2HJ6FwC0i0pLDItvG9WmU2xGZkzHhuNhoOGmqs7x2ea/iiuqFAW1TUqyhgR7cDcIgYLqdzdiT5fXVuwqKdhVeqCstrx1ZFLryITMmPSYkCgTVcWDuwHgNpLGAoxVYAm5O1Uh3W90NwjqVBUDcqg+u5uKasdpew0AjOvRIckaFkh/navwiYd7y/dX1lYeqywii4Yzom3RIVbPPKRbmLshxOLrv03k4cGK4w9vfHvdCbfWfnSb/hMzbkiJiD8beWjCAKTY06kXtIi3RiBiWFBA7ob3cYCqIpyr/+6GkgPzl+34pCp0QNE/d1NRXfd3RQ0AXNG+VU5r/xdQnPM4l3h42F68+MjGdSd20Ef8YYgKiRjcqmdufGZra9LZy0Nz5jt4TwNAq9joeGtEaHCQQVUA0/s2RXcD5CVQgamKQlSiYdwNDzcBuRuEVEzdrANjVaWq4sAYI8WDqpyurC05UwsA2ckthme2Drynzm1IHjZzHpo5vbq6oGhNQRH5HGeNaN0iOiw4iGsISaS5qiBGAk1VMAaoR1U0YXGvKmR0XlQVMinWBO6G9i5VFaohelVxYIwRclaVyhrH3/aaqjoVAPrYkvrakszqpnMekofNlocmr+Y4eNq+uuD4wRL60MbosJBWMVHxkWGeVAUQAk1VkGBTPakKOdaNqiDyEAxBVejZNraqIKIPTqrCjKsrVSmvcZyyV5+pVQEgNEgZ3dmW1iLSxD46HyB52Dx52CCLxw6etm84dGLvyTK+JSYspEVEqDXEEm4Jjg4NVngvAvitKtoHrP9KVIWO3QE0W1XBWFWpqlTUOiqrHRW1deVVZFkDhAYpOWkJOa3jyTI2CT8gedjceNiAa1VLq2q2HTv954lSkkuLCAtWwi3B4ZagSEswAogOtViCkAIQERIUGRxkUBVE1MCjqqj0Xct6VUH05ha6xhMaP2dGGMCBVTIBWVqj1qpYxfhMjVrlUFXApVV1dRgTAeFItIZ1bnlBdssWMtCYAsnD5sPDxlgaX1XnOHjaXlRxpqj8zPGKM+VVtd4cZVFQbJiFKQLVh8iQoChLMM+GEdtZ+8B0BCEwgqkK6RsiDYgt/Qatp0l5GOs2YQDEFo7SMkiZ1XWOkuo6IAcgXSm1Ki6rcXhzstFhliRreJsW1g4J0XLdcANB8rBeNDQPm+ZOnNKqmtIztSVVNaVVNQBQVH6mus4BAKfPVJdX1zV+exoHidYwIhQxYSEx4SEA0CbWGmoJkktpmgqSh43Mw+Z7419VnaO43Oh+OTOaD8KCg5Ks4S5/kqHkHIDkoYlovuFGQkLiHEOgz7uRkJCQ8BIy3EhISDQSZLiRkJBoJMhwIyEh0UiQ4UZCQqKRIMONhIREI0GGGwkJiUaCDDcSEhKNBBluJCQkGgky3EhISDQSZLiRkJBoJMhwIyEh0UiQ4UZCQqKRIMONhIREI0GGGwkJiUaCDDcSEhKNBBluJCQkGgky3EhISDQSZLiRkJBoJMhwIyEh0UiQ4UZCQqKRIMONhIREI0GGGwkJiUaCDDcSEhKNBAUAysvL33jjjUGDBmVlZXXq1Gnw4MFvv/12XV39Ly299957b7rppoZvZEBoVo2sqqrq27dvbm4u31JZWTl58uRLLrkkIyNj9OjRW7duDaT8/Px8m832008/BdzSJoDkYaOhqXgYDAC33377oUOHJk6cmJmZWVdX99tvv73xxhuHDh2aMWNGIFUGgu7du3/33XepqalN1YAGwn/+859jx47Fx8fzLU888cSmTZuef/75pKSkuXPn3nrrrUuXLk1OTm7CRjYVJA8bDU3Fw+A///xz8+bN77zzztChQ8mmSy65JDQ0dOnSpWfOnAkPd/3W4QbFkSNHTp061fj1NjR27949Z86c0aNHr1y5kmwpLCz84YcfPvjggyuuuAIALr744n79+n3yySdPPPFEUza0KSB52GhoQh4qDocDABRFN4hzzz33fPvtt7yP582bd8UVV3To0KFr164PP/zwyZMnxZ0rKioyMjLeffddvqWmpqZz584zZ84EgJMnTz7yyCNdu3a96KKLRo0atXbtWrLPvn37bDZbXl7evffem5WVdckllzz33HOqqq5fv75Pnz4A0Ldv37vuukusaPXq1Tab7Y8//uBbtmzZYrPZfv31VwDYtGnTDTfckJGRkZmZeeONN7p0g5mZmbNmzeJfn3zyyREjRvDGrFmz5uabb87IyOjdu/eiRYt27NgxcuTIjIyMoUOHbt++nRxSV1f32muv9e7du0OHDv379587dy4vbcaMGe3atXN3oVVVfeaZZ2677bYOHTrwjWvXrrVYLJdddhn5arFY+vbtu3r1aufDH3jggfvvv//TTz/t2bNnRkbGhAkTysrKXnrppa5du3bp0uW5555zV+/ZAslDOA94qLRr165169ZPPPHE559/bug/gvnz5z/11FOjRo1asmTJ//3f/23fvn3cuHEYY76D1Wrt37//0qVL+ZbffvutvLx85MiRDofjtttu27x589tvv/3DDz906dLl9ttv37NnDwAEBwcDwNSpU2+66aYtW7a8+uqrc+fOXbx4cffu3d966y0AWLRo0WuvvSa2pFevXnFxcWJFixcvjouL69279/79+2+++eaEhIT58+d/9dVXVqv1pptuOn78uOeT5yCNeeWVV5588snNmzd37tz5X//614wZM958880NGzZYrdYpU6aQPadPn/7BBx888sgjS5cuvfPOO1944YUvvviC/HThhRcOHDjQXRWfffbZiRMnJk6cKG4sKChITk4OCQnhW9LS0goKCly2cPPmzQcOHFi+fPlnn322YsWK0aNHJyQkrF27dsaMGXPnziVcP3sheQjnAQ+VkJCQDz/80Gaz/etf/8rJyRk0aNDUqVN37NjB95g9e3afPn0efPDBtm3b9urV61//+tf27ds3b94sljJ8+PCtW7fyy/rjjz926NAhIyNj9erV+fn5L774Yu/evS+88MIpU6a0bt1ajMSDBw/u06ePxWLp169fWlratm3bLBZLVFQUAMTExFitVrGWoKCgIUOGGLr5qquuCgoK+uyzz0JCQl599dXMzMxOnTq9/PLLNTU133zzjYczd8aQIUOys7MjIiKuueaasrKyMWPGpKenR0dHDx8+PD8/HwDKy8s///zzO++8c/To0Tab7aabbrr22ms/+OADcvh1113HPxtQXFz88ssvT5061ZAUlJeXk5PlsFqtdrtdVVXnQiorKx9//PHIyMju3btfdNFFqqqOHz8+PDx88ODBsbGxpIVnLyQPOc5hHioA0KFDhwULFvz000+TJk1KS0v7/PPPR4wYMW3aNACora3dtWvXJZdcwg+4+OKLAcBQ6OWXXx4eHk4Gouvq6n7++edRo0YBwNatW4OCgnr06EErU5ScnByRIpmZmfxzdHR0aWmph7YCwIgRIwoLC//8808A2Llz56FDh0hF27dvz8rKCgsLI7vFxsampaX5+hfYvn173hLD1+rq6pqamvz8/Nra2l69evFDcnNzCwoKTp8+7bnk5557rm/fvgMGDPCpPQakpaVx/YmOjubNI1/LysoCKbw5QPKQ4BzmYTD/1L59+/bt248fP76iomLKlCkfffTRiBEj2rZtizGOiYnhu5HPFRUVYinh4eGXX375kiVLbr311nXr1pWUlIwcOZLs5nA4srKy+J51dXUtWrTgX3nHEIje2CVycnISEhKWLFnSoUOHH3/8MTU1tVu3bqSitLQ0cc+YmBhDI+tFaGioh68YY1LgrbfeihAiG0n4//vvv8WTMmDFihW//fbbsmXLnH+KiYkxdE9ZWZnVajUMYXjZPHcNOLsgeXgO8zC4pqamqKiodevWfJPVan3sscfmz5+fn5+flZWlKIoY7Mlng/UCgOHDh99///0lJSVLlizp2rUrmTuMiooKDQ394YcfxD1dnoOXUBTlqquuWrp06UMPPbRkyRIywEYqMihSaWlpy5YtDYfz7iGoqqryqXZy1q+//npGRoa4Xbx6zvjxxx/LysouvfRS8hVjjDFu167dpEmT2rZte+zYserqat5nBQUFF154oU+tOjcgeeg9zl4eBr/wwgvz589fsWKFOAlPRokSEhIsFkvHjh1F2/n7778DQOfOnQ0F9e/fPyws7Ndff122bNn9999PNnbp0qW6ulpVVe64jhw5EhcX503L3IXJ4cOHz5kzZ926dfv37ycOFgCys7O/+uorfr1OnjxZWFh4ww03GI6Njo4WpSY/P98ga57RsWPHkJCQU6dO8ZH/v//+W1EUcYzNGY8++uiECRP41wULFnz99deffvppYmJiZWWlqqq//PLLsGHDAODMmTMrV6687bbbvG/SOQPJQ28aQ3D28jB4/Pjxixcvvu666yZMmNChQweHw7F9+/ZZs2ZlZWX169cPAO66666JEye+//77w4YNO3To0AsvvNCzZ0/nbg4NDR00aND777//999/X3XVVWRj7969MzMzJ06cOHny5JSUlM2bNz/77LMPPfTQ+PHjPbSJ+OTly5fn5uZedNFFhl+7devWqlWr6dOnX3TRRfzXW2655dNPP33yyScfeOCBmpqamTNnRkdHX3fddYZjO3fuvHTp0ttuuy0iIuKDDz6w2+0+dXNUVNSNN974+uuvt2jRokuXLocPH546dWpKSgoZmZs/f/5PP/303nvvGY5KTk4Wl0slJCQEBQWRlrdo0WL06NHPPfccxjghIeH9998PCgq65ZZbvG+SS+zcuVO0uGFhYT179gywzIaG5KH31+rs5WFwWlra/PnzZ82aNXv27KKiopCQkNTU1AkTJtxyyy0kWI4cObKqqmrWrFmvvPJKdHT0oEGDnnnmGZelDx8+fMKECZdddhkXqKCgoLlz5/773/++5557KisrW7du/fDDD48bN85zK7Ozs/v16/fiiy/m5ubOmTPH8CtCaNiwYR9++KG4BqlNmzafffbZjBkzhg8fHhQUlJOT8+WXXzrL1zPPPPPkk0/26dMnJibmlltuueaaa1asWOHVlWOYNGlSdHT0iy++WFxcHBcXd+WVVz755JPkp71797pMjD1j2rRpM2bMmDx5st1u79q162effXbBBRf4WogBb775pvg1JSVlzZo1AZbZ0JA89OVqna08ROfMEKOEhEQzh7wjXEJCopEgw42EhEQjQYYbCQmJRoIMNxISEo0EGW4kJCQaCTLcSEhINBJkuJGQkGgkyHAjISHRSJDhRkJCopEgw42EhEQjQYYbCQmJRoIMNxISEo0EGW4kJCQaCTLcSEhINBJkuJGQkGgkyHAjISHRSJDhRkJCopEgw42EhEQjQYYbCQmJRoIMNxISEo0EGW4kJCQaCTLcSEhINBJkuJGQkGgkyHAjISHRSJDhRkJCopHQ9OFmw4YN48eP7969e7t27bKyskaNGvXll196c+Dhw4dtNpvNZisrK/O10scee8xms02dOtX39taPN954gzRs2rRpDVG+REPgq6++uu6667Kzs9u1a9e1a9dbb711w4YN3hz49ddf22y2YcOG+VFpnz59bDbbTz/95Mex7jB37lybgLZt2/bs2fP222/Py8szsRb/0MThZv369f/4xz+WL18eGRl56aWXxsfHb9u27emnn/7vf/9rbkVHjx612WwfffQR+ZqZmTlgwID27dubWwvBokWLyIfFixfLdyKfFXjrrbeefPLJzZs3p6Wl5ebmIoRWr1596623bt++3dyK5s+fb7PZ8vPzyddevXoNGDAgISHB3FoAwGKxdOnSpUuXLllZWZWVlatWrfrHP/7R5BEnuGmr/+9//+twOAYPHvzee++RLc8888wXX3wxd+7cW265xcSKeAggGDduXL1vpPcPe/fu3bdvX3R0dERExLFjx7Zs2dK1a9eGqEjCRMyZMwcApkyZcvvttwPAmTNnRo8enZ+fP2/evOzsbBMrMvBw5syZJhYuIjEx8dtvvyWfy8vLhw0bdvjw4a+//rpnz54NVKM3aGJ3Q/KgFi1a8C1PP/30r7/+KtrL+fPnDx8+PCMjIysra8yYMb/++qvLosaOHSv6l1WrVtlstpycHAAYMWLEiy++CADTpk2z2Wx2u92QTNXU1Lz66qv9+vVr3759165d77vvvv3795OfPvnkE5vNdvfdd+fl5Q0bNqxjx45XX331zp073Z3RDz/8AAD9+vW7/PLLwYleEs0TBh6Gh4d/9NFHGzZsmD59OtnigSEGkBSG+5cZM2bYbLYHH3zQbrfbbLYVK1YAwFVXXTVixAhwSqaOHz/+2GOP5eTktG/fvnfv3s8//3x5eTn56b777rPZbB9//PGnn37aq1ev7Ozse+6559SpU96cXVRU1MUXXwwAVVVVfl0e09DE4SYrKwsAvvzyy0cffXTZsmWlpaVRUVGtW7dWFNqw995779FHH929e/eAAQNycnI2bNhw2223LVu2zKdaRo0a1bJlSwDo0aPHHXfcYbFYDDvcfffdb7/9dnl5+fDhw1u2bLl48eJrrrnmyJEjABAWFgYA+/fvf+yxxzIzM+Pi4rZu3XrffffV1dW5rIuEmyFDhgwZMgRkPnWWgPDwmWeemTlzZl5eXk1NTVJSkpjjeGCIl7BYLHfccQf5PHLkyFGjRhl2OHXq1LXXXvvNN9/ExMSMHDnS4XDMmTPnlltuIUwjPFy4cOHs2bN79erlcDiWLl3673//25uqKyoqtm7dCgBNa22gycPNPffcQ+Lu/Pnz77rrrq5du44aNerTTz8ll7isrOyNN94AgOnTp7/77rvk6gPAyy+/7FMtEyZMsNlsADB48ODJkyeHhISIv65evXrlypUIoa+//vr111//7rvvMjMzy8rK3n//fQAggW/fvn2vv/76K6+8Qlz3wYMHXYrbnj179u3bFxoa2r9//9zc3NjYWJJP+X5hJBoV06dPj4uLq6ysfPfdd8eOHdu5c+c77rhj1apV5FfPDPESISEhkydPJnS6++67J0yYYNhh9uzZx44da9OmzaJFi1599dUFCxaEhIRs3bqVeB9yYGFh4ffff//KK68888wzALB8+XJ31RUXF19zzTXXXHPNyJEje/Xqdfz48Ztuumns2LG+XRez0cThJjY2dv78+bNmzRo7dmybNm0wxtu2bXv22WefeOIJAPjjjz+I/Rs5ciTZ/6qrrgKAvXv3lpSUmNWGtWvXAkB2dnbbtm0BwGKxXHnllQCwceNGvk9ycvIll1wCABdeeGFkZCQAFBUVORf1448/AkD//v0jIiKCg4MHDRoEMp86G9CpU6dVq1a9+OKLQ4cOjYuLq66uXrly5e233/7VV1+BdwwJHKSWwYMHEyOTnJzcrVs3Qy39+vWLiooCgC5dugDA6dOna2trXZZWW1u7ZcuWLVu2bN++vby8PCgo6MCBA3v27DGxwX6g6SfCFUUZNGjQiy++uHLlyjVr1hCT+e233x4+fPj06dMAEBoaGhERQXa+4IILyIfS0lKzGkBqEcePSC1iRBN/DQ8PBwBVVZ2LIpnU5s2bhw0bNmzYMDLMJPOpswKRkZFjx4595513Nm3atGDBApJevfnmm+AdQwKHTzwkJAQ3PASAlJSUAoZNmzaNGzduzZo1N998sx+rRkxEU4abioqKJUuWvPHGG3wEKyUl5dVXXw0ODgaAAwcOxMbGAkB1dfWZM2fIDnxsTOwVAuI2eVFejqIBAKmFdLZ4LA9tXmL37t1//fUXAJw4cWLXrl27du0iDkjmU80cR48e/eabb0iaTHDxxRdPnjwZAI4cOVJXV+cTQxBC0KQ8dEZcXNxDDz0EACUlJU1LxSZ2N//85z//85//zJgxo6amhmz5+eefycBNampqt27dQkNDQchHvvvuOwDo1KlTdHS0oSgysEeGxABg4cKF4q+EBHa73bkNvXr1AoAdO3YUFhYCQE1NzeLFi/l270EyqW7duhUI6NevH8h8qnmjsLDwsccee/7557///nuyxeFwkBGT5OTk4OBgnxgi8tBut5OpKI56ebhs2TLyt3DkyJHff//dXS2+gs/nWq3WwEvzG0257sZqtT7++ONTp06dM2fO119/nZKSUlpaevz4cQC4+uqr27RpAwAPPfTQyy+/PGnSpDVr1pw6dWrNmjVBQUFPP/20c2kDBgz4/vvvf/rpp3vvvbe8vJzMIPIsJjk5GQDmzJlz6NChxx9/XDywb9++l1122a+//nrDDTf069dv+/bte/bsSUhIuPvuu306HRJuDKtLhw4dumrVqsWLF0+aNIlQTaK54dJLLx08ePDSpUsffvjh6dOnX3DBBcePHyfZ+sSJE8FHhgwYMGDevHkzZ87cvXv35s2bW7ZseeLECZGHR44cefbZZ3v37v3ss8+KB44fP37+/PkFBQWjRo0iY0m1tbW9e/ceOHCgHydFhorJ59LS0oKCAgDo2rUrGfRpKjSxu7njjjtmz57dr1+/yMjIv/76q7y8vEuXLlOmTOFzT/fdd9/MmTMvvPDCJUuW/PHHH7179/7iiy9cxvuRI0fee++98fHxa9asadWqFVkxUV1dTX698847L7zwwvLy8nXr1hnSXYTQrFmz7r333tDQ0AULFpw4ceLqq6/+9ttv4+PjvT8RnkmR+W+OK6+8Migo6NixY3/88YcvF0ai8YAQeuutt55//vmuXbs6HI69e/cqitKvX7+PPvpozJgx4CNDnnzyyaFDhwYHB69cufL666+//vrrQeDhU089FR8fX1hYuHv3bsOBcXFx8+fPv/rqq4uLixcsWBAaGnrvvffOnj3bP5XiQ8VbtmwpKipq3779I4888sknn/AlJk2C/wfeu0WwoDm2OQAAAABJRU5ErkJggg==", "path": "image.png" }
Which solution has a higher concentration of green particles?
[ "Solution A", "neither; their concentrations are the same", "Solution B" ]
2
The diagram below is a model of two solutions. Each green ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the green particles represent the solute. To figure out which solution has a higher concentration of green particles, look at both the number of green particles and the volume of the solvent in each container. Use the concentration formula to find the number of green particles per milliliter. Solution B has more green particles per milliliter. So, Solution B has a higher concentration of green particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABobElEQVR4nO19d3wcxdn/88xelU7NstxkycgNFwwYMDY2xBBiTDfFlLyE7oSQCgFCQuiQ8INACCENCAQSSIAYQ/ISwOCEbuprinEBAza25CZb5VSu7c7z+2PK7p0kW9KdTpKZ7wfOq7272dmd7z19ZpCIYBBi5ZbGD7c0NMeTzfFUHi43LBIqDQVmVFVUlxXm4XIGgwWGhz0CDjpxs601/sSH6/Mzuh0xuqTwtP32Cvmsfrm6wcCB4WEvMMjEzbbW+CMrPk3YvKK0LFQ8ZGhxYZhB2IKgBUEGAQYBBD8DPwMfAgPwITAEBPmKAIiyKXHbnIATyVcEh5NDYBPZnBzAFKcUpxTRzrbE5sboxu2NDqexFSVnTBvTf8/AoP9heNg7sP7uQM/wzsb6hM3HV44KDasqKFT2JKpBIwAERCACIhADiij/E+MspKv8uBa17ltI4m9NBwAgKA4Hxo4o33dclcXw8/rmNTta+v5eDQYuDA97h0EmbjY2tQJA1F8MAK5ZRqCGFEAMsBhs8SbJ/4AASA6fYoBHxci3CMXfXqNPfSoSDg4fWgoAH25v7qs7NBgMMDzsHQaZuAn6LABA4uAxR/OgVUB93nG454TBlxSGh73DIBM31WURAHAat0J/aJWkbe9oigJAVSTcZ7doMAhgeNg7DDJxc3DV0KDFdkSjOzZ+kkzG5dm+1yoph6/f2vD2mg2OQ6UFwTnV5X1/rwYDF4aHvcMgy0wBQHM8ufjDDdtb47v/aB+gsqTg9P1qBl0C0iDnMDzsBQaZdQMAJaHAxIqSfrn00Ej4nAPHD7oxNugLGB72Ar7+7kDvMXHU8MIhw/NT77Bua+Oa2u2FwUD/3a7BAIXhYfcx+KwbDfQe9bnP7ABAQcjfx/dkMPhgeNh9DGJx4yJfGQHPyBsYdIDh4e4wiMVN/usdBu8wG/QdDA+7j8EsbvSR0SoG/QfDw+5jjxA3+dIqBgYdYXjYfQxiceMib1pl8KoVgzzA8HB3GMTiJv9aBQexGWvQVzA87D4Gsbhxn3m+tIqBQScwPOw2BqW4GR4JA0BTW0z+bTICBv0Bw8OeYlCKG1G+bTuO/Nv4zAb9AcPDnmJQiptM9L1WiSVSoOhlYNA5DA93hz1C3PS9VoklUwBQXjjIlhcxyCsMD3eHPULcGJ/ZYCDA8HB3GMTixn3o+fKZ2eB1mg36DIaH3ccgFjcu8qVVvEcGBpkwPNwdBrG4yb9WwUGrVQz6DoaH3ccgFjcu8uczD1atYpAPGB7uDnuEuMmbVhnEQTqDvofh4e4wiMWNK/dNRsCg/2B42H0MYnHjIn9axcCgaxge7g57hLjJl1YZvAlIg3zA8HB3GMTiJv8ZgUGsVgz6DIaH3ccgFjcu+l6rNLTGAKCqtCA/N2QwKGF4uDsMSnFTEvYDQEsiKf/Ol1YZlA/LoM9geNhTDMqel4QCABCNp+TfecsIDFqf2aAvYHjYUwxKcZMJkxEwGAgwPNwd9ghxk7+MQN/fi8HgheHh7rBHiBujVQwGAgwPd4c9QtzkS6sYGOwKhoe7wx4hbvJW72BgsAsYHu4Oe4S4MVrFYCDA8HB32CPEjdEqBgMBhoe7w+AWN6j/MVrFoP9geNhNDG5xIzOCfaxVmuNJACgKB/JxSwaDEIaH3cTgFjf50Sp2ygGAgDVYN/cx6GsYHnYTg1zc5EWr7AE+s0GfwvCwmxjk4kb/Y3xmg/6D4WE3sUeIG6NVDPoVhofdxGAVN8UhPwA4Yjf4vGiVwT/WBrmH4WGPMFjFTWkoAACxeBwgX1plUI+zQd/A8LBHGKziRkD23vjMBv0Kw8NuYnCLG8hjRmAwKxWDPobhYfcwuMWNyQgYDAQYHnYTg1vc5Keac3ArFIO+h+FhNzG4xY2E0SoGAwGGh7vDHiFujFYxGAgwPNwdBre4MT6zwUCA4WE3sUeIG6NVDPoVhofdxOAWNxJ50SqDX7UY9DEMD3eHwS1ujFYxGAgwPOwmBre48Y4ugPGZDfoJhofdw+AWN+gZXQCjVQz6B4aH3cTgFjdGqxgMCBgedg+DW9wYrWIwEGB42E0McnFjtIrBAIDhYTcxuMWNRH60yuAfbIO+heHh7jC4xQ3qf/KgVQa/KWvQRzA87CYGt7hx5X3fa5Wm9sSydZvFXj8GBmkwPOwefP3dgd5g5ZbGba0x6FSrMKVVlEeNCAiukhAk8GgVd9iVVhG6yWO1EgCA7fB3Nu14Z9OO0SWFM8dUTBxanIc7NRjIMDzsKQaTuInbzrubdry9qT5hc3Fma3v7qIBlkY8xxqT9CkSALE2rgFfxqGElAEQkzQ+hi4gAwM/AtinpULNNDKHJdkqKI4WRwpaW1rbW9trmttoP2wqDvgNGlU8bWVYSGsS7Ghr0Ap3ycGTf8ZBTc4oYUvPg5yGS11obqGiOJ19dv+2T+mYxwEUFocLioiGlkVTKDgX8QGQxBAK/hWHGQhYLMAwy9DNggMiICBHFgCNKZxo5ABElOCU4OUQEYHOKOZTkHAA5kXglBM4JEB1OgJC0nWi0bWdDk2M7om/TRpbNqKoYHgn15wMyyAt2y0PGEAkCFoa6zUMC4IKHDjng5SEBgOYhIDiDn4cDXdyIAV65pVH8GSkIlZcPKSwIMkREYAAMAUEeo2uyIsi4m4Q34ubap6TcbPWXeCUiAmkJc3lAnOQxJ+IAbW3xpuZoS0ubaGlG1dBDa4aHfIN4Q1WDXaDXPNTBHPmKroWDLgEBwI3SkCeEvIfxcECLm3c27Xh1/VahSUqLI+UVpSF/AIEsRARgiAhSn8hjRAJiiEDgOSZE1JoFtVcMJG9fONkoLRqSx1wcEyLnJFSQPnaICNAhnrSdxsaWxoYmAPBbbP7Eymkjy/r5qRnkGh14WBby+10eMkQipo5BHaPiHoKHgeoVlEYUfBPvcsVVbdFIWZNua5M4dnlISdseFDwcoOJmW2t82Sd1G5vaAGBIcWRIRVnQ72OADIEhMNAqBaUaUevFyjwjojZt0u0ab+QNPRoFCKSZQx4DBwA46T+RC91CQvoAJzHekEiltmypj8USADCiuODYSaMHuE1r0E2k8bAkUja0LOjzWQyVOQNK8wkGIii7hnns67QklLd1lEnvTBtHSRlytSBwApA2DnElg7jgIQAncgiSA56HA1HcvLZ+26vrtwFAMOAbPqyiKBIWmoQJTSLHWOkTRJDHhIhIwpNy7RoAoU8APcarHGj31WvXkLJrlJTRukXYOIAOcQLknDiCw4kAbc6bo23bt+0Q5Di0ZviMqqED1qY16A468DCEABZDJLC6x0MEj0WTzkPNQMiKh0QgGCgtnQHOw4Elbra1xp9evXF7axwAyocUl5eXBSyLIVjKlmEILF2faD+Zee0aBEivKXItWPIIHmXH6o8p08Y1cLjnjLZrpG4hoVvIUZZOyuH1Oxqam1oAoCjoP22/moGmXgy6g854yBiiheCa2B15COCJ3bjM9KbJMYOBGTz02DvpPEQORMr67oyHxAEckmZOivP6+oHIwwEkbj7c0vjvNZsAIBTwDR8+rLAg6BM6hCFTmqRTb1kcg0fDZMZrXFkjBlS8K49dz5krz9lrwXq95fRjpVVAZBP0a1s8uXXL9mQy5bPYginVEysGU2WEQac8ZMKuUQy0vBHD9GPwsJFIxRMByWPddGSgEjskKm4QZBxHWTRcxW52FUnkwuIGsDlxgPaBx8OBIm604Tq8vKRkSGnAYhYiQ9A+lPCWGXSiVVh6NgqEVkmrnJLQx15vWZ8BcO1bki9I6ZokTatoz5kL3ULCxnEIHKItW+pFvuDYyVX7Dci4nUFH7IqHXtMGANGN4KTzEADSZh9kxG48Vo1EWuxGnaK0M6Ts6zQeckiLJCobZ+DycECIm6fXbBIpxupRw4qKC5m2aFy7RvnJrufs8ZkpLSelijjdLIC2dITe0Dkp97zHmhUPRMid9FyVx2fmrqXjqBwBB3C4fkWb8/qdTQ07mwBg8ojSk6ZU9+cjNugG0nkYYUC74mHH2I0nD7VrHqbLnDQ2dspDT66qk9jNLnjoADicBg4P+1ncxG1n2brNK7c0Biw2YkRFUVGBJTxk6ScrrSJHWmoSpV6kDtHaw6tbQEoWCW9+yoXHllEntHxRnrM4nx7N0fkpx+M/O+n+s1Avjc2t27bWA8BeQ4pO3qd64ATtDLzokoeAFuuch5aquMmIGLo8VFkLVGY2djRsPHAjx5qHICWO5iFX75KqvnEGFQ/7U9zEbeeRFZ9tb437GRtdPaowFGAIPkQGZDEmXr05KQbEEJnSGMLS6SoPxdziBq1hxJkOdo0kgPCWO7drQIy6qjDWGkZ7yzpHwAEdzjmgTcQJbM7bE3btxjpOVFYQPO+g8UbiDDR0xkPyIVO+PHnyUMLSIQuZNw/ljddoHurYDUhRQ8rTz2SgYl3aj5G7Nk5arooTF+cJ0njoyU8pHgoGEueENlEsntrU3zzsN3Gjxzgc8I0YNaIw5LcQhUrxWDduFoABWCLflB7zFzaOlDjp1Q1eSwcy7R2hPbzHynbtogKC5BinWTqO8p+5R88orSIUCzkEiZRdW7s1mUyVhIMXzDASZwChAw8DFoLioRup0daN9KqQtGWN6dVe0LHWRto4oN4U510jJ63uVNvXaWXurr2jjR2dLQUhWTxZKsdTF+Z42JhIpWprt/UjD/tH3OgxLg4HR4weEfRZDEDE/30yKoyu56y0CrgVw3p0dY0DQLpukf6U6zO7GQHRB29anGd4zp3ZNUKf6MgxeOZSpfvMqGdgcc9r0uGbNm5OJlMVReFFMybk/5kbdMSueSgsmjQeIlhplnUGDyW7OtjaHWM3AOBNgutclYeB0JGHWud5NN+g4mH/iJsnPtzwyY5oSTg4fPSIgGVZCD6GlicmJ7SK5eakPJH/zuoa0NUhyngVt5euYbSNkzmPwTtRBTrJTHn1iVfDpGWpeJpW0bE6m0sXOunw9Z9t5ETjKkpOnzYm/4/dIAOd8FDYNZKHMlBodVbzpS3r7vJQRnNAncjgYZo1Dd3hoefMLmpwJA8JbNI8dNZ/tqlfeNgPy2u9sG7zJzuiAcYqRlUEfFLWpGWjkCwEIX0sqWHS48QyjqOsXDV/Sh2DBeBD9AkphuhnKK7iQ/AzZiH4mXiXWeoz4l0LUcs4nYNQ1pbUdRnMY0DiWxbTFrjsiaX0pLiK38LR1ZUM8bP65pc21Of/yRt44eHhsKDioStrGDLh3XtGFoHSM9/oZaBgpuQhAlPs9SltqpjGfAiCk37G0lgKkqU+wUOhdFX+y60LERUhDHVPLARx3QxZqe/Fe3d+y6rqJx7m27rRNVQ11aMKC4Lid255ZI14ymp0Mysa9JnObRwxnUqfER6Wp6qzY6mDitWgXGiNMmuIlT4h6uA560JPbzWEzgVoe8dj45BNEG1p37x5GwDM23v0QZVD8vnwDTTSeRjy2jXqd44+FUPM4GFa9FByT/lTipkdPwPqM10V3pBry6TzsEO8hkjMbHBjNxkVYeRW37hs9No4NlG/8DCv1s221viydXUAUDVqWGFBSMgarxXAtIRG5uYC0jWJtnGsdBtHM0ZbExagH5Epu0ZqGFR6RmsSxpjUJ+jz6AG/tla6tGs6ZEZ1TxhmVG1IzYZYFAkPG1EBAP9ZV1fXEsvn8zcQ6MBD8DHNKGELoDzjYaBH7rg2jhtnVDzRzPHwUNvajHm452UjU2z0a37qFtDlobSmPREGb+1Pem9lZi3tV+ZpszgSHp53HubPuonbzu+Xr0nYvKKkaNjIoeK353pSGTkpZacwzLRZ3FlwIKtvVHZc1np29KIhve4GPbWbndYQa4tGLiyivOKMjICycTyzqzp4zo6K49iubiGb0+Yt9S0tbZaFF83ce1Csw7bHoGc8VKsOsA42S/qxK312wUNpX3vtGg9UVnQ3PNRWjDcX7rWD1IeldbNLHsLmLdvzycP8WTePrPgsYfOicKBi5FAG4ENkSL60eI2Uvm5sWHin4B5nyHJLxF88XrHUGKjrI6TW0vaI1gBqFozrIQu94cattb0jNQ/6XItar7nj8aIFI4WmQpSes4rj+BgyJMVsNnJkRUFh2HHo0Q+/yNsQGICHh8NGVjAAn9ca1VazrP/KHFn0WNP62Jdhj0jmZESdPTl1fQa8Nou8rmampSI4lstwyXZvvJK5/SSloV1vQNto2nbT1g0DsBjkmYd5Wqv4nU07trfGC4O+kaNHWgBI3E7ZjMgh7oa4EH0MkwCW0AYkwylIxBjT1iwiiseHUlgSEilNIqweFDPlEFGlA1DlGplbWyX9XgCvSlGZyAwrRsz8FsrE4ekz5TwZARJXY4xU8bFNpGI33CFwONkENhEHLCouiLXHGlpj721tmj6iND8D8SWHl4cMAIjbKZsT2cSRSIeEfYhJFaMFIiBCICBgTHjNTAYKpddPDEB8RmVCiSEioq70Q1lzAczLQHemAkkrW9OvKx7KKQsyFuPyEIiTXApHx3rQsoSxIyM40q7hwtixOeWfh/kQN3HbeXX9VgAIBnw767f70ePTWkz7ln6LpUDOfFN2h6x04LZtMUbSbyJUNZ3kRlLkKwAwBkRkMSQCBjJXSQQWY0TEGBInUXNsodptVcXqgDHOOWPIuYzGIQInYAwcLl0wZGhzYgicxKuY+8stxhzOAYg7DgfgxDnJ2Su2w0W1saOWrUhxzgFD4WCsPfH82k2ThxaZ2r++Rhc8ZAzI34GHTFV7pfHQIQsZoSN5yJhDttUVDxFA8VAqQpTMBCLw8BAED0UQWVTZdMJDFHxzEMQUG2Ry3WJOJJwUEjxE5hAHAG47ekE4zUPK4KHDOeaPh/lwppZ9sjlh80I/A5ZhVTJtSYqqKpQ1xNofJpHh03luS5pC5ObLZWskVvPTLAEiSzWlz4j6K+1DqZgfaZ8IiCzGxCd1T9TsLfkfA/K7NqqysxDBna0HCISg/CmQnBZxOwbAgHyISBQK+CyLcU5Prd2ch4H4kqMzHiID8nl4aCkeYmc8VKuggKXY6FP+sstDBtCBh5YK5Vja7iZiTEolLw8RNEsVDwEYE/UWblZE8FB4RiyDh+TloTypeYgZPGSIRKFgnnjY5+JmY2Pbyq2NPgAr5NP5HQtRrh7C9LEMD3tjcgzlSiLME4sRI81IxkSES6U/I2WTGC1xh6jmWCkG6MpO9GgklN9CUHO1EHTVg+oPiPFmCORzr45KKqXnLJS7p+6UMdVV8UnhVxcUBgFg/fbGT3e29vVYfJnRgYfuTAUvD1WmCTGDh+qX7M1UBuxN4fbl4dibki2KsTrCKKSGiAuj5qGUaO5Mq0wegrSAJA8R1Ho6Kl4DYKXJDh3JBmWRpeXOMnmolLrLQ6D88LDPnakX1tUBQDBo+S3LzSiD+OW7WsWN88s8FKWPtFvRZ6nYGEgrF4FIs0FmBJRmEH1A7S0zteKRx3MWeSox7ERkSasVhYfF1eoWPh614qv9bW8IvzoRnBwPTkn4qkQiQPlW+rtcdFs072PM5pwxJA4MiAAsxohzC8FvsUDIn4ynnvm49gezJ/X1cHxp4fKQWSoOSGLRa18mDwnTY7FeieNzmoc23hWMrwokVzMnqtvngapE0fx4+YUQHEPqWyj8dy8PhbYDlH69nJ/pSVYpZjLNVdG+OlatISfyIToklwgEAMezIwB3eS5sCgQiH2Mpzi3ZDpA8QwzRxyAPPOzbRPg7m3YsW7c5wCBSFGZA3hpKWdtiMUtpeyF9UPlZqpLSYwt45k+lawPpXYsko/BrEBl4rBgiYkxE6cBdtU/BXT8NwLOKGgAAEVgtr4ca7g9En+v0HhvKL20ovSCJRXreip7ToDKXaHPOAVMOF1PmbALb4Q6KM2ATNUdjxOnA6oqjxo/su+H40mL3PGRMGDid8VDa3RaDIU33lzfc5ZUyHREfflly6CJulXTNQ5SxGM674CFPX80PQNVYAILOUQCiwzmpmd9iAo3Nefd56BCk8svDPnSmdGSuIBxEWZvkepUMpXXjRvJd3yTDrnG9Vtah2kpFWAgBSMXMmBpjpVfEGHOhSRhDOXdOz6giEMek4jvSBHWaI19cULzhtK5kDQAM2XnnXhuPKYq9CeT63joOJXJj2mLXTpnFEElVuyOGw0EAeK92xyDd+3kgoxMeYgce4i54CAhQkFpVXXtmRf1Nu5Y1ABDadkfhZ6daTjN0yUNh0XDBQ31FcF8xg4cI4PGPZLAGiCxkOstugZxP0xkPUfKQuTxUHkZeediH4kZE5or9iBZYKjamqhtQnlH3CSKJiGl1U+5sFE+FgorpqBUAAEBWUgFjDAC8MgWUz0xu/IyB/C4xlPXnqNZ6lBYsQwBAp7nws4X+rgWNhi9VW1V3ZmX95V5ri4lWpS0tV/DRhZ5I0l4T/wX8zOezOKfXN+7suxH5csLDQxS/LgbIZLYh02MCGexLq+Xz82hV3dfDsTe7eUUrvrrgs4UWbybiYvQB1EopRAwZkOShsoCkclIfkzxEhrpN9PQQddRZZjlkVkRVeLE0qx9ABSLd2JNXT/uYjAflgYd9JW7itvPJjmYAsEJ+Jr0hJuuRVMzfJ6SDUibqwB1pJrNC1GF2nBtvkxKHCBGAOOPNVstyX9sbrOV15kTVuyJXLWocOErpJjKK7kxwpuQUETHeXPjZQiu+qvu3XNK8uHL75VJoErl8VdxS+QtEBJl3YG5QORj0A8BHW3bkeii+1NA8ZCE/QxA5BCVlZGrCpzwmHW5D8DANYczmM6zdGTUZsOKrQp9foKtsUFrQwosXVrbrSZEqKBZsdPUllyxCBL2Khauhyd3fUedY3EyuXq0dEN0MDAMVF1fxUAakc6zI+piHfRUq/qQ+mrB5xIcg7D3562LoifimZY7J/eGhrL4hbdcgEEOmpDu5mkHGyYClNgV23B+IPofJTd5uUKDKLj3GGfZN7q8S0V8RRUNR2qf0iVxzhIOOsQU3XtIjWSNQEl0cD0zeUXqhjtKhiCJzshBtpVcZgANkMcYdrrJd6PMxxtBx6M3ahlmjh+RqIL7k0DxExUP08hBVZpp5eShVnYi8DGu4M5hY24tLW23L/Vt/aY+8QuQWwGNliwij4qG0zQEB7War7Q1sW8ViH6HTTFaJE57Kw1PtwkPAKpH5Dc5FbFjU1zBEhwhVIYisJiMiBC52gEASwo4BcCALmc25dBoYOA63GHJODIARsT7mYV+Fiu9/+5PtrfGisN/vZ57InFj/AX1MhOhQpwMY6goCkSqWleA64sMAmI7h6YQUIuPNoc3XBxof33V/UiOvsCsWga/UW1WsMgLqH5CrHFlNz4Q2XNi7G3dY8Wd7vZbEYu/EXG/EziayRW0x5w4Hm8gmSHGyiWJJJ96eKAgFfmhSVDlCBg8tz8oP3eFhgDdPWL9/r69OVnH7tI+lNCHQEiftVbDOafbXXetr6JLGqSGnx0fewK1iZQlJ9jrE5SwqMfNbzf+21YqiXh66hPTy0OFixQKbIMW5TdB3POwTZ2pba3x7a9wCsHzM9Y1d2w+0NSgNGZV9lKajnF9LwvqVFhBDWYMgJQRHACv+UeFnC3crawDAv+WXwXWnoN3EEIlz1LM0AUBlwXUOMrDjT72+d4tHhzQ/wJTzryNNMj6tY5DiaciPyTrDYMACgPZ4clPUzBTPATQPmeKhrvZENUdJWjGAaTxU0dmy1iey6QA6UX/DY1KjY3ouwpU14Gt4LLT64F3IGgDwNzweWTsz0PC4ZK6qt9DJB1TOgczbquikl4c6gono4SFjehqQ8Dz6jod9Im7e2VgPAAUBxrz1C9JDlvv1uPVO4NYNo5oSlVnvAG6lk4ieMWQsuTHy+WlWfHV3bzW2KrDuFLCbxJwmFYUj9T8BIHGy4qtY6xvZ3H5pdDFIl1Bmptyd6tXwW6qiVIy6joj7Aj4AeOnzbdl0wEBA89DNZpKqt5S/SQBdawMAnmwOIliIha3PZ9kH1vK6Di+S+s2D8tkBwF9/T2DjJdiN2BA60XDtpaEdf3KzH+o3lanb3Iin5KHKVwidKswswUMm+MnQm/PtKx7mPnYTt52VWxsBAIM+LTVkRoAx5QpBgKKF8TVt4UNQ55W0ZPFYBOjZtQdVLSYCoN1UuHFRdwbJCxZbFfj8/Pj4J3SULh2EDLFtZZZPwJeqDdm1MasSlCR1ZI2fzIhZiA6RxZA7JJMCiEicIYaCvtakXdsQjduOmUWVDdJ5mFE/oWLDKqOMipngrm2CCBBMdFeZdQWr7U2lzAABOOey/guAc+5reMxfd12PGgxtuZ6s4kTZ6W70R9km0t5hSJzIreVDDgRAIae2uPV5xlsisTdtVtzqn5zC4i2hr3I2mrtxRkTiVp/xMPfiRmwMVuxHb+UCEDCGBU5tVfu/hiVeiKTSYm9N4Xnt4ZlNxacSK2FeieNmdsDNQAEAQKjh/u7bNV6w1uW+hsfsIWeknSW5iixxbtl1vbtxL/ypTQlfJSdkAA6AiueJpJXUnJxzYesJs0qwx2LILMYd/kbtziP2GpZ9T7608PDQreHSvNKaH1zLGkFIGVJz9wAYb8myG5jcpJJdRHJvaJmTsuKrAhsv6UWb4dofOeGpdnCqjgGBmkCuotFi3iZyAEQoaX1+xI6b/Hatt5EhsRcAYFzzzQ2Bg9cVfm+7/2DCPudh7p2pD7c0AIDPbym7FBEgSC0T2343d+e8sa13Z8gaACiNvTCq4ea9N84ta1mCaqqRykNJ2wcRdQzfSm0MbvtVr3vor7sWneaO50X7rOX1XresEU6uZirhwOQsB/moUUUOLVkfAZDuOQaCfgD4eHsnPTToPhQPxWKNymZxYzfab5Ls0r4Vemb25gSkX1QuQlzRX3tNr9sMbb5e1uYAgK4dEbYzE3U9iAA+Hh1Td2bV1osyZI0XQ5Jvz2w8Z//oTwO82fub7Qse5l7cbG+NA4BtMVAzXCNUNzt67sT23+36ixaPjqq/fMT2y328WdlEpCKp0ocS0Vx/dGk2PUQn6pUp2qtCDxuyRDI4xa2Y8MxHV7EqUe+gMm4yuw8AwBAtCwCgsdVEi7OC4KFjMVR76cpaFTU/RlbfkaxSUTFBXQgGLBfyhliRtxntxWP7ymxChL62N1j7RyKnLiWOfJXWDQKFkqsqa88s6F51YlX8yTnN5wZ4VOdnfH3AwxyLm42NbQBQYMkoNwBEeN1XmxaW2B93s4Xi6BMj676uKizVPpnps06yFDcAYDW7tcJe+YKIduEhWTYOslZZR+9AVYiqZcAQZNwOXK8bpE1HPibWb4JPdpg54r2E5mG65Ug6MgqgwqW6QkrV9eoiQARw/JVZ9oQK9kmbFaWY7OtGOnXX8Dc9LnougGplAsElH4+Wb7m8R7GnEnvtYdFzQek/qw94mGNx80VTKwD4fUzknkIUnd36Qz/1zAEOJNaUbb0cRfG1cqJk3TAQIlht3S0n7wos1bltSURgFWfZOAA4/kqmyuFB1Y+jR7IxRGnxqrSCx7Yny2cBwLqmtux78uVEBg+ZDJnJSlyQlgspi8arb1wlwRAS4VlZ9sQJT83QZ0L6ZO+z+2KrBIt0EApU/TFDLK/7ZqDnce5Se+309ltQz3jINQ9zbt20AgAxS8wzmJh4uNTprl3jRWHz4mD7G+K3B1LKoF4oInt0ascKzZMqnp9l446/kgeqJXFl95X1rupL0+sAwCtbGaJlMQDY1JhtnPJLCw8PRbzGnRkDRAxQRzeUDpMlCrreAgCAIFmQranrDDmjU+uGxXKR8/JYN4DKH2QYaFseaH+rd81OiP01QrXiueWchzkWN9taYwBAFiBioVM7Nf6HXjdVuvUKwQkQHiko6yZnITwJN3YjNE9wDA9PyabB9pLTPH4TgjdCqWYeaw9R2PMo/S8x84sCfgYAzW0mfNNLeHgoZD2AqrPTkWMRvVXZX0IgcKOEojoB2ksWZuNP8fAUJ9S5dZMTeGtExO2I/hft+HU2ze7T/juhI/255mEuxc221njC5gEm9cO41P9m05qVqg20v6Ey33pGJabXA/cSxIr0cUc2pIZf1uuWOStqK7uAubEbz87QKh6JMjaM6JFK3uyJMIA4p1qzEVXPkcFDGRfzRIvF81f2DKhZlKjHRbtXiNgy7Npe9yQ56sYM+ZKrXIRuDhFk0bIwzogse5O/Patow6jkfwUPBRNzyMNcihthwRZYYuSgMrUsywaDrc+Dsm7cCbPpwqJ3oIJ9Oj8v/amj7d66VC3DryNfqV5PgyEGUhsj8beGNj8wsumu0vYXgvYmTw076rw4Ch2r8nGWZQHAxzuMP9VjZPAQVB5KWJQ6Tqw/z5TP7s1YyRVwiBJFR7cPuaAX3UhVLOJFczLkSw6tG2JFIpTr+n4ib9uabWQzQC3D7beFppc8rM8ND3NZ5retJQYAlt/iAEBQ5nySZYP++CpRgEdADJgojAEgu3i+v2lxNi074akdT3rnziWq7sTPTrXia3rUbLxkYbz0dLWGKRU1/SMSfaLTdVJ2huZtKTp3Z2CmjlY6gpdczi/z+S3Hdr5oaIUaU+zXM3h4SEDImFjjigGAWtERSxJvlibfKUm8FXI2B1RNSntoZjw4pbXsfO6vEmeEvdM2/DrLaQ4292D+lF12WnLUjaRriLVIUMc8ckiWc2V4eCpx8pr7iECcfLmoUw1QNI2Hja0AOeBhLq0bsQKYmB4fhJ5NL+gUyFvQjd2oqB6AHZmdZcuOp6o4I3YjXskqiY97okdBnETJwpbKXwkt6o9/NHzjmRXbruhqTaby+Av71H9jXPPP/TzKtOnm6YNIoCRsp7e3+OWFy0OZjNJ1N0BEAWod2/yLaTvOqYreXZx4O+CpfyuIvzWk+c/VG74ybPNFltOsay8AoLXyzlh5t2wcYkXx0b+KV/0aPNJNv6utG6fk6Cxv0y6er3qoDByRfXOasmwZAIY4n4ies5zyMPdlfkkCACjrVUIqA774anJjNwCyiglSZadTYHSvm+WRQ3jYdaY6skHqH1bcPuGF5PAfdafNWMWlbVW/Fj30xz8auunrwW6UV41ufXD29iOKUmtEF9BT0yhycDx3YcUvG5KqAM6tTScYkVh2SP1XR7c9tOvvFrQ9P2LDV/zxVcKfQgAiig2/PjrmUSc0eRdfTJUubJ/8lp4ik74Cv3sGAJzSY7K6PYBUydFEHMR8LOELimtZJVm2DACeqDkCgJMjHuY2VBwDNdd2u+/g7BtMFcxUskCYjCjXxCKKj+jZxLa0Zkdc3tVbXn6ISyeG/ah17+VOYef1F8SKkqULmye+Hhv2I7Guhb9tednGM3e7oq2Gj7cc1HB2sb1GBhC0vGMEAAnHWDc9hpeHqGYwAsDo+JP7Nn3f171pUMyJltd+PdTynCr8QgJwCme3jHu+dfxziWGXOoWzKDCaWJFTOCs59ML46F+1T1gar/o1WSUd7WXdrGYX91c5Q07v9T0mh17IfaNRrZYLADp2k4tUCjT5Jnl5mMwRD3MZu0nYHLw3nxOoyZMiaoNCljNMFh/tK13YiwhOqvIGpwtfLGPdI00UClS3j11MRL7EaoytslK1MqIcnmVHZsulRzlHhpBqKqn7VvdljYCft8xsPGdZ2TKHFRMnxtDh5LMYACQSqZ7eoIHioTRvRGx4ZGLZtJaf9agd5kSLtl7REJoCgWrQGUZAJzSVh6bGicT+QuLDGTJFHPCuYzeImKy8MdS6HJNdzmbqChQYnRj2I1Qr+3kvS5w72ZVxCLSxUYwxh3OxX1uueJj7GeGqLhPrfQdV2O9m01Sq8BBQ3qlYDE0W+hExxNjoOwGgRxLHGXJ6quJbHe1b1XPsaN147gud8D4QmpoiQmTkmXlHgoucIttu6KmsEfDzlr1jv/ug4KcoV/9CzWNHFcIa9AhyHolYLw1b9mu9uheNMCdaWndRU82z4KnDQGCklhTuaL+At5avi9iNfPWVJmr+HFx3CvZk3jmxotiY+921REnViZJY3g+TWVdCt1ujmn1TxHopAFyczAkPc+ZMxW0HACwgPfd1S+CrWbaZjBwFckNkta4wSHtHSITY6DuTQ7u7ymeq8obkmN90zER2FbvJ+BgRyfUaEYXP7GYEAIHIsmuDWeTLxrb/pZDXglipX4eOARKOCd/0AC4PBYgQcVzs4Z7OpNHwxVcHm/4heQgyTypLMtQ+UF0xahexG3Geh/dJTFjS/cIOYkXtY//hhKYqHqrMFIGsGyICf1mi6Kje3azAlsCRRJ7qAQDIEQ9zJm62t8QBoNAnCxoQcX1gQQojvW4wVTDTDk11q/tILbvnVmoBIiZG3tBe83hXsRUBHjkkMWlZquJbsLs6q11bN+CdNa61ilAriMHGf/T6ZgVGJv6jro5AogQfNjSamVM9gOahcsGRiMbF/5JNm6HmxdAJD/XclEyqdCd242YkwvvEJy3jkd3PlnAKZ7VNWCqyHIqHcoNMIQqlNOS8fWQWkU2MrCn4ntKpCAQ55GEf7MQgfyxkWyWfhc6ZFPt975ppG3qpeIgiC87cXzsAgruOGaITmd0emW3FV/miS63W5YiI7R+JQj6n5GgnMluOkEerdN7xLmI3nb4LugpekJBzf3tWZRQAMDL5nzXBs4ULri+d5Ma66Q2U0Kbhzrt+ympOs7/9TXSaUK6rL3crIo+V3VGmiINdx240DylQHR+/hLW87qu/z9fZagd28fxk+YUi5igZqK1sWSUKanomZ4w5vqr28gsKdj7Qi5tdFbnKZsXAOSID4trKzgkP+yR2A+ppri34TqmzdkTyvz1tpHXYNXbhIaquTxg06geuspsZY8zD+yRCU3H4ZYjYlVbJiM4IdD92A546Dt0Tqe0QfVnPUy/gm3X8j9To2kba9Aqah0Ptd7JvzRdfYxceIqwbGbnzSI1exm7SpRUvmpOIzE46zSy2CuwmK7HGCU4mq4SHp2Zku8BjZQupKmhJ0r/jCNA67Dp/bHVPZzPUhU6qDZ9CnAC0lS1jNznhYe7rbuTGFMrj+LDo5y2+vXvUQqz4lPbyRdr57iR2o2REVz5zJ7svd6ZVMr4F6ezpJHYDOnaj4sS6X7koTChw6mT9K7mxG8uEiXsFzcNeR2288MU/EpkKdGM3BKowqtexm4zPAwD4Sp3IbKf02MSwHzmlxzqR2ZylrYiimJ8WuyFP7AaRiX42jb4vHulBEGdL+KSVpbeKudCqn66szAkPcyxupOAFQBFFQ0hi8Ttlf6kPHtnNFlrKf9g08leeNHpnsRuPZ+T9rh6/XVRz5jZ2gx6fuZs3uBt4YjfihM+kpXoOLw9TmO0MOwBA3qqSUQAeHmYfu+kUu+ch7ip2I+PQVknj6PuiQy/Z7d3ZWLS27P+tKrtNZPo9+RDUojInPOwDcZNu3QBiEotWDvnd2pJfJHy7mssfD8/cPvpv0fJLPCX9sjny/NpzkhHotANeK7dj4xlaBb1aJUfWjaefbmzIWDe9QBoPc7FiieOvlFa2235a7Cbt6r2ysjNa2A0PvRlS0PJPzEFl3ruOll9SV/NqS9EpvLP8V8JXuaXovHdGvri14BSX2yoOrXeahRzxMMexG1GWIA6JE1gi6MI40bbCUxvD88pSb5fHloWcuqLE2wDgYFEiODkRmtJecFSyYJZPiWuvtIKOsRs9o7oLn7mvYjcydOMZCRIeFQGiXTDLl93E/x3+GYDIudAqslsFgb7aWHkPBuoqBUSCHGgC7q/Kfd1NZ5aO90x3rOyOdTeccwTgsgofAMAJVNWP/NVWgkDbcnSag8m1BNDmmxTzjW4LTLHFTptEiCDmfBIX7RACEsmJNDnhYc6oXF1WCACNNhQTkfBvGVNTfwiRcSLbKt5pzWsqOIqp3XjFHmN+hgzIj0gyHkKITJUTSx0i59qDrCrOSUZAf6tTiZPRuJT63oyAagYBOXE7PDVbcRM4WPreYi4MJwAYVRTKps0vG1weCi4R1VszAHq/zJuAHZoMmpme6vZd85A6yKPdxm7QszNMlzx0M1Pk4SEiAuccGZMaS6l+XTHWFp5FwBr5fLF/NCdhfzFPPFTGg4iT60/ljod9sYumdIQ4V9EW0L2XPid0yCNC2m7l6HmMyqRJr3fop9gNajtT3qi0dgkREyULe/GwvNgQOMm1bhSJAjnZEOBLjG2+GSnoff0XACQiR5FVqtjYAx72LnbTPSs7nYfysqK6XSwAI6MwWieS9DNkbpuk7mSuR6bmJAqvSvAQcsrDXIqboMUAIABcWSjSluMkI6CI6SPByQ3oOU2h+FvB2JvB2JuigEUG3eXnRTUn6CLC/ojdgMpMMR3HkbxDJCInvE+qoPf141sCR7b7xH6GSCSljc9vNtLsMVwekrRGPw2fnU2DyaKjlKUgGas9/f6J3Qj9zJg7IxwAZEKFxJ7UXo2l/X0RRfY6l0RcZLKI5IQAT2aZEcl6jFzxMJdxgeFF4Y1NbX7CBAAAcOIWMiIABpzIkr6VjOKR2GWJN5W3PlnW+kQombmQVSIyP1l0VLLsNCFliIDJqj+AzupuoM9jN+oTxJExUjlI0YSoPIxW3lG+bk4vHl0KIx9FfiI6wokA0XE4ABT4/b1o7UsOl4cIAMCJPg2dPT7+194V+6UKZsZLT2MgtR2J2I1Shv0TuxHvceXZoRQWMtYrrBsiy64NR5eCE+UARMABmgvntfknSxNNfoFxIbMAtIQSKRBOHBB5TnmYS3FTEgoAtBHnxJAAxW+ShA/FkHNuMTGzUfxMWVnL4qqmX1i88zmNwdalwdalfMedLVX32aEpsrZYeaTavvCORd/FblDsx6y1CnfjxOJt4MSQ2b6q6Mjbi7d0ucBFV/iw+JY2a7QcZ0TOSbiipYUmcNNjSB4SJ0AiBIZJKHq76O450fN72hRnRc0jbwc3YkIMNK880QDt0ABA1rGbDHnUNQ9RRnblj0qsK8wBMdjweOGOO60OuxsNbfi1w4rri8/fVnyugyXS3lFxDK79REAiLvyP3PIwl85USTgA0ruVd05KXnKufSvpT+6184q9Gn7Slaxx+5eqLfn8mFDTYlByV5yXteTp7mQfxW5kZE6eknFr6b1LJUGAQhtAW8lpTSPv6N4Dk1hZcsvm4NdA2jVy1B3OASBi0lI9h+ShtEBAVGnX+2d8UPTzHrXDWVFD9aOOv1qwAZR146bZNQ8hjYtZxm6gK+tGaG5QPOSd8NAXX13y2fziLZd1lDUCFo+OaLprn9rDy9qfV7xVUQElcTQPCTC3PMyluBkeCQNAe4qTSKrIHKSs91ORYwKAcTuvHNr2ZPdbLtx8WaDpH6QfLYDIDWX4vn0UuyGVkxJ+M7q1CfKyoHIEwtpqK1m4ba9nksFdLfsmYGPRB2W/rQ2drH4dyAmERBZG7Ojigm4+IgONNB4CiDoMANgUPOmj4l/Y3Zs2nAxOqq96NBVSe2B6chqQxkMZVfQWXvVV7EZEP0HxkIlctXtlX2JV8Ren++K738HK4tHx9RePbHnQa0OJ3xdXTBas5o4DueNhTsVNUQgA2hwZXuGkZA0A5+oeAKuid1e090DWCBTWXeZvW658MRDZu5xold3FbhA6Wjdpko5A36OIiwMkglPqxjy7o+Iap4u1BWwsqo2cu3zEi9tC80hW2bg2LQFwzgFgbKkRNz2G5qH4U8QmOAEBbgqd9ObQp5oCM3bxdc6Kdg69enP1s8ngFCIi9MgUVLkbbd2o+gzQbOm5ld0xkrh7K9vlqryyFVtVtP507MlyS2Mabx7WtkRbN/JOVc0X50TKSsgVD3McuykO+aPxVBAoSQCMcSJLSBmGDueWZQXsTVXRu3vXfkHd5dG933BHQjx9z5D0RewG1fwRlRUkEVvxZBOlghHxKZBBfiSixtIL64svCCRXB2KrAk5dYeyNuDU64R/d6ptcH/oaR0w5nDgJcSVHnQAQHZsDQcBvlYUDvXtWX2ZoHoZcHoIlvVTWhpXvlT9cYq8ZEXsyklpTnHhbfKs1dHDKNzoRmNxeNJ/7qywxjqrUiruVpUxGZMWbInri8hAg69hNp3U3+ozkIbk8JAJwmiObvtkjWSMwoeHKlsDkRjaJZFBAxg/F7yvnPMxxaGBMaWTl1kbmcLB8nJPFkBMRQ07EGHKivVp+2+vGWWqTv/GxVNnpBMCY8GhQZ8tRxbeg2xmBjsjUKujaMqj0ishVu4uWq7Y4l+NECMSJA3AAAogFprT5pzhEvOSHnMgh0BYfqfIHqTmFPnHIsTkADCsq7PWz+pKjMx6CheAoHrYEJrcFJluIDNFCFDuCW4gMwMfQEj85taiRykaBN0Is/JpOeKjzzT3MkHb6GegeD0M772fJTb17VmMbbn536MMeKkoO9wUPc1zmV10WAYBESvz0UKwZK70DIouiw3vuRnkR2nm/MCe8kSClHYgxeTs5id2IU+jmHVwrV0SjSJUzgKe2iFBZNyr7SCq3TW60x30mXE6tA30GEFIpGwDGludgbuGXEy4PQfEQgCvLVFqRoOvCRHTG+3sDUqOlf4HaipXWDQF0ykMiVDzMSexGfE3zUFfHaB6C0xzc+adeP6vS5NtDY89zog48xJzzMNfWTVkhAMQ5+YUmQRT+FCeykJUlerlNuoYVX428mbBUWLNyc1VRQSnkPfRYq3QRu/HoMWV9CLEjsmzKukGwm/xtbwZjqwKqOjFWcEjSVxktmEdWCSj/yGvLqKgWV7arsncACNAhLpyyfSqMuOklXB4CSh4CWcAczhljIudCQERIIOY0gtQTYuU2BCZHCsKxN7h/NAWrpf8u8pIkvRix+7vrK6VzLwd1N7KeUOYrQOtWNc+AEwWiS3vhRnkxLL6sLvA1khEuyc++4GGOxY12m0dwSlqMExEKzxkdziN2DjafYrFVvGgOJ7lLGaK0ZIFk7R/oaK6nKqcXsRvxNeW8I+dcxAi1rMHkxoLtdwabMtcMFTtMDQNoKl64tfQHSV+VmJlCUuIQADiihooTkcw4qtgNcRuAIOD3lYRM4KaX8PCQJy1L8ZAsZA7nzLK4XBMaSKxHJStxpcQpbllc3LYs0va8t03HPzpRdFRi6IXcXy1CesiAcw8PIZ2H6ZIFZPs9rrsB0Usty8TqayRz2Ijga1ue5eOqSPxH8VA8AeSc9wUPcz9namJFCQDYts2J61+RQwSIFm/Ovn2WqvVYs65WkRUraT6zm7fqqEm8Y6yh5RSg3LBeRYWUR6VkWaDx8ZLPju4oa7wojS6eUHt8actiWZUD0pgR2W6Hc229awuWABLJFADUGE8qO2geOsQhnYdaspOKt4hjDlDc9vzeG78yavuPM2QNAFip2oKGB8o+mROp+xHYTXpukWQLAHTJQ73NJfaWh+DyENN4SARdldh0H37ekh8e5l7c7DtyCAA0pWQkn1Ru2OFUnFqbffssVatGFHQ0RNqunpks6FZDyDEWkR1t36bZOFoqiXcZqvitzEGAp74bEIM77i2s+1F3LFiLR6vrrxjReJeoqeGyfFxU8SERcSLPGCMncBwHAL46dnj2z+rLDM1DC9HRPERwOGmvwfMbQyIYU39FTf3Ffns3v95g0z9K1822YqtA1t1IyQWCh+SuuZXOQxBZzp7xUEDlwmR8kLSVzUH8IrJGUWq1rlwRz6cveJh7cTM8EhoWCdkcwtzhgGJchVbZEcjJ1pqzMqwbUnPWZOSMxGjpaggCAGRMz34UlnNnWkVUaqoZMQg6v6kkDgCgv+Gx8JYbetTnUU13DYn+Q0WXgROR+g2oM5L3KZsDQSQcKDWeVHbw8tCNSnBVLyt8B/HbRSSimp1XlLct6Wbj6ESLNpzO4qvAy0Op3dzZAKhif6imCjLJLpGrFZXxHh6SVHGSpVoSeSpidG6KEyGyXC2cL7UgkfjN9hEP+2IBCqlYnJTjjXKLauhcgbR1Q1oukJ6PL/a01J6x+DzzesXg2kXgfozEPJTMuJ2yboiAxT4qrOvWruEZGLvzynBilfCkSGXNOSeuzgjpk0ykAGD/UeVZPBsDCQ8Pdc4FlXVDnIADiHr30dG7e1TmDkLirD+N7CYAxUMAkFJGZ0hB6DZh2yCIODSCiF57VmjRFTvCBMqM+AB4dB6Rmo4p4omOb3Q2T0mg0Zrs9aT6iId9Im4mVhQDwNYEhZD0GAPiZv8RWbZMrChZOFsMntQqajosIOiVO9CbEVCrEHA3uoauu62VQ0beQfnhHk8KAaBgy3W97vxejT8HAE7kEMloHKDOlAsPS8xd2Hd4Sa+vYqDRCQ8VBziAEPScoCTx1ujm3/SifXSihVuuF7LA5SF4eZgpNdJ4yFSVMHTGQ/TwEDJ5qKLFjBM5gWzFTQoj3BO7cTj1EQ/7RNyUhALTRpQBAE/YHITXgA6nJt+UmDUqm5YTRfN1jb+M9intQASAjJTt4HrFar4+U/EdIrnykAjCuYpF1TIIT41IVWcoO5bFP8pmd5eSxFvh5GoduyHBe3It2HgsBQDjhpaYnFRO4OFhiiuP3lHZQL2iXXVLL8vcASDQ9A9f6/IOPHSrcnSFDqhYL1PxHTeyk8FDmQlV83468JBUhFvMgk4U7H5LvF1jc+BI7smQxtuT0Dc87BNxAwCHjR0OAPUJ7iNOAA7JX9fagu9m02xLxaWUPosMpM8sfHLuWYvMozl0TZSyZkWljlAcpF5VzYWKAYG0bvSsmUDj49l0HgCGtT3hEAlPypOZkiaPnXIAYP7EkVlexUBD8ZB8yn4kREf5VpwgYG8qUfMYeodA0+MuD0FyLI2Hwsh247syfuTJUgEAeNko31UzJADUvC2VmRL1WcJKihfN73TZ8+7ji+DJYjqrQ+QQ2HZf8bCvxI1WLMy2HQKR9+UEGwInNfdw2ymNliEX2P5q1wNHVSkAUp+I+SxC7qCq4hWjxd3ZLjJWp+bagftKaVqFQM9+AjGuvtiqLB9LaeJtETJQvCcxwAQgVEqNMW1yinQeulLeEVEzoIr4siwv4W97y+Wh3DWFca29mLRHvPFd8Rk37ihyCIqHXGtHhjqDBh4vjJOuxCMCsFlx65BFve7/Dv+Mrf6ZnCAPPOwrcQNKsTQmOAOy3VwMvhf5RS/2Dk8GJ0fLL1UZTU/1hFunqz0sUGsOqLyVzhpKC0gwALnymFRuS1UMq5JhUNFica3s98ksSq2RmW9Eh5OO3dicbMcBgGOMaZNreHgIXh6K322Wpg0AsNQmTG4UxNM8BE81eSc8BMVDSOMhaOtG8VBfhXt4SCqLBCCqK7C57ALb38sIzvuFPyU1v8/mvE952IfipiQUmDC0OMWBx5IqI4AOUaNv8jvFv+2RxEkEJ2+tvC/FikllNB3OSYX65DgJjQEAHstTe9TcXZudcXdPUgWR24K0WLLWVyqvkZvHwgG4eho6dhNrSwAZ06ZP0BUPxS/WT1mV/wtgchNXkUIua2QAQK6t58lbCR4yr7/v5aGHyWk85NLDksdCYwGiTVxEoFKsZMuo+3rhUr0b+UWjf4owsR2iWHuyT3nYh+IGAOZNHBW0WFOKmO2IMRZPZ7v/4DfK/tLNsHF7eObGykcTvioO6AhPRHo33sCHOO/RKkSkpYbMGpLrZ0l/SvrbRFqySIkj2uGeGWs5kjYg5AshOoIrAKkUdxxuMTSmTR+hIw+FrNG6KmsgAXAgt3ZZSA0mrWxNVNe6kWvxudWqaXa6l4fSltH1WbI60VZyU9jI7cEpX4x+rKv1lTrF/xX9YkP4FIfLX2XK5o7NLexDHvbt2pQlocCM6orX1m9riyeDBUG0GCfiyBCgyZr8atmT4+J/HdP2kK+LXZxTvsqtQy6JFp8GRJZ48lpScLIYgt0UaHkh1LLUn1ilJ+A74ampwtlUNDtZfLQn6yRGGhB07kkTTVbhkFpDRKxcQwDEPdKKOGdFjGe74bSoMXM454AOcZtTrD0OAIfUjDCmTR8hjYeFQUTmECHmbEsdYaUigFj4l+n1cdSMUD1fgXuyUZ78qacjelZUqinQ8ryv+Vlf3OV2KjQlUXBIsvCQ9sh8OZsXUMkLiAWnrqt6ZszWb4UTmRsNZCCFkfeKb6kNzFM8JIco1hYHgEPG9iEPdzULPle4/+1PtrfGh4R9FPD5GbMQfAgWoo8xCyFELUNTbw9PLAs5dWKWGwK0B6Y0FxzVFp7FGDIABGQI4lisTmIhFu+8r3jnr1nXMwnswtmJEZfZkdmIuIuZuK7LRTqnoP7xzNXmREM2LQq3LM3mUewMzHi55K8OkU1gc7IJ2mLJVCIVCQe+f8ikbFo22C0yeQjgY3Bw61XViX9m2fKWvT8CXykSILozGJjadVXQD0gU8WXyUK+Toy0tIgjW3xPe/qtdzJJJFBzSUH5JrHC2IyPHwEEl+AnKWv5R0Xx/QbKTOUMpLNpQeN6n4XNiUJR/HuZD3GxsbHvkvc8AoKQo5GPoY+hD8DFkAD6LWYg+hhaAz2IMgCGKPTYRgCEiAGOIRBZj8hgowFtG1i0KxboVuI0Pvzwx8nLSeydLraKSlrIuS1aXinn9wORcbfDW4BEVNfypbFvPpi9kYGXkJx+Hz3MIUg53EOMpp70lBgBn7j+uZohZTKtv4eFh0GcxH6KFMC751EGtP8umWcc/um78G4K3DBFBrz6BIFeoEBXFJGdUqdo/tY+C+AHK2nfkzYXrz/e3vdGdS+8sv3RH+aV6lhOX0SLmcM4B/KlNZe3PMyeqvbCtgSOb/FNszoWgcYhSDuWTh/kQNwDwwrrN727aEWQQjoR8DH0ohA4yBB9DC1EKHYZiRTWhJeT4IUgxhIgIPqe5uu7MUGL36z9rJIac0V59F8hcOGHaDBQtdOSESfTEboSsUdv0EEtuqv5sdjbP4dkhy6JstENkE6Uc3tISIw6TRg45eXIO6tANdouOPAxhy8kNvd+MEACayi5oGn6DEDSCpUDEGCIgU6syodrknnkY6NkfUf0G7abizxf64j2ot2gqXrh5+K84yOw4EXjiR9JL4gQ2FyUXZHPiIhNKZHNwAFKOkzce9m2oWGPehFHDIqEEBzuW5AAOgENgywpAEeUlTqIagnR1oydS60Ztq+vO6JGsAYBgw2OB7fe4MUKVFdL5P92+mNtFapxsIkfUPgHYnBK+qp3ll/b6IXwaPqeFjRaBbZtTe1uSOBSFA0bW5A0deZiA4g3BBdm02VB2obAUHAAHwCbiKLMiNnH1m9fxXcl5QiYqgDQPOUDx56f2SNYAQGl0cVnjfXpNSDk/xjMLT6Qm9O+LEG0uVrAFDmBznk8e5kncAMDCffcKWqw1xZ2kI+8f0CbiRKLmypY1b1rKYIbc4YBDd94Z2l0YrFMUbr4O21fq8RBXcdT6D1LSAdrylTuEDojxIIfQJnIAOcDO0gtS/spedKDdGvVRwfdEWs0hSiQc23Ysht+YPrYXrRn0Gh4e2oJvHxV8txeFYAINZRckrCoHwBYjq1jkkKzuUblqcIgcTuDqPJ7Bw/C227uzZ0tHjNxxUzCxShg4Qpty5T0powb0XBmby3xov/Awf+KmJBQ4fko1ADS3Jx1l0YlaRm3diD9t7koch4iTlDvoNA1teqDXHSjcfJ1kAOfquugQOARSskiNRByZLaNooGSiDMKlWMkXI//Uo3QjAKQw8kbJ7+NQJHRgyubxWAIAjp8yxiw0kWd4eJhyHOIAzVD5XuFVvWgqHpy8rfQSUT3MJZGkxnKIHMAUJwfQ4XJygOIYenSbkAIATjS8475e31Rl/Y1udZiqPBZWjOPR4rYnD+UQpVL55mH+xA0ATKwoPqhqKAC0tsQTNueAwgpVz4Xr5+JwryclbZyK5j/vdtfNXSDQtpzFPkpxaVU5ajxkHwgcAsEPm3MthrRFqi3etsCUzyof777ESWHklbKHd7BJwoVM2ry1NQYAU0YNmTKsuNe3Y9BruDxsjSdsToCfBU56v/DKHjWS9Fd+Ouoxx1eqVxFxlEuV4lx439LScaMHUss68pcPNgeH0OYQ2nHfLnKsu0Uk/mYosUrbTVp3OkQOl/FHmxNHtDlxQocg6VBrWwwApuaRh3kVNwAwb8KoaSPKHIL21njCdrgnduMQOgQO1+Mh90ghpQFK2p7L8ur+1uVqvNFWzrYDQuJIzSPedf0sFS3WcSUAbPVP/mjM6y2hmbu94g7/jGVD/lnP9uZa1rS0A8G4oSULJpmQTb/By8O47TgAa4LnvhP5RTe/3h6YvKbyGdsq0ZY4B/GfXDtNcDjFuWCUCMo6JOwdsAk46GNyAELRZ7O8o6LYm7rqT/gN0pMC0h6DiBzZRF4enphHHuYpM5WBxR9uWLcjGrCgIBL2M2Yx8KHIT4GFaDGx+w8wRJEvZ4gMYdaGbN3LeOEhm8c84a27UcuUAOhVATGtDkLU4Ij5EKIE2RNXgqL2N4ZHHxjS/kLHa20Jfu2zgnO3+Q/WlpTNqbm5DQj2Glr89X33yvJeDLJHRx4W87qZrVcNTb3T1VdsLNpcdsm2kgtQ7k4lV5MQ9aSq1kaeSa+7STvIqP8at6Y3AUEvoqGZH4141OE6FSXrSB0unTinEx6WfH3fMVlet0fonx3vj59S9ciKz7a3xrE1jkVhJGYTgSryJE4+JrbVQJuThUhAQacu++sSAUe565h37r9IUsqVAWRVsa65clcMAETOQayZIs40hWY1hGZxgkjbckIoSbwVtfZOYHGTb3IMi7nwE5WlFo22A0FxOHjylKrs78Uge6TxMBJCZFGsfLH0r+X2msrkf4am3ipwNoedOgBoCh6c8I1uDs5sisx3WAmTC6C46w0zQETggMgB1a5HwMUakp59xTmXa7+By0NfamNObscmkrkn4ioeig5xB3QMmzsELS4P821f9491AwBx2xEjHbQwVBgO+NBC9CmjxmJiS0Nh6YCFWJZ4a7/t/5PlRW3/6M/Gv6Urx0mLFJILULhzO11JpOazaKNGzWfREyzFajVCjXirwmW6jVPSodaWds6pOBy8cMb4kM/K9vEZ5AgdeSjLwVBVgSEwAIsxuc0moo/JLccYot5niiECCKGDIGptpKEjq1XFVAW966aYHS4YGG59vXrT6VneSMJX+frIV1xCcpEXI4erYg7ly/cjD/Mdu9EI+ayzDhg3LBJKONTa0p6wZXzLls9LeL8yimxz3p7dMoACSf9oUnNMZMYdQMxwk/kvVXcjvHE3T+nJmhOiqsskr43KERzO9dCKYJDNKelQNNrGOZUWGFkz4NCRhyqsqzIJHvtURENS6XUralVAufixozOqabV20mfX8yo9PIREIAfWbsyqVD4UOFxWAOl0h80pafN+52G/iRtQI11dWugQtLXGEimu8nYqrs7lq0PQynJj+MkaP67XcyMdA5arXqmVwNJrpeS8W8EwzT+HwOYyo287IqtFWtCI+H802gYE1WWR8w8ysmYgogseQjoPSYRFbPUqNA3JVQpQF9fI3JA8RluslAIyZEsqYyVXO+JAAAlfDsQNaZnokKN+NQONh/0pbkCN9LQRZQ6H5mh7ImHbst5P5Y+4K31a/NlOHmstmC1sE5VpUvXEovBJVUyI9SXV+mbymJNmG9iOG3VzQOYXuM59Kq3SHrdbmtuAYO9hpWdNH2tkzYBFBg/jCVuZrtqugTQbR1niKS5rRB3Sey67db22ruVTTBOxFU7SFtY8jAUnZ3kLOwOzhCHDEWxOtrZuCNrjqQHCw/4JFWfg+ClVALBya2O0LV5o+4IFQQCyGJKKEzMA4LQzOLMou43xmiLzbc49s6L0VHAQ8WKx64sjd+QgkMEaz8wpAkftDqpr/1ThppQ4BJByeGtbPJW0AWDK8NIFU6uzekAGeYHmYUtbnAseIjEAArIQiRNDtVMC52J9CQsZkTgGtakicu7uMuRwLle6IAIAhshFhJh7Z+dRS8Hs3a4asWtsDh5pK9mneIgpzltbBxAP+y1U3BEfbmlc9kldwuEhH4YiBX4LLWQiNY5APsYK+aYjt3+11+23hmd9UrUYAUmtHypWupEPQcwFV2zQc7UISKxerGM65PpcblWOrc44BEnHaW2JcYf7GJu/d+W+I8ty+JQM+hodeMh8as0TwUOR/0bPugX6DGPIQIWNkYmYMblbLYidGJhYmZ+kiCIA9Ke+mLZhTq/7vDNw8KtDHknjIUDSHnA8HEDiBgC2tcafXr1xe2vcxyAUDoVCfp8cS2CIFuK0lpvHtT3Uu8bXjnqstXAOqX3FAD0zwlWhjajikyvC6ppmzwRRUrlGrmSNo/ws4Xy1x5KxWBwIhhQGT5o6ZngklMsHZJAXdOShJXOmkoe6FsxiCAQWkxU1cka4RwaRpypHSxwvA3V+qmrHdSN6O0fn1bK/bgvM4ipxwQcqDweWuAGAuO0s+2Tzyq2NAFAQsPwFoaDPYkAWYwwgBNHDGr5RYvfYpdpSesHGoTfK7KOsdwBQi96I47R1GzlXdX1qLgUnFTlGzjn3SByREUhxamuJiU0zpg4vPWrvShOsGbxI46Hf8hd6eKgsHQv1GkxpNg4qSweIGGOoVutTOXJt3ei1UIAAfDw6pe60wmSPXap1Bee+X3S1mvPNUxxaW9qdAcnDASduBD6pj76wri4aTwFAJOwPhIN+xoTtWsRrv7Zzgb+L9UY7xbbIwnXD7hQrj2RUc4K0bvSixV7rBsAzb0tNgSOd3RRLqHGCFOftbfGE6G3QP39ipdi/0WCwYxc81JaOljVyQThl5ugaYrH2DQAhILLOq4qFcR1MbTqw7piu1tLtFBtCJ79VcptIsNpEA5yHA1TcAEDcdl5dv+3dTTsAwGIQKQz7Aj4/YwhQRLVzmr5T2j0bZ0vhqR9XKFkj1yVOXzNUjTcnLl5RrUVCSsSAJyOuVi1BUTQcjyfb2+Mi2nxozfAZVUMHjjIxyB674GEnsRuPXWMxJqwbIWgAgQGSJ5ojYoWgdR4AEYWc2mnbFxV1tu5nR2wInfxG8W2DiIcDV9wIbGuNL/ukbmNTGwBYDArCwUAo6GMYhujE9oemtu1qu9W4r3Jt6bXbC+YjgteucT0pnZlSk6e4zDuoSmLlQ+nFRLiuE3d4PJaMxeKijerSwq9NrBwgHrJBztEJD8NBUXmMBIwp6wZknbFchRKZWDNU+lOeWVTkipoMHqLPaapu+fP46F276E+7Vflu4VW1oaNSDo/Hku0xKWgGOA8HurgR+KQ++s6mes9ghwJBv8/HipzaquR/9oo94bV0Uli0MzhrW8FRtQULEfUQE2MMPGsVe2I3cncHsSsQ5xyROeSJ3XAidGM3DqdYLBGPJUQLVaWFB1dVDDSr1aAv0AkPQ36fZSGAhWI5dOlnAYClMlMgozlyrWL0rFWseQjuDkVizWwMpr4YFV82un1xSSqN29v8M2uDX/s0dMpg5OHgEDcCGxvbXl2/VQw2AAR8LBAKhkJ+S+YmWaGzMearZqDXowa54QZ4tYrymdMjOJA+HyptkhQQJ3AcHk+kYrEEd7joQHVp4WE1I6rLzJLmXy505KE/FAyH/D7GxDRxlauSrGMyMw6InfFQrcwPBFwGElVNhsxdAAGVpFY1+KYSkT2YeTiYxI3Axsa2D7c0fFLfnFCPuzDow4Df7/MFAz7lOatXuc2Uygiolc/djRgAQO1SKCI4Dud6RjgnSqacVMpOJVPJpC0+HLTYxIqSfUcOGRQDbNBH2DUPAWSOXM/hdHWetrKJi7maoBY9EWLHURlSXXG6x/Bw8IkbjU/qox9uaVi3I20NtIDfFwj6A0E/Agb8ltxwAzqsMwJuRgDcXTSBE9k2dzhPJe1EMmmnHG/jE4YW7ztyyAC3Vw3yjG7zMN3KVrlw7/pKgoUcgPZQHg5icSMQt51P6qMbG1u3tca2t8Yz3rUsZMzySzsXtSJRWkUi5Tjc5o7jeDeBFxgWCVWXRYZHwhMrigdgqN9ggGB3PGSMsU54mLab657Pw0EvbryI287GxrYvmlq3t8TittNx1LuDYZFQyGeJoa0uKxy8Q2vQXzA87Ap7lLjpiOZ4sjmW2tYai9vOLj4W8lnDI+GSsN/s0m3QFzA8FNjDxY2BgcHAQT+vd2NgYPDlgRE3BgYGeYIRNwYGBnmCETcGBgZ5ghE3BgYGeYIRNwYGBnmCETcGBgZ5ghE3BgYGeYIRNwYGBnmCETcGBgZ5ghE3BgYGeYIRNwYGBnmCETcGBgZ5ghE3BgYGeYIRNwYGBnmCETcGBgZ5ghE3BgYGeYIRNwYGBnmCETcGBgZ5ghE3BgYGeQIDgJaWlrvuumvevHlTp07dZ5995s+f/9vf/ta27d1++eKLLz7rrLP6vpNZYUB1Mh6PH3bYYbNmzdJn2tvbr7322oMOOmjSpEkLFy784IMPsml/9erVNTU1zz//fNY97QcYHuYN/cVDHwCcd955mzZtuuSSS6ZMmWLb9uuvv37XXXdt2rTp1ltvzeaS2eDAAw/85z//OXr06P7qQB/h17/+9ZYtW4YOHarP/PjHP3733XdvuOGG4cOHP/TQQ+ecc87SpUtHjBjRj53sLxge5g39xUPfJ598smLFit///vfHHHOMOHXQQQcFg8GlS5fGYrFwOJzb63UHdXV1DQ0N+b9uX2Pt2rUPPvjgwoULX3rpJXFmw4YN//73v++7776vfe1rALDffvvNnTv3L3/5y49//OP+7Gh/wPAwb+hHHjLHcQCAsbQgzre//e0nn3xSj/Fjjz32ta99beLEidOnT//hD3+4Y8cO74dbW1snTZr0hz/8QZ9JJpP77rvvbbfdBgA7duy49NJLp0+fvvfeey9YsGD58uXiM59++mlNTc1bb7118cUXT5069aCDDrr++us552+++eahhx4KAIcddti3vvUt74VeffXVmpqa9957T595//33a2pqXnnlFQB49913Tz/99EmTJk2ZMuXrX/96p9bglClT7r33Xv3nlVdeecIJJ+jOvPbaa9/4xjcmTZo0Z86cp59++qOPPjrxxBMnTZp0zDHHrFy5UnzFtu1f/epXc+bMmThx4uGHH/7QQw/p1m699dZx48Z19aA551ddddW55547ceJEfXL58uV+v/8rX/mK+NPv9x922GGvvvpqx69/73vf++53v/vwww/PnDlz0qRJixYtikaj/+///b/p06fvv//+119/fVfXHSwwPIQvAQ/ZuHHjqqqqfvzjH//tb3/LGD+BJUuW/OQnP1mwYMFzzz33u9/9buXKlRdccIF3M7xIJHL44YcvXbpUn3n99ddbWlpOPPFEx3HOPffcFStW/Pa3v/33v/+9//77n3feeR9//DEA+Hw+ALjxxhvPOuus999//4477njooYeeffbZAw888O677waAp59++le/+pW3J7Nnzy4vL/de6Nlnny0vL58zZ87nn3/+jW98o6KiYsmSJY8//ngkEjnrrLO2bt2665vXEJ25/fbbr7zyyhUrVuy7774/+9nPbr311t/85jdvv/12JBK57rrrxCdvvvnm++6779JLL126dOk3v/nNn//853//+9/FW+PHj//qV7/a1SUeeeSR+vr6Sy65xHty/fr1I0aMCATcLROrq6vXr1/faQ9XrFjxxRdf/Pe//33kkUdefPHFhQsXVlRULF++/NZbb33ooYcE1wcvDA/hS8BDFggE/vSnP9XU1PzsZz+bMWPGvHnzbrzxxo8++kh/4v777z/00EO///3vjx07dvbs2T/72c9Wrly5YsUKbyvHH3/8Bx98oB/rM888M3HixEmTJr366qurV6++5ZZb5syZM378+Ouuu66qqsoriefPn3/ooYf6/f65c+dWV1d/+OGHfr+/qKgIAEpKSiKRiPcqlmUdffTRGcN83HHHWZb1yCOPBAKBO+64Y8qUKfvss88vf/nLZDL5xBNP7OLOO+Loo4+eNm1aQUHBySefHI1GzzjjjL322qu4uPj4449fvXo1ALS0tPztb3/75je/uXDhwpqamrPOOuuUU0657777xNdPPfVUfZyB7du3//KXv7zxxhsznIKWlhZxsxqRSKStrY1z3rGR9vb2K664orCw8MADD9x777055xdeeGE4HJ4/f35paano4eCF4aHGHsxDBgATJ0586qmnnn/++auvvrq6uvpvf/vbCSeccNNNNwFAKpVas2bNQQcdpL+w3377AUBGo0ceeWQ4HBaBaNu2ly1btmDBAgD44IMPLMs6+OCD5cUYmzFjhpciU6ZM0cfFxcXNzc276CsAnHDCCRs2bPjkk08AYNWqVZs2bRIXWrly5dSpU0OhkPhYaWlpdXV1T3+BEyZM0D3J+DORSCSTydWrV6dSqdmzZ+uvzJo1a/369Y2Njbtu+frrrz/ssMOOOOKIHvUnA9XV1Vr/FBcX6+6JP6PRaDaNDwQYHgrswTz06aMJEyZMmDDhwgsvbG1tve666x544IETTjhh7NixRFRSUqI/Jo5bW1u9rYTD4SOPPPK5554755xz3njjjaamphNPPFF8zHGcqVOn6k/atl1WVqb/1AMjsNsNy2fMmFFRUfHcc89NnDjxmWeeGT169AEHHCAuVF1d7f1kSUlJRid3i2AwuIs/iUg0eM455yCiOCnE/86dO703lYEXX3zx9ddff+GFFzq+VVJSkjE80Wg0EolkhDC62b2uOjC4YHi4B/PQl0wmt23bVlVVpU9FIpHLL798yZIlq1evnjp1KmPMK+zFcYbpBQDHH3/8d7/73aampueee2769Okid1hUVBQMBv/97397P9npPXQTjLHjjjtu6dKlP/jBD5577jkRYBMXytBIzc3NI0eOzPi6Hh6BeDzeo6uLu77zzjsnTZrkPe99eh3xzDPPRKPRQw45RPxJREQ0bty4q6++euzYsVu2bEkkEnrM1q9fP378+B71as+A4WH3MXh56Pv5z3++ZMmSF1980ZuEF1GiiooKv98/efJkr9n5f//3fwCw7777ZjR0+OGHh0KhV1555YUXXvjud78rTu6///6JRIJzri2uurq68vLy7vSsKzF5/PHHP/jgg2+88cbnn38uLFgAmDZt2uOPP66f144dOzZs2HD66adnfLe4uNiralavXp2h1naNyZMnBwKBhoYGHfnfuXMnY8wbY+uIyy67bNGiRfrPp556avHixQ8//PCwYcPa29s55//5z3+OPfZYAIjFYi+99NK5557b/S7tMTA87E5nBAYvD30XXnjhs88+e+qppy5atGjixImO46xcufLee++dOnXq3LlzAeBb3/rWJZdccs899xx77LGbNm36+c9/PnPmzI7DHAwG582bd8899+zcufO4444TJ+fMmTNlypRLLrnk2muvraysXLFixTXXXPODH/zgwgsv3EWfhJ383//+d9asWXvvvXfGuwcccMCoUaNuvvnmvffeW7979tlnP/zww1deeeX3vve9ZDJ52223FRcXn3rqqRnf3XfffZcuXXruuecWFBTcd999bW1tPRrmoqKir3/963feeWdZWdn+++9fW1t74403VlZWisjckiVLnn/++T/+8Y8Z3xoxYoS3XKqiosKyLNHzsrKyhQsXXn/99URUUVFxzz33WJZ19tlnd79LnWLVqlVeEzcUCs2cOTPLNvsahofdf1aDl4e+6urqJUuW3Hvvvffff/+2bdsCgcDo0aMXLVp09tlnC2F54oknxuPxe++99/bbby8uLp43b95VV13VaevHH3/8okWLvvKVr2gFZVnWQw899Itf/OLb3/52e3t7VVXVD3/4wwsuuGDXvZw2bdrcuXNvueWWWbNmPfjggxnvIuKxxx77pz/9yVuDNGbMmEceeeTWW289/vjjLcuaMWPGo48+2lF9XXXVVVdeeeWhhx5aUlJy9tlnn3zyyS+++GK3npzC1VdfXVxcfMstt2zfvr28vPyoo4668sorxVvr1q3r1DHeNW666aZbb7312muvbWtrmz59+iOPPDJkyJCeNpKB3/zmN94/KysrX3vttSzb7GsYHvbkaQ1WHuIeE2I0MDAY4DAzwg0MDPIEI24MDAzyBCNuDAwM8gQjbgwMDPIEI24MDAzyBCNuDAwM8gQjbgwMDPIEI24MDAzyBCNuDAwM8gQjbgwMDPIEI24MDAzyBCNuDAwM8gQjbgwMDPIEI24MDAzyBCNuDAwM8gQjbgwMDPIEI24MDAzyBCNuDAwM8gQjbgwMDPIEI24MDAzyBCNuDAwM8gQjbgwMDPIEI24MDAzyBCNuDAwM8gQjbgwMDPKE/hc3b7/99oUXXnjggQeOGzdu6tSpCxYsePTRR7vzxdra2pqampqammg02tOLXn755TU1NTfeeGPP+7t73HXXXaJjN910U1+0b9AXePzxx0899dRp06aNGzdu+vTp55xzzttvv92dLy5evLimpubYY4/txUUPPfTQmpqa559/vhff7QoPPfRQjQdjx46dOXPmeeed99Zbb+XwKr1DP4ubN99883/+53/++9//FhYWHnLIIUOHDv3www9/+tOf/vWvf83thTZv3lxTU/PAAw+IP6dMmXLEEUdMmDAht1cRePrpp8XBs88+a/ZEHhS4++67r7zyyhUrVlRXV8+aNQsRX3311XPOOWflypW5vdCSJUtqampWr14t/pw9e/YRRxxRUVGR26sAgN/v33///ffff/+pU6e2t7e//PLL//M//9PvEsfXv5f/61//6jjO/Pnz//jHP4ozV1111d///veHHnro7LPPzuGFtAgQuOCCC3a7I33vsG7duk8//bS4uLigoGDLli3vv//+9OnT++JCBjnEgw8+CADXXXfdeeedBwCxWGzhwoWrV69+7LHHpk2blsMLZfDwtttuy2HjXgwbNuzJJ58Uxy0tLccee2xtbe3ixYtnzpzZR1fsDvrZuhF+UFlZmT7z05/+9JVXXvGal0uWLDn++OMnTZo0derUM84445VXXum0qTPPPNNrv7z88ss1NTUzZswAgBNOOOGWW24BgJtuuqmmpqatrS3DmUomk3fcccfcuXMnTJgwffr073znO59//rl46y9/+UtNTc1FF1301ltvHXvssZMnTz7ppJNWrVrV1R39+9//BoC5c+ceeeSR0IFeBgMTGTwMh8MPPPDA22+/ffPNN4szu2BIBoQLo+2XW2+9taam5vvf/35bW1tNTc2LL74IAMcdd9wJJ5wAHZyprVu3Xn755TNmzJgwYcKcOXNuuOGGlpYW8dZ3vvOdmpqaP//5zw8//PDs2bOnTZv27W9/u6GhoTt3V1RUtN9++wFAPB7v1ePJGfpZ3EydOhUAHn300csuu+yFF15obm4uKiqqqqpiTHbsj3/842WXXbZ27dojjjhixowZb7/99rnnnvvCCy/06CoLFiwYOXIkABx88MHnn3++3+/P+MBFF13029/+tqWl5fjjjx85cuSzzz578skn19XVAUAoFAKAzz///PLLL58yZUp5efkHH3zwne98x7btTq8lxM3RRx999NFHg/GnBgkED6+66qrbbrvtrbfeSiaTw4cP9/o4u2BIN+H3+88//3xxfOKJJy5YsCDjAw0NDaeccsoTTzxRUlJy4oknOo7z4IMPnn322YJpgof/+7//e//998+ePdtxnKVLl/7iF7/ozqVbW1s/+OADAOhf0wb6Xdx8+9vfFnJ3yZIl3/rWt6ZPn75gwYKHH35YPOJoNHrXXXcBwM033/yHP/xBPH0A+OUvf9mjqyxatKimpgYA5s+ff+211wYCAe+7r7766ksvvYSIixcvvvPOO//5z39OmTIlGo3ec889ACAE36effnrnnXfefvvtwureuHFjp8rt448//vTTT4PB4OGHHz5r1qzS0lLhT/X8wRjkFTfffHN5eXl7e/sf/vCHM888c9999z3//PNffvll8e6uGdJNBAKBa6+9VtDpoosuWrRoUcYH7r///i1btowZM+bpp5++4447nnrqqUAg8MEHHwjbR3xxw4YN//rXv26//farrroKAP773/92dbnt27effPLJJ5988oknnjh79uytW7eeddZZZ555Zs+eS67Rz+KmtLR0yZIl995775lnnjlmzBgi+vDDD6+55pof//jHAPDee+8J8+/EE08Unz/uuOMAYN26dU1NTbnqw/LlywFg2rRpY8eOBQC/33/UUUcBwDvvvKM/M2LEiIMOOggAxo8fX1hYCADbtm3r2NQzzzwDAIcffnhBQYHP55s3bx4Yf2owYJ999nn55ZdvueWWY445pry8PJFIvPTSS+edd97jjz8O3WNI9hBXmT9/vjBkRowYccABB2RcZe7cuUVFRQCw//77A0BjY2Mqleq0tVQq9f7777///vsrV65saWmxLOuLL774+OOPc9jhXqD/E+GMsXnz5t1yyy0vvfTSa6+9JozMJ598sra2trGxEQCCwWBBQYH48JAhQ8RBc3NzrjogruKNH4mreCWa991wOAwAnPOOTQlPasWKFccee+yxxx4rwkzGnxoUKCwsPPPMM3//+9+/++67Tz31lHCvfvOb30D3GJI9esRDQULogocAUFlZuV7h3XffveCCC1577bVvfOMbvagaySH6U9y0trY+99xzd911l45gVVZW3nHHHT6fDwC++OKL0tJSAEgkErFYTHxAx8a8oyIgrE3dVDejaAAgriIG2/tdLdq6ibVr13722WcAUF9fv2bNmjVr1ggLyPhTAxybN29+4oknhJsssN9++1177bUAUFdXZ9t2jxiCiNCvPOyI8vLyH/zgBwDQ1NTUv1TsZ+vmRz/60a9//etbb701mUyKM8uWLROBm9GjRx9wwAHBYBA8/sg///lPANhnn32Ki4szmhKBPRESA4D//d//9b4rSNDW1taxD7NnzwaAjz76aMOGDQCQTCafffZZfb77EJ7UAQccsN6DuXPngvGnBjY2bNhw+eWX33DDDf/617/EGcdxRMRkxIgRPp+vRwzx8rCtrU2kojR2y8MXXnhB/Bbq6ur+7//+r6ur9BQ6nxuJRLJvrdfoz7qbSCRyxRVX3HjjjQ8++ODixYsrKyubm5u3bt0KACeddNKYMWMA4Ac/+MEvf/nLq6+++rXXXmtoaHjttdcsy/rpT3/asbUjjjjiX//61/PPP3/xxRe3tLSIDKL2YkaMGAEADz744KZNm6644grvFw877LCvfOUrr7zyyumnnz537tyVK1d+/PHHFRUVF110UY9uR4ibjOrSY4455uWXX3722WevvvpqQTWDgYZDDjlk/vz5S5cu/eEPf3jzzTcPGTJk69atwlu/5JJLoIcMOeKIIx577LHbbrtt7dq1K1asGDlyZH19vZeHdXV111xzzZw5c6655hrvFy+88MIlS5asX79+wYIFIpaUSqXmzJnz1a9+tRc3JULF4ri5uXn9+vUAMH36dBH06S/0s3Vz/vnn33///XPnzi0sLPzss89aWlr233//6667TueevvOd79x2223jx49/7rnn3nvvvTlz5vz973/vVN6feOKJF1988dChQ1977bVRo0aJiolEIiHe/eY3vzl+/PiWlpY33ngjw91FxHvvvffiiy8OBoNPPfVUfX39SSed9OSTTw4dOrT7N6I9KZH/1jjqqKMsy9qyZct7773XkwdjkD8g4t13333DDTdMnz7dcZx169YxxubOnfvAAw+cccYZ0EOGXHnllcccc4zP53vppZdOO+200047DTw8/MlPfjJ06NANGzasXbs244vl5eVLliw56aSTtm/f/tRTTwWDwYsvvvj+++/vnZbSoeL3339/27ZtEyZMuPTSS//yl7/oEpN+wf8HemFbKDjaYYQAAAAASUVORK5CYII=", "path": "image.png" }
Which solution has a higher concentration of yellow particles?
[ "neither; their concentrations are the same", "Solution A", "Solution B" ]
0
The diagram below is a model of two solutions. Each yellow ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the yellow particles represent the solute. To figure out which solution has a higher concentration of yellow particles, look at both the number of yellow particles and the volume of the solvent in each container. Use the concentration formula to find the number of yellow particles per milliliter. Solution A and Solution B have the same number of yellow particles per milliliter. So, their concentrations are the same.
neither; their concentrations are the same
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAIAAACmkWkFAABJeElEQVR4nO2dd5xU1fn/n3NunbKzFSlLcenSERAEFDAiCggqREkUgqJRTGzfqESjEktisMRYfrEkGLHrV7FEBDRfRUAFokhdepOlLLB1+sy99/z+ODOzw+zsMHPvnZm7eN4vXnrnzp1bP/t5nlPuOYgQAq2NH+u9p9ymc5EjB2fC+CnDdJgpfL5PIJGAou463rjzeENAURsCoYZAON9nlDESj9s6bYU2sa3T1r99scxz+T4jRsYwHWYDZKnsptoTeGP97qCipd6s2OlAAACAECCI/AMEkZUACKDG6w+pp9hPDpB4PL1/RediFuJaE0yHWcJadrNw3c5jnoAoOwqKSiRRlAVBlkQBAY+BA+Ax8Ah4BBhFFrjoMocAA3DRNXQZR5djCwgARZcJAQ1AJYQAqBqJW46s1whohMQtN62PbBlZhvg9aAAhRfX5Q95AqNHrc3t8Eo//5/x++b61jAxgOswSOL+HT6DBHwKA4g5n2l3Fss0hiCIAUDtEKLoEkehBostNG8QtN5koXSZA4n5JItsThBAhgBACALoMdD3dFMWFKwQkuh4hRKLrEQJCCET3AAR4jnM65DalrjM7tgWAUwZJhtVgOswS1rKbzsVOAAh4G+ndpYlX5NGQ6FLcA6bLTRvELUe3BSBxKW70lyiyPSKERJ4TAF2mcqCqoBtFlwFF1xNCUHR9RCXRPcR2TQj4Q2EAOMMpm3ybGFmG6TBLWMtuuhQ7ASDk9dC7mxAoWktUiS5DXV0jRLXLaEUwHWYJa9lNzzYuicN+T13A09jao4ovEKqpawSAAe1LTL9RjKzCdJglrGU3hbJ4Xtd2AHDi6I+aqrbeqKJq2v6DRwBgdEXbthZIYhkZwXSYJaxlNwAwrFNZjzIX0bTDP+5RVBVaYVRRVHXnvsOhsNq5yHFeRdts3CVGtmE6zAaWsxsAmNynUxunHAoGDh7YEwgGWldU8QVCm3cd8AdDLlmYNuDMbNwfRm5gOjQda/W7iRFQ1DfW7znmCWCMzyhrU1xYWCDLVu7vEAyrdT7/iXpPndujqqRHmWtyn05W6MfJMALToblY1G4on1Qe3Hy0Lt9nkTGjK9paJHdlmALToVlY2m4A4Mc6744TDd8dPN5UYrYmhBCA8T3LOxc7rVAnxzAXpkNTsNwrmgl0LnZ0LnZ8d/AEAMw8dwBNQREAgshCwkeIWw/RrBWRyPrYGrqgESAAGiEEgNBlIASQRghE1iP6rUYguibyKxL7FkFY095bt4NDaFinsjzcI0b2YTo0BStWFbdItIKNPlcEcZX8J7cIxD7S7QHRirSmb6MtAkCA0KdOa+AibQSRIBFN/ZrWxHZLItvT+rk4GTFOf5gO9dKq7CbaBkCg6V/s0cW3CMQ+0u2B0GZCOOnRR2ILijw5EmmXjNT2o8gy3Vd0TWy3KLI9AYSQphEA4JCFnzPDRJgO9dKq7MaqUYVEoop1HzPDTJgO9dKq7MayUQU0AEBWzmIZJsJ0qJdWZTdWjypZumyGxWA61EurshvLRhWigbXLzAwzYTrUS6uyG+tGFQTWLjMzzITpUC+tym6sGlVUQsDaj5lhJkyHemlVdmPVqELPAVn4MTPMhOlQL63KbqwaVaJl5mxdN8NaMB3qpVXZjVWjivX7OzDMhOlQL63KbqwaVaxfZmaYCdOhXlqV3Vg1qoDlowrDTJgO9dKq7MaqUYX25sRW7l/FMBGmQ720KruxalSxfm9OhpkwHeqlVdmNZaOK5ZNYhpkwHeqlVdmNdaOK1avoGGbCdKiXVmU3lo0qmtUfM8NMmA710qrsxrJRBQCsXWZmmAnToV5ald1YNqoQDawdVRhmwnSol1ZlN5aNKpZ/E5dhJkyHemlVdmPxqGLlLJZhIkyHemlVdmPdqAJg7ajCMBOmQ720KruxalSJNkBm67oZ1oLpUC+tym6sG1XoY7bwc2aYCNOhXlqV3Vg1qli/NyfDTJgO9dKq7MaqUUWzfFRhmAnToV5ald1YNapYv8zMMBOmQ720KruxalSh66wcVRhmwnSol1ZlN1aNKqrl+zswzITpUC+tym4sG1Us35uTYSZMh3ppVXZj1ahi/XdVGGbCdKiXVmU3lo0qGoC1J9xgmAnToV5ald1YNqrQE7FwVGGYCdOhXlqV3Vg2qli+vwPDTJgO9dKq7MaqUYXuwcqPmWEmTId6aVV2Y+2owln4MTPMhOlQL63KbqwaVaKdx7N13QxrwXSol1ZlN9aNKgAAyMrPmWEiTId6aVV2Y92oYvX+DgwzYTrUS6uyG+tGFQTWLjMzzITpUC+tym6sGlVUy5eZGWbCdKiXVmU3Vo0q9CSsnMQyzITpUC+tym6sGlWsP3shw0yYDvXSCuzmqNsPALLAWzaq2AQ+dp6M0xWmQ+Pw+T6BU1NZXQ8A7V12d6MbIcAo8oDpQsJHAMAIMIqEEEyDAwGEEKJRgpBoPAGNAAFQNQ0Q0jRCADQgGgHaf0EjhG5AF+gaEv2VpmmAsKppGpASGR8E2FpdN6xTWZ5uEiPrMB0apxVkN/Qxd3A5IgXUk6MKOilURAMPicUDgiKbRPLWSC56clQhJBIlYqEpFlUIIQlRJVJIRqARjR6vzC5xCB1p9DcGQjm8MYycwnRoHKvbzeFGnzsYlniu1C7RAmpCmZmcVBCOFqtRrLSLSGSTyJMN/6iEdir+jeHwLiW0UwEvLU5HysCxgneszIwQSigzI4RoyosRpsfjOHSGUwaAzUfrc3t7GDnCdB1GXOPkupvTXodWL0xtoyGl0AH0AZPIDT85qkTr7oDEogoALScTjBAgop5Q/V+GQhtDSo2WcAixByeOEMQRYlO/TKB5LIpkr4QgiPQQj0QVBE1RhQAQaOuUjrj9m47UjjrzjFzdG0buMEuHTQ6DIpvFZzcaObl/8GmnQ6vbzZaj9QBQ7nLSPDQWVQBi/yXRLDYaLiBSQoZoVPF9EvAtCbR0iNAuNbRL5ZYEHb92oI6IkEhUISTSIkAgkgERQhACqhogBCOsahoAAIIyh8hjVO8PHfMEaIRhnE6YokMUsZqIqdDvopXHSCMEIUQ0giJaOw11aOnCVFWDzxdWbAJfbJdoHpppmVnzao1PeVJ4TQy1ljT+xRNcE4bMy8xUcW0LZIiW8BmnE8Z1mJu6G+vr0NJ2QzPYdoUOiLY1ZlpmbvybJ7RTSf+IgdcD4bXhTMvMtLTdzikBwJajdaZcO8M6GNdhbupurK9D69oNISTaFmAHAB1RxfOqT6lSMz1u8P0AqdIyjSqEkEJZkDjsDoYPNfiMXz7DIhjXIeQwu7G4Dq1rNwcbfL6wIgt8kU2GzKOKsksJrdHTHEj8EHgzoCOqIIRoHrvVknksQx8GdZj77MbKOrSu3Ww7Vg8AHVyOpmJpJlHF/8mp62taQqvSwmvCmUYVADjDKQLAtuo6rakzKaN1Y1CHuc9uwMI6tKjdEEK2VzcAQDuXI9a6mH5U0WqJsjuDKpvmqJvVTKMKALhkUeaxL6z+WOc1cnSGRTCow7xkN2BhHVrUbn6s99IMttAm6Ygq4Q1Ge1WqmxUdUYUQ0q7ABgBbq61YUcfIFIM6zFd2Y1kdWtRuIr2qXE6IBQrIIKqohxL78ulA3aVkGlUQQm0LJADYdqxB1ayVxzJ0YFCH+cpuLKtDK9qNRkjlsQaIb3rMMKpoJzJukEqGnqhiE/gCiQ+r2p4atxnnwMgbxnWYx+zGmjq0ot0cqPMGFdUu8i5ZBF1RpenRG0JPVAEgbZy0XcBaeSwjU9LRoValarsUdW1I2RTSdilajWaR7MaaOrTiSwy0LaC9q4B+jEUVlPa7Kk0WZAhEosHilO+qxKIKAGrrlPbWeHadaFRUjeesaOiMdEilwxMqfBYkuxVSqyWU23FHThorCSNEiHpKLt+ZsrgOLXES8WiEbI9ksHa6Rkd2w/cywUZRCdIXVUSec8mCqpEdxxuNnwYjL6TQIVoawE96yLoQqU1SRahVqf7XfZ4HGsMbw/nNbiyoQ8vZzf5aT1BRbSLvEEW6RkeZmSvnDJ4GLse4FOsoM9OzbOuUwGJ5LCMjkuvQR/BCL1oeAP8p8metVvO95A1+G8xX3Y01dWg5u6mMZLBOFLURHdmNOEhENkP1N9wAXndUAYRKHRIA7K1x+8OGuv8w8kVSHXL/8qIt4fR34nvNF1obgjxlNxbUobXsRtXIjkgG64z1h9TXIiCNk3SfBpKBP18wElVEDhfbRQKw3TJ5LCN9kuqQf8uH92T8R+t91RfeqeQru7GaDq1lN/tq3SFVc8qiXRSSZzd+gD0K2a2Q3YpWpbaU3SCEbBdIuhMcfpyIHYaiCgFo45AAoNKSL+YyUtNch3i3wv1XZ99R36u+fGU3VtOhtVqmth1rAIC2BQ4AICT2JAB8BH0WQHsUdIhaTBQb4geI+ByB78nHt0wRQpANue5wNj7lIacqZifAD+ClS0QjLQI0CpXZpV3I/WO91xtSHKK17jMjNc11yC/X/wqeWqv5vw3az5Vy3DJlQR1aKLtRNbLzeAMAtHM5Ier6AICXB4Q/NeKVQXSoWec9P1HWBkPPeoLPeLQaFU7u78B15Bw/t2WU43DlWL7aZkpU4ThUYhcBYKs1AgsjTZrrENVq3F5DdR/BL4P5ym4spUML2c2eWndI1QpkSRZ5oFHFR6S/e/g0GgLUXYr/L26tSo1lNzQ+SCPEojsK0nQccbjg+L0D2U0oM1NNtbFbdBwARgqa61BHlU0CykEVvNEagRzW3VhNhxayG/p+SpsCO7Vq7CfSC570nzTxE+9f3GqVCtHshi5wnXDpwy7HJDmF6Qg9+IJbHY6ZNhOjCkJQZBcwgqNuf50vqPu2MHJMgg4RApysf02mhKuUvGQ3ltKhVeoU4jLYAmrVwkd+3Lz0dCp8T3uc9xSgUgwQ15vTAY7JsnOyLbQxHNqhhKsiFobtiO/BCT15XI4JnS0sWZmZ1GiwRdV2a+AnqJbgEgQAqANSh3DQAbVUZtYIYIRKHdJxT3DrsfrRZ7Y1614xskdzHRIC2NhgJlFOapnKWd2NpXRoFbvZXdOoaKRAliSBAwLcHkX4Tt9YfCTwnt95kzPpCPjSIEEayMdqoONnL0w6Aj7UgrY8pK47SW2ojgAAtwe4VSopRoGf82o3hCAyYj4hBKJj5QOBM5zycU9w85E6ZjetggQdAmqqQzQI8WtAOKrD7M3EYHEdWqUwVRnJYB20e4LtHf3DrIY3hcM7wsZ7cyprldATvgSvSQDVEdtLYfldJWmZGQCcIhebiEP3FTFyRoIOgeYRhjupAwCy4XzV3YBldGgJuwmr2u4TjQDQpsBBgHCHVFxnqLQcWhs2+K6Ksk4JvxmE9CZ357/XHM8qyJdYZgYAjuNoz07rdCRntESCDmN1N8RYD3UKskO+6m7AMjq0hN3srnErGnHJsizwCBC/NYN+4klRdhrKbpS14dAbmVWqcYeJ7VO1eVTRNC3ymK06jyojRoIOY9mN2k8wuGdcioVOfB6zG4vo0BJ2Q9sCylwOACBAeMM1c1qtpju70WpIaLGeCnzhe03+WkuIKhjjAokXOOQOhqsarDVwLCOBBB3GshutnCOyoQRHGiDmq9+NpXSYf7sJq9quEw0AcEYBHTPNnKq50A4FdGU3wU+DJL0yVHPk/9OQPzGqAECZwyodHxgtkUSH0ewGAMKX2XTvGdmQdIGYl3emrKbD/NvNrhONGoFCmyzwHED8O1CG0JfdkFqirNNflEMBkNarCVEFAEocAgBUHq232kQcjBhJdBjNbgBAHSaSDjorjOULJL6My3t2AxbQYf7thrYFlBVE5vExK7uhnfoyzW7CG41WGwmVpHlUcQiCzHMBRT1Q5zG4f0aWSKLDuOwGAJRf2CHzIhXfnbdNkvP1RrjVdJhnuwkq6p6aRgAoLYjM40OAmNIQwHfiIPPsRt1tdEx1YV+SqEKARNsF6g3un5ENkuowPrsBAK2cU37jzMhxuI5cwU0OMNBCam52k3cd5tluYhmsyPOxqBI23BDAlXP6WqY0nwlJJvIlRhUEqNQuAsB2i03EwaAk1WFCdoMASDmn/tYJ6ZWqhOFiwT0FoCvLzlJ2k3cd5tluaFtAaYEz9lgJEKWr0b7O0rmivrobzYy3Y7ij0DyqSALnEPmwqu2uscRAR4x4kuowIbuJ/HWWc9pdBeRiOUWag8s5261O+yx7/Lt7Fslu8qvDfL7EEFTUvbVuAGjjcgCgyGsHgEgpDg0VRV0vMQAAkpEwXCSEdg/PbAR8XILVWsNzVMn03RaAuKiiEVJsF7whpbK6vlebQqOHYJhHSzqMviQQcwSAqIzIBAlfLKPNYTikkt0K/RaVYK4jx/cUuI44sjEhAHp0GMtuTHlnCiyjw3zazY7jjRqBQruNwxy97YjedwLBi2RhSxgF9OR74gUSduCk70yd8l0VU65L6YBj76pgjFVNI0AQQiV2qarev+tEY0hRRd6EfvEMU0ihQ0AnZTcIIuUhhBAggAECGiBwCBAARpFvMYrbGKHUOgwdVLVaLXRQBQBUDLiU47pz2XhnyiI6zKfdRDJYpyPq9k1RhZTg4Ay7/ErG/ZH4AYI8SdYdVbhyzmBtsVoMLUUVnkMFkuAOhneeaOzXrtjIURgmkkKH0FJ2QyLFGgSxfwhiRZq4USUhmQ6Jl3iWBIIbQ0pNYuEd2UAYKIgXS6gUZSm7yaMO81Z34w8r+2rdQNsCIjcQIK7MrPYXgjPsGe0Tl3PyNXagUUVXmVkYaNR/w2fhpGVmWvgusgvA2qesxCl1mFB3E5/dEIj/F8vESdPGyXTo/zZ47P4G7xeB5l4DAMQPoTVhzx89wfeD2ai7ya8O82Y3O443EgCX3c5hHMs64OQWAXWYGJrtSLPpkR8uOe4pwPZIQ4C+limuB4dKDBWpgkNw0hYB2rRQbJcAYJ9lJuJgpKNDiKwBgEjkokWduNQmvr8Yatq4mQ4bF3kbX/WRNBpAQytCgWf8mtfklqn86jBvdkNnRC0tcCCEUkQVtb8QvLNAGyam2BUqwdItTnmmDVJGlTRbBOQrZN0XFTobq+0hRVThELhkgUQH32bknTR1CGZkN42LfIE1GTSAqLvV0MJANrKbfOkwP3U3/rByoNaDAEqcDkIIxihVmbkEq7+waxNkvFdBm8LIT1CAgIwAAS7n+BESjjQEnLrMnE6LAD+Q588RdLzKQGTwTcIpyswECCBU7JAaA+HK6vqzy0vNuJcM/WSmQwAwUHcTWhMKZuI1FHW3Gn4/jC/nTay7yaMO82M32481EACX3UYz2EgleuoWgVIMpSKcI8aecaQtoKnoQ5o2PlWLQEstU7RGX7xC0g6p2qEM+uAQGbw38GCPXUySFgFEgBBSKAsI4KA1JuL4iaNHh3BSdgMQ+y+JT4MSdAg+8Lyn88VfZWVIHM6hcmxWy1QedZifwhSdEbXU5QRarM1+mTnNuhu6EttB+q0Nd0u3jZDI4LuBVzugU5aZqQCLbCIAbLHARBw/cXKmQ9+XgXTqa1pC+SBobt1NvnSYh+jqDys/1nkRQKE90oqUvaiSkN0oJ0hgYwj8RPMRbEcEgO/Icd045EgcIxY7kHSrHFoaUleEIeVwi2ofHPg5r9kA0osqCFChXazzhyqr64d3bpONO8xIh1zqUEcxKh5tt8b7EbGZmd3kRYd5sJvK6gYAcDnsAscBQIoyM7dHwQgwAOnAEQcy0t8htCPsed+vHEzep0YeIUgTZVQCCb05uQkCPk9Ql4XIHo0cPrlsJYPal1OGYqUrIpmUmQkhLpnHCNGJOGgbASP3pK9Dg3U32iFVS9bmnRHq5jAaxplYd5MXHebBbmhbQLHTqRHCIZQQVVCtKq8OilvCKGG44hJM+gkwRoIylFF2o3k194ve0K5UDX6BNeHAmrA0TpSnSYm9OR2ArxA1AsgH2iGV0PkbSpBWRABhTaPD92UWVQhAsV2o8Ya2VtePrmAzNOSH1Do0Mbsx5b1fqIucnInZTe51mOu6G28ofLDeCwBFDjvt5xArM2MfsX/sL3y0UVoVTPQaAKjV0MogergR3vDRV67TKTOHDyoNT3tSe02M4Jch/2sB4oNoCfnk/g42At0x6YZJNwQlcVEFMisz09oil00EgM2s+iZPpNCh6XU3SnrySw3xgrl1N3nRYa6zm23VDQBQ5HBwGMdHFezXCl/y8IdP/QIBWRdSD6n4l3bUKTLqWktRhfiI9zVfSwWopITWhgmAeLWk710Vrg6JX6v8EYKPEBwATQalPQqeCeFC4u+NiRyJKhohTonnMKr3h6rd/rYF+gemZOijJR1mq2XKOAHzs5vc6zDXdkPbAgqdTgLARaMKF4DSp90ZTPZySNWe83B3F6BSnKLM7H7Rm5HXUMJrw7gD4sYKkMm7KlBDnO8r3N6TtIUDIO4j4j4AAE3WTkwF71kRBRACRXapxhPYWl3P7Cb3JNVhlupu+B5m/JWVIHP73eRFhzktTHlD4UMNPoRQod0WrY4FhFDJi5l4DcVPlIVe4iMt9eYMbwrrTmJDy0LgR5B2b07+e63g8XCC1ySAA3DGO9D+FSLURWJUkU2A6JiVjFzSkg6z1KuYvlhjEGQzs1cxda7c6zCndkPnuHE57BhjAkDLzPZVAf6InpewSZWqfhVsqczs+1+90ykAED+EVwQT625aKDPz32ny/6bra/J+6PgSkauBEGITeYHD7mD4IJsQJrck1WH26m64jhwyPB4u6sdlo+4mxzrMqd3QFzQKnU6INjZjHyn4P/2ziKorgsQXS4uaoopWSwyOy6euU9LJbvBuTUrbayg4AO3eBi6AAEiRQwKASjbjXW5prkPIZnYDAOLAVC/9nRLUAeMynKXsJpc6zJ3dNAZChxt9CKFCW+RdSoyQvC2E/Qbq0vxEXRvrQNUUVcIbDPWqAmpYNZA6uyFeTXxNz8wNfAOULQcAVCjzAFBZzSaEyR1JdQjZzG4AwDbJUK8W7jLR9F7FTf3pc6jD3NlN5bEGAHA5HAhjiEYVaY/RkTrVTbE/+KaoQnQNA5gAqVVTZzf81yrSW2JzbQTbfiIJvMTjgKLuZxPC5IqkOoQsZzd8GWcbp9NxcDeO68mlU4eoO7vJmQ5zZzd0zLRCpzMWJTBC4hHD8/M2zfDbFFWUHWb0dKglqbIbP+DVho7i2ogIIS67CKw8lUOS6hCynN0QQpxX2oXMm6hQCRKvt6VTh0hPTl92kzMd5shuGgOho24/RqjAbotFCY0QQVclcQvERRWHCW0BEIlOyaMK3qPpTm0ozh0EIeSSBQDYfpxNCJMLWtIhZDm7oZ1dCm908B0zGBsYlSD5ehuymz/eTUJ2kzMd5shu6DCFBQ5nrNtULKqYR1NU4cpNGPAZleAUUQXtNfoWDBdA0hEicNgm8GFV28UmhMk+KXSY7ewGAUIOVPKHAnlEWqUqrjtnv9uBylGaLaT05HRnN7nRYY7shrbquxx2QBAfVbTMZ0FtmaaoYk5PhxKUIqqgwyYEARxEAOCyR2ZuNr5DRmpa0iHkJLuhXlX4K1vJHQViywUrXILtN9jst9nB3pR9ZDu7gZzoMBe9imt9wWOeAEbIabNDtI8mAeAQCrfnpH2GakCQHB9VIr05+QEC6B3NiILLMS6l/b4heW9OUyAEAJySUA3+XSca2IQwWSWFDgGy2KsYNRtVUurFS70KlBNqeJeinNCUKlX1EaEnh2TEDxRQCWj0PeHszMQQ36s4uv8c6TAXdkO7OTidzlhMQNFbGW7PG7QbPCA2w28kqiAArozje/BGXo3jBvAx1yeQ7J0pUzp8IwRAeA7ZJd4XVHacaOzPJoTJGil0mO13plCyUSX5MsyXidQRCICqaYCQRg0gm/NMxb8z1bR/kgsd5qIwFWkLsDsAaGGT/h8wQt6hhro/AQA3ILaHk8rM8kT9I5wjGfjzhdRlZtLBjAwnuk9aUcfKU1klhQ4hJ3U3Ea8CWhqPbBbZIFdzhLdUdwM50WHW7abWFzzuDWCM7TYbACSUmcMduGCFgQyrBOOmmaFOKjOLvXhxhE4vE6ZJ2HGKMjMpNsFu/BWRfTokAQHsq2UTwmSL1DqEHNbd0ENE/sKj+2+qSYnOCBL9Nnd1NznQYdbthlbOOR2O2C1MiCruC/WnIcIVthRRxTHdllG7I4U/RxCHC6eMKlpfo4VbT6+mfXIYOWSesAlhssYpdciymxzoMOt2Qwdedtqdkc/Nokq4u+CerKciBI+R0AAhRVRBdlR4e0FGjiMMF2wz5bSiig3UIYZqvuqGN0UVAuCUWHkqi5xShyy7yYEOs2s3x72BOn8IY2yXoylMsqjiO1/2D8msizc6R+Sn2U4ZVcAORbcXpNN/HMnIfo1su0aGtKOKMh4TvZmZrwv4z2yKKgjAIfEIwcEGb2PA6AtfjATS1OEpsptaDe9WYEsYrQzCrjBUqadfdpNtHWa3ZWpbJIMtQLEY0UKLgPsqm9oBO/+dVus1Ol/C02yxKBQffiI7j2sRAAdx/twmDRT9XwaCG5O8UYlkJA4S7FfIYAcNMmgRQKVc+FJezPCNcADQJDg2FSJRJdIeCQghpyy4/eHKYw0j2AwNppK+DpO2THH/DQmrgvjQST3gCYBWgqEHDxfLuBTraJlCp5rvLE0dmtUylQMdZtduIgVmu71pVcv9HQLnSWo33vGxn9/b4h8w6caji2Xckz85qsTy3Bb7O4i9OKmXE3wkXKWGdoXpM8c2xPfkuI6YtkRqpCmqpNnfgQzjwnuJ8H0Gr2JoEhyeDeGixKhCAByS4PaHK4/WMbsxl4x0GN/vhtut2N/xJRk5m+6jVoO1IWVtiBsrcdPs6eiwqfyEIpvFZzfxs7lCJjqMCMhYv5sc6DCLdlPtCdT5QxzmbHJc1UzKqKJ04NxzncJhld+jCFvCAMDtVbRuPABAdx76C6gjhwz0d0AOJPbkpF4cRE4ACICqaQlRRa3StDpNq9IIAShHpBiRDqilqBK6ktPag/gfFaUxbo8mweHZKNA2SVQBALvIYYSqPQE2IYyJ6NAhzW7E/4bs7/jSOYS6Ihg8pIrXO5AdtfbsBrKpwyzaDc1g7Q7HSWvTiCpqOaeVc8r5Eh2ImKN9NxFgw705U0cVzUuCa0OhL0NaLYHm9OPgIp50wM2jSng0FzoLy0tUoTLVi1S+3nB8KlJkEhe1TooqAOCQebc/vKW6/jw2IYxJ6NOh9F26XkPRdimhZz3yvILTILuBrOkwi1XFkbYAh7OpwAzWbREI71A9f/EE3g8m9xoA2KLCX4PoozDyo+YtAlCKfDM57zVcYCQOV6D434XbgXs4OnoTPj4DaXKLLQL0bJ2yAGw+X1PRoUN+j5KR11C0KjX0us+gDvPeMgXZ1GG2spujbr87GMaYk0Q5WucPAOmWmSGSNwLEKvmjUSIb2Y3v25D3tfRqqVcp3BZVnS1ChyRRJdQHkT44EpxqAflJsB3VFqQTVQghEs/RiTiOuv3t2AwNhtGnQ+e7GXsNRVkbUodLfE+uVWc32dNhtrIbWjnncDoxRulHFchHduP/Npym10SoI9wLQXSIpI4qpATC7TOOKgiBQ2YzNJiGDh2K34W4TOcFiSO01A+tP7vJkg6zazd2uzPaQSCKxXpzhg8qXh3vjvtBWBQmXjP7O8RO2yEJALD5SO1J942hCx06tH1nqL+JukvRarRMdWidfjeQTR1mxW4ON/poBitLMop5NcVi2Y37fwNE30gVdYT/Ws1GVBF5zGPkC6tVDTpTegZFhw6RTxNa7oeRJsrG8GmQ3WRDh1mxG9oW4HA4ocmGo1gpuwntUMIGBqnAq5XI+KGmRhUAsMsCRIeeY+hGhw75I0YHaQQAUmvd7Ab5iLSf2HeAaw2xHwDxSE51mJWq4i1H6wHAZncCteGm2txIVEHRqJKXcUZQtL+Df42htBn5AW9V1aEYTOrvQE+bEHDKQqMvtK26/qKeHcweYvUnhA4dNm1gALVKzUiHJCf9bqTvVce3RDyacLIoXAj+M1H1eRAqItnWofnZTVWDzxdWMMdJkgwWz24MpDYUvDcam0zNbjgEIo8Dirqvlk0IoxPdOjTl6JbKbsS9pM0TSvEHzb0GAEBoANdG6PEcarMSZVuH5ttNpFeVvYB+tHLdjVpjNHNGtRFdmFhmBgCEsU2MzDRm8Ax/sujWofFDo1Jsnbob+Qet5F8aV3/q0z5jJap4HXF+lD0dmmw3hBB6Zrbom/6WzW5UjwnC4vZp9OTMzW6IptFmyB3HGxTVhNqEnxq6dagWmzBGLy7FFslu5PWa6/0M9OM4gLq+ibKnQ5Pt5mA0gxWlyKsWls1ulEMmTHEVGYAiC9kNRiAJXFjVdte4jZ/nTw3dOtRKkFps9I+C685bIbvh90FBJl5DsVWjLku4LOnQZLvZdqweAGx2VyyQWDa7EXuaUE2udcD05EzPbhDCMitP6cWIDkN9BDAAkhHfk7dCduN8T2fVZPEm5NiPIAs6NNNuCCHbqxsAQLY7Y4HEstkNQsCVGr78rGU3hGh2iQcAOhGH0fP8KWFQh97xMjEw/Zk4UYYMdQhZyG7E9Wo69TUt0eFrDFnQoZl282O91xdWOI4XRNH62Q0hkGJqsTTRumUxu0EAsshpBHYcZxNsZoBBHYId+c/TOeoCLueECyIDQkJesxvpe0NVk84fkViPTNehmXZD2wIkewFE338Da2c38kBDaTPIoJ7N0ZPLRnaDEJIFHlh/vwwxrkP/eDncN2NtIBmJ19h16BDMzm6wHwn7DNkNABTtMl+HptmNRggdvV22OwGBjqiS++xGGiTomKohhtqXI47IyWUjuyGEyBIHAPvZhDBpY5YOfVc61A4ZaAPJSLzNiTtyOnQIZmc32Iy+0VI9Nl2HptnNj3XegKJiXuAFsbVkNwBQMF3ny/WkGKlTxKQtAiZmNwiQLPIEoLK6Qd95/tQwS4eaHTx3FITSm3YRlXNRrwErZDdxMVg/tmPm69C0lxgqj9UDgEx7VdGoEk1SCBDnPqXggML5ie2oosko1IFXi1Gwj0jsQPI63o3QiyuYZXO/mvFrmsqVvGaLdLpJmt3ExhnBfhCPAiFEA6LKdOTQFscZic9uNE0DBLKIAyGorK4b0rFU15P5aZFah02Gk964S4EZdnWoKH4W4Fp6b1NG3DiJv0TGyJAOibnj3TTFYEOYrkNz7EYjZEcsgwUAAiiaNrX/0t/m2wAXOOn6HdvojAg+3xDJc6GslaC8vDNFCCBA0nBBrdF8S4LpXq0M6gyRdEOp31XBAZDXa7YfQDgSf+1Ek8HXBdyDkLtXi+9MIYw1OoIyIZLAIxSqavA1BkIu2egcx6c3KXSI9L67p/Xggz2cuFbjt4TxYRXVagCA7AjKOdSdxz14HEm3rTQTgxnZTbDQfB2aYzf7az0BRcWCiHmRlicJAftRtcfbbrE+VTHS/n3Q/n3QPcXmHy3nJbuhUcU2UeK68773/OqhUxR6STHSZoukHAEhKUZRs3+t2b7QcLLB0nEAnDvAuQOKuqDqi4iv7SmyGwCQRd4fVCqrG0Z0YTM0pCKpDo1kNxDVISnB2hiJaoiOmc0hhDPXoXpCJbWEjkPAlSK+FAs9eDA7u1GLTbiZoSJiug7NsRvaq0q0FaDoZZfsCHX90MufnNS0RMHHfuGw6r7SnpfshkYVoQfnusfp+zQQ+iJEks6pUIJgKAcThOiBW3wT1/G+Jq8/dV2d7QB0eg0dHQ/1AxPfxI2PKgiQLPD+oLK1uo7ZTWqa69B4dmOWDv3fBgNfBJWqJF1X+E6cc6LMD+DMym5ICVKLgaszdDPdnYjpOjTBblSNbD/WAACSzUEN11Gtpu81FPm7EJGQb6otL9lNLKpIl0jiJZJ6UFVrVPUQUXepqAOGEoDuHOmAyCnLzIQ4X9fElPMxxMMFoPzfiADUDyAtZTeEEEHACMExNiFMSprr0MTsBgzoUDukuv/Xn2JkJeWgWv+iVxzA26fbcCkynt0QQsJncdw3+nvlqRLxdCGm69AEu9lX5wmpGieImBcRAt5H+r7SmJHXUGxfB5VuvNJfyEZ2Q3wQ3BRUa0lMCkInThwgJC0zo46Y74jxAMJdLBAAjRCNlndOFVXsn5D0vSZG+8/B3xb5zyAtZTcECM1jtxytP68rmxAmOQk6tEh2o1UpjU95iP/Ufw6hTUp4l8c+TRZHCMbHu/H/DKT1kM7cZ0k5MloDMF+HJtgN7VXF2wpoytBhbUCH11Ac//Y39hfNzW6Unar/U39oZ/LYYjtXtE2UUAkYLzNzh4mkK55wAdThc7Ln6hazG4SQJPH+oLKluo7ZTUsk6NAK2Y1yUPH8LS2viZyUn3hf9xMg/HABjGU3xIb8I7H9Cz0dcPxnkGPDCGRBhyb0u9l5vAEARLuTAAgB0mGtXkcFwHWauDIAkYqMyMrYM4yPKnH/Ys+SNG1M8wQfcb/obfibuyWvAQD/t6Ha+93+T0NguL+D/In+3NVxABVvQs373dCzIoQIHIcxqveHav3mTxR/ehCvQxT1hpiKUOzpRj436SpL/b+Ij/he9KbvNTH87wdIbTRFylyHEP2V/0IueBZKdaRkqBI5eCnJkg6N2s3OE40hVcOChDkBAbj2h3WnNhRhrxILR5RYVIFMehVrXtL4N09oYzidg/qWBLyv+zWf/t6cUEP4fYYuvHAnSshuaPgikd6AhEMYAHyhtK7op0aCDkn0zy+mouiDi5L93u3+9/xqrZ7kgvjB/7ofdOkwoYXUM41T2mXgOKoE+6cT3xlalnRo1G6iGawTAAhA2XajsVfYGjae3YAf3E971GStAC0RXBMOLA7ozm74/Ya8BgBcOxEfwC1FlUg1FEBQYaNtJSFBh3nPbjQfUTbpDwzKLlWr0gxmN4CQZoO6Wzj/oLQcJ1QIe2cSbxeSIss2qEOjdnOw3gsAguwEAAQgpexlkyaoTgNj2Y33VW9GXkMJrgkHlgRBV1TBuuJYAnJ1quwGYQwAITa4XzISdJj37EZZE9JRjIonvCZsPLuht6JhGj5xLQ6e2aLpaBIcP5/s/K0WbBut+smODo1WFUcuL2L65oBrNK0Ex0cV1CyqxA7XvEVA3amE9QaW0IqQMFYitoxbBLi9eq82HhRtGju5RUCLVkwCQICNfZOMBB3mvWVK2W14sqo9igCi7pYpErmYyEwMSjd8okJDtWDfDvwR4OqjxYAzIdCWuHsjVWt686alFlLjOjRqN5GD46bMwgSiUUVfi0Bgif66auKHwPsB+Rop0xYBc8y25ZapmOaCzG6SkaDDvLdMqS23TqSJVqUhAy1Tsewmfo5wrRg1jiAaEBLdj0YISe/dPVN0aLQwFXl+mll/cAAAWnuuac8ZlpnVGk01Fli03YqOMjMxPMAtQCSsQAtlZioBkcvWPMutmgQd5r3uhhhrMIntyGDdTexWGByZwCwdGtUupvefqACAALxtDZfOZEQcdJ+RNRmVmdX0mqJSoNUSUqVlWmbWik2QlyqlKjOrKgGAUtarOBkJOsx73Y0pmFV3A4bHXTJLh0btxmUTAEALBQGAANScZWx8PIBQX8FQi4AZUUXzk0yjSmSMdAOECkmgHaSIKnTmjVK7bPBApyUJOsx7doPLTZhAxprZjREdGv0j6VToAABNiTTo1J8pBIoM7VPpJxqJKsTwTHUAQKrUTKNKuA8ixnzA0zlVVCFEI4RwCDmlrMyz3NpJ0GHesxtkM5rj4HJswezGoA6N2k3HIgecHFV+HKNzfDwACHflQ/14Q2Vm3ceOQ19UCY4ydDOrz0vV3yEYJgDQxslSm+Q01yFAPrMbfoDRNB+XcxbMbgzq0KjdlLvsAKCGA5qqUCs9NkjyttWTSRIZ+abYDEYVE+ZyAeA6cjqiSmgkpzvBqRkG4SKSIqoEQiEA6FZaYPzqTkua6xAgn9mNYHDUfQBhuGDB7MagDo3+cUo816PMBQAhT33MSrf+yhXMvEjlnmJTOnAGowoqMaPhxoZ0RBViB88NvA7HCbSFwxdp0HJUUVQ1HNYAgI0f2hJJdZjH7AaVYmG4/qEXue4c39Ny2Y1xHZrwxznqzDMAIOhtAC3yqoViR5W/cvnaZZDjNF5pp8NQG4wqvOGpo1AJ4jpifVFFaQ/eyZlldoG2sO/qphfZk0aVQFAFgF5tCh2i0Zh5GtNch/msuwGwTbchXdPjIRnkaZHJqiyV3RjXoQl2095lryhxAiG+xtpYVAmV4O2zXScGnbq1TCnGNbe5AkNFs6IK192Q4wjDBSNRJXQ2ariFJ+m1Evq6wIFriGaP/nUkiyqaSnyBMAAM7Vhm5LpOe5LqMF/ZDQFAdlTwP3oKHbbpNr4TBr11iJCd7MYUHZrTZ+yinuUYoaC3Puj3AUSiimpDB65w7LrW1dA7uReG23P1k23H5rmUcs7EqCJP0l+fimQQx0oGo4rSDmrv4n3nprq34SI4OhV+nEVUG0kRVQiQOk+AAPRs4+pc7NB9XT8RkuqQkvvsBgBwObbPtGfUSuWYaRNH8PSg1sluzNIhOukZGOCHw7XLtlchjEvbdeYxx2HAABgBhwADICAF+xQhQORqhcgo1J7XirFagjiEOAQIACOCIPITDIAQcNEe4nRNZBhqBDhufey/sQUAwAj8r/lDa9KeWSEO+QpJGCfG+ndrBEh0ASI9viGyUtMAYVXTNCAEgJDYtyTWQ5x4ibSdSJUE/IQLgioBAQi1Rb4zifesyJaqpkX2Gf15bP8EUJ034AsoRTbx+nN6Cqw/cRqcUod0AdP1ABwCAJIlHWKEEBC1RvO96ksxeCgFyajgVza+P08ANCAaAbN0qGoEEFI1WshEGm3Npt+inOrQNLsBgPc37995vFGQ5JI2HejzizwhILHnjaPPr2kBCIcRXUAAHEIo7pEjiD5vBLQfQmwE/Oh/EQChCwgI3RJ8xPM3j3oos9c6xOGCfI1MAEj0edBnQKLPhj6P2EOKiSDhGZO4Lel6ukHzd1XoBjENxT9jQLjBF2z0hXiMrjunJ+tMnD7W0WEk8UGAAMIbFferyUfbwjZku0C0jZOIDeL/1E8/HZppNwFFXfTf3bX+oCBIZW078BjnMaqAT2v8WwZD3ojDRcdM2TpRpdYd8ATCAHDlwArW/p0RltIhrQ+JmBEBrYZoNWp4t6IcVLkSjBxI6sELPXkCoGoaIES1crrq0Ey7AQB/WHl9/Z4T3iDmuNLStnabLY9RBfzE954/uObUI37ZJkq2SZJFooqiaccb/cGwxmP0i0FdaQc2RkZYSofo5A0QIBypzInUrVB/ISfbymmpQ5PtBgBCqvbOhr1VDT4AcDoLSkvKBIzzGFXCO8KBL4PBZK9uYhsSBwq2iRJXhi0SVRr84Rq3nxCQeDxjUNcOLru5T+eng9V0SLMbRM0IISDR8YCjirJUdpMlHZpvN5RvDxxbta9a1QgAOB3OwoICWRBEjuMwyktUAS8J71KVQ5HqOgQgdOfFXrwVokpQ0RSNuP2hRn+Yftu7TeGFPTsUSKyXjVGspkMrZzc50GG27AYAPEFl9b6jW6rrw2y8y7TpWlJwTuc2FSXOfJ/I6QPToQ6ypMMs2k2MbdX1B+o8x72B455AkD3yk5F4XGaXSx1Sh0JHnzOKJJ61dmcLpsMU5EaHubAbBoPBADCpVzGDwWCcEmY3DAYjRzC7YTAYOYLZDYPByBHMbhgMRo5gdsNgMHIEsxsGg5EjmN0wGIwcweyGwWDkCGY3DAYjRzC7YTAYOYLZDYPByBHMbhgMRo5gdsNgMHIEsxsGg5EjmN0wGIwcweyGwWDkCGY3DAYjR2AAcLvdTz/99Pjx4/v27duvX78JEyY899xzinKKOUYBYO7cuVdffXX2T9IQVjjJOXPmVJzMH/7wB/qVz+d74IEHhg4d2rt37+nTp2/cuNHIgSorKysqKj777DMzzjrXMB1mm7zrkAeA2bNnHzx48Pbbb+/Tp4+iKF9//fXTTz998ODBBQsWGDmkEYYMGfLRRx917NgxXydgLl6v98ILL5wzZ05szRlnnEEX7r777u++++7BBx9s27btokWLZs2atXz58nbt2uXpTPMJ02G2ybsO+Z07d65fv/7vf//7JZdcQlcNHTpUkqTly5f7/X6bzWbu8dLh0KFDtbW1uT9u9vB4PP369RsxYkTC+v379y9ZsuQf//jHhRdeCAADBw4cM2bMq6++evfdd+fjNPMJ02EOyLsOsaqqAIDxSZU4N9100wcffBB7xu+8886FF17Ys2fPwYMH33bbbSdOnEi4ht69ez///POxNaFQaMCAAY899hgAnDhx4o477hg8eHCvXr2mTp36zTff0G12795dUVGxdu3auXPn9u3bd+jQoX/84x81TVuzZs3o0aMB4Lzzzvv1r38df6BVq1ZVVFT88MMPsTUbNmyoqKhYuXIlAHz33XdXXnll7969+/Tp84tf/CJpNtinT5+XXnop9nHevHmXXnpp7GRWr159zTXX9O7de9SoUZ988smWLVumTJnSu3fvSy65ZPPmzfQniqL89a9/HTVqVM+ePceOHbto0aLY3hYsWNCtW7ekd9nj8TgcSeY8/eabbwRBOP/88+lHQRDOO++8VatWNd/yt7/97W9+85vXX399+PDhvXv3vv766xsbG//yl78MHjx40KBBf/zjH5MetxXBdAg/AR3ibt26derU6e67737zzTcTnh9l8eLFv//976dOnbps2bL/9//+3+bNm6+77rr46WKcTufYsWOXL18eW/P111+73e4pU6aoqvqrX/1q/fr1zz333JIlSwYNGjR79uwdO3YAAM/zAPDQQw9dffXVGzZsePLJJxctWrR06dIhQ4Y8++yzAPDJJ5/89a9/jT+TkSNHlpaWxh9o6dKlpaWlo0aN2rt37zXXXNOmTZvFixe/++67Tqfz6quvPnr0aOqLj0FP5oknnpg3b9769esHDBjwhz/8YcGCBc8888y6deucTuf8+fPplo888sg//vGPO+64Y/ny5TfccMOf/vSnt956i37VvXv3Cy64IOn+vV5v0vi8b9++du3aiaIYW9O5c+d9+/YlPcP169cfOHDgiy++eOONN7788svp06e3adPmm2++WbBgwaJFi6jWWy9Mh/AT0CEWRfGf//wnrTQaNmzY+PHjH3rooS1btsS2WLhw4ejRo2+55ZauXbuOHDnyD3/4w+bNm9evXx+/l8mTJ2/cuDF2Wz/99NOePXv27t171apVlZWVjz766KhRo7p37z5//vxOnTrFO/GECRNGjx4tCMKYMWM6d+68adMmQRAKCgoAoLCw0Ok8aRI/juMuvvjihMc8adIkjuPeeOMNURSffPLJPn369OvX7/HHHw+FQu+//36KK2/OxRdf3L9/f7vdfvnllzc2Nl511VVnnnmmy+WaPHlyZWUlALjd7jfffPOGG26YPn16RUXF1VdffcUVV/zjH/+gP582bVpsOQGPx7Np06apU6f26dPn/PPPX7Bggd/vpzukFxvD6XR6vV5NSzLpms/nu+uuuxwOx5AhQ3r16qVp2pw5c2w224QJE4qKiugZtl6YDmOcxjrEANCzZ88PP/zws88+u++++zp37vzmm29eeumlDz/8MACEw+Ft27YNHTo09oOBAwcCQMJOf/azn9lsNloRrSjKf/7zn6lTpwLAxo0bOY4755xzIgfDeNiwYfES6dOnT2zZ5XI1NDSkOFcAuPTSS/fv379z504A2Lp168GDB+mBNm/e3LdvX1mW6WZFRUWdO3fO9C+wR48esTNJ+BgMBkOhUGVlZTgcHjlyZOwnI0aM2LdvX11dXYrdapomiuKBAwfmzJnz2muvzZw5c9GiRb///e8zOjcA6Ny5cyz+uFyu2OnRj42NjZnu0GowHVJOYx3ysaUePXr06NFjzpw5Ho9n/vz5L7/88qWXXtq1a1dCSGFhYWwzuuzxeOL3YrPZfvazny1btmzWrFnffvttfX39lClT6Gaqqvbt2ze2paIoxcXFsY+xB0M55ZSew4YNa9OmzbJly3r27Pnpp5927Njx7LPPpgfq3Llz/JaFhYUJJ3lKJElK8ZEQQnc4a9YshCJzylP7r6mpib+oBDDG8QX4IUOGaJr2l7/8Zf78+YWFhQmPp7Gx0el0JlRhpHl6KS+u1cB0eBrrkA+FQtXV1Z06dYqtcjqdd9555+LFiysrK/v27Ysxjjd7upyQegHA5MmTf/Ob39TX1y9btmzw4MG07bCgoECSpCVLliRcdooTSg3GeNKkScuXL7/11luXLVtGK9jogRIiUkNDQ/v27RN+Hns8lEAgkNHR6VU/9dRTvXv3jl8ff/fS4ayzzgKAqqqqrl27HjlyJBgMxp7Zvn37unfvntHeTg+YDtOn9eoQ/+lPf5o4cWJC5RytJWrTpo0gCGeddVZ82vn9998DwIABAxJ2NHbsWFmWV65c+fnnn9PEEgAGDRoUDAY1TesWRZbl5nc/KS3ZJC3Bfvvtt3v37o0dqH///lu3bg0Gg/TjiRMn9u/f3/wkXS5XfKjJNMs966yzRFGsra2NXU5RUVFJSUl8HVtz9u7dO3fuXJp4U3744QeEUMeOHUePHq1p2v/93//R9X6/f8WKFWPHjs3orE4PmA7Tp/XqENNqnmnTpr322mtr16795ptvXnzxxVtuuaVv375jxowBgF//+terVq168cUXDx48+M033/zpT38aPnx48zsoSdL48eNffPHFmpqaSZMm0ZWjRo3q06fP7bffvnbt2qqqqo8//njixIlvvPFG6nOiefIXX3xB2w4SOPvsszt06PDII4/06tWrV69edOXMmTNDodC8efN2795dWVl55513ulyuadOmJfx2wIABy5cvr6mp8fv9zzzzjNfrzehmFRQU/OIXv3jqqac++eSTqqqqNWvWzJw5M9Y3YfHixTfddFPzX3Xs2HHr1q1z58799NNPv//++xdeeOH555+/6qqrSkpKysvLp0+f/sc//nHJkiXr1q377W9/y3HczJkzMzqr5mzduvWrONauXWtwhzmA6TB9Wq8O+c6dOy9evPill15auHBhdXW1KIodO3a8/vrrZ86cSc1yypQpgUDgpZdeeuKJJ1wu1/jx4++9996ke588efL1119//vnnl5WV0TUcxy1atOjPf/7zTTfd5PP5OnXqdNttt1133XWpz7J///5jxox59NFHR4wY8corryR8ixCaOHHiP//5z/g+SF26dHnjjTcWLFgwefJkjuOGDRv29ttvl5aWJvz23nvvnTdv3ujRowsLC2fOnHn55Zd/+eWXmdxAuO+++1wu16OPPnrs2LHS0tKLLrpo3rx59Ktdu3Z9/vnnzX8iiuJbb731+OOPz58/3+12d+nS5e677541axb99uGHH16wYMEDDzzg9XoHDx78xhtvlJSUZHRKzXnmmWfiP5aXl69evdrgPrMN02Emd6u16hCdNlWMDAbD4rA3whkMRo5gdsNgMHIEsxsGg5EjmN0wGIwcweyGwWDkCGY3DAYjRzC7YTAYOYLZDYPByBHMbhgMRo5gdsNgMHIEsxsGg5EjmN0wGIwcweyGwWDkCGY3DAYjRzC7YTAYOYLZDYPByBHMbhgMRo5gdsNgMHIEsxsGg5EjmN0wGIwcweyGwWDkCGY3DAYjRzC7YTAYOYLZDYPByBHMbhgMRo7Iv92sW7duzpw5Q4YM6datW9++fadOnfr222+n88OqqqqKioqKiorGxsZMD3rnnXdWVFQ89NBDmZ/vqXn66afpiT388MPZ2D8jG7z77rvTpk3r379/t27dBg8ePGvWrHXr1qXzw/fee6+iomLixIk6Djp69OiKiorPPvtMx29bYtGiRRVxdO3adfjw4bNnz7bCVPF5tps1a9b88pe//OKLLxwOx7nnnltWVrZp06Z77rnntddeM/dAhw8frqioePnll+nHPn36jBs3rkePHuYehfLJJ5/QhaVLl7I5kVsFzz777Lx589avX9+5c+cRI0YghFatWjVr1qzNmzebe6DFixdXVFRUVlbSjyNHjhw3blybNm3MPQoACIIwaNCgQYMG9e3b1+fzffXVV7/85S/z7jh8fg//2muvqao6YcKEF154ga65995733rrrUWLFs2cOdPEA8UsgHLdddedckZ6fezatWv37t0ul8tutx85cmTDhg2DBw/OxoEYJvLKK68AwPz582fPng0Afr9/+vTplZWV77zzTv/+/U08UIIOH3vsMRN3Hs8ZZ5zxwQcf0GW32z1x4sSqqqr33ntv+PDhWTpiOuQ5u6HloOLi4tiae+65Z+XKlfHp5eLFiydPnty7d+++ffteddVVK1euTLqrGTNmxOcvX331VUVFxbBhwwDg0ksvffTRRwHg4Ycfrqio8Hq9CYWpUCj05JNPjhkzpkePHoMHD7755pv37t1Lv3r11VcrKipuvPHGtWvXTpw48ayzzrrsssu2bt3a0hUtWbIEAMaMGfOzn/0MmsmLYU0SdGiz2V5++eV169Y98sgjdE0KhSRAizCx/GXBggUVFRW33HKL1+utqKj48ssvAWDSpEmXXnopNCtMHT169M477xw2bFiPHj1GjRr14IMPut1u+tXNN99cUVHxr3/96/XXXx85cmT//v1vuumm2tradK6uoKBg4MCBABAIBHTdHtPIs9307dsXAN5+++3f/e53n3/+eUNDQ0FBQadOnTCOnNgLL7zwu9/9bvv27ePGjRs2bNi6det+9atfff755xkdZerUqe3btweAc84559prrxUEIWGDG2+88bnnnnO73ZMnT27fvv3SpUsvv/zyQ4cOAYAsywCwd+/eO++8s0+fPqWlpRs3brz55psVRUl6LGo3F1988cUXXwysPNVKoDq89957H3vssbVr14ZCobZt28aXcVIoJE0EQbj22mvp8pQpU6ZOnZqwQW1t7RVXXPH+++8XFhZOmTJFVdVXXnll5syZVGlUh//+978XLlw4cuRIVVWXL1/+5z//OZ1DezyejRs3AkB+UxvIu93cdNNN1HcXL17861//evDgwVOnTn399dfpLW5sbHz66acB4JFHHnn++efp3QeAxx9/PKOjXH/99RUVFQAwYcKEBx54QBTF+G9XrVq1YsUKhNB777331FNPffTRR3369GlsbHzxxRcBgBrf7t27n3rqqSeeeIJm3T/++GPS4LZjx47du3dLkjR27NgRI0YUFRXR8lTmN4aRUx555JHS0lKfz/f888/PmDFjwIAB11577VdffUW/Ta2QNBFF8YEHHqByuvHGG6+//vqEDRYuXHjkyJEuXbp88sknTz755IcffiiK4saNG2nuQ3+4f//+jz/++Iknnrj33nsB4IsvvmjpcMeOHbv88ssvv/zyKVOmjBw58ujRo1dfffWMGTMyuy9mk2e7KSoqWrx48UsvvTRjxowuXboQQjZt2nT//ffffffdAPDDDz/Q9G/KlCl0+0mTJgHArl276uvrzTqHb775BgD69+/ftWtXABAE4aKLLgKA//73v7Ft2rVrN3ToUADo3r27w+EAgOrq6ua7+vTTTwFg7Nixdrud5/nx48cDK0+1Bvr16/fVV189+uijl1xySWlpaTAYXLFixezZs999911ITyHGoUeZMGECTWTatWt39tlnJxxlzJgxBQUFADBo0CAAqKurC4fDSfcWDoc3bNiwYcOGzZs3u91ujuMOHDiwY8cOE09YB/lvCMcYjx8//tFHH12xYsXq1atpkvnBBx9UVVXV1dUBgCRJdrudblxSUkIXGhoazDoBepT4+iN6lHhHi//WZrMBgKZpzXdFS1Lr16+fOHHixIkTaTUTK0+1ChwOx4wZM/7+979/9913H374IS1ePfPMM5CeQoyTkQ6pCKEFHQJAeXn5vijffffdddddt3r16muuuUZHrxETyafdeDyeZcuWPf3007EarPLy8ieffJLneQA4cOBAUVERAASDQb/fTzeI1Y3FPxUKzTZju0qzFg0A6FHow47/bcza0mT79u179uwBgOPHj2/btm3btm00A2LlKYtz+PDh999/nxaTKQMHDnzggQcA4NChQ4qiZKQQhBDkVYfNKS0tvfXWWwGgvr4+v1LMc3bzP//zP3/7298WLFgQCoXomv/85z+04qZjx45nn322JEkQVx756KOPAKBfv34ulythV7Rij1aJAcC///3v+G+pCLxeb/NzGDlyJABs2bJl//79ABAKhZYuXRpbnz60JHX22Wfvi2PMmDHAylPWZv/+/XfeeeeDDz748ccf0zWqqtIak3bt2vE8n5FC4nXo9XppU1SMU+rw888/p38Lhw4d+v7771s6SqbE2nOdTqfxvekmn/1unE7nXXfd9dBDD73yyivvvfdeeXl5Q0PD0aNHAeCyyy7r0qULANx6662PP/74fffdt3r16tra2tWrV3Mcd8899zTf27hx4z7++OPPPvts7ty5brebtiDGSjHt2rUDgFdeeeXgwYN33XVX/A/PO++8888/f+XKlVdeeeWYMWM2b968Y8eONm3a3HjjjRldDrWbhN6ll1xyyVdffbV06dL77ruPSo1hNc4999wJEyYsX778tttue+SRR0pKSo4ePUpL67fffjtkqJBx48a98847jz322Pbt29evX9++ffvjx4/H6/DQoUP333//qFGj7r///vgfzpkzZ/Hixfv27Zs6dSqtSwqHw6NGjbrgggt0XBStKqbLDQ0N+/btA4DBgwfTSp98kefs5tprr124cOGYMWMcDseePXvcbvegQYPmz58fa3u6+eabH3vsse7duy9btuyHH34YNWrUW2+9ldTvp0yZMnfu3LKystWrV3fo0IH2mAgGg/TbG264oXv37m63+9tvv00o7iKEXnrppblz50qS9OGHHx4/fvyyyy774IMPysrK0r+QWEmKtn/HuOiiiziOO3LkyA8//JDJjWHkDoTQs88+++CDDw4ePFhV1V27dmGMx4wZ8/LLL1911VWQoULmzZt3ySWX8Dy/YsWKn//85z//+c8hToe///3vy8rK9u/fv3379oQflpaWLl68+LLLLjt27NiHH34oSdLcuXMXLlyoL0rFqoo3bNhQXV3do0ePO+6449VXX411MckL/x+GVuk3JsrQXwAAAABJRU5ErkJggg==", "path": "image.png" }
Which solution has a higher concentration of pink particles?
[ "Solution B", "neither; their concentrations are the same", "Solution A" ]
2
The diagram below is a model of two solutions. Each pink ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the pink particles represent the solute. To figure out which solution has a higher concentration of pink particles, look at both the number of pink particles and the volume of the solvent in each container. Use the concentration formula to find the number of pink particles per milliliter. Solution A has more pink particles per milliliter. So, Solution A has a higher concentration of pink particles.
Solution A
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAh0AAAEiCAIAAADSxvdVAABghUlEQVR4nO3dd2AUVf4A8O97M7N9s6kkAZLQCb1FioIF7OedYAPbifVO8Oehnp6elfMUsZ9gP8U7C3eed+idYsFGEVR6ByEEQkgI6W3bzHvv98fbnWwKMQmbQvL9uMdtZmd23+zMzndeJ0IIADgahP1eqGJgCEBdnkrArcBAByRbWrwtnirdCp4qqJkiTxUihCgMwo+VHZ0o1BEmxECPllwv8FTptvBUQc00IQZUANjnBQBItcBgJ7iVDk4TagdVDPbWQEEQfvK27GKBp0p3g6cKaqbIU4UCQDUDAMjEw99tuBUY7AQIH/rmw1Olu8FTBTVT5KlCAUAXAAAuPPzdify16y0s+MZTpRvCUwU1k3mq0I5OCUIIoS4F4wpCCKFowriCEEIomjCuIIQQiiaMKwghhKIJ4wpCCKFowriCEEIomjCuIIQQiiaMKwghhKIJ4wpCCKFowriCEEIomjCuIIQQiiaMKwghhKIJ4wpCCKFowriCEEIomjCuIIQQiiaMKwghhKIJ4wpCCKFowriCEEIomjCuIIQQiiaMKwghhKIJ4wpCCKFowriCEEIomjCuIIQQiiaMKwghhKIJ4wpCCKFoUjs6AR2GAy8NlubU5BzyHioNljLOLNSSbE3u6+yb7kh3a+6OTiBCCJ2UumNcCfDApvJN/yv837qydXm+vBpWwwQDASBAE1oMjRngGDC1x9QLe144wD2AEszSIYRQC3S7uLKratfLB1/+vPjzclZOKKGEggoUKAgADkywUl76feX3P5T+8PaBt2elz7qu/3U97D06OtUIIXTS6EY340yw/xT85/pt179/7P1qUm2xWDRVU1VVURVFUahCQQGgQBSiaArVaJ6e98yeZ36z7jebizd3dNoRQuik0V3iiiGMNw+/+Ye9f8gN5losFkVViEKIQkAB+YQqVFEUohAgABRAAapSopHvSr6bs27OqoJVHb0HCCF0cuguceXfBf9eeGBhDdSoqirDBtDwg4T+JZQQQmqXUAAKiqZke7PvXX/v1uKtHb0TCCF0EugWcWVTxaYns5+sETWKqoQiCol4RPwZCi0kIrQQUFRlX/W+Rzc9WuIv6ehdQQihzq7rxxUv8y7KWXQ4eDiUU5FRBMKxBCKeEyAkIq5E5FpURV1duPqdn97psN1ACKGTRNePKytLVn5T+o2mavUDyXGehOIKRCwnABQ44e/ue/dg5cE2TzFCCJ3Munhc0bn+YcGHXuGlhNbGlYZBpa7awBKxpqIoOVU5Kw6vaLvUIoRQF9DF40quL3d9xXqFKKEIIeq+LBrZpHZh3fBDgDBgXx7+0s/8bZBShBDqIrp4XNldtftY4BghdTMmorHnova5EKLeEokSurds79Gao22TWITQyUGAkI/j3Jx2d108ruyv3h8UwUZeEHXDRvi5EIILXufViNUIkBJ/SV5VXpunGyHU+QjBuWAgm/hAqIWPAMEFExhgInTxcVwKA4UijAgSOvSRuRe5hIfjB49YCHVCizxvgixY7C9un8QjhDoJITgAEEIJgBDCx6p0HiCC2FSXRbERogAAF5wSctxq2+6ki8cVgxuhqBAZVyKJ2ofgof8iF9Y+eOh9DG50wJ4ghDqIEJwQCgCHq3ftLPvmcPXOimCRwYOCEwuxx1t6D/SMH9njrBhrohAcQJBuP1htF48rKqhmzBAgCBBoeD9hriCEEKI2j8Ij/hUgXyKCKETpgD1BCHUELhglyjHfwS/zX8uu/pERXaMWqqryouFl3nJvwe6yNV8eeuvU1EvP6nO1pljNONRtdfG4kmRJIpyE8iLAKdDabo9SOGZwzoUQtQViom5o4SC4EFxYqCXBntCRu4QQai9ccEqUbaUrPjnynEH8DnsMASIgXLbOhUK5plgcmtsfDHx68JVdx9b+etSj8Y7Ubh5auvieD3ANsIDFDAycc865YEIwIbgQTHDGGWf1gwqv/5BBRXARZ43r7erd0buFEGpzXHBK6Mbij/9z+M+KprhsHkI5URhVOFEEoSDHqwXKgTJNVePdSYe9u1784bYSbwEhNNSstFvq4nFlSMyQRDVRMFEntMj4wngozHAheIOgwuo84ZwDB874oLhBqc7Ujt4thFDbEsApoTlVmz/Nf95l86iqApQRJTRkLaVAFSAEgBBKKVAgFDiwGEdsafDI3zY8YHCdENJtWyF38biS4cwY5xnHdFYn8xGRX6kTQsznrE5mhTMu11RAmZo21a7aO3q3EEJtShCgBg9+dmQxVSlVFEI5UJCRJDyWYPgvOaYgBUoJAyPGEbe/fPMXe/8GAFzwjt6RjtHF44qFWqb3nu4QDmEIYBEBQzT4t15QYaGHLCsDBtzgGe6M8/qc19H7hBBqWzIebCn5vDCwz6a6gDCgUGcUdDkGR+2QHDLrQighDJjLFrP6wAeV/hJKlO7Zr6WLxxUAOCv5rMkJk3mQgwHAIPSv+eDHeV43qAADAmRW5qz+nv4dvUMIobZFiQIA28pWaIoVCDfjBzneiIKyKiXcIEhTLGX+wi1530C440t30/Xjiktz3Z55e4qawnUOBjQeXRp7CENwgwsmgAFjbFLqpF8P+XVH7w1CqG3JHEapP7/Qd0BTrKEMR2g8DjC7SUNE5YmAes+Eoqi7jv4AAN2zm2TXjysAMCFpwl1D77JzuwiK+qElMsAYtQ+ZUxFMgAHMYH1i+jw04aFkR3JH7wpCqG3JdlzF/lw/q6ag1PZpq+0dHR4gLNxXOjRSWHhUDiGESrXCqkOMG5TQblh73y3iCgBc1f+qO4bcYeM2HuSgA+gARvjfug9hCGYwpjOhC9CBGSzdnb5w8sJTUk7p6J1ACLUDAQDVerkcCkwOMFlv9A3BQfDQchlVBAc5VEdo1CigPr06YPigG0aVLt8v0qRRbc7QOfGW+Ke3PX3Ed0RRFEprY2rozBChTiqyrkUYQgiRlZw1f9L8SamTOjDxCKF2JoQIhQoCLNwWLNRwWACvzaww2flNCDkqJQCXz7v1aMfdJa4AgEa1awZdMyxu2KLti74+8nVVsIoSSik1RzKW2VzBhOytkuxIvnzQ5b8Z8Zterl4dnXaEULuyUgdwwoUgXBCgXNRW2tdWsnDOeSizwpngTAADzjjnwBnXNJuqWKBbVrB0o7gCAATI2KSxL57+4rqCdR/mfPjD0R/yqvJ0oYeOPAfg4FSc/RP6n5l25vR+04clDsPRwBDqVmQj4gRbb0VYmcGpIigAIUREtgYTMqYI4DKoAOdcRhfBhOCg68HE2FSLYhNC1J//qRvoXnFFcqiOaWnTzux9ZkF1wQPPP/D11q+JiwABMIBX8tuuuu2Wi2+J0WJId7zPQKi7k2GghyPDo6VW6Pk2YmXACQFSWxAWqqsHDpyD4MAY40zwcGZFMKEbxoAeYwBAACfQ7e5Nu2NckRSi9HL1SipPsm62qpoKAJxzQzd6z+zt0TwdnTrU0US4oQ8AyGsN7S6NXLo9wgVTqDo0dvJXR5ZYFbvgjFIQRJhxRbYH4wIEE4zxUFAxGDcEM5gR5HbNNTZtKphdKLuZbv9ToQA0oiMtBdFdq9qQJBgTjAEhQClRFPmQQUUYhuDdsZtbdyOHIp7Ya7oT4n0BPzMEM4AbwA0QDDgDZgAzBNM5MxhnghvAdcYMwQwOjNb4q8alTevp6d9tRzXuvvkVhOrjXAhBFAUAuN8fOHBAP1rAdYNYLZbevW19+hBVAwDBGKH0uH2v0cmPAOGCx9p6TMu4/oO9C+PdSTphoaIwAIDwQPk8XGNvcG4IxgQ3wO/3xzl6XDxqTuiduiWMKwgBAADnAEAUpWbDhtI336he+Y1+OI/7vJwLTgg4nGq/PjHnn59y482OgYME5yAEwZKxrosSKkBMybjsSMVPa/I+iI9J5sCBhHOr4X6RgnHOOGfAGBcGCQaCQrDrJj4S70iRw+x36E50GIwrCIFgjCiKfqyw4A/3VP5jKfHrisNis1iExy0AuCCGwfRdewq37sh/8cXkubf1e+gRxeEQnGNo6cLkFF4zR9wLgqw+9C+X3WNRrRxYbXc3AZwLwYRgwA2o8VXaNMfNUxYMTz1VzjLZ0XvQYTCuoO5OBhXvhvW5s67g2Qdt8THE5QTGQAjBuJBVbwpQt0MVSlAP5C18qvTbb0a+/297ejqGlq5N1tPPGnVfmmfox7tfLq4utFkcmmqVnaZ56H/C66vhnA9JGX9l1h96evp386ACGFdQd8c5URTvpo0Hzz9PqamyJcURXSecQ8SwHRD6g3PBVaK44j3VP2xYf+7Z47/51pbaE4TAupauixACXPDT+lw8ImXy2oP//fHA50WVh60OVRBBALgQzEdH9Txj8oDpI3pOoYTKqYs7OtkdDOMK6saEAEqNsrLD11ytVFdqbjfVdZn7IBHz8sglAkAhwIkgAcMe567cu2/z7Osmff4FBpWujlBCuOBOS+z5mdcneUf8+pZZiWluqgpCaHFBef/UYYvefw4A5DBQ3bZOJRJ+Bagb4xwAjj7ykLF7rxYTQw2DhlqbR07hVOdBCVBCiG444twlX3yZvXgxAAjGOnpPUNuihMpR8kGQ6kJ2dJs/b4P/yEb/sT2BQJUAAC4YENJ2rYpFA230QVGBcQV1V5yDovj37q34+98tsS6iG2bwkI73Z2i+QGZYLUr2X57Xq6qIokDn/p2jE2fGDEUDzU40B9EcRLMRqgAAUKK0RRfIyJ659US+2tlgORjqpmSVe9k//ynKK2liLDEM0qC7QRPXCcKF6rCX7z9QsPyT9JmzBOey4wvq8oQALgcthja/nZDxw+/3VVVV+Xx+xhgAWCyWmBi3y+UmhHTO8ccwrqBuSg4jWP3t19RCINyLXtSNJSS80PzX3Npc4eiKL9JnzmrjxKJuRwYMn8937Fih1+uVWRMhBGPMMIwjR47YbNbevdPi4+M7YWjBuIK6I2YYiqpW5efX7N1rt9pkcbUZOczfaIP5nGpbiAkA4FyhULlrJwBgZgVFkQwVZWVlhYVHKVVsNpvMmsi4IkOLz+fbsWN7r169+vcf0NnaJGL9CupehBCGYSiqunffvutvuaWoslJTVS7qTAnIw08YgMzIyFjCAbiIWE0AqDRQUsJ8PvnWHbdbqCsJBZWjRwusVqvNZlMUlVKFUoVSQilVFIVSxWazOp3Ogwdz9u7dS0jnqmvBuIK6Ec65EEJV1WXLll02Y8b6PXu8DqfgzGxSbD7ktNQsorWxfAgemnM2PMe5bF3aiX7S6ORHfD5fYeHRcESpRYhCKSWEKAolhFJKXS53Ts6BgoICmaHp6JSHYFxB3QVjjFKq6/qDDz54++23EyGsMTFHCCUCGKmNHywcTljd7AsD4BzCk24AA+CEMMHBYqWa1tE7h7qUY8eOhfMllBAIP+qhhBBKqdVq2bt3L+e889SyYFxBXV+o7EtRsrOzr7jiiiVLliQkJCiKEtD1XEURPBRLeN0SMFE3xnAOnAMDzkCwcFwJ6hA/cCDVNEPXO1cJN2obDfMEZo16tD7C7/d7vTWapsqavshxlCOZyzXNUlVVWVhYGN1knAiMK6iLM8u+/vvf/06fPn3Hjh1JSUmMMd0wgPHDVksQCAuHlnoPs0yMceAceGj2jdByHUABOGSxVgmhahpjjOPsLF0U51weXFkMFfkSDQ8Qxxg7wcu63Ly6uppzTggNR6za0GX2iAwvrP3AY8cKT+SjowvjCurKZNmXYRjz58+fO3cu59ztduu6zhjjQlgp2e33Fxk6cGLwUIWKGVHkE0MAY8A4MBAMWGghgA7ADUP3OBes+/6X55yzauVKRVEIISd+cUGdihCCc04pVVXV5/Pt2LFD3qnI5YSQ0tLSXbt2yQwxAJz4vUUg4IdQxBCcCyHnpuQNe9wLzkONSAghVVVVUdjbKOm+7Yz9fn9eXl5xcTFAnduBQ4cOHT16NDExUVW775fTBcgWmaqq5uTk3HnnnevXr09MTBRC6LoeKokmpOjIkczTT9dyDwZ27FAdTsoEJbWlWQJCFfQcgAOXORUZUQyAIBCLYN84Y6pj47zZ2Vddc80lM2bce++9PXv2lNcdiuMcn/zkqUIp3b9////+97+tW7eWlJSkpKTU1NTI+OHxeADgvvvuS01NPfPMMy+88MKYmBi5VatrO+StSTh7RDgPda2X449xLniYDC0y5Mguk52kiqU7Xjqrqqo2bNjw3XffHTx4sKioKCEhQdd12WBc07Tvv//+4MGDmZmZZ5xxxvDhwy0WS0enF7WYWfa1fPnye++9t6ampkePHjKbIq/4gUCgrKzshtmzn3juuYpPPt520S8dwBUBVNT5XYZr6QUHwcItxAyAICEawCGrbXWMx6LrisNhI+Tf//73t99+e8cdd1x77bWqqsqsUif5naNWkNkUr9f79ttvr1ixwjAMu90eGxsbGxsrzyVCiKqqMkNcWFi4ZMmSTz755IYbbjjrrLNkVGjt0SeRZarmkC1h8kXGOWeMM2bIHi3yPqaT9JHsXnGFc75jx45ly5b99NNP8kh4PJ6YmBh5uZE3JkKI0tLS1atXr1+/fsKECZdeemnv3r07OuGoKYKx0OyN8qfFuWz3tWDBgtdee83tdsfExASDQRlsFEUpLy+3WCwvvfTSzJkzmWEk/uKilLvuPPrMszaPExhTIrrZCxA8op2YbHxsUKoL0L2+j/v01RXVaujyEhAfHx8IBO67775ly5Y99NBDWVlZ8qZSOV6XSc4F5xA51pMQQAh2sewMZFA5cuTIwoULc3JyYmNj5cVBlm1YLBazKEzmTqxWq91ur66ufuyxx3bt2nXrrbdCa6/yFovFMAx5UZLvEFmzwhhnETiX3SR1l8sV9S+h1bpRVl3X9c8++2zx4sW7d++WWRMlzGKxWCwWWT4um/epqhoMBr/55puFCxdu2rSpo9OOGicYkxOoEFUF836N0j2HD19y1VWvvfxyYny8PJRmKUFBQcGgQYOWL18+c+ZMxhihlOn60KefUWZdXl1RoxLwg/CDCILQQQQBdAAdIAgQBNAJMTTVGwiqQSP/rDN/CARFTTUN52hlCXtSUtK2bdsuu+yyP/7xj2VlZYqiNKzPl4EQKCWqShQFKAVK5V7IISwFM9r/y0QmGVQOHz780EMPHTlyJDEx0ewdYhZwRY7/KJ8YhmGxWBISEj744IOnn366FRFFbuF2uznnuq4bhmEYTNd1ANA0i6Koum7oelDmUQyDMaZLQvDk5OTofgknorvkVwzD+OSTT5YtW6bruqZpkYfcPDMgXOdmloxrmnb48OHFixffeuutp5xySkckHB2HEHKoR8G598cfKz//zLtli37sGDcMi9u1/OChYq/XkZJSresWw5BlX8FgsLS09Ne//vWf//xnp9MpyzGEEIqmffbZZw/lF/bo2+fC6soh3hpNiAClglJCSCi/QggDCAaDviqfLSFu1F9euPjqawZ//PFjjz++f/9+2WpZ3mAahuF0OgFgyZIlK1asuOeeey677DJZn08pJTLyKYpgzLtlS/XKb307dxplZUIA9cRYhw6NOfNM99hxRFWFLFbHSpp2J8+WqqqqhQsXlpeXy/KMRteUt6HmLQulVOaJk5KSli9fHhcXd/PNN8sQ1ewPJwDgdDodDkdNTY3dbjcM5nA4KisrCwoKrFZr7969CFG9Xi/n3DD0YFDXdebz+WJiYlJSUgHrV9rZ6tWrP/zwQ8MwmqiNl4ffLBiVR0hV1ZKSktdffz02NnbgwIHtlmDUFCFACKIolV98fuzxP/u+/x4CBqEAKhUAVYxfqFnPslrW6cGP3TG7LFaVUn9pqWazLVq06KqrropsM2oYxoIFC155+WWH3V4ZE/u80z3AW31GVcWoYAC8fq/OSKgEjHAQ1gTPoF9fN+y+Bxzp6YKxX1x00elnnPHCCy/89a9/1XU9Li4ussY1MTGxvLz89ttv/89//vPQQw8NGTIkVJ1LacWHy44987R/4wbhCxICgoAQYAhgAHmaYh09KvXO3yfPnAXhQZc7+Nvult58883c3NyEhITjBRXJDCcQcYfKOU9ISPjnP/85cuTICRMmtCi0yIKvtLT0rVu3AIDL5Vq9evUrr7xSWVlJKR00aND118/u3bu3z+czDEPXdV0P6npg6NBTZDFdJ4krRAjxv2IAgF8mdnRa2kxOTs6zzz5bUlLys028zCuO+VxWk+m6Pnbs2LvvvrtTFWKeoFYc905xqnAOlHK/P/+uO8pfeUVVFdXlBEohXAItCAlywRm3GKyGiO+dzqWa1Tpq9KInnhg2YoRhGPIXqCjK4cOH77rrrrVr18qmYtwwGOcBSgUhtry8G/v3Pa1Xz5qaGtVmc2T0SZw4MeXsc+09e5pZJZnjoZTu3LnzkUceWblyZUxMjN1uN4xQKRYhRFGUiooKi8Vy4w033H7HHXavN3fOb6rf/7dqUVSXA6giGyNyAE6AC6IbPFDj9RmG5xfnD3ntDVvPnoKxDq9xOVlPlQYaXnnrLZExYMuWLfPnz3e73ZFrmqvVa0dutsWCuk25qqurMzIyXnrppeNWsDWZyNxDB/fu2R3rif3j/Q/s37fPHRNjMFZRWZmamvrYY3+2Wq2BQCAY1KurK4cOHTpq1JhOElTkce/6+RXDMD799NOioiItYrCN450iMptiFqSaSxRF2bJly8qVK3/xi1+0NAEChJd5SwIlZXpZkAcpULfqTrQkeiwepdvPg91iQgClrLr60KUzfF98aU/0EAGEMRExIz0H0AAMCn5VBS7O8HkHHCvpddvcYSNGGMEgVVUZVL788st77rmnvLxcNhWTtxGUUjUYLCkpOfe6665//PF4p7Pez1UwZlatK4oirynDhg17//3333///YULF+bn5yckJJgdWQzDkA1Pn3v++W9XrXym+Ji6cYstMZYKAYwBN+T5Z97NKgSsTqdKRMUnn/14+mljP17uyhyCuZYTJ4+j2UTCbEBsLoksD//4448jLwUQUYBhVqQ38Vny6Dudzp9++mnlypVTp05tWWkYY4KQ9Iw+lti4VWu/O1BaArGxNZxrhMTFxJQUF+fn56enp1dVVTGmDx06bNSo0bILS6u/nKjr+nElOzt706ZNsk5eLqlXudKcXmyyUm7FihWTJ0+WLdabw8d8Wyq2fFX81YbyDXm+vCqjinFGBLERWw+tx1D30DOTzpycNDnZ3okq3E4KeTfM9n/xpb1HPAkGzenoeTioyCUKgKACBHgFjXHb8++7P7ZPn7RZVwnGBMCTTz754osvOp1Oj8cT2VSsoqKCUvr8X/5yzbXXyq4BIG8+ZC5WUeplHeQ9h9x85syZZ5999lNPPfXuu+8SQjwejwwtjDEFwJma2nPbNldZiZEYqxiGeY0xxx8DM9nAuAHOuJiqAwc3XHzxpNWrrT2SobONhH5SkcHAMIzy8vKqqqpgMCAPjaIoLpcrMTHRZrPL7C6lNC8vb+fOnXa7PfLKEHn1aKLnY+T1RL7bV199NXXq1OYmVJanqSoA+A8fTsjNTf525ZkFBdThKCDkiMVSoLP4+HiLqpSVlXg8scOGDe/Zs1cnyalE6vpxZePGjdXV1Y2WgDU/qMhbm4MHD+7evXvixIk/u4khjLWla9/IfWNt+doKVhF6EwhNVFrFqwp9hduqti07smyQY9CV6VdelnFZnDWuxfvWzcgSoaLFi6r+9W9HUhwNBknEnT6NGM2ehKeppwRUAYIQzabuuv325NPPKLVY582du3rNmsTERACQQUUe36NHjw4ZMuSll14aMWKEbNxV+3Nt8mZT3ooyxuLi4p544olLL730kUceWb9+fVxcnMViYYZhADgDgZuMgGq3ccMwmzJDRJppeFYxSoASYEHDHuuu+Gnf9v+7Leuf/8K4ciIIISUlJSUlxWanItnOIhAIVFZW5eUd6dGjR58+feTVYNu2bTU1NbGxsZHv0EQ2JXJhvec2m2337t2lpaXNmX1Lnt5C18vf/2fpW0t8mzcZxSWJivJHm82orvYBFGvqGsMoHjhl/LRpHos1wROraFonDCrQ5dsZe73eXbt2QYNmErU9BpqNEBIIBLZu3fqza5bpZU/uf/Lm7Td/WvppDamxaBaLZtFUTVEUqlCiEKIQRVVUi8oUtqNmx8PbH/7tut9uKdnSsn3rboQgiqIXFhY/udDitoFhyMgROe081P2TyrH5gBAuNKuVlpR8cvPNl1x55fdr1yYnJ3PODcOQBRSGYRQUFMycOXP58uUyqKiq2tKfqzmOyymnnPLRRx89/vjjqqoWFxerhFRT5arqyv6BgF8I9TgJrpN4ApRQousOj7Pg/Q8KPvkYKBVNViCj4xFCHDmSd+xYoaqqDofDarVqmkXTNIvFYrPZnE6n1WrNyzu8efNG2aJ33759DUNIRLfExsedbPRzVVWtqKjIycmBnxvfRRgGURTvhg3ZZ045cuVVwa++svh9zjiPGuP0qyRoUahKkxm/gvHZ61Yrzz6b5HQpmsYZ64RBBTo2rggQPuYr18vL9fIqo8oQ0W+zX1JScuzYsXpnSeTJ0ZzQElnGmpOTEwgEmli5wF9wz+57Fh1eVAVVVotVURWiEKISohCqUEVVKKVEIUABKIAKiqoIVXxT9M1v1/72yyNfnsC+dnHyqlr67rvG4SOK1UaFqDcdvflnvSMqlwvGbE770W++Lj18ODYxQfZokZ0WKysr/X7/s88+K0vG5OgvrUukeSNMKb3pppu+WLHi0hkzjlRXj/F7Z9ZU1VCqhpMEdZ9A40sIACgA2S++CJ2mCelJp6CgoKqqyuFwqKoWnh0rRFHkv4rT6aqp8f70014AKC4uli076r1PczIrou7YxoQQXdePHTsm/5S3Mg1HkBOMEVUtfeftnDOmGOs32BNjrR63QhXKmMK4RYBFCJWAUMCvadyAg888t27yJO+hg1RRRKcc6rQDysF0rmd7s38o/WFLxZZD3kNVRhXn3EIsyZbkTFfmKfGnjIkbE2+Nj8pnlZeX+3y+hj/IJm4xzJci7y/MhaWlpV6v12q1Nrp5abD0gb0PfFL8iaqphBKILKYJzzJIFSq4YMBAANBQgbqiKQd8B+758Z6/TPzLlNQprd/hrktWbFR+/D8lYjr6+uvU/TPyGFOAIBe9LWoPhR7TDcoYEEIpLSwsHDhw4IsvvjhmzBhZ9nXi43qZ9fk9U1IWv/TShdOm0et/rSpUP04gaTRchBZypjmtpWvXVGVnu/v3xwr8lhAApKKioqKiwm63yVmwZN18eKADIRsJE0JsNmtVVeW6deu++25tfn6+7E7fnMr2pm9SZRXO9u3bR40alZiYaLFYIt8wNMyHEIqmlS19N//Xv7bGuBSHjYbbE5rtUGrr9IgAQt3xnqpNW9dfcP6Eb761Jad0wjLSdo0rhjB+LPvx3SPvri5dXRQsMsAIVTgIAA6Ci+WFyx0HHIMdg2f0nnFJ+iU9bD1O8BP9fr9sAticfElkI+PIc8W8ByGEeL3e4uJij8fT8IQzhLHo4KLlxctVTSVK3aAC8p45tKeEEAqUUx6qCqAAFBRVyfPnPbzx4TdOf6NvTN8T3PGuRgggRD9aGNizW7PazBl/RYMsS+3k8+am4X85AZthxPp8h212F6UBXS8pKbn88ssXLlzo8Xia7tvUUqH6fF0nlJ7l8eT4fP4Yt8a5CCeyYbLNR0SyBQggqhqsqC7dsN7dv79sYx2tRHZ1BEAUFxdrmhqebBEICY2VE9m+y+l0fPHFFy+99Eog4K+pqRk1alRcXBwPN9k4XjZRBp7IC4W5iTngMWPM5XItXbr09ddfz8jIGDBgwIgRI4YPHz5o0KDk5GRFUeSNgn/b1vxbb7W6HapCqWGQuqcEiah+k3VvPGA44t0Vu/duvenGCf/7pL2+zxZov7hyLHDs5YMvLy1YWspKFapQjVrAAuaFW7aJUSDAApurN2/bse2/uf+9a+hdZ6WeRUlrfkherzcvL2/Tpk3ypuNn7z7qlZzWy9KaLxUXF99xxx19+/YdNmzY0KFD+/btm5SUZLPZAODrkq/fzn9bVp+ECv4l82oXUYhOKAnNnB6OKzK0bC/bvmj7ooWTFmoUpyCsJX/ewfwjrLxcs1mEEPLLMw+n/Gp53Qu0kB0oa+vGiSp4gh6kLndVebnB+cKFC2+66SbO+YmUfTVBXpLKtm8PGMJFqTmseWSaIaI9WN1kC7lE3opW7fsp6snr0gQAqanxBgIBu91mTpDVEKXU5/P94x//rKqqdLvdFovFbPFlXjQaLfCIDCpQ904UIupjAEBmU3Jycvbs2fPRRx+pqhoXF5eWljZ48OARw4aNGD9B/cM97qoqEh9rBhXzUhGZMQ9VGVKggkBQd8S5jn28/NBbb2bMvqEzdHKK1E5xZW/13gf3PriqfBVVqMViMVtGhcb2E4ITLnjowCigAIENFRvm/jD3ziF3zh4426I0a1BhXdeLior27NmzadOmrVu3HjhwwDCM9PR0eW9SryO9SR77ercekSdH5BPDMA4cOLBz587ly5fbbLbExMQ+ffoMGTJk0JBB7/B3qrVqLUYDpcFNKYm4nEBoOQEiiKhXY0sV+tGhj2b0nTGlJ5aGRZDHyO/nzBDEKg9G5IOESwwiQwsPzRwsOAgOoenoExgrLDw2sm+fFxYvzsrKilbZV1O8NQ1zJJH5EhZObSjZIhRXIvfFqK5uwxR2ObJkqKamWghOiHmVlxmUOpXwlCqVlaU1NTU2m032gPb7/bJHpKyXrTcudb0LgmQWdUTmWsx1gsEgIcRms9ntdnkhCgQCu3bt2rJly1LO7RaLRVVvSU29qqrCT6kZHEjEiU3qXksAgAAhjFtU2Pfcc2lXX0M1S6cqDWuPuLKvZt8du+7YWL1R07RQrUNkK0sBRBAKlAMXEVdfRVPK9LLHtj0WYIFbh9yq0saTKoSoqKg4cODAli1bNm/evHfv3mPHjsmqdUqpPFfMBqPmvAiRZ0m9UwQiYoyoCwBkqZq8tw0Gg3l5eYcPH169erWqqdzOnYlOkSZ4P87HcpEk6sQSU6PlIBFxpcxf9q/9/zo19VTsNVkfpVwQsxmxeZtPGoaT8MzBEJ6OPvQqpVpl5Ywrr3nxqSdjYmOjW/Z1PIIqLOLGM/IyUT93JXckNOOL4BG703kuGSeRQCAIYM6rGKrhFgLMiUxk2HA47Ha7vby83Gq1Ukr9fr/s7GKeG+Ytab1rhXlViRykA+peVYQQwWBQfpB52VEUxeFwOJ1OQghwXkHIl5TMrK5seG043iVEfrDmdFZs31H4zTep554nx4CI5td3Atr8R1USLHnkp0fqBJXIW0OzyoESCpQJFtlKlCo0wAPP7Xiup73npf0ujXxbn8935MiRnTt3bty4cceOHXl5edXV1UIIWZAqTwghhK7rgUBAi2jlHbpvOX4743pBBSLOFQDw+/2RW5n3uYILUk1IFYEDoKxS+Cauz9VFjKi95WgOAgCgEGVNwZq8qryMmIxmfsldnjxeWlIS2B3MYFShTAha9xcIkbf8AFzI6ehDmRUGAIpSXlFz5gXnnv36a0qblX01pCb3iIwrNOLaUS+icAAm5ITH3Ey2XG5PTmmHpHYx4WHsBaVcDikH4TDDuQwtXNd1l8s1YcL4t976W1xcnN8fOHTokMfjcbvd9W475A8/colhGGYGBSIuHeEZt7iiKEeOHCkrK3M4HOaG5oVFntUUQCOECqjXZLheZVvjAYYQEHDs669Szz0PGruadZS2/V0JEG/kvvF16dehoNLwSiD/pKHabEKI7CMtlwAFQkm1Uf3UtqdGJIwY4BpwrOjY3r17N2/evGXLlgMHDpSWlsrhnmRjwdCHRmCMVVdXy8ajcjVznUZSK4Rsfirn6jFPjsh/w1NP1y9MC+1LeBndS8khIkaJUBlH3S+l/r9QZx1CSIG3YHvJdowrtQgBAEt6upKepv/0E3XZqfxlRqwSeYFmAjiT09Gz2vnqCQkC9Jo4SQFgjCla29dgEQIA9mHDhKYaBo/8sUU2MRDh0jAugDM54TE3k21wDgQ8I0aYb4iaiRAanqSg9m4SQHAeCjmMcQBRXV19ySWX5Obm7tmzNzU1ddSoUTabbc+ePQ6Ho173WELIsWPH5KAMsbGxcoQe+ZKZa4kcIoxzPn78+P379+fm5paXl8tAZbVa5awcAKHcU5AqycywCu4lNDLHUZuFrV/3Zj4XBKBi5w6AzjX0ddvGlW2V297NfxcUqFP8FVkIBnVKEEMdTSLKhYCCoigHDx58dPGjScVJu3bvKiws9Pv9EO6GJkf9EhHVaJG5DcaYbL5ls9mOV78iVzYMo7i4uLy8nDGmaVpSUpLD4RARTTsAwGKx2O12r9cbDAYBwGwFDw37FnCAYIPbjIizQwhR57oCtWsSIAEW2F26+6K+F534IegiCBGMUU1znXF68Y6dinBS4EqDPisiXPzFuSwKq706yws01Ujy2edAREazbVNNKQC4Ro1WB/QPZh8Ah10B3rCgg4ergjhvLBYGA46MtISsU8w3RM1ks9kMwzAMg1KFUhFZ+h2ebJFxzoJBg1Jl3rzbS0rKgsFAVlaWEPS22+aacUJeNFRVLSgoOHz4sGxHXlhY2LNnz969e8vetWY5ebjahlZXV48dO/aZZ56RvW737t27bdu27du379u3Lz8/v6KignNusdkcDoefsUm+GogYhQiOF1Rq40qodA8oBEtLoZOdG20YVwSID/I/KAgWWCyWRoIK1G0oJSIWmk/CDe7ca9wbdmwAAvWKuSJLM0MfKoScRo0Q4nQ6e/fuPXr0aErprl275DhO0CC0yM0LCwuLi4vl+wQCAV3X+/TpE1l0pijKTTfdlJmZuXfv3h07duzatSsnJ6e4uNjn84EAhSqEEkIJyAp5l6hfv2KeJgCCh4tfG4YWIYOOOFJ9JCpHoesgBACSrrn26OuvGYxRAZwApXXuUrgAwYELWTnBDRBGeJJHpij+yprEyaclnXoahHvDtEOaBWPUZou79NL8Pz+uOJ3c4JSCvMsyj3lkss2gUpvsKpZ58XTN4+lsbX46M/nL9XhiACAYDKqqSqkSEVdk7qJ24sVgMBAMBmSfVqvVlpycMn369Pfeey8pKUn+VAOBgGEYOTk5wWBQXoIURSksLJRD9ch1zHtQ+cRisfzmN78BAEppWlpaWlra2WefDQCBQCA3N3fXrl3bd+7ctva77du2n03gzIC/ilASHoUIjlP3Jtt0cOB1oo7odF0j2zCu5Pvzvy7+OtSUomGDBmikyJBA/ZwEABBOFL+iKqoM5ZHFXKG3Cd19MHksU1NTMzMzx40bN2bMmAEDBsTHxx86dOiJJ544evSoHJyjXuUbABiGUVFRIcJDAMn5z6urq10ul3n+TZgw4eyzz3Y4HIMGDfrlL3/p9/uLiopycnJ279r97aZv1+1cB2VAfAQ4EIXwiVykCGANyjsAgIcDYb1ykMgHgN/wCxCNfiHdE6FUcO6ZOCn2sitK31vqjPMInXFeWzJk3srJ+35zLno9/C8TMPQP9wJAe16g5V1krzm3Fbz5ZqC0RLPYBBM84qiaxRr1km0AGIQEgkFbQuzg2+cBYCFYywghLBarxxNbVFTkcslp3GS/yNr6D8aYYRiGIWdm5NXVVcnJycnJKQBw3XXX7dmzZ/PmzXa7XdO0fv36pqSknnrqqUKIioqK7OzsXbt2lZWVyVvYeu3BKKVlZWW///3vBw0aJP80Qw6l1Gq1Dhw4cED//hdffLF365b1k05NsCryHKB1GxaHLxgRDx5q0yFvPjghjIPidAOAEJy0qktGW2jDuLK9Yvth/2GqyGhQt7KynvAVNtxqv+6LqmAupnKVi9r6c/O+QDb38ng8/fr1Gz16dFZW1pAhQ1JSUiJHxc/IyJg5c+arr77q9/vN0tLIqnt5vOt8qBBy7Ad5xmRkZFx77bUOh8NcwWazyXuQ008/PSM/47vvvjPKDJpPaT4lyYRP4aFzJPLeA+oGlUbuRmp782BEaUgesgFPPvnjqpXeY0etDgcxGAmP5xIqGQDO6k1HD2BYLDWllYN+c3PPX1zU3s1mCBGMWVNT+zy+YPfs6102KxWcitDxDZ8UoVr6yGTrALqq+qt84xc+7erXDzMrLSXPloyMjOLiopqaGjlGhvmr51yE8yp6MKgbhuH3+xSFjhw5CgA456qqPvjggw899JDdbr/ggvNTU3vKbiicc8YMn8938ODBL7744sCBHHlVgYgROkpLS2+55Zbp06ebfeYiLy/mtYtQqvbqHRsfx8pKg1ZNFYJD/TLS2ipDAM5kppaziLhiALjlfIOMg9oN4sqOyh1+7tfUurWjokF+pV4NduRz+YSCnqarW1VZQiTH2AEAh8PRu3fv4cOHZ2VljRw5Mj09vYlJt6ZMmVJRUfHuu+8GAgF5EkQWthJCHA6Hz+cz15dd62WeNzU1dc6cOf369Tvem3usHjVGDcYFxUDBCacKJRDu9li3SUfotoWL2lfNWxFZCMZDXURjrbEYWuojRDBm69V7+LvvbbzwAsPrszrtoBt1ypTCDyNcP6GranVpZc+zzxr3/AvQsCasHVKtKILzXtfNrtq+7eAzz7liXZRzwkODSEbcVIBZAsYo1alSXVaV+ZubB932f52qCelJRBZgZGYO2bJls67rMrSE7uuELAQzDIMZhuHz+XQ9MHHiqbGxcfIuUwgRExMzb948wzBsNmswGJDTyMt7Wc55nz59brnllu3bt//nP8uqqqrk7OY1NTWU0rvuuuuSSy45Xkdsc3x04FxJTFRGjfQt/4xarQYwcxxVaHBKMwZcyCrDUK0hBzBAcICkKVMAGjSJ6lBtFVcEiEPeQ7KqoOFrdZ6HiwmbqHII9g+qCSrJJ4qm9OjRY/DgwWPHjh07duzAgQPj4+ObUwerKMpFF11ktVrfe++90tJSmWuJvMQ4HI6ysrLIojBd130+35gxY26++eYRsjXOcaRYUzzUU2PUEEEEFVyEG4yRUEPA0H9ccOC13S54Iw8ZVxRQ+nr6NuNr7nbkzPDxp58x7rPPN185syKvwBbjkD/R0G0ghKejJ5RREggE/VW+PpfNmLjk74rN1lF9xwilwHnm08+CRcte8KTVqlrsNjPNteGQACOUKdTvCwT83mG33zb2+RegUw6EflKQv+W4uLgxY8Zu3bqltLTUarUqigIg8yvcMIxgMODz+ex264QJp9eby+TgwZxAIGi1WgyDKYqmKKGKGUVRDIPpejAQCAwePHjWrJl///s7paUlhJCRI0fOnTs3MzNTlqM0nTwhOAGacMmlB5Z/pgnCOSi0flwJ9e0VtUGltqSUkKA/4OiVmnr2uQBQtylZB2uruMIEqzaqzbZPRJDatg51O0XWFoLx4xYQ8RheM7XGmm29/Re3Tz9tenJqssXSrB74kRRFOe+889LS0t5///2tW7cGg8HIFoQWi8VisUSOVcw5T0lJ+cMf/tCrV6+m3znZltzP3u9I+RG5awKEIOGzM9SrPjwwR7jqvk44EbVBRT6cmnN44vCW7mA3EQotk6ec9sOGHff8Pv/990FnqkapRQNFEQBMCMMwggFD58KR2mPCMw8N/O0c2aCzI6soCBGMZT6+MGb8xF1331m2/6CqENWqEVUVhISSzYyAP6Az4croNX7BkxlXXiUYI5RizUqrydASGxt76qmnZWdn5+Udrqqq5txsCixsNtvgwYMGDx4iJ/IyLwhHjx71+/12u50QhVKz/U7oiaJQzlVN436/Py0t7fzzz9u/f//06dMnTZok2wc1Z+5hGQl6zJqV+/RT/uxsiz3UrAMACAEBobLdcD/ZUFCpbYqiqr4q38jZs61JSZ2tmLQt24OJcNsmHj5avG7Tr4haB8557b18g4fggvVjSh9l1Bmj0nqltTpJhJBhw4bdc889GzZsWLly5d69eysqKmSpmswyyxbMEiW0vLS8OYVRDtUxOWHympI1keNVCQg1mA7l2OrmwOrElXCFAGccOHDGByUMGhI/pNW72eURRRGc2VJTs955r3TenQf/9mbxt9/W5B5iPh8XAhRFi41NGDK098XT+1x9behX1+FXZ0IIpYKxntNnJE2bduidt/P+sbRy+7ZgRRXnIAAEBTXGFTdqTPoVM/v+erYlLq5TJPvkJ0OLpmmZmZkDBgwoLy+rqqo0DEYpdblc8fHxmhYaqNAMKj6fr6Ki3GazRkxVLGeKNFuThsqyVFUNBAL9+vWdPn16SkqKrI5tbit2QgRjitOV8eijOy+fSZycckEjBlcItycWDHhkMakOwBTFV1UdO3jgkN/fA52skTG0XVyhQB3UYVYqgKy5ohFBRYqodag/FkfEv0IIwYQKqk2xnXjanE7nGWecMWnSpIKCggMHDuTl5cnGYJWVlcuWLaupriFABBUknhyyHfrrjr/2F/05407F2dPeM8ORkWRLUkn97+3c1HOXHFhyzDhGwoN/NdLNvt7esTqhhTMumAAGBMiFfS7E6SObRqgiOAfO47Oy4rOyuK7X5OYGio4JxhSb3ZGWZusRGgy7E12dCZGZLc3lHnDr3P6/nePNy6ve91OwvAwANI/HPWCgIz2DyAGtOtkd6EnNrK5XVTUxMSkxMSnyVSEEIbXrEELKykoBgBAaKs+W5RDCfDNzYSi6CMH379+fkpLSeI/pJhKmKILzlMuuKLtjbe5zf3HHuYlhUFFbC81BmPX2LCKn4g8EQbNMeOMNLTZWcNapCsGgDeMKob1tvQkjchDGUPsHEap1CAnXqfDQDVtoYf2gwoVgQnARY4tJsicd9yNbyGKxZGRkZGRkmEt8Pl9Ods7K9SvFEKGP1I0+Bvfwl8RLsBNAABXUDvZkLXmMZ8wFqRdM6THFY/GY2w7xDLko9aK/5vxVASXUYDCyaTVEFJfWy6yEgwpnXD4ZGDtwxoAZ0drNLkzeo8n5vqimufv3d/fvX/ty+NLc2a7ORFFkR1yiKM60NGda3fx3+KXOluwuoNHRm+pFApm5qa6uqVeQJUT9AStlS1L5kqZZKisrfD6f3W6v2zapGamiFIQY8sxzRk117mtvOF02VVUFY6GxViPagzEATqmhKN7KamqzTV66NOm0KZ3z/qMNy8GGxgzVQOOcy7giaDiqmB0OzO7xjdY6RFZlCxBcZMRk9HCc6IwsTbDarWkXpXlHeflgDjYAACJIbVmcEDW8JjuYva9g3//y/5flyfrNwN9MTZ0qB7SnhN444MbVhav3evcqQqkTVxodCkrUKf6SQUUwYaGW3474bZ+YPm23m10MCY+HIVv5AADIm09CSLsM/9Ua4bTJEUXCNx1ElpV13mR3CT+bn9B1Xdd1q9Xs7VgbkGQbi/C5VosQCAaDNTXVdru9dbV4QogRr/7VMWTo3gcf5OXVVruFWixAwl2ySGjAiIA/EAiyxNEjxv/1zfhxWZ0zqECbzkM8KnZUqpbKDR6Z8+Dhnq6cc5kRqVd3Xa90SDDBOZejbE1MnejUnG2U2iqj6pnsZ5YmLOWjOLVThSoKVSQ5KT1QIAqhKlU1VVf0NWVr5v4494ltT5QHyuU79I/pf8+we2Ihlus8nF+NbDpa9xFeEgoqBgADIcQVg664YvAVbbSPXZm8IisKURTS2IQZnVM4zSpRVJnyjk4RkiN9hSr264kYKZBzzkLLBOe8tv9Da8ihERnrP+/OKRs3pd4wO+BylldUl5dXV1RUV1RUV5RXl5dXe2t8jgEDxv/luXPW/tCZgwq0aX4l3Zl+WsJp7+W9RymtLRqSGtbeN6zKDl92gYHgIt4af27GuW2U1DK97E8//en9wvcFFWbH/lBKBZG5Fk642e8JABShVBvVL/300pHqI49mPZpkSwKAC9MuPOo9umDbghpWQyPbDDa2pzLGCkPI8Cm4uLDvhX8c/0eH6gCEUAeR/efNYe0ppaGWN+FCe8YiYw2THVpEg77VLf5URRGMuQcOGvfGEt/Ro0WrV5Zt2uQryBcGUxwO14ABSZNOTRg/gVqtgnPBO29QgTaNKwpRLk+//NP8Tyv1SqKSUKljZIV2w/ZREaVDwIAxJquyGWNT+00dlTiqLdLpY74n9z/5j8J/UIUqilJ/0OVwMCBAiAjPxEUBlFAp2bLDyyzE8vj4x12aSyHK9YOut1Hbwm0Lj/pDw8bU+bBwj/ravBoDzrhGtcsyL3tgwgPJjuS22EeEUDPJn62uG3JYlIj6GCHzJYxxxgxz5Eo5EgylJHI8jtaR1fjAuT0lJf3ymemXz6y/Rrj6DTrNkC2NatvETUicMKPnDKGLOuVCDQuFGnuE2kdx4Iz3dPa8ZcQtzZw1sqX+kf+PdwvepQqlCg1NCUwaeciGH7UDM4cnDyYq+eDgB2/tfUt26VSpes2ga16f/PoZSWeQIAn6gyzIuM65zpnO5IPrXH4nXOfMYBnujPmT5i+cvDDFgXNsINSRhBCKoths9mAwIEOGOTalfGoYjDHDfGIYhmGwQCAQE+N2uUKzTJ5IAmTRqBBCMEMYhmBMMCaM0HMAIKraKRo3Nqltawg1qs3NnLu1dOum8k2K1qA2u0H/R7MQzMypCENYqOX/Rv9fVnJWW6RwT/Welw+9rBM9VPzVsOdmvfGVoW68oUAoYYS9uuvVySmTRyeOBgACZFLKpDfi3vj00Kf/yv7X1uKtFYEKJljoDWXuRxCbYusb2/f8PufPHDRzYNxAHLUFoU4iISGhpKRY01RCqJwamIQatQohmJlNkTX8stN+WtowqNsJ5kQQQkA5iZtvtHnS013p80fPv/3723O8OYpaN7TUa1gsQFalmD05BBNEkNnDZ1839Lq2SJsA8V7ee4cChzRNa2ok/3DBnWxkJIiofRUACFCF5vvy/7bnbyNOG2FOHhxrjb1y0JW/6vur3aW7Nx7buKd0z9GaowEeoEDjbHH9Pf1HJ40enTQ62ZF8slQyI9TlyR9jQkKCy+WqrKxyOByEsMj2YGY5mGHowaCu64bXWxMb6+nffwCccGaly2iPkDihx4Rnxj9z3/r79lTuURQlVJQkReRXQi3EuDDLwayK9YZhN9yTdY9dtbdFwg55D31W/FmdkfwjcyfQoGMjRLxa96Eoyoq8FfvK92XGZUau6NScWclZWclZAoTBDTkks0Y12rmLRxHq5gYMGLhx44bq6iqbzeySIutXGOcys2IYhuH1egmBrKzxcrIvjCtSO13dJqdMfn3K6xf1vIjqVPfrPMiFLuTDrHgI1TrooVqHdHf646c9/sD4B2IsMW2Uqh/Kfsjz51FSd3Io84loEFdEgycSAUpooa9wTf6a430WAaJRzapYrYoVgwpCnZkQwm63jxo1WghRVlbq9/uDwUAgEAgGA8FgMBAIBgJ6IBCorKyglJx22pSEhEQMKpHarwgvMzZz0eRFHx/8+O29b28t3eo1vCBLlgQxhxETXChE6eXodX6f82cPmz0kfkib1jqsL1uvC91Cfq45gGgQb8znEQxurD+6/oahN2DYQOikJnvdu93uCRMm7tmz+8iRfMYM2YyYc24YzDCChJBevXqPGjXa5XJhUKmnXauGXJpr1sBZF6RfsP7Y+lV5q7YVb8uvya/RawBAJWqcLW6AZ8DE1Imn9zq9f2x/s6KijXiZN7smmwCpEycaDuoFtUsixvGvm6EJ174cqDxQrVe3XQYLIdQ+ZGixWq2jRo3u16//kSNHSktLAgG/EKBpalxcXK9evePi4iF6dfVdSQc0OfBYPWennT0tbZrf8JcHyr26lwO3UEuMNSbGEtPW4cTkM3ylwVICpHZwfmgwrk/dHjahgRxEI7kWOWdwmb+sOohxBaGuwKyud7vdmZmZDVeQXVswqDTUYU3ZCBC7am+jCvnmYMCYYBDuSUtExEj+pohmBXWmh4HaYBP5hHEWak+MEOoSZMbFfA4RPSUxohzPSdxE+gRRoFRQGTA44QoooUYMkeVg4UGIhZBjm4XnD643pD8PjZ5JCcXKFYS6mHrxA8PJz+q+ccWu2D2KxxwsmQMngtRpAw0RDaBFRN1K5CiZEVkZwUWMJcah4eheCKFurfveXDsURx9HH3NAZXMQOTkEJHAQTHAmh5QL51Qajo8ZMSm94CLDneHW3B29Zwgh1JG6b1whhIyNHatwxRyZv3YQfxlOwoP514korJGgIudQpkDHJo9VaffNAiKEEHTnuAIAkxImJWvJtXPAyDjBQj1p6i1v/BGelF4wkWBLmNJzSkfvE0IIdbBuHVcGxAw4M/FMprPQEMu8Qd1JvQnHIsbwrzPoMgPG2OSek4cmDO3ofUIIoQ7WreOKStRr+l6TrCZzgzc+ej9v6k9hiNC0Y4aIt8bPHjrbqlg7ep8QQqiDdeu4AgDjEsb9us+vqU5DM8QYTU4PY75qgKyDCS0HuGbINaf2PLWj9wYhhDped48rlNCbB918QcoFLMhAbxBajLrhhNUGFW5w+ZwxNi1t2m2jb8Mae4QQgu7cf8UUZ42bP2Z+TbDmm8JvqEKJ0mCsy4j2YKFJ6ZkAA4CHqlUen/x4kj2pY1KPEEKdTHfPr0hprrTnJj53RfoViqEYAUMEBehQ+zBAGLXj+YcG8zc4BXrpwEsXT13c39O/o/cAIYQ6C8yvhPR09lw4ceEpiae8tvu1nyp+4oRTQkMDNggQQtT2VmGcAh3gGXDj8BuvHHyl24IdIRFCqBbGlVpO1Xld5nVTe0/9OOfj5YeW7ynbUxGsMLghR3AhgqhE9Vg8g5IGnd/n/F/1+1VGTAZOSo8QQvVgXKkvzZV264hbrx18bXZF9t6yvblVuVXBKgBwas50d/rguMH9Y/vjSPgIIXQ8GFca57K4RiWNGpU0qqMTghBCJxmst0cIIRRNGFcQQghFE8YVhBBC0YRxBSGEUDRhXEEIIRRNGFcQQghFE8YVhBBC0YRxBSGEUDRhXEEIIRRNGFcQQghFE8YVhBBC0YRxBSGEUDRhXEEIIRRNGFcQQghFE8YVhBBC0YRxBSGEUDRhXEEIIRRNGFcQQghFE8YVhBBC0YRxBSGEUDRhXEEIIRRNGFcQQghFE8YVhBBC0YRxBSGEUDRhXEEIIRRNGFcQQghFE8YVhBBC0YRxBSGEUDRhXEEIIRRNGFcQQghFE8YVhBBC0YRxBSGEUDRhXEEIIRRNGFcQQghFE8YVhBBC0YRxBSGEUDRhXEEIIRRNGFcQQghFE8YVhBBC0dQBcWXx4sWqqrb/57ap/fv3E0K+/PLLhi+1bn8vu+yys88+u9GXbrvttuHDh7c4iQh1Lbm5uVlZWTab7S9/+cvJe1Vp4tIRdU1cVaKrC+ZXLr/88rfeeutnV3vxxRdnz57d5qlprd/85jfz5s3r6FQg1HktWbJkz549K1asmDVrVkenpWV27tzZp0+fjk5FG2rXCC+EYIy19ads3LjxF7/4RXNWa3S5ruuapkU7US1gGIaiKOecc04HpgGhzq+4uDgjI2PKlCnRfVv5AySERPdtIx3v4tNltCa/smTJksGDB9tstszMzCVLlsiFjLEHH3ywf//+Nputd+/ec+fOrampkS9dcskls2bNmj9/vsvl+vjjjwGAUvr999+PGzfOZrP169fvnXfeMd/8u+++O/300x0Oh8vlmjp16vr16+XymTNnXnHFFe++++7AgQPtdvu4ceN+/PHHhmkjhOTk5Fx//fWxsbEAYBjGQw89lJGRYbVaBw4cuHjxYrnamWeeuWTJkr/97W+EkC1btrzwwgspKSkff/xxcnLy3XffDQDr168/55xz4uPjXS7X+PHjI3Op+fn5V1xxhcfjiY+Pv/zyy48cOWK+5PP5rr76arfbnZycfPvtt3POG6bwjTfeGDp0qNVqTUxMvPrqqwsLC+Xy+Pj4F1544aKLLrLb7RUVFZE51vz8/AsvvNBut6ekpDzyyCOR73bs2LFrr702MTHRZrONHz/+66+/bt4x7L4a/f6Li4tJA9XV1QAQCATuvvvutLQ0i8WSkZFx//33G4Yh3yo5OXnRokX33ntvcnJyTEzMRRddZB7N4514KFomT568ePHiXbt2EUKeeOKJyJdcLtfTTz9t/nnTTTdlZWXJ500czXo/QDj+TzU5Ofkvf/nLnDlz5EXgvvvuKykpmTFjhtPpTE9P//vf/25+9MaNG6dNm+Z0OmNiYi6++OKcnBwAeOSRR6677rpDhw4RQp5//nm55vEuHce7EL388ss9evTYtGnThAkTHA5H3759zUsxHP8q2n6EEP8tEv8tEs30z3/+U1GUJ554YsOGDc8++ywh5IMPPhBCLFy40Gaz/etf/9q7d++KFSvS09N/97vfyU1mzpw5bNiw6dOnr1q1qqioaNGiRRaLJSsra9myZevXr585cyaldPv27UKIvXv32my2yy+/fPPmzRs3bvzVr37ldrvz8vKEEFdffXVaWtrs2bOLiorKy8vPPffcoUOHNkxeXl4eACxatKikpEQI8X//938Oh2PJkiU//fTTyy+/bLFYXnvtNSFEeXn5uHHjZs2aVVRUZBjGyy+/7HK5zjvvvM8//zw7O9vn88XHx8+YMWPTpk07d+688847nU6nTIau6yNHjhw3btxXX321atWqrKyskSNHcs737dsHAKNHj160aNH27dsXLFgAAO+//74QYtGiRYqiyOT9/e9/J4Q8+uije/bs+eqrrwYNGpSVlcU5F0IkJyePGDHi/vvvX7t2ra7rl1566bRp0+RW06ZN69Wr15dffrlz5845c+akpqYOGzZMCGEYxpgxY/r37//ll1/u2rXrtttus1gs8ptsjhYd91Zv0qkc7/tnjO0L27ZtW2pq6qmnniqPyw033ODxeJYuXbpv3763337b5XLdeeed8t169eqVkZHxwgsv1NTUZGdnp6amzpkzR750vBPvJNUJT5Xy8vIbb7wxMzOzqKjI6/VG/sqcTudTTz1lrnnjjTeOGzdOPm/iaNb7ATbxU5XHfenSpT6fTwawCRMmfPnll16v96677rLb7WVlZUKIgwcPut3u888/f/PmzevXrz/99NP79evn8/lqampuv/32tLS0oqIin8/XxKWjiQvR66+/brVaL7jggj179gSDwQceeEDTNPlSE1fRyKtKG5HHvcVxZfz48Zdffrn55z333PP8888LIcrLyw8dOmQuv+uuu4YMGSKfX3311RaLpbS0VP65aNEiAJDRSAjh9XodDscf//hHIcS8efM8Ho/X65UvlZSUWCyWxx57TL6J2+2urq6WL7399tsAUFNTUy95Pp8PAJYsWSKTZLFYHnzwQfPVm266adCgQfL5hAkTrrvuOvn89ddfB4BPPvlE/mkYRm5ublVVlfyzqqoKAP75z38KIZYvXw4AO3fulC9t3rz5sssuy8vLkyfHPffcY35Wnz595J+RZ/zo0aPPOeccc53//e9/8uZCCNGrV69TTjnFfMk8A8xIKZczxvr06SPjikzMV199Zb40ePDgW265RTRPJ7xYtLUmvn/T3Llz3W73gQMHhBDFxcWqqsozULrrrrucTmcgEBBC9OrVa+rUqeZLN954ozyCTZ94J6POearMnTtX/hBE3V/Z8eLKzx7NyB9g0z/VCy64QC4vKysDgFtvvVX+uX37dgD4/vvvhRD33HOP2+2WMUYIkZubSyl97733hBB/+MMfMjIy5PImLh1NXIjkJWvVqlXypcOHD5tXsCauou0WV1pWDsY537Rp0ymnnGIuWbhw4e9+9zuZ7/nTn/6UmpoqiyafeeaZ0tJSc7UBAwbExcVFvtUZZ5whn9jt9sGDB+/ZswcANm7cOHbsWLvdLl+Kj4/v37//li1b5J8DBw50Op3yuSzmkgf1eLZu3RoMBqdOnWouOfPMM3/66aeSkpJG1zf3S1GUjRs3nnXWWQ6HgxDidrsBQO7Ohg0bHA7H0KFD5ZqjR4/+17/+1atXL/nnaaedZr5bfHx85DcAALqub9u2bfLkyeaS8ePHA4C5g5FfrGn37t0AMGbMGPknpVRuBQDr169XVfX00083X5oyZcq6deua+E66s5/9/gHgs88+e/HFF1944YW+ffsCwNatWw3DqLdJTU3N/v375Z+jR482X4qNjZUnZEtPPNQ+fvZomj/Anz1VzCuAvBDV+7O8vBwA1q9fP3bsWLkEANLS0vr163e8n2ejl44mLkSSefpFXg+bvoq2j5bFFa/XaxiGmeJIc+fO/fTTT5cuXSrj5P333x/5ar2gAgDx8fHmc6fTKStjKisr660ZFxdXWVkpnzf8XCFEE6mVG5533nm2sOuvvx4Ajh071uj65kfv3LnziiuumDRpUnZ2Nudc13VznYqKikZ3X3I4HOZzQki95NXU1HDOI3dQPjd3sOG3BADyJsXj8ZhLzOeVlZWGYbhcLnMHlyxZYpYCo3p+9vsvKSm54YYbLr30UrOhoHypiU3qnQzyiLf0xEPt42ePpvnSz54qNpst8p3r/WmeBqtXr7ZFyM7OPt7Ps9FLRxMXIul4p18TV9H20bL2YHa7XVXVhrddQoiPPvrogQceOPPMM+WSo0ePNv1WlZWVZiQvLy9PTk4GAI/HUy8LUlpa2rt37xYl0iSvv++8886IESMil8tb0SZ88sknVqv12WeflS3iI/fF7XaXl5dzziltcZMHp9OpKErkDspbj8iY0ehWACArEiXz+/d4PDabbfPmzZHrK4rS0oR1Ez/7/d9yyy2EkNdee81cQb7U0kPW6hMPRUW9plyybBxacjRb91Otx+PxTJ48+dVXX41cKPMczdTEhajpz43iVbR1WnZxVBRl9OjRq1atMpfMmzdv3rx5hmH4fD7zK6uoqPjoo4+azkx8//338kl1dXV2dvawYcMAICsra9OmTX6/X7507Nix/fv3N1o61DT50aNGjbJarUVFRZlhCQkJSUlJVqs1crWGqqqqbDab2c3qb3/7m7lyVlYWY+y7776TL+3atSsrK2vXrl3NSZWmaaNGjVq7dq25RD5vegcHDx4MAGbwMAzD/PTx48f7/X7OubmDdru9nU+gk0jT3/+bb765bNmyt956KzInPWrUKFVV623i8XgGDhzYxAf97ImH2lRsbGzk7blZBNT8o9m6n2o948ePz87O7t+/v3kaUEpTU1Plq01fHqUmLkRNiNZV9ES0+KZ73rx5X3/99YMPPrhx48ZFixYtXrx40qRJmqaNGzfurbfeys7O3rhx44wZM2bMmFFaWrpnzx6zGZ9JCKGq6uOPP7569er9+/f/7ne/CwaDV155JQDMmTMnGAzedNNNu3fv3rJly3XXXRcbG3vdddc1P3k2m81ut69cuXLTpk12u/2WW255+OGH33///YMHD3777bfnnHPODTfcINeMi4vbvHnz5s2bi4uL673JpEmTiouL33jjjfz8/BdffHH79u0pKSlbt26tqKg499xzhwwZcsstt3zxxRdr1qy55ZZbAoGAvPQ3x+9///sVK1Y89dRTOTk5X3/99e9///szzjjDbATZqIyMjEmTJi1YsOCzzz7buHHjDTfcYGa6zz777DFjxlxzzTWrVq06ePDg0qVLx4wZ88orrzT/6+pujvf9Hzx4cN68eZdddlnfvn33hwUCgfj4+BtuuOHJJ59ctmzZwYMH33rrrddff33evHlNd+2OiYlp4sRDbU22NZXtxB599FFZkgwALTqarfip1vPb3/62srJy9uzZ27Zt27dv35///OehQ4du2rQJAOLi4o4ePbpq1SrZ8vh4mrgQNbHViV9Fo0C0vOXGq6++OnDgQIvFMmjQoNdff10u3LZt2ymnnGKz2YYOHfrRRx/l5eX1798/MTExJyfn6quvPu2008zNn3nmmfj4+DVr1owePdpisfTr1082qpO+++67KVOm2Gw2l8t1/vnn79ixQy6v9yayecbhw4cbJm/+/PlOp7NXr15lZWW6rj/44IPp6emapvXq1Wvu3Llm44rly5cnJCQkJCR8/vnnsnGFruvmm9x7771JSUkej+faa6+trKyU7ylbTufm5l5yySVutzs2NvaSSy7Jzc0V4UYdK1asMN9h3LhxN954o6jbUkUI8cYbb2RmZmqalpSUdNNNN5nNRXr16nX//febq0W23MjJyZk2bZrVau3Ro8dDDz10//33m42LCgsLr7322oSEBKvVmpmZ+dxzzzXjAIZ0zkY+ba3R73/p0qUNfxrr168XQsgeDz179lRVtW/fvo8//rhsbCoaHLK77rqrf//+8nkTJ97JqHOeKsdrD7Z///4zzjjD4XD06tXrscce++Mf/zhq1Cj5UvOPpmj2TxUAzMugbJf16aefyj83bNgwbdo0h8PhdDonTZpkLj906FBmZqbL5Zo/f34Tlw5x/AtRvUuWjJ1vv/22/PN4V9F2aw9GhBD/KwYA+GVie4Uy1Dm04rjjqdI94amCmkke9y44PhhCCKEOhHEFIYRQNGFcQQghFE0YVxBCCEUTxhWEEELRhHEFIYRQNGFcQQghFE0YVxBCCEUTxhWEEELRhHEFIYRQNGFcQQghFE0YVxBCCEUTxhWEEELRhHEFIYRQNGFcQQghFE0YVxBCCEUTBQCNAABUsQ5OCmpP8nDLQ998eKp0Q3iqoGYyTxUKAC4FAGBvDVTjSdA9VDHYWwMQPvTNh6dKd4OnCmqmyFOFCCEKg/BjZUcnCnWECR7oobVgfTxVui08VVAzTfAAEUIAQGEQ9nmhioEhOjpRqO1pBFwKDHJAD0uLt8VTpVvBUwU1U+SpEoorCCGEUFRgezCEEELRhHEFIYRQNGFcQQghFE0YVxBCCEUTxhWEEELRhHEFIYRQNGFcQQghFE0YVxBCCEUTxhWEEELRhHEFIYRQNGFcQQghFE0YVxBCCEUTxhWEEELRhHEFIYRQNGFcQQghFE0YVxBCCEUTxhWEEELRhHEFIYRQNGFcQQghFE0YVxBCCEUTxhWEEELRhHEFIYRQNGFcQQghFE0YVxBCCEUTxhWEEELRhHEFIYRQNGFcQQghFE0YVxBCCEUTxhWEEELRhHEFIYRQNGFcQQghFE2q/L/KysodO3YUFBT4/f6OTRBCXYnNZuvZs+fw4cPdbndHpwWhdkKEEOXl5StXrpw0aZLb7bbb7R2dJIS6Dp/PV1lZuXbt2qlTp3o8no5ODkLtgVRUVHzzzTcXX3xxR6cEoa7sww8/nDZtGuZaUHdAd+7cOWnSpI5OBkJd3MSJE3fs2NHRqUCoPdD8/PyYmJiOTgZCXZzH48nPz+/oVCDUHqjf77fZbB2dDIS6OLvdjo1iUDeB7YwRQghFE8YVhBBC0YRxBSGEUDRhXEEIIRRNGFcQQghFE8YVhBBC0YRxBSGEUDRhXEEIIRRNGFcQQghFkxrF9/L7/bquBwIBXQ8CgKZZrFarpmmdpz//pk2bDh8+vGfPntzcXABIT0/PzMxMT08fM2ZMRyctxPfJx/qO7YE1q4PbtwOAZcQI6+Qp2oiR9gt/0dFJq5Xt/aFYP5jn31EUzAGAJEvf3rbhSZa+/ezjOzppAACfl32+y7trXeW6Xd5dADDUMXRSzKRhjmHnxp3b0UlDqFuITlzRdb28vEzX9ciFwWAgGAwAgKZpsbFxmqZF5bNaJzc394033pDhxLRnz549e/YAQHp6+o033pient5BqQMA0LdvK517q75je+TCwHdrAt+tAQBt+Ij4F1/WRozsoNSFFAVzVpQskuHElOffkeffAQBJlr7nJPxfkqVvB6UOdnp33nXgLhlOTN9Xff991fcAMNQx9Jl+zwxzDOug1CHUXUShHKyqqrKo6Fi9oBJJ1/WiomNVVVUn/lmt8+GHHz788MP1gkqk3Nzchx9++KOPPmrPVEWqfOLxwjMm1wsqkfQd2wvPmFy5cEF7pqqe78v/8V7BnfWCSqSiYM57BXf+UPHP9kyV6dkjz16w44J6QSXSLu+uC3Zc8NyR51r9ER9++GFiYmKrN0eomzjRuFJVVdnMgFFVVVlTU93ECpmZmU8//XTkkn/84x8nXob24YcfNjNgfPjhh1988UXT65SVld155539+vWzWq2pqalXXHHFiQ9+XvnE45VPPtGsNRcuqH75xabXKS4unjdvnkxhcnLy9OnTv//++xNMIQB8X/6PZgaM78v/sbnyf02s8Nvf/pY0sGbNmhNJ3rNHnn3+yPPNWfO5I8/99ehfm17n008/ldNwOZ3OkSNHPvfcc5zzE0keQt3KCcUVXddblAupqKhoIlvTFnJzc1uUC1m6dGkT2ZqKiopTTz31iy++WLhw4ebNm999913G2KRJk7Zu3drqFOrbtzUzqEjl99+nb992vFeLiorGjx+/fPnyP/3pTz/++OO///3v5OTk008//QSzYkXBnBblQlaVvdlEtgYAzjrrrH11ZWVltTp5O707mxlUpD/l/mmnd+fxXn3llVd++ctfjh079osvvli3bt2cOXMee+yx2bNntzp5CHU3J1S/UlZW1tJNysvLkpJ6nMiHtshf//ozd6YNvfHGG/Pnz2/0pccee6yoqOinn36Kj48HgKFDh06dOvXmm2/evn37qFGjWpfC0jm/bfEmc29NXvVdoy898MADgUBg69at5ryEkydP1jTt5ptvvuCCCywWS+sS+UXxCy3dZEXJoqtSnz3eqw6HY8CAAa1LTEN3HrizpZvcdeCuz4Z/1nB5cXHxnXfe+eCDDz788MNyyciRI0ePHr1gwYLKysoTTShC3UPr8yt+v98wWpz50HW93WahkK2/WrpVbm7upk2bGn3pgw8+uPXWW2VQMb3++uvXXHNN61Lo++RjfWeLi9H0Hdt9n3zc6Ev//ve/f/e739Wb7PaBBx4oKir6+uuvW5dI2fqrpVsVBXOyvT+07hNb5POyz3d7d7d0q13eXZ+Xfd5w+fLlyxljd999d+TCiRMnfvTRRzj9HULN1Pq4IhsTR3fDP/zhD2qEq6++urWpAwBookSrFRtyzg8dOjRsWDRbEzVRotWKDSsqKkpKSoYOHVpveUpKSnx8fHZ2dus+q+kSrbbYsEWaKNFqxYYHDhzo27evw+E4sUQh1K21Pq4EAoGob3jHHXdsibBw4cLWpg4AQLYhjtaGhBBFURhjJ5KkegJrVkdxQ1VVAaDRFHLOCSGt+yzZhji6Gy5fvlytq6SkpHWfsq5yXRQ3VFU1uocYoW6o9fUrra6Bb2LDlJSU4cOHm3+eYFOrVudXGi09I4T069dvy5Yt9XJRuq63umtO8PgNi39uw0a+GafTmZKSsn379osvvjhy+dGjR8vLywcNGtS6z2p1tqOJ0rMpU6a8+GKdhm2xsbGt+5QmGhY3rdHSswEDBhw8eLCiosLj8UQuP5GjjFB3g+O4NEII0ejyyy677NVXXy0oKIhc89prr/3973/fXkmr/eRGl86cOXPRokX1apifeOKJnj17nnnmme2RrgjH+xoBwO12D69LUZT2TBsAiMa+wwsuuMBqtT766KORC7du3dq7d++8vLz2ShpCJ7fWx5VW3761231fq/vPH2/D++67r0+fPlOmTHn33Xd37tz5zTffzJgx46uvvrr55ptb90GW4SOiu+H8+fNjY2OnTJmybNmyffv2/fDDD7fffvsrr7zy5ptvylKyVmh1//n26Xg/1FG/PulENvR4PIsXL37uuefmzJmzbt26bdu2vfTSS1OnTp05c2bv3r1PLKUIdRetjytWq7WdN2ypzMzM6G7odDrXrl17+eWXP/LII+PGjbvmmmvi4uLWr18/ePDg1n2QdfKU6G7o8Xh+/PHHc8899+677x4xYsSvfvWrI0eOfPfdd+edd17rPggAetuG//xKUd2wRSbFTIruhrNnz/7iiy+ys7MvuuiiU0899c0333zqqadeeKHFLa0R6rZaX7+iaa3sDHG8DRvWls+aNWvWrFmt+xRog/wKALhcrgULFixYEJ3xVFo93lcTG3o8nqeeeuqpp55qbaLqi3p+5ZVXXjmB5NTX6vG+mthw2rRp06ZNa7h8+vTp06dPb93HIdR9tD6/YrPZVLXFJVqq2n7DG48dOzYtLa2lW6WlpY0dO7Yt0tOQ/RcXacNafFOvDRtu/8VFbZGeRvV3TEjU+rR0q0StT3/HhDZITn3nxZ03xDGkpVsNcQw5L671eTiEUBNOqN4+Li6uHTY5ETfddFM7bHIi4l9q8c17KzY5Qecm3t4Om7Tas/2O27E/ipsghJrphOKKpmn1unY3zePxtHNjzfT09HqNbpt25ZVXtvNo+dqIkTH33Nv89WMfW9D+o+UnWfpO8Mxs/vqnx93QnqPlD3MMm9drXvPXfyj9IRwtH6G2c6LtjN3umGaGFo/H43S6TvDjWmH69OnNDC1XXnnlued2wNRPMff+sZmhJfaxBa5b57Z1eho1MXZWM0PL6XE3jIn5ZVunp547e93ZzNDyUPpDN6W0a5YUoe4mCv1X3O6YpKQeTdS1qKqWlNSjQ4KKNH369Pnz5zdR15KWljZ//vwOCSpSzL1/TF65pom6Fm3Y8OSVazoqqEgTY2ddlfpsE3UtiVqfq1Kfbf+gIt3Z685Ph3/aRF3LEMeQT4d/ikEFobZG3nnnnRMchsvk9/t1PRgIBGSPek3TrFarplk61TzEubm5DechbreK+p/l++Rjffu2wJrVsiu+ZXh4HuJ2rKj/WdneH4qCOQ3nIW6fivqf9XnZ5zu9OxvOQ9zhFfXvvvtutH5rCHVm0YwrCKEmYFxB3QSO44IQQiiaMK4ghBCKJowrCCGEognjCkIIoWjCuIIQQiiaMK4ghBCKJowrCCGEognjCkIIoWjCuIIQQiiaqM1m8/v9HZ0MhLo4n8/XeQY0QqhN0dTU1MrKyo5OBkJdXEVFRc+ePTs6FQi1BzpixIi1a9d2dDIQ6uLWrl07YsSIjk4FQu2BCCEqKyu//vrriRMnejweu93e0UlCqOvw+XwVFRXr1q2bNm1aTExMRycHofZAhBAAUFVVtWPHjvz8fKxrQSiKbDZbz549R4wY4XJ12PxDCLWz/wezhOO5pSqHqQAAAABJRU5ErkJggg==", "path": "image.png" }
Look at the models of molecules below. Select the elementary substance.
[ "fluoromethanol", "ozone", "carbon tetrachloride" ]
1
There are more than 100 different chemical elements, or types of atoms. Chemical elements make up all of the substances around you. A substance may be composed of one chemical element or multiple chemical elements. Substances that are composed of only one chemical element are elementary substances. Substances that are composed of multiple chemical elements bonded together are compounds. Every chemical element is represented by its own atomic symbol. An atomic symbol may consist of one capital letter, or it may consist of a capital letter followed by a lowercase letter. For example, the atomic symbol for the chemical element boron is B, and the atomic symbol for the chemical element chlorine is Cl. Scientists use different types of models to represent substances whose atoms are bonded in different ways. One type of model is a ball-and-stick model. The ball-and-stick model below represents a molecule of the compound boron trichloride. In a ball-and-stick model, the balls represent atoms, and the sticks represent bonds. Notice that the balls in the model above are not all the same color. Each color represents a different chemical element. The legend shows the color and the atomic symbol for each chemical element in the substance.
ozone
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABm4klEQVR4nO29d3wc1b02/nzPbFGvlm25yBLuNjY2wXQwnWCKIZUUcklCAqTnvQSS3CSkkOSFm9xckrxp7wsX0sMvMSWEHpodigHjAu64F9myLatvmTnf3x+nzOxKtlVWKwnmgY+82l3NzM559vnWcw4xM0Yg1uxtXr33UEsi1ZJI5+F0o0sKKgpiCybW1FUW5+F0IUYKQh72CTTi5GZfe+Jvq7fmZ3S7Y0J58ftPqC+IOENy9hDDByEP+4ERJjf72hN/WLE56cqy4uKSiprKkoLyeKzQQdxBXCAmECNEBaICEYIAIgRBIOifBBDpQ6mPLRmSWf8keJI9hsvsSvZAaclpyWnm1kRqf2vX7oMtLR1dx9WUf3DOpKG7ByGGHiEP+wcx1BfQN7yyoynpyjGVleXjJ5eWlcWiMQAgM2gMEIjADGaoASXS/6txVuqq326l1n+JWP1u6QCAURiL1laVzpxUW1QQ29LUsu5AW14+bohhipCH/cMIk5sdh9sBcPkYAL5bxjBDCqgBVoOtXmT9PxhgPXyGAQETo19iUr8HnT7zrmjEqSgrBrB6f8ugfcQQIwAhD/uHESY38YgDgFgi4I7mwarAvN/zZOCJEO9QhDzsH0aY3NRVlgDwmhsxFFYl5boHDrcCmFhSOGgfMcQIQMjD/mGEyc3JE0fFHXGgtfXAjo2pVEI/O/hWJe3JrY2Hlq/b5nlcURQ/o6568D9riOGLkIf9wwirTAFoSaT+unrb/vbEsd86CBhfXvSBExpGXAEyRM4R8rAfGGHeDYDygti0mvIhOfWoksKPvWvKiBvjEIOBkIf9QGSoL6D/mDZuTHHVmEKBPPQ7bGpsXrdrf3E8NnQfN8QwRcjD3mPkeTcWFHw06DGzB6CoIDrInynEyEPIw95jBMuNj3xVBAIjHyJEN4Q8PBZGsNzkv99h5A5ziMFDyMPeYyTLjX0UWpUQQ4eQh73H20Ju8mVVQoTojpCHvccIlhsfebMqI9eshMgDQh4eCyNYbvJvVWgEu7EhBgshD3uPESw3/j3Pl1UJEaIHhDzsNUak3IwpKQRwuKNL/x5WBEIMBUIe9hUjUm5U+7brefr3MGYOMRQIedhXjEi5ycbgW5WuZBqGXiFC9IyQh8fC20JuBt+qdKXSAKqLR9jyIiHyipCHx8LbQm7CmDnEcEDIw2NhBMuNf9PzFTOLkRs0hxg0hDzsPUaw3PjIl1UJPgoRIhshD4+FESw3+bcqNGKtSojBQ8jD3mMEy42P/MXMI9WqhMgHQh4eC28LucmbVRnBSboQg4+Qh8fCCJYbX/fDikCIoUPIw95jBMuNj/xZlRAhjoyQh8fC20Ju8mVVRm4BMkQ+EPLwWBjBcpP/isAINishBg0hD3uPESw3Pgbfqhxq7wIwsaIoPx8oxIhEyMNjYUTKTXlhFEBbMqV/z5dVGZE3K8SgIeRhXzEir7y8IAagNZHWv+etIjBiY+YQg4GQh33FiJSbbIQVgRDDASEPj4W3hdzkryIw+J8lxMhFyMNj4W0hN6FVCTEcEPLwWHhbyE2+rEqIEEdDyMNj4W0hN3nrdwgR4igIeXgsvC3kJrQqIYYDQh4eC28LuQmtSojhgJCHx8LIlhuy/4RWJcTQIeRhLzGy5UZXBAfZqrQkUgBKC2P5+EghRiBCHvYSI1tu8mNV3LQHIOaM1M19Qgw2Qh72EiNcbvJiVd4GMXOIQUXIw15ihMuN/SeMmUMMHUIe9hJvC7kJrUqIIUXIw15ipMpNWUEUgKd2g8+LVRn5Yx0i9wh52CeMVLmpKIgB6EokgHxZlRE9ziEGByEP+4SRKjcK+urDmDnEkCLkYS8xsuUGeawIjGSjEmKQEfKwdxjZchNWBEIMB4Q87CVGttzkp5tzZBuUEIOPkIe9xMiWG43QqoQYDgh5eCy8LeQmtCohhgNCHh4LI1tuwpg5xHBAyMNe4m0hN6FVCTGkCHnYS4xsudHIi1UZ+aYlxCAj5OGxMLLlJrQqIYYDQh72EiNbboKjC4Qxc4ghQsjD3mFkyw0FRhcIrUqIoUHIw15iZMtNaFVCDAuEPOwdRrbchFYlxHBAyMNeYoTLTWhVQgwDhDzsJUa23Gjkx6qM/MEOMbgIeXgsjGy5IftPHqzKyHdlQwwSQh72EiNbbny9H3yrcrgz+dSmPWqvnxAhMhDysHeIDPUF9Adr9jbva+9Cj1ZFGKtiImoiEHwjoUgQsCr+sBuromxTwGtlAHA9+crOA6/sPDChvPiUSTXTRpXl4ZOGGM4IedhXjCS5SbjeqzsPLN/ZlHSleqaxs3NczHE4IoQQ2n8FM0hkWBUEDY8ZVgaIiC0/lC1iBhAVcF1OedzisiAcdr3yspLikuK2tvaO9s5dLR27VncUxyMnjqueU1tZXjCCdzUM0Q/km4eSW9IsiFtGPg+Jg97acEVLIrV0676NTS1qgEuLCorLSqsqStJptyAWBbMjCIyoQ4VCFDgiJiguKCogQCSYmYjUgBPpYJokwMxJyUnJHjMDruQuj1NSAiSZ1U8mSMkg8iSDkHK91taOg4cOe66nrm1ObeWCiTVjSgqG8gaFyAuOyUMhiBgxhwp6zUMGpOKhxx6CPGQAlocgeCOfh8NdbtQAr9nbrH4tKSqorq4qLooLIiIIQBAI+jH5LitB5900ghk33z9lE2ab39RPZmZoT1jqByxZP5bMEujoSBxuaW1r61BHWjBx1JkNYwoiI3hD1RBHQb95aJM5+if5Hg75BATgZ2k4kEJ+m/FwWMvNKzsPLN3aqCxJRVlJdU1FQTRGYIeIAEFE0PZEPyZisCACI/CYichaFrJRMVh/fBVkk/ZoWD+W6jETScnKBNnHHjODPJYp12tubms+dBhA1BEXTxs/p7ZyiO9aiFyjGw8rC6JRn4eCiFmYxzCPyXCPEGCg+QljERXf1KvScNV6NFprMn1tVo99HnLKdUcED4ep3OxrTzy1cfeOwx0AqspKqmoq49GIAAmCIAhYk0LajJj1YnWdkci6Npl+TTDzRgGLAoZ2czjg4ACQbH8lqWwLK/WBZDXeSKbTe/c2dXUlAYwtK1o0Y8Iw92lD9BIZPCwvqRxVGY9EHEHGnYGxfIqBBOPXiIB/nVGECh6ddNE728cxKsO+FYRkQPs4LI0GScVDQDJ7jNSw5+FwlJtlW/ct3boPQDwWGTO6prSkUFkSoSyJHmNjT4igHzMREatIyvdrAGVPQAHnVQ+0/zPo17Dxa4zKWNuifByQx5JBUrIkeJIZ5ErZ0tqxf98BRY4zG8YsmDhq2Pq0IXqDbjwsIMARRAyndzwkBDyaTB5aBmJAPGSGYqD2dIY5D4eX3OxrTzy8dsf+9gSA6qqy6urKmOMIgmN8GUEQmfbExski6NcQkNlT5HuwHBAe48fatxnXxndwZOAZ69do28LKtrBnPJ20J5sOHGo53AagNB59/wkNw828hOgNeuKhEEQOwXexu/MQCORufGYGy+SUxcAsHgb8nUwekgSz8b574iFLwGPt5qSlbGoajjwcRnKzem/zP9btBFAQi4wZM7q4KB5RNkSQMJakx2hZPUbAwmTna3ytUQOqXtWP/chZmsg56MEGo+XMx8aqQFUT7M+ORKpx7/5UKh1xxOJZddNqRlJnRIgeeSiUX2MY6AQzhpmPEWAjs8kngjjg3XRnoJEdVh03BJ3HMR6NNLmbo2USpfK4AVeyBDqHHw+Hi9xYx3VMdXl5VUXMEQ6RINgYSkXLAj1YFZFZjYKyKhmdUxr2cTBats8Avn/L+gdxpiXJsCo2cpbKtrDycTyGx7x3b5OqFyyaOfGEYZm3C9EdR+Nh0LUBiPwMTiYPAWTMPsjK3QS8Go2M3I15ijOeYeNfZ/BQIiOTaHyc4cvDYSE3D6/bqUqMdeNGl5YVC+vR+H6NiZP9yDkQM3NGTco0cfpVAOvpKLtha1L+8wFvVt0QpTuZtapAzCx9T8czNQIJeNL+JFfK/QcPNx88DGDm2IorZ9UN5S0O0Qtk8rBEgI/Gw+65m0Ad6ug8zNScDDb2yMNAraqH3M1ReOgBnuSmg4cPDQ8eDrHcJFzvqU171uxtjjli7Nia0tIiR0XIOk42VkWPtLYkxrxoG2KtR9C2QCuLRrA+5SPgy5gnrL6YyFk9n5nNsfUpLxA/e5nxszIvzS3t+xqbANRXlV51fN3wSdqFCOKIPAQ5omceOqbjJitj6PPQVC3IuNnU3bEJwM8cWx5CK47loTSvsum+8UYUD4dSbhKu94cVb+1vT0SFmFA3rrggJggRIgF2hFA/gzUpARZEwlgM5ekcqQ4l/OYGa2HUM938Gk0AFS337NdAjbrpMLYWxkbLtkYgQZ6UEuQyS4YrZWfS3bVjt2SuLIpfe9KUUHGGG3riIUdImFieA3Uo5emwQyJYhwrmaywPbe4GWmrYRPrZDDSsy/gySt/HyahVSZbqeUYGDwP1KcNDxUCWksll7kqkdw41D4dMbuwYF8YiY8eNLS6IOkTKpAS8G78KIABH1Zsyc/7Kx9GKk9ndEPR0kO3vKOsRfGx81yN0QLAe4wxPxzPxswzYGWNVlGFhj5FMu7t2NaZS6fLC+CcWhIozjNCNhzGHYHjoZ2qsd6OjKmLrWVNmtxe699poHwfmRfW87+Rk9J1a/zqjzd33d6yzY6ulUMoSqFJ5gb4wL8DGZDq9a9e+IeTh0MiNHeOywvjYCWPjEUcAKv8f0Vlh8iNnY1Xgdwzb0bU9DkCmbdHxlB8z+xUBdQ3BsrjMipx78muUPbGZYwTmUmXGzGRnYNkaQVpy2pM7d+xJpdI1pYXXLZia/3seojuOzkPl0WTwkOBkeNZZPNTs6uZrd8/dAAgWwW2tKsBAdOehtXkBy9cXHrqSU0PKw6GRm7+t3rbxQGt5YXzMhLExx3EIEUFOICenrIrj16QCmf+e+hrItyHGeVUfL9PCWB8nex5DcKIKeqhMBe1J0MJkVKlkhlWxuTpX6hA65cmtb+2QzJNryj8wZ1L+b3uILPTAQ+XXaB7qRKHTU8+X9ax7y0OdzYF5IouHGd40esPDwDNH6cHRPGS4bHnobX1r55DwcAiW13py056NB1pjQtSMq4lFtNZkVKOIHYJSH0dbmMw8sc7jGC/XzJ8yj+EAEaKIUjGiqCB1lgghKoRDiAr1qnDMe9SrDpHVOFuDMN6WtnVZzBNg9VeOsB64vhLH2El1lqhDE+rGC6K3mlqe3daU/zsfIogAD0fHDQ99rREkVHQfGFkCZ1a+KchAxUzNQ4Iw7I0Ya2qYJiIExcmoEBkshWZpRPFQGV1T//L7QlRHiCB7JQ5BnTdLK+1nCX66qONMHCIe5tu7sT1UDXXjiovi6nvuBLRG3WUzutkdDfaZnn0cNZ3KPqMirEBXZ/dWB5OrIb3QGmf3EBt7wtwtcraNnsFuCFsLsP5OwMdhl9Ha1rlnzz4AF06fcNL4qnze/BAWmTwsCPo15ntOEZNDzOJhRvZQc8/EU4aZ3d8D854jNd6w78tk8rBbvoZZzWzwczdZHWHsd9/4bAz6OC7zkPAwr97NvvbEU5t2A5g4bnRxUYHSmqAXIKxCk/BrAZmWxPo4TqaPYxljvQkHFCUSxq/RFoaMnbGWRAih7QlFAnYgar2VI/o13Sqj9koEZXVtaMtGVFpSOHpsDYB/btq9u60rn/c/hEI3HiIiLKOUL0D6mQADA7rj+zh+ntHwxDInwEPrawsR4F6QjcKwMWr5aY9APg+1Nx3IMAR7fzKvVlfWMr5lgWOWlRSOyTsP8+fdJFzvFy+sS7qyprx0dO0o9d3zI6msmpTxUwRl+yz+LDjo7htTHde9nt2jaGT23VCgd7PHHmLr0eiFRUxUnFURMD5OYHZVt8jZM3kc17ct7Eres7epra3Dcej6U6aPiHXY3jboGw/NqgOim8+S+dhXn6PwUPvXQb8mAFMVPQYPrRcTrIUH/SDzZu3dHJWH2LN3fz55mD/v5g8r3kq6srQwVlM7SgARIkEcycjXaPX1c8MqOoX/OEvLHZV/CUTF2mKQ7Y/QVsv6I9YCmFkwfoSs7Iaft7b+jrY8FPE9arvmTiCKVoxUlopIR84mjxMRJIgNs0VtbU1RcaHn8Z9Xb8/bEIRAgIeja2sEEAl6o9Zr1v1f2SNLAW/aPo5k+SOaOVlZ50BN3T6DoM+iz2uZ6ZgMjuMzXLM9mK8U/nWysdB+NGB9NOu7We9GAI5AnnmYJ7l5ZeeB/e2J4nikdkKtY+5ChDLvO2WoiRBQ8QtRxjdcq1Km1uhvuFIQ3/PM9nXtSGT4n6YAEcz8Wd3J8H4tC01NNCOep2Bsz5FAv4ZWnMBjh2hsbY0gOtTe9Xrj4fyMQoggDzO+jf5IBdUk4F9nZBINZyyTTWRkv89KO4T5ViutyTyOv0pcQDug3285JijIcCfITMr6WzLHD+azOfNz+Zy0yphPHuZDbhKut3RrI4DasaOjjsjUe23/A9GpGQ8ORqe+vxPQGhLgiK8LQcuTVcMKZn+C9SwYTycrL+Pna6xVycrwByxedo4p+HygohG0XRCEmOOMGj0KwBPrdybMirMhBg/deGi/e4HRCcwKDtR9Aj+Nj+NbIyIBslXODAZ2q2Fl+kf+yipZKzplZiohgllFkK8+ZH2ubgzMYjJlf+OsP5VPHuZDbp7auCfpypqy4lhhPBL4nN0+v29P7GNHwHqMjoAT8H6N6ne3Ehn3OpjNFapWFYi3M+sOPRzBRl5ZPo5DASsEFqLHPCLruniWr248ncrykoLCuJT8wPo9eRiIdziOxEPhKw5HMnlImY/1bAb1nc+sS4hunPEjnR5UoDsbe2Zg0C6KHnloorOgf2Q7RSwPIwFVFd15WJEnHg663Oxo7ljT2BwTorymKit6sureXZXJ+hps7o6+1zbPon5Sli+j77jJ15A5GgAR+EmZj4M8UIaLsv2dzKjb+Dv++AWus3u+yeaJnG7HGVc7GsDW/c2bD7YP9li8kxHkYVD3g96u43umOg+SwS7SKys5gSjMfNvN9zxbcXylQIBp6MbJrPfYrKKfwfR9c9PnpXkIk80JMJaDrPZ9n8DnDURVRAJcmxceDrrcPLlpN4Dq6vKCaDQzH5bRC3cke+LfqYDvqnSdAvFwMGIilfhn1j+JCEyEQF95xmOyPeYATNEgGJ+bn7DWwI/SM7QyI2YOWqSsFQyCz8SikcqqCgCPbNg12GPxTkaAh5FuNi+Ytc3+lmZwMtAjFgloVpAnKntoPRfAzCi2TDsyG4V9zJY/IF/RTHaGAj2l1kcTR+KhVrSs/HQwcnSIYhEnDzwcXLlRmbmiWKSyulKYDt2gxeg2xr5lAJs7m6FNQpD/vPEjOOsICFoSZgLBrNtous6zn7deFXrwe9kfSz/PDxGM5kidKyN3Q/AVJ3jNNgugrOKoURVOxOlIpJ7YvHdQh+MdiwAPK6znm5VxM54sEzJ9Cn/dCT9r6xgv2+eJ8ax74CHblZgM63CEx6x9qJ542IPP5RAclVUkcjI9/eC1ZWUPs/0v3XMk8sDDQZQbm5kbVzvaao3wv2m+B2HiWD3fsrtfE5jN0M3mkBlXBC1G9k8R+BmYQW6eyfqZ6e9kWryAz5KZhzIM0+8h/zoztNVy3cTYcIhqx44G8PquAyN07+fhjEweZvo1gf637jbP56SKPoJV7Z798SAPj8rGIAPR83syfB8AGd+X7Pyg4yug3+UsCCoXgaA9DnQzUuCzqOMMNg8HUW5UZm5sRUmsIB7w4vz1ho12ZNoEob2MoF/jdPtWU+DuIxgPa//FjKLtHO9Jd6zW+O/xO80Ds3thtprJtAzKxzEV0EwPy/g10J1gJhfujzEHswZFRQUlJcVS8r92HBy8EXlnIoOHIqAdinuB+XHk51lYjaBjfBMBsr0qPfDQZut8Hgb9F5+B1AsGag0Ket89RQBZ9jgzm2n6YEVQa/yqS3BuVzDCKi4eXB4OltwkXG/jgRYAFaOqHF877OcM1HT87yRUfCuIiIM5vAzPKOtbraJcEw0Fxwx2pHXmjIM8yOSEeqy0xvq3vkLB8i8zqre6aRREBHQzs98Uvg0BUSCLbKKziooyAG/sPTBII/LOhM/D6konI5b3s35qHSUbZQc5Bh2nsK2aU0YO2P8mZ/gjCEZDZr03BJhGvo4E+RnwdJCpRN1zOj7HMmy5vU7O4Ko+F7p/+0xHm4kxB5WHgyU3G5tak66sKS10Ig5ldcQJyvgecsa90xZABPoss9dF96MVBC0JsiwJYHYvBAFH/klmRbWsv+1uYQJczMj2CwG/VoWsbLf9jD2wxPdviYqK4rFY1PP4pV2HBmlQ3oHweRiNdutP0YwCgqOTmWeFiqGEHWWnm68R4KHODBrVQCA29x9nMBCZbOz+fmRmGzN4GLRkgVhPdRWqDhI7Eygz82Dr5ZShoTzYPIzk/IgKr+xsAlBYWkqB6i8F8qZaOzIzNVZHRODzi8C4+j+B4KjoiSMszTJEDDs9xe6/kb1iY2DNNDuNJbCykSUCuq31Z+ZMEZtV1LzMxdPsPg2cueuYJ9lj9kAQgkAOkWR2CJJZEFVUVuzf1/Tyjv2nTqgapHF5pyHAw8CeLQG96M5DBGIiP+bK5CHsY2TkaHwe6uVqmDN5eCQ2AmYeH3xGdlvlz18TBz4PYZcu7pGHapUC9lebVDyUHsPnoSCWrNg4qDwcFLnZ09Kxvz0RIWKSHe3tDtgBSHqqhBx1VP+lMNEjCQAs/ZiIZVTn21X1RwRrQ0IPN0ykI8AshGCdr9HC4Y+rURIyd1NKqX732ZC5lhqZsVc/pZREQrIk+Ov72elwUkqQcKVUMzM9s9uUx2zGWK9e7LFkhpogl/akWuXPZXYlu4y0lB4TEXUmUjtau+rKCgdjaN5R8HkIn4eQnmN5CEQcy0MV70hBBJbKS/V5SIgIAfarkMEYmRUPwYIE696LI/GQiCAlC0GSGb4cAQAHlphkyUSGhwwAkjUP7cxqf40UhisliDzJkpRVs2uk+zx0pWSYvRil5SGlPc81a1OkBpOHgyI3yzbtAlAYo4629ohQs+/1+lUQAh7BEZLZESQD825BUCtOB+t2NpolVhU7pe0UjJ6EIGZJpKIfJvV2M1oisFOdb1WypuaSViSWTMKfJW88HH2u4FrWAiTBxCyEkMyCwHo9do4ISkvWsTKIJQtBLFkQeaw6fSD09UAwzE9iIF4YS3Qmn9uy75p59YMxNO8o+Dxsb1OTbKOCHCJWTo7iocuOICYyHS4CgENAIAMgCA7sOvyqzqh9DJsTASy7FLV0EJTskocO8sEDnEohFkPNaKeqmmIFJFW9SfnngUUZFN2Zu/HQxFZvrZeNe3jHVplK+n81oYFqaql+KpyY+g6AmSGIDQ8FyJPsCPIkEwESmoeClPaRx8La40HjYe7lJuF6b7UmAVAsQmZukZmLIFRGSq/2qn1RCCFslt4hYX1Xgvkrk0sGzAjb0YVgZkFCrR6tbi7DaI32TXRnjXqcte60GnD1Kwli/R4AZp9nZiLBLEntVEWQDHUuQeRJfSWOsmNQ8RGZgI6FIE9KIl3jUO/0iB0i6ZkuDyJiJiAacRLArkOtCdcLV1AfCDJ5aOnkM0pJhuKhgiMEWJJWHMVDTWBbEddvVy5MIJYnCvAQTMDGdd6bq7yDTTLzutIAqmvEnHnO1Bn++LJZV5SNimXzELR9s7v8BdnW2sOKMbu28q6t/MZrmHY8zTxRaNXQVpAkGEfiIZsYSkBKFVuwGDQe5l5uXt3WCKAsqqMkFQAjULezI00mHm5uRLqTvDSVV6GiiiNxzYxAtGy5okcmkMFlIpIs9eBD9276Xoy/J6+vNRaWauolf4y1bmlXSmUBfe8GxuIAgkgazinvxtG+DCSTADzrVQGKiEQQZEYXAWYAgrigsCDRlXhx58FzG0bnfHTeOeiRhzZrg7ToaKXOJpHqQCSGaAwVY6hiLDsklM1XeWK1/rnaEcTwkIVxrs2C6H4eV/HwYBM/97R7KFtofBxsks8+KTeu8049M1JdI2Dd6yPz8Ll/epvXH2P+ZDqJN1/j3dvk2ZcSRbXNIwL5PBTMMpuHbFRm8HmYe7lZ09gMIBJ1oFVBCQeRqYKT+hq7Yvsb1LZfdHTLf5dVY9JUNExFpED7myo/p26+tSogAkP5nMKMjU74ZmaI1WGzMnMKrS1yxzbe9pYLIJmieIwB1I4XdfVUXSNUgkeq3BDreNv40QBBMDzlZ0kpzBlN1AaVBBJErvR7eUgJIuAIIT0pBElPWu+GgHg8luhKbNjfEsrNQGB4GFHioHkoqHOPc2BNNN1BWe/fCURiNHYyT56HSFzpjp5/Zwjl10MVFA+1LVEMIdqzSz71aDoY6RwJe3bJh+9PXXZVrLpGZDHTZhIV1Z7vhdZYHD7Iz/0DZy0iEdNsVFcsiFwp/bgPTKxqOEJ6UiUHBBHJDB6uzykPcyw3UsrDKQnAc5wIWKDnfpmW3WLn607yCHPBWg9izUHe8ibmnYoJDSY2ztwxg5TW6EhH798Ok/QNZn/96ClzRNta+cWl6e1bgiZIv7R3t7diOWrH0/wFkbHjyfg1Kig2VXPWoiOIpNotD3rn+YBVgcoLqphZqRKZfjDru/qxHiAIHjwAzR3huqL9R4CHImL8aNkl9r0R69xzxNDATWHXOmp8C3PPRO0kXRGHTtb4zjWpsB8w1s63bQf2e4884Pb+OlNJPHx/6tIro6NGOwhoWbB28dLz7qZea41Cy0Fe+gjOvYoks7A5TmYhhOKhJ30NUtkcFUxI2KwieeQBOJxTHua472ZT4yEARQ5g+4tM/kJl3bwUbVkW2bz0iFpj0dGGfz3J2zYEu7xtjQmqr0FXkfScFD91l6Uy0H/l7/KzcZ3353uTmVqTjb27+ZEH0i8vc7WbkjGnTh/QxlBkui10fQ32s8MRGX09NjbUO2dl5m4IzCyjsSiA9QfCOeL9RBYPBdC5M9L4TMFRtMbCTWHF09i9GWT6UwCVqlO+tsqngHQo7/OwpUU+8mAftEYhlcQ/HkgnE5kxvmHv3l3yzdX9WYOm5SCvf03FfSYRoa0aoPundZZDdwYIG0lonrPMPQ9zLDdvHTgMIBoRjtUaMyzqs731TOTwrmw/9ih4+Tlev1qaSEQ9Z/MpIOjsjDSa4mfaAj1R9iX1/IvPp597Kt3LC3hzlVz2tKcCtUA+yB7S74qG6ehzTOSvWlf99/iZIpMjN5UOxQZhSm5qmDcf7uj9jQoRRBYPvVbR8kZMpvtAvJVLsXOTfmxiqGAXKAI8VDtGYeUrsjcxVHekklixXOtU0F4C/vP9wFtr2U0aHkJ3meBIPAzMUra9SDnnYY7lZk9bAgCciFIHk6rQu680rox0He7DkCu89qLct1t3f0NZFd2hAO13SGkHSf3JUbybjeu8N1b1zVxsWq8UJ5AnDti3gK6ps2h90VaFbV4cNj9HfibL9KpbaVbhtEMAdjW39fVehVBQPGTHAQMuHXyhkPuiNQorlqL1oG0rNT3ByOCh7pEBt7dyX0OeIN5Y5bW1sgIMVw82ycY9PdSheol0Ers2+zUW3ROka3M98tB4N/r9ygHPJQ9zKTdSyuaUB0AKFkJYF059D7uanAMb+1lRe/FZyWYGnYLO5tissJQIODJH8m7a29B7vyaIjeu8HVskS39fB52uZghBds6ujYcDCkJs9nj1+1ADs2Aoc2aD9pIEALSE6Zt+wfKQBYSgzg3RfmiNwqqXWE1Zspl+HYn4NkeP/vat/dcFhe1bZJYnvmn90YL9Xh1zk47cFSdNxES6ZSRjzgSEzjaS/aLlnIe5lJvtBw67TDEBh4SdP6LEUhDtX9v/6n17G7+1gY1VAWB2/wICWZXsB929m2ef7P+0+uUvSCL4G+FpI0QsdcuE8uC65W50VcvmtmEUUFXB/WfYWiGSnudEHCl5V7gRVd8R5CGn0Lm1//uZ7N+Lpj3qi2m+mcq7Makc28O1fctAV/ndZo5g2XvwwEAlrOUgByycjpisvpgsh7Z2gHXltHcjZY55mFO5OdQGoMjR3yWbkSKidAc6mwZ0rvVrzJRt3c6notAMZcl6kOXdHNjv7d3df3PR1sob13la98lEvWASGXbPdi2S7mswY2yVBfC7eJB1r/zaajwWA7C+KYyn+owgD1O7Brp30taNrFisK9PGLCjDY3k4kKhH4eAB7aEH2TtwuEmTP/V5qK+5Gw8RjOsB5JyHuZSb/e0JAE5UtQ3bzBMAdPSiInB0HDrAqYSeUmC9DM5UlqPnbvbuHighdm7zvRvSkmfOHlhbQPUfUyA/Z0fU16DgmkzmXoGM2WSOxqMAdjSHxak+I8jD9MGBMrypkVXXg5+7sebGetkDZRYApJLIyt0MXMIAtBzSNM3kobXEbPdygO2ZBoBB4WEu5aYt5QKQSimFbYYDEbz+JEyy0XyQTXYOlBlJcaAKjiN4N9sG7O7u3SP1+QPejZojCp0zhv8MB6uPOpujEKhzwXi5uhnNMED5tkiGG8L0HT4PGbJroD5Ce1u3ypQZez9nlxtHJLuKOnZcDo5bUeXzkMwsHM3GQG8aAj4OmbmKOedhjlPFAFLsq4B2zBgdA4ukfLD/L9nIuXe5m1RyoLYildQZG6UmupTEEkYvEKiXW+YIQczspshN2ffAz9uZ3DOYCSoxqdvYAXg5sZvvMPg8JLituZnvY/wCrThmdh6ZGds5HibL3oEjVqD+ZeUBCJ0lJGREWEZPgWAWOec8zGVX8eG0BEh9i0zjZYZ/MWAo/86uaA/703zDsx8gMHIDT7wBaD7AldXGnDH86ripkatOcDU8B/di93Y07uCuNm0FARSUUNkYVDWgZLT0bWOgTxpSCqK0+s54oXfTZwR5mBOkUhSP60nemtQBHqqIvqoahwa23mbteDV5ilRIRUS140XjngERoKIK0NerKqTClRIU0Ed/Nl+g+pbBQ0bueJgzuUmn066ZUk9mFjWZyfiRaE5OkmFVgpHUkXI3QSsRiyE14PWeK0cpobFpQtKrkEhpaqIkmQ8f5JUvclNPC9on2pFox/63ROkYmjDfi1aY+DO4xoXUeeVkMhdR6DsJAR4ygSJl3sAdnFhMDbewFhRm+QjLw9rx4tDBAdWta8eLrB6xSQ30+isDuvL6adbUsyDyPElEkHpqqfZlSIAlkVqVggAJ6JyjK3UJNlc8zFkwpdesMrbaTitRXdQFFTnwLEpKAZCNmTnTu8Gxcjdq6u0AYXI3pJq7GEwkOGM1dd6zHc/+o2etCaJtH218OnJoizAVq0D2jsiGjcq8hOglfB6CADhFA717xpm1/qkpVCGYu6GpMwbKrvrjRFbuprpGDCR9E4uhfpr1APQaOroKbur39rH2aFSntOrwQOBbnCMe5kxuutIuAAd6wcNAJY8BLh490GstLqWSMhNeBqwKep27KS0b6Ietqg7mblRjETFLO4OUmbduxNInZLp3zexeCruWO4e3qpZxNerax7EdjclQbvoCn4cAEaJVA40CxtSqoofO0igzE/RuADBz1agBZXYnNQhrDoPsPfHk/scfU4+nWNz84nfcBPKMZPqJbLY7qHcIfotzw8Ocyc2+1i4AxREdPlHGTDYqGe3FBmZnJtUDQHergm7tNjiCdzOpYaDBfF2D8L0bvXysP3OXmQ8fwEvP9tmj3vNKpGM/BbwbHUXH4zEA25vDmVN9gOWhMgpFda6IDIh4DdNgah567RQAPXrZp57pxPrV5ROL4bSzdbohK/NYO55mz+3Pl7SyGnNO8v/QHFOwqaIC+tJZRVIKyvcx8xyVNuWQhzmTGz/5xPazaYdWeWhjj++/nYnFMEvddCM0Qc+ll3034ydGSkoHpDhTZ5jomtkURDP6bp59vJ/R+75XIzJFlgdsapYIg6k+IsABEAERWTK5/7McR9eicpQiEmsD4/vs+h/rZVeNolPO7E+e6LSzoyWl+uKzDCeAU87MWPevN6isxvmXO76PzPYbIbNsMAAiEUgcEzPDfl49MxEYbsGUhckTEzObeQcEcFWDLKzo57dx5lxRrJVCu6891p6OnruJxvhdp/TfNZ0yXZSUmqOZ3A3AREJJ7Ob1sqO9n0OS7qCWtxwK9HdYBrih2vQLyrsRRMXHpWPl/TR1pywUAHTd2Hg3Zm6jekWdSzNt6gxx1nl9k4aFF0SnzhBZXA1GMUR01nmi9z5OZTUuvNyJxlTlW19lhncDX8vMufRnYWNE/ZqyCSRzwsOcyU3gTvmKYz6CtgGTz/KcvpeoxoyjE06yszPZGpeg/9Kb3A0RTZvpqHJjX1FSSqecoTIs5kOy9W6kSlatXzOgwkTbDodZe4LB3I2Ts3ruOwJZPJTMToxHnZgS0T5/XRacjZIy3dLHxruhYO7GplkDPJw207ngkkhvoqpYDJdeFZs20+neZRN8Rh32lDOd89/tHN09j8Uw913isvdHonEQkZSqoOYfRHs3VstM7kYZa1b1cvN+ZKpeTniYs0K4EAJaEsFmTU/VpgjTgxMr4hnnuxv+GXF7XVarrMa5FwvTb0O2TaB7ZSoY9Pbo+6hnLro09vCSZJ96cGIxXHCJEy/w17tRfX2m1Y8Y3N6O5oG1XbgdlGohUWbYoNd5RCRnXUvvCPTIw2i5HH9Wcs/SuNe7qeHRGE44FQ3T9BInprVfZfGVZ0NspsV152H9ZKd2vHhztXxjpdtj70UshuPnRebMi9hUbpZjHrSX9sGk48Sk48T2LXL7Vt6xVQaPXFdPExtoYoOIxjTP7crcNhqQkpsbhYSMFkMnUoO5G/sdgcndqL0AzCoIOeFhzuTG5rd9rRFqbWmllCpGEEUVPOsC962XnI7mY1x9LIbpc+iEk0itq+qvgA91jzKitiPlboJWQj2OF9Bl74n3XnFKSun8d4uqUfZo5kMaU6D2nGk+8jrYvUeyySko9fQHyalVeecgyEMIMLPaWSFWLieenWxaHTtmg3v1WJx0FsoqjIXzww1hYg10r5Bm8TBeQCee7Jx4srN9izx4gFNJPniAq0dRvEBUj6JJx4ksj6ZHrma9pB7UNdCk4wTDUa+pdzOrXai0ykjT/wWgaS92b+e929HZBr9vCFQ+lisnYFQ9i7hgv4uFGBJmP76ce9m59m4Yao8bVeG309lY6yhDUFEl5l0qd66ifVtE8gjZ7tG1OPUcUVqmPVmRZVUC3Zzo5t0EnwGyvRtmjsVx2Xvir72cPuY6W1Omi1PPdJQJytAvwypWmTbwoVxscCrT1toQS5YsARTFBmun07clfB4CMGsJq+9MvAIN56RbtztNG0XX4R5Ep6ySp82n8fXs6E5LwzrfsKsMjt3R7Njd7ZOOE/WTM17NUhYEYpas3E33eiu681CnVjIqpARIsJui116U2zb2bFZbGqmlETtXO+PmcM20YFSo4yx9FimVbOWEhzmjcl1lMYBmF2Ws95DTi/OwnqqotEZ9HCl50gmoP8Fr3iXam9HZTOkUx2NUXo0x46i4hMvLbckZBNNHBxzTqmTlbrpbDKs4p50dPX5e5I2V7rYtsr0tY0hiMUw6zpkyncZNEEHPNhBJae8GZm9D9DymfYMSRRi7lE65AMaVFuTg0O8Y+DwEQJABP1HVlSrrvVHHyXSH8DqpdT8JooJiLiql6rEcdYRgCQhmkCP0bDggYDh13w0NoLv9KM9k/VXWr0fiobHofnc7MzcfwD//4R2z/8tLYedr1NnsjD/ZZakOJTmwSydA6VQaOeJhzuQmErGH8nd3YhDbUrhas16AzWrvjqBRdTx6EkUgI0I4YEeQ0Dtp+FaFbb+Dzd30wqocxbux11xaRqedHT3tbCQTeikjZi4tI1WVhOFNz1bF924yfM6Bgux+Ztq/jeVu7s87AQEemrheOSKZPIyXsFOKirEgSEeQKgqylCoPQIKklHq9faL+8RCZOnIUHtoj2Ad98G4yeUhaa/if/+htrymAg1so0e7UneNa74YMD5FTHuayEB4lAIhBwuiiel6aZDdl9pXomhUz/DlHGVGr6kNQ9qO9DY17uHF3oIW8j303WTYEgSPE4qgdT2PHYdwEEdSa4GFZ7+5i0oP6kR71MbW5GIyotsaS2XEc6O26QvQNR+Khadvm4GPFQ5h8mbn/uiNBM42ZzYw2ezTr3aAnHnZXjd7wkDXhe8jdZJ3F924MD6XU/XupFD31cB+0RqFjv9izPKKvQf0gkiyFyCUPc5kXqIw7+xNelClpvRt9X8DMLEQggyOsNsPcfcl6rQaVG2ZQOkVbN/JbG73mzLRuaRnVNdCU6aJ6VA6sStB0HNWqBF41PrbO3TAXl+XgBhbUeuxfgwBQFM3N3NZ3FHweWu9GJfXtouaA7l6zMb6OItjRVQ6787KOoihQBVebwahUak68bM48Do7Bw8yqBXSd3u549eIzXv82hGjZJkomiUiVBMAmOmPkkoe59G7K4lEALCUDUmrLwLrtxtxrZTFYZlgGvXNLIKMMWvMaP/gn79UXZHO3ElJbK7+5Sj54n7v0aS+dOlruBr2wKjYwRmBoezgaMrwbnb0BKb+spASV1QO6e04RO0UqaUNSStU0UVEcJm76DM1DlipLqLXGbENo1t8zP9X3VukQCf3+oJetfFnFT+Pj6KSi5XAmu/rqZR/FCuJoPITxsgHo3Hbjbt65rf95xENrHXOvWPOQc8nDXMpNeWEMMI34RJL9eyi11gA6+hDsPwOp1Udnp9JJWv4cv/EaH1OkN62XD9yXPnQgWyyyrIp685G8G/UzS7Cyj2YzgsY2Qi9gyqbDiKbPGdDNLJ+R1p6gnQcIlIRlqb5D85BZBuycQhYPfS3Qr2bwEDaah28FzSqNpuvKzyFnuyHoOw/tgyPykAM8ZEAtyAY23g2/taH/WgOgq0mkDlOAh3p+Q654mEs215YVo7G1My0pYioCBDbxs2Q4/mdQVSobbal9QoUas2cfkS2HepsKaWvlRx50Fy2OVNf0kMwPjmv3Z5BpOrJeDTo+akddMlwEdO4GAEsJIVjKydPFhjWyf81+kSIurvM8QLK+Y+lkGsCEsqL+HO6djW48FKy6JxiA0FESdMbQcYTRGgiiVJJb9ov2Q2hthptESSmKS7lyFOomgQI7agCA6TdWWiOOmrvpJQ+z3pP1EjOEgN0hmshkRUEEeFKSoH0DXt44ccApLHeZwSDJMp10kTse5lJuJlSVAns7PC5RY6m8MgIArTXB3I00G4gCUuqsDRO9+iz3XmsUUkn88zHvyg8I1fiLHOduNMHIzxabDIByqoVfNTxlofjnwzLdx0W8RJTHnJpiU9ZkBpFIpZMAjqsI5abPsDwsNqsRsUpGwGZkjM1TO7ULYsBLY8OrtHdzBvea9lq28NyTeOYcEYszEWk2gIj0PlMMkBBqXbRBy934M0KN9iEQFFIqgX7P2rPo2usUTnZZX0OOeZjLYKqyqKAoQi5T3KxyxAF3VDL7MbDpDmBzp6RkJmragx2b+3PqtlZ+aZnX3apgwLkbf4yh847wEwEEMzNF/VY+CqdfKKJ9XIWgeq4brWBmSNalBhIOS45FncrCge5b8g6E5WEB4EmptYZ1fCSZTV+JX6No3IyXloi9R+Xe6lf5/j96O7cGRt9mfxRDpBQiB7mbHr1sP6KH9rMAU5iCLswPcPVSfTpD78HgYY5nhI8rjgMQnqeqiepLzKS1Ruroyc8NK+dH6owdr1rW/1NvWu+1t6FH70a94Sgx85FyN0BAawJ7hMMUBPxn9NhTTS3Ovox6qThOFBMWpsvqzRqNqnrCYMkARpcW9/92vLPRIw+BIA9hebhztbPxReH2widNJfHs497mDcqU+q6vms5CQigmDzB3k6VHveehzRsPEDxoPMyx3NRXlwFIutLafPb9Gj2/AYDU98vaCZLMrYfQNbDdbN5c5aFf/Q7oKXej/8qMNBA8pnmRrM00rhyhtBIXfECMn3KMkLCygesvShfWsPX7pLlXqZQL4Ljq0qMfIcSR4PPQZIJZzQVSFQw9giSZD2wRO9f0LXh/4Rm5eb003o3OqqoYR5CtlOSs70b/la84HMgZ20Pqz5UDMEuwUuSc8zDHcjNldAWALk/7qNLcEWbjpEHnuqRkqAqlqZrv3jTQs2/fKk1Fsw9WxQ5wJg/MX8HMyre1CfaLozoS1J+RTd2NnBjPPQtnvY+mnYyKMbArw0eiKB3NE0/kWZe74092o8WaX9rDV24/IZlMAji+JpSbfqIHHgLQs0Os4nDbfvHWS/35CrzygtfWahx00/8pTJegdTN6ycMjvUcdwuSkfU9csuroA7RF15ZydI56TU2oSDnnYY7rrCps7nS5XMqU4zBDEiTreEqyztV5kiOCpL3vQkjJrYcGqn1trWz6nnTVUAh/XI9SEZDBGbFZNQK9l4s/G8WvCBARw5OmeqoyUCCVQ5LM8VJMmInxM+FKqZ5X/otkpCVLqPfDVgFYW8gIS45FI+UFYeKmn/B56MmU4zCgPUcmPZrMTLR7TT8pl0rilRf4/Et87RBCSL1TpSmPB6rjQmTvspDBsSNkcwLvIQJLlSE2K0tYxYGZuweiiiocHths4ehYl3X8kXse5n41v8lVJQA815PQ3g0HY2YzBqavAdrmUA6EGcCBJj3PTOkC92RVgpakx9yN8oZBvlXRnotkgPbu4n17eN1quW+3bNwjQSTBqurBZKv+LKFXxNGZKdNdplPCJotp/0p9JRhIpdIAGsJIamDwecisnetMHrbtE+37+8+6nVvlwSbr7fpZZ9WIo0XCMkozLbs6jkwe2gfdeMg+D0nz0DeaimwgyTx6wBtvxsfJweNh7rvITpo0ds3+tuaUVxaPMiDBkkl9owSRlFAbFziCpPEdIiQkSzclbAjTb6RTWia0f2uq1wCEEFJK9ROBaNkOMHQtU+qRhh58KSWR2LvbW7tG7tjSw7o24xtoyiwaNU556dqLYSZ/7omUbH14Gz+aTjRPGq1hMFEikQBw3nFjBngr3uEI8lA7lSAWhoeMw7sHSrYdW7mqxuy9TYJV7xjriclWZTizK6dnHhrqZ/NQn4qIICWTMFVd6BlSMJ1gkiWTmHI8bd3IfW3FsCis89hRtlUkEp3INQ9zLzdjSwsr405z0iuSskM4rDv9dGTLei64kJIdoe+mJ6VDFMmFy1ZcCjAg9M5wDBNP6TlZwrc2mRGysiAsdUeDP62PkUrS04+l9u4+YiZu91bevZVrarHgAkFR4+modg8iT7LOVRGUGbKqZD0a3d0HqEiqpDBWEUZSA0MmD4XSAMkQpKOqll0DlZvGPRJwlD6oFeAkM5FN82VwTPFKa5MQMhA9Mfv7xytysums0W+AMpsZ+UH9GNAVJCJmLiqlycfT+hX9yRqLKBdNTyseEjmDwcNB6ZGfW1v13LYmN+1yXEgmCWZBxqowgzwpI0JIVt4NHEGSORLLQWRXVmaWPlI7cyexe7d7qEnu3a29knETnJJSTGpwYnG/vqhDL9UJbnQKADMONclHHkz3Zs5b0148eZ885d1UVKXtlTQr4Ls2bgr0DTNITUkxisOSKZVMAZg3bmDzr0IAyOBhLJC70YqT7hyo3DQf1N4rwARhOuOV52HYpSyc0RQbcwldLWE/ZgdglEVHW7ayTQCTmTMprZwx29wfPKlt6owTRdMe72Bjnz9O6Zy0KOK0HEQeDorczB5X/dy2psYkj4lz2nRzKq2RRB7rXJ1DfmXKEVQ2hg/sHBADqkfpSXRElEzwS8vcjWuzN/3Ys0vpTnr6rMj8BU5pmd5HgQDWlsefR3OwST7aO61RSCfx0qO84BIqqjTFOMBjCb8Sx5JZ54yllCZDrFx94TiJrk4Ac8eUD+Q+hFA4Og8HfvxUEiqusfPFpdlZxfIwmLuxWmN+arExyeVMHpLPQxtv6RXaM7wbXX9QHUbq8bsuEC8+Itv6kjMun5MuqPNcObg8zH2qGEB5QWx6VTEAmXQlwzM1KR1lsMqSmoiDASJPcvXE/niAQUyZEVHf8G2b3T/fm+iuNUFsWOv++d7khnWuag5XA2py2MSMZAJLn+7zXH43hZX/5HTK5iYBsxaJqklZX4Z1jZakqlIxp5IugMmjysOaVE6QyUNWFUNPZ+sHSjYFP7rRc7KFSadkZHyNt0IAVDwlbHcoYCubNhHjd4qw7+FkaY3xiHWNX2cAGRIQMV7wbqqp6+2nqDoxXTTZk6pCKgeRh4MiNwDOnzERQFNSRuBbbxVN6FFXrmSgdhMrxpjJ/T9jLIapMx0AG9d6Tz7SW5fk+afSLz6f1tUE8vsPQXhzlXfoQH8WPO9qx5bX/Z4ja3kMP1hKq7n+nRHC6ezoAnDxtNp+nDREjwjw0HAP5PkTbQeE4lLioK9BJPXad8Qm52tXvSJTnfS9G9vbxbo72UwvNzxU+RrTWQNQMsH79mLtKm/Vq3LVK96+vdzexsysOOYxJOCp6acxzD2fZpyJ+FFbgovHyfEXJ4smeao7yWMmZxB5OFjrG5QXxKZVFm1s7hRpNxWNOaS/V55k4ZAnpRCOzdup2IqIJs6V+97qpwLOOiESjWPjOrnsn73eVgYA8MZKt6SEZs932PQfElFri1y7uv+7L+5ah9qZiJdoHkjdd6N8XcUJrbm2kziZdAE0hK5NTpHJw6ij+27Ikxwvl8mWAZnbymoyvTbsqL4bEahPE2DWhSDFcL2SjtBZGLMup25FJmJp3RfNQ+OF0eb13trV3qGetg+pGEVTjse4yaR8N2l7MiSPnUw1x/GBHXxgByU7kGhHqgOFFSxiKBnH8RpPlHqSKO3pnAYDqcHk4SAup3LGlPEbX9l0KOGVRdljIoLJ2kAQuVKSIyTDEfBYOiQkEC+haafzxhf6HFdPbBDzTnbaWnn5sr5pjcJLy9JVNTR2vLBjvGOr7N+SaBYHd2DsTF2ZslVwT7JycBjk6RhKSkCCEokkgEtC1ybXCPAw6jEsDwvHDVRuamqJtSdi+zz0DkW2kULv6GBmwNj8jlS7Idr4CEHvhoNa097Ky55ONx65MHr4AL/6LMrWYO5ZXFxFfm+RrsxwZR3KJ7DHDMBl9pjTHnvMHsOVOgrT+cRB5uFgBVMAxpYWTiorcJlkV8r6eOpTeVLZdvbMGkge65VlR0+hurl9c3Urq+mM86MMLF/q9lsjXn/F9eeOEjXu7k8YFcSBnX6cqGJs7csAUlfBde7GY04lXJYcujaDgWwems7v4rr+b1oPIBrDuIaMvkFTG4IpV9n54qoKqXMxas1AMkvYmHywjrN01GS05mCTfOi+1FG0xqL1IL/0KDduU7yCtXBqmQE1X8zTPNRdF76XrX0iDDYPB1FuAFx6fH2UcDjNjieZEdAa891jSNY9b+buyLoTMO303ipOw3TngiujTpQPNskdW/tPoL275I4tUpo4fOBy07rPdvRJmTmDQd8Hlmq8ASeRSDqCQtdmkJDBQ9PxJIpkyQAUZ/LxoqAEwe+2mcVi5tMB8CsPdhUEu/+cXn/OLAyoMsc6f6yOdrBJPt6XwqibxKqnufWgzglCX5uZLyY13/RPZu3XSP0MQyQSSYcGkYeDKzflBbETx1cBaO9K2u8bA67U0YTH7PpZZH/kxkyhk9+DiqM2NBaV0IJzxKnnOZEog2h7T/2+fcL2LZoHDPS412pfoQ2LytEwPKnkVVdGlAZ5zB0dXQBOaxgbujaDhO48VHa+fE66H3uHAyirwnHHU9CKqG4yNp6srT8SUSLBjXv4wH4PRBKws3aMdwMTT/md7iBKdPEzj/XHW1/xGDrblI5IWx71TOZUsorozUyagPpoHh43iDwc9KVwz5s24Y19hzvSsijterGIIOExEwlXdfoBxHCljJoZbpJZAJI5XoK576bOZrQ00oEd7KbQdgiFJVRUivJqjB4nxtWT0HE4eVLu2zNQuWncIz1TR8jJZ1cuq+cp70bbFi9j7Mnz2HO9ksLYWZNqcnLSED2iRx5GYjT6zGTjM31b9zsSw9yzhYjBM6ohCDA8VOvMgrFulbtvj9yZaQVLy2jicc6k4yJjxwfWlGDj3ZNZFUDyqlfc9tb+8NBNYdtKmnKGH8WrErAnj8ZDNy88zMfK25fPrPvz6m2HutzySMQDC0d4Ok/MHgOAUOrjCPhVKkhAMIoqUFqFibNIEBEgBAnAIVJv0Ck2yUJQR9tAr7O9lZnAMmfzRSWz6puyFSg/dyOlJHI97mzvAnDZ9Ik5OWOIoyDAQ8cjVqyLVoixZ6X2vxSV6V4NeiSGky6h4mryjBSIQI+v6o/fvVW+/oLXo1i0tfLale7ale7UWZETToqUlJHULV9MZlcPZu5ow7rV/Q/09r3F409ArJgZxCw95b8QeZ7U/rXN3UjOJw8HN5hSaBhVNmd0KYBER0KFD5LIenSS4aqo0mTI2fi6fkdc4KeOvxgeQ0coIE9yR1sOXBKdw87FzNqiSvb8T0fS+LHKqniA63ldHV0AZtRWNVSFC/cNOgI8TKpAnkEuc6xG1p6dLqw5tndcMRanvY9KqkklIl2GZ7jqMSSRK/mlZ+TSx47tmGxa6z70l8SBJqlzCEYF1P87tgwojQ1g/2Yoj8nTwRRcL5i7gcfsSsj88jAfcgPgsuMbKuNOUsLtSkmGKwP5KjXqktXzRlnINsVxRoRsZwawx3DV95alzNWmuaYXprx6oAcsHq0uUvfXaF4qBjA85mTS8zxZWhi7auaEnFx7iGMiyEPFH5VDdMrl2LPTYxZ4RxKdqomYezHNvRhODFKyhKaish9Kd1wplz8jt23orVKkknj4L8mD+z3T7am/EZJ54JmBQ7vg6fkxhoe69wKu1IZQAi5zMpE/HuZvG6MPzp9818sb29MyknIpHnFV+w0DgCtlRJDLHCFypXT0AvMkSNfOhd5bXoD1+okiMK/EIWLJ5dVoGfDS0K6qkUmumyY2rRnQkJeMz/BurOJow+IimUg5gj46/7iBXnSIvsDysCLlinjUlVLxkIDiOre8npAW6VZyO8jtpHgxF5SK0iqOxtQcA1J9Gz3ycPMK3rGxz17Jkw+mLn5/rKTMn+EtQT228/UJnYegrLiinM/DzNyN6yKZzB8P8+TdAKgsKrh05kQAhztTaVWP1PeCpfFuVOeb8n2sMOveAQRz/sE5AZSW7BEKSwb6WSqqSem9ByqupuoBLMVYPJoLR0uP2WPJREZxWAIe4LroaO8EcNmsSeFCE3lGBg9dT4I8hsmbwpWMKMdHyYrjuOZ4r3oySkZLiqquMT+ilwjykCRzRytvfK0/EVAqiZefSXsMCXKZXQmPuTMXmQHXRu7Gy1ZriNtqVP55mD+5ATBzbOUJY8sBtLclEq7nmb5+nbth6cHP43jsi04gz6q9TdM3qPsLXMk19QMNf8bWi7RkT9enMfO0/m/DPup4qcreHpMrpcoHeYArOeXK9o5OALPGVc0anYutxUP0ET4P2xNJ15MMD1prbHbD9aSO+v0coumL0/1iHMwzrn6u/77w/t3cuJtdyR5UMig3H1N7MVJ/d1xVnWBIJldyymPFw9l55GFe5QbAolmTplcVe4zO9kTKU/qidJc9JuvdeEpxJGfYEzbZ5UAfp9IpgEbX9Xa7lSNh3DTSZ2d4zCVVOP7s/tyf2pO9whrfqkhQWkplQtMed7R3seTJo8oXzwhTNkOGIA+TnvQ4yENTrwl4BzKQPbS/2spGRys3Nw5IJLau9zztj7DLPEAmK6Q96TF7UJMV1DdLSobLHOThFXnkYb7lBsB75k2eVFbgMRIdXUpZ0oG+W5U/dyWryR2emcWr+wBVAc+vYdn1OqWIo+74/vsj46c58RLh+h2WJIHaqeK4+X27RVXTZHkDXNb6Ymym8pO5vb2LJdePKvvA3En9vtQQOUEWD2V3HjJcVX6Sqr4T6EQ1Do7iYXPf17LKQuN2z5XsgVyGx1Q64EpFtEjPlfEkPJ3J7s7D8jzzcAjkBsB75k2uKoikPHS2dVnd1RpMJo+jqnfW2kDP+JC6T9fviXT1HEhMnC1Kq/pzPdEYZp7qqHm0dk6NEov6+WLGmb1d2LT2FFkzX6ZVhKzCY8nWanV0JFhyWWH8qllhl82wQJCHaU9qHga+maaso3kYqKgquVFrWVDboYHGP+kkmvawNDN4K2sH+sUsmSA9KSWTcpf8uEEGeZhv/3po5KYg4vzbydOrCiJJjzvbu5JpqUbXA1zl2bI0wYjxdFSNHCzBUo26NAt0ks4uixgff4HT1zWPIzGcdGlExANzR7XnrCvxo6fSiVc4o4+6TV1FA0++zCutZ8NUk/wHXMlpj9tau9y0V1YY/+SCKQWR/nthIXKIDB52JJJpqTrC/ByiiYiN4rBrZkWZLg14zO0DlhtATaTU/4/q9cpYR0LxJPOdYu3dpKVMe9zWNpQ8zN7mLZ9IuN5vX9l4sCvtEIpLCwuijgAiQghwRAhBEAQBijiCwA6RIHKIBEF3GBMBLIQAs2PWnQbQeQirn/ISvdubPRLDCRdGK8ba1Yz8zk7OWh9LSjdFB7fLjmZ0HNLrMxVWcLSCyyaAI6rWJj34vphiZ9rjtrZOllxRFP/4SaHWDDv0yMOoI4gzeSiICD3y8I3HZOu+gV7Guy7N4OGbz3qNm/uZfi6o4bHnuMOQh0MpNwASrnff62/tbks4hJLSolhUOIBD5AhyCHZcHSICHCEcAgGO0HMaiEjo/hwWaq8otaRIitY85R4+VvauopamneqUVJllR8yaaWz7CRlmeVO9zjn7GWvVzsDWCbJVNtWrqtLYKVeqMa6rLHnvnEmh1gxP9MRDcggBHmo2KvrZB4qH6x7ngcvN/EWRylq9zjEzJ9rw6oNeb3Yu745xF7pOmfFuhhMPh1huFB5YvXXdgTYAZcUFBYVRa1UcIqEGFXCEGWCQmjmlf5Je/xWAMJu4KCU6vEfuXssHtvdgIkbViQnHi8ra4PqveraUnS8Hs0qsJ9V6SH4tTEVzdhUbsy6f7drUGcdEyu1o6wIwfXTFe44fsH8cYpBheVhaXFBQELVetgMIoojQvowgOEJYBjqCdq/EntUD/R4tuDJSVAWYeZuS+eB2Xvt0nx2c6gVeYZ30oPM1nuREerjwcFjIDYCH3tj+5v4WAMXxSLwoHhXCESQIDkgIrTvavFDGA+3TMoQwm3uTXvmVCAQiQYf3SBAd3iNLq8mJoaSKInEA/sxv9Q+bfVqM1jDb5i4VV+s1QPW67qZOT6ZWCpO3RtqTnYlUsisFYNaYisWzQ60ZGcjmoSOEcWccgoDSGjNhmOCQIELrTmx5bkDnjZfQKR9wLB3tChX7N/PmZX1QnKqTvMJJ0nrZaSk7u4YRD4eL3ABYvbf5yQ27UpILIlRQUhRzhHJiHTMLXAT0Rf1PYMfkbmAsj9o8Q0DvEg/oNajVio1CrxGr/RqYvEyPuRvJYLBaCcnuHmH+N31fUvcNmz5ppFyvszPppt2IEBdPHz+3tnKob22IPiCbhxHhWJXpzkOQECRT/Ob/N6DS9egpYtrZ/ip/QR62NGLT09I71qK4IoqqBV601tM8BFLpYcfDYSQ3APa1Jx56Y9uBzlREoKCwoLAg6uduCI4JntXY69wNkaP0hciGVMq7EUTG0/FXilU/wTZu0huJ2U2g7LqCrNcKYX/ChGSQ2WOX/Wnr0ng3HqMrke7qSrDkquL4lbMnjSnp21oqIYYDuvNQW74j8FAQNb5GBzf0/4wnvs+Jl+qpgtLkEC0P00nsX88H1qFH0RFRlEyVxVMkov4MqeHJw+ElNwASrvfkht1v7DsMoCjqRIsLCqIOISOPo+Imx6yAo8abAnkcFWcxsxBCKRHsXj9ql2Uzg1yvreNnbeyqi5LtvnRS2nUhPX8tPjOnVkqAXCnTHnd2JtOpNIDZYyoumj4+TAyPXPTEw4ipkJrahfFxAMCltx6kY/ogPWLsLKpbIIIeDfTKx36xQvGwY7/o2McyhUQzYpWMCGIVHB/HNnryhjcPh53cKGxsan1i4662pAugtDAWK4pHiFTMLIBgDdKOt6MqU8bNYVOrEoF9Du1KSAoB7yZjNx9jVfRI2yWmbZ9FYNYMGEhLmehKdXUmAZTEoxdPGz+tJpwM9XbAUXhIYFs5JZAgdO4Wu5f2+RRFlZh6sXBidmsqvdQxtOWD72Jn8lAGusNUkdRlHuY8HKZyAyDheku37nt15wEAjkBJcWEkFokKYXoftOI4SmsEgX1PB6ZKpZa4ECC9K2pgL1SYcaUMq6J35AgoDtSrnh1jNj4O4EpOJtOdnQmWDODMhjELJo4aPsYkxMBxJB4GMziWhx3baN/LfUjiRIsx5SIRKzF73R2Jh6oJsBsPZaBAMSJ4OHzlRmFfe+Kpjbt3HO4A4AgUFRbECmIRQTZmDno6BBBAxt8h83zWuiRk1rv3dYe146orAoHOUWaotZTUjhFmlgNcyYlEqqsrqQa4rqL4gmnjh0mEHCLn6IGHhTHl6WTwkNGxnQ6uINmLqKqgEvUXCieWxUNisytmBg8R8LJHLA+Hu9wobGxqXb5j/86WTviiE406js7dcDCDw6RjKKhsMaCXHiYitaqxlJnxlNppzN+7Q6o1pY+Uu/GkTCbczi5tSSZWFJ88sWa4ea0hBgNH4iFsXxgRANmJ5tdF5+4jHkdEUTOXKqabje10NK89Gu6Zh+zpCinD8DCRcLtGFA9Hhtwo7GjueH7LXjXYAGIRESuIF+jxZkFCB1CAEKbvxuRxgvUpfbjAitbqd8ls1EdXBDJSNp7sSqSTyZTn6lWU6iqKz2oYW1cZLjP8zkJ3HkYL4oVGd6y77R5Gskl07mJOI3WYABSMRrSYCkZz6USiKEOvWqlX+IfafE6FTjK4LxWYWZqEsevJrkQqmUyPRB6OJLlR2NHcsXrvoY1NLUlPtz8VxyMUi0UjTjwWITPYuhYutMoAEKbvRjKT2beQGZmVKfIy+m44lfZSybTnyWRS95PHHTGtpnxubdWIGOAQg4S+8FDP7CMT47Pmoczct9f62sEKqX789uDhyJMbi9V7mzc2tWw60Bp8MhaNxOLRWDxKoFjU6dm7Mbk8NmZF2Q2orVpc6UmZTrmpVDqddoMHnzqqbG5t1TD3V0PkGf3koQmizL5mxNoCqh2N3p48HMFyo5BwvY1NrTua2/e1d+1vT2S96jhCCBGNRoQQRNmVKYu060n9X/ZLo0sK6ipLxpQUTqspG4ap/hDDBP3joUndaBgeSullT1x4e/BwxMtNEAnX29Hcsf1w+/62roTrdR/13mB0SUFBxFFDW1dZPHKHNsRQIeThkfC2kpvuaEmkWrrS+9q7Eu7RVskviDhjSgrLC6PhLt0hBgMhDxXe5nITIkSI4YOhWTw0RIgQ70CEchMiRIg8IZSbECFC5Amh3IQIESJPCOUmRIgQeUIoNyFChMgTQrkJESJEnhDKTYgQIfKEUG5ChAiRJ4RyEyJEiDwhlJsQIULkCaHchAgRIk8I5SZEiBB5Qig3IUKEyBNCuQkRIkSeEMpNiBAh8oRQbkKECJEnhHITIkSIPCGUmxAhQuQJodyECBEiTxAA2tra7rzzzgsvvHD27NnHH3/8xRdf/POf/9x13WP+8Y033viRj3xk8C9yQBgOF9nZ2Xn77befddZZM2bMOO+88371q19JqTcSmj17dkMm/v73v/f7RGvXrm1oaHjiiSdydOF5RcjDwcaQ8zAC4Nprr925c+eXvvSlWbNmua77r3/9684779y5c+ftt9/e7/MNEO9617sefPDBCRMmDNUF5BZf+cpXXn755Ztvvrm+vv6VV1654447XNf93Oc+x8ydnZ1f+MIXTjvtNPvmKVOmDOGlDiFCHg42hpyHkY0bN65YseIXv/jFJZdcop466aST4vH4448/3tXVVVhYmPNTHhO7d+8+dOhQ/s87SDh8+PDSpUtvvfXW9773vQBOPvnkN99889FHH/3c5z7X0dEBYM6cOaeeeupQX+YQI+ThYGM48FB4ngdAiIwkzg033HD//ffbMf7LX/5ywQUXTJs2bf78+V/84hcPHDgQfHN7e/uMGTN++ctf2mdSqdTcuXPvuOMOAAcOHPjyl788f/786dOnL168+IUXXlDv2bx5c0NDw8svv3zjjTfOnj37pJNO+va3vy2lfOmll84880wAZ5111qc//engiZYuXdrQ0PD666/bZ1auXNnQ0PD8888DePXVVz/wgQ/MmDFj1qxZH/rQh1atWtX9086aNes3v/mN/fWWW265/PLL7cUsW7bsox/96IwZM84444yHH374jTfeuOKKK2bMmHHJJZesWbNG/Ynruv/1X/91xhlnTJs27Zxzzrn33nvt0W6//fbJkyd3P2lFRcXq1avVGCvE43F1w9vb2wEUFx97S/nPfe5zn/3sZ3//+9+fcsopM2bMuO6661pbW//3//7f8+fPnzdv3re//e1jHmGYI+Qh3gE8FJMnT544ceLNN9/8xz/+MWv8FJYsWfLVr3518eLFjz322P/5P/9nzZo1n/jEJ4Kb4ZWUlJxzzjmPP/64feZf//pXW1vbFVdc4Xnev/3bv61YseLnP//5P/7xj3nz5l177bUbNmwAEIlEAHz3u9/9yEc+snLlyh//+Mf33nvvo48++q53vetnP/sZgIcffvi//uu/gldy+umnV1dXB0/06KOPVldXn3HGGVu2bPnoRz9aU1OzZMmS++67r6Sk5CMf+UhjY+Mxb5+Cupgf/ehHt9xyy4oVK+bOnfsf//Eft99++09/+tPly5eXlJTceuut6p233Xbb//2///fLX/7y448//qlPfer73//+n/70J/XSlClTzjvvvKOcJZFI7Nu3709/+tMjjzxy3XXXAVBWpTemOxKJrFixYvv27U8//fQf/vCHZ5555n3ve19NTc0LL7xw++2333vvvYrrIxchD/FO4CEzb9iwYfHixfX19fX19RdccMF3vvOdNWvWsMGiRYs++tGP2l+feuqp+vr6V199lZlvuOGGD3/4w8z897//vb6+fu/eveo9N91000UXXcTMzzzzTH19/b/+9S/1vOd555133te+9jVm3rp1a319/Z133mmPfPbZZ//gBz9g5meffba+vn7nzp3cDf/xH/9xzjnn2F/POuusb33rW8z83e9+d86cOV1dXer55ubmqVOn/vznPw9eJDPPnDnz17/+tf3zm2+++bLLLrMX88tf/lI9//jjj9fX1//9739Xv95zzz3Tp09n5tbW1qlTp/74xz+2R7jlllvOPffc7tfZIz74wQ/W19fPnTv3/vvvV8+sXLmyvr7+G9/4xsKFC2fMmHHxxRffd999Pf7tF7/4xblz5yaTSfXrJZdccv7559tX582bpy7+zTffrK+vf/zxx3t5ScMKIQ/f9jwUAKZNm/bAAw888cQT3/jGN+rq6v74xz9efvnl3/ve9wCk0+l169addNJJVp5OOOEEAGvXrg1q1vnnn19YWKgS0a7rPvXUU4sXLwawatUqx3FOPvlk9TYhxIIFC1asWGH/cNasWfZxWVlZS0vL0cX18ssv37Zt28aNGwG8+eabO3fuVCdas2bN7NmzCwoK1NsqKirq6uqyLvKYmDp1qr2SrF+TyWQqlVq7dm06nT799NPtn5x66qlbt25tbm7uzfG//e1v33333VdfffVXv/rV3/72twCSyWRpaWljY+Ott956zz33nHzyyTfffLM1U1moq6uLxWL2kuzlqV9bW1v79GGHIUIeKryNeRgJfsipU6d+8pOfbG9vv/XWW+++++7LL7/8uOOOY+by8nL7NvVYBXsWhYWF559//mOPPfaxj33sxRdfPHz48BVXXKHe5nne7Nmz7Ttd162srLS/2oFR4GNtWL5gwYKamprHHnts2rRpjzzyyIQJE0488UR1orq6uuA7y8vLsy7ymIjH40f5lZnVAT/2sY8RkXpS1REPHjwY/FBHwowZM2bMmHHuuefG4/Ef/OAH733ve08++eTVq1fbN5xyyik7d+78n//5nw996EP9uLxjXsCIQMjDtzEPI6lUat++fRMnTrRPlZSU3HTTTUuWLFm7du3s2bOFEEGxV49LS0uzDnTZZZd99rOfPXz48GOPPTZ//nxVOywtLY3H4//4xz+C78xKB/YJQohLL7308ccf/8IXvvDYY4+pBJs6UZZFamlpqa2tzfpzOzwKiUSiT2dXn/onP/nJjBkzgs8H7153NDY2Llu27N3vfndJSYl6Zs6cOclkcu/evd1rjTNnznz55Zf7dFVvD4Q87D1GLg/F97///UWLFmUl57Zu3QqgpqYmGo3OnDkz6Ha+9tprAObOnZt1oHPOOaegoOD5559/8sknlWMJYN68eclkUko52aCgoKD73e8RR5LJyy67bO3atS+++OKWLVvsiebMmfPmm28mk0n164EDB7Zt29b9IsvKyoKmpq9e7syZM2Ox2KFDh+zHqaioqKqqsr5lj2hubv7KV77y9NNPZ513/PjxTz755Oc///lUKmVfev3117PM4zsEIQ97j5HLQ/HJT36ysLDwve997+9+97uXX375hRde+PWvf/35z39+9uzZCxcuBPDpT3966dKlv/71r3fu3PnCCy98//vfP+WUU7rfwXg8fuGFF/76178+ePDgpZdeqp4844wzZs2a9aUvfenll1/etWvXQw89tGjRoj/84Q9HvyblJz/99NOqdpCFE088cdy4cbfddtv06dOnT5+unrzmmmtSqdQtt9yyefPmtWvX3nTTTWVlZcGan8LcuXMff/zxgwcPdnV1/fSnP1UJ+d6jtLT0Qx/60E9+8pOHH354165dL7300jXXXHPzzTerV5csWXLDDTd0/6uZM2cuXLjw1ltv/eMf/7h8+fK77rrrV7/61Qc+8IHCwsK6uronn3zy+uuvX7Zs2UsvvfS1r33tpZdeuvHGG/t0Vd3x5ptvPhfAiHCXQh72HiOXh5G6urolS5b85je/ueuuu/bt2xeLxSZMmHDdddddc801SiyvuOKKRCLxm9/85kc/+lFZWdmFF1749a9/vcejX3bZZdddd93ZZ589atQo9YzjOPfee+8PfvCDG264obOzc+LEiV/84hc/8YlPHP0q58yZs3Dhwh/+8IennnrqPffck/UqES1atOj//b//Z+8vgEmTJv3hD3+4/fbbL7vsMsdxFixY8Oc//7m6ujrrb7/+9a/fcsstZ555Znl5+TXXXHPVVVc988wzfbmB+MY3vlFWVvbDH/5w//791dXVF1100S233KJe2rRp05NPPtnjX/3sZz/72c9+9stf/rKpqam2tvZTn/rUZz7zGQDTp0//7W9/+9///d+f/exnAUyZMuXuu+8+99xz+3RJ3fHTn/40+Ov48eOXLVs2wGMONkIe9uVujVQe0tsmxRgiRIhhjnBGeIgQIfKEUG5ChAiRJ4RyEyJEiDwhlJsQIULkCaHchAgRIk8I5SZEiBB5Qig3IUKEyBNCuQkRIkSeEMpNiBAh8oRQbkKECJEnhHITIkSIPCGUmxAhQuQJodyECBEiTwjlJkSIEHlCKDchQoTIE0K5CREiRJ4Qyk2IECHyhFBuQoQIkSeEchMiRIg8IZSbECFC5Amh3IQIESJPCOUmRIgQeUIoNyFChMgTQrkJESJEnhDKTYgQIfKEoZeb5cuXf/KTn3zXu941efLk2bNnL168+M9//nNv/nDXrl0NDQ0NDQ2tra19PelNN93U0NDw3e9+t+/Xe2zceeed6sK+973vDcbxQwwG7rvvvve+971z5syZPHny/PnzP/axjy1fvrw3f/jXv/61oaFh0aJF/TjpmWee2dDQ8MQTT/Tjb4+Ee++9tyGA44477pRTTrn22muHw1bxQyw3L7300oc//OGnn366uLj4tNNOGzVq1OrVq7/2ta/97ne/y+2J9uzZ09DQcPfdd6tfZ82ade65506dOjW3Z1F4+OGH1YNHH3003BN5ROBnP/vZLbfcsmLFirq6ulNPPZWIli5d+rGPfWzNmjW5PdGSJUsaGhrWrl2rfj399NPPPffcmpqa3J4FQDQanTdv3rx582bPnt3Z2fncc899+MMfHnLFiQzt6X/3u995nnfxxRf/6le/Us98/etf/9Of/nTvvfdec801OTyRlQCFT3ziE8fckb5/2LRp0+bNm8vKyoqKivbu3bty5cr58+cPxolC5BD33HMPgFtvvfXaa68F0NXV9b73vW/t2rV/+ctf5syZk8MTZfHwjjvuyOHBgxg9evT999+vHre1tS1atGjXrl1//etfTznllEE6Y28wxN6NioMqKyvtM1/72teef/75oHu5ZMmSyy67bMaMGbNnz/7gBz/4/PPP93ioq6++Oui/PPfccw0NDQsWLABw+eWX//CHPwTwve99r6GhoaOjIyuYSqVSP/7xjxcuXDh16tT58+d/5jOf2bJli3rpt7/9bUNDw/XXX//yyy8vWrRo5syZV1555ZtvvnmkT/SPf/wDwMKFC88//3x0o1eI4YksHhYWFt59993Lly+/7bbb1DNHYUgWVAhj/Zfbb7+9oaHh85//fEdHR0NDwzPPPAPg0ksvvfzyy9EtmGpsbLzpppsWLFgwderUM8444zvf+U5bW5t66TOf+UxDQ8P//M///P73vz/99NPnzJlzww03HDp0qDefrrS09IQTTgCQSCT6dXtyhiGWm9mzZwP485///O///u9PPvlkS0tLaWnpxIkThdAX9qtf/erf//3f169ff+655y5YsGD58uX/9m//9uSTT/bpLIsXL66trQVw8sknf/zjH49Go1lvuP7663/+85+3tbVddtlltbW1jz766FVXXbV7924ABQUFALZs2XLTTTfNmjWrurp61apVn/nMZ1zX7fFcSm7e/e53v/vd70YYT40QKB5+/etfv+OOO15++eVUKjVmzJhgjHMUhvQS0Wj04x//uHp8xRVXLF68OOsNhw4des973vO3v/2tvLz8iiuu8DzvnnvuueaaaxTTFA///ve/33XXXaeffrrneY8//vgPfvCD3py6vb191apVAIbWtcGQy80NN9ygdHfJkiWf/vSn58+fv3jx4t///vfqFre2tt55550Abrvttl/+8pfq7gP4z//8zz6d5brrrmtoaABw8cUXf+tb34rFYsFXly5d+uyzzxLRX//615/85CcPPvjgrFmzWltbf/3rXwNQwrd58+af/OQnP/rRj5TXvWPHjh6N24YNGzZv3hyPx88555xTTz21oqJCxVN9vzEh8orbbruturq6s7Pzl7/85dVXXz137tyPf/zjzz33nHr16AzpJWKx2Le+9S1Fp+uvv/66667LesNdd921d+/eSZMmPfzwwz/+8Y8feOCBWCy2atUq5fuoP9y2bdtDDz30ox/96Otf/zqAp59++kin279//1VXXXXVVVddccUVp59+emNj40c+8pGrr766b/cl1xhiuamoqFiyZMlvfvObq6++etKkScy8evXqb37zmzfffDOA119/Xbl/V1xxhXr/pZdeCmDTpk2HDx/O1TW88MILAObMmXPccccBiEajF110EYBXXnnFvmfs2LEnnXQSgClTphQXFwPYt29f90M98sgjAM4555yioqJIJHLhhRcijKdGAo4//vjnnnvuhz/84SWXXFJdXZ1MJp999tlrr732vvvuQ+8YMnCos1x88cXKkRk7duyJJ56YdZaFCxeWlpYCmDdvHoDm5uZ0Ot3j0dLp9MqVK1euXLlmzZq2tjbHcbZv375hw4YcXnA/MPSFcCHEhRde+MMf/vDZZ59dtmyZcjLvv//+Xbt2NTc3A4jH40VFRerNVVVV6kFLS0uuLkCdJZg/UmcJKlrw1cLCQgBSyu6HUpHUihUrFi1atGjRIpVmCuOpEYHi4uKrr776F7/4xauvvvrAAw+o8OqnP/0peseQgaNPPFQkxBF4CGD8+PFbDV599dVPfOITy5Yt++hHP9qPrpEcYijlpr29/bHHHrvzzjttBmv8+PE//vGPI5EIgO3bt1dUVABIJpNdXV3qDTY3FhwVBeVt2kP1MosGQJ1FDXbwb6209RLr169/6623ADQ1Na1bt27dunXKAwrjqWGOPXv2/O1vf1NhssIJJ5zwrW99C8Du3btd1+0TQ4gIQ8rD7qiurv7CF74A4PDhw0NLxSH2bv7X//pf//3f/3377benUin1zFNPPaUSNxMmTDjxxBPj8TgC8ciDDz4I4Pjjjy8rK8s6lErsqZQYgL///e/BVxUJOjo6ul/D6aefDuCNN97Ytm0bgFQq9eijj9rnew8VSZ144olbA1i4cCHCeGp4Y9u2bTfddNN3vvOdhx56SD3jeZ7KmIwdOzYSifSJIUEednR0qFKUxTF5+OSTT6rvwu7du1977bUjnaWvsPXckpKSgR+t3xjKvpuSkpKvfOUr3/3ud++5556//vWv48ePb2lpaWxsBHDllVdOmjQJwBe+8IX//M///MY3vrFs2bJDhw4tW7bMcZyvfe1r3Y927rnnPvTQQ0888cSNN97Y1tamKog2ihk7diyAe+65Z+fOnV/5yleCf3jWWWedffbZzz///Ac+8IGFCxeuWbNmw4YNNTU1119/fZ8+jpKbrO7SSy655Lnnnnv00Ue/8Y1vKKqFGG447bTTLr744scff/yLX/zibbfdVlVV1djYqKL1L33pS+gjQ84999y//OUvd9xxx/r161esWFFbW9vU1BTk4e7du7/5zW+eccYZ3/zmN4N/+MlPfnLJkiVbt25dvHixyiWl0+kzzjjjvPPO68eHUqli9bilpWXr1q0A5s+fr5I+Q4Uh9m4+/vGP33XXXQsXLiwuLn7rrbfa2trmzZt366232trTZz7zmTvuuGPKlCmPPfbY66+/fsYZZ/zpT3/qUe+vuOKKG2+8cdSoUcuWLRs3bpzqmEgmk+rVT33qU1OmTGlra3vxxRezwl0i+s1vfnPjjTfG4/EHHnigqanpyiuvvP/++0eNGtX7D2IjKVX/trjoooscx9m7d+/rr7/elxsTIn8gop/97Gff+c535s+f73nepk2bhBALFy68++67P/jBD6KPDLnlllsuueSSSCTy7LPPvv/973//+9+PAA+/+tWvjho1atu2bevXr8/6w+rq6iVLllx55ZX79+9/4IEH4vH4jTfeeNddd/XPStlU8cqVK/ft2zd16tQvf/nLv/3tb22LyZDg/wcXUCOzX4pDXwAAAABJRU5ErkJggg==", "path": "image.png" }
Which solution has a higher concentration of purple particles?
[ "Solution A", "neither; their concentrations are the same", "Solution B" ]
2
The diagram below is a model of two solutions. Each purple ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the purple particles represent the solute. To figure out which solution has a higher concentration of purple particles, look at both the number of purple particles and the volume of the solvent in each container. Use the concentration formula to find the number of purple particles per milliliter. Solution B has more purple particles per milliliter. So, Solution B has a higher concentration of purple particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABr70lEQVR4nO29d3wd1Zk+/rxn5hb1bqvYsuUq94YN2IBxKAZjDCRsQgrpCSH5pv1CwoYUUsjyJWVTv5tNdslCEtI2MR0MJjQbMAaMC+69S1bXVbll5ry/P86ZuSNZtiXdqwbzwEe+debcOc+8/byHmBkjENtONm092dgSjbdEE4NwulHZ4fxwcOHYksqCrEE4nY+RAp+HfQKNOHFT2xb9x9aDgzO7p2NMXta/zBkfNo0hObuP4QOfh/3ACBM3tW3RBzbti1kyNysrO7+kIDucFwpmGAgZCAkEBYKEgEBAwCQIwCQIAkH/JYBIH0r9bMmQzPovwZZsMyxmS7INSkhOSE4wt0bjp1o7jze0tLR3TijJe9+scUN3DXwMPXwe9g9iqAfQN7x2pC5mydEFBXkVE3Nyc4OBIACQM2kMEIjADGaoCSXS/6t5VtJVf9wVtcm3iNVzlw4AGBnBQFlhzrRxZZnh4IG6lp31kUH5uT6GKXwe9g8jTNwcaW4DwHmjASTNMoYzpYCaYDXZ6k3W/4MB1tPnMMCjYvRbTOq51+hzPhUwjfzcLABbT7UM2E/0MQLg87B/GGHiJmQaAIglPOboIGgVOJ+3bel5wcc7FD4P+4cRJm4qC7IB2E01GAqtEres+uZWAGOzMwbsJ/oYAfB52D+MMHGzaGxxyBD1ra31R/bE41H96sBrlYQtD9Y0btx5yLY5PzO0pLJo4H+rj+ELn4f9wwjLTAFoicb/vvXQqbbouT86AKjIy3zvnKoRl4D0kXb4POwHRph1AyAvHJxSkjckpy7Ozvjwgkkjbo59DAR8HvYD5lAPoP+YUj46q3B0hsAg1DvsrWnaeexUVig4dD/XxzCFz8PeY+RZNy7I+2jAfWYbQGY4MMC/ycfIg8/D3mMEi5skBisj4Jl5Hz5Og8/Dc2EEi5vBr3cYudPsY+Dg87D3GMnixn3kaxUfQwefh73H20LcDJZW8eHjdPg87D1GsLhJYtC0yshVKz4GAT4Pz4URLG4GX6vQCDZjfQwUfB72HiNY3CSv+WBpFR8+eoDPw15jRIqb0dkZAJrbO/VzPyPgYyjg87CvGJHiRpVvW7atn/s+s4+hgM/DvmJEipvuGHit0hlLwKGXDx89w+fhufC2EDcDr1U64wkARVkjrL2Ij0GFz8Nz4W0hbnyf2cdwgM/Dc2EEi5vkRR8sn1mMXKfZx4DB52HvMYLFTRKDpVW8j3z46A6fh+fCCBY3g69VaMRqFR8DB5+HvccIFjdJDJ7PPFK1io/BgM/Dc+FtIW4GTauM4CCdj4GHz8NzYQSLm6Tc9zMCPoYOPg97jxEsbpIYPK3iw8eZ4fPwXHhbiJvB0iojNwHpYzDg8/BcGMHiZvAzAiNYrfgYMPg87D1GsLhJYuC1SmNbJ4Cx+ZmD84N8jEj4PDwXRqS4ycsIAIjE4vr5YGmVEXmxfAwYfB72FSNy5HnhIIDWaEI/H7SMwIj1mX0MBHwe9hUjUtx0h58R8DEc4PPwXHhbiJvBywgM/G/xMXLh8/BceFuIG1+r+BgO8Hl4LrwtxM1gaRUfPs4Gn4fnwttC3AxavYMPH2eBz8Nz4W0hbnyt4mM4wOfhufC2EDe+VvExHODz8FwY2eKG3H98reJj6ODzsJcY2eJGZwQHWKu0ROMAcjKCg/GTfIxA+DzsJUa2uBkcrWIlbABBY6Ru7uNjoOHzsJcY4eJmULTK28Bn9jGg8HnYS4xwceP+4/vMPoYOPg97ibeFuPG1io8hhc/DXmKkipvccACArXaDHxStMvLn2kf64fOwTxip4iY/HATQGY0Cg6VVRvQ8+xgY+DzsE0aquFHQo/d9Zh9DCp+HvcTIFjcYxIzASFYqPgYYPg97h5EtbvyMgI/hAJ+HvcTIFjeDU805shWKj4GHz8NeYmSLGw1fq/gYDvB5eC68LcSNr1V8DAf4PDwXRra48X1mH8MBPg97ibeFuPG1io8hhc/DXmJkixuNQdEqI1+1+Bhg+Dw8F0a2uPG1io/hAJ+HvcTIFjfe2QV8n9nHEMHnYe8wssUNeWYX8LWKj6GBz8NeYmSLG1+r+BgW8HnYO4xsceNrFR/DAT4Pe4kRLm58reJjGMDnYS8xssWNxuBolZE/2T4GFj4Pz4WRLW7I/WcQtMrIN2V9DBB8HvYSI1vcJOX9wGuV5o7YM3tPqL1+fPjoAp+HvYM51APoD7adbKpt60SPWkU4WsXxqIlASCoJRQKPVklOu6NVlG7yWK0MAJYtXzta/9rR+jF5WeePK5lSnDsIv9THcIbPw75iJImbqGW/frR+49G6mCXVKzUdHeVBw2BTCCG0/QpmkOiiVeBVPM60MkBE7PJD6SJmAAEBy+K4zS0WC0KzZeflZmdlZ0Uibe1tHcda2o9tbc8KmfPLi2aVFeSFR/Cuhj76gcHmoeSWBAvilpHPQ2KvtTZc0RKNrztYu6euRU1wTmY4KzenMD87kbDCwQCYDUFgBAzKECJsiKCgkKCAgACRYGYiUhNOpJ1pkgAzxyTHJNvMDFiSO22OSwmQZFZ/mSAlg8iWDELcsltb2xsam23LVmObVVawcGzJ6OzwUF4gH4OCc/JQCCJG0KBwr3nIgFQ8tNmGl4cMwOUhCPbI5+FwFzdqgredbFJPszPDRUWFWZkhQUQEAQgCQT+mpMlK0HE3DW/ELWmfsuNmO8/UX2ZmaEtY6gcsWT+WzBJob482t7RGIu3qSAvHFl9UNTpsjuANVX2cBf3moRvM0X8paeFQkoAAklEa9oSQ32Y8HNbi5rWj9esO1ihNkp+bXVSSHw4ECWwQESCICFqf6MdEDBZEYHgeMxG5moVcrxisf75ysklbNKwfS/WYiaRkpYLcxzYzg2yWcctuaoo0NTYDCBhi+ZSKWWUFQ3zVfKQbp/GwIBwIJHkoiJiF8xjOY3K4R/Aw0PkLRyMqvql3pcNV16LRsqarrc3qcZKHHLesEcHDYSpuatuiz+w5fqS5HUBhbnZhSUEoYAqQIAiCgKtSSKsRp1+szjMSuaZNV7vGG3kjj0YBQ5s57DFwAEh2n5JUuoWV9IFkNd+IJRInT9Z1dsYAlOZmrqgeM8xtWh+9RBce5mUXFBeETNMQ5JgzcDSfYiDBsWuEx77ukoTyHp100ru7jeNIGU5qQUgGtI3D0pFBUvEQkMw2Iz7seTgcxc36g7XrDtYCCAXN0aNKcrIzlCYRSpPoOXb0CRH0YyYiYuVJJe0aQOkTkMd41ROd/Ou1a9ixaxwp4+oWZeOAbJYMkpIlwZbMIEvKltb2U7X1ihwXVY1eOLZ42Nq0PnqD03gYJsAQRAyjdzwkeCyarjx0GYiUeMgMxUBt6QxzHg4vcVPbFn1sx5FTbVEARYW5RUUFQcMQBMOxZQRBdNUnrp8svHYNAV1ripIWLHsEj2PHuh9zTJukgSM9r7h2jdYtrHQL246lk7BlXX1jS3MEQE4o8C9zqoabevHRG/TEQyGIDELSxD6dh4AndpNkpjdNTt0Y2I2HHnunKw9JgtmxvnviIUvAZm3mJKSsqxuOPBxG4mbryabHdx4FEA6ao0ePysoMmUqHCBKOJunRW1aP4dEw3eM1SVmjJlS9qx8nPWfpeM5eC9brLXd97GgVqGyC+7c9Gq85eSoeT5iGuG565ZSSkVQZ4aNHHgpl1zgMNLwRw66P4WEjsxNPBLHHujmdgY7YYVVxQ9BxHMeikU7s5myRRKksbsCSLIGO4cfD4SJuXMN1dFFeXmF+0BAGkSC4PpTylgV60CqiazYKSqt0qZzScB97vWX3FSBp37L+Q9xVk3TRKq7nLJVuYWXj2Ayb+eTJOpUvWDFt7JxhGbfzcTrOxkOvaQMQJSM4XXkIoMvqg26xG49Vo9ElduO8xF1eYce+7sJDiS6RRMfGGb48HBbi5rGdR1WKsbJ8VE5ulnAtmqRd4/jJSc/Z4zNzl5yUU8SZzAK4lo7SG25OKvm6x5pVF0TJna65Ko/PLJOWju3kCCRgS/cvWVKeamhuamgGMK00//rplUN5iX30Al15mC3AZ+Ph6bEbTx7q7DzsKnO6sLFHHnpyVT3Ebs7CQxuwJdc1NDcODx4OsbiJWvYze09sO9kUNERpaUlOTqahPGTtJztaRc+0E+pnqTKIjm/sxOfcX6ULw9mNyYkukkV/rEvUxo3YOZkpZdZy0tLR0sfWsw6QkI4vrVUNwCAmkiClXppa2mpr6gCML8y5YWbl8Ana+fDijDwEGSJdPHR8K0fzAW7o5uw89MRx4MgdwMNDkrpc0DG6AQZJIh5mPBxKcRO17D+8vre+I24KKirKC5rC1SQmEREMAqQURGBpkBAEJweZjNQYQoBZCOHoFpDOjjtRG4+GSUocB1qTSJnUKpIduyYZISanmlN5y6w9KZYMS0omsm2pRIxk1taNI4MspqbGVmYuyAx99LxJvsQZboha9h/f2FfXHssJBXKL8oOmEMwEhm2bhiBmgwgsiaAeCyLFQyISpNnVnYek/SmdtXAiNQDOxEMikg4PI42oO2SDqOmkDGdTOBuhbBSMpUCIbCldRZj06JktKZXd7fhTbDNLkARAhg2WEI0NLYmElZsR+sTCoeHhkIkbV9YEDcrIyggFhAGYQvvJHhsnObuGIDcVpUpvSE856fpxJWIA8kofQWBd3adnWisVcopr2H3qic/pIk7913nXzUQ6Ro3yk2GzdCpxpATZkl3n2ZJsSW5ri1qWnZcR+vgQzbSPHuHyMNOkUHZG0BDiDDw0hA7fKB4CLEDKqyIg1kYdzWhrkEr+FJRRTqEIhHU2yqv/kl68U/mlDG6lxo7vlQc2yc5Iz3dl6WQaO4eCWQwnTuxNTrlRG8mwpZREtmTLedGSbDNHIlHLsodK4gyNuIla9u9f29PQmcgwKZwdDhqGAJtCGIDSJ6YQwnGpTCF0LsCNyQltxejVUl3sHafejwgMIfTsKiOHpRRCSCnd2JzSOW6MxtUw0mPESpZEwnY0j+MtK5OVbZuZyJJSZaZc68ZmabPyn8mS0mKORDptS+ZkBD+5cLIvcYYDepA1zKYhNOu68tAQQskgLw8BnNqHEzu4rbGH+yiniMbPEhWThRDuiilQFx5qMCPSILe8YEcazn0/TjxflE0D3IpTMHOy7oZ1nLgLDy0nY2UxRyJRe4gkzhCIm25zHBBapmitAhiCDEefGGqCdUxOuMF/p9KB1GM4i1bgvKv8ZDi2j9dz9pQ7JD0meFxl6QRuElG0NkkwOts4lEUiwNlFJNmbJmBm6LCcViM9WDeeme60LZmXGfq471UNNVwfKsuk4Gk8TBo1Dg8FkRsVVjzsaOIdzyEaOceJispp9qWB7FxxFh621suXH7MSsd4OvnQyTV4Cx+g+jYfeaPHpPJQcaRsaHg6BuHlk++HttS0GITc3I+Boks5DgqMiWkexFpJxAmAEkVnA+WMxeiKZweQ6FJGUL05GACxI6IqbZO0fAWy4sRsnbneaVtF2qRv/t5kBHN1tH9/LjSe7XxwziOJxVDkHoSxdASilBAlbSmd2lWPltW60bklItqRsbe5goKok76ZZ4wbrkvvoAX/fcnBvQyTbpEBWOGBoy1pZN8L72KnGMITmmIoe1u7nAxth9a7LVSCEJdcGCkoMqKULkoVjQQNoqZfrHk30XtYoaInjpMyV9S2TUqY7DyWQkNIG2ZITklub2xmYWJL33kHk4WCLm6f3HH/jWINJyMzJCBnCFOAO0fJmIFZ3tr6CY+egco5aIaVTj556YseRpi4etdIkTiRP11MJEs7v7ZJrdEtsJHNLA296wW6tP8dlqZiOCQvJqTlOrqVydYhMahUpQcpztiTHbW5r7WBg7tiSqyeXpe3K+ugL1h2sXX+w1iRkZodDpqHMGSd6SG7sRj01tDlDbpVNay1tWSPPfRoPAiEsXRUoKDHB7K3uS8Sw9n9j7WcI1pwdM99FhZXe0rDuPOwWu1HMtBkWy7ilebh4QtnS8SX9OHs/MKjNQ/fUtb5xrAFAbnY4ZAqD0LErcOrp0NllDYCjW7D5MbLjunhcePxnVftgCjIAg2ASmYIM9YrSS8yKSQEhBKT7ugFWuXb3uwbh+F5+6THrnLIGwPEdePNRcAJufbPy6pU/6PBVHV8IsKH9fwqaIiM7DGDz0bq3alvTcmF99AlHmtrXH6wFkJUZDAUMg9gAdNxQZyRgCmE40WICiJMVfbE2bH+2b7IGQCKGV56yZIwdhgjFwH3brP7JGgD7XmOpbwo4FUDs5aETl4ATqVCZNTaIgqYIZ4UBvHzg5L6G9v4NoK8YPHHTEo0/uuMwgPwMU5iGYI68GYzs6m07wfZG3vo0YhEIQOhrqq9dIHll1R2u1nOyqfWVUPc5gQ0hCKw+ZhAZgEnkyoKaQ/z6c33wn9saeesasOXUYlBS4hiA6/brKDixOqMAwgEjGA4AeHzn4RHadHbkoiUa/9+tBwDkhM1AMCB0blutS9B6yyRdjaEWQAly69qJgCNbeutDdUN7K+/ZZpOuHtTn3bPF6vdviUZQu48FnHUVXWoRvXq0Cw9Nh4cZQSMQMgH8Y9uB5kHh4eCJm//dcjBuc25QGKGgAHdsD3Ye6VuMqq2B33qOnWorfdVMLVnIgKOjKBnzc/vg6DlgVnkuglt7rrwwtNTLV59L9PVHtTXy7vXOSi7PMZVWUdXuhtC1G0LLIBiCMsMBM2BKyX/acrivJ/WRCv62+UDc5uwABTOCybrhpB3qWjc6C6GXLOioDXc2cc2+/scftm1MdLYRMSvpcPyAHU/tNq8/ou8IMGv7S9fcQ8kgJKizjpr3iOadZtshStQbiCeTMFkZQTNgSMl/GRQeDlKv4hcP1NS1x0IGRDgoCLLRbN/fn1NHGnjPBky/kJy8uL6f1ToGFbvpUlFOTCRcb1nlIw3SC6qkk5tkwqb1dl9jdQoNR9BwhAvHkmQWBDATCZvZUOFpAcuWphCWlIYglmyA1BgyMwORFqu5vXPtgVNXTBjVn3P76CNe2H+yviMeMmBmhE7PhJJTjdFldYInEyqIUpE1CrXHrMnTA4oDp06kerSmGhBBMCCEzntAZ74aD9DJXehoJM/HtXkRLpeZEyyjWBpEmZnBSEtnU3vn0wdOXTnAPBwM66YlGn/taB2AzIyQmtq2nf3PvR3ewbE2KFvXAEwBZQMrJ0sQGQLKvtC2BruSXrhaRVkibmV67XGuPdFnb9zF/tfYXUfjiVs7OtMQ5NGihrPeL2AYGZlhAJuO1DZ09EvU+egLTudhkjkEoSu83JkSOl6jakqdFZjNNakO49hB6fKwqb7/rHPRfBKC3BgiC1BHI7Y9TvtfRkdjz1+JnhCN64MtLwUpQQHDCGeGALw58DwcDHHz8LZDcZszTSKDDCLuQLwhpVT/8b3sxGh0DEzJFJF0tgms33Xljqo8hv5kl+jawV12KuPpjKCjKbkyWOlGlTJTMSNtpascqht7Yg4FDcMQUvLfth1JZQA+eoNH3jqckMhweKhiGcl1Ce4rSZ2h+ygpzaFej5zhBu492iLsdE1Jx69y+wo6PG84gm1Po70X44zXiaZnQrIZ4ZA5ODwccHGzp671eCQKwMwIqhmNHg2keMyaI5y8e7UcEVoROULHEALe9biuDPJMMmmPl44cSEncAKg/Qo6HD9e6UWTtqjO9zCZByMwKEdDc3rnuSEOKY/BxFuypaz3W2gkgoHmYzB5oO9Sxbrx5Rqf2wr2f01A10lgnXU6mBYpRSo+2N/L257j3kWxOUOvLIW5BZlYIQHN754uH6tI1sB6GOnCHBhC1bJWNygqbAUNreKsl1QvdUs9G0jbRXpIgtauP0/uG2YmfETELQFk3yfW7TgVgpFWmGK4D0FzDHutGkA4haStXx6119BFOLTwbBFNQKCMI4OUDJ6JWqlLPR49weZgdNgNqTYwKACdExwlq2mk27DDqtxs1b1HTISHjOgbn+CbJ3n1GmmSE8GjB1BEKsrLxoxFsWtPnr3OC2jeHDVsEQwEArxyqGTgeDmyo+JWDNXGbAwLBoCnUKgSAE2m4ynUnuLRC2b1wbRYC64UMTocR71oVVU8sBEmpF2YSwOD2NNW+GEQ2s3D+gllqrShYSqErgEit0xJgQwhpS4MoFDTjcUva8un9taumlqdnND48ePXwKcXDQNBUst5uoZY9wY4TPTj1B4HCsVwxjfJHy+S6GdZ5idSRnUNudXtZhVFzPNXwTUExSQZLHNjczwy93UKJg4GMyTKRsKTkZw7UrpwyIDwcQOsmatlvHG8AEA4HVdpIOOsMUgdRMnpn6DXfICK1k7tHe7AQBKjMlFTWjVArdJUMQprGAzjevs6LK0NGryN1Kjs84QBSUQNl46hY3c6TDb6Bk3ZELVtFiB0eou2twKnnM3qUNQqNR2nb0zjwOrkFE0LoCE5GdqrjycklIYhZCqLxE1O9ASvG6YBgvJ2O7+2/5IoeMIQlMjJCALafaOgcGB4OoLh55WBNQiLbJNPUdY1CkEiH9wsgFEzmJtlrl+qujY6UcdZ5q52nwHp1FXniLKE0NY12pIz24ASIQMR6JIYjbQ1v7Mb5VtAgwxRS8qO7T6RnND4cbDhU6/BQCJtaXg63H+hV9PD4TnrtUbLjWkMoDleMT1U/jZ8YcHlYXCKyc1I6YPl4VcmFg2+lZCVxghI1IhgQgYApJT+1rzaVo50JA+VMuaZNMDNAjt/r7tySOopKyOnS6PRCF5SI4eQJeeSAbItwLAYCQiHk5IrKCUbFGCMQVOtxJXn63RBRUXEaRpSZo8SYspNVl3VlgSvfSlXiOP3VAfUZIUAS6vVQKNhhRffVNmHG2NTH40MhatmvH6sHEMgICELrxlCiL1nRtkZ+4ylcdJ2bl0D5ONr3Vkoqc9wEcnhIDF5wvvnCM32uL1UoKMLEaiGZCag/bTlxX2HVmMGxdiBgJhLW7pqG5vHF+ened3ygxI0ybXICxBCGE9UXJAjIHMWd9SkdvKAoGQ9WnbSshNi+JbF9ix3voW5A7t5hBUOYPS8wY44ZDru9bPQqcCVxGnqxTuosKB8HIcBOl3zH5gIxDCJLsiDYDFVhKMAqpiNtaYAksQEyTTIMYdtyw7HGC8YUpjIYHy6UaZNjEkh0bg/2SdYoRBqwawPPuhCChGAeXUElZVTX33t7yjQzL08ohigeTplu7tlpn+xXBOeCZYa6EQRzS8oZetlJgsgMkDCEtOX6I/Vpj+AMlDOlTBsRMN01B+76sdyKVN3CidUGebpMNDfwEw/G3tzYo6zRiMfw+obEY6tjdadsZczoiDIIzJOnpSR2A0GMKtNZeQEIlYMHZBynDuDg69j1T9q1lvb8Uxx5VbQcIqudPPvYqCwbDKJAKADg1SOnUhmMDy+UaUNBkzsperCfuvrgDkQadREpAQsW9/OuCQax4IKA2zHS5eGV1wT7YWIvXmYUlQjybmWVGqwWtaKQVIpqd21TOo7aBQMibmoinQkJEyDT0FESJGsZMguQVZKSn1k53mkeDW6q4yceSjT2zjZpqJOPrY7Vn7KR7EPBAKZUi2AKZuOUWSIYgi7hEwRmGceul7D+z9jzEp3YSS011FpLkVpqOEBHNhh7HzOPvmDKDkEEpxYZBA4FDGFQRzR+pLWz/6Px4UDx0ACEKaJ7QqkcatcmdtqboKAYFyzrz41z5cpQTg4JItXvRnU/YUYwhCv6KHEWLzMmVQuVIXE7QKUOpf9CAYOAeMJ+s6Y5LYd1MSDi5qV9xwFkhYS3ZsH7t2xW/z2X2eeJ7Fxl3HAiRk8+nDiLUXM64jE89mA8HqekjQMEw7Tg/H4WHwaDmDLT7YQCAW44inV/55P7zvatjlPi4BOB1v2Gd/8sQQgGAwBeODAggbp3GhQPM0NCAImalArZTx6GFU32dZtcbSzuo8RZekWwbIwKMzIJbd3oIkIgJ5dWvjs0ufrcg8zOoeWrzMnTVKcu3YwlLTAyndoxghkyAbx+LM2lp+kXN1HL3tPUAUAGA+TsYarWMalfYgjKGSXLZ/XHwCkowrTZhpN1pmef7JusUYjHsPbxmLulBgAwz5gjejPZp+NdK0UonLTdju3BG8/0tqyzYbPZ8EbAlcIEmKYAcKyx1c+IpwiXhxQ0rUaTrVTvyjqnkhMAmCdVG8uuMnpjFGfn0HveH5pSrUrEmIhY6h1jFAAoG2fp5eY1NwTHVfV8V2bn0LyF5o03m+VjVVoiuVWeIGRlp/oDzczkqtRQ0ARQ39qe3sYU6Q8Vv3m0DkBuwFm5T6SWDXSrDS+facfbqP5gH65RQRGWXxcIBlm18TuyX9b0d0HtiWPy0H57/ETDPT0RLb3cjMf48ME+yMELlonCEiGdDvs1h3nzur4Nqe2wQWYgZ1ZCEBgwBAWCgUQ88crRhmVV/jLx/kPz0CRBZLekoR1vcwPGVjmRASKAK6tE2c3Gjq32ji0995EIBjFzrjlrrhkMETl5CSkldd31Bc7+MADKx4iyigAz15xAa4tsawOAsnLKykFOLkF1j3R3l3bMcwZGVdDB3SmlOzLLpaoO8fLw9RPNl6dvmXj6xc2WEw0AQgHDdvdmgbOmVui1i6red+KFNpFRd6BXEmfseLpwmREMwSnQ4zdfT0n/b3rNHj/RcGt2lJa54prAKy8mtm89t8QJBnHldUZBka4hZik72+iNF/tjskX2m8FiaZRa2sAJGIl4YvepFl/cpALFw2DQkERW/ztYdYG79kU/JQRDPH+RMW+hOHoIDXWSiE4cs8vHGADGVVFRiaHWWZFn7zo68z5T3s+UlnNphYFunxGCpSRnLY5+k0gAEybTwd0p/brMMpuISKqqNAQCRiKe2FM3vMVNU8wGYJuG0gMCPcRuVOWbIJqyWJZNFLtfptiZuxdmZdOFy0RpuWfXZUYiTr0MD58JDXUyHkMw5GgJxQjmCy8JjJsgN220zmQ6BYOYNseYPkuYQQYgiCSDiLa/IfvXMQdAy7ZAcZktdeM4CaCp3Y8WpwTFQ2kalKZu3ORmM1XQGACDhNqvjiqrMH6CKZnnLTKcwi64Fo1XmpxJ1sAjyzw7vpKzQZE+XPJo0t0xjZlRNoZGldGp/mboc8bJYBZbrPjMgkjxsKU9GrXsdO3WkGZxc7C+FUCmAZs5mOybx0I465sc6a762hMov1QuvlHUH0bDMWpr5FanG1BJGQqKKDsbE6uNYMiZD6gjoOZ4GkIbJ47Z4yYIZd8CybGVVdA1NwQirXzkIDfUc6RVv1tUTKXlVDlB6EVXIABSSkEUacWhPf2ntdVBnYdFsFKqNcpmwLQS1q76turilGvm35HoxkMj1R4ESZCzH6a2sj17ubj1Vq7YOF3WoCfrhrpVxjuvAIi0yCOH+PABuy2CSCsDyMml7ByMrRKV4ykrRwk+AoGlnLNQrH2kP/eFEeDiGTb0XgOqelYKh4fbTkUWluencM2SSLO42XuqEUDAFIYT+3RWJyV3ZYHTbUwIJzDPPHoclY9n1ffTcJpI6JVW5OzoLpxJBDWmI2TeUM/jJ2qtoibYy4OcXJo+R0ellZJR+3DKpB3Levdx4MShVFVovMEMV8bVOMyAYSWsfc3tvrjpH7rxMJCXBuVUWKSZnBQmcHYxAzGguJGIobFB66fyMYbXcjmTdQOPXePyMBGnDeutPTu7jzzSypFWnDxub1yPSdVizgKRlQu1Rmd0OS64VGx4vs8efcUiGciUNituk2AIIpKah3saW4epuDna3A4AhqltTiV0WK+EdFZOJndTBuDZec7pbKTqcR1R5HT/JL30AI4pmw50id105YH7lmQIgvTu+asGDgKxlExCHE1Z3ERPirz5IKlyeQTgWFMEGJ3iYd+ZUDxkwwCDBELFUpgsU0tOja4QcL0bh4fqFWZuquPtW7nmhFQ2iINEUYkoq6AFiwLBUB9iN431/PhD8XNmXfftkkcOyuWrzIJiHYGeMJWaGmj3tj6wsfICmTtGWpJs3ZuFKdm9kADUNJ1r475eI83ipjFmASQFB4ThWDdacAtPHbDQ+7eTylux7qXoWDFOgNkjfYidmk6FdNUaJCP8jtDxvqI2unMI5mQEwE4ylN19gVMfCSfU9QEYpgkALX74pr9QPGTh7O8Mzii324/0n+1jxlMwyK51Q1rnEIjiUX71JXvvrp5tioY62VCHPTvtWXPN+YtM9CJ2c/I4r32itxUe8Rge/V9r2XJjTJXW6AsWi/xC3vSKTJwrhW0EMOkSmTlKWrqPAqSEayIAMEwAiCfSVpORzrqbo42tFlNQwFD2iG52laxWcOtlmCUJ55XkWm03ewVyJYvTuYagW6npwrx0rB0LhZJ6pquIUWfW9NIWDRyPCtAbF6qOF5JB/Q/ReWG1kHuthCmk5GMRX+L0GafxEESUX93PZZAKCy6kLjx0Gis11MmH/9c6k6xxEY/hjVetxx+Mx2Nni9SoA6594tx2TTe89LzdVKf3sCdQ1VS69v1i3OQzKmUzgDGzed4NMme0dHI4eiQeTQ8ChCoESxMP02ndHGpQ8blkjIZIe0Vu7EbNVmezkBY6mkRuIQQht5DDIXL7RQi4d7ej7p2/OtTPVFaRBvumrIJcrXJ67KbrA73nL5FgHSN20gWCmDkYROotAc1M2KT7yIUCwU4ruqsuMiYnI9XjvsNwGg9BgJnJ+ROt5n7t/zF1JmXnujJCB4qZuakeTz5s9V40nDgmH10dW3lDMBQ+Y+zmxX/24YAu4jE8v5Zv+IAbmUYgiPOXiTkXyNqTaGpAewQdbRzORigLWQVcMFZvrSlVvAbqDoXN7IZclR2QXh6mU9zUtHYAMAIGO7uskFO/pGY93kG1bxnNx8mOdxMWVFjKlZNp3GTHe4Jee6Zb3+lqHe01E6GgmLJzqK2/2w8CyM6hopJkr78zxW7U60LobLdr3ShlwACzJBIFRVSbsoEjgmzbOs0QCAY6O6NHmtoAv/qmb+iRhwCK5yTsThE50TeLflQZFixO9h6AI7/iMTy75myrgntEQ5184Z+JK1YEevSndu+w+t2ZoK2V9++WE6YQEUEyESRzMEzl43j0OFiSbZAlJYNshsqhOxkokrZMdqF04qIDwcN0OlOtsQQAqaLCwi1CAhHsOE5uNnc8Gmg4KE6TNQDQWEOb1+H5h9Fc7+gQOIGfZOTfjc6BgEnVKQ1+irPqxDVhulm53cwcbd2o85PjB4IFCTBn5aZqbZmZnLQEhVBXIOYvZeg7kjxkXeEFp7li+UIrt7wPiZuSMlx8pXBjjvovCMCrL3WLCvcWh/bbe3baPcZudvSivvQs2LUtGf3UMQoAbnUieyOPmslJzmsbJ7nXzUDwMJ3iRl3BeNLv0H4gx+jwC8H6PeeuFGppwItP4tBudrJSjsUBdkI5cP+dObv/y7iDQcya2yVud+bYDbrkL6GrrRwOE7ME0dhx/RyJi8wym8Dk5L9YSgB2mkrU3lFI8lC53k7DfDDMIFddlBg1pVc3z+QZuGylCIX0MZXHoSROpIX37e6/aNi00To9dhNp5RSbLjXWc6TVsb8cHekGQZ1djygawYld4ug22vOi2PuCqHlLnNotEh3CkUE6xurwkJE+HqbTmWqK2wAp09WxykjG6fhLoVhzb5V/IobX1iEc5rFVTsWO1iesOgszg5iJKBjC+RcZ657tj9y98JJAMAQ4PvM5YzfuU3JrPQG3EoeZSytEMJjSjg65k2x9KikFUZxtAHHbt276jB55CPfGI6qYZ4+eyiffMs60ZK+8ErMv0GuU1FeSPGSAsGNbSmZIpJUP7rPGT0wqYCJqqEvDXJ86ydk5IBBD+0fQoV9i5uZasX+zbKrRF0J9pekYAcAmkTlKFEyzg0Wsg6WahxbSx8O0iRvLsizWk6q1Cgki1G0K9l7WuNjwImfnoLAY0CtCnGgxa+Jof2oqtUWMN1/r27WYv8hUnhR6UXfjfb2LdaOrY0iyJBKBoJx9nvH6y/2cldxxMpAlbU7Wp5uGABCLpZRPeQfCw0OnU7Vw4oA6AsokKJTFkxbbky9Ey3HR3kTkdDjLK+TRZRQKwRSuLaPdZ4JwJVfq2yfUnODxE5NPmVM1bRTaWpMFHOzEfQEkYrx5PWoP81lqSDpOiY5TIrNcFMxLwGRBZElV/Z82HqZN3HjWAcD1mduOBNpP9me1RSKGTRv48msFAAYLR6sAxGBy7nwimreQQiHasL63i/AuvDgwc24XrXKuupszWjesy3KEsnGqZ/H+3Wjqe7mzEeCi6RZpQUpgKYhsqcmXkBxI136L7wAkeZisLNW3mOcKq/QDBFHhGFlSKVQhuwlpCmFQcl2Cnuou9V5MEKkXtdfXJQVWt7x4SiAnwuhUwAOw4nhlDbU29EqcdZwwEh2iaEmMDSmIwHqcaeFh2mI3HfEEAMPJHqkr2Lyr/+UxtSdQe5x1dtzNPYO91o0SB9Nn0+VXm+fsaJ+dQ1esCMya10XCphC7UUEB3eNaRd0uv7ZXDVC6YdylVjDbrejROtlVQjGZBqX3zkGSh3qitD2sEpvOfajNFAZTMqfBJISzORjUlmjJ9KiOGjKIYrE0zIjX7+6WpUoJOn+ajN0kYlj3BHopaxQSzVS/PohEl8xJWniYNuvmVCQKIMvUYRYSFG8WdkdK4vDAHpRVOLkAvTCOmLV1A4/dUVmFcRMCe3fJwwfk6Q1rxk8wxk0QU6YZp89r/2M3DCdcrF9h5lCIlr9HrH9a9tLGMQIYf7EdLuCEZI/uZSKClKFQMBaLH25qn1GSk8plfEfB5aFSClqaEJymktAVswQ7huZ60dEIQbDjFAwhM5tLSiknlz1aBJxszal52JhaY3+FhrouLCWinJSTm4DucECerjpbNqClL7JGwWoR7bvN8IwEJKeRh2kTN8nbWK/K546jqR782GG1XEmwux+e01C6SzzFkT6Tq8XkakFEDXUyHicAoRCKSpzNws9aP97b2A1rGwQq/ObU3bCUynbNyaVl14hNr/ChveeY45xRPGa+HcxHQjqxSIJKBCQtKSDhWzd9gWf6QAIqdqNeAAMQYI53iGNvGs3Hejbti8swbR5K9QopfUxV6a285tKKNIyzrKLL2Zm52yv9Q2kZEwndfV3yqZM4fC4engmdBwJmhYW8pFOf+vDSL27I6cYab0n18sVjaItQrtY2OsGnTGKvlHEfu+KgeFQfVuKmEruBJ5LtRHllKEyLLsWkmbznLTp5mE9fulI4hkdXc/YoKUGW00dSSS8Vu1HRYmXAW7606Qu68lCtaIPjTxHAxzebdWetyag/iXUnUT5OXnAJGWEnr4OklU2U5pa7ijk5uUixcjUrhwpKhLpBJLMQtDe1DFp0bzC0oJPTx8O0iRvXx0tqlXQctj3Cublaq6jD63+63v9eYYHTbB93hGeybrr1u/G+1UNmCj1YN0pGSGaQ3oM8v4gWLIUlUXeSLOaONgQzwUDOaCkB22YmoYpr9G+RzKxrGL2xGyMt1/Edg248lMymk5iSMRzeFGg93ithceIwnn2CL1tJ4ZDKgbNrZTO4cjwdSa0HwPgJ3fMVRDRlmrFpY/87D06aqnsnqO4F0U4+fjilQSZqjLBzPdPCw7SJG3dzJTg+c5q0ck+xG7irqnqwbrwP3HfjMdTX2SePS7dHUWExlVcYwVDfYzdA99iNa904WsWWWmgRUWEp26A8KSVgS3YEDPR+nm5VJHT5pxu7UTeJma6cxTsDPfDQubi1W3sraxSaG/DsY3zZSgqHk7EbRcOyCnHkUEqlKN0W/SmOzV9k7Nlp98/AycqhabPJzdJIKetqUhmghlVvULaNNPEwzdYNeeY4LYcNBiVgdI/dOBnK060b9S3v68eP2i/+M9FjvXkwlBg/wZi/yMzO6X3spkvdTTJ241g35Mlh6yERqc4VkOxcINXLQn9LrSlX4sv1+5BWrfLOgZeH8MRuGnaYLYf7XJPR1MAbXsDSK5GM3YAATJpKb77W/0W54ycYyt93X3E5dsUK88G/9qfIZckyEQrpCLFaddlYn2pxEAC70UA2kCYeps0L1VrFkwU3M9MgcQqK9Ry7LpG6HXU5RdfojGtIq1cScXrhmcTjD8bPtLYlHsOenfbqv8RUUblXcp1+WOddJO0sMMNdI97Fs/OcL5m3UmYMoLOVkmX316Fy/FquKUsoMzhQGyu/LZHkIZysMMPqoJZ+rQUHcOwQ1550y+W0rR0M06Il/b93Lrwk0GO+goiKSsQll/V5qBctE2UVSaYR4Ik/pARmtRN1eniYNnFTWZAFoMnS+lkyB4tTLXwuKEJv6m56jN001vOf74+e3nvxdMRj2LTRVtvCn27doHd1Nx7LiNy4FSdXOSjJkiwYYxVxVJYOwxVe6oma4ETcAlCeE07xMr6jkOQhAIK6ks27gjLR/3tv2xu2t+5GTdPkajFpan9un6WXB7Jz4JUF3eKJk6vFJZeZvSzgCgZx0TJjUrXhzWMwoPVcGkCJeAJp4mHaxI1pusJPVxmFSy1hpvSDJ0wRKhWlHXFoQeOmw0+3btSDxnp+7MG+9Sjas9PesM46t3WD062bLhFo/YpDTy07HCuG2akYUzJIh4bdFYCUtJKcAwT9kuK+wMNDNVHE4GhdShsJ1J5AW6QHHp6/RBQW9e1Qs+aaZ6n/ghNGnFwtrrkhUFp+jqkvLaerrzcnVZOXh/DwsG+D6wkUSCcP02moBwgJRhCSYUhmM0A5E62W3f3fDHfCFMcK0FoFxDop6Vo3PcZunn68P7trvrXFLqsQlVX66WmxG3jjxIB6BMkSJFjKtjYcPci1Jzge13KEgVGVKBlLgSzpaBsV4+6Scff8Tea2DMMAYAbSs+HGOwrdeJhoNe3OVG+VmhMyN9fooo2AYJiue19g3T/tXq4OX3p5YOr0s/UP9WZRC4txzQ2Bk8d5z0675gR748fZOVRaTpOqRVk5nAAGbLX/lHR0G6i4NA3WjZEHpI+H6RQ3BSHjVNQOMMUcWyB7YiJywOyfHTtzAQXD5FoTzND7yDg+yZkyU5s29jO2D2DDemvchOAZMlMeTjhxawaIRKRVvvayPHqwh5PWnwRe5cJSmrSQMwugZQ1A0BFlpTMdr1sflYiYBYDMQPq2LHnHIMlDBgmy07G6sCPiWBBgglrKpzsTXHKZMblarHv2bKwbP8G48JJAdg7gzG/9KfvwQVlfJ9siusJY7egyboIxpdoIBDXTyiqorMJUPHSTqp6sBQDozgTOjleu9hpdQYEgztmx+Cwgk81iRnPaeJhOcZMbCpyK2iwlG0JKhiEowKUXRU881+e2g+Mn09RZzt0uhBs30fXncK0b3ZncG7t5a3P/Kxcirbx7h6XWi3utGyF0paYnC65Hsnen/fK5ttporMHGR2niQpRXO7aM4octWXfMgZTMrFNeUkoJASA/yw/c9BmahyxBQkqON6SB5G0RVpkp4VipXiu7tILe9+FAQ53cu0uqhd2N9azK2cdPMCqrKDcvGbVIxOn1V+NvbT7Tji7WhnXWzLnGvPOMoNtqRynvHHTlYdJjB4ilJCGklG4m1GYuH0f9rioGYJTauogsTTxMp7jJywiiJaq3JxUkmQUomMejFsRPvdGHlYvllVh0qY6QIOkrMUCqp56K0aoVdF5/iogO7e95t+beY99unjIN6BYSSvpuyV7FzLz+Wbm/122W9r+GtkaaeCFrv0mykjXs1BkqDiUzWUC2n5bqOzQPmZXKo9QCiA6SMTUicsNtTrUxGCgqEYXF5E1xej199fjQfvv5Z84dVXxrs334gLzsKqOoRHQNTXp4qKKB0AFBp/rEiRJKJqJp8/nw3v7+YJNDU/TShXTxMJ3l2GW5WQA6EhLQGQF1ObIrrarLY0agV7M+aQYuuAKuCeOJfpGKsmpDxvVKusZuUm8actJpZdLFaHLP5eknuG8X917WKNTux5Gt3ePB7P46QDIYkMyJWALAmNzMFH/OOxDdeGjmpqH8JCsnmXmEE+2Hl4dnyJB6vZs9O+2nH+9tBiPSyk88bDXUSc/R4NZ/sNa1Tt4BJKWSPlriMCClzMyhqfP6GbcKTbCQYVvxdPIwneJmTGEOgHZbSwXphEsBBPJ48orE6Bn2WbZPLSzFhVdj5vkAIJ2gmSe3x07ABIDTu0RLAeGK/5Mp9z0CcPK4N3ZDHusGTp8m1Jzgl57rT6b/2FZqqdE5WnbkCzOzE4BmBpGIJxIAJuT74qbPcHmoLBEKpEXc6KorbdtqbejE9RQPhXDSVl1Speozhw9IVWzRe8Rj+OcaOxF3j9Y1Q9KlrEJpZbiZXH1fgKfOw5hJfZY4obF2aEo87TxMa6g4M5xpUoeFEBCXEoZwLD0CQAE5egbKZ9qRE0ZnE0VO6fhrOIvyilAyVubkCdWs3GMlQoINN3bDcG93N/MnAGYphHBTSF6PNhW4RJEMAcikvQpm9LWFoBcHN4iZ12ofG44xzAypa29AwmDJwYBRkJGO/bTeYXB5GAbiUgbzYGRwismpinFJv96r8Fz7RQAskzxU33LfTcTp+Wf64+RHWvnFZ63Lrzah1sdoHgqXh+5YVOyG9dJeBmCzZBATTzsfNnByX29PmjHWzpgRtxweCqJ08TDNoYHyrNC+lqiwbZimVOVQREyQ7p7tQuSNkYVjiQCDyCASxIJgOFaMzWy4HimRt4JO7YSn70ci6EXUIBU/A+l2SmmC47U5ussZiWRubODaE/0/UawNTccop0JZN0oX6XEzgaVuQzEqJys9v+Sdh248zBibaNvT/xumpCzZR0ZZ7jgLD9WHulo3L7/Yn8oMhcMH5MnjXFpBp/NQUZN1uI88MsjxCSRLhhnCzIsQzsLRHbDOamCJAGdNtDOnJhLMbEPFiUfnp22j+jQvpR9flAsgZkmps7w6EqG0NzviwImuu6kY0p4F4OaDoVckcTJK57yup9Ppz8be/XHSUdqU7eki5MwxgKQfvm9nqvZ58zHhXBlyrg9L51rF4xaACUV+V61+IslDZgCZExKpVJzOmC+SUVjPehq4VZpeHjoeODzWzeEDKVXYb99iU1LzOVVgTmBB+fvJhgKOvaxzEY7DXjUPC67l0RNh9hTQEAHOrrRL3xXPmhqXYMnMpOvap5TkpzJ4L9Js3Uwalf/MgVOdNocFSWbpeECOrAETJMMUJCUbQlffqseqlVbdcTYEBEGAQyEUFJHUXWMdf1VPYrLujpy1kQDKykXqbatzcilZjwetu9zqKWZu6Ht7tG5oO5WUMq7cUUEvJo7FYgBm+k38+guXhxnKpg4gZ2qiZXt/DJxxk6mkHEyQUJ67x8p2F6IQMSAcHrqiwZE1KW3RAeDwQemKMJftqomwdp30KjxonQ1IFT9llgzpaP1wDk1ezJMWI1LPne1oayJmDuaxkSmNXGkxWwwp3XpUxGJRALNGpY2HaRY3jtvMBVJGhcEMSZBayugdQg0iW7IpnKvGDCEaT6D2INUdgaUnRt/PgRCPHU9Vk0XZGCcsppwmN3YjBDtdrEEoLknVuhlXlUw9AiBAggU5FQ3MRGhKOf8Vb4eqHmbH+pXK62YWZLLkYMDMC/uBm37C5WGhlJ3CYCBjYiLRKvraYTKvELMvcOKPblaInZV7njoMVRHj8tCJMIKI0rLFQmOdLCgmErpvpLbuPXaWXvErdZYGIFvrMO1h6cpSgpScUYRQIeeO4YSUkiku2ZbJrKj6KyjAkvNyMnPSV42R/rKOiYXZ205FEglbhoQEORaNjt0oHa4eG2q1boJ2voKGoz2LiUQMB3bzgd32hKm0cLERCsNxVJU9mfRjiQigygkixZZo4yYIdoP+jmGs7RqnQjz17cABqAoqZbUquaO0UDyeAFDle1KpQfEwnrBlUDATEwrmx4io/Uhv6/FzC3nx1cIMAo5LIgiKtwDQzcruykPdcxJ6tXDqPycWp2SWNrlSQQ9EyRfJfOwwmhpk3UlubkAiBqW2C0pRVInCMRzOJt1wiZmdWIbNycoVzUb28LAgnTxMv7g5b1zptlORpridHQwoE1SyJ1osoVpOG4Ik0NmIPetEtO3chz2wm5sa7CWXisIS4XjLpPs/MAtVfQcmYP755ot9zDi6KCqmydWCXL1BRICUkkgwJAmSnAbqOFCVaLBdWcOQQDQaA/CuCaPTd6J3Ilwe5gQDKigmQUULYuG8QNOucy+sGTcd088nU0ACBBaczExJJ+SpIimOp+/wkFmVo7qeflp2btByTRArKxt6xa9T4I5Iq9y0gY8f7OFcTTVoqgE2Uvk0HjObKKCzE1J7XmSzZOV/6epTxcMogEXl+akP3kWaQ8UASnMyCkKGxRSWti4q0cEqcu005Ud0NGH7P43eyBqFpnp++lE70qpueae+QB1N7ddBxMCUaqPfXabPvyhAQjDg1FbAey4p1Tyhr+uAe4TNSYvG9bqVBZudEcz3PanU4PIwJG2plDkgGTmTEmPeFcsbJ89Ud1o8Fouu5ckLVeRe/++wl5Kt05wktMuQZLbIaQngpqhSh+M9dYtYk3IXdm7hNatlj7LGixM76Y0HqaMx6TExw2Zm5ze6nCTHoy/KDKVl/ArpFzcAZpcVAojGbQZLdi00NyYKW0o7QQc2mHYfvZJ4DM8/JeMx57o7EkfpFnbWi19xTbAf+z1dcplZPlawTHZZ1nF+OOdyLNisc+1pdU5klkhWmsQTyZOsVcrc8nTIs3c8PDyEdO4uyTCzePR58eobEhOWWWPmy7KZsmIWj5nFM6/gC95rz1jGWQUACcksPdlVOH2IJLNbhqprpqDfVRYNO+WgDJAQadliIRT0cN5Tqczgl5+Vm16xE71LtNtx7HhGtDd1idSoX+HIGpaMeCwBYOG4UamP3IsBETczyosANCc4ADVhSbtG6l9FtbtFZ1N/Dt5Uzzu2ymQPITjWjTJGwABCYbrm3cFzbnTnxdLLA1OmmyrvoJnkhv27WlIMjKlK9bpllbOUUna5MkSGGYvGAcwenZfi8X3Aw8PgGXiYNYqLp9jls2T5LFkxW+aMkmaIHO0o1eeVx8FENvOpE1R7guMxcrgB7dd4eQjA4aGKtqi1mimioIRO5yFAu7bywT19S8XacexfZyRibKtfJ7kbDw3TjHZGBdGi8oLUR+7FgKwAzAsHq4uydzW0ccySoaANFix0foeZmTojXPNW/+dg1zZ72mwRCjt2jdSr7+ExS4pHGe9+v3jxmcShc5U8lFWICy4yi0YJJ5uo97F0DFNyuxErrcJAxXgKBvvfqhZAZrmtVmZKOH9ZWtEEgInFeX5OKi1weShjlgwFbMAQwmYWjmdkSykMVZsHZkAIKdkQQjKEzpyKphM4sR+NNbIj4h5YAhhTRaXlYtpsQZTkocqTgthbc1xWkWqzmEnVBkAMSejCw9ZW+Ua/tqWPt+HIRmPMYkutyPJoPpJSqnVS1eVFYTPN7ZYGxLoB8K6pYwDUx6QJ6UpN6dhskRMp/Yx4DEcOSi3jk7F6/a7yaaXkYIiuWBm8cmXIu8mGF9k5dOHFgWveHSoaJQAdzyYnDgfXuiE3QqQ1QCCEybP6f+mKpttmJruZKXVlSIiOjk4Ay6eU9fvIPrrB5aEB118gm3W1F0PtmaErnqTUswzAltzRRq8/yRvX8LG97JE1GscO8usv2Q8+YB05YHsYogwNcprck5QcDGPytJT0+qRqT52hrp8gybzp5f6XmEWOUbQN7MmQas+DqKOjUxAtn5j+ZMVA9TfwGjh2KGiQvq9sycKg1uOpxj6OHuSJ1cSsdJGrVQBvVQ6YIConiHETQvEYGuq54ZQVj1MwyIUlonyMgBuBk+5UkpROmxsAqu6OnU4iyXghT5lJxw+hue9b04fzOX+yVPNqS+mpJJYARuVk+qZNGpEXDk4tzNrd2I6YZYcCBpMEC9I8tFkKMiSzUK8LYeuKU46cEtufc6vAzoi2Vn5+jV09m8+/OCCZ9S56CgTorle84PzA4f1W/8zh0nJRWiEAeDvaSOZYjI4dSikOXb/dKFpgM+l9ilROykpIABUFOWk3bTBw1g0cxdIQkybYZrhRG8norEv1vM0N7Noa5NmXThcU6KhesgNbMIzSCsycH5h3vjFjXqBsjFAjYVUZ5BxWyZougUBlbWq7zKmUAYwQLr7GCPRRMhgBjF5oISCVXpVOdICJOts7Adw4qzLFK+OjGy6rHgugISYNoCsPmUGWlvgAwVZ9zsDNNWLLU+eWNS52bZXr/2mRs6MhoEta2MlmZufiwqX90SLBIC66zHRY14WHB3alWj3ffpIc+w625qFQdRjXTC1P8eA9YgDFjVIsAGQ0LgHbybSloR0A0BZhN39s632a3CLLZIcqd749lotwapwYTkiPPX6TdOJwKtaXrERQtrEbUWOIEC65wcgt7O2YA5kYe6kVyGfpVHxqi4+5syMBYEpJvm/apB3deah8KGa1Y7LS7TazLaHmt6ORdr7Q57Ps32Vv32xDrSRgZxmn5hIzaFK10VeXKhjE8usDWblOLyR04WF7W6p3koxTrE1HwSVIMuJRiyWPK8odoFYEAyhuAFxWPTZAaIxzwJYqw6/mOy0Hd+58MOndKbXUYGfNpxvZYW0rkkjmsLrktgBVaSPdeJDuCJG0odxMoZ4bQDJC2bxohVHei34i+VVctdwK5EvpXgeWStMSmfFYHMDlk0vTcmV8dIPiYVOcDVsmq0uYAcefBdzIxcHXqa/1GQqvv2S1NkuHhCp041jZzCC6+PLAJZf39jYuLKbl1wcKS4RShLZTN8SOxGys788gu8HqUFa25mFnZ1QQDZBpg4EWN3nh4HljiwF0ROOWJ06RFiSzd1LHzxzHxIn4uvFdp8ewa+mwU3+lInANp+wTx+yTx+32iLOegHUfCNnFjiWboSJQNivLnCggZ1xCF95IpZModFrHCCOAwgmoepddvsiG6VQhMVy7hkHtbR0AFo0b5Zs2A4S8cHDBmCIAnQ4PbWbJsHR+ipWBw6DGI1CdmPqHra/Lbqsindo//XfSdHPFu8OFxWc7RTCIRRcFVr43WFAilMKTTmxbs5HITtNt5MpZyRxpawdwQVXpwPFwwFvhXjqpfPep5saoVZCwbBEQJGxmI5PtjpSixcVlZDMLAlhF/qRQK9MYqlOELZO76LJnPYt0OoHGY9i709q3y26s62KUBkMYW2VUTTVGl6uFBa7XA6lsb90pArYqIidiRjgbU5eAQa0NbMUhVWOwAEIFbNnSBlmODrG1dUO2ZMlkWWxZdm5G6LKJvmkzgFg2uWJPXUtj1Mrz8JBIWFKaQkiAGJaUDQdSuiMO7LbnL1Er+9CNh25Xg9EVdP0HMg7vsw4fkDXHk/s3FBZTdo4oKKGJU42sHMUr1TnfrcQjVpa1lFqDpgy1XEoy2RK2ZednZSwdX5KOA/eMwei8ffW0cQ+8ub8paucbAdtkYYhgkezsSCnunVukFxmpLtBCkNRNHVmCyOkJInSPaF0BYUsWgmzJOzZbW17rueNRPIb9u+z9u+xR5TR/sZFXLGyWUNlTEqriW0UcVUGwmz1VUimzMOnlSeaEVJJFOst2lD4hW0pJZNusTJsbZ41L5Wr46A2uqq780+YDLVE7zzDtAAsSlpQBoSwIACzIaElDztSeUG2opVXESR52dMraE/LoAdkekbEYAASDKB1jlFZQQbEoKFb9ht19nMl2H3uqfqGySESSkZGdhsaVIkdKIsloj7QLoptmD2ymYjDETWVB1pzSvC01LZGOaE5OWDCHyu3OoymJm4rJwmYIABKCSLU4VOuciFW/CCffqSQRAVISCVvyS88k9u869+Ywp07wPx+1Fl9pFpVpyWJL6VZtMGsTht2YdDLKo/qMsM2QDMut5WPYkm2QzWwDli3b2joBzCovGp3tb/Ay4BhXmK142NYRy8kJC2IispQeYgBorUnDWdoi0IKGSXU+sOK0e2ti5xarB/V2XO7biWAI0+aY1bNNlehkwM12w2Eaq+JmCR3tJiooxbH+7rKgQCZzgC1btrfHASwaP7ogI50rpE7HwMZuXKyYPq4wbNoMuzMuGcZoK1jc/7h6QSllFcJmWOq+ZSlBFrNyVaRTu2U7nrkTYyNbyucej/dG1igkYnjhUevYQbYBS7rRFkhm26mLt51YgBtLduLKynXS9TW2G2N2/Kl4zGbJORmhyyf5btQgweVhojNue2M3rGKxaWgF2VTvxvVgMzfV89qH4ls29iRrHMRj2LLRevqheH2drbMTlOSVUk42YLH6qz3xgrJURxuqtC3mWNS2LbsgO2NZVZpXSJ2OQRI3AG6aPylAiCSklbAYyJjS/80NJ8wjPRMgS2c0nXiKk/exklIgWVnw+nrr6ME+F32/+aLdWC+dczkVCnqtMMPtoqbrfcCA5TBYMixb6uiyJ3Zj2YhGYwbRzfOqBqKeyseZ8N65EwKE9oS0E5aqu7Gdld92Ooo04jF2edhYL595ON5U36vDNtXLfz5iaaZJljpDT7ZSXRISSr9qHgazuWxSSvevOdaybMRicUH0/tmD4c4PnrjJCwdXTq8E0NIej8Yss1hmz+iPxKm+iPLL3DucJVNCsk2wJCzA1QOqnsKVO5bkxjretaU/G2wmYtjxinTWBGuZItXaWbdbjdNpWAIJKV3TxmbJpGrJnIwjkLC4PdIBYOWMcX42apBRkBm+ZtpYAC3t8c5YQoJsRzqkJfgaziZlhkRj9NwjiV4u1FZIxPDPhxOtrVKCLNvxu9XwlH3N7qp0MGjcXJj9pU9wrM3ZmofLp40dHB4OnrgBUD06f155AYBoNB637eBEKzy2b7bG6Ek0epK7viPZGcDStgMsyZaEDSQku1pC+VxvrO+/PdV4kmsPs9dv0p1QJNgTJ5ZJn0uqbow2O7VkrD2yhMXt7Z0AFo0bNX1Ubr+H5KPfmFZaMLcsH0C0Mx63bJVklAAbabBuwjlkg23mV9bE+yRrFBIxvP6clZDSdnhrKXPY8cRVBJB172FMWNSfQRq50pyWaGvrAHDxpIq5pfn9OUrfMajiBsBV1WOri7ItibZING7LrPnxnHm9ramatBiTl8BTCwOnQkmvZtLlc849ryzPhM02U2sL151IiUwn9nhWM0hd/scEVwZpWaO8JybHumEJcuwdJGxua+tgyVNK8v3M9xDi6mmVUwuzbEZ7WzRmS6WozAKI3u31ehbkFMJmnDrODSf7eaj6E3ziEGsuudVkycwmu9UYNvOoiTRqYt+COGRycHasPdbOkmeOKb6ocvCaKw22uAFww5wJ4/MybEZ7pNOSHKy0i66Mnj1yXDwBc2/gkkmkE8nSjcu61XfS03tN+1A6lkxkMZ9KTdYAqDvCrlZh3a7JqYiXKgPFNsOSkkEWSzde6Mo+S3JbWydLHp2b+R5/bdRQ491zJ3p5qLzgUFlK4sYMong8ScbOV/rjtrvY/YadZDiSrJbMzJ4VlUwSmLgEExb3eoRFMnNprMPoUIsVrp0yUAXEPZ99ME/m4oY5E37/2p6GzkS0rTOcnRHIpPwlMXQa8RoRrzdkQm32DiOIvDGcW0oZ2RCCVKcSAiCIJYSArfsfsyHUqigQmFjX3UhmAQJLImruXbju7GiqodzRyZy32iRLZSXdKj4l6RiwAcmsvDwVOW5vj7HkgszQB+ZWpT4YH6nDy0NkhQOmkTk13nmk/0UJY2cIKWHHOdKY0sAiDRxpkRm53t0y1foboVbheLvxMlA8EaE8eWgDdTad0dKhAGfNS4jRdlt7jCUX52R8YM74lEbZdwyNuAmbxocXTlEzbUc6M7IyQqYQmTJzEudMsgWRIdw9NskgWAxDwhAk1ZYbEmqfHUGQDCKyJAu96QYILEhAdqkkbk1HN3zJUrpVnmp5sVNtbINtpyZC6ggfSyfCl7A50trOjMLM0EfOm+SnooYJvDxEe1RmZoSyRLjSjvZ6twYvzCAqppEEGmrSQLbGGpTlOHU3ugm63nSBk5Wl+i2bOVRIk67mjkau303xNnTWabkTLJaBPKZMNsfalpCRSKdty7yM0M3zJqQ+yL5iaMQNus60FengnIxwwLAkQ+0IzgKqzT0Dhrs2CgaRILXRHAtS6xgIUhpC2FLtpQlV3UfO+gZIZyf5lMFdV4SrRVWWlCpWrWpwbKhoDumEt5I1kXZmFGaFPrLAlzXDC14exiMdnJORNYusFrJa+hxnmPYuIcJkM0dS3vUQQEeEXd0GvWYKEE7XZOnhoWNTA2TmydGLVNUFezWfJTkhOdLawZJzM0IfXzg0PByC2I0LNdMTCrIko7W1sz1q2d6Yi67Zg9oB2JLs3sB2sv6FpPZlpBNPYduJ5qrVBkywGWYwDRVcTkbMHYnOTbpRPWdtlI7U2IzOuN3a0s4S4wpzfFkzPKF4WF2UreI4cdjZ5yeojzHjSRdRbhmpznhpW4Qs2SkIgrevsN2Nh8wuD23NQ21luzxMSChZU1Wc97kLpw4VD4dS3AAIm8b75k2cMSoPQHt7NBa1dN6aVf7Pjb9q+e2+pa6pdDpa6LXazqIkm5PRe/XdrKI0iBsRZEuyOrulK2ug6sQsTlYe6zwU0BmzOto6AUwblf+BuX453/BF2DRumDNhekmuzWhp7UiIRMGVCTOvV/E+I4BJS6l4ol7NZHN6CnicDKxeK+NGBm0nGujwUBfmWE7lun43Wf+Fzrjd2tzGkieX5N80KOV8Z8KQOVNerJo5jrYfeau2ubU9altWKDMEqB3E2QCx2m9T+UoSklhIGERqVZRQ+4o5a6MAqDix8qFId03nrMJUxU0wC4E8tlntAUaS2UmH634Ubt0NgxK27OiMq20V5o0pumpKRepXycdA47pZ48efaHxi17FIe9QKWdlLQ9bBQPsug8+8B17BBJTNRjibLQkhiCUTUSA7DfLGCOqVXOz0BlT9CRTx9J68jlNvO31w3G5KmodSdnTGY51xAJdNHbOoote94AYGw0LcALh2RuW4wpy1u4+1x6x4ws7KzgwGhCBiYoMdiaO65TtttARIsoraJGM3Qm00pbvtQ6iVmaDCSjKDfWgHeTpyx7Dt1FlJlo7aIVtKJvKsvkEsbnd0dNq2NAUtnzpmdlmad8/wMXCYU15IRGt3H+uMWbZtZ47PLKyUiZMiUS9kJyWaSSYQymcRQM4Y5IzhcDYJQRazQWTb0hCCmDPTMeE5o6WEcLpPQIKl5GRNqVT9mNjhoZMhdXkIiifsjo6YlbCGDw8pPZZfmlDbFn10++G69hiAcDiQkxVWsWGDiEjnqggQBEOQ2hdVEBlEgJI1KlSs26MLItKPmYiObLKPbu5/OnzSKjYzGeTWdOoWTW7ASDISkjs7Y9HOOID8zNC7Z47zl3qPRNS2RR9561B9R9wQyMgIZ4QDKkN6Jh4KIkVFcni47R8y3t7/ARgBLPiAIZ1ON5LB0KY0K+vmzDxUK/U6o/HOzhhLHlY8HF7iBkDUsl88UPPGsQYAQVNkZGeEAwYBBpEADEECEILUK+Q8Fnr6dWaKCKqbkRBCSSIwZJw2/T3Rv76QhVO5ZJ5TW5isuYKbEbCkjCdke3unbUsA88cULfcdqBGOF/affPlwHYCMgBHMCocDJoGT+g86T6pYp+WOEKrHTe1W1G7t/51VNodGzwJIVdzoLLgtJUjYUrXE8q7Xg1PtRbaUCYmO9s5E3AJwwbhRy4ZT8fqwEzcKe+paH91+OC4ZQE5mKJgRNIkMQYJIAGqOlXxJzjcRecwcZnZ1DoMJxOD2Wuxe0+cV4aF8HvMuRqBLx2KVgFQ+c0LKWGeioyMKIGiIa6dXTinxF0O9HeA1t7MyguHMkMtDZcgYjv8uKClrBEHGsech2P1apWcEUH0DGUF4VmOy6rjuEs+zKhhOZyW2mDs74tHOGICCzNANw8aocTFMxQ26mjmGQCgcyshQ8ZykVlEaBoAhCJy0dAAIAgBBpKI8atNmZm7ajyN92QwslM9ll0oRSna6ke4u7oAlOdoZ74zGVD+4i6pGLxxb7Geg3mZYd7B2/cFaAIZAdlaGGTQDQigGnoWH7cfo6Iv9ubnKL0DBRLVDXrJumFn33PLy0O2LbEmOxRIdHVHFw8XjRy2dMIyMGhfDV9wotETjj+04eqS5HYAgZGSGw+GgKcj1mb2Wju7m59g75LzOSHaKZeaOWjryvOyN5gmX8KgljKCjVSSz4zNbtoxGE53RqOqRUpmftXL6IK3i9zH4qG2LPrPnuOKhIZCZEXYt7i48dGSN4mHjW6JhW9/ur+JZVDyLVR8lllrWeBpFnsZDyVEnTANgTF7WlVMrhptR42K4ixuFPXWta/ceb41qCREOB7KywgHD0LEb9kZwmLQPBRUthtotSu0Pr/LlkhNtqN+G1oNn/O1GJvJmyKwq12cmd12oLWVbWzQe04MZlR2+YnJFZcFpmzD4eNvhSFP7uoM1XYROOBAwDDixG8NNVkAlLrh1D9Vv6u3xi+cjf6rencrtH6oCNwwVISa1b5LiYTSa8AiazKUTyoY5D0eGuFHwTjaAoCmC4VBYzzcLEtqBAoQgqBWbThzHzU8lfy9RPMLRU2g/BplAvAlmFlMAwQIESxCu4G6ucsKSsVgiFovblo7+VOZnXVxVOswn2EfaUdsWfe1I3baaJvXUNEUoHMpw5I5rbrtZ0ehx0fgmrLMmqswsFM1Dxhi1YiG5KgoqdsPsLpuybBmNJWLRuOXwcMbo/PPHjRq2Fo0XI0ncKLRE4+sO1LqTDcA0KBAKZoRDwYBBycnWXrSSMgAEkWQpSDh7v+j1b0R6NwW155TbAV+ZrwlLdnZE4wlL2smIz6zSgosnjPZdp3cyFA/31LXEHGKEg6YZCgZMIxQ0u/KQhRDtB7jzOHUe736cjApkjEHWeMVGr5Rhvc8iIJnjCTseS9i2jMV0bjVoiKkleSOLhyNP3LjYerJpT13L3vpW74vBgBkMBYKhAIGCAaNn68apEVXyBe5yW9UywpK2lIm4FY8nEokuXUsmF+fOLiv0s04+vNhT17qnrsUrdwAEAmboDDxMNDJbxIAIcCBfZbtZ7+bKAHT18Jl4GBBiakne1FF5I5GHI1jcKEQte09d65Gmttq2zlNt0W7vGoYQQgQCphDC3W3q9J+csGyp/+v+1qjscGVB9ujsjCkluX7KycdZcKSpfXd9y566FjfI6OJMPOy2U5Tmoa1WenZBTjgwtSRvanHeiHbeR7y48SJq2Uea2g83t52KdEYt+3Tp0xuMyg6HTUOJmMqCLF/E+OgrfB6eCW8rcXM6WqLxls5EbVtn1DpbdV/YNEZnZ+RlBEaQG+xjBMHnocLbXNz48OFj+GCI+9348OHjnQNf3Pjw4WOQ4IsbHz58DBJ8cePDh49Bgi9ufPjwMUjwxY0PHz4GCb648eHDxyDBFzc+fPgYJPjixocPH4MEX9z48OFjkOCLGx8+fAwSfHHjw4ePQYIvbnz48DFI8MWNDx8+Bgm+uPHhw8cgwRc3Pnz4GCT44saHDx+DBF/c+PDhY5DgixsfPnwMEnxx48OHj0GCABCJRH7+859fccUVM2bMmDlz5vLly3/1q19ZlnXOL996660f/OAHB36QKWFYDTIajV588cUXXHCB+8qMGTOquuLRRx/t9/F37NhRVVX19NNPp2Owgw2fh4OGoeKhCeCjH/3o0aNHv/SlL02fPt2yrJdeeunnP//50aNH77nnnn6fL0UsWLDg4YcfHjNmzFANYIDws5/97OTJk8XFxeopM3d0dHzhC1+48MIL3c9MmjRpiEY3xPB5OGgYKh6ae/bs2bRp03/8x39cffXV6qXzzjsvFAo99dRTnZ2dGRkZaT/lOXH8+PHGxsbBP+9AY9euXffdd9+NN974/PPPq1fa29sBzJo1y6tn3pnweThoGEIeCtu2AQjRJYjzmc985sEHH3Tn+K9//evll18+ZcqUefPmffGLX6yvr/d+uK2trbq6+te//rX7Sjwenz179g9/+EMA9fX1X/7yl+fNmzd16tTrrrvu5ZdfVp/Zt29fVVXVq6++euutt86YMeO88877zne+I6XcsGHDRRddBODiiy/+9Kc/7T3RunXrqqqq3nzzTfeVzZs3V1VVvfjiiwBef/319773vdXV1dOnT3//+9+/ZcuW03/t9OnTf/vb37pPb7/99muvvdYdzPr16z/0oQ9VV1cvWbLksccee+utt1atWlVdXX311Vdv27ZNfcWyrH//939fsmTJlClTLr300vvvv9892j333DNx4sQzXWgp5R133PGRj3xkypQp3ksHICvr3Nuw/p//838+97nP/fGPfzz//POrq6s/+clPtra2/t//+3/nzZs3d+7c73znO+c8wjCHz0O8A3goJk6cOHbs2K997Wt/+tOfus2fwurVq//1X//1uuuuW7Nmzf/7f/9v27ZtH//4x72b4WVnZ1966aVPPfWU+8pLL70UiURWrVpl2/ZHPvKRTZs2/epXv3r88cfnzp370Y9+dPfu3QBM0wTwve9974Mf/ODmzZt/8pOf3H///U8++eSCBQt++ctfAnjsscf+/d//3TuSxYsXFxUVeU/05JNPFhUVLVmy5MCBAx/60IdKSkpWr179t7/9LTs7+4Mf/GBNTc05L5+CGsyPf/zj22+/fdOmTbNnz/7GN75xzz33/OIXv9i4cWN2dvadd96pPnnXXXf913/915e//OWnnnrqU5/61A9+8IM///nP6q1Jkya9613vOtMpHnjggbq6ui996UveF5VW6Y3qNk1z06ZNhw8ffvbZZx944IHnnnvuxhtvLCkpefnll++55577779fcX3kwuch3gE8FMFg8L//+7+rqqq+8Y1vLFy48Iorrvje97731ltvuZ+49957L7roos9//vMTJkxYvHjxN77xjW3btm3atMl7lJUrV27ZssW9rE888cSUKVOqq6vXrVu3Y8eOu+++e8mSJZMmTbrzzjvHjh3rlcTLly+/6KKLAoHA0qVLKysrt27dGggEcnJyAOTl5WVnZ3vPYhjGVVdd1W2ar7nmGsMwHnjggWAw+JOf/GT69OkzZ8780Y9+FI/H//GPf5zz8nlx1VVXzZo1KzMz84YbbmhtbX3f+943fvz43NzclStX7tixA0AkEvnTn/70qU996sYbb6yqqvrgBz/47ne/+7/+67/U19/znve4j7vh1KlTP/rRj773ve91m1GlVf7xj39ceuml06ZNu+qqq/73f//3TMPr6Oj46le/mpWVtWDBgqlTp0opP/GJT2RkZCxfvjw/P1+NcOTC56GLtzEPBYApU6Y89NBDTz/99De/+c3Kyso//elP11577fe//30AiURi586d5513nvuFOXPmAOh20MsuuywjI0MFoi3LeuaZZ6677joAW7ZsMQxj0aJF+mRCLFy40EuR6dOnu49zc3NbWlrOMlYA11577aFDh/bs2QNg+/btR48eVSfatm3bjBkzwuGw+lh+fn5lZWVf78DJkye7I+n2NBaLxePxHTt2JBKJxYsXu1+54IILDh482NTUdPYjf+c737n44ouXLVvW7fVYLJaTk1NTU3PnnXfed999ixYt+trXvuaqqW6orKwMBoPukNzhqaetra19+KnDEj4PFd7GPDS9P3Ly5Mmf+MQn2tra7rzzzt/97nfXXnvthAkTmDkvL8/9mHqsxKGLjIyMyy67bM2aNR/+8IdfeeWV5ubmVatWqY/Ztj1jxgz3k5ZlFRQUuE/diVE454blCxcuLCkpWbNmzZQpU5544okxY8bMnz9fnaiystL7yby8vG6DPCdCodBZnjKzOuCHP/xhIlIvSikBNDQ0eH9UNzz33HMvvfTS2rVrT39r0aJFW7dudZ+ef/75R48e/Z//+Z/3v//9/RjemQYwsuDz8G3MQzMej9fW1o4dO9Z9KTs7+7bbblu9evWOHTtmzJghhPAKe/VY2ZlerFy58nOf+1xzc/OaNWvmzZuncoc5OTmhUOjxxx/3frJbOLBPEEJcc801Tz311Be+8IU1a9aoAJs6UTeN1NLSUlZW1u3r7vQoRKPRPp1d/eqf/vSn1dXV3te9V+90PPHEE62trW6KkZmZeeLEid/85jc/9rGPdfvwtGnTXn311T6N6u0Bn4e9x8jlofjBD36wYsWKbsG5gwcPAigpKQkEAtOmTfOanW+88QaA2bNndzvQpZdeGg6HX3zxxbVr1yrDEsDcuXNjsZiUcqKDcDh8+tXvEWcSk8qDfeWVVw4cOOCeaNasWdu3b4/FYuppfX39oUOHTh9kbm6uV9X01cqdNm1aMBhsbGx0f05+fn5hYaFrW/aIr3zlK2vWrHnCwS233FJcXPzEE09cf/31a9eu/fznPx+Px90Pv/nmm93U4zsEPg97j5HLQ6HCPO95z3v+8Ic/vPrqqy+//PJvfvObz3/+8zNmzFi6dCmAT3/60+vWrfvNb35z9OjRl19++Qc/+MH5559/+hUMhUJXXHHFb37zm4aGhmuuuUa9uGTJkunTp3/pS1969dVXjx079sgjj6xYseKBBx44+5iUnfzss8+q3EE3zJ8/v7y8/K677po6derUqVPVizfffHM8Hr/99tv37du3Y8eO2267LTc39z3veU+3786ePfupp55qaGjo7Oz8xS9+oQLyvUdOTs773//+n/70p4899tixY8c2bNhw8803f+1rX1Pvrl69+jOf+czp3yotLZ3qQUlJiWEYU6dOLSgoqKysXLt27S233LJ+/foNGzZ8/etf37Bhw6233tqnUZ2O7du3v+DBiDCXfB72HiOXh2ZlZeXq1at/+9vf3nvvvbW1tcFgcMyYMZ/85CdvvvlmJSxXrVoVjUZ/+9vf/vjHP87Nzb3iiivuuOOOHo++cuXKT37yk5dccolbrWgYxv333/9v//Zvn/nMZzo6OsaOHfvFL37x4x//+NlHOWvWrKVLl959990XXHDBfffd1+1dIlqxYsV///d/u9cXwLhx4x544IF77rln5cqVhmEsXLjwL3/5S1FRUbfv3nHHHbfffvtFF12Ul5d3880333DDDc8991xfLiC++c1v5ubm3n333adOnSoqKrryyitvv/129dbevXt7dIzPgqlTp/7+97//2c9+9rnPfQ7ApEmTfve7350eyesrfvGLX3ifVlRUrF+/PsVjDjR8Hvblao1UHtLbJsTow4ePYQ5/RbgPHz4GCb648eHDxyDBFzc+fPgYJPjixocPH4MEX9z48OFjkOCLGx8+fAwSfHHjw4ePQYIvbnz48DFI8MWNDx8+Bgm+uPHhw8cgwRc3Pnz4GCT44saHDx+DBF/c+PDhY5DgixsfPnwMEnxx48OHj0GCL258+PAxSPDFjQ8fPgYJvrjx4cPHIMEXNz58+Bgk+OLGhw8fgwRf3Pjw4WOQ4IsbHz58DBJ8cePDh49Bgi9ufPjwMUjwxY0PHz4GCUMvbjZu3PiJT3xiwYIFEydOnDFjxnXXXfeXv/ylN188duxYVVVVVVVVa2trX0962223VVVVfe973+v7eM+Nn//852pg3//+9wfi+D4GAn/729/e8573zJo1a+LEifPmzfvwhz+8cePG3nzx73//e1VV1YoVK/px0osuuqiqqurpp5/ux3fPhPvvv7/KgwkTJpx//vkf/ehHh8NW8UMsbjZs2PCBD3zg2WefzcrKuvDCC4uLi7du3fr1r3/9D3/4Q3pPdOLEiaqqqt/97nfq6fTp05ctWzZ58uT0nkXhscceUw+efPJJf0/kEYFf/vKXt99++6ZNmyorKy+44AIiWrdu3Yc//OFt27al90SrV6+uqqrasWOHerp48eJly5aVlJSk9ywAAoHA3Llz586dO2PGjI6OjhdeeOEDH/jAkEscc2hP/4c//MG27eXLl//nf/6neuWOO+7485//fP/99998881pPJErAhQ+/vGPn3NH+v5h7969+/bty83NzczMPHny5ObNm+fNmzcQJ/KRRtx3330A7rzzzo9+9KMAOjs7b7zxxh07dvz1r3+dNWtWGk/UjYc//OEP03hwL0aNGvXggw+qx5FIZMWKFceOHfv73/9+/vnnD9AZe4Mhtm6UH1RQUOC+8vWvf/3FF1/0mperV69euXJldXX1jBkz3ve+97344os9Huqmm27y2i8vvPBCVVXVwoULAVx77bV33303gO9///tVVVXt7e3dnKl4PP6Tn/xk6dKlkydPnjdv3mc/+9kDBw6ot37/+99XVVXdcsstr7766ooVK6ZNm3b99ddv3779TL/o8ccfB7B06dLLLrsMp9HLx/BENx5mZGT87ne/27hx41133aVeOQtDukG5MK79cs8991RVVX3+859vb2+vqqp67rnnAFxzzTXXXnstTnOmampqbrvttoULF06ePHnJkiXf/e53I5GIeuuzn/1sVVXV//zP//zxj39cvHjxrFmzPvOZzzQ2Nvbm1+Xk5MyZMwdANBrt1+VJG4ZY3MyYMQPAX/7yl6985Str165taWnJyckZO3asEHpg//mf//mVr3xl165dy5YtW7hw4caNGz/ykY+sXbu2T2e57rrrysrKACxatOhjH/tYIBDo9oFbbrnlV7/6VSQSWblyZVlZ2ZNPPnnDDTccP34cQDgcBnDgwIHbbrtt+vTpRUVFW7Zs+exnP2tZVo/nUuLmqquuuuqqq+D7UyMEiod33HHHD3/4w1dffTUej48ePdrr45yFIb1EIBD42Mc+ph6vWrXquuuu6/aBxsbGd7/73f/4xz/y8vJWrVpl2/Z999138803K6YpHj766KP33nvv4sWLbdt+6qmn/u3f/q03p25ra9uyZQuAoTVtMOTi5jOf+YySu6tXr/70pz89b96866677o9//KO6xK2trT//+c8B3HXXXb/+9a/V1Qfwox/9qE9n+eQnP1lVVQVg+fLl3/72t4PBoPfddevWPf/880T097///ac//enDDz88ffr01tbW3/zmNwCU4Nu3b99Pf/rTH//4x8rqPnLkSI/Kbffu3fv27QuFQpdeeukFF1yQn5+v/Km+Xxgfg4q77rqrqKioo6Pj17/+9U033TR79uyPfexjL7zwgnr37AzpJYLB4Le//W1Fp1tuueWTn/xktw/ce++9J0+eHDdu3GOPPfaTn/zkoYceCgaDW7ZsUbaP+uKhQ4ceeeSRH//4x3fccQeAZ5999kynO3Xq1A033HDDDTesWrVq8eLFNTU1H/zgB2+66aa+XZd0Y4jFTX5+/urVq3/729/edNNN48aNY+atW7d+61vf+trXvgbgzTffVObfqlWr1OevueYaAHv37m1ubk7XGF5++WUAs2bNmjBhAoBAIHDllVcCeO2119zPlJaWnnfeeQAmTZqUlZUFoLa29vRDPfHEEwAuvfTSzMxM0zSvuOIK+P7USMDMmTNfeOGFu+++++qrry4qKorFYs8///xHP/rRv/3tb+gdQ1KHOsvy5cuVIVNaWjp//vxuZ1m6dGlOTg6AuXPnAmhqakokEj0eLZFIbN68efPmzdu2bYtEIoZhHD58ePfu3WkccD8w9IlwIcQVV1xx9913P//88+vXr1dG5oMPPnjs2LGmpiYAoVAoMzNTfbiwsFA9aGlpSdcA1Fm88SN1Fq9E876bkZEBQEp5+qGUJ7Vp06YVK1asWLFChZl8f2pEICsr66abbvqP//iP119//aGHHlLu1S9+8Qv0jiGpo088VCTEGXgIoKKi4qCD119//eMf//j69es/9KEP9aNqJI0YSnHT1ta2Zs2an//8524Eq6Ki4ic/+YlpmgAOHz6cn58PIBaLdXZ2qg+4sTHvrCgoa9M9VC+jaADUWdRke7/rirZeYteuXfv37wdQV1e3c+fOnTt3KgvI96eGOU6cOPGPf/xDuckKc+bM+fa3vw3g+PHjlmX1iSFEhCHl4ekoKir6whe+AKC5uXloqTjE1s3/9//9fz/72c/uueeeeDyuXnnmmWdU4GbMmDHz588PhULw+CMPP/wwgJkzZ+bm5nY7lArsqZAYgEcffdT7riJBe3v76WNYvHgxgLfeeuvQoUMA4vH4k08+6b7eeyhPav78+Qc9WLp0KXx/anjj0KFDt91223e/+91HHnlEvWLbtoqYlJaWmqbZJ4Z4edje3q5SUS7OycO1a9eqe+H48eNvvPHGmc7SV7j53Ozs7NSP1m8MZd1Ndnb2V7/61e9973v33Xff3//+94qKipaWlpqaGgDXX3/9uHHjAHzhC1/40Y9+9M1vfnP9+vWNjY3r1683DOPrX//66UdbtmzZI4888vTTT996662RSERlEF0vprS0FMB999139OjRr371q94vXnzxxZdccsmLL7743ve+d+nSpdu2bdu9e3dJScktt9zSp5+jxE236tKrr776hRdeePLJJ7/5zW8qqvkYbrjwwguXL1/+1FNPffGLX7zrrrsKCwtramqUt/6lL30JfWTIsmXL/vrXv/7whz/ctWvXpk2bysrK6urqvDw8fvz4t771rSVLlnzrW9/yfvETn/jE6tWrDx48eN1116lYUiKRWLJkybve9a5+/CgVKlaPW1paDh48CGDevHkq6DNUGGLr5mMf+9i99967dOnSrKys/fv3RyKRuXPn3nnnnW7u6bOf/ewPf/jDSZMmrVmz5s0331yyZMmf//znHuX9qlWrbr311uLi4vXr15eXl6uKiVgspt791Kc+NWnSpEgk8sorr3Rzd4not7/97a233hoKhR566KG6urrrr7/+wQcfLC4u7v0PcT0plf92ceWVVxqGcfLkyTfffLMvF8bH4IGIfvnLX373u9+dN2+ebdt79+4VQixduvR3v/vd+973PvSRIbfffvvVV19tmubzzz//L//yL//yL/8CDw//9V//tbi4+NChQ7t27er2xaKiotWrV19//fWnTp166KGHQqHQrbfeeu+99/ZPS7mh4s2bN9fW1k6ePPnLX/7y73//e7fEZEjw/wMEbulhH470ggAAAABJRU5ErkJggg==", "path": "image.png" }
Which solution has a higher concentration of purple particles?
[ "Solution B", "Solution A", "neither; their concentrations are the same" ]
0
The diagram below is a model of two solutions. Each purple ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the purple particles represent the solute. To figure out which solution has a higher concentration of purple particles, look at both the number of purple particles and the volume of the solvent in each container. Use the concentration formula to find the number of purple particles per milliliter. Solution B has more purple particles per milliliter. So, Solution B has a higher concentration of purple particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAIAAACmkWkFAABIkklEQVR4nO2deXgb1dn2nzMjjXbJtux4d6IsjmOTxM5CNkISIARCFlLSlpayp2VpS+lbSlrKDi1vWEpp+7UFCm/SAgUuCJQtGxASwpKQ3YntrHbiON4XSdaumfP9caSxYsu2lpE0Cud3cYXRaJajmdv385xl5iCMMaQbp3scw25TkqFLQkko32aoDqNFkeoC9Mft54+12462W91+3ur2Wt2+VJcoalQKJlevMWm4XL1mYn6mWsGmukSUqKE6TARIVtlNa6/71b3HPX5h6M0y9ToEAAAIAYLAf4AgsBIAAXQ6XF5+mOMkAZWCWTnRUpJJQ1w6QXWYIORlNy/tOtrW6+bUOkNGlorj1EqlWsUpESgYYAEUDCgQKBAwKLDABpdZBAwAG1xDlpngsriAAFBwGWMQAHiMMQAv4JDlwHoBg4BxyHLf+sCWgWUIPYIA4PXzTpfX4fbaHE57r1OlYP7n4gtSfWkpUUB1mCCY1J6+H1aXFwAyC0ZpjZlqjU7JcQBA7BCh4BIEogcOLvdtELLcZ6JkGQMO2RMHtscIIYwBIQQAZBnIerIpCglXCHBwPUIIB9cjBBhjCB4BMChYVq9T55iNo4pyAWDYIEmRG1SHCUJedlOSqQcAt8NGri5JvAK3BgeXQm4wWe7bIGQ5uC0ADklxg3uiwPYIYxy4TwBkmciBqIJsFFwGFFyPMUbB9QGVBI8gHhpjcHl9ADBCr5b4MlESDNVhgpCX3YzM1AOA19FLrm6/QJEuUSW4DN3dNghql5JGUB0mCHnZTWmOUcUyrt5ud68t3aOK0+3t7LYBwKT8LMkvFCWhUB0mCHnZjUnNzR2dBwAdLacFnk/fqMILQkNjMwBcZMnNlUESS4kKqsMEIS+7AYDpxdnjso1YEM6ePuHneUjDqOLn+aP1Z70+viRDN9eSm4irREk0VIeJQHZ2AwBLyotz9Gqvx9146oTb406vqOJ0e6uPnXJ5vEa18ppJoxJxfSjJgepQcuQ17kbE7edf3XuirdfNMMyI7JxMk8mgVst5vIPHx3c7XR09vd32Xp7H47KNS8qL5TCOkxIPVIfSIlO7IXxQ01jd0p3qUkTNRZZcmeSuFEmgOpQKWdsNAJzudhzpsO5ubO+rMcsTjDHAwtLCkky9HNrkKNJCdSgJsntEsx8lmbqSTN3uxg4AuH7WJJKCIgAEgYV+HyFkPQSzVoQD68U1ZEHAgAEEjDEAJsuAMSABYwisR+RbAUNwTWAvLH6LwCcIb+06wiI0vTg7BdeIknioDiVBjk3FgxJsYCP3FUFII/+5PQLiR7I9INKQ1vdtsEcAMGBy10kLXKCPIBAkgqlf3xrxsDiwPWmfC5ER5fyH6jBW0spugn0AGPr+E29daI+A+JFsD5h0E8I5tz4QW1DgzuFAv2SgtR8FlsmxgmvEw6LA9hgQQoKAAYBFMr7PFAmhOoyVtLIbuUYVHIgq8r3NFCmhOoyVtLIb2UYVEAAAyTmLpUgI1WGspJXdyD2qJOhnU2QG1WGspJXdyDaqYAHkXWemSAnVYaykld3IN6ogkHedmSIlVIexklZ2I9eowmMM8r7NFCmhOoyVtLIbuUYVUgYk49tMkRKqw1hJK7uRa1QJ1pkT9bsp8oLqMFbSym7kGlXkP96BIiVUh7GSVnYj16gi/zozRUqoDmMlrexGrlEFZB9VKFJCdRgraWU3co0qZDQnI+fxVRQJoTqMlbSyG7lGFfmP5qRICdVhrKSV3cg2qsg+iaVICdVhrKSV3cg3qsi9iY4iJVSHsZJWdiPbqCLI/TZTpITqMFbSym5kG1UAQN51ZoqUUB3GSlrZjWyjChZA3lGFIiVUh7GSVnYj26gi+ydxKVJCdRgraWU3Mo8qcs5iKRJCdRgraWU38o0qAPKOKhQpoTqMlbSyG7lGlWAHZKJ+N0VeUB3GSlrZjXyjCrnNMr7PFAmhOoyVtLIbuUYV+Y/mpEgJ1WGspJXdyDWqCLKPKhQpoTqMlbSyG7lGFfnXmSlSQnUYK2llN3KNKmSdnKMKRUqoDmMlrexGrlGFl/14B4qUUB3GSlrZjWyjiuxHc1KkhOowVtLKbuQaVeT/rApFSqgOYyWt7Ea2UUUAkPeEGxQpoTqMlbSyG9lGFVIQGUcVipRQHcZKWtmNbKOK7Mc7UKSE6jBW0spu5BpVyBHkfJspUkJ1GCtpZTfyjiqsjG8zRUqoDmMlrexGrlElOHg8Ub+bIi+oDmMlrexGvlEFAADJ+T5TJITqMFbSym7kG1XkPt6BIiVUh7GSVnYj36iCQN51ZoqUUB3GSlrZjVyjCi/7OjNFSqgOYyWt7EauUYUUQs5JLEVKqA5jJa3sRq5RRf6zF1KkhOowVtLAblrsLgBQKxWyjSoapUIsJ+V8heowftLAbmpaewBgpNkk26hSbDYCwOHW7sRcAIosoDqMn7SxmxJzhmyjSmGmXsGgZpvL5vYm6CJQUg7VYfzI3W7O2px2j0+tVIwwaGUbVRgGFWUZAaC6pSdB14GSWqgOJUHudlNLMtjsDEBItlEFASrOMgDAweauxFwGSoqhOpQEudvNoZYeABiZldF3R+UXVTDgvAy9kmV6XN62XndirgQllVAdSoKs7eaM1en0+bWcMtug7bujsowqCKDYbIJgDZ9yPkF1KBWythuSwRZnZ0DoHZVlVEEIlZgNAHCoRb79ApTYoDqUCvnaDcY40BeQZYLQOyrLqIIxztZrNEqF3eNrsjoTckUoqYDqUELkazeNVqfT59dwSrNeC+kQVRBCxdlk4ENPQq4IJRVQHUqIfO2mtq0HAEaaM4KxRO5RBQCKMw0AUNvaLfSdnpLeUB1KiEztBmNc12oFgGJzRjCWyD2qAECmXqNTKZ0+/nS3IwFXhZJsqA6lRaZ2c7rHQTLYTJ0mjaIKxrjEbAJ5DySnRA7VobTI1G5IX8Co7EzoiyVpEFUQQsVmAwDUtll5QV55LCUGqA6lRY52I2Bc02YFgCJzBvTFkvSIKnq1KkOr9vHCiU675FeGkkyoDiVHjnZzqtvh8fM6FZehVUO6RRUAXCT7B3MpkUB1KDlytBvSF1BiziQf0yuqAKCSLAMAHOuw+XlB0gtDSSpUh5IjO7sRMK5rswJAcbaJrEm7qKLilGaDlhfwkXabxFeHkiyoDhOB7OymoauXZLAGtZqsSbuoAhgXZRlAZnksJSqoDhOB7OymhmSw2ZliWEi7qAIIFWQaAOBkp93l80t5dSjJguowEcjLbngBHwn2BYhhIR2jikrB5pp0GKBONnksJXKoDhOEvOymvsvu5QWjVq1Xq9I6qmCAwiwDANTI8sFcytBQHSYIedlNLQkpWRkQEhbSMaoggPwMA4PQ6R6HwyuLPJYSOVSHCUJGdsML+Gh7321O96iiYJncDD0AHJZHYKFECNVh4pCR3Zzosnt5waTTaNUcpH9UwRjIe6pl+B4AyhBQHSYOGdkNeT6lIDMwj0+6RxWEYIRJxzKoxe7qdnokvFCUhEJ1mDjkYjfnZLDkhqV/VGEQys80AMDhth7pLhUlgVAdJhS52M3xTptfwBlajUbFnTdRBQCKskwAUN2c+mozJRKoDhOKXOyGvA42PyuDBAE4L6IKAGTp1ZyCle1EHJR+UB0mFFnYjY8XjnfYAKAgy0SCAJwvUYVhmIJM2T2YSwkL1WGikYXdHO+0+wWcqdNqOO48iyoY4/ws0g3ZI9n1oiQGqsNEIwu7qRUzWIDzLKoghDJ1GpVSYff4zljl9eJYSj+oDhONIlUnFvHxwrEOKwCMMOp5nhcwZhhAAAIAgwABMIARAELix8ACIusBECIiwIH1ZDNyn87ZgCgk8FEQMAYQAGOMMSABYwFjAQMGwBgLISvJBrwgYAABg4AxBowBeHIEjHFgJfCCgAHhkEORvbI0ymaf/3BrT5FJl9qrTRkMqsMkkHq7OdZhEzAYNWre73P6fQwCBgAhYAP3Esga8RYyIesR9P8IZHsUCCGBm40BIYSI92McjCcg3glASLzr5EYCgHiryAJZg4N7CYIAiBEEQQCMAXBwL4wFDIGoIgiYYRheELJ0ymabq6alZ+G4AqYv3lFkBNVhEkh9ZYr0BeQYdMGqKxqizowx7ldnDt7cwIaBjbFY28XBAwbyykC2eW6dGeNAHViseIt1ZhJCQuvMGGMSoQQsiIUbrM4sCAIA6JRKtYJ1+/lT3b2Juo6U+KA6TAIpthuPnz/RaQMAs0EXrLriIerMCKF+dWZ8TkU4uDESa7soeMDAlQ/cj3PrzCQIoYAGILTOjBDqV2dGiGTQwCBGLNwQPQLkR5l1KpDHQHLKQLy8QHSYY9Kf3zrM1qsA4GCKBuCkuDJFMliTRs0pFIEKLSBAAf8Ws00I3hhi2wj1iyqiErAYVSC4PYPIAYNXPliXDo0qAg607YtRRQhEFYEUBQESQqMKgr6ogsNHFSEkqiBAZi3XZHXWtVmvHF/EMrQ+JS/q2qwCBpNOo2DYCHVo7RB4HwCA3oD0RiZ+Hfba8dkzvlMneI8Hd7ULOiPDcaAzokILmz8SSaXDLC13psd5pN3qF7Ai6TpMsd2QvgCzQU8uOyJ//5j4dGAbHHSW0KgCIP6LQ8NPYONgnTnQXB+4xQFTId8FuySRgDFCCAsYAUKIpMmBJRIrcEBzZE2fDBnE8IIAENQmOQ7GENwSMJA6MwasUrI6lcLh8R9pt5bnZiTrAlMigugwWz+8Ds/U+Voa/C31/V/mUDhaUTxGMbpMGYMOPS78xXbPkcO+0AN62wUAgCY4WcvrjKhiuqKklJFAh4qADo+mQoeptBuPnz/ZZQeAHKMOgv2DKcxumhv55ia+tYkXq+tGM8opZApGovijioBxllbp8PgPt/ZQu5EVbj9f32UHgOwhddhW76/90uO0h5/VoOmkv+mk/9BO76zLNHlFTOQ6PHOa3/iBy+vGYQ9LcNjwrk989bVo1iKO5dJYh6m0myPtNgGDSathGTa12c2xWv++r712W/9b3toExw7yShVMmKYYO5GNJ6oghDI16sZu18lOm9vPqxVsgq8uJVLq2qwYIEOrZREzmA5PHfTVfTX88P9em7BlvWP2Zeox5cpIdFh72Ld1U6RPFbSfxdve9128VMly6arDVDYVB2pSep3o9gDJ7hHwuIV3XnNt3+wZ6DUiPg8c/ML/yVtepx3H1iNARKBgwaBWChjIjCIUmUB0mGUYVIcndnsj8RqRLz921+3zwXA67GjjI/cagrVD2P6+1+eJsWcq5TpMmd24fH6SwZoNumA1BSC5PQJ2q/D2a67O9ogm/bJ24K1v+2ydQmw9AqRrIVPDQaqfW6GEQnqFEUC2QR9Wh81HfSf2RP2amG8+d58+4R9Chx6X8N5brhgKbO3AdXv8MfdMpVaHKbObI+02DGDUalmGSUl243bhjR+47dYoJhj0eeCLD/xed4xRBQPO0HEI8Oluh1MGL46lAEBtaw8GMOq0DIKBOvR78JGvYnwl1TfbPR63MJgOD+73eYZsrxmCE9WCw4Zjzm5SqMOU2Q2ZEdVs0CGEUpLdbN3s7mzjoy22zwN7PvbHHFVYAKOaBJaeaE9NSQRkPimzPrwOGw/5/J4YTaHXJtTs9w2mw+q93niKfWRPXFl2qnSYGrtx+fynunoRQJZeF2jNSm52c7aRrz8Ro693nMUtDXxsUQUQytByII/3VFPcfv50twMBZBr0YXXYWB2XKRyv8YXVYcNxvydWFyN0NgvxZDeAUAYZd5pcHabGbkhfgEGrYRkmJdnNwfhiy9G9QmxRBTA2aVQIQbPd1e2KqwyU+CFvYzDqtCxCA3XY28H7vXGZQq9N6O7gYYAOO9qjTqv74bRjeyeOObsBjE1qLvk6TI3dBDJYox6I8Sc9u4k5tSHYOrCzF8cWVRDCJg0HwYd0KCkkWKMPr8P2U/GaAgDYrQFhhOqQrIwTrwfiyW4QwhnqZOswBXbj8vlPdzsAwKTVAjH+5GY3TY0SyKitIcaoggBlqJUAcLC5K/5iUGLG4fU39jgQgEk3lA7jpKtDgAE6tNskUCDE0XZDdGjScpBcHabAbmparQBg0mmVLAupyG7stih6owbD540xu8GATRqORSjlL479lkOG25h0OgX5UxxEh3ESVocSHDdw6NizGwzYpFYmWYcpsBuSwWbq9UJgiHeys5shRvRFRcxRBQOQwEIH4KQQosMsvW5oHcZJWB0WFEsxmj/u7AYDmLRKSKIOk203Dq+vsccBABk6LRlvk5K2G0mIOaogBCaNAlL94thvMw6v/4zViRAy6XWD6VCpkkAquYXBFD5EhwajBEc258MQ2U1vF1hbsLMLD63DDDLeL1k6TPYzU7WtVgDI0OlYhhEwFnsESGhBxIAx8enALjjoLKHZDYD4b9TPTGXnSGOy0T6rgnBAdgLGBjXHMk7y4lj6RtHkczhQk9IyCA2mQ/NI9thX8Z4oewQDA3RoGaPcCnHVX/JHMQj1f2bK1QunD+PuFujtDE3MsDYLjLloxHis1PXXoV6tZBmUNB0mO7shfVImvR4H3qiYguxGkthiNKN4shuMcXAATk/8haFEC2m4ydANpUONkdGb4/oDyStklVzw4CE6VKlRQVFcz0YWlzKh4278Xji5T/jiTb7xMD7XawAAnF3QUgsH30WNe5DfM4gOk9I/lVS7cXh9TSSD1WpQ4BVWKWi7yR7BGoxx/XAlB7kjUex1ZgwIIZNGCQA1rT24vzwoicXm8Z21ORFCJp12aB0WX8DFc6LKWerBdLjgcnXMh83OR/kWRhxVzHuZXR/xJ/YOL6O2OnT0E0bwnqNDUp+qaUmGDpNqN+KoKoZhUpjdAEBZhTKeH5I7iomnR4BEFS2nVDDI7efru+3xFIYSLSS1Mep0pD4yhA7zxysNsSY4uYVsXiEzmA6NGey0WaoYDqvkYOJsFgefCPd5Ycc7PvuAjGYwXN1w+D2G9/XpUMMpkqbDpNpNbZsVAEx6PQCkMLsBgIlVSlWsDYFKDkqnsnH1CODAlsGB5D2xlYQSG4GalF4HEehw8iKNgotaKhyHLlmqGVqH02dx48ujDntTFyhN2QwKPhG+8wO/yx5dWsJ74cQnTKgOM3UqAKhJvA6TZzc2tzeQwWo0AJDa7EatRrPnxRJbAKB0Cqs1QPzZDUCgPnWk3SrQClWysHl8zXYXgxAZ3TesDtV6ZvrS6ByH49Dl12g4FRpWh5deoY7ccZQczFqkzB9FSgsY46N7eFtMY/Rc3dBSjfp0qOUAoC7xOkxez1RNmxVIBsswEIwqw/ZM+T24+ZS/6yzv7g2MzUMA2YVswShF1ggWYuqZIt9NuEBpt+HdX0f3eoHiUnb0JLZfj0AMPVNkS7VSoVKwHj9/tMNWlmOS4jJThoE8lGjQ6cT4NKwODdnshUs1+za7XYO8OTSUzGxm/hKN3hjokBpWh5deobaMUXy62e0d8qHNnAJm8hzWaO4bkej3oPpDsY9O7jyKzKXAqhDGWKVgk6PD5NlNYBCnXi9mK2wwqjAMAgjeGCDjj8Dnxo2HvSd2h3l+rL2Jr93l1RmZCy9V5xUpQupb0b2reNosDgPe83Wkj6iVlLKV81nyYmOI/h2xgewGB9+ODAhjbNQo2+18TUsPtZvkEKzR6yLUIcYBx7lopbah2tdw0Osb5LlNjkPjK7kJVZxKBVHpcNRYxQ+LtEdq/PXH/S1N/LnHhMLRipGlTE4hSZDFWeuguYH3xfgqHgAA3gv2JmSyCESHBo3Sk3gdJslubG5vi93FIGTQanCwHjREVOnt5Pd+6Br6VSMOm7D1HadlgnLmZaSRP7rsBiHiOKqsbOar7d7eIZ9sUHIwaY6iuJQhAU+q7AYhZNRy7Xb3sQ6rlxc4NvWzDJ7f2Dy+VruLQcio00aiQzHLBgCFCpVO48ZMUrbU+zvP8i674LRjANAZkc7A5BaxRaMVKhUib0WPVocqNVNRqaioUgoC7mwX3B4sYNAaQG9EfXP4BrwvoK7WhngrPrYzKGN0QIcmLdeReB0myW5Ir75Bpxdv3xBRpfmot25bpIOg6mt9PR3CpSs0ajUTbXYDABjwqLFsyRjNoX3+YzXero7+tzDDjAoszNiJCpYjLXyAJc1ulAxSKxVun/9Im3VifmZ8l5kyDIeaSU1KD4FJfSLNbiDYLKhQoZIJypIyBYtQ6HS9ZFpeCGwY14wgmTlIwIg0Jw8x35k14t6owXC0I3yODlm3jz/Sbp2YlygdJsluagJdj1rSrzREVLF3+iP3GkJ3O//1x+75SwIt0FFFFTHXqKhUlFcq3B7c0UZiCQgYa/VIGwwvAHHN7zNYdgMYGzQKt89/uLWb2k2iCYwy1emG1WESRreH1WHk8525euO1G94LoTo0apRuH3+4pSdxdpOM7L3L6WnrdTMI6TVa0q8Eg/QI+D34wIexvC/6zEn/wZ1eiLhnql9UIQkLBqzkIK+IyStkRhSg3EJWayB9YfHOzTxYzxTZi7zGsaGr1+2X4r0ElEHodnnbI9MhJKuHVNRJU6M/VIdkZVB14ecIl4RQHRoCOrQnTofJyG5I45xerxdjwmBRpelw7K+GrdvvnVCp5FQo0VFF8uxGwSINp3B5/YdbuqcWZUt12Sn9IM89G3R6or/UZjdel3Ckzn/ksK/j3BdmjxzD5hayYyYoFNwwOpSEsDqsaemZUmSW5gTnkhS7IX1SWh0AuVXk//3rzLxHOHs49vcYej24dr+vcgYHsdaZxViEEjBH+GBtN+SYBrXS5fUfbu2hdpM4iA4N+mF0GNp247ILtma+/ZTfZcf2Dh4AtEZGa0B5oxQFFoXBxJyb3UTadrP7K0/1Pm/YmRhOneBPneD37/ROmsGVTWKH0KExC2IbdCOi1J2T3WAMxoAOu9PVbrqcnnaHm2EYrUYDMFRUsTbzMac2hMaT/skzuLTLbhACg4ZrszmbrE67x2dQxfWABSUs3S5vh8PDMIxerQUYPrvxeYSzh731e/rHP6dNcNqgo4k/9IVn5ATlhGmcwRQcOB7YZKjsxuuB9992DDsFiNcDu7d7W86wsy7lFFx4HRqzWVtXXLUe3Yj+OtRruFab80zCdJjwthvSSKzX6cSegMHqzNbmeKe86W7nfZ5AlhFb200kdWbJ224wBhaBVqUEgEN0hobEEOyT0om3bIi2G0cnv+cd50Cv6cepWt8nbzqt7XyEbTdeD37/bWfk0w2dOcl//I7H6wmvw7yRUfz8sJiK8EAd6lRKSNiDNQm3G/L3o9fqA59RX8bZ71mV3i4J3ulJpsREKGBuaJBnpoI1K+h7cgRD8MmnQHYDJCVBCALPQAXEiFCg6h//M1PiMTGAQU3eq9YT/0WgDIQ03ESkw07+4EcudwQDiAHA58Gb33CerPVF8uzeB29F4TWE7g5h3xfesDrMt7BGc+xNOEodGArxQB3q1Ql8v19i7abd4e52eRmG0aqDj9sP1yMQJ3H2TKUqu0EAepUSELT3uumEMJJDrirDMFq1JrBqEB36PXDoo2HGlw5k/w5PT9/Uz+Gzm71feSOcHrofJ2v5k7X+sDqsmBX7S3OKZghD6LAtMTpMrN3UBmpSBiSayeBRJa5mmyBho0paZDcomMfSGRokhwy30esMoTWesDqs+9gZQwOiz4M//0gcwBEmu/F54ND+2P96a/bwYXVoLmBGVcQSpnNKBUMuDKZDvUoJANUJ0GFi7SbQcKPV9q0aPLtRRv+Y/0BUKoD0zG4AQK9SAEB1M22+kZjayHRoa+FtzTE2vjpswpH9PgAIm90crfF5Y50RHAAcNnzmJB9Wh+Wz2cJx0f0VZ1lwwTQYQoc6lQISU69PoN209rq7XV6WYTViBgtDZTfG/Hi7yTgOZeawkJ7ZDQDo1UqEwO7xnbU547wUFBGiQ4ZltZoQuwmnwzN74np/8NEDJH8Jk900n4m3G+RsvTCYDifPV4yMOMcZMR6PnIWH1SGDUI/L22yLZcztECTQbkhI0erOfd/y4NlNRn68hcktYtO37YbsHugXoA3G0kF0qNPqcGh9fYAO/W7B1hJXv3KvTehu58NmN6fim7UVABz2oXRYNoudupjNzBvKdAy5MP4yKJoakQ61gQRH4kQ7gXYT6JPS6fsabmCo7EZrZk35cb0vuqySS9+2G7K7XqOE4F8IRRICo/tCGxAhjA6d3RI0HrY1CWGzm/jp6Rw0uyE6zMqHqVcxFy5nispRRh7oswAAdJlgzIX8Mpi0BMoWYn2uEKEOST8pmYpLQhI1zK/F7rJ7fAzDqjh1MH8BABh6NGfJFFX1hzHWI3IL2byQ7AbIEdNkVHHgMBirFSzDIIfX32J35Rk0A38mJSqa7a4et5dhWZVqGB06OiV4UMjrwSSw9dNh/Pg8EelQnwXjZiABAwbx/TggYCwEpBmpDlVKlmFQr0diHSYquyGNxDq9nmHQ0FEltGcqI5/NHRfLWEaOQ9MuVkE690yJxSbj/ZI5Ufx5TLAmpUfi3SUM0CE/yEuzosLrSVR2o+QgyTrUJUCHibUbrVaPxRYRwnDjbibM18Qwuc/My9SZOQoYUGdOu7YbjMX+qa5zrhslJmqCDYjD6pCVomOUUzFh2264uCfkzMhmkqxDXQJ0mBC7OWtzkpqUWqUeNqqgc8fdYMBVV2lzRkZay+M4NHexpmiMImxUScfsRqVkWQY5ffwZK+2fiouADllWrdIMq0OdOa52wxDC6DA/vknsACAz+3zQYULsJpDB6vTQZ8NBInjPiEKNJi7SjJ6qGvb19zmF7CXf0RaNUQR2PS+yG0jkwIdvFbXBFBsi0CEnxYy1IwrZsDosGRNvI2n+KDYFOuQk1mFC7OZQSw8AaLR66LPhIBFkN2SLMdO4i3+oGzlRqTGEKWSBRTF7sWbBCm1G34Tf50l2AwBaNQcAta09dEKYeDgUYjfD6lBtZHVZcf05cBzKLWLD6tAyRqmPY+LWDDPKLWLi16G7F3fVo9ZqprUa2g4xrdXIfpYZSofBflKpdCh9z9QZq9Pp85O+ACA2DJH2TAFAyAseQKFCZbPVFXPAZRfcdvJKB8wgRMbXkHfERvWekWAWJd+eKVIAJQOcgnH7+fqu3jFmg+T36NvAGavT6fUzrCJyHeZdwJ3YHvtIv9JKMsNvGB0qVTB1Jrdtc4wHr5yjDGbZMeqwpxmf3oOcXeLvR+K/DMcYCnFWOWa1eIAOkbQ6lD67CWawgcLFnN2IO2EArYHJLmSzC9icIkVOEYsD1zZwhaFvw/Mku0EMo+EUQPun4oCMGdHqAo+AR6LDnHGcSh/jXwTHofGVpFM1vA7HVSjHRT9nJgCMn8TmFjEx65D3Qc0WqNsCzkEegRK8YK1Hp7awPceZROtQYrvBGJOSaYJP+sfQdkO2EHcStycJCEj6jlh5tt1gQdCpAxNs+nkJ3svxLYToUK2JTodlC2OZohcAqi5WBbufBtXh7Hkqc050f3GWMnbKXC5mHTq78IH3sa1l+BMJXtSxj23/hoVE6lBiu2kM1qQ4VWBKXEmyG7I9hLwj9rzPbhgEKiXr44XjnQmfKP78o7HHEaxJRadDnZkZNTPq2ZwrLlRZJoiZy6A65FRo6UpdacQ5TtlkxezLuJh16Peh2q3g7o3ih9gamPbdisTpUGK7IRmsRmsUAwnNbiCm7AYhRk3rU7ES0KFOH4MO80qV5ZdFkeNMv1R9wYVchDrk1LBgkWbBIrVhyJZjnQEtXKGeNlcZjw4PbhCi8hqCvYFxNKEE6VDKpmKMcV2rFQDUWr0YSBAKbc0NRBUUjCrpOL+P2JQt4buKhUBCF7Q+hhEEQatSWB2eYx1Wr5/nFFKNCjn/wRjXtVkBQK0xxKZD8yjFZKPmxFeeniHfR5FdwJZfqMoNNCZGocPxFdz4cmXDCX/9cX9nO98RfO1WfhGblc3kFbJFYxjy8EHMOmw+Jji6Y7yAHXsUhYt8oMSS61BKuznd43D6/CyrUHJcwDwgrp6pYH0nsL2YFCDUL7sR8+LzpGeKRBWEBTXHur38kXYbnfEuck73OBxePxOfDg1mRdVStucs33LU132Wd/f2tVwoOZRnUeQUspYJynh0aBmrGD1WQcKbABgHJ+cNTqMYlw5P7Y/9Agpe1HuK0Y/lJdehlHZD+qRUWgNgQMFUkWY3MWc3CCG1UuH28odbe6jdRA7RoVongQ4zC9jsQpZs1tvJMwAZOSzxJEbGOnR0gSf6alQovadZ/Vhech1KZjcCxmT6OrVWDwhodhOa3QheZG3Fzm4AYIiKuAyszUFIOVR2IwiCWsWCAxq67C6fX6NM0gzLaY2oQ5VGYh2aslmUJjpsPx3vZfT1IL8DMRpeWh1KpuDT3Q63n2cUSoWSo9mNmN34nEz9N7inEYK2GboAhiKcNYHnMvFg2Q3CoOYUbq+/ptU6NTEzjZ1nEB2yCoUyFTr0evDZel/jST+ZgIjsWjJGOWqMwmCCpOkwztSG4HcilU5iHUpmN+Tt02oyuo9mNwAChlPfQHNdUN/hsJ9B9jMKUymfM1kIm90AAjXHuL1Q09pN7SYSiA5VGiNAeB16unhHox+hQKcsQpBZotCZ2Th16LDhw7s8J2t9A4vUfIbfuQ0KitmqGarCYjYJOnT1DqW6yJFch9LYjYDxEbEmBZDkqOKwCWfreZ9HaGvilSpkzmHMOYqsHGQwMqnKbnweXLcVWyMYXgUA1qOsq40puNiPOOiX3WCMVUoFQt4zVqfN7TWqufhv1nmMqEOVLjgzb1CH2Id76jzWWq8w4L02Lfs8KgOTM06ZX84p1RCDDutrfft3eHxDTuFwtpE/2+icOIWbPU+VcB1KdD0l16E0dtPQ1ev284ySYxQcAE5admNt5w9/4z1z8pwXwTaeAAAvABiMzNzL1YXFiuRnN8d3ROo1BG8POrtdUXCpd2B2AwBqTuHy+GtarTNH5kR5Z75diDpkFapQHbpb+c5tjoFGI+KxC2f2etqP+cou0xjMDESjw4Za3zefRPowVPVer9cDlyxSR6vD1ibstPPdnYAxVqqQOZ/RZ4JSHV6HKn1IgI8DyXUojd2QUVUcGeaAk5Td7PvcfexAmNxVxG4TPnrLWVqhnHWxSqVmkpbdnPwGOhujvobeHtR1QJE52d8vu0GA1EqFy+M/3NpN7WZowurQccLb83VEMwp47MKBdxxjL1bnlyoj1GFDrW/Pp9E9eHnksBcAFlyuikSHDjt8/YmntWngAwQ8ABSPZ0eWgzGb7afD4JMbccGZsOQ6lGBUMS8ERlWpNDocbEXBQXvBCRhV7Pfgrza4hvYakaOHff/5P0dnm5+cgjhIv6hCEhZJRhW7e1FTTYyBxXac9XQjCEYVsVRKJYPIxIZOT2xH/jYQVofu074IvUbk+HZ3TzMfiQ6dNuHgF7HckSOHvQ0neBhOh9W7/P/9lzuc1wRoPMLveIc/usffT4fmknhTG84kMByWXIcS2E19d6+XF1glxyg4FPzZYkxAKPAXHvzc164b8zNTuz9xnz0ZxUwaXjd+/21XZ5sfi64BYoYs8TNTp/bHdadttQoAQAyDsSCWCgDIQPJDiZko/vxgoA55u9CzM5aZkmo/drns/LA6rPnGO3R7zRB8sc0Ng+vQ54UPXncf3BVRQD2+Vzi0PZjdIAQABjOjii/B0Y0UIAE6lMBuyKgqhcYgWnVCs5sT+31n66Oetcfrxlu3eJKQ3XSejstunM2M4EX9ogpCSKVSAMChxEwUf34wUIe9+9w4phee+z341B7f0Dp0WIXTdRHZQVjsVqHusC+sDj0evGm9uzuaCcWbjgr7PxZCdTiyMvb2YoUW60oEGJBlx69DCezmaLsVADitXrTqxGU3fi/U7o4xkets4w/u9SY0u7G2IH/c87h7OlC/qIIxVrIsw6Ael7crARPFnx/006G/m/ecid0OWo55XTYBBs9uWhrinSim4bg/rA53bPF2ReM1hPZT+PRh8R0DKG8smPJiLJh5Ms+qMAzIbuLXYbx2c7TD5uUFRqliWGUSspsTB2JPXwGgep83odmNvUuC7gCvlRkYVQAwixgAcHpj/xM6jxmoQ8/JeH258xQPg2c37U3xToxZf8I/UIfNTcLpaBoKQjm6U3Da+npIyxcgVfQvYDaN5TUFfGgPqYQ6jNdughmsHkJShsRlN6ePxHWPbVaho9UfWlRpsxteosxjYFQh1wkAPH76tq0wDNShry1eO2hv8MHg2U08YU9koA73fR2XhlpOAATVq1ChCZeALjOK3Q0jsbmSJ6qHBOgwXrtp7HEAgFKth5CUIUHZjdMuuOzx/rHVnxy+RyD2tps4CxckbFRBDAMAXvpyv3AM1KG/J94L1dslwODZjbVDghtxtpEP1aHNKrQ0xVVHazxMyoxJKfVZqGIRMuYOvyOjhBHT+dwL/WT3IbKbeHQYr90E/8yI6Sc2uyGJYpzYrUJoUaXNbpQSDfodJKoAALj9Eswte/4RXofx4SfPPQ2S3WiNEpxDb0ShOozTawDA74XezoAvEN0qVVB+OZRfjgyDmA6rBJMFj77Kb7IIgd84THYDEKsO4x3mFzg509cgQpYCg/ZAylHFIIWG7KT979zsRqpRxbosCUrImYTQ0Zzi6EFyqT3UbsIxUIdSMVCHJB1WSjHrpsnEhOrQbpWg3O5e0GYFshsUfDOBfoRQthD8HuhqxB4HwsFLpB0haEcEJhEXBn8zgVQ6jN9uAABAwMAGowqpaiRmVLFUBEUD0o4qzsxHCg7H2Tmlyu4/mjP0XVwcm6h5ltOaMDqMG/L+0LA6RAhpjQycjcv6DUamnw577VLk711gHhn+vUsMh7PHIGIumOgKBd4ZCEO+d0kqHcarXYZcf3xOg0jieqbix2BkQ4sq+bgbc0lcpdTkhxnNSXJjnscAYNZG/eLubwMDdajIiFfbZK76wdpuCkbFG6otY9h+OtQbpJB4SNuNePx43pktoQ7jvSVGjRIABK8HEt92k10gwft6s3OY0KJKPqp4ZGVcxcso98MgdWYy84ZZq47rBOcpA3XIFcXbkJYzUgmDt93kj1Fow83vGjkTp3ADdBjP8QJk5KHQtptALTPWGUGk1WG8dlNs0gGA4PdAUrIbkzneAhcUJza7UetR4YQYy2YcyytNGMJFFZL/sgjpVfSdfmEYqEOVJZY55EIxW8ikS4GP/bIbwDBheuyONr6cM5qYfjrUSZHdKDmcuOwmTh3G+9dblKGDZGU3gGH05LhCVkERa05wdgOAR89gsoqjLhtnEsyV/GBRxePDAJCjp6lNeAbqkNUzakvsaskdp9ToGRg8uwEEIycoY8u4VSo0Zx4HA3RIYmE8qPVIb05gdhOnDuO1m0KjFgB4n1vg+4ZIJi67yRvFxpPBTpulTuioYjGqlF4U0WAHEZUJF8zjh4gqbq8XAOh84YMRVoe6iSpGGUu+oOCQZapqCB0GUgSAOYs1GdnRCZJToWXf1ao05K06/dtu8grjcpycElLmRGU3ceowXrtRKdhx2UYA8Pb2JCG74dTMlEtjdNbScmVBMSuOx0tcdgMIsRxMvALll0VUsIxxQtHlfobDg0UVP8/7fAIA0PeHDkZYHbI6JmNe9MP4ASZdpVEZ0BA6DKQIAAoVmr9CG7njcCq0bKXGPGJQHVbNiD0jU3AwuopkZAnJbuLXoQS9qnNGjQAAj8MKgpDo7AZjnFPATr0kascx5zBz5qmR6BoJzm7I8UdOh8lX48yiQUtlKMQjF/qzK/mho4rbwwPA+ByTjou3PeI8JqwOuRFsxkxN5DmOgkMTLtPozGwk77tBAAiAU6FLVmjHR1DNzy9ir7lOax6hGEKH+cXM2AkxNs+NrmJYLowOQaLsJn4dStDumG/UWrL09V29TluXMSsbyB9jIt/mN3KC0mnHtd9E+mi4OYdZulLHqYFcVBTBW9RiG3eDBszEoDEyY+cLPg+2tyJHt6gtUGdiTY7AcIgXMIahxjsIPHZ6fAAwrSg7/pt1HjOYDnVjOHUW27HN6XcMM+5epWfKFqr1ZhYi02EwHweFClVdrCqtVB7a6W1r4h3nPmrDqVB+EXtBFVdQxJJsggwqHUyHMy5WdbXzXR0YoiF/HFNyASLhcKAO45zvTCodonNSj1jpcnr+ufMoj7Exu0Ct1jAIGAAWAVlgADMIWLKMgEWAQhcAswwiCwiARQghjCCwMYLAZggBacdnESLrbR38vh2e9uHGfV9QxU2dyanUCAFiAtIJuD4ON3shBsDBcVC8EJwgITANJpCpVAH1bSxgjDEEv8U4EEACW5L1ZAMBAseB4JbiaE6AvpGdmMQixPCCIADusLr8PC7NMV4zcVT8d+r8RtRhRm4xp+T66dBxwtNz0BvWdLRZTG4Flzeei0GHwX8R0RWDUE+73+shgRYAoKCYDd0gEh263bBpvas7YscpGMdUXIzkr0Np7AYA9p3t2lh3BjGMOa9EwbAs02cuDAACHLAbsh6ARQCAWYSC7tN3axnSs4ACwYRBfbec3GxxPQI4fsBXX+vtHvC8HKdCJWMUE6s48wgG4YBhiy4OgfQKMAAvCIAQScAFwAFDgXMMRbwTOLhX6J0QbyQOuX8AwAsYEOIFcuwwozlFRxMwBMXRd6cxoG6H2+n2Z2i4VReWKul44gggOmQUCvOIEpZBA3UoOAR3i9/vJH/5oNIjfR6rNbJx6rDfRyDbo0B7SMBrotGh2w3fbPeerBvmuXaNHpXPYrNLIC10KJndAMDb1Q1H221KlTorp4D4SEKzm35RxdohdLfzDjvWG5HByOQXsejcDdIuu7E6PTanV8GgWy4spYOJIyegQ06dNSIFOiQWgwLNCCAuxKbD5jP8kQP8mfowKbySg6JSZuwUhuXSRodS2o3bz6/75niXy6NUqrJzCxQMk4TsRvKoIpPspsvu7nX7AOB7ky20/zsq3H5+3TfHulxehVKVc17o0OOGrg6hrSnwxLY5H2kMoNajtNOhlHYDAC6f/5W9JzocHoZlzeZcrUaTplElhdmNXxDabS6PT1Aw6AeVo8kANkpUOLz+V/ee6HRSHcaV3XTYXA6PX0IdStwcoFEqbpw2rsikFXi+ve1sZ2ebQPrtReIbdyP2CIT8J9ol7ttYHDiAUPCA5M4Ge6wTPO5GPH604x16Pf6mLofHJ6gUzHVTxlCviQ0dp/jR1LEj9OqADjvagk8YBqE6HFKHTq//bLfD4fFLq0OJsxuRr0617ahv9QsYAPQ6vclgUCuVHMuyDKJRBc6NKh6/4Bew3eW1uXzk27Ic02WlBQYVHWUTL1SHstJhouwGAHo9/h31LYdbe+j7LiNndJbhwpIcS5YU0yBSAIDqMCYSpMME2o1IbWvPqe7edoe7vdftobf8XFQKJlurNutUBSZd+YgMlYL2dicKqsMhSI4Ok2E3FAqFApI3FVMoFMpgULuhUChJgtoNhUJJEtRuKBRKkqB2Q6FQkgS1GwqFkiSo3VAolCRB7YZCoSQJajcUCiVJULuhUChJgtoNhUJJEtRuKBRKkqB2Q6FQkgS1GwqFkiSo3VAolCRB7YZCoSQJajcUCiVJULuhUChJggEAu93+3HPPLVy4sKKi4oILLli0aNFf//pXv3+Y2UIB4I477rjuuusSX8i4kFUh3W733LlzZ86cKa5xOp0PPvjgtGnTysrKVq5ceeDAgXiOX1NTY7FYNm/eHHdJUwDVYdJIlQ4VAHDTTTc1Njbefffd5eXlfr//iy++eO655xobG9esWRPPKeNh6tSp//3vf4uKilJVgATxpz/9qbm5OTs7W1xz77337t69+5FHHsnNzV23bt0NN9ywadOmvLy8FBYyVVAdJo1U6VBx9OjRvXv3/u1vf7vyyivJqmnTpqlUqk2bNrlcLo1GI+35IqGpqamrqyv55000dXV1a9euXbly5WeffUbWNDQ0fPjhhy+++OJll10GAJMnT543b96//vWve++9N5UFTQVUh0kjhTpkeJ6H4CR7Irfffvs777wj3uM33njjsssuKy0traqq+sUvftHR0RG6cW9vb1lZ2d///ndxjdfrnTRp0pNPPgkAHR0dv/zlL6uqqsaPH798+fIvv/ySbHP8+HGLxbJz58477rijoqJi2rRpDz/8sCAIX3/99UUXXQQAc+fO/clPfhJ6os8//9xisezbt09cs3//fovFsn37dgDYvXv39773vbKysvLy8h/84Adhs8Hy8vIXXnhB/Lh69eqlS5eKhdmxY8ePfvSjsrKyOXPmfPDBB4cOHVq2bFlZWdmVV15ZXV1NdvH7/X/84x/nzJlTWlo6f/78devWiUdbs2bNmDFjBrvQgiDcd999N954Y2lpqbjyyy+/VCqVF198MfmoVCrnzp37+eefD9z9Zz/72U9/+tNXXnllxowZZWVlq1atstls//u//1tVVVVZWfnwww8Pdt50geoQvgU6ZMaMGVNcXHzvvfe+9tpr/e4fYf369b/5zW+WL1++cePG//f//l91dfUtt9wSOl2MXq+fP3/+pk2bxDVffPGF3W5ftmwZz/M33njj3r17//rXv3744YeVlZU33XTTkSNHAEChUADAo48+et111+3fv/+ZZ55Zt27dhg0bpk6d+pe//AUAPvjggz/+8Y+hJZk9e7bZbA490YYNG8xm85w5c06ePPmjH/0oJydn/fr1b775pl6vv+6661paWob+8SKkME8//fTq1av37t07adKk3/3ud2vWrPnzn/+8a9cuvV7/0EMPkS0ff/zxF1988Ze//OWmTZt+/OMf//73v//Pf/5Dvho7duwll1wy2CleffXV9vb2u+++O3RlfX19Xl4ex3HimpKSkvr6+rAl3Lt376lTpz799NNXX31169atK1euzMnJ+fLLL9esWbNu3Tqi9fSF6hC+BTpkOI775z//abFYfve7302fPn3hwoWPPvrooUOHxC1eeumliy666Oc///no0aNnz579u9/9rrq6eu/evaFHWbJkyYEDB8TL+tFHH5WWlpaVlX3++ec1NTVPPPHEnDlzxo4d+9BDDxUXF4c68aJFiy666CKlUjlv3rySkpKDBw8qlUqDwQAAJpNJrz9nEj+WZa+44op+t/mqq65iWfbVV1/lOO6ZZ54pLy+/4IILnnrqKa/X+/bbbw/xywdyxRVXTJw4UavVrlixwmazff/73x81apTRaFyyZElNTQ0A2O3211577cc//vHKlSstFst11133ne9858UXXyS7X3PNNeJyP9ra2p566qlHH320X6XAbreTHyui1+sdDocghJl0zel0/vrXv9bpdFOnTh0/frwgCLfeeqtGo1m0aFFGRgYpYfpCdShyHuuQAYDS0tJ333138+bN999/f0lJyWuvvbZ06dLHHnsMAHw+X21t7bRp08QdJk+eDAD9DnrppZdqNBrSEO33+z/++OPly5cDwIEDB1iWvfDCCwMnY5jp06eHSqS8vFxcNhqNVqt1iLICwNKlSxsaGo4ePQoAhw8fbmxsJCeqrq6uqKhQq9Vks4yMjJKSkmj/AseNGyeWpN9Hj8fj9Xpramp8Pt/s2bPFXWbOnFlfX9/d3T30kR9++OG5c+cuWLAgqvL0o6SkRIw/RqNRLB75aLPZ4jm4HKA6JJzHOlSIS+PGjRs3btytt97a29v70EMPvfzyy0uXLh09ejTG2GQyiZuR5d7e3tCjaDSaSy+9dOPGjTfccMNXX33V09OzbNkyshnP8xUVFeKWfr8/MzNT/CjeGMKwU3pOnz49Jydn48aNpaWlH330UVFR0ZQpU8iJSkpKQrc0mUz9CjksKpVqiI8YY3LAG264AaHAnPLE/js7O0N/VD+2bt36xRdfbNmyZeBXJpOp3+2x2Wx6vb5fE0aExRusAOkF1eF5rEOF1+ttbW0tLi4WV+n1+nvuuWf9+vU1NTUVFRUMw4SaPVnul3oBwJIlS37605/29PRs3LixqqqK9B0aDAaVSvXhhx+Gbhn2N0QIwzBXXXXVpk2b7rrrro0bN5IGNnKifhHJarXm5+f32128PQS32x3V2cmvfvbZZ8vKykLXh169gXz00Uc2m23WrFnkI8YYYzxmzJj7779/9OjRzc3NHo9HvGf19fVjx46NqlTnB1SHkZO+OlT8/ve/X79+/datW0M74UkrUU5OjlKpnDBhQmjauWfPHgCYNGlSvwPNnz9frVZv3759y5YtP/3pT8nKyspKj8cjCIKYcTU1NZnN5khKNphNLlmyZO3atV999dXJkydJBgsAEydOfPPNN8Xr1dHR0dDQ8L3vfa/fvkajMTTU1NTU9AtrQzNhwgSO47q6usSW/87OToZhQtvYBvKrX/1q1apV4sd33333rbfeeuWVV0aMGOF0OgVB+OSTTxYvXgwALpfrs88+u/HGGyMv0nkD1WEkhSGkrw4Vt95664YNG6655ppVq1aVlpbyPF9dXf3CCy9UVFTMmzcPAH7yk5/cfffdzz///OLFixsbG3//+9/PmDFj4G1WqVQLFy58/vnnOzs7r7rqKrJyzpw55eXld99994MPPlhYWLh3794HHnjgrrvuuvXWW4coE8mTP/3005kzZ44fP77ft1OmTCkoKHj88cfHjx8vfnv99de/8sorq1ev/tnPfub1ep988kmj0XjNNdf023fSpEmbNm268cYbtVrtiy++6HA4orrNBoPhBz/4wbPPPpuZmVlZWXnmzJlHH320sLCQtMytX79+8+bN//jHP/rtlZeXFzpcKicnh2VZUvLMzMyVK1c+/PDDGOOcnJznn3+eZdnrr78+8iKF5fDhw6EprlqtnjFjRpzHTDRUh5Ffq/TVoaKkpGT9+vUvvPDCSy+91NraynFcUVHRqlWrrr/+emKWy5Ytc7vdL7zwwtNPP200GhcuXHjfffeFPfqSJUtWrVp18cUXiwGKZdl169b94Q9/uP32251OZ3Fx8S9+8Ytbbrll6FJOnDhx3rx5TzzxxMyZM9euXdvvW4TQ4sWL//nPf4aOQRo5cuSrr766Zs2aJUuWsCw7ffr0119/fWD4uu+++1avXn3RRReZTKbrr79+xYoVW7dujejKBbn//vuNRuMTTzzR1tZmNpsvv/zy1atXk6+OHTsWtmI8NI899tiaNWsefPBBh8NRVVX16quvZmVlRXuQfvz5z38O/VhYWLhjx444j5loqA6juVrpqkN03jQxUigUmUOfCKdQKEmC2g2FQkkS1G4oFEqSoHZDoVCSBLUbCoWSJKjdUCiUJEHthkKhJAlqNxQKJUlQu6FQKEmC2g2FQkkS1G4oFEqSoHZDoVCSBLUbCoWSJKjdUCiUJEHthkKhJAlqNxQKJUlQu6FQKEmC2g2FQkkS1G4oFEqSoHZDoVCSBLUbCoWSJKjdUCiUJEHthkKhJAlqNxQKJUlQu6FQKEki9Xaza9euW2+9derUqWPGjKmoqFi+fPnrr78eyY5nzpyxWCwWi8Vms0V70nvuucdisTz66KPRl3d4nnvuOVKwxx57LBHHpySCN99885prrpk4ceKYMWOqqqpuuOGGXbt2RbLjW2+9ZbFYFi9eHMNJL7roIovFsnnz5hj2HYx169ZZQhg9evSMGTNuuummnTt3SniW2Eix3Xz99dc//OEPP/30U51ON2vWrOzs7IMHD/72t7/997//Le2Jzp49a7FYXn75ZfKxvLx8wYIF48aNk/YshA8++IAsbNiwgc6JnBb85S9/Wb169d69e0tKSmbOnIkQ+vzzz2+44Ybq6mppT7R+/XqLxVJTU0M+zp49e8GCBTk5OdKeBQCUSmVlZWVlZWVFRYXT6dy2bdsPf/jDlDuOIrWn//e//83z/KJFi/7xj3+QNffdd99//vOfdevWXX/99RKeSLQAwi233DLsjPSxcezYsePHjxuNRq1W29zcvH///qqqqkSciCIha9euBYCHHnropptuAgCXy7Vy5cqampo33nhj4sSJEp6onw6ffPJJCQ8eyogRI9555x2ybLfbFy9efObMmbfeemvGjBkJOmMkpDi7IfWgzMxMcc1vf/vb7du3h6aX69evX7JkSVlZWUVFxfe///3t27eHPdS1114bmr9s27bNYrFMnz4dAJYuXfrEE08AwGOPPWaxWBwOR7/KlNfrfeaZZ+bNmzdu3Liqqqo777zz5MmT5Kt//etfFovltttu27lz5+LFiydMmHD11VcfPnx4sF/04YcfAsC8efMuvfRSGCAvijzpp0ONRvPyyy/v2rXr8ccfJ2uGUEg/SBVGzF/WrFljsVh+/vOfOxwOi8WydetWALjqqquWLl0KAypTLS0t99xzz/Tp08eNGzdnzpxHHnnEbreTr+68806LxfJ///d/r7zyyuzZsydOnHj77bd3dXVF8usMBsPkyZMBwO12x3R5JCPFdlNRUQEAr7/++q9+9astW7ZYrVaDwVBcXMwwgYL94x//+NWvflVXV7dgwYLp06fv2rXrxhtv3LJlS1RnWb58eX5+PgBceOGFN998s1Kp7LfBbbfd9te//tVuty9ZsiQ/P3/Dhg0rVqxoamoCALVaDQAnT5685557ysvLzWbzgQMH7rzzTr/fH/ZcxG6uuOKKK664Amh9Kk0gOrzvvvuefPLJnTt3er3e3Nzc0DrOEAqJEKVSefPNN5PlZcuWLV++vN8GXV1d3/nOd95++22TybRs2TKe59euXXv99dcTpREdvv/++y+99NLs2bN5nt+0adMf/vCHSE7d29t74MABAEhtagMpt5vbb7+d+O769et/8pOfVFVVLV++/JVXXiGX2GazPffccwDw+OOP//3vfydXHwCeeuqpqM6yatUqi8UCAIsWLXrwwQc5jgv99vPPP//ss88QQm+99dazzz773//+t7y83GazPf/88wBAjO/48ePPPvvs008/TbLu06dPhw1uR44cOX78uEqlmj9//syZMzMyMkh9KvoLQ0kqjz/+uNlsdjqdf//736+99tpJkybdfPPN27ZtI98OrZAI4TjuwQcfJHK67bbbVq1a1W+Dl156qbm5eeTIkR988MEzzzzz7rvvchx34MABkvuQHRsaGt57772nn376vvvuA4BPP/10sNO1tbWtWLFixYoVy5Ytmz17dktLy3XXXXfttddGd12kJsV2k5GRsX79+hdeeOHaa68dOXIkxvjgwYMPPPDAvffeCwD79u0j6d+yZcvI9ldddRUAHDt2rKenR6oyfPnllwAwceLE0aNHA4BSqbz88ssB4JtvvhG3ycvLmzZtGgCMHTtWp9MBQGtr68BDffTRRwAwf/58rVarUCgWLlwItD6VDlxwwQXbtm174oknrrzySrPZ7PF4Pvvss5tuuunNN9+EyBQSP+QsixYtIolMXl7elClT+p1l3rx5BoMBACorKwGgu7vb5/OFPZrP59u/f//+/furq6vtdjvLsqdOnTpy5IiEBY6B1HeEMwyzcOHCJ5544rPPPtuxYwdJMt95550zZ850d3cDgEql0mq1ZOOsrCyyYLVapSoAOUto+xE5S6ijhX6r0WgAQBCEgYciNam9e/cuXrx48eLFpJmJ1qfSAp1Od+211/7tb3/bvXv3u+++S6pXf/7znyEyhcRPVDokIoRBdAgAhYWF9UF27959yy237Nix40c/+lEMo0YkJJV209vbu3Hjxueee05swSosLHzmmWcUCgUAnDp1KiMjAwA8Ho/L5SIbiG1joXeFQLJN8VARtqIBADkLudmh+4rWFiF1dXUnTpwAgPb29tra2traWpIB0fqUzDl79uzbb79NqsmEyZMnP/jggwDQ1NTk9/ujUghCCFKqw4GYzea77roLAHp6elIrxRRnN//zP//zpz/9ac2aNV6vl6z5+OOPScNNUVHRlClTVCoVhNRH/vvf/wLABRdcYDQa+x2KNOyRJjEAeP/990O/JSJwOBwDyzB79mwAOHToUENDAwB4vd4NGzaI6yOH1KSmTJlSH8K8efOA1qfkTUNDwz333PPII4+89957ZA3P86TFJC8vT6FQRKWQUB06HA7SFSUyrA63bNlC/haampr27Nkz2FmiRezP1ev18R8tZlI57kav1//6179+9NFH165d+9ZbbxUWFlqt1paWFgC4+uqrR44cCQB33XXXU089df/99+/YsaOrq2vHjh0sy/72t78deLQFCxa89957mzdvvuOOO+x2O+lBFGsxeXl5ALB27drGxsZf//rXoTvOnTv34osv3r59+/e+97158+ZVV1cfOXIkJyfntttui+rnELvpN7r0yiuv3LZt24YNG+6//34iNYrcmDVr1qJFizZt2vSLX/zi8ccfz8rKamlpIbX1u+++G6JUyIIFC954440nn3yyrq5u7969+fn57e3toTpsamp64IEH5syZ88ADD4TueOutt65fv76+vn758uWkLcnn882ZM+eSSy6J4UeRpmKybLVa6+vrAaCqqoo0+qSKFGc3N99880svvTRv3jydTnfixAm73V5ZWfnQQw+JfU933nnnk08+OXbs2I0bN+7bt2/OnDn/+c9/wvr9smXL7rjjjuzs7B07dhQUFJAREx6Ph3z74x//eOzYsXa7/auvvupX3UUIvfDCC3fccYdKpXr33Xfb29uvvvrqd955Jzs7O/IfItakSP+3yOWXX86ybHNz8759+6K5MJTkgRD6y1/+8sgjj1RVVfE8f+zYMYZh5s2b9/LLL3//+9+HKBWyevXqK6+8UqFQfPbZZ9/97ne/+93vQogOf/Ob32RnZzc0NNTV1fXb0Ww2r1+//uqrr25ra3v33XdVKtUdd9zx0ksvxRalxKbi/fv3t7a2jhs37pe//OW//vUvcYhJSvj/q1mlf4PbukQAAAAASUVORK5CYII=", "path": "image.png" }
Which solution has a higher concentration of purple particles?
[ "neither; their concentrations are the same", "Solution B", "Solution A" ]
1
The diagram below is a model of two solutions. Each purple ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the purple particles represent the solute. To figure out which solution has a higher concentration of purple particles, look at both the number of purple particles and the volume of the solvent in each container. Use the concentration formula to find the number of purple particles per milliliter. Solution B has more purple particles per milliliter. So, Solution B has a higher concentration of purple particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAIAAACmkWkFAABMzUlEQVR4nO2dd5wURdrHn+ruyWkju7ABlyRZomQRPSSIIIrplKBgwDsVz4ARFfE8DGdOKL5gFhHRU0kGVAwgIgosOS4Lm9jdybGr3j9qpnd2Nk3ome3F+n6UT29PT01P929+z1OhqxAhBNoax2qdLR5TmGZIwZkw/sowHcaK0NonEIknIO6vtO2rtHoCotXjs3r8rX1GMaMRuByjzqJT5xh1fdqnawW+tc+IETNMh8kAKSq7KXd43t12wBvAzR+WbjQgAABACBAE/wMEwZ0ACOCU0+0TWygnBWgEblqfosJ0FuLaEkyHSUJZdrN0y74Kh0etNZjSMjRqtVal0mrUKgQCBzyAwIGAQEDAoeAGH9rmEXAAfGgP3eZC29IGAkChbUIAA4iEEAARk7Dt4H5MABMStl23P3hkcBvCS8AAvoDocvucHp/N6bI7XBqB+9c5vVv70jJigOkwSXCt+/ERWN0+AEjvcIbenK7VGVRqNQBQO0QotAXB6EFC23UHhG3XmSjdJkDC3kmCxxOEECGAEAIAug10Pz0UhYUrBCS0HyFEQvsRAkIIhEoAAgLPGw3a7EzzGfk5ANBikGQoDabDJKEsuylMNwKAx2mjV5cmXsFbQ0JbYTeYbtcdELYdOhaAhKW4oXei4PGIEBK8TwB0m8qBqoIeFNoGFNpPCEGh/UGVhEqQiiYE3D4/ALQzamW+TIwkw3SYJJRlNx3TjQDgczro1Y0IFG0lqoS2oabGBiHtMtoQTIdJQll20y3brOE5t6PG47C19aji8vhO1dgAoG/7DNkvFCOpMB0mCWXZjUWrHtUpFwCqyo5hUWy7UUXE+EjJSQAYWZSTo4AklhETTIdJQll2AwCDC7K6ZpkJxieOHQyIIrTBqBIQxX2HT/j8YmGaYVRRTjKuEiPZMB0mA8XZDQBM6lmQbdT6vJ6Sowc9Xk/biiouj2/H/qNur8+sVV3a94xkXB9GamA6lB1ljbuR8ATEd7cdrHB4OI5rl5WdbrGYtFolj3fw+sUal7uq1lFjd4gi6ZplntSzQAnjOBmJwHQoLwq1G8rnxSU7ympa+yxiZmRRjkJyV4YsMB3KhaLtBgCO1Tj3Vlm3llTW1ZiVCSEEYGy3vMJ0oxLa5BjywnQoC4p7RDOCwnRDYbpha0kVAEwf1pemoAgAQXAj4k8I2w+hrBWR4H5pD93ABAgAJoQAELoNhADChEBwP6KvYgKhPcF3EelVBH6MV27ZyyM0uCCrFa4RI/kwHcqCEpuKmyTUwEbvK4KwRv76PQLSn/R4QLQhre7VUI8AECD0rtMWuGAfQTBIhFK/uj1SsSR4PG2fC5MR4/SH6TBe2pTdhPoACNT9J9268B4B6U96PBDaTQj1bn0wtqDgnSPBfslgaz8KbtOyQnukYlHweAIIIYwJAPBIwfeZISNMh/HSpuxGqVGFBKOKcm8zQ06YDuOlTdmNYqMKYABASs5iGTLCdBgvbcpulB5VkvS1GQqD6TBe2pTdKDaqEAzKrjMz5ITpMF7alN0oN6ogUHadmSEnTIfx0qbsRqlRRSQElH2bGXLCdBgvbcpulBpV6DkgBd9mhpwwHcZLm7IbpUaVUJ05Wd+boSyYDuOlTdmNUqOK8sc7MOSE6TBe2pTdKDWqKL/OzJATpsN4aVN2o9SoAoqPKgw5YTqMlzZlN0qNKnQ0J6fk8VUMGWE6jJc2ZTdKjSrKH83JkBOmw3hpU3aj2Kii+CSWISdMh/HSpuxGuVFF6U10DDlhOoyXNmU3io0qWOm3mSEnTIfx0qbsRrFRBQCUXWdmyAnTYby0KbtRbFQhGJQdVRhywnQYL23KbhQbVRT/JC5DTpgO46VN2Y3Co4qSs1iGjDAdxkubshvlRhUAZUcVhpwwHcZLm7IbpUaVUAdksr43Q1kwHcZLm7Ib5UYVepsVfJ8ZMsJ0GC9tym6UGlWUP5qTISdMh/HSpuxGqVEFKz6qMOSE6TBe2pTdKDWqKL/OzJATpsN4aVN2o9SoQvcpOaow5ITpMF7alN0oNaqIih/vwJATpsN4aVN2o9ioovjRnAw5YTqMlzZlN0qNKsp/VoUhJ0yH8dKm7EaxUQUDKHvBDYacMB3GS5uyG8VGFXoiCo4qDDlhOoyXNmU3io0qih/vwJATpsN4aVN2o9SoQktQ8m1myAnTYby0KbtRdlThFXybGXLCdBgvbcpulBpVQoPHk/W9GcqC6TBe2pTdKDeqAAAgJd9nhowwHcZLm7Ib5UYVpY93YMgJ02G8tCm7UW5UQaDsOjNDTpgO46VN2Y1So4qo+DozQ06YDuOlTdmNUqMKPQklJ7EMOWE6jJc2ZTdKjSrKX72QISdMh/HSBuymzO4GAK1KUGxU0akE6TwZpytMh4nTBuymuLwWADpmWhQbVQoyzQCwq7wmOReAoQiYDhOnzdhNYWaaYqNKXrpR4NBJm9vm8SXpIjBaHabDxFG63Zywuexev1YltDPpFRtVOA7lZ5gBYEdZbZKuA6N1YTqUBaXbzW6awWalAUKKjSoIUEGGCQD+PFmdnMvAaGWYDmVB6Xazs6wWADpmpNXdUeVFFQIkN82o4rlat6/C4UnOlWC0JkyHsqBouzludbn8Ab1alWXS191RRUYVBFCQaYFQDZ9xOsF0KBeKthuawRZkpUH4HVVkVEEIFWaaAGBnmXL7BRjxwXQoF8q1G0JIsC8gwwLhd1SRUYUQkmXU6VSC3esvtbqSckUYrQHToYwo125KrC6XP6BTqzKNemgLUQUhVJBFBz7UJuWKMFoDpkMZUa7d7K6oBYCOmWmhWKL0qAIABekmANhdXoPrPp7RtmE6lBGF2g0hZE+5FQAKMtNCsUTpUQUA0o06g0bl8ovHapxJuCqMVMN0KC8KtZtjtU6awaYbdG0oqhBCCjMtoOyB5IzoYTqUF4XaDe0LOCMrHepiSRuIKgihgkwTAOyusIpYWXksIw6YDuVFiXaDCSmusAJAfmYa1MWSthFVjFpNml7rF/HBU3bZrwwjlTAdyo4S7eZojdMbEA0adZpeC20tqgCQfMU/mMuIBqZD2VGi3dC+gMLMdPpn24oqAKgwwwQA+6tsARHLemEYKYXpUHYUZzeYkD0VVgAoyLLQPW0uqmjUqkyTXsRkb6VN5qvDSBVMh8lAcXZzpNpBM1iTVkv3tLmoAoTkZ5hAYXksIyaYDpOB4uymmGawWelSWGhzUQUQ6pBuAoBDp+xuf0DOq8NIFUyHyUBZdiNisjfUFyCFhbYYVTQCn2MxEIA9isljGdHDdJgklGU3h6vtPhGb9VqjVtOmowoByMswAUCxIh/MZTQP02GSUJbd7KYhJSMNwsJCW4wqCKB9molD6Fit0+lTRB7LiB6mwyShILsRMdlXWXeb23pUEXguJ80IALuUEVgYUcJ0mDwUZDcHq+0+EVsMOr1WDW0/qhACdJ5qBc4DwGgGpsPkoSC7oc+ndEgPruPT1qMKQtDOYuA5VGZ317i8Ml4oRlJhOkweSrGbehksvWFtP6pwCLVPNwHAropa+S4VI4kwHSYVpdjNgVO2ACZpep1Ooz5togoA5GdYAGDHydavNjOigekwqSjFbuh0sO0z0mgQgNMiqgBAhlGrFnjFLsTBiIDpMKkowm78Ij5QZQOADhkWGgTgdIkqHMd1SFfcg7mMRmE6TDaKsJsDp+wBTNINep1afZpFFUJI+wzaDVkr2/ViJAemw2SjCLvZLWWwAKdZVEEIpRt0GpVg9/qPW5U1cSwjAqbDZCO01gdL+EW8v8oKAO3MRlEUMSEcBwgAA3AIEAAHBAEgJP0Z3EB0PwBCVAQkuJ8eRu9TvQOoQoJ/YkwIAAZCCCGAMCGYEEyAABBCcNhOeoCIMQHABDAhBAgBEGkJhJDgThAxJoBIWFH0XRk61Ul/YFd5bb7F0LpXm9EUTIcpoPXtZn+VDRMw67RiwO8K+DkEHABCwAfvJdA90i3kwvYjiPwT6PEoGEKCN5sAQghR7yckFE9AuhOAkHTX6Y0EAOlW0Q26h4TehTEGxGGMMRACQELvIgQTCEYVjAnHcSLGGQbVSZu7uKx2bNcOXF28YygIpsMU0PqVKdoXkG0yhKquqJk6MyEkos4curnBA4MHE6m2S0IFBvPKYLZZv85MSLAOLFW8pTozDSHhdWZCCI1QmGDp5JqqM2OMAcCgUmkF3hMQj9Y4knUdGYnBdJgCWtluvAHx4CkbAGSaDKGqK2mmzowQiqgzk3oV4dDBSKrtolCBwSsfvB/168w0CKGgBiC8zowQiqgzI0QzaOAQJ51cMz0C9EtlGjSgjIHkjIYwHaaGVq5M0QzWotOqBSFYoQUEKOjfUrYJoRtDbRuhiKgiKYFIUQVCx3OIFhi68qG6dHhUwSTYti9FFRyMKpieCgKEw6MKgrqoQhqPKjgsqiBAmXp1qdW1p8I64cx8nmP1KWWRAh3aRbSuBq2tQdZAXTVmYgYZZsK9DSRWHVoD6FcHt9EunPBxJ3zcST8aoA8QgFFG/wijP1clKlOHrWw3tC8g02SkP39Ef/+E+nTwGBK6o+FRBUD6l4SHn+DBoTpzsLk+aDXBm0lfC3VJIkwIQohgggAhRNPk4BaNFSSoObqnToYc4kSMAULapOUQAqEjgQCtMxMgGhVvUAtOX+DAKduZ2ZaUXWFGNCRVh1YRHjkqrKhs5Lf9ow0BcMPN5M48cahJjFKHq6v5J05o7GK9Are5BAD43SU8X6Ebb/HNzHTnqkBpOmzNypQ3IB6qtgNAttkgJa2nZZ2ZmlG6XgWhNgKGckiqDtdUc8N+VzXqNRI/2dAlu4V5h4QWdWgX0aX7tA+WaCO8JoK1VvX1R8w/2FVK02FrZjd7K22YgEWv4zk+2dnNMS9aV8PZRAAgVBm9DTA+Hacsu0EIZeg1x2vd+6tsvoCoFviUXWdG8yRPhx+d4u44GO2NXlHFl3i5j7r7mtKhVUTT9upK/VHVgBwYLThhuCsXxpt9ytFha9pNMIM1GkJtKkmpM6+t4f9binY5G7lJZoGfkI4f6UhMXNLbbjAhAo9MGpXd699XZeudm56068qIjSTpcG1NDF5D+dmObj8sPF3kb6hDq4hmHdBE6TUST5YZcnjcV+dXiA5brTLl9gcOV9uB9gUEbyuArD0CVhGm7RZm7+Ma9RoAsAXgw0ru7N9VK07xye4RoAWl6VXA+qeURJJ0eMwLdx2KJ3H4qIr/qEpoqMOXylR73PEU+NBJowMjheiw1exmb6WNAJj1ep7jpB4jkK/OvNOJhv2u+tnWcjSwiej2g8Lth4Vkt90QIOl6DQAcVsxCHIwk6fC5E7xNjPOUHjnG1wakFkYCgEo88FalKr7SnBh9UqtViA5bzW7oiqiZJgNCSPbsxobR5buFmO73R1X8w8dUyc5ueARmrYqEJt9mtDrN6/A7G/dmBfdoCT/3oPDwMX5JGbfRyrWowxIvfFwV/y/LJqKVVTyE6fDFcnUi33FVrVYhOmydthu3P3C02oEAMowGQgjHIXnbbi4rjie2vFnODzHiC9LFJLXdECCAULpBY/P4i8trB+RlJnodGYnRlA7tIrxcJqytrZcabwtVyU08f3W2OL0dThMa1+Fme2wtLA1ZX8tdl1PXdrPFkVCDrhOjH+zCcIOv1XXYOtnNngorATDpdTzHyZ7dfFTF7XbFeb8fLREgmdkNEGLRqhBAiTIW4viL06gO19Ryf9+vivCacOwivFrGj9+l2mxHjepwfU2idrPZTmUDCKFiFzrhS7TAI34VKECHrWM3dEXUTLMRIDQSSb62m2eOxx8KjvvQ0nIheW03tIs+TacGgJ0KWIjjL05DHb5VyT9ZyjuiSI3tIly3X1h9imuoQ1uzg2KipMRLR6YSWUo74OZAATpsBbtx+wPHapwAYNHrITiyAOTKbn6yoVJfQqe3oZZLanaDAFn0amDj/VqbhjpcV4PeqojtF3H/UX59LddQh4lz3Fs3303ipTmJInTYCnZTXG4FAItBr+J5kDu72eJI9BtttnNJzW4IELNW4JAiFuL4KxOhw+0OeOpEPHnx/Uf4Um+kDmVB0mHiRUlhsXV12Ap2Q/sC0o1GHByMJ2d2E03Pd4v8bOeSmt0AoHQ2AKe1idDhO1Vx1sHtIrxwkpc9uxlmxjJmN/30AVCADlNtN06fv6TWCQBpBj0d5yBvdiMLyc5uEAKzTg0AO1jzTSsRocM/nWhHvN0LALD6FLfbJf2UUE89TvD08tRU70AIGWqSwW6y+QAoQIep7gjfXW4FgDSDgec4TAiPEM1uaIqDqAETmi8E30JCzhKe3QBI/9Z7VkUWCET7zFSJh3xnV29z8XYR7ffwuWpsRKSzNjDC6D9LF4D6z6ogEnxkFBNi1Ag8h2rdvnK7O8ekk+vMGVESocOf7YnXwVFPPd0kY9Pg/8oTKm2oGUOYDs+3iF9bE+oLH2kKy25aT4epthvaF2AxGgkAH8puZBx3I8tJhmU3TY67KfWjJRWaL2rrjfU84OEBYLtb+LhGmyvgazLcfzN5oP64G+pZhECaXnPK4dlVXsvsJvVE6PDnhJv8vqpF1+bQTTTMTPLUkEiXxbQMEaBu3M2MLH8idjPc4NODSBSgw5RWppw+f6nVhRCy6HWhSylz281QswyOM8SEm2+7+axGdfVBY4TXRFAW4J6qMDxdaXJgFFFnprlSmo7NR9E6NNRhhT/RMku9Ul2MAMC8vHgfYQC4IA0Pt9RlNwBkqBkPNsZfQbspy9VoG2LqdZhSu6Fr3JgNeo7jSHC+aJnbboYmcFcoQ0y4+babT2uEh49rHdGNhthgU88/YXZiLqLOTAjRqQUVz9m9/hK2IExqaVSHCRKWyyAAuCwLX5AWjxRNPDxUWPdEuKTDe/O8Rj6eUDoj05Orwk21IaZYhym1G/qAhsVohLpEUf7sJi+h50tgWpbYzLibb2zCw8e1MRV4yCs8U2loGFUASJpBAwDFbMW71NKoDuWD0P+f6iz2MMRc8tIu/kINNHx2r6eevHhGzN3VF5h9MzPd0EQPaep1mDq7sXl8J2wuhJBFpwOAJGU3COD2/Pjz2Dw1mZYpNpXdlPrQQ8c1cRT7s1Pzbo0uIqoAIItWAIDi8lq5Fc9okqZ0mCDd9dIdDOrQwsOK7oEe+mjvrEmAj7r7h1twUzMTnG0M/F9nT/Q5zgVm3z25zuZ7SFOsw9TZTXGFFQDMBgPi6HjqaLOb4z54r5JfUsbdfohfcEx4pYxbfYor8Tae3RCAy7JwHFGFsqCQNuA3nt28Uh45QWz0fGrVOTEXEVU0KkEjcJ6AeIQtCJMqGtVhkTbRn1m+OlKHAJAmoA19ArNzW45/w8zk4+7+ERYaTVFTMxMMNooru7kHGVooMFeFH81z3tve1fz4r9TrMHU9U3TONIvRKGUrLfZMbXOipeX8tsYnx+LPNpJ/dhCHmSG8Z4oeuqJ7YPh2lT3GLOf2vMC4NNqA38gT4bUB+Kwm/svlxOgru3ayxU2zuVD5xKxXV9o8xWW1nTJMcRfOiJ5GddhXRw57Espx/pYent3Um1XykY54Ti5eWsavreGO168PmQUYYcI35OJhFkyo2lqaVTJPhd/s7N5s5z+tEX5zCifrz+83yujvpw+Ms3iNHO3tbnJmglbRYYrsxubxldndHEImvU4aR9PMuBs7hsdL+e+tzSVfWxxoxj5haia+v1BMC04PEhykkyaglT0Ds/cJx6Ou7c7OEf/VQcS0q7uxcTff2hO9Vt84NJPNLiTNjkwIQsisVVXaPHsqrRMwWxAm6TSlwykZ+NOa+DN9Iw9n1/VR1OkQoWAQ7ahFC88QH+0o7nJxtkBwFU1AMNISdAQS45zZZ5vEQUaRgBdjvNWpwgTnqHB7NSahdXsxaXLO7PBxNynWYYoqU3SUtMlglIbvNdN2Y8dwy2Ghea+R+OQUN32vYA0OUwApqvTUkXV9/NH0i5sE+G+nwCMdA83P5vd1baKTSB/2CRF1ZkKIiud0KsEv4v2nbAmWz2iRpnSYq4a/WeLv05yVgws0kW2IAHV5CgmtCNLbgEdYYKSFjEwLek3wgARWBBlg8A80ih3UOI7R7SnWYYrshvbqmw16aUxwU203NpHcekg44I7BX3e70DV7hfA6M63qWnhY1VNc2SPQs4mmHLMA1+eKW87yXZmNm68zEwA7luFaHfLy4XVm+nlmuhAH659KPs3ocHo2NsQVUDqoYUY7sZk5s+lGqFEy6ABBXwiF2TpVEECAjvvQL3buFzu32803M/4LEnt2L/U6TEVlqtrlrXB4OISMOj2Exgo31Xbzn+P8gdhr0btdaOEx/qFCMbzOTM17hAV93SdgC8DaGu54aJoiBDA+Dfc2EAwkyjpzXVdZAjgxRyAQXmcGAKNGVQ7u/VVWtiBMUmlehzkq8tQZ4twY104w8vBS54CFjxzd3lCH0azm+qcTvVHGr6vhIua4OdsodlCTezp4TTzINatkRNsNpESHqbAbOszBaDRKo2aaarvZ7kSb4n16ZVk5d12OWKCpV2dGoXWmLAK6MhvTOrP0bASOZRXNuq6yRGhQZwZCBB7pNYLLG9hbZevDFoRJGi3qsLOGPFwgPnmCd0bXyWDkYVnXQHc9rdUktJqrLYAeOMKvaOKpdDp56NdW/uYc//Rsf8Nn95pa78wmwh8u1Sa7UB7gD3p5J0ZF6oCBI0N0vl46/xkqf4p1mBK7oX0BegMANJ/dLK9MyFOfPcH/t0iE2KNKNGszy5LdFGnFuk8MRRVCwKxVubyB4rJaZjfJIxodjjSTDurAf0r5Qy2l2IOM5LGOgWB4g4Sym51OdPFuwdbSHJ52ES0+of7Gyt/VwdtNi1vMbtZaVcurdGWBevH7sE8AgJ0eFdTAEL13Zrq9nQAp02HS226qXd5Kp4fjOL1OBwDNtN3YRPijiQWhouSrGi7BOnMzbTdnmxJ9PKKdgI0IN6wzIwQGjQoBHK5mC8Iki+h12FlLlnYO3JMvdm5iMM5AI3mjS+D/ugXyNE2Obo9ehztdUXmNxK9Oft4RnR2jZtpuHJibd8y4uMwQ4TURbHZpbi7N+tapSZkOk57d0MY5o8Eg/ZSbym5+Snj+epsIv9jQcAtJRnYzxuR/uSzOtX4ovbW+RuvMhADPIYNWcHgCuyusbIWGZBC9DqkRTUwjF6YHHCIcdKP9Hs6JwczDmTp8pp6kCbTthNbJ6rKb9TVorxtKfVypF8wC6aUn+RoYl07ShCZ1aA3ALQf56L2GcsKPZh/SftDZ1Wh2YxfRbceMB7zRVhReqjITYjtH706BDpNuN3TiZaPeGPy76babMr8MqdZxXygria7OHH3bTQ89GWQQtzrjr+6db/Q22naDEGACRo3K4QkUl7EFYZJC8zqs9KMqkeunJxHjv0w8DDSRQSYRAXAIOAAu2OdTN++SVYS3y7nlFXz9YaVofQ0AwB3AX5aF78jHhdpGdPhECbczrox+n5t/rVJzYztfw7abW0qMB6P2GsrLp8yYwGiDO9k6TK7dVDo9NW4fx3F6beixxuaiigyU+oJlgtzZDSZkbo5v9qE45wQZqvf20fkINJ7dIACDRkAISqxOm8dn1ib2mCmjPo3q0ElgYy33jR2FjyfOVUEXHT5LDxPTsVkI3Z1Q3wKAFKiCFe49LjRrv9D8+PWPqriPqrhnO4tXZONwHdYGyIfxzlgKAO9Vqa7K9Bm5etnN0krNQU88Zb5Va+yu9rUTxKTqMLltN7uDGawJSWbS0ribBEle2w1CaLBRvCg9njqtniPXZ7qaGu8QyraQUauC0EM9DBlpqMMV1dyNB4WllVzEswtlfthk414q467YFxxoKilX0q2U3Xxyirt0TwteIzHvIH/bAT5chx9U8tYEWkjsItpoE8Lbbk74uTerYpuuQMKFuY/txmTrMLl2E6ww6/V1u0hdlGh0VHGC0CflGo7mlBwm+Auvn91EP5rz0XxPV23MT5wvbm/LEcRGR3NCKLsBAIOGjrOqkeNKMOoI16ETw13H+BVVnKvZpn+HCPcf4285VNeIK+mWJsJbbOiBo7HlESuquKeOc5IO11QnKvmNVgHC5sxecSqhZOQHp9aFOUimDpNoN+UOT43bx3O8ThtWAWk6u+mkkSG/6akPlpmM7AYAEII3OnnONUUblQwceTHf2knjb2Y0JwpdE72a5xAqd3jYgjAyEq5DJ4aFx/mj3mh/57870T8PB/OX8OzmhA/NOxxPQ8RTx7kfrbQ1kPyU8KohJwL1eqa2uRNtG/nVo4Fk6jCJdkMzWL3BUG9v09nNKHOiPc0mHnrpk5vdEAImDv/3DPcN7VqeXa2vLvBSfm1nTaCZZ1UgLLsBAINWAICdbEZR+QjX4WvlXPReQ9nvRjcfEqB+dvNKGR/rfAMStx0SJB0myD43L2U3dhEdiKvVJpzdnmB+lCQdJtFugn0BBmO9K9ts20188y1KjE3HSW27Aah7VuWGbO9n3VzzcrxdGtStDDy5wOx7Ot/+VJ6tg4YW2NyzKlJ2I1Wb2Xq+MiLp8AcH95szHsHvd6PXy3lJt6Ue+F91/D+cEi+8XxmMNDIQym72Jew1AFAp8pBMHSarZ6rM7rZ7/RzHa9TaUP4CAC2Md5iVLa6vjfNGmnhY0NgzUzL2TAHUe1bFyIlXZYlXZHoIga0Ono57yFGRXEEkAJgAJlE9q0LLo1aoEXi6EEeZ3Z3LVmhImHAdriqL3yM+qOL+ni1aeCAA39oS/WH/aOWuypbJbsLXO5OhMIBk6jBZ2Q1tnDMYjRyHos9u2qthWmacSeptHTBVA6Qku4kYzTnQKA4wBAYYxPYqMXQ8QHRP4oZnNwiBQctWaJANSYc/OrmqBLqBHCJstAVn/9tqT/Ss1tQgQkiveOeclOiqw/V0mDDJ1mFy7UavNxKpRYTSUs/Ure3JyNgfF5iaia/LpXkEQJLbbggh9Gsksopmo2039NNov8COk9Wy5dt/YSQdFiewSCbl82oaOcCOEy3KFgCEUO+opzFuikH6gKTD9qpEmz4BwIAwJFOHSbGbEzYXzWC1Gi2ScgZKS+NuCJD78sVRsTjO1Ez8ZJEIMT6rIm92E3oVAcQ8z0hEdqMWOIFDLr943OqK/doz6gjX4d5YZlBqlH3uYKBKvCgA2OGACRmJ/ozHmEVJhx3U2BDXyjDh9ND4IZk6TIrd0L4Ag8EIdelAiJayGwTIJMDjZ4iXR1GrMvJwXwF+okgMvjXh7OaYB/1i5zbbuV/sqLWyGwDQa1O6UPzpSrgOE6lJURyh7nCTHFPBmAW4MAMXxLOuR5CBBnGQMRCuw3OMiX7JQToPJFOHSWkq3llWCwA6vRFoOhBsCQUAaOaZKbpfWiP89jx8ZTZ+o5z/3sY5GjiPkYfz0/At7cXCulGUobSF2nMsz0z9bOc+rOQaTmvUXYfzNfju9r4OaukpJ4hmnhES9Ryx0jNTEDptQsCoVdlcvt3ltRd06yDLsiR/TcJ1KBcIoIOanPQlelMKNQQAnu8cmFoc52/wrvZeGtskHV6Y5ltjjf8p4h4af7Yg0tQ7STqU326OW10uf4DjeY1GCzQdgGh7piD0y6Vv7KCGhwpEHom/OdBJPyrzIyAkTwM9dKSnnnDB53ElLwt2OUEsPVO1AfLgEaGpaY32uLk9bu6rWuEfOb6bcnxQv2dKrlnUwnum6FnxCNQC5wmIh6sdnTPZCg3xEKFDHQduGRo3gAB0UJPfEusKKtAEa9OjLOSGXHFJWcz50p3tfd3oCIwwHQ7QB0YZ/T844nScS02OZOtQ/spUcFSVPnhycbTdQDDUB99BAAYZyZQMfFOOOLc9vjgTh+ZPC/7Soe7A2Npujnngkt2qprwmnJfK1eN3G/a4uRS03QAA4jidOrjSWNQXnlGPCB12TKDaQjHyAAAIYJAx0SaSCelY0uG/i/AV2bEZ4eT0wPRsX6M6vL+DO74WnAlGVy+dL9k6lNluCCH0zKQMNo62G3qE9CbpeIhuFU2Iru3miBvO26naFfXj/6V+NPuQbreLS0HbDcGYdkPurbQGRDmC8l+MhjrMFBL1iIEGDAAEYEwaNibWfDMhg0g6JARe6Cw+2zlgiq6m8WiBZ1GBp6k2RCOHXyhwxOo4g3Xemen2FOhQZrspCWWwak0wmsiS3dDjIYo1wqPPbmbuj2EKNYpdRNcf1tkxl4LshkOgUfF+ER84lfAwj78eDXU4Pi1RuxmdFpSRmYNr2sX/2xtmJiMsJKKH9KpssuUs32XNpjmDjXhtD9fUDBGa7SHtqhWfj8VxRhs9d7ezQUp0KHPbze6KWgDQ6c3Bht/E2m5CfdXB46WkANWfRS2Otpsnj/PR5zXh2EX0arnqrg7epLbdEIwR4rRqwesXi8tru7ezxHGqf2Ua6rBQTQo0pCTGB6YkclUwOT2Y3SAEN+UEvqlV7Yu9R9wkwPOdxIZtiARImkCeLfLPyeGOeqDYhX62cwBACORpyJla8XxzIE+NSWOj2xvqsIsm8EEn2wvluvW25p4R13Pk2gz7GIMXp0qHctoNIWRPuRUAtHqj5C9x90yFZzeoQXYDIP0b8wz4VhFeOxl/Wvf+KfXfs/ztBTF5PVOI4zDGeo1gdXrZgjCx0pQOp2eSf5+I025u7yBG6PC5ToHL9qga9pk2z7KuYqG2yR5ShFAvHe6pg3Hp5DYSTP8xIZgAAcAkmBdH00Nq4vC97V3jzN4fHaofHery+pMW99L6h+h95xrcRp7gFOpQTrs5Vut0+QM8L6jUaiVnNx9UcolMawQAG23CVZlisrMbRLBWzXt84t5KW5/26Qmd8V+JpnTYQ4fHWWBddKuzhjMxHZ9rwRE6zFejZV0Dtx4STviiKsQkwKMdxREW3GgPaSLP7jWjw/76wFm6wE1ZLkzIAa/gEFEWH2inEqUsKcU6lNNuaF+ARm8CAih0T2PNbrY54EcHt8nKn/TXldxNR86z4IvScb5WhuxmpzPRb7rRJlyV4U12doMQ0qoEj0/cVV7L7CZ6mtHhjGzsJuj7WCaa6W8gt3cQobEsu7uefNzDf+sh4deWZvXP18Cb3QJ99CTUhhj/nNlxj//qrAlQc8EEtZYOZbMbTAhdNkyrNwJdlCnG7OagB14+yW9v7NmWfW60z82/WsZPzsDz88U0IaHs5idbog3kvznr5hmJJrs55FU5MPzpFgBQliC2E8SeGl+LUQVjrNXw4IQj1Xa3P6BTpWJRsLZOizq8OUcsUnMfVbcwmx9lfDpekC9yTWfZFh7e7hbYYkdvVXBfNTaZQQ89ub49viILh4bJ1WtDTHZ200yW/bNTfdTHU1MjAIWCv7vGb+BwUnUom4KP1Tg9AZETVIJKHUd2s96KnixtuVr4WTW31cE93ynQQ1/XkxVrdlMiyxRlBFqMKg4RfVKrW2/TlDdY7kfPkd5a34x0RxYXaCaqIAJateDxBYrLrQPz2QoNLRONDi9Mx2eb8fIKboujycCTo4Jb24ujLTiaNsSzTWSoWUQgbrahE35U6kMmDnobcG8jpPFN6jDF2Q3NsssD/Hs1+q8djQ9DGqTzXGBw9dD4kqRD2eymuKIWALR0VFWM2c0nNfyrUc9FcsIH1+4XlnUN9DKQeHum5KClqLLGqn65Uu9s4ulhF0ZbXJotLs0Ek3O6JXI0pxRVAIFWzXl8UFxew+wmGqLUYY4A9+bhw17yqwNV+NEhL9A50vsaSK6KjDSRcy0Exd6GONRMB7tjFDS44Nub6iFNcXbzXo3h3ZrmJq/Z6tZudWvHGR2TDU49h2XXoTx2gwnZK2WwADFlNxusXPReQ7GLMGu/sKqHv0ATT3ZToAEZEpxms5tlVdq3TkU1J/4au6HYo74/u1aPxIbZDSFEoxIQ8h23utiCMC0Sqw47aUhXLQEgPEI8AgTAIYIAOCokAhBvD+lPNsRz9N3ELEAfA7RuduMC/uUK3Vf2qMZWr3MYi72a+RnVeg7k1aE8dnOk2uEJiJxKzQlqABJ9duMQ4dXyeLrW7CLcf0R4+8xAHNlNIuMvKO1VpJmoEr3XUI76VYsq0+7PqtEhsWF2AwBateD2BorLrUM7Zidy2qc9serwkBf96kAcwCEv5KiImUedtdDPIJp5iK+H9BcbequSW18TGT4L1DDMQu7IC3TUtk52E73XUEr8qsXVGXelVxk4OXUoj93QUVVqnQmFvnaU2c27lbwz3immtzjQL3Y0zBxzdtNbj39KbP7HgUaxqezme7tqeSxeQznmV71jNd2Qbm2Y3SBAWpXg9gZ2ldcwu2me6HX4rR19VMlXND4eghuXhq9tJ+apY8huil3w7xJhcxNdVCU+KKlEKypVN7THj3YUY8puagPwVa3qKyu32c7bw2YsGGMODDTgiRavWUDNZzdvn4rNa4Ln7Fd9aE+71lwtow5leIhBxGRPhRUANDoDCeUZJGQvpNlnpj5tEAdi4q1yLo5npm5on+jTH+ea/dDEM1MvVsQ5sesPLl2xRxWe3dDwRYCoVBxCUMEWhGmWKHV4xIvuOsa/dLIprwEAWFfLXblP9WVtcFwvBAsDoObS4Nm9LXZ0zd4mvSacJSe583YI1gCEPzMFoexGuuNSdrOyir94t/aeo+qvagV7/dlRvrUJT51UT95vfK1c1VCHUnZzwsetqo1zrbsf3bq9Pq2MOpTBbg7XOHwi5lVqTlBLnX1STEBNPzP1Y8Lr7Hxt5eJ4ZqqjFoabSaMFRkN7FTkvbBY1ABoDEQB8VKMtT2Cl83dt5uBpcxwhmKZo1Cy1agFCE7gwGiUaHR7xoujXmXr8OP/YcT48u4EG2Q0BKHahGfuiXUsTAHY50cXFfK0/lIwHa2qNzCp55xH1/KPq483OreMQ0euVmrmHDXYRSe8Mf3bv7WpdU/0V0fCZwyijDmWwGzqqStCZJKuOMrs5kvAcRQCwuW4QTbTZDQC80Dn+YcWP5Lnp12iY3axp9hGVFjnmV1X4eWiQ3SCENBq67k9NIuWf3rSowyMeeKyUj2a4jcSaGu6NUNtio9lNqRdm7ou5RWKXE83aF1y7qqnsZkKxetWpaKv821z8P44a7AHUMLv5w5VQg8lev8aJkVw6lMFu9lVaAUCtN0pWHWV2Uxbd6O+WiDm7AYBCLbzQJZ5Go5tyfINNmH6NiOzGLqL4VoMPZ5tXCw2yG0KIiuc5DtW6fdVuea7a6UfzOnQReLYsNq+hLC3nNlqDk6JDg+zmP8fjXN/uRxt6v5JrKru544hqjyu23+Z+D3/PcX1EdrPfyzcc8xUr2306uXSY6Knsq7L5RMypNByvijW7qfDLkN2EjdSKIbtBAFdm4bvyY57W6KZ2PkJIo9nNfjnWFasKNJ7dABAecQDg8vlbKuOvSIs6XFcb/8Ivz53gobHs5lc7+ib2J7AknirhG81u1tRwH0cx5VtDfncJSys1EJbdlPll0OSpAC+XDhO1m1AGa4SwimiU2U07VfwNKBJnGyXLiCG7oad6V764qkcgP7oK0M25/kUFntDXaXy+m8Q5FlBBY9lN8KsAeANstq1GaF6HTgzra+O/QSf98HkN1zC7+TqBMgHgmBd+sKKG2c3CY/HPN7yiRmOn47eAAEIHvTLYjYvIpsNE7aak1gkAKq0RwiqiUWY3ufKMWYu5Zyr8VIdb8Fd9ff/Kay4hHmwUV3Zzz23nDfs6jbfdyEWj2Q3iOADwscn9GqN5He5xoziqUeF8Z0UNs5tvrIn+mNdUo4jsZk0tfzyB6rJDRGus6vC2Gxmghcmhw0TH3YSShbAfdNTjbs5Qy/ATHWKOzG5QS+NuIsY7mDl8Z744LVMs8aKfHWiXE1lFBAB5atxdS863BDqoMSYA0MJozsS/CwBkCSJA5LgbHBpUBgCeQLzjlE5rmtfhtrimUgvnextHQET1s5sop55ohp0uDiEcPu7ml4S7a393CZdlBMfddNLIoBY9T9vFZdBhonYT/HCuLmWgW9GMKh5hJlCa0Kefb8FxPTPVyGjOQi3ka/AQE9AKFyaEABJx8AHZaEZz5sqxjGE2LwLUG1Usjdqil9rL7KYxmtfhqYAMweCED/LVUqAie9zyTLwbocNdMbYQN2STQyVlN+1VMqglkwvIpcNEv1vQR3C9QQRRtt1gQqakJ/QTnZGDE1mJAZoY7xDy8NhW0eygxok7zgCtB5pou6FnruaTtc5ym6ZFHSbOCV+otk4AIWSTw/ZLvJFtN7sSXlwYwnqmOmtEA5doHaKf1iuXDhPVLkevPxEh9rYbDqGrs7E+3vrvYBMZaiJxjCoOP9WmRnNKV5YQAlGvojneklB6ncWLhYIfmmi7EUUCAJn6hFcwOR1pUYeJE9F2010nQ9EFGhKhw/i61SMIb7sZbkyoK7Ob2qcHUS4dJmo3Zp0KALDPC3FlN0Ye7uwQT0Zg5OHFzgFajwnta+XsBgAuS/cmsk7zVLOj0VHFVD105Y1MfZwD0k9vWtRh4uSqgzKi2Y1ZjscNLTyJ0KEsKwKHjyqemelOJMGZbLDJqMNE7abAYgAAHPBCXNkNAAw3ijflxuY4Rh6Wdw1YeNqEoqDsxsjhy9LjfJykQOUfpXMFz6pBdkNbk3iEjBo2p18jNK/DQnWilVwDD3TARHjP1HmWRIudmBmZ3fTSy5A0hWc3uQK+JM0TXznDda4eGr+MOkzUbvLTDJBAdgMACKFLMvBdzXZFh9NBDcu6BsIW0lRQdoMQmpXpviD2KpWOI7dn1NaddoPsxusnAJBtZKlN4zSvwzPjfGy2joEGLOlW6pkalPAytsNMOEKHvfSJWthIoz88u0EIpme4x5pj1mS+yn+V2S6vDhO1mzyzHgBEvweLgfiyG9q7PC6NLOkcOMvQgrVflIE/6u7voafz+Ckuu6Hv+me2a4Qhhrur48iD2TXtBLHutBtkNx6fDwDYeuFN0bwOBxpIZmJJ4WgLkXQrZTdTM8UOCYwduyIbn6GN1OHQBB4epowy+cOzG1r+jZmOYfoYNFmg8t+TUa2HgLw6TNRuNALfNcsMAD5HbdzZDf2pdtaSZ88IPHtGYFqmmFt/XGVXHbkjD3/Rw7+oo2gWIJTXKDG7ASAmHhbmOaPMYAvVgf/knOqo8tc77frZTUAU/X4MAGz+0KZoUYeXZMafNXTRkUnpjWQ3Jh5ubh9n065ZgLvyxYY6nJAmRjnMvVEMPBnVILsBALOAFrS3Tza7oylkpN59b2a1gcOy61CGhoARZ7TbX2XzOq16UwZBwZEP0Yy7aXSdqQFGGGjC8zpgDoBOZkNndUQIuKZnUQMAaihSdgMQ27gbkHsWtZuz3WNNvper9DvcjV/kbAFfZnGco3fj4JlARHYjjbvxeEUAODPbYlDHP7z9tKd5HY40krW1cc7iuCA/2OEFIRlJOrwkE291oNWnYg7bz3fGHbWRWTbV4dNFviv2xmk512V6TDzBYToMn6v4pizXZLP7vVr9N47Ga0M9NP6pJnt3tZcOMJFdh0iW0fcfbD90uNqhMaSZM7IQIRwAzwH1Cx4BXVKbbnB0PwCPABqbI5ajx6OQy4T2cGGmI+2X/pU2gB4fGlXMUXMhwXHGCAVHFUPQU4AAiBgDQhgTAoCB4EZWLyTBe0YICb0LYwyIEzHGwaRJepWQkDeJmABC1gD50aGqCAgHvZwDc320fh0ivXW+jiq/NJIQEyCht0vl03ICIq6yuQmBq/t3Lkw3JH6zTmOa16Ebw7wjvDvGLOeBAnFSOm5eh/88wH8dy7Oaz3cRr8zCzehw3mEhjqc0Rxn9/ylwNaVDEePQOlPEJsIOj+awjwcaKwFlcoFBOq8O4aTqUB67qXZ539i8TyTEnNVBq9XRG8Oj0B0CIvkOF/KRug0gPIfoBgLgEUJh1hOR3QAhPELhRsOFshVqMfTIYOJT/wAENOSBlN1QfyH1bYVmGRGjiklwgR4ImhGqZ0YRXkPCjqT76QEY6hQgqSHcy8LvseRlVVZ3QCTdss2X9jkj8Tt1etOiDo/50GsV3LGoc5xb2uOrssRodPjvEn55RcuOYxLg+U54UrBm15wOrz+g2lAbg+N00YovFTrpQlGK1aE8Q1Qz9JqxZ+YBgL26DGMxvrYbuj/U1FJXQsM6s8LbbsLrzBxHp0ohKHjqpO4Tg+OmQtXIxtpubC5fQCRpOvXknoUJ36XTnxZ1eIaGPJQv9oxihF6OCh4rFK/IEqPU4f2F4tvdAmebmiv5smy8tV9gYoYYjQ6XdPFfkhltw9A5Rv/LHZ0mgShch/JkN5SPdxzZV2lTabQZ2R1oLYllN4lEFavLa3P5BA5dd3Y3Npg4eqLRYbEbfVmLGl3WLkcF49Px5ZnYLMSjw1If2lDDbailbUcAAPlaMtxMJqYTixCzDtfWcI8dV5c2Pe+lkSf/yvVcmOZvEzqU0248AXH5rweq3V6VSpOV00HgONZ2E1FnrnsVQbijNWy7qbZ7HB4/AFx+VhHr/46J6HXownDUg3a6g8bRWQvt1birlihNh+tq+K+s/BYHfyLkO0aeDNKL51oC5xj9dCWGNqFDOe0GANz+wDvbDlY5vRzPZ2bm6HU6lt3EGlUCGFfa3F4/Fjh0Vb9OdAAbIyaYDpWpQ5kfL9aphJmDuuZb9FgUKytOnDpVgWm/vQRru2m2zuzwBkqrnV4/1gjc1QM6M6+JD6ZDZepQ5uxG4uejFZsOlwcwAQCjwWgxmbQqlZrneQ6xqAL1o4o3gAOY2N0+m9tPX+2ebflbtw4mDRtlkyhMh4rSYbLsBgAc3sCmw2W7ymvZfJfR0ynDdHZhdlGGsbVP5PSB6TAOkqTDJNqNxO7y2qM1jkqnp9Lh8bJbXh+NwGXptZkGTQeLoWe7NI3AZs9KFkyHzZAaHabCbhgMBgNkbypmMBiMpmB2w2AwUgSzGwaDkSKY3TAYjBTB7IbBYKQIZjcMBiNFMLthMBgpgtkNg8FIEcxuGAxGimB2w2AwUgSzGwaDkSKY3TAYjBTB7IbBYKQIZjcMBiNFMLthMBgpgtkNg8FIEcxuGAxGimB2w2AwUgQHAHa7/bnnnhs7dmyvXr169+49bty4F198MRAItPjmuXPnXn311ck/yYRQ1El6PJ5Ro0YNHTpU2uNyuRYsWDBo0KDu3btPmzbtjz/+SKT84uLioqKi9evXJ3ymrQDTYcpoLR0KADBr1qySkpJ58+b17NkzEAj8+OOPzz33XElJyeLFixP5yEQYOHDgp59+mp+f31onkCSeffbZkydPZmVlSXvuvvvurVu3PvLIIzk5OcuXL58xY8a6detyc3Nb8SRbC6bDlNFaOhT27du3bdu2l19+ecKECXTXoEGDNBrNunXr3G63TqeT9/OiobS0tLq6OvWfm2z27NmzbNmyadOmbdy4ke45cuTIF1988frrr//tb38DgLPOOmv06NFvvfXW3Xff3Zon2howHaaMVtQhJ4oihBbZk7jppps++eQT6R5/+OGHf/vb37p169a/f//bbrutqqoq/GCHw9G9e/dXXnlF2uPz+fr27fvEE08AQFVV1e23396/f/8zzzxzypQpP/30Ez3mwIEDRUVFmzdvnjt3bq9evQYNGvTwww9jjH/55ZeRI0cCwKhRo2644YbwD/rhhx+Kiop+//13ac/27duLioq+//57ANi6devll1/evXv3nj17XnXVVY1mgz179lyyZIn05/z58y+66CLpZDZt2nTNNdd07959xIgRn3/++c6dOydPnty9e/cJEybs2LGDviUQCPz3v/8dMWJEt27dzj333OXLl0ulLV68uHPnzk1daIzxfffdN3PmzG7dukk7f/rpJ5VKdc4559A/VSrVqFGjfvjhh4Zv/+c///mPf/zjnXfeGTJkSPfu3efMmWOz2f7zn//079+/X79+Dz/8cFOf21ZgOoS/gA65zp07FxQU3H333e+9917E/aOsWrXqnnvumTJlytq1a1966aUdO3Zcd9114cvFGI3Gc889d926ddKeH3/80W63T548WRTFmTNnbtu27cUXX/ziiy/69es3a9asvXv3AoAgCACwcOHCq6++evv27U8//fTy5cvXrFkzcODAF154AQA+//zz//73v+FnMnz48MzMzPAPWrNmTWZm5ogRIw4dOnTNNddkZ2evWrVqxYoVRqPx6quvLisra/7LS9CTeeqpp+bPn79t27a+ffvef//9ixcvfv7557ds2WI0Gh966CF65KJFi15//fXbb7993bp1119//WOPPfb+++/Tl7p06XLeeec19RHvvvtuZWXlvHnzwncePnw4NzdXrVZLewoLCw8fPtzoGW7btu3o0aPffPPNu+++++23306bNi07O/unn35avHjx8uXLqdbbLkyH8BfQIadWq994442ioqL7779/8ODBY8eOXbhw4c6dO6Ujli5dOnLkyFtuuaVTp07Dhw+///77d+zYsW3btvBSJk2a9Mcff0iX9csvv+zWrVv37t1/+OGH4uLixx9/fMSIEV26dHnooYcKCgrCnXjcuHEjR45UqVSjR48uLCz8888/VSqVyWQCAIvFYjTWW8SP5/nx48dH3OYLL7yQ5/l3331XrVY//fTTPXv27N2795NPPunz+T7++ONmvnlDxo8f36dPH71eP3XqVJvNdsUVV5xxxhlms3nSpEnFxcUAYLfb33vvveuvv37atGlFRUVXX331JZdc8vrrr9O3X3rppdJ2BBUVFU8++eTChQsjKgV2u51+WQmj0eh0OjFuZNE1l8t11113GQyGgQMHnnnmmRjj2bNn63S6cePGpaWl0TNsuzAdSpzGOuQAoFu3bqtXr16/fv0DDzxQWFj43nvvXXTRRY8++igA+P3+3bt3Dxo0SHrDWWedBQARhZ5//vk6nY42RAcCga+++mrKlCkA8Mcff/A8f/bZZwc/jOMGDx4cLpGePXtK22az2Wq1NnOuAHDRRRcdOXJk3759ALBr166SkhL6QTt27OjVq5dWq6WHpaWlFRYWxvoL7Nq1q3QmEX96vV6fz1dcXOz3+4cPHy69ZejQoYcPH66pqWm+5IcffnjUqFFjxoyJ6XwiKCwslOKP2WyWTo/+abPZEilcCTAdUk5jHQrSVteuXbt27Tp79myHw/HQQw+9+eabF110UadOnQghFotFOoxuOxyO8FJ0Ot3555+/du3aGTNm/Pzzz7W1tZMnT6aHiaLYq1cv6chAIJCeni79Kd0YSotLeg4ePDg7O3vt2rXdunX78ssv8/PzBwwYQD+osLAw/EiLxRJxki2i0Wia+ZMQQgucMWMGQsE15an9nzp1KvxLRfDtt9/++OOPGzZsaPiSxWKJuD02m81oNEY0YUR5ek2dQNuC6fA01qHg8/nKy8sLCgqkXUaj8c4771y1alVxcXGvXr04jgs3e7odkXoBwKRJk/7xj3/U1tauXbu2f//+tO/QZDJpNJovvvgi/MhGv0OUcBx34YUXrlu37tZbb127di1tYKMfFBGRrFZr+/btI94u3R6Kx+OJ6dPpt37mmWe6d+8evj/86jXkyy+/tNlsw4YNo38SQgghnTt3fuCBBzp16nTy5Emv1yvds8OHD3fp0iWmszo9YDqMnrarQ+Gxxx5btWrVt99+G94JT1uJsrOzVSpVjx49wtPO3377DQD69u0bUdC5556r1Wq///77DRs2/OMf/6A7+/Xr5/V6McZSxlVaWpqZmRnNmTVlk5MmTVq2bNnPP/986NAhmsECQJ8+fVasWCFdr6qqqiNHjlx++eUR7zWbzeGhpri4OCKsNU+PHj3UanV1dbXU8n/q1CmO48Lb2Bpyxx13zJkzR/pz9erVK1eufOedd9q1a+dyuTDGX3/99cSJEwHA7XZv3Lhx5syZ0Z/SaQPTYTQnQ2m7OhRmz569Zs2aSy+9dM6cOd26dRNFcceOHUuWLOnVq9fo0aMB4IYbbpg3b95rr702ceLEkpKSxx57bMiQIQ1vs0ajGTt27GuvvXbq1KkLL7yQ7hwxYkTPnj3nzZu3YMGCvLy8bdu2Pfjgg7feeuvs2bObOSeaJ3/zzTdDhw4988wzI14dMGBAhw4dFi1adOaZZ0qvTp8+/Z133pk/f/4///lPn8/3xBNPmM3mSy+9NOK9ffv2Xbdu3cyZM/V6/euvv+50OmO6zSaT6aqrrnrmmWfS09P79et3/PjxhQsX5uXl0Za5VatWrV+//tVXX414V25ubvhwqezsbJ7n6Zmnp6dPmzbt4YcfJoRkZ2e/9tprPM9Pnz49+lNqlF27doWnuFqtdsiQIQmWmWyYDqO/Vm1Xh0JhYeGqVauWLFmydOnS8vJytVqdn58/Z86c6dOnU7OcPHmyx+NZsmTJU089ZTabx44de9999zVa+qRJk+bMmXPOOedIAYrn+eXLl//73/++6aabXC5XQUHBbbfddt111zV/ln369Bk9evTjjz8+dOjQZcuWRbyKEJo4ceIbb7wRPgapY8eO77777uLFiydNmsTz/ODBgz/44IOG4eu+++6bP3/+yJEjLRbL9OnTp06d+u2330Z15UI88MADZrP58ccfr6ioyMzMvOCCC+bPn09f2r9/f6MV4+Z59NFHFy9evGDBAqfT2b9//3fffTcjIyPWQiJ4/vnnw//My8vbtGlTgmUmG6bDWK5WW9UhOm2aGBkMhsJhT4QzGIwUweyGwWCkCGY3DAYjRTC7YTAYKYLZDYPBSBHMbhgMRopgdsNgMFIEsxsGg5EimN0wGIwUweyGwWCkCGY3DAYjRTC7YTAYKYLZDYPBSBHMbhgMRopgdsNgMFIEsxsGg5EimN0wGIwUweyGwWCkCGY3DAYjRTC7YTAYKYLZDYPBSBHMbhgMRopgdsNgMFIEsxsGg5EimN0wGIwU0fp2s2XLltmzZw8cOLBz5869evWaMmXKBx98EM0bjx8/XlRUVFRUZLPZYv3QO++8s6ioaOHChbGfb8s899xz9MQeffTRZJTPSAYrVqy49NJL+/Tp07lz5/79+8+YMWPLli3RvHHlypVFRUUTJ06M40NHjhxZVFS0fv36ON7bFMuXLy8Ko1OnTkOGDJk1a9bmzZtl/JT4aGW7+eWXX/7+979/8803BoNh2LBhWVlZf/7557333vv222/L+0EnTpwoKip688036Z89e/YcM2ZM165d5f0Uyueff0431qxZw9ZEbhO88MIL8+fP37ZtW2Fh4dChQxFCP/zww4wZM3bs2CHvB61ataqoqKi4uJj+OXz48DFjxmRnZ8v7KQCgUqn69evXr1+/Xr16uVyu77777u9//3urO47Quh//9ttvi6I4bty4V199le6577773n///eXLl0+fPl3GD5IsgHLddde1uCJ9fOzfv//AgQNms1mv1588eXL79u39+/dPxgcxZGTZsmUA8NBDD82aNQsA3G73tGnTiouLP/zwwz59+sj4QRE6fOKJJ2QsPJx27dp98skndNtut0+cOPH48eMrV64cMmRIkj4xGlo5u6H1oPT0dGnPvffe+/3334enl6tWrZo0aVL37t179ep1xRVXfP/9940WdeWVV4bnL999911RUdHgwYMB4KKLLnr88ccB4NFHHy0qKnI6nRGVKZ/P9/TTT48ePbpr1679+/e/+eabDx06RF966623ioqKbrzxxs2bN0+cOLFHjx4XX3zxrl27mvpGX3zxBQCMHj36/PPPhwbyYiiTCB3qdLo333xzy5YtixYtonuaUUgEtAoj5S+LFy8uKiq65ZZbnE5nUVHRt99+CwAXXnjhRRddBA0qU2VlZXfeeefgwYO7du06YsSIRx55xG6305duvvnmoqKi//u//3vnnXeGDx/ep0+fm266qbq6OppvZzKZzjrrLADweDxxXR7ZaGW76dWrFwB88MEHd9xxx4YNG6xWq8lkKigo4Ljgib366qt33HHHnj17xowZM3jw4C1btsycOXPDhg0xfcqUKVPat28PAGefffa1116rUqkiDrjxxhtffPFFu90+adKk9u3br1mzZurUqaWlpQCg1WoB4NChQ3feeWfPnj0zMzP/+OOPm2++ORAINPpZ1G7Gjx8/fvx4YPWpNgLV4X333ffEE09s3rzZ5/Pl5OSE13GaUUiUqFSqa6+9lm5Pnjx5ypQpEQdUV1dfcsklH3/8scVimTx5siiKy5Ytmz59OlUa1eH//ve/pUuXDh8+XBTFdevW/fvf/47mox0Oxx9//AEArZvaQKvbzU033UR9d9WqVTfccEP//v2nTJnyzjvv0Etss9mee+45AFi0aNErr7xCrz4APPnkkzF9ypw5c4qKigBg3LhxCxYsUKvV4a/+8MMPGzduRAitXLnymWee+fTTT3v27Gmz2V577TUAoMZ34MCBZ5555qmnnqJZ97FjxxoNbnv37j1w4IBGozn33HOHDh2alpZG61OxXxhGSlm0aFFmZqbL5XrllVeuvPLKvn37Xnvttd999x19tXmFRIlarV6wYAGV04033jhnzpyIA5YuXXry5MmOHTt+/vnnTz/99OrVq9Vq9R9//EFzH/rGI0eOfPbZZ0899dR9990HAN98801TH1dRUTF16tSpU6dOnjx5+PDhZWVlV1999ZVXXhnbdZGbVrabtLS0VatWLVmy5Morr+zYsSMh5M8//3zwwQfvvvtuAPj9999p+jd58mR6/IUXXggA+/fvr62tlescfvrpJwDo06dPp06dAEClUl1wwQUA8Ouvv0rH5ObmDho0CAC6dOliMBgAoLy8vGFRX375JQCce+65er1eEISxY8cCq0+1BXr37v3dd989/vjjEyZMyMzM9Hq9GzdunDVr1ooVKyA6hSQO/ZRx48bRRCY3N3fAgAERnzJ69GiTyQQA/fr1A4Camhq/399oaX6/f/v27du3b9+xY4fdbud5/ujRo3v37pXxhOOg9TvCOY4bO3bs448/vnHjxk2bNtEk85NPPjl+/HhNTQ0AaDQavV5PD87IyKAbVqtVrhOgnxLefkQ/JdzRwl/V6XQAgDFuWBStSW3btm3ixIkTJ06kzUysPtUmMBgMV1555csvv7x169bVq1fT6tXzzz8P0SkkcWLSIRUhNKFDAMjLyzscYuvWrdddd92mTZuuueaaOEaNyEhr2o3D4Vi7du1zzz0ntWDl5eU9/fTTgiAAwNGjR9PS0gDA6/W63W56gNQ2Fn5XKDTblIqKshUNAOin0Jsd/l7J2qJkz549Bw8eBIDKysrdu3fv3r2bZkCsPqVwTpw48fHHH9NqMuWss85asGABAJSWlgYCgZgUghCCVtVhQzIzM2+99VYAqK2tbV0ptnJ2869//evZZ59dvHixz+eje7766ivacJOfnz9gwACNRgNh9ZFPP/0UAHr37m02myOKog17tEkMAP73v/+Fv0pF4HQ6G57D8OHDAWDnzp1HjhwBAJ/Pt2bNGml/9NCa1IABAw6HMXr0aGD1KWVz5MiRO++885FHHvnss8/oHlEUaYtJbm6uIAgxKSRch06nk3ZFSbSoww0bNtDfQmlp6W+//dbUp8SK1J9rNBoTLy1uWnPcjdFovOuuuxYuXLhs2bKVK1fm5eVZrdaysjIAuPjiizt27AgAt95665NPPvnAAw9s2rSpurp606ZNPM/fe++9DUsbM2bMZ599tn79+rlz59rtdtqDKNVicnNzAWDZsmUlJSV33XVX+BtHjRp1zjnnfP/995dffvno0aN37Nixd+/e7OzsG2+8MaavQ+0mYnTphAkTvvvuuzVr1jzwwANUagylMWzYsHHjxq1bt+62225btGhRRkZGWVkZra3PmzcPYlTImDFjPvzwwyeeeGLPnj3btm1r3759ZWVluA5LS0sffPDBESNGPPjgg+FvnD179qpVqw4fPjxlyhTaluT3+0eMGHHeeefF8aVoUzHdtlqthw8fBoD+/fvTRp/WopWzm2uvvXbp0qWjR482GAwHDx602+39+vV76KGHpL6nm2+++YknnujSpcvatWt///33ESNGvP/++436/eTJk+fOnZuVlbVp06YOHTrQERNer5e+ev3113fp0sVut//8888R1V2E0JIlS+bOnavRaFavXl1ZWXnxxRd/8sknWVlZ0X8RqSZF+78lLrjgAp7nT548+fvvv8dyYRipAyH0wgsvPPLII/379xdFcf/+/RzHjR49+s0337ziiisgRoXMnz9/woQJgiBs3Ljxsssuu+yyyyBMh/fcc09WVtaRI0f27NkT8cbMzMxVq1ZdfPHFFRUVq1ev1mg0c+fOXbp0aXxRSmoq3r59e3l5edeuXW+//fa33npLGmLSKvw/8h7M9GSQuGMAAAAASUVORK5CYII=", "path": "image.png" }
Which solution has a higher concentration of blue particles?
[ "Solution B", "Solution A", "neither; their concentrations are the same" ]
0
The diagram below is a model of two solutions. Each blue ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the blue particles represent the solute. To figure out which solution has a higher concentration of blue particles, look at both the number of blue particles and the volume of the solvent in each container. Use the concentration formula to find the number of blue particles per milliliter. Solution B has more blue particles per milliliter. So, Solution B has a higher concentration of blue particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAVYAAAHFCAIAAAAmP0Y5AAAmBUlEQVR4nO3db2xTV94n8JOAUxLjxPwxIbYQ7GLHwd0HjGqvVAhPmyjSQHeHvkkm1SbVBk1WGySqAWmogpYNbaZ/ovJoARWJrEREVgqrTeENPNpCpSgMTzJTaW0U01VDHJudVMhOitvg+DoJY0O8L+40E0Jw7j32/Xu+n1eU3lN+Jb5f3/PnnlOwkMn87//7lAAAe/79P6xbSzLk1veIAAAW/bt/WFeodA0AoCREAADT1i79B8+Oojd2vKZUKSCz6fmM79ECIcS7rXBjcYHS5YBM7k381T+RWvxHPAUAMA0RAMA0RAAA0xABLCt46RfAnLWrXwI5S6Q4QkhpkUnpQl6wsZj8qnKN0lWAwhABUkmkuP8Zvh6cCY89CUfnpgghJsP6KrPdY3H/evtBm7FC6QIBCEEESGQwMtTh7+LSyaW/yaWTvljAFwv0ha53etprbQeUKg9gESIgzxIp7p/uX7zxw+0s13Dp5IlvT9faqj9+o11tvQNgDYYD86z7QW/2+3/RYGT4zL0uqesByA4RkE++2MjV0HXh1w9GhgcjQ9LVk13iacb3aMH3aIH7a0apGkBxynQEEinun3+4HZ39MTgT8sUChBCvxe0sc1iN5b/eflCjz8aJFNfhE/2t3uHv8ljcivwvP8sUTM8vEELSC5gUZJcCEeCLjXT4uvhB8iW/GeCzoC90vdPb7rXslb+wHN2cuL3sf0oILp28Gr5+1HVEipIAViVrRyCR4s4GLrbePZ7lVonOTbXePd49ekXOwvIiOi/6/ucF46H8VgIgnKxPAd0Peq+GBXWVL432ZgjR1ndj8EmYsmH8YX4rARBOvqcAsUNl3aO9vtiIdPXknf+nAF3D6NwUv3wQQH4yRQDlUJmvS0P3hslgpG6r0RFQ0AGZIoBuqCw6N3VzQtAcuxo4yxyUDc32/FYCIJxMERCcoewnU4+xyc+5gfJOdpYhAkAxao8A6jE2+VHfyYgAUJBcERCnvJOpx9jk9+6OQxSP9NaS8sM7DkpRz6rWrSU7NxXu3FRYbMDSIHZhgXA+dXraRTfxnlJqLLDEQOybCuybCorxshjDZIoA6hEvz2Z3XguRVpXZ0eZqEX59k6Nei+sgQU/kigDqfjLtGJtSjrqOnNx9TMgEYZur5cM9H8hQEkAWMkWA1biVsmExZUMFNVc2XH7rQpYHH6fZ3l93WVtrH0GvZOoFNtnrr4aucelZUa0UHCrLUZXZ8VVdz2BkKDgT9j8OBGdChBBnmcOzxe0ss6tkv6C5NIkmMoQQWxmGA9gl00++tMh0bt+nrXePi2ql4FBZXtTaDtTaDhCX0nW8wtNn5OHPC4SQjSWFxWsxKcAo+WYEvJa9TY564ddjqAxABrJOCrbtahGYAk2O+rZdLRKXAwDyRkBpkenDPR9cfut8lgFza0n55bfOf7jnA013AQC0QoFRIK9l79eH+q+Gr0dnp4IzYX7hoNNsd5bZnWX2wzu0unEYgBYpMxBcWmTClBiAGmCBMADTEAEATMOKEAChfLGR8fjfRq+sxq0ei7uyzK71oStEAMDqLo1e6R7tXfFfNdsb/rPrP2o3CBAB7MLh4kKMxUNn/F1jr97woi98bTA6pNHDLwjGAgCy8MVGGgdas9z/PP7wixsTt+SpKr8QAQArE7vt9dn7FyOzk9LVIxFEAMDKzt6/KGrbay6dPOPX3lHRiACAFYzFQzeFHRK/lC8W0Fx3ABHArul58s3482/Gn0/P43Dx5e5Eh+ka+mOBvBYiOUQAwAqoz3qNzmrm5AseIgBgBSxse89DBACsIDr3I3VbDR2ESRABACui3vbeZDBqa6UgIgBgBTkcD0d5uqxSEAEAK2Dn5AtEAMAKamzVQs6DWaGhtTrvxUgKEQCwApuxom2X6I2ttLjtNSIAYGXNlQ2ijrR0mu1a3PZaDy8LR2Yn7/10P/gkHJwJjcXDVWa7s8zh3GB/Y/Mem7FC6erUy1REvNvWEEJMryldilp1ettb7/5OyAShyWDs9LRray6Ap/kI6Bu/1v2gl0snF3/HFwv4flmk+eGeY02OBmUqUz3DGrKxWOki1M1mrOiv6+l+0Hs1dD3LZTXW/Z0erZ58peEIiMxOnvF3+bIuyf7i/sU70eGPPe14HAA6/OEXNdbq7u97X17559nsbnLUq+SQSDpajYBEimu9e1zIu5y+WKBxoPXrQ/9LoyENauC17PW+vZcQMhYPRWenuHTSabZXmTW2BGBFWo0AUe9yc+nkmXtd5978VNKSgAVVZoc+7vxFmoyAwciQ2He5ByPDg5EhbT2wjcVD4zMPo7OT/Pun/BhnZdnOfH0Ecbg4EI1GwNn7X1K06vB3aSUCEinuzL2uwcgLr6wvjnp4Le7/9uYnufdrcLg4EC2uC0ikOLq3uLh0UhNbu/liI+/cem/Z/f/iBYF3br03GBmSsyrQK+1FQHCG8kVuksNL4LIZjAy13j2+dI5zRVw6eeLb033j1+SpCnRMexGQy8ZMucSHDBIprkPM/pNnv7s4Rru5DQBPexGgYx3+z1f9/l9Gi1vWgqpoLwKo3+IkhFhLtuaxkvwajAzdif5JbKuxeBjdAciFBiOAdjuXHNtKjbqTovLeDaic9iLAZqyge5GbEKLmRR3+xwG6huOIAMiB9iKAEEL35k+Toz7vleRRcIZyYG/VE+8AstBkBBx1HRH7SK/+d7m59Cx1W7r1DmsLMhuLCzYWFxg0+SmA/NDqD7/T0y72epW/JpTLlrV070GWrivwbiv0bis0vYalgezSagRUmR3n3vxEyKAAv5eDmkcBeOxsWQuqotUIIITU2g58fag/+9ZOns3u/rqed3cckqsoetQR4NnizmshwBZNvia0qLTI1PP2hRsTt+5Eh6JzPy6u/7WWlDvN9hrrAU3c/LwaW3X3gysUIwKa27IWVEXbEcB7d8ehxVvdFxvR3BauPJuxotNz6sS3p0W1anO1qL+PA2qm4Y7AijR6//NqbQdqrPuFX+8024+6RG90vQiHiwPRXwRoXafnlMCNq51m+7k3P5G4HNA/RIC68KMbba6W7Je1uVq+quvBnqiQOz2MBejPUdeRGmt19+iVYDy8dH8UfpizydGg6f4OqAoiQKWqzI7z+z7jf+2LjRBCnGV2la9uAi1CBGgAvvNBOhgLAGAaIgCAaYgAAKYhAgCYhuFAduFwcSCIAJbhcHEg6AgAMA4RAMA0RAAA0zAWwC4cLg4k9wgYi4fGZx4Gn4SDMyGPxe0sc1QYy7GJhSbgcHEguUSALzZy4s+nl56B5/vlwM8qs/1jLezYCQA0YwGJFHc2cDHLGdhj8XDjQGv36JXcagMAyYmOgESK+0//crwvvPpRlpdGe1vv/o6qKgCQiegI6H7QK/wEK18sgHNvAdRMXAT4YiNXQ9dFNel+0Et33BUAyEBcBHT4Phf7B3Dp5Nn7X4ptBQDyEBEBkdnJpfvYCXcn+ieKVgAgAxGTgsEcDrEei4d0M0e4uBQiOj/pLLN7LO5K7OoHmiUmAmboIyAYD+sgAgYjQx3+rqVToYORYf4XXov7Y0+7tnb15g8XJ4TgcHGWiYiAV60CECI6N0XdVg0SKe7Mva7FG/5lvligcaD1qKulydEgZ2G5KF1X4N2GRYGsExEBJsN66j+G+thcNUikuHduvbdqAnLp5Bf3L0bmpj7c84E8hQHkTsQjoMfipv5jnGYNR0CH/3PhT0BXQ9f5bf8BNEFEBFB/k5sMRm11kpfqG78mdkbjxJ9PJ1KcRPUA5JeICCgtMgk88XKZw7+c/K05iRTX/aBXbCsunTx7/6IE5eRZ+jmZnifT8yS9oHQpoBxxY8Gd3naTwSiqibWkvG1Xi6gm6hGcCdMNgo7nMHsiGy5FfI+e+x495/6Kw8XZJS4CbMaKtl3iDrTv9J7S7py5/5fXn8US/hoFgLJEzwg3VzYc3n5Q4MUndx/T9Hl40Vn6uUwMCoIm0CwK+YP31Lk3P8neI7CWlF9+63xzpWYmyVeUSwRwKfplFACyoVwXVms78PWh/sPbD1pLypf9K2tJeZOjvr+uR9Pf/zznBvq5TKtxax4rAZAI/cZhpUWmP3hPEUISKS44Ew4+CTs32HVw2y9lLaa/jXWwIBpYkIeNY0uLTF7LXp3d/DzqpwC62VMA+eEFkWy8lr0v93SE8Gxx57sWAElg+/hVdHpPtd49LqqJ02w/6hI3dQp0Einun3+4HYyHgzNhfiK2ymx3ltmtxq3/wV6v3dloOSECVuG17G1y1AvfLs1kMJ578xNJSwKeLzbS4eta9hLqWPxvWdAXut7paa+1HVCoOs1AR2B1H+75QHjf/uSeD7TyQgR/uLh32xrTaxp7ZXhxG/ssL6Fz6eSJb0+fDVzE+xrZIQIE6Xn7wsndx7IvhXCa7f11l9/VzgsR/OHiG4u1t2VI94NeIdvYE0L6wtco3vJgitZ++Mpprmzor+upse5/OQisJeVtrpav6nowESgDsdtYXw1dH4wMSVeP1mEsQASbseL8vs8IIZHZyWA8HJ2d0t9SCJVLpLgOX5fYVh3+Lo/FjdHBFSECaNiMFVrp8OvMzYnbFJvQcenk1fB1TNOsCBHArsTTTDCWIYRUbSnQyogg9R62ubzuoW+IAHY9yxRMzy8QQtIL2rj/SQ53siZ2cFAEhgNBS/w/BegaYgeHV0EEADANEQBaQv3+lab3sJYUIgC0hPrdTU2fZCEpRABoCfUODoiAV0EEgJYc3rHCRlWrspaUH94hdMNL1iACQEtKi0zn9n0qtpWmt7GWGiIANKbK7GhztQi/vslRj0XcWWBpELvWrSU7NxUSQooNmlkaxOOX+naP9q56ZZOjXrsn2chDAxGQSHHjM2F/LBCcCfM7c3ssbmeZo9K8Ewv1c1FiIPZNGrv5Fx11HamxVp/483+Jzv244gXWkvJO7yl8/69K7REwGBnq8HctO9XLFwsQQkyG9UddLU0ObR9VANSqzI7+up470WF+A2t+4aBns9u5we4ss9dYq9H/F0K9EZBIcWfudQ1Ghl91AZdOfnH/4p3o8MeedjwOsKm0yKShPVrUSb3Dga3/cjzL/b/IFws0DrRicygAOiqNgEujV4KC3+vg0skz90RvIwE4XByIOjsCvtiIkMHepQYjw4ORIX1vF7s4LBqdnYrOTeU+JsofLk4I8W4r3Fis1XFByJEaI+Ds/YsUrTr8XTqOgEujV5bFou+Xg8+9FjdGQ4CaGjsCwrsAS3Hp5Fg8lPdiFDcWDzUO/DbLYxE/GoIdMoGO6iIgl9tYf5tDjcVDjQOtq253we+Zf2n0ijxVgZ6oLgLoHgH+1lZfm0MlUtwZv4hhzu7RXl0+B4GkVBcBFPvD/r2tvp4Cuh/0it3u6oy/C/OjIIrqIsBjcVO31dM74WPxkKgDM35pFb45cVuKekCvVBcBudzG1FvKqBB1h+hOdPX1VACLVBcBpUUmij0heHp6J4R6XENnAyIgNdVFACHkMNWq7xrr/rxXoqDgE8o7mUsnI7OT+S0GdEyNEXDUdUTsfq8mg7HTc0qiehQRnaO/jQUOqW4sJr+qXPOryjVYGsgyNUYAIaTT0y7q+nP7PtXZm6HWEvrVfnrqEIHUVBoBVWZHp6f95WO8V3Ry9zH9feg9W9x0DbFhPoii0ggghLy741B/XU/2oyOcZnt/3eXmSh3uGkI9M0I9mApsUuNrQotsxoqety/cmLh1c+J2cCbEpWf53zcZjM4yR421Wpc3P89jcZsMxsX/ZeEOb8cWGiCCqiOA9+6OQ/zOMIkUF5wJW0u2svBWXGmRqdNz6sS3p0W1Orz9oPDXJbV4uDjknXo7Ai8rLTJ5LXtZuP95tbYDh7eLOADDWlJ+cs8x4dc/yxRMz2em5zPYMoRlWooABp3cc0zgQZomg1F/0yIgA0SAqpUWmXrevnBy97HskyM11v1fH+qvMjtkKwx0QwNjAdBc2eDZ4u4evRKMh5dtm+/Z7G5y1Ot4uySQGiJAG6rMjvP7PiO/jIlyqaTVuBVf+5A7RIDG8GOiSlcB+oGxAACmIQIAmIYIAGAaxgLYpd3DxSGPEAHs0vTh4pAv6AgAMA0RAMA0RAAA0zAWwK7Uc/LzXIYQsqmkoGiN0tWAQvAUwK5kKvPd5MJ3kwvJVEbpWkAxiAAApiECAJiGCABg2gvDgT8nF8KP00qVAjJLLRCjoYAQMjXzbBrHETPj5+QLG8W9EAF/+enZX356Jm89AKAkdAQAmIYIAGBaQSaTiSWxiTQAiyzrCwsyGSwLAWAXOgIATEMEADANEQDANEQAANMQAQBMQwQAMA0RAMA0RAAA0xABAExDBAAwDREAwDREAADTEAEATEMEADANEQDANEQAANMQAQBMQwQAMA0RAMA0RAAA0xABAExDBLDr0aNH77///vvvv//o0SOlawHFrF39EtCpTCbz9OlT/hdK1wKKwVMAANMQAQBMQwQAMA0RAMA0RAAA0xABAExDBAAwDREAwDREAADTEAEATEMEADANEQDANEQAANMQAQBMQwQAMA0RAMA0RAAA0xABAExDBAAwDREAwDREAADTEAEATEMEADANEQDANEQAANMQAQBMQwQAMA0RAMA0RAAA0xABAExDBAAwDREAwDREAADTEAEATEMEADANEQDANEQAANMQAQBMK8hkMkrXADL5/vvvP/roo1Uv++ijj15//XXpywFVwFMAQ15//XWXy5X9GpfLhfufKYgAtvzmN7/J8QLQGUQAW7I/COARgEGIAOZk+Z7HIwCDEAHMedWDAB4B2IQIYNGK3/Z4BGATIoBFLz8I4BGAWYgARi37zscjALMQAYxa+iCARwCWIQLYtfjNj0cAlq1VugBQzOKDAB4BWIYIYBq+/wGvCQEwDWMBAExDBAAwDREAwDREAADTEAEATEMEADANEQDANEQAANMQAQBMQwQAMA0RAMA0RAAA0xABAExDBAAwDREAwDREAADTEAEATEMEADANEQDANEQAANMQAQBMW0sIiSUXlC4DABRgWV9YsLCQOdYfV7oSAFDAxffM6AgAMA0RAMC0Fw4U+1eb1/7rLThijBWpBTI9X0AI2VicKcJ3ATP+3+Nnf/np2eI/vnDDb1pfaN9ikL0kUMb0fOZRYoEQ4tq6ZmNxgdLlgExm5hb+8tPf/xHhD8A0RAAA0xABAEzD4B+71hcV7K4o5H+hdC2gGEQAu4rWkAoTbn7WoSMAwDREAADTEAEATMNYALvm0iSayBBCbGUFxfggsAo/eXY9fUYe/rxACNlYUli8FuOCjEJHAIBpiAAApiECAJiGCABgGiIAgGlKzgj4YiPj8bC1pKLSvNNmrFCwElBEZHZyPP4wOBMihDjLHPgYKEKBCLg0euXmxO3o3NTS3zQZ1nu3uH+/+xg+BCy4NHqle7T35d83GdYfdbU0ORpkr4hdsnYExuKhxoHfdo/2Lrv/CSFcOjkYGW4caL0auiZnSSCzxc/Aiv+WSye/uH+x9e7vIrOT8tbFLvki4MbErcaB1rF4OMs1i58A2api2dqCzMbigo3FBQa5PgWDkaHWu8ezfwYIIb5YoHGgdSwekqcqxsn0wx+Lhzr8XQIv9sUCl0avSFoPEEJK1xV4txV6txWaXpNjaWAixXX4u7h0UsjFXDp5RvAHBnIhUwQIv/953aO9+BLQmQ7/5wLvf95YPPzF/S+lqwd4ckTApdErwdWe/V6GLwE9GYwM3Yn+SWyrq6Hr+CYYi4du/nDbHxtJpDgp/vtyzAjciQ5TtBqLh8fioSqzI+/1gPz8PwXoGt6JDrP5Gegbv/bHyWFfLLD0N6WYOJMjAigeARYbsvnj15/gE+rPAHNPAZHZyTP+rmU3P4+fOPM9DuRx6lTyjoAvNkLdNjhD+bkBIabnyTfjz78Zfz49n5H6z6J+CgjGH+a1ELUbjAw1DrSueP8vWpw4y0vXQPII4FIiRoCWof7qAFXJ5ZP68hISHRM1aeKLBbof9Ob+h0oeAaai9dRtrcateawElFJaZKJu6zTb81iJyomdNLkaup7LUzZP8ghwltH/CHNpC6ri2eyma2gtKc9rIep1Y+IWxaRJh68rx+6A5BFQWmSi/ik6NyACdIL6R+lkZjz45sRtilbRuakch8zkWBfgseylaGUyGL1UDUGFqJ8CDm8/mNdC1It/Y5KCP+vY4arkiICTe46ZDEaxrTo9p6QoBhRRaztQY90vtlWbq4WRN0cjs5NcepaubXQ2pxFTOSKgtMgk9n6use6vtR2QqB5QRKfnlKguodNsP+o6Il09qpLLxIcGIoAQUms7IPyJzmQw4hFAf0qLTJ3eUwKfB00GY6enXeqS1MNkoJ84y5F8Lwv/wXvq5O7VewQ11v1fH+rPZRoJVMtr2dtf17PquAD/GWBqYWgu/7OeLe5c/mhZdw1qrmyosVV3+LpWXCvGf/nj+V+gRIobnwn7YwEuNWs1ljvNdrHDrqYi4t22hhBiek2aEldiM1b0vH2hb/xa94MrL/d+rSXlba4j7+44JF9BquHZ7KZbQ5nj3LncG4fxn4DI7GQwHg7OhIPxkNVY4SyzO812plI/F77YSIeva8XeY62t+uM32gU+QxnWkI3F+S5OmObKhubKhsjsZHRuih/Q9ljczjI7y09/ni20EZDb6illtg+1GStsxgp84VP44v6XV0PXX/VvByPDvsfvdXraNfF3y38MMPXLa7LX35y4FZ37UVSr3CdNsIm4ZiRSXOPAb7Pc/zwunTzx7WlstqE5/HCpqCZ5mTRBBGhG94PeVXfdW3Q1dH0wMiRpPZB3XsveJke9wItNBuO5Nz/J/Q9FBGiDLzay6vf/Mh3+VVaPz6VJ+OdM+OfM/LPcioP8+XDPB0Imzjyb3f11PXlZN4UI0IYO3+dim3Dp5Nn7F7NcwB8u/vDnhfm05PsFgHDNlQ1Zpk5NBuPJ3cd63r6Qr3WTSp4mBAKNxUNiR4l4Oa4eB6UsmzjzPw5YjVudZXbnBnveR08RARpAvfNadG4qkeJYnmnTtL9PnLkk/FPQEdCAXN4GxeZrkB0iQANy2UANm69BdogADchlETi2XYHsEAEagM3XQDqIAA2g3kbVWlKOsUDIDhGgAVVmB93+izVaeFMAlIUI0IZz+z4V28RaUt62qyXLBfIfLg4qhB++NlSZHW2uFlFNOr2nsvcCZD5cHNQJEaAZR11HhO/D2+ZqwUu4IAQiQEt63r6w6rOAtaT88lvn2dl4E3KECNCYo64j/XWXX/U40OSo76/rwfc/CId3BLSnyuzoefsCIcQXG4nOTkXnpvid18S+OpZ+TrgUIYSYXiMYEWQWIkDDvJa9xELfnEsR36PnhBDvtsKNxRgRZBTCH4BpiAAApiECAJiGCABgGiIAgGmIAACmIQIAmIYIAGAaIgCAaVgdyC5FDhcHtUEEsEvBw8VBPdARAGAaE08BY/HQ+MzD4JNwcCZECHGWOZwb7JVlO6vMDqVLA1CYziMgkeLO3OsajAwv/U3fLyft1dqqP36jHXvsAsv03BEYjAy9c+u9Zff/ixcMv3PrvcHIkJxVqUfiacb3aMH3aIH7K04WZpduI6Bv/NqJb09z6WT2y7h08sS3p/vGr8lTlao8yxRMz2em5zPpBaVLAeXoMwIis5PdD3qFX9/9oDcyOylZOQDqpc8I6PB1rfr9vxSXTp7xd0lXD4Bq6TACbkzc8v8UENvKFwvcmLglQTkAqqbDGYHgDOVx2tQNQW34aeDo7KTVWIHZ3+z0GAFPaCOAtiGoRGR28p++u7jiHFCtrfr3u4+J3WSZBTrsCFD0Anh4CtC0wchQ40Drq+aAByPDjQOtzE4AZ6HDCKAmagQRVOW/+j5fdQ6YnwDu8H0uW1WaoMMIoDuHmxDiNNvzWwnIo2/82s0fbgu8+MYPt9lcBvIqOowA6jvZWcZWBKxbS3ZuKty5qbDYoOFzRMSuASFYBvIiXUYA5fCv1bg1v5WoXImB2DcV2DcVFGt5UFjsGhCCZSAv0mEEHN5+0GQwim1lMhgPbz8oRT0gKbrR38VXxUCHEWAzVrTtEn20dtuuI5gx0hxfbESRtnqiwwgghDRXNrzq+O0VeTa7mysbJCsHpBKdnaJui2UgPH1GACGk09sucFzQabZ3etulrkeF0s/J9DyZnifafVMwOkcfAdwzzAETouMIsBkrvqrraXO1ZL+szdXyVV0Pm10A/nBx36Pn2t0vwLR2vSJt9UTLY8ECHHUdqbFWd49eCcbD0bkfF3/fWlLuNNvbXEewelzTnBvo53FzaasnOo8AQkiV2XF+32eEkESK45cAey17lS4K8iOXHyU+Bjz9R8Ci0iITfur649nsppgXFDVarG+6HQsARnR628UuAzEZjCfdxySqR3MQAaBtFMtA2nZhDOjvEAGgec2VDTXW/QIvxhqQZRABoAfn9312cvexVXsEJ3cfO7fvE3lK0gpEAOhEc2XD5bcuvGo9mNNs76+73FzZgJNjlmFoRgB0r8rs+Kquh5/9DT4Jc8+SprXrnRvszjI77vxXQQSwa2Mx+VXlGqWryD9+9hcTwAKhIwDANEQAANMQAQBMQwQAMA3DgexKPM0EYxlCSNWWAtNrue4gGpmdNBnWY+BdcxAB7HqWKZieXyCEpBco7/+xeOiP0WF/LDAWD/N7eFpLtlZtsHs2u3+9/SDiQBMQAUCpb/xa94PeZbv3RuemonNTg5HhvtD1Tm87ZubUD2MBIFoixbXe/d3Z7y5m2b07OjfVevf42cBFOQsDCogAEO3En08L3IS7L3zt0ugVicuBnCACQJy+8WuitujoHu0di4ckKwdyhQgAEcbiobPfiX62x9E9aoYIABGEn9651Fg8jFO9VQsRACJQH7/Bb9wKKoQIABHoDvAjhAQxHKBWWBfALv5wcUKIwMPFcxnVC8YfUrcFSSEC2MUfLi78epMhh6N7inB0j0qhIwBC2YwVFKe286wl5fktBvIFEQAiOMso9952YtNutUIEgAieLW7KhhbKhiA1RAC7KA4Xb7LXU/QFPJvdeF9ItRAB7KI4XLy0yNTpOSXqTzEZjJ3edvHVgUwQASBOre2A8KN7CCGdnlM2Y4V09UCOEAEgWqfnVJOjftXLTAZjp6e91nZAhpKAGiIARCstMn2454PLb53PMtXn2ezur+t5d8chOQsDClgaBJS8lr39dT3+WCA4E/Y/DgRnQibDeqfZ7jQ7PBaM/2kGIgDolRaZam0Ham0HiEvpUoAWOgIATEMEADANEQDANIwFAMgnMjs5Hn8YnAkFZ8JcKumxuJ1ljkrzTgWXTigcAYt/I/5YgBDiLHM4N9itJeUejCdLT6+Hi6tTIsX999H/0Re+tvQ3FzdirrVVf/xGuyKHrygWAdn/RrwW98eedqwqA33wxUY6fF3RualXXTAYGfY9fk+RlVTKjAWMxUONA63L7v+lfLFA40Dr1dArLwDQisHIUOvd41nufx6XTp749nTfuNyfeQUiwBcbaRxoFfI38sX9i1/c/1KeqgCkkEhxHWL2UO9+0BuZnZSunpfJHQGJFNfhE/E3cjV03Rcbka4eAEl1+D/Pcuzay7h0UuZjF+SOgO4Hvat+/y/T4etKpDiJ6pFNIsX5VZZl0/Pkm/Hn34w/n54X+rIwiOKLjdyJ/kl8q4Cc3QFZhwPH4qGroetiW0Xnpm5O3G6ubJCiJKn1jV/74+RwZHZqMfiqzHZnmf1tazVeodM9v7CTF18m57ELskaA/3GAruGd6LDmImAsHjrj7xqLL/9ZjsXDY/HwjR9uv7v94O/3HFNkHgjkQX16wriMESBrRyA6L64LsEhzZ9FcGr3SOND68v2/1I0fbjcOtOLITR0LZv0AZJH9k5NfskYA9XFUXDop8zBpLgYjQ92jvUKujM5Ntd49roORDlhRdO5H6rayfSrkfQqYo7+NxQ4iKkXsJBCXTp65h4N39clpttM1NBmMsvUQZY0A6r8RQohWtqAQOwlECBmMDOPgXV1yllF+4KnPa6AgcwRQH0RBnx1yisxOUkwCEUIoJkpA/agjgPq8BgryRgB9KGojAqiHf6hP7AU1q7FV0x3BVmOtznsxryJrBHgsbrqz5Q7vOJj3YqSQy8wFpgb0x2asaNt1RGyrNldLlYznr8kaAaVFpk6vuIMoCCFNjnqtDARQL3wgOTxBUOMPF9+5qVDg4eJAobmywbPZLfx6p9l+1CU6NXIh9wJhr2WvkC3oF1lLytt2tUhWTp5ZjVsVaUuHP1zcvqmgGBvHSOncvk8EDmZZS8o7PXKfvKTAm4Jtu1oEHkdjLSk/t+9TDa2fyykCSuSOAJBHaZHpq7qeNldL9suaHPX9dT1ydgF4CuR/aZHp/L7P+savdT+4wqVnX3VZk6O+bVeLhu5/ksP5uSaDEfuj6NtR15Eaa3X36BV/LLD0Y28yGJ1ljrbXW5Tq7Sr2CNhc2VBjq+4e7Q3OhJd2g/m/kSZHvRbfoqGfBMLZ2wyoMjvO7/uMEJJIcfzegU6zXfHoV7IXaDNW/OGX0UF+UwBnmV1bX/vLlBaZ2lwtAlcHL9Um7wgQby5NookMIcRWhuEAWZUWmdQzwq2Wn7x6/kZydNR15E50WNTwvsyTQIuePiMPf14ghGwsKSxei0kBRuEcgfwTNagr/yQQwFKIgPyrMjv66y4LmQeqse6//I/npa8I4JUQAZKoMjsu/+P5LCsgTAbjuTc/Ob/vM02PfYAOqGUsQH9Ki0wf7vng8PaD/seB6PxU8Ek4OBNyljk8W9zOMrvH4sbND2qACJBWldmhyFAfgEDoCAAwDREAwDREAADTMBbArrUFmY3FBYQQA74IGIYIYFfpugLvNiwKZB3yH4BpiAAApiECAJiGCABgGoYD2fVknvyfR88JIf9225oNxUpXAwrBUwC7MiSz7BfAIEQAANMQAQBMQwQAMO2F4UD/RMo/kVKqFFDKRFTpCkA5eAoAYBoiAIBpa0kBeeffrFO6DABQQAEh/x/OF5PSCRL3sgAAAABJRU5ErkJggg==", "path": "image.png" }
Complete the text to describe the diagram. Solute particles moved in both directions across the permeable membrane. But more solute particles moved across the membrane (). When there was an equal concentration on both sides, the particles reached equilibrium.
[ "to the right than to the left", "to the left than to the right" ]
0
The diagram below shows a solution with one solute. Each solute particle is represented by a green ball. The solution fills a closed container that is divided in half by a membrane. The membrane, represented by a dotted line, is permeable to the solute particles. The diagram shows how the solution can change over time during the process of diffusion.
In a solution, solute particles move and spread throughout the solvent. The diagram below shows how a solution can change over time. Solute particles move from the area where they are at a higher concentration to the area where they are at a lower concentration. This movement happens through the process of diffusion. As a result of diffusion, the concentration of solute particles becomes equal throughout the solution. When this happens, the solute particles reach equilibrium. At equilibrium, the solute particles do not stop moving. But their concentration throughout the solution stays the same. Membranes, or thin boundaries, can divide solutions into parts. A membrane is permeable to a solute when particles of the solute can pass through gaps in the membrane. In this case, solute particles can move freely across the membrane from one side to the other. So, for the solute particles to reach equilibrium, more particles will move across a permeable membrane from the side with a higher concentration of solute particles to the side with a lower concentration. At equilibrium, the concentration on both sides of the membrane is equal.
Look at the diagram again. It shows you how the solution changed during the process of diffusion. Before the solute particles reached equilibrium, there were 8 solute particles on the left side of the membrane and 2 solute particles on the right side of the membrane. When the solute particles reached equilibrium, there were 5 solute particles on each side of the membrane. There were 3 more solute particles on the right side of the membrane than before. So, for the solute particles to reach equilibrium, more solute particles must have moved across the membrane to the right than to the left.
to the right than to the left
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAIAAACmkWkFAABZV0lEQVR4nO2deXwb1bn3nzOrdi+SE9vxEmWxEztO4iyQhZAESAIhCxTa0lJaoLRA+3a7peWW0tJSenmh5ba0fW9vuRcKbel2IewhCxeyEZKQfbGz24n33dqlkWbO+8eRxrIs21rGthzO95MPyKPRzGjmp+f5nR1hjGG8cbnXM+w+JdnGUbgSyicZqsNk4cb6AmLxh+RzHc6zHQ5/SHb4JYc/ONZXlDQix0w06bP0wkSTvqogR8exY31FlKShOhwJUEa5mza3/+XD5wMhZejdckxGBAAACAGC8D9AEN4IgAC6PD5JHuY4o4DIMbdX2UtyaIobT1AdjhCZFW6eP3C23e0XdEZzdq4oCDqe14kCj4BjgAXgGOAQcAgYFH7BRl6zCBgANrKFvGYir9UXCABFXmMMCoCMMQaQFRz1OrxdwaBgHPW6b3t4z/BriD6CAiCFZK9P8vglp8frcntFjvmXa2eN9a2lJAHV4QjBjO3pY3D4JADIKZxssOTo9EZeEACAhEOEIq8gnD1w5HXfDlGv+4IoeY0BR30Sh/fHCCGMASEEAOQ1kO1kVxSVrhDgyHaEEI5sRwgwxhA5AmDgWNZk1OVZLZOLJgLAsEmSkmlQHY4QmRVuSnJMAOD3OMndJcYr/Ghw5FXUAyav+3aIeh3ZFwBHWdzIJ1F4f4QxDj8nAPKayIGoguwUeQ0osh1jjCLbwyqJHEE9NMbgk4IAMMGk0/g2UUYYqsMRIrPCTWmOCQAkj5vc3ZhEMV6ySuQ19PQ4IaJdyjiC6nCEyKxwU5ZnEVnG5+7xu53jPat4/VJXjxMAZhfkan6jKCMK1eEIkVnhJksnLJuSDwCdrZcVWR6/WUVWlPqGFgC4xj5xYgaYWEpSUB2OEJkVbgBgYbFtus2CFaX58oWQLMM4zCohWT5b1ywF5ZJs4zL7xJG4S5SRhupwJMi4cAMA6yqK80w6KeBvuHTBH/CPr6zi9Usnzl3yBSSLjr9t9uSRuD+U0YHqUHMyq9+Nij8kv3z4QrvbzzDMBFteTlaWWafL5P4OgaDc4/V19rp7XG5ZxtNtlnUVxZnQj5OSDlSH2pKh4Ybwdk3Didaesb6KpLnGPjFDvCtFE6gOtSKjww0AXO7xnOl0HGzo6CsxZyYYY4BVZZNKckyZUCdH0RaqQ03IuCGaMZTkGEtyjAcbOgHgrsWziQVFAAjCL2L+hKjtEHGtCIe3q1vICwUDBlAwxgCYvAaMASkYQ3g7Iu8qGCJbwp/C6rsIgoryyoEzLEILi21jcI8oIw/VoSZkYlXxoEQq2MhzRRBVyd+/RUD9k+wPiFSk9b0baREADJg8dVIDF24jCCeJiPXr26IeFof3J/VzUTKiXPlQHabKuAo3kTYADH3/1EcX3SKg/kn2B0yaCaHfow/nFhR+cjjcLhmu7Ufh1+RYkS3qYVF4fwwIIUXBAMCiDH7OFA2hOkyVcRVuMjWr4HBWydzHTNESqsNUGVfhJmOzCigAgDLZxVI0hOowVcZVuMn0rDJCX5uSYVAdpsq4CjcZm1WwApldZqZoCdVhqoyrcJO5WQVBZpeZKVpCdZgq4yrcZGpWkTGGzH7MFC2hOkyVcRVuMjWrkGtAGfyYKVpCdZgq4yrcZGpWiZSZR+p7UzILqsNUGVfhJlOzSub3d6BoCdVhqoyrcJOpWSXzy8wULaE6TJVxFW4yNatAxmcVipZQHabKuAo3mZpVSG9OJpP7V1E0hOowVcZVuMnUrJL5vTkpWkJ1mCrjKtxkbFbJeBNL0RKqw1QZV+Emc7NKplfRUbSE6jBVxlW4ydisomT6Y6ZoCdVhqoyrcJOxWQUAMrvMTNESqsNUGVfhJmOzClYgs7MKRUuoDlNlXIWbjM0qGT8Sl6IlVIepMq7CTYZnlUx2sRQNoTpMlXEVbjI3qwBkdlahaAnVYaqMq3CTqVkl0gA5Ut+bkllQHabKuAo3mZtVyGPO4OdM0RCqw1QZV+EmU7NK5vfmpGgJ1WGqjKtwk6lZRcn4rELREqrDVBlX4SZTs0rml5kpWkJ1mCrjKtxkalYh2zI5q1C0hOowVcZVuMnUrCJnfH8HipZQHabKuAo3GZtVMr43J0VLqA5TZVyFm0zNKpk/VoWiJVSHqTKuwk3GZhUFILMX3KBoCdVhqoyrcJOxWYVcSAZnFYqWUB2myrgKNxmbVTK+vwNFS6gOU2VchZtMzSrkCJn8mClaQnWYKuMq3GR2VmEz+DFTtITqMFXGVbjJ1KwS6Tw+Ut+bkllQHabKuAo3mZtVAABQJj9nioZQHabKuAo3mZtVMr2/A0VLqA5TZVyFm8zNKggyu8xM0RKqw1QZV+EmU7OKnPFlZoqWUB2myrgKN5maVchFZLKJpWgJ1WGqjKtwk6lZJfNXL6RoCdVhqoyDcNPq8gGAjucyNqvoeU69TsqVCtVh+oyDcFPT1gsApdasjM0qxVYLAJxq6xmZG0DJCKgO02fchJsSa3bGZpVJOSaOQS1On9MvjdBNoIw5VIfpk+nhptnpdQWCOp6bYDZkbFZhGFSUawGAE629I3QfKGML1aEmZHq4qSUO1pYNCGVsVkGAinPNAHC8pXtkbgNljKE61IRMDzcnW3sBoDQ3u++JZl5WwYDzs008y/T6pHa3f2TuBGUsoTrUhIwON40OrzcYMgi8zWzoe6IZmVUQQLE1CyIlfMqVBNWhVmR0uCEOttiWDdFPNCOzCkKoxGoGgJOtmdsuQEkNqkOtyNxwgzEOtwXkZkH0E83IrIIxtpn0ep5zBYJNDu+I3BHKWEB1qCGZG24aHF5vMKQXeKvJAOMhqyCEim2k40PviNwRylhAdaghmRtuatt7AaDUmh3JJZmeVQCgOMcMALVtPUrf6SnjG6pDDcnQcIMxPt3mAIBia3Ykl2R6VgGAHJPeKPLeoHy5xzMCd4Uy2lAdakuGhpvLvR7iYHOM+nGUVTDGJdYsyOyO5JTEoTrUlgwNN6QtYLItB/pyyTjIKgihYqsZAGrbHbKSWT6WkgJUh9qSieFGwbim3QEARdZs6Msl4yOrmHRitkEXlJULXS7N7wxlNKE61JxMDDeXejyBkGwUhWyDDsZbVgHARRk/MJeSCFSHmpOJ4Ya0BZRYc8if4yurAKCSXDMAnOt0hmRF0xtDGVWoDjUn48KNgvHpdgcAFNuyyJZxl1VEgbeaDbKCz3Q4Nb47lNGC6nAkyLhwU9/tJg7WrNORLeMuqwDGRblmyDAfS0kKqsORgBvrC4iFjPUoyDK63S7yIBkEDACDAAEgFHkR2RLzJ5D9UTiFMCQ5YEAIIRL7MY7kE1AwYABZUQAhRcEYQAGsYCCdoxSMyQ7kBdmCI59SFAUQIyuKAhgDYKy+izEgI6MgwBe7XF4pZBAy7iZThqWmvRcAJpoN41qHepAB4GKXyxcMkalFx5axv4JoFIzPdToBID/LTGwnRGUVZ5ccCmAGIQZBXiEbSSwoyufi8M4YA5BMghmEAOE+34rCu5H8EPAr9ReCdRdkKYC7OhQpAPlFDC+gCZOYwsms3hROFgjCK6JiDBiH85qClfDJMcRkFQ6hHIPY7ZVq2nsXFNlG+TZS0kRW8Jl2BwDkZ5kG6pDoihRZogxOWjok7kbBYZ+iWiQl7G6U1HQosEyOQejxSqc7nNWFuaN6E+ORWeHmXKdTkhWzTtRxfYtzNZwJtteH2upCMTtn57GTZ/BTZ3KC2OdzMXn2kawSLtCGH3H4YZL3pAA+dkQ6fiQo+XH0YVsbFQBouCgf2h0sm8NWLuBZgRS5EcYYISCqAYwZxMiKAkC0Rt5FGGNACGM8wSR2e6WaVhpuxh/nu8I6NAi8qkMcVW4ikSZS2UL+i6N2TEKHkeIVUoh+FIzCWiPvhnVFjpmCDieaxB6vdKK5m4abWGrbHQAw0WIEAIzB3SWf3Blwdcpxd+7tkI92yKcOoEXX64qnckllla52+f1tgc72+EdWOXtMrjstL1/PZdnYpLIKAsg16BByNTm9rkDQLPLa3STKiBOjQ9XdeF1Ke73cVh/sbOpTjtHCTJjEFk3hi6awEN4xU9xNpukwg6qKQwo+10EeswkAWs4GP3rVO1isUQkG8O7Nvn3v+dWsAiSrhOvyESZVb5FaOYxxZ7v8xiu+YWNN5Piw861QU52itggghEiFHoMY1T5HtwiQFgSWAZtBhEydeYQyGDE6JEIKBfC5g4E9r3hPfeiPjjUA4HEqdbXB3e9433/N29YoJ65DGNAyRcxQRE0Q3TKFEIppmSI6dHbi3lbU04J9rkF1aDWIAHAiA3SYQe7mfKczpGCLXqfj2ZYzwdqdScx+eLE2iBBacoM4bFYJBODNV3yB/gWooQkG4NCOoMHEWWxM4llFwWA1iR2ewKm23sWlE5K6FZQxJFqHAIAx+N3K0W3+YTNfW6Pc1uhdcK1u5lx+pN3NpdNy6yXcWk861IQvjBPBnAvZ+ahkDkTrMM8odnoCNa29S8Zahxnkbkivqglmg7tTTirWEC7USLVHgsNmlS1vepOKNYRgAPZvkyEZd4MQ5OoEjkEdbn+PL0MX4qAMhIyTmmA2kofr7pITcdkqB3f5977nHzl34+zCH7waPLpTjsSaPkIB6GmBuiN4/6u4t7VPhzl6gWNQh8ff6RnjCYwzJdyEFHyetElZzCe2pXhTDu72e5wKQF9+IJ0RIv0iUHOD3NyYqG5i8Ljw5TNy2N0A7nM3EN/dkJe5BgEATmTqzPiUGEIKPt9FdGgCBKEAPrUzEAokl58u1AQv1ARhcB0itUzU390Q4xxRE3mXuBuMMQaML52R//eVoKNzmOvxu+D4Fnx2D5alfjoc8wm3MiXcnOtwhBRs0YtdF2W/O/U+10f3SzB4VjlxOJDORZ4+pCTlbgBggkkPAMdbxr7YTEmEsx2OkIKz9CLPMYDh7EeDtlQMzd73/G6noq27qT+jHPogtn12CNrO44sfh4+fZ9IBwImx1mGmhBvSFpBnNjWdSKvccbE2KAVw3Kwi+aHuQhJPayBeF+7tUJJwNwAmkeUYxhUINjszbuJYykBIiT7PbEKAfG6l9Www5UMd3Sdp6G56OuRje5NWb/t5fPEABgCzyHEsGnMdZkS4CSn4XKcDAKyi0d2d7nCy1kY5blbp7EixGBVNV0ty7oZhGJtRgExdiIMSjSQrpESfZzFiwPUH08p8F2qDQQm0cjcfvx8KpmTNW2rB2010KMJYl6cyItyc6XAoGLL0uoBDg6N1dyhxs0pXhwbjYoMSTsrdKIpiNYkAcCpT11GlqJzrcCoYsgw6gWURoN6WdPPTpfNBTdxN40W5tyvp9g2V+kOgKIrVIABAzZjqMCPCDWkLsJmNAZcWESEQv8wcSLLCLy4hCSfrbkwCJ3KMNxi61ONO/wIoIwcZJ2UzGQHA50qrDpHQ2qRo4m7qz6R1Jc5WCHoZk8jz7BjrcOzDjSQrF7rCDtbv1iAidA3ibtI/MgBwAkrW3QCE+1nR8lQmI8nKxS4nAEzMMgFAQIs58NwOWRN301SXrs/quoQBIG+sjfbYh5uzkZIUz7JZBWz6B8wv4uK6m8IiDQ4OkHTdDQCQ8tTpdgfWJuhRtCdcojfoWIYBCIsmXZAGdTdtTRrUOQa9AABWowgANe29Y7UgzNiHG5LzbRYT0u6Ycd2N2aLBl7UWMCm4Gz3H6nnWH5KJj6NkIJESfViHkWkk0gODJu4m/QtxdwNEdDiGExiPcbiRZKWu2wXhtgDILmA5Id2bWzKVjetuzFnIlpfW9+UFyJuEUnA3GLA1A9oFKIMhycrFrj4dAoBo1uCwpixWk7qb9K9ETYu5Y6rDMQ43p9sdCoZsg55jWHJHstMrTxnNTG4eO1h/h6p5QjoHn1rFJterOOJuECDSLnCmwxHKpIU4KITa9l4MkGXs06HezOpM6f468icxGeJu1LRIdHh2jHQ4xkM0iYO1mk2RTv9QOl/ovJR6Z7yZcwWAQecZKa8UDn4kuZyp1PPzAkytYmPmGWmpk7taFVcXdnUDYDBZIWsiFk3IPBF0JgAMDMPIioIBCxxrEjl3IHSuwzFzYnbKX5AyEtS2OQDAZurTIQacXcC2nkurSSi/mIt2N6nNd5OjxXRJWfnkvFjkWKPAeaTQmQ5H5ajrcCzdjT8kk5KUzWKMmEowW7n8shRn5TCamYpqHoYcq3LjBn1qB69awvIiqO6m8Zzywd+DR96TL5/EPS0QCkBIgt4WuHQUzu7Bh17Fl49iWepzNxjjHH1GjFuhxOAPyfUDdIgAFVelNTtMyRTOZEbpuxtBRAZzugbHNIEU5BDGOMfAA0DNWMxHMZbu5nS7AwNkGQwsYqKzyvRFortLdncll1gEAa1cpyMHGczdYEDWPGblGt0HW5MbBTpzATd5BqtgjBCEAujj7cGu5mG8aMMxaL8AU5cwxgkKmSLfahIber0XupySrAjs2FfSUwhEh9kDdGiysvllfMrjGBYuF6N16HTIly/ILU0hKdL/SxRRYTFnn8KaLMzQs/kV2Zmzx1Nvn+J4MFvD7gYhlGvQNfb6LnS5/CFZx2nTXJvolYzmyWIg41OsZkNk/o9wAOZ0ULVaf+QtX+L9rAQBLV6lz8kLF7yHnmdkRiWPAD7cEUiw49+cJdy02eHZ/CQ/7H076Eysi2fADTXbsH0xWKcgBWMGgVnHufyh2vbeOQVjP5MjhUDaRnPNxhgdAsJli0VPl+xKMvMBwJIbdCYLacQEt0vZs83fEm8qgrrzoQ8/gMJidvkq0WRBg813M72KTSfc5M8ExCkYwkU2jgWTyLsDwdPtjrmjO6PomOVYf0i+1O0GAJvZHK5mBQDS3wGD3swsvt1gtiZ0eYKArv+UvngqC2qV2HAjccsr+Y2f1g/bE8dgRis2CtPnsJE2AjiwLdFYo1L3Eeq4gMmEJTl6Eca6IzklGn9IvtzjRgA2s2mgDjkRVa7QJdtaOmUmP7WCBwCE0Pna4P+84Ikba1SaG+S/veA9cSQ4WMuUKYupXJiiMxCNUDCzr4WU6DDXwAPAqVEvT41ZuKlt68UA2UYDg/pmN4NwVgEAYAW0+HbjrBU6vXnQi+QFNOsqcf3dxpw8llTgq+5m2DKzNY/d8GnD6vW66RW80F9PggBFdvbq6/h1XxDyCtWWJnz6oNzVkkp9fuNhJhTAGHC2UUCA63vcXimtsekUrahp6yUl+sF0aLKyC9frE8x8ADD7anHpKh05yO6tvt0JT960b6e0a5t/sBHh06vYbGsqNTgzVgIr9KtDxICzjSICfLnXM8o6HLPCFBmfkmM2IkR6HPSVmRHu6445qZwvnsF31IW6m0OOLgUAQhLmBRSZj5oTdSjyECIdGYasu4lpEbBP40umsLBaVBTc3KhgwNk2hhMwRC3rgwEwhpCETh9K0dDKEjQeZkoWKSxgi15w+II1bb0LiukKDWNPbV9JalAdmm3sVesNl04Gzx8calB2jo2Zt0xXUBx22bVHgudrk6v3OVsTyrGyFdXcwJUYBB0s3yjseENyJGyuOQEmLwSTFckKVltIEUIIAwvYohMdfulkW+9Vo6jDsQk3/pB8uceDAHJNJowxw6CYMjOQ2BDuAQUT7Vz+FI5BABizCPVfSEztB4UgvRnw84uQghEJLgPniD13PK080HURCudhRkDZesHhC56i4SYD8Eihy70eBJBjHkaHnIjKFgjF5Vx7vdx4WnJE1ebwApo0hSuewhdNZSOCxW2N8se7UpmUcv/uQE4emjCJgai6G6JDXsDLNwhnj4cSSXucALPXgCEXKf37fykkjiGUZeAdfqmmtefKDzek8sJiNLDEhwzubkA1LED666a1vo/TgesuhIIBRf2ANY8ttjODtQiQkhcJQC0DpoZNFkcjyrHjLL2IkLc5Mxbi+IRzur0XktGhwcxMmc1Mnc2jeKtoQt+OcGx/6vNGHjsgrf6ULq4OOREqFnIFk9HxvYOW6zkB8qehkrnACqS1q1//L+JuMMbZerEBeVpcvh6fRLpojAJjFG5Im5TJBAADs4q7KyQH+x5klpURRBQp/oSrzxCo/xJyN2dOSYf3Sy5HnJAhiDC9gqu+WuSE2BYB1d2EAihxEzsYvh7ImYIQ4Gw93+OVTrT2jPnM+J9watocEO5lGkeHA102ACSiw9bGUDrjKlsalcvnZeKV4q7EkGVjlq5nOpoUrxs7uhRnVzjTmnPBmAu2EsQIGEdWGR/M3SDAWXqh1yudauu5ZvLE1G9iMoxBuPFIoYZeDwLIMhkgHL8BIexzKS2npO5Lsn/ArDcT7VyBnSsp51NwN53toV3bAl2DT+UnBeDUkdC5mtBVy8SpFWzcrNKTdqwBAF8PAqwgQFl6occrZcJCHJ9kPFKo0eFBAFnGfjpM32U3Xkx9ylFCW7NcNJWN67IjW8A2icEAkxQUb43wvlU0B3M3RIe9XulEyxUdbkjlnMVk4EjjHMYMgxoOSy2npMGmvG+rC7XVhRrPBCuXCLl5XOLuprM9tPlVn5TASi9SAPa8F+jq5BYsE+JlFY1ACGOcpeNZhDo8/tH0sZQYSHebLKMxWocauZt0p4xobSJmRINVNAdzNxjjLD3PItTrk9rd/gkmXZrXnAhj0BBOevflGk3kxikSnHrH03B4+OU1OpvkvW/6L50O4vC9Dd/hyPthdwORfjfdHXKCsabv2o6Gao+G1P4OiBwIIQ28TfgaMVFxllEAgON0QZixg6S9HHNYh8TdxPS7AejnbmCAu4mrw57OdKv5ujsUiOp3E63DyNwDqcy7pPa7IToEDFlkQZjR6oAz2uHGI4UaHV6EULbJyCAEADWbPc6EJ4UNBvDh9/2XaoP9swqhX7+bgB/v2hZIKtYQDu6WGi/Kan8HjDFgnJNSl4cYWAGAVF0jyNLxkAELcXxicQaCTU4vQijbaCA6DJc7BvS7USeiUt0N6fgLONraxOpQE6L73RAdRrb0jd2DJGcmwKq7ITrUczCK4/hGO9yQL5ZlMDAIKRjX7fJ7k1964fiHgZ4OeWh3U3M02J3q0guH9gRjsgonAp92occ8IeJuMJh1PMuM/UIcn1jCJXpjWIegqbvR6iJH2t1gDGadQHTY6PBoddlDMNrhhjzmbJMJA3hala7zqaytEQzg4x8GhnA3Ab9y6kjqq3a4nfhCTSgmqxRMTncwm3GiomYVjHEOncB47IjWoebuRkh7ijhBCJ9xpN0NxjhrFBfYHNVw4wwEm51ehFCW0YAAmo+kvmJxR5PceDE0mLtpa1Kk9NZdaKxTYrJK6Yy0wo1pAhhy+rIKQihLT8at9KZzWEoKOAPBFpcPIZRtMESqY7V0NxPTnhU7vyjcNXmk3Q1CKFtP5qPoxWn9YhJiVMNNbbgtwIAQ8nbJ7ta0KvAjNThx3M2l8+m2RLY3yzFZxVYABZNTv10FVbFZRS9wY74QxycT0ss0y2hECI2Eu5k4Kd0G34mTWBgtd2MQeI5B/pBc1zPiExiPakN4ONyYTADgSS/WAEB7M6m+idPvxp32elVSAKQAJkOB1f4OVUvYzmYlmHwpbUI5tuSDgknPq8jMJhhnG8UOp6+mrbc0x5TmBVMSh/QyJTok7obMbq1Vv5upFdzx/UiSUnQLgoCmVXAQcTeD9buJnlVSVhSASOs9xgE36riMuy5jVzfIEgAAKyBDDs4qhuxJiDfCQB12uvw1rb1TcrWYonlwRs/dqA6W9KpytaY7FDUYwI4OOa670aS2rqcTx2QVgxktWcclW2dsngglC2BgVgEIl6dOtzvGaiGOTyDOQLDN5WMQyjLqAWBE6m5ENLM69ZaFiuqwxlJwN14nPr0H73tFuXAA97aGYw0AyBK42lDjQXTyDXRpH5KD8XTYMeI6HL1wQ9r2LUYjeXByqrE/moAUv+5Go7bIOGXm7DxmyTpOn/AqNXlT0YxVOG6ZGQCLHCtyjD8kj9VCHJ9ATrb0AIDFZFLz00i0TM2Yy+faUvlx5dqYyrkCOWmydTc9rfDxW0rLuWF+Wd0XUe2bjL+nT4c6nhM5Nigr5zpHdmGi0Qs3kZKUUbNuCYO3TGnibnJsbNysYrai6z/PTZ83zK3jeJi8AOyLBy0zk6xF2gVo+9SoQXqZZhkMqlsZiX43oohWrtcn20QlCOj69Tpe7Bu7l7i7aT6LD22WQ4mNDJUluPg+42lH6vHNo9JwMUrhxhkItrn9DEIWo0FDuzZYy5QpK92mAUEAQRwqq0yfx6y4gy+tRDn5sZIy5oJ9IZp/O8ofMItajLtBCFn0dEGY0aPHJ7W7/QxCZpNBdSsj4W4wgMnC3PRpQ27CS5tZbczNn9aZzRGJJeNuXJ34zIHk6itlCS7tYQK94eOTtHeu0yHJ6dZ7DsEoVRWT7rNmownC1V6gz2XTbJkCgFwbE3fMVMkU9nxNWkeeMImF4caq6Ex4xmJWwRhj8Dixzw2soBhzGYwxBlAwKDj+WBWE1LEwmGOQnud8wdDZDkcFXRBmhDnV1gMAZlOfDjEAG3E3DINCAei9HAy4FITCg6csNtZawPIiUt1N4jMT5NiYm24z7N8VOF8zTFNpWQW/eLnACaQ+uM/dJDhm6vB7SoK+JhpFgsb97JQ1MsaYZ5COZ/1B+UyHoyo/J+ljJcYohZva8MQiRpITEIA5n+uoSb0nHgBk2xhORHFbpkqn8YLoT6frTdEUBiCJFgGDBenMGAOjJDASV20RQAgBxhYD73OEatp6abgZacKdiQ19OlRbplytStMR/2DjaSbYuZlLRJOZSaRlCtRmLIREHVy7WldVLZw8Il26EIrRpCiiyVO52dV87gRWVhRIYN6lgTpsPof97hSl7u+B3jrIsiPA2KLn/UG5prV3fIebHp/UQRysQQ+R8bXGfJYVUDoVxpOm8INlFYxxxVzhaKpTHOXY0JQZLE51JK7fhbsaoLcVO1pJjTgCQPocME3EOXYkZvdzNwBg1vFtDh9dEGak6fFJnZ4AyzBmvUHVIQYACc7v8fYOuZhie12ovS5kn81XLtUl7m5wuJgGuXnMijV6ANzdLkuBsLESRZw3ITzhiRI1q2Sy7ubcobSKP91nWcvkEACYdUK701/XPYILwoxGuCFtUmajiTwU8vvjRJRXIbQeTTEi8AKaPofHg2eVeYuFyxeDZGRtssxfJqTW30GWUEON0lQDoQG+zdcDvh6m4zSYJuL8uYout8/dsAwyCJxXCtW29c4Z3YU4PlGQNimTwQjhSg9AAEoAn9vq9XUlVK6vOx70uXD1Sp2gS3FWSesEDkH4uaPEVtEcWodep+JL1doQ/D2gBBFwmGORXuB8UqimtXdekTWdYw7GaOTSvpIUkKp08n/IrxTYVEeXTJ8jCCIarGWK5Ifr1+sFMenjL7lByJ/EpNCb0+eCo1vwpaNxYk007jZ0fivbfRFUd4MxhNsFaPvUSEIqbiwmE0BYh7KURKwhtNaFjuzwD9syFa1D8iLS1EUiTKTGN1I13ddeOchKDIPpsP2SBnfG30MuEiy6kdXhiLsb4mAZhjHqDQB9WQUBgADlNxlq3kh6KGqhnZt5lTBsVjFbmJtvN7zzijfxSpyFy4SpM7l+dSuJuRt3Fxx+Vxk60ETTvJ9VJCWnHEiWM+mENof3Uo/bK4UMwhgv3H5F0u729/gkhmGMOj1AWIcNe3xJxRpC68XQmYPBij4Fkv8mMWd29IogXR3yxQuhzg4l4FcAkMmCcmxMbh6TZWU4YXh3E9Si/5q3g9HlKQiBSS+0Ob2NDs8ITaQ94soOO1ijUTUC0S0CBitrX6ar253EWM0sK7Pgel3iZebP3Wva9pZ36HXFAEAQ0DWrhKIpLE6mRYCcPOSHmj048VhDaD3CIF42TwaMgUVgEgV3gC4IM1IQi2029OnQ0yY7L6fYtf3Mx4HScs6cxSSoQxxvRZDTp6RD+yRnvPmzAUAQYfH1wiQ7M4wONSFyTBaBUeQ9gdCptt5FJXkaHb2PEQ83xMGaDJExQQNaBCaUCWYrW7PZG0ogTheX8wtu0EXqZ8HjVJrr5eaLQSkAPR1yfhFrtDC5eawtjy0oYgAAIcTr8LrbDZcuyIf2+bviVeWYzExZJVcxh+dFUCCJFgHV3Zw5gN0pTWbcdpTV5WHOiBUMJj3nDtAFYUYK0iZlMvXpsP1o6hMSAMDpg9KC63WQkrsJ+GHLW97mhqFSoBSAnZuliZOYq67jDebBdagJkb48CgaTjvcEQqdae8ZfuIl1sBDrbgAAY2y0sfM+a2o9JV0+PGjNscXKzLpGZytkyBG8TuXQ+/72/vPdtzbKAPIFCAJAQRF7zWqdxcKQrDJ5GmufZgoGcHOj3NkhE0criii/COXmMQppHUi+vwMg6G6GlnMpNg0oEnSdYicsDCEAk8gj5KMLwowEbS4f0aEhokM5gNMcJNxSFxpQd5OQu5H88Nar3s72hM7e1qRs+Wdg5QY+y8aMnLvRZSkQLuOBSeTbkI/8cjWfSHtkw03EwZqi69Fi3A3pzcmJUDxPmFTJO1vlrvqQ362on8i387ZCJjuPReFKNqivDR56f5jU1NIo/88LnnmLxXmLBDWrCDo0eSprnxYe3U+ijKwoaotAw8XQ+dqQFMBtTQoAZNsYowWyrKiglMmyMXHdTfNwQ1SGxlmP8uYi4DEAmETe5Q/SBWE0hwwBNxv7ht27GtKdoiQYwL0dcnYem5S7kQLw1qversRiTeRE8MGbwZUbBYsVDXQ3E0vRucNpfhUQcwEi7gYhMIm82x882dKzbIrGKzSMcLhp6wUAI2mTIsRzN+oM+JyI8ibzE+wcAmAi60yxkcRBssSFY6HjHyZqgw9/FLh0IbTuNr2ogz7LGG8VzXO1of27AlJ/d9XbqfR2QtNFqPlYLrAzVYtZnQnFuJuOS+l2+va2I+MkjAGMOs7lD9IFYTSHDAUyGvrCTdClRQ2rC+fkJeduDu3zJxVrwlcbgAPvh264nRvobiw2pDehdNrCddmYN2AFh90NBjCKnNsfPNmmfbgZwYbwPgdL2qQIqO+ZpDBWpeFMErGG0NUu79jmV9scw+2IkeMjQAE/bH7Vv3t7bKyJoaVO+eDV4MWTSsxYlWRriAcScIQL4UaRZxDq8Pg7PWlVK1CiaXH6XIEgw7IGvV7dKAc1CDe9nQqOVCMOsSIIRNyNy6GcOJKiq+rtVOrPKFhtQY8aM1VUltavOLdcUY9JLtuk4xGCXp/U4vKlc+SBjGC4qW13AIDRYMLRk2hE9btJdiSu16Wc/DCVboGXLoROHJbi9ncI+JV3XvUN225FCAbg5N7Q0R0htd9NMF1LDgDga0dqMjTqOKAzimoKKdGb+uuQ5bWp9kiq382hfWmlptqDctz+X6WViEu1joU3Qra975h9OhTJjKI96VzwQEYw3Jxs7QEAk8mEUNSjTcPdnPlYCqY6DOrQ/oDkVwa6mx3bAnGbq4ag4axyaq8M0XPEpo2aDE06DgBOjNa6P58EasJtUsYYHaZPlo1Jyt2cG26g5tB4XLi3UxnobgQdU31DimMOSpfJEBkbqLobVYcntU57IxVuWlxhB6sT9Zq4G49TaTiT+tOS/PhMTSjG3Zw4HKy/kErPi7qTSlcL7utVnDZqVhE5ji4IoyFNTi/RoSj00yGvxbRLRjNK3N10t2swsUNnM47buz23EFUuS/q3XHS1ImaTFthYd6PjOYZB3mDocq+WC8KMVLgJVxIbTH2zdxBSdTdt9enOVnGmNhjtbqQA/jjVMZwAcP6wopW70U/A0cmQ+Fg6oEETBtOhuTTdrgYGM5OVxybubgLpLQ1CkKRBZ/MrLEMVCUcclofJy3C2Havz6UB/d9OnQ02N9kiFG+JgDUZjJAxHSNXddDWlO7dxV7sc7W5OnwqlsMZm39FasKNTzi1MvdiswhlwdDI06sILcaR7XEokahuNphgdsjwy5qc16NlWyA7od0OI724SrB8cmo5mZYixe4XT0VUbUHb+MAcxTcBTb1DMRYo6tH2gu8EYjCIHAKfbHViLnEoYkXDTHHGwOlGvlbvRZGyI06Go7qbuQrrVvE3nMGDIK033Hpon9XM3AsewLKILwqRPo8PjlUIMy4mibqAOJ8zVpXxkXkCzl4lR1mZ4d5PCaOGB5BUyg7kbAAAEZhtTfRMz90Zm4jQk9l/dQzDChHJcdgNMvwHrs2NnlYQB7kbkWZZB/pB8oVuzibRHpN9N2NoYTEDCMOC+Bz1kvxsIu5tIrA23VWuGy4ktWQzpFtGcdrZxdmFAUDgdtZxL/SCWyRjxYYGqydAocE5f8BRdECY9atocAGA0xtehKZ+1VQidKc3xVr5Q4AU0wN0M1e/GmqfNDDL93E1U/69wzMMYALLysSUfkeE4XhewPEY86QUCClYUiDOrJETcTawO/cGa1p5pVm0WhBkRd3MqXJIyQV8YjpCqu9EK1d2kj98NgCG3AAZOV5w41ko5JqsAgEkvAsAZuiBMepAm8CF0WHiVTp+b9E+guJyfOkeA4eYqhv7uxmRJ67sQsqxoaHcTeReRxI4B9GZgheHnzIYB7gYAjAYBAM52OrXSofbhps/BCjroK2RGSLXuRhNseWEvmk6tjYrXFf4yc65nUqvBKbhK5o19Y1/UrMIizNMFYdLjcm9YhwIvwuA6nHaj0ZBMxCkq52ddI6Yw340li7UmPE36YEwoZIaddwnCOTXRVTQHq7sBAA4Bx6KgrNR1a1Ou1z7c1LY5IJJSQDt3Yy1Mt9xnsjCCDmnobvSm8JfhdDDvpqQjTpYdZ08BiJdVEMOQWW/ogjApExlAEy4FDKZDTkTlG40TKxJ6eNMXiNXX6XghYhGScTcYcFliZxmM0nKWEwdtmSJfaqC7IReQmrtBDGMQeNBOh9qHGzIcTqcPhxut3E2+Pd2ib2ERp7ZM6XQaeCa9Wc1iYMqF6htjK+eGIL9amXS1MlhWwYpi0tEFYVIHY3ymwwEAOkNCOixepJu10ZBbGj+lcQIqLONX3GksWyCQ+sUU3A0CVFbBmSyp/+IqFjAopu5mhN0NVhSTngeiQy0WhNG4qlh1sKIoki0IRdeihbMKiribxNdmzrKxejPjS2Px7wWLSJVseBa1wiI2zdpii7XPqiFAJiss3IDOHcBt54cKEPpsnD8PGydiJTJXMUKghA1dWACIYZCiiDwbCMp0QZgUaHB4PVKI5ThBCBuKYXVotHFlN3CKpLhaZE+3Eg4iCHILWWshiwAYteEimZUYokeECyJasVr/9iupdJybu5Q3WhglsTmzyT5qfTAktiJIXB0yiiJwrBSSz3e5ZkzISuHKo9E43JDKOb3RFA4e2rVMYYCqpeKBLSmOGSur4M1ZbMRFYQRgn8qnGW4mlEYEHMkqrIDLr0Elc6DtPHRdxp6evp1ZHrKKsKUIzEUKwDAtAlhREGJ0PBsIynRBmBQgOtQZzMnqkBMZ62RkmwwsQghhFOX/VR2qpgD1X4nB7ZQ7m2WPExMlCzqmYBJjzWNR1IjwwmJmxWrdjm3JDcGdXM5On83g4WaVjOtulP7uZrD1zmAIHQqsFJJr2nozK9xgjM+0OwBApzerz1Urd4MA8u1ccTmfwlAGk4VZslwXvp8Rd2Ofxn64M/UvqzchWyEbN6vozKh4Li6ei2QFA0KSX0E8BkAKxgrGOLGsoiiKQcc7vNK5TufILcRxRYIxPt3mAAC9wTQSOhzobupqgzUfSx5nHOtttjDTKrj5i3XqbH7llTxCsHdHIMF+xvYZ7FXX8eEaorTdja8HOduRoxEAkLcH6XMwYDBMwIYCRcjBcXVoFHmnVzrX6ZBCspCeDrUMN5d7PR4pxLAcLwgj4W4QgllLBWen7OhKokgliGj1ep0wYL4bs4VZsEg8uC/FcQwVi5kEsworAMapZBWEw+WpM+0OuiBM4lzu9XiDIZbjOH6kdKi6G0eH/NEWf9xAQ3A5lSP7pPM1oVXr9dYJDDnAjEqhsIjbu8NfN+SQPUGAqqv4sjmcrKSy3lmMDr3dcPkQcrX1q7X0tCEA8LQjOMnoJyi5M7GYJ8fqECk6gfVL8pkOZ1VBTpJPox9aVhWTtgCd0aw+S+jfIhB0K9422d0qOy6HPK2yzylDwi1TJKsIOmbZrYZCe6JRUhDRzbfrrXksyVhYrWkDQAhmV/OptU0WlbETS9GItghgrCCE9AIHdPxUkoR1aLAMpkOA1FtIo91Ne5O88w3fELFGxeVUNr3sOXsqqOrQbEE3btTfuEFfWMSaB9QfG81owTJh45f0M+ZykMAa4cPqsP00c2pzbKyJwdfONO1ku46xA3Wo47XRoWbuRsGYTHCj15sAQUxWcZ6WXBeDge7YuhLRzNimcYWzREZMNKvwAlq8Vt/ZJH/8v37vkDXHpVO5a1frdDomHPn7uxuMQdCh9bfr33rFl9QcFJZcqFzMAMIjXWZWFEUncuAJXOpx+4IhPU8XhBkeVYc6QxwdIgSBbtl5IehuCAXdfQ9db2XzpvPWUk5vZhLUoaNT2feuL6kZUXZu84sisk/jVR1OmcbZp3IYwO9XOjoUjAED5NiQulh4UiuCDKbDCx9Cx8VEr9NxjpUllDs/CP10yIIH6rtdaeoQ9WsdTIP6bvffjl5kOc6aX8oAsEx49s9AQ7D7kD/kHur3zIqoeJ44qZInH2EAEArPGYoiW8hEoghFXgDIEq6vDTXXBT1O7ImKO4KAplXyZRVcbh7LkOCCw8VRta4EwmkNMEBvr7xreyDBEXTFZWzlYpYTQVEUQIysKErYNAFp1lZrZwCA1N3IikJEE113Ayi8J/HJCgYc+Xh4nnZFIXt2u/0BSV5dNmn+yCxseIVBdMhwvC2/JFqHLIJQt9x1yOcbckb0CWW8/WpRENHQOgxJePtfPCnMviTo0O2fN1iy2YE6JGuEE60ogBUctl19kghHHVVpYZ0MrcPmGqj7OOnrNJUqOfOD0TrscQf8UihNHWqWMEl3G1FvAQA1q7hqpd5Dw7clyQFc/5Hf1yWXXatLsMyMAAQRlc/lZ1YLADgYwI5ODIALili1vQCgr0UgrrsBAAzYkoXW3qarvyDv3uaXBh9AwwtQtYQtKmPDHbpHvkVAURRAoBO4gCTXtPXQcJMINZE2KYA+HQKA67zU9dHwUmw/G3S2yBU36Cw2bggdnj4QSG2mN8mPd2z3b/y0caAOUaprhA+hQ2drKrEGANyXGF0BI+aHonTI+CVIU4fahBsl0iYlqivzMuA8HnCdSKLBr+1sEABmLNcl3iIAEO7vIIhoYhEpsBIT1K+/Q9zVC1H/tZlLp7D59xjP1gRbm2S3U+np7HtIhZOZAjtTOJllwzWPafV3UCTkaARHE+Nq7CtIMwI2FmJ9oaIvkNUWAXI0vcA5UKDR4XX6JYtO44U4rjBUHYZ792FADACA54LUnUCsIfhdyvHNvjk36y1WNq4OvQ7l4onUpxNobpA722VrHhNXh8muET60Di8dTb2fWu8JLr9QUXUo8hxCUpo61Cbc1He7/SGZ4QWWEwEwIPBfDiYVawhtZ4N6E2NfIEAC7ibyD0XV4iW0euFgWYUX8cy53Iy5HCkztzbhrFzgRFLMIfYk3f4OrSeZzjNIHuChFAm56pGrnuGMbHZVKDqrkIjjC4Rq2hyLSrVfaexKQtUhwwlEhxiDvzGYeKwhhAL42Du+xXcYeREN1GFr+jO9nQouXalL3N24HbLBgpJ1N54uxdmW+kWGPMhdj4ylYR0CgC5tHWoTbkivKoF0t8GAA7h3f4r98eoPB/LLOIOFScrdqBtSdjcDs8rESeHicQpZZaC7UYLozHuMr2eYrx/yoM59vGkasswKhs8ISOBZXyB0qq2HhpuhidEhYMAh3L0vFSmGAvjkdl/1OsNAHXamPdNb3cXQkhXD6PB8TejyRbm3U3E7w0Y728ZkWVGWDRVPZzhxeB22XVAzcYpInZyhJKDqUMdzaepQg3AjK/g0KUnpjSTges9KOI3ZsOoPSxUrdAm6m/ZGpf601N4ku6PaI3Pz2NKp7LQKXl1FMxF3MzCrSH6lsV7u7VR6O8OxzFrAmK1gMCGTNQl3o0jozHto2Fij4j7PKUHGMjdArkoncE4UaHf7e7yBHIOY8o29shmoQ0DgOZ26FHua5Z5m2VrIxugwnZE0BJdDQYPr8NL50IHdkhplVMiqZ3AGag9C9XIu3Kl9cHfjTqZ7Wlx8LSgnymXzPIMQpKNDDcJNXY9bkhWWFxhOIFnFdzGtBS5azwYrVuiGdTdtTXLtgUDMur2E7g65u0M+sk8qqxQWXSuIIkrW3QQldGiPdLE29uCdzeEtEyej2dfyDJ+QuznzHiQeawjeSwzieNOsILlC4mNPtvZqvtLYFcNAHQIG7+nUp6MGgMYTkm1SeHUqVYdJ9TIdDDyIDnduDZyvHaZiKBiAA9tCtkI0ezmnM8Jg7saTpOTiXGQQkX43xN1gSFeHGnTzI72qOL2Z/KBlt6J40n0eHfUhtYFezSoQNRL3Um1w52veuLEmmrOnpL//0dPVIavuJtwPqn9WIcVgdczwxdrQG3/yDYw10bTV4w/+IV2qUcJHGeBucMTdNB1H3h40xKEGw3OBk7pYUs0sihwAnGxLW0FXLjE6BIBAY1BJb/m6jkvxdKgFcXWYSKxR6WzG+94OBaVBR4Snv+AiACDEqL+O9HWoQbg52+EAAMFgIj9oxaPBE3F3KUP05qw5IB0cbo1wFcmP337F19WuwIBexUCamchhMZA+mRdqQx/9b3DoFTUJoQCc/kg5+p4Cg/fmxCGm7XRy3z0az2mW5CueZRkG9fqkbp8WIroSidEhAIR6NLAhPS3hrKPqMMuqwa9moA4/2iGdSzjWELwuvP8dWZYG6VWsBcTdkF9H+jpM98ad7XRKssLwIsPyJFQH29OtSCMM5m4u1QZrP07OIUsB/NarXpcDD+tuLp+X976X3H3suIRrdimDuZu2c3hgO1QSV97JBh1h9bCIAQCvpMXCnVccA3UIADioQbiBATrk0p7k3GxhYnTY1BA6eTSVJ+vswnUnQ3HdTZYWxe4Yd5OmDtMNNxEHa4KoUJ0+Pld8dxOS4ERK6/ZKfrxju29odxMMoA//N5WDN5/DLecB4rmbrospHK//lbfwkQpyDACBkBY/oSuOuDoMjoy7KbCnu0aVfSoXo8N01vM9f1jxOcNtHNHuRjSn+2sUbUqMu0lTh+mGm4ZeDwDwOhNEQjWXo4HV1JuZuO4m5d6cANDcIDc3yEO4m/27AomUoeJybr8SCsRxN+lX10mdKNyKwTAAIGkxqdqVx0AdAgCvhRRzCsJTLqg6TH9iycnT+GgddrXLaa5C1X45fHHR7iZ7YrrlKV2BPNDdpKPDdJ9HJEiHez0iBIjX4BlzAorrbtLpzQkAJw4HBnM3Lgc+X5t6MTAkQcdlHONu0ilGRaFmFQAAf0iD1dGuPAbqEEAbKcIAHRrMTHF56ganoIgtLGajdVh3Id1n2nQu0jIV5W6spQyXhg9jeKwvxPHcDUCqOkz3eYRPzvSFan4ii/h0XZxtMjvQ3bTWpd296kJoMHdz+WK6j7ztAo5xN57uNA8JABDsYqJnqwjQcBOPgToE0MZoD3Q3gGDWUoEXUhG5IKKly3UxdYjNjekK29UVUXOUu+F4XDI39V+iaZrC6uO5mzR0mH64AYBwnzY1qwgT0urOozMxejMz0N04OjUoRzRdDkE8d5PUHBRx6WmJrbsxajElFm8l9dDh8ZwCO1LrLI9r4upQLEq3kiWvlIvrsgUds+wWfQoHXLxctE5gBtYhpo/PNaBlCqGCCrCkVGEsZCnmqbI63020u0lHh+lqlyH3H8sQlVWMs9Pq+Tp5fnjMFEHNKkPPbpMog7gbdwKTJA2Lz9XP3bDaDKgMZxVZxgBgpb2K4xFXh4DAWJ7WMyiqEgZrIc2ysfOv0yXlcZav1pVX8gP7f7kGdCBOAZ87fv+vGSuRaEzuUAyPbYtCjIDJzAQx7iYdHaYbbix6HgAUKQBRoZrLZlN+zFkFbEEZD1FRX80qmoSb5ob47ib9IwNAwB3bMmXMSfeYgi1cRiMrb1gNqa9sfQUTV4eAwTRbx6RatM8uYHMiIxggXv+v0pn8tbfoDebhf0SCiG6+3VBWwavBMNrdiFpkEL0pjrvBALwIs9cloUMhSylYHuJNGADiupt0dJhuuCnOMgKAEgpA/6xiqtKl0C7ACahqlYHkkYFZJcumQTmisJiDeO4m/SOTo8W0TFmnpHtMoYCM1VQwxixCJpHO6ReHwXSIeJSzOJVSDyegGSvCy8BC+GAAUe6G1Evn5LHrvmSsvkZnHCToCAKqXiR+9l5jYTEXXZEd7W6EtDvyAFn1bJDe7awAM1bhiTOGF7m5FBcul/ms8JxOA91NmjpMV7tF2UaIySoYAAMjItsNps733In3feAENPtmPSuSA8WZZ4QXtKi2iMoq0WNVNDgyWVcT+o2ZspaipuNYTrU9jbcqfBYoGAeCGADyTNTaxGcwHSIGdMV89nx9ItO8qXACmrNOrzcxAHF0GDN2DwNMn8uXV/O9HXJHkxKMjAhFAJOncWQybGbImQkKi7g01yAKr1I/+Ng9XseULFDyypX206i3EUn9l7rijWAqVLLKFNZAxilHOodEzbtEfilp6jDdcDPJYgAAOehX5BDLcupIXIyBFdCEVabOnd5A2/AV78ZcZuYqvd7MDDGbnybuZlIJB/FG4hYUsa3DjcAaGp0JRFNESZER4bxBmTgTNR9P8ZimmSGSVcg8g1Ot5nSu8ApmCB0CAvNMgRUgkdn8IJL2zNahZvOLO+9STh5L5qtFQPqvh80LGm7epfIKLuUVQQi5haREMMzMBDoTKpqPC+crIQmRZlMMWMwGxGN1ZlJS0It2N+qI8PR1mO4PWOTY6TYLAEju3ugyc7hdUkAFq415S/SccdATsQKafLVuzqeMojm8aAHJGgPLzPkJL8AwGAN7c6p1N/mT0u27lZ2PBvYqZhhm0mxsyEmlsGacGhKsMgKkKDgYVACAzh86GEPrEADM04Sim026icM85bzp/PzPGo1WNpGVGDBE/1MfMe7bWV3SAKHIAePU3ZizmIKi1OXHCzC5giEXN9jYvZgVQVgemyeCcQI2TQRWGH5FEFJ3E5LlNHWoQUXA0skTznU6Ax6HwZyLEROdVQAAYzBN4S1T+VCP7GkIeVtDaq4wF3DGXDa3lGUjH4KIH4RBskr5AuHMwdQ7z1XNEwebZ6SgmDGZkduVeiVOccWgWaX8Bji1GaRkFms1lCjmWUGMAGPs8QcBoDwvyyik27J7BTOsDvkcZtJqY6BN9jYEXZdDwah5Cwy5TE4pP6GM15sZJgEdaj6r5JLlwqsvpzgjXekshtOBgod3N+nMmY0x9gdkSE+HGoSbAovBnmuq63Z7nd2WXJtaZiYgFH4SYi6rz2WZapEBYABYBABk9UIIFzPJgxpy9cKpc4SLx4PBlCZMUntzqmXm6LobrOCrrxX/952kJzwlZOcjkxWFs9aA+W4YAVeshTPbwdebUCWRoUTJnhfAZAF5BbyBIAAsKLKldm2fEBLUoSGfNeWz+VdDjA7JigsACelQ81klbRO4WXP5FEZp5hagsvncyK0RrtbdKDJOX4fa9BlbXTaJRSjg6Q1P3ID66vOxOotM+O++LEF68oXvSOSxhlUxSIsAJ8D861KpphJEdON6Q0yLAES3TCEonspMnJTKDeEEmH1d+LvEtEypWYXhcflaZWIVZodMDKwB2xYFc+YF1BaBHrcfMJTlWUpykuw+8clD1WHA5wUYQR2qLVP93U3fjqq7CcsM48gB47RMAQAGvHiFMH1mcq7BYoX5q9jB5ruJq0Osupu+Ntl+7qbfZUdapjDgHrcfp61DbcJNrkFcVT4JAJxdLWRRHDUnoEh5MvJ3n+NMbfXCgqlcshFHENH62w2CDmLKzBBVd0NKp9et0+XYkm6lqryW4XUJlZnzZykzNigF1dgyqZ9BY3gwlSq2BaGimyR9oaKWmZ0eKRhSDDy3oaIk2av6BKLq0NXdGvlZhd/SXIca1t1ARIfL14hXLxOFxLoOWqxo8TqBFxJaRTPN1VydXikk42y9kKYONVvWDgBePVF/tsPJC7rcCYXEnYZXAgNM1hVTFxhD0S8Ak9XnGMAIgEUIIYygbwmx8LpiCBgEgDGLEIPgUm0wwRm2TBZm9XqdbQKLgBToQS0zYwAFMO6/bFggADve8bc1JdR+zwmwYC1jykXRa4nh8GuIrGMHmLwGjCMz6aurjkWvVRa9ph0gxuENOL0SANwxd4o915TaQ/kEEtahqMvNG3Edosi7TKQuJqZlSn2h7jCsDp0OZf8uqWHwQXy8AOXzucmzEKB+i97h/mvaaaXDbrff4w9yDLr3qrI0O7VrGW78IfnFj8/1+CSeF20TCzmGUZ8uAhx+zEz8MjMT9WgTXEXT2Skf3RPoGLL1ela1MG+RIIokXsdfRTPu6oUXakOHdweHWOUOAHIL0KxljGgG9UHiqOcH6a2i2e3yu/1BALh99mTS5kJJEH9Ifunj892+AMeLeSOvw+igo74Asn+k7iaR1VxjdNjcoLQ2yT0dSk+n4nFhADCYUbYVFdiZ/FKGExNdRRPS02Gnw+eVQgDwmTn29PthaBluAMAjhV46eM7hDzIsZ7NO1Ot1I51VHJ1KXa3U3iT3RA3gzJ/Elk7lS6ax4ZUYEssq6i3GGCsYBwLoxH6ppwt3NMc6nfxSZlIZyitFI5FVQgrucHgDIYVF6DNz7ZNzqK9JGl8w9MePzzv8EsOwVtsEg94wjtxNjA7VWIAjmlHVNaLuRlJwp8MrhRQAuGveVNKRMk00DjcA4AoE/3GsrsPtBwCTyWLNtfIMM46ySty1mXs6FElCGGNOwGYrM3JZxekLdjl9CoBZ5G+bPbnAnEoHfAoAuKXQ345c7PT4AcBkNNtseRxC412HKawRDinpsNsT6HGHex6um1lcVZCjyUPRPtwQtp1tOtTYRV6bjKYss1nH8wLLsgyiWQX6Z5VASAkp2OWTnL4gebc42/ipqskGPt2eh5SPLrXvqWsLKRioDpPX4Yy8rBvKCs2iZr29RircAIA7ENpT13qqrZfOd5k4U3LNV5Xk0YphDaE6TIER0uEIhhuV2rbeSz3uDo+/w+0P0EfeH5FjbAad1SgWZhkrJmSLHJ09a6SgOhyC0dHhaIQbCoVCAa26+VEoFMqw0HBDoVBGCRpuKBTKKEHDDYVCGSVouKFQKKMEDTcUCmWUoOGGQqGMEjTcUCiUUYKGGwqFMkrQcEOhUEYJGm4oFMooQcMNhUIZJWi4oVAoowQNNxQKZZSg4YZCoYwSNNxQKJRRgoYbCoUyStBwQ6FQRgkGAFwu17PPPrtq1arKyspZs2atWbPmd7/7XSgUGvbDDz744J133jnyF5kWGXWRfr9/2bJlixYtUrdUVlba+/PWW2+lfPyamhq73b5t2zYtLna0oTocNcZKhxwA3H333Q0NDd/+9rcrKipCodCHH3747LPPNjQ0PPXUUymfL03mz5//xhtvFBUVjdUFjBC//vWvW1pabDYb+RNj7PV6v/nNby5evFjdZ9q0aWN0dWMM1eGoMVY65M6ePXv48OH/+I//uOmmm8imBQsWiKK4detWn8+n14/BsmpNTU3d3d2jf96R5vTp0y+++OLtt9++Y8cOssXj8QBAVVVVdJ75ZEJ1OGqMoQ4ZWZYBgGH6VeI88MADr732mvqM//GPf9xwww1lZWXV1dXf+ta3Ojs7o3d2u90zZsz4/e9/r26RJGn27NlPP/00AHR2dn7nO9+prq4uLy/fuHHj3r17yT7nz5+32+379+9/8MEHKysrFyxY8JOf/ERRlH379l1zzTUAsGzZsq9+9avRJ9q9e7fdbj9y5Ii65ejRo3a7fdeuXQBw8ODBz3zmMzNmzKioqPjc5z537Nixgd+2oqLiueeeU/98+OGH169fr17Mnj17vvCFL8yYMWPp0qVvv/32yZMnN2zYMGPGjJtuuunEiRPkI6FQ6N///d+XLl1aVla2YsWKl156ST3aU089NXXq1MFutKIojzzyyJe+9KWysrLoWwcARuPwy6H+n//zf77+9a//5S9/ufrqq2fMmHHfffc5nc7/+3//b3V19dy5c3/yk58Me4QMh+oQPgE6ZKZOnVpcXPz973//r3/9a8zzI2zatOlf//VfN27cuGXLlv/3//7fiRMn7r333ujlYkwm04oVK7Zu3apu+fDDD10u14YNG2RZ/tKXvnT48OHf/e5377zzzty5c+++++4zZ84AAMdxAPD444/feeedR48efeaZZ1566aV33313/vz5v/3tbwHg7bff/vd///foK1myZInVao0+0bvvvmu1WpcuXXrx4sUvfOELeXl5mzZt+uc//2kyme68887W1tZhbx+BXMwvf/nLhx9++PDhw7Nnz/7hD3/41FNP/eY3vzlw4IDJZHrsscfInk888cR//dd/fec739m6detXvvKVn//853/729/IW9OmTbvuuusGO8XLL7/c0dHx7W9/O3ojySqJpG6O4w4fPnzp0qX333//5Zdf/uCDD26//fa8vLy9e/c+9dRTL730EtH6+IXqED4BOmQEQfjv//5vu93+wx/+cOHChatWrXr88cdPnjyp7vH8889fc8013/jGN6ZMmbJkyZIf/vCHJ06cOHz4cPRR1q1bd+zYMfW2bt68uaysbMaMGbt3766pqXnyySeXLl06bdq0xx57rLi4ODoSr1mz5pprruF5fvny5SUlJcePH+d53mw2A0BWVpbJ1G8RP5Zlb7zxxpjHfPPNN7Ms+/LLLwuC8Mwzz1RUVMyaNesXv/iFJEmvvvrqsLcvmhtvvLGqqspgMNx6661Op/Ozn/3s5MmTLRbLunXrampqAMDlcv31r3/9yle+cvvtt9vt9jvvvPNTn/rUf/3Xf5GP33bbberrGNrb23/xi188/vjjMU+UZJVXX311xYoVM2fOvPHGG//nf/5nsMvzer3f+973jEbj/Pnzy8vLFUX58pe/rNfr16xZk52dTa5w/EJ1qHIF65ABgLKystdff33btm2PPvpoSUnJX//61/Xr1//sZz8DgGAwWFtbu2DBAvUDc+bMAYCYg15//fV6vZ5URIdCoffee2/jxo0AcOzYMZZlr7rqqvDJGGbhwoXREqmoqFBfWywWh8MxxLUCwPr16+vr68+ePQsAp06damhoICc6ceJEZWWlTqcju2VnZ5eUlCT7C5w+fbp6JTF/BgIBSZJqamqCweCSJUvUjyxatKiurq6np2foI//kJz9ZtmzZypUrY7YHAgGz2dza2vrYY4+9+OKLV1111fe//301TcVQUlIiCIJ6SerlkT+dTmcSXzUjoTokXME65KK/5PTp07/85S+73e7HHnvshRdeWL9+/ZQpUzDGWVlZ6m7kNQmHKnq9/vrrr9+yZcsXv/jFjz76qLe3d8OGDWQ3WZYrKyvVPUOhUE5Ojvqn+mAIwy7puXDhwry8vC1btpSVlW3evLmoqGjevHnkRCUlJdF7ZmVlxVzksIiiOMSfGGNywC9+8YsIhdeUVxQFALq6uqK/VAwffPDBhx9+uH379oFvXXXVVcePH1f/vPrqqxsaGv74xz9+7nOfS+HyBruA8QXV4RWsQ06SpLa2tuLiYnWTyWR66KGHNm3aVFNTU1lZyTBMdLAnr4nPjGbdunVf//rXe3t7t2zZUl1dTdoOzWazKIrvvPNO9J4x1YFJwTDMzTffvHXr1m9+85tbtmwhFWzkRDEZyeFwFBQUxHxcfTwEv9+f1NnJt/7Vr341Y8aM6O3Rd28gmzdvdjqdahMjxhhjPHXq1EcfffSee+6J2XnmzJn79+9P6qquDKgOE2f86pD5+c9/vnbt2pjKubq6OgDIy8vjeX7mzJnRtvPQoUMAMHv27JgDrVixQqfT7dq1a/v27cRYAsDcuXMDgYCiKFMj6HS6gXc/LoOFSVKC/eijjy5evKieqKqq6tSpU4FAgPzZ2dlZX18/8CItFkt0qknW5c6cOVMQhO7ubvXrZGdn5+bmqt4yLt/97ne3bNmyOcL9999vs9k2b958yy23bN++/Rvf+IYkSerOR44ciUmPnxCoDhNn/OqQIdU8t91225///Of9+/fv3bv3D3/4wze+8Y3Kysrly5cDwFe/+tXdu3f/4Q9/aGho2Lt3789//vOrr7564B0URXHVqlV/+MMfurq6br75ZrJx6dKlFRUV3/72t/fv39/Y2Pjmm2+uXbv25ZdfHvqaiE9+//33SdtBDPPmzSssLHziiSfKy8vLy8vJxrvuukuSpIcffvj8+fM1NTUPPfSQxWK57bbbYj47e/bsrVu3dnV1+Xy+3/zmN6RCPnHMZvPnPve5X/3qV2+//XZjY+O+ffvuuuuu73//++TdTZs2PfDAAwM/lZ+fXx5FXl4ey7Ll5eU5OTklJSXbt2+///779+zZs2/fvh/84Af79u178MEHk7qqgZw6dWpnFOPCLlEdJs741SFXUlKyadOm55577vnnn29raxMEoaio6L777rvrrrtIsNywYYPf73/uued++ctfWiyWVatWPfLII3GPvm7duvvuu+/aa69VeyuyLPvSSy/927/92wMPPOD1eouLi7/1rW/de++9Q19lVVXV8uXLn3zyyUWLFr344osx7yKE1q5d+9///d/q/QWA0tLSl19++amnnlq3bh3LsgsXLvz73/9utVpjPvvII488/PDD11xzTVZW1l133XXrrbd+8MEHydxAePTRRy0Wy5NPPtne3m61WlevXv3www+Tt86dOxe3YDwE5eXlf/rTn379619//etfB4Bp06a98MILA2vykuU3v/lN9J+TJk3as2dPmsccaagOk7lb41WH6IqpYqRQKBkOHRFOoVBGCRpuKBTKKEHDDYVCGSVouKFQKKMEDTcUCmWUoOGGQqGMEjTcUCiUUYKGGwqFMkrQcEOhUEYJGm4oFMooQcMNhUIZJWi4oVAoowQNNxQKZZSg4YZCoYwSNNxQKJRRgoYbCoUyStBwQ6FQRgkabigUyihBww2FQhklaLihUCijBA03FApllKDhhkKhjBI03FAolFGChhsKhTJK0HBDoVBGibEPNwcOHPjyl788f/78qVOnVlZWbty48e9//3siH2xsbLTb7Xa73el0JnvShx56yG63P/7448lf7/A8++yz5MJ+9rOfjcTxKSPBP//5z9tuu62qqmrq1KnV1dVf/OIXDxw4kMgHX3nlFbvdvnbt2hROes0119jt9m3btqXw2cF46aWX7FFMmTLl6quvvvvuuzNhqfgxDjf79u37/Oc///777xuNxsWLF9tstuPHj//gBz/485//rO2Jmpub7Xb7Cy+8QP6sqKhYuXLl9OnTtT0L4e233yYv3n33Xbom8rjgt7/97cMPP3z48OGSkpJFixYhhHbv3v3FL37xxIkT2p5o06ZNdru9pqaG/LlkyZKVK1fm5eVpexYA4Hl+7ty5c+fOrays9Hq9O3fu/PznPz/mEYcb29P/+c9/lmV5zZo1//mf/0m2PPLII3/7299eeumlu+66S8MTqSGAcO+99w67In1qnDt37vz58xaLxWAwtLS0HD16tLq6eiRORNGQF198EQAee+yxu+++GwB8Pt/tt99eU1Pzj3/8o6qqSsMTxejw6aef1vDg0UyYMOG1114jr10u19q1axsbG1955ZWrr756hM6YCGPsbkg5KCcnR93ygx/8YNeuXdH2ctOmTevWrZsxY0ZlZeVnP/vZXbt2xT3UHXfcEe1fdu7cabfbFy5cCADr169/8sknAeBnP/uZ3W73eDwxhSlJkp555pnly5dPnz69urr6a1/72sWLF8lbf/rTn+x2+/33379///61a9fOnDnzlltuOXXq1GDf6J133gGA5cuXX3/99TBAXpTMJEaHer3+hRdeOHDgwBNPPEG2DKGQGEgRRvUvTz31lN1u/8Y3vuHxeOx2+wcffAAAN9988/r162FAYaq1tfWhhx5auHDh9OnTly5d+tOf/tTlcpG3vva1r9nt9j/+8Y9/+ctflixZUlVV9cADD3R3dyfy7cxm85w5cwDA7/endHs0Y4zDTWVlJQD8/e9//+53v7t9+3aHw2E2m4uLixkmfGH/+Z//+d3vfvf06dMrV65cuHDhgQMHvvSlL23fvj2ps2zcuLGgoAAArrrqqnvuuYfn+Zgd7r///t/97ncul2vdunUFBQXvvvvurbfe2tTUBAA6nQ4ALl68+NBDD1VUVFit1mPHjn3ta18LhUJxz0XCzY033njjjTcCLU+NE4gOH3nkkaeffnr//v2SJE2cODG6jDOEQhKE5/l77rmHvN6wYcPGjRtjduju7v7Upz716quvZmVlbdiwQZblF1988a677iJKIzp86623nn/++SVLlsiyvHXr1n/7t39L5NRut/vYsWMAMLbWBsY83DzwwAMk7m7atOmrX/1qdXX1xo0b//KXv5Bb7HQ6n332WQB44oknfv/735O7DwC/+MUvkjrLfffdZ7fbAWDNmjU//vGPBUGIfnf37t07duxACL3yyiu/+tWv3njjjYqKCqfT+Yc//AEASOA7f/78r371q1/+8pfEdV++fDlucjtz5sz58+dFUVyxYsWiRYuys7NJeSr5G0MZVZ544gmr1er1en//+9/fcccds2fPvueee3bu3EneHVohCSIIwo9//GMip/vvv/++++6L2eH5559vaWkpLS19++23n3nmmddff10QhGPHjhHvQz5YX1//5ptv/vKXv3zkkUcA4P333x/sdO3t7bfeeuutt966YcOGJUuWtLa23nnnnXfccUdy90VrxjjcZGdnb9q06bnnnrvjjjtKS0sxxsePH//Rj370/e9/HwCOHDlC7N+GDRvI/jfffDMAnDt3rre3V6tr2Lt3LwBUVVVNmTIFAHieX716NQB8/PHH6j75+fkLFiwAgGnTphmNRgBoa2sbeKjNmzcDwIoVKwwGA8dxq1atAlqeGg/MmjVr586dTz755E033WS1WgOBwI4dO+6+++5//vOfkJhC0oecZc2aNcTI5Ofnz5s3L+Ysy5cvN5vNADB37lwA6OnpCQaDcY8WDAaPHj169OjREydOuFwulmUvXbp05swZDS84Bca+IZxhmFWrVj355JM7duzYs2cPMZmvvfZaY2NjT08PAIiiaDAYyM65ubnkhcPh0OoCyFmi64/IWaIjWvS7er0eABRFGXgoUpI6fPjw2rVr165dS6qZaHlqXGA0Gu+4447/+I//OHjw4Ouvv06KV7/5zW8gMYWkT1I6JCKEQXQIAJMmTaqLcPDgwXvvvXfPnj1f+MIXUug1oiFjGW7cbveWLVueffZZtQZr0qRJzzzzDMdxAHDp0qXs7GwACAQCPp+P7KDWjUU/FQJxm+qhEqxFAwByFvKwoz+rhrYEOX369IULFwCgo6Ojtra2traWOCBanspwmpubX331VVJMJsyZM+fHP/4xADQ1NYVCoaQUghCCMdXhQKxW6ze/+U0A6O3tHVspjrG7+Zd/+Zdf//rXTz31lCRJZMt7771HKm6KiormzZsniiJElUfeeOMNAJg1a5bFYok5FKnYI1ViAPDWW29Fv0tE4PF4Bl7DkiVLAODkyZP19fUAIEnSu+++q25PHFKSmjdvXl0Uy5cvB1qeymzq6+sfeuihn/70p2+++SbZIssyqTHJz8/nOC4phUTr0OPxkKYolWF1uH37dvJbaGpqOnTo0GBnSRa1PddkMqV/tJQZy343JpPpe9/73uOPP/7iiy++8sorkyZNcjgcra2tAHDLLbeUlpYCwDe/+c1f/OIXjz766J49e7q7u/fs2cOy7A9+8IOBR1u5cuWbb765bdu2Bx980OVykRZEtRSTn58PAC+++GJDQ8P3vve96A8uW7bs2muv3bVr12c+85nly5efOHHizJkzeXl5999/f1Jfh4SbmN6lN910086dO999991HH32USI2SaSxevHjNmjVbt2791re+9cQTT+Tm5ra2tpLS+re//W1IUiErV678xz/+8fTTT58+ffrw4cMFBQUdHR3ROmxqavrRj360dOnSH/3oR9Ef/PKXv7xp06a6urqNGzeSuqRgMLh06dLrrrsuhS9FqorJa4fDUVdXBwDV1dWk0mesGGN3c8899zz//PPLly83Go0XLlxwuVxz58597LHH1Lanr33ta08//fS0adO2bNly5MiRpUuX/u1vf4sb7zds2PDggw/abLY9e/YUFhaSHhOBQIC8+5WvfGXatGkul+ujjz6KKe4ihJ577rkHH3xQFMXXX3+9o6Pjlltuee2112w2W+JfRC1JkfZvldWrV7Ms29LScuTIkWRuDGX0QAj99re//elPf1pdXS3L8rlz5xiGWb58+QsvvPDZz34WklTIww8/fNNNN3Ect2PHjk9/+tOf/vSnIUqH//qv/2qz2err60+fPh3zQavVumnTpltuuaW9vf31118XRfHBBx98/vnnU8tSalXx0aNH29rapk+f/p3vfOdPf/qT2sVkTPj/xutdT2gfFp4AAAAASUVORK5CYII=", "path": "image.png" }
Which solution has a higher concentration of purple particles?
[ "Solution A", "Solution B", "neither; their concentrations are the same" ]
0
The diagram below is a model of two solutions. Each purple ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the purple particles represent the solute. To figure out which solution has a higher concentration of purple particles, look at both the number of purple particles and the volume of the solvent in each container. Use the concentration formula to find the number of purple particles per milliliter. Solution A has more purple particles per milliliter. So, Solution A has a higher concentration of purple particles.
Solution A
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAh0AAAEiCAIAAADSxvdVAABjkElEQVR4nO2dd3wcxfn/n5ndvarTnZpVLctdlix3wDbYhGYgpjhgqvGXEqoJBAwE8qOHDqEE0wKBkASHhEAwHUwJxTbFFbkXuVu2unQnXdudmd8fc7c6VaucJVl+3i9h7rbN7OzefGaeeeYZIoQAgANh2OYHHwNDANLvUQm4FBjugHRLp8/FV+WIAl8VpIPEvipECFEWhp+8vZ0ppDc4JhEGdKa+wFfliAVfFaSDHJMIKgBs9QMAZFpgpBNcSi/nCekBfAw2N8D+MGzxd66ywFflSANfFaSDxL4qFADqGQBAPj7+IwaXAiOdANFH33HwVTnSwFcF6SCxrwoFAF0AACTg4z+SkL92vZOGb3xVjkDwVUE6iPmq0N7OCYIgCNKvQF1BEARB4gnqCoIgCBJPUFcQBEGQeIK6giAIgsQT1BUEQRAknqCuIAiCIPEEdQVBEASJJ6grCIIgSDxBXUEQBEHiCeoKgiAIEk9QVxAEQZB4grqCIAiCxBPUFQRBECSeoK4gCIIg8QR1BUEQBIknqCsIgiBIPEFdQRAEQeIJ6gqCIAgST1BXEARBkHiCuoIgCILEE9QVBEEQJJ6griAIgiDxBHUFQRAEiSeoKwiCIEg8QV1BEARB4gnqCoIgCBJPUFcQBEGQeIK6giAIgsQT1BUEQRAknqCuIAiCIPEEdQVBEASJJ6grCIIgSDxBXUEQBEHiCeoKgiAIEk/U3s4AghwecMFqQvv3+7dWBHb7Da8QwkodKdacLOeIVEeOSi29nUEE6SugriDIQeCCl/o3r6n6ZGf96nqjhoMhhBAcOAfgxAqugc7CiQNOH5o8QaVab2cWQXof1BUEaY8Qa1he+d6q6g/8vJZSRbEQBTQhQHAuuOAcwoZvY92SrdUrx6WefMLgSxKtKb2dZQTpZVBXEKRNAobvq/1/We/7CqjQNA1IZLsQIIgiCAfCAagFNCMc+vHA+5UNpb8adVOyI7NXc40gvQyO2yNI6xg8/F3ZP9Z5v6AKqCqlKlAFqAKUAqVAKBBKKaWEAlWIolJFU7bU/vTexucawnW9nXcE6U1QVxCkdTbUfltct5iqlCqEKAC08Y9QIBSAACGEEKAECKVUIaqmbqz8/rsd/xUgejv7CNJroK4gSCvU69Urqt5jRKeUEAWAAACJ/Jn/EIgICwGpLpQSQuHH3R+W1pX09h0gSK+BuoIgrVDiXVER2kGpQiI/ERLzb/OPENUYIEAVWheqWL33q57KKYL0OVBXEKQ5XLAS7woOjLRQkwgC2jJ0SX3ZUr7CH/YdyjwiSN8FdQVBmuM3vBXBnYSY7l8QlREBIBr/ifwH0PQzJbSyobTGX9bjGUfaQwghGp+XiP16qBM6FKn0ZVBXEKQ5AcPrN7wEiBBSMExpiYqKAMHlh2i9IY/kICuRkOGvC1b29n0gEeRDIXIwDMD8TAg5FPV+y4TMPBwh4PwVBGkO4wbjTBABQghORGT4BCDSLwHOIx0UOfEeBHAeqaDkH+fcYHpv3wcSgRDCOff5fPX19eFwmHNGCLFabW63OyEhAQCEEI3d0y5hXiEUCnq9Pr/fz5ghhFAUNSEhwePxqKra/VQOF1BXEKQ5hFAQlHNBuQAgHCIOYBDttwgOIATnnHMhpMxwLuVEcMG5AKAKVXr1JpBGampqKisrdF0HIIQA59wwWE1Nzb59e51O56BBeQkJCd2p9OW54XC4rOxAfX2DEFz2hBjjhqFXVJQTQtLTM3JycuJ7X30W1BUEaY5ddVmII8TqOOUUQJqLRaOwNIoKcBAMOBOcC85AMCGY4IxbqcNlTe61G0CiCCH27dvn83ktFovD4ZBbOOecc8OwGIbu89WvXr1q+PDhGRmZXZYWQkh9vW/fvlIAYbNZCZEWVM45Z8xiGHooFNq5c0dVVWVh4WhN6/9B5HB8BUGa41DdyZYcw+CcAWecMyY4By6AC8E5Z4wxJkWFc+BcMMY5B24IKTCM8STHgGRnem/fBwJ79+6tr693OByaZqFUoVShURSFUqo4HHar1bp+/br9+/fLTkYXUmloqN+7d6+mqXa7XVHUpqkQShVN0xISXLW1tWvWrGKMxf02+xqoKwjSHJVqQxIncENKBXAmGJNqwhjjnAvBQDBgDJghmMEFE9wQgnHOIl+Hpo1LsCb19n0cuUh5qKysqK/32e02Qsx6nhKiUEpJdBMhoKqqzWZfv35dQ0NDF/orjBmlpfs1TVNVlRApV5GECKFm0oRAQkJCTU3N5s2boL8P46OuIEgrjEw+xq1mhsMGM6SBCzgD+UEw4BwYA25wxhhnghuCG1xqDDO40+qZMPCk3r6DIxpCiK7rVVVVVqtV1uyEAKVACBAi9xMAkPpCCNE0jTG2ZcsW6EyNH1WvSsYMVdUIoZTKy0bjMBBCCDFVDAAcDueuXbu8Xm+X+0aHBagrCNIKKfasowbM5DrRw8wIc0MXTBfMEMwQhiEMnTOdGQbnBjBdMJ0zXTCDM51zJiYOPDkvpbC37+DIRdbXdXV1nHNFoXKsvtV+SLRiJ0KA1WotKzsQDAY63mWRbmZ1dV5NU+VX898WSUTOoFThnO/Zs6fTd3VYgbqCIK0zKeuX+e6petAwdBb944bODZ2xSO9EsDBnOmOGYDpjOmMGG5Iy+uSRFysEncF6DVmz19fXy/FzKTRN/xorexGdmUQpDYVCVVXV0NEuiwCAQCCg62FCqHlW1N08Oq0JIh+iX7miKJWVFdBCgfoT6A+GIK1j1xJ+OeLa4PqGLdUrVE0hlBAiKw7paiw4l95fEfMXM9jApJGzJ9yc7Mzo7bwjEA6HzGmPQgg5/8iccCSEnHDERQyc8/r6jkbfEQIIgVAoxLl8K7gQhHOITTTmyo2fCSF+v1/X9X7sGHaE6Uq0ISG/EWlzRZA2SLZnzC687bMtf12z/8swhBRpoY/RFc7lyAqnRC3KmnJW0bWZ7iG9nWsE5NwRQiCqF7G7pJtx9H8i8llW+p111pJXMOVDRLzRzXR5VFQiH6JbmBC8/Ssf1hwpuiIYAwCiKC07n8IwgFKCAoO0hsc+4Fejfzs8ZdKyne/trdukixAQAC5ERFpAAS07afDkvJkTc09xWFy9nV8EIGJiEobBVZUDCEKEGUzFnL/CGI/CpPM450xVO2fAJIRIN0F5bUoJQGN/RaYinQgj/zDOGCOE0H49bfYI0BXOhRBEUQCAB4Oh7dv1A/u5bhCrxZKTY8vLI6oGAIIxIlujCNIUi2KbkHNSQcbkDbtXPPv6w36otjgVAAgHGK9Xr51z05TCk50Wd29nE4kgbU2qqgWDPlVVFYW21BXGOGNG1HecGYZhGIYQwuVK7FRaVquVc24YhhCqoggh5EALAMSqV2MqjLFwOJyU5FbV/lz39ud7AwDgHACIojSsWFH92qv13/xP37OXB/ycC04IOJzqkLzE007L+PVVjuEjBOcgBHZckFaxqc5cV2HZT8qOnV5FUwBAD+tOhyvrilEoKn0Ql8tVU1NtsRicSz/jSLyEqAVMVvRSUXTDYKFQyGazJSenQMdG1OUxDodDVdVwOKxpwDmlNGJjj3aDuBCcMW4YjDFdqpeuhwcMSId4BCXrs/TnOlQwBpTqlRW7L790x7Sp3hdfIjt32BRid7scSYkOd6KFANuwqeyxP66aMG7rHb/jwSChVPD+bPdEugUBQkEI4IbghhAc+7d9EVlZp6SkEEJCoZBh6OafrhvRz9FKXtfDYV3XjWAwkJOTY7VaOzV/hVKalJTk9wcYi1xN1/VwOCQEV1VVURTDYKFQ2NwVCoU0TcvNzTuE998H6Le6IhgjiuJfsbxk6uT61/9uc9htqR7NalUAFMYVxhXONAWsLocjKckKZO9jT6w48fjA7t0oLQhyuCOE0DQtKyvL5/M11ve6bhjhqJ7IjWFdD+u6EQj47XZbfn4BdMb9Vx6ZnZ2jqkpDg1/2RRgzLBZLbW3tpk0bS0pKdN1QVRoKhaR6+f31I0aM6GaYy75PP7WDcU4Uxb9q5c7TTlUafLa0JKLrhHOILqURXXMn0i1WiZKQ7K7/ccXyGScf/b+vbZlZES9CBEEOQ8wav66udv/+/QkJLnOKiRxhMcdUDIMFAn7OjaOOmmq32ztb3QshFEUZOTJ/9epVjOkWi5VS5d///vsXX3zR0NAghBgwYMDFF180fPiIUChUX+/LyRlYUDAa+vXkFeif/RUhgFKjpmbPJXOUeq+WkEB1XQGgAAqA/EAAaPSDQoAQQUKGPckV3Lx19WWXAqCoIEh/YNSowoyMzOrq6vp6XyDgl39RAoFA0OutJQSOPXZa1+IZy9kqbrd77Nhx4bDu9/vXr1//xhsL5axMANiyZcsbbyxsaPD5fN68vLwpU6b2b0WR9Edd4RwADtx3j7Fxs5aYSA3DFBLSxh8lQAkhuuFIclUt/qLkuecg6pqMIMhhTWHh6HHjxlNKw+GwDNIlw3WpKhXCyM0ddMopMzIzs7psmJLSkpSUNGXK1IyMzPr6epvNKuc8EkIcDgfnXNO0KVOmTp48VVH6qYmoKf3uJjkHRQlu3lz3979bPAlEN0zxkJhfRdOvRC7dxAyrRSn50zO5l16muVxoDUOQwxpZ6WdkZGRmZt59910HDhzIzc3lnBuGvn79hmuuuXby5CmMsW6OdshULBZLfn5+TU21nKEiL2gYRmJi4imnnEop7d9jKrH0N10RnBNKa/79b1HrpakeYhixoiJp58ESLlSHvXbb9v0ff5R7wYWCcznxBUGQwxQ5xV1V1T179n7wwQcej0fXdUJIRUXF5ZdfAQCxMtDNhBRFsViskXEbxoQQuq4DAKVUZkM5MuqTfqcrMuTc119RC4GoW5doqiVN1v1rerZ5wIHPF+decOEhziyCIIcQzjkhRFEUIURtbW0wGHS73Q6HIxwOK4oSDof3798PAJqmycjEXVYXzjmlVE51LC0tTU9PT0pKkv7K9fX1Vqt137592dnZEHUcoN2ZJCeEnGnXuIWQvjanu1/pCjMMRVV9paUNmzfbrTYzgqjELHXRxp/cBZwrFLwb1oOM+4IgyGGIrOsZYz/99NPixYu3bdu2detWTdPkvHrDMCwWy8KFC5cvXz5u3LgzzzxT2segk55apk6UlZV9+umnP/74Y2Vl5ciRI0U0tnFaWpqu67/97W+HDh16yimnTJ8+3WKxyLx14ZZk6JBW6yXBWN8JeNhPdEUGjFNVdfPWrXfefPM1Xu9QTTWEoDG6YvZaGACPbgEADsBFo7pwAaDSUFUVCwQUux2HWBATv99vGEbsFs653+/vrfwgbcEYUxSlpKTk1VdfXb9+PaXU6XSag/bmvxaLxev1fvDBB4sXL545c+bcuXPtdnvHK31Tut55551Fixb5fD6bzSaXCJO6Isdd5Gz/jRs3rlmz5r///e8111wzduxYmcOO3o8Q0iZPAIzaWv/q1cGNG43aGhBAk5PshQXO8RNUV6KsB/tC36U/6IpsZaiq+u67795z993eYHCuwylCDYJQqR+kqe2LS/2I+RMcBAgejYAuIlGv++1qbkinMAyjpKTkp59+Ki4urquri13pT9f1V155ZeXKlUcddVRBQYHNZuvdrPY/Wh3rbn8AXI5zfP7556+88gpjzOPxyIENm81WVVUFkSArXAhhs9lUVfV4PJzzt956a/Xq1XfeeWdOTk5HpEUeU1NT89RTT61evdrtdicnJ8vLmpk0bWtCCIfD4XQ69+zZc/vtt1966aUXXXRRRwUsKirBjRsrnn3G9+knxt59wuCyEmMAQqFKTnbimWdm//Ymx7DhHZGWLpRqpzjsdUXKfigUevDBB19//fWkxERrYuK++voiAYwCFcCbOoOZPRWpLgyAc/mVy4fECWGCU4uV9t/VEZCOs2vXro8++mjVqlU+n48Qkp2d7fF4wuEwACiK4nA4qqqqFi9e/M0334wePfqss84qKCjolvUciSKrOTnyEQ6HZfNR0zQ5HAJt1IOysn7vvff+8pe/uN1uVVXliZzzQYMGaZpWV1cn1z4ZMGCA2+02lSAtLW3nzp233Xbbo48+OmjQoPYrfdkLqa6uvv/++3fu3JmWliaDFkOMGU1mXgbelxsZY06nkzH28ssv19fXX3XVVQeXFqlSQhz4w31Vf3wCfH41waa5E4BQs3HMmNAPlFc898KBv72ec+ddeb+7I3JiayJhlqoQIhwOy+ypqtp+qXaWw1hXTNtXSUnJ/PnzV65cmZqaSjgP6fpuRREcmNI4+VGWE4/+K2JEhXOIrlwe0ZWwDunDh1NNM3RdRXU5UmGMLVu27O233y4rK1MURf7wNE1zOp0iZhUf2fjVdX358uWbN28+++yzZ86cabVaezfzhzuydgsGg1VVVQ0NDboeNjsZFos1JSU5LW1AS89dWU1//fXXr776alJSktQk84KU0ry8PGmkkg5a0qopbVmMscTExNra2nvuueeZZ56RA++t1rByeygUeuyxx3bt2pWcnNzWqi1yooypN/IzISQ1NXXhwoVut/v8889vT1qEAEKY17v7kosaPvjYluSiqR5gDBgXwJuYU+wW6rCH9dD2O/5f3coVRX97o1Ubvsx5OByurq72+Xy6HpZyKMPeeDyeAQPSNU3rvrQcrg0r03fw/fffnzVr1rp162STQTcMYHyP1RIGwjhIqWj2J0XeAGAcOAcOggE3t+sACsAui9UnhKppZjMEOaJgjH322WevvfZaRUWFpmmKokgruUR+lupiftU0zefzLVy4cOHChcFgsLfv4LCnrKxsx44dPp+XUmKz2Ww2uxy9CIWC27dvX716ldfbxCYp1aK0tPTVV191Op2xu0x0XZcbpUrJjaYbGOfc5XLt2bNnwYIF7WRMXuEf//jHhg0bkpKS2l8KLCaUcmNXRs6jfO211+TYT+s1jBBAiGDG7osvDHzwsWNAsgJADUMRgkbjhijRuCEUBGGGSlRXcmL5f/675v8uaTUzhJDq6qodO7bX1tYACKvVarfb7Xa7xWLRdX3Pnj2rVq2qqKhoteg6xWGpK4wxSqlhGPfff//1118v3wZd1xljXAgrJRuDwQpDB04MDkZTRZEfDCFVHxgIBiyyEUAH4Iahu52PfP/Dmaec8u033yiKIjuzONxyRPHNN9/85z//CYfDqqq22najtDH6upQWAJAurR988MHbb7/dbIS/azDBDGEwcWSFfhBC7N27p6am2maz2u0OqeuqqkhzjdVqczqduq63WgkuXLjQ5/PFhiUmTTGPjP1qDukzxpKSkr7++uslS5bEdndMZPdi8+bNn376qcfjiRWVlkmY21umqCgK5/yVV14xU28O5wCw/567/R99YhuQTMNhKgRtFJIm8agoAKVAhCBhIyHZVfb2f7c8/BAQ0ixoyIEDB8rKyjTNYrc7LBaroqiKoiiKoqqa1Wp1Op2UknXr1u7evbub0nKY2cFM29eOHTvmz5+/fPny1NRUOflIdjCBkIp9+/KnT9d27wytW6c6nJQJShq7gwIiA/QcgAOXPRWpKAZAGIhFsP85E+s9Sf6SkosvueScX/3qjjvuyMrKkj0kNJ0fCWzZsuXtt98OhULtL75kTnaDmCpDtnjef//93Nzc6dOndyH1eqN+S/2Wn+t+3lK/pSJUYXBDASXVkjo8YfhY99j8xHyX1s9Xpdy/v7ShocFud5ilKoNFQqRTIgihNpuNc15cvGbSpGPc7kQ5zrp169affvrJ5XLF9kXMf5tVlO2YelRVffvtt4877riWZ8mv77//vmEYUhtaJtTyrGZIAUtISCguLl66dOmxxx4r28qNR0Qi566q+dMz1iQXCYdj7fkQ9W5tEowKgBAgghDdcCTYtj32aMY55yTmj+KMASGU0oqKipqaaofDQUhjF4pzs3gpIVTTNIfDuWnTRqvVkp6e0WWD2OGkK6bt6+OPP77jjjsaGhoGDBgguymyxg+FQjU1NVdcdtmjTz9d99GHxWec6QCuCKCiSdlER+kFByFFRf4bJkQD2GW1fZfotui64nDYCHnnnXe+/vrrm2++ee7cuaqqyscfL68JpA8SCAQWLVpUXV2txQytHbS+iG2TUkoDgcDbb79dUFCQmpra8aSrwlWflH+y6MCitb61dUZdpJsSHQxUhOKirsKEwrOzzj4j54w0W1rXbrDPIocDvF5vXV2d3W6PGhgjuziPLPtIqRyoIJqmBYN08+aNRx99jLzCN998EwqFHA5H7GNq59faaqtc+m5t3Lhx06ZN+fn5seMf0q+srKysuLjY6XQ26820ql7tZECq5hdffHHssce22tGpePZPxB+kdluzuCGx3q1NLwhEABFCUVVWW1/y3ILxz71AhCCKEg6Ha2qqrVYrITS2VKNmXWH6QyuKYrNZN2zYkJyconV1dLnvtr4FY8IwGufMcy6bhw8++OC1114rB9mkP4N82HV1dZzzF1544cmnn6aGkTrzjIxb5vu9DboCIWA6MAOYAUwHpoOhA9dB6ADyLwygU6oDqfcHP0xO0xVViSxWypKTk0Oh0O9///tzzjlnxYoV0tDRnkWVc2EYgjHpEiDvAkNYHkasXbt23bp10v4ptzQznsQeHFsdxH5QFGXHjh3ffPNNBxNlgn1V+dUVP19x++bbv6v7zgteqlLp+6RqqqqqqkUlGvGBb1ntsjvX3nnp0ks/3fupIeJgaus7yPKrqqpSVVW2qQkBEjE2kMghBKLuTKBpFk3TduzYUVKyLRQKVVdXFxcXt1yYS8TQcnuLPEQ6naFQaOnSpYyx2trauii1tbWGYfz000/V1dWtTqI0p0O23NgM6SygaVpxcfG+ffv8fn9jQrW13lCouqSk4YvFaoIdGGupS233hggAEYxZrMqBjz6s2rfPGwzW+3wlJSXBYNBms8tyjvlrvAPzq6ZZ/H7/7t272sr8QemL/RU5cTR2TqkQglC6ac+e2+bP/3nZstS0NCaEdD2UL9n+/fvHjh37wgsv5OfnM8YIpUzXC/74ZMW+PfX/+o/HZQ8IQaIqas5fiYy7EMJUxe8P2oDuOuEXP27a6mGculxc1wFA9nbT0tKKi4tnz5598cUX33LLLSkpKTKmUGzXNeI2TmnsSsYk9h44I0dGNNPDF8Mwli1bFgqFLBZLs11ttUZbRZrmv/vuuxkzZrhcBzFbBXnwr7v/+uyuZ6tZtaqqFhqTtAAhBCdccAEECCEKUQQRK+pW3PDTDdeNuO7a/GsdqqNzN9mHCQaDgUDAZrNCkz6iuV8IIfsu3GrVtm/f8dhjj/t8PlVVKaWapuXk5Gia1qyHAW33GGLH/GM/MMZcLtebb7755z//2XzusnNDCAkGg3LSfkJCwogRI2RaLS/VMhUTSmltbe2+ffsAgHM+a9Ys2WCN7AXwK8rRdXW3e71MVeX9xwajip3r3eJ1lHPwgFgsvLzs2lNP3eZy2TjXGSOE3HPPPVOmTAkE/IpCZUnGamtsNlVVLS0tHTp0WL+wg0VnAAnO/T/95P3sU/+aNXp5OTcMiyvh4527Kv1+R0ZGva5bDEN23KTP3P/93/89+OCD0jdcPn5F0z799NN7SssGDM77Zb13lL9BEyJEqaCUEBKZEUkIAwiHwwFfwJaSNPZPz54955KRH3740MMPb9u2LSUlRVEU2R8yDMPpdALAX//6188///x3v/vd7NmzpZGUUkrka6cogjH/mjX133wdWL/eqKkRAqg70VpQkPiLX7gmTCSqKqQ5EwdpOokAUavX7mzYudO/szJUaQhDJeoAy4A8Z94gxyC3xU3aiybaCSoqKrZu3drWKFpHRCV2YHbPnj3bt28fO3ZsO8eHefjZ7c8+t/s5gxoWzRJp+5iWDgFEEAqUAxdCgIi4ASmg+HTfk+uf9Ia8t4+93a7aO3WbfRBZZQcCAc5ZjITLD2bfQkSP5apqW7TovR07dng8nlAoZBiG2+2OrZ2bXbz9jc0+m19ra2tbnmhawquqqiorK7OysmQgy46kYnqjVVZWSv2jlMoVwMzDFIA6SlNqazUCBjTeNm/yXkTax+ZXIQsquoULYSFgr66s0HUnZ1TV6urq/vnPf06ePDmqKI2lGnPLUrkFpdTn84VCoa55zPclXREChCCK4l38WfnDDwZ++AFCBqEAKhUAPsZ/qVlPsFq+18MfuhI3WKwqpcHqas1mW7BgwcUXX2w6DsqB00ceeeSlF1902O3eRM8zTtcwf/3xvrqx4RD4g36dkciYCuEgrCnuEf93aeHv73Lk5grGZp5xxvTjj3/22Wf/8pe/6Lou/QiFEPLiqamptbW1N95443//+9977rln1KhRkT4TpXWL3i1/8o/BlStEIEwICAJCgCGAAezVFOu4sZnzb02/4EKASNDlXi7twwRDGGu9az8s+/C7qu92BXbVG/WGMOTPSBWqi7rybHnHpx1/RtYZBZ4ChXQ3ntvu3btra2tbGjfMWqMjrVGTQCCwdevW9nVl4b6FL+x5gSlMUZSIiw80rT8EECAUKOdcULNtCUQhjLO/bPlLqjV1XuE8SvrDGyX9gOUoPeemycvcIq3TnBBSX9+we/cu6U+saSohxKwBOyL/5i+62cbYboeiKKqqtqUW0lzh8/naT67ZNQGAEBIOh3VdN+O4NHMPUYTQFMVNCBcggAgQPGpraS4kMQLDpVSAiM7PI0KAi1JN0zROBaEJCQm7du2qrq5OSEhgjAEQIbgQkVlBsmwjHzkHAMPQdT0s7Yqd7bX0GV3hHCjloVDpLTfXvvSSqir2BCe4qPlYLISEuaCMn1DfcHRD/Q9O55ua1TphwoJHHy0sKjIMQ449yUbiLbfcsmzZMukqxvUw43yzzb7J7rDt3fvroqJjs7MaGhpUm80xKC918uSMk2fYs7IioXUURc6JvfPOO2fNmnXfffd98803iYmJdrtduo0ahqFpWmpq6tKlS88888xfX3HFjTffbPf7d8+7pv6td1SLYk9wgNMh3yAOwAlwQXSDh1YXb7ro4v1v/H3Uy6/asrJkWr1d6H2dHf4dL+96+f3y9yv0CkIIJRRUoEDlL4kLXstrV9WvWlW36p87/3lO9jlXDr9yoHNgd1I8cOCAtHw2295W3dGyzRu7hXMubR1tsbx2+Z92/ilEQqqiRtxFY4kZqCWUEEEEEY3CQ4EoRDf059Y/NyZ5zPSsrvie9TUitVqkgQgAJFr5R0TFPIBzZhhyOiMDADMuvXmR9mfLx4qK6dTX7AnGZqblFaS5IuKG2gbNTjevLMdu2zpXABhCcM4EgAwuFRuPqnVRiXZWYnRFiGhCjHNBhCwrzllMrmKKk3NTuc0pqG3d10HpG7oiBFDK6ut3nfurwOIv7KluIoAwJmJWpOcAGoBBIaiqwMXxAf+w8qrs31xfWFRkhMNUVaWofPHFF7/73e9qa2ulq5gsIEqpGg5XVVXNuPTSyx9+ONnpbKbAgjGIjuiYI/OFhYVvvfXWW2+99dhjj5WWlqakpJDoRBa5Vg/n/Olnnvn622+erCxXV66xpXqoEMAYcEM+EPO9VghYnU6ViLqPPv1p+rETPvw4IX8U9lraQYD4suLLh7Y9tMG/QVGUJqMdAgQVnHMQkfEGoFChV7y07aXvy7+/a8xd0zKmddksZjY/O9JGi601mjVL5WdK6dq1a99+++3c3NyMjIykpCSHw2GKVoAFXtz14v7wfovF0rynEr3Txo2R4RUiQMS6l1KFVgYrF6xdMD51vMty2Psfq6oiqz9ZhpQ2sYNxzg2Dcc4MQ7dabZmZmRs3bpRxHg3DCIfDZoegHWmJdHxaM4KZj960VsmAPc0wLyvboG11aNpSL865qqqqqgYCAXNspkl+AAxK64TgkekQQKFJPKpGY1f0Xy7MKd7CHDkmhNQLEQ7rFsGpqtbX148ZMyYxMTEYDFBKY0uVMW6qjvxXttQ1zQKdDPAs6Ru6AgAAe6+4LLj4C/uAZOmsDdFwXiJasgCgAAgqQIBf0ESXvfT3d3ry8gZeeLFgTAA8/vjjzz//vNPpdLvdclRfRF3FKKXP/OlPl8ydK/t7IN8h+dRbxJ2W/jzy9AsuuODkk09+4oknFi5cSAhxu93ypWeMKQDOzMys4uKEmioj1aMYhvkWx1o/I9kGxg1wJiX6tu9ccfbZU777zjogva0YPkc4AsQ7+9+5b+t9lawyMuTQtLYlnBCQY9mRMiaCECBrvGtu+OGGB8c/eOagMzuenGEYtbW1u3fv3rRp048//hgzYaI9aWleF7Q2bEsI2bJly7fffmuz2dxud1pa2sCBA/Py8vLy8gYNHLTDsuPbfd+qdhWUyCvS7pJz0cYqaf6nquqysmVf7/v6zMGduOu+hixqu90hhNB1XRqghCAAJFr9RVw0ZQUYCgV/+cvTN2zY0NDQYBqsZF/TNJ0BNFrSZCotFSW2uhcxAABjzGKxtBQns8GamJiYkpIiV+4iTWf+N3s9YpsgclA2JSVlz549sjKxWCzNxu3tlJba7CGvlwvCQAho8iMwh1tkPcNkaxbAnOLNAASBEIcau8Npt9k4Nzj3eDyzZ58rtVlR5IsqOBeMcc4jimJEYOFwOCnJ3eVwREQI8UElAMCZnfCzjyfSIlTx3IKyG250pCVRXScxLX2zs8JjZ8tzMLjQqfCHw7rLfcKan6st1puuv/67JUvkdAHDMExXsbKyslGjRr3wwgtFRUXma9fx7Jl+X8uXL7/vvvuWL1+elJRksViYYXAAVYg/V5cPMoywEGrTB89jQltGss1A59ywKHU1vtTzZ0/693+k9S+uxdkJuvDce+ZVWVyxeP7G+VW8KmIdajYfLPonmOCCCxZt1BkABrAwy1AzFkxecHzW8e0kEQqFKisrd+zYsXHjxvXr15eUlBw4cEDOiMrIyJBViRm4peXpzdq8sV+lfcPE5/Pt378/tsIihKiqarfbiZN4nV5IA5EheD7nozmoMerSOEodeZMEF5zxSCPWDBFhAOgQCobOzT33xV+8qNJD0lLsyVdl3bq1wWDIZovMtJAbowXMGOOGIXsnISFEdXVNRUXZ1KnHZmZmBYPBBx54oLy8vFlUadOPq2XHItZ0Ju1pZleprq7uoosumjt3rtfrNbPBOXe5XJ988skrr7ySmJgoVccUMGjbQcCcmWBen3Ou63owGHS5XH/84x89Ho9hGCQ6r4RYLMb+0tKTTlTq/ZpFUUCQmN9BrBGMCRBMvg7MAGEAhAHChAR1naalH/Xl/xSPRwHYtm1bIODPzs7W9UYzb/S9jai1YRi6rodCoXBY93prx4+fMGLEyI503GORz723+ytCEEXRy8oqH3/M4rKBYRBo2TxtbVopEMK5ZrWyqqqPrrrqibBeumlTenp6rO1L1/XKysqLLrro0UcfdblchmG0P326VUyz2FFHHfXee++9/vrrTz/9dGVlZVpSUjWh8+qqh4ZC9ZRamj510mr7kgAllOi6w+3c/9bb+//vw8yZZ+BASzO2NWx7aNtDlaxSU7XGaBUmpPEnRSghPDrkQCLhLBRV2R/a/8CqBwa7Bue6cs3zhBB+v7+srGzbtm3r16/fsGHDzp07KysrZSAvKSFySoHZIjE/mOoSaydpVVRatnnlsFwzfRJCNDQ0QAMoQoESAABwQfi6MJ/II3fX6oQFU2ZaQAldUb5iX/2+QYmDulH2vYyswtLTMzZv3qQoihmPDSJlLs013DAMw9ANQw+FwpyzUaNGjR5dJOfbjxkz5sMPP5St7Bg35VYcLpq1DHg05rG53WKxTJ8+PSEhweFwxHotE0KOO+64d955J5qrVvqpscT2VGLfE2kNE0KMHTt2+PDhzax2gjGSklJ30kl1b/6bWjycG5RGfgqNjQ0BggMXkQiHUlTkH1eUoC8w7LTTs4cP54ZBVdXpdK5dW+zz1WuaGutxJ2/X7KnoetgwjGDQn5CQkJc3OLYYO0Uv64pgjKhq9cKFxp59llQPbbEcfexQFbTczpjNad/2v6+qc/M8qSnNbF+EkKeeeuqyyy6T3ecuiEokLUKkwzGl9Morrzz9l7985MEH3/zww6maekGDr4FGmoixs2Fb5rbZNwWg5PnnM2ee0bXH1l8xhPHSrpc2+TdplqaiEttfiZVraM0upKhrate8vOnl+ybc11DfsHfv3i1btqxbt27z5s3S3ctcctxcOxaidUQwGIwNqWD2MCDG0NGsBokd9eVRE6v5ORQKtdrii2wxN/tAWanwcbyVzkr0c2Mt1kJgKKHlgfJttdsOa12RZZKWllZRUV5eXi7n/RBCZOlyLqK2Gl3XDV03gsEgAB89ugiiD+X444//5JNPRHRwpa3xFREz8mEKSazSBIPBUaNGFRYWtuzoMMaysrJGjx79ww8/JCYmthOAo6V0yUTNLovcePLJJ0NTiYLoC559428r33lb5brCCedAaMxM+4j3FzAQHFhM3xUYISHDUJ22Eb+5QRYr59zhcAwYMGDnzp0ul4uQxjZwdKC+sVRDoVA4HDrqqKMtFktnOysmvawrsqnu/fADJWY5+ubHNP0a+5umAGEucizqAIWW6waNRsIpKysbPnz4888/P378eGn76n5cL7PjkpWR8dwLL/zypJPo5f+nKlRvrXFJWtvYeC+caU5r9bIlvpIS19ChOIBvsqp21YflH0Zsla0OZUN0iwAwreeRL41dWs2nvf/v9+v+VVe6s7S0tNTn88lxSFkFNNOSWLUIBAKhUEgaCprNrWvZIG3Za4GYLgsA6Lru9XrlaurmLNo2f6j+mIHEJslE/xVNv8ZuBAgZoR3eHW0V7OHFyJH5gUCgurpaLvIoBMh19qQPmLSD+f0NQrApU45NSkoWQsi2f2Fh4cSJE3/66Sc5DsqbLlnf8jnGioo0VZmmjnPPPVce0KzqkFebNWvWDz/8YNrmWvZHWzY+Wr4eDQ0NhYWF06ZNA4BmLohyMpx78pT0edfve+ZZV3IihA05rBhJIjoFxRyoN4McGpoWqPaOuetOz5gxgjEavfLgwUMCgcDevXudTqeiKLGlylikYINBfygUHD9+Yk7OwC6LCvSyrggBhOgHykKbNmpWG5g/0dYsH9BUURo7gwRshuEJBPbY7AmUhnS9qqrqvPPOe+yxx9xud9dsX20RGc/XdULpCW73jkAgmOjSOI9tQzfLtmjy24+0O0EAUdVwXX31iuWuoUN7d5SlT/H+gferjWqLxdI8FlJjOy2G2GOa9l0cKxxsGftcfG5qiYx01MxI1UwVOOcyxJxcjFZEIya1mlXOuSlCdrvdvGysKWzYsGHjx4/fuXNnWVlZTU1NQ0ODnKctNSY2HDIQENkiMnpvEh1ZAQGcS3+f6HbR/PXigteGarta8H0LRVHGjRu/adOm3bt3yXaAHMZgjMkGta6H3G73pElHpaamNav+Lrvssp9//llqObTsB0QPju1MiJjBFUVRamtrp02bdsIJJ7QUFYgGGy0qKpoxY8aHH36Ympoa2/9oiWhqJjVNbQBACLnqqqukxbVlQrKtOfzRx2rXrKn7+ltnsgt0nQggQCDqfGz+yc4KI8TQNF+1d+AvTyu6734AIEqTyxYUFFqttm3btnLONU2LliqX41WhUNDhsE+detzAgbndERXoXV2RWQ+X7mO1tZrNImTA0pgWm7wt3vJ3JBoraw5EFTxFD9MEl6+21uD8scceu/LKK7tp+2oHWdw1a9eGDJFAqeA8VjnMR9HGbFjZhQXpBubbuiXu2Tt8qQhVLKleQmQt21aPrwXRQo2BgVqnmmaQ9rVEVgqqqrrd7oEDB44aNWrIkCFLly6Vo7VmU7RZm9cwjPLy8pqaGlkfuVwuOdpvtkk551ar9dJLL508ebLf76+rqysrK9uzZ8+OHTt27ty5Z8+e7fu2V9VUkRABBkQQMUiwo1jjS9O0VSK4EPKlb+XHEK06BXDRfxYKopQWFhZmZmbu2LG9srKyoaFBjjAriuLxJObmDsrLGyz7KOajkRV0Xl7elVde+dRTTyUnJ4sYG6Y8Rvp5mtV6bC0vLVp+vz8jI+Omm25qJ2/yalddddXGjRt37twp+0atdoxi37pYa5uiKJWVlddcc8348eNbFRWZDAhOrbbxb7+zcvY5NV9/50x0UIUKxiItCYi4BXEZjEpRwow1VHsHnj5j6pv/JorS0t1UCDF06NABAwbs2LG9rKysvr6eMSYEp5Q6nc4RI4YPGTLMZrN1U1Sg9/srADwY5MwQxCqfQOwfibbYYn9NPLJysOCRGUBCAKQwVlZWPmZw3rPPPTdp0qR42b7aw9/QskcS2y9hTZqbLWfDggAw6usPYQ4PN0oaSvYE90SeWmxRtuyxRr9Galto+hgocCsX3HTQbxQSU0sAwGq1DhgwIC8vr6CgoKioaMSIEVlZWQkJCXKXHJiNBHpt0RStqakxV/4QQtTU1CQkJLhcrtjqY+rUqRMmTAAAh8PhcDgyMzPHjRsHAJxzPaS/vPblh5c/rNQqpIKQMIFjQGQJYK04g4nofMAma2jH/CoiHmIAVqX/LFIpyzY5OTk5OVnX9YaGBsPQKaU2m93hsEMkvkvz6k9K+8yZM2tqauSSkTS6RCMAcM6rq6v9fr+sH5KSkmRMYrOur6+vT0xMfPDBB9PS0tqs7qN5czgc99577x133LF///4m3lwA0KL5YvZX5OmVlZXnn3/+pZde2k4qAACEAueWlNSjP1m88c47di54DnRmsWvUYgFCRLSekcESg76AYtPG3nnH6Hv/QGVUsdZG9YQQLpdrzJixjLGGhno51iiXtDF7ct0f9O1tfzAAoJQLwqM2jNgWW3M5ia4cDJFA99G9lGpe768uuuT5Jx5P9Hjia/tqC0EVFp0HC9HaL7ZOEE0zLyLesILH3A5OXolle8N2P/PL8RICpNGw2KxWj22nN98HIAAo6Bm6CirwiJaYpnY5ejl06NDRo0ePHj1att3s9ubBtWbOnLl58+bi4mJpgYEWgyJ+v180Hc/3+XyykpIMGjToggsuaBm8EgAopVa7dVjuMLVaNVRDuidQQgkjhJBmdrBGc3zsexP7k+ByJhaoRM1KyOpCsfdZzAFzuURu7C4RXaS95VlSSC655BKbzfbyyy9TShMSEuTTP3DggFz+QLrVVldXDxkyxJzYWF1dPXjw4Pvuu2/o0KEHqe6jfZ3MzMzHHnvsgQceWL9+vcfjUVU1dqC+ZS+ZEBIMBkOh0BVXXHHllVe2amdreT8gBNW00U8+k33RnK1PPVn+xeJQRY1oUo2AbUDKkPNPz59/q2fM2Ej09LaD88vMKIqSmOjuYKl2lt7UFXkDWloa2B3MYFShTAjawv7R5Hck5HL0kc4KAwBFqa1r+MXpM05+5WXlkNm+WqKmD4jVFQpNqsHmchiZDcvNbMvt9vSMHsjq4UJ5qJwJpoDSWHYt34aWot2ajOtDddWj0jIqFJGQkJCVlTVy5MjRo0cXFBQMHjw4OTm5/YUlkpKSLr/88j/96U87duww14uMdTU23zH5K5ULrsjgg5zztLS0q666atCgQe0kMdgx2EM8FXoFUQlw4LRxhDniiWAKZ8vmVcyf4EIwIbhwa+5h7mHdKf8+SDPLkrmx/bpPGjBnz549cuTI5557bvPmzRaLxeFwyEEXKTyqqhqGIeMq+nw+i8Xyq1/96uqrr5ZrgnXE1CGvk5GR8dRTT/3tb39btGhRXV2dw+GIzuiMZNh0PJOKMnjw4Hnz5k2ZMoW3GwCmeSlQKhhLmnTU0f/8V7DsQNWPP9Zt3BCuqQEAS3Kyp3B0ytHHWNPSAKJR1du9ctdKtVP0an+FEACw5OYquQP1LVtogp1KVY85JPYHxQRwJp21G6eVMkLCANmTpyhy2K2rC9F0Ntv2wkKhqYbBY0sw1mBj9lK5AM7kgse8cY4k50DAXVRkXhAxuGF2RIggAC38o5raHCNtw2YlLgAEMA9rOKWBbCbnTTnvqpOuys7JdrvdnbKLDhky5IYbbnjxxRe3bNnSbC4tIcRut0sTmakE4XBYRtfPzs6+5pprJk2a1P71BzoGjnCOKKspU4gCCgAHQYQgAqC11wha6aZEVjyNNFj4UPfQIe4hHb/Bw4vOVnlyHKWoqGjBggVfffXVxx9/vG3bttiVoeWzk4uAHXvsseecc05+fr44WGCxZsh3QNO0q6++esaMGe++++4PP/xQXV1t9oBlm0PODhk+fPipp5562mmnSa+QzlnpCZEeYgBgS8/IPuvs7LPObnaI3NupyXCHbpJDL+uKYIxqWsLx0yvXrVeEkwJXmhqUwKyduWzyQ2ztLCtoqpH0k0+BtpaJjnuuKQWAhLHj1GFDwyXbwWFXgIsWcsijQ0HRuD1NtTAccgwamDLpKPOCiEKURgMXF4RGpSWWmAOE6b/RbDSbg+CCDWE8hxdMKRhdNLpr+Rk2bNhtt932r3/967vvvgsGg7HqIuM7Sds0QGRZWV3Xp0+ffskllwwbdvB+g1N1npJ+ytKqpSAnYrcVHwxakxMW6fNyxgUTwIBwcnLuyW6ru3kyRzCyP6Fp2mmnnTZjxowDBw789re//fnnn61Wq6zW6+vrL7nkkmuvvVbTNBKdBtvZOsQcucnLy7v55pt1XX/33XflRGx5gN/vT09Pf+GFF4YMGSJ1qNOiYqYV9XADzprYSwkhlPap6dW9XaPJmVCXzDUsisGYwUDnYM4ajThlC2AMGJdNfhY7rZQpStDnT508NW3qsdBJre5OngVj1GZLOvfcYFhnhOoMdNGY4chfTLaNqKg0ZjvIcs6epbndMuRlT2S7z5NmSVOEIlWBc94Yda+pFUiGM+GCN/WLiBl7MIccQE2zd2ux3oyMjHnz5t1yyy0TJ060Wq26rssI5wCgaVqsGUEIMWjQoJtvvrkjoiI5LfO0IdYhXOeNraQWZi6IbUM13SKY4IwDA875QNfAM4cexsHBDhHSk1uOrmVlZTkcjqqqqoaGhvr6ep/PV11dnZeXZ7FYZJCOdnzK20eqEedc13VN04YMGVJVVVVeXl5aWlpaWiqDgMm3QjqMdLP5SwghikrUmD9F6Wt1SG/Pi6RUcO6ePMUz+/zqf77pTHILnXHeWEoCIOpgyTnwRrExJ5cKKLj9DgDoyYAosoeRPe83+197LVRdpVlsggke82RjWtJNsm0AGISEwmFbimfkjTcBoBGskSHOIXaw+3lk6J4BoyTmp04iahEZd2jDLgQMBBdy1CFBS8hLzOtmriwWi/TsKikpKS4u3rp1a2VlpbTLb968GWKGWMrKygKBgNvd0U5DXkLe3Ly5D6x/QIAABZpHQpPE3qYwvUpBMMFYJCwUFXRO/pz8pPxu3ml/xazHR44cmZmZMWTIUCFEMBhcuXKlNFiZQ2hxScV0RpVb5FCc1K24uFodFvS+P5gs6GGPP/7Tt9/4yw9YHQ5iMBIJswbSjVgAj/6gYjoEFktDtXfENVdlzTxDrjLZk5kWjFkzM/MefmTjZZcn2KxUcBqZsmTawyOj9LHZ1gF0VQ36Akc/9seEIUMwOFgsQxOG5lhzNgc3R357AjjlQMxSFXJjpJKF1sexY4ccBrkGdV9XJDabrbCwsLCwkDEWCAQYYyUlJb/5zW+qq6spocCBElpaXlq8udiT7gEOFsVCO2AMuGjIRd+Xf//pgU8VTWnUFbPmaekBIntsTHCDy7eKMfaLnF9cXnh5XG6zX0IIqaurKy8vv/DCC2w2mxkX9Je/PN3r9W3cuCEvb7Cc2drlSl+eK/2h9+3bF9v1URQlGAwUF/+cnp6ekZEZv9vq0/S+rsg62padM3rhP1f+8nTDH7A67aAbsYOXsdNK5fiErqr11d6sk0+Y+MyzcCgHoNrMtaIIzrMvvcy3tnjnk08neBIo54RHopY2cQaL6gqjVKdKfY0v/5qrRvzmhp7Wwj7PANuAqSlTN+3aFKlYaUQ/IqPZEPNCQBuiwiL+UbJdPz1nerItOb6ZVBRFznEZlT9qxLARy35cJtKFkWewgcxINu713pv6Q6oFLJnWzFGuUUclHVXgKUhQE9q6msfiuXPsnaUNpcV1xYqqtLK0Vwtd4YxL85cUlVHJo+6fcn+qvZeikfd5hBD79++vq6uVHoB+vx9ArnbFDcPQNKWurm7lyhUjRowcMGBA16RFntXQ0LB37x6bzeZ0OuXCKtI4Vl9fTwhVFGXLli2VlZUFBQWK0gdq3UNMn7hD6eqQPP34iZ9+tvqiC+r27rclOiilYM5Qlb8pQhihjJJQKBz0BfJm/2ryX/+u2Gy9tYoJoRQ4z//jU2DRSh553GpVLXabmefGqoAAI5QpNBgIhYL+wht/M+GZZ+GI6RF3HALkrKyz/rv7v17D2zh/pVn7Hdpwuo0dcuAgmEizp5015KxDl1uL3ZJ9YrZ/iF8UCu7hoAAAbGfbS7wlQghgQPfRRJo4NnHs7JzZp2ef7ra0bh8b6R75x6P/+Lsff7e6ZrWiKhFvhWaOK9F+mDTxRaKiM1aUWvT4tMeLUosO3W0e7pSWlvp8XofDQaLrNMuQPYrCKaWGoTscjkAgsHZtcVHRmK5JCyHE7/fv3btHVVUAUlRUNG/evHfffdfr9QLAmDFj5s2bZ7FYEhJcVVWVa9asmTBhYr//7ff++ism0igULC1d97tbS996C3SmapRaNFAUAcCEMAwjHDJ0LhyZA0bffc/wa+dFFKUXH5IQsttRuujdDbfNb9i2U1WIatWIqgpCItlmRiio60wkDMoe98jjgy66uCM+5j1AH1x/JczDty6/9V97/xWxC7UccmjDNGSKijAEGMAMduXoKx859hGFHpIeYUW44s+7/vzP0n/W8JpI4BmZu6ZzGAUTXOcWbjku+bhbCm6ZlDaprYUst3u3P7r60Y/2fBQSIVVRY3VFOr+ZzghSUSzUcuqgU//f0f9vZNLIQ3GDzeiDr0r7SHmoqqoqLy+TohKzhoqIWcaKycjwfr8/FApNnXpsy0myB4UxtmPHDgBhsVjlGL7DYS8rK9+/f7+qKjk52ZSqXq9XhqKvrq7Kzc2TPs39Ul3kc+9DugIAgjNCKBBSvWLFzr+9Vvn11w27d7FAgAsBiqJ5PImjCnLOnpU3Z641La2P1M6mtOg+7643/rH3X2961xaH63xcLqVBQU1McBcU5p5/weD/u8ySlNRXst1XK4tNtZuuWHrFtsC2Jnahjg05CBYRlcKUwr+d+rdDNJ9jS/2Wu7fc/W3Nt0QhClUa13KAxlk1jc5s0mCls2wt+/ejf3/u4HMV0rrUNegN7+94/6+b/rq2Zm2QBymhRK40JF2ruZBuclZqLUguuLTg0nOGndNjCw/3zVelfQzDKCkp0TRVVTVKqWx/CgFmZPhoEF9dUlNTnZGRNXbs2I7X+PLI8vLy6uoqu90hQ4kCyJWGNUVRGDPkhFnGuK6H5UJe9fX1xx03LSEhoV9KS99Y16sphCqCc+A8edKk5EmTuK437N4dqigXjCk2u2PgQNuAAfLIvlM7m1OWtATXsOuuH3rtPP/evfVbt4RrawBAc7tdw4Y7cgcRQmTcVBxTaZ98T/7vi35/6/Jba/VaqtDmU+5jTUMiRlRYRFQ44wMcA+4+5u5DJyq/3fDbVfWrNE0jlLQcZqeECi7XW2ocFlJAKQ2X3rnqzjALzxk+p9Vei1NzXjTiohm5M5aULvl89+fFVcVlDWV+wy+EIEDsqj3dkT46dfTJA0+enjO9m/7T/RtZX9fV1THGbDZLJGB0uzPQhQCLxXrgwP78/JFWq62dQ5ucRgjnvK6uNhp/ITJJVlGoYRjhcJhzFp0aKWfXE0qpYRh79uweNaqgu/fZh+lbugJRF145d5RqmmvoUNfQoY27o1VzX6udZfRQYRhEUZwDBzoHDmyyO7qrr2W7bzJz4MzaUO0Dax6oDdUqqtL6EAsHECBDmHDOowuxsjRH2h+m/OGUQaccioxVhivv3XJvE1FpLRwAAUIF5YRH1rJUAARQlXrD3ofWPJRpzzwp56S2kkixpZw95OwzBp9RG6otayirCdUY3FCIkmRLSnekJ9mS2uruICayE1Bf76OUCAFyGWK5K7JoSfNAogJAKAoNBoNVVdVZWVkd70kEg4FwWLfbbdHrNC4CZkZGEUJIc6Z8fVVVLS8vHzWqoP91Vkz6nK5IIvWvtFbL50RI5EH1SPivrhDNm+Acou8QAInMhu2z2e57UELnDJvj1twPr354W/225qGpY+bbm4u9CyY45wXJBXdPvntG7oy2hjG6Axf8lV2vfF37taZqhJJWYpeZgyIECG3qd0AAKFCFVoYqH1nzSL4nPzshu520FKKk2FJSbClxv4sjh1AobAacFkKYIZCF4NJ4LRpfo+i4GBf19V6ADoXvlNoTDIbk+h4RDyMOZqKxK/GY4UOF4ISQQMBvGLqqHvqgU71Eb8+3b59ofAKiKKSrs2F7nmieVaKoMue9naPDD0roWXlnvf6L1y/Mu9ApnKFgSA/pLMwifzrjBhe6ELqQXz0Wz2WFl71+6uunDjr1EL0nq+tWLyxdSChpIiqxygEQ27WKDOc3PUxV1J+rf/775r8fihwiJkIIaYOK1vCRERW5iItcXqvZv/JIw2CdSshcqktEpuMKc36MTCgqKjyaDyGiAbYP0b33BbARjfRd8pPyn5z65EXDLnpv+3tL9i/ZW783YASYYHJeiwKKU3XmJuVOy542a+is8QPGa/RQNQC54G+VvlWul7eyliXEjNubX0lrX6XdjMI729+5aPhF8ZqzibREdhqiS3gJQhqXiTS3M8Y5lyIQcQ+Tq7B0MiGQUfcBQCYEUcOXlCvGInoWTY7JRcB6Jphhb4G6gvRprIr12Mxjp2RMqQhUbKvdtr1ue0WgwuCGStUB9gFDPUOHeYal2FIoObS/0j2BPf+r+l9kHnVL2RBtntjkMAIAoFBlV/2u/+393+UFOEn+kCAtVKqqNjQ0qKoqBKVUEEKigyvmKjkGi2IYTC4RbcaL7CAWi5XzSC9HCEqic3jN3gljES0xEwqHdY8nsR8bwQB1BTksoISmO9LTHenHZh3bKxlYU7emNFRK1dbUq6WoHExmGLDvSr+bmz9XpfgDPFQkJLhqamo0TSOEKgo1+yumnzHnUk6YYRiGYYRCYavVkpycAh2L3yGPcTqdiqKGwyEAC6WUECpPjTGyReSEMUPXdcNguh5KSxsAUf07pIXQW/TnvhiCxItib3GIhyLuAKZsxH4QzT9E/IKabQcAAAJkU82m6mD1Ic/3EYmsrFNSUgAgFAoxpkcxdN0wDJ0xnbHIZ8PQw+GwYRjBoD87O1uu7t7BhKQPcVKSJxAIGIaUDZmKLrWKMT1mu67rRigUUlW1/TXf+gGoKwhyEJhguxp2AcT4p7ZUFPNzdJJ842EtdIgQUhWoqgxWHtp8H8EIISwWS2Zmps/n03VTWMKGISt6Ixw2dN3Q9XA4HNJ1IxAIWK2W/PzOzSmRApaVlU0p9fultITl/MeoYpmiEg6Hw4ah+/2+YcOGuVyJ/bizAmgHQ5CDYgjDZ/gAIvPeCSHQco3kGFEBDlxE17Js4y/EQg16Q2/czRGBrLIHDsytra2tqKhISEgw3cCjIx+RyfaGwYLBgK6Hjj12mlzrvlPVvRBC07QRI0asWbOGMcNisQgz+o6IWMGMaAfG56vLzMwaPXoMdMzUdviCuoIgB0eKhPQmalwjuaWuQCSUSxOZaaooIrp2csftLUiXKSwcvXbt2v3791mtNhnSOFrdc8MwwmE9EGhQFGXKlGOzs3O60IeQjmdJSclFRWOKi9f4/Q1Wq41SChBxD5DjN8FgMBgM5OTkHHPMlP7tCSZBXUGQg6CAYiO2yAx/EbNGsmgReLhZfLBmwTFFZL1LEKAqqk3taLwQpMtQSseOHZuUlLxt25aamhqpHNFuhKEoNCsrq6hoTGKiu8uGKSktqampkydP3bhxY1nZAcMwTEdnwzA4Z06no7Bw0rBhw/t3N8UEdQVBDoJK1WxbdkRXuODAiSCEEkJI7NhJZG6E4M3XsoxRF3OWt9vuxun0PYMQIjd3YHZ2Znl5eXl5hd/fwDlXVcXt9mRmZrrdHui2a5ZUEYfDMXHiRJ/Pd+DA/traWl0PAxC73Z6WlpaentFs4er+DeoKghycgsQClauRdcZACCKIiER/IkAiSyNDNJR9dJSlpbTIUGac8cGJg1FXegZZ6SuKmpmZlZnZPEaLfHDd70bIVADA5XK1Ogmmfw/UNwN1BUEOznjP+BQ1pdKoJGpk3S1BRONClhLRdIHkZiuG8kiUTOBAgU7OnIx2sB4jJv5j67t6IJUjR1QA/YwRpCMMdw0/ynMUM5gpEhHBaKocrSxAHbPymOysCCZSbakn557c2/d0xEFa4zBNpY+DuoIgB8eqWM/LPc8pnMKILAPcRDNEE/1orjcMpO1LMCHV5eRBJxemFPb2PSHIoQJ1BUE6xAnpJ5yafioPczCaCEajkMR+bXoMY4wzLpcdy07Ivmr0VYcuRCaC9DqoKwjSIeyq/aZRNw23D2dhBjqAEf0zhcRoTVoMYAaTvRzBhIVabhh3w7i0cb19NwhyCEFdQZCOMsoz6t6x96ar6c2lxWhUkVilEYZgjEnzlzAEAXJ54eVzR83t7ftAkEML6gqCdIJTck55dOKjAy0DjZABOjT+xQqMDkIXzGDMYEIXoAPXuYVYri66+o6j7rCr9t6+CQQ5tKCfMYJ0AgJkZu7MdHv6w6seXlq2lBNOY1cyFSDnRcpJ9eYCyQNdA28cd+Oc/DnoW4wcCaCuIEinmZQ26ZXjX/nPtv+8ufXNzXWbQzxECKGy9x8N1sI5p0DTHemnDjr1isIrRqeOJnDE+ZsiRyaoKwjSFVJsKdeOvvZXQ361tHTpN/u+2VC9ocxfFjACIEBV1SRr0hD3kCmZU07IOWFE0ghcvws5osDXHUG6Troj/Zxh58waOssX9lUHqxuMBgHCQi1J1iSPzWOhlt7OIIL0AqgrCNJdKKFuq9ttdfd2RhCkT4D+YAiCIEg8QV1BEARB4gnqCoIgCBJPUFcQBEGQeIK6giAIgsQT1BUEQRAknqCuIAiCIPEEdQVBEASJJ6grCIIgSDxBXUEQBEHiCeoKgiAIEk9QVxAEQZB4grqCIAiCxBPUFQRBECSeoK4gCIIg8QR1BUEQBIknqCsIgiBIPEFdQRAEQeIJ6gqCIAgST1BXEARBkHiCuoIgCILEE9QVBEEQJJ6griAIgiDxBHUFQRAEiSeoKwiCIEg8QV1BEARB4gnqCoIgCBJPUFcQBEGQeIK6giAIgsQT1BUEQRAknqCuIAiCIPEEdQVBEASJJ6grCIIgSDxBXUEQBEHiCeoKgiAIEk9QVxAEQZB4grqCIAiCxBPUFQRBECSeoK4gCIIg8QR1BUEQBIknqCsIgiBIPEFdQRAEQeIJ6gqCIAgST1BXkEPI7NmzTz755HYO2LZtGyHkiy++aLnrueeeU1U1jplhjM2ePdvpdM6ePXvdunWEkCVLlsTx+j1GTk7OXXfd1du5OHLpsfI/fN9S1BWkuwwYMGDnzp2t7rrmmmtuuummHs1N2yxZsuSdd9558sknn3jiid7OS6dpp5CRHuC88857/fXXezsXhw2oK0i32L17d0VFRcvtuq4DwCmnnHLGGWf0TE4MwxBCtHNAZWUlAJx77rmDBw/uyXS7T1uFjPQYK1eu7O0sHE70E1159dVXCwoKrFZramrqnDlzysrKAKCyspK0oL6+HgBCodBtt902cOBAi8UyaNCgO++80zAMean09PQFCxbccccd6enpiYmJZ5xxhrwaABiGcc899wwaNMhqtQ4fPvy5557rrfvtI3z99deDBg0CgMGDB8+aNau4uJgQ8sknnxQWFh5zzDHQ1A5WWlp6/vnnu93u5OTk8847b9++feZ1AoHAnDlzXC5Xenr6jTfeyDlvmVarjxgAkpOTn3322TPOOMNut9fV1QHA0qVLp0+f7nA4EhISTjzxxOXLlwPAXXfdNXv2bAAYMGDAaaedFnvlM844I1b83njjDfM96X66AHDBBRecf/75L774YnZ2tsPhOOuss2pra2+//fbU1NSUlJQbb7zRTLq8vHzu3Lmpqak2m+3oo4/+6quvWhayPFJRlAceeCAjI6PZK1pRUTF37tzMzEybzTZixIhnn31Wbt+4cSMh5Ntvv509e3bLcm413SOQtsqBELJjx47LL7/c4/HILZ0tf2i3Ytm7d+8FF1yQnJxstVqLiooWLlzYc/d8iBBCvF8h3q8Qhy9///vfCSEPPPDApk2bvvzyyxEjRkyaNIlzzhjbGqW4uDgzM3Pq1KmccyHEFVdc4Xa733zzza1bt/7jH/9ISEiYP3++vFp2dvagQYOeffbZhoaGkpKSzMzMefPmyV033HCDw+H461//umXLlhdffNFisbz88su9dtvdpgvPvdkp4XD43//+NwCsWrXK6/Vu3LgRAI455pi//e1vP//8sxDi3HPPPemkk4QQuq6PGTNm4sSJX3755bfffjtp0qQxY8Zwzrdu3QoA48aNW7Bgwdq1ax955BEAeOutt4QQCxYsUBRFJtTWIxZCpKenFxUV3XnnncuWLdN1ffPmzTab7bzzzlu9evXKlSvPOussl8u1d+/ehoaG1157DQA2b95cV1e3du1aAPjuu++EEDNnzpw5c6Z5U//4xz8AwOfzxSVdIcScOXNycnJuueUWn8+3dOlSRVEKCwufeuqphoaG//73vwDw2WefCSEMwxg/fvzQoUO/+OKLDRs2/OY3v7FYLGvXrm1WyEKI7Ozs/Pz83/zmNytXrnzvvfecTqf5ip5++ukjR4789ttvN2/e/Prrr6uq+u677wohZDmPHz/+888/D4fDn3zyCSFElnNb6cb3Ven7tFMOe/fuBYAFCxZUVVWJLpW/aLtiCYVC+fn5o0eP/vrrrzdt2nT33XcDwPvvvy+EiH1LDxfkc+8PujJu3LhTTjnF/PrBBx8AwNKlS2OPuf76610u1/bt24UQlZWVqqo+9NBD5t5bbrnF6XSGQiEhRHZ29oknnmju+vWvf33UUUcJIWpray0Wy913323uuvLKK0eMGHHIbuuQE5fK4pNPPgGAHTt2iGjlddttt5l7TV35+OOPAWD9+vVy++rVq2fPnr137155yu9+9zvzlLy8PPk1VlfaecTZ2dnyAUluuukmt9vt9/vl16qqKovFIp/1f/7zHwCoqKgQTX+x7ehKXNKdM2eOx+MJBoNy19ixY0eNGmWemJKS8uijj5pF9OWXX8rtjLGRI0deffXVzQpZJn300UebV7jsssvMrwcOHCgrKzN3TZw48brrrjMfzR/+8Adz19ChQ+WTaiddkyNBV9oph0AgAAB//etf5a4ulL9ou2JZtGhRs/pq4sSJ8q07fHXlsLeD6bpeXFx83HHHmVuOPvpoAFizZo255dNPP33++eefffZZaVj/+eefDcNodkpDQ8O2bdvk13Hjxpm7PB5PTU2NPCscDp944onmrl/84hdbtmypqqo6NHd2uHLUUUe13LhixQqHw1FQUCC/jhs37j//+U92drb8euyxx5pHJicnV1dXx5570Eccm+LKlSsnTJhgt9vNqw0dOjT2Zeg4cUx36NChVqtVfvZ4PGY5yK+1tbUAsHz5clVVp0+fLrdTSqdNm/b999+3mre2SqyysvLSSy/1eDzS6rty5crYwmz1xe5Uuv2Y3ir/lStXKooyefJkc9fRRx/dtTe27xBPP85eoaGhgXOelJRkbpGfvV6v/FpVVXXFFVece+65l112mdwid7Vzilk7SIQQ5t5TTz2VECK3S/N0eXl5SkrKIbizw5XYgjWpq6trVqqxOBwO8zMhRDQdBj/oI47d5fV6hw4d2iw/5pGdIo7p2my22F3NvpovmGEYCQkJ5nbDMNp6tVotsWAweNZZZ+Xk5Pzwww/Dhg1TVTVWFKHtF7vj6fZjerH83W43pY1N/C6/sX2Hw15XnE6noihS+SWygeB2u+XXq6++mhDy8ssvmwfIXe2c0ipy7xtvvFFUVBS7Pb7ORf0Vl8tVW1vLOY/9/XSQgz7iWNxud+yR8uCcnJx2rt9MyaTRowfSbXkFm822evXq2I2KonT8CsXFxdu3b1+4cGF+fr7ccuDAgYPmofvp9g96sfzr6uqEEGaDtbq6uv26qO9z2NvBNE0bO3bssmXLzC3ys7RRvPbaa+++++7rr7+enJxsHjB27FhVVZud4na7hw8f3k5CY8eOtVqtFRUV+VFSUlLS0tJM+8aRjDiYo+2kSZMYY0uXLpVfN2zYMGnSpA0bNnTk4u0/4pYJrVq1KhgMyq/l5eXbtm1r9UgTj8cT2zw0a5ZDnW4zjj766GAwyDk3XzC73R5bKx20kH0+HwC4XC75denSpSUlJQc966DpHiH0VvnLn8aPP/5oblm2bFmn3pw+yGGvKwBw6623fv7550888cSOHTu++uqrW2+99fjjj580adLOnTtvuumm2bNnDx48eFuUUCiUnJx8xRVXPP744+++++7OnTtff/31V1555aabbmp/dndiYuLVV1997733vvXWWzt37vz6669POeWUK664osdus28ibUEfffTRunXr2jlsxowZo0aNuvrqqxcvXrxkyZKrr746FAqNHDmyg6m09YhbHjlv3rxwOHzllVdu3LhxzZo10th96aWXtnPxSZMmrVixYtWqVYZhfPDBB7Fetoc03WacfPLJ48ePv+SSS7799tudO3e++eab48ePf+mll6DDhTx27FiHw/GnP/2ptLT0448/vu2222bOnLl582bTn7Wz6R5RtFMONpvNbrd/8803q1atkhOzWqVr5X/aaacVFhZed911P/zww9atW++44461a9fOnz8//nfYk4jD0HOjJa+++mp+fr6maWlpaVdeeWVNTY0Q4s0332x5v8uXLxdCyPkrWVlZqqoOHjz44Ycfls6jQojs7Ow777zTvPItt9wydOhQ+VnX9bvvvjs3N1fTtOzs7Ouvv156DR2mxMXJxzCM008/3W63n3baadLp6PPPPzf3mv5gQojdu3efc845LpfL4/Gcc845u3fvFlE/pdhTJk6c+Otf/1o09QcTbTxi0eJ5CSGWLl06bdo0m82WkJBw2mmnrVu3Tm5vyx+soaFh7ty5SUlJbrd77ty577zzDgCY1+9+unPmzDn22GPNw44//vg5c+aYX4cOHXr77bfLz2VlZXPnzk1JSbFarfn5+U8//XTLQm6ZdOwr+tZbbw0ePNhutx9//PEbN2789NNPPR7PxIkT2ynndtI1ORL8wUS75XD//fc7nc7s7OyampoulL9o96nt3btXTu2yWCwTJkxYtGiR3H74+oMRIcQHlQAAZ6b2mJYhfYIuPHd8VY5M8FVBOoh87v3BDoYgCIL0HVBXEARBkHiCuoIgCILEE9QVBEEQJJ6griAIgiDxBHUFQRAEiSeoKwiCIEg8QV1BEARB4gnqCoIgCBJPUFcQBEGQeIK6giAIgsQT1BUEQRAknqCuIAiCIPEEdQVBEASJJ6grCIIgSDxBXUEQBEHiCQUAjQAA+FgvZwXpSeTjlo++4+CrcgSCrwrSQcxXhQJAggIAsLkB6vElODLwMdjcABB99B0HX5UjDXxVkA4S+6oQIURZGH7y9namkN7gGDcM0DpxPL4qRyz4qiAd5Bg3ECEEAJSFYasffAwM0duZQg49GoEEBUY4YICl0+fiq3JEga8K0kFiX5WIriAIgiBIXEB/MARBECSeoK4gCIIg8QR1BUEQBIknqCsIgiBIPEFdQRAEQeIJ6gqCIAgST1BXEARBkHiCuoIgCILEE9QVBEEQJJ6griAIgiDxBHUFQRAEiSeoKwiCIEg8QV1BEARB4gnqCoIgCBJPUFcQBEGQeIK6giAIgsQT1BUEQRAknqCuIAiCIPEEdQVBEASJJ6grCIIgSDxBXUEQBEHiCeoKgiAIEk9QVxAEQZB4grqCIAiCxBPUFQRBECSeoK4gCIIg8QR1BUEQBIknqCsIgiBIPEFdQRAEQeIJ6gqCIAgST1BXEARBkHiiyv95vd5169bt378/GAz2boYQpD9hs9mysrJGjx7tcrl6Oy8I0kMQIURtbe0333wzZcoUl8tlt9t7O0sI0n8IBAJer3fZsmUnnnii2+3u7ewgSE9A6urq/ve//5199tm9nRME6c8sWrTopJNOwl4LciRA169fP2XKlN7OBoL0cyZPnrxu3brezgWC9AS0tLQ0MTGxt7OBIP0ct9tdWlra27lAkJ6ABoNBm83W29lAkH6O3W5HpxjkCAH9jBEEQZB4grqCIAiCxBPUFQRBECSeoK4gCIIg8QR1BUEQBIknqCsIgiBIPEFdQRAEQeIJ6gqCIAgST1BXEARBkHiixvFawWBQ1/VQKKTrYQDQNIvVatU0re/M51+1atWePXs2bdq0e/duAMjNzc3Pz8/NzR0/fnxvZy1C4KMP9XVrQ0u+C69dCwCWoiLrcdO0ojH2X87s7aw1UuL/sVLfuTe4riK8AwDSLINzbKPTLIOH2I/u7awBAHxW89kG/4bvvd9v8G8AgAJHwZTEKYWOwhlJM3o7awhyRBAfXdF1vba2Rtf12I3hcCgcDgGApmkeT5KmaXFJq2vs3r371VdflXJismnTpk2bNgFAbm7ur3/969zc3F7KHQCAvra4+vrr9HVrYzeGli4JLV0CANroouTnX9SKxvRS7iJUhHd8XrVAyonJ3uC6vcF1AJBmGXxKyg1plsG9lDtY719/y/ZbpJyY/OD74QffDwBQ4Ch4csiThY7CXsodghwpxMEO5vN5KyrKm4lKLLquV1SU+3y+7qfVNRYtWnTvvfc2E5VYdu/efe+997733ns9matYvI8+XHb8cc1EJRZ93dqy44/zPvZIT+aqGT/U/uuf++c3E5VYKsI7/rl//o91/+7JXJk8te+p09ed3kxUYtng33D6utOf3vd0l5NYtGhRampql09HkCOE7uqKz+ftoGD4fN6Ghvp2DsjPz//jH/8Yu+Vf//pX921oixYt6qBgLFq0aPHixe0fU1NTM3/+/CFDhlit1szMzPPPP7/7wc+9jz7sffzRDh352CP1Lz7f/jGVlZU33XSTzGF6evqsWbN++OGHbuYQAH6o/VcHBeOH2n+t9n7QzgHXXnstacGSJUu6k72n9j31zL5nOnLk0/ue/suBv7R/zCeffCKX4XI6nWPGjHn66ac5593JHoIcUXRLV3Rd71QvpK6urp1uzaFg9+7dneqFvPnmm+10a+rq6qZOnbp48eLHHnts9erVCxcuZIxNmTLl559/7nIO9bXFHRQVSe2dv9fXFre1t6Ki4uijj/7444//8Ic//PTTT++88056evr06dO72RWrCO/oVC/k25rX2unWAMAJJ5ywtSmTJk3qcvbW+9d3UFQkf9j9h/X+9W3tfemll84888wJEyYsXrz4+++/nzdv3kMPPXTZZZd1OXsIcqTRrfGVmpqazp5SW1uTljagO4l2ir/85SAt05a8+uqr999/f6u7HnrooYqKii1btiQnJwNAQUHBiSeeeNVVV61du3bs2LFdy2H1vGs7fcr116V/u7TVXXfddVcoFPr555/NdQmPO+44TdOuuuqq008/3WKxdC2Tiyuf7ewpn1ctuDjzqbb2OhyOYcOGdS0zLZm/fX5nT7ll+y2fjv605fbKysr58+fffffd9957r9wyZsyYcePGPfLII16vt7sZRZAjg673V4LBoGF0uvOh63qPrUIhvb86e9bu3btXrVrV6q633377uuuuk6Ji8sorr1xyySVdy2Hgow/19Z02o+nr1gY++rDVXe+8885vf/vbZovd3nXXXRUVFV999VXXMim9vzp7VkV4R4n/x66l2Ck+q/lso39jZ8/a4N/wWc1nLbd//PHHjLHbbrstduPkyZPfe+89XP4OQTpI13VFOhPH98Tbb79djWHOnDldzR0AQDsWrS6cyDnftWtXYWE8vYnasWh14cS6urqqqqqCgoJm2zMyMpKTk0tKSrqWVvsWrUNxYqdox6LVhRO3b98+ePBgh8PRvUwhyBFN13UlFArF/cSbb755TQyPPfZYV3MHACB9iON1IiFEURTGWHey1IzQku/ieKKqqgDQag4554SQrqUlfYjje+LHH3+sNqWqqqprqXzv/T6OJ6qqGt9HjCBHIF0fX+nyCHw7J2ZkZIwePdr82k1Xqy73V1q1nhFChgwZsmbNmma9KF3Xuzw1J9y2Y/HBTmylZJxOZ0ZGxtq1a88+++zY7QcOHKitrR0xYkTX0upyt6Md69m0adOef76JY5vH4+laKu04FrdPq9azYcOG7dy5s66uzu12x27vzlNGkCMNjOPSCkKIVrfPnj37z3/+8/79+2OPnDt37q233tpTWWtMudWtF1xwwYIFC5qNMD/66KNZWVm/+MUveiJfMbRVjADgcrlGN0VRlJ7MGwCI1srw9NNPt1qtDzzwQOzGn3/+OScnZ+/evT2VNQQ5vOm6rnS5+dZj7b4uz59v68Tf//73eXl506ZNW7hw4fr16//3v//96le/+vLLL6+66qquJWQZXRTfE++//36PxzNt2rR3331369atP/7444033vjSSy+99tpr0krWBbo8f75nJt4XOJqPJ3XnRLfb/dxzzz399NPz5s37/vvvi4uLX3jhhRNPPPGCCy7IycnpXk4R5Eih67pitVp7+MTOkp+fH98TnU7nsmXLzjvvvPvuu2/ixImXXHJJUlLS8uXLR44c2bWErMdNi++Jbrf7p59+mjFjxm233VZUVHTWWWft27dv6dKlp556atcSAoAc2+iDHxTXEzvFlMQp8T3xsssuW7x4cUlJyRlnnDF16tTXXnvtiSeeePbZTntaI8gRS9fHVzSti5Mh2jqx5Wj5hRdeeOGFF3YtFTgE/RUASEhIeOSRRx55JD7xVLoc76udE91u9xNPPPHEE090NVPNiXt/5aWXXupGdprT5Xhf7Zx40kknnXTSSS23z5o1a9asWV1LDkGOHLreX7HZbKraaYuWqvZceOMJEyYMHDiws2cNHDhwwoQJhyI/LbHPPEMr7HSjXiscbZ95xqHIT6sMdRyTquV19qxULW+o45hDkJ3mnJp06ijHqM6eNcox6tSkrvfhEARph26N2yclJfXAKd3hyiuv7IFTukPyC51uvHfhlG4yI/XGHjilyzw1pM2J/XE8BUGQDtItXdE0rdnU7vZxu9097KyZm5vbzOm2fS666KIejpavFY1J/N0dHT/e89AjPR8tP80y+Bj3BR0/fnrSFT0ZLb/QUXhT9k0dP/6e3HswWj6CHDq662fsciV2UFrcbrfTmdDN5LrArFmzOigtF1100YwZvbD0U+Id/6+D0uJ56JGE664/1PlplcmeCzsoLdOTrhifeOahzk8z5mfP76C03JN7z5UZPdolRZAjjTjMX3G5EtPSBrQz1qKqWlragF4RFcmsWbPuv//+dsZaBg4ceP/99/eKqEgS7/h/6d8saWesRSscnf7Nkt4SFclkz4UXZz7VzlhLqpZ3ceZTPS8qkvnZ8z8Z/Uk7Yy2jHKM+Gf0JigqCHGrIG2+80c0wXCbBYFDXw6FQSM6o1zTNarVqmqVPrUO8e/fulusQ99hA/UEJfPShvrY4tOQ7ORXfMjq6DnEPDtQflBL/jxXhHS3XIe6ZgfqD8lnNZ+v961uuQ9zrA/ULFy6M128NQfoy8dQVBEHaAXUFOULAOC4IgiBIPEFdQRAEQeIJ6gqCIAgST1BXEARBkHiCuoIgCILEE9QVBEEQJJ6griAIgiDxBHUFQRAEiSeoKwiCIEg8oTabLRgM9nY2EKSfEwgE+k5AIwQ5pNDMzEyv19vb2UCQfk5dXV1WVlZv5wJBegJaVFS0bNmy3s4GgvRzli1bVlRU1Nu5QJCegAghvF7vV199NXnyZLfbbbfbeztLCNJ/CAQCdXV133///UknnZSYmNjb2UGQnoAIIQDA5/OtW7eutLQUx1oQJI7YbLasrKyioqKEhF5bfwhBepj/Dw2QzN+HHHAzAAAAAElFTkSuQmCC", "path": "image.png" }
Look at the models of molecules below. Select the elementary substance.
[ "ozone", "ethanol", "trichlorofluoromethane" ]
0
There are more than 100 different chemical elements, or types of atoms. Chemical elements make up all of the substances around you. A substance may be composed of one chemical element or multiple chemical elements. Substances that are composed of only one chemical element are elementary substances. Substances that are composed of multiple chemical elements bonded together are compounds. Every chemical element is represented by its own atomic symbol. An atomic symbol may consist of one capital letter, or it may consist of a capital letter followed by a lowercase letter. For example, the atomic symbol for the chemical element boron is B, and the atomic symbol for the chemical element chlorine is Cl. Scientists use different types of models to represent substances whose atoms are bonded in different ways. One type of model is a ball-and-stick model. The ball-and-stick model below represents a molecule of the compound boron trichloride. In a ball-and-stick model, the balls represent atoms, and the sticks represent bonds. Notice that the balls in the model above are not all the same color. Each color represents a different chemical element. The legend shows the color and the atomic symbol for each chemical element in the substance.
ozone
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABofElEQVR4nO19d3wc1bn2c85sVVlJtuXeBNi4YIIJBmOHmBIwOIAhlJBCQg0lhRoIXEogJFwInXwp3ECAFErAkEDAhUsoxmDCpRnbdBfJuMi2urRl5rzfH6fM2ZVsq6xWEswDP3k12p2ZnfPM89ZzhhERBiBWbKx7d+P2hmS6IZkpwOGGlsTKY5EZYyrHVhQX4HABBgoCHnYJbMDJzebm5OPvrinM6LbH6LLik740PhZy+uToAfoPAh52AwNMbjY3J//65scpVySKi0vKKytKYmXRSNxB1EGUI8IRYQhzhDlCDBwIMXAGBvWTAYypXcmvLQiCSP1k8AR5BJfIFeSBZQRlBGWIGpPpLY1tG7Y1NLS07VZZ9s1p4/ruGgToewQ87B54X59A1/Cf9bUpVwyrqCgbtXtpIhEJRwCA6UEjgIExEIEIckAZU//LcZbqqt5upNb/EyP5u6EDAEI8Eh4xqHTyuBFFscintQ2rtzYV5OsG6KcIeNg9DDC5WV/fDIDKhgHw3TKCHlJADrAcbPlHUv+DAFLDpxlgmRj1J2Lyd9vp0+8Kh5zyRDGAd7c09NpXDDAAEPCwexhgchMNOQAYCVjuaAGsCvT7PU9YGwJ8QRHwsHsYYHIztqIEgFe3CX1hVdKuu7W+EcCYknivfcUAAwABD7uHASY3+48ZEnX41sbGres/TKeTamvvW5WMJ9Zs2v766rWeR+VF0dljB/f+dw3QfxHwsHsYYJUpAA3J9GPvrt3SnNz1W3sBo8qKTv5S1YArQAbIOwIedgMDzLsBUBaLTKws65NDDymJf+/Lewy4MQ7QGwh42A2E+voEuo+JI4cVDxoW5yhAv8NHm+pW12wpjkb67usG6KcIeNh5DDzvxoDZr3o9ZvYAFMXCvfydAgw8BDzsPAaw3PgoVEXAGvkAAdoh4OGuMIDlpvD9DgN3mAP0HgIedh4DWW7Mq8CqBOg7BDzsPD4XclMoqxIgQHsEPOw8BrDc+CiYVRm4ZiVAARDwcFcYwHJTeKvCBrAbG6C3EPCw8xjAcuNf80JZlQABOkDAw05jQMrNsJI4gPqWNvV7UBEI0BcIeNhVDEi5ke3bruep34OYOUBfIOBhVzEg5SYXvW9V2lIZaHoFCNAxAh7uCp8Luel9q9KWzgAYXDzAlhcJUFAEPNwVPhdyE8TMAfoDAh7uCgNYbvyLXqiYmQ/coDlAryHgYecxgOXGR6Gsiv0qQIBcBDzcFQaw3BTeqrABa1UC9B4CHnYeA1hufBQuZh6oViVAIRDwcFf4XMhNwazKAE7SBeh9BDzcFQaw3Pi6H1QEAvQdAh52HgNYbnwUzqoECLBjBDzcFT4XclMoqzJwC5ABCoGAh7vCAJabwlcEBrBZCdBrCHjYeQxgufHR+1Zle3MbgDHlRYX5QgEGJAIe7goDUm7K4mEATam0+r1QVmVAXqwAvYaAh13FgDzzslgEQGMyo34vWEVgwMbMAXoDAQ+7igEpN7kIKgIB+gMCHu4Knwu5KVxFoPe/S4CBi4CHu8LnQm4CqxKgPyDg4a7wuZCbQlmVAAF2hoCHu8LnQm4K1u8QIMBOEPBwV/hcyE1gVQL0BwQ83BU+F3ITWJUA/QEBD3eFgS03zPwTWJUAfYeAh53EwJYbVRHsZavSkEwDKI1HCvGVAgxABDzsJAa23BTGqrgZD0DEGagP9wnQ2wh42EkMcLkpiFX5HMTMAXoVAQ87iQEuN+afIGYO0HcIeNhJfC7kJrAqAfoUAQ87iYEqN4lYGIAnnwZfEKsy8Mc6QP4R8LBLGKhyUx6LAGhLJoFCWZUBPc4BegcBD7uEgSo3Eursg5g5QJ8i4GEnMbDlBgWsCAxkoxKglxHwsHMY2HITVAQC9AcEPOwkBrbcFKabc2AblAC9j4CHncTAlhuFwKoE6A8IeLgrfC7kJrAqAfoDAh7uCgNbboKYOUB/QMDDTuJzITeBVQnQpwh42EkMbLlRKIhVGfimJUAvI+DhrjCw5SawKgH6AwIedhIDW27s0QWCmDlAHyHgYecwsOWGWaMLBFYlQN8g4GEnMbDlJrAqAfoFAh52DgNbbgKrEqA/IOBhJzHA5SawKgH6AQIedhIDW24UCmNVBv5gB+hdBDzcFQa23DDzTwGsysB3ZQP0EgIedhIDW258ve99q1Lfmnruo8/ks34CBMhCwMPOIdTXJ9AdrNhYt7m5DR1aFa6tio6oGQODbyQkCSyr4g+7tirSNlleKwGA64n/VG/9T/XW0WXFB4yrnDgkUYBvGqA/I+BhVzGQ5Cbpem9Ub329ujblCrllU2vryIjjUIhzzpX/CiIwnmVVYBsePawEMMbI8EPaIiIAYQ7XpbRHDS5xhnrXK0uUFJcUNzU1tzS31jS01LzbUhwN7Tty8LQRFWWxAfxUwwDdQKF5KKghQ5xRw8DnISPbW+uvaEimX16z+cPaBjnApUWx4kTpoPKSTMaNRcIgcjgDIeywOOcxh0c4i3IW5uBgjBMRY0wOOGMqmGYCIKKUoJQgj4gAV1CbR2khACaI5E9iEILAmCcIDGnXa2xs2ba93nM9eW7TRlTMGFM5rCTWlxcoQEGwSx5yzhgh4rBYp3lIgJA89MiDzUMCYHgIBm/g87C/y40c4BUb6+SvJUWxwYMHFRdFOWOMgQOcgUG9Zr7LyqDybgp2xs33T0mH2fo3+ZOICMoTFuoFCVKvBZEAWlqS9Q2NTU0tck8zxgz5StWwWGgAP1A1wE7QbR6aZI76yXwPh/kEBOBnachKIX/OeNiv5eY/1VtfXrNJWpLyRMngyvJYOMJADmMM4IwxKHuiXjNGIM4YCNZrYowZy8JMVAxSX18G2Ux5NKReC/maGBOCpAkyrz0iAvNIpF2vrq6pbns9gLDD504cNW1ERR9ftQD5RjseVsTCYZ+HnDEirl9Dv2aaewwWA/VPaIso+Sb/KjRXjUejtCbb1yb52uchpV13QPCwn8rN5ubkcx9uWF/fAmBQomRQZUU0HOJgnIEzcBiTwpQZ0evFqjojY8a1yfZr7MwbsywKCMrNIcvBASDI/MqEtC0k1QeC5Hgjlcls3Fjb1pYCMDxRNG/S6H7u0wboJLJ4WFZSMaQiGgo5nGl3BtrySQYyaL+GW/51VhHK3jtTRe9cH0erDPlWEIIA5eOQ0BokJA8BQeQR0v2eh/1Rbpau2fzyms0AopHQsKGVpSVxaUm4tCRqjLU9YQzqNTHGGMlIyvdrAGlPwCznVQ20/9P2a0j7NVpljG2RPg6YR4LAhCDB4AkiMFeIhsaWLZu3SnJ8pWrYjDFD+q1PG6AzaMfDGAMczhjB6RwPGSyPJpuHhoHoEQ+JIBmoPJ1+zsP+JTebm5NPr1q/pTkJYPCgxODBFRHH4QyO9mU4A8+2JyZO5rZfw4DsniLfgyVLeLQfa96mXRvfwRHWFuPXKNtC0raQpz2djCdqt25vqG8CUBoNn/Slqv5mXgJ0Bh3xkHPGHAbfxW7PQ8DK3fjMtMvkLIeBOTy0/J1sHjIBIu19d8RDEoBHys3JCFFb2x952I/k5t2Ndf9aXQ0gFgkNGza0uCgakjaEM64tSYfRsnwNy8Lk5mt8rZEDKv+qXvuRs9CRs+3B2tFy9mttVSCrCeZnSzK9aeOWdDoTcvj8KWMnVg6kzogAHfKQS79GM9CxM4bZr2GxkUjnE8HI8m7aM1DLDsmOGwaVx9EejdC5m51lEoX0uAFXkABa+x8P+4vcGMd12OCyskHlEYc7jHEGE0PJaJmjA6vCs6tRkFYlq3NKwby2o2WzBfD9W1I/GGVbkiyrYiJnIW0LSR/HI3hEGzfWynrBvMljvtQv83YB2mNnPLRdG4AxP4OTzUMAWbMPcnI3llejkJW70Zsoawtp/zqLhwJZmUTt4/RfHvYLuXl6dbUsMY4dObQ0UcyNR+P7NTpO9iNnK2amrJqUbuL0qwDG05F2w9Sk/O2WNysviNSd7FqVFTML39PxdI1AAJ4wP5krxJZt9XXb6gFMHl5+3JSxfXmJA3QC2Tws4aCd8bB97saqQ+2ch9mak8XGDnlo1ao6yN3shIce4Amq3Va/vX/wsI/lJul6z3302YqNdRGHDx9eWVpa5MgIWcXJ2qqokVaWRJsXZUOM9bBtC5SyKNj1KR+WL6M3GH3RkbPcnp3NMfUpz4qfvez4WZqXuobmzZtqAYwfVHr8XmP7T9IugI0d8hDM4R3z0NEdNzkZQ5+HumrBtJvN2js2FvzMseEhlOIYHgr9V9LdN96A4mFfyk3S9f765idbmpNhzkePHVkci3CGEGMc5HAuf9o1KQ7ijHFtMaSns6M6FPebG4yFkVva+TWKADJa7tivgRx13WFsLIyJlk2NQIB5Qggwl0gQXCFaU27N+g2CqKIoetp+ewSK09/QEQ8pxLiO5cmqQ0lPhxzG7TqUna8xPDS5GyipIR3p5zJQsy7rZhS+j5NVqxIk5HZCFg+t+pTmoWQgCUHMJWpLZqr7mod9JjdmjOOR0PCRw4tjYYcxaVIs78avAnDAkfWm7Jy/9HGU4mR3N9ieDnL9HWk97Nfad91BBwSpMc7ydDwdPwvLzmirIg0LeYRUxq2p2ZROZ8ri0TNmBIrTj9COhxGHQfPQz9QY70ZFVYyMZ82yu73QvtdG+TjQf5TbfScnq+/U+NdZbe6+v2OcHVMthVQWq0rlWX1hnsXGVCZTU7O5D3nYN3JjxjgRjw4fPTwacjgg8/8hlRVmfuSsrQr8jmEzuqbHAci2LSqe8mNmvyIgz8Eui4ucyLkjv0baE5M5hjWXKjtmZmYGlqkRZARlPFG9/rN0OlNZGj9rxoTCX/MA7bFzHkqPJouHDE6WZ53DQ8Wudr52+9wNALsIbmpVFgPRnofG5lmWrys8dAWl+5SHfSM3j7+79sOtjWXx6LDRwyOO4zCEOHOsnJy0Ko5fk7Iy/x31NTDfhmjnVX69bAtjfJzceQz2RBV0UJmy7YltYbKqVCLLqphcnStUCJ32xJpP1gui3SvLTp42rvCXPUAOOuCh9GsUD1Wi0Omo58t41p3locrmQG/I4WGWN43O8NDaspMeHMVDgkuGh96aT6r7hId9sLzWko8++3BrY4TzypGVkZDSmqxqFCOHQaqPoyxMdp5Y5XG0l6vnT+nXcIAQYyGpYoyFOZNHCTGEOXcYwlz+lTv6PfKvDmNG40wNQntbytblMI+D5KccbjxwdSaOtpPyKGGHjR47ijP2SW3DC2trC3/lA9iweDg0qnnoaw1nXEb31sgyUHblm9kMlMxUPGTgmr0hbU0103iIQXIyzHkWS6FYGpI8lEZX17/8vhDZEcKZOROHQR43RyvNd7G/XdhxxvQRDwvt3ZgeqqqxI4uLovI+dyytkVdZj25uR4PZ0rGPI6dTmS0ywrK6Otu3OuhcDVMLrVFuD7G2J0TtImfT6Gl3Q5hagPF3LB+HXEJjU+tnn20GcPieo/cbNaiQFz+AQTYPY7Zfo+9zFtI5xBweZmUPFfd0PKWZ2f490O/ZUeMN+b5MNg/b5WuI5MwGP3eT0xFGfveNz0bbx3GJ+oSHBfVuNjcnn/toA4AxI4cWF8Wk1theADcKzbhfC8i2JMbHcbJ9HMMY4004YGHGuPZrlIVh2s4YS8I5V/aEhSw7EDbeyg79mnaVUXMmnOV0bSjLxlhpSXzo8EoA//vRhg1NbYW8/gEk2vEQIW4YJX0BprZYDLR0x/dx/Dyj5olhjsVD42tzbnHPZiPXbAwbfpo9MJ+Hypu2Mgx270/22arKWtZdZu0zURIfVnAeFs67Sbreb5etTrmisqx06Igh8t7zI6mcmpT2UzjL9Vn8WXBQ3Te6Oq56PdtH0cjuu2FW72aHPcTGo1ELi+ioOKcioH0ca3ZVu8jZ03kc17ct5Ar6bGNtU1OL47BzDthzQKzD9rlB13ioVx3g7XyW7Ne++uyEh8q/tv0aC7oqugseGi/GroXbfpB+s/JudspDfLZxSyF5WDjv5q9vfpJyRWk8UjliCAdCjHFGoax8jVJfPzcso1P4r3O03JH5FysqVhaDmf4IZbWMP2IsgJ4F40fI0m74eWvj7yjLw0K+R23W3LGiaMlIaakYU5GzzuOEOOOMNLP5iBGVRcVxz6OH311XsCEIAIuHQ0dUciBke6PGa1b9X7kjyyxv2rwO5fgjijk5WWerpm62wPZZ1HENMx2dwXF8hiu22/lK7p8naQvtRwPGRzO+m/FuOOBwFJiHBZKb/1Rv3dKcLI6GRowe4eirEGLZ151lqQnnkPELY1l3uFKlbK1Rd7hUEN/zzPV1zUhk+Z+6AGFn/ozuZHm/hoW6JpoVzzM7tqeQ1a+hFMd67TA2fEQlZ2x7c9tbm+oLMwoBbB5m3Y3+SNlqYvnXWZlEzRnDZB0ZmftZagfXd7XUmuz9+KvEWdoB9X7DMc5shjs2M1nOZ5nev53Ppuzv5XPSKGMheVgIuUm63strNgEYMXxo2OHZeq/svxWd6vEgOzr1/R1LaxgHhXxdsC1PTg3Lzv7Y9SxoTycnL+Pna4xVycnwWxYvN8dkb7cqGrbtAmeIOM6QoUMALH6/OqlXnA3Qe2jHQ3PvWaNjzQq26j7WT+3j+NaIMQ5mqpxZDGxXw8r2j/yVVXJWdMrOVILbWUUwX32Y8bnaMTCHySz3jjP+VCF5WAi5ee7Dz1KuqEwUR+LRkPU9231/356Y1w6H8RgdDsfyfrXqt7cSWdfazuZyWauy4u3sukMHezCRV46P4zDLCoE47zCPSKounuOra0+noqwkFo8KQU++/1kBBuILjh3xkPuKQ6FsHrLs12o2g7zns+sSvB1n/EinAxVoz8aOGWjbRd4hD3V0ZvtHplPE8DBkqSpvz8PyAvGw1+VmfV3Lik11Ec7LKgflRE9G3durMjO+Bumro661ybPInyzHl1FXXOdrmN4bAG79ZNmvbR5Iw8Vy/Z3sqFv7O/74WefZPt9k8kROu/2MHDEUwJotdR9va+7tsfgiw+ahrfu2t+v4nqnKg2Sxi6mVlRwrCtN3u77PcxXHVwpYTEM7Tua8x2QV/Qym75vrPi/FQ+hsjsVYslnt+z7W97WiKsY4aERBeNjrcrPkow0ABg8ui4XD2fmwrF64HdkT/0pZvqvUdWbFw3bExGTin0j9ZIyBGIPVV571mpkecwC6aGDH5/onjDXwo/QsrcyKmW2LlLOCgb0lEg5VDCoH8MwHNb09Fl9kWDwMtbN5dtY29y7N4qTVIxayNMvmicweGs8F0DOKDdN2zEZuXpPhD5ivaDo7w6yeUuOj8R3xUClaTn7ajhwdxiIhpwA87F25kZm5okioYnAF1x26tsVoN8a+ZQDpK5ulTZwzf7v2IyhnD7AtCREDg163UXed5243XhU68HvJH0s/zw9uR3NMHisrd8PgK459ziYLIK3ikCHlTshpSaYXf7yxV4fjCwuLh+XG883JuGlPlhiyfQp/3Qk/a+toL9vnifasO+AhmZWYNOuwg9ekfKiOeNiBz+UwODKryJiT7enb55aTPcz1v1TPES8AD3tRbkxmbuSIoUZruH+n+R6EjmPVfMv2fo01m6GdzWF6XGFbjNyf3PppzSDXW3J+Zvs72RbP8lmy81CaYeo9zD/PLG01XNcxNhzGRgwfCuCtmq0D9NnP/RnZPMz2a6z+t/Y2z+ekjD7sqnbH/rjNw52y0WYgOn5Plu8DIOt+yc0POr4C+l3OnEHmImDbY6ubkVnfRe6nt3nYi3IjM3PDy0sisajlxfnrDWvtyLYJXHkZtl/jtLurmXX1YcfDyn/Ro2g6xzvSHaM1/nv8TnNrdi/0o2ayLYP0cXQFNNvD0n4NVCeYzoX7Y0x21qCoKFZSUiwEvbJ+W++NyBcTWTzklnZI7lnz45ifZyE5go72TTiY6VXpgIcmW+fz0PZffAayTjBQaZDtfXcUAeTY4+xspu6D5bbW+FUXe26XHWEVF/cuD3tLbpKu9+HWBgDlQwY5vnaY72nVdPx7EjK+5YwxsnN4WZ5Rzl0to1wdDdljBjPSKnNGNg+yOSFfS60x/q2vUDD8y47qjW5qBeGWbmb3m8K3IWDMyiLr6Ky8PAHgvY1be2lEvpjweTi4wsmK5f2sn1xHyUTZNseg4hQyVXOWlQP27+QsfwR2NKTXe4PFNObriM1Py9NBthK1z+n4HMuy5eY8KYur6lhof/fpjjYdY/YqD3tLbj6sbUy5orI07oQcltMRx1nWfUhZ105ZAG71Weaui+5HK7AtCXIsCaCfXggG7Pgn0yuq5Xy2vYWxuJiV7eccfq0KOdlu8x07YInv3zJWVBSNRMKeR6/VbO+lQfkCwudhONyuP0UxCrBHJzvPChlDcTPKTjtfw+Khygxq1YAVm/uvsxiIbDa2fz+ys41ZPLQtmRXrya5C2UFiZgJlZx5MvZxlaSj1Ng9Ded+jxH+qawHES0uZVf1lVt5UaUd2psboCLe+P7fG1f8J2KOiJo6Q0MsQEcz0FPP8jdwVG60108w0FmtlI0MEtFvrT8+ZYqRXUfOyF08zz2mg7KeOeYI8Ig8MnDMwhzFB5DAIIs5YeUX5ls21y9dvmTl6UC+NyxcNFg+tZ7ZYetGeh7BiIj/myuYhzGtk5Wh8HqrlaoiyebgjNgJ6Hh98RrZb5c9fEwc+D2GWLu6Qh3KVAvJXm5Q8FB7B5yFnJEiysVd52Cty81lDy5bmZIgxYqKludkBOQATniwhhx3Zf8l19Mg4ABJ+TEQirPLtsvrD7doQV8MNHelwEHHOSeVrlHD446qVhOmrKYSQv/tsyF5Ljemxlz+FEIxxQYLBX9/PTIcTQoBxVwg5M9PTT5vyiPQYq9WLPRJEkBPkMp6Qq/y5RK4gl5ARwiPGGGtNptc3to1NxHtjaL5Q8HkIn4cQnmN4CIQcw0MZ7wjOGEhIL9XnIUOIc5BfhbRjZJI8BHHGSfVe7IiHjDEIQZwzQQRfjgCArCUmSRBjmocEAIIUD83Man+NFIIrBBjzBAkmrZpZI93noSsEQT+LURgesoznuXptinRv8rBX5GbpRzUA4hHW0tQc4nL2vVq/CpzDY3C4IHI4E9a8WzDIFaftup2JZhnJip3UdmZHT5wzIsGYjH6Iybfr0VKWRDQKnvCtSs7UXKYUiQQx7s+S1x4OAyjSsDDUtMhpW+kkVwEgJ+FGp2ZiUzKxqcmSwzlPkFqPnUKcZQSpWBmMBHHOSBBnzCPZ6QOutA+coH8yAqLxSLI19eKnm0/dZ3xvDM0XCj4Pm5vkJNswZw5jJJ0cyUOXHM6IMd3hwgE4DLAyAJzBgVmHX9YZlY9hciKA8VkktVQQREKYCIiIJEMYZ0LWm6R/bi3KIOku35PFQyu2sj0jpkXH4Vyoirt6zi84I81DDuYJcjjzBDEGCCgecia1j3nEjT3uNR7mX26SrvdJYwoAi4SYnluk5yJwmZFSq70qXxScc5Oldxg3viuD/pTOJQN6hM3oghMRZ1yuHi0vLoF4Zn2o9o9O8zLettKcG0XGiNJZmfKTqHS28V/kgMtfGWeSH8q9laas6ZWiDZewdLX9NZnXGG59Ndz6KoCS8Ji64b9OFc8iIg4ZHzEd0BHnzBOCMVXjICKHMY+Rw5jwdJcHY4yIAeGQkwRqtjcmXS9YQb0nyOahoZPPKHlnSh5KOJyDBFOKI3moCGwq4urt8la3YnnGLB7qhdBVDCX1QvGKGGNCvzZnS3pdUdIqlstDyC2cIKRnxKQIKf7AE5JdwlcNpW5MgLAjHpKOoTiEkLEF8V7jYf7l5o21mwAkwipKkgEwdKw7JP36oMx/wtRUklnlsbK26ORMaHRD8dfglEPfdSqDA1jRsuGKGhkrg0uMMUHKhhDAU+sim28LbX+0/bmxdLWz7RFn2yOiZFZ62MWidLahmhx+f4yVblG0+sJw3d93/pWdTPWQ6lPaSuZuH/HrDEs4ypeBIMYBz8TqgCQiY+BMjy4sZgCcUSweS7YlX63edkjV0PwMyRcSHfLQZG2szkyzdpK8A7m0+TJPLNc/l08E0Twkrp1rvSC6n8fVPGQEYlnZGT93015rYNxrgItGtL5ntnslsyQPyaqWkvAzPkbXtAbJbwHSNo8xMJ+HnEjk8pC0yvQ+D/MvNys21QEIhR0oVQADoqJp9+Sfq5IPhkVT1ruTSwBgGxrih2+qvEqExzpc6StnJuev8sdSBIxVAWMgSJ+Ta41w2t6LfXIi8xp3fpK8eVmseVl67B2ZipPV7vSI2tm7WPWFoV1pjUG8eVHl+uotYx5Oq6gNMgnEGXOF38vDAOnIOJwLT3DOhCeMd8OAaDSSbEt+sKUhkJueQPMwJMVBGTA/TyxrjtrLZjB5QKZ6Nbi0fFxZMWZ4aA6hPyVjH25ywNCeuFIZqChbfyqLYwpufbju73zbwzJUt+EmjnQTc91BJ6ujCCE5r+M5gDEOeJ7gjBEEZ0x7OkpB5Mlwxlwh/LgPxEjWcLjwBAcTsmIjsnj4fl55mGe5EULUpwUAz3FCIA7GgQrx/szGC4rEhp18sKxtSdn6JVuGXN1Yfga3fBmVFTY9CxJ+54LK8kpdd5qXxT45sfNnG1l/IUtXp4ddAl1otHkQ2Xxr57VG7TC1amj1KZvHPJzmCRkby7ygjJm59JB1P5jxXeWhZczMGTx4AOpagnVFuw+LhzxExDqYD8Wl+oCIcc40AYwemQ4XqGSN71xzagwlVzstrzqZaidd4xbPQiiRSRzBo+OEZqk2jX4VwvCqvdY49c9Eqi/akY0MNS4MNS6kLbe1jfujiO/l702Qzj8SySwMgcFXN+WtmBwnEedc8tATvgbJbI4MJgRMVpF5zANQn1ce5rnv5qNN2wEUOYCubY9OP3dQw+k71xqDoVt/Maz2p0xXxAHk9D6pjSpmhqoiyb7P1hXRtWd09YTDm24N1z1KpnauecDb3otsvq2rewMQSa1K1N2nVjtVeausvh4TG6onZ2XnbhiISIQjYQDvbw3miHcTOTzkJg6SisOt3C3nKrIASfXROWOdJ5Z7JDAwnqkuW/vN8tV7law5Kb7ltkjd352WV6Nbbo1+dm3J+wfGPvhapHEh7BgnW2XknoxeyF8j634SXXvmLv1xlq4u+mhuaPsjpO2TXYaFzkMzfUsrxbQiDG3VANU/rbIc6ptyE0monDSJ/PMwz3LzydZ6AOEQl1n9Qd77X269OkxNu/qcj9KGxwZtvV6+1r6r3fsE6NIUtJZL7yb62bW7HLMOEd5wDReNJqSSL6KfXduNXUmUbbsjnFmv40GlhoBxsdVXA/mVVPlNuS65yWH+uL6l2+fwBUcOD/04SN1vKkTSOTXG1I2m9Qgw74TmYVHtbYM+mh1qfXVHB3WSq6Jrz4ytPZN5Dbb10jkBQ1/Lg173ky550LGaiyN1j1r7VLuE4ZjOk4L0SmDGeO+ch9YsZdOLlHce5lluPmtKAoATAlEUjQc3nxHpitZIJOr+VNS0yM78m+5vSCVXHQpQ6REhwo0LnZbXunfOzGsMb76VrEiKt73X7b1JlLQsVhQnk4+Eyc+peMr47XoWsoy/OOA4DEBNXZcvXQAJyUNyHJB/wfXVlv01sPUF/l1qzbckOVeOOV7DoDVHFtXe3plDhxoXRj8+gYtG7Mq7Cdfe09VoHUCs5uJQy6tq3qa5I/xahLHQ8BVEfXdO2oPmrEMeau9GV7scnmce5lNuhBB1aQ+A4MQ5n5T6Sze0RqKs9hc+P1SnjIowJVQ2RyfxOqxDdR6h7Y8yxgwPQo2LerI3AEUNjxsPlvQzXv0+VGsWjM4mmI5qAOAcABqC9E23YHhI3KwEQv7dJfPE+id0p4zyQ7m2DTrucLz6iupTQu0yuDuBk1wV/fgE5jXsxLtBal14Qzc96HjNxfDVAdK7Yb6nrOb9yc5DZs871VGkahnJjhu4yjYyc6PlnYf5lJt1W+tdYhEOh/GIaJiY+ku3d+Vkakq2/xHQHeJ67hL8yp8198Ct76FAMK/RqX8GWh2c5mU92RuASGqVtirEOdfxts5828wwW8hYISY8zwk5QlBN8CCqrsPmobRJ8g7KutpqMEgmMJQfyi3vRt+Zic3Xd0lrJJzkqshn1+7Eu4lsurXbX5Clq0PbHwFMNzLT2RwVG0Jli4XJIRplsXxt05evrJ3ekeEhhMgzD/MqN9ubABQ5DMAI741uuzYS4dblOhgl/VPWvgm61Cijqva1w26Ay15hu/7VM0RTKxnz/XMYrgNSPS1mMGOFmM4pRCMRAO/XBvFUl2HzUGcr/Bq2uq9UJKX0CIpoZkUkOUaItCyLNT7evdMIbX/UaV7WoXfDRaPTM388svWP0tiqlKPUTX/2lt89q4L0LB7q8DGXh7DjegB552E+5WZLcxKAE3Y4w+jM8z3cW7R5sbqSsjIlUzVSc5jl3TAGt77H5w54DR10Q/QAXDTK8+eWzZEDybOsSnYGQecUwtEwgPV1QXGqy7B5SObaArDUR+eJhX/vwbYNSh2K6/7UkzMJbX+kQ++GNS7tyW4BOMlVLLPevyOgZu3A8qPNLAcGsFwemu9I5lkOMD3T8jx7gYf5lJumtAtAgAEooTws6c7dGhNJkRJp+ApkvJvU6p4fy2lbmVOh7CnIroZom6n+Aj3zBdrL1Q6/YoCqiqSCB8J0HT4PSa0vBaXygHWnEcCkd8PUVlUX17kbRzTGmhf35ExCdX+HW9/eu8kLY3mqRns3UFGh39/s1z1hVcFNDtT34AznLR+H6bmKeedhnlPFANKEPN2vcFLVZK6R3KQ9D6M1ALzo5J4fy4tPhY6rySnr+Q7TxQcCgJpBqqdF2NaV23ZGerbE9BwcEgKAV6hHKn+e4PNQdWbp/IXKjmkvAJYvAEDVbuSsIjDGQsmVOztM58DbVnaQu8mHP87dGsiH9WpPBHpVA5j6l1UsN5kp5UFnRVi6ngXYWeS88zCfclOfEdA5tvxAVot0V6S6qtBcMRYjVJ6HYzll0LkbEZ/aw51lopOhUgZqdq8cRj9Sy6pcyp/M5Pw4Y4IEgLQXeDddhs1D6VfK7Uxfbtm4BVi+gHotTCaViKLJ13t+Mk7Lqx3kbtJ5eNoBT1fr0hRR7hrbKlqX7zQ8lFUL6FwEkMNDc542Dwn542He5CaTybh6Sn2+whE3OtlcO5Ut1tP29TogBMBVfkSP4BUfaHI3mYqTeri3ZOlcfQ1MLcBETDpLx4xfo+2J1akhv2IqlenhmXzRYPHQv57MNKmr7Abs7IZeVE/N6pZbbJ3qIdp7Nz23Z5C0J9LtFFZMpM5cezf6LLieZZ7NQ8j1pvQ1kZ8lk3MEBPLHw7zJjVqzSp93nbNnD3dIvJRC5TDejR4s492QpcduYm4PjyVKZ5s4liJjveKZPdlha9mJUG0Rsruca8Fs18luquN29o6Z74uMCOKpLsDnoan6GUNurrA2XtxaNUZ7N6pXxWRVe4723g2cRB72q+Im5fAzHUlpb0VmIeQJaL5ZXUVQd5DmpM9PlUOkbN8wLzzMm9y0ZVwAjl6BoyZ0aA93mCo9AiSXDmF6JRuo8NKsIaLtRmbIWT05Vqby7Jw5U3LeZvfQMugMER4DyJEyFRBjPeT30F2e2pNX/q2uTRqqpwK56Qp8HkL5L6YUozOApM0/TP0YcjvnREJl2TjPi3dDkTHtvRuvZFZPd8tLvdLZUIv5Adnejb+2gf+BXC8bvq+nX/v/wMxGNIzNCw/zNiN8c2MbgOKQCn1qw/u38pFFovv1qXTpEUx9VzKZMCe1itwGpm2FiE0hp4wx5hYf6BXP7N7MA+KlbuXZKjGmYxmvZFZ6yJmRrfd2dW9ubHLLsJ8rBkvvRlCiZUk4tYqJxnhqVWNsJhG2xw9rCk8xkZRfoTScECIajaRS6XV1LVMrS7vxvb6YMDxkkjJczWbUC35COcjyynNGgqBz9vrukoovUvGZJbizh+cjwqONd+PrTtE0ioxmPcjgeCWztHcD31JCezftVtVhapUcTkKAQS7qLd0bYwsBHWlqX48xBkF55GHe5MZPguo1aFbFz9+v5aru7S1TdEC69EhVwgRnmfWxbfeFmxbz7CX1YK0Gkhx/X9HqA5jocj9SqupP5JTB0hq1fcR13Gvs0qwWER7dNPI2oecEO5nqiq13lGb3iZUklwMY1XBnKjR6Q/H315ecZtaFNDww9TgEwVQXYYaPCIyDiOTqfFDpUW7bcxLEHeNvKu+GMU4AZzxd1NOcoAzSc3il8oPDL42sv7Dbe04Nu1ies94h1JmTYHo9FiH00v6kGaVyN3pOuTofTn4mhJEQpqdN55WB/hZMGZgM3NrI/IbQxG7sQfDSpmHXQgXbLF57W9mHs6Pb7m2vNQBCjQtjNRfFPzycpauTezxOvGsCnB57h/RsmayCWd4jY6xt9O1pOa6dgBubXL/7Qjc6RVYEihr+PurTg0p33JMadWt2a/jlzE0HJzKrSa/JpKyrzl8CcAO16RbkDcX9K8lMOlTnhpV3o3I0jJEQcvVPBpAQDEgmTujJOXhlR+5ozpQ76JsiPqV7u82UnyhiU9WXap+70TUHzrVUmNwN47Inw+5l9SN6QFeBGSxfW1r9vPAwb3JjXU1fcZYmHmhzRnZ1V41Dr3Hl1XTrE2tPjm3Z9UxcJ7kq/ulJrPW95B6PU2R0Z45CvNSs5ifDKFgeLzQtUkMvbpr4yi4zx22VFzXuvljwBBgTROWfXVyx6aedOY2Yt2Hf7acOTz1Hcll+8q2K+mr56yv4IiCHh0LNwGRqk+xQN7kbUxsGAOJcPW+DAPlsj+ahF3X7TIiXpodfkhVD6TOU1EqPvbOr1hGAF5ucGnmdIWkHuRuzKotQXjb8iqfl3UClP7VtY6r7VL/ffEoeKS88zFswxTmHkkRtN4gyvPTVsvtnNP641P2gk/upG/brZNlJDgGioWx9F2biMq8xVnNxcvRtbROXhDffGq79407eLEoOTI29A05ZqHEhb1vFm15RKZv4VIrv5SaOkCkhRZHouNbdHgvXPcra3gslV/G2lTJkI14q4lPTibmp8pMEL5PZNUFUuu2OeFcm2oRF016NVzSVPbAtNBlW7kbeJKF8tRV8MdAhD/VjMUyFGOAq6hdCOKpTjAkSIV0JFSQ4mAiNaRl2dfHmX3TjTNyhP0B0nO3d2PcwEVF8r9SEBdGPvtH5DABFRreNu1fwhHI7dpC7cdzqcMMieE1OptrlCcET6dDohqKvMad8x7kbfW7qUqncjfH+8sLDvMmNHw/rMQbnAGt1Rr9e/sCUlv8e0fbkzvfghkdtG3mPF9+LkQBjpZuv68ZM3OjGnyeL9kqPvN6tPNupfzbUuIg3++shifgUUTrbrTiZImNCm24N1/5PzsedllcBRAE3cWRyxDUsOs7kj9PlJ7GKk1O6JCa/NOmn/0ComDnWtKi4cwuj2AiLpv0af/x82YIMSiAJlFer8sWBzUNYuRvtv3IiMtMZ5DN55AdJ527AOOnZ4WCsddBZoeSqaEPXJmq6FSelh11izxJo790QkZCKs+b0zqSNvdjktt0eEzyhKtw6/2LnbsINz8S23tHhjVMJNBYdsbHyqhQf7eduqF3uBgL6eXx597Lz7d0Q5DNuTEUAYBletqrsv7cUfWN0ywODk//b/rOp6KSGsjNaEieGOONCMMbCzcu6OsASzGuMbLg2NWGBCI+hoee4Q8+xR1f+dOqfiX58ws6X/gs1LixpXJgcfZtZOz2LN9qqkMy0WRWBks3XdeO0ARR5G/ZIPvhu/IekrYpsLC6K9NaTTj+X8HkIU7UwvW6m90RXptRockDlblT9m5mnHYAxNI26HWDRhsc6eQ5uxUnJMXcwu7uqI+9GvlnE92qbuCS89Y+hLffsyM2hyOjU0IszFSdD93/4PCTdbyEai9edvZPFBgEkWhcn1i2uLTu9puIq6EKMeVIjlKOktVhnl+Ub8sLDvFF5bEUxgDoXCSKZv1CL85CaqlgX2b8xdgAHG5ReHhKNJd4HgpUmo1Pc8ChExnGIsBxdzghUWnt9t8/EaXnVqX/GK5/XoVUJbX+k8xWBWM3FTsurbaNu87UGllUBg/VsQ8ZYuO5RnunUqswdYre2B1dHv5tBQg5wJu0CGFka6/YOv4DweQh9L5lsjrYK0BokiEIq2mJEBIcLEg7jRGCO9HRU0qd51K0UHRPd+sedBz4UGZ0cfbtpq6FdeTfqY6Hy9LBL3Mqzef2zTvMylq5mopF4AoAXn+oVzZRkztobfB4CzEmuKlp3Js90qrJe2fCncGbD2iH/LViZzB/Lm5QEAAYIsp7SCbBMOoM88TBvchMKmV35XUYERiZJx6WaoCE202GsAUc4nMmH9oZIyOdmgDNBFE2vCiV7NGU2VPd3t+yo9lalS1ojEa77O0XGpIZevGPvxt8eaerRKl8Rahrq/meNc6jM6qmNeZyD9gWAxUMY60WUy0NwkH7qgKOXlvKfqcKZEGr+lJmV01p5Uar8xNi2eyN1f28vOhQZnak4OT34TITKDeU6491IMMbIKXMHfdMbfIqtLPqLqL0BHXjZcOuL1p/VSa2RKG9dPHp76aeDb4ZmGuncualJ6ap5PnmYT0c9zJAhRCAIjjA+KiBMBxH3+6xllU6Fj5wLIRyHS+830rIzh7Az4M3L2tsQnqkOb7imG3uLbL7NLZrpFs+yrIr8C2OAkNG+EGAs2tSj9QoAjEz975riw4Qgx3GgHtcVoGvYEQ9127aOQfzVQvWdxqX6cEEIqVm1XOUwGDi4FxrTNvy65IjrQi2vcq+Bp1aDl3qxqW7xgXa120hMZ72bdhrUvkK6Y++GFa8/q8MekZ1jSPPjqdCo9aU/lt06sOIp0ldJCMF5PnmYz76biqgDIEy2d6PiQ+2vQuefrGtt+iCJZN4n2ra8h2fCvEbWuiKn3yH02a+796gGAPENl+h5NCY8lK98XzQvq3wViw2KrMQBFIXDPd/nFw0+D9VT5RQPienVGqC7VVhWJ5vwvQYVR2gGywqx6b1kXsmsdOLIVOVF6SFneyWzcvyXHXk38vR2pDXt3yNf23vz9wlVVwo3PtvtZfyHNd4fokahtEYmu3R3saqscykR+eJhPuUmEQ0DICEIEEJ2HEG1kxhPUsXPQv4VRkfN6DLGuysKNpjXaHxXALztvW6seu/vLV0danjW9m5U9gZMCCG3hFN5WMM0TE1yn7Jporw4SNx0GYqHJMAgBBEsHurmYp8bzNIUxtX7yfIvZDZW8lPNb5CKxHwOZytLe8fE3mi/095if4X23o2/N1U/Utnu2KZuliYAhETjqIa7mL7vfMXRlSmh88T54mE+5aYsHoEfADJB/jUU+pto74aTv0XGI6qYILKve09gWwze9EoP9xZqXERmlrBq5iTAjhB7fMZAhpUqRQYBKAnKUl2H4iGRsO4iiRweMuseQ0c8JMNh9U49W1hnAvw1s9u5Iei0d5PzEWCH3g3ZM+wILLO+JxOvAAxu+19BRICMLfzrI78g4/I088XDfMrNiEQxgNaMgFENBtKvdWORv+aYFW0xQcoKMW0xeg7bqjgNC3u4t1DTYu1Ly71Dqg4J9V1UJ3SPIa9YJpUBMDpRlJd9fqHQjoeMSLaSEMD0HaVyE8ZDkS248v3C9yCYoqivEab2zGB8Jas+jY5yN9ipdwOLqznhWPbedNKJqTVAwz1+QlHUrSlxV+ujQ18rEIHABIlMKo388TCfcjN6UCmAFo9k54JQJw0YrbFzN0JN1fAjL6mygtKxbs4lsSHiU7OsitfQwx0yr5H0EyAAnbshfwUDjye60ZOeg2Y+igiM8XQmA2C38kBuugzDQ5Nt0ekbE7OT4aEMWqV6CD+uhydUxlQvzyk1Asa70YbS8m648gV6LXeTpWsEdGNCcntwt4H8O1QtWkHqKHnmYV5TxUWxohBziUX1KkdkuaPCZLzBZB1HjqWMk4UgYkx6v6nYAT08ExGfglB5du4mHw+Hcat15G86b7L4miw9ooeHqA4dSgDjDgmKhJ2KeKTHZ/2Fg+FhDPCEIJX4NF42kaU4qkZBFg/BhMrdmLBLKZFv/413QypHyQASQvYo9zB3k6NH8ldmjqJ0jQDw1jysphwTn2mfgHTiRjkKeedhnmeEjyyOAuCeB8aE9l9lTKjjQzWzQyi/VHbK+bUqj6ildK7omZvglR2VYzF67ncAEOExfpYOyj830R8RkqU9WlQwjZL10a8RqSktQ0uLe3zKX1B0yEPA5iGyeKj/anI3nnqP+azpcyF/9CW7SM1sZJzLPfQwd5OjR0wHAUprTNYJ5sR7BNLXBFCRo7xne4OHeZab8YMTAFKuMDafbNXUa4OriqPvJTDFA0ivFc2Dzuz2ORAvzQw5K8eqUNFePf921j7VBtMDLggEtJXMTRV13zV7r+iH8jqk0y6A3QYHq2p1Ez4Pde6T5FwgzTTSmRq/Uq4zOyrm0rl/0k66FYXJg6h8ilknkPSKeZSd8e1h7sYcTCuOnl0BePlIFyadUb4KA4JIgKQi552HeZabPYaWA2jzlI8q9J1p5Z8gtNdq1FTmbuQdKwnSWHZ6tx0cd+gPZCSV5d1ExvTwq3nxKT7bjN2T30XHvQCrH9qdTkIA9c6eq2Pfl33YqVQKwF7BIn7dRQc8BPxMsInrZbZY8pAxk7shFVUpK6I8dFNB931bqHnnTK3sq7wbXerKQ+6G+Yki8x5BJI8rwp1aa2XnaHFG2fem1lMGsLzzMM9yI8PmNg8xIVTArMdMEAkdP3tCdVJZo+5HW4LgOWW1Yx/uxgm4ibnpYZeQqRqaGK3Hq8O6xQdCVwTIsAkmd6OYmoruVTvs113deYaV/G/p/dK4cRYiQZFwqCwWJG66CZ+HnpAVTyHZRTD+CwEkCIzvhIfGtTGeDqycDtNrIZsckFmJXcoGWYrT+dxN1nuI1G5MnsjqRcz0bAF/AMnQqKQzRt+hfiwiiBhz8s7D/K/mt/ugEgCe6wmQ8FXT99bIKLTl0+pRZLIiIIBUZGrd8K7dtyI+JTX2DvjZe98miPKjepi+SQ8+SzZy+MQgUv45NIMZBFFT2cmbuqI4rc7If5c9kGIJaYTT6QyAqiCS6hl8HsqSBNrxkGQUb/r3s3joezfS4Ft3o9YJFffI/RjFkY04yh7ZVSTjp1hzEWD5LHKn2VEYoGZskVEuWdVVCezIWLdnirMx/g2P/M4VxeFe42H+5Wa/ccMB1KU9uZK9AGWppoDQeX6h38AYEyRIVyI9zY/mspO2jP9XJ6Mqt+KktonPwSmD6fVW4w3GGDll3rBzuv2lMhUnicgYOd9PbiErM2XF/CAwj6g+cdLakQ9lwqN2uedt4RlLyhbUOZOVNDOWTKYAHLrbsG6fbQDYPGTKtRFkVy3URtNZ448j096NiqEgdL5YZR710ENlUvzMjnzCDyAfX+n3kRn7B7lOoLWKIOnskoTSMO4/pQOAzCAbXVP5bAYCtVZe1O1L5LLSdcXfB5inMqcEMCGktvHe4GH+5WZ4abwi6rjEioQQvlWB8WCF9lqhr7In42ci/c2Z8oyAdHSvLbu/0lx50U58E6/kwNbd/p4ce5dq2VKjorJrXM/3zVSe3b3VYYmXJkdeB/j5JrXdeODGMsiKBpggNMdnvj926aaKC9KhjkVnc/SwVyseeKn8wTRLKEUGZCRVEo+UB5FUz5DNQ6KceIG0vgjyszOyq5hAgCeEzAPI/8myKApWmRx6RpXybrSE6Q5gQCqIiZI4F7q8bTp3JBhj0O9px7T2GWuWKZ6dKj+xe5foo/L/yrCEp66GspSShzKSyjsPc4PGvGDZpxtfXFs7PMqS0UiIsRBD2OEOEOIsxFjY4Q5DiHMGOIxxBoczRuRwzgGHcwYR4twBHAYOhDgHKCwaI62vRtpeC+uVysgpc4tnipLZXnyqfmaTP3RyXLm2LWqLWx97b7+uNkc1T1gk4tMEGU1UysLS6yONi0MtrzmiQXGUl7UWHdBQdHg6PMbTuSoC4+l1xenVsfRqAjKstCE0qZ5PSvIy1/NcQobII2SEcIml0yLZlvzK7iMOGleZzyH5QqIDHnLJve7z0GGM6YfI2E/Xls/D0yur74KHMsujW4L8dR+k9YLJ0fg+FED+yko5PITbUL7upK6u2VJT8v0Py67KeMIDXE8Uhoe9IjcNyfRvl70PYFgikmE8zFiII8SYHN0QZ3LU5WI3nIEDDmcMcDjjAGdM/lW/Bw7AAM45Z5DDbISF6SerM8aYWvg6q3PBztUxxljrisi6n3Sy6494aev4+9ziWbIQ4Ofq0utLai4J73jltMaiIzYMuSoVGiOIpL8jc1IekSvIJXIFeYJcgiuEC7iCMgRwp357E4DzZ00K8sQ9Rwc8ZAjx7vIQcBhjoHY8JKacki7w0KgJg6U2uuBtZ5dVmskqhBkeEqlkBdz6QetPDndacTYXHb+q4ubC87BXZgCWxSJ7Dir+YHuLSLkiGvFAnLgAcVkFIOYJwR1HTmMgYuDME3JdNcg1RxjjjFRijXHmpFbG25ZHWl7jolHKjFt8oIhPTZfOZYyToOw1IgE9WlzFwAyk6pSsaFpqwhPhmqtD2x/d+bfwig9MjrzOi+9FQj3BR45xpO7Rkg27eBpMonVxYv3idZW/ri0+QUVhDEKQTBmQqX0IIaB/knBTLoDdh5QFWpMXZPMw7AEO5x4R15GRJwR3uOYhwLkQar0bnsNDEOPcI3Iki+Q20eAkV6n6UXSMCI9RGRmm3mAyvlyu2gUGXS/nploCP9NsEtGyUyS7YsUIgsHnIakeGRBATvmmcQvLa68r3X7fzq+Jy0o/rbhqY9EJfp3O8FBGi0K4md7iYa94N7AMy5BEhBgPMRbixrYwE1v5hkVaDy59VHC5yh9DceurQ7b+IrqDtR3ISaQGn52uPIt4gnFlVQDmP/uZmYq4VREAI5DTtCxUew9veqV9bOUm5qYrz3aLZxFg+rPk6JbUXBit7+yatQC2lpzwyeCbZVQstGvjCf2CkJG2hYgYr69rRuDa5BW5POQsxJgDhB0WYiykYivucHAw27uRzgtXYRSTPg4HOEPErSnefl+sabGTyVrUipxEpuzITPnJonS2dnlkFoaxjr0bvaSyblcm7e5IRdP5Guj/gKw+NaFrZ8qMeYRQ8r3yrXeUtHSwzJvHSreUnrA+8eM0K3eFUK6N+omMIOndCMYbeo2HvSU3AB5/6+MP61qHxnk6HIlID5YxR+ZxGMLckVE0s6JizuBwDqIQZyHRMGLbDWWNu763RWRM6/j7vJiZkynn0DGyYmmo8RZm7TIJInKalxGRk1zpxqYywI1NlV2CZnTlitmeEPFtfyza+POuXof1g66qKTlNgFmjSxlPCMYynnAJriAPSKVFW2uyakjZKXuP6+ohAuwEFg/DEakvO+EhkcN9HvpRFRByGCMM2n5Had29O1+SKZM4Mjn2doTKmZ+72TUPVYWbIbTtkVDLMqf5VabX6BORMW7JgZnSIzJl82Rdxa/o63jKFUSMudpPibe+Gkut5KJZgFLOqObw5JboVE8IAeYK4UnW+TwkjyjT+zzsRbnZ1NT2p/98FGKUKI0xxkMcDhDmPMRZiDMOhB0eYszhYIDDONMRMmcIU+Nun30rnu5sLEpOonXcfZ5+QKofRbMOrIrpCDffnbQ77XdP6O2m5Ok0vVK29uTuXYr3hv51e/QAj5DxhEdSdOCSjpkJHlhTYysJClybvGPHPESI83Y8ZIzBYZz7XrZyvcOicfSGU3bkaOeAnETr7o+Lomld4mFo+8PRTbeyHa8EKiJjWiovbis/0VIcCCJPeTfkUU6FlGTAJQQ8mVYmqTIk32x52YXgYf4L4QbDS+PjEjGXmGhLS09PxRRydj9jniBPr4Fkeo1kL/n4Ted0XmsAMK+xaN0ZvPU9+aufSzPVazLxMJc5Np2H09k4qzPYFDJlC7mslRbV3tbtSzGm4S5BurYKCFPvJ5Kv00mXBFUFWZteQC4PBWkeMlcIw0NPAPYsB7tDhwhew6hOaw0kIT85gbeugJqTZfOQm7yM4SG8+tj6C2LrL9yJ1gDg6erSDRclNlxsNEWpCeDa+ZesvhN/vpi83Tyhui6EmomqroYg9DYPe1FuAHx9r/FhhvoMOZ4ggqU12X0Ngiy1FiPq7ypOdnm5YuY1xqsvJL9blMj0RMk9C2KcCRKmIKn6JvQEF6uvVEXU0jgQEG54JtzdFWEBlKWWF6VXmmYzdR1IyPEGnGQy5XB21MQR3T5EgJ0gi4emu0T2efk2QN17uh+V/DsWGLnl0lgXF4dlXmPR2jPIrYdZW0dVr4W0fCbsh1cf//iE0PZHOrnnWP3fy6vPVvYb8Mg+c6u7Df48DKiKhOEeCSJVLRVqC4EnkymH9SIPe1duymKRfUcNAtDclpLfU14LV6jasEfkKmVVqhx2a0bU39m9wznJlZGt9xCz17jWugPo3kIGtyG0/ZHwxl9HNt0S2XB1ZNOtoW2PILVORVJ61owMieU5h3qgNRLDWhd4uqNaCRmYDKxaWtoAHFg1PHBtegnteSjtvKt7FCQV7bkLMHcvUNH4WKJlSTeOy9LV8Q3XCPK9ZgHYVo0IRIjWXOO0dW3lmljTwoqNFytvhSDM7B/yf+q1fqAtHPOE9G5I9y5mqY/i4W69yMNeXwr30Imj39tc35IRRRnXi4Q44x4RY9wVIsS5nI3rChHmXFYHhzX+qSeHi2++LTnkB4wxTz9F10TLgohnqqPV14Qbn+3ws27xrNahF1PpLNIlAaHSNyzcsqwnZwWgIrlclKjo2hp75nnkuV5JPBL09fUqusJDcAaPiAOCiAPD6u7o9nHDdY+y4ZeI6Dhu8VD9BAiIbH84XLeLnowOUVz/96aiw5tKj5TOGul+aBNJSY0TejEGmSc2PnUOD92C8LB3vRuJYyaPBbC9zRVCem7ME0L6fp7ugnNVbEWDWrtjRgyY18jb3tM5IH9FC0EU/ezqkpUzdqQ1AEItyxJrTixecwa8Rpl+I51v6nwD1Y6QcN83YbYaY8ZcgdbmNgBH79nT9TEC7BIWD8nP3eh8qkfC5qHOgKCseVHE7f6TUQFEav+HVG5FzwrUK67AbYhsurXbex5ce71n5gkJP3qws8Wk7zLBmCeE7nTX8WNheVgIuakakpg2tBRAsiVpfXMyE1LkSHiCijOroj0bWgDhhoV+F68gYhBuQ/HH34hu+Z/OfDzatDDx6QnMayDAg+RlfiD9WGlVPMD1vLaWNgCTRgyqGhQs3NfrsHiYMtGTq6IJw0MTlaiuluJUT596Fmp+1c9AQ2qNyl06Dc9244l0BuFMTXHTs6oO03HuhjwVTMH17NyNbHCHKCwPCyE3AI7eq6oi6qQE3La07BHw81XKu5G92A09PxZPV5vqgxzd4vUXhJq7EA2Fk6vK15xIbr1H8AA3T60COv+vFCeV8jxPlMYjx0/OwyJJAToDm4eenbuRzqzpSSFTvUJxVyqkHSKUXClIs5GMFeSCKNzjB4SUNi8Wek6p9mhMXkaYxI25FwRkx42aE+8SpZKF42GB5AbAN6fvHmZozggv7cpssWdZFYIc4zzAyVTruiA8oqLNt0Yauzyo4eSqss8u8bQy9nDtZAAZVuJZMbPrIpVMO5x9d/puPdxzgC7B8FCkXaUv8L1sMllkHYNzkQcTSG698rh1FUl6N+Hmnj7+LOzW+Cu6KJUxa9qpztIs303nhn0epgrHw8LJTUVR7OuTxwCob01nZD1S6KhSezdePuIWAlyC7Kdg6fVFm2/p3n6KmhZGmpfJc2stOrCHZ7UlfICqOAKui5bmVgBHTxkXLDRRYGTx0PUEmEfQeVNIHkobI+1fcfr9nh+Ut72XEULuU6gMEfMoD09uKW5bTjoLY/waoRXT066N1Di5hrhRnMLzsHByA2Dy8IovDS8D0NyUTLqeByaVWHsiIi9ZktaiWR6QEeSBFXdXayQqtt4ux6Yl3lO5qQ3P8ABXUNoVzS2tAKaMHDRlaKKHuw3QDfg8bE6mXE8QPGit0dkN1xPyjm2I7t/zI7YWzxJM5YlcoRUnT0G6Lj/5/URa1yDbF9UWIQRjLkEQcwWlPZI8nFpAHhZUbgDMmzJuz0HFHqG1OZmWa22ouR7kEat3JvX8EOnQaDWiRPGuh1E24m2vOpn1gtBQcoTXg3gqzUo+jn7DI2Q8amluI0G7DymbPylI2fQZbB6mPDWHSPPQ1GtkQicP0HOUWEZA2kIBlsnT/CG5DqSsrNk+mpoxA9I5AaVxLpHNw2MLyMNCyw2Ab+yz+7hEzCMkW9pkBiejo8oUT2yLzOjh/luKZkotD7W9x3vsrMZbXhNAKjRma/lZ3d7JB/HTWlHqCmpubiNB44ckTg7mYfY1cngoLB763g3RltjhPTxQc8lcOR3JlRVJqTWCvHyoTWtksoyPdEXfxIPqu3gCquKhbbDFw7IC87AP5AbAN/bZfVAslPbQ2tRmdFdq8Pr4CT3Zc2vRzFRorOy7cdLre36qYbdG+qKby05vi07uxh7qQnuujJ7qEbW0JElQIh49fkrQZdMvYPMw4+nZ0tadKQjbIj0NptqKDhR6NVLZBWK0oLmkR89BBNAamSKXvLHWlNCRlBCyIibXPFFrEgibh4X2r/tGbmIh5/v77zkoFkp51NrclsoIobV/TeS4Vmdkt/e8adBFplcymuppCRMA8xpknt/lZR8Nu8djXQup0qzk+ZLftIjSpsY2N+Ml4tEzZ+wRCzk9P7EAPUcWD1uSqYyQHWGeVdmsC03eEvtatw+RCY+uKztZ6Fk7umItu3tZc88euwpgW9HhQs8EkrGCq5YcUIqpEuFARoiMR01NfcnDvpEb6JEeHA+nXGpuak26nuoIAHuj5Mbu7bOu9MSm+CzTX5CXxDPpVfs9olRo7OqRD7dEOuvj1IX2XJx4sJ5GNTW1ep4oLwq0pt8hl4cZT3k3Jo9DeC9xZbf3v2XwxWmeMJUj2RHm6tinseTInuQEU6FRtfG5en0soWIogqcyREIKjVSfjEd9zsM+kxsAsZDzvRkTR5XGPEJLU1sqI/1YsSl8wBulXVac5vjMtcNv132D8AQ1x3r60C8ALk8Ia0ZlU2Tqe8Mf2lz8jV1+8NPocYsTf96MSU1NrSRobEXJ6fsFWtMf0SEPM56KSjyiZj76nbL/7sae6xInbi09SffaQNdh/Y67DC+rHXJJt898XdmFMlZy5bwnobLCnprnzUx4JbWmz3nYi8trdR5Pvrtm9dYmAIniWCweZkQhzquSC2Y0XdHJPdQVH7Fm6K3klEE+kgdgjMWT7+25/sgentuaobduLj6B6XUJlN8kqCz52vCWx4a2LQlRVjY6w0prIoetjp+21ZmUTLstTW0A9hxa/o29xvbwTAL0NgwPS4tjsViYg0Kcy5X5OWNTWu+e0HR35/fWHJ/50ei/y5Xe/DWz5Wp+QjCu1u4DYffqE4vburzkwObib6wadItat4DgqbV71DwMD6TnJ1Iy01942C/kBsA/31u3cksDgOJoKFoUDXPucDYss3z/piuKvJ3NonJZ6abyM2vKL+Kc6XVs5Jr4YAx7rT0wkqnpyYm9Mf7dNEuQ7NTUUbf0hD1Bgqg0s9rxGjyACCme2MonEZDxRGsynWpLA5gyrHz+1EBrBgZyeejIh8CotYrHtS3Yp+FnndnP1tIT1w67Ta8qKZfRlqvZ5j7DFwB36ydsOCnelVRjc2TS/1U+lGEJQRCQ04nVUn6ml43AMkK0tvUjHvYXuQHw7sa6JR/UpAXFQixWUhRxuHzyxm6pJya03l/m5jZ3JkOjauOHf1Z2ZsoZ7XAOvZa1eu4PGAG7bb5ocFMXVjLPQWPsgHdHPCJXQvKs2cOC9PxSKKsiR1fOwEy7Xmtrys24Ic7n7jlq7xEVPbouAQqLXB6GuAP1FCoOlIiayc13j257Ykcfb4lMXjf4543xA6XGyGfJcqYeBQPKWatYL+bv1u+x6aySzvk4tfHDV1bcnOaJnfEQSGf6HQ/7kdwA2Nyc/Od7a7e2pkMcsXgsHgur9dIZi1DjIHc1ZyxCjS5PUKisKTyFMcYZc9RzxeSK9+Dau+GMhUTDPusOdLrbffPOsIfqYjP9xnA1l5f8JYv0+ltmoaO2ZKatLUmCBhVHj5s6blhJLK9XKEAh0J6H5plTckXtElEzMvnc4PTyCDWGRKPLyxhQHz9wa/zw1uhUw0Mun/qin4Rnr1XsP7vOep7UqO23Da//407o6rLSDyquromfsBMeyhlS/ZOH/UtuACRdb8kHG97bXA+gKOyEi2OxsKOec2ieNyafziGfZKif0WGeamiPLud8ZMP/jN96fTfOpLr09I8qrpGVS+hV/jx/LT49p1YIgLlCZDxqbU1l0hkAU4eVH7HnqCAxPHDREQ9DzDwvhDHz7E3JOvWsGM6ZXgud6xyiZKZetB8MxruRt55aqRaMCSFC1Di08dFEcvng1qyHt9TGD98c+9qWorkplELPVDCKY6Inr3/zsN/JjcSHtY2LP6xpSrkASuORSFE0xJjDGdePajD64o+3fqShdHOISD7kkDM2YctFw5q7FlI1RSa9NuxZuXC1vUS2PcdfLcEFZIRItqXbWlMASqLhuRNHTawMJkN9HrATHjKQ9Kw5AwPjzNca+YxN80QQzmU6kclnNKJd7kY+lcGskk762WaCKOZWtzpjCCSfJ2Xz0Ld5OmvjEvVzHvZTuQGQdL2X12x+o3orAIejpDgeioTCXD8fRiuOo20LyPd0AHAGSKsCcLBJWy8e3mnFaQpPer3yoTQvU6sxCiFXsTdzbZWPA7iCUqlMa2uSBAH4StWwGWOG9B9jEqDn2BEP7cfC7JSHygRKHsoMDhGpypSGWlFUCL0yP5PPApfKIlf/bM9DocOogcLD/is3Epubk899uGF9fQsAh6MoHovEIiHOsp5zyPx4Sj413DwrXvmxIM5YVf3tu9Xfscsjri09fVXiar2mtJQVbVXUMyTU6u7JZLqtLSUHeGx58dcmjuonEXKAvKMDHsYj0tPJ4qHWGs1Drh4WrnlonoBm33bmHjQPDlFrpwvyeQjLyx6wPOzvciPxYW3j6+u3VDe0whedcNhxVO6G7AyOeqwdZ5DZYsinRQGMsVh6/YTGOypbF4epg2zcptjhK8uvbuGj1Cr8ehXYnNyNJ0Qq6ba2KUsyprx4/zGV/c1rDdAb2BEPYZ72a4oVYMavAcB1DAXVd0N23w3U886UR6OeICJZ5/OQPKHXOdY8TCbdtgHFw4EhNxLr61pe+nSjHGwAkRCPxKIxNd7EGVcBlBpd1YDDrVqAiZkHJ18tc1eHRCMAArZGDtgWPVDIJ3Hojr6cUNnzRFsyk0qlPdeTJzC2vPigquFjK4Jlhr9YaM/DcCwa17rD/SQxVO6GcfM6i4eyPqXyxIB8+Jx6TrT9XCoQkYDSHdcTbcl0KpUZiDwcSHIjsb6u5d2N2z+sbUjptf+KoyEWiYRDTjQSsisCMoo2VoUzJkhwxvUzN9RIM6ae8S5jZk/Hz9J9TWe8dCrjeSKVSsvDRR0+sbJs7xGDBsQAB+gldIWHxDnP8m4UD/2+G1ULJ1tlSD/V8/PDw4EnNwbvbqz7sLbho61ZD4ePhEORaDgSDTOwSNjp2Lth6s2kzQrpVZQEkesKT4hM2k2nM5mMa+98wpDE3iMG9XN/NUCB0U0e6iAKzK9MyW3y6WafSx4OYLmRSLreh7WN6+uaNze3bWlO5vzVcTjnPBwOcc4ZQ/v+cYmM6wn1X+6fhpbExlaUDCuJT6xM9MNUf4B+gu7xUKduFDQPhWi3avfng4cDXm5sJF1vfV3LuvrmLU1tSddrP+qdwdCSWCzkyKEdW1E8cIc2QF8h4OGO8LmSm/ZoSKYb2jKbm9uSOq/WIWIhZ1hJvCweDp7SHaA3EPBQ4nMuNwECBOg/6MvltQIECPCFQiA3AQIEKBACuQkQIECBEMhNgAABCoRAbgIECFAgBHITIECAAiGQmwABAhQIgdwECBCgQAjkJkCAAAVCIDcBAgQoEAK5CRAgQIEQyE2AAAEKhEBuAgQIUCAEchMgQIACIZCbAAECFAiB3AQIEKBACOQmQIAABUIgNwECBCgQArkJECBAgRDITYAAAQoEDqCpqenOO+88/PDDp06dutdee82dO/c3v/mN67q7/PB55533ne98p/dPskfoDyfZ2tp60003HXTQQZMmTTr00EN///vfC6EeJDR16tSqbDz11FPdPtCqVauqqqoWL16cpxMvKAIe9jb6nIchAKeddlp1dfWFF144ZcoU13VfeeWVO++8s7q6+qabbur28XqIL3/5y//4xz9Gjx7dVyeQX/z0pz9dvnz5ZZddNn78+P/85z8333yz67o/+tGPiKi1tfUnP/nJgQceaN68xx579OGp9iECHvY2+pyHoQ8//PDNN9/87W9/e9RRR8lN++23XzQaXbRoUVtbWzwez/shd4kNGzZs37698MftJdTX17/88svXXnvtCSecAGD//fdfuXLls88++6Mf/ailpQXAtGnTZs6c2den2ccIeNjb6A885J7nAeA8K4lz7rnnPvHEE2aMH3nkka997WsTJ06cPn36BRdcsHXrVvvNzc3NkyZN+t3vfme2pNPpvffe++abbwawdevWiy66aPr06Xvuuef8+fOXLVsm3/Pxxx9XVVUtX778vPPOmzp16n777ffzn/9cCPHaa6995StfAXDQQQf94Ac/sA/08ssvV1VVvfXWW2bL22+/XVVV9dJLLwF44403Tj755EmTJk2ZMuVb3/rWO++80/7bTpky5Z577jG/Xn755cccc4w5maVLl373u9+dNGnS7Nmzn3766ffee+/YY4+dNGnSUUcdtWLFCvkR13Vvu+222bNnT5w48eCDD37ggQfM3m666abdd9+9/UHLy8vfffddOcYS0WhUXvDm5mYAxcW7fqT8j370ox/+8Id/+ctfDjjggEmTJp111lmNjY3//d//PX369H322efnP//5LvfQzxHwEF8AHvLdd999zJgxl1122d/+9rec8ZNYsGDBz372s/nz5y9cuPD//b//t2LFijPOOMN+GF5JScnBBx+8aNEis+WVV15pamo69thjPc/7/ve//+abb/7mN7/517/+tc8++5x22mkffPABgFAoBOD666//zne+8/bbb996660PPPDAs88+++Uvf/nuu+8G8PTTT9922232mcyaNWvw4MH2gZ599tnBgwfPnj37008//e53v1tZWblgwYJHH320pKTkO9/5zqZNm3Z5+STkydxyyy2XX375m2++uffee//Xf/3XTTfddNddd73++uslJSXXXnutfOcNN9zwP//zPxdddNGiRYvOPvvsX/7ylw899JD80x577HHooYfu5CjJZHLz5s0PPfTQM888c9ZZZwGQVqUzpjsUCr355pvr1q17/vnn//rXv/773/8+8cQTKysrly1bdtNNNz3wwAOS6wMXAQ/xReAhEX3wwQfz588fP378+PHjv/a1r1133XUrVqwgjXnz5n33u981vz733HPjx49/4403iOjcc8/99re/TURPPfXU+PHjN27cKN9z6aWXHnHEEUT073//e/z48a+88orc7nneoYceesUVVxDRmjVrxo8ff+edd5o9f/WrX/3Vr35FRC+88ML48eOrq6upHf7rv/7r4IMPNr8edNBB11xzDRFdf/3106ZNa2trk9vr6uomTJjwm9/8xj5JIpo8efIf/vAH8/HLLrvs6KOPNifzu9/9Tm5ftGjR+PHjn3rqKfnr/fffv+eeexJRY2PjhAkTbr31VrOHyy+//JBDDml/nh3im9/85vjx4/fee+8nnnhCbnn77bfHjx9/1VVXzZkzZ9KkSXPnzn300Uc7/OwFF1yw9957p1Ip+etRRx112GGHmb/us88+8uRXrlw5fvz4RYsWdfKU+hUCHn7uecgBTJw48cknn1y8ePFVV101duzYv/3tb8ccc8wvfvELAJlMZvXq1fvtt5+Rpy996UsAVq1aZWvWYYcdFo/HZSLadd3nnntu/vz5AN555x3Hcfbff3/5Ns75jBkz3nzzTfPBKVOmmNeJRKKhoWHn4nrMMcesXbv2ww8/BLBy5crq6mp5oBUrVkydOjUWi8m3lZeXjx07Nuckd4kJEyaYM8n5NZVKpdPpVatWZTKZWbNmmY/MnDlzzZo1dXV1ndn/z3/+8/vuu++UU0752c9+9uCDDwJIpVKlpaWbNm269tpr77///v333/+yyy4zZioHY8eOjUQi5pTM6clfGxsbu/Rl+yECHkp8jnkYsr/khAkTzjzzzObm5muvvfa+++475phjdtttNyIqKyszb5OvZbBnEI/HDzvssIULF37ve9979dVX6+vrjz32WPk2z/OmTp1q3um6bkVFhfnVDIwE7eqB5TNmzKisrFy4cOHEiROfeeaZ0aNH77vvvvJAY8eOtd9ZVlaWc5K7RDQa3cmvRCR3+L3vfY8xJjfKOuK2bdvsL7UjTJo0adKkSYccckg0Gv3Vr351wgkn7L///u+++655wwEHHFBdXf2nP/3pW9/6VjdOb5cnMCAQ8PBzzMNQOp3evHnzmDFjzKaSkpJLL710wYIFq1atmjp1KufcFnv5urS0NGdHRx999A9/+MP6+vqFCxdOnz5d1g5LS0uj0ei//vUv+5056cAugXP+9a9/fdGiRT/5yU8WLlwoE2zyQDkWqaGhYcSIETkfN8MjkUwmu3R0+a1vv/32SZMm2dvtq9cemzZtWrp06ZFHHllSUiK3TJs2LZVKbdy4sX2tcfLkycuXL+/SWX0+EPCw8xi4POS//OUv582bl5OcW7NmDYDKyspwODx58mTb7fy///s/AHvvvXfOjg4++OBYLPbSSy8tWbJEOpYA9tlnn1QqJYTYXSMWi7W/+h1iRzJ59NFHr1q16tVXX/3000/NgaZNm7Zy5cpUKiV/3bp169q1a9ufZCKRsE1NV73cyZMnRyKR7du3m69TXl4+aNAg41t2iLq6up/+9KfPP/98znFHjRq1ZMmSH//4x+l02vzprbfeyjGPXxAEPOw8Bi4P+ZlnnhmPx0844YQ///nPy5cvX7Zs2R/+8Icf//jHU6dOnTNnDoAf/OAHL7/88h/+8Ifq6uply5b98pe/POCAA9pfwWg0evjhh//hD3/Ytm3b17/+dblx9uzZU6ZMufDCC5cvX15TU/PPf/5z3rx5f/3rX3d+TtJPfv7552XtIAf77rvvyJEjb7jhhj333HPPPfeUG0899dR0On355Zd//PHHq1atuvTSSxOJhF3zk9h7770XLVq0bdu2tra2u+66SybkO4/S0tJvfetbt99++9NPP11TU/Paa6+deuqpl112mfzrggULzj333Pafmjx58pw5c6699tq//e1vr7/++r333vv73//+5JNPjsfjY8eOXbJkyTnnnLN06dLXXnvtiiuueO21184777wunVV7rFy58kULA8JdCnjYeQxcHobGjh27YMGCe+6559577928eXMkEhk9evRZZ5116qmnSrE89thjk8nkPffcc8sttyQSicMPP/zKK6/scO9HH330WWed9dWvfnXIkCFyi+M4DzzwwK9+9atzzz23tbV1zJgxF1xwwRlnnLHzs5w2bdqcOXNuvPHGmTNn3n///Tl/ZYzNmzfvj3/8o7m+AMaNG/fXv/71pptuOvroox3HmTFjxsMPPzx48OCcz1555ZWXX375V77ylbKyslNPPfX444//97//3ZULiKuuuiqRSNx4441btmwZPHjwEUcccfnll8s/ffTRR0uWLOnwU3fffffdd9/9u9/9rra2dsSIEWefffb5558PYM8993zwwQfvuOOOH/7whwD22GOP++6775BDDunSKbXHXXfdZf86atSopUuX9nCfvY2Ah125WgOVh+xzk2IMECBAP0cwIzxAgAAFQiA3AQIEKBACuQkQIECBEMhNgAABCoRAbgIECFAgBHITIECAAiGQmwABAhQIgdwECBCgQAjkJkCAAAVCIDcBAgQoEAK5CRAgQIEQyE2AAAEKhEBuAgQIUCAEchMgQIACIZCbAAECFAiB3AQIEKBACOQmQIAABUIgNwECBCgQArkJECBAgRDITYAAAQqEQG4CBAhQIARyEyBAgAIhkJsAAQIUCIHcBAgQoEAI5CZAgAAFQt/Lzeuvv37mmWd++ctf3n333adOnTp//vyHH364Mx+sqampqqqqqqpqbGzs6kEvvfTSqqqq66+/vuvnu2vceeed8sR+8Ytf9Mb+A/QGHn300RNOOGHatGm777779OnTv/e9773++uud+eBjjz1WVVU1b968bhz0K1/5SlVV1eLFi7vx2R3hgQceqLKw2267HXDAAaeddlp/eFR8H8vNa6+99u1vf/v5558vLi4+8MADhwwZ8u67715xxRV//vOf83ugzz77rKqq6r777pO/Tpky5ZBDDpkwYUJ+jyLx9NNPyxfPPvts8EzkAYG777778ssvf/PNN8eOHTtz5kzG2Msvv/y9731vxYoV+T3QggULqqqqVq1aJX+dNWvWIYccUllZmd+jAAiHw/vss88+++wzderU1tbWF1988dvf/nafK06obw//5z//2fO8uXPn/v73v5dbrrzyyoceeuiBBx449dRT83ggIwESZ5xxxi6fSN89fPTRRx9//HEikSgqKtq4cePbb789ffr03jhQgDzi/vvvB3DttdeedtppANra2k488cRVq1Y98sgj06ZNy+OBcnh4880353HnNoYOHfrEE0/I101NTfPmzaupqXnssccOOOCAXjpiZ9DH3o2MgyoqKsyWK6644qWXXrLdywULFhx99NGTJk2aOnXqN7/5zZdeeqnDXZ1yyim2//Liiy9WVVXNmDEDwDHHHHPjjTcC+MUvflFVVdXS0pITTKXT6VtvvXXOnDkTJkyYPn36+eef/+mnn8o/Pfjgg1VVVeecc87y5cvnzZs3efLk4447buXKlTv6Rv/6178AzJkz57DDDkM7egXon8jhYTwev++++15//fUbbrhBbtkJQ3IgQxjjv9x0001VVVU//vGPW1paqqqq/v3vfwP4+te/fswxx6BdMLVp06ZLL710xowZEyZMmD179nXXXdfU1CT/dP7551dVVf3pT3/6y1/+MmvWrGnTpp177rnbt2/vzLcrLS390pe+BCCZTHbr8uQNfSw3U6dOBfDwww9fcsklS5YsaWhoKC0tHTNmDOfqxH7/+99fcskl77///iGHHDJjxozXX3/9+9///pIlS7p0lPnz548YMQLA/vvvf/rpp4fD4Zw3nHPOOb/5zW+ampqOPvroESNGPPvss8cff/yGDRsAxGIxAJ9++umll146ZcqUwYMHv/POO+eff77ruh0eS8rNkUceeeSRRyKIpwYIJA+vvPLKm2++efny5el0etiwYXaMsxOGdBLhcPj000+Xr4899tj58+fnvGH79u3f+MY3Hn/88bKysmOPPdbzvPvvv//UU0+VTJM8fOqpp+69995Zs2Z5nrdo0aJf/epXnTl0c3PzO++8A6BvXRv0udyce+65UncXLFjwgx/8YPr06fPnz//LX/4iL3FjY+Odd94J4IYbbvjd734nrz6AX//61106yllnnVVVVQVg7ty511xzTSQSsf/68ssvv/DCC4yxxx577Pbbb//HP/4xZcqUxsbGP/zhDwCk8H388ce33377LbfcIr3u9evXd2jcPvjgg48//jgajR588MEzZ84sLy+X8VTXL0yAguKGG24YPHhwa2vr7373u1NOOWXvvfc+/fTTX3zxRfnXnTOkk4hEItdcc42k0znnnHPWWWflvOHee+/duHHjuHHjnn766VtvvfXJJ5+MRCLvvPOO9H3kB9euXfvPf/7zlltuufLKKwE8//zzOzrcli1bjj/++OOPP/7YY4+dNWvWpk2bvvOd75xyyilduy75Rh/LTXl5+YIFC+65555TTjll3LhxRPTuu+9effXVl112GYC33npLun/HHnusfP/Xv/51AB999FF9fX2+zmHZsmUApk2btttuuwEIh8NHHHEEgP/85z/mPcOHD99vv/0A7LHHHsXFxQA2b97cflfPPPMMgIMPPrioqCgUCh1++OEI4qmBgL322uvFF1+88cYbjzrqqMGDB6dSqRdeeOG000579NFH0TmG9BzyKHPnzpWOzPDhw/fdd9+co8yZM6e0tBTAPvvsA6Curi6TyXS4t0wm8/bbb7/99tsrVqxoampyHGfdunUffPBBHk+4G+j7Qjjn/PDDD7/xxhtfeOGFpUuXSifziSeeqKmpqaurAxCNRouKiuSbBw0aJF80NDTk6wTkUez8kTyKrWj2X+PxOAAhRPtdyUjqzTffnDdv3rx582SaKYinBgSKi4tPOeWU3/72t2+88caTTz4pw6u77roLnWNIz9ElHkoSYgc8BDBq1Kg1Gm+88cYZZ5yxdOnS7373u93oGskj+lJumpubFy5ceOedd5oM1qhRo2699dZQKARg3bp15eXlAFKpVFtbm3yDyY3ZoyIhvU2zq05m0QDIo8jBtj9rpK2TeP/99z/55BMAtbW1q1evXr16tfSAgniqn+Ozzz57/PHHZZgs8aUvfemaa64BsGHDBtd1u8QQxhj6lIftMXjw4J/85CcA6uvr+5aKfezdXHzxxXfcccdNN92UTqfllueee04mbkaPHr3vvvtGo1FY8cg//vEPAHvttVcikcjZlUzsyZQYgKeeesr+qyRBS0tL+3OYNWsWgPfee2/t2rUA0un0s88+a7Z3HjKS2nfffddYmDNnDoJ4qn9j7dq1l1566XXXXffPf/5TbvE8T2ZMhg8fHgqFusQQm4ctLS2yFGWwSx4uWbJE3gsbNmz4v//7vx0dpasw9dySkpKe763b6Mu+m5KSkp/+9KfXX3/9/fff/9hjj40aNaqhoWHTpk0AjjvuuHHjxgH4yU9+8utf//qqq65aunTp9u3bly5d6jjOFVdc0X5vhxxyyD//+c/Fixefd955TU1NsoJoopjhw4cDuP/++6urq3/605/aHzzooIO++tWvvvTSSyeffPKcOXNWrFjxwQcfVFZWnnPOOV36OlJucrpLjzrqqBdffPHZZ5+96qqrJNUC9DcceOCBc+fOXbRo0QUXXHDDDTcMGjRo06ZNMlq/8MIL0UWGHHLIIY888sjNN9/8/vvvv/nmmyNGjKitrbV5uGHDhquvvnr27NlXX321/cEzzzxzwYIFa9asmT9/vswlZTKZ2bNnH3rood34UjJVLF83NDSsWbMGwPTp02XSp6/Qx97N6aeffu+9986ZM6e4uPiTTz5pamraZ599rr32WlN7Ov/882+++eY99thj4cKFb7311uzZsx966KEO9f7YY48977zzhgwZsnTp0pEjR8qOiVQqJf969tln77HHHk1NTa+++mpOuMsYu+eee84777xoNPrkk0/W1tYed9xxTzzxxJAhQzr/RUwkJevfBkcccYTjOBs3bnzrrbe6cmECFA6Msbvvvvu6666bPn2653kfffQR53zOnDn33XffN7/5TXSRIZdffvlRRx0VCoVeeOGFk0466aSTToLFw5/97GdDhgxZu3bt+++/n/PBwYMHL1iw4LjjjtuyZcuTTz4ZjUbPO++8e++9t3tWyqSK33777c2bN0+YMOGiiy568MEHTYtJn+D/AyMijitiMeI1AAAAAElFTkSuQmCC", "path": "image.png" }
Which solution has a higher concentration of yellow particles?
[ "neither; their concentrations are the same", "Solution B", "Solution A" ]
2
The diagram below is a model of two solutions. Each yellow ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the yellow particles represent the solute. To figure out which solution has a higher concentration of yellow particles, look at both the number of yellow particles and the volume of the solvent in each container. Use the concentration formula to find the number of yellow particles per milliliter. Solution A has more yellow particles per milliliter. So, Solution A has a higher concentration of yellow particles.
Solution A
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAIAAACmkWkFAAA/CUlEQVR4nO2dd3wU1fr/nzOzvSebkEIKCySEhBaQIqABFVGqXL1XvIrXjujXdkW5YuGqePmCer2W77VduGBvICpSxJ9KEQGVTuihhEB62c1uts2c3x9nd7KksWV2dxbO+8VLJ5PZmbNzPvk8zykzB2GMIdE41Wg/7zE5Jm0MSkK5mKE6DBVZvAvQFqeXO1JjPVzT5PRyTU53k9MT7xKFjFLGpOnURrUiTafun5GkkrHxLhElZKgOowGSVHZT1ez8cMdRl5fv+rAknRYBAABCgMD3DxD4dgIggDp7i5s7z3ligFLG3NDfkpNEQ1wiQXUYJaRlN4u3H65udipUWr0pWalQqORylVIhRyBjgAWQMSBDIEPAIN8G699mETAArH8P2Wb828IGAkD+bYyBB+AwxgAcjwO2fft5DDzGAdut+31H+rYh8Aw8gNvLOVrcdqfbanfYmh1KGfPXy/vF+9ZSQoDqMEow8b18G5pa3ACQlNlDY0hSqbVyhQIAiB0i5N8CX/TA/u3WAwK2W02UbGPAAZ/EvuMxQghjQAgBANkGsp8cigLCFQLs348Qwv79CAHGGPxnAAwyltVpValmQ4+sNAA4b5CkSA2qwyghLbvJSdIBgNNuJXeXJF6+qsH+rYAKJtutBwRs+48FwAEprv+TyHc8whj76gmAbBM5EFWQg/zbgPz7McbIv9+nEv8ZhFNjDC1uDwB006lEvk2UKEN1GCWkZTe5SToAcNubyd1tEygSJar4t6GhwQp+7VISCKrDKCEtu8lPNShZpqW5wdlsTfSo4nC66xqsADAgI1n0G0WJKlSHUUJadmNUKS7rmQ4AtZWneI5L3KjC8fyJ8rMAMNqSliaBJJYSElSHUUJadgMAQ7NT8lIMmOfPnDrm5ThIwKji5bjDx8+4PVyOSXuZJS0ad4kSbagOo4Hk7AYAJhVmp+pUbpez/OQxp8uZWFHF4XTvPXKyxeU2qOTXD+gRjftDiQ1Uh6IjrXk3Ak4v9+GOY9XNToZhuqWkJhmNepVKyvMdXB6uwdFS29jcYGvmOJyXYphUmC2FeZyUSKA6FBeJ2g1hVWn53sqGeJciZEZb0iSSu1JEgepQLCRtNwBwqsF+qLbpt/Ka1hazNMEYA4zL756TpJNCnxxFXKgORUFyj2i2ISdJm5Ok/a28FgBmXDqApKAIAIFvo82PELAf/Fkrwr79wh6ywWPAADzGGACTbcAYEI8x+PYj8lseg3+P71NY+C0CD89/sf0Qi9DQ7JQ43CNK9KE6FAUpdhV3ir+DjdQrgoBO/nNHBIQfyfGASEda62/9IwKAAZNaJz1wvjECX5Dwp36te4TTYt/xpH8uQEaUCx+qw3BJKLvxjwFgaP0nVF3giIDwIzkeMBkmhHOq3hdbkK/msG9c0tfbj3zb5Fz+PcJpke94DAghnscAwCIJ1zNFRKgOwyWh7EaqUQX7oop0q5kiJlSH4ZJQdiPZqAI8ACApZ7EUEaE6DJeEshupR5UofW2KxKA6DJeEshvJRhXMg7TbzBQxoToMl4SyG+lGFQTSbjNTxITqMFwSym6kGlU4jEHa1UwRE6rDcEkou5FqVCFlQBKuZoqYUB2GS0LZjVSjir/NHK3vTZEWVIfhklB2I9WoIv35DhQxoToMl4SyG6lGFem3mSliQnUYLgllN1KNKiD5qEIRE6rDcEkou5FqVCGzORkpz6+iiAjVYbgklN1INapIfzYnRUyoDsMloexGslFF8kksRUyoDsMloexGulFF6l10FDGhOgyXhLIbyUYVXurVTBETqsNwSSi7kWxUAQBpt5kpYkJ1GC4JZTeSjSqYB2lHFYqYUB2GS0LZjWSjiuSfxKWICdVhuCSU3Ug8qkg5i6WICNVhuCSU3Ug3qgBIO6pQxITqMFwSym6kGlX8A5DR+t4UaUF1GC4JZTfSjSqkmiVczxQRoToMl4SyG6lGFenP5qSICdVhuCSU3Ug1qvCSjyoUMaE6DJeEshupRhXpt5kpYkJ1GC4JZTdSjSpkn5SjCkVMqA7DJaHsRqpRhZP8fAeKmFAdhktC2Y1ko4rkZ3NSxITqMFwSym6kGlWk/6wKRUyoDsMloexGslGFB5D2ghsUMaE6DJeEshvJRhVSEAlHFYqYUB2GS0LZjWSjiuTnO1DEhOowXBLKbqQaVcgZpFzNFDGhOgyXhLIbaUcVVsLVTBETqsNwSSi7kWpU8U8ej9b3pkgLqsNwSSi7kW5UAQBAUq5niohQHYZLQtmNdKOK1Oc7UMSE6jBcEspupBtVEEi7zUwRE6rDcEkou5FqVOEk32amiAnVYbgklN1INaqQQkg5iaWICdVhuCSU3Ug1qkh/9UKKmFAdhksC2E2lrQUAVHKZZKOKWi4Tykm5UKE6jJwEsJvSqkYAyDUbJRtVss0GANhf1RCdG0CRBFSHkZMwdpNjNkk2qnRP0skYdNbaYnW6o3QTKHGH6jBypG43Z6wOm8ujksu66TWSjSoMg7KSDQCwt7IxSveBEl+oDkVB6nZzgGSwKSZASLJRBQHKTtYDwJ6z9dG5DZQ4Q3UoClK3m32VjQCQm2xqrVHpRRUMON2kk7NMY4u7utkZnTtBiSdUh6Igabs53eRweLwahTxFr2mtUUlGFQSQbTaCv4VPuZCgOhQLSdsNyWCzU0wQWKOSjCoIoRyzHgD2VUp3XIASHlSHYiFdu8EY+8YCko0QWKOSjCoY4xSdWi2X2VyeiiZHVO4IJR5QHYqIdO2mvMnh8HjVCrlZp4FEiCoIoewUMvGhMSp3hBIPqA5FRLp2c6C6EQByzSZ/LJF6VAGA7CQ9AByoauBbL09JbKgORUSidoMxPljVBADZZpM/lkg9qgBAkk6tVcodHu5Ugz0Kd4USa6gOxUWidnOq0U4y2CStOoGiCsY4x2wEaU8kpwQP1aG4SNRuyFhAj5QkaI0lCRBVEELZZj0AHKhu4nhp5bGUMKA6FBcp2g2PcWl1EwBkmU3QGksSI6roVEqTRuXh+GN1NtHvDCWWUB2KjhTt5mSD3eXltEqFSaOCRIsqADhL8g/mUoKB6lB0pGg3ZCwgx5xEfkysqAKAcpL1AHCk1urleFFvDCWmUB2KjuTshsf4YHUTAGSnGMmehIsqSoXcrNdwPD5UYxX57lBiBdVhNJCc3ZyobyYZrF6lInsSLqoAxlnJepBYHksJCarDaCA5uyklGWxKkhAWEi6qAEKZSXoAKKuztXi8Yt4dSqygOowG0rIbjseH/GMBQlhIxKiilLFpRi0GOCiZPJYSPFSHUUJadnO83ubmeINGpVMpEzqqYIDuyXoAKJXkg7mUrqE6jBLSspsDJKQkmyAgLCRiVEEAGSY9g9CpRrvdLYk8lhI8VIdRQkJ2w/H4cE1rNSd6VJGxTJpJBwD7pRFYKEFCdRg9JGQ3x+ptbo43atUalQISP6pgDOQ91RJ8DwClC6gOo4eE7IY8n5KZ5FvHJ9GjCkLQzahlGVRpa2lwuES8UZSoQnUYPaRiN+dksKTCEj+qMAhlJOkBYH91o3i3ihJFqA6jilTs5mid1ctjk0atVioumKgCAFnJRgDYezb+zWZKMFAdRhWp2A15HWxGsokEAbggogoAJOtUChkr2YU4KG2gOowqkrAbD8cfrbUCQGaykQQBuFCiCsMwmUmSezCX0iFUh9FGEnZztM7m5XGSVqNWKC6wqIIxzkgmw5CNot0vSnSgOow2krCbA0IGC3CBRRWEUJJWrZTLbC7P6SZpvTiW0gaqw2gTf7vxcPyR2iYgGSzAhRdVAKC7ZCY+UDqD6jAGxN9ujtRaeQzJOq1CLge4AKMKAGT6nltplNpCHBQBqsMYEH+7IWMB6UlG3w28EKOKXqXUqRROL3eyoVmMe0YRH6rDGBBnu3F5uWN1VgBITzb6buCFGFUAQUYSbU9JF6rD2BBnu2nNYGXyCziqAPa9B+CgxBbioBCoDmNDnO2GjAWkJZlaLf8CjSoqhdyoUXk4/midJF50RAmE6jA2xNNuXF6urN4GABnJxlbLv0CjCgCQ51ZKaXtKYlAdxox42s2hGiuPIVmvk7GyCz6qAEB6km8hDreXi/zuUcSC6jBmxNNuzslgL4KoopCzyXoNx+PDtbQ9JSGoDmNG3OymxeM9Xm8DgDST4RzLv3CjCgKUnqQDOj4lJagOY0nc7OZQjRUDJOv1cpnsIokqGHCayYAAjktmIQ4K1aEINzFo4mY3ZEXUtCQTAFw8UUXGoBSjDvtfvk2JO1SHEd7AkIiP3bR4vCfrmxFAqskAABdPVAGE0uj4lGSgOoyxDuNjNwermzBAkkEvY1m4mKIKYJxq0DIIlUtjIY6LHKrDGOswPnZDVkTtlmQiP15UUYVhUDeTDgD2SWAhjoscqkOIrQ7jYDctHu+pBjsCSDEayJ6LKqogQN1MtD0Vf6gOY6/DONhNaVUTACQbDXKWJXsuqqiCAacYNDKWkcJCHBczVIex12Ec7IaMBaSaTK0VcZFFFQDkW9iQJjjxg+ow9jqMtd3Y3Z7yRjsCMBsNrRVxkUUVhIDksXtp902coDqMiw5jbTcHfBmsUcYwF21UwRhMOrVcxja2uKtsLZHcT0p4UB3GRYexthsyFpBiMuHWCroYowoApNEXbsUPqsO46DCmdmN3eyqaHAxCyQY9aq2gizGqIORrNtPxqdhDdRgvHcbUbsgaN0lGA8swF3lUwRjrNSqVQmZzecrpgjCxheowXjqMqd2QBzTMJhO0Bg+AizWqAOC0ZCMAlNIV72IL1WG8dBg7u7E63WesDgahZL0eWoMHwMUaVQBQN6Mvj6ULwsQMqsM46jB2dlNa3QQASUYjwzBAowpCAFijUpCFOE7QBWFiBdVhHHUYO7sh70wzm0xClKBRBWOckmQA2p6KIVSHcdRhjOzG6nRX2loYhjEZ9EKUoFEFIV8ee7CGLggTC6gOIa46jJHdkFH9ZIOR8d8oGlXI+ZUKmUGj9nD8EbogTPShOoS46jBGdkNG9ZONRvBbO40qwvlTk3RA21MxgeoQ4qrDWNhNvcNV3exkGMag14Pf2mlUEc6fYtQBwJHaJrogTFShOoy7DmNhNweEsQCEaFRpH1XkMtak1/AYDtEFYaIJ1WHcdRgTu/FlsCYAoFGlfVTBGFKNtD0VdagO467DqNtNvcNVY3eyDGvQ6QCARpX2UQUhSDboEELH6+mCMNGC6tBf+njqMOp2QzrnTEYj8tcDjSrto4qMZZINGkwXhIkaVIf+0sdTh1G3G/LiZRPJYIFGlY6jCgZIMeqBtqeiBtWhv/Tx1GF07abG7mxocbMMq9dqfbtoVOkoqiAAk17DMKi8yW51usO515TOoTqUiA6jazekc85kMiHB5GlU6SSqsAyTTDrqaHtKbKgOJaJDmehnDIQ0mJVyRXNzM4uAAWAQsAhQ4AZglkFkg0GIAUDIvwEYAcgYBBgjBP7DgEHAIER+SyqXQah1j+/8CACTDbIHMDD+yMUghDHwGPOAMcY8BgzAY4wBYQCMMdnmMSY/YkAczwNCPAYeY0DA+z+FAXyn8n8KY4wBeP9OCLwWIPLQbeD5yaxxHmMVAwBQWtkwIic1qvVysUF1KBEdRtFuqpp9GaxapW7di3xZKgLgMWYRQgj5bwVgX0boyw8JPMYMiQ08JjXPY8AYM365IF9NYADAAAwAQghjHgAQQjzmEQ8IIQSYB59iuIA8k+cxIIR58nHeV5EAPOaF6vfVBM+TWsEAPM8DYjie5wELNY0D6g8AOB4DQhzH8RgDID5APUQoRD2+c2KsYIFBqKrZ2eBwJWmU0auaiwqqQ+noMIqNKZLBaoTWMiGgzcwgBAAY48D0EJFcspM2M6nNwDYzOqch7D8YC61d7D+hL6/05Y3ntpkx9rWBhYa30KbFGLdpM5NIAwh4zAuF66zNzPM8+FJl3HWbmaBVyQBgH32jqHhET4e1FdzRPZ7S7a7S7a6aCr7ZygsHUh12SBSzGzIWoNPqfC1JQpdRhTRvEfZ1qhGE40kDVWh1+/+LAxvXvoORr4Hsa9D6qphUJia/83faIR5jhBDmMSLRiPTUIYSxr02Lfa16sgcQIFI5DGI4nidfilSk7/P+IwEDwzAcz5NGNcI+2fH+IxHylYf3dRMgnUpua/Hsq2y4zJIWvaq5qBBdh2W7PWV73Q6fufivst0NAGlZbMFARU4vGdVhh0TLbiptLTaXh2FYpULljxsAQCyD/B9Yf1RhGOTvqIKA2yj0ovmOF8yYtIEDshuiIV8jGfwRgBzPIHJCf6+Zvy0dGFV4nwBaowrvc32S2vrqBoSogqA1quCOo4qQ95IvxQtRBfuveG5UITm8UsayDGpscVfaWtL1Ack/JSzE1aG1liv9xVVX0ekjRVWnuarTLelZ7MirVHojQ3XYhmg1pkjnnFanY0gXmUDAiACP/cbv+7IAAKS9DHBOVIF22U3AP3+88mc35JxCh7z/hL6a9d1Zocde6J/HgPz99z5LI6EAoTYjAggh8jUYxAiF62xEAHsZWxU0nMbVhxl7NdNcFXDFc0cEhGJrVXKgKzSIhIg6LD/k2fSFowuvEag8za362FFfw0lHh+TVhb7sBroamYJo6jBa2Q0ppUajwxha5xTARZTdVB7B1WVgrWxtC5INVgGGLJycxymTOogqGINWKbc63HvP1o/tlX7OXwgldMTSYcUhz76fnMFf1+3C65a3TPmzRm9gItRhsxXKy7wnDvGNta3NN7kS0nMZcybKzEPRyG6ipMOo2M0Zq4NksCqlCqFARxC578Zu5c+c4M6UeRpqeLcLA4DOwCSnMulZstxerN7AxKXNbG+AQ5vBXt/xzeHc0FCGGspkJgvuVsyD7Jw2MwKskDEyBjk83OkmR7ZJ2/FZKEEglg7rz3AheQ3B7cI/rHJed7MGwu27cbng0G7vnu0dPL7kcUH5Yb78MBz+HfUdwabk+L6UWH03UdJhVOyGjAVotTog6UAUshuHlT/4m/v4AU+bSzdb+WYrf+qYd/sGKB6h6FesUKmYWGY3lUehbDv2BjEhs/E4amlks0swyHFgVAEAjUpudbj3VzVSu4kEsXR4aEvIXkOor+F2/OIefKkijOym2Yp/Wu1qqOG7voTDhn9f783th/KHM+JmNxAFHUal72ZfZSMAqDU6aG1k+hGj76a6gvv+M0d7r2nDzq3ulR85aqu9MWsz152Cw5uD8hqCqwHKf2KxB7XpctKp5ABwgC4IExmi6LDmhNdWd56/+S4o3eWG0PtuGmr5bz9pOa/XCJzch/dv4sXtu4Eo6FB8uznd5HB4vAzLKpUqENIBgYjnO5w84Nm00uFxBfX9bU38t8tb6mo4oWZ9d/bcqEISlgjnOzTX4YObQ64VVyM6s4URupxIAVgEChnj9HLH6+mCMGEilg6rT0T0Kga3C5885sWhzLtxufDP37vdrtAudOYwPrUPt89u8LnZDRaym87n3URPh+LbjW9WlUZPfhQ3u7HW8Tt+CC2zdTvxqi9abE042tnNkeDaUO1pqWaaTjAQEFUQw6gVMqDjUxEglg7PHj5PEn1eKk97Q8putm/01Aed1wRyeBvfXA8gXnYjug5FthuMMSkZyWBB1OzG48bb14bTina78Ib1LVHNburP4MbKMIrmo7GUgYCognmeDEMeqmnycuFn8hctYunQG1wS3TV1NXzw2Y3Nho+er5egC45s50G87EZ0HYpsN+X+DFah9D1qIWJ2U7bb02YqZ/CcKefOlHujl91UHg2vXD48dtRSwwRGFQaBUs56OP5onS2iU1+UiKXDSHptAgk+uyndGVEy1XAWWmxiZjfi6lBkuzlQ3QgAao1BCCQiZjdleyJ6AcdvW13Ry25qTkWqS0cFCowqCDEq2p4KFxF1KArBZzcnj0W6CkLdKSxidiOuDsW0G4zxwaomAFBpdEIgESu7sdVyHndEme3Z05zLiaOU3YTXaxOIqwkFRhWMeY1SBnRBmNARUYdyhThFCjK78bih2RZp3GqoFDO7EVeHYtrNqUa7w+NlWZlcoRA9uzl7XIQ/udoaPhrZTcOZyIsG0C6qIACVguUxHKqhC8KEgIg61KWwMkWkSY45lQkyu6mtFqHt5nWLnN2IqEMx7YaMBSg1esAQYVSBdtmNKNisXJSym8jh3W2jCkJIJZeBf6lZSpCIq0O9OdK/keRUNui+mwgv5UPc7EZEHYpmNzzG5O3tKo0OEHQRVXg3tldyXhcOKbtxRJxkAoDNiqOR3ajEmHLJKNpGFYyxSskCwAm6IEzQBK/DILPsjHx5JOVRKFBeoTzovptILtWKuNmNiDoU7SGGUw12p5djZHKZXAEYkN/HEAIEiHfz1jKP9ZjHVX9Om0htZrvlybv1lstVgMnd7+SZKY1eBGdUKn1zt0mdY5GemVIbIi8asHJAyG99DMPzPEIIYVApZE63t7SqaUiWWYTLXOh0rcPWXDnoZ6a6F8jLfnc7m8OMdkWDFeDvuznvM1OZ2Wzkd0CmQEiMZ6aioUPRspvS6kYAUJFZVedGlfrdzpNfNtf86mzjNQDQUsed3Orc8Xlz+Q5319mNKJhT2SiNTKXmRFpMTSbfPqoAApWCAYDSqoYIz3+R0IUOw+5D7DdWFV5hdHqmcJAcQhmZ0kUcVpPSQ8tu7NWMvRo8dtRFdiOWDsXJbniMDwkZLIAQVXg3rvre7m7nMm3gXLh8h6v+pHfABDWjgg6zG3OmCMafQjrtovBEeFIGqjkVUSqszcTtowrGWCmXIeQ+3eSwOt0GlUgjJRconekQIshuEILkTLbXEOWx30N7rEChQFdOUStVxMOCfSI8txe7f1dE/QbmHEFGnWY3tkqoP8Haq8BtP+ez6m68JhPrcngk56OhQ3GymxP1zU4vx8gVjEwB4IsqvBtXB+E1AvY6bs/qFs4FHWY35u6sPLIxAnMqo1ShKGU3WYWg0oVfNlMezyhwh1EFEPgnPjRF8vUvBjrUIeG82Y3XydsquZojnvIdror9nqazfEszmaELAND7EkWP/iF04igUaPwN6qQUxlehQWc3hcURdRWl5iC1vqvsxmnDZRvRsR+YhrK2XgMALdVM3S624v/JHBUMREGH4mQ3ZFaVQq0nVkqiSt0GhydoryHY67h93zuKJ2raZzcIoOcAxaHfQnxwLYD+xQpiGOfNbior+OoKrr6WJ4/JpWQig5nR6kBvRp1lNwhQ3jC094dwEhxGDkmFvvf1t89uECCVXNbi8u6vahiRSxeE6YoOdUjoIrtpOuOtPeBuPNlBJ6guhc3tL++eLweAvqNUhhT2wM+u887/yu4pGzlOpVKRER7fsFdttbehhrfZ8NnTXgAwpzIGI9ujJ2s0MoE61Ouhd1952M8x5A1nyEhTh9mNvR4f/n8Md745Yl47qtkq1+bySUM84upQBLvheHywugkAlGqtr/mHwHHM7a4OpxO78Qx3ep8nu79cGBcUolDPgfKyPe7wJvvpDEyfIoW/bd7pe0ZKd3oP7PY0W8+5RHUFAHAAkJKJikawejMiOm3zvpuUXJTWG6qOhly87mO8rAKTNTcCsxueJwuEYLmcQQiq6YIwXdKhDn1NI5LdtHvfDefGZT86ms92GhSba7n9P3Jlv7mLr1aZUtnsPvIMi6z0Z1flcW+HOtTqmZHj1OlZrY/4A8CpMu/2DS7buc/fnCnnADw//wjds9khw5Xp2Yygw2GXy+trvPW1IQup8DJGpRNG2du+78ZRDwfWhNCasZ9kMJYlDfGKqEN0ToYZFkfrbJ/vPs7KFYZuOTIGEMbIjWu/seFwJwHLlGjkdK1SRea3AONfhwwBlB/y7AzxiXAAUCjR5Bs0Kd0YoQcefI12wABknbDaKm7j965gnsTt2Z/JGyxj5R2v73NgEw7JcdKGcgYL7/Ma/1pC2LeWkLDeGLY53C0u7+geaZf1pCs0dEx7HTIALNO6iB1ZoM63rB0D7nru1A8t7uCGnGRK1HekMqePnOgQIag7w9VVcB4X73GDzsCkdWeTUhmlEjH+hx8YBHYb/nWD8+Sx88fd/oPlwy9TAEI8jzGA1cp/81GLO5Sp6hl5TNHlCHeyzpTLjvaswufNa9qjL/DqCrxi6VCEvhsyq0qm1gspg7PCE7bXAIDXhWtOeNv03ZAZUtl9ZAVDQ7bVS0uU5m5Ml7M5udUrWoJ86r9sL//Ltx6Pu+P1ffqMRjkDg+pjYuVgudprtPBdjwiQ7j2lkqz7Q8enOqW9Drvou+Fc+PhaR5BeAwBeF977o7PquBf7TotTM9nCYYpBl6mGX6XqN0yRliVTKP2DWgAIoL6G+/pDezBeAwB7d3jWr3K6nL4a1+rRtNs0SSnBdlYWjGD7XY4Cddim7+boz+F4DQDYDso8jSCWDkWwm8M1TQCg0OiwfxTRUxXpAwe1J7xtZhWTXjaEUN9hiiFXBDswqVCiiTdo8gvlXczmdDlh9XJnSG8zstbibd9ynLvjN+DnFqMh1yND5+7PyqFbP9x7sleV7Gve+U7TbjYnmeuMMZazLMOgxhZ3fYv4C8VfGLTXYRezik+us3OhR8TdPzlttRwEvDM74J9wNgwA9TXcuuUt7lDeX3HyGLdxvUuY3a5QwlXTVP2HyRVdjgIlZ6DhE+W5RX41B+hQmFVsrQRbVajftRXrPoVYOoy07+ZwrdXN8YxcybBy/xAfhNdrE0hDJde+70aYBNmjr1xnYEp/ddV0uQpHehZ7+dUqo5H1S0KYV3FO3836Vc6QZEGw1uHSX7z9Shih7wYCoopaB/3GoxYbbqzEjgZw1CMiR20aqEzYkIUDc13c7h2xbfpuSF8dixgeOIfbk6ymw+Ft6VCHnfXdNJS6nfXhDDZ7XHjfFteoqRpS0cjXiUf+oYDIiH8MS1Qnj3n372L7DmKJDJRK6D+UzR8gO3bAU1PBV5/hPf6/cbUOpfdA5kzULdfX4u5Qh6THoPJgGN+1FXctw7UgpOYj12GkduPPYHUg/EFj4O2RPnDgdeHA7AYFZDckqqR0Z8dkac6Uec+UeSvKvO6ASKXVM7m9Zbm9ZBlZLHO++Q6H93vPng4zF6s4wmfmIVOGb2RK8AVhRECpg7Q8huN5HvNwztrMAfN6upzNKcz+9E3dAHB56du2OqBDHXY4MsW7cc2e8Mc36yq42tNcahYL/pzU/9/W1Vx3b3Pbw33mZuc2V+++Wpmydf6XQon7DJTlDwxYI9zXk+Lr4zvvKprWCF78RnDXMKocHLkOI7Wb8kY7AMhVOvA3VyKaGxNAF9mNEFWyespyeslJtuKwYQSYLOuDhE+d7w34h0ojeptRxRFsyui4zRzJG/A7zG4QwwDwbvpyv47oWIcdZTeOSo6P7E0m5Yc8Kd2ZLrKbgzvDb/C6XbB/l3vAMDn4pyBCZOudNZwFb6SvPwWvlcHgjVyHkfbd+PO4gAlMItFZ301nbWadAekMTNtOkC6fxLU18WGnNoTqU7zX1WmbGSJ+EldoM/v7uMFJ333TER3rsKO+m+bySFv6dWe5LnRYfszjjszOTpVxpNj+WhdhFc0I8TQyougwUrvxXZw5Z7hHZor0tCod0+HIlC9FgDZRpfXAtkM8Xc7mPBOZ1wCA1wXW+o6jSpvZnO2fVYEgnsQVRgQEb3JRu+mIDnXY4ciUpznSG+iw8l3osKE20vSzvoZ3OQF8X8SnkyBnt3emw0gRSYeR2w0A+FoOgpXKkiJto5ky2VCzG3JgaNmNVYSqcNpa35QT1eyGlFzBRmtZ94SmQx12mN1E2JIiWOv4znTYUCNCPCCeJZ3sRiwdRqpdhvgA5iAgqiizIrWb1B6yGGQ3otDSHKPshuMwAJjprOKO6FCHHWY34U0/aYPb2akOwxiQag8ptijZDSsXoTyKVF4UHUZqNwa1HADIw0WClSqz5Kw2/DOrdExqD1kMshvRiEl2Q1beMGvCfBnChU2HOuwwu5HrRKj41CxZ5zoUARH7bnRmpIz49W9yAy+KDiO1m2yjFgB4rwvOjSqGweH/VeSNVEJA9iHx7Eati0V2Q8bQWYR0yqgs657odKbD9tkNG/G7h+UK1IUO/XOLI7wEgHh9N8nZkZZHyG4i1GGkdpNl0kJHUUWVI9f0DGc2WlqePCVXBgHZR/Sym8wsEd6hozfHIrtxeTAApOpoatMxnemwfXajzY7Ur82ZbBc6TOsuQjwwdyOyEafvJr1vRIXR9vIiGRZFh5HaTXeDBgA4j5PnvG2iStKlanVWaC/vMOfK+o5RE6uOQXaTkspEGItkCtCbu3pWRazsxul2A0Avsz6S0l7AdKFDgpDdaNIjtYP0nrIudJgWcQzL6cmK2HeDMSh1kF4QZjLPyLGuj1csHUZqN0oZm5diAAB3c2P7qJIyRqMLOsfplicvHKf2JyOxyG4UKtSjV0Tiyy1iSOGimt14Oc7j4QGAvq64M7rWIZzTd8Mk9w3/KRC1nsnpI+9Ch0mpTFr3iBwnp6dMxL4bcqrsQYwmKRzHMQ32MAoQS4cijKqO6tENAFz2JiAPz8M5UcU8Up0+TivrsudYqWOKJmrzS1RAokSsshsAGDIi/JenyRXQox9DChfV7Mbp4gCgT6pRq4joVW8XNl3rUMhuACBloJKVh5nVFo1SnleHfQeFb2fJKUzvQpGzGwBAMr5gHITqOKbBbnUmFlGHIthNhkFjSdYBxg5rfYdRRZMuy/2DLnOMJrmvQpPOkr46VoF06WxaoSL/Kk3xjTpjhm9CcCyzGwAwGNnBw8MUx4ASGXlHZVSzG57DDpcHAC7JSgmvnBcJ59Uh8v/AKFDutZowLpF3iTLDIjuvDrN7yXr2DfMPcvjlSqGkImY3DMOwCsi/Cuu6BVUMRo5TRnh0PbC4OhRnmOPq/O7/2XbYZW90qTUqlRo6elZFlyMz5MjIi46Q/41HCIABHPhHR54yIx/0/e0BgN8giG2jzp/EFdIE8B/f9TNTGPCQS+U2Kz4S4usae/RDqbl+h4vaM1MYcEOzE2PITzXkJImxnNUFTTA6JKiS2KzRqrPbXcG/hqJ7H3n+JYogdTjscmVjDVcf4gzjy8YpM7IZ3i8DJMYzU4E6lClQ/lV8bRlU/M5wnetdl8sbCrysFvNi61CEt/kRdp6pX3vwNGIYc3qOjGG7eIsaA8AAsAgAMIuQ330wAt9HyIuwWH9dBr7NDyH/hn9Pmx+BHI985sUQc8GAEELQ+gQ2+OoSsP9tfr/85Nq/K1jHycpnB1yOOnybX5u3qAFCHE+S+8AnwkkOjDEgjucxKYn/44Fv82uwOx1Or0mtuGtYvpzOJw6CkHToqudOBvdCv35jVNkF8pB06HXjdcsdQb6zTaFEIy5X5BfJiVZ4wDz2Le/ZKolOnggPQ4ceF26uZhpPg8cOzgbEeUCdigFAm4nVmZxMi6OkQ9HsBgCW7z1xuMYqV6qSUzOJj/icArBQ3x1mNyyDfGkOAIsQCrAeBH7fQcAgAIxZhAIrmPFnK8RiyJG+gHPuAQiQ7xWy/uyG1Cv239kz5dym9S67rasbIlfAwBI23cIEiqBNHfuNA/z+4hMBD60KENQQqKHAOgbENDlcVodbxqA7huXTycTBE5IOsRvXHnBX73d3luZk5Mt7X6LQ6JkwdOhx4V1bXaXnC2OZWWzJ1UqdAQXaCsl2A2MS9mtGUBcJWgmkQzHtxunllv16tL7FJZcrU9IyZQyTQNmNEFV2bvVUVnDVFW2DktGMcvLZ7D4Mqwg/qgSf3dTbnM1ODwD8aaCFjn+HRHg6tFdytrNezs3b63mVjlHrGYOZScpkO3xndkg6tFn5XVs9J4952j/fkJnFDhysyO0la6/DqGY38dKhmHYDAC0e7wc7jtXaXQzLms1pGrU6gbKbNlGlvgbbrLzdho1mZDQzrCJGUcXL8zXWFpeHlzHopkE9yQQ2SkhIU4d11d5mK66r4VO7seZUxmBEwegwXtlNNHQost0AgJvjP91VdrrJAQA6nd6cnCJnmATKbuIbVZpaPHW2FoxBKWOmD+qZaQhnAIUCVIeS1KH4dkP45WT15uNVXh4DgE6rM+r1KrlcwbIsgxIlu4lZVHF5eS+PbS1ua4uH/LYg1XhVfqZeSWfZRArVoaR0GC27AYBml3fz8cr9VY30fZfB0zNZPywn1ZIcwQLAlHOhOgyDKOkwinYjcKCq8WRDc43dWdPsdNEqPxeljEnRqMxaZaZRW9jNpJTR0e5oQXXYBbHRYSzshkKhUECUhxgoFAolGKjdUCiUGEHthkKhxAhqNxQKJUZQu6FQKDGC2g2FQokR1G4oFEqMoHZDoVBiBLUbCoUSI6jdUCiUGEHthkKhxAhqNxQKJUZQu6FQKDGC2g2FQokR1G4oFEqMoHZDoVBiBLUbCoUSI6jdUCiUGMEAgM1me/XVV8eNG1dUVNSvX7/x48e/8cYbXq/3vB+eNWvWzTffHP1CRoQUCslx3LvvvnvFFVcUFBRcccUVb731Fsdx5FdFRUWWc/nmm2/CvlBpaanFYvnuu+9EKnhMoTqMNnHXoQwAbrvttvLy8ocffriwsNDr9f7888+vvvpqeXn5woULw75ehAwZMuSrr77KysqKVwHE5ZVXXnn33XcfffTRgQMH/vrrr4sWLWIY5p577sEYOxyOBx988NJLLxUO7t27dxyLGkeoDqNN3HUoO3z48I4dO/79739fe+21ZNcll1yiVCrXrVvX0tKiVqtFv+R5qaioqK+vj/11o4TX6122bNmdd955zz33AMDw4cMPHDjw9ddf33PPPXa7HQD69+8/YsSIeBczzlAdRhsp6JAh2RTDnNOJc++993755ZdCHX/66adXXXVVfn5+cXHxQw89VFtbG3hwc3NzQUHBm2++Kexxu90DBgxYtGgRANTW1j7yyCPFxcV9+vSZOnXqli1byDFHjx61WCzbtm2bNWtWUVHRJZdc8ve//53n+a1bt44ePRoALrvsMnJfBDZt2mSxWHbu3Cns2bVrl8Vi2bhxIwD89ttvf/rTnwoKCgoLC2+66abdu3e3/7aFhYXvvPOO8OOcOXMmT54sFGbz5s233HJLQUHBqFGjVq1atW/fvilTphQUFFx77bV79+4lH/F6vf/85z9HjRqVn58/ZsyYZcuWCWdbuHBhr169OrjFDPPNN9/MnDlT2JORkUF03NzcDABa7fmXQ/2f//mf+++//4MPPhg+fHhBQcFdd91ltVr/93//t7i4eNCgQX//+9/PewaJQ3UIF4EOmV69emVnZz/++OMfffRRm/ojrFix4m9/+9vUqVPXrl37f//3f3v37r3jjjsCl4vR6XRjxoxZt26dsOfnn3+22WxTpkzhOO4vf/nLjh073njjjW+//XbQoEG33XbboUOHAEAmkwHAc889d/PNN+/atevll19etmzZmjVrhgwZ8vrrrwPAqlWr/vnPfwaWZOTIkWazOfBCa9asMZvNo0aNKisru+WWW1JTU1esWPHZZ5/pdLqbb765srLyvLePQArz0ksvzZkzZ8eOHQMGDHjyyScXLlz42muvbd++XafTzZs3jxw5f/78d99995FHHlm3bt3dd9/9wgsvfPzxx+RXvXv3vuKKKzq4xQzTo0cPo9FIfvR6vZs3b77kkksAgESVYEK3TCbbsWPHyZMnf/jhhw8//PDHH3+84YYbUlNTt2zZsnDhwmXLlhGtJy5Uh3AR6JBRKBT/+c9/LBbLk08+OXTo0HHjxj333HP79u0Tjli8ePHo0aMfeOCBnj17jhw58sknn9y7d++OHTsCzzJp0qTdu3cLt3X16tX5+fkFBQWbNm0qLS1dsGDBqFGjevfuPW/evOzs7EAnHj9+/OjRo+VyeUlJSU5Ozp49e+RyuV6vBwCj0ajTnbOIH8uy11xzTZtqnjhxIsuyH374oUKhePnllwsLC/v16/fiiy+63e7ly5ef9/YFcs011/Tv31+j0UybNs1qtd544409evQwGAyTJk0qLS0FAJvN9tFHH91999033HCDxWK5+eab//CHP7z77rvk49dff72w3QWLFi06efLkww8/DP6osnz58jFjxvTt2/eaa675/PPPO/ugw+F47LHHtFrtkCFD+vTpw/P8nXfeqVarx48fbzKZSAkTF6pDgQtYhwwA5Ofnr1y58rvvvnvqqadycnI++uijyZMnP//88wDg8XgOHDhALJAwcOBAAGhz0iuvvFKtVpOOaK/X+/3330+dOhUAdu/ezbLssGHDfBdjmKFDhwZKpLCwUNg2GAxNTU1d36PJkyefOHHi8OHDALB///7y8nJyob179xYVFalUKnKYyWTKyckJ9S8wLy9PKEmbH10ul9vtLi0t9Xg8I0eOFD4yYsSI48ePNzQ0BHmJhQsXLl269PXXX+/ZsycAuFwuvV5fWVk5b968pUuXDhs27PHHHxfCVBtycnIUCoVQJKF45Eer1RrSl5UgVIeEC1iHssAvmZeXd+eddzY3N8+bN2/JkiWTJ0/u2bMnxlhIwACAbBM7FFCr1VdeeeXatWtvvfXWX375pbGxccqUKeQwjuOKioqEI71eb1JSkvCjUDGE8y7pOXTo0NTU1LVr1+bn569evTorK2vw4MHkQjk5OYFHGo3GNoU8L0qlsosfMcbkhLfeeitCvjXleZ4HgLq6usAv1SE8z8+dO3fVqlVLliwhnQIAMGzYsD179gjHDB8+vLy8/L///e9NN90URvG6LkCiQHV4AetQ5na7q6qqsrOzhV06nW727NkrVqwoLS0tKipiGCbQ7Mk2yTMDmTRp0v3339/Y2Lh27dri4mIydqjX65VK5bfffht4ZJvuwJBgGGbixInr1q178MEH165dSzrYyIXaRKSmpqaMjIw2Hxeqh+B0OkO6OvnWr7zySkFBQeD+wLvXGfPmzVu3bt0nn3zSr1+/Lg7r27fvtm3bQirVhQHVYfAkrg6ZF154YcKECW06544fPw4Aqampcrm8b9++gWnn77//DgADBgxoc6IxY8aoVKqNGzeuX7+eJJYAMGjQIJfLxfN8Lz8qlar93e+QzmyStGB/+eWXsrIy4UL9+/ffv3+/y+UiP9bW1p44caJ9IQ0GQ2CoCTXL7du3r0KhqK+vF76OyWRKTk4WcsvOWL58+eeff75s2bI2dbx+/foHHnjA7XYLe3bu3NkmPF4kUB0GT+LqkCHdPNdff/3777+/bdu2LVu2vP322w888EBRUVFJSQkA3HPPPZs2bXr77bfLy8u3bNnywgsvDB8+vP0dVCqV48aNe/vtt+vq6iZOnEh2jho1qrCw8OGHH962bdvp06e//vrrCRMmfPjhh12XieTJP/zwAxk7aMPgwYMzMzPnz5/fp0+fPn36kJ0zZsxwu91z5sw5evRoaWnp7NmzDQbD9ddf3+azAwYMWLduXV1dXUtLy2uvvUY65INHr9ffdNNNr7zyyqpVq06fPr1169YZM2Y8/vjj5LcrVqy4995723/K6XS+9NJLV155pcPh2BqA2+3OyclZv379zJkzN2/evHXr1ieeeGLr1q2zZs0KqVTt2b9//4YAEiJdojoMnsTVoSwnJ2fFihXvvPPO4sWLq6qqFApFVlbWXXfdNWPGDGKWU6ZMcTqd77zzzksvvWQwGMaNGzd37twOzz5p0qS77rrr8ssvT0lJIXtYll22bNk//vGPe++91+FwZGdnP/TQQ3fccUfXpezfv39JScmCBQtGjBixdOnSNr9FCE2YMOE///mPcH8BIDc398MPP1y4cOGkSZNYlh06dOgnn3xiNpvbfHbu3Llz5swZPXq00WicMWPGtGnTfvzxx1BuIDz11FMGg2HBggXV1dVms/nqq6+eM2cO+dWRI0fWr1/f/iNlZWWVlZWrV69evXp14P7t27f36dPnvffe+9e//nX//fcDQO/evZcsWTJ27NiQitSe1157LfDH7t27b968OcJzRhuqw1DuVqLqEF0wXYwUCkXi0CfCKRRKjKB2Q6FQYgS1GwqFEiOo3VAolBhB7YZCocQIajcUCiVGULuhUCgxgtoNhUKJEdRuKBRKjKB2Q6FQYgS1GwqFEiOo3VAolBhB7YZCocQIajcUCiVGULuhUCgxgtoNhUKJEdRuKBRKjKB2Q6FQYgS1GwqFEiOo3VAolBhB7YZCocQIajcUCiVGULuhUCgxgtoNhUKJEdRuKBRKjIi/3Wzfvv3OO+8cMmRIr169ioqKpk6d+sknnwTzwdOnT1ssFovFYrVaQ73o7NmzLRbLc889F3p5z8+rr75KCvb8889H4/yUaPDZZ59df/31/fv379WrV3Fx8a233rp9+/ZgPvjFF19YLJYJEyaEcdHRo0dbLJbvvvsujM92xrJlyywB9OzZc/jw4bfddpsUloqPs91s3br1z3/+8w8//KDVai+99NKUlJQ9e/Y88cQT77//vrgXOnPmjMViWbJkCfmxsLBw7NixeXl54l6FsGrVKrKxZs0auiZyQvD666/PmTNnx44dOTk5I0aMQAht2rTp1ltv3bt3r7gXWrFihcViKS0tJT+OHDly7Nixqamp4l4FAORy+aBBgwYNGlRUVORwODZs2PDnP/857o4ji+/l33//fY7jxo8f/9Zbb5E9c+fO/fjjj5ctWzZjxgwRLyRYAOGOO+4474r04XHkyJGjR48aDAaNRnP27Nldu3YVFxdH40IUEVm6dCkAzJs377bbbgOAlpaWG264obS09NNPP+3fv7+IF2qjw0WLFol48kC6dev25Zdfkm2bzTZhwoTTp09/8cUXw4cPj9IVgyHO2Q1pByUlJQl7nnjiiY0bNwamlytWrJg0aVJBQUFRUdGNN964cePGDk81ffr0wPxlw4YNFotl6NChADB58uQFCxYAwPPPP2+xWOx2e5vGlNvtfvnll0tKSvLy8oqLi++7776ysjLyq/fee89iscycOXPbtm0TJkzo27fvddddt3///s6+0bfffgsAJSUlV155JbSTF0WatNGhWq1esmTJ9u3b58+fT/Z0oZA2kCaMkL8sXLjQYrE88MADdrvdYrH8+OOPADBx4sTJkydDu8ZUZWXl7Nmzhw4dmpeXN2rUqGeffdZms5Ff3XfffRaL5b///e8HH3wwcuTI/v3733vvvfX19cF8O71eP3DgQABwOp1h3R7RiLPdFBUVAcAnn3zy6KOPrl+/vqmpSa/XZ2dnM4yvYG+99dajjz568ODBsWPHDh06dPv27X/5y1/Wr18f0lWmTp2akZEBAMOGDbv99tvlcnmbA2bOnPnGG2/YbLZJkyZlZGSsWbNm2rRpFRUVAKBSqQCgrKxs9uzZhYWFZrN59+7d9913n9fr7fBaxG6uueaaa665Bmh7KkEgOpw7d+6iRYu2bdvmdrvT0tIC2zhdKCRI5HL57bffTranTJkyderUNgfU19f/4Q9/WL58udFonDJlCsdxS5cunTFjBlEa0eE333yzePHikSNHchy3bt26f/zjH8Fcurm5effu3QAQ39QG4m439957L/HdFStW3HPPPcXFxVOnTv3ggw/ILbZara+++ioAzJ8//8033yR3HwBefPHFkK5y1113WSwWABg/fvwzzzyjUCgCf7tp06affvoJIfTFF1+88sorX331VWFhodVqffvttwGAGN/Ro0dfeeWVl156iWTdp06d6jC4HTp06OjRo0qlcsyYMSNGjDCZTKQ9FfqNocSU+fPnm81mh8Px5ptvTp8+fcCAAbfffvuGDRvIb7tWSJAoFIpnnnmGyGnmzJl33XVXmwMWL1589uzZ3NzcVatWvfzyyytXrlQoFLt37ya5D/ngiRMnvv7665deemnu3LkA8MMPP3R2uerq6mnTpk2bNm3KlCkjR46srKy8+eabp0+fHtp9EZs4243JZFqxYsU777wzffr03NxcjPGePXuefvrpxx9/HAB27txJ0r8pU6aQ4ydOnAgAR44caWxsFKsMW7ZsAYD+/fv37NkTAORy+dVXXw0Av/76q3BMenr6JZdcAgC9e/fWarUAUFVV1f5Uq1evBoAxY8ZoNBqZTDZu3Dig7alEoF+/fhs2bFiwYMG1115rNptdLtdPP/102223ffbZZxCcQiKHXGX8+PEkkUlPTx88eHCbq5SUlOj1egAYNGgQADQ0NHg8ng7P5vF4du3atWvXrr1799psNpZlT548eejQIRELHAbxHwhnGGbcuHELFiz46aefNm/eTJLML7/88vTp0w0NDQCgVCo1Gg05ODk5mWw0NTWJVQBylcD+I3KVQEcL/K1arQYAnufbn4q0pHbs2DFhwoQJEyaQbibankoItFrt9OnT//3vf//2228rV64kzavXXnsNglNI5ISkQyJC6ESHANC9e/fjfn777bc77rhj8+bNt9xySxizRkQknnbT3Ny8du3aV199VejB6t69+8svvyyTyQDg5MmTJpMJAFwuV0tLCzlA6BsLrBUCyTaFUwXZiwYA5CqksgM/K1hbkBw8ePDYsWMAUFNTc+DAgQMHDpAMiLanJM6ZM2eWL19OmsmEgQMHPvPMMwBQUVHh9XpDUghCCOKqw/aYzeYHH3wQABobG+MrxThnN3/961//9a9/LVy40O12kz3ff/896bjJysoaPHiwUqmEgPbIV199BQD9+vUzGAxtTkU69kiXGAB88803gb8lIrDb7e3LMHLkSADYt2/fiRMnAMDtdq9Zs0bYHzykJTV48ODjAZSUlABtT0mbEydOzJ49+9lnn/3666/JHo7jSI9Jenq6TCYLSSGBOrTb7WQoSuC8Oly/fj35W6ioqPj99987u0qoCOO5Op0u8rOFTTzn3eh0uscee+y5555bunTpF1980b1796ampsrKSgC47rrrcnNzAeDBBx988cUXn3rqqc2bN9fX12/evJll2SeeeKL92caOHfv1119/9913s2bNstlsZARRaMWkp6cDwNKlS8vLyx977LHAD1522WWXX375xo0b//SnP5WUlOzdu/fQoUOpqakzZ84M6esQu2kzu/Taa6/dsGHDmjVrnnrqKSI1itS49NJLx48fv27duoceemj+/PnJycmVlZWktf7www9DiAoZO3bsp59+umjRooMHD+7YsSMjI6OmpiZQhxUVFU8//fSoUaOefvrpwA/eeeedK1asOH78+NSpU0lfksfjGTVq1BVXXBHGlyJdxWS7qanp+PHjAFBcXEw6feJFnLOb22+/ffHixSUlJVqt9tixYzabbdCgQfPmzRPGnu67775Fixb17t177dq1O3fuHDVq1Mcff9yh30+ZMmXWrFkpKSmbN2/OzMwkMyZcLhf57d133927d2+bzfbLL7+0ae4ihN55551Zs2YplcqVK1fW1NRcd911X375ZUpKSvBfRGhJkfFvgauvvppl2bNnz+7cuTOUG0OJHQih119//dlnny0uLuY47siRIwzDlJSULFmy5MYbb4QQFTJnzpxrr71WJpP99NNPf/zjH//4xz9CgA7/9re/paSknDhx4uDBg20+aDabV6xYcd1111VXV69cuVKpVM6aNWvx4sXhRSmhq3jXrl1VVVV5eXmPPPLIe++9J0wxiQv/Hwnpol9ss/W+AAAAAElFTkSuQmCC", "path": "image.png" }
Which solution has a higher concentration of purple particles?
[ "neither; their concentrations are the same", "Solution A", "Solution B" ]
2
The diagram below is a model of two solutions. Each purple ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the purple particles represent the solute. To figure out which solution has a higher concentration of purple particles, look at both the number of purple particles and the volume of the solvent in each container. Use the concentration formula to find the number of purple particles per milliliter. Solution B has more purple particles per milliliter. So, Solution B has a higher concentration of purple particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAVYAAAHFCAIAAAAmP0Y5AAAnI0lEQVR4nO3dT3Abx70n8OYAoxmAIAgSgglRIsFQdmpjP4KHt9qNqpa82rUr6xirKuHxiQfZxyhV4cUXusrh0dJBylFKle2j+LbWupKvSvI6eyBcqc2mHIYQJJASCBIAQWCGgxnsYWKa+kNgpuf/9PdzsuUZsylgvtPdM/3rAa3b/Z/fSwQA2HNlRoySLvlff0EEALDof8yInNdtAAAvIQIAmBY9+S//eerMv04JXjUFXLbX7n5X0gghlya40diA180Bl/yfLfnPW0fH/4peAADTEAEATEMEADANEcCygdf+AZgT7X8I/IhTa8O1+4JcEKSCIBUIIbKYl8W8LOTrqd9okZTXDTRnNEbe/3nE61aAxxABRsUO17LlRV4pnvzD4yxI7d3eGb/THpz3qHUAlDAQ6I9Ta5mdmxPFD165/k/ileJE8YPMzk1OrbnYNACrEAH9pXeXR/ZuGTlyZO9WenfZ6fYA2AgR0EfscG2ketv48SPV27HDNefaA2AvREAvnFrLlhfNnpUtLwZiONCQut+VtO9K2oHc9bot4BlEQC/DtXs9xv+n4ZXicO2eE+2xV6c7sNfu7rW7iuZ1U8A7NjwR4NSaIBfEdkGQCwqfk8W8wk/K4qz1/7Pn9Nl+N08Eg2KHa2SAKPxkh5/yui3BZikC9H5y4mD19f+kRoafn7vTTF618v/3nCDTRoD8vb0tAUIIp9been7z+EHssXZ8rjn04X76Y68aFmj0EZBoPBjbXoyo9Tf+14haH396rTn04c74ncC9M3NMkCivZPQCbNfj+xZrrcda64mD1e3zd9ApMItyLiBdWR5/eu206/9Y4mD1Zz/8Iqps0f0UAF3m+W/7ft9irfXc5uVkEGZhfIUmAmKHa+mK0affEbV+7pnpSXWfkMUZuhPb8Tl7W8KykeoXBp/LRtR65vlN3HJMMR0BFM/JYq31keoXZn+QH8hCnu5EhZ+0tyXMiipbo7ufGT8+0LccT5iOgJG92xTPyUZ3PwtiNssiZQRQnwivOPfs1Pmm0wT3luMJ0xEQp3r1LaLW+aMnFCd6q55a6Ji/n3f4yXpqwYn2sCaqbMVa6xQnJut/sr0xYWU6Aug+EkJInPZED2mR1Pb4XbNnbY/fDcRDEDFKLqa5i2kuxvu0XoDYxnsZjjMXAYK0Qf2TrJzrofbg/H76hvHj99M3grJkOM6Tt9MDb6cHYn5dMm7l9Qqs1DDIXARwJkdlJ5kd0flH9eySwRTYT9+onl1yuj3soBt16ihmrNhkLgKUM/QT3cGdJNciqcrYSin3TY95gQ4/Wcp9UxlbCcQQICisfGcUPmdjS0LMXBeww09pXJLTGhQ/STkzRXGWf7QH57emHw/X7kU7T8R2QZ8TacfnpFi+E52spxZw8dtOFvOEdmIPD2UMMj0KlMVZuhnBVvDfltEiqf30J163wjYthZQbXULI+WGfTgdItIvNNC6JRDbI9BOB5tAVih+jcUmkst9IHfL3qvb3qtZWfFovoD04r3FJihNbAZmR9QPTEbCf/oTi7ddnE18jlYFCNWN6elXjki+yf3CiMaFEs0Zg+/wdU9kcoOdk4DcUt5xqZgnrBY2jiYAOP/Uiu2LwYFmcwXMysMLULacdnwvTfI0LKBcLN1ILxelHfRfSVTNLxelvMQQAKzr81NbFx0b6AtXMUmnqoQtNChP62oGyOFuc/raaWXrj0/Lm0JXi9COKgRwYFDtcG6neirXWAlGq1KIOP1WaelgZ+/y07kCHn8T3jY7VZ0HVzFI1s8SpNUEqxFvrCj8pi/lwFA70p3RlOXGw+so78GpkuB2ff5H9PNxj4P30J/XUgv5NE6SNiFrXX8qQxFlMNlGz53GwFkm1B+fxMThKkDay5cU3LoCJqPXEwWqstbZ3dincJfTwTbMdiogHQ7J2L7d5ufcCOL1mznjpI9daBSGACAgA/f5v8ODEwarxsm4AvnwvFF6WLV83dXy6stwcutJ3RgabiwNBL8D/0pVlilrmFPugAZsQAX6XOHhAcZYgFQJaowVchgjwO+rtTPgj1MyA/hABvmal+hU2NQMjEAG+JlrozPeturXXJg//pj78m7rX9uliYXABIsDXqGtmEEKkGAo0QH+IAF+zUmelEw1qsUZwEyLA17RIimIvE52VHgSwAxHgd3Q1FzUuiRfpwQhEgN+9yK5Q1M/bMb8JErApwBFwvGA+iBuWGqdFUmav5+bQlWbyqkPtgZAJ3hqBdGU5Wbv/yl4x4V4w30xebQz/2uBWmRqXRBcAjAtSL0CQNnKbv0xXll/fK0pfMJ/bvDxSveVJ25y2c/6PPWrmHGsOXdl856+o1AbGBSYCjC+Yn9h637VWuWk//cnWxcen1WvUuGT5wpdlFGsHk4IxEDC1YD7WWk9XlkNZRq7DTxWnv40qW2K7IMjfxw/XpFheFvJ0xdqGzpBLExFCyJDgQFshIIIRAQ4tmA+oDj/V5Kea5KrFmOMjZDRmV6MgqAIwEMCCeQDnBCACsGAewDkBiADqBfO95w4BgPh/LsDKgnleeWJjS8LH/5uLgwv83gtwdME84/y/uTi4wO8RgAXzAI7yewRgwTyAo/weAVgwD+Aov0cAwYJ5ACcFIAKwYB7AOQGIACyYB3BOACKA/Lhg3uDBWDAPYFwwIoBgwTyAMwITAeTHBfPtU2YHsWDerOhAdzQ2MBob4IP0LQCbBey90A4/VZp6eLxgXpA2lDM56gXzjEuKA5cmBrxuRfBwam1k77YgFQSpoBewksW8wudkMb8/eiNwd6CARYDueMG81w0B5iQaD8a2FyNq/eQf6nGQOFhN7d0qX/gqWE+j0QUEMIRTa5mdm+NPr71y/Z8UUesTxQ8yOzc5teZi0yxBBAAYkt5dHtkzVJx2ZO9WenfZ6fbYBREA0F/scG2ketv48SPV21bWubsJEcAubC5uEKfWxp9+ZPasbHkxEMMBRABAH8O1ez3G/6fhleJw7Z4T7bEXIgCgD+oKdIEoXYcIAOhDkGkjQKYse+kmRABAH+EuYIsIAGAaIgCgj9P2cezrtPUsvoIIAOhDFigLWAaigC0iAKAP6hq2gShgiwgA6KOeWqCoYdvhJ+upBSfaYy9EALv0zcUvTUSGBCwZ7kWLpLbN16F6NvFVIBYOIwLYpW8uPhojKBnSV3twfj99w/jx1cxSUApY4MMHMKQytlLNLBk5sppZMnikHyACAIyqZpaK0496zAvI4kxx+lGArn8S0KpBTnu9MpReFiqglaHARrI4uzX9OHGwKsgFsV2ItdYJIe34nBTLy0K+OfRh4L4eiIBXvbEyFK8UeaWoV4Z6fu5OODYpwObidLRIqhGEqX6DMBD4CafWsuXrfStDjT+9li1fD8RS8N6wuTgQRMBJ6d3lZO2+kSOTtfsBqgwF0AMi4J8SjQdhrQwF0AMigBBCOLU2tr1o9qzxpx+FYDgAjEMEEEJbGSqi1gNRGQqgB0QAIWGvDAXQAyKAkLBXhgLoARFASNgrQwH0gAgAYBoigJCwV4Y6DTYXB4IXhHWykKcbCyjmK0n4BzYXB4JegI66MhT1iQA+YXMECNKGvf9Dd4S7MhRADzYMBJK1e/HWur60Vv+TdnxOOZNrJq4EZUWdXhlqoviBqbO2x+8GbmUowCssRUBU2Tr3bFFfMn1SrLUea60na/f3Rz+uZn4fiOukPThfzSylK0YX/1QzS+3BeUeb5DRFJQdHhBAyJKB2GLvoP/lk7V5u8/Lr1/9JI3u3cpuXgzI6MF7vKViVoU5zcES+K6nfldQDGYuF2UUZAbHDtWz51boab8QrxQvFD4KynEavDNXjGWEQK0P5GafWYq21keqtWGstKF+SkKEZCHBqLVs2sa4uotaz5cXyxFcUP8t9sjhbyj08rgyld2FkcTa4laF8iFNr6cpniYNVvS7bMYXPtQfnXoz9AX/JrqGJgPTu8iufXF+Jg9WR6hf76U8ofpz7fFsZSr9PBv3y0LuQb/wK8UqRrxUHD1bLF74K+lRLUJiOAE6tmSqtcSxZ/1NQIsBXQlbLNF1Z7jvnGlHrE8UP9kc/rmT/4E6rWGY6ArCu1k0hq2UaO1wz/sxlZO9WO/7fAvTbBZTp6UDRwvQ+Km0Zx6m18dJHRmqZjpeCUbzI7BQSIWRsezEQv1qgmY4AKzdzK/HBmvTucuJg1ciRiYPVQNQyfWvnt2ankPSJZIfaAzrTEaBGU9Q/TA3awNUroaxlmqz/ieIsgzkI1ExHgCzQL4zBohojQlnL1MrrYf5Pt0AzHQEKn6P+YUHZa9VbrtUydXNzcf7I3BDgJIwfHWX6iQD109pAV9dwk2vPXPTNxd1hpchitPPExpbAK2heEKZ7PXYXL9UaE8paplZqq2hcyr6GwKsoI8DsLX0/fQMvexkUylqmVsaPLfQfnUS5TGj7/B2NSxo8uMNPVs+iC8A0KzcAzCI7ijICOvxUaeqhkaqb7fjck6lvAvceq4eoJ03MntiQut+VtO9KmjuLhel+rw4/iS+Po+jrBegr6vbTN047QOOSlbHPS1MPO/wU9U9hEPWwWYqZu1t2ugN77e5eu6todD/QnBdUL/xvj9+1vSVwkqWqQVokVRlbaQz/Jn64JkgFQS4I0vft+Jy+rrY1OIeLn4Is5gnVWzSdqK/LGcvirKm6TARTSK6woXagLM7igb+N6qmFkb3bUcXck7BA1DKtZpYSBw8MznfK4kxlbMXpJgFKxvmOXsvU7FnPJr4KxJi5OP2tkYfK++kbpdxDF9oDiAA/0muZGj++mlkKUEdMr852WtX2Dj9Zyn1TGVsJRKKFAHYT8ik9AoyMnINYy1QWZzff+asgbfBHRUH+Pn64ps8fyWI+QFkWDogA/6pmlppDV7Ll66cNnmVxZmf8bnCvGX0WqUmuBi7CwgQR4GuyOFuc/jZZu8crT+KHa8e1TFuD8wo/6c8ChxAsiIAA0C913CrBCYgAdolRcjHNEUJiPPYXZhcigF1xnrydxsXPOjwUBGAaIgCAaYgAAKZhLoBd2FzcUZxaE+RC/HCdECKLeUmc8eeqOUQAu/TNxQkhlya40RjmBW2TaDzIPP/d65smqJHh2ujHfnu4i/AHsM3xHlBv3DQlotbTleXc5i+tlFS3HSIAwB6CtPGzH37Rd+8TQSrkNi8nGg/caVVfiAAAe2TL141vAOGf7RIRAQA2SFeWTZV+9s92iSGPAE6t+SRrIcSiypapgmi6xMGqH4YDIXwiwKm1kb3bglQQpII+K6PwOVnMy2J+f/QGClGA7YYalHufJg5Wm8mr9jbGrLBFQKLxYGx78ZUhGa8UeaWYOFhN7d16fu6O53/pEDL0e8D5YAOo8AwEjp/H9JiSiaj18afXxku+3oQXAoc3Wev1mB82gApPBLy181uDe9EnDlbfen7T6fYAO2KtdepzPX9HICQRkGg8SJqpvZ+s3ffDTIy3RmPk/Z9H3v95BK8GWmRkW63Tz/W47lsYIoBTa2Pbpp+v+OfBLASdLFDuemglO+wShggYrt0z/krGsYhaH67dc6I9wBrqjU+ps8NGYYgA+vlYH0zGQAgcJD+kO7E5RHmijUIRAXKAH8lACHT4KYr1f82hK354Ph2KCDDzYubLJzLdC3B5c/Fwq2aWTA3sNS65449Nk8MQAUDH5c3FQ29n/K7GJU0c7I8XVcMQAe34nMsnArxO3yWtOXSl32EzxelHfhgC6MIQAcopG1T2JcW8n4+FMNEiqfLE1+ULX76xO6BxyWpmqTj9refvApwUhjUCspgnZt4LOtaJUmYHQA/N5NUfklc5tSZIhXhrnRAiCzNSLI/agU6ppxaS9ftmJwVlcaaOPfnAMVok1R6cbw/Oe92QPsIwENAiKYrJVf/MxwB4KAwRQAiRxVlTD2armSVfjccAvBKSCCCEVDNLBlPA+JEAoReeCCCEVDNLxelHPd7Q0J/H4PoHOBaG6cCTZHG2OP1tovFAkL+PH67pi7FlcbY1OC8LM/55GOsH2FwcSPgiQNdMXm2Sq7jb94bNxYGEbCAAAGYhAgCYhggAYFo45wLAiCOVVFtdQkg6PnAm4nVrwCPoBbCredQtbGuFba15hHoB7EIEADANEQDANEQAANNemg6sNrUfXiheNQVcdqSRQX6AELJT7+wdeN0acEu1+VKhuJci4B+7nX/sdtxtDwB4CQMBAKYhAgCYNtDtditNFJEGYFEmwQ10u3gtBIBdGAgAMA0RAMA0RAAA0xABAExDBAAwDREAwDREAADTEAEATEMEADANEQDANEQAANMQAQBMQwQAMA0RAMA0RAAA0xABAExDBAAwDREAwDREAADTEAEATEMEADANEcCuUqm0sLCwsLBQKpW8bgt4Jtr/EAipbrcrSZL+D163BTyDXgAA0xABAExDBAAwDREAwDREAADTEAEATEMEADANEQDANEQAANMQAQBMQwQAMA0RAMA0RAAA0xABAExDBAAwDREAwDREAADTEAEATEMEADANEQDANEQAANMQAQBMQwQAMA0RAMA0RAAA0xABAExDBAAwDREAwDREAADTEAEATEMEADANEQDANEQAANMQAQBMQwQAMA0RAMA0RAAA0xABAEwb6Ha7XrcBXPKXv/zl008/7XvYp59++t577znfHPAF9AIY8t5777377ru9j3n33Xdx/TMFEcCWX/3qVxYPgJBBBLCld0cAXQAGIQKY0+M+jy4AgxABzDmtI4AuAJsQASx6490eXQA2IQJY9HpHAF0AZiECGPXKPR9dAGYhAhh1siOALgDLEAHsOr7zowvAsqjXDQDPHHcE0AVgGSKAabj/A5YJATANcwEATEMEADANEQDANEQAANMQAQBMQwQAMA0RAMA0RAAA0xABAExDBAAwDREAwDREAADTEAEATEMEADANEQDANEQAANMQAQBMQwQAMA0RAMA0RAAA0xABAEyLEkIqTc3rZgCABzIJbkDTuh9/VfO6JQDggVvXUhgIADANEQDAtJc2FPvZ2ej0W9hijBVHGtlrDxBCRmPdM7gXMGPzRecfu53jf33pgk8nuLff4l1vEnhjr90tNTRCyLvZyGhswOvmgEvqLe0fuz/9K8IfgGmIAACmIQIAmIbJP3Ylzgzkz3H6P3jdFvAMIoBdZyLk3BAuftZhIADANEQAANMQAQBMw1wAu1oKKTe6hJDzwwMxfBFYhU+eXVKH/L2qEUJG41wsinlBRmEgAMA0RAAA0xABAExDBAAwDREAwDQPnghwam1k7zavFAWpIEgFQogs5mUxLwv5euo3WiTlfpPAfbHDNV55witFWcxL4kyHn/K6RYxyOwISjQdj24sRtX7yD4+zILV3e2f8Tntw3uVWgWsEaeOtnZux1vrr/2l/9ONq5ve4B7jMvYEAp9ay5evjT6+9cv2fxCvFieIHmZ2brrUK3JSuLOc2L7/x+ieEjOzdym1ejh2uudwqxrkXAdny9WTtvpEjR/ZupSvLTrcHogPd0djAaGyAd+VbkNv8r30/Vv0egE/fTS5FQKLxIHHw78aPT1eWBWnDufYAISQpDlya4C5NcEOC468GZp7/VpC+N3hwurKMvoBr3IgATq2NbS+aPStbXuTUmgPNAbfFDtdGqrdNnYJP/5ggbcRaa87dEd2YDhzZu91j/H8aQSokDlYbqQUnmhRoUWUrfvgfvFKMH65FlScdfrI1OO/nefVz5etmT+GVYnp3uTK24kR7AiFdWY4frr0yb9KOz7UG56uZJRt/kBsRQB1gglywtyUhMFL9YnT3s5ORyitF/YuiRob3zi7tpz/2rnVvIEgbUeUJxYmJxr+zGQGCtJEtL+rPyF4Ra63HWuuJg9Wd8TuyOGvLj3NjICC+6ZcxdGIbEfCTqLI1sfV+5vnvTutSRdR65vnNia33fdWFfuNX2QheKdrbkkAYqX6R27zc+y9NkAq5zcsj1S9s+YmORwCn1uhuAoSQM+gF/IhTaz0ep50Ua63nNi8bSYG9Nnn4N/Xh39S9dteGJp7CSleOtUnB2OFa5vnvDB6cef47W/5+fP2C8EDXwa9msGTL143Pp+gDaUfbY5yVrhxTHQFOrWXL5mbNbZk0dTwCtEiqw0/SnWvXaCfozD5SJYSMVG/75BYqxfLU5yp8zsaW+Fx6d9ls5NmS9W70AiSR8kvQwpvChBBCsuZn1AkhZm8pDpEF+giQab85QWT2uamVs05yIwKob+YKbfchTKLKFqc1KE7klaIf5gWpL+MOP8nOegErj/0tvjLgRgTsj97QuKTZs2RxBi8FEEL4I8rJVGJhNt5GsjhLNxJsxedsb4xv8Uf0sx4WP2U3IkCLpHbG75o9i+KUUIobeApwGtEfL1lvm/8oO/zkiyxDLwUIstG3p1/H0z5x07n0RKCZvNoY/rXx46uZJcwFWkc3grBde3B+P33D1Cnb43fZGQUQQii6yXZx76Hgi+yKwe9BNbNk7yuQgWZlQkQWZmxsiRXVs0uyaLQx++kbrNWMkCzc8CyOmNyLAC2SqoytlHLf9BgZyuJMcfoRrv+TrMyKW3kgZy8tkirlHva9B2hcsnzhSwbfC7byKVt8buJ21aD24PzW9OPh2j1BKvDKE/11t3Z8TorlZSGP+b/XUQ+INC7Ze9XQ0BlyaSJCCBkS6H6CyfZEUpWxlWbiw3Pl6298YbQ5dGWHsf7/Mf31GYr3aK0/N/GgdqAWSe2nP3H/5wbXfvoGxePfvn/JfISMxmjbRKs9OL/5zl85tSZIBX2mU+OSkjjLWs//ddvjdyeKH1CcZfHnYkOxAKieXRpqrJq6RcjijJ/HU1ok1R6cx2V/kj5pairrbZk08fUaAdBpkZTZsMcj1SAyNWna4SerZ21IeURAMLQH53fG7xh5dKRxSRsXk4Ob9EnT5tCVvkc2h65sTT+2Zd4EERAYjdTC1sXH7Z5PgNrxua2Ljw3OqrYU8kO1+0O12+7Y1ESwTIukyhNfly98eVrc6w9NyhNf2zVvirmAIOnwU6Wph8navcTBqigVjmcHOvykJOabQx+aeqSCzcV9q5m8ujk4r8+Y8kdbvPJE4SeVM1Ot+Jws5u19aIIICJ5GakG/1PV5ddu/E+AHrs2YIgICTP+WeN0KCDbMBQAwDREAwDREAADTEAEATEMEADANEQDQX4g3ucVDQXbpm4sTQtzZXDxwRqpfxFr/wSvF4+J87ficJM42h66E6VksIoBdSXHg0gReCnyDqLJ17tni63s36Vv6jezd2h/9uJr5fTjeyEL+A7wkWbvXd++2kb1buc3L4RgdIAIAfhI7XMuWF43s3cYrxQvFD/ywU4NFiACAf+LU2vjTj4wfH1HrPtmyyQpEALsUley1yV6bKJrXTfEHU3u36hIHq4nGA4fa4w5EALsOjsh3JfW7knogYwdnwqk1s3u36tK7n9neGDchAgAIsbAtlx92bbMCEQBAiLWN2wL9aAARAECI1b19A9wRQAQAEEKIxg17cq7nEAEAhFjblks5k7OxJS5DBAAQYm1jz0CXbEcEABBCCPXKn95l3f0PEQDwT3RbsO36eOM2IxABAP9UzZjYz0tny65+3kIEsEvfXPzSRGRIwJLhfzK1F6MszlTGVpxrjDsQAezSNxcfjaFkyE9kcbaU+6bDT/Y9sh2fK+UeutAkp+HDB3hJe3B+a/rxfvrGaQdoXLIy9nlp6mE4SoagahDAq7RIqjK20hj+TfxwTZAKglwQpO/b8TkplpeFfGtwrsNPed1G2yACAN5MFmcD/cDfIEQAuxpS9/9VuoSQ//TWAGYEmeVgBAjShhoZDlOX6XVRZYtXnhBC2vHgPRnqdAf22hohRNFw/bPL5ggQpI2Rvdv8UfFk9UW99HJoKq4SQhKNByN7t8/IhZNFZhQ+J4v5F9nPw516EDJ2RkC6spyuLL/+53rp5WT93vNzd5rJqzb+RPdxai1bXkwcrL7+n3ilyCvFWGtt7+zSfvpj99sGQMGeCIgqW+dL13qvmo6o9fGn15pDH+6M3wlod0CQNi4UP+hdXi6i1jPPbyYOVp9NfBXQX9N9scM1USoIckHvSUniDHpSrrEnAs6XPhKk740cmThYTe9OBvGdKk6tjZeuGSwvGWutp3eXg/hruqlHl0qNDIegzxgINrwalK4sG7z+dSPV27HDNes/12XZ8nVeKRo/PqC/pmsSjQc/++EXb7z+yY99xvHSRyEo1O9zViNAkDbeOP7vLVteDNZHm2g8oCgvG7hf0zXpyvL40/5dqsTBam7zMv4OHWU1ApL1+xRn8UoxHqg7JPWvGeiqcg4xddvglWIItuvwM6sRILZpSy/LJsYOnhNpr2QrdWlDSZ9SMXVK4mA1WbvnUHvAagT03n2xhwD1Aji1FlWe0J3r5/LSYpRcTHMX01yMd+/VoJG926amVHSZ5zcxHHCIpQiIKlvU556RA9NDttKZNzVR6rI4T95OD7ydHoi5+Jo4XfRH1DqGVA6xFAEal6I+txucusvKmf6rx09jZOU5U+i7jRhSOcNaBERS1F9xyULNZpdZeU1FigXm13SBte06/DukCjSrcwEKT1lBPVjLMKmrxMoCIuAnnMl9e08yu+cvGGQ1AppDV+hObAWq9HKLtkSklQ0qnOb+5uJWhlQKhlTOsBoB9dQCxVigOXQlWHVX90dvUPya++kbfu7suL+5uJUhlZ/DNNCsRoAWSW2bKbpKCNG4pKk6rX5A8WuGo7ys7aiHVFZ2+4EebFgj0B6c71Fr8XU743eDuISO4td0rjHBRTek0rgkegEOsaeCcGVsxchOLBqXLF/4MrjLvypjK5WxzzUu2fswWZwpTj/y8xDAQxTbdZDA3jYCwbYi4tXMUnH6UY9Ptzl0ZfOdvwb3+tftpz/Zuvi4R2+2mlkqTn+L67+HnfG7fWP0pP30jaB/bfzMzvfCZHG2OP1t7HAt3loXpA1RKqiRYVnIy2K+NTgfmquiw0+Vph4K0oZeXlpsF9TIsCzOtuJzyplJ1LroSxZnX2RXDC7+kcWZ6tlgb9rnc/a/GtoenA/WbD8dRipMO6SRWpDFfLZ8vfcL1NXMEt1Wn2AcdhMCb+h9xmpm6Y2DgnZ8rjj9CNe/C7CPAHhJv89HlS3+6Em8ta7wk7KYR/fKTYgA8F6Hn+rwUyyMH30IEcCu0Rh5/+cRr1sBHsNcAADTEAEATEMEADANcwEAruLUmiAXCCGykPfDW8+IAHZhc3E3CdJGuvKZIBVOVk/VN1CrZn7v4XNQRAC7sLm4a07bcVffijZxsOrhe5CYCwBwUFTZym3+su/WKenKcm7zl1ZKclNDBAA46NyzRYPlzwWpcO6ZB/smIQIAnDJS/cJU0fRYa32k+oVz7XkjRACAI6LK1ujuZ2bPGt39zOVy6YgAAEcM1/5EUfg8otYp9rC2AhEA4Ajqmzl6AQBhQLF7qs7lfSgRAQCOoL6SqbODDl4NYpe+uTghxM3NxdmhcUlOa3jdiv7QC2CXJ5uLs4P6nV/q3VboIAIAHEG9D6XLu1EjAgAcQb0Pqsu7USMCABzRSC1QdOnb8blGasGJ9pwGEcAu9zcXZ832+Tum9k3SuOT2+TvOteeNEAHscn9zcdZ0+KkXWRO7S1czS+7vRoW5YAAHNVILGjecLV/v/YBQ45I743c92ToRvQAAZzWTVzff+Wtz6MqpB3i64y56AQCO0yKp8sTX+la0vPIkfrhGCGkNzvth9yREAIBLjrei9dVeiRgIADANEQDANEQAANMQAQBM8346MHa4JkoFTqsTQlqDcz7ZYgWMiypbovS9IBX0iW5JnJXFvCzOeDvRDQZ5FgFRZevcs8VX6qumK4QQIov5nfE7+AI5zfrm4pxaS1c+G9m7dfIPjz/Tdnxu+/wd9193A1O8GQgkGg9ym5dPq68sSIXc5uW+uy+At2KHa7nNy69c/y8d0FrPbV4eqZ56APiBBxGQffZv40+v9S2uqu+v4k6TwKzY4dpE8YO+Ja4iaj3z/CbS3M/cjoBE40Gy/ieDBwtSAd8eH+LUWrZsYt+bdGXZ5aq4YJyrEcCptbFtc1smpSvLscM1h9rjDk6txVprydr90FwG2fJ1syUus+VFTq050xywxNXpwLd2fkuxuUK2vPiPd/6vE+1xFKfW3np+M3a4/srVIov55tCHfnhFdK9NviuphJBLE9xozGgFUUHaoNjrQpAKw7V7++lPzJ4ITnO1F5A4WKU4i1eKnuy4akWi8eBnP/wiWbv/+t1SH914tY2sddR73ZjaXQ9c414ERJUt6prKYtvQ3qw+YWS+U3/qkazdc61VduGPtuhOdHmHDDDIvQiwchkLcmC+PSPVLwzOd+qz5YGbIBBkys+RV4qYDvAh9yLAymUclOtEkDYyz39n/PiIWjc1te4H/BH9Xjcu75MDRrgXAS0LGyQE5U3BbPm62VMC9+DTymcRlM+RKe5FgHKGsqw6IUQWZmxsiUMEaYNuuEs3S+oV6h0yXN4kBwxyLwI6/JSpgsonuby/Ch3qHrIgBWmyk3qHjEB8iAxy9aFgc+hDirNkcSYQS02sTHYE6PWn5tCHdFHeTNB8+uA0VyPgRXaF4tuzM37XicbYLm7hMg7QPJkWSVF8IvvpG23aEQQ4ytUI0CKpZxNfmzqlmlkKyhwSdQ+ZEKLwORtbYpC+ufjFNGd2c/Fm8mpj+NfGj5fFmcqYiR01wE1uLxNqD87vp28YPTg+54cXaQ2SRfqxrpVzqVnZXPxFdsXg9F6HnwxKP45NHiwWroytlC982XtEoHHJytjnpamHrrXKOom2t9LhJwNXKEmLpEpTDytjn/f+HPfTN7amHwelH8cmb0qG6PurnNaZbMfnSlMPA7ekpD04TzdPJnnRBbDFfvqTrYuPm0NXOi8PgjQu2Y7PlXLfVMZWApdurPGscJgWSe2c/+PO+T8eb7Gi8JMKnwv0pNGL7IrZt/30zeQcao8LOvxU+cf5Hf25hiyi+mOQeF8+9HiLlRBopBYSB6um1tLtjN/16oJpKaTc6BJCzg/TTAe8LtDxzSwUEbfZzvhd48OBxvCvvdpMkhAidcjfq9rfq1pbwebi7EIE2EyLpHpvI3usmlnaOf9HF5oE0AMiwH76NrI743dO6w7I4kxx+lGAnndCiHk/FxBWjdRCI7UQO1wTf5zvbA3Oy8KMciYXmrkPCAFEgLPag/OYJAM/w0AAgGmIAACmIQIAmIYIAGAapgPZFR3o6juI8LgRMAwRwK6kOHBpwlylAAgf5D8A0xABAExDBAAwDREAwDRMB7Jrv03+d0klhPyXichIzOvWgEfQC2BXl3Rf+QdgECIAgGmIAACmIQIAmPbSdOCft47+vHXkVVPAK1tlr1sA3kEvAIBpiAAApkXJAPnv/yJ63QwA8MAAIf8f2sv263HcvjcAAAAASUVORK5CYII=", "path": "image.png" }
Complete the text to describe the diagram. Solute particles moved in both directions across the permeable membrane. But more solute particles moved across the membrane (). When there was an equal concentration on both sides, the particles reached equilibrium.
[ "to the right than to the left", "to the left than to the right" ]
0
The diagram below shows a solution with one solute. Each solute particle is represented by a yellow ball. The solution fills a closed container that is divided in half by a membrane. The membrane, represented by a dotted line, is permeable to the solute particles. The diagram shows how the solution can change over time during the process of diffusion.
In a solution, solute particles move and spread throughout the solvent. The diagram below shows how a solution can change over time. Solute particles move from the area where they are at a higher concentration to the area where they are at a lower concentration. This movement happens through the process of diffusion. As a result of diffusion, the concentration of solute particles becomes equal throughout the solution. When this happens, the solute particles reach equilibrium. At equilibrium, the solute particles do not stop moving. But their concentration throughout the solution stays the same. Membranes, or thin boundaries, can divide solutions into parts. A membrane is permeable to a solute when particles of the solute can pass through gaps in the membrane. In this case, solute particles can move freely across the membrane from one side to the other. So, for the solute particles to reach equilibrium, more particles will move across a permeable membrane from the side with a higher concentration of solute particles to the side with a lower concentration. At equilibrium, the concentration on both sides of the membrane is equal.
Look at the diagram again. It shows you how the solution changed during the process of diffusion. Before the solute particles reached equilibrium, there were 8 solute particles on the left side of the membrane and 4 solute particles on the right side of the membrane. When the solute particles reached equilibrium, there were 6 solute particles on each side of the membrane. There were 2 more solute particles on the right side of the membrane than before. So, for the solute particles to reach equilibrium, more solute particles must have moved across the membrane to the right than to the left.
to the right than to the left
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAVYAAAHFCAIAAAAmP0Y5AAAi/0lEQVR4nO3dT2wbR74n8F/1PzUZURapiZGQMPDWEgYPifQuL9rTOr5JwO4iyWksHwKMjwO/U3LbueQ0R58W472Nb2Pd4gEWCysnx3saZS9PyuENxJkABukgtklblEmq/1TtgY5iyxLZXU12d3V9P6f8YcNlif3tql9VVzEuxP/eGxIA6Oe/r7kWCfo/3yMCAHT039ZcI+s2AECWEAEAWrNe/5eP/sn513+ay6opkLLOQOw+4kS0fsmolVjWzYGU/L8fjr/7wTv5V/QCALSGCADQGiIAQGuIAJ2xt/4BtGNN/ggk1xdEROV83Wm1Em3+2sy6FZAxRMDM9IX1f49Yy2ctn3VDIhIlRnWbr8wFH5WphnsPcgERMBPG3tDa7rKBeP0/soGgpmc2PePbo+Bala+5WTUP4AQiYNr6wv7LC2O3P+YjbCDsOx2+6vrXqnkbHYBuUA6cMmunN/7+P2HsD+3t7qzbAzAeImCa2IFnPjyK/nljf2hk95rm4VDsPuK7j3jvWEz+NBRURgOBvjC/e8k63Gh7rOkRkVh2eN0RNSP86B1V+8Z9Yd+N/VS3trve8nuZ/JUDwToDTkQ+V/MHDtOQQQSwA8++2x0VyX/5j03PbHpEZH770t+qihUn/YYlZO6+PPWXioINhPnwKNyszKJJABOlOxDoC+vrQ+f20zG3CuuGzu2n1k4vzXZNBetyuQuNtj/dlgBEl2oEWDu9iENl837PvK9YCrCW5J0sfSFAculFQNxSmbXTYwfe5M/lhvH3Y7kLWTd8tXwQIHVpRYBUqcy+21Xp3nATFNUUrYCC+lKKAMlSWTc0d1/Ooj2zwOuSJUxRt6fbEoDoUooA1g4kL5StsaVPNCTvZI4IgOykFAHSRW+FSmW8ITnDKupYpg2ZSa0XIHknS9fY0sfXyxJdelE1w/V3ZtGeiVyLlpeM5SWjZKMSoS8sEJ4mf2sx/iWZvSlUtmllia0ssRJ6IRpLKQKkK178sko7GouGHWzEWOcXXplXcR0kFElKESBd8ZKusWUl3KwEnyxEmSAMNirBZwspNAlgjJS6gEJ2kxxRVW+oEl6d5ytz9t3n51VARN32txaVSzcopJQiILwyb317RMN463wyLJUlJBq29+W7xt6QtX3jwDPaHhHxusNXHFG3c7JfUN+n9qEgosYFlAP0ldZvvsy8G0vO7aexLsqwVDYVfM2lNTfczLod5xgG1HzGiahWNkqWwj9nSCK9brZYccIr89E/j1IZQApSHWkHG5WIKRBemY9VWgcAOekOAcss+GwhXHWdPz07ry4gqqaiW4YAqCiDKpBYcY5//5758Ih1QqPtj8rmom7zui3qVriu7MZhAArKqBBcZtgqCyAP1Jt1B4ApQgQAaA0rQgCiYgee0faMdkBEombyZYe/76heukIEAExm3u+9vav1aNH7qwlsZYMAEaAvHC4eBWv59vbzMVvXmA+PjP2BujPZqAUAnIsdeM6tJxO3rhodfhHxLMm8QQQAnCPmttfWvRfUib1HbuYQAQBns+69iLXtNRsIJ/5O+ZlDBACcgbV887vYHXvW9JQbDiAC9NUZ0P2/hff/FnYG6pzXkhZjX/LQd0OpI7AIEQBwJvlt71UrByACAM4gfYCFQtvejyACAM4gcf7dLxQ6CBMRAHAm+YMeXabWSkFEAMAZpLe9lz5dNiuIAIAzSB/0qNze8IgAgDOEa6Uo58GcceFqLnaIjw4RAHCWmimxga2K214jAgDOFl6dj3WkpajHO1EyJwrxsnAnNJvHrBUYbY/aPtVtXndEwwqX50j2IDMdVBxav2QSUUWlo1tT5V9fdP74NNIEocv8rUW15gJGlI8A88GR+U2Pvb7EtemZTY+ILKLg04Xw4xjnl2jFNqlWyroROVczvS8uWjs98+HRmE/xVde/purJVypHQCd07nZZc9ySbOveobk/9Laq6A6ApJ8Pv7Du995e+ccvz4Ufv5OTQyLlKBsBfRGxh8aannPrJ+9/vKdoSEMeiBXHX1kiItbyWSekIRd1W7n5vzOpWg6M9S43Gwh7W70XuSGHRMPmay5fLxfj/idFewHG3jDuu9zG/tDYG6rVYWMt32j7rBsaB8dENKpx8uk9fHC4OJCiEWDdeyFz1XbXW3t/6o2Zib6wt7unXlk3f656iGXH++1S8nENDhcHUnIg0Bdyb3GxgVBiazd24Dl/+HHMlhWs6Tl/+NHYk9zTAuB16kUAk93LgYgM2ZfAU2PsDZ3bT9mkbXzYQNh3OuaDcTNVAFGoFwFGU35LhiTxkYa+sOKULa2/HErvbAEwol4EFJi93Z34/H/rkuezaQvoQr0IkN/LgUjkeIGQsTeU2LKStXwMByAJ9SKAJ5gSSxIfsyY9SGHtYLotAa2oFwFUM+Ve5KZ8b+cgvfm08RjlAJCnYAQQBVJv/oRXcv2+kNGWjABUBCEJJSMg3KzE7dIr8C73MMG2s1LrHSwmaiVWKzFbyW8BTIeqv3x/azH25/P9mlCiLWulypwLLlu/ZKxfMipzuf7JwEypGgGiYfu/rUUqCrjM31rMcxVgRJ8tayFXlHxHYISvucfL79l/6ow5v4VfnvOvLyqxWYD0lrVctc3qIFcUjgAiojLzby4Zu31zf8g64cm8mqiaomGHqy5fL2fbwOjCtZK105OoCHDVtqyFXFE8AoiIiK+XT251duApt4XrKzXT36radzqxLgo2Kvkf40CeFSECXqfq/U9ERHzN5atu9DWCom6Hm/LTHJ0B7T4KiWj9klEroSKoKVXLgUXlX6tG3Lha1G3vRm3W7YHCQwTkTJn5N5cmLmEINirel+8qUeaEnCvaQKAYws0KX3WtnR5r+a/vjzIqcwYKHlkDuYUIyCnRsP2f+/nswKPR2qF8r24CFSECFIBnPswOagEAWkMEAGgNEQCgNUQAgNZQDtQXDhcHQgToDIeLA2EgAKA5RACA1hABAFpDLUBfOFwcKHkEsJZvtH3WCoy2x1fmeN0evcoylcbBTOFwcaAkEcAOPPvOs9fPwDOb3ujlVdGw/WsK7NgJAFK1gL6wvj4ccwY2a/nOrSfWTi9R0wBg9uJHQF84/+up+XDyUZbm/Z7zx6cyjQKAtMSOgNE+FhE/zJoezr0FyLN4EcAOvCjP/9eZ3/TkjrsCgBTEiwD7bjfuH8AGwr73Iu5VAJCOOBHQCV/fxy7GnxF5V2wASFmMSUEjwSHWrOUXZo7wZCkE6waiYfNlh7/vYFc/UFSMCDg5rksCaxchAoy9obXdfWMqdH/4ainEsuNtVdXa1Xt0uDgR4XBxncWJgHNWAUS6VvWKYF/Y290xIxrW9JxbP4UblfDj+TTblcSCy9YvofOiuxgRIBKcOSVkT87Ohb5w/vDjxARkA2HdO2QdHny2kE67AJKL0QXky/Kby3CVRwH2qc7/WObDo9G2/wBKiBEB8k9yl6k1SH6d+eAo7oyGfecZ9eUHTQBpilMIKrOIJ16eEq6/I3FVLvSF+U3sNx3YQFgqLIXwQ+oMqDMgn2fdFMhOvFqwf32R3HgVAVE1Jx6SmVus7csVQY3H8rMnqel5tPso3H0U9o7RZ9FXzOmgWuz72d+qqjtnbjSP5S6M/hoFQLZizwiHV+fDj8oRPxx8sqD0eXhJ5jJRFAQlyGwZElxf5KuufbdLw3M7kKJq+ltVpe9/ShgBA47uNeSf5K5BfM09Xn7PuvfCaB6fenFAVE2+Wgo2Kur2/0+Ihk1/lxwLCGUnQUArCfYOLLPg+iIRUV+wtm+0PN5wVH/snyKq8ktnC7AgGnQwjY1jy0ysOGGxbv4R3pD8S8nNngKkDy+IjCNWHFGV6c/zIgYiFBK2j5/A36o6t+PtgCjqdrip6lIIxfSF+d1Lox2wtj+aiBUNW9RtUTOD/zJfgGpUChABE4gVJ7wyH2O7NJd5N2qzbBG8wg48+273VDWatV5lgfHtUXCtytfcjFqnDETAZMFnC6zlG9GmBvzPLqjyQoTCh4v3hbXTG5/LbCDsO53wynwxJqdmBxEQiX9zyXxwZO30xi2FqNv+lkoHqKh7uPjE+//E6GN4fXsMREBU4dX5cK1k33thHByfCgJRNcP1Msb/6Yi7jbX58IgvOxgRnAcREEfN9Efj/E5otHzWCYq3FCLv+kJiG2tru+stv4fhwJkQAVJqJldkwF8w5u5LiW2s2UCYD4/QTTsTIkBfh0PxH08EEf3zRVaZU+MJydqB5IWq7145M4gAfQWCdQaciHyuxv1PCe5kJXZwyARWB4JKIk7Nvg07OJwHEQCgNUQAqET6/Su1t7GfJUQAqER65RVHBJwDEQAqkd7BQdRR+T4bIgBUEq6/I/H6tqiaCu9kP2OIAFBKmfnxX8RUehvrWUMEgGJEw461k314ZR6LuMfAAElfrkXLSwYRlWzFnpCjpb7WzuSDnl69LAznUyEC+sJ47BlNj7V8NuBExFfmeN3mdVuVN/PzqWzTypJiN/+JcLPCV137T53zXhkoxjb2Kch7BBh7Q+utg33NpmcSiRILNyrhx/NZtQ2yJRq298VF4/uB0QpO9nThl+dEw+YNi39Ywvg/ihxHQF/Y290xp/qygbDuHZr7Q2+riu6ApsqMr5f5etbNUFl+y4HO7adRTvVmTc+59RMO8waQk9MIMO/3WDvqex1sIOzt2NtIAA4XB8rnQIAdeFGKva8z9ofG3rDgm0OdlEU7IesEyWuio8PFiWj9klErYdisqTxGgH3vhcRV1nbXW3t/6o3JCfN+71QsjmqiRCSWHVRDQFoeBwLRhwBvXDUQhXwnnLV859aTMd2iUTXE2JtcNwF4W+4iIMltXLzNoUb3/8SfyWjPfPN+vNETAOUxAqS6AMmvzaO+sLefR/+4tdMrZD8IZip/EZDgSV6wXoDELW1vP8f8KMSSuwjgy/KnWxXpnXDW8mMdmPHLVbsvZ9EeKKrcRUCSDZ54ozgLwqUHNca+5AaboKfcRQCVmcSeECNFeifEaMlumP/Ym25LoNjyFwFE4XpZ4iq+Wqh1QdKFPTYQVKyaCMxUHgfP4WbF3B/G6wm7zL9WnVmLMsC6kr0AImKdUERYKVQr0eavsaBId3nsBRCRv7UY6/PejaWCvRkqqvLpXKQBEcxaTiNANGx/a5HcSHd18MlC8b70XPZvhA3zIZY8DgRG+Hr5eHnO/vPzMWdIibrtby1K7y2fZ9J3cpQhAMCJ/EYAEVHN9G8uGbt9868Do+3R8OdFLy7jdYevzoVXC7tlEF+eI5f98leOLPxIppgK2sp3BBAREV8v89EcQV+wti9qphZvxZWZv1W173RiXRR+VI7+xrSKh4vD1OW0FnC2MhMrjhb3PxER8TU31iNdVM3g0wvRPx8I1hmIzkBgyxCdKRUB+gk+vRD1IE2X+TdqBZsWgRQgAvKtzPybS8EnC+MnR/iqe/z79wpZFoVZU6AWAOHVeb4yN3px8NS2+fzyXPjxOwXfMQ1mCRGgBtGwX52l1xes7bMBFzUTj31IDhGgmjITKw62BIBpQS0AQGuIAACtIQIAtIZagL7UPVwcpggRoC+lDxeHacFAAEBriAAArSECALSGWoC+vJCe9QURLZWZo8vrl3AaegH6OvLEvz/m//6YH3lYbagvRACA1hABAFpDBABo7Y1y4LMjfvATTqfWhcfpHZsR0Y8vgk4v69ZAWp4dvbFR3BsR8I+nwT+eyh9iAwDKwUAAQGuIAACtMSHEkyNsIg2go3fnDSYEloUA6AsDAQCtIQIAtIYIANAaIgBAa4gAAK0hAgC0hggA0BoiAEBriAAArSECALSGCADQGiIAQGuIAACtIQIAtIYIANAaIgBAa4gAAK0hAgC0hggA0BoiAEBriAAArSEC9PXo0aPPP//8888/f/ToUdZtgcxYkz8CBSWEGA6Ho3/Iui2QGfQCALSGCADQGiIAQGuIAACtIQIAtIYIANAaIgBAa4gAAK0hAgC0hggA0BoiAEBriAAArSECALSGCADQGiIAQGuIAACtIQIAtIYIANAaIgBAa4gAAK0hAgC0hggA0BoiAEBriAAArSECALSGCADQGiIAQGuIAACtIQIAtIYIANAaIgBAa4gAAK0hAgC0hggA0BoiAEBriAAArSECALSGCADQGhNCZN0GSMn333//1VdfTfzYV1999eGHH86+OZAL6AVo5MMPP/zggw/Gf+aDDz7A/a8VRIBefvOb3yT8ABQMIkAv4zsC6AJoCBGgnTHPeXQBNIQI0M55HQF0AfSECNDRmU97dAH0hAjQ0dsdAXQBtIUI0NSpZz66ANpCBGjq9Y4AugA6QwTo6+TJjy6AzqysGwCZOekIoAugM0SA1vD8B7wmBKA11AIAtIYIANAaIgBAa4gAAK0hAgC0hggA0BoiAEBriAAArSECALSGCADQGiIAQGuIAACtIQIAtIYIANAaIgBAa4gAAK0hAgC0hggA0BoiAEBriAAArSECALRmEdGTI551MwAgA+/OG4xz8W/bz7NuCQBk4H9uLWIgAKA1RACA1t44UOw//cq6fBFHjOnC49QZMCKqlYSDZ4E2/v5T8I+nwcm/vnHDL80bKxft1JsE2egMxKNDTkQfvGfWSizr5kBKXvT5P57+8q8IfwCtIQIAtIYIANAain/6mnfYv7xvjP4h67ZAZhAB+nJMer+Cm193GAgAaA0RAKA1RACA1lAL0Fffp/ahIKLGBVbCF0FX+M3raxhQ8xknolrZKFmoC2oKAwEArSECALSGCADQGiIAQGuIAACtZTkjwA48o+2JmsXrNtXMDFsC2eiERts32j4R8bqNr0EmMogA837P3O2zbvj6fxQlJpbn/E8v4EugA/N+z9rpvfFfiIhIlFi4UQk/ns+kVXpKNQJYy7e3n7OWf8b/Ggi2P3Sax/gGFNuY7wARsYGw7h2a+0Nvq4qHQTrSqwUYu33n1pPzfvcjo2+A88enYz4D02IxUSuxWonZaX0LjL2hffvp+O8AEbGm59z6aeLHYCpS+uWzlm/ffR71w03PvN+b/DlIZsFl65eM9UtGZS6VpYF9YW132UBE+SwbCBvHW6QipQiIfv+PWDs9PAQKxo58/4+wlm99fTi79sBIGhFg3u+xduz7GQ+BIjH2hsb+MO5V5sMjPAlYyzd3+0bzmPoxAjS6NMqBZvzfPRGxls9avmhgU/MiMJqe5IX7w1DL74D54Mj8fsje/LnNYuIsjQiQ6AKcXIgIKAbph7nR9sPJnyqWTujc7bKzQnMWE2czjwB2IBn/RGS0Ar4+xbbAGzoD2n0UEtH6JWPWR4kYfz+Wu1C3gYCxN5xYNP1l6vS3S1RO+oubeS2ADeRPLtft119YCQaxp5aQFVysSZOmd2p5lZyZR4Aoyf8RAotDiiHBk0rUNRoJxp00MR8eJellj8w+AhL8CkUdmxoVBL88J3ehPo8BY7cvMWli3+0mnCmY/aRgmYmq5G+RN5zptgWyIl3W5dr0Asy/DiSuYt1Qutw+ksa6AL4s9QRwmVhBBBQEX5b8VYbr5em2JLeMtuy8aVOy1Prq8iQXRxR8eoHc2KNBf6s6i8ZAJviay1fduFcFGxVdXhbqhDSU7M+zTqKKaSoLhMss7v3MV12+FvsbA3nmX6vGGhKKuh1uVmbXnlxJchurEAFEfM0NP4rco3OZfw1dgMIZPQki9gdd5m8tzrY9uTLjdRljpPeycHB9MfhkYeI3gK+6x79/L/mCB8ghseIcf3lx4uzA6Dug1cLQJH9ZnqxkluqsW3h1Plwr2X9+fvZaMZf5W1X0/6PqC+OxZzQ96gtRM0TDjlt2rTi0fskkoorkhJ2UmunfXDIfHFk7vbdHv6JqBpsVrk0J8HX88pzcGsqESydSn3ivmf7NJeqERstnbd9o+6Jq8YYl6rZWqZ8EO/Dsu90zl83xVde/Vo3Yh7JNqpWm3bhowqvz4dV56oSsE44K2nx5TtRtnXt/fMWRiwCe7MbJaO1NzeQ1k9ZcnRZ/Tof19aH58Oi8/2vsD53mj8E1RTpTNVPUzBBTv0REFF6Zf3tPzYmST5pgE3F19IVz68mY+3+EDYR9p4PNNtQTf+JsKpMmiABlxNpJyXx4ZOzJbNMAGRIrTngl8ivALvNu1JL/oYgANbADb+Lz/xRre8Lq8b5PB8/EwTMxCJI1DqYn+Gwh0sTZ5bnjLy9OZd0UIkAN9t1u3EvYQFj3Xoz5wOhw8eYzPvBnsiMVyAmvzo+bOnVZ8MmCf3NpWusm8SqeAljLl3ttPuHqccjMqYmzA0/UTFG3eMOZ+osziAAFyO+81g2pL3SeaVPbycTZ5gz/EAwEFGC05AfrCd8khcJDBCggyQZqRivprjJQbIgABSRZBI5tV2A8RIACkm2+hmXXMA4iQAHS++eJqolaIIyHCFCAaNhy+y/y1YxeAwJ1IALU4MdfCiqqZrAxbgF5+oeLQw5hXYAaRMMONiqxjo7wtya8NbzgsvVLGCboDvmvjHCzEn03/mCjgv2XIQpEgEr8m0vj+/ZEJKqm97tf6bPxJiSEgYBiws0KX3Wtrw/P3GEmvDIfbFQwCwDRIQLUIxq2f3OJiNiBx7oB64SibvOGHffVMT+knkdEVJkjVAS1hQhQmFhxBMkP+HteeoeLQ24h/AG0hggA0BoiAEBriAAArSECALSGCADQGiIAQGuIAACtIQIAtIbVgfrK5nBxyBlEgL4yPFwc8gMDAQCtadELYC3faPusFRhtj4h43RENi9dt0cDuuqC7okdAX9jbXWP/jWO2zear0zX4qutfm7C7FkCxFTkCjL2htd1lg3OPzTX2h07zx+Bala+5aTYsJw6H4j+eCCL654usMocc1FRhawHmgyP7TmfM/T/CBsK+0zEfHKXTqlwJBOsMRGcgfJ51UyA7BY2ATmh+E2OzXfObHnVkTu8GUF0xI8D+8/OJz//XsYFw7nZn1x6A3CpgBBi7/TO31hyPNT1jtz+L9gDkWQHLgUYrkL6Qr0+3LZCNV9PA3VBUTcz+jlfACGAtP+ULIS86oX3vxak54BG+6vqfXoi7ybIOChgBEqOAEfbYm25LIE3j54CN/aHTPNZ2AniMAtYCpMWqIEKuWH9+PnEOeDQBbN99nlaj1FDACJA7h5uIRB0jRiWZD47M76KWco3dvp7LQM5TxAiQrf1wzSLAtWh5yVheMkq2yksDY64BISwDeVMBI0D6Thaa1YrKNq0ssZUlVlK5IhR3DQhhGcibChgB4XqZ3PiPNZeF6+UZNAdmS676y5oo/b5SwAigmjnxBO63BRsVzBgphx3I38lJri2SIkYAUXh1nl+OsRsWvzwXXp2fXXtgRlhXchkYERktRABRUSOAiPzrixEr/KJu+9cXZ9ycPPJD6gyoMyB13xRkSap6Q8wBExU4Aqhmel++O3FEEGxUvC/f1XMIMDpcfPdR2DtW9maQKPpM5doCUbkWHEG4WeGrrrXTYy2fdX95YoiqKRp2sFHB6nGl8YaTybVFUvAIICLRsP0bNSKivmBtn4jECn73BZHkV4mvwUhxBwJvKzOx4uAXXzCx6r4JryoknSIAisi/vhh7VO+y4LOF2TRHPYgAUFz8ZSCoAb0OEQDKC6/O89WorwBjDcgpiAAoAv9GLfhkYeKIIPhk4VVtGH5W/BkB0ER4dZ6vzNl3n4/mfU4RddvfWkT//22IACgO0bC9L98dzf4aLY+GglzGG46o2zgz6jyIAH3VSrT56yIuiywzseKEmP2NBrUAAK0hAgC0hggA0BoiAEBrKAfqa8qHi3dCcg0U3pWDCNBXIFhnwInI55L3LWv55vdD4+CY2v5oD8/RW9h82Qk/egdxoAREAEgyHxyZ3/RO7d7LuiHrhsb+0Pz2pb9VxXuZ+YdaAMTXF84fn1p/ORyzezfrhs7tp9bXh2m2CyQgAiA2+0+diJtwmw+PzPvxzvmAlCECIB7zwVGsrftHu7bNrj2QECIAYmAt3/pL7L69vf18Bm2B6UAEQAzm7kDiKtbyjb3h1BsDU4EIgBiku/RnvsALeYAIgBjkDvAjIgMRkFdYF6Cv0eHiRBTxcPEkVT1UBHMLEaCv0eHi0T8vSgn6jEmuhVnCLwYiq5nSh3AJLY9sUwIiAGLgdckFvzzaEa+QPkQAxMBl1/zzZZzek1OIAH1JHC4eXpmXGAvwy3N4Xyi3EAH6kjlcvMz8rWq8P8Zl/vXFmE2D9CACIB6+5kY/uoeI/K0qoRaYY4gAiM2/Vg2vRDiTy2X+1iJfi5EXkD6sC4D4yiz4bCFcde27XdYNz/wIvzznX1/E8z//EAEgSaw43hcXjeYxa/vGgWe0PVEyRMPmdZsvo/6nDEQAJFBmfM2lNTfczLolIAu1AACtIQIAtIYIANAaagEAKeqERts32j5r+WzA+cocr9u8bmc4dZJ1BPz8EzEOjomI1x3RsETNxJLyFBT2cPF86gtrp2c+PHr9v5lNb/QL4Kuuf62ayeEr2UXAOT+R0T+IZcfDqjIoCnbgjVlDQUTG/tBp/hhcq6a/kiqbWgBr+c6tn07d/298oOk5t34yvz33AwCqMPaGzu2nY+7/ETYQ9p2O+SDt73wGEcAOPOfWkyg/EeveIY6jAbX1hbXdjf5x85sedSbcGtOVegT0hX03zk/k4RE7iHRwDUAO2dvdMceuvY0NhBPnBkku7QiwdnoTn/+n2He71I/xQ8ypvjCaktvvzkhnQPf/Ft7/W9iJ8x2F6NiBZ+zHPkCBNb00hwOplgNZyx8z/j/3qm5o7r4Mr0Z4NS1/zAdH5vdD6oQnwScatqjb4YcuXqErPOnQZ+1gui0ZI9UIGM38yVy4f6xcBLCWb28/f3vzbNbyWcs3dvt8vex/ciGTeSBIh/TpCcbj9PZcT7cX0I28Q9WpCx8rVg4w7/esnQkn6hq7fefg2L9REw1srVlM8ocvpXjsQqq1APmfyECkXCZNwtgbTrz/R1g3tG8/LUKlA84St+z1hrS+FelGQFd+hMNUiYCYk0BsIOw4nweFCOmt012W2ggx1QhI0uNVZQuKuJNARGTsD3HwbiFJn54gfV6DhFQjQPonIp+mKeuEEpNARGR++3LqbYHMibpkrU36vAYJ6fYC5ENRjQgwZIsd0if2Qp6FayW5I9hi7dGcULq9gOU5UZV58ydcL0+9MbPAEhyhjbN3C6hmBhuVuBcFG5U0J4nSXR0ocRAFUXhlXpVCgJFgLXOS+JAzOlx8ecmIeLg4SAivzvPLMd58F3U73IydGkmkvUBYrDiRtqA/+XxVJkezkuT8XFFN+8Xt0eHiK0uslPWuEcXm36hFHAKLqulvLc64Oadl8KZgsFGJONQRVdO/UVNo/VyiCMDmCEVVZt6X7058koVX5r0vLqa/TiyL/C8z/0bNfHBk7fRoeO78WXhlPtioKHT/06vzcyMtCjrNZdgfpdjCzQpfda2dnnFw/MbX3mW87gSblaxGu5l1AcOr8+FaybrfM9r+G8Ngl/G6E378jopv0chPeaxgo7TiEw3bv1EjIuoL1vbZgPNGlrsGjmQ6CqyZwc9nzo42BRB1W63H/mllFmxUIq4Ofl0m9Y6+T+1DQUSNCygHpKvMxIqTk2XhefnNq1LznyjcrJj7w1jl/ZQngU4MA2o+40RUKxslS+XkhQRwjsD0xSrqpj8JBPA6RMD0iYbtffFulLoAX3W93/0qhSYBnAcRMBOiYXu/+9W4FRAu839bU2vKEwopL7WAAiqz4LOFcL1kHByzLmct32h7vO7wFUfUbb48h5sf8gARMFuiYYfYFAhyDAMBAK0hAgC0hggA0BpqAfqymKiVGBHZeBBoDBGgrwWXrV/CrITukP8AWkMEAGgNEQCgNUQAgNZQDtRXd0B/fRQS0X++ZFZLWbcGMoJegL4EiVP/ABpCBABoDREAoDVEAIDW3igHfveD990P8ufhgKJ+aGfdAsgOegEAWkMEAGjNIkb/NcWTjAEgPxjR/weq4xc0X7qfBgAAAABJRU5ErkJggg==", "path": "image.png" }
Complete the text to describe the diagram. Solute particles moved in both directions across the permeable membrane. But more solute particles moved across the membrane (). When there was an equal concentration on both sides, the particles reached equilibrium.
[ "to the left than to the right", "to the right than to the left" ]
1
The diagram below shows a solution with one solute. Each solute particle is represented by a pink ball. The solution fills a closed container that is divided in half by a membrane. The membrane, represented by a dotted line, is permeable to the solute particles. The diagram shows how the solution can change over time during the process of diffusion.
In a solution, solute particles move and spread throughout the solvent. The diagram below shows how a solution can change over time. Solute particles move from the area where they are at a higher concentration to the area where they are at a lower concentration. This movement happens through the process of diffusion. As a result of diffusion, the concentration of solute particles becomes equal throughout the solution. When this happens, the solute particles reach equilibrium. At equilibrium, the solute particles do not stop moving. But their concentration throughout the solution stays the same. Membranes, or thin boundaries, can divide solutions into parts. A membrane is permeable to a solute when particles of the solute can pass through gaps in the membrane. In this case, solute particles can move freely across the membrane from one side to the other. So, for the solute particles to reach equilibrium, more particles will move across a permeable membrane from the side with a higher concentration of solute particles to the side with a lower concentration. At equilibrium, the concentration on both sides of the membrane is equal.
Look at the diagram again. It shows you how the solution changed during the process of diffusion. Before the solute particles reached equilibrium, there were 8 solute particles on the left side of the membrane and 2 solute particles on the right side of the membrane. When the solute particles reached equilibrium, there were 5 solute particles on each side of the membrane. There were 3 more solute particles on the right side of the membrane than before. So, for the solute particles to reach equilibrium, more solute particles must have moved across the membrane to the right than to the left.
to the right than to the left
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAbAAAADNCAIAAABW57LWAABZvklEQVR4nO19eXRcxZnvV3V709KSrNWSLFvCC94Bw/jhsEOCIUMCiScHCJDlhDMJmZM9wxny8jIve/ImIeuEZIZkHiSQgbwECIQAcViSAGGxY/C+b7Jl7Uu3utXLre/9UffWrVv3dqslS+qWXD/rtO9SVff27e/+6luqviKICBpzF9lsVjliGAYhpCg3o6FR4ggU+wY0phimaY6NjY2NJVOpVCqVzmQyiAjAOz5ExEAgGAqFIpFwWVlZJFIWCoWKfcsaGqUCojXEuQHTNBOJRDwei8fjqVSaMdM+g4hEJkRERGSMASEQDIai0crq6pqqqqpgMFjE+9fQKAVoQpz1yGQyIyMjQ0NDY2NjjDFCCKVULqBoiDYhWv+ZpgkAkUiktrauvr6urKy8OF9DQ6MEoAlxFsM0zeHh4f7+vnQ6AwCUUkIAwPEQEkIQEVGlQ0QmaJExxhiaZtY0zVAoPH/+/KamJm1Ha5yZ0IQ4W5FIjPb29o6OJgCAUkopEVQox0w4/9kbLk60tETkhMi4tshYtqKioq1tYV1dvY69aJxp0IQ4+8AYGxwc7O3tZYwZBiU2ACz+IgQQgbMZJ0NwqYdim0lKIidExpiZyWQJgdbW1ra2hdqxqHFGQRPiLEM2m+3p6RkeHgYAw6CUUq4REsta5qWI4EFw3Id8Ey290CJEQDS51Sw40TSzjJnZbLa2tm7JkqXl5dqrqHGmQBPibEI2m+nq6orF4oZBKTU4D0oaogICwDgPMiaTI9oRFbANZ6EqommajJn8M5PJVFZGV65cWVFRObNfVEOjOKDjF9EoDWSz2a6urlgsFggYfHA1pYRy9yHhDkQKQAmh9jYAWAa17WQEAALAKxJKeRyGEOLY3ZRaxQmhgYAxMjK8c+eueDxezG+uoTFT0IQ4O2CaJtcNA4EAZzFuLxMi/hzWs81n4VjkG9TWI8VBAJA5EST25I0bgUBgeHh4165dyWSyqA9AQ2MmoAlxFgAR+/p6Y7GYYRjUUuEExwGnMEGCks4I9phEy71oUx6AY2o7vMk5kVJKKXCSpZRSagQCxuDg4L59+7yzADU05hg0Ic4CDA8PDwwMGoawZ4nQCm3TGBSek4dnS3qiMI1BKIleR6TcAqXUMGggYHR3nzp69Kj2OGvMbWhCLHWkUqne3l4AoNQQhi0/JWjLG1fxEpx9GOyxiiCP4raVRFFRDltb3Hr48OGBgf6Z++YaGjMOTYglDUTs7+/PZNJu1qNyGISX9DAd33Y40W5SuBSBR1fAxZ6Oz9FWPy3XJKU0nU4fPHhQG84acxiaEEsao6Ojw8PDtldQ1uDk4InMgGoLxHtIKokIYjg3gPAwAiHAr8i9kfyKhmH09fV1dZ2c2u+ooVE60IRYumCM9ff383wNssrGz0omrQiYODQn06CiJHLW41QoLGWpsPA5SsUt25wgwuHDh1Op1LR+cQ2NYkETYukimUwmEgl7bA2RNUHIqfq5vIS54A6NoNSgbFk70Ri7NWIYdGQk1tPTM9nvpKFR0tCEWLoYHh5izOSDqAFAkJQSP7ExfiIGtyeRw2FDO4IszHDZlHaMdsbYiROdPGmYhsYcgybEEkUmk4nH43KA2FtG0hmJ5A20DslqoJtDkRB19Awi+qqcHgclMQxjcHAwFotN/DtpaJQ6NCGWKBKJRDqdkYYZgj140AGiYD3kf3yqMkhsKEYOijxgCoR9LbKEicZFEaVKOp3mI4E0NOYYNCGWKOLxGCKKwTYAIBOTL7u5VULrmG9heY9vCxqUKkqMSADRiWgjYl9fj7aaNeYeNCGWIkzTTCaTdizYJ2qsuBG9BKds25yI7sxg/hNPJMUTOAsjAiEohnATQkdGRsbGxk7rS2polB40IZYistlMOp32UJ6P8evW76xtwWhoD66R2lZtal5KSqwtN+XY4DaTWuycSqUSidGp+bYaGiUDTYiliHQ64zZIBUvJVKhSmFuzs+IkTppsSStU2rB5E4QvUmnWfQ8AAKZpjo5qQtSYa9CEWIpIp9OMMUFVoGqFKH/m1uzUOAkAMKYwIwpdUmlBbPqdBURIJBJT9401NEoCmhBLEdlsRlkAANTR1MopVPhRbPsxqar0uauLU7JeKa9laumSqZT2IWrMNQSKfQMavuBeP9nPxz+RR1q4OcwtYuEiVLhPGmuN0nnXtkcJFUuvyBuyEsrcBriGxpyCJsRSBF/+CdSwhhxu5sFfmfXk6ggAjDFpT1YWxaBF+RIgFmCRidKjbhJJzdScqDHXoAmxNOEEQxCRMeSJFTgH8tGCeehI8QACMGXADXqWrrdVP1dtcXW+KJV9ztrOlUdHQ2P2QhNiiUJ2AHJe4qlu7OQ3TjG/WX0+kWihaUrNOuTHmDOCR1qnlFdhkuEs1Enid10NjdkNTYilCEKIoDBBXtxhyAswxucjc2qUdUXOj45jUHYIyj5BaUO2oBkiAwBmkaKIwDCrOVtnJQQNQ0fkNOYaNCGWIkKhkKQjMkSDMQBAQhjnSgmKhoi2dczsQYjOoG5EyzvJl2nmrAcgLGKLHm02FOs1W7uM2TWAEEIqKipm7oloaMwINCGWIkKhEKUUkTFGCUHGGKWUMeDLRnFVkQdUuD4oVZXH6ChsyITG53Yd8lOWu1BxINpUiJIpzQCQEFperglRY65BE2IpIhQKGYaRTqcJYTyKIlyBPJzCnYj2+BsnwCKNwBFms13V0v5c7CmNzfaqhw4XSg5ES6kMhcJaQ9SYe9CEWIoIBAJlZWVjY2OckigF7j3koQ9KgZvG9oIBTi4cR8EDkKmQ1wVXmIVJIxNVbVBWD4XyKExsRKyoqCgrK5/JZ6KhMQPQhFiKIIREo1UDAwM8pmwbqlYQgzFCCBOrhgIwr+FsW8pEECDXDd26njWTz60GWqUYY4yZYswNs8EvVFtbFwwGZ/apaGhMOzQhliiqqqKBQIATIj9CKQAQRL5KMhFjaOykDCDmt4gBNJKt7SiDwlJmDIQOKCmAHh3RHU8BgEAg0NjYNKOPQ0NjRqAJsUQRiZRVVFQMDQ3xUYfc4KWUABB7m3JnophfjFYA2JnnJ38qpjFYRcTwGmEgc81RcKAYmG2ph4gQjVbV1NQU4aFoaEwzNCGWKCildXX1g4ODpskIIZRyDY4vOIUA1DRNSqnQ2oQiKcImMiFyxZAbyGKEo8R3TiCF7zJm2mNuhHrIhOOypaUlHA7P/DPR0JhuaEIsXVRXV0cikWQyydVAwyAAlDGex98kxFIVwbVmHofYc5nMYNvRnA2Fc1CYxfaGyTlQZkPbBQnl5WXNza0z+Rw0NGYMerJB6SIUCjU1zUdE0zQZY6ZpkZdNVYhoIpp8eon9ZyKajKF0UAkcM8aYaTK7KacYACDyUzYvmoINHfVwwYKF0Wi02M9GQ2NaoDXEkkZDQ0NfX8/IyAgAAhgABoDJJzWjlQFMaIN2GhzCB1qL+DKHHCNxDbp2W8pemNx85i1UVVV3dHTotA4acxWaEEsawWCwtbVtZGQXX1EAERmjlAKl3Ezmc5mJmLFn10NpygrjM/nAGoqIQl+02mPIFUPhMZRch5btzFszDGPx4iUVFZXFeBIaxcfIyMiOHTu6urrm0vpikUikpaVl9erV3O7xyaanUVJAxIMHD3R2dgaDAUoppQYh9uKk1jhEMYfPWxXFEBwpvMzs6IqlJMoWtJ96aLXV1rbgvPPODwT08MMzEUNDQy+88MKGDRui0WhZWVmxb2fKkEwmR0ZGXnrppSuvvLK6uloT4ixAOp3etWvH0NBQIBCglBJCCaF8CI6yHinYs/fkCLN7nI0CZsdPHE7k/CgCzby16urq9esv1N7DMxMjIyPPPvvsDTfcUOwbmUY8+uijV111lSbE2YFYLLZjx/ZkMhkIGFxJ5GvY25zoTHAGKehs28XAbV472CJMZSfkIseUORUyZiJac10ikcgFF1zQ2Di/iE9Ao4h46aWXFi9e3NQ0l0fjnzp16vDhwzrKPDsQjUaXLTs7FAplMlnTNBnLmqZpmllu1ZomDy5bXj/T5Aez9mAaq4ztE+TbjDHkMWUev5bMZEtbBABEDIfDa9asbWiYyy+DRn50dXVVVVUV+y6mF9XV1SdPntRBlVmDurq6FStW7t69K5lMGoZBKaWUUIqEWL0aIULZt9KCiYQOAK5ZenJoRfIeiiHZyDPCIkI4HF679pwFC9p0ZPlMxtjY2FzyG/qCp1PRhDibYHPi7tHROOdEQhif2swz4lAKbhcISpkdOD8yediN4EFElJ2GAIAIFRUVq1atbm1doNlQ4wyBJsRZhrq6unPPPXfv3r29vT2WH5EQQoiY5izlTHStHCBnu7HZEG0etGYri6UCAKC+vn7VqtV1dfVF+6oaGjMOTYizD5WVlWvXrjly5MjRo0fT6bRhUEIoY05ERcrvAGJSnzwqW5q7IqblOYlwgsHQwoULly1bPuetJA0NBZoQZyWCwdCSJUvr6uoPHTrY09PDWNYwDAAA4KqiBXlGMzpLj7qyYYtR3IhIKW1oaFiyZGljYxOlOuCmccZBE+JsBSGktra2qqqqu7v7+PHjAwP92WzWMAzGXMWkVGCOsSySPoCdLswwjJqaeW1ti1pbW0Oh0Ix/Gw2NkoAmxNmNQCDQ2to6f/78wcGBI0eObN++vbKyMhwOuRcy5WUtEiQExXDuTCYbi40sXrxk2bKza2vrNBVqnOHQhDgXYBhGfX2DaZpf/OKXCIGOjvbm5uZ58+aVl5dFImV2jNgaZZ1KjSUSycHBoa6uk0eOHB0aGvrOd747f35zkb+DhkYJQBPiXAKJxWKdnZ379u0PBoORSLiiorKiokJ4FU3TRMREIhmPxxOJRDKZZIzV1NTo2UoaGhyaEOcUCCGGYRBCstlsLJaJxeKc7DgVijJgLcZCxMCdYt60hkbJQBPinAWnOWlpAVe0RWuFGkXB2NhYJpNJpVKZTBoAgsFQOBwOBoORSKTYtwagCXHuQTOdRmkik8kMDQ1mMhn5YDqdSqdTABAMBmtq5hV9bdsZIkQEzLLsSHZkKD0Uy8Z6Uj0MGQBkWdYgBgECALWh2ppgTXWoujpYHTbCxCfBn8aUQZvJpwkETJmp4czwcGZ4KDM0kB4AAEQ00QyQAABQQhvDjdFgtCZUUxWoCtDAmSzSsdhILBbLUyCTyfT29kSjVcVNMTeNhIiA8Wz8ePL4zpGde2N798X3dSW7+tJ9o9nRNEujWFaYSwlCkAQjNFIfqm8MN55VedaKqhUrq1Z2VHbMC80ziDF99znHUCDTaUVyEjDRHMwMHh49vGtk1+7Y7kOjh3pSPX3pvjFzLIMZsId8cpEmjIRoqMKoqA/VN5c1L4suOzt69qrqVW3lbZXByjOKHMdlQ7kkpSRPVvbly5fffvvtn/3sZ8WR//7v//7ABz4wVUm8p54QEXAgPbB9ZPsLfS+8PvT6kcSRgfRAhmWQIOELxgGfXAYAYml1AIAUpuJmvHe0d2ds5/N9zxtoRAPRtrK2NTVrLm+8/IK6C5rLmjUz+sI0zeHh4T179qRSqYnWzWaz+/bta21tra2tDQS0C8UHJppdY12vD73+fN/z20e2H08cj2VjJpgISIFa9Cf6IWeME4zh2HBm+ETqxLaRbU+deioIwdpQbXt5+wV1F1zWeNmamjW14do5z4yZTKZANuQYHh4OhcLFsp2n8gXIsMyu2K6ne57e3Lf5QPxA3IwDAUooocSeWAYqD0oJqwhagkUp5adG2Mj22PY3h9/89bFfLyhfcHH9xde1Xreubl00qPM2AwCYptnT07Nnz54333zz8OHDXV1dIyMjE7KFCSGpVOoXv/jFc889197evnbt2tWrVzc3NxfdlVMiiGVjW4e2PnHqib8M/qUz0TkGYwS4QBOrbxYCTOxtt0gTri8iAAID1pvt7R7qfmXglfsO3bekcslb5791Y8vGldUrg3TOPvDBwcGJVhkaGmxoaJyOmxkXU0OICTPx8sDLvz756xf6X+jL9CEgJdQhQQHi2ZW6U4cf7W2CxCAGUMiy7KHEoYNHDv7m2G/W1a67oe2Ga1qvqQvXTcnNz0bE4/Hdu3e/8sore/bs6e/v54vWZ7PZybVmmmZ/f393d/drr71WXV29bNmyDRs2rFmzpra2dmpvexahP93/VPdTj556dOvw1pgZI4RQQrlz0AGxP9G9C26RRocrCSOGYQCBBCa2DW97Y+iN+w7ed1nTZZvaNm1o3FAeKJ+p7zdDGBsby2Yz45dzI5PJjI2NFSXufLpLCGRY5i8Df7n/2P1/HvjziDlCCVVtB5+1jzwrxMmnmHQQ3X8MkCFjLAShtTVrbz3r1uvarqsKzvFEvgoGBga2bt365z//+eDBg+l0Wh5ImE6n9+zZk81mvUoiT4ItH0FEvpKfYRjLli2LRqN8mjNPph0IBNra2i6//PL169fPnz//jIrAjGRHnjj1xC+O/+LN2JtpTDsinUuewSPDyinmUhtleRYiXWVUXdJ4yfsWv+/ipotLUFt84IEHbrnllklULNx7qCAajUajPq/28uXL9+/fLwskIgaDwSnxIT7wwAOT1xARcG9s773H7n28+/HBzCCl1KCGIzTihpX+067sfMobBMBwd6oyKBAgBjFMZr4+8PqOwR2/Pf7bjyz7yEVNF5WgDE05YrHYli1bnnnmmSNHjnCVcMpdfoSQQCDAE+EcPnz46NGjzzzzzNVXX33JJZecCdpiBjMv9r/44yM/fmnwpTE2ZlDDIH4iDfYRDgSgkkgTt/RykeadEXM5zYECECCEGNSIm/HfnfjdSz0vvaPtHbcvvf3smrPnhm9xEk5tUTFXtPlTn/rUBz7wAbH71FNPff7zn5/cVbyY5Bs1mh39fyf/34+O/OjI2BE+OwLA/oHBpSFaB2z54MFlK7BM0GUjg0SdRNIW+RG+bcuWQYwMyzx76tm/9f3t5o6bP7z8w83lc3Y2rmmaO3fu/O1vf8sVQEr93BFTBzGDhTF28uTJ++67789//vM73/nOCy+8cA5nf+ga6/rJkZ/88uQvB7ODBjWMgGExnSLSCAQI8v+AICKPFiJBUcDaAIkZqZs3qfsUA+6UHDaHf37w538+9eePnv3RTR2bKoOzfglsZdThlFScP3/+6tWrxe6OHTsmdwlfTIYQD44e/NaBbz3R80Qa01bWPCE3BAgSQgkAICABQpAgoDVdjPOh1ElaYoQ2CTJ310olbZHaFEksGQIKBhjD2eEf7/3xq72v3nXOXRc3XTz3jLuhoaHf//73f/zjH+PxOKXUN02hMillouBGt+w8EWY4N7QPHDjwwx/+8I033ti0aVNLS8vkrlKyQMAX+1/82v6vbR3ZCgQsQ4faPEi4Gmc9H0IJ50FOi4QQBkzIOSdK3iiALahyN8/sbZS6fJso+RiMI4kjn//b51/uffmf1/zz4qrFM/swznRMjBAZsuf6nvv6/q9vj28nhFCDWjJDCABQQvmvbr2f/JwQLAQuN8ATUREUHa+jKlKPYkjktPa2hIlTALyZ1wde/+iLH/3Yyo/dtvS2ssAcyfOMiHv27HnooYf27t0LAAoVeklw0oQoHJGKQ5lfkTFGKc1kMn/4wx/27t17yy23rF+/flpV1JlE0kz+ovMXPzj8g1PpUxYVSgJMiC2kBChxnr9VAAkQMNCweBCBEIIMgbhFWu7mZd0QJHkGu6cHoEAzmHnk2CP7h/ffdc5dV7ZcKV96diEYDKbT6clVnPKbKQQTeNBplv6/x//vx3d+/M34m3wwDRcZSigllFJKDL6EOgEKzh+x/6jzSaj0j1ifakkB4v6T2hEbhmH0pHu+su0r/7rlX/vH+qf8Mc08MpnM5s2bf/CDH+zZs0fOv2CvoOKspsJ3OXLxVJ7QGfd45MryIHRS7l48fvz497///Yceemh0dHSKvmgx0Z/u/+LeL35l/1e6M90GNbjEWo+UUGo4Iu0j1dKuXYE6P40gU1lWOcQ2kdrxNEgNun1o+8df/vjP9v4szSbDKaWAcDg8wxVPE4VqiPFs/J4j99xz9J5RNsrHDYif3HqRvF5nL9zjErjnhSCx9EV+WHStci2vniibzwSAAQWaZun79t83kBr4X+f9r0XRRQV+tRJEIpH47W9/++STT2YyGVkxtDRxSr3MBdZs0Jru7m7vKa/2x4GIVVVVkUiErx8gItG+5jMiGoaRSCQefvjh3t7eW2+9ta5uFo98Opo4+tX9X328+3GkSA0qXD6c3QDyagvE/en4GC2RBgYISIQ0S250a5e6jygiDQAIRsDoT/d/5W9f6R/r/6dV/zQbXYrB4CSdzrkq7tmzRzly00033XTTTZO7ihcFEWI8G//m/m/+7PjPTGJSw+kACSGO0Cg6nbytBNekMhYPEkCKBInlZZRdh+jXJthuR7ePhlBCDPLYsccGU4PfuvBbHdGOQr5dqSEejz/44IPPP/88z9DFDwpWypOtixDS0tKSyWS8Q2G9bMgH2VRVVS1cuFBwLqWUh5hlAuVaj+BKwzBM09y8efPw8PAdd9zR0NAwFV96pnEkceTOnXe+MPACNbh9Qih37lC/6K73COYQaXQ8j6IkEnRVzN+mIFkEIEANOmaOfXfnd0fSI3edd9es48RIJBIIBCc6FDEQKFrym/FN5ng2/s0D3/xZ589MYgrRsXpR2SIGt3WgHPceESCWLxkAxPQ+V2vgbsR7IeqyoAM08KdTf/rsy589EjsyFY9oRjE6OurLhrI5lqd6KBRqb29vbm7m4eBcWiEiBgKBpqamxYsXl5e7BgP7Eq6wzfkuv41XX331nnvu6enpmfSXLRaOJo7+865/fmHwBWpQoMB9PoQQYviJtK8MK8UEhKroeB8lXyT1E2ll2+0LAgrEIEjwZ/t/9vW/fT2eiU/XQ5k2zJs3bwaqTBXG0RAzmPnJ0Z9w3ZB3nqq/j0MWC4VjMafQyNtcaBgyAoQhI4Q4IWnv7Ciwr46SvNqhZwAIQOCFUy984bUv3P2Wu+sjs2Zl4dHR0QceeOD5558H2zqWHYWFtMCZbsGCBXV1dcPDw7FYLJlM8gHYPDZiGEYkEqmsrKyqqqqoqPA1pYWBLB/kSqK9Kos10Oq1114DgNmlJ/an+//33v/9wsALltOQWB5Ar3ZmwaszeF068nG7HcKcSXu8e0NEH9tZQBhGQpjtOyGUoIk/3fvTmlDNJ9d+cnaNug0Gg9FotPDh2dXV1UWcOZqPEBHwgeMP/PuRfzfBYUOn+wIfH4pz0Nc08LKbe9AWIcQK1aGf5wUkHlQaV0SZQIAGfn/897Vbar+6/qsVwYpxHkMJIJ1OP/zww5wNOQpRCXOhvLy8vLy8qakpk8lks1meMdswDMMwAoGAYRjSCnwqcjkcOS8LTuQU+eqrrxqG8bGPfayqahZMGRo1R7+2/2tP9T7F2dCOSbnZENziDW6R9vbuuaap8CFo9hNzRuT4ciJ62hcvGrM40WTmD3b8oC5S98HlH5xdw7b5nJNCOLG6ujpPqpsZQD6T+fm+57998NujbNSylO3/VI5TbApw7/oel6tLx8UY2HyGM5WkNtflKPD44EMHH7p3970mmhN8LDMN0zSffPLJZ599VvbcTY4KOTjZEUJCoVB5eXlVVVV1dXVlZWVZWVkh81t4cFm5AU6C8i4/8sorr/z85z+fqvxL0wcTzZ8d/dnDJx9GivnY0FduAVzF8pvVSnlrbzyRJgBGDpGmAAQopQmW+Lc3/u25E89N7ZOZAUSjVQ0NjYFATtUvEAg2NDQWlw0hDyEeThz+xv5vdGe6KaU+0kOkUQIFwtu1+imYltxIjkX/pvKLpi1AGcj8aOePnu18tuC7LA62bNny+OOPi2nIxB5JczqcKAMliCP5q+RiZMGJcvR58+bNzzzzTInnWHy279l7jt6ThrQYMUao5OuTx76ARz3MD8UvJNdFZxiGS54VK8fLvB6RJpQY1OhOdn91y1cPjxwu7EuXEILBYGNjY21tXTQaDYVC/LGEQqFoNFpbW9fY2FgKOZb8+SxhJu4+ePe2kW18LqcTUxbw7TnHBfH8/Eo79iAsn1Pgt4t+DQqBJkAJ7U31fn3r10tZgDo7Ox9++OHR0dFx48hTiAJdk14l0beRbDb7q1/96s0335z6G50iHE4c/j8H/k9fpo8Pcvb/+l75HBde8lJaoDleEN83z9c7KfX63Hu7rX/bv/3t3xLZRMF3WUKIRCLRaFV9fUNzc0tzc0t9fUM0WlUiC6pALkJ8pOuR33b/llAChuDC3AG4XBhXqnwFCMDVl+biUN9PRdkkhBJqUOONgTd+sP0HKXOS88ynFalU6pFHHjl+/LgY/zyhKMrkIHsnc10oz3FxShjRhJCBgYEHHnhgYGBgem75tJBiqR8d/tGbsTeF65CPlPAR5tPXcf0sIWsQhRiT6BVp75+3KVukCSWPHnn01wd/fdr3qqHChxD3j+7/98P/PsbG+PBUa9CAXDBPL1qItigX8Ca88ZbxMJ1TnrilylPFmmZAyK8P/vqpo0+Nd2dFwF/+8pdXXnnFd1pefshlJsGeIjaS/xLeArkci4Zh7Nq16/HHH1fyjJUCnu55+jddvxEMaBGUwkeYQ3pz2cK+ZYjHfLaPC8XCuXquN0jekEvaMXFK6Rgb++H2H+4f2j/ON9eYIFRCNNH8r2P/dTB5kFIq04pXe88HRdSUg8pxv+AaEYsNuFQ+d3XvVfwURi6KsWzsxzt/3JvszXvfM42TJ0/+7ne/kzMYKoGL/JC9eBNVKuUr5lcSx+VEGb///e+nNvvI6aM33fsfR/8jxmLCkWdNxStcpL2GUf7BZOgukKtl3xEU4JFn9z3w38ugxoGRA/fuutdkpR4wnF1Q372XB15+tOtRYk9udyV85cilHhLw0SLlba8xklfTFBmW/G9ckTZ0S7bkF7fWMKDGlt4t/73vv/1bKwYYY88888zJkycVY7mQuop6ODltUebTQi4koER7RDuEkOHh4UceeSSZTBZ4DzOAh088vHV4q+UNJ0RNlJDbPlVFWoGvPIumqP8ptYP3VR3AYwBRqWWee4IAIeSRw4+8dOql3LeoMWG4frcUS/38+M/7Mn38iVvzRoi7LwW/vjFXtzkhKEqiUGGEiZGnonJj7vHbfFaWCeYv9/3yaOzoadziVOLQoUOvvPLKJLgsv043oVBvfjdinrvKddAwjDfeeGPr1q2F38O04lji2EMnHjLBlIXEJdLg3gD3kVwiPa7S57F71M59XJFWbgPlk1bf2Zfsu3/3/aXpHJ+lcBHiq4OvPt//vGUsS/ngLJDxXM6KDcKBub0z4C4mg3ufea6wXFf1mhjeU9IuJXT/yP5HDj6S9zvMEEzT/MMf/jAwMJBH1/NC1iKJBLAH1sBENETRZv4C8iRC31rybRNCeGaKEkmH82jXo/sT+ymhTspOyC02Ar4agFekfSt6bSNnz82JbppTZ2ERz670x/9RSp898ewrp17J8TU0JgyHELOYfaTrkcHsIP/RnFiKLA00twx5If+EvqP8lcLu3lV04/5WcyGi7FEKTDAfO/RYT6L402+PHj365ptvTiKWokAeyD2JdnJNVlHuqpAyYsMwjH379m3fvr3Ae5g+9KZ6H+9+3FIP5e4kj60KeXtuWah8OVEZXcjU4+Ll8nkj8isNfl0+IWQwPfibg7/JskmuL6ahwHkh98f3P9v3rCMuPEQrXq1xVTwB33eHePpD8EiPLKMUeP5hdJsKqgCh3Y4inejpbwGAgEGNPYN7nuss/kD/l156SVYPC/EeeilP6G6K/3ESVnOes7nuTT6opKJIJpN//OMfJ50+fqrwXN9zu0d3W+uF2uGUfFQIOYQ8l7twQmN0CG8pd53CTSjhUCJAKNl8fPO+oX0TuRWNnHAIcXPv5lOpU85sZVk1K8Q68I6DkUvmaiTXcZvRCHjzI/rVzdO4e9JLiqWeOPxEMltMr39fX9+WLVsmaiyLbdk69iXBCcVVxmXPArVIeZsQsn379kOHDhV4G9OBMXPsye4nrdSqeaJzMsbtU8Ft64zbpPcFsTYdjdGf8vI0Ll5Ka3AwPZU49YdjfxjvVjQKgkWII5mRP/T8gUlZWFUB8r4RvgzIcpfMFWX2PYK2zZ7LZM4lr2I3R+OU0le7X903WMweddeuXd3d3fIcuAIrKjEQmaryqHJ5IKY856qYxy+Zx41IKR0eHua5cIqFffF9rw29ZnXwMoTBm1+kibskeqqDXwtyGd/Gfe/Et66vNe1n4DNgzxx9ZiQ9kuNuNCYA653cHdu9J75HVg8tKD+Pr4Hs/UWVWJuv8PlCFKMABBDdVrNXLr1QhEwub6uc/WP9fzn5l8JuaOphmua2bdtkc3JyU4CtHCrS3GSenqsQhU6AE9mEqig34N0WR7Zt21bE0MqLAy/2p/uJSESo9Kwkh0hjbq5Ed4FcriFfrZD4DcQBTyO+MRbvtlvhpYTuHty9q3+X3w1pTAzWr/Sn/j8NZ4edTl4ebSOQywkoBCtPh5lL+MCPvIS97HMTnureuuDpTolrmyF7ofOFYlnNvb29+/bt8y4MkB8y/eUKKE8uJpNfryzwlNII3z1y5Mjhw4cnektTgqSZ/FPfnxyLxzuktZBHhR5xEnV9TRDITZd5AtMFgrhfNOkGCCXDqeEXOl84jdY1LFAASJrJ1wZek111ThRMRq6f05clfcPKvlLibZ8AKK4rX3kSuyyvoopSdW41E7qrf9fx2PEc32d6cfjw4f7+fu90lIkazuBmyQnFZ2TkH6yTR3NUNERlxh4hZHR0dNeu4qgtncnO3bHdYgy2KzYIfkaML5TChejQmEPypWtZL5evc0kR2lyXkMvzlwXw1e5XZ2m6h5JCAAC6xroOJA6IuJUDzLurQJyVN+SzXuT6+YXHWXb5i46RH5DfvjzKKQAYUhVuOgVIf7p/18CuZfOW5a42Xdi9e3c2m1UyHRVIYUosRezKhnMhcRK5Ne/2VIExtnPnznQ6PfPL2++K7eo3+0nAspeRWD5psX6TS0TzPHuSQ57zl89l+gAQIAyY602Z9IOX3h1CyIGhA12jXYurS30d561btx4/fnzPnj3Hjh0DgIULFy5fvnzhwoXnnXdesW8NgBPintievnQfhRxTmvJAsUEUmzfPjz1el4sMeQHXomV5uk3fSxAgoySwN0CHKDJEQItGGTDGfn3016daTjGc0UwEiLh79+5J2LYcMg8K8LUB+MpQhbMhb42rdeOqgb7LDBD3QlTKLgBQSvfu3XvPPfcUkpJ2CkEJfan/JeiHEAkJMbbusB7ZWobVkjmUv49XNkDi0DzuP+LpsJnnSRKPPMu7xK9BcWkCwMAZgMHT3CV79wzsKWVCPHbs2E9/+lPOgwJ79uzhC+ktXLjwQx/60MKFC4t0dxYCALAvvi/FUtSwCdFe/G78kQpyB+u1WPNANkZ8X0bOh4rJrLTAPALkttaNXqPsd2WBgwHwm//+Kr76V/yroBj+PiuM4yUgZfiLOJgnF79s4YbD4SVLlkwu+5syY0QehFh42lffZvPPZfbNXuOt5dU3CSFDQ0P33ntvIpGYdB8wORAg5aRc3kVAAgQDyFay9HvTrDl3R+irNnIBY9K255JqC8puHgLNA1kPIKqEy7eaMlN7B/b+fcffF9buTOPRRx997LHH8hQ4duzYv/7rv95www3XX3/9jN2VFwGGbG9sL0OmaIguCfZaDV5TWv6RxjUx0PMpneKvOkPmhJi9hKj03souATJKIk9FAvsCudJ6U6CqUjzNQMSysjJvWuDCWUyhbMVAnigbFlI+V5kCr0UpLSsry2aLP49CTBGhOyj5FRn70BhGbYvB1xckH/SlIaWwt6TrPAIAA+bIM8td0auQ+t6Gm9IZsr0DexkyNXtFCWBcNpRLlpWVXX311XnK7N69+4tf/OJzzz03NDTU0tJy/fXXf+ELX6itrZ2SW6Wj2dETyRMO/dnUM7Eh9QoJ5rdtc/3eoiK6FRDRLSu1fC0aYols+M1w6ECIBmhJIRwOe3WlycVAfM3nCbVTyJDsXKeUe1ZKymdLIS+8CxSM7UbgFduKL1xTy1VePuV17AiRFq8USu9LgYFKn/NoLfdsEzQhpHO0swTXKT127FiBbMjxy1/+UjGrZWzZsmX9+vWJROLBBx/cunXrt771reeff/6iiy5KJKYmoERj2VhPqsfHOmZuKZe7x9xGbqHI5TqxLkLUGXteOYMcRgoCIJAkCe8MG2gUmwBV+BLiRIcB5vLrTQLjXrrw6LNviIYQEggEZtheHh9ZCLwaIDEiuk9/+EpdnpJiO3cBn/wO+RskOV4WT0VCSE+yJ5YudLXPGcO999470So//elPc52644471q9f/9hjj1111VWrVq3atGnTCy+80NHRwR2Rp49APBuPZ+M+A/74rh2Z9bdYJyrnil3g7Uv5u+R33F+XBL9TBAKnAoFTgZk1iMcHsZcz9h4HyRwuBKfPhgUO4RZrMee/h1waIiLSgvPdzhwI0OOUHqfmCtu7fDrynLcAIgJz7C1VT5Sb8mSCcG27yxMgBIkyVC6ejpeahshjyhOtdezYsa1bt65bt045fvz48ddee23z5s3ym1JdXf3kk0+e7o3aoL3p3jFzLJfXg285G+hhosJfTPRrwXuWS5HI7DCuNuplRgKBUwGSLjGtxFaXvMeV4dbTjdO/UB6WFJcQ24FAoOQ4kQAZI/Q4BRjHWBkHhYg0WFqey4EI411IKeMtbEc+5VPJbLLUcsLnMX4nUfHgwYMAsGrVqtO6p7ygzuvhso+RIHE8HV6IwoXQjiwZuarIUpVfRn37T5DqZsHoNaDkFvbIhwmph6d/LT5GZ9xiM0PQxQED2kXBzEFnBah+1ttBPAeVXQR1+qm3fV8lI6+l7OPOQs/xEsCkLVnfilyfMM1pXDXBmuTpQFHTvAYsh6jCcvzGIIkakXbBU1Gqy5DxS6rBZd/Gvbv2Zwmqh4VgujlIbj+/ljdu5Dr/mJtxR+SIYoVrmvIRUVFpQT6u1JLLW1I9pgZq7dL2Z36pk5lUGVYhv0SYw8pR2iw8uoJSu3lUyNLApDVEX0N78eLFALBt2zbl+BQmmqNZzPoIJX/YXrLLIyvgKalMRMllXAjpURRVmUyVwt7bcBdDhmgnOmAeiIPyhu9B+VNuylve90Le6+YKDaNn6tt0Y9Lew/x853uEMWaapngOpml6d70QZ5UqpmnyxyU3Iu/KG6Ki9wdy5M1XyImb5kQx5pHAPNSpnM1VPr9W4T3mq6YQYMDmTKZYX9lrbm6+6KKLvvzlL8tKYiwWW7t27aOPPjol1w0YxLAmV6JbAggAADLki5G6zoqwr6z6Ec/QKvDs5tEiwXG1+BRQCiuapqdNhqw0VyMTrOe1kYUKQ6lnYa+pwITUT189a3Ito4QCry7fQ/4N391Cyqj3I/hIEWmZp3yHJQL4CLwk0i4VMZc24FU4fMvkUUQAAIEAMahP1K6IWLhw4d69eydX0ff4Pffcc8kll1x99dV33nlnW1sbH5MYjUavueaa07tTC1IGYeVxczcwkaxXJQqmKGu5rI/8iiEC1/8ZsjzKo+uI767Sz8/oVLFCoViL3gKnP7owz6VVm3G8wgWqhzDemMTShSwkXnZDT/4FrzDnklhmPyjfJ1G4SOd+p3xJVl22twSwfPnyqa24Zs2a119/vbW19YMf/OC6dev+5V/+5frrr3/++ecnN/vLiwDwsVFKNyV1hnwSHyAQIoVZcnWP3oO53g77ilxwrNdVkG+uWrIeqtCxqGKAWWeWmGAUBMYYpVS2rKdEVWTShOUC2SrPnGiFEwuxoEsRBNh85iT+gBzyD25RzD8Fy5ZMa2IBoEvb8LbmS4W+2oZ7wxpvo7Azye2ILB4mPTc5T8UlS5bcf//9k72jcUBrQ7VhErb2xC9kO0rsOSP2u+TRIq1Pu2N0/Ui+CY7AU9K5JnNGEniVSllcIPdZBEAwm0wMldxriYjC+5tfBZMdjqd5xYnaqnl40/eUlx+VWtzlV/gNzBBCgK2ILLcS5xUw70G/s7Jm6BLpXK+D7xXzKKFgqymo1g3TcG1kamawTRXWrVvX1tY20VptbW3eQYgzA1oVqCo3ykV2Ge9P4nAiSnGP8fS+nBByIwYbKtZFnr5UkRJfieGE2GyadSaaWGrIZq0QFt/1eTz2cRG6yfs08z5pib+wMPVQvrRvAd/ID+YmREJIKRIiA9bMzDbTt2N2wctTucvIg2ddow5zdfDoDqfI20r3L1+FvytKHAYBEcuD5VWhqok/junF7bffPgNVpgqBaDDaGG48mjzqer7CNGCOKm4NTmR+iUDGhfhp7VH7/G13zdIbV/vzGsvg2eaXqMD08nSoM+Sb56ZYQMRUKoWSRYx51UDBYiKrTSGXUDaU7XHr5mFq8JjSSmHB+3LFTCbDkzv45nD0JgRSDnqvm/+JeZtSTyEAQPa8rEgCRmz5Hmd+setKzob8zNWpBLkIVNn2yrP0vih8isLhLoMAIjaVN5UgIS5cuPD6668vfDrzzTffXMQkYIHKQGVzuBkZArNzqcrRZGvTJi+CFCjf9nHfKmE4ZYPanRuRfPzykEPmN1da6S0VOfDrQrmfMXNuxthrGEeNkprAl06nGWPyBD5fTpRfZl8mUl5734qQm928cH6RvPFiRUMct31E5F/Zy6Tyhu+3yMXp414x1661bQI7m2XekkFEgs6Tt2YZo7Pvblf6lOo4c/KkR2EdZLY0+nbwcpt5FE93LYtzRV3mKAqI2FzRXBmq9GuryLjhhhsAoBBOvPnmm/OnupluBAxiLIkuISelkTcyJ4K9QUHYApTvUMttTNA9SV7WMW1pcISPgPhNXcgjHAohEnf0TfAgc0kJVmPqbang40HaZUXSUUmWBTit2WG9TIeI8Xg8k8lwQuT8kmdam+ARnpTQm/1QuYpQOfPrer63KreQq4yXa7yFlSOMsWQyaZrmzOdDzJUFCxdh9j1ZnGf74Wwl0ckfjCDrkv6BFPeuLNIuwgK/SLEyQE35RM+29IfCj+/JeEIIWVqz1FqEuvRwww03rFu37t577801tbmtre32228viQSxK6pWhGjIBNN5vsJSFjJhH0FEBowSe84fcfWB1ttIABiIhBE8To2IVtpqsA96u0oZ+cUFnL7RX4wYZNuy2X/IBt4MkCHiKgCAgOc0nLOqblWBlDGF6Ovri8fjggcVnU6BYEPlOJPm3sktyGxY4P3IumF+NlSI2Otq9O5WVFS8/e1vL/BOpgqEkF1Du94cftNJWSLcPnVo/g8TW1B4fpwMCcQt9ra0WHo6DxkT63sRIJyb5D7VN9DhgiK94GHGPH+2euhworvxkBFaUbfitB7cNGPhwoVf+tKXtm7deuzYMe8SAsWKoigIAMDZVWfXBmt7Mj2EECe9jWz/IiiLUQg5sIflWIqMnMwDAXmshhCiUiHkVQnBIyLKQXCrhN4y9kHWwNJXpMEEYPYfAgBQQm+7/Labl9888/NDfvzjH2/evJkTomCQcT2J8i66x+UoDDg5is/DhgWGd/j0D6XNpUuXfuELXygrK5vJjocS+tDRhz79t08zyoCAlSGYb3D9yXRNRLESC7p7ZaGbK104ClePYiCDJK5eMxmkI74bcvVcdZXj6FjliFgbqV0+b5KD/mYS69atKxHu80UAAFrLWjsqOk4NnDKo4QqnUI9b0O4hwTJ/iZAPqxgDQgifbUIYEfETUORGbOQiRPD7+X2JT6lil7S8k8ydX9a+/3ll89Y0rAGAmU/EsmLFiueeew49oZVCsi3Iu/Kkl0nfjFf1872or2mcXz3kWLFiRXl5ORQWEZpCrJ63el5oXl+mj1DicB94ZA+cgKGoS5AgsfpyqyThtGnLM7iDgeCRRl+pllVCuYz303urYIs02hNq3RTJGDur+qwFlQvyPBONQkABIBqMrqtdZz1c5vebgfT0JSvV6S3FABpAhjz5vzXyQJxyBEK0k4vUGPj86rLy4euCkSoiIs8T4VIn7SsyYEtqliyMFsdbsXTp0pqamolGJxScpj4orihPzR73WvIR5f59R+qUlZWtWbNmcrd3mmgrb1tcudiZ/uS1JMAjivZZIckALiuVd/OCE12iBT7tOHCLn3XEez9KFXebqASXlWsRWNe4LhqKTuppaTiw9KPLGi+rNCqd0YieYL913M07iqg50qPog6Irllvwio5o2RvS8fKjwoNuWCKstG9rCoSQS1svLdYAhfnz5y9ZskRJYeRKNzDNEDwI4yluvnflqxv6ejkXLFjA05PMPKqCVZc0XGKlsEM39ynEpBx39/fOOFlZU/Yqd/IbAe7GxeWIR2iV6gqxgtMaIjKQyB2l4CcFBKwMVV6x4IppeJBnHCxCXFOzZnHFYsaYS0S8XauXlWRJEsX86NKle+aHd7SqLzmKXfm4eGPloLPUIALWhGsubb10kg/stBEMBs8991w+RU8+LqtsM3MnPA1MrrO+7OxrYufi8bVr11ZXV5/mTU4alzReUm1UW3NRvH2w4oCW/8wcgqeQoB9z+QNzXC7PLrhuGJVAituMY8iW1CxZ27D2tJ6XBgAIQqwL113RdEVOW9X3V0fPcW8t3w3fdtCvQXCXV8oovMnBJBXGe10CjLG1dWtX1U1j0t1xsXbt2oaGBm+eS6GOTYeqKAi3EL+hmiPL3Yh80LcpRKysrFy/fv3UfoUJYWX1yrU1a60+HjyS46sZo3sjVzfPPJ+5msqlNvqyoUdFlf98nE5Ss1cuuLIuUjeRx6PhDyekcE3rNfWheqdHVX42708Lfme9hoAvCcp1vX/gaQ1URS/XHwNmRcBlbrXZEAACRuC6s64rrrdl/vz555xzTi7GyUVGk4ZgMSZlb8xTWHzmake5W29hxtiyZcuWLVs2Jfc/OUSD0be3vj0AAZc1qginl868QsUK6NSVFhRqA0915UKimMKGANwpb+XE84o0AAI2lDW8vWOmxzbNVTiEuKp61Vvq38L4w/f2kLIMwXgCUciLnItJwdP3+oqOItxg64bypGwPjzNkHVUdb1301gLubxpBKb300kuj0ajIXaoUKDzikR8KFUIOpstVSz7oeye57i0cDl911VVlZWWTu+2pwlXNV7WXtzsi7e2kfX3lvkDPhi+81AmgijF4LuqrCoB1t5ZuyNztSyL9lpa3rKxbOZEHo5ETDiGGjfC7Fr6rnJZb0/hk56DsaEKwJgjLP3aB8BVKdBfw+h/B4whXuBIAEBjaCxAorM0/7ZDOtR3XLooumshNTwvOPvvsNWvWCJXNW4ATjcyJ4zIjusGzKijIX10op7la9pb3tsMY6+jouOCCC/Jca2awqGLRtS3Xqj5uzCtOEwW63xR0vyxQmG6o7NrSy5BZgyW8jiywhh+WB8o3LdkUMaYmG6CGaxTeZU2XbajbwEzmEKJveEQhtVw/tvIbe+VS6XV9K6Lt5OZQfDruQIo1LkG2O2TfM7AF0QU3Lrtxih/hpBAMBt/2trdFo1FBfN4yQqdTDF6FIhUFUBwByGnS+l4rl53uy6d56DUYDF5zzTVFDKfIeE/7exZEFlgibebw7eSS51wi7dup+6qEXiJDl9z6nBIdvPg5vIXBLoPsLS1vubzt8pl5mGcCXIRYGay8bfFtUSNqKYnyT2W6iUmhKl8RkX9+8DsFnmJeDpUYzZ95AYCBj+goDQIQIO9Z9p7ltaUymn/NmjUXXHCBTHO5SqIUDFE2ZHIUr1AhkROl/QkVkDlXAWNsxYoVF198cSHXnQGcXX32poWbrCxNijR6RZqBsw5fLnn2JUGvSOdhXuUl8jPhrd9Oacct0ggYDUXfv/L9lcFSTOgwS6HO07iy+cq3Nb/NGX+j9GaeXyVf75qr/wS7Yh429HSGufpYZGgy0xl1aFOk0oIJ5tm1Z9+6/NbSybEeCATe/va319XVods6zlNFqIG+bIgFewmV1nwVSbQXclISGuahWkQsLy+/4YYbotFSGSFMgNyy+JZl0WWOJ9Hby3pVQiYJklekC3T45FIDlUt7CjhzG5Ty4GqBAdu4aONVbVdNw2M7c6ESYsSI/OPZ/9gSbmHZHK7oXD5pyPHzKxIDfm16ic/r5fHtSO3V9Vz3IC+2SwAQEDBMw7evur29qn0anuHksXTp0muvvVbsTi6+PKHCCvJf0Zf48pvhl19+eSl4D2Usqlz0oSUfCkHIsnvA1gR9xVuR5zyMBh4C9RKlfMrXfAH1BlBMsvKSMr95O5lAS0XLh9d+OBLQ3sOphM9M3vPqzvvgkg8aYPi4EfN0kuNKEpMEMY8RnYsKQTWiuehYI/hzOYAIAAWG7OpFV29aumnqn9/pgRByzTXXrF27lqdQBfB32E0HcimG4mwef6JvgzyWsmnTplAoNPW3e3p416J3vW3+25jJ1P7SK6i+0g5+JdHufX3ZEB1BzVnXw4x8tUjXHHyvikAAAAxqfGjVh9Y1lG6WhFkKn+XpCJDblt72cu/Lz3Y9awQMoAAMgNoKl5zoEBwtLGd2WPErMndFAfHDE4/oyBtum9phDW/XzaWHOH1pR1XHp9Z9qgSTCQNANBq98cYbjx07NjAwIPIkop3uoZCkD4VAsXnFVXxL+voH8zM1IlZUVNx4442tra2nf7dTjqpQ1SdWf2LH4I6jiaM0QC15Bkmk5WeMnmHb+UUaPIXRXdhXqj2nUB567cuG9pRWE8y3Lnjr+1e+f4ZTZkwJnh58eldi18sjL+9K7AKAleUrN1RtWFW+6up5xcwLK+C/XmdtuPZf1v7LoZFDRxNHKVBXanX+m9HcPOgLX5FSdplnW96V2nf0F2+Xiy4xRcCKYMVnLvjMuQ3n5r2/YmLlypU33njjf/7nf2azWZFMW6FFfnByL4DMYvl1z1yUlyeKIm7suuuuK51Yihfn1J7zqdWf+tzrn0uaSWupcSkDmIsWfZN3eYF+u4qW4BVvcIu00A3FME+UXgTZ7rFvlQE7q+qsz63/XKmtJzUudiZ2fubQZzgPCvw19te/xv4KACvLV377rG+vKi/mFDLwNZk5zq0797NrPltJK9GUhiUq1ivkMBYUyPSHkomh2Brg9pUo3SMCcH+zyVQ2BKlB03UtguS25bf9w5J/OP0nNa244ooreOZ0bwSDuZFfTRu3Vh425CGUXNGV/EHwCy+8cNOmTfLSCCWITe2bbll8i2XkyikyQZIfxb3oK9JeeVZeEIXLvH4nd1TQxYaicfEumFLqRsBoMHrnBXeWcgfvi7tP3H3tjmsVNpSxK7Hr2h3XfufEdyZ9iaGhIULIjh07Jt0C5CFEAHhX+7tuP/t2itQ1VJt5fmwvJxZeUv75x2uER98cl7Nv4xy2sfy2hW/75LpPhoyS82opCIfD733vezds2OCN6oKkuOWhOdknKEiNc1wmk0mlUqlUii9vAm5NE+1ocv6xkLnunI+z+cd//MeqqlL0SMgIGaFPrP7Elc1XmqbpkhlfBlQEskB5Bukz/3sBtkgzZkWVvXwqW8oACBgggQ+v+fC7l7y7GM9v8rj7xN3fPfHdQkp+58R37j11b/4yu3fvvummm5qamsLhcEdHxyc/+cmBgYEpuEsAyGUycwRp8GOrPjYwNnDfgfsMNJy0w+ixLxTPoLIwS663SRYddB+XzWew3Cs+vainv7WuDmCieeH8C7960VcbyhoKeA7FRzQa/dCHPpROp1999VUAIIRQSnOtP8U3fC1oXiCbzSaTyUQikU6nOckyxgghhmGEQqGKioqysrJgMCh40/eWcLxx3YyxZcuW/dM//dP8+fMn9aVnGg2Rhq/+3VeHXxx+pe+VIAQBPc5E8PgTwT6oyLnvU0G3VMsH3bsi/7YVQhEFxLac+oNYp25deevHzvtYgOZ7bUsNOxM7C2RDji8d+xL3Kvqe3bJly+WXX37FFVc8+OCD8+fP37Nnz5e//OWnn356y5YtU3K34zzZymDlP5/zz/1j/U8cf4ICJYRYYkHt34+46U/2M/oaGkpWOG8ZWdGzPc08lGyNzJKicmpM2W7fRHN1w+qvXPSVjuqOCT2O4qKhoeGOO+4AgNdeew3AWjglT1zFl6oYY8PDwyMjI5lMhtlLr6A0aDGRSAwPDxuGUV1dXVNTEwj4yECBJvayZcs+8YlPFCvp4eTQEe348gVf/tTLn9o1vMthFpkWZcGGAkQa3AWUMsx9UMQDhUArbOhWBZxagO9Y8o47L7hz1g3D/vShT0+0ymcOfeap1U/5nrrjjjvWr1//2GOPccFetWrVW9/61ptvvnnPnj1nnXXW6d5rfpOZo7Gs8Wvrv/b3bX9vWVXCz6KM6c//Z7o3TDeveRU9ydBwTVLONTdGgsnM1fWrv3Ppd9Y1zr5BCQ0NDR/5yEf+7u/+Tp7B4viYxgNjrLe3t7u7e2xszFeFFPSaTqd7enq6urrS6bS3kXGHQ85SNuRYV7/u7gvvXlm9Mp1NWy5yUxLR/FLte8r0k17FcLGP294NW6T9ZF7u4HmNd5z1jq9f9PXG8sYZfVKnjacHn96d2D3RWrsSu54efNp7/Pjx46+99trnPvc5WbCrq6uffPLJqVqnpaAVReaXz//G+m/c1HETMUnWzDoT+0zPOKxcAuT7Y3trSYURPR5D0Xmabqe46NIBGGMbWjZ877Lvnd94/pQ8oJlHY2PjRz/60SuuuALACe/6kpSXsAYGBgYGBrxUmEvHHB4e7unp8UZj8lAhL3P++ed/+tOfno1syHF+w/nfvfC7F9ZfmMlmTGY64V1ZorwijR7B88qz93WwTWDGmMlMl8dQ9mMqrxJY6RsMYty8/OZvXPyN+eWzwy8hY2di5xRWPHjwIACsWjWNkehCl1hqKm/62vqvfWTFRyIQyWQzpmmqkRbTLTrg6SfzdLzSccvHzyy3l2tWNXhETYAb1xQ2tm/84RU/PK/xvKl9TDOM+vr6D3/4w+9+97vLysqYnaaBw5SghFay2ezIyMhErxWLxVKplMy8eQozxgKBwNVXX/3JT36yvb190l+wFHBew3k/vPiHG1s3YhbNrMVUFjGZHnn2WjOFiDTv2hmazDTR9IkHKq25NUqGrCxYdsfaO7520deaypuK9JxOCy+PvDyFFbl7x5tZeQoxAe9sNBS9a91dHVUd337j252JTgMNaegwUcep5vK2+DoNbUvC2gLbmgCPIIIkN5JzhwGrCFS8f+X7P3HeJ+rL6gv/UiWLysrKW2+9tb29/cEHHzxx4gQPsHhjvmKbEJLNZnPJSn7jN5vNhkKh/FTIS9bV1b3nPe/ZuHFj0XMdTgk6qjq+f/H3v/fG9+7bd99odpRSSgm1xJnYYxU5vBq2r1cRnLfAWapXBAPB7S4ENy2iK2hjormgcsFnzv/MTWffFDbCp/9li4I842zyw9fQ5hbJtm3blPH/mUwmGAxO7kIKJrYIZ9gIv2/Z+35y2U8uargITWtIoGmapm0KuJawYH4b7q5VjKThgw+sQQgm+syvUloDu/sFNNFsr27/5iXf/Pz/+PzcYEOOQCBw+eWXf+5zn7v00ksNwxDT+3xRiIdRhljYHsQbm7dxQsj5559/1113vfOd75wbbMhRH6n//AWf/+aGb7ZXtJtZ02SmyUxnSKYQ6VwuRVsgeRfOPYPWDDzh81EM5PwizZ2GgBe1XPSTt/7kfSveN3vZ8HTgWuXVRnNz80UXXfTlL39Z7vhjsdjatWsfffTRKbnuhOP3hJANTRv+4/L/+MnOn/xi3y8GUgOGYSCxombWayaWbSaEc5ZrHVubyMD5360AgrThtVakuLaJZsSIbFy48VPrPrWmYU3pZLKZQrS3t3/84x8/55xzHnnkkePHjwOAYRinP2dLKJv5m+Jc2dTUdO2111577bUlkuVwahE2wjctuWlVzarvvPGdp48/PWaO8QXK+QL2jkgT6z9E5JLmLNOM1kHH0IEcIq3YOkKkwRHp2nDtrctv/fDaDzdXNM/cU5gerCxf+UrslclV9D1+zz33XHLJJVdfffWdd97Z1ta2e/fuL37xi9Fo9JprrhkbGzu9mwWYBCFyNFc0/88L/uelLZf+aMePXux6MWWmLBkCtCQJLUJEREuMFNJXiM+7m0duEBgwAmTVvFW3r7n93UvePbdXpC0rK+M5IDZv3vzHP/6xu7tbjFKcvtms3KVYU1Nz6aWXXnvttR0dHbNx5myBIEDW1q/9/qXf/83B39y7697dg7uRICXUEWkui14LWrh5hJLu9Q4pYoz+p0wwwzR8WetlHz3no5e0XhKkU2MDFhcbqjZMjhA3VG3wPb5mzZrXX3/9S1/60gc/+MGBgYG2trabbrrprrvuikQixSREAAjS4JULrjy/4fxHDz16/977d/TvyGDGMAzZFcL7WJAVYP6/N8WDr4cFpGJ2Fe6aWRhd+J5l77ltxW0LogvmpGLoRUtLy2233XbxxRc///zzL774YldXl2ma8uBtMcXFd7SNb5u+x7kzsa6ubsOGDZdffvmKFStKfE7eVCEajL5v+fuubL3y53t//qsDvzoWPwYEKKWO0LIczkRlJXFx3Ld398BEM0iDa+vXvm/F+25YfEN1eO6o4ZOem5yn4pIlS+6//37v8Zqamok6jrwgp98EAHQnup84/MRvDv7mjb43EtkEoYT3rj5ZQxQqRL9PlHhTFERkyII0eFb1WW8/6+03Lr1xSc0SSibmA50bQMSTJ0+++uqrL7300qFDh0ZHRwGAEGKa5smTJ7l7RTGrvXNOxIorANDW1ibC2ZFIpK2t7cILL7zwwgvb29vPECpUwJAdGDrw0P6Hnjzy5KHYoQzLUEqF1ezAlwp9XUBekUZgwBCx3Cg/p/Gcdy9993Ud15VsKPmBBx645ZZbJld3446NEx2KuKJ8xdOrfcYhTjceeOCBqSFEjqHU0F9O/uWJw0+8ePLF7kR3BjKUUIezfKc95TKcncPIkBEg8yLzzm0497qzrruq7aoFlQvmsPlWOOLx+OHDh//2t7+98cYbnZ2dQ0NDJ06cmCghIuLChQvr6uqam5tXr169bt26pUuXVldX6yeMiJ3xzj8e/+MTh5/Y1rttMD2IgFYY2qd0jg2PSPOVcoMk2FTRdFHLRdd1XHdx68U14Zpp+AZThtMhxJ2JndfuuHb8chJ+v/r3RUl7M8WEyJFm6cPDh1/uevm5zue2923vGe1JmAkEJIRQoCD801JYzQK3shERkAEjhIRIqLasdlnNsksXXHpp66UraldUBCum9m7nABAxkUicPHlyy5Yt3/ve9wYHBymlyjzoXITIGAuHw3wc+IIFC6qqqjQPejGaGd09sPtPJ/70pxN/2je4b2BsIM3SCMgns4oQoq9I82fOgPHQYnmgvLGicU3dmivartjQvKGjuiNESz3zCJweIcJEkjsAwBcWfuH2+bdP+lqng2khRIG0me4a7dozuGdb77bd/buPjBzpSfaMZkbTZjptpl0RFgKAEDSCIRIqC5TVl9UviC5YXrt8bf3a1XWrF0QXzLr5m0VBd3f3e9/73s7OTkppgRoiYywajf7Xf/3XeefN7qHsM4N4Ot4Z79zRv+PNvjf3DOzpjHf2JfuS2WSapTNmRilMCAnRUIiGKoIVjeWN7VXtK+pWnNtw7vJ5y5srmks/A5OM0yREKJgTi8iGAPDAAw9MY9qMkBFaVLVoUdWijYs2Zll2KDU0MDbQnejuH+vvHu3msZEMywRogL+6tZHaukhdc0VzbaR2XmRe2AifIdGS4mL6esS5h8pQ5fLa5ctrl29auimVTQ2mBgfGBrpGu/rH+geSA3ymXZZlg0YQACihTeVNdZG6pvKm2khtTbhmdmWpmVp8uvXTG+dt/PShT+fyJ64oX3H3WXcXPUHsDP1CARqoL6uvL6tfNm/ZzFxRQ4Y2hKcWBEgkEGkONDdXNK+qK/I7PFuwqnzV06uffnrw6Z2Jnd4lBDbO21jsGwSYMULU0NDQAICN8zZunLcRSnHpHQBNiHMS8oQ8YRHLoxS1wqih4QtNiHMKPE5CCAmHw+Xl5VVVVdFoVCSGyGaziDg6Gh8eHonFYmNjY4VnWtTQOBOgCXFOoaamprGxcfny5e3tixobGyoqKsvLy22FEXioOZFIjI7Ge3p6jx07um/f/p6ebq0wamhwaEKcC2CMJRKJZDLx0Y/eMW/evEikjFOcZDSLTywri9TVzVuwYMG5556bSqX6+/sIgcHBgWi0ync5AQ2NMwf6BZjdYIyNjIwMDQ2Njo4iYmvrAjmBDaVcMbS5ENH+n1EKABCJhJubW8bGUnv37i0vL29oaGhoaAgE5kJaAQ2NSUAT4mwFn6DS19c3OhoHIJQSQgxKga9uD2CnGgIAQMZctIjIT/Gh2iwQCJimGY/HY7FYb29PS8uC2tpaSs/EeeIaZzg0Ic5KmKbZ398/MDDAGJMm6nlXUrFI0DCAh08IAUSCSBD5ygQMwCCE8dKMsZGRWCy2u76+cdGiRZFIpCjfTkOjWNCEOPswNjbW09Mdi8UNgwYChj2MRmZDeTFNa9cwCDogiASAIHIapADAqwcCgWw229V1Mh6PLV68uKZm3sx/QQ2NYkET4izD6Gi8q+tUOp0OBAyRI9ZvaKE1FFHsIwIhlhrIzxDCF9gGSpm8mIRhICEQi8V27tx51lmL58+fr8PQGmcINCHOJsTjMZ4XNhAIUEo5wUnqoTcvLCIipcBX7gMgiEApVwytJWwAKCIQwgihlHInowEAgQBkMum9e/ciYnNzs+bEMxmRSCSZTM6ltXS8SCaTkUhEO85nDeLx+MmTXdls1jAc3VDSEam8qIBElJSHXOyzACDqAj8o16MSAoEAY+bevXu7urr04O0zGS0tLZNY4XZ2YXh4uKWlRRPi7MDYWPLUKUs3JIQSApzjACghLsNZLLcCEi3af9xqBsm3CII3KbWY0SJJSgmhgYBhmtm9e/f29fUV8etrFBerV69++eVJrrA8W/DSSy+tWbNmGvMhakwVstlsZ+fxZDJpGAalBiEghZV9HYgAkgPRXnAZAVCaqoeIDBEZA8aYnS+RL1XPTJMxezXObDaTyWTLysrPPffcykqdmPIMxfDw8LPPPrthw4bq6uq5ZDsnk8nh4eGXX375qquuqqqq0oRY6kDE7u5TAwMDtt/QMZdlKlQ4UZ6eAuqobMGJ1lRm7kxEtGhR5kTTNE0zm82amUy6oaFp7dq1ejbLGYtYLLZjx46TJ09Oyfp2JYJIJNLS0rJmzRre2WtCLHXEYrHOzk4ACAQM27ClXDfkY6dt6xi8v6RMi0JPRGSIwBgfmA2IzF5exVIP+ZZp8sXazWyWc2I2mzVXrFjR3t4+g99eQ2NGoX2IJQ3TNPv6+gCQx1G4d09YyqAMPiSuP/CojaIgAEq1RWtysyBC2IZBDIMSQgHg8OHDfJE/DY05CU2IJY2hoaFkMiGZyS6noSAvMcvOS4B+NrV3TotaSWZJ/kcpGAZNJEaPHj2irQqNuQpNiKWLbDY7ODjIyUiOFHPIqhy4qVDhKzf5Ea768VyxIvQsnVZ2lZE8tLOzMxaLTdV31NAoKWhCLF3E47FUKsUDKZyVFKriG4L+hNbopUgJKFVB23Z2WvWMyLGOU8r1RDI2lurq6jr9b6ehUYLQhFiiQMTh4WGwVDYXSUnDDOUaxLOhwm4HedIHe3qfb0nFOynGJxJKSVfXyVQqNckvpqFRwtCEWKJIpVKJRMJtr4JCdpzL+HFEeYF0ngaRbxS6jopvAU89QgiNx2NDQ0MT/04aGqUOTYgling8ZppZrpR5eBDdu2AbwtZgQ29ryoJTMgTf2XVR2uUtK4wI2azZ09M9ue+loVHK0IRYikDE0dFRkeoVbDVQLqBUkXjN2XUnhXVlvuH/y03JqqC3fZ4uTNzGwEB/JpOZ9BfU0ChNaEIsRZimOTY25hlr7TCXZ16Kq6Syq7QgNEqe/EbwrNAu5YMitSJfqIofopSOjiaSycQkv56GRqlCE2IpIpNJZ7NZPhaawyYp13pR9nGVDaVtXzMZbcYU+qPrrOC+XFY2AGQyKT1CW2PuQRNiKSKdzoh15QGAu/bca0UBeDjRoyc6q01J2p8yv5mJLbs1opCsHJwRmiNjmEhoQtSYa9AT9UsR6XTak50BABSCc5Ans4PiOuS8J5OdfRBtzVEmX3Bb2a6Qy+ioNpk15ho0IZYiGDNl6pHHYItoiW8MRBz3qJPiU2ZS9LTgFHMHndGtJwIAmGZ2Cr6qhkYpQRNiKULx8XGiA0AARgiVpqYQMcxQqutVD8UeEy3zZIhi1WZRzG16o1t/HGdwj4bGbIf2IZYmLEOV5+wS9qx9CiW/H4LIa+jOCCuxIfIlmCWetdpX+E5ohZJxbbkaGZPJEdxMqqExR6A1xNIEsSMelDGUMh4iY2JenWPGepMhKlEUrkrKPkFOcDKxCgZkTNYZxXG+D0JVHHfqi4bGrIMmxNKEQ0+coShlPBOi0MvswTHcY0jA4xzkuqM7kGJpgowpsWOwy1vqocgUK25GkCNXRmfgEWhozDw0IZYiAoGAZL06ljEilUYjyitGoU2O3hE5rjCxY/L66oeO8a0wIFNsakIgHI4U5eFoaEwfNCGWIoLBEABBZHzCHCIiEtNESrl17NUH+eBBZsegiX1QKHMIwG1htO1li+4QgbsIAYBrjqiCCVNaECohpLy8Yqafi4bGNEMTYikiHA5RShhDQtAwuJrGKKU2GSEnSnAG4kjMZ3sMhZpobwnKk1VC4PEW25R21EB72wnY2OSIAGgYgYqK8mI8Gw2NaYQmxFJEMBgKhULJZJJSyhijFAgxEJExa7UAWxN0PjmkEdfKgBsUTkOJDR2+A3CYjx+1z/I1p1xnETEcDmsNUWPuQRNiKcIwjIqKinh8lFLusGOMWcvs8SgzpSCchrYb0fEtKrohp0JuFEtsaC3KzEsyJuxiZg9RZIIvbf3RZIwBMACoqqqKRLQPUWOuQY9DLFFUVVUR4lpCXtbtGHPFOvhCyjKR2YoeN3XBXn+Za3zMbSAzuzVXGMcuDNI2vyIQQurrGw3DKPZD0tCYYmgNsURRWVkZCoVSqTSlnNGAUmAMxfr0fKEoezEAsS6z5SgESVUUBrPQ9QSxSuwJYq16mSWZvVYz/+R6aDgcbmhoKNaT0dCYPmhCLFGEQuGqquru7lOmSQGQUq6dUQDGE8cKTuQQ66XwPcV3KKjQjpaArQwyHmYRbMgcQ5m51VKuWjJEnDevNhqNFuOpaGhMLzQhli7q6+t6e3tMM0sI/5kIAFAK9ghtOZ+2M6lZGLYcIsGXPCHPpkrGmBh5yIQRLWmFyBiaJmPMZAwBGAAxDGPBgjZtL2vMSWhCLF1UVkaj0arBwQGxjDKlwBglhBEClFJEazU+RGs1USYxofWfE0WRx2lbwRLOfODEm5kdUGYKBI9WV1c1NjbO5HPQ0JgxaEIsXVBKW1pahoeHTNMEAAADkVGKABSAMMaEoUwIEVQonInK5DwpWAximKE0vMbaNU1mj7YRVGgZywBgGEZHxxI9R0VjrkITYkmjurq6oaFeWhjeQERKxbIqqLgOAawwC0opvMCmRa4M2pNSlJA0M02HARlD00TTZIimrB42Nja1trbO4APQ0JhRaEIsaRBCWloW9PcPplJjAICIlFJEsJcnVRacEnaxtcudhoQIEpSHIjrRZERmmohoitE8suFseyEhEilbunRpIKBlRmPOQgt3qaO8vLy9vX3fvj2MZbmGSAgi8sE33GbmGyBFnOUxNyCFUywHIrogzGSLBIWqaHsYEYBQSpcuXVZXV1+8J6GhMe3QhDgL0NjYGIvFjh8/ahhIKaWU0yKhlLOhspA8URyI7k9lJA2KYYaCEzkhcmNZWNxtbW3t7R06B6LG3IYmxFkAQkh7+6JkMtHT0x0IBBAJIUipGHnjrB8P9o48/FDetfVE7h9k9nhsZy6KmPQidENEbGioX7lydTAYLNoj0NCYEWhCnB0IBILLlp3NGPb09AQCzDAMriPaA7TBVhWRj8WxqZBIIxDBnr8sqYjM8STa01FMMb2PV6+vrz/33PPLy3VuG425DycDs0bpI5VK7d69u6enm1JqGJRSyjM+2PFl1Z6VxtwwMVHPnbYGZdUQEU3TtNPNAiLU19efd975el6KxhkCTYizDKlU6sCBAydOdAIApQZ1ZjaDbDujs9AK2lQI8tgbO+ODElDm01E4SGtr66pVqysqKovyTTU0Zh6aEGcfTNPs7Ow8ePBAKpUyDENiRGstKpkK+dJUAK5U2Dx1tj0Y2xSHhcMxFAotXrxkyZKlwWCouF9WQ2MmoQlxtmJwcGD//gN9fX0AaBjUtpeVoLNkNDurTdmeQyl9g12IEUJra2vPPnt5U9N8HVPWONOgCXEWI5vNnjx58tChQ/F4DADsGAtw21nMXAYQVMi5T+RBRMldiIRARUVlR8fitraFOvmrxpkJTYizHslksrv7VGdn5/DwUDZritkrYqg2ogg6WxqiRJTAF0iprq5qaWltaVlQWak9hhpnLjQhzhFkMpnBwcGenu6+vt54PJ7JZCV7mUNWBgkhJBAIlJeX19U1NDU11dbWhcPhIt27hkapQBPiXEM6nY7H4yMjw/F4LJFIjI2NMSsTDhJCASAcDpWXV0Sj0Wi0qrIyGomExaBuDY0zHJoQ5zIQ0TSzIsrMYySBQFBHSzQ0fPH/AcUtqBq1CbiTAAAAAElFTkSuQmCC", "path": "image.png" }
Complete the statement. Dichloromethane is ().
[ "an elementary substance", "a compound" ]
1
The model below represents a molecule of dichloromethane. Dichloromethane is used to remove caffeine from coffee beans and tea leaves.
There are more than 100 different chemical elements, or types of atoms. Chemical elements make up all of the substances around you. A substance may be composed of one chemical element or multiple chemical elements. Substances that are composed of only one chemical element are elementary substances. Substances that are composed of multiple chemical elements bonded together are compounds. Every chemical element is represented by its own atomic symbol. An atomic symbol may consist of one capital letter, or it may consist of a capital letter followed by a lowercase letter. For example, the atomic symbol for the chemical element boron is B, and the atomic symbol for the chemical element chlorine is Cl. Scientists use different types of models to represent substances whose atoms are bonded in different ways. One type of model is a ball-and-stick model. The ball-and-stick model below represents a molecule of the compound boron trichloride. In a ball-and-stick model, the balls represent atoms, and the sticks represent bonds. Notice that the balls in the model above are not all the same color. Each color represents a different chemical element. The legend shows the color and the atomic symbol for each chemical element in the substance.
Use the model to determine whether dichloromethane is an elementary substance or a compound. Step 1: Interpret the model. . Use the legend to determine the chemical element represented by each color. The colors and atomic symbols from the legend are shown in the table below. The table also includes the names of the chemical elements represented in the model. You can see from the model that a molecule of dichloromethane is composed of two hydrogen atoms, one carbon atom, and two chlorine atoms bonded together. Step 2: Determine whether the substance is an elementary substance or a compound. You know from Step 1 that dichloromethane is composed of three chemical elements: hydrogen, carbon, and chlorine. Since dichloromethane is composed of multiple chemical elements bonded together, dichloromethane is a compound.
a compound
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAdkAAAEKCAIAAADRj7jUAADTtklEQVR4nOx9d4BdRfX/mZl7X9ne+6b3TiBAgNB7UQQV1K8oNgQVKwpi+ao/BQUBO4oFv4odpRdpgSQQCJDe2ya7m+319Xtnzvn9Mffed99mQzbJbjblfXhs3ruvzb3nzWfOnDnzOYyIYDSAdlIlozLeSzJFhABAwHggx8wpFqFcbgRGpVXHLwjRSshkRMV7CRWhAsaBMREqEOFCI5TLuBjtJmaRxbEM4zB/Hylp97dZnTvsvlaVjJC0gBQREQESEXASAR4uDJWOyamYECwoA8YPcwuPN6CdtHqarM6dMtKBVpyURURAhASIBNwgERS5JeGK8TkV481wwWi3N4ssjk2ww+YXE6Hd05Rs2aB6mwEtBgwYY4wRge76hISESqFSSioCMxyunFwwdk6osPzwtPB4A0kr1bE92bIR452MlLYIMAYEREREiISIqJStlCLg4eLc2umF9TONUN5otz2LLI41HCYuRiueaFxttW1imBKcM84BgAEAAIHb8wkQERUholJoK2XbkoUKiiYuKBozixvmYWjn8QMZ7Uzsekv27OYMBeeMaWuA/jUQ6sGREImQlFIK0ZbKlmgWVpVOWZhXOR7ct2SRRRaHjsPBxSrWE9vxKvY1GYJzzhljXs8HIh8Xa0eMlEJElAqlUraUUrGCsXPLp59mBHNGuqnHCayuXYmdr0GqTwjh2IOBMzhqpxgciygkVKgQUZFElFJatiQRKpt2evH4udkgchZZDBdGPF4so13xrYsp1mkaQjhEDAwAGAMiYIwIkDFEZEBCMAAgYABOLycAItm78y07FauZe4ERytLxoSLVsS2x/VWukoZhcMYYZwzAGR2JgAESI2IIyIAEZwAcgIDAAAZCEIBtJ9vWviTtVPmUk7N0nEUWw4KR5WKVjMa3L6N4p2EaBuecMeC+ma2mYyAOAJwzZEjIORBx4ooTI84EMhQCifobN3AzVDPn3Gyw4lBg9+5J7FjOMWnooZED96+OMgZEHAgZcOKAgICcMeKcEwJwTuRYBGXHxmUiEC6dMG/UTiaLLI4hjGCWAqFK7HoTIy2m0EQMzJ0PO7NixoBzxrVz5j0LnDPOHI+NcyY4E5wbgnfvWNW5Y9XINfiYh0pG4juWcxkzhBCccwaccWCMeYEjffUZ4wB63GTAnDucaRNxzjlnQnCGsmXty9GOxtE+rSyyOBYwglxsdeywO7cZQgiuqTaTiRlzFozc4LHu97rzu8zg8LOmAAbYtml5vKd15Np8LIMw2bSG4h3CMATnwrUId43gixs7dxjTg6J7wOVtbRQhhEpF96xbIq3kaJ9bFlkc9RgpLkY7mdyzVoDi3CFUzbUcgPlvmofTdOwu6zGAARzBmOBcxnrbt7yp94ZkcUCw+9vtjq1CMM4YZwCcg3u19Y9AW8RJa4P0ISe8nx4s3TGSgxAi2razp3HTKJ1TFlkcOxgpLrY6GzDW4aRNgMO2Q8yBYr6eDwCeO80Z44L3NG6KdWdd4wMEUbJ1E8gkZ5z7xjlwjeL/C5AeHd1H/iddY+ioEmHHtrezrnEWWRwiRoSLCWWqYzsjcqjYdX6dp11WJvcRAPjS3DKOu+8F17FmMhntado8Es0+hiETfXZPkxeIZwPINtMi7kFNwD6rwUCCZgw457Hulkg2apxFFoeGEeFiFe+VkXa9oWMQULrTe52fdJ4zORltvqcy8p+1g9y7Z1vWETsg2H0tZEUY5x61ZtAu7X2EwDFI2lQ662Xg7IYxUlZv87aRaHYWWRw/GBEutmPdoFIDt2WlydbHxuRsLHAegf8BuS/Vx5zDjLFEf7cV7x+Jlh+rsPs72D429XjX2H3ssXDaTkT+XUHko2jHvY72tChpjeAJZJHFsY4R4WIZ7SLEAR6Ux6b7uqOFKZwXO54a+YjbmywzZSXj/Z0j0fJjEqRsGev2W8MZ/1x2HTg78exCzugIPrImPxUDEAADnoz02MnYCJ9HFlkcyxgBLiZSqZi7sdnZ4uz0/LRr5T6Z/qtfBr4nnBcCuBtzXWJWyrbikeFv+TEKQolWDIC5V9o9rreeQ9ocRASInjyIZ7OB5krPZxxWVnYyy8VZZHEoGJl9d4i+cC8RY0SUEQUm/9PkzZG9iMU+iDotlZBNazsA+DmYgJCIMyBizr5Hn1Fcc6DHz77DGYOr76/+SB/JZ5FFFgeM4edif89FIkZExIg5dMuIwKOAtJusKUKLgoEjD0aEiPqv89AlAh9/ZLF/aG1o7oxgCMS1PfSz/jiyN/cAzPSViQjBMQG6njMBpkmZsibJIotDwfBzMQNGwDSfMkaMISCAzkd1V4IyF4p0r0bXC0YiAgQkREdgPv1Kh5aBgGcFG4cMLcCEhEQMGXBiSIwxxjMnK+mF0vRQigiYjlo4I2X6NehZRG+cziKLLA4SIxCjYAyMgFa/ZNzp/ACo84PBJ1sMbkQSCXVoQvMFIqFLzvpzdId3n0XGuGGGhr/lxygY4yBMfREZEGOAgAwYR4eMHSfZzZZwY8aalxEJtVPsXH39xxM41hYRQmTLYmWRxSFgROLFZm5JnEAgMmSOL8yJkSMygUCalD0HCwkAwOngusAHknJcMN39wZM2V4jCDOYUlo1Ey49JcCMgwkVWfxtXyDQ1c2AAREpbxIsk6yg8umEghZp2wRkQnRiFR8s6fIQKMS+nMBDOH9WzzCKLoxsjw8V5pcSEQmTK2TZHxDknZ70IAHzBCif4QEgEqFzyRSdOrHlBKUKFWtJcIebkFgRzi0ai5ccmGDPyyxItmwSiHg0JONfbIf0WcXd8OAFixwd2AvnoDYfOiJgmYgTMKaowAtmZShZZHDxGiItLeLhIxjq0GAUR4xwIGMvYRUte5io5i3VuRBhJISqHkBUiaSpGVBIRgIoqxwbCuQO+VEWjsr0dE3FCZKYpCgrM8gpmZsWOAQBCxTX9IiCVZMAAOCGSYJ6UtKsj727vSIeHgYAUIhI5Q6HDv6RZWCEpRC6M4pqJA0suIcqeHtnVRbZFiCwYNEpLzeIS2NduzCyyOL4xIlwsAuFwxYS+rW2cIQBw4ATIyJOmSDtivsQ18DvEKt3hQSEphQpR6r8Etlnibf0g205u2ND/zNOxV15O7diB8TgSEOestCQ8e3bhxZcUnnV2oLp6JE7zKEKgoNwsrLY6dzIGAkDrA5GrTAG+dBYkn11Q+8SgiVgpxyKIKJEUokSlCC0KULDI+y4VjcbfeCPy7NOx5cvt5ma0bSJAwzBqanJOXlB0yWX5p55q5GcDGllkkYGRqndnRbr2vP5vsCKmYQjO0mXumLNS5Ca5DVi1d2bByvHBSCqUCpVStpSWlMho7bbWZ1e2fOi6j15xxRVmd1fnL37e/89/YHubky3HGAJo+pCKVMAIzJ5d/bnPl7/7Sh4MjsSZHi2ING/qWP2MwckQbtlB7mnhuTuewb+g6mYWuqMjIioFug6hYxElkeip1zY3x8M33XTTKaecklq1suPee+MvPg/RCAMAznWymyJQCiUi5uXlnnVm3Ve+WnjyKdnqpVlk4WEEa492bFzau3W5aQghuOBpVXL/a9w0NneZzrco5LjDCqVSUilbKokqacsHn3prxYbdoVDoEwsXXrFrp/XaMgHg6RDpk1EACCAJlAJLWSo/r+KGG8d+8ctmcfEIneyRD2WnWt58LNnZYBqmrjzIXd1L35bm9BY7zDQHIiKCRFQKpZRSKUsqBGztjvzy4eVN7T2VZWW3nbxg+iuL7W1bhRCeoTUXI4ACkAhSoYU2HzO2/pvfqnr/NdzMZl9kkQXAiNa7Kx4/L97eYPXtITJQcOEkUjhRCm9vMxAgOIt3lO75jhul0OFiiQoYrNjYtLGhwwwE6uPxqf/4m1S2IQR3t3J73V44Eo9AAkwIUCzedN89dqR/yvfvFDnHafVSYQZLJp+6p6/dthNIXHDOyaug4sBbUU3bwvGOUSkvUqG0RRShVOr5Fds7+uKBYHDmnuaKB9cikGkY3Je5iP78ZQ4AHFgg1bh725e/hLas++j1h/tCZJHFEYkRXEgxQnnFU09LoimlklLZbh+2lZKut6vdXiV1IAKVc4TcZ5WSUr+FgDbv7nj6tc1JW5YgfiTaNwnQEMIAMAB45k3r8XIAwYAzMJgwEVv++GDjg7+HEZsHHPnIKasPVM9KpKSSKKWS0p1zKJSItnffMdAgFpFS2lLaSklEJLV0dcPr63cTwFTL+p9YpERXJgQQe1lE3wQAZ8CBGVxApH/HD77XteSV0b4qWWRxRGBkF7Vfen3t7x57tbMvJhXaUumbVCil7uFoK3Tjj3ryqwPEaeK2pLSVQkDJQ8+u2NnS2QeI50f65qWSLJN5mXt/rzJOwAAE4zyVarjv3t5VK0f0lI9kxOPxP/znxceWrkukbNu1iEuySq+OSmdcdAykkDQF69fYSllKSUTg0BkXz7y+NZ5MhaW8ur+3RslBTeD5yJAu1wIcuODcbmrc9sM7rK6u0bwoWWRxZGAEYxRvvfXWT37yk5aWllg89sHzT6gqKVDAdJU1ZwXP1cZ11+7A2Vvghib0Sj0RFVbUjz3xkpvGLPrFL3/ZuWrVonhcZBKuBkF6YdArGqS/jQFwzhNNjU1//UvRvBOOw1UjpdSf/vSnfz38H1OAVOrShTPywkHm5FR4aW0ZC6rKDVCgQomklLJRKUJgrGL83JnTzojnT/3dH34/ZueO2akk+IZG2MsoAy1CwAGEMHpfXdrx0ou1733f4b4cWWRxhGGk1u4aGhpuueWWtWvXcs4Raeb4ymvOmze5rsxZw3df5t8JTag7v7NkLxUqUkyI8jEzxs+/MFxYBgDNra1vfP22yQ//I8S5cOPC/k/TAUp0F4sUgCSQCiSoFFAS0Zg67dTHnwzX1o3EWR/JePzxx7/73e/GYjEiEoKfNXfClYtmVhTnp1NcgIAx8imX6rRictK90UaFpALBnJppp9bPXmQEwgSwdtWqxptunLR+jcG5F5rw4DdH2iIICskCTAElpCy75tr5D/yeZzPBszi+MSJ+cU9Pzz333KOJmIgYgzXb9uxq6fzU+y86dcaYZKyXccZ9UjLuwr2bOIWkSAFjeSVVNdNPrZwwT5hOOlpNWdlJnEcR97VlgHy3AccBgHEe39XQu3r18cbFb7755r333huNRvVCnZTq2dc3bWvq+OJHr6zOF3Yq7hWJBWe+4mx3VojORhtS3AiUVE6sn3lGcc0knbjCAKZXVYWl5RcwpczR0btDma/RYJz3vvVWYk9z7thxI3PqWWRxdGD4uTiVSv36179+/vnnNREDACIqJUP5lSdccO3kKWM7dqztadyUjHajtF0p87QMLjAuAsGi4uqycTPLx84M5hb6P1xFo4nNm8CXL+UHZvZ5X7mQ9EGVTPZv3lR96WXDfuJHLBoaGn70ox/t2bNngEXGTpt70hUfD8ho+/bV/a07U4l+UtKr4uEoTwAxLoxwbkHF2MoJc4prJg/Y62zt3m21thk+i3hynN40ZR8WIQAAxpLtbfHGxiwXZ3GcY5i5GBEffvjhv/3tb+DTGpdSFhQUfO2rX12wYAEAjJl3btW0U2I9rbHu1lhvu7QSRKjLigZy8nOLq/KKq/alb0C2jYkEMOZ3fr3+779hRs931Op1g2TkOKoJ0tfXd88996xZs0YIgYgAgIi2bc+bN+/rt91WVlYOUJ5fMTYZ6411t8R6WuN9nagkoWJcAOPh/JLc4oq8kppwQSkXg/xaVDxO0vauOQfQPjIb1BZuSDpdwZAxtG2VSBzWi5JFFkcehpmLX3nllV/84hepVEpPeIlIKSWEuOGGGy67zHVFGQuE8wLhScU1kzyBeD2v5dy/6j4oyJFz9PV58Pli6Ov8egOe7vmYyQjHCSzLuv/++1944QUhhOcR27ZdX1//zW9+c9y4cfpljPNwfkk4v6Rs7EzXGya9LYdxsb8vSZuDuX+Z7zqnbeFaBLVU/V5ecxZZHM8YTi7esGHD3Xff3dXVlTkXVtdee+11113HB4vwsrRAzZDAhEGGqfSmAX3E96zfEXNuCAiEQMpdO0LGxPGxGZqI/va3v/31r3/1Jih6aMzPz//KV74yf/78Qd91wBYJBJSWt9grrQX2NgdlWEQbhTjngezuuyyOdxwwF2Myabe2qv5+sm0mOM/NM6uqRH5+e3v7XXfdtXXr1gEu2BlnnPH5z38+N3egrNrBgefkmPX11rq1QjjO14BVe/+OW6UACRSQAkIACaAAyDByxo0flsYcESCSPT12ezslk6QUC5hGSalZUcFM8+WXX77//vstywIfEXPOP/3pT6fnKIcMs7qa5ReoSD8XDDKziSGTi1WaiNHLqVCIZnFJqLJyuNqTRRZHKYbMxUSpXQ3RF56P/Pe55MYNqreHFCEA5OYGJowX55zz+7aO5a+/PoCIp0yZcvvtt1cOX0/joVDuwoX9zzwtEYAD963ae7Fj3e2dQiGACtBzwSRisKa2eN684WrPKAKTyfhbb0aefjq2bJnVuBtTSUJAznl5ec68uW0LTv7RE0/29PQwxvxzlPe///3XXXedEPuNPAwVgeqa0Nw50d27GOOCZ4yOnkWU5xETKEDlOsUKQBIVz5yZO2bscLUniyyOUgyJizEW6/nrX7p//Su5bSuTEjgXjGkSVJH+RFPTUytXPV5cwtzQhF6vKy0tve2226ZNmza8LS467/zWn/1UdnYBcc6Bs0wuJkAAhTou6RCxdJ1iiVi1cGHe+AnD26TDj9SmTR0/uTf65BPU26O3sXA3Vqt6elo3b/7JS4t3hHME53q9Till2/aZZ575pS99abjmKBo8FCq8+KLeZ55mOgmGp11jb7EO3ZsClEDKMwcAClF10SXHrUhIFll42D8X2y0t7Xf+IPLXh3gyaQoBhsF8c08uwOBGUHByPWJNxMFg8Atf+MJZZ5017C0Oz5iRf8nFXX/8IzFT6DoV7lPeMr0bkUTpErENYBEZRUVjr/3g0R2dJIo8/3z7t79hr1srOGdCsEwPlJssCMzUZV/dxAkp5dSpU7/+9a9XVFQMe4uKL7i4ZdYsa+VKApMT81eFJQBC/VMh7RF75rABbKXyZ82uueTSYW9SFlkcddiPHoXq6Wm97WuRB39vWJYhhADYW/mFMTg9lTglHgNHelgB5//z4Q+/733vYyOw1ZgHAjWf+ZwxdYqFtk0okSSCQmc3lyLd55UElO5EWPd8CTDmAx+sPOfcYW/S4UTkpRdbbr5JrVtrCmEwps0h3ECtvpMDdHksWm7bqIlYqYrKyttuu23q1Kkj0aRgXV3N578oC/JtknJviwBJUBKUdEMTmo4tIp6XN/VzN+e66RxZZHE84524mKTs/MXPYo89YnAuGBM+Fh5Ax0WIH+vtuSQazVGSpFxYVvrJa68JjJj7mTdr9thvf0eVlKRQWqBsUDYoCcoGtEFZgBaAJIoz1mIYLYYRZ8yWsuKcc6ffcutRrSif2ra1/dvfhOZmPS7uLYfmafHMtpKf7umZnEpxxKCVuv6sM89ctGjkGlbxnquqbvxMkvMUKc8iri2UBWQDSKA+zpsNs0OIJIBibMInPlX//mtGrlVZZHEU4Z1iFNElS3p/+4BQinMufHmjGgMSmIoIP9DXtyDGWxgb09cdffyx8pu/MHLtLr/83XYkuv1730k0NRpC+HNaCSDJ+NrcnLdz8xuFIVHNisc+fMopJ9xxZ/hoLrZEtt35s5/aq1eZrmQzz0zOHZBYNieVrLatzQaXSk19/tnYxz6WN2VE/GIAYKY55gtfVLbV9Jtfs1hUuFnJXvCkV4g3c/PXhnPaueDSvsBOvecDH5z+la+KYLZiaRZZALyDX0y23fuXP1NXJ3c3YKR1tva6o/8xgabY9kIrWZxMND7052Rry8i1mxmi9n8+POv3D+aeeXZSiIRSSaIUgAUQB3iioOihsso1OXndptkljE219dXf+nbBtOkj157DgMTatdEnnxCcD5BDG2CI9BEGJQoXpFInSDu1ceOef/97RJtnFhZN+ub/Tr77Hj5lWhwxqVSKyAKwADq4+HNJ+aMlZdvCOb2G0SqMhpMXTr7t9kBJyYg2KYssjiLsk4tT27fHly7hbhr/APg3Vvnh7L8SIrZ1S9errw5vW/dqBCs5Y9H8Pz00/ac/L7r0MqqsTBpGkrFeYawLhVIAHIgzZnDeEYm8tXnLyDZm5BF57lnV0e6F4AcYZZDAPEtvbGNEbc8+bfV0j2gLeTBYf91HTvznwxO+/Z2c006ThYVJIZKMNZvm1kAQiTiAtsim5ubtzc0j2pgssji6sM8YRfzNN2Vba4DzvTv5oJpb/u3FDAATiY4lL9e+56qRVgoOlJePue6jte+7JrZzR2TrVquvFwneWrL0yWXLwDC0GqSy7Reef/49V14ZCh2tM2KMx6NLlzIib2ikTP6lTEM491wwzqNbNvdv2lS28LQRbinLmzR5yldvHf+pT0e2bonu3ImJeL1tv/jwf7Y2NHDDYIxxzru6ul5evHj2rFkj3JgssjhqsE8uTmzeBLYEQwyqwjNA24EAwFF+cB8yiGzarJJJEQ6P+EkAiHC4YMbMghkz9cNL6+qfX7FCKaW5WAixZs2aTZs2zTtqd3nIzk67sZH5RJHYXqOgf4z0RJGcI4zZ/f3R7dtGnosdmEVFJQtOLllwsn54Vl9kywMPgJaAYgwAFi9e/D//8z9FRUWHpz1ZZHGEYx8xCiKMRgfInmktnr17vvMCh4jJpWkmEzFU8vCcxgCccMIJkyZNUkoBgHbEuru7X3755VFpzLAAk0lMpfa2CO1182u3E6QV0RBRxmKj1f5zzjmnoKBA5zvr0XHr1q2rVq0arfZkkcWRhn1wMRukY3ulGQYqb2XIoZGPFxgbJQ2ukpKSM888U+890Y4Y5/yFF17o7OwcnQYNBwal2r3vpIdGAq38MGhk/zBj2rRps2bN8o+OsVjs2Wef1UeyyCKLfa3dMQgGFdGgRDzITW9y9cuhAbBAgA2f7sGB4uyzzy4sLNSOGOecc75jx4633357tNpzqDBNFIaiDDr2dDbUgINpFR7fyxjjo5dAlpOTc84557h1XpzR8fXXX2/OruBlkQUAvEMeRWD8eMW4on2Qr7/nIyCCcvW3nN1uRLnjxo/ixopp06bNnz9fSgmuI5ZMJp9//vmj1BEzS0tFRblC2udwOEAp1HGKXRUeIp6bmztmzCiewqJFi2pqavxhiubm5ldHOtkmiyyOEuyTi/MWLGAlJVKRpL3cLp87pokYgRCU9B2nQKD89NNH0S8OBoPnnHOOYRhepEII8frrr+/evXu0mnQoEAUFuaeeqrcXy70cYe++JEcpFF3xB7fcJ+aMG1cwY8YonkJ9ff3JJ5/shSkYY4j4/PPPJ5PJUWxVFlkcIdgnF4enTQufdKItbYUgKS115lM7BKVAISggT/zB0eJBDNfXly8afmGgA8LChQv9jhjnvLW1denSpaPbqoNG4YUXUWG+VOhZJG0LXe4aQSEoRw4twyKKqOLsc8NVo7ntUAhx3nnnhcNh/+i4evXqzZs3j2KrssjiCME+uVjk5JZ+4IMqN8dGJRVIBRLBJpAIEkEqUMrf7dP6WxJAMVZ35VWjrvlSW1u7cOFCvyOmlHrxxRcTo1FdDVOpVEND7M03o6+9Gn3jjdiaNXZnByEO/RPyFyzIPetsC23tHdvuTbo3haCIPF0kzxw2YrC2bsz73j9yZzdEnHDCCRMnTvQCR4yx3t7exYsXj0JTiFQkkti0KbZiRfTVV6NvvJHYtElF+kehJVlkAQDvrEdReunlXVdf3fXnP5kMBHE3KYKBkyyhdSnT4ltaDs1SqmjByRM/8Sk2WFGlwwnO+bnnnvv444/btq1zWhnja9eu3bxx/dxZM5SSQAiMAePcDHMh9ldq7yBhNTVFnn8u+t9nk+vW2V1dhIhEEAwZdbW5p51edNll+aecIsL7F/AVuXm1X/xi/6q3U42NBjc46V00jjkAnJIZfi00rRSKhjHxk58qnn/iSJzdAUHnt6xfvx4AdK40Ir3yyivXfejagrwc0vKaDJgwuREcQqm9g4JSiY0bI888HX3pxdS2bSoSIUIEBnl55sSJ+eecU3zp5bnTpzNj+EukZ5HFO8Ap+rAvJHbt2vDxj0SWLTMNgwMwYMyXtYqZ02RNxKG6+pMf+F3FWWcfrlN4J/T09HzqU59avWZNKBioLM6fNb5yxvjKMxbMrSgpQFSASMAQGA/mGXklgaKaUHGNEcodLlKmVKr3kX93/fQn9sYNzLaBc4eAABSBVCiRqDC/4LLL6r/0lVx3o8o7Y8+f/rjtK19i0ajgnLvt9JKIvXi9w8VENuKYaz8w/56fmEfGroqVK1feeOONvX194VBgTEXRnInVMyfUnLFgbiggEBXoLSrcEKECI680WFIXKqrixrAJ/smuzq7f/Kb3//6Ie5oYEePcyxRUSFKhBGA11WXXfaT20zcFysuH63uzyGK/2A8XA0BkzerNt32tb/FLwleW0p/rKj2NYKXyp06b/b3v1152+UhvfR46fvnLXz71779cetrMM+aMrykrNA2BhK7qPSAiISlEhaiA83BhTtWUgtoZZm7hIX6v6unpuO/e3gfuZ9GoEMJffMRbcJMItkILbXPW7PHf+37pBRfudzKBVqrpD7/feecdqrVFGEZGBQ3f6KhDE2gYY95/zaxvfzenru4QT2e4kEgkvvLlL/Xu2XblmbNPmFJXUpArOENEZ6MQASEiklJKISEzjIKKvNoZeVUTReBQN3Cmtmxp+99vxp95mivF3c39A66bUmArZXHKv+TSCd/9f3lHuZ5UFkcR9s/FAJDc07z93h+3/PWvqrtLCEEDuBhRIrKcnMrzL5j59W8WzZ17GNo9RJBMtqxfGtm1uro0nwvmP1cipyInor6hUkoqZSvioaLCCfML62cctEeGyWTrt77R/8CvDSKui9vrL/VtzXBIU4FNmFI21NZO+/Vvy849b/8nhdj54gvb7vxB/4o3mJSavj1zKCKJqABCdXWTbrhp4ic/ZRYUHNxZjARkvGfnG08Hk+3FhV6pJ2c7t2cRhUSISpFSylZKIZiF1cVTTs0tH3vQ1QmsxsbmT3/SWvKKcBVHNQZsXLIJFIJNKqFkzulnzPrtH8Jjxx7ySWeRxf4xJC4GALSsnuXLt/3lzxsf/ldeKil0OUsA5Dynpqb05FPqrnxP5XkXHFndPtYd3/Eq9bcIwZhPCQFAz+oJiQgIkZAIFSKiVCSVsm0pEXJrplfMXGSG8w/iq7se+E3nN78ukknBmL80sn+DnJttBhLBBpVQMjjvhDn/91DupElD+YpUW1vrk0+s/O0D0bVrcoA8nRAWDhdOnVZ53vn177mqcPacUY/ap0Fkde9O7FzOrD7OOWPAwG8RQtJ/AJEUIipCRKlQKmXZNvFg8aRTSibO54Z5oN+M8VjLLV+O/vlPBudir9rhA/I1bQSFZIFKIJZ98EMz7vuZMawVArPIYlAMdYGCBwKlZ565mfPfLlmWF+nPR+RElpJjZ8y4/ac/L5s6lZkH3ENGFHZfa3zbEkh2G0Jwr+u7zxIBAWNISAgcGDEdPhCEABzAAFtFmtbZif7qEy4K5hUf0Fcn1q7t/tl9PJHgPq1hb8TTRKA8oWGmi3EwQ4jYqpU7fnbfzLvv5UO4mMHKyrqPfPTXGza+1NRcQRQkAkIL8YOfu/nsG28yioqOnDARAABRsnVTctcbXKWEIQTLGBkBgIgxp0QpcQ4Aupiqs35HALZtdW5cYiX6K2eeKcwD20PU99hjkX/902DMM8egVRGYWxiFgHFgBmPtD/+reNFZ9dd9ZFiuQRZZvAMOzGmKJRLdAFuDobfDOSvCOSsCofiUaUVHHhHLWFd82yss2W0ahhBCcMY50/FuzcucAWfAOeOcc844A/0P51wztxDMEDze3tD81jN2InpA39738L9kQwMbTIPfIx/m52IGDJjW9m17/PH+9euG+EWI2JdMtpqBdaHwW+GcFaGcdfmFBSeeZBQXH1lEDJDq2J5sWC4wZZrC0NecM878N+AcOOPOQ8cazn3BmCGE4NSz/e22DcsID2DzpOrv733ozyyR4O4cJaMGwt5GcdJTGGOMksnGh/5k9/UN24XIIot9YOhcTACUiEUI0V9gzRTGSBQYPRSgFY9vfxWSPYZhCM6Fw7PODZjDwdov44xx4IwxTQSMA3MpW3BuGCLe3rBn7WKU1hC/Xba3R59/ju9FvvuC/zWcc6uttf3554b0TUTSSqYS8XSxOyLBmCGOuGQsu6810fA6J1u4k5SBFmFMW4Rz4I5pHBO5dOy8y+DQte3Nzu0rh/7tiTVrkqtW8sFiNf4F1YyjzmQFOOf9q1f1rhra15FSqbiM98lYr4z3ynifshJEB5BCnsXxjP33W7TiVu8eu7cFkr27Vr1k29LPvSGMxprXh8vGmDmFjB0BoUmiZPNa7N9jGobgnDPQvT1zQuwKsRMBA8YZQwauZo1D0Jwx7U0L3rtrXU5JbfmkE4by/YkNG6yd2w3fMj34+vy+bmkgdi55ZeJnbxb7kL0nUiraY/U2y0h7b0dry65tfhfY4Iz37Up27jILK4V5RAjno51M7HqLWVHDNAyXZzMswrQpSP+jrz8RMQaMMyDmjY6cExeCKbtt46s5pTW5JTVDaUDstVexrw/EfqoipO/rnE39I2FMRvo7ly0t33eOJknLjrRbPc0y2qUSvaik3sJDBCQCIlxoFpSHSuqDBeXsyBsmszhy8E4/DpXoT7VttTq3Y6KXUBkGZzJBGb4ey4FYdPPLfdvDobLxBWNmBQsrR9dNtiNtVutGIZzIA/M6vxsi9Pq/7mmaAlwWJgYMdO8Hxl05MZBW26blBVXjg3lFg34pItq2HYvFOrq744tfCsTi4Iq++1kYMsnX+evKjTrt4jzeuNvq6grX1g74FkJp97WmWjbafc1gJYERJFNA6dk6ARiCGf07O1Y+zsIlebUz8mqmGMH97yIZUaTat6r+5oAeGX3wXpC2CBFjDIgcexAxcHmbM0bAmbNzOhnva92wfPzCd/F9sJtSyrKsvr6+rvZ2+/XXA061g4yLzzJVRsE97pZEcI8h9W/aSIh7r4KSTKU6G5KtmzDWCdLS3rQBzFkWRsJUxI52JNu29olAoKgmv35WTtmYYUyXzuJYwuA/ZVIy1b412bSakn2cg2lwAIMzFomnfD4lAYAhRMAQKTsWa1wdbdmSXz+7eMJ8IzRK686EqZaNoJLcMLkOxILjdjkhQgZp2tOPvcIX3j/M2dKiGYAxEEJYkc7u3eurZ5wOAIhoWVZ/f39nZ+eePXt27dq1e/fuxsbGzs7Oju7us5qbPgxEwLy0Py86SZmd33sIAAzIY22VslQqNeDMVKIvsXul3bWDoWVwzgKCM9YdSSQt6U9FYIwFDMNkZEXauja09jeuL558Sl7lhNHKpkArlmrbLBg53jBkpLNQ5hqaRvqIE0l3Dnq+NGfMEEakdVu0o7GgajwAKKVSqVR3d3dnZ2dTU5O2SFNTU3d3d39X1/WNu89w93T4LTIgNdN/ByCjlpWMxwdyMZHdtye++23sb+FAJucQMJi3JVVn6SAhEVcoEKWyUx074h27QmXjSqeeGiqsHLlrnsVRikG4GK14vOEN2bGVM+Km4G7fIaJILIMjhOCVJQXCEAYRMG7LZO+25fGuporZ54aLRuHXJuO9Vnej4ThgTs8HP8+6/d7LaGXgpIORk9LAGDBixNIuGWMM+mOJ5lcXBxv7m5pbdu/evXv37ra2tu7u7lgsJqVERMeT41wqJAJi6W7PXBcMMvOLnZ6PEOFsUyDcx1mNZRVZKW8QcUFWd2Ni53JI9BiCc9PkAMAY5yxlyZRlp19HUJQXzs8LG0IQAShl97W0vv1k4fgTS6ecLEbDHbO6mzDW5cQmACBz0qSHRh/5pofGgS9yVtUccxBAa3tny0vPqoL6XQ0NjY2Nu3fv7uzs7OnpSSaTtm3rr2KcBwAQCZ262Om5kfelCBnjolbibhdiSyAkicZayaC73dQDoUq2rE81rmQyaRqC+fZAga5rReQ490iMAVPumSgVb92S6Gktn3FmQd3UIyKml8URg4FcrJJ98a1LVV+TYXDBjbQ7A+5U2hekYIwFAwbnTHAOBCAMIEh2NTa98Vj1vAvzKg53krzVvZusGAsYXtfwdz/9mDLmn2kwAExPZPUrCQAYg2jc+s3jb2zZ3WGpv/uZV3O+EEK40qASwGIgaWD6hIcBXEwIccb/Ulz8ajgsgUpse1YsuiAYxrQLRqm2LYmdr3OVELrfu16lHnDIFwohIENw0xCMMy64Nq1t291bllvx/qo55xiHvHXtgECEqc6djJAxMSBen/Eyd1wcOEfx4A1oRADAOdvZ0vWLh5d19j1rK5RSEpE/AGK6WT0EgIgpRkgEjHF3RGSZX53eJgMACM2G+UBpyXbDJKIaKzWvv+/sUJA8X17Z8V1v2a3rBKAwDWe919dYJAYESKhj34AcCIicnkYAdrK/ZdWzdjJaOvHEIyj7O4vRRsZPAa1EfNsy7GsyDWFwITgTXuKRE4AFJGd3CCIZghfl5zhZR5xzwYTghiFUtKv5rafj3S2H80yI0Opr1SFFAMcpzgjOko+I9TQyTQR7f5zDb4yx9p7otubuhK2ISAhhmqZhGJp/EVFv2NNApdo4TwBDSqs870uDHxEI4c1weHlenjIMJoyuQPClwuLf2OruB367bv16pZTVuSux8zWBScMwDF2eJMMi+sT1CREiFeSGw0GTcyYYFzpFTwjBoW/Xmta1L6Oy9zrPEQSmYjLayfgg6ST7uuyDLGYS+RfTAIAB297c3dwZsRQCgGEYpmkKIbzZm2cRVCqF2CqEpPRWDtq3URDBAng+P39bKAxCgBCNofDjpeX37Wp84IEHmpqaCFWicZXdssZgZBiGEJwLvzkYZ0wMSM7TqSDCSQXRyTkcrbb1r3Q3rBmhK5/F0Yg0FxOqeMMK1dtoGEIIrlnYSyYCxrjBP3DRgtPmjA8HDUPw0sLc6y8/9bQ548mZPILzW+RcGIaM9TSvfC4VO3yJmWSnVLzXm006hOtDOrfIZS/3ocPSzqKNM8lMkwW6r/T3c6e3IyKiPo6IKOUOYHsYKEXK7f+DlkRSCEhgA20MmEkiRsQZM4QwhOiX8q///OenPvmp3//ix7Edrwq0hPBSwZiXCoYE42rKPv6uhdVlBYbgAdOYN7nupvctKsoPA2OMA+NcuMOkIXhvw+r2LSuGuM1yWKCSEbITjDH3ioM3/rkXHtJX1lnEdMYVh3/T7/MGVQIgRB3aoAzm9d3xjkul1nPeTyRVWvF5gAa/rkqlEAghxthG0/RKcxmcC8No7Oi87yc/ueHTn37h3w/aLesMznTSus5YZ26KZEa6pE6RdLJ4uP+FTlY72q3rXu5v3XHYzJHFEY50jMLq2G53bDGFEFyIfaSCzZxQ/ZMvvXfTztbu/nhdZdHkunIumJSkf4iOd0DEOROGiHc1tm1aXn/C+SMlfpgJlYphKs4B/A4v8wINAOAStPfXZQAH7oH0rFkfKs4P5wSN/mjcuxj6Mzwi1v5yIBAoLCysrKjob22WGzcSGsSAcydq7JGJUxsQAbUGv2YNNxjqbNVjzEpESmSrIYuFMAzuLiNmWiRgGh++9OQz5k7c3tTOOZ8+rqq8OFcqdF4HxDjjxBknzjlTsmPzG7kltfmVhyl2JON9KG0IGAAAjMhLXvNZJH01vQCO4wXrLdHkM0b6UUVJrmBgS+X/DG9E1A9N0wwGg+WFhfklJZH1a3Jb2wAEceAsHbnyBmCvKpUEpgj99Qd09EMpxFh3iWwRUKWJmGnmzViQcAJbOjcZOTBijBjnpJcQOHDOSCfnCSHsVGzP2lfChRVmOO9w2COLIxsOF6tUNNm0WoAS3OQ8g4j98VYCKC7IOX3OBARCBKVQoXJ2jrkE4HAKY5zz7p1rimqn6MXuEQehN/HVv33yJSdkvtLPvpBxJwPOxL8oLzylvrypvYcBaPIVQgSDwcLCwrKystra2nHjxo0dO7a+vr68vLysooLWr9v24Q9haxtywYnxDNrR5ZmdYnQEND0RfyMYjAlDcM6IdF4XAZx70tSzTpzMvbmudqt8J6Hvc84n1ZdNritTQKhIKXRXHdMrXdzZS8HtZLR142s5pTXiwCUdDgaomHedEYjDAIt4K6gw0BzpQ+4fz1EGRBpXWVJZkrdzTxcQad7UzFtSUlJeXj5mzJixY8dqi5SWlpaUlfX9+f8av3aLoVAozn0rcZS2CBGQAgwgzIzHmrhQQnAAcB3kYMC45oL5k8dWejGivT0VnQ6ZfkzkT13XK4Dc7R2MMUOIRFdTx/aVNbMWjbwxsjjS4XCx1bEDE92mIfTGM8jcNubPQEICRW4PAM/FcRb49O9c/9QE53Yq0b7t7bzyMXzkC98RISESc1aykYi76cPg+mTuKzN7vn61kxOaZmR0WcEQ/KKTpzS2dtkIk2bMnTBhou7tVVVVJSUlubm5RqbuOJ26sOITn2q68/uGUgI4yxR91xr8XlXQmanE9T34cjh3azCYYFwIwRgvyg9funB6KGAwxhw/ztsY4f1DaUfbGSLcMWfvVDDOgTMmhOhv29nfuqO4buoIWiJ9ndG9hvpCMs28/qUz/TpvOuJlISCCN09BwvTgCYRIxQXhy06d9u+XVxcUlkyZOVePhWPGjCkrKystLQ0GgyLz9xa65trel17sfexRUxicOKOM5TuXiB2LnB+LFEn5ak5OkxGwORdCKMSpY6oXzZvgORx+TwXcrkGZDz24qZWMnDveMMk4Y507VpeMnRXKLx5+A2RxVMEAALRTqfZtHLS6Y/r38k7vy0w/coV3CNJOmY6e8f6WHfGe1ryygTsXRgAMHYkvcr6dcQBAwjQdk+c4AwEQav4mLUkzwCPWXIBESuH46pLPv39RoKBk4ZU3hfMK99MOzutuvCm6dXPn3/5qck8zk3mK7wNKuE6yUlXJREtFZeO55y/bsLG9rX3OxPHTx1WCR8GDEbGDfcV/mU79cnq+fsw4IyvVuXNtUc2kwxA4ImAusRIXek8NByAkctRL3Uk9eP6pk5WbOUfxkbF+mpBOmz1uYl1J7dT5c869xtifm28WFY//3++ua2hIrl5lZFRFIMoM6EsAg+ikZHxiPNY+e86GKdNWrFqVTCTOnjexrDAvneQIGWEW5reIe17eMZ3f5jzjGsQLLycjXT3NW6qnnTJclz2LoxQGANiRdhXr8jKJ/b6wgwF5n+kHzMlv1z1L7wHxvY0xLlOxnj1bD5qLybKslha7ZQ8mk8AYCwbNqqpgTS0L7JUty7iOMDIGtsKNDW3bm7vGVZfMnlRjCJ5uNnkOV9r5dTo7OuSrw8BeLFjfz88NBvNyjKGV3jGKiiZ97/tgmm1//xu3bc458+InmT1fAlhS5o0Zc9U3/7f66veu27z54X/+c26ZFQqavn4/MDMXvOvMGAwsmueSwF75C0wLLLQ3JCPd4cKDLFqBsZjV2Ci7utC2gHOemxuoqwuUlcPeU5+0RVgsaa3dtqerLz5nUs342lLPIwY3s8U/ECKCe/0BEfVIqTWmyZ30ALCivFBuTlgMbWNx7rTpU3/68y23fS2y/DXBnMCRF6f210OxiSRi3SmnXv6DH4bmzl26dNkzT/zn1Nk13G+OfSB9Xv7LAICuJ07p1B535wtAd9PmiknzD1PgKIsjFQYA2H2tgDbL/ClkTLu8jAMvCZTcCaXrfKXv+16vF2v623ejkvvarrovyI6OyIsvRJ56KrFqpexoRymJAIXBy8pCJ5xQdOmlReefHyiv8F4vgrkiELZjiS2NHU+9tvHlldu7++P5OcFPvGvhhy46yR8m0P8hOHEWTbneX+15KechODLzREphMLdo6GqNodq6aXffmzN9xq77f5lobNQVfcCtseRp8EMoVHH2OTNu/Xr5aacDYyfMmzdz8oS+1Y8RxsDPpUT6vQDAKE0ilF6J9FK/0rby5R6AO+FhViIa7W45YC4mSm3f1v/MM9Hn/pvctEn19ZJCBKBgSNTU5J62sPiKdxWculD4pH6NcAE3zFgitWZdw2NL17+5cXfSknUVRV//yAULZ41Dz3PUExFIB4VQj4YI3tpoepGUSGmLICJBKL9kf/SYRtHJp8z+/YPbfnxX67/+qXp7tBCUvqoKAIkkkUQ0iorHX3XV9Fu+ljtuPABceOEFp82dlNj0X/JzqHdVXIsMOOJGjMh3J/0CymTjRE+bFesLF5YdgDmyOOZgAJGMdfvyDJz0A28KNmDPqHfHzdDVnYd8v8GMnywDloz02Kl4MGeoMvOkVPTFFzp+fFfqzRUslWKcG+4eVmVbaldD/47tPY8/Gjp5Qd2Xv1py/gVMp/oysbU1/vjTLy9d09DZG9NTwZ7++P89/cZJ0+qnjatApDQb6/Ret287brF2h51HmpQ1FaNCRKDcosoDGlGM/PzxN3+h7PwL9zz6n/bnn4tu3aLiCSIixkhws7S04qQFNZdfUX3RxYHiEu9dTCUZpjIIRnv7PkOAj4gdmnZjK+lwuLvYRek3MQBGSsV62w+IiTEW63noz933/0ru2MYQ9cKsE2yxUmpDT9e6tR1//UvBpZeOueVrXuE+mwVf3dD81MtvvrW5OZZMCc4BYEdz5+8ff23GuMq8nGA6WRDSbdcuMKHDyEikaVenSOgsQoWoCJkQucUHtr0zPHbczLvuqXrP1S2PPdK55JVEUxNaNurLa5qhutryMxbVXXlV+cLTuE+bidtRBspbXCGfbobbfvevLzNPrwy4bwEnRuXFxd13MMasVDwR6c5y8XEOA2VKJfq0c+FO8Z2+PfCnlrG+7eZ1+cjXRwFp9xMYsxIRKxEZIhdjItH9h993//gu6mg3hdDleJ1FKh0TMTjjXCpKLF22ecvH677ytcqPfmzbrl0PP/zwf599pqOzS2+II2eSiy0dfSu3NE0dW4Hkpy99Nuis1yEpJ3ichtJ18JRzhwujoKL+QK8v47xg1qyCmTMn3PTZ2M4dieZmZaWACzM/P2/8+Jz6MXyvYItM9JG0wOTOzJ0Nngrm97dck7jDpPsS8I2Xrj0IAOK9Hd4H7xd2a2v7HT+I/PXPPJUyOdcjn/4gDsA4Y1wwFHYs0fP3v0XXrx//ve/nLDpzxYoV//jH31999dVYPCE4F5xriwDh+h0tO/d0zZpU7ZYdBNe5dycoCO5YCE7VFe0oo3aK9U0F8opzD3yrPQ8Gy885t+yss5NtrdEd263OLrRtZhjBsrK8CRNDlZVsr2CLHetxNmX6f+v6TjonI30y5CbnuR0GvN7gGir9UQSASib6OwGmHOi5ZHEswQAdn/PtSdM/KScMPCAPNE3E3gG/K0aUZmdyf4aEKBOxWE4R6jShdwJi9+9/1/ndb4tkUtclG+CSO+BAwEwwUx1dDd/59kuLF/++o6u1tVVnboGb+atbqBTaUiokhenoCnpngoROuUtwHC6nq4Pb+VEqhahyS6rzyw+Yix0wFiguDhSfWDz/xP2/GBW4m0+cUc2JxGeGIX3jIqZzv8jx95E8JyxtMpexrVQymUwEg6FBVX39UP39bd/+RvRvfzX0EJdpES9QTRwM4MTM1Lq1Gz9745KTTvnXlq3RSETvUnHHRYfObCltqfTl9SIsLhNr11j/B7oCqXJiFqRIG0hJVIhYVDX+oNMPGOfh6ppw9ZBUN8EtUA3u6AiQUZ1s8OQ8Zyz0gmCeIdI07NiDCJU8uBPJ4piBobstc3syIZFg+lfFMokY0r6Ydlt8GUval/ElhJFvQpZMpe648w4KFo1zsz4rKipKSkpCodCApbDI889133O3SKUMtyiG8+U+LtbuGNd6XVxgIpH/zNPFZeWt4Vwv/9f1sFAqHFddMntijZQqvY3L6wOgXWFyp8DoxiJ1Zej07joCKBs7c+hhlkNB+hQACIkEIIHemOefF/u7PXipYJ45dGYIuge9+QsR53zV6pU//+eSmtq6sWPH1tbW1tTUVFRUFBYWBoPBDHZG7P7N/dF//cvgzIB0CpdnEXIqEoEAQAAB3BRGsqWl7Oknw2WVMdMcwMJSKSKYM6m2rqLQlsr12MFzIAmcrAnHHU5Hh0EpVApRKamURCUCoYrxsw+PvI67muBBpwwxr5atf+KYtoiT8uGZai94ZgPKSs5nYQBz10+QkBEwAgTu5kc4nd9bGnLnWegM87r/oN6z5FFImgRcTty4cePWxk7BuWEYoVCoqKiorKysrq5OJ+rW1taWlZcXEnX/+G7oaNcV7P1OMfNpnunOz9wycZyxEoALI/27jUCEc3C/USksKcg584RJ7z1n3uS6cunbowXpzgGYkTih3+j4wrrzS4WKVLiwrHLi3MNkE8bQXTZknABBb/JA8OVKE3mBR/LFuL3BUV9+X16uq6hLRAD9/ZGlS19ViJxzwzByc3OLi4srKirq6+vHjBkzbty4mpqaiqoqY9PGrl/fL6TOA8mwiGcX8uzCABlwYoKxSUqeGe3/T0GR8rEwAxhTUXzRwunvWjQ7LxRUMoN93CbrkcMxh7PH3CVipZRUKBGRsKx2cmHVhMNjkHQgmwD0hnVgBKQ3eWqT+S3irDc4/SKdt47eYEm+8AshOMpFWRzXMBjjREyzkV7kZ5yjm4DpiWPp/pfR4XXiESEpt5ay9mLI/SW6HKeQAJghDB3GTSQS8Xi8qalp1apVAGAYRiAQKCwqKjKM2u1bP2wGqlH5neIBuZveQcaAuYpo4yxrSjLxRigMiFLK4oLcM+ZOvPyMWTPHVwVMQyrl+PhpTww8IiY3QEFICkkp1GFiqZStlCTFhKibvjBccLiWVphwczoY06OfVobzWyQdl9e9Wad/aV84nYHgDTDoS9cjIqWQC8HceE5/f39fX9/OnTuXL1/uZ+eCaHRWPPE+IQJEe1uEZR5h7t5ifZuTiC8J5+wRBkoJQHUVxRecPO3CU6aNqSrhnNtKZVaCTbOYOy7q+QE6FlEoXY9YoQrmFNTNPP3wJYExoa8mMgIApodHYuilf6LzC0WdoOOkhDgxI3ct2PES0M1p9xaKESBb8iMLgxkBHsqT0Tbldnhk6Or3ervp3FV7/Usjl8h8qUbo9zGdRXDnp9YfT/bHUv6AB2PM2xlFRKlUqq21tYVocyhnbipZl4gP/QT0p5pAM5PxN7goLi8//7xzz55eNq4QQiETkVK25L4sXXDnknruqOvAp1PZFOkYpdfziahi7MzKSfOH4WIPDUa4gJihUDJ3PzMCMLcEFHiCv+4Ud5BUMEpbRXl33bwERdTWE0VEf+6yPx7lsTMCNOblL7JSk+VAgbdBB0jnwwAAoAjV5ES8MZw7ccKESy84Z0GtqCkyTUPYUnGGzvc5A6TjPKMbS3UIy22zdDxiZSslUXFh1M08vfBwqWoAgMgt0ukcej+pHvfSHYQGdBDPW/E8X0iPi05ytH+YJMZFOL9k/+3I4piGwRg38kpTbduEIGQIDEhpgSnyKtVrDEgFQyJUjlvmUrDDzb75PhJAe3e0NxJXiJx56e0D9y4wxgRjCBDjHNx+vvfC3cBFPN/DcUTXv+fKy6//2OxZs+3+tsY3Hksl+oQhOHrCDM4neqFv70QonSxFSimJKKWSqBSpospxE068yAgcvtpxIpzPAjkq2csZ1zzMOWcMeMbqnRtC8qeCKW8rBCKBQsc+TiqYTs4jtKVqbO2xpRSZCu9+i3hXTCIm90q3IN/NOzIAjOjE3JwTPvO5d1199dgxY3ob1rSueR4tqWV1XD0H9+0+i6Ab40aFinQeizNHUagIqHryibXTFw7cxzKSMHNLkAlERMaBKQBODLiu0pV55toibh9BNyfE2aaC7kZP5cvYkajMnPxwQelhO50sjkwYABAsrIowIZUTvyPO9LYEcPIfAfyLyNod86a97kzSC1m6C1/aBUMk3NMVVUjSdnyrveueeZ0yAFCuFPlikem8n70Y2Z2pAwAgUUnAvOi9762YNw8AjJKaqnkXNL/9rBXvE0I48jrOa5nrhzmzSMdbUV4em+N/EVFBxdjJC98dOrw+iwiEjbyyVKxLUzAAJ0LO02oG+hq4wXpw7eHm5BKiIuWPg3szfSQkiiXtjr4kEKXrX7j5JwMsQozlERahs7GP++wyoFgUuYsLbj4OIOG0kpIzrrsuVFYGAEVjZ9lWomPjMmXZwi19p8+EMfBGFO0xqvRcHpVCiUoqlKQYY1UT54+ff8FhrlFi5pXwYJ5K9DGGABwIOWfgbKX0L6b6MiXcMJPuI8qJfZNy9Dyd5DyFRIQ5ReXB3MLDeUZZHIEwACBYVMVzi2WkgzFD70Mijk4aBQOtPUVuKpg7MXbCYnrOi0RSpWNh6Cx/SYVKBHOu/djnzrgiumtXQ0NDw+7du9vb27u6uhKJhGU5he511wTOixHrbVv3fK8Eg9fb0c8Cvp7vPKsU+srEFVRNFCe/u3nlc4nuZq3+Cw7FkLNzzVtjcTNYldvzFSrGefmYGRMWXHL4HRbGeLhifLx1C1dKe7+MM4I0TQJAOkLh9HzXx0fU4k0KUbkW8Taq6VOrnTjru3dctWt3Y0NDQ3Nzc3Nzc3t7e29vb0Z1IsYY58hYnWUVo0J3+RQGGx2d6++kzXgWYWhZIJ1ULcZF+eQFRjC3Ze3iZLzfGSCZlulwzsc5C3AnVdptVChRIaEwg3UzFtbPPutwzlE0jFBuoKQ+trtbj+hEjIgh+ZQpXF0N11Oh9AQFvdNxqNlzViQqiYoYK62bNioVsLI4omAAgAiEcyqn9Pa2M44AoKXFyNX7Yc48LO3z+Lu9uzrnxCd0EoLOBpOIirC0esL0+QvnCAN0wZtUqre3t6OjQ9co27lzZ3Nzc0dHR0dbWzIaOSuZqFRS+ZaA9i4Tp/+iozxJ6PPRBiC3rHbcaVe2blze3bAGU0nOuFfShgCYDlA6K0WOR6wQCTCYW1Q7/dTqqSebo1REOVw2RuSW2dF2ACYABDHl9vy0OQC8VDCA9O5tTBOxysxAUAqRG+aY6QvKxs48daEzrYnH4z09PW1tbbt37961a1dDQ0NTU1N7e3tPV1cwmTwvETf14pJ7y+Bfzxx6LdSRoPNFMPyLBFyUjJ0VzCtpWb+kv3UHsyXjwmUz8OUY6xVgJzqhSAFjeaU1Y+ecXTpm+oHupB8msLzqqdHmjVJJACY4Ay32ppfytACbk1EM6fxCzbxE5OZKOlk6yj01pRBVuKC0tP5wyOZlcYTD+WXn107rb1pvx7p1xnFmSC/NcuQue/k8SkRv/qVIotPppUJFaAbCNVMWeP2Hcx4Oh8PhcHV19Zw5c/QHWpbVF4nsXvzS+s9/flo8xn3pa+nv9fV59OTYAbXypFZ1ISFEaKDHFMgtqp9/QVH9tPatb/e37LCTUQBnEczz9LUwmEKFjIXyi8rqZ1RNOTG3uGroQgfDDiOYm18/s3N9G+iIDWeMmFsENmPQ0RlRrjnAZw5EBOkSscdrZdWTi2sm6ffqFdT8/Pz8/PwxY8YsWLAAABAxFov19PVt/M1vun7209mglJvNNsAiGeWTHS32tDkQiAUDbICUEmO5ZbXjT7uyp2lrx7a3Y117lJXUA4y7jRs8L1+iBG7kFdVUTphbPmFuaFRn8aHimlD5hHjzBgAgLQlPXpDN10H0yIjkBYoz4y0kPXNIJRGJQeXEEw5fik4WRzCcrmLmFBSNn9++5gWwJeqyBZoAvGCuu2zky7V0fDEdrJReKhiiF2+tmDiv8B2F5BljwWCwIhgsnH9iqKgQ+/ukwYUvlVXDz8W6HI7+reueLwEUkVFUnFNbN8hXcFFQOS6vvD7e097bsr2/fXcy0tXT2WZZKc3ItlLdffH6CVOnzz+9uHpCKL/kSEj2zK+d3r9na6qzAUxA7tS68pkD3BUvZ+Hem/86AUrlToR1ch4qiSoQzqubecY7yxtxzjU7F5x0UgMAESg3l2ZvLtZ/FTplShDQkwOVSDljxxm5g1SsEGaobPzs4ropkc7m3j3bot0t8b7O3q4ORKW9/URK9sVTc048bczUEworxwbCeYdzpW5QMM6Lxs+PdzbaqQiSU/LKmamAX6zQ8Y/dFUgnQEFI0k2X1Ck6NipFqqC8vnrKSaN7alkcIUi7LQV1M2KdTZGm9SYQEud6o5d/eZ3S80j0bb1z9grr35lUUkmdjV9QXl8/a9EQJ5VmXV1g7tz+nQ0BwfX2E6/z++PF6GbRKkBP/FsBSMTyE04I1+5zSyvnIq+0Oq+0mhCllfjZffc88shTpiEUkpSqJxL73Ofnnjf15IO/kMMNEQiVTTuteUWXlYoYhuBETkKIftoXoUTInBS7AUrppOVKnZzHuKibflpR9cQhNiA0dw4bUye372CGIJZ2jf0xCl1BVROxAuUVlJMAKET5GYv2nqmkT9AMFlVPKKqeQCh7Otu/futXN27cIIRApGTKSkr6zfnXl4+bdYiXcRgRLq4qnrSgY91i9PwV3/ozgL+DeJn46GymJ+2mkJech6gCobxx887NrtploZEmSm6YFTPPTMX6U127DENwrnOM9ZIXgJu04Mb0wPudaZUAdLPxbb1RLb944smXDj1rkgcCRZde2vPkE1IRcSeNw7/LC52ETd3tUQJJV/9XAUAgUH3JpTywf0FLxrkZyjVyChvbe/WCHiEpJQdszDsSkFNaVz7jzJZV/yXbFoKYLl7pqDh5FvHMkQ4Zu5JGSillK5SoCKhq4ry6macPPfASrKvPPfPM7i1bGReCAfE0F3sW8YUmULosrAAkUbCysvK884fyRYwb+cXlcSUaWrr1nnhUKhAIuOkbRxCKx81NRXt7tq1A0pMVrdHBvDmKMzq6FnFTJpx4sZO0rlCS4oY5bt65pXXTRvucsjhSkOG0muH8mhMuaHrrmWRXo+GsdKO/9/ryqEh5Gzqc9W4ltYwOqXB+6eRTryisHHdATSk6/8LQiScmli83weTkbTRxfuK+pSFSLhHb+qZU0UkLqi+8aOjfxYXw8tyIg1TQ19UJtg3mkaXnXVg/XdqptnUvKyslhEjZdjxlhwJGfk6QAVN6T66bUqLFP51EaScVTClCYFAxbu6Eky4euvgyADAhyq/9UNfjj1kdXQY3OAFP+3/ghkcAnQkKpc0BIBHHvuvdBdMOgGgE92Ueco6Ive3tQ3/74QHjomL66cq2ehpWGwwIoLs/jkTFBeHcUMBRA/ASpd2VbXSk/vTuIVSohBkYM+ec6qkn76d6ThbHEwYGEEIFZWNOvmLP6hf7mjZxRlwI5g9TpH9n/txJJ0wsSQFRQcXYSSdfVlAx5kCbEqiqqvnSl7feeEOqp8cAwX11HHWylL9MnOcU24iipHTal28JVVYN5VsIUW7blrN1a4aHyPmOv/9969YtBRdeWHTu+cHa2iOkkzDGSyecYARyWta8uKdlzx+eWtHc2Z8XDsyeUHXGnPFjq4rdzFx0y0ShUl4qGCIpYQZqpp06Zs5ZB5ETUnDqqRWf+FTzj+4kkoK8wn1emIIUELkWsd3R0VKqcO68yTd9lg9tjzImk8lVK/O7OplPlkhJueG735n+wnP5F11ccNrpRlHRgTZ+hCDMYPXcc41QXtfWN1as2/6nZ99SSFUl+SdNqztz3oSC3DAipi2S5mKlSwcQqWBu4bj5F1ROPIEflvroxwz6+/vXrVvX0tKSTCZHuy3Dg1AoVFNTM2vWrPz8fIAM5b80pJXs2rGqbfMbMtbHOMvQ7nJSqPQOAkQipVCRQkIjmFs1cV7drDNCecUH1zhSctdP7mv43neFbQlvYcRNWcUBtXAAbEQMmLO++e2pn//S3rKzg5xXV1f3738X+b8Hn+/quju3wDshC/HcROJzfb3KNMxpU6pu/GzFNdeKcPjgzmIkkOxr/9MDv7jv9/9knCOSQlVdmn/Te06fNrYCfbFJJ7MYUaECxvKKq8bMPqts3MyDTgWze3s33fyZzn/90+Tcs4hObkQ3ZKx8FrGUClZXL7j/N1UXDGmaktq6tePee6JPP/lLiU+EwtqEerZ1Q6T/wnjMzs0JL1xY98UvF5151lBMfHhAhF27Nt56+zeXvrXRMISUijE4eXr9xy4/pSgvrFdUtBar8m6khDCLaiaOnXtOQfmYUczSORrR29v78ssvL1y4MD8/P3wkdcxDQSKR6O/vf/XVV88999zCwsLBu6gRCFVOPSW/akLn9tXdjRtT0R4i5e79cFYnnDAxITAWCOcV10yqnrKgoGLMoYz2TBj1n74JiXbd+2O7u1sIMWiZON3zLaWMkpIZX/zypBtuGkovTW3Z0va/34w/87SpVDiUI3SgWX8vQJ8hMGgGJFlr1+/48hf6V68ad+ttwaH52ocBPFy0Zlc3EhmMASBnbHdr97LV28dXFTnRSXBT2YCYMPJKqismzq0YPzeUV3Qo32sWFU2+44cQCrX/4+9e4T7/dg+Pi20iGzFv6tQ53/1/ledfsP+PRoy89GL7t75hr10jOM/Jy9AjVQA9pmGaJiWt2PPPbVq3tu6rt9Z89GPvsBh4OMEY77LMLY1dWpKbMUDE5et2njZrzEnT6qVCLQ+iOwgBCDNYUj6havKJpfVTjcAxQiWHDf39/YsXL77yyitHuyHDDJ3g+573vOeRRx4577zz9u0uMZZTVFE///yKKSf1tuzoa2tI9Hcko32EUrvSnPFgOC9cUFZQUVdcMymnsJIPh9sicnLGf/6LuVOnbvvRDyOrV4Fl8QFl4nT+vGkWzT9x+lduqbnksoFJrIPB2rmz+bM3WstfM4QwOC9FFSSKsfSkmwAEAy7AAJNSVutv7rd6eqbd91PzyJgdb9u2bdWqVUIIN4+FAoYxadI4NIPoCgQbRiCUV5RbXFlYNb6ocnwgJ39YvjpUWzf9x/fmzpy169f3J3bvYojMLXmVtggiy8urPf+CGbd9vWjOvKF8bOTFF1o+exPsaTaFMAHKMb12yhjTOeaCgwBmQsBqa99++20ykRh38xeOEO94ySuvdHZ2CCH0GiMi1laVjR03xuYGOinyFAzmhPKK88pqiqsnFpTXH1C8PgsP69atW7hw4Wi3YgRx6qmnrlu3bj8sxhgL5RdX5Z9YNXm+tFNWMqpX6xlnjHEjEDaDOWx/tSEOFMwwKi9/V+GJC9qefbr1ySf71qyyentJKQQgzo2i4rJ586ovuaz64kvC1dVD+UDV39/2/75rv77cdGuFjEU117aW6rwLxkoQL7CSOUSSAWcgQBgMOv/z8M6JEyffdvtQuH6ksWTJkq6uLq/nS9ueMmXKVdd/saQwXyuzMc65MMxQnjCHfzetkV8w4eYvlF9wUcsTj7U//9/I5i0qHnNGANMMVVaWnrKw9l3vrjjzLCN/SANAcsvm9m9/E/Y0G65F5tn2OCUbhFNSa6qSp9kWB+AcODGDC5lM7rrn7vDESVXvevewn+CBIhKJLF682F3GJiJSSp13wSXnXHOzsi29UZExJsygGcodpb2Cxw5aWlpOOOGE0W7FCKKwsHDPnj1D/pUwZgRCh1MKIFRdPfajH6u79oPxpsb47t0qkQDGRDicU1+fU1d/QHPV3of/FXvsEYMxDiAAGEAx4uej/dND4UYhgkhnpJKzpUV6j4kWRAfGlGp84NfFZywqP+fckTvNoaCvr29AzyeiM888s3bMYRJTBwBgLH/GjPwZM8Z/+qbYroZkaytaFnBuFhTkjh0Xrq4euruKqVTnT38i167RRKxH8qnS/lq0b0kg1MF5ucLzU/E6paSu4QLAgQnO7a6u7XfdWXjiieHBNvUcTqxbt27z5s3eNIWI8vPzz7/ggmBu0eg27JhEMpk8ZmLEgyIcDieTySN9xBahUP6kyfmTJh/0J8jOjt7/+yNLpbjrgukk2SpU18Wjni6vdMPHbsUQEIxZHR27H/xD6eln7F0h9HBizZo1W7duTQcoEPPz888777xRaYxZUFA0ew7MnnPQn5BYuTL6xOPCLaPlJZLPsu2Ztq3FhAhAuscZA0aMA+NCRFetbnn00Qk3febQT+SgQUQvvfRSNBo1DMOZpkg5Y8aM2bNnj2KrsjjaMfqbfUca8RVvWhs3cMEHrFvriCf3KRCBxwuuHhrnvPvVZdFtWw9vkzPg9XxPQ0NKOWvWrJkzZ45iqw4Fkf8+S93dzFsLduFZBHyaUN4L9AAJSrY9/aSMRQ9ngwegra3t1VdfZcxbxybG2LnnnpuXN8iG7yyyGCKOfS6OvPIyxWIMBkkhoswbeCovbpof4zzV1tr1xuuHp6mDoqWlRZc+Arfnc87PP//83NzcUWzVQUP19UWXLWW6dt9gGCC5N8BAjPO+tWui27ePeEP3jTfeeGP37t3eNEUpVV5efuaZZ45ik7I4BnCMczEmk6ktm70MZcjs2566Dfif8unwAgDZdv+GDaPTegAAeP3115uamvw9v7KyctGiRaPYpEOB7Oy0d+3SiTEDjDJA/jT918/NjNl9faPIxalU6rnnntNCz+gUD1QnnXTShAmHMXafxbGIY5yLybYxniBXw2GA9iZkUrPzbKZEPRGN4ozYsqwXX3xxQM8/+eSTx40bN1pNOkSgZWEqCT6LYCYL+4dJ331Mj46IMhYbrfbv2LHDn1xIRIFA4IILLjCPsN3zWRx1OMa52Kk+lKl6vq/7LhGDs69YH2SMRk+kpqGhYdWqVZxzL4kiEAicf/75xhGQZndwIFSIPinqTCsM8I6VU19x4CtJjZqQ05IlSzo7O73YvVJqwoQJp5566mi1J4tjBkdrlx4qhKCAqRCEyFgF8uDv/8pVqVeuMrK+DUX+bYSweMmSzu5uwTm5TvHkyZO16PtRCmaaKDgjQOasmu69fOft6COnaEBaqxoBkDERGh2L9PX3v7B4MflW7RBx0aJFFRUVo9KeLI4lHONcLHJyzPr6GJJyU9n0RMCLQGZwsSPF65QLkW65kNyJQ9X8PXSQZVnNzdauXRiP2clk56OPjE0le4KhfiIkUEqdfvrpR3XPN4pLjKoqu72dcQH7KBqQYRECrVXtFQ3g4XDOmLGHrcGqry+1c6fd1sakvX37jsDq1dWouhmzCAixoKDg3HNHOf08i2MDxzgXA2N5Cxd2P/SQVAACRGaaVEa8UtelAFSAngsmiURhYelJh0NjXvX2Rl58of/JJxIrVsj2NrRsIrpQ4Wmc7TGM1cHgG8FQd0HBeecPSRT4iIVRWhqePz+xahVHAXxg0QDwnOK0ODJ64nwIIBHzJkw8lHzzoYIouXlT3xOPx55/LrVlq+rvIySO+BmiHs63BQJvhsIruZg5e/asWUeQ4H0WRy+OdS4GyD/9DDF2jNy+kzFBDDjL6Pk6QIzohSZQ+gQ5pVKlc+cVjnQOP1F8xRvtP/ph4pXFLJFgnBucAwACCAFBpOKUNTmZWsj7tldXT6uvH9nGjDAY50UXX9z5t7/KlE3AxN5FA7zqeQQIKH0q9fpO1XnnB8vLR7SRGI12/98fu399v2rYwYh0QSWtWGIA5CBWxePz4/HVhqiZNu0oTS48PpF48gl73drU0iXW2rUAEJg9O3jGInP2nPCll412044DLg6PG1/4rne13XsPoKv66CsWpBfptD49ukTsaaKznJyx11xrDk1j4eBASvX9++GO730HG3aaQnjaFzqcggCKAzBmIKslVbFxXct3/zf8rW+HRnsT8KEg//RF4ZNPji1+yYQAEvNvwtEZbG6MGP1FAySARAzX19e95+oRbZ7d0tL+g+9H/vYXbqVMzgeME4oBY0DAw0gn2hb8+Y97xo2pvuYDR4JoSRbvAHvtmu7P3GivW+s/mFq2NLVsKQCYs2aX/OJX5iHsJj10HOt5FADAec0nPx088aSUsmxSknQVSJAIEkESScf5wnRZCt3/lRLzT6q6YmSVaPqffqrta1+hhp2GEALAu7k6DCAAONOKZZxbdvuf/rj1G7fbfX0j2qoRhVlcXPulL1N5hYVSEtpIEkEhOH+JJCgJygayM4fGFEDh1e8rnjdv5NqmIpG27/5v5P/+YNiWwbmxl0Wchxw4Z4IJuXvXtq/e0vboIyPXpCwOHf13/qDtrDMGELEf9rq1bWed0f/DOw5nqwbgOOBigNDYseO/932orU0qaYGyQdlOb1c2KAvQArJ9fd4CkADNweADPb3LVq4auYYlN6zv+M63WWenIYThdnj/X+3BazrmjBlMmFx0/PtfDb/8+Shm2h06is89v/YrX7WCgRRKey+L2ECWzxb6jgJYHc757Y6G3U1NI9Usou7fPRD9598NxgRj/hHRf9O7sTkDDtzggnp7tn7nW32rVo5Uq7I4NPTf+YP+H905pFf+8I7or37xzq9Zu3btNddcU1lZGQwGx44de+ONNzY3Nw9HM48PLgaA4jPPmnTXPXzSpIRSKaIUkAXkp2DLd5MAuwLBJ4tKN/T0/vDOO9atWzcSTaJUqvNnP5WbNwlXtMgTLWOD3hgwYJwxLmXjb37d8/rykWjV4QHjvPZjH6+/9TZZVJRQygJKgWeUgRaxASzGVuXkPl9Y8sqKFffec08kEhmJVsVXruy5/1fCtjljA8jXL53hPeTMEZBLbdu24957VCIxEq3K4lBgr10zRCLW6L39Nnvtmn09u2TJklNOOaWvr++BBx546623fvWrX23atOmEE05oaGg49KYeL1wMjFVe+Z5Zv/9j4cWXJk0zIWUSMQWQArAAUgApoiRiSsoYwFs5ef8sKW8MhU3D2L59+5133tnS0jLsLUqsXRv977NarozDwPRnynzocjFwAM653dbS/M+/w2D1sY4WiNzc8V+6ZepPf2HOnhMncsdISBuFKKlUSsouzl/ML3yiqLQ/EBCcP/XUU7/5zW/0XsThBFHvw/9Ue5q5T0BOY28W1kQMenQE4Jx3vvBcb9Y1PvLQfdOnD/gtn7lx0ONE9KlPfeqCCy545pln3vWud82aNevSSy997rnnampqvvCFLxxqQ48jLgYAgKKTFsz9/YMzfnl/8ZXvoZrapGnGieJECSI7FApOmFB5zbWvz1/w77yCLiG0TpthGK+99tqPf/zjYffFIi88j50dg9Y9GyBgtveznPGOl16KN4/YbP2wgBlG9dXvPfHv/5r0/TtyF50pS0oSnCe0RQBUXl7+vBNC733/f+rGvpiTl+CcAwghlFIPPvjgI488MryNsdvaYi++qNNs9r7+/jzI9EHyeJnZ3d1tzz4zvE3K4hCRePIJe/0BT2rtdWsTTz6x9/F169Zt2rTp9ttv9x80DOPWW2998sknD50fjrvFX7OoqP4DH6q56r2xHTv6t2yye3tRSm6aofKKgmnTc8eMUa+++ubXvtbe3s4MgzGn7upjjz1WV1f32c9+drg2H2MiEXt1ma5XxDKznmEv6bgB6nEAwBhLNO7uW7s2p+7oTnEDgJxx4yZ9/otjr/94ZMuW6I5tMhYDIh4M5tTVF06fwYuLt/3qV1t/8QvS14oxwzDi8fh9991XXV19xhlnDFczkhs3Wjt3mFyAe80H5KEPKi+VFpAD6Fr+mh2JjGjWTRYHhHeINuz3jeHLLh9wcMeOHQAwY8aMAcdnzpwppdy9e/chytged1ysIYLBgunTC6ZP3/upM8844+abb/7+97+fTCYNl461L1ZfX3/11cOTUCV7eqw9e7zCcczHtIN2dZ+AHBAAMaYSieiO0ZSOHF6YBQUlJ51UctJJez/18euvb9y167HHHgMAzjljzDTNlpaWH/3oR1VVVZMmTRqWBqR27qBUEvYeAvfSKhqg5+e8iLF44267rzfLxUcOUkuXDOMbtR+m9tJC0fUEDr2w9/EVoxgKGGNXXXXVRz7yEcaYd5WFENFo9N57712+fHhWzMi2ybIGSHf6ZXH2vo8+0SItIKeSyWFpzBGO/Pz8r3zlKwsWLJDSqXurveN169bdcccdnZ2dw/ItKp4gIj/bDipdlKEeRxnH0bZx2KPYWRwCrH0nse3vjYNENvSov3btwM/cuHFjIBAYO/ZQ9+VnuXgQBAKBT37yk5dffrmU0k/HLS0td9xxx3afeC4hqmTE6mmKNa2LNrwV2fFGZOeK/p1vxvZsSvW2Kiu5z+U1BsQYOnd9W872YmHyBOScHRA+f5kdL+arrq6+9dZbJ0yYIKWuwQRCCMMwXnnllV/84hcJXwIDSktGu5Lt26O7VkZ2vhnZ8UZk55uRXSsTHQ12rAeV3Od3cIaul+t3jXGwvwhACASEnp6fnt8cNxY51jFIt506dercuXO///3v+w8i4l133fXud7/70LdfHqcxiv2isLDwi1/8YnNz85tvvmmapo5UGIaxdu3aO+688wc/+EFFcUGquzHVsVNG2tBKENpAQIREQERIQNyEYH6opC63enKwsFJL4XhggQCZJiG1mmJJKMdm7JRUcrJt6WcH+GWOOIOzFQ0ccQbORM6xXJBxAObMmfPVr371tttu6+vr07NFHTv6+9//XlNT+7GPXQ/JvlTnTqtrt0r0kkwRoiOmhoBEyDiJoJFXmlMxMadivBEeGElg4RwCZgOsCQRXBkN1Up6WShQiUuZISf5d2kDK1cpQAGYwyLIqxkcSArNmp15ddnBvHPT4Aw88cO6551599dU333xzTU1NQ0PD3Xff3draqgNoh4jsML5P1NfX33777ePGjfOmxpxzzsXrry575bE/RTY8G9vyourezmXMFBQwjUDACARMM2CYhmEaQoCEeGe04a3WFY+0rfpvorvFP9iaxSV87LjXzdBdRaV/yi/8S17BnUUlK4Ih2EvYFx2VHIeItZikIuI5ufkThydUerTgvPPOu+mmmwKBgI7ZMca4EMlU6qlH/rHr9ccj659K7V4BsTaDbNPggYARCBhmwDAChmkaJgchE3ZXQ9f6F/a8/u/ubW+qVNz/4eHJk3ry8v+aW3B3UenDufm/LCy+v6Coxw3oe0SsJZXRlZFCn0Vyxo4LFBWO0rXJYhAEzzjI8jf7euOCBQveeOONUCj0gQ98YNasWZ/85CcnT5789ttv19bWHkIzHWT94nfCnDlzvvzlL3/rW9/q6+sTQhDB+NrSj1568mljTYq0mIJzZgCAVhbXMVwOgJw4IkfGGeOc29KKNa+PtTcUTTyxePw8bgQAoK27++8FhY+VlMRMU+cXN3Pxp5y8cbZVjJj2v3xyZX4XTCLmjhtfdJwVHuacf/CDH9y9e/dDDz2EiIxxQ/DzT5r50UsXFMsWDoKbhlM2VkvvA3Ai4qSQODLGGOeMK7TjXd0bX462bi+bfnpOaR0AKKVWRmM/r6raEIsTYwJAES0OhMaFwlfFY+Q3BwGilpFyzKEVixRj5aefYeRmy48eQThofYl3eOP06dMfeuihg23ROyHLxfvBxRdf3NLScs8996Qsa/7U+pvff9bcyTWMMcEYcK0yxHS/J9AxCmIckHEA7UwDCQBgUsY6N7ySinQXTT719TdX3n///WvWriPT5M5EmoBoN+PNXBQipmXUCZBI+VRyvFvFueeFqqpH9+IcfoRCoc997nMtLS3PPfdcfl7ONeedcN2lJxflh7U1MkpL61pZREgIwJChngUaoP+oVNeu5hXd5TPPtoIlf/nLX//+j390xxOcMQagReIl0VphXAqO1CqRPzSB0rWIArCJzNKyqgsuHL0Lk8UgCF92uTlz1oGmGJszZ+2d0HYYkOXi/YBz/qEPfaixqWnTmy/f9pELJ9aVMQaCceZ2fQAAImB6YZ0jItdScAQEDEDHiQnAQJKR3Wu2bFp/x+8e39m4xxDC6/ZEpBBJKYUklVPSgsDp9n4itgFsxJwxY8Ze+4HRvC6jh9LS0ltu+Wp3Z8fCSQXXXXpKOGgyxgTnjPnyioiIAREjAAAOHBlxIHQsQkCCCEw7FWld9exTb+3+7T+eQUTOGOi6gohIpIhAkUQ3fY2cxTrtFPt1iyTi+CuuKJozd/SuShaDo+SX97eddWBJ6CW/vH+EGvPOyHLx/hEKhT7z8f/pnF9UX57DGROccwaM+0LtjAERJyIGwLmmV86BgAMhESPOOZKOcpSaqfPn1T/U0ZmypEfEEtFEPD2VrLWl5WRWkb+2kKcbaRNRMDj5M58rnjtv1K7IaGPixAk/uOUTBfEd4aDJORd6XPQneDoF6QgZ48gAAAE55wSgLcKJCyIUgqQ1vy48e0LVqm17wDWHdoorpTwrmWBIOvdCr52iFybydDOUKpw1e8rnPs8DgVG5Glm8A8zZcwq+euvQJSmKvn/HaClnZrl4/yCZCvdtrS0Nc8aF1hXP8MEAAIgxRgREHAhBEwNxxogz5gaOORHnzDSN8xdMbWzve2b5JgBSSikpqxCvSMXPSCUNItutUZ1eF9ITYQCbSAJM+J8PT/jYJ+CQc8uPXtg9jRWsU4SDmogdl9h3QZwkZD1PYcCAMWL6fw3HIpw4p8rSgg9eMH9PZ39LZx8ASSkFqpOlfE8iNkHaFjAvpxu98iKuRSylAlVVs7/7/wqmDbJvKIsjAQW3fh0AhkLHRd+/I+/Gz4x8iwZHNo9i/0i2bpa9jYJzxyN2O/MAgButZADeY+cvY9wNaHLGgqZ52cLp9RUFKcsyTfPy8867pb5mYSwKiElXGWfALQWQUopCocmf+dysb33HOI5rSaAVT+x+m8mEEBlE7Af3iNm1hGMi1xyMg2cRBmx8dcmlC6dyBrZt148d+9nzzvsYyepUMgWQArIGiMa50kUpJfOmTTvpp7+ouvCi0b0mWbwzCm79euXLS82Z+6yGZc6cVfny0lEkYsj6xfuFSkZSrRs4Q84Mlu7KDNw9GhmqMQ4DkH6RjiMDYwwok8Ghuqzg7BMmQbDgU5+64d3vfpfauWPb3Xe1P/Uk9vcyYODWWNI19xQhGUbejJlTbv78mPdfK0Kh0bkWRwZSHTso2iYMobkUdHpEpjkcWxB5B5njFhMwBow4cARiuuYWZ1zwU2eOfW3d7qoJMz7/+c9Pnzih5eF/7fjpT2Ib1oNtM86BMUqnr6Ei4gUFdRdcNP2rtx1v2SxHKczZcyqXvJp48gl77ZrU0iV6S15glltjaTQW6waA0dGsu3gYEG9cnWp4zTQNQ3DhZEXxvXW8yE2HcEq1EyCiQkQkpRAVKkSpUCLatrKlsm3ZHU1Wnnj59LlOYVOVSHS/9mrLk090LVua2NOMtk1ExLkoKCicOavqoourL7ok95D3WR7tQDvRv/Yplug0DUMILhgDztle2928beKgA8AESISICgkRlUJUJFEphbZStq1siclUspcVnXTpRwsLnRzhRGNj23+fbXv26b41a+xIPypFjIFphqqqy047rebyd5UtPO14nqAcNjz00EMf+tCHRrsVI4uHHnoo6xe/E1CmrI4dLO2A7RWiZW422zt8CnP9ZeYkv+pYRl5QFIi0oIQIh8vPPa/s7HOsrq54U6OMxUgpbpqhqupwdbUIH0db7N4Bdm8LxrpNvVoHAAMGRdccex0DSNvIkcV0jOEEMIBzXhrEAEsLSoTr68d9/BP1H/qfZMueRGsr2jYwMHLzcuvqA2VlGYu3WWRxyMhy8TtBRrtVvMspQOl0/YF0PJCFyd1mQC5N0IDJs/4YBkA9zduqpp0qjPT6O+M8WF4+0nWOj15Y3Y1ANuMBZ2rC0pYBSF9e519X60cf8iceg+c4u2CMp2J9fW27wgVl/m8UoVDu+Am54yeMxOlkkYWH7Nj+TpCxLlC2Ex3WXZi8ru3knOr74O7XcJ9NC6q5mam665OOJgMBYyzR35WK9Y/CiR2dIGXJaKfnEPs1Lf0352CGORyLgOcj00C6ZgCEGO0cntplWWRxoMhy8TtBRrscuR9IEzG5/djf+TOOkOsce2zt7t1w7jtOGpOpeDLacxhP6OiGSsVVKpoxxSDy5iHgZ+QBROxeff/xAaElPXWJ93UqmdW9zGIUkOXifYNIJWOQ9qqcg94inX7o7WBOHyUAAHQfOk+C+4/zcQQAiMpKjEgZzWMSJFNop/SCM6anHUDO+lzaOt546NoACAi9HXRI5KiPuvEk17x2Kqbs1KidYRbHMbLx4neGt/uVERIKxonctDUGiI4Mjc9fJgQkTBMCejQMroYj+G4+Ny2L/cGdjziBIUIg7uzqyAj9ekOj1n3G9GOd46LN5Eib+lxmdD48a5EsRgFZLt4nHCJ1ctSIARExZMA1geqwJWU4Vl6nR7fno++x93ED/h3l8zyKQEhIJPS+cscizqRF73vUrwI3DOyGJ5AQ0+YAdBxp1wyYNvReWRhZZHGYkOXifYIBIwKFJJA4JwQEBM64YsBZxhq81+1dciV0Orx2khEJVJqQHb5WRASQTY0aOohxJFKKOCcCQo5A3Nl/kzmmOdMO0CptqPOLdWDDGwTTA61L8kQEjL9jDe4sshgpZLl432CMmSHtNykk4FoVFxkx5O4O2/R6nvaj0Q1NIKJbUcLl4PQdQtRzZcbNYDZxeKjgwiRuEKYUujmDiOk96F4qcTpS7MSBUO/0QHL/deyCSIigBYGQCAmFGRBGtjZHFqOALBe/E8y80gSSQGSKMT171foySm8V0OLFzn/p1SFH7ctxvtz+r1kdtCCj3pVnhnJD+aWje45HEUQwlwdyVSzOOSPGEAE4MCBOnNwMN+0i+6PxviiEM1q6A6TzrzaHtlFuYbkws3JrWYwCslz8TjDzSokJdJwvAGDEtPIiMdJ0jN5GLzdA7HjEpCkYKe2OISnl24aLKphXFMwpGNVTPJrAjYDIK0n1t3FOAAjACDhnjBiCG8D3LOISsce63ijouMjaKXa3qqNCJMZyS6qzMYosRgVZLn4nBPLLeE6RHe3U/ZOIcQ5EzLelGbykVfICxuisDnkOl0I3aIGkEJVChQgMSmomGoFMoR9E2dVlNTVhLIZKMdM0q6oC1dU8uwcaABgLldTH92ziiIwBAOeExF0JNiBtEXcdlbzECW0W5XKw91e5RCyRFGIwJ7+octyA78Rk0m5psVtbybaBAc/NC9TVGdk90FkMN7Jc/E4QwZxQ+fj+vjbOOTAA4ETIuOOCMV/XdyOUPtfYlQdSSh8BpUgholISUQGmbOqXISKH0zGRiL32WuTpJ2PLltkte9C2CQkZh/z80MwZBRddVHzRJaHjXhsoXFrPQoUy0QNgCAACxslVw3Q0JtKbHHV+mhMgcmcnMk3EzgRFIkqlkLDfEkkyPLEfq7Ex8tx/I/99Nrl2jYpESCkkRobBq6pyT1tYfPkVBQtPE1ltoCyGCVmdtv0gFenas/xhZkcNwzA4Y4xxzj0q9m/58vZ7YDoo6UUkSCFKpaRUUipLSWK0fN3u51a1fOh/PnzlVVeFmpraf3xX7JmnoL8fAJiv/LBSZCtUghtTp1Tf/PnK91/Lj2/NzK4ty3u3LDMNYQghPE1oN34P4N+RR+BmsLnKee5MRZFE1OawlbRRJS37wadWhkvH3vSZm+ZOnx555D9dP/+pvXEDs20tBeeYg0AptBVSQV7ehReO+epteVnNzBHGcOq09TVCsgeibZDoBgAIl0BeJYSLoaB+eD7/YJHVads/gvml+XUzerYuB5AkBOeME6Wl4wHAtzVa5065M2InYqwUaMFMpVAptFEpoEgstWTNroZdbXfffXf/f5+9ZPtWuWG94JwL4Xymy8XMYExwqcDasHHHl74QWb9+3C1fC5SV7avBxzwK6qZHmjfa0S4AQOKcMU4wQEWP3DgFOtlszrhIhAoJFUmFbrBISVQAsH5n+/odLfENu1q3brl9TF3ZSy9SpN8UghkGuObQlQw5F0wIGUv0PvyvyPp147/7/fJLL8uGLI50JHqg8VVIZEoORNsg2gYAEC6G+tMgXDwqTdPI/oD2j8Jx8wJFNVIqWyoplVRaidi9oye5iArJveMwr5SoFEmlpEKllFTKRqUQiWjp6oaGlh4jYE6Px+Y99Tht3GAKYTAmAPSNuzcBwBlwAaYwRDK15xc/2/bdb6tYbLSvyqjBzCksnnQyMsOWSkoplZKKtCGUzyLKNZNyLj4phUqRUiiVUtopVtJWigC6+uLPvbFNIuQaxlnbthQ+/giPRU0hPHMIvzkABAfBuSlMe9OmzTd/pvO/z472VcniHdG6BrY8OZCI/Uj0wJYnoW3NQX/DvHnzfv7znx/02yHLxUOBGc4L1s/rTSgllS11H1ZSolTK6dhKSYW2w7m+G5LtEISylbKV0nHJlZubX1ixzVZYI+VHIn3VAIJzf4dn7l/m3tdFLAzGTWCtf/7T7t//9njePF1QO03mj0kkLVuiLZWtGVkq27GFYxc/OytUjpy/1H+lraStlCKMJVKPL92ws6WbAZybiF+SjAe5EO64yPd14yCAm8LA1tat3/pGZNPG0b4qWewDrWuGSrKta6DjneyYTCZvv/32KVOmhMPhkpKSs88++6WXXtJP/fa3v33Pe95zKM3McvH+kUql/u+fT/zmkaUdfTGFytZhX6VsqenV6eHa/1LK5y87frSSUtpSu2AozfyXVjd390e5UhdH+ibbFsvs5AOIOP1QF19ijKdSu37xs97Vq0b7wowadjU23fPHxxav3G7paYpE2x0gbe/Ke3SMSipUkvTwqW96XJSohBnY0Q2vb2iUStWkku+K9IWJBpjDs4JG+ggDDkwIEV+3dufPfoKWNZoXJYtBkeg5MG93z1vv4D5/8YtffOSRR373u981NTW9+eabJ5100sUXX7xjxw4AOOmkk2praw+lpdl48X5ARP/5z3/++te/JlNJ25YfvGB+bXkh01uX3VqWPsk2R/RAIRGRUjpfSklEhYqASuumjjvx4lsnnvOzX/y89/XXFybi/j6vkS7R5j6ETEbgnCd2727621+L5p0wGpdklNHX13ffvfe+suy1Nfk5KVueO39SKGDqcqIMMkLGoLWBKJ3irbMJJSo9dAaCOWPnnjP94mm8ZOL//elPpzXsrFbSPxZCZj1D/wDJ3M0+2iJtjz9ef/3Hi09acJivRhb7we5XD/gtja/ClMsGfeaFF164+eabFy1aBAClpaV333335MmTOecAMG/evE984hOf/exnD7qlWS7eD15++eWf/exnqVSKAXt1XUNXf+z9Z8+dPrbcNA3GuX+9CHxaE4iEhEqnryEioQgEqybNHzv3nEA4/7TTqiZNmbzqy18q+s+/QAhw+/l+wNL/MoDOF19ItraEqqpH5LSPVFiW9etf//q5554TQvRFk3965s2Wzr5LT51eUpCjkyq8Sh+eVKmX0KYQldLVB5GA8oqrxs07r2zcLMbYDZ/+9ClTp8Zu+CSLR7zt1IMiIzDEgJF2kFmyq7Ptuf9mufjIgs6aOFAkeqCvEQoHyayYMWPGH//4x8svv3zcuHH6yA033HBoTUwjG6N4J6xfv/6uu+7q6uoCcDTBNuxovfcfi7f2CZ5TlEpZqZRlWbZtS8uWlq1sW9q2tGw7pW9S2soGzouqJ047470TF1waCOfrTy7Pz58Sj3NyKkrs3fP9KvU+/TEHnPNYw86+tWtH9vyPMBDRP//5z7/85S96wGMMEin7kVfW/vqJN1OhUgk86TeHjgvZStrSkjJl25ZtW1JKVGZOfu2MhTPP/VD5+NmaeTljU4OBsoSzIjpIYdl9WMS7z4i6li2VsehhuhZZDAXvsFh3UG/81a9+VV5ePnHixDlz5nzmM5957LHHpJQH37xMZP3ifaK1tfWHP/zh9u3bhRCIWtuWlJJTZ5581ns+UZIf7Ni5tqdpc6KvQ1kpLbvmKcYTMCa4mZNfUF5fPn52Sc1kI1MDSPZ0p3Y1OLqbmd4W7dX5wZWCSx9nTMVjke3bKi+48DBdjiMAr7zyyi9/+ctUKuXqlRIics4XXfjuEy65Pt7V1LlzXX/bzlQigsomTAsEIQAwxo1AblFJSd2U8nGz80qqB2ShJbZuVbGYYIwGswhmcjGkzeGmmDMW29Vg9fYZuXmH5WJkMQREWw/hjXP2PlxdXf3UU081Nja+9NJLL7/88sc+9rGKiornnnvuECPFGlkuHhzRaPQnP/nJihUrPCJGRNu2J0+e/I3bb6+urgKAutlnVk1ZEO/vjPe2x3papZUkRD1NDuYV5RZX5hZVhvKKuRjkIqNlo2VBZs/3My+6/R999/1l9BBJxROH6XIcAdi4ceOPfvSj7u5uxpwNSnrXxtVXX3399R8NBEOBmkmFVRNSsb54X0espzUR6SKliIhxzg0zt6gip7Aip6jCDOUOUs8bAOMJIiDmy+z2Peun4/R9cu7rF6hUiuxsfaYjCQftF79jZKO+vv6666677rrr7r333lNOOeWuu+667777DvKLfMhy8SCQUv7hD394/PHHGWMeEUspy8rKbr/99hkzZnivNILhgvL6gnI3tOTtaN4vyCkw4e/z2k/zT4TT/Z8ACdCpDOS5ZjgMZ3s0oL29/a677tq+fTvn3CNi27YXLVr05S9/OdfdiMw4D+UXh/KLS+qmOO8cskUcESHGuGsU5olwZprDGR3RKS3iHYfjySLHOAbLF92+ffvtt9/+q1/9qrjY2RJSUFAwc+bMlpaWYfnObLx4IIjo0UcfffDBBzULgxOaUOFw+Etf+tKZZ575Tm8eIhEDMNMk01SUdnsRQAEo947HuUrvu0VNxOi9BhkTx8dm6Gg0et9997322msDiHjKlCm33357ZWXlO7156BYJhxQwvzk8Q/inJh4Ru0Mjea9hpsnNrPbxkYSD3kc32Bvr6+vfeuutK6+88qWXXmpubt6yZcvdd9/96KOPXnXVVYfUSBfHqV+MqZS1Y0dyy2bV24fSBsM0KsrD06aFxoxdtnz5T37yk3g8rufCOigJAB/+8IevvvrqQae3BwGjpFjU1libNgrBwd1fmxEd9jo/gZZFRkCPICQRC4fzJkwclsYcCVD9/cktW1I7tmMsRkQsGDTr6nKmz2DFxQ8++OBjjz3mhSaISM9Rbr311qlTpw5XA4ITJlAwqFIpxt3tzr5nM5xiBERAIAWkLSIBJFF+/ZhAYdFwtSeLYUBeFcTaD/KNeyEQCLzyyivf+c53rr/++tbW1vz8/JkzZ/7973/PcvFBQvX29j39dOTxx5Jvvyk7O9GyCEARQDAkqis7Tzn13j2t7e3t2gXTRCylvOKKK2688UZz+LweHgrnnXZa5IUXOILgDvl6yjaalLUSjXbBFKACUq7vLInC9WMKjwlVmlRDQ99jj0afeiq1aaPq6yWlkAAZg5xcY8L4t+bO++Nbb/vnKFLKYDD4hS984eyzzx7GZoSnTzfGj5PrNoApBEtnEw+IUSg3WKQtIgGka5TSUxca+fnD2KQsDhXD6hcDQHV19f333z/oU6tWrTrI73JxfHFx/K032+/8QWLxSyyZZIKbjJNwZMmVTKmdux7p6tlSWGT4Eids2z755JNvueWWgoJhFn0vPP+C1vt/JTu7ibjggCzd+dMBYqfnowSUALYmYgBFWHHOOTm1dcPbpMMMkrL/sUc77v6RvWE9R+ScC8bSFknEutet+1tLWyQc5m5KhFIKAK677rphnKNoBCqr8s89r33tOoYCGCB3XOP00Ejp0IQClD4ilkRmSUn1RRcPY3uyGAYU1kOo+IBTjEPFgyYXjzSOm3gxUt+jj+z5xMdSzz5j2LZpGAZzJCAM/Zcx0+CVnAnO/YkTEyZM+MY3vlFXN/yslzt7Tv5FF1koJZGtQCJIBBudOxJBISgiBUoTsb7ZADZioLJ6zPuuGXow9AgExmMd997T+oWb1bq1JmNGpjSSABCc5Qtew4B8iRNSyksuueTTn/50MBgc5gYxVva+97PaaltJG0mqtDkUglSgFChngpImYueGWHneBcXH5TbIIx1jTjscbxkOHC9cHF3yStvXbsHt27w+b7h9Pi0HweCcRPyMWJQBKCKpVElp6W233TZ7ZEIBPBisvfmLxrRpKWVJQIkkkVwiJkkkQUlQNpB03WEJYBGhYUz61A2lp5w6Eq06PCDE7j/8vvuuO3lfrymEAWC4FvEL1IWBro70TU0mEUAi2lLOP/HEW265paioaCRalX/C/KobP2OZwiYlCe20RbQ5UIKSgH6L2AApxJxJk6Z+8UsiW3vlCES4GCoHyRTeJ2pOHC3lzOOCi61du9q//U3Y02z4VBD3Vt5iAEWoPtbbc3V/X7WVKkylrqqsWDR//sg1LG/mzLHf+R6WlSWVbYGyQNmgbIeClQ1kA0iAPs4bzECjYcYAJGLdVe+dfNNnj2rB3OiLL3bfc7dIpQzOB6jTiUw5iHG2/dme7rNisWLbrrNSH5s6eUz9iM0fGav55A3F13wgSZgixxa+G2qLWADtwtgRCLYKI4VoFBXP/vZ3s07xkYuqOUOl45oToXz6CLdmnzgO4sWIXb99wFr5limER7vgWyvzC74AQC7Re/ojp/NIL4Oi15a2Pf7omI9cP3KtK7/0MnX3Pdu/8+3Ezp1C6GW8dIwywsWKvPxVObl7uCClTkvGP3zZpbO+9b9mYeHINWmkoXp6Ou+7hzo6hBBssIwF8FuEQZWUH+/taeEgEXP/9Y/e976/6ISRIj4jP3/S/34XTKPtLw+xVIpz7ko/OWt3u4Kh1/IKNgeDEWBBK3Vdfu5lX7u17t1XjlB7shgeVM2BwnrY/eo+Y8ehYhgzylryxz4XpxoaIo8/xjMJF3xL5H7ozs8YlKLKB4qnZPPf/1Zz1XtHbn2cCVH9vmtCY8dt++Gd3YtfpESCcw6cA0Cc838XlazML0DGSCkbYMPY8dVf+drRvmQXXbYsueINg3OeOS8bIFAHXiYDAxOhWikLKN7YuOc/D48cFwNAsLp66p135Uyfsev+XyZ27GC64ixjDGBHIPhQaXlXIARAKGWfMNovvqz+2g8ytxpLFkcuwsUw9TLoa4RED0RbnS154WLIq4Lw6CzWDcCxz8WxZcvk7l0m53tL8AxKxwBaZYAREBeif/WqvrVrS08byXA+Y8WnnDrv9w+2v/Bc6xOP96xYkWxrQyvVZZhbgiHUqcecG0QtPT0rN26snzx5BBszwiDEyLPPQDzGDWPQlUfa6/4A1cqOF55Pfe7zwfLykWukkZc3/qbPlp17fsvjj7U/92xk6xa7r48h7gwG24VhEDLGiDHB+YqNGzu6uioqKkauMVkMJwrrobB+UK2JUcexzsVEseWvgm15Vcu8HN509thgihDgCr7YfX3db74xslwMAABmUVHt1e+rvuLdieam2K5dMh63pVz56GPPLVsWME0AYIxZlvXiiy9eeumlhnG0Gk52dcXffntf6WiDWsFvIMZ5bMf26LatI8rFAACM5U+fnj99+vgbPh3duSPZ1ga2XdzTs/T+X3f39AghdBXaHdu3v/nmm5deeunINiaL4wBHa5ceIjAetxobAdjenDu4FppWH3f1twCAlIpu337YGswDgdzxE3LHT9APL2L85TfeIF3tlDEhxJtvvtnQ0DBp0qTD1qThherpkW0t3C107b/4sJddvFRrT5ySGFOJRGz3rtKFhynxyCws9NblSlKpea+/odWTNRdblvXcc89deOGFR+/omMURgqN4LX4oIKUwZXniW379swFqL+mHBOjKoenjykqNVvtPPPHEuro6vcFBd/729vYlS5aMVnsOHWRbKBXBIBbBQQ3kDo3p40QqOToWCQaD5513nmEYA0bHnTt3jkp7sjiWcIxzMTBGnLv9OUPnZW9SRne324CeD6OXPVZdXb1w4UK990R3fiJ68cUXY0dvHWgu/Bdc7UXHA5VCyfGL/ePlKK6VnXLKKfX19f7Rsa2tbfHixaPVniyOGRzjXMxMA8IhReQX3FKZf72nHPEHIOWKbykAxdgoqoMzxs4555y8vDyPjoUQ69evX79+/Wg16RDBAgEKBCXSAHU6zxAZQyYBIijXIvpGnBuuSObhR1VV1Wmnnab3AerRERFfeumlaDRb0SOLQ8IxzsU8FA5OmaJQ714dZDpMfkZGUEQIqGWC9d4qMM0Cn2Dx4cecOXOmTJniOWKMsf7+/hdffHEUm3QoMMrKzLFjlCI/+fpnJxlDo3KUQtOsTSQKC/MmjppAHef8ggsu8I+OhmFs3Lhx3bp1o9WkLI4NHONcDAD5Z51FuTkSSWb6X353TBEo5cm++OTQEAOVVaUnnzKK7S8sLDzrrLMAwItRcs6XLFnS0dExiq06aBiFhblnnCGBFGaawB38XAlKUI5HnCFQZyMWzp4zilwMALNmzZo2bZp/dIxGoy+88MIoNimLYwDHARefdHJgxnQppVQgCfySLsrr867si1+FR3Nx2Wmn508a5XzeM888s6yszHPEOOc7d+5csWLF6LbqoFF00cVQUmQr9Czip2NJoBwhnrQcmu0ahYRRc8llo1tTLj8//+yzz3bKRbtYunRpa+vBVlfLIovjgYvN8vLyj3zUDpo2KluRVCAV2Aj6jiOHBqhA2S4R2wA2gEVklpeP/+j1PBAY3VOYNGnSvHnztCPGOdepVM8///ww1qAdOlR/f2Lt2r7nnut98snep5+OLFtqNTWRUkP/hLwT5hde8S4LpU0oFdgKbPRZRIEiQJ8cmu3dlCqaN7f23e8eubMbIhYtWlReXu4fHXft2vXGG28c/paQUnZzc3TZsr5nnul94one/z4bX7tG9vUd/pZkcYg4LpIiy9/7/p4lr3T94+8mA0EMdMlPAHCSpdKVcjwutgBQiCmfvKFi0TsWVTosCAQC55577uLFi3WBaSRinK98+63dO7aMra9BpYAIGGdc8EAON0amzA9RYtPG/ieeiL7wfGrLZorHUdfrEwavrMg55ZTid7276MyzxBA2i/NgsPbzX+p/++3kmtWmMDgxIObT0Xcsgj51OglgI4rS0um33HokbAGfMGHCCSec8MwzzwQCAcYYAViW9crily4+70wOSIjAGABjRkAEwoyPSNaHisWir7wceeKJ+PLX7NZWkpKQkDEKhwOTJ+Wff37JFe/OnT59FLOAhguhUCiRSISPXRm8RCIRCoUcZdhjHomdO9d/4vroa68aQnDf7jvKXL5zuj2RJKp/3zXz7/tpYGTkGQ8Uzc3NH//4x3fubMjPC0+uLZs3uWbauMq50ybmhQwkAiIkIC54MF/kloRK6kIltUZo2CbyGIl0/eH3PQ/8Wu3ezQi1RJxX50Ih2VJhXk7e+eePue3r+XPmDeUzO5/776abblDNzdoiGgPS3ZwYMYCNSKHQzG98a+rNXzhCxB8effTR22+/HZFKCnJmjKuYO6lm5qS6GZPGMlKE6GRDihAP5Rn5FaHS+lBxFTeGTXM5uXZt+10/jD33XxaL6tLj4F03BKmUBGD1dZU33FDz8U8aBUexkhQAvPbaaxMmTNhPYcOjGa2trTt37jxeuBgAYls2b/nm7V1PP8WV4pyzfXCxrRSEw+Ov++iMW28LVQ5S9mpUgIh3/+jOrSuXXrFo9txJNYV5IcaY7vMOESMhoVKoFCpgPFyUWzMtv3a6mXOo5Uis5ub2730n+q9/cNsWrpPllLrw6u8h2AottMXUqeO/+/8qLr8C2P7cMcTOF1/Y8o2vx9asNjj3dkVri/gW8chGDFRVTf/qrRM++rEjp9xqS0vLV790c30hu3ThjIl1ZTmhAIBnECICREQkhUopRGYYBVX5dTNzKyeIwKGdAmL/M8+0f/sbcvMmwTnPvG5O/T3SFpG2IYre974J3/5OuH7MoZ/yaCESibzwwgtXXnnlaDdkpPDvf//7wgsvPI64GACsrs5dv3ug6Y8PWk2NHJ366TqtShLZSkEgkD9t2uQbPzvmmmuPKGlwFetqW7cYInvyc8OOVAYAeFuEndJ8pPu/VEpKJRXy3NLiSQvya6ZycZDBKNXbu+cLN8f+/S+Dc86Y34H1ZwRK7Y4hJpVN1dXT7v9N+QUXDeXzo1u3bL/n7vYnn8CeHg7gWUSLx0tEnpdXuvC0qV/8csWZZx0hHjEAAGGys6Fp5XNFQRUKBACIABgwYORsTtHmIEKFiOhYhFiguL506qk5JbUHXZMl+tJLez79SWjZI3wzPMhMzVYOHZNNmFCy+D1XTf/ZLwIlpcN19ocffX19L7744sKFCwsLC4+ZYEUikejr63vttdfOO++8goKC44uLAYAQ49u2Lbv/l2//8cEKpUwiAJJEweLi8YvOrLrwospzz8+pPfiuMvwgSnXuTDYsZ1aUC84Y484KPpAjnEFEhC4XKyRUqBTaStlSIon8sXPLpy0UgQP+BZNS7T+8o+fuHxlERqaapee9Ujr/DySSDZhQMjB33pz/+3Pe5ClD+RaVTPauWvnE977bvWxZMaEAICAJUFQ/Ztx551VddEnZaacfIZEiDVJ2ommttWe1IMm5tod7YQgAAB23GJAIEVERKpRK2Qpt2wYzt3Ta6UVjZx1EHDm1Y3vz9R+RK982XDHudKt8+xidaJsCSZQClWKs9ktfmfKNb7GjWTQjEomsW7duz549yWRytNsyPAiFQjU1NbNnz87Ly4PjZO3OD8Z57pQpO6bO+GNRaT5RgJARpWz7yms+eO33v8/NUU6ZGAiiZMuG5K43ONmG4UxJ06ME0/uDGSEBIBPAGCdAICeeCwC2VL073rTikep555kHGEGOv76893e/Fag4457ou3/o9isOMwaMMU7MECK2elXDL38+464fD2UhUYRChSctWFpbv7S4tIiBoYtvc377N749/9prD6jBhwEkrfjO5Xb7JsFBCCE4B5ahxUoEjBgSACdGwIADIQAXztBp2nasbc0LVjJaPuWUA5qvkFRdv77fWrXSq4rAMi3C9rIIJyaAcaWa//C70nPPKzvzrGG8FIcZ+fn5CxcuHO1WjCCO+jXWg4NtpSzGuoVoNcxmw2w1zPz6MUccEQOk2rcld70hyDYNQ3AuGNN+mM5s44xxzjgDxpn+lzHGGeeccc6F85cLziPNG1tWv6Rsa+hfTUr1/u1v2N7GGee+6hsDtN69O8ytY80ABOetjz0a2bRpqN9FZKVSScY6hNFimM2G2RkIlowdO/TWHh4Qqviut+z2TYbghjAMoa97pkUYcA7ufb03hzEO2iKCM8MQHGTnxle7tq+EA5mVprZsjjz2qJ+FPYt48B/UUzsGwDm329ub/vLQAaUeZnGYcdxxMRGSnYz29wKR84PWd46coIQLu6810fC6INswhHC6tGZf7iydc84YYwCajhljzjH9POeCMcGZENwQvK9xffvm5UMPSdlNTbElr+hFzr2x74ulk7mY1dbW/sLzQ/omUslobyqZSBe7OlItkmrZZLeuNzgz9FCnrzTnuvAHAIBrHcaAc85AP8O5Ng9ngjPBuBCCA7ZtWNK7Z+vQvz2yeLFqaeGcw76v/wDrMqdMDXDOu5a+Etu1awjfQyhTMt5jR7usSIcd6bQjXTIVI8zy+MjiuIlRoJKxbqu7ye5vVYm+5s1vk+/3zDkLJlqjjWsCxXVmbhHbbw7AyAPtVGLXm0zGhGEK5rhYzjYv38sIgHEOiM6TxBgjrv8FYpwx4gyJc84ZdmxZkVNaW1g9pA3EiTVr7Kbd5mA9f1Dp54FQqnPpkgk33LivzAeSlh1pt7obVbSztWVPT1sT8yVphANCtW+Mt5YEimqN0KgpAfkhI+3JplWCoRCGJldw0z/cWlAMSC/iAQdA1yKc67xw4MCREeOMIROCSyvZsu6VnOKqwBByXci2Y8uWMCVhHzFfzxw08CABAOM80dzcu+rtvAkT9vEFpJIRq7fZ7tkj4z0qGSFURAjAkIiZYRbKDxRUhcrGBAsqDnopOIt3wHFwTVHZ/a3Jlk2yt4nsBJCmqYxBngEL2T19GxcrIxwun5g/ZlawoHx0/bJU+1bVv8c0RMZc1/eCjMpDjOnz4owTKGdJn7meMnP2htmpRNvG5Xll9WIf0RilVCQS6e3tbWlrs596stSywBV9d0o9uRHJAZo+bjoHkDfr5iy2q0HGontzMUnL6tqVbN2ooh2gLM4Ys6NAmD47gqApWE9D1+oIhItza6bm10w79OS8QwERJprXMjsiTNNdrnPGRS9i69Cx7z2adkEzMQPGgRFzB1YmhEj0tLZvfatu7jn7+FKyLKuvr6+3r699y5acDRtyMnMKPQxiDm0R34sxlYrsoyqCivckWzdbnTsoFQFCBkzXvyJGiMSRMJlSse5Ix87+hrcDxXX59bNyysZkGXl4cYxfTUxG4k2r7fatDFOCc2YKBixhWb3RhJ/XOOfBgBkwRNKORXatjLRsKRg7r3j83IPIPRieZlvxVOsmzkjHH70Ju3/VznV4dKchL8UNMkO3Lg/j/2/vzePkKqu88XOe595au7t639eks5GFBAKEhD3s4MbIvIqD44yvM47oq46oo86oP8UFR9xmVPQd9XWccRsVBQQXVgEhAcIWQlbSSe97d3Xt9z7n/P547r11qztACEl3uru+1CdUV1dX3XvPfb7Pec5zzvcIRCllcvhQvP9AResqZlZKJZPJ8fHxgYGB7u7uw4cPHzp0qL+/f3h4eHJq6uqhobdgQfcNcr+Cj0THOrMWgYS7e0TZHE+v0mY7PpQ6vENN9AhQphQgDClEzlLxVNbLXWFgKUQoGDAl5pIjE7uH4t0vVCw7q7SxU4i5uWPtyQF77JAhhUvAeSKGwsZd/ica6FqQwTdFIgpEKXC867nqJetCpVWaeScmJsbGxnp6erq7uw8dOnT48OGRkZHRsbHAVPzDfb1LhXAUnAu/5Qjm0LuIQAgkAACQmSmTnnZerHLZgb2Z3mchG5cS0RAIEhz/3pecRyQEC0VKWdnBfamhg5G6ZZXLzwqWzuM8uZMNC5mLrfhg+sCfKTlkSCFM00sFwyxalsqnITFEwmZ1eYmQwiQDAC0rObbn4dRYX93aC4IllbN/5LnxXkqNBgw3k98trHLg3zufFv/NO2nocbUrYgMM0Ds0tveu21XZU4cPHz58+PDw8PDQ0FAikchkMkopjyZACF04pluiUOGWHRyxEwfDsJTPB8OTiG3ZbE0ug8DgPzqm7ND+9KHtaCVNQwg09QQjBRJDzs6vVJi5NBKqKItIKU0GRJVLDA8+fXdmYkP1ik3SnP1yD84MHQCVE6aRjxJ5FvFPg84rqGdHxy3lfOzbl3MCiGDZdKjn4J7JX0ypYFfXwe7u7sHBwdHR0XQ6ncvlPGU+FKJCKb3yIAR058VpKYbT2tNYAPsDwX0BI6TU0mzGnHaQAJRNprq22SMHBLIMGDoKlv9ENzkPERAFIgEIPQ+BrRI9z6cmBurWXFhS1/5y2wdFHDUWLBfnxg6n9z8M1pRpSCmFF2ZFRGLO5CzfexkApNQb4WSAADAAVGpgX096qnHD5eGK2S2+ZMqOHEQmROnfwJoZtAUAQASi/CtOFUjeYwbXgRICDw2M3fLTP41PpS1b+XVt0E0DcN7PTMxpAMXsTQLTuDhPwfpfggkhf1hV9XQwaDPHbHt1YmpTKJJPQWJK9zyb7d4hwZaGnmScc5NCZHMWERWcIGqLoJSCAUwAsO3xfdtzqamGU7cawchruL6vGiqbtCa65YxgvXOkDFzAYM4E6U81I3d3gpG9MA4i/nln149+92TWvseybL8mKiL6G+gRsw2QBVBOSUn+k73v9dfdEQMr2BGJ/GdFxagQgqglm1k3Fa/ypRiq9GRy/0M02WsYQgop8AjJecDAJECQPm8G0n1Z2AAAyCVGep+4s3btRRUtp5xE+fjzFguTi634QOrAw8JKGE5SrrfIR0Q0pAiaBhELiQCgiBqqymorS/XeNwAQsxRoGkZ2vL9nx+9az3pDsKR81g5e5dIqOaqDw74QKnuKRuiLA7I77N1X3NfYlzHhbCjhocGJkcmUjlRKt4ZNv09Ts7syZQXQJ2UGIMygHWpxJC5mVwCBCR4tjTwXDiOiyTyF+Ofyip1Z68WvfOXav/zLtWvX8diBbPeTEsmQhnSCreBYRKBpyIBhEGWEQF1A3NlSEw4GUKAgIQUToRSSJMS7nweUTRsuFsbsJSCq5ARnkyjzvq2+cNoiDICFl9r3f88OhesX5yXe0z2SyFiGFH7mZRfgs0gCeFCKZZYTmWA3fO99nmcR3Z5mQojflZWNm6bBTIiHwpHDwdCuB/90TX3DlVdcUVsZSx14hOO9piGllE46pHN66M4l+gQRGAhIt4sFJmDBzCzQMIxcLtX/9D3SCJY1ztdmuCcP5j5h4LiDMlOpA38WuSnD0K4VOHlgQuiYXaw08v63XLhxVWskFAgFzLVLGz/69kta6ioAEAUgokQhhRACDUNmx3t7n7lvNtuPqswUZZOuJwIALru6b5hGxG6jVGcMgxPoA/cV74/Y+UxdDEakfKBpsO39AP0ARGzzdA3+AtF3AiKwgfcGjCyR/mZDSlPKRC7369/85j033PDDb96cPrRdgnKWKNoUnkUYVnY0vPfa85Y0VQcDRkk4eOlZK9/3l+eHgiaiaxGdnCvRkGLi0HNDex+fsX11AmElR1nlF1L+awqFUVr9a9ccfkZ2X+f8+oWdNf8rWET/mLLVs0JmiWZq8Pv7hGk9bmYekaJbSr1mkkIYQggpDxw69OV//df3vfeG5+79Kcd7NQ9LnX7nPsCXLikAUICTHo3gFH06FnQGCFjp3qfvSU8MzZIxFi4WnF/MlO5+hpPDhmlIX4bntNXl2Ws7lrfWdPWN2ko11VTUlEcVkxcsdfa7da2ElPHePSNVTXUrZ6m7h0pPsbIYhcOvHoMC+FeC7I15h5cdr5jyQVq/YwUMUFdRYkqRzlnofYKPCJhZCGEYRmlpaUVFRVNjI3V32dsflyxZgBQzVsS6PSADAdtAWn7BCzoLIQwpFaIJ9pKStEE56caK3Kuc18kMGPKtl248b0Nn79C4acr2+qqSSMBWhOjb6xI6OY8F2kN7tkerm0tr22bBHABgpyamLzbc3DX2TZne1KhdVNDF6dpQjn2cT9BPBGJjVSkTKc9g7hpFAwCklIFAIBaLlVdUVJSXZ/50vxifYJZCgMCCSLVum0tO81xS+mMQGcALQyGiUlQXsqqNhBQRKYVE9AYIeC6/Ts7Tm5M62u0k5mijsUAkJxtESCkzU6P9zz/UftbrZnOxsvCw0Lg4N9GfG95rSF2iBm7ivXOfsW+jpbIsWh2LErMiVop0Zi7q8QXoFk+AQCHAHtq7PdbYGSqbjV1jZpUf3NqX0ntF0+o0PE0gzb+c/9nRp3D9MGJmBkXcXBNrqY09f3AAgJnIz7wNDQ2tra1tbW3t7e0NDQ21tbWxiorUE4/ve9tb1OCwAQY5eVnuN4MOH2rpZybg9enETjMQNwztOTnRT4Arzj7l9FWtuhQQ/XAN4cSjBbbUlrfWlitmRaQUuUkg4HjH7E/OSw688Gi0svFEiTVPg47Iu0yr+ddvDnTnPc8imn81BxNp6SbIW8f1qFe21ZZGAuPxlDaYZt6qqqqqqqqWlpbW1tb29vbW1taampqqqqpwKNTz6U8O/fs3AoxCCeHG8p0pQNMxMAEp4ErbWpNKbItESUgmEjoPHaCmvOS6y04vL4ugm1o3LTnPjWvn83MYAIRu/gio147s/J22iGHIyd694717q9rWzIY5FigWFBczqWz/LqScMEz0cg98Ez56qWA6sqaICgnO3eB2bzWBiCClzCTGh198tmX9kfNAj/dZkMul4A1s7Z44maoA+aCE5xG7MUaPD8jhANf9JS4JB9947ppMNlteWXXK+rPa29vb2tpqa2tramrKysoCgYAo1B0PnLWp9t3v6fn8TWzbEgT6FN8B8l1B9Rp5dSbzt2rk4XBkdzA8JYSUEhHrq8ou37TSdKpVwEsG8+8+edffFWJ2TYJ59s+bBUEn58UHDk4OHqxoOir5odcI5vylZGaHoHR4xXdBXCcYyLUIgd8i06GI2usrrzp71UPP7G/r6FyxZoNnkerq6nA4bJrTZ5qm97w3vu2x1PZtWoMfX1qDXzK/KT7Zkss+Fo72GaYlhJSSAbasa1/ZXgfg1my6LDwzOc+3DmMkzwbOkeQrPREEClDZoX07yhuXSfO4aTQvNiwoLraTY9ZEryHyt1lBZMI/7me8xnnS1q6xc5c662OEse5ddctPP5oSqdcKRGLdj5qFZAQhUDAw6SRifwDY54o59O1/BkC+F7Vm2Lql9S21F1S1r1p/6V+LV+r4gEI0v/s9yb17h3/y3waw8HlP3maRP4LcZuVqMumJjqU9l15+/xNP9Pb1bVzZ3NFQCYDCNy/6vgCAfWZxd42mXQ1ws0PyHjUC29nRgzvLGztnoUhSqy8RMQnnMASiYxHfAU+zCDERFTjFxExuWF+ruAmEyzet2Ly2tXPTFUuOYqYPt7V13PS5Xf/7nZnDh2Z2RSAvagygAAJMZ6aSK9Lp+OVXPlFS+vjjj5uCLzytM2gaukgeAKbxq/NZfjo+wrhxEtsAwDOHECI53D013F1e3MQ7ViwoLs6NHQYrLQKmO537Ejvd3KMj6DEwgJt45P/ZnxyLQmbjo/Hh7uq21cdyZMxqYiJ78GCut4dzORACS0tDHR2BltYjNNNDSa73NZnMPLm7e2B0al1n47rOxnzlnTNgXP/XeeIQLpMjZO4JaTr6jczEHAwawWAIp9HiS8AoK+u86fMQCQ/8148wm/VryeuHr2coW0Tla9ae/9mbqrdect3+/bf96pfrq9KmIR0adc5u+vf6yGyabXyrGNS280gbhZDxoa7M1Hj4mAJHTGQPDmZfPGCPjJJloSFldXVoyVKzrm6mSjKjIPer+0cmt+08ZBOdvaajraGSmf0UVuA+61g8k54PdUjeETUlZ3ZUxAAQCprBwNG6kxVbzl3x79/a988fSz777EwNfv/UmCOCQGD1dX+1+hP/8o5Y7MEHHnzqkT8sb61xIsCFGWxQmJwHXtTFY2TOT4oMzlmz68OgQLJyYz17ilx8zFg4XMykrPgQuq6CzpeCwhnen+aV3/hCN3UewGMGN3HB57Epe+oYuJgo/cKu+G9+k7jvnuy+fZRKMTMBEgpRVRneuLH86qsrLrvcrMhXlJjRcjQC8WTiiT3ddz6865n9vemsVVtR+pG3bb1s00pyo4Nu4JHZEy/3iNhdU5PzDHykzMwcLX8VFd7B+vqVX/hSdPWaQ9/+Zmr/fiRCRHALwIjZJlLMoqys5cqrVn34o7FTVgPAypUrb3z/DRNP386cLkiHO7rkPM8IeT/NB03u2dRUamLo1XIxZ7OJR/8cv/321MMP5Xp62MoxsUJkw5RNjdFztlS+8ZrY2ZuFr3Q7UFKVBewfiT/49P67/rzrQO8oMZ/SUf+Zd125vKWGFOu0Py9K5FoEPM4lJqf3irNkcadJJiJCKcNl1Ud7AojVF18Sam7e/+UvDd15h4rHBQAIAYhujyWymUmIyJIly/7hho63v8MoKQGAq6668txT6qzD26fXCrnDhH0W8SfnuL/NG8gNiDtvdQ4LIDHSZ+cyxmtsXLJYsXC4mOysSo17u/2sd1d8lEPeIox9dxnkd8i8LSlmH0l4NydAcmKIlH30Zfg0NTX6/e+Nf/dW1dMtmLXopUthYPf2xg8dHv/tnQPnnNP6Tx8v37xFj4qUxQ88c/jO+x/b+eJAOmtp3cuB0fgP7nx0/fLG6vISzz103WGHl0mRQ8pExKwc4iWXhUkR2aRAyEh57au6tjIabf+7d1dfdPHg7+4a/MPvp3bvzk2MMxEBYCgUaWqu3ry56XVvqNp0thHN6/hQLoGUAeHucyHo3XlwDeFZxGXdwvHP+bwFd2osMAkrOzk+UNW66uhPJHfo0PBXb5n61S94fEIINBD1xCAZlJWz9+wZe+GFkZ//vPyaa1o//NFwe4f+q7EU/er+Z/+wbdfBvjFiXZiOz+3v/fHvH//YX18qBebnCx0aIifuTeRGJ7wli36uOJ89SGRGSkOlr668s2TlqrX/9s2xt76t/7d3jj7ycKqnR2UzzMyIRkVF1YqV9Zdc2njlVSVLOz3FJWDmzITf29Bb1X469i5x/vYHNyEv/8Q9W8+1ceMVmcS4lUkUufjYsIC4OJuiXEaAMx7ceb4gFcw/0F1HBjwP0/dC/p3e7ahvNWVlj5KLrd7ewc9+JvE/PxO2FfBFZp2FJAIaAoVAm5L33PPC3r1tn/xU9Mqr/7xt2y9+/vMnnnwyk8loFtabPAi8v2fkQO9IVXkJ+anKcZBJ79q4rOuEI5yWa6zXxaSIiSkYjZVUNrzq64tYsmxZybL3t/3tO1Pd3dnRUbYsEMKIRiPNzcHqmplLe5WOs21xwGQGEN6In24RLkwFK7CIZ498iohnSGCA9NRYfj/zlZB6fPvAJz6W2/aYRBSGW+oCzjJbJ2ihkvZUYuQHP0i8sGvJ576YXdr5u7vuuu22X+3dt4/IiZi7cxzv2NMzOpmsqSjhmRZxFih5KxCRThHxohNEer6kaEVdKBp7tQaR4UjN1ourL7gwOzKc6ulRqRTZtgiYwarqSHOL9oX9YFIqNekcp14u6jWK7wLOmAnzVvB+cp1kL4bhcTLauUwmOfkqfPwifFg4XMw6t8pdLQKjvkm0N+arCGYAcDv1es6X725zQfnUUCc5ycplJyYmyquDhpQvv8ZXExMDn/qX5M9/auiceHdPkApX21IAA5qGme3p3vfhDz3845/8T19/KpmUUgoh2PWkQI9/UohIipS7X5+fUSgfmiQGLy3MiVEqUqQfiphi9R3hV+mF+WFES8pWHp0rSuStZpmAhTOAPYscORXMXcL7V/zkFEm4Sxj3/FPJRHwqHo2WyFdqhZfZvbv/A//HfvYZ0zBmtonzwBIYpImQeuyxHf/7b3/W0vanw92slNaG91JTAEBPkACglH/GADcXBFxzOJyryZeIlWKlSOkmeESIWN266piT81DKUF390TXJddZQ4DodeoggIhN5O9eeRShvEXBMwDrJB3R+iGsjd+7Un1qUqz9WLBwu1ncCuYxKnM86Qt97oDDm5W6sOPHW/N/nqcC5FxFhYHDwWx/8QDRW1dbW1tra2tra2tjYWFlZWVJSYhhGfheFaPQ7307e9ktDd+LwHcDMulWBIEAYQqp4vPWhB6tr6roDQf+YJzfZduOq1ta6Cksp5yRcJ9EhL29HSPtfTt2WHvZMStlK2aSkGapbcuoxdFo7BrhH5Lm5SACCmXWOCnuhljwRu06+/isvDu6cmDONOn4doxDbt2374vd/29jYpC3S0tJSV1dXUVERiUT87KwmJoY+82n7uWcNw5BusamXTuttFjCAABAIkoUhDdV1cPnAwJPVtUkhp82Ltq1CQeO89UtLwgHbYZ9CiziRIvD7xfqJTUrPlDYpRSpaUVvZtGIWzMHO6smxhf4XCgfIjIUj+KLc3lw4PceP/LTM9JJHUMTLYgFxsR7qpOd4RmYmBC8O5sW2vJoocIjYSzDI31u+9F7Kb71ALme9sHvPZCINAFLKYDBYWlpaXV1dX1+vc/IbGxsbm5pDh7oS3/+eadtabsefeOQcqPuvfggAASgQm5nOn4r/JFah6211hFcgdDZXX7Vl9eWbTikNB5Xt22dkYCBwt+Y4v/jV0WFQimxFSilbkU1ETFWNS2P1HSfaEt6JuqzEKAkIBAoS4JPHcS6LM7lwfteR2TMJODYAYN9pagtNxqeeeeaZp556GgAMwwiFQrFYrKampqmpqa2traWlpbGxsb6xEe64PfOH33lt4oT7vdMM4TwQBKAAkEKszeV2JxMPRkq8KdpWKmQap69ue8N56845dSkykCLvTNi1icrTsROmUMqpKtJ9SHWZMyDWLd0QKq2YDWNo9QxtDmQUBKQLnQsGiBeUYwDWgRaHgsnz98lxisHxjl2jACC+UqJkES+FBcTFQrKT10VIWuLPl59emDtZSLsul+W94/xOi77b9EOvKKU0tAecy+VGRkaGh4d37drFbtFUtKSkTKlVqfQ7pSxj9jvFfkb2j3xAQHbc51XZdGMu8qIZINtGhI6GqivOPmXrxhUN1TFEtJXyMpHYPRnyzR/a/2JmpdgmUg4RK5tsRSoYibWsOVfOWqEqSmIgIrckgAAAqaAO0iMAl3J9O13sJud5L+oFMjkZCAxsE7kbosDM6XQ6mUz29vY+/fTTzGyaZiAQKCsrK52c3BoIviGdmmYOnna8vqoHAYjAJvDGVPLxQGgKUdl20DTWr2i5+tw1m9Z0lJeEAcByLOKstyDvyzuTkCLHpVYOHZOtlK2URUqxKq/rqF92+gk3hHt+DNKbzJDBEWHz4nc+ixROiG66JDPnl19uTZKugydmIhByrgSmFwAWzoWTwSiYYUpniAQiA6HuaONkUrpE6P3HwE5pqzO4gb3lJOdvOKVX+sTMPDyeTGetgvKRwnISy7LGx8ZGAYaiJZdmM2tfutdnfoewIOELSomWp1MHpLFy1ao3XnX5+lqqDtnSkDnLRqF1cpwv9paSvshdPpVYRySVUpbDxSSk0bJ6S2y2NBwAwIjEWBiKVL5Cw+kxJJw8Qp2j6oa//a6WPznPXebnFzHs7kYOjk7ZSkmfL+YvYGHmTCaTTqf7hIBIydZspoIKVtAz6dh5FQHcvOF622rMpA+UxbZs3vy6rVuWReOxsESBWcueVl/vsRjl9x70zeMscZQipUhbhEgFI7H2DVsD4dLjfuWPCJSGjJTbEz2KCBAQJAA7cyOg/1q4AQf2NlScedAJgHveCXnGIibFbAQjs6louMCwcLhYmEEZLrcSI1oRSI91gbpKAP1jTpMxeR6lS8TKC/C5To1v44UUU+/QRCabc5o/6jHo+1cDESWAYsj58oQ8j9hPwb7j8f/Ap0Ujp99441XXXFNfXx/v29f35N12Nm0YEj2pHF/enhtKAc9n0alsnkdsKVKsGKBx+RlNq86eTZ1ZI1wGRohyU+QokSOAQGQG5dfU8aKTRG7sW2n/1917zLvG4CXnKaasZXcPTihbgdSpGY4tpplD/2gj2tOLGwrMkbeLkyfg/GgqdfmS9iUf/fgFF1xQWlIy9MLDI7sflQK00JFPh3m6R+nylM5gIVJkEzkWISUDwSWnXVIxu5URZkllikAqQkAE0gUcAtmJX7jwBkh+7ah8IRcvTb0gIEaKVElpeeDkaE44H7FwuBhRBMob0oP7BbEe+cxed0g9VgHcsJg775MXmlDeQlKPHCLlOMVOWpiteCieE1Iq2/arkeV9I/dfBiglKnfjiOgb5zRj8Ht7g/oVYm6LxTa/7nXR+noAKGvotNddNPDsfdlc0pPEz28S5vMpPPfEnTyU0sthxQRCNHSe3nHaxbOkpONCBqNGaXVuaAJR1wsiM+tLBrrCy7WIPgtyh77Oz3WWK/nxz4qcwa8UMXMiY0+mlZTCtm39CdPkh/RhICIjVigVZfIIx9u182yh/yU3VJpnZqKz2trPuuoqHQmtXr7JtqyxA08osqWQWoHdubXADRnrPSwnxZA9p9gmZRMpUkYw3L7h4rrODSfcBoUIxOpZmkrZ+vIwoxDI7qU6wgDRdvAtGZ3R4a3AnPHCShEDl9W0FvUojhkLh4sBIFLTFj/4hG2lEQwAgQzMJLwQhSt3kN/Zd3eVnS3vQk/Mvc/IVkqRKqtu+tin39o3OHLIRV9f3+jo6NTUlGVZfnYmxAYrV60UFW7Tgzfa/e1wWD/n/Cu2xbarlotY2braCIR7n74nGx/RzUcgn56Lrv/lWy06I1/ZRMTKCEaaV29pWX3O7A8SFCJSuzQ9eABJIQKDQAECyC33yHuT/lQwb0XsmsBzvlhPMXofUpFauubMr1/wju6enq6uLt0abnBwcGxsLJVKWZblZ2cWojOXDTD7m0V5TjH5zOGahsn3OmWzQARCAIAwzPo15xmhksFdj9jZlJASncZD+XRdf7zYOWwiW5HNxEzh0qolGy+rbl89++3GA6XVZlldbuyQvoGEEAxuG6fCDWbKZxc6W9w6OZ2YlFth70Rd9M3GZAQjVS0rZ/mMFhIWFBebJZXB6vZkz05EZGApBHJ+2s+rtHHehXF3ur3Fr3a7QCm29bpLKZsUINYtWddyytoVpwAAEJFlWYlEYmRkpK+v79ChQ11dXX19fX19fUO9vWpi/PJ0MlQ48jX8DeIo74WxnwvcXFUXiGUNSwMlFQPPPzLevYszWSG0tDeAE2x1Ro3PnVeKCYUoq21vW3dBZdOy2Ulim4lwdZuMVtmJYQSUAILRaSQETpW6NzuCu7r3NiHZLY7QHrHtWYeUYmUGIy0rzyhvWLJm7VoAIKJsNjs5OTk0NNTb29vV1XX48OHevr7+vr7h3t7qZPL8TJpdd9ifwlVIwXphDuQsV7zfMvv+SkijZvkZ4fLavucfSg4dBlZC5PPNWbvFpDckvMxuUqwMM1jVsrJ13QXHUmtzPCAMM9q4Mj3ajUrpgLFw1C8ZoMAx9mcNE5HS/2NWKu8g28rz94lZldd3lFQ1zsl5LQwsKC5GFGUtaxP9+y07q0lNaGk/R5rG25tw/WIGxW6gwlndK1Kga4X13WYpIqZoZX1Nxzrvi4QQwWAwGAxWVVWtWLECnJxTO5XN7vnud/puuqkTlHKz2QqSNwvbxHla7ATsNWgwggEZnO7DhkorW8+4orxt9cj+HZMDB+1M0gmIC+EtJ4mIABQpYZhlFQ31nRuq21cHQtPrr2YTRiha0rxm9Pn7EBUzCyEEAyIKEL50QwBg3eLJNy/mt+y8nBDbl5xX2byirLbV+yIhRDgcDofD9fX169atA3e+nBwff/rGD9Htv2mSaB/JIv6VivKp4/tbZohIZFqqFiKW1rUvragf794zfOCp5Ggf2RlwwtOiwDVmVqSMUKSyrqN+2ekVjUtnL4/lSIjWLZnsqrMmegGABQvhSV8ecYAwFYa/HCLOZ+noOJiSZqhh+Rlze2rzHQuKiwEgXNFQ2rJ2Yv82BiDJUmiNVywUOHOdYlfklwiUE5sAb7ZXStnKVqyEYbas3hJ62Q1iIUQgEAgEAqtOPz0YCHAmpQRyYZs4f8hYASgCIlDACig/8onCLa2BqiPo3QhplDcsidW1JSeGJvsPTo32JMeH+noOWZYlEBVzzrLHpzIbN1+4bO2ZpdXNRjB8fK7pa0NZ88qpgf3Z4YOGaUpmyQIRCBVM40THCwP/sGdmW7HPHMpStiIVLqlsWbPl5YvR9XxZW1+/dt26gdtuU0I6UdEj+cVa3swlYvJzMQksW7nqiGmzRiBUs/TUypaVU6N9kwMvJscHJob7Bgf6EJzKtGQqk2Pj/EtfX9+xKlrRcPRKJicOMhAu7zxjYMcQ2zZJluyF2KdVfICb2eJF8Finr6j8ALEtpWxSxFy/5NRZ3odceJj7m+M4A7Fy6enp8f7MSBezQcLZKvICFS4Xu0qyVJAKSm4IzLKdVDAGqF+6we8UvzzCp6yWSztyzzwHppQIXBijYJeI9bBXwASKfC6YEqLm3PNk6CXVVVDIksqGksoGYEpMxX/wkQ898cQThpTEnMnkcoq/ccF1FU3LjvHqnQDIQLh6xea++KiVjbOUJBnR6Tk83SL55Dy9L8Qzk/MUkzQCrevOL6lqOsoDiG7eTLEyeyoBEiXmk4gLAhQMRKAYFJCeGh3xSWZZWlaz5ZyXPcFgeUNHeUMHMO/f+8Ln3/++8bExHX2JJ1JVNXVXv/OfS6uPpkZ5llBSt6Ssbf34/u3MrF1j/5ZwfnvTTS7O76PqYaLj9bay3D2JsuqW1rXnnQwzzbzGArx8Rihat/bC7u135KaGDcPNPPLtF7mpYN7GnZOd44QmHf/Luc+qmld0bLj46BdfZm1t6SWXDj79DCrJAgSC3yV382c9IiZbi/8CKACLKFhXX3/xJUf1TSiC4SiJ4OBoXNf7EpFpmlSYQnsyIFLVVL36/P6nfk9WVq9VpNPZkt2kBTfwDTMzuwuS8wCx6ZSz65dtPPpvj647NbRhffL+BwBNQhAiX3cHkDeH9ohVoUVsospT11esP7qEB8SSWGU8ZfePTOotVtu2y5Uu4TyJgEJUr9iUS05M9b5gSKmbjkohHH0Kt/rcn57npkw4exK2axFiO1Ra1XnWVcemIl2EHwuzYDEUq23ccJksqc7m7JxNlk22rWzbuYdsWymlbFs/yFKUs8mylW0ry7Yt21l5MXBV04plm14fiLy6bPzqN18r2tsssmxim8BSYBFYBLYCm8AmUKzjEmQBWwDew2ZufN3rYquPtmkYImodDA+WZQ089xyNj59s4z/WvLJ27YVKhnI5K2epQwPjLxwa6B+NW7ZNRLZehShtI7JspyDCtpVlq5ytckrZZKOQTadsbl13oXglJSA/ZFlZ9V9dr8JBi5QisBVYBLY2hwKbQBEo1ixMfnNYzBAKtb/tejMWO8rvQkTTkH6LpBKJgaef5lTqmC7biYI0g/XrtkYaVmQtZdkqnsjuPjS0v2d4MpF2k1Wc0WHbjjksHa+3Vc4dI8R2OFaz/OzXx+ra5/qEFgIWoF+sEa1ubjnrDb1P3ZMcfFEIFFLijFQwd5vY2xp29usUKyGN+qXrO0675BiaKpWsXdfwgQ90ffxjlMlKrfLtS1h1m5JxviMGgAWQU6p8/YYV7/uAmNHl7IiwBwfjv70zsnMn+EKZivng176y51e/iGzdWvWma6Jr150k+gCIWNW+zghEBp69b/feff/2y0emUtny0vDq9rpLz1zeXl+pHMkDYLe21pdQSMTKDJW0rju/aeWmY8iSrn79G8cffHD4Rz8kBDmjTRwX7p3aPi5u/Ys3t/zFm4/qO5ize/ckf/GLkvExX9cizE5M7LnhPZHVq0qvuLLy9W8INbe82oM/QTDDJc2nXz4QKhl78alfPfDM3dv3BkzZXBPbtLr1gg2doYBJ5Jakg5vW4rMII8Tq2jvPvKq05mQ5o/mO6c2FFxjsbGpo7xPD+5+001NCIDoleeDWQTuxSeWI/JIiBYCR8pqW1efULjlVmse4L0yZ9L5//kT/d74tmSW+XJs4/cgpFWxqOvM7/1F30daj+HSauu++4S990Xpi+/dCkV9ES7WXyMyWUu9IJa9JTGWZsbmx7u/f0/iuvzPKTnyPvqNGJj7y5S989r9v+4NhGloip6Um9u43bVnRUqN0prSbCkZufR1KI1bb1nbqBeUNS445JzfTffj5d71z6k8PGq6AGxaagwq5OKdU1ZZzzvqPH0Tb2l7xwymdHv+vH439+zfihw59NlbxXCCoj1IRBZX6RHxydSaTk8Jct7b5wx+pufr1aJw0PhCrPTseed+NH+8ZHBcCLduWAi86rfP6y88ImtKLUbiZeaxYEXMgXFLfeVrz6i3BWWj/uGhw0twTJwZGMNKw5pxY0/LhA09P9OzJJieAFTjdDJxaL3JrboU0o5UNtR1ra5ec+loUfgFAhMJLPvHPGAn33HprLjElpfTXFxRwMbNFVLZm7brPfq7uggtf8ZM5lxv7fz8Y/dcv8uBAQMgYFoSZGGBMSjQNk8Dq7Tv8mU9P7d619FOfCTU3v5bTOY5IK/n0/j6d16Jrog/2jT6151BHfczWfUnAUVhnAGkGy2ua65duqGpdaQZfU3FtqKV15Tf+fe+/fGL07rukUiiEl8Pl7KZ6RExEQjRc/bp1n7npaIjYHhkZuvkL8f/8fyKTiUpZ4tv+QoAs4pQhA6bBxLmnntp3wz8k9+1rveG9MnJy1Aqj3Nc/NTAal1IQkUC0bPXYzoOXnrGsvqrUJ/5HBIyIgWh5VfPy+mWnlVY1zVXS+kLFAudiAEAU0cr6SMVl9SvPmhzsig8fTk0M51JxPd9LFIaQwWispKKurLYtVtcWCJcU5j4cI8yKys5PfDK6avWLX/9qYtfzaFnohivI3RciABmLtV519cp/vFG3iXtFjP/8Z8Of/qRMJgxpSIA6RaJw8MeYDAQQwGyysof/+79IqZVf+bpZXv7aT+q1Y8eOHQf273fTopmIYmUl609dC+EyoYiBATFgBEKlFSWVDeX1HSXVTYZ5fHr2RJevWP3NW7u+e2vPD3+Q6elBJs0mToohs81EKEKNje1vf8eyd78nWFPzip9JqdTQzV+I/9/vGABCCMlcTcpfaW0wlwILAQLQAJMmJ7s+fxMGAm3ve//JED6yLOuee/5oWZZhGI53omj1iqW1TS0AhEyIKAEj4WgkVlNW0xKr7wiXVc1+xeBiwMLnYg1EDJVWhEorapeuJ2XZmZQOhSEKFNIMhoU0jgsF+yGCwaa3Xld57nlDf/zDwO/vju98Ljs6qvMcMBQqaW6p2byl8aqrq846S4YjR/OByW3bRr/wOZlMSCEkAAKcYWW35LKPBoIEYACcaeUuy2UkACEIBAnCEDD0y1+EV6xc+uGPzvngV0rde++9mUzGMAx9HWylNpx2+pXXf9AUOlwMiCgM0wiExQlwuwLV1cs++rH6179h4O67hu67J7F/vzU1xcyMKEtLK5curb1wa+OVV8dWrTrKMML4j/976j9/aADopgES4IpsepcROGQYDBAFvjqbWWtbACARGNBAaVu5rq98ObJyZe1lVxz3E3y1OHDgwI4dO/xTo2ka17z1HWdceZmVzTKQ7oVgBMPSMIsUfEKxwOPFJw9UNpPp78+OjJKVQyllKBxubAhUVh09P1Iy2f1378zccbuOeHoq9WNCPGcEJoQoIVpj5WJMluN3gyLOAmVJcUPj+p/+vGLjGSf0HF8RXV1d73rXu/r6+oQQek9OKfXZz372LW95y2wfCrOdSKR6e+2pKbIsYRhGWVm4qdEsfRUB0Mzevd1vuZYP7DeEkL6ivi5p7DXMFGKtstfalmR24lEKbOYsqIxS0XPPO+3HPw1UzXFruO9973u33HKLlFKXOFqW1dnZ+cMf/rCurm5uD2wRYrH4xXMOGQxF2zuibmvhY0Dy8cfTDz4oZ/QKqSS6IJfRMWjblQV2k0ZQAAghUr09vf8z91z82GOPaSImR/BeNTU1bd68eQ4OBdEoLS1b+Zq0bOJ33G4f2G8K4S+tZoB2ZXcoW1vEcsWhtEWQQQBIKScf3z78wANNR5mkcWIwNTV1//33F+ba07nnnlsk4jlBcdExb5D44x8oPpmXgnRf97aeprXR9EMgjjxwX2agfxaO86WQTqfvu+8+HZrQ418ptWnTpqamo62gO6mg4vHEH/+AzI7wlO9X7CukPJJFEAE4nR783d1z26lz586du3fvljKfL1FaWnrhha+8gVzEiUCRi+cHVDye3PbYNP8L3CfeA3xP/DSAQiS7uiZ37Zq9I56B3bt3P/fcc97IJ6JwOHzxxRe/YgvnkxPZAwcye/egJ5j3shYBr+rSe0GI8SefyAwPzfJhe2Dm++67L5lMotsjxrbtVatWrV27dq4OaZGjyMXzA/boqDU4qNMwZio9znx4apwOQSCqZDJ1+PAcnsL9998/MTHhH/mdnZ2nnXbaHB7Sa0Gur5cmJ/0WgRkWAfdFr/w9/yvE7NhodnBwro6/v7//4YcfRldwmZkRcevWraWls9TzqYhpKMaL5wfYsti2oZBw/WGKaYLozN6P7Crzsspm5ur4R0ZGHnroIR1g0SMfAC666KLKyteUxz2H4GxON0z0z3/Or2aQsu+5TxZZKcq9ZEfEE43t27f39PR4yxSlVF1d3XnnnTdXx1NEkYvnDbwuIV6A0u95TVepdzTRyd/VaQ6xY8eOgwcP+gMUlZWVF1100Vwf17HD0Vx1hd+ocGqEmXRM+alxpu88y8hms/fee69t215yoVLqzDPPXLp06RwdURFFLp4nwFCQzQCxk0HBMwLHBVzMniB6XvWChDCic1PrZSv1x/vuS2ezAS+t2LY3bNiwfPnyOTme4wIRiZCUStno0+H04J8dHa1qRweOvWJrNE0jPDca0/tffPHJp59GPTUCEFEgELjkkkuMk6c4e/GheOnnB4zqGrOlOX1gvxAC0EkuPrJf7DSnYAXkDXtilrFYydLZU/tWExOZffuyBw9yJjM5MSHv+eNyKzeEGGdWzIZhXHzxxcEZ7UvmEQJtbaKiUg0OooHwsk0DiIBIT42ORQhAEUXrG0INs9SUiG3b6u3N7N1jDQ6hUoeeeLyjt2cwEBgW0mK2lVqxfPnGja9CibSI444iF88PyEik5Jxzpx54EBkApy9vuZCIXU109mQWLKLY8hWvMZ32KJHdv3/itl8l/viH7O4XKJnUav3XEl+F2GPIp0KhR82g2dl59pykFR8/hNo7guvWJH7Xh8JgAfJIMYppRKw8WWQAG6Dq7M3BEx8up0wm8acH47/+derPj1h9vWzbzNxA/H6GCSH2Bsxt4fAOYZx3/gW1tbUn+mCKeBkUuXjeIHbZpQPfvdUeHgGWQoDw9cVwNuvI6ZupgGxgvyY6ITZcdkWg4sSOfM5mJ37+s5Gvf9Xet1cwSyGkTjNAMCQEiEtzVmcudyZwevPZ9RUVJ/RgTjREOFx+1dWT99xjE0tARsBpFiF/sMixiCcIJcvKGq+8Kq+ueWKQ6zo4/OV/nbrtVxCfRCFMIfSxSQEmQ4ioJp0+NZ16Lhrd1LnkhB5JEa+IYk7bvEHJ2lPLrn5djpTNZHua6ApsBUo/mG0g20fEWoc3R1S2clXLNdec0MNTk5ODN3126CM38r69phCGlAaiAaAfEkAKEBIliDaGpff8/uD/9ylrbOyEHtKJRsXlVwY2rM+pnEVsKccieaO4TQOmWcQGUMz1F19SvensE3p4qe3be/73O6d+9EOZTJiGoQu18xZBEBJQiAiI0xJT9uc+O3TnHVBURJg7FLl43gBNs/n/fCCwfn1GWRYri8kmttl9OGN+eq8QCyAFkDj/gvCJDBazZY1842sT3/yGTKcMITT56n91IFU/kQhSgkCBqXTvt7/54pe/RHOXZvfaEWxqav7IP1F1dY5sG0hbRBHbzIrZAnIf0y0yEY4E3vQXJ3QrNbt3b/+HPmBte9QUwkCUejp0zSHcHw0BAlGizO5+Ye+NHxx7+KETd0hFvDyKXDyfEFm2rOOzn4Om5oyyc0A5UDlQFqgcqByQBZzzDfic64g9VlL2lUe3PfjggyfuwCZ/fdvEd75tEEl32IvCB/p/RDRQGMy9//Hd3p//7MQd1Syg+oqrmv7xxlwomCHbArJ8FpnJwtoiCSHuDEVu+dVtPT09J+ioVDw+eNNn7GeeMQzDY2FZaI68RRAkoCkN6/DhvZ/653T3XBYELWYUuXieoeqirSu/9W1z7bq0UlnmHMDMR9Y37O8vK38oVtE3NPSlm2/edWJqoHO9PaP/9nWMxwWin3k1cNoD9W9RIkIi0fVv30h1dZ2Io5odoBDNf/8PHTd9nmpr07adPZI5vIcNMGwYd1RUvRCJbtu27Wtf+1oikTgRRzX569tSd/9WCvQz70s+EBBQABpSTm3ffvj73ytGKuYERS6eb0CsvuSydT/8Uc31b7djsZRSaaUyzFlm51+ijG1nAA4a5q/Kqx4sLc9JaRrGvn37vvjFLw4MDBz3I5r6wx9zO3c6HQX9R3okQWiv66AAEFImX9g1cPddx/2QZhMyHG79+3ev+Y8fRC+8KBMIpGw7TZRlzrpGySiVUSoB8Eww/LPKmufCUZRSCnHHHXd897vftSzr+B6Piscnf/5TzGb01Oi3whE3CnUHMIeXmftu+2Wqu/v4HlIRR4OifvF8hcpkxp94fPDuu0YeeSh1+LDKZBiAhQjU1lauP80844zP//r2Jw8cCBiGrjzWesFvetObPvWpT5WUlByvw6BM5vDf/HXmzttNw/BWwR4KSgG9hnIEiiAHKgucVip26WVn/PhnRuSo1PRPZuTGxkYe+tPA3b8df/LJzOAA2zYBYCAQbmqu2bLlYKzi8z//n7FUyjQMAGBm27YjkcinP/3pa47rtmrikUe633qtjMd1mFgUUjDNsIjNoBRYQDmgLEBGyjXf/m7rW687jodUxNGgmNM2XyFDoepzzq3aco41Pp4ZGlSZDJMSZiBYWRWqrUXTfO8pa/7pn/5pZGREF1Pp3g233357S0vLDTfccLzU0az+/syzz/gV8T2hjCOrxzk/eppFGH/++dThQ2UrVx2X45lDBCorG9/wxvqrrs6NDGdHRiiXAyFEIBiqrQlWVq0mOhiJ3nrrrUQkhEBEwzCSyeQtt9xSX19/HEWcU49vp8lJwxWQ82NmWvq0JwDA2ezonx9pectb8QTn2xUxDcUYxfwGIgYqK8tWrqpYv6HytI3la9eFm5rQNAHgvPPOe+973xsKhWzb1u+UUiqlvv/97//mN785Xgdg9feryfgrCshpFMqVMQCgELnxsczcyZUddwjDCNU3xNasrTjt9Ir1G2KnnBKsrgEhDMN45zvfeeWVVyql9GJU0/HAwMDNN9+8f//+4/P1zNmuLigULTqCdNR0Pb+CWTPRdZDnTrRo0aLIxQsWiHjttddef/31uo8GuHQ8NTX1ta997fHHHz/iX+m+2Ew2k2J6ZaVzymWZ1EsNeyrk5bxuEXD+nURzKFc2mygrK7vxxhs3btxoWZamYyGEYRg7d+68+eabR0dHj/RHrA3hPJiO9B7/u5my2aM0h+9F9gvIUc6RoCtiNlGMUSxkBAKBd7/73X19fXfccYdhGEIIPfh7e3tvuummr371q0uWLAEAYFKZKWtqxE6M2qlxl4UFI8pQmVFSFSirMSPlKI98txADAQhfMyHPw4JC0SJ2iBjIVfI8GTTkZhNNTU0f+9jHPvShD3V1dZmmCe4E+cADD3zrW9+68cYbw+EwALCds5NjdmLUSoyqbJKZgJkB0QjISIVZWh0orTaC0SOW7TkCcj49P39xdsGkqM1BeYsUCXgOUeTiBY6ysrJ//Md/7Ovre/LJJ03TREQhhJRy586dX/ziF7/w+ZvKDCszsMea6ONcEkiBE0nQypacJVYMYATNWH20cWWkpl2aBYI+IhIlaSgGHZ58GQG5QnEGR0BOMYNpyjmSK5sTnHrqqR/+8Ic//vGPx+NxwzC0RZRSP/nJT5qbm99+3bW54YPZkRdVYgRUDpj0BjsDEzEREzOBwFBZuKYj2rgyWFbtb8+MQmC0RB2Ji6cpeeZlpECrl+Q3V2U0ivOz2cq8RpGLFz5aW1s//vGPf/CDH+zu7vYGPwDcf/8DX//CJ//hdaeFDZIo0HCSIBj00Ge3Qygrlc0NH0gPd5mxhvIlG6N17d74D7S0yNoaNTGh94rQJyA3Xa6MQRXKlWkuDtTWRVpa5uTKzBUuvvjinp6eW265xbZtKaV2jXO53Le+9c3yXM+Fq+sQyUQBpjM8mZmYtcoSEytFdnp86uBovGdXtH5FxdLTzEjM+/DQqlUkpU0AAniGgNy0YBG5MlJ5ATnE0lWniEBg1q/KYkcxXrwosH79+g996EOxWEwpBQAuHfMv7rp/+3P7QsGAaUhDCuchhCGElMIwpJBCGsIwpGmaEjk7erh/x51Dzz+kchkAsJXavm/fcwCK2SanC7XXdtMb3jaAIlDKkyvLC8jZRBWnnx5unJftR48ZUsrrrrvuzW9+s5bVBzdSMTo2/p2f/HZkMhEwTcNvEf0wpCGFtohpGKZhoJWePPhEz7ZfJwZe1HPf2MTEPf39E1IqYpvztpj2sNlVzAAiIN/rLCLR2nOL3T3mAEW/eLHgiiuu6O/v/+rXvmZblvbFhBCGNMqiYSkEopdmBsxATMhADIAC3V+wAQBg29b4/u1WatJoXPezX97+45/9dMnoWIvEKDEz0ksIyPnlyjzRSBsAwqGmq18vTHMOrsicIhwOv//97+/r67v//vu92JFAEQ0Fo+GgFNJL/GcGRkZmYgYQgE7naanZF8GKD/btuKtq1Tkvjli33vqdJx979G9M4xzbAiVZgBBOmILdT/NCEwSkgLR6nBYtsojK16ypPOPMOboqixpFLl4skFJef/313d3dP/7xj3XqaMA03nb5xo2rWhBAuoKPzEwIkgURAxAiACMDAwsDgCUwg8GQ6Nv9wuPbf/Jfd43Hk7tD4Z3B4OmZtGAhSAjID30niQ3YjREXCMhZyq45/4LaC+dxp6XXgqqqqo989KP9/X279+wxDJOZW+or/uHN59bEosBeAJ4JgQGZEIBQADIAC20R0JF907CsdN9T9/zyjzseeugJlPKhaOnqbCZGSpAQjE7wyGcRcsJE5LGwDWAxQzDYfv3bg1VVc3ldFiuKMYpFhFAo9HfXXnrOqUuZqLG67AP/6/wb/uKcSCgIiIAIQjjBC0REQIECEQERQaDQzySCFCgFCsTO2sibzlsdCphJxN9ES3ultIBeSkDOcnUjLZ+SZ7C55ZSPfmwxj/xlbY0fvO7SpupYyJRb1nZ8/t1XX3DaMs8W+okQQgCgAIGIjkUc4whEKVCikFIEBF1++pL1y5uZ6Hkz8MdwNA1sgbKYLGafRcgGZTsCcq47rB/MTW+8pvUv3zLXV2WRolgDvYhgTfSl99zbPzj47P6+Ve31K9pq9SYeIDpuk74bnE17vZglYlKKiUgpVqSUIssmy7ZtmxLp7Hd/8+h9T+5j4DOTU2+NT1QACJEvwvPvFHmd92yAHJEoLTv1i19a8o6/maurMedgptSBR62BnQf7RpPp3Kr2uoqyKDnWgAKLkN60A2ImItIbqkSkSCllK7KUsmylbHq+a+CWH98/NJGIKPW2idEzs5mAnly9L51WAO1xsVJVmzef9X9/EO3omLMrsrhRjFEsFrCdTR/ewVaqrb6ys7kGEQgQfKMUwZHtYdaZaYwAiIjsusfIAgQha3cNBYeC5tVbTtn5Yl/34Fhf53Kx+Wxx953pffuklALRn0RFvt2hHFG4tW3Nv3yy9S//1xxdjJMC1lh3bmiPKcXqJY2GRNaJaDMtwszOa6ydYmR2G56iB4GoEJc1V19y5vIf3f14QoiB17+pVGL8N7dBOi2l9ELG07jYIlJCNL7u9Ws/c1ORiOcQRS5eLMiNHVbxftOQAEBEKITXwJg1CXt7d4jA7JAxAzgUjYjAWvESdeACEbClJnb+hs4xrHrf+963evXqyWuvPfDVL4/ec4+amkIAEALckW8REYAoKW04//xVN36k6syzTnSHoZMZrKxM/y5BOWGazEwE4ASHCiyia6W1OfImcs0BCG4QCd2QhTh7dfsLPfGtV77prde9tUTKnrM3d33nW6m9e8GyUAhdrU469YWZhQi1tna8/R1L3/X3werqubwiix7FGMWiACs7vuv3MNltGKYhhRCIvpGff5tb6AFushWRsygmYlspUqwU2US2UpalLKVyOStF5sqt11fWOi2N7URibPu2wbvvGn3s0XRvr7JyDACmGW5sqjzzrMYrrqratMksLZ2Ly3ASITfek9j1e1MoQxpSuFH6GXo8eYtoK7hRIyJQRMomIrIVKSLLVratcpZKZzJm4+q15/+FlAIAgDl1+NDQvfcO/vH38V3P58bHmZkBZFlZybLldRdubbj88tLOZcXijjlH0S9eFLASI3Z8wBRO7NAvJe7A5xe7ryD65mnWK2JgcFPWnM9BNClrxwfB5WKjpKT2oq01F1yYGx/Pjo6QZQGRCAaDVdWBigq/ottiRnb4IKqckOZM/gVwzOFLavM5xP53ofuiZykEKYRIDatcSoZL9Jsibe3tf/vO1rf9VWZoyEpMsW2jlEYkGqytXQBSpQsGRS5eFLAm+sHOYSBvbj/xIvhGPjiDnwtXTF4gedrfAiKTmuh/sWbpej+roBDBqqrFnCPxMiArY8UHhDii2j4A5M3hl7ib+R4nTQ3BDSgDAqAQ6fhoanwwEC5QqRbB4GKrb5xfKDopiwDMdnIEjzScnd/7qpadTArn7xxOcMgZ3VddVkZAYECE1OSQrsQr4migsgnKTunsFYdE3cs+Uy+Jfb8lN0mYXa075x1c8EdkW4nx49/ApYgTiiIXL3yQytnJCWdBy76IMDMXjn/OL4ddxnXHvPuM/aNe130BiGwynktPzc3pzUPYyUm2suwsSLyZTwuBHNki3pX3/g/g/sgeXbtgTk0OH9GZLuKkRTFGsQhAxHYOPWdKJ0P4/N+8jpefo/Vgd3/wacA7b3GogwGASVnKWhQaxMcFrLLABCzcBQc6WYTszm76bXkW9hOxZxGf6LCXF+5azc6lmQhFcUdu3qDIxQsfLr/mWZQQhQ45MIObCAwAfiJmRxyMmYG85+Q9BY+OXSeuKH57tGDSF9EzjaMG4he3dECUl/VwbODJtuVtRJyfLl0LFs0xz1Dk4kUBPT6JAJGRmRkJAIF14YC3X++slzX5MhPo6ru8F+z7l8hlAiJmR4SiiKMFgf+qMs9MZPFHkN13EzNRfmokb7rMT5TevFs0xzxDkYsXA5AAdIKqYCQmIBCOAHFhaoQbTWZyOkk4Q1yPfCfF1Rv/uiSXibXqY3Hv4WjBiI4qPDEiABEI4dY25jfkwBc08i1H8t6xx8h5f1nrzQMjiiIdzy8UuXjhA6UhAhFKjxMRIQAIEAxM+dqCvIhXftiDLvRgp9CDiMgjX2K3+MB5g2EGzVAxU/VoIQMRRoOICBFRgAAgcms98gRasBRhrT5K3vyXnxrdHzQpKyZmDkTKiqnc8wtFLl74ENKUkQprrFsIUp7mDLIAt3TDHf7uyAci0HEITbvecthzivXIV4q0QE1paaUZis7lSc4rGNFyMAJkp1wRTACtMsyMiOAGGNgJHzF5MQryQhWuVBC7UyMzEStFigiEKKmom8szLOLVo8jFiwKBstoko3ScL2BAgajzKQAZGfPBCmcDyN2kI3C8Ls/5IiJiRZR/AlxS2SCNYleeo4UMREW43J5ICCQAQEBmLYMJjlQ852MUAOCGiMALFqm8OZiZlGsRRaSIZDAUraifwxMs4hhQ5OJFgWBFEwajdi7h6DEysnAGv9428uKTlI9TuO6wy7nKtxZWrgumiAwzWNG0bC5Pb75BGGaoqjU+1m2TMhAAhM5ryQtSaMO4OYVOlFjPi25QwmcRICKlSFuEWMWqmiLlNXN6ikW8ahQjSosCZrQ8WNlm2cpWSulwo2Itfeuo4DpauHqIMytwHF/lecHsvsC20tq5ZJNSrEqrm8tqisW1rw6R2iVgRm3HIoqUnu0coR+lTaH/R0TKFyMuJGKl2NZWIrJJ2aRQyJr21cVlyrxD0S9eFEDE0pbViYG9lp3VmRJOWwit8OOLF4ObZKxVwXQvaOWOf63TphTZSmnWQGk0LNtoBEJzeXrzEMHSqkj9svjBJx3NaGTUYQqvnx24xY6Qj9ezk33hErFerzgWIaWIWJVWtVS3njJ3Z1bEMaLIxYsFoYr6aOPK+MEdAMgSBCIyCke7nH3CYN5mnW/X3glTsOs+K6Ucp7i6cWVV66q5Prl5CMSytnVTA/ut9CSzIQRKFoTKTaXIW0QHKfJ7p75IsUvEytYPVigDTas2BcKLXZJ0PqLIxYsFiKJi6cbUSG8uPmCwlEKgJyjvFkV7wghc4IUxMetFtE2OU2wppUiFouWtp15YdIqPDcHSqorOM4eevZdtW0rBzJ6EsU6m8Lxi8pK+/fmFSpvDJWJSzFTXsaamY91cn1kRx4IiFy8iBCKx2jUX9D5xp5WZIi0pTyDc3SKfIphXa+eysNvyzva5YNIMdpx2Say2bS5PaZ4j1rI6Gx8dP/A4EZNkHTdy291BXiMEwE1oc1hYsbt3qpSllK2UYlVRv6RjwyXSMOf0nIo4RhT7eiw6THS/0P/0HziXNgzpNLLTFV/oics4xQWKmDm/cee0uSSliKRhtm3Y2rJ6S1F95jXCzqX7n7l38vBOQwghvHYrAOBZxEulACpIaNMLFFKkiFVJVdOKLdeUVjfN7ekUccwocvEiBE/27e9/+t5cYtSQUgjhRSn0/eBpCLl1uqRTpjQLE6tAuLR9w8X1y08XoriuOg6wc+nBXY+M7X8SWUkpUXjtBRkAyZ0e/ebQrZVsUoqJgSsbly0988piTvG8RpGLFylS4wP9Ox+K9+1DJiGEHv+gV8Xk0LE38m0niUoBYqy2rW39hZWNyxZz59DjDlL22MHnBl/4czYxJoVAn3fsqq75kyicB5EyguH6Zae3rD0vGCmb21Mo4jWiyMWLF8rKjB1+YWjfjvRYP5Pt7Rtpz1jv2jtjngmFiMRq6jo31C3dUBz2JwjpyaGhfTvGD+2yMlMAjO4M6WS2QL64joFkIFzRsKRxxZnljZ2iGCma/yhy8WKHlUlN9r841r07MdabS00pK6ulgRgYAIVhmqFopLK+unlFRdPyUEn5XB/vAgczpyaGxrv3jPftz0yNWNk02Va+xQpKGQgGS2Kx2rbqttVlNS3Fmo4FgyIXFwEAwKRymVQ2MZ6eGiNlMykUElGESspDpRWBcKmQxdDwrEJZ2VxqKhUfzaUTwIoBEIVhBsNlVcFozAxGijGiBYb/H/ZTae7wCZvoAAAAAElFTkSuQmCC", "path": "image.png" }
Complete the statement. Silicon dioxide is ().
[ "an elementary substance", "a compound" ]
1
The model below represents silicon dioxide. Silicon dioxide occurs naturally in the mineral quartz, which makes up many of the particles in sand.
There are more than 100 different chemical elements, or types of atoms. Chemical elements make up all of the substances around you. A substance may be composed of one chemical element or multiple chemical elements. Substances that are composed of only one chemical element are elementary substances. Substances that are composed of multiple chemical elements bonded together are compounds. Every chemical element is represented by its own atomic symbol. An atomic symbol may consist of one capital letter, or it may consist of a capital letter followed by a lowercase letter. For example, the atomic symbol for the chemical element fluorine is F, and the atomic symbol for the chemical element beryllium is Be. Scientists use different types of models to represent substances whose atoms are bonded in different ways. One type of model is a ball-and-stick model. The ball-and-stick model below represents the compound pyrite. In a ball-and-stick model, the balls represent atoms, and the sticks represent bonds. Notice that the balls in the model above are not all the same color. Each color represents a different chemical element. The legend shows the color and the atomic symbol for each chemical element in the substance.
Use the model to determine whether silicon dioxide is an elementary substance or a compound. Step 1: Interpret the model. . Use the legend to determine the chemical element represented by each color. The colors and atomic symbols from the legend are shown in the table below. The table also includes the names of the chemical elements represented in the model. You can see from the model that silicon dioxide is composed of oxygen atoms and silicon atoms bonded together. Step 2: Determine whether the substance is an elementary substance or a compound. You know from Step 1 that silicon dioxide is composed of two chemical elements: oxygen and silicon. Since silicon dioxide is composed of multiple chemical elements bonded together, silicon dioxide is a compound.
a compound
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABgAElEQVR4nO19d3wdxb39mb1V5d4rWXK3RQTG2BYmGDAYG2IIxaaZZgN5BEJveRBaIBASSiA8egm/l0DoCUkwxhBCwMZ5CdXGfnl0GwKEYtnYclOXbtud3x9TdnZv0W2Sruw5Hz743r2zM7MzR99zpuwuoZQiB0ST5qauaEtnb3s03tLZC6ClqzeWtHI5V6PkiAR9I6srDp04JhL0D3ZdBhSah2WFfHlIsoebT7d0fLq5vaWzd1NXtEQ11CgZAl7j7H0n7ggRh/FwbWtXezQx2HXRcCN3HqYPN9Gk+c/mLR9s2CZ71yBGIFjh8/l9fn+4qpoQBAO+oM/vISCAQeAhMAgMwFCPAAaBQUAoCOGfDYAAxJmYwP7A/g/AAAgBEb8ScSL7Pyj/DHEQFBCJ2QdKQQgAnkwFFf9QUEIIawYKCn4WYQco5SkppeygTCk/g0BJZv/EjliUUhCTUovCotQCLAqTUgqYFCalJqUWiKUkoJSfZUEcpLBAKQj7Gkskv2reEI0lpo6qPXrK+D67eYiC8XBV82bpXzQPhzQPvWmPvvFlyz+btwAwvL5w7fCKyuqKYFD2IutRDwEIa1gFBJTa/SQu2+4q0Yh2AkLszpAdQkVXQTlF/spKUXNwZyv7WDmJJaCw+UHZb5RQ8RsBoaCEyE4lIJSwDiOEUkoBwQkCUJYJpUrmvEBq/wNCKbUvRyRS4jyhlFLKC5UKQCG1gNeLJQPg83rGjRn5+ZfrWrp60/bg9oG/ffbNhxtaAXj9werIMM3Doc7DNOGGSQohRu2YxmBllQF4xAWwGG+DOr+KIxS8NUHEKRSUcYLyI7LnGC3UHCiBIT6DOEtRjhCRGNRRijzOSxEHiehtQojd2hQAFRqSRlVAZUpxonombxbi6DU1b/D8LcZ3JREhdkJCCAElIJbiNglkn1NZT8KUjpBgwAdgOx7ktnRFP9zQqnm4PfHQSD3EBlCGz+8LVskyZWB2jL2I86s4Im0kxFmqt5QxWF6tK0/78lVRgOMzr4lTrJBWVYgjAwi/SuwMiRq9RZUoEQeIciKllKhn8qKpqnKOvAGHqihXlFFVxFGnqshk3FyblgUg4EnTg9sHYgkTgDdQoXm43fAwTaKR1cGAxzDj0WQiKstMoypUCeewDzpURZwFah+UqsLPoO5sqdpzSj5w5unIVvhkqmZCuAQ5qCj6yaUqynlZVEU6WKiXSJgopNSSwplS1tX1O5MLISJOVXHUixBBA0K6u6MAGmqrsZ1iRCgIIBHt1jzcbniYPiZNbxgOYNu6z5OJuCiSXSnUWkiJsJGDqgBpVEXNhCg9ByUf1+dUVZH8kKoCVWpEeQOmKu6vTlVRkuWtKr3R+LoNmwDstP2Gm6DXc0DjSADb1n1umiY7qHk4pHmYcSF80Qdffbalw+P11QwfWx0Kszk5D4GZTMSjvfFELB6LxWOxWDyWSCZzKUmj5Jg6qvbQiWOCXs9gV6QfoXlY/sidhxnDTTRpPvvBV2vbugEEgpUV1dWJaCza222aulPLBdd8d4/BrkK/Q+VhZSjiDwQ0D8sNufOwj21+H2xo/dun62OmsmuTEG+g0usL+AMBfyAYCAQCfj9bNfAAHgPss9zv4BVHCDtCYRhguySYTAHwCi/qEbsbDMAwQCjfHwFi74kgROyDgO1RidhGQVWryC2mw8fSlBUBKlcExABZHTPTnPY78LGuzIQKUw1A3eag7newKLVAsux3sCgogbrfwaKgIBal73/8RV7dPNShebh98DD9vhuJPUbXThwefvaDr75u7a4MhUfUj6ioqLR7kcADEHV7FdsTAeWz2DHFP4v+UI+T1O1VBKAwDN6FBGn+g7q9iveEMtWXro8BPsdmz+cR2PsdxOYGNmbmTHHsdxCckGeyeTc+kpULmXLU74RSJUCUC6hjZnvNEXwCgn8ifK01uzxsr2A8fOqdf7d0RjUPhy4P+16+Cno9BzaOIgSxni5fIGDP3ov5bXuC3Z6dd68IEPmjcgpENrIF7CNUWTVQJwUVpEzswzEtL/N1rgjQLCsCTlWRSw45rghAbJpI38dq+9hNJzpcrAhA7UabtVSWRoizFXYYBL2ew3Ydq3k4pHmY02p5Q21VQ02VZVmtW7fYs/fCLNoT7MpctuOr6i2VUyCygbNh3BJBAPA2V5Eyse9em7ALVg9nWREQ0/+8tcWSg0iZdUUAAF9EgLtIeYC4P6RXFeUs14oAOyWeSAIIB33uUrZ3aB6yM4cuD3PdJHZg4ygArds2J5PxVFUhThlxqQrU5JlVJXVvhaoq1NVhNL2qECUBzzeFHP2iKsiqKoqY8LG1U1XY/6WqyBLSqkoikQRQswPcmZkKzcMhzcNcw01DbdXUUbWWZW1uabFVhVWB8j0OWVQFKZsgJGzOUOcRl6ognfSkqAp1JkgdYEr2DIyqULUwAvA/Cd4c1NGURKqKLCGtqrgvaUeC5uGQ5mEeW+AP3HkkgPaO1mQybg//MqiKI5xTrjOpUiMPpFUV9TuFECs1kVNVkKIqUhvsw4WrCgpQFaIWJlSFiOYoTFXcLbiDQfNw6PIwj3ATCfqnjqoF0NLSYg//MqgKVM9J+lYVJYLaquLmhLpjkjiPCOVJVRWX+y1CVVBSVSHa3RQGzcOhy8P8bvBjwtLW3tobjfahKupXyq8wi6pQZQnAVhUXJ9Qj1Kkz4kS75P5TFaXiRagKVVSFn6XdTY7QPByiPMwv3ESCfnYby4YN69U+cKmKuyJE6IwKp4YQ5VEAJCWN/VVhEkFGVVErk6OqUN78hLVkNlVRKp6DqijszKgq/CztbnKE5uEQ5WHejy+YPr4+4DG6e7q7u7rtCjoVgyr/55/SSYSI2kA6VWFpXKfIK6dCVVQFS1UVVrdcVIXw5qesJUunKraYKJUkzulEfpZ2N7lD83Ao8jDvcBP0etj94hs2bbQrmE5V7OoIBXDAjtpAbqrCZYTw9ERmIs4pZ1URYiG4Q4haA/ZBu5vcoXk4FHlYyMOZmLB09XS3d3SIsMquiSdIVRWuACrSqQpcJzpPYZlQHvn5V7Vo3qQpe0mhRPD+UBWIHuxDVXj5LlWxq6bdTV7QPLTPVGtaxjwsJNwEvZ5DJ44F0LxhvQirAPJTFWJfsfLVdWIGVSFCVdSzIFSFUgc91FLQP6rCa2o/CDa9qlBK3apC1PqLW2a0u8kNmof2mWpNy5iHBT56co/RteGgL55IdHZ3I4OqqG3AVYU6jjhUBYqqKLFajaGpquL0p05VkXkQZ8n9rSqOw4qqcEGgVPCIHVcukKsK+Bna3fQNzcOhxcPCn3Srbl52RTpZN/mdqwpxHHGpin26yg+naKRRFVe5JI2qOEp2icOAqQoUVaF9q4q8FqUFuaokTQvAjvB6qVygeahWu8x5WJoHa7sinUtV7PGtkiJVVewfM6mK6K4sqsJ4QJV80qqKLQ79rCr8CkujKuxySG80BiBSocONG5qHZc7DfnmOP5HmjdeMC4ISQLOpivxCXHol8iTKf25Vga0q6pyfQ1VQOlVRikirKlI9SqEq7OqcCq6RGZqHSp3Kgof9Em6oogDIqiqyn6jrfCWN47hUFfEfcbW16EgIilAnXRgJMqsK8lMVSWVkUBWaRlXsyytIVdzNrZEBmodKncuChwPnbhwKIFRFkiGNqrAedaqG/IVIDXG1dYqqEGFcZWWyqgpKrips/l9VFcg/A+1u+hOah0qdy4KHpQw36jWzy5DRXSqATJFJVUjqIdhH5C9UaojdcvYRlSKsoEFUFduwK6rCL1O7m36A5mHZ8rCU4Ua9ZnYZLhFwqQrU3lUzSRUa4jhLVRU79LpIVrSq0BKqihwqa3fT/9A8LFse9q+7YcIi/3OpCuQRZfYuVVXUI6mqIkOvm2ROVbFLzllVSIqqQHmLc9GqQvpUFardTUHQPCxbHvavu2HCkk1VqOOraA/xRabJQVXsy3ceIVAjd1GqAvmWZfndwey8VIVmURXZhmlVRV1a0UiF5mHZ8rBE4cbZ0HJ6C/a6PlcV9/jW+VW0h50n0qkKFytx0KUqriMDpiokvaqAOJlmq4pSVfYLUTo2i6qoSysaDmgeljcPSxRuiGMaDHL7pr2uz1XFPb7tS1V4tqrOCLGSB/tUFSgNP+CqAtdCqq0q/Fc7qXY3xULzsLx5WDJ3o06DQWxwyKIqDMSed+eHXarCs1V1hojWUVTFQbIUVYHS8IOgKspQ2a6PUBUlrXY3RUPzsLx5WDp3o16KUBKXqthDxBS7m7uq8GxTMkmjKkpRJVQVu5hsqmJrj2uozIqQqiISiIMpqkLVBgIopUnTBJDLG+B3OGgeljcPS+dupESIr0xYVFWxh4hZVUVGUqRTFZ5tSiay/anUGaWo/FQF2VTFvuZsqmJrj2shgBWhqorIM42qgEBWg2VJCInF4gBGVlf00Sk7IDQPy5uHJXY36hg4jaqoyiOQqiqq8jhURT0FjoOqqohgXISqoEBVEaXmrirEpSpq7rx/ZQMRnkNqG2pwaB6WNw/73d1AxFgRVvkR+U8aVVFEgwqiqHBJEyQboJwiMnGriqoAKLGqKFWnSio7YYqqyJ3lohpK7plUhbiaQ0NC87C8edjv7gaOGOsYzYow6VAVQAnNUiKcpfWpKqlp1P4oUlWoknUuqqJUigyWquwo0Dwsbx4OnLuRGiJHs25VUTZB9Kkq9kBanqKoClKUR+2PIlWFKFnnqSpyQUGpq3Y3JYTmYXnzsJTuBsiqKtK1UTVOK6qiKACxM1ayhZ3ANZDOeEpKiwyKqojq2aoClj6zqoh6aHeTDzQPy5uHpQg31CEI7Eg2VYEap5UjigJQJW8orckTwKkqzMGSdKektEiOqgKgNKoiskpVFZk/y5A6VQXiDwClUJUdApqHZc/DUoQbklFViP27oxtcqkKVr8hBVeBaJmBfabpTClUVADmoit3iGVVFZJVeVWCrCsmgKiiFquwQ0Dwsex6W3t2oQZDavzu6QcZpKlQFaoJMEqGU6FIV3goyYlO7JqmVTVUVsB7LW1XsFneqClwFD7qq7BDQPCx7Hpbe3ahBsE9VSasAGSVCKdEZfkFg6wwRCVzjaplhqqqA9VjJVAWugnNQFaLdTbHQPCx7HvaDu4FbVeDafOlUFdjtKhKkUxVnvHV/pbA1pJxVBUodnapCtbspFpqHZc/DErkbJfzbIZcHT8B1a0lfqsITKccodctIn6oCZFcVh1ZgoFRFbS1bVaDdTSmgeVj2PCyRu1HDvzgma5iqKjJRGlVxdjnLx1YVkcahM+lUBciuKg6tQNGqAkoLVhV2OIuqUKeqdPdGATTUVrmvbQeH5iHKnYfe3JNmhKIqkHUWP1ELlF0+gWVR1uWGcKoGhcUlgj/dEAaBRYnoDAMAqMXMG+85ytrHIASg7P9MVYgIvlQega1dEpZ4kCJjimVRgFqsn2RPc+LwfuastSgznUqzU8viY3zLsgCAECatlmWBEApYlFoUFEha1KKUAiaFSalFqQViUmpSaloQP1EKWBQWpRZAKT/dopSfoq1NJmgelj0Piw03PT09NBEngEHgISCgBsC+ElAPIQTUICCAARgEBgGhlBAYhIgPvC8NENmvhMAA7z9C4BEBWHaqYXB2GISw/jT40JPHZgpqEO4M2a/sJ4tS9llGf4uK7rH4SgMF1P6mtnWkrOdYf1POLWLx9UvCaEABKrofhJiWBWKYlJqWRUEswLSoBbBONS2YlFqASSlAWO9aFKZlWRSUwLR4QaZFKYEON2mheTgkeFj0YEoZJIuW4F9ll0AZM7PmALXHqKIFCQXfdACZiyNnRbzkkFikICIAu46opfALZp3B+5PXjDASGETVIl6EMJbEIGnHzPwrIZZlsRPt2oqas58IMdi4mhVnj8kNwoTJPRyWY2YKVj2ldA0nNA+HAg9LMHcj+4U1iByRstakcIyZiRAB6RgJP48SZlRlTwnrSeVZIhN7SCxSsH4zlHP4EUPOgPGfLD5bJnqQ+WfW9KL/qVqEaFdqUaQbM/OvlBqGIYSHSJ6yz+wnSi02rqZygC1yZpbePdlPRWsSLnpK6RpuaB6y/MqZhyUIN6mqwgJzJlUhhlAVMb5lGThURRENEf77UBUgjaqwUbpLVRw9OHiqIi8gF1WBdjd9QfOQ5VfOPBwgdwMRZwkfmgopsfuob1Wxg7XdUfwr+zdVVUh5qApbEZBiwosTDZijqlja3WSF5iHLr5x5WHy4sWNsFlWRnZdNVaitKtK02jkTogRrUTCx00BVFUm+flIVyefcVMUpJuDFiaeNZFEVqqiKod1NNmgeDgEeFh5uAl4PgLhp5qoqrOa2qoizpKoQW1WocjcKj9yqqvCs7E6XqkKdR/pLVSSfc1YVZagMoSr8WWpSVexaimsgTlWBMtLWYNA8HEI8LDzcjAxVAEgk4i5VAelLVQhTFXFWFlWxP1O47r4V0RaidACWJV++MyRVxa6luAaXqkAZaWswaB4OIR4WP5iyR5A83NJ0qmKn5hsQUlXFMLKpiq93daB3hSe+Vi1YFs1VxbCFhjd+P6oKhpCq7AAYIB5COSIL1jzMEcXvKmaXyiM3qy6lbCcVVxXCu5OnNogdeIWqEIBNQQEG71FK4Y+vrmp/prJzqSfRrBaZqNw/Hp4brZlPPRGieGRLtpdgX1pVYbs5ib2DkxBCLGoxTrDGpKxmVBITxCDUEsNa3o/E3qjFVIUQSsC3aREqpgaEehBiWXxjKrUsAmJJVTEpJ5x6nVJVQJiqmJYFRwoNiX7koepu2BFiOCKOzGSAeejvWeGNfUzMDgBJ77h4cHI8MKWceVhsuGFhmMVZvrGSNTGBRamHENZW0kRx/6YIgqGoCoSHJMn2ui03VrUtTFuor2eFr2dF5ea7eodfHq0/V8RyGAahdsAH4SsClNWNtXV2VYEyIiZme6Bjqa/zFWK2exLrLE+YGmHTPy4aOjwe2M/0RKSqMI9qGIbYXC7uLuFFWETsASV86yfYB26CGTtZctXHSlUB2J8BCEmYFMCI6mCRHbedoZ94SCkMEVko5XuIXe4GsDPpDx5CRDrubij1xj6q2nx/oGtpajtYnnB3eH5b7cXUiJQhD4sNN0SM6QwR+yGOeDKritQMqSqEL7DBIMQfWz1y/Tlep6NJU7TZUbnxBk9sTc/I66k3AmXQjuJUxbDa/VsfDW59mOkGPzEBAL4eBNsWWZ5wd81ZnfWX5uNu2DVafGdZzqpCXapiUehXaKagP3jI8pWccrgb9qPZHmh/xd+x1BddbQi6msEpiaqZZvWMZPgI9IO7qd50Y+XWRzO1g2F2hFofrepY1Fp/XUf1ieXGw35wN4QfcamK6D5x84g4nakKpdRjEAD+2EejmxcYyt95dgRaFxqx5s7GZ0BkjwAuVaFgq3fIQVW8sdXVX55EslbAMDtCW+8Ndi3dMu6P8NYU725Y06SqCuwHr4kxsx5NpUPJecgDkzJuUt0NIQi2LqxuuSGVqJ7oGk90DbY+bAanREffmKzavzAeprobmO21X5/sja7pszUMs6Ou5apA78rNI24vKx4WO1UstEJEbqkqlPe6VBVWfSpub6fidCpmQSyLkmTbyPXn5B5rGHw9K6q+uQyKdKg1E0HZVhXRg7LChO2zJAbxRvuONXa5sY9HfvUdb3Q1y8+9IsCbQqiKshDAjisrAoYcHrtURZ4LuSKgkQ6l5SFVHrInRzFErEyRZHvNl/PD31yenaie6JqqLxcENt3NqpIXD4m4FnkhxOqI5BZrJKo7nh225RdlxcNiw40YSSgrAkJnWBSkciJNURV5RP5dUosaBhm++YY+x1BpEWh9xtu13DGhLjjCONXXioBFCDF6Pqr6ckGOsYbBMDtqN/7YMNtB5Q0pYkVAqgr7v7IQwI4oKwKWHB4rezhsVXGsCGikQ2l5KJScM0fGMhBiJNuHrV3g71mRY8WCm+4OrrssLx6mW5kiVRtuyCvWMETaHg91PIuy4WHR7kZGX0VVoDrPzKrCzwIfN/p6Pwp1PFNwTYKb7i7S3VSuvyyvWMPgi62p++YC6W5IGneDfFTFdQna3eSEEvIwi7sBpbXrzvbl+Wfv27bQv/HOYtyNt2t5oH1RYS1Tv/UWw2ovEx4W7W5YfZyqwo7kripsPBnuTL8OlSO83Su8sdUQBeXrbgJtz3iiHxdWdKD37UD3iuLdjR2lIC9Bu5ucUEIeGoaSgdPdhLbc7e95u4Dq+Vvu9nYvL9jdVG65p7BmAWBYHTXtT5QJD0vzFs0+VUXO8KdRFZbGINXpFvbygrd9KYR8SXORo6rwMXahCLU9xudupKHK393YUQryEgi/BO1uckBJeGhZaga2u/FY7VXbHi64bv6WuwtzN0Zirbe7kBgnUdW9rEx4WILHa4G1GXGrCpv4pjw4ZlYVMVvuTawrsi6+7uVwuhtCZFDOpipG74dGvKjSK7qX8d2c0lA53Q2V6w6KqrBzKe1DVYh2N32idDx0uBvwLiQElW0L813EUOHpXuHp/agAd+MrLtYACMQ/9pnrUAY8LJm7AXWrCiHZVMWOo5QSoDKa69xbtmpwegFwuBuKPlSl+B4F4O9ansXdqGLi/kD6VhWq3U0OKJ6Hqe4GvP0RLN59dywtyN0UK8MAvPF1KAMelibc5KgqhNiqYsdRoSolqAanFwC3u0E2VQHM9uJL95nfZHc34gPcHxRVQQZVIdrd5ICS8JCkuhsCQhAoaNZGhadreXYepnU3nt7VRZYLwGeuRxnwsDThhtWpT1WhNKOqUF+kFFWw5UtUgwpWZVEVwCrcJEt4Es25uRu4Pyiqgv5RlR0IxfFQ7sdT3Q0AkiyBIMnckIGHmVamSlEuK3yQeVi6cENAkLeqMC2iQNTXVHwVqCeihGfwZQVhMNgx+bYNh7sxwqUoPVx6d0PdqpK0KIARoYriK7x9ojge8h296l8bIQD8sRJYDE/329l5mNbdmBUl+NNI+sahDHhYgqf5yX8pVFGwVYX/rqgKIGwItVUlFphcZFUSoTmQssCLSOtuqPyNJy3FICXmm5zO3fBD4q9A3s6Tm6oQW1XYM2LZ60H0PVMpKBkPIaaQ7ROAeKAEf/NmxZTsPORPERZxiJuvUmihaYRRBjwswfNu5L+qqgC2qvDfhapYYrLOpSqdkZOLrIpZvT/EAF4UIdyNqKf6LjGpKmbRkQ6AGRif6m6gzv9TJqoQSwM8dY6qwm510aOpDCgZD4UjVU4A2D3AxcIIZ+chf0cCFYseACji4cOLLDbpHRvzT0YZ8LDU7kZBiqqwRSIqHxzNdUaoSkdogWWECq5HvGaB6RsPsTwBKO6G2vVMqyrJyJG0iKIBxAOTEp5xqe5GDHrFA41AeZ8JAc5XVYqp5HaNkvEQDr5wd0MpEkVrklnRlJ2Had2N5WuwfOOKKber6tAy4WFp3Y0DtqpI0VdVhemMsiJgeWvaa88tuB7RkZdDztK43A3hioXMqpIMzym4aAA94fmGQeSFqu6G1YAFQUVVUJiqFFPJ7Rol42Fad0MIouEjiqxisvakPnmY6m4A9Iy6vuBCLRLaVntJmfCwtO7GCakqUvTZzLZSV+pcEdhad3m0ckYBlegee7flb7AnzFPcjYzHmVSld8RlBRsc0ze2s/Zs8YTaTO4G4AuufHNHqqqw746stbvJFaXkYVp30xWeX0z9zOBkM7h7nzxMdTcAYqE5yapC/i4AtNeeaRmRMuFhv7kbyhvMpSqGYasKkEZVWsY+Gs/TtfaOuDxWcxJvQlac4m6Qm7uhgZ16R9+Q/+UDwLaRd8AWiuzuBpTyrauKqlDIrQwu3dDuJleUmIeQq1PC3Vj+hs7hlxdcv9iYm3LhYVp3QwjpGPfbAoZUXaETttVcwhqiHHhYMndD4FQVPqtuR2gWHS0rg6oQPmq0jMiG8Yt6qnMd2nSPu7uHkYCIkGwTBSwgs9JZ+iyqEq89KVGTt4K1jrwjVrk/7GFwOneDLKoCPpzW7qYolJiHimhxd0MpumvPTgQLmcFJ1C4wq/ZHbjxMdTeUUuqt6Rz/W8s3NvdCu6sO3Vr/s7LiYcncjewdyO/IrCrUPpnFVzbAZrlYRmTT2Ee2jr7bzBrOE1Uztk1cHqs5ma01pLob0YJMnXJSle5x90ZHXJb7xbeOvKO3ZgHLIpu7YQ2RXlXgUhVHV2p3kytKz0OXuyEElrdma8OifBc0zKoZsYb78uJhqrsBpYlg07bGlxOV++VSaEfNGZtHP2R5wmXFwxK8iYH9Q1w9zdcjKYgSoUEs/nBGKk+2LOrhr9pwqEp35KSeyEmVXS9XdCz1Jtd5Eus8iXXJ4BTqCceq5ySrZyaDTQQwCCwLAHvIo8PdEOlulGchymfEsvsmWO8SYljUYqrSO/xyMzilYuON2W/aTAQmt42+MxGYwnPm3QA+TUQIxI4qSi2mm+AREMQgpinu+ucxkVKLtQh/Gq5oRkIti4K/fshil6qRBv3FQ9kZbExGPZEtu7497OsFOT7sKlEzP9pwH/LnofNZxZTP5Xoibd96xt/+cmjTTUZifdoSe6oOax1+XcI7jofOcuJh8eHGVhWHU+I7qcRvfAqFq4ohzpOqAspeokphgCjM6a0+Iho6gumAAeVhsWLsxBsOwt1QblHZz+6hqUtVAFVVqHhWdTw8Nx6a629b6OtY6u98xXFZRiheuX+0+rCeyAI7slDqdDdQVmPt7hTPiOWqYkoaM8FhvUucTpVSMZPA381cdH9tr+hfHgrZJxTUMiKt31pUufXhyq2/JVZnpgpR/7joiMsTtSehUB6q7oYKWlBKo6E50dAcT3JdoGMpsTqN+FrLE6GeSMIztrfqUNMT4Zau/HjYv+5GzoSDXY1BmIZkVxU5GGL5UAoQmxlcqwRLxB+7291QCsOw3Y24Iy4PVYnVnBSNLAAh3t6PaLIdhCS9Y03fOGqPwBUa5OBuiEFM9jp39kFeD7so7W6KwoDykBqR7hGX99bMr+h8JdD2tNf5YLZEaE4iPMesmUuNCKW0SB6q7kampKBJ77hE7VngUZGNhECBcuZh6dwNtR9zD3BVMZyqwsJ8AapiiGlzoQe8RDmzZc/dZHA3Rv6qQtmeS0oTwSYWVFgOcnSN/N2NQYipfLBbJ2dVsUwKIBL0F91x2xkGgYfU39Bbd27PsHPYT97oR2awSTpvQzHhJeGhdDc8fgxBHpZuZYpNQtnhEETONklVIWJFgNjJLMuxIqDM39mqYlE56mRZ8RKJnTnE6Ip/4BJF+cqUXPXMfUWAy4kwjnymTelvVmtZG5FZysoUS8EWAthI0LBVzlYVwSaHUU1zrwoFUKPDjRuDz8NksEnzMDv63d0w3+Gh7VXx1T6rw2t1xH3jqBGKBXZnyVyqQvpUFYhlAgsgUG7jV90Nj9EGCGvO/lcVcWKqqqCUqlJ0f22vyImHqruhoESOu3YYHgZia6q6l1VHV/nM9f7kuqQR6vFNjnrGbgke0urfz0RoiMzdiBkTEYT5mLm+8+nRHQ9Xxd337yd847sr9t9Sd1nCM94eM4scXWNmC1TlkOhKW5xcczesR/hr4GmBKwIEQlWcY2ZqM06duwG1kH7MDP4KRTlmDsdXdXonWUaEt5Q4nV2JnrspCH3wkAr+UEr9ZrM/sc4gsKTsEefcjchxe+KhN/n16M3XVEZXqq3mtTrDsVVhYETPc1HP2C+q/3N98Dh2JeU+d6P6TFCEe9+auPWyQDL9e6N8ieaaRHNNx8ItdVdsq7ucyjGzzDFHVYE4AlA7wHNzKVWlgBWBLKoiCZmDqvDJpuquV6p7loV7/+YRaxlJI9TtndwW2HdL8NB2zyTtbopDRh4yd+Oj7aNaH45El4dSHlPbFj6pq3pOd/VcANsrD8Odi0Zuvjp7CwbN9VParxnd+9y7kV8ljEh/8LCUczdQxswju56e2jI/U6xRUb/1rvHN8z1Wh6oq9r8EgHvMzApyqQpVipfDYa4qvEOAEo2ZRR3VMbM40T1mRmX07W+tP2b85otqu5/zKOumXqszEl+1U+cDe28+rrHrAY/ZwU7OPmbusz13VKTnIevHYd0vT113+Li2u1JjDYCajoXjvjl7fPN8b2Kty93Y/w5lHta0P9ZnrJGoja/ap/UHXrO9P3hYsqf5iYkqABjV9fTELZfmfm5F74px6+bLbhQ9ajtZ9qRFqjgG52SenK4TObDNFWxlgOUlfsp9NydTFUkQx5hZjPgVj66qCicYgHDnooaNpwXjfbzBqrHrgf23nVAbX8kky75Mvas4T6g8BOA12ydtPHPSprP7VL7K3hU7rZ0T7H5rO+NhqOPZ+q235NWG4eQn09t+0B88LFm4kapSE31rt3xiDUMgtmbERn4WpawLU1TF9re8WdWLptSWDhaJuZUsTlWEcWasIOAv5eGqAqeqyMLZT8Na789dVYLm+umtZ4yIvgLYD2fR7iZfqO7Ga7VP3XhiXe+SHM/1mB3j159U3fkS+7od8NCbWJdvrGEIJz/ZtfuBkvOw9O5m8tZLC8sh3P5MRQ9/URQhYjQiVAVsgVP851AV2ea2LpVMVYjIngruqKoCp6qwwtlJVV2vDGu9P99G2L3zp+HkJ9rdFAzJQ0Kw25ZLq1PWKPrEiJYrvIm12C54WLvtPqPQx/7v1Ptk0BT38ZSnuxnV+XQwWfhrcWq33oMMqgJx1wtvY1VVZJvbo24+gqbcawyCqozY/JMCWsBndU7tuFa7m4Ih3U2k9636nlx9jQrD7Bix8QoMfR56EmurOxcX0AIMPquzsfdJ/qU83c2YnqeLyaSid4U3sVaqCovuSFUV2U28bABCQwAq5mlZJmQwVCXU+WzBqhJOfjK29zn+RbubPFG8ywZQ0bsi2L18qPOwondVwS3AMCz+v/xTGbobr9VeU/TLMKs6+Xu+qb3fEfLFhkRO4NlT9WqbM3s7yKpiWVa47bFiGmFc9Hlxadrd5AdGilD8o2JcNoBw68MY4jys6HLcXVwAIslPxKWVlbuhoBSh+EfF5+RJNoMPm+2nvcvXNrtURZYOAATsgUmDriqV0VVG5huFc0FdYpWPmaMUVWFvGw349Itf0oFPyKI+5+nhTKjoXYEhzkMPLYqEDHXxVazUkvCw+G1+ACAmwkqAQHQ1eKQWd9YJTTDsAA9QMYcHu80t8IUDyu6kFdJCUnZzGvFmX/sSb8dScFrAMsLJqhnJ8JykbzxRdnNSniEnilh3oFzhxJ0oYNuCCQAa6C3BG8fDyU82+/ZFym5O06IARlYHiy9iOwTh3Kgu+i10htnhTaxN+hqK5yGS7UZ0DQX1Rdewd9RZ1TPz3VVcAA9RqAdJgxLxsAThhkjXWCJQwCCicXkRhPW1HCQTg7lcHtFZmxt2xxCwV1sArMdlxKGxryubL/d0uwd9HsDXuRQbb0yE5vSM/jn1NdDU/Q6UiqxEPbgMuXZzliD0RsxPNvv2hd5VnDMkDwngo+3FZ+hJrDP9DcXw0N++xNu2yNfhtlrUE05G5ibqzrEqmpTBGLLsKi6AhyWzAECpeFiCwZT8+y4Jkt7xhAdvKN2QOmamKarC71J1jJmp/EwB+DY/VP3J/qmxRoWvc2nk01n+toUFj5mJ2VZ8O/iYE9ZzNzmjtDwEUAwPPdHV1V/Mr1h7TmqsAUDMDt+2hZWfHR5cdxlJtsluLe3cTUncTYd3Eiu1XOZupKr0escXn1vSP57yMbPtmEQLq2NmYjsq3uYkzZiZyM8k2Hyp/5sbcqxG1forqtZfljJmRi5jZuqpKaoJAAAJEmKl6pWpHFFyl216IoXx0N+9ovrLBdlVjcG7bWHFFwuMBN/xzJ/c2ffcDXLhYU91sa/f7PWMibNXBpfPypRUlai3Ieot6nV/AHor9s+kKqAOVUE6VYHibljd2Gffxju9rc/kVZNA2yJ/60KnqiAXVTFJdWHXrqLdU0pV2RGgupteT7E8BJAINBXAQ2/nW1VfLiBmrtsgPNE1VV+cRMx2MMWETavM7ga58LA3uG+RLbDVN13ErvJzNwA2V84tJivLCEWrZmZzN9RWFajPoEUad8PqRkCMruX+lrsLqE/1N1f4u1fkqyqxyv0LKMuFLf59Wana3eQIlYdtwVlF5hYPTCmAh0Z8bVXzOXnXPN5c8e/5YIqJkrmbRHD3aEVREWdd8Hip22XnbgA0h85NksJftt1adzlss+JWFSp2cEpVoSK4s0SZ3E1ww/UFV6li8z35qkrUNymZz/uAUrGt1KqyI0Dl4ebKucXwEEBX5KQCeFix4cbcfY0KT3SNv21had2NZVmttZcWdPUAsC547Db/fmXtbqLehnWR8wrLJxaY0lZ7rswqVVVIqqqwnxV3w85S3Y2vfYnRm9M7OtLC1/O2h6/N56oqhmF0hU4suEQAn1b9sLSqsiNA5WHSiGwpwmhbRqgzfFK+PPR2Lfd3Li240MCme0rrbgzDiFbu1xb5QQGVSZLqT6qvlfGsTN0NgK9qriygpy0j1DLqHsDOyqUq/IhLVZz1sMTCgYy+lMKbbmkgLwTan0GeqtIeObNgg7PNN73kqrIjwMXDz+t+UbDBaa273PJG8uVhMbEGgBFv9ncsLa27AcjW+p91VR6aV02SpHpV7ZNxIyTjWXm5Gxl6GT6tv7fLPyX3HCwj9M2YRxJB/vRiqSr2HBzfBJXB3YhEtrsRO0EJgben2E133t41yE1VGCsMw7A84U31txVQVpJUvxN5gC98QLubPODiYdKIrB7xWAH5dFfPcbnsHHlYZLgB4O1YUhJ3I3nIfto46jcd1SfkWIckqf7fYU92+qawm8VKy8PSuBtldh4AEkbk3TH/s6l6QS6nJ3zjmscv6q2cZYnwLFXFXmGklIdtwhcFWB+oMY5yiF9FJiTryzBzga/nbeSmKowVTFV6K2e0DM8v4rhUhUC7mzyQysO2ilmf1t+bVyaxwJSNI+8GCuFh9teu5gIjsc7pbkhh7kblIVu2bxl5x4b628y+7N6GiuPeqP+fTu9kRrqS87AUu4r57Kzoacrn8z+tv29T9ckNbXeFM9y3aRqh1tpzt9ZdwSb7DaEazJ4SmS8FES/PlMMkgxBqWfKt8hQweMil3N1QqupS8VBVRfpVIUN8N6fFVYWwy+ioPiHhGzdy01W+ZPr3q6qIesa8W/NAp3cKodRyqgoAvau4T6Tl4abQyQDdeevPvX3dQGQZodbac7fVXV4YD4342hJcg9nBHQ1fEaPS3cgSC+Ahi0DtoRM6qw6NdC4O9q6M9P5NLTbmHbMleOiG4PEd3skWWCaEUJSch6W4Z4qAqjZJWE2DkI6KmWsqZgbNtXXdSypjqwPmOoCaRiQWaIr6p3SFjiAA4T7Nfs0Yex2HPWYmrMVBRX9DURUe8pX5GiLSo5TRhisGpVJVCK+rVBWLhznLosRg7w0hvRUz/j3+tbrW+4a3/SpL5l+G/vOr4GkJIyxURZDcea9KLG4CaKipKt1lbUfIwMPNoVPaquY2bv358K6MG696KmZsGHm36d/JICiMh8VbGwBGvJmNzQi/Z4pQQtPdM5U3D9kFJEl4S/gMK3ymaVmG1RGMfxwnoS7fZJPCorDY9bCdhv3Dw1KEG3Gbhsvd8BENQdzb0FJzHqGUza0QSg0C9sZUIh8OQtO5G5mhoirsGLHdDZ+9MwwxeFXcTUnGHpZvHPJRFWKINRI2qQi6pfZHbaETqruWec31FbGPq2OrAHT7djON8MaKEzYFDomRMO1PVdkhkJmHSRL59/D71tbfNKxnSbhnecBcB4CAdlfMTPjGRf1N8eDuhhCtwniYrC7BZiuroqmE7iaVh4w/1LIIIUkj3BHYz3LMPFAqZqbK291QyLtmwR84RGQsgN07csIdlHIh4m1LiGVRg9iq4sw/i7th7ZjR3ZhVMzzdRc0WJ4NTkKIqfJownapQRVVYOkpp3DNuS+Qs07IoYFKYlLIPTFUIpZaiKsigKjSp3zOVGX3x0DQiW6pP3lp9kocQAkoIv7ebB5oS8LBYWJ5Ivu4mXx6yOGRZlgwxBGCsYgst/crDUjzvRqgKtb+KcCyiDFF3wlD+L3hEEO7G4O6EBXhn/nxFwKEqPCpzd8NGZISVJQI/BZLhOUVeXyw0B05V4V2TYUWAiBUBiEk7VjV1WlHlqFQV8HwJhKpQvTKVOwabh/FQsUwzq2ZQ2LRS3Y2U7iHNw1KEGzG+VYe4fHpcqZXtc+SMLo8IfPhjWTw8M9PmzF8MoOXcsN1kBMLRUB7wHe6mSBJQI5QIHc5qqK4IULk+kbIiQOWLzkTHs6op1OSqQkHZ0gMR2yWEqvD2JHplKncMNg8TRQtbIjyXwKZVLitTQ4uHJXM3kBMl6VQFNgmyqYqM1PaJxFYVoBB3g0BDfOTlBV9ctP4cyxOBoiqi/BKpCtXupkQYbB7Gak6y/IXfGpqomW/5xmV0N3bJQ5iHJXM3cE7gp1EVZz8BaVRFRmrYgcSpKnIekM1diaRZ3A2liNefY1Xkse1QIhmc3FN7lktVRPkFqwqnNRtwa3dTMpQBD3tHXV9Y3akRio68POWeKcXd2L5qCPOwH92N6EEO4nShQN+qwltVVRUxNmfzZzKpdDdIcTeEAJ5IbPy91MhvSzs1Qp3fegbeSOGqAltVYBtvTmuxJ0K7mxKhDHgYCx0Rqz+7gLpHx99j+Rqc90yRkrmbsuFhqdwNTVUV0YMcfaqKOKtPVeEMEtfscDcsPKvuhuVhBpt6d1lEc/a6ZnByZ+MzlhEuSlVgq4q8RlVV2NVod1MalAcPe0bdGK+Zn1fFe8fdnYwcAQKnu6Elczdlw8NSuRvSh6rwqKlsY6BQek41pfmoijgi3Q2lKXM3or2sit17Jy5L1PZ9a0W8Zn7nt55JBKYMvKpAyqzjwrS7yQFlw8Pe8fdFR+Q0XUiNUO/OzySHncwyKB93g/7hYf+5Gzn8lQftf9gRped4+HT0rkyj7KnJoCok1d3I1JDtBVBPJN5wX8/OzyRrF6SOragRStTM79hlSc+4e6k3UmpVUcREURUKQSZxifKPQ7kw7W5yQDnxMDby8q5dl5pVM7LUN15/ds+UVcmqmdJNDYi7GUwelmpXMbF70KUqRB4U/9jTKmAxFwC12H4H4Vup3cdQdlWJaEsICH8pjxhasl3FlFLD4BN+cLob1kYWpSQ0q7dqfzL+XqP3I5gd1KIAtbwRM9AEWW+5m1NwLEVVIHaeZt7NydNZsnRCiKV+oCAgllAVyTq3XAJ8N6c6KtBwIWceeqy2UPTtiuhqL233J9bFAk2EoKvq8Hhw9xLy0KrYvWeXZxH92t/1itG72oizF6iRZHAKrZ6ZqNof3hpqWXbsoKAQ7oa43c32wcNS7SqWZk6oCrtCec82Ed5TURXKacCbhoqbHoiSs1QVopbnVhVpIEWbO6MvBWS5/P0+hkEtmgw2EfG6H3avCGHxKOtuTtstsQuUqpK6m5OCmG2Rrv+piL7tS66viq4EYBqhHt/kLt/kLVUndHgncassdnNC+ePgqqLs5owmEwAaakvwLOTtEDnw0G+uHbvt7rrOhY4Tu5cAqN96V8I3flvd5Z3hBaXkob8hXn8uAOk6IIZAkoc8EwICA9QSu4pLyUOnu6HC3YgPhA4MD0vpbthn2H7PoSriH2Fe+SRLqruh8qR0qoJUVaGgSOtuREZud0MIu22kv1Ul3Pls/dZbPM6XhXuszlBsVSi2anTXE+3+fb8O/ec2/77ZVQXa3eSCvng4qv2hhq03ZMnAl2geufGymtbfbh59TyLQtN3wUCKju0FO7gZF87A0L+3lTSCaNe2YWfxD1SOy4fiAkNpJRdY8Q+WQS1UgR6E85lPIjaGienYOBpuWNwz7YD+MmYnZPuabU0duvtoVa1yIxFftsfX00b3PZx8zQ46ZVe5opCALD3fZ/KPssUYiEFszpnmB3/UezqHJQ0W6Zf15JYnrAyh7t0C/8rA04YY3gQgmhH9XnKfD3dhHZMPx6W5iJxVZMxPkaDMi/B/LR86xE7ZFkkDe9iKqZ+egqIo4mHlFgJ3LY7xbVYg8gWUiVwQ8tHP0N6dWRFfm2Hq7tf1kQscvZcPIIG2rilwR0O4mKzLxsHFbtqdPpMIwO0a7Is4Q5KEwWo72gagkW4kicokKhL9boD95WDJ3w+vlVBVbDLK4G2q7G6IkFVmnzMUQwm0r4cldqgK4VcWuoVNVLDZOzawqrIZZVcW2nlJVRq3/XiD2cV4N2ND95Jie5+QVK9eq3U0eSMvDuu6XR7c/nG9Whtkxcv05htkush56PHS5G9vricyJugFHuBtJsf7gYcncDZCiKmKvHWC7G1sfpLshBAB7iAZVkoqsc1IVlobnQN2qYtfQqSqGYfAcmKqgAFURGxWEqtRsuz8Q/6SANmzquDbIn8OimEKhKtDuJgek5WHjtusLy82baA63PSKyHmI8THU30ushT3eD0vGwH90NMdK4G1sfnO7GyOBuiHPEC6RXFZaGirWtAlVFVL1gVfEl14XbHiuwEYEJXQ8gg6pAu5sckMrDMe0PBpKFP2cv1Mpt0dDiodPdqFkW626K5GE/uhtq5eRuWAtzd2OHbTtVrqoCh6qkG7UCfakKuDQVqCqhtseMrHPD2TEm+ucKc10mVbEs6mCuRgpSeRiJFvVkNcPsqOx8GUONh053o2apuhsU5m6K4eEAuxtFH4S7YS3M3Q2B60pSVYVlS2mKqsChKunm5IF+VpVgb7EvmRkW/99MqiK3n2lkQioP63qKfctYRedSDDUe5uZu4HY3Rk7uphgeltjdKC2S1t0o+pDZ3chAzlMpU/cAW8PiLcUOpqoK6VtVaH+oij9WyKyNihGx/9HupmC4eBhKrM6aPCd4k+sw1HiY3d0IUyPdDW8z19TyEHA3Sovk5G6ANO5GBnKeStmYgHSqYhBbVdgR2reqkNxVBby/+1CVQHFPRGbw0Q7qpKd2N7nDxUOPXFcqGkOIhxncDZHuRpga6W54mxHDgEKx/uBhv7sbIq7GkVIeoTm5G3WGX2YruWVRW1VknlJVqLPcAlQFvL/7UJVSOQ/ipKd2N7nDxcMSYgjxMIO7obm4G5XG/cHDUrobGfRUd6PO5cuUNkiqu7GHqRCqos7wy2yzqIr8KE4aCFUplfPIqCqEJE0LwMjqitKUtN3BxcOot/BHebowhHiY6m5Y/fp0Nzyg9OluiuBhKd2NDHpp3I2SUhn/pnU3jr9crippxsy856itKsrQmhBukaitAizD/lOVRHByaRozk6qIGgS9npIUtP3BxcOYb6dkX6+p7ROxYBOGFA8JfwgG7Nu3AMXd2KbG/gBlMrhPd1MED/vX3UBaOZnSUse/irshirtxejUCWMo5LlUhtqooQ2vW3LDbLFdVQVpVAXJQFdOImL6xRbbkpsAhWVSlyMy3e6TysL1iZpF59lbx9ysMFR5S8eSNDO6GmRoQ9QOUyeAc3E3BjVlSd+NYqyMsjrhn5uWrvNl37m4oD/aquxGTOxQZVMVyq4oyjUIIb8U8VQVpVQXITVW6qw4rsiW3+ffNoipFZr7dI5WHWyuPKCbDpG9crHImMMR4qLgbe27J6W5A1Q95upuC27Ok7kY+OcvlbogzaRp3Q9K4G06ZFFWRlOL3l/AgzfscypiZDrSqdIfze0itC63+6R3eyS5Vodrd5IxUHrZUn9TtL+QlHAztdZcPRR4q7saeW6KUGmZbZXRlYe6mJDwsxfNulKY3CKszu1oxdyMiDndywruwcbZwN/CI2WLemFTIAoFHXi3hA06ev8E2OFBDOlqejBBQqSqiZSlcqkKEqkBVFaTZ70BTVUUQSxRKCGL+yV2hE6o7FxfWjJ9X/RAAsR9KBthrB+J1axqZkZaHn9Xfu+c3hxeQWzwwuavmJDIEeWgJdwPAE/863P5EZe/KQNxx23BbxWGtwUO2VRwSNyK8phbEpQH9w8PShBseREUjs1hsGPx5ajIaEsBjtoW7lkZ6lka67e2epifcXT23N7h/d80CsEuWnkioigzoqaoCOUEobZ46ZlYNFyHiaX6EWtSilmEYIOBPUVMuxX6Kmtr/oFR5ippDScVT1LbVXxfsXelNrs+3Db+uPK3Vvx+nmO1oCX/irHY3OSAtD3uCUz+vv2fClsvyyirpG7dh/CIMWR4CFMnWuq2/DHU+m/YCa3qX1fQuG9Mxtjl0cUvV8Zb8Q7W41vcHD0s9d8NUxTl3I2s3attdk7+e0bD5MjXWAPCYHeH2hSNbLmv4Yv+qzpdtdwN1zCwZJJpXPI1YThAqgS3NmJlVspAxM3i5rjEz57VzzGwakZbRD1p5vtNqQ/C4T8PX8qydY2ai525yRiYebg6dvLbuhtzziQUmt4x9hHoiQ5eHvtia0Ru+nynWSATM9RPafjKh9SfEnsVB//GwxHM3ACi1Qzj/Cnis9onfzB/denf2p9t5E80jvjm3fuNlqaoiLz/tmBl8cGurCuAeM7NKFjJmBi/XNWam0sHCMWaO+SZtGPuHZM6rVBsrjltT+18QE5ypY2aq525yQxYefhM+77ORj8Rz2InTWzFjw/hF8UCTPaLHEONhIP7x6PWn5v7QpZE9z01s/YmYxelHHpbY3QBCVex3aMFrte/2zfxQdEWOuVW3PzN8/Tl9qgpEkJdH7M7ijBgEVWFj5nigqXnsCx3Vx2e/0ph3zJphD3xSc1t2VSHa3eSG7Dxsqzpi9bhlG2ovzxR0uqrmNI9d+E3Ds6YRAezZQ/Z5qPDQY7XXtfw43ycTjOx5bkL7Lf3NwxLP3UA0PiWib4BdN55VGc/vZrnKriV1Gy/bNvoeEHWiDXAYZueYmUJOtFH+vPVBGDNTUGpZIIR6ajaNuGPLsB/VtD1WGV0ZdD5zqzV46NaKQ1oqTzBl32UeM1O2rKDdTV/IzkMKmEbkm9orNg67IphcWxFbXRlfQwDLE44FmuL+KZa3xuAnARCxRnE3Q4KHtZt/4c/zYZIM47qf3BQ4ZKtv3/7jYUnCjT1uglwRYE1CMK71rtx9jYqq9me6wwviVTPFW0UtdvFUBloqVs4tyrbzEDHtT4QplKcR0UaFrAjYRIGiKvyga0UAYkWAWhYFkt7xLcOuAyEWhRFf60uu7wjOMC3LAiyItf++VgTYQVOvTPWBbDyE/acDShH37ZTwNXThCAAGgcFcCRXhSRkEyf8PCR564s1VhS6MAmjs+n9bh+3bfzwsyWDK9quQY2ZQQojXah/Z/tuC863ZdIOwdG5VkZ8IIDf4SAkQftcefUp9yDxmtgfDxczdwLnfQaQGCJL+8V0VM4isOOXP6wcRp4vKq1rGymHkZj42UuEruEm3a2TkIftZkoHIOw9sVkmj4nzgpNPdlD8PQ+2PFdOCtfFV1YmP+4+HJQk3VG0RQmAYvNuGdz7tLeLpdv7YmkDXcv7XLLpM2Ec+VqaAvQRGJHmI/Q+vFREKlGnMbA+GnapCZLm5zN3AuZtTpAbYDX58uo2yEyjE0gY7XVTeprKQUCaYpgUAkaC/4CbdrpGRh+xn1d3IP1kZGGT/KY2vTGBwfpQ7Dyu7XimyEeviq/qPh8WGG9acLlWxxIsBwwUNo1QEu5fa/piVSAQFnKoCuFWFUvu8IlSFynKLdDeGwXd/utwNKzwXd1NkY27HyM5Dliabu+HjETjcDRRjwkNGufPQk8h7w5cLw2P/0388LDbcMLPIB5opqjKsZ2mR+fujqwWD5OMp0qsK4FYVIvc0K6pCB9vdQD7/LX93U2RjbsfIzkOWhiiRyO1ulMkSx5+Ty92UNw8DPcWqu7hWXvmS87B07oZA1s2lKsXAm1gvVUXQiNgCw/4RqiKX6KQmpaoKGRR3A8XdyJbR7qZ0yIWHVBln5ehuiJw0UdxNWfOwFBhK7gbgquJPfF1k5gA8ieaMqgL+BypVxRDh2EGEwXA3ktGCq9LdQHp+291Q291Q7W4KQhYeZnc3Mt6kdTdUxpIs7qZseGh5IkU2o7zqfuJhSd2NOMhUJe7bqcjMAZi+cQC/2lRV4V2oqApLM+juRjI6xd0gjbshtrsh2t0UhCw8dISPFHcjR1N9uBuRqJx5mAgUfu+7RIKE+4+HpXI3StOmqEoxSLJwoz6eQqgKzaAq1Kkq3OimqApAC1YVyu9XyNXdgNJUd0OFeGp3Uzxy5GFO7saZreOPq+x5GA9MKrQJOdr808vf3SCtqnQE9y8y/3iwCUivKgZJryoq5dTpPJeqAKRgVSH8foVs7obpGT+DEApquxvD4BnxPLS7KRbZeSiTudwN4HY3UPe2KafIL2XOw1hlsX9xGwOHDEV3A0rptso5ReYfZY9uZDu+RRuwkizqUBWaWVXoYLgbIvwLm6Ik7EEhzN1YFs+I56HdTbHIzkOZwuVuAP6HBeFu4HQ37BT776vsedgZOTPfpxGo2Bw4JOYdV9buhsd7t6qAELI5dLJZxLOp44HJsSr26EZqyFJSVUVEeyokSrYIowQZNHcjzuDuxtDupp+QnYc8hXQ3SrdCmVVhnZ7qbuy/r7Lnoekf31lzVsHN+Gnkmn7lYQncDaUpqkK4qiSNyMaa8wrOvH3kjfyTUBWijJnt5UYR7YmQKGIzIEdVof3jbuxJGsJYlcbdEO1uikd2HvIUwqpQpVtd7obSnNxNOfOwve5Hhc3gfBz5ZdQY16887Bd3w6M7IQDW1V7RWdAMTnd4frRSPEZfqAp1jZlZHaSqyDGz8LcQ6tWXqpB+djdIdTeypaS7QVZVYYfCQX3DVBr0yUPpbly+o093A+GJ2KchwcOWsX/MN+K0VBzXUnVif/OwX9wNj+5CVT4b9WhPnkt0scoZW8fcm0VVqFAVWZCUDlVVwPu4jNwNpWDuRraUdDfIqirJJAVQo2+YSodceIgM7oZ9crkbRzgaajw0jfCGMX+IVuyXY+t9Wnvrp8NuHwAe9ru7AYFpRD4d82xXcEaOeXaF529sWERSVAWwiUKEqsiCMqqKCASD4m5YpFHdDSEozN3Yfa+RghzdDZDG3VB+nP9Viz93O+ehyEPLE/lm9FObR9xmZZ087Qzs+1H9k5sqThgYHhb+vBv2Dr2eWIxSyh5K5FQVKtVGRpzRrXeNaP+tx+rMlGfSN6512OXdNSex8+x3nxNiWZZhEEPKAkDZg+8Je+UDofJha2KzllAYlgERgpBOVaCqClyqwtUkRVX4RSv2RD7vhgKEUv7KZZYPiGlZAKEUlPJnpjDOsHczM8JQu7JMk+3njFBqQSMFefEQYq6GP9SGuNwNZZk47cIQ5mFneEFX5aGV3X+r6F3pj69hz3gzSajXP7nbP3lL5fFdvikmb7CB4GHh4Wbq6No3vtjYG4v1xhKVAZ8QF4C3G3t/u2PsurH2ii0159R3LqzqXRHutu/etIxQd/Xcnor9uyInyal5IoQIACg1xEPZZGyXwVhVFflBSpolVUWcJZ6iBsuST1ETfSv0UHmKmq0q4F6bygxZ1gSgJOVpfqxvRAtQSg3DMLlXF0SmAN8YwjtRqIpoGuUpakmLQj99IgUF8NBwMkTOqhD5V00hn/851HloGpHO0Pz20IkmpRSE3c5nUmpRyp8kOYA8LMrdHLjzqL999k3zlk27jh7tIYZLVbgiOFXF8tRsjpy7teZcwh6hxobTlBLxRDWuKhSUQGyLAwyHqkBEdDZHQi1KQOznsGVSFSEOg+ZuqAVKKGWKYbsbKzdV6Y7FAUwcHim4y7ZLFMZDSRUqJhTSuxvNw5LysKi5m+nj6xtqqiyLfrVpU8I0XWNm5UrYQcdoVvpT2ZqQfQwx7UF5g1CnqhA5ZlZmTOzMqVO7eHNR2Y0lHzOzw5SCECPb3A3hczewSwOfDlDGzEpl7TFzR2/CtDCiOjhxeLiYLtsuoXk4VHhY7FTxiXt8a0R1MJZIfrZhY08iyesmmgjif+DNw4M2bLFRWlOZ8ILYFsVHwYRYlv0LEyzLPoUbUJ45sQ21qiqyG9OoClVVJe8VAXaYEAghIWKMzkgqLoFa7FxFwwD2KEZlpkCpLFeVnrjZFU0COHpKQ5H9tb1C83BI8LDYcBP0ek7da5cR1UHLol+0tGzr7gG/PKSqCm+7nFWFx1pFVdgveakKRCkDpipMDRVVIfwSiMHOzUtVeuJma3ccwKG7jhlZHSyyv7ZXaB4OCR6W4FnFak+v3bJtY1tHImkCcKkKkEZVqP182TSqAjF+zq4qfNSbQVV4yYWqikQRqsLz4aoCW1XYBWRRlfaexNauOICpo2qnj68vope2f2gelj8PS7k1/o0vW978soV9rquuHF8bDno97K0a7Hl1hIIQ5T0bPNpRg91NRyl4ShCRRgRlcZxVWsZlOSa1lzPBWpZwrWBSw8fbTJnkU6nZ+30sKib/lS5kvSzDu5yKo5wAIjX30KCAZbE+s6glOo8QNv/PSGlRWAA7YgGmRS0Kk1JKiEmpaXF7a4FaFD1xc2t3PJq0ABzQOPLAxpGl6qbtHpqHZcvDEt+Js7a1+40vN65t62Zfw0H/mEiovipoEObWYBBCKGVP0RR9TAjslSnWl66eNgxCLUv4WEpECDZETzLbyVYEiEEIYFnUMLgllEGaOVgIVWHZWPxGXtt4M1WxpIgIW0k5DWCJHRaU2rJAQS2l+6llWSAUMC2L8v6mfA3SggWY7AgxkpYle9ei6Iyb27pjvQkLQMBjzN+jsaG2qoR9tCNA87A8edgvN/6tbe1e1bz5sy32K18iQX9tZaDa76vwecMBryF7EShYVewP1PkVfBxL5PMHylNVKLUsripdCbMnZnYlkp1Rtq0BAY8xvWH49PH1bBubRgHQPCw3Hvbjfcbt0fgHG1o/3dy+qSvq+inoNSp83gqfp8rnJUA44PN5iAFU+j1VXo9LVQhTg6yqwsbLblUhfOKO8Ek9OjiqQi22vao9biUsalHaG7eipmWBtkeTSUqZgEiMqA7uMXrY1NG1OtCUBJqH5cPDgXisQTRprm3tbunqbens3djV2xlN5HKWzyA1QR+fyhN6UuX3hHxeAsdBxwc+Ead8VmBPBxI+p0/kHcBU9jTLj6qdz6YUqZ1INBshsaTZFkuCk009BQmLdsTNXC42HPSNrK7YqbZ64vCw3jfcT9A87BP9zcPBeYpKezTe3ptoi8bbo3EALZ29saQJoLU31hlLDnx9BgYjqoNMKCJBf6TCD2CnmuqAz6OXtwcLmocDzMPyfWhTNGlu6nS7X8mM8kHQ6xlZXZH2Jx1KtgNoHpYQ5RtuNDQ0tjOUYJufhoaGRi7Q4UZDQ2OAoMONhobGAEGHGw0NjQGCDjcaGhoDBB1uNDQ0Bgg63GhoaAwQdLjR0NAYIOhwo6GhMUDQ4UZDQ2OAoMONhobGAEGHGw0NjQGCDjcaGhoDBB1uNDQ0Bgg63GhoaAwQdLjR0NAYIOhwo6GhMUDQ4UZDQ2OAoMONhobGAEGHGw0NjQGCDjcaGhoDBB1uNDQ0Bgg63GhoaAwQdLjR0NAYIBgAOjs777vvvsMOO6ypqWn33XefM2fOAw88kEz2/dLSCy+88NRTT+3/ShaFsqpkNBo98MADZ8yYIY80NTU1OvGXv/yl4PzXrFnT2Nj4yiuvlKKyAw3NwwHDYPHQC+CMM85obm6+9NJLp0yZkkwm33rrrfvuu6+5ufm2224ruLwisffee//5z38eN27cYFWgn3Dvvfdu2LChvr6efaWU9vT0XHLJJfvvv79MM2HChEGq3SBD83DAMFg89H766afvvPPOf//3fx9xxBHs0D777BMIBJYuXdrb21tRkf6tw/2K9evXb9u2beDL7W988sknjz/++Pz581999VV2pLu7G8DUqVNVndkxoXk4YBhEHhqmaQIwDMckzgUXXPDcc8/JPn766acPPfTQiRMnTps27Uc/+tGWLVvUxF1dXZMmTfr1r38tj8Tj8T322OP2228HsGXLlssuu2zatGm77bbbscceu3z5cpbm888/b2xsXLly5YUXXtjU1LTPPvvccMMNlmW9/fbbBxxwAIADDzzwvPPOUwt64403Ghsb3333XXnkvffea2xsfP311wH885//POmkkyZNmjRlypTvfe9777//furVTpky5aGHHpJfr7766mOOOUZW5s033/z+978/adKkWbNmvfjiix999NG8efMmTZp0xBFHfPjhh+yUZDJ59913z5o1a+LEiQcddNATTzwhc7vtttt22WWXTA1tWda11177gx/8YOLEiWrTAaiqqsp0lsR//ud//vCHP/z973+/3377TZo06Zxzzuno6Piv//qvadOm7bnnnjfccEOfOZQ5NA+xA/DQ2GWXXcaPH3/VVVf94Q9/cPUfw+LFi3/yk58ce+yxS5Ys+X//7/99+OGHZ511FqVUJqiurj7ooIOWLl0qj7z11ludnZ3z5s0zTfMHP/jBO++888ADD/z1r3/dc889zzjjjH/9618AvF4vgJtuuunUU09977337rrrrieeeOLll1/ee++9f/WrXwF48cUX7777brUmM2fOrKurUwt6+eWX6+rqZs2a9cUXX3z/+98fPnz44sWLFy5cWF1dfeqpp27cuLHP5mNglbnzzjuvvvrqd955Z4899vjpT39622233X///atWraqurr7++utZyptvvvm3v/3tZZddtnTp0nPPPfeWW2754x//yH6aMGHCd7/73UxFPPXUU5s3b7700kvVg0xVcpFur9f7zjvvfP3113//+9+feuqpf/zjH/Pnzx8+fPjy5ctvu+22J554gnF96ELzEDsADw2/3//www83Njb+9Kc/nT59+mGHHXbTTTd99NFHMsUjjzxywAEHXHzxxTvvvPPMmTN/+tOffvjhh++8846ay9FHH/3+++/LZn3ppZcmTpw4adKkN954Y82aNbfeeuusWbMmTJhw/fXXjx8/Xo3Ec+bMOeCAA3w+3+zZsxsaGj744AOfzxcKhQBEIpHq6mq1FI/HM3fuXFc3H3XUUR6P56mnnvL7/XfdddeUKVN23333O+64Ix6PP/vss302n4q5c+dOnTq1srLy+OOP7+joOPnkk7/1rW+Fw+Gjjz56zZo1ADo7O//whz+ce+658+fPb2xsPPXUU0844YTf/va37PQTTzxRfnZh06ZNd9xxx0033eTqUaYqzz777EEHHTR58uS5c+c+88wzmarX09Pz4x//uKqqau+9995tt90syzr77LMrKirmzJlTU1PDajh0oXkosR3z0AAwceLE559//pVXXrnuuusaGhr+8Ic/HHPMMb/4xS8AJBKJjz/+eJ999pEnfPvb3wbgyvSQQw6pqKhgE9HJZPJvf/vbscceC+D999/3eDz77rsvL8wwpk+frlJkypQp8nM4HG5vb89SVwDHHHPMV1999emnnwJYvXp1c3MzK+jDDz9samoKBoMsWU1NTUNDQ75/gbvuuqusietrLBaLx+Nr1qxJJBIzZ86Up8yYMePLL79sbW3NnvMNN9xw4IEHHnzwwa7jsVgsFApt3Ljx+uuvf/zxx/fdd9+rrrpKypQLDQ0Nfr9fVklWj33t6OjI41LLEpqHDNsxD73qRe66665nn312V1fX9ddf/+ijjx5zzDE777wzpTQSichk7DMLhxIVFRWHHHLIkiVLTj/99BUrVrS1tc2bN48lM02zqalJpkwmk7W1tfKr7BgG1RunxfTp04cPH75kyZKJEye+9NJL48aN22uvvVhBDQ0NaspIJOKqZJ8IBAJZvlJKWYann346IYQdtCwLwNatW9WLcuEf//jHW2+9tWzZstSf9t133w8++EB+3W+//Zqbmx977LHvfe97BVQvUwWGFjQPt2MeeuPxeEtLy/jx4+Wh6urqK6+8cvHixWvWrGlqajIMQw327DPzmSqOPvroH/7wh21tbUuWLJk2bRpbOwyFQoFA4K9//aua0jUdmBcMwzjqqKOWLl16ySWXLFmyhE2wsYJcitTe3j569GjX6bJ7GKLRaF6ls6u+5557Jk2apB5XWy8VL730UkdHh1xipJRSSnfZZZfrrrvuzDPPdCWePHnyypUr86rV9gHNw9wxdHlo3HLLLUceeaRrcu7LL78EMHz4cJ/PN3nyZNV2/t///R+APfbYw5XRQQcdFAwGX3/99WXLljFjCWDPPfeMxWKWZe0iEAwGU1s/LTKFSTaCXbFixRdffCELmjp16urVq2OxGPu6ZcuWr776KrWS4XBYlZp8Xe7kyZP9fv+2bdvk5dTU1AwbNkx6y7S44oorlixZ8pLA+eefX19f/9JLLx133HHLli27+OKL4/G4TPzuu++65HEHgeZh7hi6PDTYNM+JJ574u9/9buXKlcuXL3/wwQcvvvjipqam2bNnAzjvvPPeeOONBx98sLm5efny5bfccst+++2X2oKBQOCwww578MEHt27detRRR7GDs2bNmjJlyqWXXrpy5cp169a98MILRx555FNPPZW9Tswn//3vf2drBy7stddeY8aMufnmm3fbbbfddtuNHTzttNPi8fjVV1/9+eefr1mz5sorrwyHwyeeeKLr3D322GPp0qVbt27t7e29//772YR87giFQt/73vfuueeeF198cd26dW+//fZpp5121VVXsV8XL158wQUXpJ41atSo3RQMHz7c4/HstttutbW1DQ0Ny5YtO//8899888233377mmuuefvtty+88MK8apWK1atXv6ZgSNglzcPcMXR56G1oaFi8ePFDDz30yCOPtLS0+P3+cePGnXPOOaeddhoLlvPmzYtGow899NCdd94ZDocPO+ywa6+9Nm3uRx999DnnnPOd73xH7lb0eDxPPPHEL3/5ywsuuKCnp2f8+PE/+tGPzjrrrOy1nDp16uzZs2+99dYZM2Y8/vjjrl8JIUceeeTDDz8s2xfATjvt9NRTT912221HH320x+OZPn36n/70p7q6Ote511577dVXX33AAQdEIpHTTjvt+OOP/8c//pFPA+K6664Lh8O33nrrpk2b6urqDj/88Kuvvpr99Nlnn6UdGGfBbrvt9uSTT957770//OEPAUyYMOHRRx9NncnLF/fff7/6dezYsW+++WaRefY3NA/zaa2hykOy3UwxamholDn0HeEaGhoDBB1uNDQ0Bgg63GhoaAwQdLjR0NAYIOhwo6GhMUDQ4UZDQ2OAoMONhobGAEGHGw0NjQGCDjcaGhoDBB1uNDQ0Bgg63GhoaAwQdLjR0NAYIOhwo6GhMUDQ4UZDQ2OAoMONhobGAEGHGw0NjQGCDjcaGhoDBB1uNDQ0Bgg63GhoaAwQdLjR0NAYIOhwo6GhMUDQ4UZDQ2OAoMONhobGAEGHGw0NjQGCDjcaGhoDhMEPN6tWrTr77LP33nvvXXbZpamp6dhjj/3Tn/6Uy4nr1q1rbGxsbGzs6OjIt9Arr7yysbHxpptuyr++feO+++5jFfvFL37RH/lr9AcWLlx44oknTp06dZdddpk2bdrpp5++atWqXE5ctGhRY2PjkUceWUChBxxwQGNj4yuvvFLAuZnwxBNPNCrYeeed99tvvzPOOKMcXhU/yOHm7bff/o//+I+///3vVVVV+++/f319/QcffHDNNdf87ne/K21B33zzTWNj46OPPsq+Tpky5eCDD951111LWwrDiy++yD68/PLL+p3IQwK/+tWvrr766nfeeaehoWHGjBmEkDfeeOP000//8MMPS1vQ4sWLGxsb16xZw77OnDnz4IMPHj58eGlLAeDz+fbcc88999yzqampp6fntdde+4//+I9BjzjewS3+d7/7nWmac+bM+c1vfsOOXHvttX/84x+feOKJ0047rYQFyRDAcNZZZ/X5RvrC8Nlnn33++efhcLiysnLDhg3vvffetGnT+qMgjRLi8ccfB3D99defccYZAHp7e+fPn79mzZqnn3566tSpJSzIxcPbb7+9hJmrGDFixHPPPcc+d3Z2HnnkkevWrVu0aNF+++3XTyXmgkF2N2wcVFtbK49cc801r7/+umovFy9efPTRR0+aNKmpqenkk09+/fXX02Z1yimnqP7ltddea2xsnD59OoBjjjnm1ltvBfCLX/yisbGxu7vbNZiKx+N33XXX7Nmzd91112nTpl100UVffPEF++nJJ59sbGw8//zzV65ceeSRR06ePPm4445bvXp1piv661//CmD27NmHHHIIUuilUZ5w8bCiouLRRx9dtWrVzTffzI5kYYgLbAgj/cttt93W2Nh48cUXd3d3NzY2/uMf/wBw1FFHHXPMMUgZTG3cuPHKK6+cPn36rrvuOmvWrBtvvLGzs5P9dNFFFzU2Nj722GO///3vZ86cOXXq1AsuuGDbtm25XF0oFPr2t78NIBqNFtQ8JcMgh5umpiYAf/rTn6644oply5a1t7eHQqHx48cbBq/Yb37zmyuuuOKTTz45+OCDp0+fvmrVqh/84AfLli3Lq5Rjjz129OjRAPbdd98zzzzT5/O5Epx//vkPPPBAZ2fn0UcfPXr06Jdffvn4449fv349gGAwCOCLL7648sorp0yZUldX9/7771900UXJZDJtWSzczJ07d+7cudDjqSECxsNrr7329ttvX7lyZTweHzlypDrGycKQHOHz+c4880z2ed68eccee6wrwbZt20444YRnn302EonMmzfPNM3HH3/8tNNOY0xjPPzLX/7yyCOPzJw50zTNpUuX/vKXv8yl6K6urvfffx/A4FobDHq4ueCCC1jcXbx48XnnnTdt2rRjjz3297//PWvijo6O++67D8DNN9/861//mrU+gDvuuCOvUs4555zGxkYAc+bM+fnPf+73+9Vf33jjjVdffZUQsmjRonvuuefPf/7zlClTOjo6HnzwQQAs8H3++ef33HPPnXfeyVz32rVr04rbv/71r88//zwQCBx00EEzZsyoqalh46n8G0ZjQHHzzTfX1dX19PT8+te/PuWUU/bYY48zzzzztddeY79mZ0iO8Pv9P//5zxmdzj///HPOOceV4JFHHtmwYcNOO+304osv3nXXXc8//7zf73///feZ92EnfvXVVy+88MKdd9557bXXAvj73/+eqbhNmzYdf/zxxx9//Lx582bOnLlx48ZTTz31lFNOya9dSo1BDjc1NTWLFy9+6KGHTjnllJ122olS+sEHH/zsZz+76qqrALz77rvM/s2bN4+lP+qoowB89tlnbW1tparD8uXLAUydOnXnnXcG4PP5Dj/8cAD/+7//K9OMGjVqn332ATBhwoSqqioALS0tqVm99NJLAA466KDKykqv13vYYYdBj6eGAnbffffXXnvt1ltvPeKII+rq6mKx2KuvvnrGGWcsXLgQuTGkeLBS5syZw4zMqFGj9tprL1cps2fPDoVCAPbcc08Ara2tiUQibW6JROK999577733Pvzww87OTo/H8/XXX//rX/8qYYULwOAvhBuGcdhhh916662vvvrqm2++yUzmc889t27dutbWVgCBQKCyspIlHjZsGPvQ3t5eqgqwUtT5I1aKGtHUXysqKgBYlpWaFRtJvfPOO0ceeeSRRx7Jppn0eGpIoKqq6pRTTvnv//7vf/7zn88//zwbXt1///3IjSHFIy8eMhIiAw8BjB079kuBf/7zn2edddabb775/e9/v4BdIyXEYIabrq6uJUuW3HfffXIGa+zYsXfddZfX6wXw9ddf19TUAIjFYr29vSyBnBtTe4WBuU2ZVY6zaABYKayz1XNlaMsRn3zyyb///W8Amzdv/vjjjz/++GPmgPR4qszxzTffPPvss2yYzPDtb3/75z//OYD169cnk8m8GEIIwaDyMBV1dXWXXHIJgLa2tsGl4iC7m8svv/zee++97bbb4vE4O/K3v/2NTdyMGzdur732CgQCUMYjf/7znwHsvvvu4XDYlRWb2GNTYgD+8pe/qL8yEnR3d6fWYebMmQA++uijr776CkA8Hn/55Zfl8dzBRlJ77bXXlwpmz54NPZ4qb3z11VdXXnnljTfe+MILL7AjpmmyGZNRo0Z5vd68GKLysLu7my1FSfTJw2XLlrG/hfXr1//f//1fplLyhVzPra6uLj63gjGY+26qq6t//OMf33TTTY8//viiRYvGjh3b3t6+ceNGAMcdd9xOO+0E4JJLLrnjjjuuu+66N998c9u2bW+++abH47nmmmtSczv44INfeOGFV1555cILL+zs7GQriHIUM2rUKACPP/54c3Pzj3/8Y/XEAw888Dvf+c7rr79+0kknzZ49+8MPP/zXv/41fPjw888/P6/LYeHGtbv0iCOOeO21115++eXrrruOUU2j3LD//vvPmTNn6dKlP/rRj26++eZhw4Zt3LiRjdYvvfRS5MmQgw8++Omnn7799ts/+eSTd955Z/To0Zs3b1Z5uH79+p/97GezZs362c9+pp549tlnL168+Msvvzz22GPZXFIikZg1a9Z3v/vdAi6KTRWzz+3t7V9++SWAadOmsUmfwcIgu5szzzzzkUcemT17dlVV1b///e/Ozs4999zz+uuvl2tPF1100e233z5hwoQlS5a8++67s2bN+uMf/5g23s+bN+/CCy+sr69/8803x4wZw3ZMxGIx9uu55547YcKEzs7OFStWuIa7hJCHHnrowgsvDAQCzz///ObNm4877rjnnnuuvr4+9wuRIym2/i1x+OGHezyeDRs2vPvuu/k0jMbAgRDyq1/96sYbb5w2bZppmp999plhGLNnz3700UdPPvlk5MmQq6+++ogjjvB6va+++uqCBQsWLFgAhYc/+clP6uvrv/rqq08++cR1Yl1d3eLFi4877rhNmzY9//zzgUDgwgsvfOSRRwpTKTlV/N5777W0tOy6666XXXbZk08+KbeYDAr+P549iXWDiVoTAAAAAElFTkSuQmCC", "path": "image.png" }
Which solution has a higher concentration of yellow particles?
[ "neither; their concentrations are the same", "Solution A", "Solution B" ]
0
The diagram below is a model of two solutions. Each yellow ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the yellow particles represent the solute. To figure out which solution has a higher concentration of yellow particles, look at both the number of yellow particles and the volume of the solvent in each container. Use the concentration formula to find the number of yellow particles per milliliter. Solution A and Solution B have the same number of yellow particles per milliliter. So, their concentrations are the same.
neither; their concentrations are the same
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAE5CAIAAAA85uwLAAEAAElEQVR4nOy9d/xtSVUn+q2qvfc55xdv6Ew33SSFJgiiCKICouOg46jjqJhAR0cnvOdTZwyMjmFmEEeejm/0KT5FFEFQgiRBBSQ3QWgaaLppOud47/3lE/auqvdH1apaVbvO74a+neizPr/PvSfss2vtVVXru9aqVauEtRZfQtRpe8/27M5j01uOTI5stYCddbaphBQ488Dg/MPDsw8MDq82QtwfnGyNu+1xZ43tjJVCSIFBo9ZG1fJQ3efNp2QtLKy1kELcD8++oAUtaEEnSNUDzcDpoUlrrrh554OXH/vYFzcuv2nnzo3ZzkRPZhoOYq0F7NJArgzlIw4NvuJRa89+wqGvu/jQY89bqdTpVMna2Jvunnz2hu1/unrz8zfv3HZ0csexqdbWWCtgBbC2VJ17qHnUWaOnP/bA0x6z/oQLVtaX6tPIQKBjO+0Nd42vvGX3+jv2rrtzb3uvs9YaCyXtqFEXnjV69DlLj3/EymPPXT68dh9CsrU4sj27c2N6y5HpXRtTY23bmbqSAji81px/eHD2geEZa83p7YUiGeNtAq2jTVBXcm2pWhlWC2Be0IIeKBIPdU9oe9y9+zNHX/uB2z50xcbdWy0MIASEQFQrFrCwFsbQv0YqPOJQ87wnn/Hib7rg2RefMajlvWfjA58/9qZL7vzQlcduOTKbzgys48R6FiIPBtZA4uBK/aQLlr/tq8/+jmee+/gLVu8lA452JvqT12y+85N3f+iKjWvuHB/daY22sIhgbK0XiLQHlqtHnTV65pcd+NavPvtrn3Do0GpzWngA0Gl79e17H77i2CVXbnzmxu1bj0x2JnpvmtgEw1qujOTZ682TLlx55pcd/IYnHb74wrXhve4ITha4/ej0czdu/9PVm5+9cfuWeyZ3HJvOWmOsFYCAHQ3UIw41F5w5etqj177yMetPunDtjLXTJoSEE4t7tmc33Dm+8a7xTfeMj2y3xlhjbF2JSokLzxydf8bwUWcvnXdouDS4v73kBS3ogaWHMAhNZuZdl97zJ++59f2Xb+yNDaSEN2jdvzb91wLGa2FLSKDNgRX1gq888ye+7dFf/8QzlDwVe9ih4Cs9GxpCQoqUh8AAwaE1MO5fDdhHnT38geec/0PPf+Tjzz91KNoed+++7Ogr33vrh6/c2NrVQEBikYvC4ZCDQ2NgzWggv/Ixa//mmx/5L5957hlrg1PmAcC0NR/5wsaf/+Nt7/vc0VuPzoy2820CGxiAxJlr1ddffOgHn3f+Nz/t7NXRvXXQp6356FUbb/7onf/4uWPX3zXemzibAECQB7NLrIG0qyP1Zect/fOvPOu7vvbcr3j0geqUBkOfbrp7/KErNt772SOXXbd94z3jrbHuWpIAPB5D2KWBPGO1fvz5K1/7+IPf9NQznvaYAws0WtDDhB6qIHTlLbu/+eYb3vzRu3f2DJSDHwEwtetVrk0AwGtA47UPNKxBp89cr3/o+Rf8p3/1ZY84PDpxHqzFR6/aePlbbvyHy47uTSykAFIgtFz7G3pNcOj0LwyMgdGPOXfp33/bo37kmy88vHpyMNBq+97PHvnf77j5A5/f3JtoCCaN2DqYBBwzNuFB61rhqx+3/n98+6O/41mPOAUNqI390BUbf/QPt/zdpUc2tjWkgJBRFLFpJH0RYMBqaLM0lM950qF/+88vesFXnTNsTkULTzvz4Ss3/uTdt/7dpUc2tjsIASkRMTAzTcguMa4jNKw992Dznc8650e/+cKvfOzBU7NLHH3h1t3XvP/2N3/srqtvH3et8f2SgDH8aLTMJhD24Er1dRcfevHzL/hnX3ka8HhBC3qQ00MPhKzF2z9593997XWfvWEXUtHcDtObDP8AQjEG5WDARPXnVA8MtIbRz3nyoZf96JOf9YQzToSNval+5Xtv+8033XjbkRljA0zfIXLi9GyOASaqPxh0Wgn9gq8++6UvftJTHnXgBKVx5+bs5W+58U/fc9uxLQ0lIaT3gZgkiBHOgy2oYBh0eqnBv3r2ub/6gxc/9ryTcMtuPTr97bfe+Jr333H3RgupIAiBCso/44HbBM491StD8a+efe4vfs/jn/DItRPnAcDnb9753bff/MZL7trY7iAl4TEiENrADbcJyDk20SY492Dzom+64D/8i8c+8sylk+IBwA13jV/5ntte+8E7rr9zApuhINJeofHA3VOPx+I5Tzr87771Ud/y9HPufbh4QQt60NJDDIRmnfmDv7vlpX99wz1bxutc539EEr1JbmHhgz+J/g0YoAELraG7R50zfNmPPvl7v+HC/Veq79iY/vpfXf+q994xbUE6V6T6LhBBoA1LMibykGGhMejaJzxy+Tf/zVO+/WsecdzV8suu3/6Fv7jm3ZdtWCt6bGRcsPiPTRlwz+4ZM9AaWj/9cWv/88ee/I1fcc6JrNh/9KrNl7zmmg9cvglISOndQd8nJZsgyIR3R2ITGOjuKY9e+e8vetK3f815J5LP12n75o/f9at/ed0XbhlDSEjlDQIxxyaAIUREuS+0htHPesKBl774yc99ylknmLnQafs3H7/rpW+44TM37Hr4cV4p/70NAinhcRiT1qAzq0viB557/ku+7/EXnrV8QhwsaEEPNXoogdCsM7/7jpv/2+uv350CyjkfPOBTJLYSYwCrE73j57z2r42G7s5ar37nJ5/6A8+7aJ7uu+3o9P/8k6ve/NF7ICpIAUH6bi4bGQ8O9tDTfdob47o760D1Oz/heJj7YO+7/Nh//KMvXHnzhEQhKArXFwhbGDM2xUKT6z7C4/MO17/1Y1+xPw/W4q8/csdLXnPt9XeQOyg5G+i7Y2Tyw4cB98Pj7ox19UsvfMJ/+PbHNdV+rsDWXve777jpd9568+auhVSeh3k2QViPMSdkE5x3xuBXf+DiH/lnj9qfBwDHdtvffutNv/+3t2zuGs8GJARyIIy9YYAgB8zBQgPTPusJB1/2o09+zpPP2p+BBS3ooUgPGRDSxv7uO2761b+8fncKyApKMr1fVJN9f8im/pDxYRDtlC8Bkm7PWq/+9394+vc958L+TVMEIsPfU1H1z+MhxUK/NqOJh+6sdfW/fvIrv38OBrzv8qM/+YdfuPrWKVQF5XzBDAWzBSHGg7GkAVMcKvBQ/c5PPu37n3ehLDFhLF73oTt+5k+/ePeGRlX11qKKxORgQaq2jwGEhaZbHuBXfvDin/6ux8/DgK297pf+8tpX/N1tnZbeOT4OGyfIQ/ALu+Wh+JUffMI+PAC49ej0P//ZF9/4kXs6K715JFHy0QVzfVAak7YgB91dcObgf/7Yk1/4nP1sggUt6KFID5lY81s+cfdvvOHG3SmgHAIFtev+wieSfRIgimJEubsgIAQF9KRfyZDqro3ZS1552ce+cHfGw85E/8rrrvUIpBRDILHvX48HyETykSvGw2b7c3/86fd95o6+KD55zda/f8VVHoGkBFQqjb5w2PPCOSsoyIHzIBWkumtz9rN/dOnffvzWYo+84ZI7f/ZPr75700BV5JXKtK2MAcaDcC5Cj9UoH0BKSLU7tf/tNZf/3luv0qZgLW2NCYGMhFLeG5vLBpIPCzxIgMXQHA/K8fD53/2bL8w6UxTFrUenP/UnV73+Q3d3VkEpGhuq1AVsMIThJ/jopWcXjB+lbr578n/94af/8n3Xm4eI1bigBZ0gPTRA6HM37vzSa649uq1pegsKIumYW2U12f2ypHpAOq6noDkyuRdKXX/H7i++8tO3HtkLPzYWr/j7W/7i/XdBKEoBmIdAHA5R4CHGrERURhkPUt12ZPLzf3zptbdvc1HcdnT686++5qpbJl4UQpYa3QcLkTZXBABiQ6q7Nma/8Cef/tz1x7Ie+dgXN1/yF9fctdFBKh8PLD9+9iHS5o6HhUJCqN2p/Y2//PxbLrk546HT9nfffpNHIBlsgv0fn8MAz2JPRZThsVC7M/s/Xnv56953Qx8Cjm63P/2nX4zO8XHAuIjH2beEQ0EmUkGquzfbn/mjT7/lI7kcFrSghzQ9BEBoe6x/7a+uu+qWMZQELPQM3RjtLrodtNtoNzHbxGwDsw3MjmG2gXYLegLbAcjnvNcMPY0TM7zJLK3UBy+763feeEWnvfH7j5898vK/uWnWOe0AmA56im4PrWNjG+0m2k202+h2oafEQC9s6F7afXlwCqhSn7r62K+9+jN7U3crjGfmN958w/s/t0FWv4A1MC30FHpCf2PoCUwLq+cqYg8AMv9QEqwGOSh55U1b/+VVnz66PQ09cuvR6S/+xTXX3zEjV0wALukg2ASGbII+GgWaj4Vc/0JAqqM77S+9KsfCv/n4Xb/z1ls6LRgCoffIRVBMeZA908TzwLLahNyemF/588989MrEP5515mV/c8PfXHKPN00SNrhz0/O3Iqtg7jjnAdEmIP/47o3ZL77ysk9+8QgWtKAvFXoIgNBbP3HXOz95BMJ6bWtbwHgd6rSP+xMAnEbeQ7uJyVFMj6EbI7FdM4sYqUpyH3gtYIV89buvveSKuwFs7Ha/9ZYb7zo2AwzMzKt7M4XVgAY0bAfbwXTQE3Q7aDcwPYrpUbTbMG2vaa58ETWR4Pz4UMybP3TT2z7qjd93XXrPn733dgsJa2Cm6PbQ7UGP6W8P3Q66XbTbmG1gdhSzowTJJm+u4BxwJ4B5JEq96+O3/dk/XOOWDzttf+dtN37w8k1ICViYDt0Y7R66HbQ7PZvgGNpN6DFMV2gutwnCW0QeyDe96qbtX3v1Z7bHTpi44ubd//qX123uaigFARgNPUU3ZjbBFtpNtFvodqAnMB2sLeNxMgx4u0gAScqb7tr7pVd9+o6j48DsX33kzj/6u9s0pHcHrYXpoGfMLHA2wYyhcs8lEnPwmAcGSQ5X37rzS6/69F0bk3zcLmhBD016sIPQZ2/c+d9/e9Nk2nnUERUQ/hSggApCQSjICrKCqiAqQEJYmClmG5geRTeOWlhwdYN06Z5rYQkl7zk2fcU7vjCZ6Tdccsf7P3cUMuwvkRAVRA1R+T/fuoKqICsIBQC2Q7eN6VFMN2Cm1ITIzfGMATBAknJvon/vLVdu7Ew3drr/9fYbd/daoIPt/BM5mcgqPr6s/NKIBUyHbg+zYwSHXWwoj4ZRu5wXSi/WFn/wtquuvnULwCVXbbz6fbdba2FbmCnsDDAQ1ivr3CbooMdotzA7gulRdHs+JSx53r67xi+hz5V65ydufeslNwGYduZ333HTVbfsQdjUJuh6NsEU3S7aTcyOYnYMsy2YWdp0eGq+m4ePBD4k1Ac/e9erCI+vunXvpW+4YXtPRwe924PeI+zZQ7dHNsEmps4m2EQ3Zk4q7/SeTDgeB0BS6j2X3vEHb/uCKS2SLWhBDzl68O7Hvme7fdV7b3vF391y3V1TqIoVI4CfqLEeAeUaCQNYKAEjYJyeNTAdphtQNeoVqMbPfRvuIwA7J51XQMm/++Sd//b3P/ePV2y3mgdtwsWWwZgFLISFsLACVsIYCAEYr5XUAPUKZAUhYC2EK2pqkfAUXkfl+8mrjvzBO665c7f6+FVblJQBxgkIGkEMCMB6BiAAA9uhbdHuoh6hWoo7Sft6zHNFStAKQEKq627befW7r/mxb734f73txns2Z2m0KoVz4eQg2QZMC2iYGfQUQqEaoRp6nPas9niI8ojMTKbmD99+1bc+4/xPXbfzho/cARHcOz42bOTBCcFSDrrtYGbodiFr1EtQDbMJLPlJticXQmsrIKQx+ON3Xv2vv/7Cx5639vvvvOmqW3YgBKwmwHbRMxs5sbQByLhdqC3sHloF1aAaQVaxCeuEpvtdwl4ICGGs+ON3Xv3tz7rg6Y873Lt4QQt6iNGDNEX7Mzds/9Jrr33XpceMoYB4Hq3iWyBpwznPc+U1aayB1hAW9TLqJVjh1y14oja/2OkLdIBCvQzRuBXyGKXJnCheGDRL9rWW3VZDCNTLqEawtIiyT4Kyi/UZDdXUo9XWVHGFIMSyIGK8Me56QcoD1SMwGtZAKtTLqIaeBxP2LenCRhljvOOlzRmHVg+fccbVt0+MFZGNII6+TcATjm0Qr4XRkJXnIW5dYqLI6io5ttFBd02F7/yGL//cre2VN+/NsQn4vzwbm/Hgbq4a1MtQDYFESJ0n0WV7eB0PphO6/Y/fefH55575W2+58airDJS7cX02esUpnH1QDVAteShy8bpwQXHfkvE8oGv/w3c87v/5D19TqQd7MGNBC9qfHnQgZC3e+k93veQvrv3CzRO/5CPgN/0BqbPCLU03e9lOiwK0aFgNNUCzBivZVE+v9DNfo6qglnxwr7zxkNiwhEMJDBThTQMG1RD1qsdCrvU4CDkehIUaoBr5PGxBPAimczMsTDZgZnKgPUAwqJdQraQ8aAbetHFKa/95NYIawcpYDkf0+8K95DYBevuQuByW0DgeOAjpWFo0w2MIVEuQAx+AdRFanIhNUBwPBjCol1EvE5u61B0BAFygTwOqGq0a0RgjWG4bvJE01yZwdoBleOy6WKJeQr3EbILUPNLaiyXaBBpdd86h+h3//flP/7ITqjK1oAU9aOnBFY6zFq/94O0/+6qr0/2PKK8W+Eia/ymkiz5Jik0JCEBKP6MFBYi6MYxGs07VFug+CR9ANUQ1oOUlvvEwRGzY1cL6j92xQV6tO9wyCQ9SQQPtHnSL+gDprxDISp9RSNRDr3MhIcHy2QLniBJIeNDxmkQOGlJBW8x2oFvUaxRVK+2AcfzICtUQcuDicl4UiVcKLxMX1PLLUaRGw7JK5IF6qd2FmaFeAyqSA0XDBNPmLhTmwFg0LHs7lVj0Q0Kl8OBlOh5CXwjiwWK2DT1Ds3qcuRDcnWoJ1VKHClb6tDpB8BMCqjawIQiKHElIGy0lz4PGdBNmhnoFKNVsDaLwUUq/RHTHPeO/fv/1T3vc4eJW4gUt6KFCDyJfnhDoGr//MW65KG7+cCRoEygppiwRlu878Sa8gplieoxSqJEGTxwCNaiGPuUh33iIwtJR3IgKttWmxEPYi6NnxAPDP2vj/YVAPfIIJF0tAFWSQ/oX86zCDlbiTcrIg3uibsJ4YFK1hLKGYneeDRXdoPI2IGpdlvZgunaFjCgC5eXgkwWQ8sDEUg1QL0MwNpIdOWkadMi6jtcgeXbHv8uuhIKeYnIUZprbOrlNIFAvoV6BqGOnFNigKkpSQLnm0t3EiRwkVAWh0I4xOQYdkib68YlsIwEgxN9+4uY7Wareghb0UKQHEQj94+eO/vyrr7l7Q5dqIvT3mvSgSAjI/TGANILDodkmrROQ/S4lZAXVQA0Ale5/BLtnceOL40GlOIQCD8qFkiTsFNNNKiBGkTQBj5TVELKBcKluqtdokQGGc3P330iSg8PjGaYb5DaF8CY857JCPfJJgDKrR7CvTRAfuYcB3CZwWGg6zDgOcRIAoJxNUEMqpvePaxOARFHCwkwmtsN0I02cS4EQQD2EGgEV1USY1ylcDlRMbx88BvwLE/DYlh8tVKF1Xwlx7a1bl159T0luC1rQQ4YeLCB0zR17P//qa24/0rFyOIKWlPlxDH0kCCQIh1LYEKkJ6T6XCnqCdgsA7TeqIGuf6JwgEBgKyhIDXAWD+WR9ByUoHbLEzQSzreiLSAVVQ9WQTTS34+PIlI0+DxxvRA8wwICBlK+QMFPMtmC1x2MhfKK5qqEGPTZO0CYIfdHT0XHvC8NC22G66fPOAxvOJpANqgFQxZKgyQ33twlkWpwiGxIkB+cP2RbTDdg25jKA2QRqEN3BuUjcG5D95orDMvLgsLClOwRO3PB2pYncQK2hmkkrLrni7gfZqu6CFnRy9KBYE9qd6l97/XWXXrMDVUEApqMt967ePptkbv5L2p3D1+cBmuQBq9iigs82BqSEtoCBkGj3oJx5C/qh8Qgk3AJ7R+ltwTy1tFCkfL4cBFt/FoD1Cx5WUtYZwz+LqIDcIn+3B1WhWmHyMBCC9J2IOb7xAd1NVKpeUx6ESxTOssARM7Cdo+B5GENK1MupGjU+shRhI82lFmAgHXqBRRTdEoiRif3uV+8oo4RSn6FnmG5hsOpXWZKupPhbtJl4uxkDSOTgn1TCIi4WhhVE10c+21BBt5huoVmJn7hD7aylZTlFcALGDGc1/Bt4EBDGX25k3Gfm2nVd4Hvc+UMtZpsYrMd7KrZQFKwxt2WtGv3Z++8+sveZb37qGc9+4uFzDg6xoAU91OhBkR33+g/f8WO/f8XexNL2DgBcsVCYKEm7EoDyoTNZJYlYvkp0munk0215tlUH3UHWGJ0NofxmGt8wJVNxvWYpCy6sMwvlbVLZQATMC0lQoIwvYqOQbdVBdxACo7MpT9dlxzllx7KrLfHgROFNatozK2sKMRniIavYzbKtQvJbyPhy1QRGZ0CGQ121f0D3XCG/+fg2gU14cN3Rr1TtM55Z1qLbW9qsow6H6XGbQFIXmNQmADMIFBklhjFJQ8JQ74fOtf2E+A66Q72MZi0FYzfYaAuw76YwTK3nIZga/ldBVsb/JCmgzpPfjE+gd92hO1RDDNZ6rhUNML4ByxoY3dTiiY9ceeE3nPe9X3/+RWcvTh5a0EOJHngQuuq2vRf97uc+8cWtdCWDEwMYm+35sLBus8UIsibla1h5/Gy/Bct+dsrXdBgdxuAAzAyaUhW8JT5n/tuw+4f+FQrKbcCU+wHA3C04HZo1jA7DWphZ3HATHYIAyDaiUZSAC+XVqIZQAUUM8RCUbylVWlPasW5RjzA6CxAeEiy1iJSFk7AJgq7s2QT5jiiT4LFqYC1sKHc03yYIGhkEybKBarxVEXkgiRWyn9MM7IDHzj/2qeGSUJDtdnJC8MzQmJHBJlDMJuDdUbQJeHd0sBpGY3AIFT/UlYmUTwd2QLsQuPj8pRd/0yNf9PwLz154RQt6iNADCUIbu91rP3j7H7zrlitvGdssqh4zdJktGTVpb8OHEKhGqJcgFNv0p+m38wBAQ7eoBhidSbatTPU+GA/z57/TTUKhWkI18k6MYTgxV+MYD0ICWDkPQsB0cxYYeKwpOBkBDrWHZ18LYOCv5Ltlgy8SvBCwLTi6g9VYPgf1EvTUOz0x9IQeJydoEwQPQEc5IN2CYy1052vt6A6DNYzOgNEwM8TY3hybIOmIYHkoVAOoEaTyrB7XKQw7ohwP9QhLZwECekYDo19WI+BQkAN5WhaQDdQAahCdMz8mi1ti2Uh2FoBuoRosnU31n6j3871HJMyAjtpI6GdffPBXfvDib/yKsxbZ2wt68NMDBkKX37Tzq6+/7u2fONK6utSxJoJnjKx+sKyEEMew+dxzlqxSaFYhB+VNf9mGTXf6g1CktUM4JS3NUJ7/pE2sTXiwGqpGvQZZ5Yop24PJ6zIYA1mhWYOsaUWd9J0ALeqQvsv+LNUgcE9qNCU0r0BWsAYGOQDMKQQAa9CsoVmBRQ6E98YmcHh8/D2YBABSYukcaiis/Zy8TQDJahQFm4DJgTuFCR63sAbL50A1MO0p2QQUR5UVqhHUMEY1yz66Tl9rmBZGex/d9z65ofZ4+5GNQdedc6j5xe/98p94wWNGg9LeowUt6EFDDwAIGYt3furuX/yLaz9/4x4l/sLn1AK9ZV5aCDmRw5hNBwHUK1BLibrJZingNY6qUC1B1HHniluu92TDP7DwxqxNJ3/kIejTDkKgWYFytXkYANhQuCVEBTtfE0Et+bztkLbQD0kGME7QaA4PUqJZhRoSCDnYKBbm0V4m1RKqIYHx6bIJ1iCbJHhYdAqN8bVHrUC9hGrEtl6l/seJ+wSehwr1CtQgOm37RQWpTpJQGKxCDiizIMuDAEmjZBZkPFgT6wPlDtk+dZI0dAtVY+V8iDS8aecfjs7b1d2wxk+84KL/9qKnrC/XJzNBF7Sg+5Xu7+w4Y/GaD9z+c39+zV3HOr9Nz+v9zNIMqoeyFWLKWYibGTrahz6wClZjtgnVoV7prS0ROUVWj6AGANVlkFnoKeRWWcB6mLQWRrG1ZcaDNbCusILye+CrDtUK3Qfk1qSQ7/YDqQHLJ+b6LvwWPtXNMRN1UCYHAzgeKl+2tVpGFXLeTEEUTvKy8duSXEJEqFEUObGA9K07P8lYWHdP6fVgKIgAEqTuMDmKegXVEhVFLVk8MW9+gNrZBKpkE8D3iFO8IqtHIP0gsQJGwFKCuO5gjqF2cphHbphRtdZ6QKYJA+PARrSOLJkmqU0gJayAgefBCnRT6CmaFVrjsYkcfI5cKgr3RN0Es10MDjA+DQQgLayEQT4GDHlLUsKqSav/37df23bmZf/mK9aXm/mPv6AFPZB0v4KQsfY1H7jjP73q6nu2DNuRihL82PStD1PBCD/zAT/3Yvq1KwxjYS26HcBSznGm+AQAVAMfgoungmZsgH1IYf0Tmf9OdVqLdgfWoF6hm4RACrt/M4Ro/EYchNTkvjRACOTatDCih8cCkD083obhPPTIWqgK1QiioiKt94FNYDpUq8ndXCuWfVINoIbEhpxjE0hvEAhyUpPxwO4MAetqJikYjdk21SgqYmFAeolqCDVMqh4kwyDkJYbCQrJgEwjEdD5hoSroDtMt6BbVKg3lfrVsxMEsqI74bIvStRHZEBYwad45nwuxL7S1f/zOa5tKvuzfPHURl1vQg5PuVxB616VHfu7Pr7nHV+URvQ2nPBAXyLL5byGNt3PDV25Xow6vFTQgDNptAKiXWAgLHm+khKwBXhmIM5ARh8Mw/wMPiHa0m//C7UFRgEW7A8DXx0wUn4QAajqRKBSSmcuGTT4XguQQ7un2wDLGHB7DotsGAg4hR0FZo2qAGkLehzZBuwNrIw99PFY17UjNDiflJNJ/T9wncHbJGNagXit1MvWgCqbJCdgEAZDm8WAt7UgTvm5huwujiQcOhzTmo1iEH8/dGLqFGpD/xMZA8M6jq82ETwOyg/yjv73m0ecu/x/f8eWLPIUFPQjp/gOhK27e/YVXX+ujcKoIPxSFiCEPR2FaWm/qQtKxYPCfOL3jzWQCg3YbAj5DSXCzWvb2P/Zt/6zdMP8tm/8mYqRv1wWynJUqPRYK4c8LAChfy924ShEoU7L88Tk8B8yzxAN9FXVQ4MFCSLQ7gEQ1iB5DeHBBpwLezzYBgk0gIUA2gYoFdSIDGRVtgn19AqWgAVjoMazFYM3fJ9H4ElXlvVKRmSZ9Tno2AWyJBxqKsHF86rFPAAkby2zYAkzWAwSs83ctzAzdBGoU134CS9L6oF/iLvdwCHLStS97/eVPumj9G596bkmkC1rQA0n3Ewht7nW/8vprP3/jLlQFCb8bw+pox4WYuN91SGEZT2xZxb/rOSL8tQMAZ4O7hR9/vZvGrBiBq4kAkygaQeXa8gUJalcEHgJwcieAIkIuL2u2heFByIY1Yfz2RknPmPBAoackLGbZv0wUEH6fkP+Q/A+wKm3CoN2CXIMa0A8DyCkIta9NUATF8Mmp2gSQUOwmHggzm4D3ctbuyfgEcUhIdGMIiXpENoFk96niwChn5WWU4TEYHhOfoS6D84+1gjDQY7QC9YpHLCcu1xdAdNyVS9lgB/H5E/C4URJMnxBRzEBIwhpIdceR6a//xWefdNHBsw4s9g8t6MFF9xMIve5Dd7z94/dAWNgWmheCC7rVwoJSvJx2UxAV1BCqZtqKB6BMqgiyuSchJHSHdheDQ/4aq72nZVqflxWsUfDNj/Ca2m1+zOc/bWrKFtuT+Y/oiJgOsx0Mzwjr9fAN2FigCKw4UJSAy1yvIWtWDoB0kF8X4TwIWqhghrCTg+kw28Vw5PedwMY9mBL+1DjLBOLbEbRQVFHyXvgOp2ITzHYw4jaBg17l3UFnEyBbOYOvtx2NEnGKPoGVkAbdDqRCNWKDytB4I+CP4zM8VAB1MIGnUUqPhcbbEK4fkyEhYBWERbsLIVAv0Q8zOyNsPHI1ogzaTUBCNqjdBqzwjJkxxCcIjUn3rZIfufyu17z32p/97idiQQt6MNH9AUKX37zz+++8adZqqGCbh+lNE8+r1LDzxtJhzHvlw5iRTTfuxwSTXEJItLtoVlENoVvCIcs8FXdlNv8DG1PosZ//1RCqYW1ZtrSe2cs9UOwm0BM0q5SODKCDpZoI/l+VAKG1MB1ggDGs8DU0k3oEqYoMEhGpKMLyjJ6ic6lWbkusayizCYIQ4POJPU4AUJAV1IDVKDolm2C2i8Ehfwfb+Ubdk4ZUt75N4J5FKMgGsqF6BCfvEwgJY9Du+Jx4IEmusxpdy2oi8DxsB0JUP9TXKBLRf+U4Et3EgA1MJkJCaLS7UBxRbPKvsB62bfDnDPQYegzZoFkix9omnZA8OGMDEkJqjVf9/TXf8/UXXXDWoq7Pgh5EdN+C0D3b7Z//421/8p7brrp1AlX1wizpxANb6jCG1IeBmWEyhapRr3gY8F4Ioh4UTOFmGtB0mG1BVj5kFGNcPSB0/4bEJ+us2jnz3z9BzxkKFKNhEtBot9As+wik/0r1RAHKCHcaUPr9j8LAtuhm6HZRDaFG3jMLh+klzhBS5QvviECg3cZgFUIBHSx82re3CVLHVMA7ZxbkIWnoFnoM4TZgDmhX00naBN0uBm4DU+fv75ZP/JWqZBOEogwaegIIiBr1iOwSeuoT9AmEgJ6h28HwIG3bgo/KJjaB6NkEGmh9qBMScoBqQIUheHO91wKxO0DWj+7Q7mB4hpdP2AscA7OCoCgknQtYAz3FeIJ6CfUypQsWjSFKwHPfCkCqK2/Y+KsPXPefvufJmdG0oAU9gHQfgtBHr9r8lddd+77PbWjtamrBex595Z/sAAVg0g0fbu610Ef8qWJufnordd8JJQTUEKqB6ZL9j/5392b+Z3ZogENRCtMpQKCb+OhW1EcZD2CBJgMBKAFrYcgWtgbtDto91MtUH4gfQiqYDLmfBK/4rEa7h2pIXmBmEyRdwmwCEoLnocN0E6pCtYxqQM2erE1Q+wJFybpXyTQJHWEldZCGnWE6ZTWKTs4niHgMAUsZBEleRmYTADCegQCH3Q66XaghhcgIj/tpkzk/tP2o24Vd80kHNgwDS/4cuWiC7X9ybBqD2Q70FM0axPEOhA0SEEJr/NX7rn/RNz/2rAOj/X61oAXdj3SfgFDb2b/80B2/9vrrbrhzCllBidLGwzDfrc8gisEfSjguHMa8A93SYcyCKRfSfV4Dk2qrhqiWIepeMQKma05x/q9C7LsRPc5/icbVj1FeCQYeIhfkTNiwIBHuw3lwhrzGdNPH94SKPy/yEABGVajWIAewgnaDisgDv4e1zCxAtAmsgHGbbwDdQR+DHqJZAdRJ2ARujc20ZBPA55WVbYIQCrMQlqoQCQgNYaFn0FNUQ9QrkMq7mCfiEzhToJv6xbbgISHjAWwwpHaJu94adHvQY1Qj1Mu+W7OoIPp2iQAAIWFaTLegRhAqol0YAzESaDxvQVBKQAN6hslRNGsQBMPBDIp2SZCGT1r53PXHPvr5u77j2Rfu100LWtD9SKcfhKat+e233fibb7xxewKomuAnLClneoot8ksbd6F7o9Ww/CJSJnqKSYvmAETlbXNHgucmOR9oRKd0842HqaHqgz+nNP/rdarskmkc9nyiQj2AHMaaCHkxgvB/YIPzQNsz/eYkCVifc9xNYVrUa5ANiYaQjOsgJxbZoBrFmgjhj5MABaDoef0eTIffjgFNuV6ABdo9mBnqNQhasdvfJlADVEueYREOgQ0i6NkEiXtqICSUgDF+U44CjEG7BzNFvcrOoShRYhMMUC3TuVD72wTWe0uhnzKbwPEz2/Y2QSjbyvs3Y8OGtiTaHeiD3jf1npP1iG54jgM89vtNytrn2tkO02Oo16lkrchHI5Ch0XSq3/2pW//l114oStwtaEH3P51mEJq05rffeuNL33DDeOZOgRS9jYfZPAlzLyQoh/0Wbs6bdN+J2//YYXoUzQHIKt4t2/8YaiLIkPWEnl4IH57S/J+5+d+wuzEeXGpc5VbyVdS5CRCmzPhdL0h5EOzZTdwPry2MxvQY6jWmg0rROVVTTQSGQGU2rF9ngoCx1BfMfuc2AQChoDsYjsfzbAJADlENIWqfJlCuiUBY6PGA6t9k9YHcAIGvTwOtYY6hWoVaOo5P4OskjWJNBCHysdG3CRDqA6UlG0JOAyroFpNjqFehAqLMr5MU+tS0mG2jGiVC9pCPdC5Ithk52GcK6DDbQMPGYV6YI2MAn/riPZu7swMri0I+C3pQkDz+JSdMxtg/+vtbXvqGG8czwRCIzTrM2xwqoqOQLxIENRGKHYSDkI+xLK+gdNxhzI3fHiT7R1P3/8BYCoqJs8rxQ3o8gAIsZsegJ3SHNAAiFOqhRyC5/7HQ7FfgYcPAg2TtMkxyOWmzDb9cH4jrIFmhJgRSkhWJyB6cM+BELeJqlueB2hVhdU36DTrTDehx4ubmNREa1COI2vegVD1R8FEh2SMj74vk8R0/ChaYbfpyTflDMXII5PYIx7FR7BcZCwjlZ6WHoShZfylYg9kxtLspoiD3OJMPhS/vlOxW5sM+/cvmgpe/wWwTpo3om4/GpN3rbt+66a6d8rcLWtD9TqcThP7u00d+4403jmeAUqSmmf6KczhTQI6CDSh6yhpJYRu/kqFgOsw2YVufwyYllIKqoWofd8prIgQ2inoHpzT/LWZbMDM6JgCQEqqCqqEaiJpO6c4ksD8WSiDgcQrbRTyGxXQTZhqTy52OdsnErhyOU7v5U+9jEwjiAXN4EAkPwmC6AT0FULYJfFyUS+NEbAJBOJRKj8tBEA4JgXYT3R7doV8TYRhL1p6oTZDxIOLdOBuBBwi0mwyHHCP8dRCLQ1kFM4VuC4/vV5hScPIN0ZWudSlhO8y2KGw4j3ynbOzMbrpzAUILerDQaQvHXX373i+99tq7NjpUlV+ztVQWAW5B2E1Ffhizm2CGWY58HyjoQ5pv2T5QJaEnaCWadTZ7nTGovJ1r4Q/ySUikBREEMUBsCADWt1IIiAmKeklI6dO9BgeY0wC/BzPRuaCE78CFpKYF45wFKp2uM0E3UTDQB+U0hLtM+oy1wbovCyTCDQXVRBCUEQ5meYTbsoWc+ENL0qaQlL84LYojgmHRYraJwbr/RHLZSlaVh8MeEoHwYRDE7kK17kktWHcAUsBQvNRtRXL1KYSIu6liMQLhR11eEyHjgVOPByupc+HlzONjQsIqwNWnEJBNr05S2A9nAQtpYDUMJb7LbD8yLVi6hcBEOCTA0BFCQU/QVaiXGfSmXhG9m830whNa0IOHTg8ItZ397bfeeNl1O5CSihGkkQELn/wWPhf8MGbZi2CAVWimRGH6gs18iXYPatkv7brz2dxsty062v9ow8wnZrz6riArtvkRpzr/p+gmVKQ5LB5Iv5JvWsrrDaoh4LEr3lP5lZKMB99gapsLsMVtCWFhXUmYFu2e34vqSXvIly7TgdiIZMkmkLT7MnQECVyAitQxOYi0QJzPfVAwLdptNAfT2gqWvFK3sjLPJhBpfT/keAzJUJzskrDy5P1jwuPhQVovDLcSrE6SYOMhNJLhokmBmWwCG9a6OB5zHhRs620CVdPn6UNZOlwKFWQNO8PsCEQFNaBD4qlFG0a7jU/NJRBGIwRmu1ANrGIN9QEJsLhrY4IFLejBQacHhN53+dG/+vAdgIXVUR1Eos2PoFPdXODITKDHaCVtwKRt8CKZMpEEJZ7xuWcsui00I0DCdDCW8sTCLFXUOmKIxkeuJjAOk2ofqwkz/GTnf7uNetkbv6EmgqZMB7o2aniHChyQZE01ihBbCS5XrEfA1zw4Hgt0bv/QEtW/cTdooU2qidI9mHENv+rVIwhiD8+A9HMBgADJQih0E6gpHebkntFp/A4dnedWtgngbQLRQFapTwASI+8OywCA+cdSomupVpMbhJq8MeGrsZVtAkFg7NjgOMp4iB2ZAaFDKQljIBV0i3YX6hDzO5n8BeVkuk1gVvj9yK3bjzxCNYp7gW0YD6yzsuxHOLOgw2yXTs2webs2POw+eQsLWtD9TfcWhDZ2uzdccuf/etuNG7uGSkT3Na4jV67RphswLaxGu+s3UdbL3rr3KojrXO6F0NxzCU7tGN0EahAhMGpMpDxQChzoSB5rIAzsDLMpHfU9JBw9yfnfbmN0hj8wO2QxQCSMuGhMUEChPpArytCNIWtUI1QDBnU2ZSOliIUSpsVsC/UShDs6FknILvmVjTaBDYdyTn2Cg0+kDpmHorcHM3URgt3gkKPdRrMMoWDauL3UXRltAuqU4BM4BswEFr5mYDVgbAe9L9JPUlGE7uj2UK+gXmZ1kjRsN9cmgLOKWmBCrFZQI7/HIHPTExyiqupxrEqfTd5NyD9GbMki3Y9soUQ8HUpon/DdjVGTfy8sg17+1JLVIaS/bgw5hFSxf5nhE4Zx2+2/erSgBd1/dK9A6FPXbv3q669792XHZi289cp9BQCg+ROtTqcxDc09h0wG1m0CnfjDmP1NGALxuAcnISFr2A5GxaOpkV3Gt/7QnxQERcSSOxFV7VF9oJOZ/0JCz9BNvP4K6lIErEWuDlx9IMeD34hqYGaYTtA1aFYgm6jcIw6JxPpOsFlCT9CNvSsT92aFTrHsEcgmEORs+V1BBt0Y3RhqiHoJsiLgDHqWwDh2QUBcA0joKdpdNCtkE0jGA+sR92/0CUKNIk0+gSSfgBa6CoUhED8JbAgJo9FuoV4CtIcE32vzbQIwHx0GZgo9gXQ1iihEVihQFBggUThBSeKhWfHd4TyQyHtIOncbj6zHJilg6UBYs0SH82atiSgNIeIgcZVquzGaZRpodNKHtXH0AU11OjOSFrSge0OnCEKttm/4yJ2/8rrrrr19AqmgZKkmgvVrCZa0eahQ6aafi7D7cITbB3oKhzEPUS3FJQ1BaUWBBUERCDfz4z58S4ePZYcxz6CPssOYs8aL81+iWUK1REtBMn4beI4qoMSD4PWBHA9HUC/TgXicuAsCcgrhV+NdYeasJgL/bWITgOAQENb3jOdB+1oA9QrqUWwuyB9IgDAuUwnIAWChu5hClgMh5vsExu8K6vsEiRnA2i2aJiB17CpwhzSEfWwCbpcY4cuMuhUmuYdm2Udr8yBtagdwP8vZJS0VjfW70OjkISM85Pt+ZGfxCUABGpjt0oGwIYWnNCA5xgsBM4EdelaDkJPNv1CyL7EFLeiBoVMBoUlrfudtN/7Wm2/a3LNQ1fyNh5KZuvATz88Kuszjljv1wEBWMN19exizdQdGnMhhzDNUa3S3+fNfKFRLCRsiq4lg2csiD7agg9yh1KZFvUo6iJn/3C3weQF1qRhBySaA8JZB2SYwngcpYDSmG74ewf7Z/EEVViPUS76AgujZBI7he+MT9IdDuG0wTYREM0DNaiIASNQuswm8EIJsjU+O93IQkAKmxeQYqhGtdSFhIs9NYJ9bYLqBZi1mTgrqC+m8T/TqgyAm2RuLbgKj0azTHbKHF2xxi9gwGqaFrBPvP2ToWAspzj+zZGAtaEEPBJ00CE1a83+/5cbfeKOriVCVaiKAvQ3/Gh+wKR/GbOgASvgykd0Yxh1A2WeB1E01gDz5w5gRjrlMebD9w5j3YAw7jLmn/JyyqJbovJ95NRGYXxalIpkGhFevEYcoQbwbw7SoD6SxtR4nqqZiBDJlgz0+QkCJ1ygSFIVDqgcpwKYt2j3oFnVPD4q0b0Sok6T8rp2+TeCf9N74BEVdTAw4wfqaCLR5KI8SZzYBYBWMTXkQuRyMQbtLNYqquTyAO4ig4OQemrXEcxKEefkZSKA8FDqYHApmhukGBmt09gTjPCNLjr9uIeroaEbP28Da5VH1yLNXy8wvaEH3O50cCGljf+9vbyIEOrXDmEsYINi+k3AYsxljZgmH+hsPw2HMfNtHaKvPA4tX4NQOY3Y3s4nhWYUdqbwuQ8ZJKgS/GEPtJvm+QYXJiEN6BnMMg/UkuSCriVANShtxOHFAEt73ot8ze9x6LOTnc5vAw4FkvS3Tg7FOktP+mCMNenGKPsEBJocMCSwgUA8hBz73/fg2AZlHQMpDhoV0LqqTQ73uy2bPw2M/2qVPzJvtoFlj14fHD3vR2OPwueA6QkiYKWZbaNYT7OSecSYPPYMakokT0sFdjWAA4thOiwUt6MFBJ7c++dZP3P2yN91EVXn4hnNJ/4Y//jnoLSmFJHdA5MrCr+5IdGO0O3QKuEiLETS0IzUgUNZ09ofIj/9fpBcj1mUQVJhHCOixL6ziixEAKrAxgKhpm2HWdJGTIHMRzfZ4pWQ8CAgJRbt6zQzTTV9KLmz0EQKi8snlqP2B6HmjssQAiUL0JJ8UAhBe5o4HO8P0mD8SEMG4plsldZK4NDBHCCSi3H1k4yR0kKQNVWaK6bGYfR5janTDauid46QkTwbASN+yR55bJ4kNCVcz0EwTALAMXRJsFoBAt0c7nFJORChKVBQ+ohCky7XbSVGH7pZDIGA1rI6rQT4W5wfw7kS/9C8v/+ItW/mvFrSgB4JOAoQuv2nnl//yumPbGkr5NQnTwbTQE+gJugn0GHoPegrTsZ0lMp/5/oOi0kkVkBTodqBnfveGIFXrt76zw5jdES/xz2XlZoqY8ZDN9sBkzoOCkGh30O1CCDrouiYPrGI+EA+XcdjLAIkzkMXNOA6l/EgJM8Fsy+ebiYCCFVTtnQ/FXTGZ/tu3CVIhJD5cUH8y8gPhsXC2Bdt5lSpUtAlkE1V/IooMF1GSA+3yya7McAiEQ7NN6mIXWHPScKe+1oDy4H0cPO73Bag5mcsn4HGsW7jh6xYGJ8OvBSovEDVANULtjvAQ6KZJF/Omc+HwB2csCeHPEAH3hMBeWPaBiXlxxnhACnZDVV927cavvPqynUmA8wUt6AGjEw3H7U31y950w5U37VJNhHDkDBnFbhWU76ERCrKGbJIdJwAF5dNjV+LqLqlFfxizRrvjz1wBkoV0v/9RU7s8DzvAmPNUQj2CEGyJjETe4sqBSFa5C4cx64gi1sBoctcMu62NBYr85kfeqqAlorAVlK0ZBDa8DrIQEt0eVMPyBm0sDuSii5EHOjjHLQXFoGUQAqg5qpOEtB6BCKFCQghr/P4bKVGvMiXufhW8UhF9tUTRs4pnuQcDCAEZ0uUtPXIYJGF4kE8gBOrVmIXo2ZBko2ROGBgbmMOD9ckpgq/TiBibtWC7nZTfktWs+LZ4xY0wEayFqKEMrIHegZ7QAe0qCh/CVwMp7wRg6fhuLsx2MDjABgBDQS5w67aNS0Ij2onlrpE1gLd95Ja3fM2NP/T8x2BBC3pA6URB6J2X3vOWj98F4QY3ADBrnUWo48bD9DDmaoTq1A5jdvtvdk/gMGYwBsJhzBOvAWWDanh6DmP2+ysF0MFQTQRPqShiYWOq4ymHkDKqDEHLHmU8RqKDoDHbhlryZ3vHmggd1URwwgl2MUtEFoBQELU/Uy5q5vDI/BPSjF4UoWqDhXC1YVxtCBAQOoDR0K3P+uvbBE6MrkBRhOQiXInYR3GBRNMLCWHQ7kGNoMLxoC6/zi0CWVYnKbMJZHRhfRlvyzicV7cwTUD3eEy12po1ZJQc0O42ZTtEdwe070ANUY28ZZZsPKJu8E8dJgLiOpme+u2oocOS7g6PA28mhoMiTSiwW0FWgBlPZ7//1i98y1c94sz1Yf4IC1rQ/UjHB6HdiX7rJ+7+zTddvzc1hbhNEhMIR/IIWEVpV9rXI+gqX4+goPjc/USc7V4vkFXbbqNZ9cvIQG8bJuLEE1QiKBQj8Icx76LbgxqgXrp3hzEPoTvmb3FjnNjI6hE4HswMZgrs+kCNrHizTJ49Cg6iKxCnd1AfIt8LQEeSEL43o02AtB5BCzsDdqhG0TCibGQl6xX6luOxadFuYXQmhPA1EawrRhAeIrUJAKrI0PlS30JCNqxG0an5BNtYWiJj39VB0NDtvjYBgxyhPA9SxSb8EErrJAlWtYhnDUCg3UVF54tHdwTR13Sbsm16QLsbivWSj9T5Lu6PgR4Eur92D00TQS6hgP0ADB1JxRAIwp+lBAulLv3i0bd+5KYf/9YvKw+8BS3ofqHjgNBnbth+6RtveMc/3TOeWm9Bi+Mexkx7g5yVHA9jbqE3UA1Qr0BW5AG4dvjck+XDmPXUR/yDOkDGA8gwB+MhO4x5jG6MekT1gYKKZ5M5KP0kXuSU7y6lM7GjJfpA6P91pZcZD04HtU4HjVAts/pgvLmAheQBgP3NdlCvRP14HJuAMhKDPnIm+WwGsRtrFAkehmJeGkmEVKHwwa5uF2YdqoalngLnhLHhWlcygrHjQe/5GkX1UixOEX93Ij7BBHoPzRp066OjoOjl8W0CC9PCzNDuQjVkl4TeL3rJbHh439oVjd1GPfJX+p7nO2GVHwYSyQHtxmC6jW6MZi2aI/22khbp6cwMeoJqQG2Fp0t/ZUOlPorIwaXyN2GrddvZV/7dF7/r6y48vLbvobQLWtB9SXNBSBv7po/e9auvu+4Lt4ypJkLI6WL6LhzGLFgejlO4ongY8xh6huakDmOmmghJMhXnwnpTNOzETBKORe8w5h3oCZq1kzmMWaJZQzWChd+BL4nDHIOCEMB0kNuRIwHteZjuoBtHORT9wrBW5H0DAVmjHsJoKgQg/HEVuU0A0jtknksDy/Ugq1HUrHo9mPhkwa7vicW5XHrmdXHI6eIXJznEwUUmITj+hYGeQk/JLgm1efrdUfQJgHYXagBrfCAuoqBk/BdtAjc8nG008Tq9WvGrNU6YiUPIFiwjSAu/UKdnqEYAoZ0bIYYtmrpNbPlhrIBuMTmKZhVyRMyb+KQcfZ2JED7UY1R1Gn8Ly6LM+3SRg+AGCYF6CULBdl5QUlx2zdFLPn/ntz/rkXkvL2hB9xeVQWjSmt99+03/8803buxYqBpCnM7DmN2h1Cd6GPMoLUbA08mIESAy48vSiGQDpgg8uIeooDtMjqFegeLzv0euLaFQL/fYQOoukCicrs/qETge/J7coIM0Jhu+7jUXaZEHCMgazRLkgLKrZWoTgB4cfpMjLIMi6bHHy0G4dQp0M5gjqFfZ+kq8WcJD0MLVCNUyZB1tApCijL9ycgjKkdkEglQkBLNLpmhWqWYgynLgohDS1zTyT9ozTQKKJIaRiCEyVx/IakjHwx66CZpVVMO08byDyXv2r2A6TDdRjaI/6jfDAUYmY6A4F1yiXaVLY4AMHMsr2IKioJqGUcAethrnR6ZLmaGBXQ1RDWBslCHEZNK+8+M3f9vXXCAXhXwW9ABRAYQmM/Nbb7nhZW+8cdIKVIrSjdAzigV7QdaudJEfUIRE+r2obr8hwgbADrNN1MabkEFBZOSPx3alUYv7HxkzYUHYZvWBevPf3c1qzLL57/5P7y/d7pOmVxOhL5AApdZrfiPn8EAKxB2IpzvUK4Un4uQOJw01EWQW/hJM9diI5Vax+kDwnhMcBkjiQWO6ibqFSmtlRpuABcfUCNUIqKIvOM8mCAcfRLskkwPnweniUK9zX5/A7QeqRrE0Qw7GgROqTlSuUWSh4fHY1QeabkAvoVqeOyDdfUWaNtLu+M2hWevSjcM0uBdXlVygVcF2aDdhDdXoc/LrhdecVN19rIZuIZtoZPCaCP7ZDYzxiTwAZO1zGpMDpQSE+NiVd23sTA+tLdITFvTAUA5Crba//bYbf/ONN03ak6qJEDQ4KNeW54CxIIkHJAVYtJuwluZeVhNBoGriKd1xI06fjV48LfJAqjlgoZv/bgO8C5i0W4wHd7/EBUA9pB2pYk5NBM6A+4o24YsSFloKIXostOh2YA2alfTpQmDNQlX+eGxJQFgA4xSQAhgUaxSB2+PWlzBXjod5yhd0PDYdTlpmg/PgfAJbrtXEP7AKVqPdhjGEx3N8AueKqWCaSA9LiQQQfyhYjaLIA7x7qkJdBgOp/H4A06JeT3qh76O75pwE3GJhyLiJLpGh8wBZ/R9hCMOkDxZoBWHRbkEA1SgV/pyOQCjMMycWBxcG1/SsNYYHoBrArc/Bp13IDqq+4e72w1cc+aannbM0UHOaW9CC7kPKQeiNl9z58r+5adyC1URACYSCjgjxNBbucHohzj0BgfJhzP4g5PvmMGbw2jw8psQOYxbEgxpEc9KZqJBQFZ1ylu0+4Wxk6hL0yBbSUEwmsGchBTQAwkKng7odCFDGAWJQBRJSQdVAqAuXbTjtC4FxKKxfnItyYCa8s8eDTeA25DfMJ+NWfDVId6SK+Wxkdono8RDwmOKH3ibI8Jh4iFwI1KPUNJmHgoExQTZBhsfww1Kw7PNYr89SNqbw3gNHoMxMgUC7i+EZ7PG5YwpmkMFDV2jUcyghDGbbkJLlKWTNpYDkjuaLsTgbayIAdBPt45bhjFcUtjFtdubHf+/yr3z0jd/21Wd/61ef/Zhz+075ghZ0H5KwbEZdet3297z8c9fdPkOVVeVBb0HIUZgeNnntd+oYynOlejMuVdcd8Kw7QMN0gJh/GLNiPlDf7hYpAyjwEFODaJYmPGhAw7SAxGCV9rRyUoyNgD0ZD31RhE+M162+2g2x4eMkGrDQ2qc4uyJ1qul1kQAqCAWlUiHsA8ZFHkJ3cB4ohdc4HjTqVVTDuOVI0GOKClCQxZK1Im29/4LzYOOo4Dz47mhhNOpV1EtxG3IYolLGchXJIqXYlwf61xoYMDlQu8bERDLjUslbqBEGa5HPJA8tvNAwGmYGK7D6SMimNxfc/UFFdMAEzoVPc0FWGBzw6XO5ZDSgoTVsB91CSDSrxIOriaD9gYoQqEf+eQcHUS2no9rGP8uPOdZS4rHnjn7wued//3MveNx5Cyha0P1EEYQ297of+t3L3/GJo1AVU7s9rZdEa/gkN+zDvuIzgC0oX3ToWtRL6WHMhvRdsdTKvHCcYW/7PMC3y3kI81+3UA0Gh1lxTO01bwGB9lG+JTz2iVKamAyKT0cAcOd+WmB4iIpjhrvJ1BW79zYBs5qN9q+dmrMtrMXgAMsREJRmUqzKM88mQJmHbEhYEgU046GDtT5PQWRCdu5p3zQJrR/XJgDLFMd+kKA1Gne2aUnIDocME6aoIWtfOkgEURg2APYxyOjBdYfBCqolaDdawkxxPw8g1AHOV7Nx/Bjt429CoVn2r0dn+a4sbmPyzDAY1hqwX3be6Cdf8KgXf/OFh1cXqdsLus8p6rI3f+zOd3/6GFV+zFQtvc2dgXnY0HcaemZ7TPqS6PZgZlDKnyoGmZaZgQ9ZhMie6POQNcd5y0A0W8R2GcYS3RR64q1sT0UeGC729XDOT/hf9JQmvQ4rXr5G0S6g0nPYsh4R82EAvc+JzyhwLv9wAS1vuDWq2Q6sACogHBErIWXvaIZ9Xvd5yAYJbxf+dSgQB4t2BwDxUJHY5RybIABzn4F0SMi+3EQiXkG9LAVm2zAdK1pYsYKBFWQF5bxkBVEBGnoP02OYHkU3jmszIgyAOBoSlqLwBYTwh1YAefwtOoU2RTjDvgIAqIEfM1ZTuFtCyV5tWeFHmqCv4IoBqi/eOv75P738R377nz597bHe6FrQgk4zeRC6e2v2ir+/ddpaWvcOw5QmfG/mprOpN9tFNuuyMHrQidIH4tstAGQtSqYXguovt9OjVPkWEIL9LACSW4tqt/w6jUvNCmfz9J9fpK5IQUCpHLIoXz+pDMRGtwczhXKpgDYmhRfVbq5si5iE0m97l/HsZ+1OtlZUYUj4zMAi2BTu2h8lXAi9Na0EAAIPLdo90vvSiyIZFXx8ppwU+oW9EEjlmT1+gAQJgPA4mAWKvZY+VOsjBxQkNC2mG5gehZ74JpIW5w0AatRqdOPETQHmBJx5yI5SsYXyFRwE28bktns7M0KKXoFXqhHu3VyJSmmod3zsju//zY+9+SM3G5PB4YIWdDrJq9K/+dhdl167Q1kAPautpy3nUPjCppcxLVNUvpBox2h3YQ2V6sFcNtgSb6r4eneOAJBqHM5SVGF0GHMMgpVKEog5bBTuTG8jQvQpcEgOmcdjG4EwZmOX4OdEeRCF9rlTyLUwBGZblNxl2Unh/QjtPCo0Rs2FoFlvGHAAcMXL0ULJpFxsAkLMNMnDk/OY5H7wnEfI8XgPinsShED+T5Gb6L6ioKXbiOoKfkOkw6UnqOgOAhDoxvQr0FbTEANEvJUJ+QgaASeqIWUlCED4/PvwNmzt8qmeqa0Zccgfm3LVzbs/8f988k//4boFDi3oviMJ4NhO+xfvv73rEHVQkUS4oPAFgF4A4Xhw5TUOIARlS5tEGc1Tdn0kKDCQrQeE37Jn5M/iXk83oCdk55bwOH+E4gNnbGR89/CYh6qERLuH2Q6s7fHQay97/DIzTAPm7mnGEkj4EmaK6Q4ML4fTQ7wiEEYeSn0nkI+fxNFkvDmfYLYNi3gYT9Sb7BFKWj1rMnkrSjiUdEGKx+024OrdUUzSn+kQHHSKpvrIqvKvITDbweQYTLvfHIktEre+8m/mBvE8bHcbk0TkAAiFepSMK0HbmBLrQZRwiA9L6V8rdWSr+4U/uexP/+E6vcChBd03JAH80zWbn75+m+3AD0Qg0SebvbFlW89mKoDfmyGNgC9q6Y214vXUQtQg+9N83Z2xEfWU9NVOc1WFXJeJkj4F5hu8J8IsCcRaf2xMvvZTUruhy2IPnGTT4T5BDwbl67blx5gkcjm4dsuDZJ5w+sjUMwV8KxLTbXS7NCpKNkGCefNgmL+wPS44DvUAUgjoKaY7cTnQq2+2mAewr8K5iOQb6RkmR6GnvSHUFxpbJOsmMUExuEGWQZHLfXDpeWH9qVlmGd7pNqb4pCLKU2T4x33NALrq6E73klde9vaP3YIFLeg+IAngPZ85urun2YhMjcSEbJzGc6m3oOqpd0O+NVVIKCpu3bde8xv0eciAsE99Tce/ojUA1UAomsDzGbCMjbI3xlUdV4XHM4QFICuq6dlnIwNCerufTUC3BQGGfxWs/owN6gJVk26d07otfNxjI3nOPq85JTwAsD6J36n+wt3Yy4JNkN99zuv0msQ8ErDAbDMexuP9HoIokflD4TBW9m08jJW1y/c/JZuQACFgOoYuDHvAEhAKVXmW8rs5Ttrd1I5h1kY/yipEDMq5P6nu2Zq95JWXffb6RZ7Cgk4/ye2x/vjVm6kZmEaTSjEt9raoUwJW9WJiSWk4mqjCnT7n0tL6uqaouFNtHydY+JQ27uVscPDrzVjVpLtP5pBAesN511kmCrDlkPRePLXJArLyh6RF7b/v/fdrfd41TBXGy5m5ICRlaWceYeEe8f6WfXIc2scmoA+FgKopYb0P56UBmwOfZX8pRTwu8ZD5he7g4KR1Kp6U222pZs8PY23nWyHJk8Ea6I5KDVHl7/gCABIEUgMM1n2QUNLZ82pI9eI6CglmrAZTJuU/sBIwVakv3Lz1X//ssmM7swL/C1rQvSB5yz2Tq2/bKy0FzZm6+/sbngIekHIKB9u4aSndpooG1QBqhHoZ1Qi6hZ7CTGO5EX8T9r9IeUi0Xs8AhCAEClexaIboH8a8BCFhOjqiNNwqPEUO0D3plCiiYJ8TeI0vXdavOyqbb27nGJzdYV7jxwOtApFXFIx3n6q+7xphdoPcJsjYyrCQ4XEBCIW/RNZ02gVno8ePAOVQ7E92jjCzkjw2YQPCH8DRz+vj7g5X8SEoB1Lxrnb1bCvCBs8y6BcEAqDbtCYCr08KiIrq10kM1rB8FuohzakGqoFqIAeoltCsoVnGbAuzTeipL31EUktfU+v5gqV027Pe9fFbX/Pea48/+xe0oJOh6oa79o7ttoCcP4eptoog1REVo+39i1TdGCoWACrzlaony+aYO/esa4GxPwjVJZv6i0XOYIGH7DtXN8w1oakm5j6HMVvAwMyAKbSEGUC5XCOWepWFlI6LQ05iJkiStkkKAcVKdUmSg3uhZ0Dr0219hLB3z1Jr+3zKNB3TaNFst3Sij4Vy6b/u+NoKaHykdH8eyi5IGCuhpipYl/EVjuA6OFZrSO1tAkHFlpIbIhmWBU72Gc+BQ35lAB7pj95AqJNkvfoWku30FH6ACeLE/5x0d3I4uvVnILUSzQqsu6A/Wngf0dmJxSO6qwpGADUGB1EvUaP0c1/MNxwBLP2O7G4PsvIH8Xl0tD3+U2NO0LMI0XZ4xduv+vZnXnDR2Yt6Cgs6bVTdfM9kMjU+4G6D4kBiJ3IMSIxZ9IxrDiodYEunoLK7xNLXAjaUm9MwE0wnkA2doZDykFOfk5BEpH0JBiFo62VK/cOYQxmubg/dGGpAJxeI2JRgcsqeKOEnrC2TNIBS1DGcBhtcRqd0WrQztNKH+0VFt6VzjPK+KuIx3Rkgm8ChYMkmCHjsSg1ZDdNBTyArqBEdxpryUKCiKDIbJdQxmm8TOLmZFmihBXQ4oJ1Rj/35nIQfMGZiJQuwI1aD4eIgWfu6orMN717IXsBWgI5bhdfs0cOwEURd6qNzdkNKW2guEZFghxCaOCZdP0q3cxZQDeoVMpJSCSMcaSj9uRUQEMZvY1I16mXaUbTvAfPxCQWU+sJNW69/33W/8H1POf4C3IIWdGJU3X5skkYG9tEsfdO3rwMsYKm6IqgUaSmkEycemzCWDnpxh7GaKSYTVEuo16jI6TwXgM/hUBWmo+xeXoAAZJX3J60tHca8h26Mahn1CgTxkKg8W+KBXjuXwtfQVEw39Q14461OWFhSHMIdxrqDdg/1MqplX1Dg+DYBe+uxTadsZDaBiELwh7GG4w8MTAs9g9xFtYxqFJ2Sgk1ge8+VsoHOd3cS3SJytrwIhr+MVXb02NsE9RKdiNjz0ZMW+/wwaAHb3elvwX4rOM/Cn0JipjATQLID2skZKtpGgp8JK/xEMBazHQzWWWupuHiHWipnF+raOVINHTk/hR6jWY0/tMjPMwQ719UKSAFroFvoo6iXUC8DAT7R65EAonBzxxjxmvdc+4Pf+JgLzlouPfOCFnTSVBmDfJb6WmH9uWV7H/Jybe6l9mEcUPVrp1gztAKYtcvaFRSNcdWOJWAM2h2YCZqDULzQvU31uE0a8GwQ/AieaUY/tIENPgNFPAiVH8Y824IeY3AQctCTQxGEAFhfFRSIYJzjsaVT+MKDZIexBuVlMN1Et4fmANTwxGwCYslofw53ZhP4OAwZH0iVl9NWyWGsLabH0O2hWadinf0W+Vtu3FhfIBUiX0GJganwr4hw6IRgJIQrnjaGHqMaoVqlg3FPxCYIoqBKa+DwM8cmALyXIIJdYmE1uj10e6jCIfHsUEeCHfaCR7Skz/nupqzaKR8MqWUWF4HSzUCyAQAhAY12G80q+bXwyA144PRzGRDWY40VvgccHOoZmjVWTb8EpzxzQYqrbt78+0/e8uPf+uWFKxe0oJOnqtUGFlETecXS13EZZTPWmY2utKKgI2fQO3eAnXPjoxaWFTaW/oL8IGR3EOrdaA6gXkkVX4kN08JoqgBG+0tE4MFdJvc9jLl/GCugZxjfRTz0xZLpOwPT+nPbEA5CRZ6FZeH1rDCwqsCD/0BEHiZ3o1kvBWHQswnC0k6oQ0FAmHAhvHPgDheIejA7lFp4m6Abw8zQrKPitrDt6XFmH3DTJNoEYC4MtwmCJUQDRjiv1DHrbIJddBMMDkAtzemLNOzmh7eBbb14kz0x7Ie5TUB2iXKeBCGT1ZjtQo9Rr9BxdikCFSJa7ktX0m0XAzq+JBy/7dmkYSkQK5/yTJl6BKH8mXhCopug3UWz7n8f8FQCNhyfIX1EWtLxvoL8Hz3D5AjqAxRwplYK4TY/eLrOvuNjN/3wNz120CzOH1rQaaCqqbhOd2ceu4lJy/jHwSFERaM7Kqgl5pz1wgApLKLGQ/CCyg8TBoA7BkbCakyOwmo0a3MMcIdAMxjtURDu4M6sCFCfjZM6jPkI46Gv7EiMekbuoPTuXV5YJsAwBe6thVGswDPjwRpY6fHYdJgehWnRHGA1v4MouPNBpwz4AylKNoF/WbQJMjkYkmcF02FyBM0MzTp7LoY6vEeiaeJqgYPtRy7aBALGFg5jZQANIaA7TO5BvY5mtRDWi1cTJ940EVSFqGQTAD7+5j0wPh4sC2oZH7nVHcwGqqXSwbiBQkSL+RNmBjODrBna8fI88KLgB0y4r2SFagQLgjcBazHdRL3GksUthKG2OA4BwkBKaEuIIr2HOjuGej1JPynn7rthKy+9+sjNd+889hHr8596QQs6UZJCgAWR4UNhyZIJJx4rYG/dGSegOomxPCJYuINFYPjnhTOzefTM7SFV/njv6THMtlIeAhvB+aj8Vhsp0/WPOQwgbIM/XhUTF8CZHsNsMw9eRU4MTOsRSCl2NmAmAc5S2G+P9GJKGAuMeR4EZluYHqPlfdPrFIZAgngon81BDYWIpceqjIewgVFS/wpMNzE5xlIMbKr63cBoyTQJx8KG9OW0Ce+dhMpmoiCHwINXoMDsKCbHCu0mbzXMDIaxoWQqEMl6gap8yt6ezehHEg+qghVodzDdiLWFClMmUBjnFt3Uu1w8BBdrItBYsoa5Sq4mAivu7vjpxlSRIQzsk9/GNDvhbUwCdx4dX37DscKVC1rQyZN8xKEhBNhMcEk4IDNQl2Y4f20SH0j1lV0fgfgL0nFxvwXibJGkHfy3CgAmx9DupTw41d9FH6hwEFGRK8RvBcXuOW8RHamKCRSE42GHGAicGO8DeSBUPVSbh8ehOcl4KGGhk4k752K2ielG6gDRC9sRAjHVP5eTwADZBNFnCqJLDQVJuctt4KE/MCxMC629H6ZCaLRvnaDHw5wKm4Jp1YDN7SYmR2n9o8SJ6aJpouRJ2ARCzLEJuEwkINGNmU2QkQC4M0GN6lncgsoRCCw6l9dEGPk8vXwbk75ftzEJMZvpz163AKEFnR6S558xGjaCEm8or8xQEpGLDAQN239tjd+MLYqHsfIJzOzNvvbh+gVshiSb5pzbZDC9B2ZKE95lUmmPQKF25H4IlPEgUh56xm+utiSEpYJgYIrPRh8omu1gLcoeA5lGpkdOjsxJsTBa4hKzDbTbJEPql5CU4Y/CE4yNfWCY8Slodwv/ai4Pm5htMR6CJu38ypzkA6MvgT4zdGcJNiSIB14Ux1nxHo83iQEujTQ8W4CfIh5zsZd8Uz5WvY8uYSaYbc6NYkVngj708iGhWUQ3qFwTocFgjZxRtrVZNZAVtMtxTbss9i0HJ5JeeCHIwdUTX63VcoYZxbUre91tW4ULFrSgkyd54ZmjQysVHa3IHQsDY5PDSfkk8cmjLhsbVEKYz+RM8YHeojftBfumdzFXfO5EZ0F18l3OsbUwxq86yCIC7aN507f+g+xDxk9QgkLCdpjcA9uysAl3xYoNcf3bN8Z5i72/Ah4LCGByBHqcWNOmhQXFRYt2QMaGTHlAbE6kj5BhgO8XYHIU3V5qE5joHCeYitKz9+0ShjqZY81tAu4gTjeoTCf3LVx4to9A8xjoeWnB9OG8JQYTiAeJboxuJ/UeyC3z2pvybgTlSUfvhzYD8Sw4ZwIKiWYVS2eiGlCBD1cWYQi1hHoFgwNQNWYb6HZjGnf+FOyRBVjP8ikm0e5BzwB73G1Mt9y9uzvpsKAF3WuSF5wxfNy5SzCahh3zdSLS0EKRCSDkLtGUeaVS3c30Wq5pM33HPyxp3sJlzgDfxWyHeKM0aCFTH0IU2CjwkF2fXdAHADLV2zGmm14sxnrDX8wLOtHPRdYu0nbDNSmTXPFxR8S4fI2O2QSGLb3Eji4wk79gr/27nhziBeEgVAlrMDkC00abwDvHfOkFJe3fZ2CO2DMZclm54QfHwzRGtIyG1hRHLTYke/9mPAAQ1JO9kZktzEBCCrQ76CboU7ilRUyZcxvIEOw82kfsnkvVkApqiNGZGJ0JNYynu4ZzXf3RrjWEgp2i3cL0CGZbNCNE0nTOkmAv6EGsO1eXIVl5G5OdzHSnOeAtaEGnSHJlVD3jcQcosGYKYbewh9/rF6dw3ebHjnRNUbPkWqWnfzOlU2JQiPJsATDb9HXeXPKPlEw9yZyNrOUeQ5EHgZTp7IJgHQsIgdk2uhmspdxfla4Gy4hGZVGUeIgPW+ShJwp//hBoRyo/jLXXKQVNW5TOvA7tc+sOhJ1guumNFaNhUToTNnhR2Y2LouENlYKWEQDIN9UzTI7REDVUfpu7g73nF4I13kO7/MFlIv8iDxaYbcN2+TpKv0IPEPNKQnqCoV1rLrNGVBisoVmHqHunu0pKelR0UqryYNztYXIEsy3YLpF2YVSngMq3MQGp9wO2amUBGGOLz7SgBZ0sSQDf/LQzl0eKQnAmwk/fK/Kfa/rX+mBIPnXZ/3ykHkf38UBBdkEpHqKnaHcolZyz0WtR9D7Jm2ZvBZjqdJ+J/BPQpDUtZluxMF2yDtwTxX48pE9d0M5gEBs4lD5Le7oF03mlk6whZRDSE2pZTAwqEu77HgCi5Gfb0DMyTUL4NPzJtO306UtC8U3IEht9mfhEiR10Y19zyA/OIh7nt+k10XvqAkTxa5lMTIt2j6UP9PPf/MeJ0xanGABANv6Juj1A07mu0ntCyQqrgpDkEhEsCWC2i8kRdHs0AbMB1h/S7ksJAO1uTEcqbmNKg4wLWtC9IQngq7/s4Fc9dg1aexzSuodDAY1sCk5B+wfqzXA+be0+43a/7+hW2SoF0O1QPDBdvMk0hWXv8kayeZgGHwrowRUfAIF2G2Ya06X6dy5N9oSlAgMi/JPeqvdoDvb01C8pJziRNh+6oPdAc4g/bPb77EO3qavDbAvQlEXGWWU8lCR6PIb6CM1unkSTjPePQaFROUcUWUeJ7M0c6SVMpStD0SYQaPegXdJBSDbjv2SwFIvxsJQEXxNBQAoYjXbbBzYl7cDzWfJh+wFlFoTdEQ6WtMZ0A7MtVpVnjmyzB3HbmMBjcfk2JiWFKCYvLGhBJ0kSwIHl+oeed36tEBMQtKYxp3tekfVukLVz/A96HfWs8G8j9fGG/SrXl5nlSxoHArKOwTF/ZWliOLRI1mPmcSKOxyd6djE/jHW+KBC0Z3ZvkV88r92Mh4QNdhjrPB8ovHBsiBO3CeZclMlBCHS7LAgm9nuisvqao9TEvmwk/Eh0e9Bj/7OiD5T3Dw3O42rUso8ukm8FfE2EmKmRJinwRX4b4m86KQ1XjfxOLPfnXExQxO/BsI3JYjSo6kr27ragBZ00+WH0Hc887+mPXUfXxeCb6Ufn2Ot40CTSF4wESwoqEE+5KarDMK/4j+gyN9n8WQ8iapPsBnlz89kpP0B4WbCE/ZxXNdWyLIFcUbXlOGdzXRBhO/29yFgiEUmFakje2JyniS3EjpmveefYBBYM7xkOOfnLih3/E37YM1O4TVAQRZFzDngp57lX5A5BCKIoAUbCxsmOihJxH93xo8e+Xh/X42HPQwxw0cwytMdIVqiH9KzCH2Yx3SKORZIZeKLbmCaYHot13HtSOOltTNaef+bS0qDq3W1BCzpp8iB05vrgJ15wUVMj5iaErdoOiiz/c0EDrhT44GbhYpF8tu88dwMduSbi2yZyEl77FxGo2Fz5TtzknxOu2qeKiaTzfvLgTAASfqciB5kMe8IsN81FLCErelc0ePlnttdUv+m+axC0fMIQ04CAGqS5cPMYwP5eWI+ywcTAL95Z+PUM4Q5H711z3Nsfl7EMj5MIcOCDQMhoaO5MpJFtS56QRyBWE6FeijZNeNh2m2oOhYYe0G1MUpxzaFFFe0Gnh6JD/d3PfsQLvuosdC3tGQpQpKNXFP4saZ95ABCoMKnnOD1xhvfdI+YAhU9iFvK+DIhk+vc4S7Wtb7n8gx4PjuviqeQMdY8PLlkr3PDcX1PTBb46w74XcspdkNJF87A//5ye1MV//N2zfxNm+z+dz3TAy6Jpwt01+K6UNTug6Lg4NM8mKA7CcH3ptolYBAB/Dl7uTLASWUIAGlqzQNwA1YgZXswv8eeLp85lyGrj+JQtVjnHyJc6PU3bmIR41z/ddsVNm/vKdkELOiGKmmttqf7VH7z4cY9YRtcxHNIRjYIbZNN1TtGfyTb7P3+dT35uJ+4PaZn5Ni/nypZ56L+d89GcdvkEDmzsw0PvXY4sRZiZI4F8aYGuFIhL4vv8HD08jro7/Jv+1qJXCTR7nuzu6jjdF1oomybZp9wNLZoFll1IrwMCiVP20Ys2Qe/z/Xx0QACmZREtRECyDFl57pms0Kz51SCpqCyCgqwgBLpx9HV4Mye0jUn6bUzdadrGJMVnrtv85T/79LGd2VwJLGhBJ0aJ+fy0xxz89RddfGBFwHTeQAumUMxQYGMRYDMKqY6wc/RdX5vY9Kc9C7S8xwJzdOpxeUDxIzbfuFoirVFMBHLG+H4uSGZpFpVdrznY3mUWQOL2cQ3r2etFVPKGiho+08F9lhL9NGf7C7Hn6m2LLLzDRM19jISl8JFImIlXzsc2m4qLVxvaBxCzIZNyk9KJ+ej9X/lCHpbMuLAZyOG6AMJRwkA9wtIZqEe+JkLljpYfoV5Gs4rBOoQ7WGvGpJGG7PbbxkQOkz1925iq+u2X3Pon7/riYrfQgu4l5Qr0e77ukb/wvY8fNRa283VoAhrxYtue+vO4OLmLSt/mF8TYBfttLEOS5eoghuMKAMZbyVrM9Aj7N77s6Zq5VUyyhYHs/hwq+ihYZJi0al8UXD6JGS78gnyZB3rNO8Hyx8yYC32B/g/YNX3ikTdbvqbAA0rcMpbm9mxotr8wE67tX8/vmX3fBxh6a+2835QoXGBiiXFrY4jbj14BVUFIyAqjw1g6G9UyK4gQSrBXEDXkAEKh28b0KCZH/V6o8LwntI2JlotO3zamzuAP3/7FK2/aOJ5AFrSg/SgHoUqJn/muL/8v3/eEUWV8PQJXG1TTv1qzs9dIIebqA/P0TfltVHlpxW47f+YnBlhR1/R1cV/L9LiythCAKiznlu6QKG5+235DfQ6zTzIe0rqWCRvuhYxvLQ9D9f8tyidj27VYwhKbKi9+QYgHWnaT8rP3eej/hIZWAsbUR2FvDXpMRse076PzQcvf9cdGNrwzNjlv2QNmj0tF6ENcztCvZAVRQdYYHsbgMMQgLYigYkEEqaAqCAVRQQjYFrNND0XAXJ8v38aEdBuTq+tzgtuYwiS1AOI2JiWvv23nVX9/tTH9CbigBZ0oFUJJg1r93Pc84dde9ORDyxJdC+u2/mkPSNY5RmBTsTiTbQFU5gGSRapkDZJ5zlQSkLxN2DBzeNhf3YMF4ko/THRNDxiSGds3mfuimMcSXe+LxvbElYmCUw5OfV1/Ip3C3npR9C4rqF0mivhVOAoEyc8LnPSllDaXyC17Xpu/TYZQdn+U/j3hb63tXZmyMU8yzhMKBbGiMyGgGu+gmKlPcgslD2JNBKrOF6vwUZ1422K6gckxmJa2KLHchEg8XucgyW1jGpceZN42pnCwHoB0G5OQf/X+G65YOEMLuhdUXs8Y1Oo/ffcT/uinn/GEC5bRttBdhKJkTWh/LZ9dk2kTbmEhreENmg+IN7FFdc8VEHqcFP+KbLhv+nZ3OkVRrGLCmEweGSVO0PsckSs7R+VlurUsCnZxfgf+7MW+631SkCdy3nLl1ZdAn4deL/PHz8QYW07vVrYJsl4oenKchz4nzLsC/NsYGk1NnAx1kteZJA0Mex3doBpCQAp0E+ixr7IqqQRirIAeSoZLOiDRHRmsfN1uX8J8X7rvtjFJefNdu3/1vusWK0MLOmWau6iupPjXX3/hX/3y13/f8x45qo2HIrdKZClGHMauCROVU6b9e59bVp+7oLDC50EdsB/6O/XV05y2ygrX+JeJ84GEk0K7NlYxSTRdho62xICZw0lYs2GMFTQvPbVlvwpNx59gDg8ocZIymatdHI8HJuogQ8slM4+xeWPDAPwMkVS9GZPcLebO2Ngj5e4Au1XWbnrPwIM/3bEvKKTS7o0Z/mF4CldZFQAE1JDVRACmW1R9imru8Ro8PimO9qJmR9wajckG2h1YJGuQ99s2JuCdn7j5ns0xFrSgU6LjFN548qMOvvI/fe2r/vPXPv8rzxpWBu0MuoXR6fQOqds0avshFE9cA4L5QDqfwzZTtZl2AHMd6IbGEJ5hTut9NmgSWgo7ZLrG9FSPTX+bTGMQrBbVK0qq0PTY6KvCVFMkNnjKSXiduHRFBmz5Q1u0CZAqdOa0cead1g73LOBxyvPcr8gmsNllYQGDXZk8OH+0MIrSO+dNz7MJ+FU2twlyNwj04MGZ4H1ofIZCOHdVVaiHAAgSJLox2r0cb8Sco9YFO9XJAxUw26LigSjnJiSuymndxiTkF27avOzao3mLC1rQidHxqz8tD6vve+6j3vgrz33Vf372v3jWIw6tSOipxyE+mYPxm32e/DEVprmpmykIpCqPv0WcKlan6tJFrpEW/C5qPc5zZgyiAAyZqu3r/eSezJAv84D8k6D6bf/6oAdLujIDp3hDkzJQtAlKokikh/zbzNHMXBCkLRYwdR6lkGCCaVJyxXIEQoGHOKiMh+Rc/qFdzhhTwcGoSlwxzkPGFdJeINchCMRmzoTym3sEZTbOtlhDBDn58bI85ZoK84Tj3rstOtYPKZ8lOpVtTHW6jamiY42qvYn56BV3ze/fBS1oPzrR6k8HVgYvfN6j/+WzHvm564+++1O3v+Ldd9x6VENKCD6IjY8ABGjL964wO7G/CBRex/KpLL5nU2yA9YFBqyIPyRTKtsKwJOZors6PnlmbhHrCD/239Nod4WMMlACMf3Jj+Qb2HgVW6V8btFUGMyTVTPMGBR20pDvLDjK5jNhhCdx9rcTUaNIpaY/0tX+OzQx1/CMbWOl5ELQaX5ZIqs0LNgHKPZKzEUYIaEgYWEBIGPhaAKU0shLUZWz0L+BdwGRlqVGnuwUAQwmlAIBqSM5EaB0QAu0YuoUa0K1YQoEA21HkcAiQAsYBlYGQsBIwmG1DSqgmH0UFom1MQiZGA7JtTJ1/XY8wWPf1kAK+WgtpAAM1eu2H7m6GVz/vKYeffNH60kDNaXRBCyrQyZUgXBpWX/OEs57xhLOuuL173ftvgwmWGuAmunURZyrlyeeCn+yZdZzpO2580beG54mGxRjjGzWGWYtOI0vAFfWxgI1QFHiwxFkSaQHBXhbRCp8ET46drmQozGIMZFBnBtbNYQFhWUWJFJNNYKNn8vNG56ndIMkAVE4UACAjBoggfcaCZTJBhoJImaHigZy9XAtTN0HDVhCW8JjxkISILFP9QakFNvqcmPmiMKkoXODLJNDibAKRiIERZ8POYWPfHgmXxc8Zgjrn0ndLjWaNgIey6l3Om2mhp1CjXn5EmEp8MxAt+diQF+cql3eYbWFwAFLNhx/2RFZTydfQocS528akDYTEYB3NCpWnsjSi3K8krIVSX7y9fcmfX3l4tXrW4w/+yDc98p897ezVpUV50wWdEJ3KQBHAM7/84Os/eKu1BlZAGApYO7KwAjYtKxdV/3z4AaJGA8FDonZNnC3WxpRxz4MlHuiHTvdYeA3kIKHMBnpRuL7a7atgA4DOOBewhh5ZAojF820QG9cLWVSnJ40knMU1YA+PHRZCk9gZkvlP2FaS0E7U0uFJ2YpOxoaXj3verLgyj785eHZVJDIepAdjQRwkwiAAyG2C/sAogQEPJTmn0AhIAIqGjYB2FT/n2wQ2wKFlbMxvNHAVY27BmbD+/hZUBhSogjNhAUDSHaQBNEwLM4UeQ9YRnzzeOPvJQQ71XAQhQYnXFlKi69BuY7CWTqX0MWMna+89z93GZDFYR73OzbcoGS9MCythDKw4sqPf8Ym73nvZ3d/wxEP/7tse9c+ffs6wWXhFCzoOnaK18vVPPHzmWnPXVgfj4m/Se0Jg88drf0629G+qczPTMtM1vMi3BXQHWft53uchMx6RTUs+o1jMJzo9+wBhmLHGl9iKABAeyu3czHjgoki1Q7/FyEYGhJYSf503ZiE0jIZUeWCwLIdwy33BuC//wEMAQhP8IdpaLw2MIB54X1gPh35UWFKpTsmWhkRoNDrHJhVFxga3UUTPPNKwMtoEQsBaZhgEFLSpNPqN2hSTstAoW/5xB6HCQCo0axiskjOBeEPPvPJXzjYgJOQA1dCXRQeJK/ElM4MGEZCkQDuBGkA0SUM5ILl3GqiOs41JT9GQ32bp50ks3UJY5/cCAkqPO/v3n7r7kiuPfPezz/sv3/f4xz1iFQta0Hw6xWOpLn7k6tc+4WA8jLVwKLhln5h9v8oQKIUcfqZ4UHlBM5oZy381eUgh6ItY+I6zgfyTyEP4LfxRs9zez6qYmNbjkDHQmRw4D+bEpEGqPxFp5n+YXOW5qhYIB3BkrTAVY4vfcja48JmZj34fsQsiHttkm3128yIPmUbjf5GNVD6chzgYiAermRx4d2j/VfgzfZY4MLMHNxmfoGvo4iD2EFx11XeqAZbOxjDURAhlEVxCtvInc8sKqPwKTbeLyVHMNmFaAJREB//at4vkE8FyGWAx22EOLtiQzoA2WDP0OrpB92Ibk5Coq+0J/uwfbnzhb37s7z91u+X8LmhBKZ0iCA1q+cPfeMFoIGhpxFA2wTwl28ckpmXi8RBFfUf2vuXTxpGgaFj/JkWdknGSWrUm01xc9dMN+1VM/GWkgGJZowyKsj/0ZGL9rbJ4V/yQVTR3bMQX1p9CFm2C/aHuxGyCzBXL7hxYCp6KnsZPInLrfRk4ATaiG4QUD1J88jZBl2DhPLvE7iOKEhu+SkhqKISxYYmlyK2gwJoLFbBqCCKFIl+eR/qzf6AgFYRFu4fJEbQ7PswbHSERgadwZpI7B6+FnvQGG9KhiIjcuA+2MSkJVV169eaP/PYn/r93XaP1AogWVKZTP6D3nz3trOc86TA7jDXocd2b4aUJn8NPqo945A02UX+hlqisUA29H5DxcBwGSvCT2NdsM7ll18cqJnzzxBCQ8alzPybUmLDs3z4z6EmDq36mHHkgzsUkAV8HM2Khhe7B5wnaBFwgmZT4DYO4YnQOEALa8aALPylAsilzMs8mSJxjygfxrlgIJcEPwoDWCQ99IcyHH94pUXFnbIQeCWy4wVlD1r6seLsFWCgBJX15nkSDh3xrGT0MoaAqWGC6hekxmG7fuchLZcMH60JhHovoFVkbeyB+ZU7nNiaZbmNS1R1HZ7/wys/80Tuv7hY4tKASnXoGy8qo+slvvejDn79nZ2qgAFhYSXF/C+lS1FzkXUSnAaTc3QuAJgRNe8s0S7S4LXtNuqYeQVbQnT90UqY8iHA0eGnocx54sCLomoQNQiCjIxsRCEdeERvt56NbkLD2ODxECaCXE8gQKPPtgl62mnQfUA0ha1gDAyhaizKUuFg2mXtcxUee0ymZARH1l0MgiWoEAEb7NSG3Xh36AkgXNkzSOnqiSMC4FBPjDmgYFWoAUVF+BMGK3+BJln6SLWdzBsIjW14ptc8GeVTBNInSE3TauoGQ0DO0Oxgc9I0HwLYWVtATuYsFpIQBrAA0lIIGuglMi3odoi6sBgWKeQoCVsDMYFpIRcBD6O5NGXpGEQRInLttTLaL88hazLbQrIWW/L/C+iXAcAQRAhC6Qz2cHqg297r/8qrPNpX8sX/+2OKhKAt6ONOpe0IAvuXp53zn154L3eWGobV+o7WhyEx4HXyOxD7Vif3L1a61Zf9DNV7luWnpjn/t+ze6dCxsxkxmJrvfxmgSWbiGvc5mrM9B4C5gz9Xr/xnD2uohULiAL31rtkgTgVChHtHSsY6cOz/AcO/QpksgSJjUfPNvr1OiD5QG4rhH6PeRGL9YCFqbKYg6dUpsKop8eHBXjIFxv0eERL3kDwY1FB+2bCRY/nR9f9Tmo9d3SsYG+1XooBCRc4PTiQJkB0w36XzukE4NyHDiXEDosOIiYoALCqbD9Cj0lE2+ni4PY9L9aw3VREAyqGBg6WIBwKQ1EeZtY9qDbtmReuFB+o8gfMguPI6QEHJzr/vVP//sP37m9uOrlQU9zOhegdCoUS/53sc/8aKV9DBWmuG2qH95OEXnOjeb4cYt9WuflaApYiAUmlWfluqJTpqwJkbAgmqbiz2WKSMyrjOdCwMdgoH7VzEx/jBAa2IIzmnDE0JBxkkSjGIA7Kv2aYZbQLUEWUe73l/JbjhPCIGBJOJUAtH4YQ/P/DiqUC/HkWE1xeVO2CZIjq3iAsxME24TGD8wuHOsajplSlPZzZIQ4mhMg5D826I0IhuWDQwOhALNUnrou4SeottLNTgFr0L5gxDXyo6kczhkNWbHGA7Z8A+j8F4Ags7nNt7pTCyMMGLZRtq4jckjB/0pWFdrjh0YGBpKzowQvUegpAmpbjs6+cVXfvq627f31yoLerjRvQIhABc/cu03fuRJZx5QvrZp0FBRsWr2gpufbhYR0vAMNNCBEYaUkde/AAAhMVhDNQQUZAVVQw0g6/RX3MdiDk3hL/V+jEmUYKLQU30nazTraRUTFTHA8NZtnpQVreaUw2CGW56WRgo0MMbZqEZR+ws34Q1sx9SlTm2CVO0WOCn6YSa5QwaEQqBeYSnFADTxwBlIHaOyTZA6SX0wThAodcVk40VhAx53aX6EOSGboJ+zkMiKgC3pEZ30iN8MRNocACxmO6GT2AtehgcRnOKH5Go4JJhtwvbXh1iODMJmUsB0TLYMWeM2JpFsYxodRjXwc6pqUA2hllCvoFnFYNVvY7ImfwT/Mt0GkB/tKgGJSn3yC0d/668/P+tIVgta0L1ZEwr0bc847xuefPabPnAjBGCNr2QFtiDBDTbLNmckgZc0OBN1aIjCWQCohhgcQDWkm1C0wU1CM4O1fhd3XIqYE0NHykPORk8l6QCE86uYiA56DGthFayFlOmCEDchU65OkA3LTVdiQ1awFopMXWe0WgutfGBHZC32ZUJvOURxHhAwialyBARa9dpfCCjpf6Jbv2rl1tuDo1ZYmuI8kDCB6FsEG8LS2PAIxAaGUBisQVSApSN3BazDQncGDzfVLVvGyMjkbESBMDYym4ADYbPim/A5AqSCuzGs8Rz6JoTvDWlpZcVGxS39DlBamJGQEqbFbAuD9bk9Gb4QgNGwXV4TISz/SAlZwWoIt41pLTkPEDScjEm2MUFC3ZttTPKv3n/Ddz37gm/5qkfMkf+CHnZ0GkBo0pqNaYVqADOFlLCWdkcKhkM0Exxxw82rOURXIGR/RVPXQio062jWIXn5EFCBAAs5QiuhxxAGVsVFWiD5l7du2WTLVT/ficmcD1ljsO6DgZEN8h6sBCy6iedBkybicBjSNKxNXhfBOGZe8b0vgKxYMRVSag6PTQUL6AmEhaHDNIUo2wRJX4AZzvvaBNr6m6gGg3XUSxQa5c8i0E0A4/FYiLwX+pQrfY5AlIgR3Lvo8gLVwJsm7ucyKFDtD85xXXPqNkGfjb5p4iykdagmtQkslPGJ4+0eqiVKHiN3xGlwEWZNUOjhguBVSH+GkKpQLbE4cCZG9spqD3vRhSWhed+9weAw6hX2S/q9q/inhJeeMT6LodtFt4dqgIqOdYiZR4KGTSCHx8S/lBtbs1e846pvePLZo8Girs+CgNMCQtt73a1HJ2iWoRXaXcBVUVMAvL2ZW518mAZNxxaNvL0ZdK5AvYrhQaghWbj8DgRgQqAZoXMmZ+ejGW5iW1DcIMwWbo0a9tbAIAlShTiMkKhXMDgINWA6wsancFVM5AhCoduD7SBkLCIHRECK4IeCKIJAjEmlob02j2wguYPDY2Uhh5AS7R7QAcoHXvo2AefBlnhwCKSDE8DCrUKiWcXgAGTNWoeXAyzkEBDoxkALKF+t4BRtgrCLJdjyhspkKDRraNbIMOelAo1f/+/GQAcrfeWeU7YJMjZ4lNgtUg4YG+FBvItcQRmYPUzHkDXUAGoQJRCTSJmJEPMJKbplKQVgtgPREIj2GE4GFJNYYMbdVjYQ8FVKhUyGtA1TgwBSGAjh3TUpYDXaPXRj1MuolqIX5CZaAB4henNfQKn3XHr7+z9zxwuecT4WtKDTAkJtZ3bH2kOFqDDbgu4gmPFbiMCw4W6D1W+9wgVbKldDDA+hWU1qMlqmv2y4mwKsDxS0e9AzX2A4hKpzqzFFEUvYE7WPJn/IolrC8CDqFRay4NqTLWPAohpAKrS70C0E4hq17bPRw2PPRhr/yaSRsRG1Bv0JgWoIqTDbg20pIiTm2AThtyJxSWGZ5+E8VIoEOmlUywUgiTxY1ENIhZbwOLEJkFrQnAeu9zObgHulAvUSBodQDRN1HG4lhE8RFhLtHqwmb0MmRsnJ2QQMCAMb1QjDQ5Srye4gSA5w0TYJayAMzBR6AlGhHpFd5WLUYbIwHArrWzEDW8J0aHdRLafjJ+tNZkaUtzFVgIEQaHcwWIUaRgBLIpAgIKTaPI4jJaE1plvQUzSr3ugsk6tuR/UkhdjZnb36H65+/lee11T3dk16QV8CdBpASBtrgyqpliEbzDbQjdmaZBaEYXZ3NM0MAIqcWFgDWWFwAMODZLIhgpnXOc6SVemEkZAVBitoJ2jHMF2aqEO/tzYWM7WZ5UtrDw4MZI3hQQwOQFa9pxCeDReM4neQFZpVdI6H1q9SCPYI4SbhQTygMhS0tAxjLWSFwUEMDkDVTAJMnsHuhvFqS9YYrKIbox17GDgRmyB0Ck8wCRE52WB4EM06lCrdINNcAkp4HOqm3pqOZnMfj1NOrMnZiGA8wOAgBmusGts8mwApDyduEyDKM4JxxkaDwUE6ZYf/LgxpeiEFrPEbyCAgDEyH6SbUHuoVqIZF5GwajuP9xRzZbgw18EV6EjcovIBv2oEfRyCk25hMi+k2lkYEzNa34uLqXpjH3ca0Rs5ZHxRBNyQ3VMoPfO6Oq2/ZeOJFh8oXL+jhRKcrLMssLznA0llodzDbgp7CIm4v8OZez9iMS6AudqEwPIDBQVQjZvL31LegitEWMMJrcMAnGtUjyBrtGHrioShZO7X0D9NWUe9bn2ExXMPgIOphmkYYwhTwNqxDNWezw/jKxIK207Zj6GlMKyrgcYAiJpCggl02oLO1RWo5htBT0F9eQZAcBFAvQdaY7cK0gC3bBEEU0bN0NoEhFcykUY1YV4SgFj1L2KgbeRBoViBrtHvQHeA2kYAESNKbaxPYyINjY7CO4SGoJgV1bhNwu8T2eGijXVJYoGI9YsgUAHvhg6IKgzUMDqEaxHUcyzgJqOw1uDtOwsLyoJZAN4M+imYF1ahgHAjmqDkjJuhx06GboF7yrURx8VENQnGeBun22A1gQp6bxGwbg3WoYWzXQY5BepSRhDCUMSEBAymh3TamY6jJQuIDI8qV8A+AEHceGX/os3cuQGhBOC0gpKQQgutQAyg066hX0O5guumTtULAIZmuQefSGK2XMTyMZjndaQH2mo1mF0ESLr9IMhwSAKAqYBmqRrcHM02mQbwPCHv4ZBaoVzE6hHqZ9H4vtB1fWK9ich4kYKBqCIWuhh5DTwGXvJBRQEHjPQAT2FjG6DDqojQ4M3RCgbT+CJ+Mh8Eauim6PZgZfX48myAAoVv+GTppMD8m7xQ6KMGPAkk8ABA+97edQI+hWwKAOXgco4IpGDdrGB5Cs1SyCdhREWGwRTlwHsbomF2yj48eO4X5QwKoVzA6jHqJskJEKhLXugUks0tAUGRotdJCuDN7Oky3oGeoV3txRfaMHnFZNRA9RsUWlvK+IxASqRsk3DYmyTgXsDPMdjAaEdgQtz7+FkrjmyS2Rm4NjIJtMTuGZp1wKMAhp+jbGWMv+fyd//ZfPF7J4pBe0MOITg8INUowELIwznNXGBxAs4Z2D+0uujH0zJeosnx4Wj+a1cgnnsm657gUR2oAFVo7Bc9zBZmfFeoVmAH0BN0EtouKBmCKz91MQC1hcADNKlTFlN3+DMDzUKhi4nRNA6mgGhICIaUIFiILhTmqhmgOYrAGVe0rihRZ/QJDDwulhBpAKugJ9AS6TX5asAno62qEwSEMVyGq5GFT4z+3CRwnOQ+KKi2NoScx3z1/Fpal4lkSqJYwOoRmdQ4Yp7gYwED28Fgq7xrqPe+e7mcTsMikJWmMDqFepQQEURoYwg88BJtAUC4DAOEzSL13YSAVDNDtwWjUayxtZB9nQgACRsO0kHXqBgVLIjxLfxvTIOaUBwer3cHwMMGqTYQpnUmhw5uYNe6Gt6CyDrNNDA/k/noy3ymbVIjPXHf02Pb0jPUhFvTwptMAQitL1XmHB9feNo4g5EJSbj64SEizAmtgWugWZgbTRZ8DgJCQCmoJsobiu7L7bhDSycnmqjMJrUiuDFFsWUEuQzQwU5iWys1V8VZuP2C9jGoFqqZiwJjDCdfffMZS4awYwQiWo4Rs0FToWu8N+Kprqa6RFWSFZg31Gio606XMBljT1JZzibx5y79y5rmEGkHWkDN0ziNxYbeeTQCBaohmzdu2SV0WpB3E+4K+8ngsI8QGPBYVqmWoBt0U3Ri2TWyChBlLbBxAs4aqPmmbwK15ZP6xEJAVxApkAz1BN41wuI9NoAZo1jE4gKo+MZsguKfOnwg/kR6nMyVuFfQE1qAJ+3UCqJBYBLeZBGChW4gqOm35ypAALCXXuMYbNPx0H8IzIaAnMC1UUAhhbsIzeRLbmNbi7ftOnRe1uOPo3p3HxgsQWtDpAKGhOv/w0KcPhSOu+TSAG7rSZ6Zy8qtBLSx8QXv09R3SFxlls0WypnmwRQAWUgEDyAqmhVBYOpt2HQHWwHRAReXoeetZ8Ae96cUcAq/5Uxzl6aqqApagOpgW1mB4CJJO23S6T0jIhhUQQ1QWCRsZgPV48FgYlDIpDiFRDQAF1cK20B1UAzVK8ViiGkEOqK5zhj1IX2Q2AeiRbcqDW1Fwp79XqCVEDTPzRglAxYeIeSlRjVCvQg7INEH6b8ZA0SawhMc26QsIyBpSQQ7QjWFmMG5rbWYTKIgKzQrqdVSDWB/6+DYBfZsMS8awCDJxHpsFJPQEMxGVeLxt6u8G0i3UME0Zt7QZCB5TQ00E1WBwwA82aSEJq6SG7dDN0E0hB0kGfxhm98E2pp299tZ7dp940cHCNQt6ONFpACEpxJMvXH2duI1i926quFC+K5Dlhi4bkfGkbfgT4dyJXsmSg0xmXXiZDOzU2M8niYgT3vLZIiAkdIvZNoaHABcb0bHeYlQ0GZYULTuRKh0HJPsfxuwsRwVtoWdo1kl/GpiW2OBNF7VeH5UZHlub/qSPxxKm8jgnFEaHvF9oAdvCWG8T5Ah0IjYBXeAFk8K2FwUA+M2SUvoY6dJZUAMyYpxN4A7XyfriBG0CkjZK/rH31AWkQjWCrX2NH7/p1Sb3EY0/f6EwMJhIEwRiSjzBYxvzFJxNgLDe45T4no9bgnci6G0qZNvREQwhZmgomgo6u0hDSDQrvrgGv5VPW6hgG6gh7BTTI5ANqkHc/uW6zJ7ubUwCe1N9ZHOCBT3s6fTk6X/VYw8sDQXFl3iCbKh6YOmPRqQBHY6g6TCVotrtzff+BeFDQSo+Qa8UyQSBkBCYbaGbwAC29dKQMv05a4izlvPQx4Z99XXEQoF2B+0O1bp2K/aKASFvSJR0YMYqfRIM7YyxmK3OeNBTTI/5bvJHY8geD/zkGJHykMg34Sqo14JMWPlOIX1hNMezFaSdZck0yYTfZ4DjDRc4lz/i44OQ2EWlqgHqJVRLUCM6YzSr+lMcqHNGb9IKkn+5qeEQzjU024ae0c/7Vg835viuappuMQsuHO16FkZnQQ7paFc6W0+Gc10VnW+kofcwOYbpBhVLDYO/N9QzHALNLGPQ7iYrVTn//s/0v1zQw49ODwg96cLVR5+9FKtA9nEoJInakG4bCpvC2/79SV4CmvSTvn4v8cdvzmeL1ZhtwXZ+0VWwEvoQ0RUraZX5PGU+B9J5yGes9FEaV+ffdt5MFoKx0a9b3H/Yki4WYc9HT3fEC0gOQmK2jc4lEHZRFFxZc1zJR00REkJ9hOzjfl4csdHuYrYLa8k5Vj0E6o2N+ME8KbG8snnQxYdEN8Z0iwwml8MimQ+U3qpw1+y5sk/mBTbDqJDeYWp32LYeAEh1Ot3EwntChuVxONUupD/a1R14KKrSoa6SznWlP1QRjKfHMN2A6eLDFphH+iAkTFe1JCxQzdnG1GmDBT3s6fSA0NkHh89/yuG4Jy6UmIxoFF6b3uvM2j1x6l9PAZ+y5kXyrZvz7Q702E/I3Acq3WMuj+GLsAYWPqfmCs/oAoMTdDu0waioo08WCMNn6YcJqPCbS1iD2Wb0CAVD64wHMFQ9Ph5jfs9yPBY+g2C2CdNGm6Dof5yQKFLA6LcvmFblTiEEZlvQLWzne0Rmpsn8gZr0eCYHwT4LQ4tdw4elkOim6FyoioAnZigEQKJJZFmV8VBPT9YQFUl1y688STraVfDDIySFIujQbpcoBOGPGO92i2FoZqZwebrQnCb+01ic459e14uKCQs6XSAkBb776847uFIlOGRNCj9I39okK6noCcXYfjDtOfWdffYrpDM8U8dR+9h0G+k++qW4t/FkgZPuI5h1aS3aXfpKslZ6/LgllkKbc/C4gEyi91p4TdTtwsz2w+OsufzjDKCy1xxFRKJz4w0l9JhE0bdL+qKY+2Xhutw9zVgC9YuEmaHdihnJ80yTjLWyNPofiORbkYoljkOXtB1mCl8NCk4PfRLyEUJ9WyGhhvGJ3GlGLv9TSn8Ct5I+tToMAPDz9KQ7nBvGYLqB2XZM8i4AkkiYF7SNKZR2zTn3T1SYTwt6+NFps0S++nGHXvD0s9DRmTQ5DunkuBr/Sb+IABvfYWJ7/LLZ93NIJGvC+1zmGpU1VB1t1az54iSx2Zt+nMR9Mx/SgHzShs1AiTVdeqbyLefg8f7yijwAABnIQRRzsFCQWVDggTd9YhTxOKjjsB8lNpZo/+S31HLf8jgpHgI2+GjSrjdNCgjUs2ZCngX/MCc+Jvkgz2wChkZ6BkNH2EVnAkmMDmDnDrMTJYpHu3pjS0ZP16FRFn/22aF0mVSwArNtzLbyYGD+iHyM0jam3A2i18YuD+uzDi71BLWghx2dNhAaNvLH//mFB1YVnYVKsyIeRcpjcSZRq8fR12COfKB9FjwFe0G3zRKNQtMubo7UJp0LPnZ/rd7jar5eTso3SMpcz7R/ymy4Z/Aqy43u9+MSD4QEqokgVLT9k9Zspk7Zd0VVNccmiIUJnENc+SLlufPaGyHh27JNwH4Y4Ti8Crqe301E+UvaDMSjTPxxMpsgf7h5NkH4zRwcChc4H12PqV5DuK3x4awEk9JAnD/jPF3H6sa+nGPkIQQJ+zgk4jKYoFXDbhezTVaBIgsSsvrlQSK67cFn9IdWl+rzz2Cn8S7o4UqnMyb7tU84/K+ffR50F9eELJ0AFg5vDudXxtJVnERUZEXVWlB8/Lc84pzZX2CRGXYjqVI20miSjezkbBQ+ZSxGNtiVZZUNHyfJtf98EhlXfeYzvOwDcIkRWZ/QeAg2QdZm4aacjSIPocvohaxIFOyCuTz08Thjq2g3cLsEvdcC4Hic3TBeEj8v7oYpU4qO5Tsyp1DP/C6fkHQaICcUcXDIxGsi1NnRru6GBrNt1q5gS0F9C4wnDQpI5ZNEul20O6XJwM0ORsn54vk2pmlrbjsyPmHRLehLlk4nCA1q9bP/6nGPv3AZHUFOOLuae0WGkrb9mJ8z1flnZdu/NxnmqiT2K8u0krBe5eXzh+GHSD87vsIJ5va8S3tVTGJO9n6MJzzYTBo21fKCieI4QoksF6rkpTZBCtBzWOx/3BNcto1RMM/AGd0A2xoZbsSA/ASeqcRKahPMu0wI2iVzPB+d37tw16JN0NPXtv9jCwBC+M1SWXaZTYUpDDQPxA3ohDp+PwG48ywyy49QR/S2x4nMGXIvpK+/FTnvPwh7ln22MQlxbKf7pT/7zI137RTkuaCHE53m7JQnXLD2337oiesr0m834XYQD8SFrQwAKeWSjig7Ipke4i+yKZpphV4QxoaYzz6AkTYYFWNRHfZN79SCLrQQzoGeR0z5lr/NnrcogeMpbCEIj1MzP7kmvb0tiiJnvAeWvbcxKsiA8Lia/6QQKK9LNI8l17go2QQlH7081ko2QbwmNSLmIVBgW8+SvXdxYd94VsPBegBkg8E6ZA0oyArKnZ43Qj1ENYQA9IwhDfGWZEKyb/P8EbIPZlswbUmYff733cZUVR+78p6XvvZz05nu3WRBDyM6/SmS3/m1j/jZf/XYSmoYDa2hNcsoNTFJIRRQKGiTdGbGd9mkT9VhrhMR53k58IJkNubolYLPXLXb+5Wlwwiy38yrYgKwjLjeQ2U82IyHIkoHNvpKv6j10DNpkV7DOmIO3JSA0PQ4zn5GLYZnt6mJIPrNpH2Rc9tHlKC4y0wnbPBPBIFxjD0WRdR/G3hI3bhcpCVKvEP613TJWRJpdhntMAWEQLOK5bPQLEM5+KlRNT5DQY1Qr6BZQ7eD6VF0wSXKHj+NyPEPAzALAaPR7pSmFX92AO5Eov22MVkhX/e+G97xiVv2E8uCvtTp9B/zXiv5M9/15fdsTv/wHdd0RgAK2jIjN1U0XltJNsltOoFBb/uf9zQvuJKlFzZVQ8nqKBJPyJY0UvKF7X2C2FCOYeznfR6SXXsivrZB8fH7ixIPmRyyZyxp5wyZMgc07xfenIgvEpVe7I7QXJ/ZHhBmLIVBYq0/iDO5M8khh5Vepyf3z+TA2+2xbZG4QTZUk2MS4BJKHjAHxqRdO++C8HA9kLNgOaWZMwEAvt6oEBgcQrMcuyzITVhfJtWnLWg611WhGqEaxhU4SYW9+08aeQtJCmPIBqLpzTv3gaV5jXg6SXEbE/TO3uz333LlNz71nIMraVXJhzdtbW1dfvnlt99++2TyJVjZaDgcnnfeeU960pNWV1dxX4AQgNVR/T9e/BQB+4dvv6Y1FlLSQWeI3r2yTNG515m+C9R/W4QfrlUzVQu2rsvv2tdQtGM0x5u+ygkpf+wO/jY9JyBLVM0p0009vZ+0nn2b/RvYsCwFMbBs4mU2/WHUPsavhQiLBAj7PJfWbMJbf+PeU8+1CUDPxe9m0w/7L5B+ghJLJR/UFllybzkCZY/MKWRml0Yj7xEbBmf2eSoK0+svCDrKj6diMzdI1rAayqXDVXSncBMXsjOAhRK+6LULQliD2Ra6XVTLqEbJbq3wQgBCxMU5wQowGot2D02VjiX2XHwA2H23MSn10Svu/tuP3/JDz38MFgQA2NjY+MAHPvCsZz3raU972mg0Ov4PHmo0Ho+3trbe8573fOM3fuP6+vp9tWN5ban+7y/+iv/6gxevjwS6FlYDrjpOB2iqMmfZbEQKHnbfv0Ckao0tKfpsemRgkOFE+F1Ji/mG+Of8W0K43L7OdApXPTb5SdAdhTtYxkDGW0liUeWlf3OTuHr5Y3bOnQstJoJL3sbHJIs4fM7fJmzwjgtshNtyTvqxPpNywvrU9q7vL6HHn2RCy9goMpO9RcpGaNHk3xZCpiSHZAzwc1EtcyYaX2LHaLTbSUGEWBNBxCI9/tsqluoxBrNNTI/CzNg63LxxQuTWh8w0FrjjD5INM3v8bUzTmfnTd31xa3eGBQFbW1vvf//7v+M7vuOss876kkQgAKPR6Oyzz/6u7/qu973vfdvb2/dh2Yy1pfolL3zy//czz3jCBctoZ+hcqoKGpY2ridLhE3KeqrWl6Q22DLOPC8JfF5W1SfXmiehfsIbobjbTNVynoMcG0vuEK03aVv/1PGnYOO0zkLDpHYxhkiE+403SpyszMP+tLXZoSRQ52fTieU33n521EssVZqLujwSTspF1bvHmbMDM5Q3UieGD3gUJ0mTeIfJ7GoIx7kxUA48xQqLd8aeTSKozJAUrSwoqE8eqEAkq0tNNMTkKPYEFrQbZ3ood8uIO9vRtY5LyE1+4+6NX3NUbDA9Huvzyy5/1rGc90FzcT/TMZz7z8ssvv29rN1VKfO83XPTX//U5//bbHnNgWaCdQXcwHXQXnfQwCQ2Pm/fVE/8wVXbGsghY79uoL9hv5+kFg5IBjrxd/zpdMS66WfFzw3wpxG9zHUS1xsuqdp4KpodKVF4qzMQDc7+lTMW+63PKNoHvSrDOZfxkqBAlE2I4xSaKut6wf/ushm9KNgHv3MwxzYaHB8L9bYKMBy7bPh7zru9LJntGdyeq9sudiWro88h9qSGN6SaAWH5QUJHyZC+qAEJNhIBJEkZjcgwd1Y7qIxDoG7AMhXBGcNKJ2TYmcyLbmHb3und+/GY711l/GNHtt9++trb2QHNxP9H6+vptt912fxQQfNJFB37//3zmm371uT/w/AsPLgl0s/Scb5rJ1pKhlxVWyP5Moj0LYR+k2r+oAU0aYWcf2jCpdKoO5ijHoHMT/wPx27k80KTlujhMYM5Vot2Q3D9cYENMsh+1A/N7+poXCQwE2RquOm2Jh6wV4iECuc2/5Z8URJEBAHw16yLG5G/ZAMhF0Wt0HyB0epBDl+0/UTYY+qIwnv+CR8huYjMeUlHYYFWExITgTChayAloITHb8ae2+xBcqH3Aku85RPkacaC90hazTXR7iVQ9YzzFPPwnYHuFeXK4BYQ9oW1MQlxyxZ0bO4uIHCaTyZdqFK5Po9FoMpncJ4kJfWoq+Y1PPffZTzzrY1fc9eYP3fDeT9927d1mYg2s9Mcwu2OPraQBHBbG3ZhOc9hA8zNRnYhT3XtITAeV57mB6WAsFCIPRsTzYaMhWFLBUU1YhpdIgGEuCBH/YDgUHtlaGAFpWXZAkAbSrITUAUr8D+ZlZs9eUIsE6oK9NRLS0GpBGqXJRFFUmsn9URBF1jQIOQSlSLhdlr5Zna6c9wEpSKPvAafPXlCabFTAsJ+7G0g2GIIQ+qJgUrXkzh7fI0ylEYEwjHzrjz5JnImaNDv1jmnR7sVTAQOTwlCOHHzWCahksBOvdAwqiA6zTQiwm4TnClJPP9fuRHCTCNDDP+ZuY7IW0k38CqghO0h13Z3TS6859pynnF2pcorqgr5U6X4CIUeDWj3nK879hqece/vRvde9/5aXvObqVhuKGJDeNDThBdhOEesTdi3HITaH/adBcXAE4qqHmfkg38UaOhTS3UrDUO1kadMpHRoKWqWnTTgClf0Plq7qvjUdrIaVEE6tSGLSWawWyI6dJgbK0kjVruktjeS2vwEA4zbnNxGE/KNYpnIFiyiynD0HP4k0egiUsZGDAcnNFQiIXSkjHnu7hEkgIYaCUfWHi4Orh4TDIigGTcrx2GOhLYyEJH3RPSyDoqJN0B8YQVwZfLqKOzycpYaol9mvEJPZ2h0MDzHeiDHn85jgOUnAeGcoOXFYAh1mmxgchOzFSEIvc9It5CBKKYKQY17Fp6hXMFiHqll3g2yOGmq40Zof//3Pfe3jb/kXzzjneU8545yDw15jC/rSpPsVhBwJgfMOL/3LZ533O2+74bajMxgBJcgRAUKKcNwmQvrXptM1sy7DvI2ngWWYFPKLCAmsO9rVEA9hkhk/OQ0twwYGRFBznA32w4KSLWFSUsWEY2H4SRCCSPRvlptdgJ95bHAFQa0EQCrwAEDDCljJsJBasNbXlUEfBYmxXP6sszgeh9fGQmpE/5h60MJ3hAyPLZgvZMM/sEjz48MYcP2euTi2xEawCaoUjy0MjQRRtAls5CSGELNRur9pwnrH0qZOIEEgWWOwBlEBFtLJX/mT6Y2AaWE6yJo1SvhkrT9B0X9IhXm0ja+NgZQwDocO5J5e8dwFe7xtTNZCKgwOoj7ONiZj5Q13TW+449Y3fPi2r7ho9cXf9MjvfvYjzj20gKIvfXoAQMjR+YdHT33U2m333AVh/ej3sQK2cdUGI9z2tG+m7FKdyy3QXAun9prfkS5gBCSIAfgWHRR5hWuJJVvipMdGX+1GhchmrLvMaljVw2MAlnggLcD1fBaEjF9nSrYvDe4GhRNvNazxjQswHtw6maQeoO5wprHI4CdT/RkCzfNTg1i0/1cCQrI4bc8m4GrWcpsgiAUlMEZpYCARhctzcQV2oyusYaW3CawoVXNAjwc+RPuGCP8k8MlLfFoA/rxB99T1MlXlgf9teApFZkS7BdlADSCrJGjpB7DMBhA5Q6AlIuvPH9JjqCHrOBS2MVnhWRWYu43JaAiJann+NiYLmLiNSYjW2E9es/Xp6z735+++8T/+y0f/6687f2X4gKmpBd0P9ICdbDgaqBc8/SzlFmOMYVqJW7Km92+m7yi0xdVKDHmV/I9Q4du16MzehAfmM8FQNjlVYg0lWXM+WYs2LKdrP9OyYBSvYuL+dOfZ07r3XPQ6nI9eZoBzQqKIT0R6JPEIS3ic4BZnQEcGLK1SuC1fZWkQA0X/A0iuidpfx8rrGWy7XghfGUqdSJJZqBUukxyBwNhgpoBlwOzOF89PZSR4CFkboa8NpWjGDuJDVPfY4ODHBie3DwAIAVVDKqgBRmdidBbU0J/SLSrIClJBKShFB3jXsK2vzTM9Bu2OI6KkuMSTYUkN/m1IfhMAMNuB6YhVTiz6GuDWMukl25gkhIBp0e3M38Yk8m1MQkFVGvKTV2/++9/79L/7vU9dc9v2CeuVBT306IE8Xvdbv+rsR589IuPXQOv5GjaDqOwywNp4WgSf4Xkx7xD5oaCB1eQMEQ99bEvAz6Yf9uEnVfQI0JhiCQdCWEoXNB6HbCYB23vq/gWpNExISSI2EqRnujsk/gYe8gMJ+zZBv3X0LuY2wRwgtPy140pHALAZDjFc98in59gEKRDONU0YG5bbKDby4Pui//g6hZwiD+ypc5uATBPDrgx3i5uBCF2aVTQHIGqg8iobKv65nafKKfcKQkEAeorJUUyPwcyAiEQJ9vBCCUkNUwnToR3H8WN7UBT+YiJleARAuCOypC/F3W7DanaC+IltY6rUpBOv/cebX/iyj733sjtzFhb0pUIPJAhddM7y9z/nESJqZ8sUpWH6pa+C0+mdm9up9gnXB/XH91vIBpDsACRbqrg6D/96SJOgINO5HIGKhzHLGppljYdr5mq3Od9aOr0pk0YULEFduICHWTxLOme7jHaZTNgnQYx9BOLPFQJxoUesgW79hyYsyJ+STZCMjbSn8h6xUUruGt0mQ2U/ORT7KP0ktwlMHBiJKCyTiRucNdVq24PtoIInUZH6Zn9+p6rT7ApSQUp0E4yPoA2Hc/fWdXIcQsxT6PZiYlvisXGxu69625jUEKqmJiR0h+lWTBw/8W1MSkGqT129+eL/++Nv+vBNCxz6kqQHEoSkwA8+74JHnzOiQ8FpHCc+TWmeh6iRCWZ7antGw7M3yZEG3OsRhITV3iHz9q9JdQRbfS1yEs5JytgwLO8gTODM/wCgBn77XuadmKKtXYLGEMLKA5tO32VxOaZYAxBCoBoBiHr/+DYB/4RecJug73wYk37SA0JZQVa+skaBB94XfXXfA+PiwOivyngg1GTvC8iq0BcFuyTDJJt/W7AJmMkSrrcMKT17gFC+wJpLQGi3mSch/eGnQkbN7jwYwT4XElIBwHQL0w1/Pt4+FI+XdZnxGnoSZ1N8KNCH7gM2qECc16ME0oTAbIvie+KktzEpdes905/6g0vf9OGbFhtav/TogQQhAI87b+XHv+VCJfrqycTZG7SJSVVtHjUKOtfk+s7fiq/9AACqIarGz5bMMvVtMSCJyyE2ZyPTKQkChakbDh8z6YwlIARg00NpczwO6pK9DQzk0ch5OtdAF4Gw9mVgokLUx7MJuGIq2gSsQ6NNwDj3otARCOslCJU4K3afvu6hcgbGc6XB+sgQtoUeUTWqIWBjXPREbYL9UTBjwySfBI8wuEGhxLX7a3egZ+T0kCcRMCmWiSvikEI3xuSorxFXiMil5M+ZtB6EPKVukA3OkPU2XOC8XiI3iOV/mxnaPdY0Q02fBSOTn4SscQ+66vZj05/+w0/942V3nrSWWdCDmx7gtBMhxL/5Zxe957I733vp3VA1pMs7CmdrAtqGS+cHppEYmJkrEALWTt8FtSsrnzZqDSAADWOBimaFy5BGXKrNyKaTk7+I6xBMPSVLQWzGVktQDYyhhEAN4w4dN35CWkBrmpaAMRDhLAPLOOE8WH+l/5er3YBAzvmzXrb1EqTy3oDVtH3EyUHCWjpih0QhWNJgEIW1BTb6QMhVv2U94oDQIvLg1zAETGhRev1Y7JFcIClGJs5ZaqkE/wMC9QhSQXeA9juXhfE8uAeXLovMpSwSLwK5KI7Phk2kwXtEKtQjPwJ9YZ4ZpptYGlJjIVncmV5ul7ch78H00q8VTIvpMTQH6Ej7bBgjSsCThG5hOr9bKz6CiZ0rAGt625iW8ju7YdzuYHAgNBbTLEXYxsTyIfvbmKS69cjk5//40tf/0tc/7hGrhQGwoJTe8k8bn7lp/P4rti+7YQ/AUy9aeu7Fq0+9cPQdX3XggWYtoQc+9/GsA8OXvuhJ1972sRvuHBMGWFaShP6NCq6XJB1UTza9QyJTWM3m/kezBlnRNBDkBGgICWFps57waOSJ7w4BMWD3ZcPZ5uGQWU1rPwAANUCTbTzU/neSQhP+8RkbJwjGiX/GDXBNioPuUy2hGtL1wvMgFCTiaTqWJ82frE2A1FkJ3h5DIKHQrPg6Zp6HDlbRSjU1bQk1+zQPjBOboA+EmXM8gAqKPtgEknVEZhMQPNt9bAJEBOrHRbnvG0RaL0NW0Jo8A0AItDswZ9CgRZwabo9zPBCd/cTSKou1gIJtMTuGwYF4bhMnfraWu70x0G7jUZhT9K8hHrj3pppkGxMMrNvG5Kp9z2A049/SWhS8eeGXoAh4chy1UOrSa4792l9c9oc/9cy1pRoLmkOX3TD+0Vdcf9mNY/7h+6/Yfv8V2wCeeuHoVf/uUU+96MFSHOgBDsc5esaXH/4vL3z8sLYwHcVSbBp74XlQfFUAaTCKhUcsrdOAtp7whYfhATTLkBWEO4ByADWCbIDOx8QS472Yn804CfolskHpW5Z94l/3qpgI5Y/CVAPIAWBgOx8LOo4QTLIwky9QsV/5gImmtC6GQGqIZtXHQ9yit1MTtvNCKwSgbOnD4PaloTnOpGdMM2mQLmtWvPYXYb2ad2L/SXt/UVDhMh6aY1/5wWAADaPjYoms0KwyfBWA9n2RyJMH6NLo37ygZZQGQyDNHk0zPK6GqEapXyUAAT1DNw7buIhDLjEZkQlgkbpg0yiYFrOt1JZKrahIDmXb1A0i884bc4oAUaBZwdKZPhYXxrM/X3wJgzXUI7SbaLd9wl4hKtg7VT0YozE6p970wZve/OEbi5pkQQB+7Y23Pe0lV2QIxOmyG8dPe8kVv/6m2+9PrvahB94TAiAEHnXOuqyHaHfJejJUKSCNAoFNldzwpInhdITuB16sX3UYHoAa0K/oVtb6KiN6CmFhZKwWDETLt8wDyEhkPIA8Dx4MDOlwzTKaYhUTCyHQjSMP/vBvmxuqsDkzLsvL3435QGFZy6tdk7LhPMLUkxMd9Nhb90JAqF6ZgDmUO2HBDyN9Haz+4IoJhWYVzQqEgFVQQdNp6CmsgaXzQ2MgruQJZQLp+4IJG70FQllhcMCXTfOVzZyz0sJqX77IJXQFEz5yYtmLlJNcGjY6PcFY4V6prNGs+aEoEdfwDWAtugmaAxS2Yu26uBzCGXSIujtEVt2+VynRjSGUd8H9lWnPRjSyMBqKIbrvPuoFVcFoQGFwAPVKMkdi0SMLK2FcCbsW3QydgKx9IDpIUljGQsYSexYppq3532+58lueft65h5dKw+BhTT/yhzf8+QePnMiVv/bG29ZH6qe/9azitxsbGwcPHsw+fPrTn/7JT37y3rLYowcFCAG46Z7Jnm5QWbS7EM43F8mkEiwaA6S6mP1Zy/S+9Va/UzSqweAA6tVY0ipGHqhUqFyCkOgmQOfnf8YAZ8PO4SHGvizTuaT61RDDA/OrmFjIISDQjYEOUH7JSlB4UDAeMiyMD2VOgI1BiQ33XMYXU+nGPkZvKSoiUlEUeYgoSIE4m7q2hnakAqhGGB7wiXkJilgYBQvoMUQLo/azCbIeSWwCJpAEjPumybo3TeKDWB/F6vZ81+iwkWWeTWApdJyh4DybgOfOCdQjDNbpwDcLSaKQ1vuFMJhtQDZQTS4BNzwiAlEJYAFf5kMI363u/KGqhqgYe4ivBYvshcI8lmIDvivh/WYrUA3QrLNSI5bFzK2fXH60CHrqKboJVINmBbKOXFuGPUn6OHtAqT57zbE3fPCGn/qui3sSeFjTZTeMTxCBHP3MX9z83ItXi3G5tbW1q6++Orw9evTot3zLt7zoRS86DVz26MECQrfcM4YF6mVA0tY2lawMxdHJ14SQ+BAwMesXJjoiQmGwjsEByCY2aS0ZWyZOOWFRL0FWaHdhNISh07eQLorYHhuk7wybrpmykxWadTTrcdYFHyjcwVUxqYeQCu0ubOcRKNieFqnRnb3gYBwWYKw3aR0bbvPj4ABkzexNG+/gluXkCFKh3YPtfFQnrkuFlIEM/1IeuE1ggwdANoGTxmDdLyHwmzgjWlFGcrt3GmwCy/YD8bV0FxRtVgnmU5sA1qOO26kjFKWQhJp+JZsgEQvDwrhIaWPyoWejztnwAg4ylL6sjh6j24NUUENUo3g6nL8YrE9Tp41nYBuD2Q6atV4Ijs8mxn9ATb4C5CLJ0kJPYKaoV5hFApa/YH3rwsAKGO/QwBroKcZTNMuolojhlHxoNICoG3tCa7zq76/+nm+4aOEMcfqRP7z+ZH/yo6+4/tO/WcByKeVjH/tY99pa+9M//dPPfe5zf+qnfgrAz/3czx05cuTw4cPveMc7NjY2fviHf/i3fuu37g3bDxYQMkEd18uQDWYb0DMfiQqzPYxRjx/phInRMBNrqAiJehnDw6iXIHk8DdFotYJhhgAsVAOp0I7RjX1gME+UCHdhxnu0fE2cuiawsYrhIToGhs3V+PPwXgEGqoGUaCfRLYuGYQaEiP9y6ztxBx0QStQrGB5EvZQ8SJjnmeJQAwiFdg96luAxRA+Mk4fxYJzZBIk0VjA86PfBJH0KxoCFEKiGkAqzPZh2X5sgE2jQ+5bpfeNZckloLgw4OAA5oFgWfxC6gzCoBpAKs12YllZfQl1BsO7IO7VkE1CnGFqZc9IYHKQQMb9J8CRc70gPgcLAarQ76HZRLaFagpAQmpgpOhNBjwvaADuBHEA2kcNkPFg/JgUJMJoRFMtVA4I0i9kW6mWfzuN/JdNwqACkT9sj/xMSMBrTLegp6tXjqCMOolJ+/oaN91x62w9/82P3+8nDiVwu3Mn+6rIbx2/5p43v/OoD+1zz8pe//POf//ynP/1p91Yp9cY3vvGVr3zly1/+8s9+9rNPe9rTfuAHfuCpT33qKXENPHhAqO1MnLxqiNFZaDepgBXTv9xhj1BUtLstqhEGhzBY9Vv2uNoN1i5CWAkUKwAgIYDGuURj6BkZvNz6BhmeAQLDfONxMItqCcNDaFaIDTClAPYgikVpXNik8tkT7R5Mm1jf8RmYExANWLYEEuJg1QjDQ6hXWa4XCSHm3XHFYQEBWWGwgnaKbg+6S/A43CSxCZgKi9JgJr+TRr0MpTgL8VbJz50vUmOwim6Cdg+2pUWyok3ABJJEwzIwdsVAD6FZZkd4gMkhswksZIXBKtklHfEAxkbRJgjSYM5xZINJg6erRX8icyZcoc+wzGNgDWZb6MZoVnwQLwIQg6KChyFhNbo9NHUiMc58kDFHoJhPP4So6JAniW6MdoxmFYCv7uqmqiUw8ziEAg5poJtAd2icW9wH0Yx5ASHamX7Hx2564fMeXVcPiuyqB5wuu3HvlH+4Dwhdcsklv/7rv/6+973vwIF4zYUXXvg93/M9AJ7ylKc84hGPuOqqq74UQKhSPLplIBWGh1GvYuagqKWoFP8RaQo/zxFXGmSN4UEM1iGbVFlkxE4osBbGBc0JhwBUA4gKeoJuDBOOrSw6Q32Dl9ZdmgNQVe+HgSWb6DEjmfoT/iaiQjeBHjMoom/tcdmwXhrNAVR1yoNrMizCEx4bJFgIoB4SHk9gOmaTcpsAaUXtoLngw4BqgMEBOlQmFUW0CahHIg/wNkE98ngc6nImm5ZIFnxFJ3IS8hEs1BDDgz6TOIHz0CHcJrA9u6RGu+sHQ99HT2wCUOSqZBMEacgqv0Nw7xIerO8OCVgBTRIQgG4xOYZmGaoXm+L+Dd95455WT2FmkFW+dpXHGEKAISTFSdQj7w4KQApoi9km5SYEG+sUtjGtU/3vHv9JRBqQ8p++cPet9+xedM5izxAAuPTr0/vDI0eOvPCFL/wf/+N/POMZz+CfP/KRjwyvm6YZj0/aA+P0YAEhmfg0AsZCCqgBls5CcwCzbbTb8Ux7IJreANPabgvqKgYHUQ9Z+Ag9AOgZiTHKxX/iNgwNISqYKboxnbrGlQbzhAInfsHjAOphnPM5JwFpCIB9gEL5s8/9rj0LqVANIStogoFwH8F4CPATVLCo0KxhdBBqNAeMRYkHS1gY8NhAVRDL0A30HvQUVkd1EB4ntwnCCnaFZh3DA1BDUrj72ASuzSIPNcQqOsfDDJZzHvzCPhgTSy7/bXAQVc02J/QGhiAFagEjch6qGnINXWqXRKeQ/2dTNkxko1nH8CCqJt0jEYYi+7mDeRN4gIc9SaE5FwFzQa2qRbWaevwiWVaJd6DPuykaxUCIBRIMfwqWVAmqiWAMQZrwy2Z65otNxMc52W1MG8ffxuRvLG4/uvf5G44tQMjRZTecIhJ8Zk4yt7X2xS9+8dOe9rSf+Zmfyb4SRQ/1VOnBAkJnH6DEJLc7HQaGNjdUA1QD2IPoZujG0BPoGUxHdjf8OUBCQQ3QrKFaglTMInNUlFoKA9KQ1Wby2eIKecna79XQLS0zhPsQJIgK9QqaddRLnv8CG5Z90puxhcOYKU/aZbV2U3QTmNbfx2acwHuN9TKag6iXoWRP53KVlD6Ca04aCvsgXi8EZAWxAtlAT9BNab+RoPxa8gDCzf2CxyE0o7hnpdAdJZugiENCQDWQFZSLELYe8DKbACEK5CwGhXoVw4NoRqw8TCDeF0E+psSDAAApo03QTWA6Yp8ipTGuxVEQcWmwXorpjgVKPTNnCUUckoAh7KFvXRPtHoxBs1rq397N/RFNU9hwcBwzp+JmA+S57KpJayKQxEzr16jib2nYuGdPxGhjUA7aO0ZhG9NgjTFsGWP8OcRkqj9z3dFve+YjsaB7QXbOSHn5y1/+uc997rLLLruvGXiwgNAFZ44GjZhq69PDwlFmFnS0s0K9hHqJoivMLkMIGkiIitY8uAKdhwE2DnH3bXSG3Ku0goiQUA0goTrYFsb6cArXuRCQA8gKksNPZrD3kcDGC7w/FHAo40GhGkHUsDOYGbRGPWAJZvDLzmqIagmygkyrcsV2BXJVxXR5yIHu47EVkDWkghygm/ht8FZAKq/0JSkd2aBZRbUM5bIBudqdZ0kxxhweIyRGisiYFZADNAq6RTuBnbF9r+xBnE1QjdCso16hcjXzTBM+Kkhcgqwiz4P0GlYIQPoNzsEuCc6KzaQK32tuh4BSJ2wTkE8G01PiQRSESc4q6vYA69dmEmYyM4VuYzoYHZ+Le9LB4+cbvUVFKzeWFsaCpWXQjZmUeEfwbUw2dkGyjcl168lsYzL2mls2sSAAwFMvGn3gyp1T+2H/w0suueSXf/mXX/3qV29ubm5uRiFfcMEFp87iHHqwgNCFZ44OLKs7N7TPD464ImDCLsWgWYQ/RsWRtT6VGSybzl9atDcFUzT+FjTh3cs00ORnO4CwNV1BWNgO1mCwFt0R03p1LPnkDA0VV1BFkiPuubOMB+HbjWF0Z0XWUAKi80FLEbanGFgqeCP5FvoiMPdxiC6IAMAeIa4rwGcJq8qHB0dnxFQrwNsQomJeaZ8NsAfvOXPBJoi1yzgeA5CQNSoJNDAtjEazCjWMYOBtggaigup3B0qcBB7orXQbRTPfFN6QFxbVAEJBtTAz6A6qiYefeokpyAb1MmTd6xHeerEvCNFjd6R9Aars5/L4XUa784PRQ6Cgvj1qCFgL3ZEhxXL6o3sdgsNANUw2esdtTA1gYEewwGzr/tzGdOs9e+NpNxo8WPTYA0jPvXj11EDouRcX4pl//dd/3bbt93//92ef33zzzafC3L70YOm8R545fOw5S3ce3YBwR1yTInMTzzqby+TwADcsDaA9LPE0Yl4FJDN5E5s3UPhQRNswQSxSK5YAr93GbOR3Obj4mMgigana5agX79ljRvQPYw4TlRSQB12Jbg+zLTTrgEtkoq1FYQdJ8pc8Su/xueKzhMcMJ/jitrdeJaSE7tDuYHQm4Dqog7H+SJgyAhVxKOkh0lA2v4avc/hlbUlFH7QvQBdtAviDdrKSNv9/e28eZ8lxlYl+EZl5l9qrF6nVUkutfd8l28L7LoyxZWxjGy8yeMM2M7wZhuWZxQaGwbM8MMz8ZuA95sEMPPNgwDA8YNjM6gVsA97wIu+2FtuSWt3V3VV1b2bEeX/EdmLJqlar1Wq17/lVV2flzZtx8kTG+c45ceJEUPq5rvQ8eHFlNkEkCuMT1KiEPZg/A7IBudXHugXJOERcFELeMbzr4UCI+dPWW3Vmiu0OjfYwpGQ53/5BXAYHweZfgKA7yMohkHnfnFspBKoaimytxeGSs/yck4R4GZM4ocuYmu2XMR3d7KadHg8xo+vOO84lU8UvvuMd73jHO95RvP7tb387//Ozn/3s8bXr6VTJblyaa26+eIVlr+qQUwSypcbI7+ZA9rddD+Ry56SIxznTuXy8pw8d6wIh2AlRuCqMFgmC3anFbkcke7R/oZ38voHXwEOurTyT7koAk0NQLTRAnfUYgigyEYjkxLZqMeGQX8JE0R7F9CiIXDVoES83hoN2D2A5DyUqKm4fLbQXuI0M2g1MDrlygp2d7k6B0AGSAdGUjYQf/rvoxPhecHJQU0wOWX9CeSDkL0YsivKzi7QV+70410YwfsIrIUGE6WGQcojGdTdzdq3r3AXgIbbKG3CbiNcYrmC0C2IQ7ehqd46Qbpfx2m49LqVdxrR5H9ojIGVzC0Nv8s5l8vT8m2VMNg3ShQfhniWk3kBpmu0wZOi2m1euPfdB1yS99tzx1ouETgKdKiAE4BnX7RqPZCgNaQZGgCKHTMR+m+qcZvcHrpiAsuoHUwKFvwU77NEyiQoQAmoT7VGAxQMjFSbC/wl3RagrX8BZyu4iJHSL6WFQBygHhFzNyTIbaRMZiykWUnyx1ynSuibTQ9DKKjVRxTYBy0rIRVF+cgZX6QX5CWHnoqZrUJ2rDud2kkbyswUV5B6wqqBA3XFQoALTw2g3oeESN7bwCHPW+jiMIafvGouvEqpFu56u/uEZE+Z64xiFNUBsgQGAym3tqjYBBWl2EJcWbGyfmp+wEWqAIhCma9g8AJXnX2VvQCRPCcDOb6XeD+wjbN2N35D0K288/yR85YTTKQRCj710x9XnLVo3KOAQxS4RQyN7XsXDMhvhhoi95eFl5h+7g4JdxYxHgKGdsEsdu8M2ehYBYaYpTCyiMHhyncLCYtGFHCzj523X3JZleV5GcjMR/5kzw3nwJ0T8+LmmllCbaI+4yZsEMmM2uERF0kR2ZyDW4Ii/zL5ole8a4LLYC+khPY2keFzgInsWdvPIP1aYrkU2gSy9n8njFngocZ4y5hcq8dfSvBLrLps/e6c99vgxpd3I8qXhzFSWeSLdoT0CKcNOelKErcS9Jwq3AbmFpQqyssuYpkdKbMRnEgPOLGMC9+G8D2R/V1Kc2HThRzVdt398+5N2Hvv1P/vKfafChg6nEAjtWhq8/CnnVMIPBh22tkQeoOPBaxlbmkgHtHAqW7iBkA4H9sWgJf1Rbqnx0cLC/Ul4wd+b4tPpqKGMoURVl4jH0CFACtRmqRnJ03kGCsqs/8++Qc5DQOae5GxezgZjJrqr6HnKZFKECuf5MybAbCbqqLNvRarac+zcVhSu6QL0xo8T+JHojjpR5HKI4SR53N4WvE2Q4XoqYZc+Q51LV8vcoCStP2x1yJJOa1MTwT3a9DBU67w6N+IMJiWhRTNR5yFZ1iBguobpIZtqxIVW9O/teUI3cdNObLybB9EEwrCpKtnfKd949Ctv3P/WF551LFf+7Cv39ZXQPsl0CoEQgBc/4eyr9y+gczvHkN8jmUfndBSa29qADUQlL4fjGdxYTa4R4drwPaYRhLBFtOBt0ozCOeJNZfctUgJ++edm2DeuIGnCRo8FnbaciCK5bFvl6zRONSyFRpGK8Vj1RoIfPV9LnEJZu6hUzxzh8dkE5I/j3s+vFGaDRDdVmXZH/BXBwp6Ct5I/Zvnp4+mx2DRRGza3jTsT5D0h97jajSa+tWs9dpybZIEW08PsEUTgPMIhk5Eo3UkzPSkBiXYd00N2mXMv+T4SgFnGlKzEYNERonN2z8+PZ7vbRfS2F+39x5++Yov5oWvPHf/jT19xiiAQTp3sOENn7Ri97tb9/9svfLTVGhKAKYNoNIszjjiR2QSoqJ76rco0HMfvydfoJZqohBbGDzOFRvoQKKGiCZw21GMe91UxIRe+R2Kw94PPNtjX9+ylLggNVai4RjgGPI4u6UHBYyKveU2hIw/G/s6ZN0ZwGYDH0qaI1uhE38mseAOEdrOcrV0xRmWbgH/Rd5xwn2asC7+WAIAAdVAT1MN4CaqLKJj1p4Rg0vkXrJlD5bZ29Vg+XcNo1S1KE7b1bZYxCYtJD8cyJinO3j0/84Nyum7/+MP/9orf/eDBD39p/S8/cdgUU7hu//gpVyxed97cI56JkNCpBUIAXvrkfe96313v/od7UZuFlq6CmXZvNqcQkoIbkB5XBP+/R8v02bwJFBWPPQMoVxnhjeQ8FDQO44ESc3ULHelmaL35X2yVnD+U6H0qcBNxRcgkkF/uPYOqFAErNsxOhxt4hv1ZpxZTNuJbEP+Kswlg1vZu4cPF7PeKwuOByLL2Y7OA31fW1jwSSWP5tUykhX7wH3A/3gO/dw78JxwazWbkU1vblPh92Dy/AOB3mwUAVEPUc3EugHGGpugmaNgqKLj3/+FaxqS3WsYkxF98+Guf/+qRC/YslMX7jU233bxyquFNkU6tcByAHYuDH3/FFefsHtocJ7/7pN9WmfzGlAkeFNVHZlMGXVNUapSZZgkl2oRcmlDRG+uhVJskxyWrMLosOy9QqBSe3IHr3MI9epRpWUruKzxx1mxFWMZjiv4XMQ+RNGIw9po0EVQ0U+1NEwIEJOI8Zn8r19jWIi+Qs2b43Hik/bk2dx/J2ooi1EyLn5F/davWc+q1ZUq8C+iWLXuAy8N2Ot3chCOQrN3WrgLSJcKZHyK3v3hWlVFwFzyO10XHElKgPRzny3kn1fWjkbb5S3cMgSgyTaT420898OO/+pEjG+2DkuCMTik65UAIwDddvuvHXn75/AgWh6I5IRVPCzmixE6MNRyzJhlRdiX136do8ybmc3Y3/9PLAJJT7CuUnTSUoZ1Ztrmlx+cGNrtEJMwnx45togKffUE+HgksXMNsgrTBIjDmUk24zV0rg0MVAJZfjrJYCrfs6ZFtVL0DpNBFFO+Eu/23j5XygkDhOGPbvhHKzfT4N5xcSWzLbjiuhxjvtAXLqwGqIeohqjGaeQwWMVwGKXRHWUV5dweLPid9GVNV/8ZffOnX3v35ByPEGZ1adCqCkBB41dP3/7PnXdhUCrqF7mymXNgXmbacvEkoMULLWjDDm/ieYcTmZrjbWibXA7yViNkiVrk/w33iT5N2+TFY3ImKj+xOpnDYp+gTPEbGBn8cWB6iOFXyxZgHKvKQSWYLmyBuw52IP6X8ubJGslsU2ECiH5OvZYHiNAyYNxP3RXRV/phgPJSZDmzkj6J17EzwRFPY7DUhICqMVjG3B828XaAqK1S1/RE15ADVCFKiXcPkACYH3WJS1/ojsoxJykmr3/GuT372rrUesczoVKdTEYQADJvqh1965fc+/6JGmg0oO2vQGSjygOTHsdVWOtUdhR9kfyJWnTq9krLL/HH0UY/+ir5LrLZjflum8qJ5Kdi2fHO907nm67lE8+uLAokZS8GYSlqDQqMhFtcj3jIPiM8kooDTREVRkE2h9Bd4HlIhZMgT/tpSFIGp7K0oiMKTZ+NB+ejF95Pi+8SfUg5OCSdwxd/8Bqmu5ghg8aZqMLcbo92QQ6COyyJUEBWqyi0AMqE5gt7E5AFsHgjbO6EEPQ/vMqYhIFBVd3xl7Vf/7HOz0gmPUjpFQQjAwrh56yuv+VcvvHS+IajWFkew9XuUjWIH9USZGcXHap5oULpMcy8H2Thnf/JbpdPC+c11xob/nTFGrj5/whvlD+i+RZyr/JH99XkRCn8e0Q2D5k0WZmWiSL/IWArKPRd7fxckt7I8cA4z7R99ZM7ZyYSMh7wtim2CojY3t9Xpp6lHyN7DrUwT9BwUBZLdJNezCQ/BTOHXsPnUKAtOQDYufUBZmPHzQIhrIpiVp5XJPaltRQw9xeYBTA+COheRi+eK7AGf9TmBy5hs3JUg3/nnn//MzBl6dNKpC0IAFkb12151zTveeMN5u4aYmi0DHBTBLEePB20ZA7ZQfwiXEdc1yXhgV3ItTOwkv8nx8MDmjeGi9uHriPVapgG5foxMZvaAETOI/+Qa2fgWlKEaUt1KyYPHT5TiEG/rQdkE+TVgHZ1p4eR5I7iifjZQYsz/X5KevbPOWuHE59WKnGQwX7AJ/OfZ9eHZY5wGT4Ezf3pngsKciqxQDWw8uT0C3bpqCOxH8No8wlaKk9I6SWZ3jOk6c4kyipYxgXlFfcuYfKf7biktY2rYMiYpPnf34d/+my+VGZjRqU2nNAgBGNTytd988f/zlic8++Y9jejQtlCtKxiqXNgKTnUmA55TrvqZFih8l+k48lciHi3O1uaKMlfHaet5K265hvY6yyMQwq2IcRvFwXrORFq1yEAuDf9/Eg/s0fiFSReuH4sPuzUbYF/napedL9v+rBXiF+O4eHD+ovahUb5kMovQJuFB8Hcgd92SRnXpJNxHbtX2Ni9n1jvmpOA8mFupcFk1shpASJDGdM1O2wi33DjgkGAzOr4mggQkqgqiguqw+QC6dRCxHJk8c8RH5AC4ZUyWc0ohdutlTD4RXwgIQRq/+94vHljrAcIZncJ0qoOQocdfecavv+VJ73jjTTddulxBoZ3a/WPsmHSBJoMK4YXOplUsxePfVOOOro/VfTrOt9QgmkLkPVVtRR7Ianzq0XemUe6icYyhROu5CwKmosQGP8MGf2Aj04nhfM4h44F/8XhsAnefsk2Q84YCNnOEiGyCUlvh8ROZc5sg5iHqAqQsUXaAB4WFiFn1nZPZEwm2hZcnC8oRdybcfWSDesT8EonpYXSTUAhOOMixJQ9iHJIibJplgIoI04Po1h3fPlOGPUs4ZsuYyMdRmay8eI9xGZOUn/jiwY98/n7M6NFGjw4QArC6OHjT8y77vZ94+s+96abHX7VzrgHaCdvz0WkTrWP9RcGcDD/upI07IVNVRf0CNua5ylNuEQbTaFZr8BZzXcP1ftZWAAZiWRiZ4V9Uf1AMj/NJoB7151U/8a9kz9ureXXMA7ndN7iiZ/ooEO8pg+KwGpMp0cDDFj2S3Ao8tMj0dS95zrlNkMiNP3tpSi/SoUx0On8BeLv82BtV3BWLH6EIxpS/nF5K2iU3m5sINHPR2jIhQB3aw4wTtsQnxSEXmjPoJYTNWQDQHmI4tLW02TImb3vxh/WdW1jG5BlwYCnlkY32A5+8d5sWZ3Tq0SlXMWFrOmvn3Juff8XLnnbhBz557x///d3vfO+Br69pkAybsRoNov36DIqTZc0FfgkCmKbL/A+tY8WRjRAzzs1Mla4gYyUlXb6yXcPo05fjhe6R2soyFwIC+ZMo8GCNXEJlbiIBDQ1bTh88LpLrBRe2CqDFtWS/9vdTxJqLQkd78Wm/Wa0XQg8PXoMTe8BEZUcAHLMU1K6G1pDkXgkNktCA1HGtzDyRK9bmEdIgQrUt8JjjN3keyIrFyCbIgb0M27DRYxPkjx/UN4tfeWcizOoPUY9Cy14y06MYaYjK3cqWLnCjyedMC7cEym/waDacrIAO00MQEhXXLSXctWuW3e5T0YP4ZUwCENDKfqkaYLiMemyvDFu7mjKSw9//+/tvuvzeay9Y3rU0yPr30UGj0WhjY2M8fuSLW58E2tjYGI1GjzIQMrRjcXjrY855xo1nf+Xgh377PV+D0JDChb81IEAS5NJDibIbJKGMeHhbi8wPA3eG7y7hF2+HGSntdIurc6V9AN0oAq9JYUuWIYEfFNgIPlAJDHwVE63tXuMkGB5raJeP5AEyUr7E2mTPEtjwE2a6R+06h9IGBt3Ggx6ADbRor/m3tQly7HHHmvcIB8LYAzMlNqi2Nc1Md5j3AYkAYlAkx23olKRf3INrXRJFAglcYtpWr/ELMI/RJgjvhr+MRdvIv/CcjfjY/9Y6diYWbZVVCy1uGanehGpRe7XA3hkBkGR9KQHFCsQBUkKZInItpocwWo7LZ2Rwa9nXUB2qmr3PLDAuBKrGPrJZLWu20AWTgBe1rN97x/pt//oDV+xb+JbHnPntTzz7snMKG1ef4rR37961tbVvEBA6dOjQ3r17HzXhuJzqSjz2klUInb27ZtwqGyjj8xxmwiYqwcA1hWZ4wzVgrGu8lrEBE5M1HqNFUNBuSZOJMmkX9fJsRLGvjA3K2MiBED5xSMfBSfeRcZJ44DFiw3swGfMp7JUwieNxEEUS9tQ2n558i/4HVuf6NNy0HymwAQT1FOEi01+hx2OparPPqWPAX6NjgVj8UKEXkD17wSbQoRUrijbGIXIvA2/Fi47CmdBNno3YJgiI4jCyYBO4ywCLfGFCpcFoFdUIokbVoBqiGtmaCM08qhHUJkjZL3Kv0TtDSU2EqDCPtDub6CmmRxhvCNgZzAtPWy9jqiBqjHZivBtylC5gEhVkbTfTkzWhOjLBBz5z6K2/9ulv+bH3/8h/+/gddx3Go4quuuqq97///Y80FyeJ3ve+91199dXiUb3C6wOffuCb3/a3B44ou5Oj5GFrQ8XYC5V+U6RWeAwk2L/aTrcolymuFAgYraAe2eEn/QZffAG5Z4aYSch/I6gqgLUYn9RsS1mtbYqgyRWsxxgu28UcZR586J/3OMUMgCm7HjYi7FRQ2ubNKwUhMVqFbOwWnIGHJDc3bjDwkCgpxkbuEQZRaJCC0kBntfxwxS4iqXIefKFx3h2IXYceNrRmLwZ3jt2PUkEU9RDDFdsdQsZsOCEURUFJ02A88FcRYYkCZ8NEt8xaOqUAskpcTWzZ0OEyq3Tumguum2lIQtSoRqgGrC4fOUtCOcYUQ0RnAWgFdNAdSGO4Atm490eBCMrVgTQvLXVQHeoh6qHrRGY7AhjMQ1RQLeoRxruByr0S8YsaYJ69GFpDq8vOnnvz8y68/Rn7F8ePmqjPoUOH/vzP//yWW25ZXl4+LV2ijY2NQ4cOvf/973/605++tLT06Aah9Yl68U9/4A8/+HVUtdvVUUY6txD698THOdO5ZcOf2fU2QdwfAM08Bgu2kmnKQ752L2Eg03opEOYI5NWuBrkyr7LBaAWyBqoHz4M/ppQNbvjDK+IECDWog9IQAsMV1MOw0Z8odseDsQl8o2WbIANC0hgsYTAf2wTeLknY2NYmSEwTHZ3kPWInz532Nw6HqCF4ljO3jSRANqks4iG3CWLTJLeQNHPdPBDargHqIUQN3WG4gmbB7gVc7HTeuQaTZIN6jGoIId1JsEp0bomPYhuAqc4JoUXVoFkGEF+pXJd10B10h3qIahCeQnVuGVONwSJAUC1IYe4MDBaDCRV6BG4UmwHr4hOGYaWail7ypLPf9oorLzzrUVNs+/Dhwx//+Mfvvvvuzc3NR5qXE0+j0Wjv3r1XX331wsICHnWJCQnNDavveMo57/7wvROlzQQqABYiQKyCPWVKJ1J2CMiUYpIO2QrEguxGEVQifLWwnZrXL6JH0bBbJTH9RN+hVMXERMNMwpIJ+FSVU7Kch5xivY8cjJPzOmgcD1HaKUQ1RdVACGhtd+IQXPnyFo+LjSAf1jQx7QOT9TuyPMBkZ5iOEaytBHuSA8YG54TjQWAjDggbmWgF3aGSIICEkwNYRyh7n17J+Fex3zSJqin6mCT3loTd6lBKyBrS7cJAicABuJk87aeINHSLyQRVg2bBbY9EzJl2MvTTQv4Bjf2hppBTO6ljH5b7MX3LmHzk0ATfOrtJ0vSQA1EAPq+hsuFc26fOvxQSJCCAWrRK/dq7v/KZuw7/+9de+8SrduPRQIuLi7fccssjzcVJokfxnJCh59y055bLVsJmrMYg3WIz1jDfwJSa1kz1uy+mFrebQuC6BoCsUY/CrAx0uKG9m3LFvyljKXYyopp4xBrVzAbXUKURa+KBISxDUCqCT6jotuEkl4nTa+mMC9/i1qld/4DKBU/Mcnpv0gY59Ai/IBCmc6NOcWxEWtjlQYSucUqN85BuEp+0m8skZkOpWP4cgVTEGFiBZ/iZNv52xTc3l6WYl8iE7ONoXWAjsgm8BOKX09QnJaBdg9DWS66Mq+oL84hwIP1HlQ2rdi02D6A97CysPkpijAJEUOuMWx0/KXtizV8qAIBs0IzsfYw9122gXY+2cBXSLldK0set9yn4E/3dJw+85mf+7i8+8rVjVCwzOmn0qAeh1YXmtbfuHw3A9C9Tf16FeWPZ/6njyyLQYmrXn7E+kIp1DVCPbJA9Cs2bmXAOKiU9SE7jK8Uq1+mYjfgkr6PFdY2pYmJnAtwFKlFeyUYYGSeKqXXOM7H6XUHtulaC6TqEHDjG4r6Ikke2gCWu92O0iGwCBo2I2RDSrmTkeJzaBAn89NgEKQqyFyNyxdzzch1aDSAqh0Mq40EzuyTHv3jnBU39bOhYPg7zbI8I60x4v6TdgJB270EpIYVFIyRKXISCPUKiqkACk8OYHHT7L/REuf2mQT5nQU3svg/BX2FuJbkeh+ecLOfNnC0N510rIkzXHHAx/16wnAiw1n0k1hxX9WfuXn/Dz33grz46w6FTix71IATgeY/d+5ybz0TXRRMYftgrFSmUgD352I6/SPwkU+XEl841aOYAwEQDtQq6D3FzUdPZR1yppc5HSd/B51YBgN0Axs6xxzz4J/VYG35TgauCsksmyRy2+fsbvSAkmjm3q4Wbsgr4Hd88BNCYeE1nKV+NKe6UBB1Dj7jZeEP1EHUDCHdS21yS1NEsAaEXS/R66JQNfpL6RDG2tXC8zxTxED9dygmCTaA9sGWvKO8UHeOxoapBPQQopEJMDoJ0pKlt7QNWHc46GSJMZfkiPd0GNh9wuXNwr31MIVInALM16rQQU+UvsIAdO8GwG6IesUYclnSm8DbPuDG+Do/AI8IeXtNBVp+568i//IW/v2NW6vRUotMBhBbH9VteeumFe8foumB7hpLbTltF2jY3hBPVryNFo3S4oWK6ZrDo5pYNda68tw5ROBOp8woluD4eCTKFGLERR/mMVuVryOtRXMVEQ3cuRBbrSu3yl7ROf4psROJSFoC9T0M+0gUAaOZY2hXLmOB4rJgcLNj4VrIYIIf/xI2IEIj5H6JCMw+Y0mSJ89FjlxRNBJ04RrFvxOXjsVYz7V+zvDJSEeR4zybYBE4db2UTbGEhxVzp2JmwOYrml4DaRLueanB4HIpnMblbY1NdKugJJg+AOncH/+Yn5IQmEIMQmBsE9/W+mgiGETaXplt0m6V0mxhyCo/gkKyq/+GzB3/4lz988Mh0S6Uyo5NHpwMIAbjxoh1ve8WVywsSyihoimGGh6H8DA2bqvFWajR/4K1XHcGJDwg0i6jHgC8tXEPWgLK78HGlGQFMckZFH3EFnUOIRSBdGrG+iokIGOBdgeA8MeTzjkjCJzfDt2aDzyE384A3hBGQkmKxe/xIfMFicKxgE1CMQM5zMj0yWIBsnIITNldYcbtEB7vkOG2CoupPnON5OyNi/eMunZfiXtGx2wTbmCY6M02GjgenkUFoj1hZOXajVIJeJe7fLoNDh9ybA4AhUeh9v62tsMOBw3DwhgEIEFhNBLOMaQhRQZplTGZr1zk0C6jnoCfu4jjnM827dBNUPj/IO3ZV9bvv+cov/sEdj+rE4NOJHt3ZcZxe8qR9v/WeO//ne74CUYMoVAKGMwNzq42YaRbZ4MSUnR88zAeSDYYmD1ik98HEFQaWIHIB6y1sRoTvFtjg8zEmgZWr/oFdE2PUrnRf1x30BEQ2d0hK6xlYSkIo1MMGmCvgZrm48+HDMtUQw2Wr/Svp7FwF3VrmeV9EbCQy8UrNeR5APJvteCDnlmmmCps5C4SoXG1NCd2BEPMgbITK8OAt9IgHCmxEITgftctVv3eOlyBrFgQTIB14kP7ZhWsdmRzAHjnvF2Y39JomDQYLsYRdzlu7Dq1d1TgEUQiCBLTrvkiJuzfZRuoq6E20FQbzcU8SuyexvxRI2SFA7BUyz27S9kgBAs08RssuhQ/BW/LGQTUANKb3Z8uY/Ktl5MsDhoyEAEkI3Sn8l//v07fevPfaC3aUr5zRSaTTB4Q6jU09QDWAnkDWIA2SziJjywOJ6ZcwVIoIxKxR79nYFX8rqFhxqlAijCBHIIKe2lJaxC1KH1sA44Epu5yNxKPycXMTCeyrYmJmdNUmBIEkNEUSAKudk/NQYMOrfgreYWBjIWIjuo+A2gQkyEyGe72G47QJKJ750M6TEzWGSxi4/N2IhynUxDLmcWhbmwBg0TAEOaQvhmIdBMgaw2U3RwgIL40OagLSx2MT2AfRTst7myA2TRLneLiMagiYtgioAQ2poGtoBTWBnGOKGyG6Jci+sZ6Ed+kEpIQi6zC1R1DVqAZRqC0nMvx3ELV9n4n7Qy5/D4TBMgZL6YthRpb5rU05LjMQJlCb8TImzyqV3i7/2pugXPWlrx79P//gjp9/02OrqifJYkYni04fEFpbb++8f4LhAroK7dGQ3mNWMJC3mLi95knbM8Rmp0MQ36n+aoThCgYLLmpB8d0IgiAkBvPoKnSbQGcjACTC2BbMeUptcAZmRr16BAo6V6AeYbgDzdiVCnX3Ec4Yh4YcQwh0G4C2PkHCAGeDqMCD58Treh+QNNfXIwxXnfPheUDQGnIMeCykyCYAAjAHXY9Y6ec2AUXZiebiZh7DVTaPTU6FamsTWB70cdkEYJ6Hz5DMTBMzATNaQTWMutU6phIAug0IAlVQFDOwpU0AxL6gY4PH60z82bAxMDURBpYNjseCUA0BDXUEeoJqaFP4PLcC0HCLfhw4+aia7zISbuHOYQxX2cuTGDGMgvfD4ormtn5rVyEgvCnjZch6YZtlTEOLpOQ9XS5bjjTmWeS73vOl77r14hsv3okZPaJ0+oDQtNVr6y2EwGARokJ7GLqz061R5oyhBEK0M9niySQfkZM1BisYrrC5d0fmi1xVCWHT1dp16NbN0/j4T2KmxQDgeSAEs9crO9lguIrhkhuu7laEwLON5pPj4Sh0FyreAwyV+/E4AmNKda5sMFzGYBmiZvY0RXcAQWgM5qBqTNdBjgdvDRBiYzwTBYcfuH4JKEioBtZ8FlXpDqbMs0YzhqzQrttljwaPyzZBDw/eLPCbk/LSMtUAw1U0C0yhe7Vu+BSQIwjpeDAMyIiBwAYLZBVtgq3YWEGzGIU9uU1ABBLQMngSokI1QjOGcPkLkmzvcXONl3oSrmy2lFAtunVU4wLqBJH6oUSlZUwNZGMLobZH0CyiGoRXmjgAS/tdKUHCQpEUIIGuhTqAZh7NnO30hJfgzFEAUSm/et/Gf/+Tz1x/0Q4pEuUwo5NKpw8IhXdeAM0iqiEmD0BNAAnp3HCrAH1FekSmYhjtPgClISSGSxjtQDV2oSS4ltz/BBs3Jw8DQDWArNBuoNuA9sYvn6MCyCz8ZjxwNoglUIkKgyUMV1EPIQVjgRnR5PVXiQfSIdU1kB+yLP4eBJJNCAmJZgmjHahHUVArqG5uxlaARjXEsEK3gW7T8lAwTtO7sFmQxCagIA0zg114CWLlJQTqkcUhNYXQAY8tFvbwYGQSecaxTeDZkIP0JsEsIGsTGB6mR51dQg/CJvDeQ2QTkE2Tse/GCuRgG5tACAiCdp4EabSH0a2jmUM9ZkGt2JmwxNwjONRs1yEGFur425v6Q+419l6suY/d2lVDSOgW7WHUu1xBI9ObEgQXg4V9o8ySW+eCogK0wvQw9BTNkkP3DBQ9z14VCPFHH7zz+75+1blnPmrK+ZyWdPqAkNKkQwiFUI0wdybaw5iuQbd2ThXIbCU3RIOl6XWfmSndGaW6mjvYrwhrZhpQ0d6MJTe0KjRzkA3adegpNFd/YH4MY5sbvIGNRYxWbTFHULgDR0Tr2vEqJpyHGu0G1DSaIQuiYEozgLlTeZoFvkY70Cy4Qjgiah3uPpYH7SKBxo9cgGisa+h90xDq8eDRYxOEqKDAYNGGAQUL7vkeIdjpn+gmGrLBYBHdJtp16C7YBDzclNsEiG8STBOBehGjVTTzwSYAguQjk0LbZzT5LNYmaF0Mquije0BlPnohM8K9G81cVBRuC5tAkHUgtFskRAqTNagNDJbszE1C3GgwMg9bP3RQm6jHTGKOgQDDcD6NC8oZqhrUA+ujmH6crmGwwuoD+WYlNJgkJcMhsnl9RGg3oBQGfAuJHjQyOCTlF+45/L5PfG0GQo8snT4gVFdCCgSVQRqywmgVg0VM1jBdgzYrA1wgyKuboPcZHpjpn5Crk2sKf+Aie2azFUg3zFzltKqBWISaQh2FmoKQ6R3vi1Cs+4BqjPGqS7jyzRVJQJDdqUhL5wo4M7Ma2FLK3VHo1gWjuPrmv3lU0EljtOISEIqxTfd1Lw9dMfUnAY1mCFmj24DagPYLTRKbgKKfyCYA6rGNRpZtAhnZBOSn7hGM63pkbQK1aTfcC4+TaP+EDd3DBiJpeDC2mtps3CCcrSMhgMEcZINuHWpijf1eH50fuAit94fqMUbm3UjY2M4msL5giN0CAt0U+gCaRTuLFt4HzxjZA+ZJQADdBmruCGoGlsyxFpoxD8AtY1LK3VBAd2gPo9rlLC0nNwlAsrJMCAyQsXIkQNBuGdPQ41ARgcJTta1+z8e+9pKnXjiLxz2CdPqAkJSirkSkO8yeQKLGeCeGy2iPoj2KbsPt9YL4HXVjoxqgWcJwBfUgmsuJSKTfMr+lZjhE0XCVDeQiqim6TXQTl13GUoQDP2TZGCxjsIKmiZeI50TReeGMx8gfEpASNMSgQrcJtWnzp615y1rnEAjYybCRqY2dwA8/9lqDrBKUBF3ZXGr/UVUBY8gGajNAkbcJwMKJ3oQ3nMgGwxWMvJnc1yMJDz7n2MV/hEBVA/OoBug2oDeDToyexTfNLQNANhitYrgMOegPKjqBmjwR6dK6wEyTuoFcQNegM66hydpg3+Vs5GBsKqYPV1E1x28TmFfCeBhSgiroDpMH0CyhGsecxM8V3nkBCFAL3dp1ERy27YEXKaXLmHgo1Q+06REMdzCvTsYPIkNXmm8JJ1sb4XTLmIbL6RgNb7V7PUCA+IfP3Ld2dLo8/2jdifU0oNMHhOZH9Z7VwRfu2UDlB4OGlnZDZVlhuIzhMrSCmkJNoKfOHncjzeyRVc+hGtqdCGwEjy/pLQZPKChBqwG8anAD3mRsywGaGnIANYVuoZUt5BV4kBAS9RjNEqrRMexMQUzpOOPRDFWe42QYkwK6Qj1GNYCaotuEnsYGpn8sCVGhWcBgGc04YwNxozkPxtz2upWfFxCGhwbdBN2m1cJAQL7QKQKyRrOI4QqakVtNCSYNig9im0D4nUP9eekmt2s089ADB8kdENsEgR9ybCwxNhI5JD3CznuZUfwVIVENIWuoTahNqNYGG8PTMCwMNkGDZgmjZTQjZprknByDTSBcQTaSgIKQQAXqMD2ERkdVc8BeEN5H5GSrWlRV5LpFkUy4GSy+jGkRQoQz/m6mL6oRi5MbmRzzMibZt4wpJwEpvvS1I/ce3JyB0CNIpw8ILY6rfTtG79cHQS4dyLzHWobdpoWArCDHaIytF6sb6qDJ7o8XECjR/l7b8vRopg2NhSX4aHE1RUzkwXhFkKhqqBbVEOOdEDLoHVJ218hQEcvjGRgbFPOD6IyAs3Nzy9HwMEAtQQNok1K4EmOhGc8DyNot/ATDIYrFwkd5HDAxisOH8rkBbqBINKApdAvVoRnaFa/2BhWERDVGNUZVxT3CuyNRxNwmkBAuLGmWQ3rGjAUtawzm0Q2sUULKoi9/ClmhGqJZQj12psmDsgmo5B8zK74aoWrQtdYmMMkXid4s2ATJtNxDsAlstpuGlqAKosP0EIAYh3KMZ92uWshhyFz3LmyoicARqHbL7PySKZPlYfa4m0JtQo6iHD8v8GNZxmSKrqbLmEodBQA4vN7eed/Ri85eKlwzo5NCpw8IVVJced4ixN3QGhJOWZjVNtIlwhJ7gdlAJ9h13ahdNrMf5PFoF85kQ3Kf4m9RGvAistq6CdQmmiUIY0KaeXu+E1qf1uOjlD+OsMYvB8fghTgepAluGCzsAMJwycZPDBtkADtHIPRXe4qVoHkiIRgPfB5eQBCkhG5QCTtxNXcGRGWVl8k/DrWIcja4HBK1zdHUdxkHBgmtrbMoK2CIqoZuISqMd0NWbI5dARKidqZJn02A8OCRyoYzTRArUFcpx0wLVSboOrBh0sGyK7vgn0JADh9GmwC8JoLGdM3WMgD3CMH+ZGd053wsvwbIo5EzJqCAfBkTgqsnCNCoR9ATTO5HNbCeYhDCg1/GNFqNmCfunNnvHd1ov3ZgHTN65Oj0ASEAN1+8PBrKzVaDBATzAKDDVLzVk8LO4QMubqCsDSViTcHhhx9Eeg3paDcJuDzvlicjCITRIoDNQ5AjiMbtj1kfExuBB/8HxyE4dw3bVDExKml6CNUI1RAEUAuQq3HA8c8bpPF9UlEgemryXiPHSLcNWlB8Eu0GpocxWAYBpEEdUEUrnFJIjkE/frboAwHnBPi5eGZiS2nNdllBteiOYrjD2QRdYE8kosgFkcifdYplJ84INwnTfP0sScgKqgN1GKzab508m8AAkvHjO0zXMFzOkmj8U7InMeX4zP15SQtzTV1bDu0yJu5wm94xNoe2y6dIAy26KdojqEeox3ZfPjz4ZUztOmRxGVNAI02kdMlVmtHJotOkgKmhq89bOm/3yBY44CmtMMeuArRJmtKsoCc6q7IFj4DJMHpzbcNNsPRjfoJjD9OhXPnqKaaHQcql7fqFTUCka2JOcq4S/4DrlyJ/nh8poRUmh6CN6tdO7SauWH6fvtYRHlMgM9VjJv3qJSEwOYRuGrS/AULB5ZB1SipqUZaDyE6K7Epz/+kauk27Cse4QVb7l4AwlU1RSvy7+eyav4rj8RG0R6BNye3WJp2XbQJR6qLSyxOEkM1peVFwHroJug2Lgp5yZwIukACfTkk2NRGAkJANhISsUY8ha7tdHswmRibLsXKvfRX20xMVBNCtY/MApmshmlowBfgj8ycC2vXIRQvpElEOatuxqakZnXQ6rUDorB2jp1y900KL4tvq+DGjSz/Kqd1ibYXjpd7MunCFu0yiPQw9scccqxJlt2V7hbYiBc11cTZ6hUB3FGrDhk1QVHkl/SmSVkp8JdZ0mQeTpNuiPew8QmkDVnlyYAnvYiEkkJNwGPkjjiUJi8cak0Mg5YCwp0eSdkQymEpYWIAndjJkPwsQMDkEpR5hm6A9At06v8dFtOBEGPwhcgjkfCBeE0HUdmulds06W/anstkQ9lkq6/haKJIQlY0HTo9g436ojZ4XjD0LN1n8MibzUWFyyP5ZV6eVGnzU0Wkl/UqKF37T3oVxFQqvheqfiqERRT9++lQk3kNiRSK+YAsi/ysOQLOvJyOHOuipWzLSr1+E47P0QdwcpZ9wNnjT8ClGGu0agGwRZcaPib8VeMw5T8JTfTwgCLxdg56URJEjkIj/zNtlx8JfylGkiM0S3VF06xAorSftAcLyyUzXF6SavGnuPVSb6I6w5ZmPiE2g0K6zweLJuxFes7O6EsQWA1VD90QS7QbUxG3q6nbmrqTzjUR4Ul/4EW67cd1h8wG0RwozUlyqAcgdIHUbcThah1XYjvljGtMzetjotAIhAI+/Yuczr9uFzkFO2H/FQ1G+xbWKR3MyRJMWOMDEJ6Pv+K/J/GrAA5JTcLaIVm4vu1vlLWwVx2a3SLKJEh58E4Jp5IBzGQxTfLognJzRnPucDS8Kf72x/ZNbifSvh6I/Ul3sTgoB0tCT7K3g6OW+Rew+lNwLBZsgIjaP6Js2f5qJk+4wSD/CNkG3EfbsCHWDsifyW7tyN6gahGLz5okmB0Fwrq2baZPc3xUMexwU2e0egOkhtGvOk8sfmL9sjn9q3XI0BqXmWBNIjwbVysIwu9WMTh6dbiA0N6xed+v+hbGAVlGV+622dgazqbdWarQd/IANUX/ABoxPJw3BAQGYpawVADezGuv4aMRRDxu0ncrb4unc4PcrUvtEwdlIddG2s7tFhwDRSSFQDWxdhshCz7Q/p606JUHLHvSOpusAWdlVsVtkiIChoChr5uiLQUP6I670YzYEAOkqTD+CNoEEKahN5vHAjiATiwtrg9xoClsrCQzmWAgRgEC37uJjDG+EgEQZh/zXhYCoAInpEUwPu2HLOLIHFJ80y5iyrV2NZASBsDg3OGf3PGb0yNHpBkIAnnL17ufdchY6vzmpy1MgtjWyZmeC0YTMVMzVvT3dP5AF+1ZsNkb1YOILRBXGqkB89x4eoqty3cyb3haczD2k88aKN8yv79O8MQ8RSnEwRnwsLKehJsK2bLD7b8UD4h4pWdB8woAAUbsCRduysbVNwHs/a5QzaI+ZbyRcLOuRtAkAENSmVfq8DgIvJ2GbizfbNTv98McRAqQwTbZ2dS5RWFbBnE6OiNLl7HRH0B6NeeUPn9krqnXTw5xnu0+KFGJWRfuRpdMQhMbD6vtecPF5e4bokn2F422VvW9krbQkHJSN4Z44RPlK+7v4BQ5IpmmKi6HlTWbnaLvLzN2ocHVQxwkoCllWRukXCwq2hxOxnSji71qFk4sitgm20q49JkNRNfctYwTcnDnY+7B1E8knebBIx+LbjmeT1249QpTejYweDpsAgJBQrd0+I7xOOnu1yG0nDwCoBmh8VVDfigDg5nVyd9/5XuG8w54wQShtcLI9DLUZM0zxn+yM7kJVdZ83aw6EuPfg5O2/8U9r622f1Gb0cNNpCEIArr9o9a0vv2JuCGgFpcI+mFEUzufzGPL1hrOXeCuFm1zcq54ZZUEYAqv720OJbR2iSpT9dldv2X6hgaACjtkwLNvdMbaln/LLsvM2HQ6xhoqv5OfKkJyR8Hict5uxIcCiQIilQcn/PaCYnxXW3yp/M+chSZMp0UmwCeyhhu5YKNuX9HYJCAJuKggAIGsMliEHgISobOWCaoR6iGoE0q6qvYjwBn5iEuxkbB0K5zYBmBxyZbdiEol04Nahw2VP+GVMAKCr+n/89Zd/4fc/rfsskhk9zHR6gpAAvuMp577pWy+Q6EBqqwkhZmT3mKiU/dWnxZwyoORuLpRRsDc9v9wmzdnIeNgGDrOi4P6CLcz/4AlR4aE4sKWqv8xW4KT4LDnaEZXKe2dI1ovyPUAYuqP44MwS91/kNoHIv0WBjZS7Aira81RmOmXDX2+mQB5Zm8Azptqw8I7c9nShMI+vjirQzGP+DAzmUdV2swZb+2CIeg6DRQwX0a5hetAVEefWhvmdrE1GOObpPLqzTtWxLmPySRN+hz1ACMhmqvCOd33yg5++r0+uM3pY6fQEIQDDpvqhF1/+8qfuk9SBOusSGTTyuyOHXFJKpzojPZep8kQ1Ix4GgBucbNhTrIaiJFERacBIlVD/cY6F+WVIj7eqYsJmKSj+Fr9Pyl4uGfdndB92Mflty2NRGBYi8z9/fIo+ofzT7JgSp3A7UURi2+J5SyLPH7bAQyyK4uKVSP6lh/ISTj7vZ4u9bwknhko2gb9Gd2FOxS+/84UGqhqyRtVgvAtzZ6Kag6ghKojazq7JClUN6c4AUBuYPoDJAXTr8RoJpN5nOXFDQgh0G1DT6EG2XsakWQjEvm+NYe+e+zZ/7nc+uTntqS0yo4eTTlsQArBzafgzr7/B4pBuAQVS0CoCJHBFRyF2bD+guOxCHyogfEpcq1LAtkJWAvsuVzph8CBrl/p/4rtZNuKpCJ2H8jkDxbaQNdF3GbLriYmUt0bZMdMdNtSomVgYn2XG+qRhFA3iboVjjDWdIlAyFdTTa2WBFD/1D9sniowl75iGL23x5iDmgR+4P6P7sIv7bAKesk88gs17FhDSAkw9h+EKZMOqIVR2FscXRKhcTQRTC4NaTA9h8wC6jdBZgbiTmqcqmJVtR0uvtOMQ+TImM3dF9v710K9M+l8fuOu9//S1TMIzetjpdAYhALuWhz/zhhv/+W0Xj2uCaoHOLRVSFpO4XqC+aSEKarGs77jOpWxUcPOTh+bYUCkoVjZZFc4kCp1SmIFDwYiH/FulKibcWo/ieH0S4J9mTdgnyNAiUrXJVxIFndw5EYKOOUF6t6BhS9q5jwfDht8SLXUWiy9A3ncxS/ZEZt/kU+jhK0mL+UGRJRRaT4V/zDZB2lNkS14lqdi+JoKeQm+GaggebDwOGUyyC4BqV5tH2n2MJgehOxcV6I9AJvNDatNtVnksy5jIpvCZT6sm5O9JeXBt+l//8I5JO3OGTjad5iAEYNfy8Kdfc/073nTDvp0DTKdQnZuoND8JDOQqcgulg+gCMtto5noTqS7TcbCOilf2abciG8kjgOka9zvoFMEaSohrKxwbDwkKaruIJNihmn0dqeZN2UigkV2ZHsRPV2Q19Eixi5GxlFMx277v2XvERQmY6dAu+fskkjlFbAL2JoS9ZYmlYrOaCESYrgEI60ylT62unKrxXpGwNXuERFVBSLTrmDwANXFchNybUo6GwyEi60VF0tP2YYODSzY1SbOlgU28jEnKP/2Huz/2+QOY0cml0x+EAIya6vXPueQ3f/RJL3zSOeNGYzqFaqE6VurU/WiuthAPS08lvaOTQBzC7zDONRstXAXEGj8Cs2LrRWWnGf86uyZTeZbyKiaU8tbbOv+U/WnkQPwRYmF6nKasxeSeKSQnDORaOBZj2iNMFFpH/CQSKNglfTz0CQQxG6V4YCRXzkMm6kfQJhAODsKsvgo5pdUA0tREEBAS3Sba9ZBIbaohSBnXRPALVGVIvzbTRarF5gGoDXvD8BuFY48fZiMoIBYgf4edKDSbx6qH6TImKe47uPmHf3cnZnRy6RsChAw97vLdv/L9T/jVH3z8rY/ZM24I3RTdNFT/9WPYr2wNkR8+7BEPeJdpQ2D1UsHulgXows251uNlv03qhB9UeRTOU6ynNI+3+Ot1PBpz7c81FLundjcsqNceHvyDWDaSiCLX/lwUTFCWGSac47MJjNbWXClzRPHX64gHjjdeGqk7tcXj8zO657ulZ4/+pGjeJXqinIEchJLzsC8SecGCcYJI4EWbwPeLD8T5dB5hnAmWXU2EySEnOresx6l4tiUHQym/d5ddIUCYHIQyU0R8GUNR8rBpciaDPDCvwySWIaHtZLA5I2u7tavl09xPAPjLj9x9dHO2Zuik0mm1n9C2tDBuXvjE/c+68ex3/8Pdv/XXX3jPx75692HVmtdXMDUR3nizL5FwL7dIxzm5KEdB0SRxmETXwKobeOvS73sPQEMLSAFoFwTvgwHOBlc0CKowtJsHgsDYI2i3E7kdyRJaQOpy2ZiUB67yuDQ4ouhYOAiXec7tKkIjdgPGbvu1wIPviKxHAOaVZjaBffYEp4FELKHYoGQ8mA7SjI1cDqxHym4cU/e5HcC1f/RQZLdblTxlvK8v2G/inByXTaA5564IlqF6hHoATSGxXpjCPBPUY9ZBsONIADA7COtoYZDdAQiwn7SYHsJg2e6+Co9AHlFiTCK3vzgXL38nhZ8TMl+v3DImghCoJFCBaogOQnzqzqOf+sraDRfvPOa8+Bk9VBJUMDG+IahV+ov3HP7lP/vyv/2dL2tUbudmVr1KFMuJGqIw2LlyT8xSnThVcGPYr1pQdiXgYBHNQlQ82FqLcDwI3jgAux9aUP15CM7pHaWCcvFgYPdZ8RaiAiSGO1A1IUhieJCu6QAD8TsTeODSiNkgnpvn2XDriK0oFKDR8B2sZYmHHuVbRsEECLVz7zTjypkCXhTVGIMlVFWw5aPSMujhwT0vFdlgPRLVd+c9om0CJynIGoNVVBVbMJTz8KBsAh2Lwj+77yBym2h4UXR2rbdJgbMnAQCyxmgFsnaLwZX1SHSL8R6MdxfeRvKGSBx48F1gdmCBgm4haoxWrD0URg0/NpmuHXQLYQo0qPgmyq5mNftBmON6hNEKqlEYSBZrrRwq6Mv3LT716p3PufnMWy7bsTzf9HT0jE4YfeOCkKEPf/7QM370/fevKcgaVVJCEWwFDy9ACXtE8RgLB87i1jpCoDDslRvn2o7zwQKaBYjKKT7B2PDbspUeQCd61vHG7VmtS2dMHFLZjezM7m2jHZBNjIWMh0T9EsOjKJIGJg3HVQ6EBoQilaehFYbLqMeucE5sE0BAwrXqf7vmIl+QCmwQQbmV85Ei7pgoFKhDNcZg2U6YJzMZIoFkLw0Cjs0m0JrFCXWPKIxNsIpq8EjaBNRBKYBsdd1QnLTCcBn1yHWldgLsoCao57Gwj7nvrBesk6oYInrvyh93gIJqUQ8xXHYS8zEDshgDZfdb0i1QYbBgm1Au7UhpO1dUjwBAdxgsY7gEUbF3w8mEfCTZgKJaGFePu3TlNc8679Yb96wszKDoYaRvrHBcTuefOXfp3vn3HTwI4TcF93EBAL6mNbm9ukU8nsHe5jiykSzKiTDJTeF4HaQ6NCb8pZ2eZWwkdbUDF30oyBolzp75P8EkFugnBars3ufgojDVRd1+ax4AkpBaHxvaLwrWkTS8dxKiQG7e20QjBWPeCEELgFzAEOzpDCe6lw3yAZn4DDFAIqfmjJaMeND2ZSC3fKdYSSEInILAUwTS0QWpKLQ9sE+tHdRKFzL1cEgRGw/KJsgRiPttgQ0vSelcZ6AeYrhiNbtthSzuVmQDcdODkAPIgSuKSCH+Ru7Y3tnXNmWJ1yBIiW4T1QDVOArHRbFKc1pYQQn0LGNqoBXqEYYrdkuIBIFAEO6l0mYFkjgy0X/2j/e/55/uf/wVq//8eRc9+8Y9w+YbaAb9ZNI3OggtzzfPuG7X+z55ANBQJrsUzAOgMFRSSt5jdhBF4bi+Y/ZvWLxNAEF30BpSW6UhJcMAOI3P2KCkaTAe2ORTMv8R9J3TdFEVE4LuIOuYBy8HANKpgxyP89+MDT4V5E/mQGggwZabFCBfus2t2vE2gdllZxubgFLM61W7iNRuiA0WeaDCXhtpd2Q6LgXjoigovDbWIDAg9AjaBAbnBKoGCoDEcBGDZesYme8Kd38t3W8NPYHaBCSqAeo5GxCDgCAIWLwJLxLCn36WSEhAYXoEwyaCDS9AciFxsDPlZUwVBEF36I5itBqPmGSCUEMaaQhAoRabSr/7H+//4KcfePUzz/3BF1+2d+cYMzrRNMN2PP+xZ525MnDGr44chfIwLp7kwf2SZglxOROU4DAAUBcqo0QTBjprhf8UP+IIxHRNavjnVUzMzisJD0yVh0Z13GIshDT8mMESn4YJQOiuVG0cpUnk4I9NSEdtKY0eBLIiYjdPiivrzoUHEx4Qf8X9FPol5id6MZj9EV4VJgp/c/NKaJXJgXUcFTnJGODvADdE/NviL0tsAgCitotPh0sY7YYcumoIFSuLUEFWkBKV2ZO7hqgAQreBzfsxOQRtUs56CvMUlgG5/bm7jTDWuEuUD0Dfp+kyJrcvkdk5/sEuY2rqtU36+f/5uVf8u7/94B33H4+KmdGWNAMhXLV/6bk3nwnlRq/Z5aFceLvvhw3vosWdz0IHGDDmZAXABbv5hrB9kJMrfSqxkeOBV3PeCWNVTCBDuwUechWfcBKrNs30QnSS3dPPjmgXPyFW+DzFgKIQHLzl7HlpcJsAiB/N62UPAwBpaFey88HZBMg+YmCTmCZah6kgr/rBMuNPBZsAQDWAkBASegIoWxBBSFsgjuePGK1ttXwF4fJ9unVs3o/2KMMPuFeOH/uInP9ToFsPW7vyaCexDgXY1q7xMiaztasAhIRuMT3MEsTlsS5jqirI+i8+ct8r/u3f/snf3/NgtMuMtqcZCGFQy9c867zdy7XDIZ0pL52Nc26KsouT6wMCsesTaxcAzHqLyn3KbHCev9SHf2X4YcAQKRquWHVaxaQe2lkZ6IwHDsm5Co4hNipbTtGz8yVZyk/DcMUxBBDNVEdJDX1CiAXiFW7CRuoKeG3rxGJEIStAsmQBDRVDeK9NkLERvUsZLHE2bGlqlgNNeORtAlFDuk1mtUJ72GrnqnIaXMYFvyWrzcOqxhFhcgiTgzbWugVFhXkEdBe2dk1QHC4oR4hw1EcReU0Ec7fJmtsAIk66OZZlTLK6466j3/3zH5zh0ImlGQgBwE0Xr77w8XtDdpDZjFU77eNHLzdpiUJN7jC8M3Wc6Ds/5kkFXVMPUA/dvKgK+pd0dH8kE9dGj7BrUtRkbPDzXCFqZybDj1hsw0MZApl+T+NOno1iTNJb30b716hHgHDyiXkIQu6xCbwS9wjEL8u9UjAtHGwCoB5B1rHF4Ouvb2ETZMAf0Cv+qGCa8B5honjEbYJ6aN10o8SnR6CmTndLVhMhgyK/F6rHIUi069g8YGvE8QmhdC0EQsICADVhLpSRoTtB/oiJyHdiPWB3AyCgJ+g2mN5j3HLI8bgl3AW2IF79ha9tvPk/fvBvPznb9+GE0QyEAKCp5fc+/6LL9s2jzTdjZUjDUcer2tRAThwpnY35WO0KiWYews/56wgDuB4xDgHXsAX4KenBSPWbM97ZcmM7qmJCZR62/lHJZFgfG4krFkd+mjlUjZ3r7sPCPpuAd1Aw+dkjRM6HMSOSHgFgtP94e5sgTMMw9yIRFH/k1DRxZ2wvuB4J2n+Myixw0b08nASboBm7KRyzi4+JaIF5En41Gyul450JyRwRKYEKaorpgTBFZN84n2WA8DIYEgKqTWsiBFvEXWM7yy9jatAswCfNe4YJaM3+4t7v8WswPOQkKxNEeAQIyOqzdx/9/v/rH75yb7LF+IyOk2YgZOmyfUtve/nlS/PCqfvY2OTqhmufxCCNwi8cljTTdw5ODDULQftbe5Ab3crd39xZZeo4N4SdgZ+zobnFvXUVk87qX84DOYDMgZAS1cA1LH8Wbq5qt6KQGd312OkjwT6lqBe0c08TmyBo25IvmEjDrwqyx75HBJoFl/0lmE0QOxCJBLaxCWI2ek0TJopqgGac8fBI2ARmi3GvjoXAdA1asZAa8yS87rbn/WappkCctKW19RTTg2GmZ1syK5ACArEDj9n8RRIVBks2iigryBqygRygalDV6CYuJChSVgEWlBMFEDKYWlfv/fi9P/XOj21MZiW3TwB9o6doc/q2x5/z0S8e/He/+enO2Ikm2mAzUA0lIQNmsnGTHPxHMZNTRWamkBgsYLBos41t3RGCbqE76MqFO3wuMhgbVOakzIabcvAqOB2xy6gGIF7FxKxFJ7vvS8SDt14TNihlA3CtOGVHfFbMQYgh2WCwZCfGzFAno30I5HlA0B0hGpOQDgLxPPRGohwbXO02bgWM3c5HQQNEkBLCCcFmiguAWMIxnJS48B2fOTJpv2rYmSn8xRAyCAedfSy7PMi1Tqw7hEilQZwHJoooPLiFTTByNkHsTOgp1CbkYritncIxa5l8YR4E3Q2AJKBcoTnjDx3GcJGx2kcmItehqhnPzOEzEvNxuXrIaiI4IRBAGtXQRhqnh1ANH8oyJpLy1/7s80+9bs9Lnry/n/MZHRPNQChQU8tn3nD2z//eF46sbwLS6j4emwa5ERXDD1CCH6/smCGvnPNRDTFaQTOOIhLGuBMVaAO6AyRIWmwQTNekCBTzkLLhEYiilAc7YscYLfdUMZnYWDznodh6wkkvG3FhGBXPwYxWUA0YtBibfQo9BcHyIGW/TZDp3z42QrCOz9LBzooNl21usTQ31LYwTGSXiLhFkTGwrU3g54GYixkQaAnV2L5s1ibQ0O0jYxPA2wQCApAEpdBuoFmO8N5obau9uZNkYnTawrbJUjN2RrcOKdHMASUEjURK0B0qFki0A8o1bZajksDgGJYxCQ2aop0AAtXwOJcxSXl0o/25d33iadft2b08woweAs1AKKK7D0yO6iGkgppAki2tSMyg8yCUjhlu5ILNGXh/yKl+UWG4hMEyZOO+CAC2gqogQELOo12HmkJokATJlAEzaIlpmZQNr3Pj+XkfXJINhstO0eRsSOt5qAmEtmUUOB7zhR0JGzkYI8vRsDkgno1FN/tN4SkM6nQENYWQIAlNqU3AeyTh4VhsAo9AssFoGc0ChFuZa++jIWqA7Gw8VTEOHYdNkLOhgg9UDTFaRj2OgM139Mm3CQwLwnVHRSCNegxodEcgG8jalXIA88lga86aP7z7aIHKVJ0gCIX2CKoGooqcthBtgxOCcHx678dbEmaBeQ0Acg6jXWxttZeMuYwAbVvXGkKDNLoNdBuohmjmbeAx4JAfEX5RsCcBCFTyQ5++/3++98uvfc4lW3XBjLajGQhF9MWvb5AWGCxhehjdBoSEJBb/EdmQz7R/GPbe3vTKTqBZwGgHqnHQYhF+ONNSSDQLkJtoN4DOJu2QDwQhttE4T3p7NkwqxHAV1djdJnsKU8WkmYesGA8mBOQi6ZH2z21w0yhcBsEWbDA/jHPieRAVug1A2+nuhIEEj1MenDTC3DvZuKhR/YENlpcBBsYgyHm7WQ7IuqfwVWUZD14avTYBgTSUgx/ulZppjOFSapoYORBBjgEBtfmw2wSGDW+aeE8ivFEVoNEeBgDZoB5DDqMZoiIsej0eplgkVIv2CJqlUvfFYvDS8zmo3Gnzy5j0FPWce2rhut7fwRTzNmJxAjRQpDbRLIRIbHgYfuxBFOa7bUf/9x/dcdvjz901c4YeAs1AKKJppwFASAyXIRtM16CUNX4hoqEeiKwe9/amj7lzf6gaYrQTg0UXK0i+boxWwexHoB5D1GjXoaeAhuRTqRkPQBhyCfxwf6geY7gDgwU3xZJgGUv0AiB0xENIf8L2eOx5IGTTD4wN4SJLker0PwKC0Iwha7RHoRWkDlPfAZVzPPZmtc6kQS7xBKjHGK46ByjujsgmMPnrNdqjII/HMvCwlU3g+sVz4kNJVvULi4L1XCmypx0SCAzm0MmHzSYQqBcxWg2zKYkwhYFD45ori+V6gskEskYz77ZYJfcQbFolHPDCPAJCot2EGEI2zFzwHZHht59e9S6skJCuJoJWaNfCSgNy75UtNm/6wlgVAJF9K+1UlsLkEPQEzeI26Vp8GZOU//CZA3/x4Xte/OTzt/rKjLakGQhF1Cn/6ks0S6iGmB5EtwnADvuAQ25oFe3NEG0nW/R+tOJs7QxFjKkr/IDRlgEQqgZy0W5Yqbo4GOXnUSkMeO3D9A5LvN6XDUYrGK5CNo4FF8c33xAEMiF7OHtTAhpVA7mAdgPdJnTH8oUQ7kPkmPEQGKsPD8aywWgVgxVUNRMmBVSLvq5tG9UAssJ0HWrTBlVSm8BrOmYTwOncAhs1hqsYrtiMcG5xRzYB46EeQlZo16EmzqbObQIR8A9wep+jIFf9hGqA4Q4MlyLTJOCIexYQUAEatcFjE6o9gTbBCMMdGCwGDy/IAeFdMnhs3hOtQQJCQRB0i80HUA/RGBuLWHc478HP7XNZCQlS6NYxWAqjKfKKyL8dLBDH5q4qA2DKQdoGuk00C7ZRuNhaGFkOioSGlBEOKaDdgGrRrDjB+uQdkXl4diROpur33velFzzhvLqaZRofJ81AKCKn1tz4q8eoh2iPYnoI3QSgOIMzsTqdvgurzSUGSxjtQD1mXyw064I/5rWXTmG5qIVZO9luQm2EhX7W8vUMEztwk7cmicjMQg1XUY+YyS/Yb9jAvdlKjsjlOJHFIROzqgZoN6A2ob3+jZ+IMjaCB6AhKoyWMFpFPYqNTSdJE/nxEXlNMQ8VBvNQDdoN6Kk932cTJHY0D8eJCoMFjHe4xUAcTZ0ogk3g3VNp7YnhAtoG3brtCOGse/iIEzNKCAxNEaVFiAqjZet5iPgRhLMJAFDFAMzwMMCgsnbJQ7IJCKQhawxXMFxF1fTaBKZwbbiD2V5IQGtoANp6Eu0G1BSDRUgf2MzJR7REeAPVBLq1VRWIvzmxJDXDTisoaVN7yD+4xuSQXSEUmnNmRFSBFxaHFNl+lBLalEo6gGbZJc45IQRMj9FeiL/95L333L++74yF/qee0VY0A6GIKglmsRplJDFYwmAB0yOYrqHbCPO3cFYhkBrgQqCew3AHhgsQVaLk4jYpOik9DiH4IkLYFZRVjW4DagJSYeCFm7B4oGHGxlh2YDDnovw5J5wBaWHA5tp63WdGbI1mHrKBWrdlzVJXgLHBg5NCoFnE3A7U8w4FcwfCH5DVv4EHBDnUQ4ga3SbUOnTLdJn7bmBDOxhwYGwCX+OddnVwb2yT2QQGPsI0uwSAZghpeNiAbsN9LHyiYBMER4SCaeL3xg4SiG0CIwoyciBmmEsXotyAmlgoOg6bYLiM0Q40421sAmuXEOsLcq+lRHROYfMgmgU7MZO5D+7O3pUX1uFQm5BzLJboEuH8gPL4F7IZzXreBprC3rtCoDsKNUE1Yi+2dIgON8C8hecSJUA2QK3JLmMarjCLrZ+EuOu+o5/40sEZCB03zUAoouX5GgDIWU+kTTqmnSUaLEJN0G6gW4ea2qxZUHjbreMyxGAFzQKqOvackGk9Ykgg7KA1GzoQq9tvbG0poRs0Faohuk10m3ZTcPv1+J5CoJ7HYAWDBVRuvWGkr3nrYCMWLtYEhoWOByEgG8gFVC26TXQTkK/E5VSe9wYMgDXzGKw6NvrkkPPg5cGTr5yuqYaoaqgJug1XadTDgAdCMBUmUI8xWMFoySV0edrSJhCuW4lYH0lIoB5DNlDGNezcV2ObIMCPk3Y9h9EODBePzSbgz82TmCWg3EzMAN1R6ClzT5NnyWyCCIxzNvifrltFYhPAvmMGTjSsEjfpdtNDLokuQSB3Q63ZayAAATW1GxSR83K4S2SvjNe3yQaDeTtIA88CukW7jmrOgQ3Cu/FwLGMSYmOz/cjnDzz75nN6r5nRljQDoYjO2zWua9ERWVvY+CJerxn/pp4DdtgtZ3TrxgB/3WvIgSucJeLxlhA3FSmc9Honiiq4wLqs0MxBDqCnoBbapQ8YtBCAkBAN6nnIBlXCAxgbiQb0epbsfQDmajBjkypIoKkgBtAT6BZaQZqq/u4pjPfWLKBeQD2ITf5c5WUg6j8xigMqfF2aCfnKzgd0E3SbIL+Uxylre3mFqsFgGc2iY4O7YsdoE1CMx3AZ0hXqOVQDy4NuA/hF9wQgUY8xWMZgyQW+eC/kNgH/0xjs2sVpYdHdRJOoRrMIPT1Wm8CwMVxGxcH4WGwCAalj3xTslZAQBFlBAYIwPQSYDe78zZhMhIhHDdzeGTJC7nAACGKlKwAhXQqfM7lMboLJIerWGef+KR7sMqajx7qMSdNn7zxUEuCMjolmIBTRubvHS2N54IgZWi4a5t9aAoSyppMphFW5Cok2fm3GUmW3KkkVTT7Ui3rHBYK8HvQHPphuRotsAAF0qEcY77Q3MOsryWChyJouslFiKeQpMCfAahw38qsaAqhqqBb1CKNdYeWKnUZ2xfx5XUiOrNFxzgPYUzP+pXQT4wLVAKICOqgWQmC46qIo/iaVswlEWlQmpcSPcSdTPAYThYGiEUQDmtpqF9UYsgmIZYp71vOMjdgPiFov9QXcKmmI4PbBZ5pJyAaDGnIINYGeQiu7k0KwCaSd2GsW3ZbhW8ghbtpeo+38fDpnCddBfrZfQmhM1yAkqkEWUmNNCPOaCbuflmA5cj4HwaO439q1ajBcdhE/l0ROBKntyw+Bbp0VRDi+ZUwC02NdxvSVe49uTNV4kCS+zuiYaAZCEZ13xnjf7tGBtSOuRot50RTILdORzCYKE0IAzMRp59RuMshZ/McP+TR6k10hvOJzSj+EJoiNfIHpYdRj1HM28RcE1BkQyujOvTyISL8Qg0DzKc90smrdrCrdgNpAswiQqwUgQnZ7uDn7M8qt4E1T9Kdg6X+eMX8spc0bljV0BxAGi1ZHmOJD3kY+JpsgkQ7HYxGxkchBCKBGJQCJqsHcGQG/dQsyWCizF0PELebkmyPAzV5wcUkJpdxxBQxRVdAdRI253QGHiEAKMNvTiVLr3CZADBhxUCuYR7CBwfSVMO5Fh+khjFYYFmaPSaxN1aGuAJc3EaaFYL1qE/pu5jFacaupEJ4ObsbLNNeuAQJygHoULMXAf0bFZUy6xfQIBtsuY6LD6+20nYHQcdIsrTCinYuD689fctUtvflD6epCY6lp99uswqEuVrv+xwk5BiM2JHObVMQDlv3hU5j4aDFJQcrUJFW28nyk70oIhIJaiD6zHPWZ6n5WQFjnY3IIqoMmUAdC5hEyNgoOQFEV+sWYxdzCGFTMlZOD6DZtj9gEtqrUI4wNwXkoSkdkP+Y0U+LezTLhoOlh+5LYYrUyxmNhF95aGfIb55idnJTpp+FNcE8nJNQU7VGICqK26d2hzGj+YngozcUbY1WRyZCh51b/2IU7LaZHYk/I/E9ZK3COjk9n54uBTBHSGqMdGJ8JOY52dEUVNtAz5UrNn4KgNzB5AJMHoCaOVf4IpV4Or7SwK5S7iWO+bxlTlD03owdLMxCKSErxtGt21bVgY0AXoMiUQQwmmwaUywRlAxJIVT+3YiONV9J9gkGOPVOEKzNa1tEddXMnORAWG831bw4zyYhFmI5O7iIk1MTuoByA0N9TRmCcfZt9kOFNekEiCg4AElphsgatQS3MLIgUW0mDtxIdxbpJ5jz4vvZiAWA8M2ByCF3rnGOZmSb9+frlVwIRXPXwHdkEQmCy5vC46wdCDi1cLD3vQxB4D5PgoCjRbdhldjx1Pk06cGFksNV1YFVlq8YVDemsdWVhpnZQ5H6Mu2lDEQaNJNQEmwcwOWTNxIhtj77Fl18ChG49isXly5gApTVtkbwwoy1pBkIpPemqnRfsGdvV7Ol+miXfyB477S974CQ7l0bI7am+g+wWAQzc+GnXYoMX7FP29SToElEyDnvihLzRiAdT538a29px6/lgL1Cx3RyAM4aNKumO2L04keSGcLazdqIb9yFEorxYhDAcGCycoj0MuDSB1CMsPQpyBjI2cg4FYgXKeKAO0zWQCkAoEwQqNZW2KdLPIpTKJeP5kTYg2R5lhVNzilcghcVAbLGdHNpihiYtvqpQuc1bpY+1SvdQld1DT7JjIdEexeYBqM0tX78YRM0Zs4wJSOGTAmbLVgAARSRJREFULWOqKylTy2xGx0ozEEpp3+7xbY/bE7ZXUfGWNikUIVRhKag8hGNio7dHw5Q0gb9bCY2SOEy0kzEyTvgNcm/Gc7nNiexuIh66yiXpFWeD3D2F154F5rbnCoiA1nsh5rl0h+6IvZtI3KCsEeG+HjWSyLxg/LLL+OMjyLY9DOqYTdCvpB6U+hKetxKCCX6ZRHsEasNBApdDBoTHZMfHk0MJ9/kzWh996qJhXmuDeULMydDFmgijKI98shZ5ddG+rpV7HrcHinQekilyqjpsPoD2qHvYXO5uCsp8ap9Ih/3F7TXxMiZCU8tKPqhenFGgGQilJIW4/ennnnvGCMoV7tXaRvbJRd4iB0jHKxVQVipBzZH9FYY9ZWoumfl090yj9v5DszBo5BRxiYfoRLGJItP+gOnpAhtO3VdDuxBH9Nj+yROlDFCk6Qqs5+wmExLCbSZtlFHpsaJGHE+pfFDoUPLHTm9GHoD71ByETUWTzMDEh/CPsIVnnJ/LBGsP2P2FAKgfCGP5b2MTbN0F2Vcil9FEtFwxDp5dRoiCct7yC6nYldvuxM1mqQ20R5nf4x5NOtz1OASOQ8IeEGF6CN2RYiDCMl9cxmTGeHEZE9HenXPzo1mS13HSDIQKdNm+xZc9+RyhVZjyMTPM0aaZsUtUdiycgsv1KpIhIOJR4UZpdDIrFx2FoSVE3YtAD4JiHqKTXm31VzGxWeP9FD40cis2jUxBJI5g3EQQi9FWlSummWl8hKvCnZlpXmoa/W5HrqMZzFTDbKkyJTcoPeC25B1JZhP0oZpsUA3KQkD20hUYofQN9LcKeJzflqU/mGM9dYuo4gJC/P4+7s1rIpjCECFTACDC9HCBJbvFhoy6wDNgFF3lvKV2DV28OXeyjCm8EwDcMqY0FucOpDj/rEUxC8cdL81AqEBSiNd/8/mXn7eAtmOpB2QjBvmPz2PmljVQ0CyUD3vKruSqcwtIiE1X4fce7SGvpWlrNkR2rvyFMqU1iuImiurd/+5zWyjHY6+2fLsiXCzqnoIrRd8r8c84Z4y5vmnnvuRdIWI8LmFn/q2ct+SyAJOsp8jVQUjvIOw2B0DsCbErI5imEoP8PUzegcQy4J8wmwACpKGmDIFYOMt7QkK4mghuz+xqYNeKRhaGcMV8sxw/6dbPcT8mPLjfp1gCwPQw1KaTas/TCbjM+GR/cRY2BNWNvOr81VxwMzpGmoFQmS7YM/+Wl1y6MBZQHbR2e2qpELDmP4GK4TJK/k+PC7YoMUXTr5Z4wmiYm805oDIPZT6PAWn6NLIQLg6WhH0yBjiohZv1Qx0VjthX4tai9PTyXSK+omaLNkF/c2WuYG3zPhfE30mwPws37BNF0SwoHRe6A9F7VcTQbV/OKOV6i1fUcSgQgxBCcJsYslKy67zb1kiI8AMJaqE2S297PgXocYhPl5r5JML0kCv9575eZN+cVl3I3yOGo0S7lsfXXrCzRwIz2p5mINRLL37ivu/+lgsqoWy9EL49D1Q8M+SIYmDglnuufKO/428VdOKW2EAoeU6Iv0VRa+HzokYLYyxuxhutOQ9eJRWYKxyXEQhMqTlRFG/Ibf/0dkw3HaNNIPipHsWcq+by8hcnIrM7g+DiykSdd37UROxVEz/fQ7wXRO6YllsqgTGSPxzlsJldE3mo7j/dpaWB7UpeVuHNH5ttR0wxKhNRrIaoxmjmMVhAMw+1CT1lK6nZIyN7P5O8FY9DWmG65kCFPchWy5jY3vBGJ2i65oId5505q156/DSbTOulQS1/6Nsv++zda7/7vrshayjt1IoIwR8gHpZecfCTPlKU40TREvY4FGEFAIYKSXgdEG4Snlzhant/zUyNLVsMJyk+jPUTecXhFTHDDxHrzaJAeBmkAieI/kxjcSXtj7hNzgMhVKS2JCIeCkRpn0Y8FDF7SyJitWGypsqnKBML65QtmuZvJuXmQsklYm9o3wNEbKRIWcRsxAwDpKCV65pkYhU2l0RpCKCZt/s8hVsy3CKCHAAa0wNAhWrINijxjyFswS17MuZQ+FIjEmoTagg5POZlTBRyZYkAyEre+ph9c7OshIdAM9ltRTuXhj/7huunrfrDD3wVVQVNwZ6CG+F8U04kAFAc1hy6EnXGVZ5OP+IIlN5yCz3Oz+SMFb+4pbYtxOL4WDXPpe2mnyK5hqsJZGzkokB23l0ctu9LgBAR6NqmcgzI8ZhLRqcXk8djfprrKRZrApuZCO0keMwFkt05ZcwZJZFdknirXBSe8liiiJt2OJQ26q+Pz/PoGb84efz8OYhACqJia4D8TqmwlQ4ANEsYLLHqf4ZTAlxNYSKQgDYY06KdoltHPUI9DrG7FCmdM0Tu2I9iLTA9ikHtzLUS6+HtypYxEe3bs/Scx87qZz8kmoXjtqH9Zy785++5+bmP3SNUC90BHaBsxQQfpguRbvMlrhPz4+Sa7Az5oR5/K3F90tnUWBPxXbpTRNElrmI8IO+KxUmAkcrLq5gkRMHULQAbldjg3/XSyNZm9cXBCJGapi1knkiDPXtyfbAJdHa+h3OidGOhQlQz67UCk+ykyL/lnp1rf27Rg7ns0RuF+CaJfPo45ILl+jp5E7IXNZxX9rt5TQQ5cMV+TDJF5db9VFmFHrcQVVS2FB4UpoexeT+6o4DLrUgXa/sDdl64AnE+Q4ELEMewjInw0qddcPE5y5jRQ6AZCG1P5505/0v/4rFvfO5FczWh61xZms7+jgakjpXCFvo3c3S4ykvLBWVaLJrjdcOe6+Ko3S04SdjweYBgN0TGBvuzT71SwgZK7eZ8Inxq/08Ydo/vv1jwAtmt7Jf61GvOg87OJDeJtW2OFonyiv4s9oLOzuSMeYFRz4uRsMEev4+rrXgoSTK8nBmfugd1UvbIbTComT8EiMpm8QmB9giotet7qrwggrCAJF15HrMyQVbQCpODmDwQkuuiTjHkAhjRclSg2wAp4BiXMbnV60TnnrV4+7MumdVKeIg0A6FjojNXx//hDTf+zBtv2H/mCO0UXWf3EyKXoRAgIbHHPRVVTHw+HeT+Am3vzI/9n7lZCt1znz5Nh+jPXjbAUCeLnvvAvb8b9elf/1B9PhmbAMjhSsf6MQ3iF5Vsn/7V2UEsq2ATZI+Q2P5RkiSsFiu8EomK7+ONd70rlZu/VAkC8aq7ieRze2L7lyG+zP6fP0X8rUJ3+Mt8uUUKzgRYTQQhQQrTw25nIIM0piyC8Y38GlW+MEi65ckS7QYmB6CnIKSx30JhIZewoKd2w/j0jU0EGGGnFOI133zppecuY0YPjWYgdKw0HlRv+JZLfvdtT/3OW8/fuSjRTdG1UHwVG1vvzUEiHeGe4hddEzScnZiP/3y+lBwgIV144e9GvKE+8i1qkP8iZ4OvEuftUvT1AEI68FlumUrHjHnzxbIoPCeOYS5nz0OElP76XPi5cGK9Q6ytwC2V2mW9kPscRX+u/NPHBmJpcFvEf4m3yDEj4RkxD/5As9+Iz7u2SDNRJNJGuCySsX8QsDkVnwhXoxkBCJAwPQw1ZQnWrupdyLRGWAnrt4myDlMF1WLzAeiJYyjJguGCgm2CADUp9Snr3GQZk6ZbrtrzmudcOnODHjrNQOjB0bUXrv7C997yO297yu3POv/M5Rpqim7CwtyIRmY0mZFHXfzFxrzyqp8P8sTvofhPsJ1XNEtaYwqa787Sx0DEM7HrEX2aGtroq2ISeNAspTVyfVBSuL4hBBUQCRAWJgvIEUspfN2s5drWJsiEQ9raBJQoZR0ExW+Ve2MceAzb5J86Z6BHIFvbBFsAIUr8pLfi7fZ3CuWuWPbOpPdkfU38bdFWlSc1EfiaHjIbQCQTOSLDIZ5ybS6QtmgpFCYPQE97xJuRAFQbDyvX78RCmn4ZE9He3fM/9Zqbzt4133vPGR0zzbLjHjQNmuqJV+957GW7P/aFB/7g7778Z//w1b//slpvCURsM1aTvWPyXylKnPVkVJIdzrGq5TgR9DhXeTpSBCC7DoP4xuSANiYkgYTbacLc3OWwmTi4ZwO5zk10DeNBJ1rGAF4HaqK2NEG6zKQ0WS5Whd7zIGRwlcFMGXiMKLK9oOyehNqZ21wIiDlhDlwBCHM2Mq6sKBS0htQsKVlCa0jTEei3/yhjwzsoyafbssEzoYUL0krAzN6bG7JFNmnX+Nv6m/NOcSiSNFrAP6/H4ZwJ93c1iLYA93DSHsFoR7xDrgC02ULP7qMIN9akBJF9rnDcYXIQoxW7HUN4tAyKBNzWripc4x/EG5e+I4jmR83bXn3jk67Z09ODM3pwNAOh46RBU914ya4bL9n1z26bvuL/+Ic//NB9tqavcEOUzD6YZiLUvfpJ2rbV+7GOQzyMQy6ywRUdIZBmGsdY/dIPZjOdIF0qOQIbRi8IOBMV7CZgbDCjO5QSz3WNyxryuYIcjwFoV/grenKOiE5PpSE4pKIoqF2GhQEINbRwel5abWJ56LEJ4BXulp0SxVpLQOjZgLcJtOWB4PZmLdoErC+ALCkjFkXokX4EgrZYWImgsk1fSLJvZiTquIPKYGzIe6XxSs/UmeBQBPu6+sQBWxNBujfcvR9CQG1CtajHMXvCdqY2+4t7+KSw3Tv8/twVdIvpGoZL8XNlI9C2oKE7yMq+5JHf7C4AgWg8qH/wO6595bMunhWLO1E0A6GHSquLgydcseMPP/R1u8m0Vb6GzFg1K2bcqhH/O1Iu/DdFg9ye5HF5rhC1m+8FSIEq5/QgWrLjY9/G7vPtw8eIuLJDpHRCaSKmX4IbxKuYuO3+NCI8hrCQnGOAb31rNqIHd0DI8TiU8/IAYMTuvyJAErSdTRDp/axf8uiTT9u1kM8PzM6Hbm80w4PGljYB75ceBPLPzt6kiCtypoktN0XMP3bvgzYK3St3o7vDa8Ha1BkbXP7x6xpEoaHdU9gUOOEiwwAAWWOwjHoEEGQFab7bQCroDqqFmqAa2VkicD6TXhOMfxeg89G5bgOyRjMXQoJRZydd3zmcdq+Q5t+yCPRDr7ju+19y7aiZ7eR9wmgGQieAnnTVzuX5+tC6hjY7iiILthglm6+XBBsMiSXLFVyia9zI5+stiKA7yBokrNUbFUqAdcuo4IvFej9mY+sIGFf6toqJAhQIbqUql4OyaoK8xvUCSWKACPf3LeZAGPwPk/jrtrs1iYumbn9wRLCdTRA/e3SmZAEE+Tg1rRk/hg2hoQVzRBBsgrCS14nCQKDgQMhZTGAPYfrQWgmeDc1AUTmnMLMJIKOAXPCJ4V7XXBrb2gSxBKw3ZlqpbKUcCDRzGK2gGoQH5DeUGrUGTTC5H3KAegjZMBwCgxzHmPAvlctW0GQ3emiPoGoAjxm+oajjAQR7Ll/GBEDTGavjH37l9a9/7uWjwQyBTiTNQOgE0LXnL9944dKff+QAKoEo4C9jbevf6YIFHo32Pn0X9IsOx369hZqiGoZhLxHN60YqhzfdwwblugaZrkmrmEBNQeMQYwk88Pg+mFhydVBigwcDgYiHAIQevxVUh7py9r5kGOB4OA6bIGcj6LJY8xoLWilU5DDAzRHa+QwDgXw+xt2KEk4o+tHJi4H0PfGSMdzqjjmFYB2BzCZI5F9ko98msNLgrph/SwkAqto2PVxBs5hO1Vi/kGw4wfq1HVSL7iiqIZox5MBeHkYPY7sQYhWQAkphehTNYvapeZG4hHXMuRtWRCDccOnun3rNTc+6+ZxZOtwJpxkInQBaGNcve/I5f/Ox+1trmQIwYR8dwgVhwHg8QDzCzaEb3rn/kSCQmd3l6y2IoJUFPouFydRuAn6IFEHQg0zfcU1ELAAYgk4UjViz84qUGQ8603QoKIXkkcENf652WRDM+wFhHbuGbkEDCM14UGzBY9J6n03AHjwx/OH9D3fSxwbDwQQ0ghAOj3M5UKnpfjYiBFKsRzIUhBOF7Q4R47HIXssiCCVsJDYBABW/nF6VMyA0fSckZAMiyBr1GLIJ/Wub0CGqZvJozByP0ICC2oDasAVMTV1wG1WmqPvMbBAUK6QtIQS6TcgRZBVANHk0/4Lly5gIu5ZH3/H0i//5C6+8cO8SZvQw0AyETgw9/3Fn/dIff/HvPnUQtbABcbt5iZ8CEczmLemdyPNAaVbGqf5gr6lgaYoK9chNQgBwuk/woqIiVjesdX/gITA18+M5mGB0x5sx10OQAOmQfxd4SOSQMOCPqQd+dCwiHem7ROWJClrZGExqE/TxkONxv00QEEixppkWg7cJBPNC840GfNMi4yRDwbAMIPFKfeDLGxBu9oUUVAdRxXhMhXBxSplNELWIyB3kpom3lvi6BdlA1ICyhavnxsETIvN0IoYioDI4BNuhWqE9CrWB4RLk0PZhzrX/QPjCrBLUolvHYCFIMsIe9sTJMiZNl5y78l/+xROeePWepp6tZnm4aAZCJ4Z2Lw9f9+zz/vEzD0y1sjYXCShi+6CUdl/1cR4CK3zgLe5E+zg1FwJxbKa3GUE21vKFmxPSFO1pZvICcvKjMagYOB64ovFnmP+RAuEYAOMBFo+5HIAsPhlzEvR+zAaYmrCumE9DYFvRGFubNBQCDqU88KhgxEHgJLIJij4Qs5o9G+Ss8noMQoSFdnElmBBE3G5mExTYYIjLESh4hGwVjimHw3kggpT9eJzzkDtAsWMUOcd8QsW/SwLVyM7WCIluA2oTzYJ7ZxwCaXJp9Ai511bk2vqRWmHzATTzqOZ7ug9W+NZVcj2ujFcqUxDyHpt5FmEewQqwruV3P++Kp12/t9DEjE4czUDohNELH3/2/3jPnX/8ga+jMfamAKQ19IxrEqwzR/7tBwq2Z676SUN5kzPONTJ7UBqrWyunW9jkBzlENAdeVxIzCRNNF5SdtrrA+0D5jBSAZoyqhjLIZBgDQG6ZjgtJiR7dQZQJJAZjboMn6i8Y3RWasZ3qIBUStX0+QmQTUMoA/x1FI5k0tGdMpwjkgbAaoh5A6ZQHbpf02QSehxSMc9OE+x+MJd+5zRyEjPCYJJRyhQb8VEqChRkb6SvKXTHNXgxvE7AeqYeoBiBlmyPC5BDqhbAMyGRMSEAL95oh4JB/dGvTdJiuoercNE8P2dfePR11UC2qYeTRpjFD2LFjAt2annLj2bc/6+KtWpnRiaAZCJ0wWlkYvOUll338C4fuun8KwKUCm7lfBwMoqh0GPAF+vHKPLW54feeMbggMFiGqKJ/bzIBIt1KHGBuGhGMpD5FHbMQpAJEPVNqM2YAuBMMhNg9hkqO22hMPMQ9MCRLjAV79uXLmXhTNPGQNrQMew+dHOJsAzjEiODRiPGxhEwTV7/RXEYGExGAeQkJoG5RLePCtmMWVvFMSIIx4SKTB3EHuHAePcIRq4PDbYyEBPm1EWovkQdgEzHXgFhLp2Ed300VCopkL+dOmj7p1qE3Uc4AbINAQgCRoWcAh7V4qISAqEKE9CiIbYUs9uegZnGAJauL2KGIIxJ1sa13Zqjz7z1r6ye+6acfSsP/mMzoxNAt0nkh64pW7f+Rll82PCLpzuQNeWfjNWJMftkkrsS3DyU85KKfuub5TQXkNFlCPAQEhISVkDSEBs95CsfX2/MdpDcr5YepV8bJ4qoRAXu2WNmM2cwCWB262+x/OBmV8ssRfHncCQTkEYsETAKjHqOcArjc7xkMmanJzGDqv+Bezofyze0XMeyQBwgU7D2/tcSMHL223FQiRZcw3bUSqWeJ7eGcosMqlEVS/inpE1mjmA6qF/uLopcKzJz9KxWzE0vCcw+83Gr8Y/uU0QGjE4oNjpkqpPWnZdXVIkU2bsTM2nikhBbojaI+4Xo7+Z7jO8uB1x4owMQfIz+GxdLjFucGPf+eNj7v8jAepAGZ0PDTzhE4kCYFXP+v8P/jAPb///rtQwy1f5Zvg9ZiccIYnjzjZ0cIme0NEztjRFQZLGCzYYDc32NUmqAPBxn+iqQj0TsmAG9pgpqIL+HjNGDQyIBsMl+1skGDrIvUUugVVdmqqMCeUCiKSSRQF4mwkqp9FwIZLkDXIFwqqQQq6s8yLyrkCvvWcDUrZCP3C2NAsFY0StTtG40qKSZePZy7QFQS51ACnYQ1Q2fsn6Qm0HRs8I4AXMBQYLLrlNW61LCnrUthYnA9VcWlQfEDHyoZOXgzTIwMMkqCZa864MsnmdfDTOdLdXFggMf4QyOYaQEIQ2iOQFaqh5U3wCGrWlVpBd/YNjPrOP52F2PGg/sGXX/uyp12YvRszelhoBkInnISSI8gG1NrQQVjIjfDbA08UgSkhkE2VVkzpECDQjDFcRT1yzTKtQQQxh24duoWQIGmhCIiRwFEaAsrYsF5dEvMhCIFmAcNlVE3QXD7UbpaL6haoQBqiisA4CcolPPDYvXeSuOoP0jAxnwWMluzunIRg6hIBE6gJYPrimG0CwD6yuVvwEf0EjIr9IROFW8BgCbIK8ElGu02hzGYBlYMBxK33M2NETQhyCC8GF4WPgFUYLqGZt/esYKNbuoWegiR0ZXMEIgmIjIdjtAly0wSAMU1WrEcoJCrtXoMaugIpqCkrHMcsA8HLNziurAvlM98kBIE0JocwWoWsINwSvVSA/ki7rV3jbEYOWkTjQf2WV17/fS++ZpYOd9JoBkInmNbWuzsPTDFcsIFv4UrN22khPg9MgEiHQYAfp+/4wgUzuysbDFftPFD4IruDIFQCch7tBtQE0BaKeJ6CX9xHpTskbEST3k7RVEMMV9HMZ5sxA9DW5Jfz6Nahpi4DgsVVAg9M7xdmQRIwzpyPeoThKpq5IFUrY8e/mdxWEwizEFIWbAJ45GMUgDCOUvaysRLYiGwCGfNQZTYBl//WNgGcEVCyCaxpsoJ6WLAJjP61WCjthGWAZMZD0h1FBx2Uxut88FYINPMYLkM2jgsHoqQhCRiCNLrDUJuoRqgal7Et2G/pGuLoyGN6Ju2tQ3sUw8UAfoFhLlLzY+po6Ciu4EnTrtXx//4d173ptitmVXlOJs1A6ATTZKoOHm0hJIbLmNZoD0MgOAHIQCgKGjD7nbi96cxeM/UyWkU1iEas1XhccQs7Pa4aTNehO7fhimud+nkwx9qhIJy+s9UnCaLGcBnD5bCIHUxz8VtJgcECuk2060Dn6vCLGJK9ftHxHUrwA5abJxsMljFchmDKLnkKoW2SmKwjHkIRoy27IwJjLxCu+h0bg2Xrh/HWzbEx7Zs5iAqd4yEwcHw2AVnT3kfh5ADDFWaaZDYBADkPIdFtAtoGtcjFu3jCyPY2QWaaeHewGqSmSWQTuGKyhn+9CbUJWaEeoxrZrhEOwpPCPJ7CFJGEkOjWUQ0gGiY0T5Q+QvCkCcpPCwFE11y48ydfc9Nzbzl3VhPhJNMMhE4wEYHIadXBEqoBpg9ATYNLZAY8EOnNchiKB6AEBgsY7UQ9BylSvUmhbQYbACSqIUYVphtQm9DKzc3Acui4jnmAHa6RzatBRqEvYbgDzThLciOrNazHYxioAI16DFljalwiOFEkPDg2vOLYCowFmmWMdqAeF29gI0XWoAaEQD2ErNCuo5u6/RQEa53b4DEnBD9b4EJhKmWjGrHlRxSxEWwCQjOyPJgwaWFipsRDn03gp8eExGARwx3ONHEvQyQUABTweHrUlrazkMxmpwo2gWeD+4IJGJO1kIYrkAMW2IsxwEBR5QoiQEBokMJkDfIomnkbXhaeGfaGhBS7uFypJrRH0SyH5ogdRKaJD6X6YQUQLc0PX/Tk87//pddetm8ZMzrpNAOhE0xKE3EgqedQDzE9hOkRqNbhUKz77DgxQ8UODBaLM6GenRguuO2//Hdh9awZ2+aEFgFIjKYQNQbz6BobGQOC+hMJD4hQ0GOAyXiu5zDageECRO3UZUyCnBYVtm6ChQEN2WC4gG6Cdh2qg+D2LFy77CAJhXmFC6Cew2gVg0VIHzNxOs/fylTsDjErAUjIBoNFiA10G26OWgY8FknruU1AkclvpNEshDU37gGYTSAZegkAqAaQFdoNdMYmMOY871DfEQgoiDgXIARFTeBrh80IjyixCTgPQwxrdOvoNi2GecOoB9Ij+yYkmHE2FjDaGZkmEQhymwaAhoRlTANCoBLQCpsH0QzRLEJUEBxHMwovsAAk1ARyiqphLy2ijvOchOkrBRA0Xbxv5Wfe/Lhn3nj2cBaCe4RoBkInmOpKSMF0KGnIGqOdGCxisobpYVAbYiDE9CZixWcGkomxjE3gK1cTYCddKEkSNGzs22OAEKgHkBW6CdQ6dGu/FexNrnFM1AvOn3AxluEKqpo1VyKbdFDkQaIeQdboNi0MAKX6MUyDREGwhI1EGkyDMweDrTsRVg7NGLKx6/ZpaqM64SYMjyMwZgnclg2fjoHo6/C7FoHVAgCTQ4XBHGSDdh16aqGoYBPAHSRZxS4cVw0x2mETAgsvhrcJ3HrkwANBAoN5y4NqSzaBfxlymwAOfgwbI4x32AT9gKbEOsSwUbEJJGnZs7OV5r2tAIF2A6rFYBFi6LswvFohYYF1unGG1AaqKmaVzQw5p8fVRLBvVCXlG553+XMfd24quhmdRJqB0AkmY9VFI8FsLVoNMXcGhqtoD2N6FGoTqgvKLgwtcyQgazSLGK6iGVlzz7WQtUnpR1aPxFO7Jg5WDVHVUBN0G1AtoF2tudj69iRrDJYwXEU9ZDsrFzmJfSO7TNbnjhu3Q0PUqOYgG6gNqImDQwRvxvtwxPDAbD8zWnVT7sg44UJweGx1u8cho/s0qhqYR2Vcw4lbQsufIPY/vHFtpDEySYlb2ASOpVALQDp/yC3drQcQFdQUat0mC0Q2gRMCEPFglKmsMVxxCQjoX+0ngosc2QTCdkc1gPB2SdEmgMMAzoNno8FoBYNV1HX2fnKbwLFB3iZgtpFZMGt8VilBNXSHzQfQLNliP4X+5Q/o5KkmIFcpI7iM3mPzIlW8JsI3Xbvnlc+4qEd6MzpJNAOhE0wL43rP6vCLX5uwUIACSWgJQagaVDswXIXuoCZQE6gpdMfQAhAVZIV6HtUYVcUQKHF6EqJwTRi5rmKCH/MmvbUaQjboplCb0B3IFTIICkRAVqhGGCyjHqOqXLu55xE3HXRcvhmzua25vEY9h2qIdsJ4QPpcQkDUaBYwWEEzDstuoofslwPc/n5m+xy4eSABSAHdoFlANUQ3scGxLWwCUaGZt2l4BTa248H2mP+KV8EN5CKqCbpNqIlVlyJ3hhxDokKzgJGZk9vWJmAng02AgIXC9XJVQ22i24Ru3WvoejNyiRwY+wSZZhS/nJwTSs8Lj8feP4btIGEYU/b9hML0IJolB/bu8QsBOsOPWYva2Yxwz3AUTYW1CG3KO+3ZOf/W2284Y3Wc3XNGJ5VmIHSCaWFUn71jaP19v2zTjmRh9aAAqgbVADB1R+Ixpju7nELKGIG44uP2smC/PZKRLeDv95OGW3CuyB5XDYQAOqgO1QijHUxjmP2wa4iK6VzzcW4sc6WDSPsEpcNMWr8Zs5A2X4A66BYQdr/noHMlRAU5hKxjNrZ2hiicsfnHnAdX7d/oO9mgqSAbt7RWQw5sNrMhKYEK9RzqOVR11iOJHLiWZF3j9S9UYF66DWflAE0NObRGiS2zJsNdISAl5BCDJdTzqCqGQEUsJNYpzmqRGho2Ky/F4wrVGHIANUG7Cd3anQlzm0DWqOdsMrrsM024T1zCY/AYqfHR3T57gbsW00MQQDVkKMhYEjEmEUG1braSx+LILUf1W7sSCKNB/UPfce1TZ8VJTwGagdAJproSl+9bgPgqtDaBOQDWGTKz5T7gE4hZvmQWA1UuozpBIMG/wY747+S8iI99ZhGcPq0gCWoTeorBoou3tJaBaHU9tvQ/ROGhUrct4UG47IAKFaA6yBrDZQA2eKVaQEJWGQJt4YUkLAHCFZCNdqBBJAdRQQ4gJVSH4SJGOwAX2DFFklDZFZFlm4Di45wH/yGXpGB4LGzWSVVDdxAVxrsZHpsIWOVMk8QVy+WQQzIYFsac82U31RCoQS2ohdYYLkPUDi3IvpDVyLLR2x2JWCh6RS1OcZuG+ejWbhBABXSYrmG44rZi4nKlwpuuW+hhlLsBVs4V8BUlKile962Xve65l82ysU8FmoHQiaebL14ZDsSk065kpLfuKNpbGgjLJC0RqLVKWSRahtvFCMcEPgpjhQi7IDGPYZgvewvUsDE5aPf+0qZeWR3Sym1jLP7D2aDkb6QBOiHSNR8UO2c2jU1gchDVEHIAAqgF4MCYS4OppMjgTnmKxRSrS+EUYliEL2z5sskaqpEtr6kJ1DmbIAFjbhOIuM3EJnAHvjl/B8HuJqWr81RBdVDrGK6CjMJ1EzZSbMVG9Pgi+5McX7F/HNkE5lkqCNfoaAVwsTgbrKvcIoGck215gEuX4JOFfv2p89ENNktpa2aPltPn4+Dhxa5dYUCwLBIfnXMxiUqK1z33sp949U1zw5n2OyVoVprixNM1+5fO2TmMa036wDSrO0AuQk3OcPO6RuS7nwHIECh84o3K7IL4iC3R59dJCAE1QXsYWoE6QMRqN2Mj4WQLEvwo1toJVEgB3WGy5tQuxdo/40FG3+5p2Ou4vk89P8I+NWlMDtrpayOKVPszPE70cHRnij7zgcECr7EqN320uYZ20+WmK+sRRlG4jI1ij0et5JLk74NgopAQAtPDaI+43co7EAFVBoSywEaBh7g7ctkJdltr+ki7tLbbiBOvwaDFkVkSQG6PQc1W0YZraNRUb7ztip9+3WNWFgaY0alBMxA68XTOrvETr9gB8jWeHfYEi8xVDbE1kvlvP0qzAVxULNtSeVkoH+3mhAQEpmvQUwhkQJjxQOmdev7OH4frfbeS1KtUIdAeQbdhd+MWRcM/4yFqVuQ8uSeIzyeqUHgAqNBtoF0HKctGFJOUZa805QGR41i+IGHDy8SXml6D1plNwMSV3ja5d1HX53JBZJqkeHzIbdjhRSFjHkRys4JkEilYjopvJiJAMtbD9IitQpvMnoJYXM5PBSVVeXwsjs7cMfdvXn/zv339DIFOLZqB0ImnuhIvesJZc0Np/Rul4j0dOBpR7CSR07zmTpk+TaJK5ThbTMT/y3RDBDMSuoWeBDzoVRP+uwkb+WVOcfRqJYaFBvxIoXV1/oseYarsRMwDMunkYsoBPkOF6SEbGo1UuYi+V3yo6CSVPsuxIf2afer2KNQ6BAVkSmwCZM+aspk34WNuRdY5XAm7EWp31OVTyF4e8qfZwiYo4FAMhPwuQkJ3aDfdcyYuEdgIggvE+fJO1m2SwBOuOetX3/LU733hVbMo3KlGs/54WOiJV+5+0lU7/uhD96IGYCr5C7a0vqTAyNVQCeOconFOfGCjpFv7QEnApUsDbrSTP4bbchQQjZ0eLygppuu3WLOUzEL732HuKr+xn5txqOP3pS3qSp4EAOFKhfJ7xzMxfe0SK2Fu2OAbr+kpSEM0PbNBMSdg9yF/2bF1UJgOyUShO6hNW4xHlhArOcdtm3K78QRJ4Rb89XBP2q6h2glRxzjRYyElt0+ZK8ohhy+KeRCuQJx5CftqIhArM+h20iLad8bCm2+78vZnX7xnxxxmdOrRzBN6WGhprn7drfvnhoJFBtjmaZFXxN2jrT0Pf0R2knlbsnYi0llicn+GaIYABCoGQsFQzQxe7l1F+iRxPvp8kRyA2d3NitrQWHZx/uBcERW0oH/Y+MuFQKXT/nC15sC9MUSiyP2/VBS59yniC7IHC6EwAZhFPI2VScHXYA9n8ThrpPCA5lv+biU0ytnwwTF7Zd/7WTRfSg+7rRMfzQ+Z/bk3XfyNYU9YyWtu64aSq4kwaKofu/2GH3zZtTMEOmVpBkIPFz3zujOecf1udGxfUXJjwxS95z9h+rRHZ1HQpeEMEs2bUG7/mr+KxioBKNWm88dU0KuFOyU6yOgIru96/BJ/sVmrm9+pjLrUr8540KYHDreoTiabnhZzdnKbYAurP1H6cRPBxjfgV8ds9Kj+xCaIPMKEkxLyBZsj/9DnbQsHclvbBKyJrWAmcaeYM5p3une/DAjxhoIL5P405p3fal3pp9949ouffMEWrMzoEacZCD1ctDjX/MCLLjlrZ4OucynIKixcUG4HML+Psh/nohdq8vBDdmX2Z5Simhuk7IxAZnH3fDFho8hquCnKTAd9EutlIQtT+vkXRVEOOQ+JMLdFa/etCI+z6/PbRC334WVSrNZ9IeoFES626XA5OcWd+1pIHlFkzeU8cPBzfwaSEHUvAj0IKppE8QPw1T8RP4AQUK1NT+CFGfkkqxA2FUhpANB0zpmLb3n5dcvzszSEU5pmIPQw0i2X7fzBb7902BB0B+VdIsXQyC+s46Y0V64lv6GgeRN9nBjF/bqDp0oTMpW3lXornUs4y5U+g0bRc3HYe2lLpZcAzVZ2N5jmZV9OPMIwOQSbI1eIgGWWftkmKEB0xnYumRiQuE0gkocsvRLb2wQ8vLkFJMRmkJ2i66fEJuhlQ2Tnyl8o8WCu1y5HztWFSyr7mWvcVNDcqPnR2294/JV7tmJ+RqcAzUDoYSQpxWuffcGrnnEudGtDBNFeLA6NoKPZ9chQzWzY6HQygKMlEXEMium4Xps3oeTmruFeXVO6nuJdaVIlnrdO2V+5HMqYW1K7cAqr5z4Am+bxLkh8vswbpYcpAoHBBrHbZjf083NRswaPWQZIAY8p+T89LuMcOUjo73r+5gTHtG8urtRUgc9tzIS43fzNNBG5lkGXG0q+JgLB7e6KWso33nbF7c+6uDxFNaNTiWYg9PDS/Kj+8Vdc9fxbzoLuQK1dcuFDcD6d1BLXX/xMrjopO47/9MZj/pXCoj+nmPxumDwwUkYj3i7HGR1/5GzVFF1idRMu2Nr3idUZ+Vvxjyi9kih+ggSPs2PDhkg8j1yTbm0TZEJLY3HFdpOu5nGqnq5Pnju6JuOHOKs5kxkFHpI3sCSHVPA5D4idmIRblJMa+IP7mgjRvq7+Amtw1EK87nmX/8grr59tEfSooBkIPex01o7xf3rzTc9/3B6oDtSBlC1HppTDJB2tuaMEPOAUPcUH6NU1YZxnIKE5SMQtILbWt1HufWfYHa32pxC19+ddkzERiGIg5FfmzRUPEB/4T2ORpmm+CH9G+pF3TXLPvoZKkimgFNJ2kcgcQRRpc/HJ6OZxd5dxKMKKVBrRm4Ow517aHUkrSYt57/hn9IexoMhv+10SBQgQdgF4qMrDNn50DzKo5Ruef/lPv/bmldlU0KOEZuuETgads2vuP33PzSvzH37nX3ypVSrsjEAABKBBVTTewh4/3h7P4yeZKuEIpHMUASKbEZEWjlwiAwa8acSt0xaJekyP5Dw4Nvh5r48IMQAkt+U5DluY54nO5f5HpvVSkfob5KLWLiqVf5TP1pSUMiHaMT1HIP5nxEPSI32RtKSzcvgxt9XpRym68Fvm3ZG3CMeSnxdKOCy9nxEPeVvxF4mf8fEDl4rtSdOulfEPvOzaNz3/8vlRk91tRqcozUDoJNE5u+b+45tvvmzf0s/81ifuPThF5apA8qkIu/eXthVTkh0/w0EOSzGcWG2elWZIdE2YoOI6gd8KDgvRr1nQz0ZSPpKd99engSZkF3u82wKPc35iUeQpgkmjFDOZ4ATf92+bFPOep4hsAsZMagewW3Ecijoi4SHvlz42wCA5FkVkE1DpPv5K/1oW8TiXQyZny0CMx9Qnitw8Uk6YbKt1TUKKGy7d/ePfddM3P+acWW3sRxfNQOjk0eJc8wMvufK6C1f//f/4+F9/9N6uJVSuRILUztYmwG3GCrcHQaAtDEwEtasTBEIY2ETxOHewlxzYCwwP1M9DcpK1ZdtPbP9iEIx/5PSR8I9jePC2ds5AjxYON870aa7yuFjscycXcBkU8fjYbQL3kY7VdMJGhEMaJBwPx+IPJdLwbPS5Yu7iaJ7MsZR0h0+i2YqT5IxO75kDYfJnPmnk+8Xv0eDcoHPPXHjVsy953XMvO/eMhZJMZnRK0wyETipJIW69+eybL93123/zxV/+o8986I77u05DVqj8HmJk7USCxaRCtS6ujmNDVQPBzES4m/1UZ+M8BgOrcTQg7C6fUjospJ4UKcRtOau/ENNP/BKu8tx8tefWQ7Ip6Q+KMSBvHe5biBoqeIQ9z57b5n5rDIuFW6+TiZ/UslG0Cfz9WdN9orDdUYEIWkAeo00Qd0oAwkT7+6gsOw5N53NLjufgm27BQCINQCczUoxPbhYU3hDY0UEIBUf8Bqk75n/lf3/KU67dO/N/HqU0A6FHgHYuDV//LZfe9vhz/7/3ffm3//qLH7jj3vs3WpDZf0hEw9L/yTN38wOrZcB0bqZ2NTsTaWHvACm3YilWo+aguPlC4IGzkcBJru5zlceOTS57ZW5u4NBnUdOWOFBkI5NG+uyJ1kPEm3Dcao/HiUGQu2hc5ijAW7AJOCokvemBin8Fzi8Ea7QvldzdOaj+HAgRP7v/1DXnEVG4a7SGkG4xMfUwEHcHbyhiQ4fnjdrlf3JR+HuGQJwAbr/14iddc9YMgR69JChye2d0sunoZveJLz3w3979lf/8x/cQKpezIMNvEVdyC8EPb2Ai0p6RvnMDWCl3qVMlYfMVZXesoQ7NIpoFV66/xEM+1q1ycOZqFPBB0BoAq5tHrIiRW8CrNbQCOogBhiuoasZDFQlBcPBj2t8bywnM2M+cRgszYYpxpW25F2UWbxGGq6iGdm9vKwezqxDY6tEi8bkoxCioQ4+Evaa4cNz2H2brhHoOzRIqxoOpbB06IgfC0CVb2gSuUR/dgt/aSrnKNwqkIGsMVlHXbg8LadmQXg59Gbbbmia6IApzmXZZcF4Uyux5X6GqoJV9kTQ97qozf/OtT9+3exaFexTTzBN6hGl+VN986W5ZNe/8m68/cNQ4Q5LpLAESdl9wxMsfLZUi7AkC6RicItufqSGjgEhDg21MbniQIECw+YB0WsS7EVsjECKDl5gm8jxYRawh3f6nUE4Iws4KBP3vZikiLEwULkoIlLhiseehNXQHOXDRMOmeIi+zFgOhE1h5Wq6AQMTY0BEbRheT2fzb8UAmY8VthRD5xxQ4CjaBf7rMKw0IROy7OpWGgSKqglMIuPcBjrc8SizCK2GNg2xKLO0RL0AmB+IHgCCOQGftmv83r715hkCPdpqB0ClBF+yZv+is8QfvWHNuh44NTGXLHhOy2WCu8eEOmHaL1C5HIKaX4WoI6c7NgRObfwaDQzc3HrWZ8BBb/UBQIlz7J16RVTfaAqFhI5p70GFzdOLnHfhtC8aRMc4UsRWFd8v81rcmCueh1wvBLWVNih55ZlI/DBHA5MinddD+ng3rqrogbcqDPF6bwKNsbBNwHuBChd5B0RoSLhRpMIAZRqAAh8TSOkK/+LbY+5n3SCoZ1zsewMjBJNHcuHnbq2988rVnYUaPcpqB0ClBK/PN06/Z9cE7Dlml48MdAYq8mZkQxQdM6RTVrkcdczKxOnUHUhACWjilY9wyGRiwQJjzkNm5XNFQzgMKQKgJQkF3qKrYCWBCoMQr5I0mzOiSKJh8whe124rG7Enj8RgOC3MejLHfZxMkPcIcr2S9cDQr4woBEAMhC3so2CUkjtkmoFQa4WQmH82BEI4Z0xeIbAIPRIQgCos9yPxRBDCOXoPkTIxA8NzC5koQzY2aH3vVDa9+9sWzbOzTgGYVE04JEgLf+tg9qwu1M8CTbYeo/wfsWEdqPZqDISCe/7Bq12t/Yw536Fq3IayO4CpqVDPGdMyJjtggCsrdw1KYCqLCZsykodrAFWc4bSL5SQSSIRAPxGmdskGuqqzJ4FBTO2e2DQ98a/a8s9i3AgKRu967Yu5iHh8z4Thd5IF/hf2U+yV+MZI5GEMRQrN3jxgea/4++Nsqe0302zCjol7gLOUOes6Dj9D6xUCGNC2Mmx+7/YZ/8aKrBrOqPKcFzUDoVKEbL1q99YbdYWI80pJbK7hY73v4SYZ0gkleIZI/j0rQznkI32i4T5EBsDMJk2AtZuwR+4pXu2wzZnSbUAwSdNJKptTKMkmkEfPmdVwAHucEGNXcTdFOIznYJtSx2QQ9bIQL4FS2iltJbIJJ0MWpXZIL/1hsAv5iEMjtKhJME3/gukZN7TtQwEIcg02QdUoxEMcZC2jNS8MBmvadufDz//zx/+KFV88Q6LShGQidKjRs5Otv3b88XwV7M1KgiYbNTG9iuMXhx5vhXH0k/gdpAE0lv/+l1/7mjzzx/DNHMRYqprJVPw9OK2m+SVLuA7EHCUotbMZ83p7Ft73qmpsuWkbHtLPZCKMAycUzjo0cjEEW1ZL5D+sRKm90X7B34fFXrMZ4rEodkeNfbPKHfomhNznJo086BKB2zota6AiHqI8BHINNUIpJpj1CzDQBCOgm0F2GhblNkP/EHKY2AUW8WefJpaWYr9uuATQJ4MnX733njz7tO2+9ZNDMFNfpQ7O+PIXolst33nbLHrcZq7KqWeto6JJTWMR0nGL7RITZF8VGPveKmGcQjG56/NV7fuAl1zztujNf/tR9glRUpVipTKEnAOM45AXCc28g0ndsdsp+hGFT/dirbnjrq65/87de0FQsVZccHBa8Q47ErumAgmDXeOeDfbEkipsv3f17P/XsX/qXj92/e8iw0OtQxTRsjsc6cJLDDyzIxQ/CcNEDIeEVz7z4937iqY+5ZCXCY82jdlvYJQn85OjlcDrqIwoNgUC0Y2n4Ay+58rk3nWF904JNoLLHVxkbFL+fyHwgbhOwfAQHhOftWfzJ77rpnT/ytCdcNdsf6HSjGQidQjRs5Pc+/+Lz9ozQdVHshZz+zX8UH9uZCez1pj9ZQCAC0fLC8F99+9Wri0MAr33W/msuWETXMS1DEQxw2OMOR+52gEpK0DDmVDnbjPkZN53zoiedD+C2x531lGt2xZuja6sleXNJ6x4kIvihiH9i+lEx4VgxYm7UfN+3X3Pl/tVLz1589TPOlYjdtaTRLWwCxfsl1rmhcw1kMoWurXwuPXflbbff8E1X7n79recNG7DwVGJzMPXNbQLPSeSV6owNht9aB0eENAAB8cbnX/H21z3mX73okpX5Coq/Rfn+WLFBULQJ7DugIjYKzrEKoiDav2fx13/saT/8iuv37px75EbnjB4umoHQqUXXXbDyIy+9bDxE2eqn7CfYm1wFIKg2PsIjBPL3RyXF93zblc+66RzDw7lnzP3ISy9bnpcWC3mchIpKn2tDVdAyqdXvJyHcThYANO3bs/SWl1+3ND8AsLIw+IEXXXLGau3wmFnZCRIYP4+DMZFj2Ae4klgWRT4QlNv3FiD6tief/63fdC4AIfCaZ59/4yXLqU3gH6HvJ3IEvVsAdkHSI062blOPQVN9zwuuvHDvEoDbvunsZ9ywC20X/ELEaFe0CSKEiENn/lP+YijvigWP8JqLdr7+uZcJgcddtvPFT9wLxfqCnOe0vU3gXdLMNLF70LEe8bjoAnFSiDc87/Jbrjjz5A3CGZ1cmoHQqUVC4BVPO+/137xfUgfdMZ1FsUYr/rCxbYY3qYAKAdUUQyNA0/Mev/9fvvjqpg4vw223nP3Pnn9hLVXQtkGDJOEXFf+mjI0EP1SwuMkrPpofN2+9/Qaua5523Rnf/6JLBjXZvZdSPFZBoxX4YZa4yuCcuL4LYAxFN162+2233zA3tEsXzt45/slXXnnGagPVlXgomgUlt8DaBFmU0iMQvJcGEH37Uy+8/dkXGx6W55offsll+84cWQzgNgGYA1pAwYyTgjTIeaKmg0zNCOsc/8grrjclQYeN/N9uu/jSc+cZHqsoYhyhYBx8S2cTE3cwy8swotCmngU96bq9r3aimNFpSTMQOuVoNKje8pIrXvBNe6PNWJP4TxTxyHVQPOzJx2RUQAKHQLdcteftr3vMjsUh56Gu5Pd926UveuLZbmNyxZRXot1i8zadfI5hI/hA2kELgVBL+aYXXPnKZ17EV31IIb77ORe98un7Ag/B5Yp9o0THcXs/RQ63o6B2OlRpr+/2njH/797wWON/eHrmDWf+0LdfOmoodMSx2wSGDQ/G3CYwUbXgAykPhI+98sy3fecNi+OwI87jLtv11pdfPj+CxaGtbAId4CH4owwnkpkhraCIpacbMwJ1Jf/ZC6+87QnneR6uOHfpX7/qyuWFyuFxDnLMJvDImvRL5ADlUTiPQPblPHfP4r957U17dsyicKczzRarnop0xsro5950AxG96713QhIgXUCDVU4Twp4k+w/2Dz43YKIcLFamfYwOUHTL1Xv+z3/1xEv2Lec8rCwM/sPrrpu26l3vvQuiAsguTjQM+N/kon+2fSqwgWQixM3cACDUlfju51/xIy+/Lk+6XRjXP/HKqx84PHnXe++CrEBVKGRneaBwdcJDnkPh0TqwEcD4jNXxv//uxz71unQFvhTiDc+58ItfPfKff/9zndYQEkLa2gGeAd8pOQ99bPhoauyVXnzuyn/47sdeeFYEhELglU/bf8edaz/zrjs6TRASRL1ySAQSQpRgOGGQKc5TV8rHcl/0lAu/78VX11VkpN52y9mf/PKhn/h/PtlpWAZCUVfLaZkTIPbPWJCQWHYimNtNtDg/+Mnvuulxl88Ccac5zUDoFKWzd879xzffODeU/+9ffrnTZjsDXrnHrUu3wz4BITg1x+M/xOL+APDMx+z72Tc/7sr9q1vx8KYbK4Hf/ps7tdU4khUQQmkTHUPOD+CT9sh0LtGwqd7wvCt+8rtuXJorb8a8d+f4P77pRlg8Ntv9CZDfV80BAOVsZKo/gLGz+s23NJ2xOvcz3/O4lz3tQlFagT83rH/y9mu0pl/4g892Ro2Sq90W2QS+dXJclBCojw2lLz539Re/7wlPuLqQADZo5A+/7Mr1SfcLv//ZjkxHyOO3CRIECiYCQPRtT7rgP3z3Y1cWhgkPdSW/97ZLv35w8xd+/3OWB0Wh6QdrE8DnbWZsEM2Pmh991Q0vfdqFs5IIpz3Nqmif0rS23v7873zyZ9/1qQNrU1SVs8ENJVWT4QJi/kAHjQM2P6xpPKq/6zmX/fArrjvrGAId969N3v4bH//F3//s4Q23MXmoIe31ToaFIWGMRfDMBDi86h//0Muve8NzL58bbWMMffWBjR//1Y/+yp98fnMKVFUmBF47JwYhnrfm41dhASyg6Yr9qz/9+sd86y3nFhHI09p6+6/f+bH//HufOTrRYYP2aD8FLwod8WAFot0yHTYhxNi4/pJdP/vmW7Yuhra23v7of/vIL/7+ZycK1iZI95VALAHOhhMIT9AImREAQQq88MkXvON7btkiD21tvf3hX/7IL/zBZzotnW10HDaBz4Cg3B2cHzdvffWN3/vCqwb1bL7g9KcZCJ3qpDT94QfufPuvf+xvP3m/1gKVZNs6sAHvzfBoxohcOM4YngSBK8/f8S9fdPV3POOi0eBY15xPO/0bf/mFn3rnxz79lcOARCXCVnvB/GU2eBJ4iQJQMJsx33zp7h//rpuefdPZW6t+T+uT7r/+0Wff/usfv/u+TVRO/UUVTks8RAa4jqKRmqpKfvPj9v3Ua26+5oIdxySHVv/3P/v8T/7aR7/8tXVUVQ8Pjg1QxgnXueSlUdfyBU88/ye/68ZL960cixx+8Q8+8/b/95++/sAEtYtPpiC0hU3Qy8bi3OANz7/8h1523c6l1AdKaG29fcfvfPJnfutTh4521jaKJLCFTYDYQafUD9O0d/f821594+3PvmSGQN8gNAOhRwfdc2D9ne/+/H//0899/IsHtXL7gqeKj8VevBdiwEkTBM4/a+k7nn7Rq7/5koviufdjpE995dB/+p+ffNfffOme+zfdxjaMAfse6YiZAD9WxRg2bn/2Ja95zqXn7J5/UAwQ4f2f/Pq//81/+pMP3b2+qSBl0L+2jicPRmV2N0VgfOHZy2983hWvvvWSbXVuQu/7p6//m1//2J/+/T1Ts0F74CF2AtIwlEuY9pnTRCCce+bim2674g3felke/tpCDn/893e99Vc+8sE77ieSqEQERYJbJCWbwE8TuqAoCJeet/LDr7j+JU+58BiLEXSKfue9X/qxX/nIp768Zn1TIbe3CYDIM07YgLjlyjN/6rU3PeW6vbMg3DcOzUDo0URf/vqR3/7rL/6Pv/rCR7/wwNH1FnCx+FTv+EQ1ABiO6kv3LT//8fu/4+kXXnbuykNhoFP6Hz974Jf/+I7ff99XvnLfOrTZ6cDDgNe5zPx3P7KuLjhr8SVPvfAVz7zoobBxeKP90w/d9V//12f+8qNfXd/oICRkXlc7j8U5gUhxwVmLL3v6Ra941sWXlTIyjoUOHZ2+6z1f+qU//MwHP31f2+oIDjkDKSfMJgDO2jV/2xP3v/Y5l95w8a7j4OHO+47+1//1mf/+J5/7/D1HAEBWSHxK4mwYRa8jNohAOGvX/AuftP97XnDVpQ9eGv/0xYPv+J1P/NZff+ngWhvjMYJNAGKclGwCy8bcq551yZtvu2LfGbP9gb6xaAZCjz46cHjy93fc91cfvudDd9z76a8cOnhkemSj7To/DwFZiYVRvTQ/uPCspRsv3fWka8567OW7T2Cea6fojjsP/tEH7vyzv7/rn7508GsH1idTHUxdSyZ9C3OjZu/Ouesu2vmsm895+vV7LzguJyynw+vtX3/0nt/6qy/8zce/due9RydTZRHRNA0wPUsAUMnVxeFV+1e/5XHnPv8J+48bfjjdd2jz99735V//88996I77Dx6Zhoy1gMeMB7LAXA/q8/csPOdx577iGRddd9GuunpIRv+nvnLo1/70s7/xl1/4/FcP6+4YbAIGxvvOmP/WbzrvO2+95KGwMW31ez7+1V/6w8/8rw/eefDwxGUPopC0YnwgDesUkhXRWbvmX/DE/d956yXXX7yrkjMX6BuOZiD0KKb1SXfvwc177l+/876j6xutJiiiphLDpjpr5/w5u+Z2r4wX55rtb3S8tDHp7rpv/ZNffuCzd6194atHvnpgHYRO6bqSUoqzd81dcNbSRWcvXX7eyp4dcw9HiF9p+vLXj3z0cwc++Kl7P/GlB+66f/2r968rTZpIAEKIpflm7465/XsWb7x09w0X77zs3JXl+XIa3nHTkY32I5878FcfuecDn/r6J7548P61zSOb3XSq/AVCYn7ULM41552xcP3FO59w9Z5vuvLM885cPIF5X5+/e+3d/3j3n3zwzg9/7sDd96+vb3Te37JkM6oxHFRnrs5duX/1GTeefetjzrn0nJXqoaGgoUmr/vYTX3/X33zx3f949xfuObK+2TqbIObBJ85IsTg3uHTf8rMfs+8FT9h/3YU7TwgbM3o00gyEZnTCyM37kNlq7CQn13ZKH15vD6+3mqhTJKWQAsNBtTQ3mN8u++6E0LTV9x7auOf+9bvuWz90dKqJtKa6klUl9u6cO3vn/O7V8erCCYbAiIFOf/XA+qe+dPAzd619/p61u+9bV0TGJhDAnh1z5+9ZuPDspcvPWz1759x4eOJlQsBX71//2OcPfPDT93708wfuvPfoVw+sT1qlCQIQAnPDZu+uuX1nzF9/0a4bL9l15f7VXcujE87GjB5dNAOhGc3o9KRH1ibQmtbW2yMbbae0twmaWi7NDRbGzWz1z4w8/f9BMYa0XoczSAAAAABJRU5ErkJggg==", "path": "image.png" }
Complete the statement. Zinc is ().
[ "an elementary substance", "a compound" ]
0
The model below represents zinc. Zinc is a metal that is used to make batteries and musical instruments.
There are more than 100 different chemical elements, or types of atoms. Chemical elements make up all of the substances around you. A substance may be composed of one chemical element or multiple chemical elements. Substances that are composed of only one chemical element are elementary substances. Substances that are composed of multiple chemical elements bonded together are compounds. Every chemical element is represented by its own atomic symbol. An atomic symbol may consist of one capital letter, or it may consist of a capital letter followed by a lowercase letter. For example, the atomic symbol for the chemical element fluorine is F, and the atomic symbol for the chemical element beryllium is Be. Scientists use different types of models to represent substances whose atoms are bonded in different ways. One type of model is a space-filling model. The space-filling model below represents the elementary substance copper. In a space-filling model, the balls represent atoms that are bonded together. The color of a ball represents a specific chemical element. The atomic symbol for that chemical element is shown in the legend.
Use the model to determine whether zinc is an elementary substance or a compound. Step 1: Interpret the model. In the space-filling model shown above, all of the balls are the same color: . The legend shows that dark blue represents the chemical element with the atomic symbol Zn. So, the model shows you that zinc is composed of one chemical element. Step 2: Determine whether the substance is an elementary substance or a compound. You know from Step 1 that zinc is composed of only one chemical element. So, zinc is an elementary substance.
an elementary substance
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAIAAACmkWkFAABLvUlEQVR4nO2dd5wURfr/n6pOkzaDhF3QBRaQDIIgoICKKCAY8IxwKib0THeeeuqJ6c7DcH4Nd556eGLWH2I4RNA7ExwKKhKXHHR3YUmbJneq3x81Mzs7m2a6e2Z6sd4vXto729PdM/3Z5/lU1dNViBACHY2f6/zt7tMz352BK2H8kmE6TBU+2xeQSEjVdh5u2HG4PqRq9SG5PqRk+4pSRuJxF48zzyl28TgHdytw8Fy2r4iRMkyH6QDZyt0c9IXeWLcrrOpt71bgcSMAAEAIEET+AYLIiwAI4Kg/KGvtHCcDSDyeNbi0ZwFLcR0JpsM0Ya9ws3DtjkO+kOhw5+QXSqLoEASHJAoIeAwcAI+BR8AjwCiywUW3OQQYgIu+QrdxdDu2gQBQdJsQ0AE0QgiAppO47cjrOgGdkLjtxtcje0a2If4IOoCsaoGg7A/JDf6A1xeQePzb0wZl+6tlpADTYZrA2T19AvVBGQAKup/gyi1wON2CKAIADYcIRbcgkj1IdLtxh7jtxiBKtwmQuHeSyP4EIUQIIIQAgG4DfZ3uiuLSFQISfR0hRKKvIwSEEIgeAQjwHOdxOzoX5Z5Q0gUA2k2SDLvBdJgm7BVuehZ4ACDkb6DfLjVekVtDoltxN5huN+4Qtx3dF4DEWdzoO1Fkf0QIidwnALpN5UBVQXeKbgOKvk4IQdHXIyqJHiF2aEIgKCsAcJzHYfHXxEgzTIdpwl7h5vgCDwDIfh/9dhMSRUfJKtFtqK1tgKh2GR0IpsM0Ya9w07dzrsThoK825Gvo6FklEJKP1jYAwJBuhZZ/UYy0wnSYJuwVbvIc4qm9ugLAkeqfdU3ruFlF0/V9FQcAYHxply42MLGMlGA6TBP2CjcAMKpHp7JOuUTX9/+8W9U06IBZRdW0HXv3y4rWM999ammXdHxLjHTDdJgObBduAGD6gB6dPQ45HKr4aXcoHOpYWSUQkjft/CkYlnMdwoVDTkjH98PIDEyHlmOvupsYIVV7Y93uQ74Qxvi4Tp0L8vJyHA471zuEFa02EDxS56v1+jSNlHXKnT6ghx3qOBlmYDq0FpuGG8rS8opN1bXZvoqUGV/axSbelWEJTIdWYetwAwA/1/q3H6n/vuJwY4vZnhBCACb3Le5Z4LFDnxzDWpgOLcF2j2gm0LPA3bPA/X3FEQCYfcoQakERAILIRsKPEPc6RF0rIpHXY6/QDZ0AAdAJIQCEbgMhgHRCIPI6or/VCURfibyLxH6LQNH1xWu3cwiN6tEpC98RI/0wHVqCHbuKWyXawUbvK4K4Tv6mIwKxH+n+gGhHWuNvoyMCQIDQu0574CJjBJEkEbV+ja/EDksi+9P+uTgZMY59mA6N0qHCTXQMgEDjv9itix8RiP1I9wdChwmhya2P5BYUuXMkMi4Z6e1HkW16rOgrscOiyP4EEEK6TgCAQza+zwwLYTo0SocKN3bNKiSSVex7mxlWwnRolA4VbmybVUAHAGRnF8uwEKZDo3SocGP3rJKmj82wGUyHRulQ4ca2WYXoYO82M8NKmA6N0qHCjX2zCgJ7t5kZVsJ0aJQOFW7smlU0QsDet5lhJUyHRulQ4cauWYVeA7LxbWZYCdOhUTpUuLFrVom2mdP1uRn2gunQKB0q3Ng1q9i/3oFhJUyHRulQ4cauWcX+bWaGlTAdGqVDhRu7ZhWwfVZhWAnToVE6VLixa1ah1ZzYzvVVDAthOjRKhwo3ds0q9q/mZFgJ06FROlS4sW1Wsb2JZVgJ06FROlS4sW9WsXsXHcNKmA6N0qHCjW2zim7328ywEqZDo3SocGPbrAIA9m4zM6yE6dAoHSrc2DarEB3snVUYVsJ0aJQOFW5sm1Vs/yQuw0qYDo3SocKNzbOKnV0sw0KYDo3SocKNfbMKgL2zCsNKmA6N0qHCjV2zSnQAMl2fm2EvmA6N0qHCjX2zCr3NNr7PDAthOjRKhwo3ds0q9q/mZFgJ06FROlS4sWtW0W2fVRhWwnRolA4VbuyaVezfZmZYCdOhUTpUuLFrVqGv2TmrMKyE6dAoHSrc2DWraLavd2BYCdOhUTpUuLFtVrF9NSfDSpgOjdKhwo1ds4r9n1VhWAnToVE6VLixbVbRAey94AbDSpgOjdKhwo1tswq9EBtnFYaVMB0apUOFG9tmFdvXOzCshOnQKB0q3Ng1q9Aj2Pk2M6yE6dAoHSrc2DurcDa+zQwrYTo0SocKN3bNKtHi8XR9boa9YDo0SocKN/bNKgAAyM73mWEhTIdG6VDhxr5Zxe71DgwrYTo0SocKN/bNKgjs3WZmWAnToVE6VLixa1bRbN9mZlgJ06FROlS4sWtWoRdhZxPLsBKmQ6N0qHBj16xi/9ULGVbCdGiUDhBuqr1BAHAIvG2zilPgY9fJOFZhOjQPn+0LaJ/yg3UA0C3X5W3wIgQYRW4w3Uj4EQAwAowiKQTT5EAAIYRoliAkmk9AJ0AANF0HhHSdEAAdiE6A1i/ohNAd6AZ9hUTfpes6IKzpug6k0IErALYcrB3Vo1OWviRG2mE6NE8HcDf0NnfPdUcaqE2zCmqSKqKJh8TyAUGRXSK+NeJFm2YVQiJZIpaaYlmFEJKQVSKNZAQ60en5OrkkDqEDDcGGkJzBL4aRUZgOzWN3d7O/IeANKxLPFbkk2kCFaNM3+l8Svc8EIo41kkMAACFEgKDILSa6H8I7Fa1SUyo0EiTgREIPDhcjoUwAByCIzPdKW8iERNrMBGiTm74CCBC94RhhTdcBgOPQcR7HAW9wU3XduBOOy/y3xEg31uqQNn7o76LNK6QTghAiOjmGdWj3cLOVppQ8N9AbTCKdZU2zSrTvLnrLaQag6QIjBIgQv+59LxT8Jpxw/PAGBQAAgtIYwXGBgzgjB9IjWUWnd5SqAWJZBUFjViEABLp4pAPe4MYDNfa8zQyTWKXDxt5hFNkt3t3opGl98DGnQ7uHm83VdQBQnOuh4d1YVgl/I/sWB0mAND9+jPC3irxBcVzo4EcLqWYVQNDJLfIY1QXlQ77QcR5HWr4LRvawRIfpdjf216Gt+24q6wMBRXUKfIFLomONBtrMof+Gva8G2o41FBKE4Osh+Qs51TYzVVyXHAdEW/iMYwlLdJiBvhv769DW4YY62K55boiONcaySty/+JHGqJ1FkUqF8Leyb3Fq44LhJWF5jRKrd0AIJdQ7IITocCVGOGafEUJdPRIAbK6uNf/BGbbCvA6pu4nW5xASixpN626oGYpILPLbY0qH9g03hJDoWIALAAxkFa1S870aMHBq+Y2wVqGllFUIIXkOQeKwN6xU1Rs5KcOemNchZNDd2FyH9g03FfWBgKI6BD7f6QBDWcX//4zXOynvy6lmFYQQ9bFbbOljGcYwr0PIrLuxsw7tG262HqoDgO657sZmaSpZRa3Q1J2q4bNruzS9kqSUVQDgOI8IAFsP1uqNxaSMjo1JHWbe3YCNdWjTcEMI2XawHgC65rpjo4spZRX5W7OVTtoaJaWsAgC5DtHB44Ci/VzrN3l2hh0wr8PMuxuwsQ5tGm5+rvNTB5vnlIxlFWWHcWtD0av0VLMKIaRrjhMAthy0Y0cdI1XM6zAr7sa2OrRpuIlUVeV6IJYoILWsolVpJq9B362lmlUQQl1yJADYeqhe0+3lYxkGMK/DrLgb2+rQjuFGJ6T8UD3EDz2mnlUsuRIDWcUp8DkSr2j67qNeS66BkS0s0WG23I09dWjHcPNTrT+sai6Rz3WIYDSrWHIlBrIKAOnsoeMC9vKxjFSxRIfZcjf21KEdH2KgYwHdcnPoj7GsglJ8VsUkyAEkmizafVYlllUAUBePtOeob+eRBlXTec6OAZ2RDFbpMOGZKXm7Rmo17SgBINiF+GJO6Mtb9cyUzXVou3CjE7It4mBd9BUSvaPxWQUg9t+Wn1Xhy3gzA+EAgIo5lPSzKggiz7YQQkSey3UIDSFl++GGgV3zzVwDI1tYpcPYM1NKhRr4f0G5JU1yRVgaKjjPkZDb7DNTNtehLWJePPtqfGFVc4q8WxTpK8bazOIQweSVcEM4A21mepVdPBLYzMcyUsIqHRICJEB87wbq/uxtMdYAgHZUD3werrm/Ibxesarvxp46tF24KY84WA+KTxapt5mFYWbDDR7MG2szA0JFbgkA9hz1BhWz4/GMrGCVDvUqreHP3tAXiTOfNIcEwftiIPR52Kq+Gxvq0F7hRtPJ9oiD9cS6X4xlFVyIHZMkw1fCnybgItxyVvETtFvDe3T8qcLt0bk9evOsInK4wCUSgG2HGwxfAyNbWKVDtUJteMqn1ejJnzrwXji4LGSVu7GbDu3Vd7O3xitruschukQhPqsYazM7pznkjYp+NIWbTUGFSJwqEWjWZt6p4ZUq3txCRY86AIfGYtIbEUIAIUJIZ7dUG5DLq2uHdy9M+YtgZBWrdBh4LUCCKY9ahJbJ/BABFWOTfTc21KG93M3WQ/UA0CXHDQAm3Q0hgFwo53o3cqY2KI4c4LzGCc4mWQVqCPlbCJ4PQ0uxBgD4ct3zT9XzooqCiGahTi4JIfi5zu+XbeFjGcljiQ5DH4e0SoO1poEXA2CFu7GbDm0UbjSd7DhcDwBdcz0AYLLNTN8u9ODzbvckH3GQA1y3ulEJjm8zk/1EfzJIdrfvkvi9JP9xha8GAsBxqNAlAsAWW848wmgNq3Qof95+f01r6DVEWaOY77uxmw5tFG5213hlTc9xSA6RByvcDd0QevAF9+QIZe03G/k+nPtuDy7B8VlFr9S0v4Ug6aksUAhyX1KFA4QQ6Oyy6TwAjDawRIfaBoWEUm5GxaNuVC1xN7bSoY36bujzKZ1zXLTh23abmWxUyH6NVGoQIggAFXN8CceV8bgIx/puACLVnFwRLvhtjrJdCX4RDkXmQm+COFSQJoh8X46u79PYZg4i7eVw8rGGgkLgeU+vm8vluwSMoNobrA2EC1zG+60ZmSQlHUIrfTeq6Uf2tJ2qJX03CIF9dGiXcBPnYHNoqCYkVt8NEBkUBOLXYaWsfxWGhB64nSptmPJlvGOWE5VwAInVnGI/wdFf0P1EqVQhSOQKTSjhiBP4Eo44gdDVwqIjArSaU3k/RGqM5Cj+AHGu1tVJqMgtHfaFtxyqG39CF6PfDSNzJKvD9qqKNdMTEpAgkEodihEYrSqm7kYngJFddGiXxtSuow2qTnIckiRw9K610Gau1PAjXrI8lBhr4lB3qr5HveFl4daeVUEukPrx0jAh91yHNEyQ+gngbPlZFf2orn9nXDTO1TpXC3Q2/E0Hst9sZiRDUjpMou/GEvQgMd93Q6/fJjq0S7gpjzhYd/TB2cQ2M6yV8d98bQSaeIIfB/2vBgBMPYmrbzKVoHAIHFt1j8jFFuIwczRGZmhXh0n23ViCVX03AGATHdoi3CiavutIAwB0znFHzUjTNnOVxr0VSDLWUMLfyv5XA2aexNXWmvXD4j7gOI5WdtqnkJzRGu3qEDLrbqAQW+VubKJDW4SbXUe9qk5yHQ6HwLeQVQKE/7vPwGHD38rh9bJxd1OVcn1gAvwBout65DZX15k8GiPdtKNDAEja3XAlnPnr4YqQVe7GJjq0RbihYwGdct1As0TTrIJXNusYTprA4qDu1425G3OfCQCAqwOMcY7ECxzyhpXKentNHMtIoG0dpuRuuCQKL9qGH8JbUndDr98mOsx+uFE0feeRegA4LofOmdYkq6AA4b42Xi6lHdXD38rG3I3Jz0XRdR0AOrntUvjAaI22dQgpuhthqIAcpjIWP4S3sO/GJjrMfrjZeaRBJ5DndAg8B82yCt6iIKPWhhLeoGTL3QAAxhgACt0CAJRX19ltIQ5GjLZ1CCm6GwIgnm68wgUVIiG6Vr1V7gZsoMPshxs6FtApJ7KOT0JWwbvM9tcqO1Vj7gYVmo048gmIZhW3IDh4LqRqP9Ua6YRiZIC2dQgpuhsE4Jjm4IoN9uA4L3eCpSNTNtFhlsNNWNV2H20AgKKcyDo+CVkFpfLwfmuoFZoBd8MNMtv8VrsimlUIkOi4QJ3JYzLSQbs6hNTdDQC4f53yE8IA4LrCKfSjDstid5N1HWY53MQcrMjzrWUV8+gBYsDd4CFmw01wRMTdIEBFLhEAttlsIQ4GJRkdpupuAAAX45zbUnhCGAAcEyVxDN+0D9Eyd5N1HWb5IQY6FlCU46FfC6J//4TGaWtPRb95BITQ56kQoj8jnT5j0myOWK4Mo94c2W3w4Rf5BKR0A/o8CwEiCZxb5P2yuutoQ7/OedZ+NoZJktEhiUaWeHcDEPtvK3Nm9+Byb/cE/l9QaW/mbL6Yc1/k4PpwBKCNuYqhFmCTijdruIZALQEAKEB6AVIHImUAhwpaeGYKCGBsCx1mM9yEVW1PjRcAOue66Z8/RLJKJH5bFXGEEq6x/UTdaVN309oM+NwUQf27wXDTcCEHQGJZRSekwCX4ZbX8YB0LN7YiSR2iGh3vUtF+De/XAIA4ESrhoJhDQ4Sou4m1t5qsxMCVcLm3e+Rv5eDnYbWlGXCwEzlPF13TJPp4cHMdRp6Z8hPyoUKaP1hTS3AtEfeA+G9NOQkHT+f0gkZ3ozd1N9nVYTbDzfbDDTqBPJeTw1xrWYUUc7DH3IIKToRcyIC7IYRwfTlymaS9mfJIfMOFmBQC6I1ZBSFU6JIq64I7jzTIqibyFpSBMSyhXR2iGl16O4B3J+pQ36QAgOZE3ERJmCghV2N7K+ZuYjMTSKeIjjGifpRolapapdE9xDKeL8K4CBMATddb0yFCiFTp6nPBdicnEH7Q+S2671pe6dayu8muDrPZdxNxsB53zHVAszazNsjsDOfiUNFo3Q0ihOBRHD41taDsn4rlETihzUwI4TmUIwmaTnYcscXEsQxK2zoUVoScf2poHmsaCRLtk1DogQY94lwa+27i512iB+Q6IWmYmDPdmXOuM2e6w9GP54oinbht6FDboSlJxBoKCkHOs6pYTlrsu8muDrMWboKKurfGC3QsIGJaAZqNCOh9eFJo6iIdYwSjdTeREQF8gYguFZM5F3GAbxYOjeeajwjQoYV8lwBsfMpOtK1Dx9sB8dPknmkMkvACr7pGjh+ZogNKdMPws3t6pab+K4UJ3ijuxRqdVdJWOsxauNl+uIEA5LpcHMZtuBsA0KY4DJ+FL+PFfoIZd0NHBPAoHu51wMi2bI48Atf/npdHcK1lFQKETm601zYLcTDa0KHjw6D4vZzS0eTXA9oODVp3NwZ0qLyZ8gRvQD3Oa6rddJi1cENXRC3KcSOE2nA3AKCNEvXeRvqYkBN5LnIZzioJ9Q64CMOlAnnYqV8s6Gfxei+s98JaKZbP5EJzeN/9YvAiDlyt1jvQA3EIch0CiU6+zcg6remQ3yxLq4w8PRN6yUcCxCp3o65VDT8qjOtAXKfbSofZCTdBRf2pxocACj3uSG9W6+4GAWhXuUn3lPu0XBc5uRJsOKu0XO/gBH0kp5/Fq/ME+QZBnicokzl1ANad7dQ7kEipBipwSxCtYWVklzZ06PoodUcBAAAkSORlIavcjfplC3PdJo/nv7qtdJidcLPtUD0ByHE5OYzbdTcEAFxIv8kDSUcc5ETuOS5pjGimzQyWVnOiSKkGyXMICKDCHgtx/MJpTYeOlWFca7ycXf4yrAciA1Jm3I121OwsKLgOuDoA2+gwO+GGrohalOsBGvjbczcAQFxI/42HnNr+Y2+oEHtu84ijRWglqygVmrJDDW9X1QotZXdjtJozllUQgnynCACbbbAQxy+c1nQomKu9AAB1owKm3Q0xPb86AEhbdLCNDrNQdxNU1J9r/Qggz+WCSGUB0NTSvO4GYiUMAOBEcKETJkmwPAQbFWi2sAYu5sRJknSKiOPqHaIHRMFvwuENSrjZSgziEF4aKgijhRbrHegFEEMz4CfUOyASkV2eS6wNyuUH60b37JzOb5rRFm3oUNxiqgkDAOpGRTpFRC3pMPn6L830BG8AgMIAYBcdZiHclB+sB4Bct0vgOAAghGC6WEtr1ZwAALEbQ3Ahxpe70OUAu1QEQHapuJhDTsT34LGrcUQAYvsjJO9QfK8FtFZW75U3qvJGlfs45LjQwQ3h6RmbVHManQEfmlZz0qxCCMl18BghOyzE8UumNR3igAV/5CQQ00OjDumKIJBKdbtV2ESHWQg3dCygwOPRCeEQSsHdNH1WBZfxCIDry9PfNna7QJNqzuA3Yd+rgXavSqsh/peCjqmScI5ozN3gXbq0j/C7NYiWXYRLUfhEFOpCErIKAShwCUf98paDdeNL2YIw2aE1HXIHLGjCkBodmurQgLtJdO8maNHdZF6HmQ43flmpqPMDQL7bRescEtwNv1/HIZ1GENIn4jUgzt1AJObE/qFYURU0fVYFIQj+N+RfnMIQQ2hZWPcT8UIxJXfDf69L/1ZRs3IwYS/xfA5aPjRMRN5hjVkFIch1ikf98qbqWhZuskKbOrQAVIjBtLvhirHZRh0AkQBacTeZ12Gmw83Wg/UAkO92cxjHsgryE/fqkLhbbd5Fp/fm9VEiOVls7m5iI1nxQ1jx7kbeoKQUayjyVzKUIGG0kIy70X268yUF728rD3F1UPABcX8LB3+NVEckcnkknsOoLigf9Aa75DhTvUiGSVrUIXU3sqEirxYx6W6Q0dm54lF6I2jF3WReh5kemaJjAXkeDwGgWUXYpRQ90+D+LNTicADerfJvB4SHG2CnCqmsEa77SfD/GSydUJaEdX/7I1NQpUmPhduONTHEauj2AhEPIprHACDfxSbcyhrNdRg/MqUVmP27oCsxmByZ4oqQySkltXxQuiJoaWQqKzrMaLjxy0pVfQAhlOdyIgDw60Wv+jq95OParXGo1bm/+2CNHHM3cf9if+0RdwMACKHwl2HN6EyAJAjqcqWduhs/iIsUlEpA4+ug8weEC0YqLPKdArB6v2yQoEOdRA1ItO5G6WXW4NCVGMxXFQsTTD2iHBqBW6v/ip0xkzrMaLiha9zkul0YYwLQ6b2AszyFxil+K0DWhJN0N+FvUnvaJQF1rdy2u+FfVSKTG6WCWA2dP4zkMafICxz2hpUKtiBMZknQYXN3Ex6Z1BO5rYEKsTBUACuqivmJgmGDo+VDaGwLMxPEu5sM6zCj4YY+oJHn8QBA4b+DKcUaCn4rCFVau+5GryG6uUmOSRC0nWpr7gbtIniPweO7t4Njb6T+OJ8WkrMV7zJLvA5bdDdqb96MwZGmOmIu26S7QQiJcw0+ouybxevOVqvbG8+YQR1mLtw0hOT9DQGEUJ7TKR7QclcbXKuYLPS36260CgvqsvVdemvuBn9kyjrlr4kMseU5eAAoP8gWhMkc8ToEgBbdDQCEZrqIoYWicDEnjBFjLtukuyGE4BKOS27+k3h8szi1tPH4bbibTOowc+Gm/BCtqnIjjAv+a7ATFwCgRtfXyG27G82K6u9W+25qASXXPdwa7u3AhRAAkQRe4nFI1faxBWEyRbwOoRV3AwBqdxy82JXqwVEhdt7qgbg+RPPuBoDwowXuMgmSdjmBWZw8IqZbgPbcTcZ0mLlwQ+dMy/N4hFrdnXozKh7yVbhtd2NRgVTLfTdgdLL0eMTqyMhXrksE1p7KIDEdxuq5WnQ3CJAyWAhenILHwcWcdIsHuSJRDCxyNxCdVZK7SYLe7QyNq6XIdzMfHoEgWt2ejLvJmA4zFG4aQnK1N4gRynE53eWmWiIAAFUanVKkNXeDXZbUarXmbiwIZo6DiB4/1yEAwLbDbEGYTBCvw1htaIvuhpoRZZQYutGjJzEVAXeyKN7iwUU4YYTUEndDdYhKOHyThG50wEieFDRRuF6AlJO44HVC8HpB607P2s7MBPHuJmM6zFCZHx3Vz3F7ECDc7NFKI1RpKPL4AordXIiW/GEr6qOQE5GopYmvKrbEOqFQJKsIHHYKfFBRdx5t6M9WaEgz8TqMuRuuper2WDmn1p0L/S6H/07mv5NbmLHYgfAQgZ8ocT345jo0/8xU8+p20htBb4EQQSMEaolOiF6ACIAeMeIket72n92LnDGDOsxQuKGj+rluFyBwmn66H6IdNwAtVxXzPSz4XHgwDy1VFRMrnBONkgghICTXJQTr1fLqOhZu0k28Dkm0PZ7Ms3vaKJGcLOIAwfs1HCKwX0N9eASAy3gccSKtVreD0apiAu09u1eIQNcNz0ygR/fMmA4z0ZiqCYQP+UIYIY/TZdVjZ+303ThBGGKqPgoVIlyEW+67seIjhLtEsgoAeCQBAHYeqZdVS3q4GS2ToMN2+27oHrGxGgQALkTKeDJEIFMk1IenDwm3oUML+27aqG43Nu9SQt8NZESHmQg3tMzB4/FEnq20grZHphBCjtNNPVAvnCO21ndD2uuuSwa1IOpuAHgOuSReJ7CdLQiTThJ0mEzfDcTCT1xLCZJeI9zavpuWq9uNziqZ0HcDGdFhRsINHQtwuQEACARNV4gDACrEbWcVvoznywyeCBdj/mS+1azSGyU/JNkiSj6E4twNIUA76tj4VFpJ0KERdwORiBGxCO257I7lbjKgw7SHm5pA+LA/hDF2OZ0AAAiCpWZXqoNCDEW43aySc70bF6X8AZEDpGucbWcVfZCpiOkd2iSrIARuSUAAe2vYgjDporkOmbtJcDcZ0GHaww3tnPO43bGvMNSLV8w9cYsGCclkFeRCOde7kTOF9htygOtWN1eE2s4q+lmcYYOjS1A/OjGrcBi5HTxhC8KkjeY6ZO6mubtJtw7THm7oxMselyfyMwIC0DDW3EyFE6Uks4rQg8+/J4cvSaq3BRdi921uXILbzyqFWJts0OAcORs0R2JWIdGOOtaeShMt6hCYu8msDtMbbg77Q7VBGWPsckTNAAEE4B0hyd2Mdrie7cBFsY6b9rMK34kruDfHPc3Rhs1BDuScKuXc7cbFkZLQdrOKdhqnnZTyR2gYjbzDoHlWQQBuiUcIKur9DSHTZZCMprSmQ7CHu9GO6PIORavSs+5u0q3D9NbdbI042BwUyxEICIDuREdnubu85E255K87hyZI0fxD/5tUvYN7utM9SVJ2aaH1snZUJ0GiBwlXiHER5ss4aahAHEAA9IiQ2qt3AABCtEtEAjL/Q7KjhnUToXZCC/UOCIFOACHkcQjeoFJ+qH4MW6HBUlrTIYq6GzNzZqekw1jdDfHpwbVy8BtZqWiiH64Q8XRdkGKcpA6tqrvJgA7TG24iDWZX3KNu0fUVwt25Q9flHPdiKhGnO6ff5OacqFlWifnctqo5kRs7hmHHMAGi1ZzR+EJrNhtzEWqpmrPFuYq1i3mtFxJbmqg4HjUfaqcg/4mRTILiqjkhmlUIgFsSvEGlvLqWhRtraUOHpL2qYtLKiiAQiTkp6xAA+ZYGA59Hlr5LQKsh2hdy+AtZGC2I50vEmZQOIyc3UVUMGdFhGsPNQV+oNihzmHM64uZAjcsq4W748HU5Ra/5+CRWLNSnOOBsR7S5ChCXVSBASJWmVWl6lUaO6gCAnIjvwYlDBaEHn5ZqTmjMKupIrA4Q+f9p/BadO5AoILUr8g8D3zDQne1kFQBwiRxG6KAvxBaEsZB2dZhJd0MC4H3PH0xi7jdljaLtVKVrnFAMmXQ3kE4dpjHcUAfrcrubvNo0qyjduSM353i+CbtXhlErNkfvzWuXulARxi1lFW2NrLwXhGDie5WNSvDjEFeI3Re5pGF8Y68cQjF3A9ERgWSeVWkjqxAnhM/AoTMw1BBUG8kwOgE1H5R82i8IJImsAgBuB+8NKpsP1p3KVmiwiGR0CJlyN7X/51Urk2196zUk9GxA/I2LdIdMuhtImw7TGG4iYwFuT6SfnNIsqxA39p3pDEx2ODYr/AFN2K3SW6X34Ul3DgoxlHC4payiH9X1NwL6rrYKBLQaveEFnzhEyJvjRu60uBv6oSKdcIVIKyAEMNWEpkf2STKrxJrNm6trWbixiiR1mAF3410USD7WRI4VBGVhULjDBa7MuZv06TBd4abaG/SGFYw5SXRE+/wBoK2sIg8SlEGCfBZCiCAADIARIAAu8r4mWQU2KurCZKdWlTcqtU97C2/NwR5z7iYAsFnFm3W0pYlo1AFYHYDkE7HuNJVVCCESz9GFOKq9wa5sQRjTGNBhmtyNukMLf2tkrEevIcr7Ye4yMWPuJn06TNdAOO2cc3s8GEdrDyiW1DtUatqb7S+MGY9aodW96CNRBURbVpB8vQN8rcKfg+gdJSHWAABfrjsWazmPK47VOoDBegf6VSAEbgdbocEy0qtDiP8Xa86Txp3j6m68rxmfeFz/ToUayEzdDaRTh+kNNy6XJ1ogEMV8vYOfkIX+5p017SLvUH1Lg/H1DhB1N+3UO/gJeTlMPlSgzSlPUQicS3XPazoKGKl3oF8FIeCWBADYdKCmyffGMEQadZhK3Y1SoeqtLFGfJNqXSmbqbiCdOkxLuNnfEKAO1iE5UMwzUExnFfJ1mBhdZcG3NKQejqzhnay7CSLt+TDZnGyTW9yq5y7UIGg8q4g85jEKKFplfWoOjpFAWnWYkruRvzG7+i7ZombY3aRDh2kJN3QswO32QGMYjmI+q3wZNnNtwTUypOJu1DdDpCq16MYfILnvaYazCgC4HAKwBTZNk14dpuRuKs0+8UhqMlRVDOnUYVrCzebqOgBwujzQGIajmMwqm1QwN/coLXlI0t3o32l60r4mHnErcfyog6GsAgAehwAAW9mCMOZIow5T7bux4uOQ/bGBkky4G0iDDq0PN5X1gYCiYo6TJAdYnVWgymyW0I7q6hE9GXdDAkhbbvyxEc9/dRw0mFU4BCKPQ6q2t4YtCGOQtOowVXdDUu9qbIFApt2N5Tq0PtxEqqpcOfRHi7PKflP9bRTtqJ6Mu9E2KaTGuEpwHUjbiLGsgjB2ipGVxsx91l8u6dVhqu4mlVlQWqUwNldBhtyN5Tq0ONwQQuiVOaNP+lucVVp6zMQAybgbfZfZ0CbuIcayCtF1Ogy5/XC9qlkQYX9ppF2HKbobZMVKRKgw1quYIXdjuQ4tDjcVUQcrSpFHLazNKlaRjLtpu145GcR9xt0NRiAJnKLpu456TV7GL5B06zBVdyMYnce28Xq74wyPTEEadGhxuNl6qA4AnK7cWE6wuO+m0IILxi6UVN+NiZYUhasznlUQwg7WnjJKunWYqrsRhpqdMBefzGV+ZMpyHVoZbggh2w7WA4DD5YnlBIvdjRXr1Qk9uGTcjfkTgYmsQojuknhgC8KkTgZ0mKq74TtxopmI4wDuZDEr7sZaHVoZbn6u8wcUleN4QRTTlVX6mA03jqECJNd3Y/JEFDNZBQE4RE4nsP0wWxAmBTKhw1RHpgjxzIqbbSdFuAkCcWah7sZyHVoZbuhYgOTKAQLpyiolPPQ21QyWhgqQXN8NKjRrcLR8U1kFIeQQeGD1fimSCR2mOjKFEO6EcuYYiTjcYJ4/R0QIZcvdWKhDy8KNTgidvd3h8gCCNGaVs40v8iSUcK6xEiTnbnAfs9178gnITFYhhDgkDgD2sQVhkiZzOkzR3SBAjlNE16TUZqvCxVi4zEHogbLkbizUoWUTUPxc6w+pGuYFXhCBAIrGMRS5b403jQAgAC5AXFtlV7nChYi4RwUApRdPnEgdJKi9eCjC8VkFxWUV1JeH0yTytZFHGfJ+7SZJz3eD+2BtranvJHwiSnWekUjow1jXdfoWh8iHZLX8YP1JJUWmruaXQao6RJmdzc/zKxffg2t4NamnkPiTBfECiTgJIpGuS+pHSPrnu0mTDi0LN+WH6gDAQauqaFaJJgcaRyMQ4EIkf3U473+hhFmKhT0qAIhbFAAIn+VQx0vgjksUkQBBABC+0KnvVklVah1XuXNcQo/I5DkJ7qbF+W740YKyXAaj41NaPoQGoFTnGYnPKrquAwKHiEMylB+sZeEmGZLXYazhnOG5ip2nSFJfoX6RX97ZqlNAhUiaKvEn8ynNKtmiuzE2302adGhNuNEJ2R5zsABtZBWpWuu62C8daCdSSJ+GxJXh8DwPKeZazCr4Nx7yZkDflNSDtsiJPBc5naeIkXuWnLshhPBni+qbBp8I9Z+BAdrKKuIBgkNIJySch8J5kRyYkFUIIZLAIyRX1gcaQnKuQzR2Mb8QktdhttwNIARAuE648LcetVKTd6ih9QoJEqVSw4WYK8JcMceXcdxQTifQxH1k1d1YpUNrws2+Gl9I1bAgYl6k7ckWs4rjgFay0Msl94wlChLpeZ98pRuV8dA8q7gQd61b+ySkfxEmbR5QGirkzHZhN4o0yxFK0t0AIDyKQzt58l3K7dXQcBwajoGQ5lkl9xvi3Afu7RDNlxgANAf4eqKawXptGUDTrAIADpEPhtXyg/VjjmcrNLRFkjoEsM7dBAjs1wCAuDAqobGtHXcT06HQgxN7cO7TJRK3IggB0KNLg8R0aAd3A1bo0JpwQ6uqRGcOin7s5lmFC5IeSceayHuDRHzFr9zogWKuxazCnePgR4vaGllbIydMgoOLMC7E7mlOoR+HqH4gElSSdzcIIeF8SanSSSrPaqndkG8abp5V3OVQsJzw9S28hQuhvB2Qt4Pr3JNUnKH7uzRmFQTIIfDBsLrlYC0LN22TjA6jP5tzN7s0+F7WNioJ07xxZTw/RBBGi+BCbbgbAzqEbLsbS3RoQbjRdLLtUD0ASE53pHO7paxS8oYvpVhDQUEivB1Qf5fTWpsZF3F4qkOc6kBB0CtVmp74Eg67YrslZhWafII/KkqVFssFuBBxgwUSWa4+Lqs4gbtR0j5UkvQ44RHYPxWDM3FEIG8ZyVnT/sf3/IzK3sQ/n6EdHRzJKoQQQcAIwSG2IEybJKnDCEbdDVRp+IMg7FJbvJfaTlXbqcrLQs4rXHiY0La7Sd5l28HdWKJDC8LN3lqfrOmcIGJebC2r5JbL7n0Gh9BQlYa+k9HJYtttZuQCvi8PABgBbj2raIc1/7JQoOWFfkLCEJ6fIOIy3CSruAFdKkIfTJYrUNtqyNALIHQGFxqBCCRmlYL3iXt9sqGWD6Ney3gA9fCgSFYhQKiP3Vxdd2ovtkJDyySjQ5PuhtukcG8H2p24lgRJ4CW/OEZ0z3EfS+7GvA4tCDe0qop35kS/yBaySpcv2pzmt92rXB5STxZNjggAIO87Qf8Xba13qWxUlY2qMFrgzxPB1SSrkJEcjOT0tSrs0vEWDaKHIQ5QB3BqL5BPouu9JGYV148pxJoYvZbx/s6KrwutB0GSxAfD6uaDtSzctEYyOjTjbrhNCvevFKY3l7+VAcA923XMuBvzOrQg3Ow4XA8AossTjd2JWYUPgqPa3NMWtTo6qkMRNjwikPzqhUAXMKzSxJucdJqSJlnlZF4fBSq9fwhruq4DoTtAS1lFqMcF7xu0dX3f59ddr1CJCByHMaoLyjVBudDJxqdaoF0dmnE3uErj3k55yl75W5krws5pjmPD3ZjXodmq4h1HGmRNx4KEOSEWqqFpNad0wIKKWLRZAaPVnIDAuziQZKyh6JW6/FyQ+Akhpqo53f81HmelBtR5CyaRGnPCIQwAAdnsJNvHJMnokMR+AHoD6f+TqirmPwgiQzPyBT8OaUf1mA5j7oZGkAR3Qw1Ls2f3ECFmdWiyqphelXkdmg03UQfrgUab2OhUAQAhyDHaa9OEIInvu4n7FxNBxN0ADc8oskGA+JeGQqmvKKZX6dqHMkIITDyr4kq9GRVPt+85FFEDoqtdhVU221YLJKND1NiUgphHjjZYqGuAWKSKf2aK26Rwe4xrOPBqgOow0kqLWOGoGY/0Q7c1Zzaigs7eM1P0qszr0Gy4qajzA4Dg8EBcqE7MKmDqT64RQ+4G/BD8wmCpnrZW1XZohrOKo9zsB3cfQlwoqgmMAUBmk/u1RFI6NOpu+O+NT1kNAMpOVffrx4y7MaNDs+EmGqTjvkhollUaI4LJkxlxN97FATNTjpJPFcNZha+2IM66D+FYBzkAhNjcNy2RlA4Nu5vNZhuw8kblGHI3AEZ1aDbcRE6Om4TqhKwS7GrBnFjRw6bsbpTWn0xJBn2XBn6DWQUHLYizUgOJ10SYhZuWSEaHxtwNNqcfinb0GHI3JnRoPtwAQGS0rbWsEuxmRe3yYMGAu9EqdZOLpQKAvkUzllW4egvcjaMex2tC5NK1znKHJhkdGnM3llhzdYd6zLgbMzo0q11MIzbRoPWsIucjOd/ciRxIL+YMuBs9YEVPR41uLKsoXS04eV0PnWpC0wgAFLGq4pZIRofG3I0lHY+k8YAd3t2Y0aHZcJPrFABAl8PQZlapHW6qVESbICEw0nejWuGEIWA8q5gnllXoyhtFLuOzix3DJKnDxjdk1t1g17EzMmVGh2bDTY88NwDoahjazCqHTncaNzgOpJ8qETDUd2PwlAkYzCrhE81+vapE6ntqCCFCdEIIh5BHsmyKomOJJHXY+IbkR6YcFsQbroQ7NtyNSR2a/XsoyXdDclll/wVuY6dQznfS52sNuBuxzOyCGwAALoNZRekGWr6pMzf0oFmIhBUCAJ09zNq0TPI6jP6crLshJZxeYPbPRCjhjw13Y1KHZr/H4lwXAGhKSNfUtrNKoBd/4IKUp4ZWznKQUSIAGHM3YHz2+zhMrF7oG2MqNx4YGSk8D8kyAPQuyjH7WY5Rktdh9Oek3Q0B3dxs/MiJhKH8seFuTOrQbLiReK6sUy4AyL66drNK/QipOpXlL8KXuNQpjsYWdOruRujB4yLT3eGDBMNZJTieU/MNnvfwIL2hh44AqZqmKDoAsPlDWyMlHQKk4G4QAmWKKVPpOF1Cx0RVsXkdWjCqOu6E4wAg7K8HXW83qzQMlypvzg2WtpMutO5c8AaPNkoEaMxCRvpuCBHMtadQbw6cprJKzaVYT70XP3Ac+WmSRrNKKKwBQL/OeW7RirbhMUpKOkzJ3ZBCrJ5qcEAQOZBjkkSOiWemzOvQgnDTLddVWugBQgINNclklVA37sC1OUdmuXwjRL1pPxxxIGWgELjY5f9tjh5dVtmMu0EIuaZJ9MFuY3BnCyazitINas5HKUUcTSJ7pqqaE4CArpFASAGAkSWdDH+KXwKp6jB5dwMA6lkO0t1ItWrubz3IhY4Bd2OJDlGTkG+UmkD4pTU7dEJyO3V3OJwYAQbgENANDAQj4Og2Ag4BitvgA7p4UEcAejcMLsQhhBBBENkZQWQ3hAAjAEI4hHD0CCiSmgjdQEDonhHjE93BvzQY+LitaW5aA4/iuctEQgiJTBQCdMJqQJEJZQmATgghEP0tIZEEEtmTvk4I8AfIcf8iOImHtwLHkW2XqJoT0dktjtQHVY307Zx74eATDHyEXxRmdIiBcBjRDQTQgg6DRPi7D+1PoZrWNdsljRFRU6EiQDgS9yLug7Q0VzENSVRRmq7TH83rUCdEh8hxILon3SEyM050mzSdZcUSHVpTolroks7qVwwA3ppqXddSyirEjeVevNKb013UwTTJKmDa3RAg7mkOx5iUzTAuxsL5klVZRemGqm5DDSe3dUZNIpVnaFuv1nQXolmlISCrGsl3ijMG9Ez1+n+BmNFh2+4GAIgLqTd6SHLdxsiB3Ld6pFOkeB12XHdjlQ6tcTeU9zbt23G4QZAchZ27cwhZllVMuxsAAn7iXRwKfZvso+G4GIu/cekO67MKBIh7O7i2AQ6BUAcEQMkDOQ/q++reHkRxkFhWqQ+EGwIyj9HVJ/dlxcTJk3Ydfiej5SFU02rBOj9adEx1cJ1wcx12RHdjoQ6tDDchVVv03a6aYFgQpE5duvMYx+4uAhK5zZjeeKBLK1A1IAAcd2sxAIqKAEVfwXFBJ/Z67L+xDWg6V3HkHhNACCEgvndDbU8eSomtXpiwEEfsTif4zNiNJHH3DwA0nQBCmk67LlH0rqOYUGJK0glExRE5aY035AspAPCroaVs/DslMqTDTQrZpMBRHWp1CBBcwiEX4vrw/FCBK8LQpg4RQhDpmab2CgiApuuAENWKDiQSUKBJQOnoOrQy3ABAUFFfX7f7iD+MOa6oqIvL6bSJu4llFfWI7lsaDLYy2xY/hBcmiFwZzmJWUXX9cEMwrOg8RpcO60UL2BgpYX8dAoDN3U06dGhxuAEAWdPfWb+nsj4AAB5PTlFhJwFjm7ib+KwSXq/IFVqkFY0AFWBhiEBcWc4q9UHlqDdICEg8vmRYr+65ltQp/hLpKDq0p7tJkw6tDzeUb346tHLvQU0nAOBxe/JychyCIHIchxHLKtA0q4RVXdWJNyg3BBX62/6d887s2z1HYlU2ZmE6tJUO0xVuAMAXVlftrd58sE5h810mTa/CnJN7di4t9GT7Qo4dmA4NkCYdpjHcxNh6sO6nWt9hf+iwLxRmt7wpEo87uRxFbql7nnvAcfkSz2bPShdMh22QGR1mItwwGAwGWFXmx2AwGO3Cwg2DwcgQLNwwGIwMwcINg8HIECzcMBiMDMHCDYPByBAs3DAYjAzBwg2DwcgQLNwwGIwMwcINg8HIECzcMBiMDMHCDYPByBAs3DAYjAzBwg2DwcgQLNwwGIwMwcINg8HIECzcMBiMDMHCDYPByBAYALxe79NPPz158uSBAwcOGjRoypQpzz33nKqq7b553rx5l19+efov0hR2uMi5c+eWNuXee++lvwoEAvfff//IkSP79+8/a9asDRs2mDlReXl5aWnpp59+asVVZxqmw3STdR3yAHDllVdWVFTcdtttAwYMUFX1f//739NPP11RUbFgwQIzpzTDSSed9OGHH5aUlGTrAqzF7/efeeaZc+fOjb1y3HHH0Y0777zz+++/f/DBB7t06bJo0aI5c+asWLGia9euWbrSbMJ0mG6yrkN+x44d69at+/vf/37OOefQl0aOHClJ0ooVK4LBoNPptPZ8yVBVVVVTU5P586YPn883aNCgMWPGJLy+b9++jz/++KWXXjrzzDMBYOjQoRMmTHj11VfvvPPObFxmNmE6zABZ1yHWNA0AMG7SiXPDDTe8//77sXv8zjvvnHnmmX379h0+fPitt9565MiRhM/Qv3//559/PvaKLMtDhgx57LHHAODIkSO333778OHD+/XrN3PmzNWrV9N9du3aVVpaumbNmnnz5g0cOHDkyJEPPPCAruvffvvt+PHjAeDUU0+97rrr4k+0cuXK0tLSH3/8MfbK+vXrS0tLv/76awD4/vvvf/WrX/Xv33/AgAGXXnppi25wwIABL774YuzHu+6669xzz41dzKpVq6644or+/fuPGzdu6dKlmzdvnjFjRv/+/c8555xNmzbRt6iq+te//nXcuHF9+/adOHHiokWLYkdbsGBB7969W/yWfT6f293CmqerV68WBOG0006jPwqCcOqpp65cubL5nr/5zW9uuumm119/ffTo0f3797/mmmsaGhr+8pe/DB8+fNiwYQ888ECL5+1AMB3CL0CHuHfv3j169LjzzjvffPPNhPtHWbJkyd133z1z5szly5f/7W9/27Rp09VXXx2/XIzH45k4ceKKFStir/zvf//zer0zZszQNO3Xv/71unXrnnvuuY8//njYsGFXXnnl9u3bAYDneQB46KGHLr/88vXr1z/55JOLFi365JNPTjrppGeffRYAli5d+te//jX+SsaOHVtUVBR/ok8++aSoqGjcuHF79uy54oorOnfuvGTJknfffdfj8Vx++eXV1dVtf/gY9GKeeOKJu+66a926dUOGDLn33nsXLFjwzDPPrF271uPxzJ8/n+75yCOPvPTSS7fffvuKFSuuvfbaP/3pT2+99Rb9VZ8+fU4//fQWj+/3+1vMz3v37u3atasoirFXevbsuXfv3havcN26dT/99NPnn3/+xhtvfPHFF7NmzercufPq1asXLFiwaNEiqvWOC9Mh/AJ0iEVR/Oc//0k7jUaNGjV58uSHHnpo8+bNsT0WLlw4fvz4m2++uVevXmPHjr333ns3bdq0bt26+KNMnz59w4YNsa912bJlffv27d+//8qVK8vLyx999NFx48b16dNn/vz5PXr0iI/EU6ZMGT9+vCAIEyZM6Nmz58aNGwVByMnJAYC8vDyPp8kifhzHnX322Qm3edq0aRzHvfHGG6IoPvnkkwMGDBg0aNDjjz8uy/J7773Xxidvztlnnz148GCXy3X++ec3NDRcfPHFJ5xwQm5u7vTp08vLywHA6/W++eab11577axZs0pLSy+//PILLrjgpZdeom+/8MILY9sJ+Hy+jRs3zpw5c8CAAaeddtqCBQuCwSA9IP2wMTwej9/v1/UWFl0LBAK///3v3W73SSed1K9fP13X586d63Q6p0yZkp+fT6+w48J0GOMY1iEGgL59+37wwQeffvrpfffd17NnzzfffPPcc899+OGHAUBRlK1bt44cOTL2hqFDhwJAwkHPOOMMp9NJO6JVVf3Pf/4zc+ZMANiwYQPHcSeffHLkZBiPGjUqXiIDBgyIbefm5tbX17dxrQBw7rnn7tu3b8eOHQCwZcuWiooKeqJNmzYNHDjQ4XDQ3fLz83v27JnqX2BZWVnsShJ+DIfDsiyXl5crijJ27NjYW8aMGbN3797a2to2DqvruiiKP/3009y5c1977bXZs2cvWrTo7rvvTunaAKBnz56x/JObmxu7PPpjQ0NDqge0G0yHlGNYh3xsq6ysrKysbO7cuT6fb/78+S+//PK5557bq1cvQkheXl5sN7rt8/nij+J0Os8444zly5fPmTPnm2++qaurmzFjBt1N07SBAwfG9lRVtaCgIPZj7MZQ2l3Sc9SoUZ07d16+fHnfvn2XLVtWUlIyYsQIeqKePXvG75mXl5dwke0iSVIbPxJC6AHnzJmDUGRNeRr+jx49Gv+hEsAYxzfgTzrpJF3X//KXv8yfPz8vLy/h9jQ0NHg8noQujCQvr80P12FgOjyGdcjLsnzw4MEePXrEXvJ4PHfccceSJUvKy8sHDhyIMY4P9nQ7wXoBwPTp02+66aa6urrly5cPHz6cjh3m5ORIkvTxxx8nfOw2LqhtMMbTpk1bsWLFLbfcsnz5ctrBRk+UkJHq6+u7deuW8PbY7aGEQqGUzk4/9VNPPdW/f//41+O/vWQ48cQTAaCysrJXr14HDhwIh8Oxe7Z3794+ffqkdLRjA6bD5Om4OsR/+tOfpk6dmtA5R3uJOnfuLAjCiSeeGG87f/jhBwAYMmRIwoEmTpzocDi+/vrrzz77jBpLABg2bFg4HNZ1vXcUh8PR/NtvkdbCJG3BfvPNN3v27ImdaPDgwVu2bAmHw/THI0eO7Nu3r/lF5ubmxqeaVF3uiSeeKIpiTU1N7OPk5+cXFhbG97E1Z8+ePfPmzaPGm/Ljjz8ihEpKSsaPH6/r+n//+1/6ejAY/PLLLydOnJjSVR0bMB0mT8fVIabdPBdeeOFrr722Zs2a1atXv/DCCzfffPPAgQMnTJgAANddd93KlStfeOGFioqK1atX/+lPfxo9enTzb1CSpMmTJ7/wwgtHjx6dNm0afXHcuHEDBgy47bbb1qxZU1lZ+dFHH02dOvWNN95o+5qoT/7888/p2EECI0aM6N69+yOPPNKvX79+/frRF2fPni3L8l133bVr167y8vI77rgjNzf3wgsvTHjvkCFDVqxYcfTo0WAw+Mwzz/j9/pS+rJycnEsvvfSpp55aunRpZWXlt99+O3v27FhtwpIlS2644Ybm7yopKdmyZcu8efOWLVv2ww8//OMf/3j++ecvvvjiwsLC4uLiWbNmPfDAAx9//PHatWt/85vfcBw3e/bslK6qOVu2bPkqjjVr1pg8YAZgOkyejqtDvmfPnkuWLHnxxRcXLlx48OBBURRLSkquueaa2bNn02A5Y8aMUCj04osvPvHEE7m5uZMnT77nnntaPPr06dOvueaa0047rVOnTvQVjuMWLVr05z//+YYbbggEAj169Lj11luvvvrqtq9y8ODBEyZMePTRR8eMGfPKK68k/BYhNHXq1H/+85/xNUjHH3/8G2+8sWDBgunTp3McN2rUqLfffruoqCjhvffcc89dd901fvz4vLy82bNnn3/++V988UUqXyDcd999ubm5jz766KFDh4qKis4666y77rqL/mrnzp2fffZZ87eIovjWW289/vjj8+fP93q9xx9//J133jlnzhz624cffnjBggX333+/3+8fPnz4G2+8UVhYmNIlNeeZZ56J/7G4uHjVqlUmj5lumA5T+bY6qg7RMdPFyGAwbA57IpzBYGQIFm4YDEaGYOGGwWBkCBZuGAxGhmDhhsFgZAgWbhgMRoZg4YbBYGQIFm4YDEaGYOGGwWBkCBZuGAxGhmDhhsFgZAgWbhgMRoZg4YbBYGQIFm4YDEaGYOGGwWBkCBZuGAxGhmDhhsFgZAgWbhgMRoZg4YbBYGQIFm4YDEaGYOGGwWBkCBZuGAxGhmDhhsFgZAgWbhgMRoZg4YbBYGSI7IebtWvXzp0796STTurdu/fAgQNnzpz59ttvJ/PGysrK0tLS0tLShoaGVE96xx13lJaWPvTQQ6lfb/s8/fTT9MIefvjhdByfkQ7efffdCy+8cPDgwb179x4+fPicOXPWrl2bzBsXL15cWlo6depUAycdP358aWnpp59+auC9rbFo0aLSOHr16jV69Ogrr7zSDkvFZzncfPvtt5dddtnnn3/udrtPOeWUTp06bdy48Q9/+MNrr71m7Yn2799fWlr68ssv0x8HDBgwadKksrIya89CWbp0Kd345JNP2JrIHYJnn332rrvuWrduXc+ePceMGYMQWrly5Zw5czZt2mTtiZYsWVJaWlpeXk5/HDt27KRJkzp37mztWQBAEIRhw4YNGzZs4MCBgUDgq6++uuyyy7Iecfjsnv61117TNG3KlCn/+Mc/6Cv33HPPW2+9tWjRotmzZ1t4olgIoFx99dXtrkhvjJ07d+7atSs3N9flch04cGD9+vXDhw9Px4kYFvLKK68AwPz586+88koACAaDs2bNKi8vf+eddwYPHmzhiRJ0+Nhjj1l48HiOO+64999/n257vd6pU6dWVlYuXrx49OjRaTpjMmTZ3dB2UEFBQeyVP/zhD19//XW8vVyyZMn06dP79+8/cODAiy+++Ouvv27xUJdcckm8f/nqq69KS0tHjRoFAOeee+6jjz4KAA8//HBpaanf709oTMmy/OSTT06YMKGsrGz48OE33njjnj176K9effXV0tLS66+/fs2aNVOnTj3xxBPPO++8LVu2tPaJPv74YwCYMGHCGWecAc3kxbAnCTp0Op0vv/zy2rVrH3nkEfpKGwpJgDZhYv5lwYIFpaWlN998s9/vLy0t/eKLLwBg2rRp5557LjRrTFVXV99xxx2jRo0qKysbN27cgw8+6PV66a9uvPHG0tLSf/3rX6+//vrYsWMHDx58ww031NTUJPPpcnJyhg4dCgChUMjQ12MZWQ43AwcOBIC33377d7/73WeffVZfX5+Tk9OjRw+MIxf2j3/843e/+922bdsmTZo0atSotWvX/vrXv/7ss89SOsvMmTO7desGACeffPJVV10lCELCDtdff/1zzz3n9XqnT5/erVu3Tz755Pzzz6+qqgIAh8MBAHv27LnjjjsGDBhQVFS0YcOGG2+8UVXVFs9Fw83ZZ5999tlnA2tPdRCoDu+5557HHntszZo1six36dIlvo3ThkKSRBCEq666im7PmDFj5syZCTvU1NRccMEF7733Xl5e3owZMzRNe+WVV2bPnk2VRnX473//e+HChWPHjtU0bcWKFX/+85+TObXP59uwYQMAZNfaQNbDzQ033EDj7pIlS6677rrhw4fPnDnz9ddfp19xQ0PD008/DQCPPPLI888/T799AHj88cdTOss111xTWloKAFOmTLn//vtFUYz/7cqVK7/88kuE0OLFi5966qkPP/xwwIABDQ0NL7zwAgDQwLdr166nnnrqiSeeoK77559/bjG5bd++fdeuXZIkTZw4ccyYMfn5+bQ9lfoXw8gojzzySFFRUSAQeP755y+55JIhQ4ZcddVVX331Ff1t2wpJElEU77//fiqn66+//pprrknYYeHChQcOHDj++OOXLl365JNPfvDBB6IobtiwgXof+sZ9+/Z99NFHTzzxxD333AMAn3/+eWunO3To0Pnnn3/++efPmDFj7Nix1dXVl19++SWXXJLa92I1WQ43+fn5S5YsefHFFy+55JLjjz+eELJx48Y//vGPd955JwD8+OOP1P7NmDGD7j9t2jQA2LlzZ11dnVXXsHr1agAYPHhwr169AEAQhLPOOgsAvvvuu9g+Xbt2HTlyJAD06dPH7XYDwMGDB5sfatmyZQAwceJEl8vF8/zkyZOBtac6AoMGDfrqq68effTRc845p6ioKBwOf/nll1deeeW7774LySnEPPQsU6ZMoUama9euI0aMSDjLhAkTcnJyAGDYsGEAUFtbqyhKi0dTFGX9+vXr16/ftGmT1+vlOO6nn37avn27hRdsgOwPhGOMJ0+e/Oijj3755ZerVq2iJvP999+vrKysra0FAEmSXC4X3bmwsJBu1NfXW3UB9Czx/Uf0LPERLf63TqcTAHRdb34o2pJat27d1KlTp06dSruZWHuqQ+B2uy+55JK///3v33///QcffECbV8888wwkpxDzpKRDKkJoRYcAUFxcvDfK999/f/XVV69ateqKK64wUDViIdkMNz6fb/ny5U8//XSsB6u4uPjJJ5/keR4Afvrpp/z8fAAIh8PBYJDuEOsbi78rFOo2Y4dKshcNAOhZ6M2Of28stCXJtm3bdu/eDQCHDx/eunXr1q1bqQNi7Smbs3///vfee482kylDhw69//77AaCqqkpV1ZQUghCCrOqwOUVFRbfccgsA1NXVZVeKWXY3v/3tb//v//5vwYIFsizTV/7zn//QjpuSkpIRI0ZIkgRx7ZEPP/wQAAYNGpSbm5twKNqxR7vEAODf//53/G+pCPx+f/NrGDt2LABs3rx53759ACDL8ieffBJ7PXloS2rEiBF745gwYQKw9pS92bdv3x133PHggw9+9NFH9BVN02iPSdeuXXmeT0kh8Tr0+/10KCpGuzr87LPP6N9CVVXVDz/80NpZUiU2nuvxeMwfzTDZrLvxeDy///3vH3rooVdeeWXx4sXFxcX19fXV1dUAcN555x1//PEAcMsttzz++OP33XffqlWrampqVq1axXHcH/7wh+ZHmzRp0kcfffTpp5/OmzfP6/XSEcRYK6Zr164A8Morr1RUVPz+97+Pf+Opp5562mmnff3117/61a8mTJiwadOm7du3d+7c+frrr0/p49Bwk1Bdes4553z11VeffPLJfffdR6XGsBunnHLKlClTVqxYceuttz7yyCOFhYXV1dW0tX7bbbdBigqZNGnSO++889hjj23btm3dunXdunU7fPhwvA6rqqr++Mc/jhs37o9//GP8G+fOnbtkyZK9e/fOnDmT9iUpijJu3LjTTz/dwIeiXcV0u76+fu/evQAwfPhw2umTLbLsbq666qqFCxdOmDDB7Xbv3r3b6/UOGzZs/vz5sbGnG2+88bHHHuvTp8/y5ct//PHHcePGvfXWWy3G+xkzZsybN69Tp06rVq3q3r07rZgIh8P0t9dee22fPn28Xu8333yT0NxFCL344ovz5s2TJOmDDz44fPjweeed9/7773fq1Cn5DxJrSdHx7xhnnXUWx3EHDhz48ccfU/liGJkDIfTss88++OCDw4cP1zRt586dGOMJEya8/PLLF198MaSokLvuuuucc87hef7LL7+86KKLLrroIojT4d13392pU6d9+/Zt27Yt4Y1FRUVLliw577zzDh069MEHH0iSNG/evIULFxrLUrGu4vXr1x88eLCsrOz2229/9dVXYyUmWeH/A2LHRP6LJfdeAAAAAElFTkSuQmCC", "path": "image.png" }
Which solution has a higher concentration of pink particles?
[ "neither; their concentrations are the same", "Solution A", "Solution B" ]
1
The diagram below is a model of two solutions. Each pink ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the pink particles represent the solute. To figure out which solution has a higher concentration of pink particles, look at both the number of pink particles and the volume of the solvent in each container. Use the concentration formula to find the number of pink particles per milliliter. Solution A has more pink particles per milliliter. So, Solution A has a higher concentration of pink particles.
Solution A
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABiG0lEQVR4nO19d5wcxbX1ud0zO7OrVVgFUADxVgmhgFECLCELjEkiCAy2sTHBgE1ywM/YPGMMNsaPDzC2cQYbHmCCzQMRDAiBH1FgI0AEgQCjZECJoLTaNDNd9/ujQlf3hJ3Qu1qJPj9+aKa3u7q66sw9p25VdxMzowx05Lz3t3VsaGnf0pHZ0NIOYMO29s6cKOfYGJGjfzq5a2P9Z8YN75+u29516VHEPOxVqJSHVDrc/OvDrf/6YMuGlvb3t3VEVMMYkSGVcM7Yd9zHIeJIHr6zaduWjuz2rkuMMMrnYeFw05HzXnj3w1fXbTS965CTStcnk3XJurp+fRqJkE4l08k6l0CAQ3AJDsEBHHsL4BAcAjGI1GcHIICCOxP8D/L/AByACKT/SvpA+X+w+gy9EQzoneUHZhABULvZYP0Pg4lINgODoY4iuYFZ7cnMcqPZ03wGwdrN/5PcIpgZ5DELhmAWgGB4zAx4DI/ZYxYgYe3ArI4S0BsZAswg+bUzm1v97rqOzuzkoU1HTdi9y27eQSF5uPjdD4x/iXm4Q/MwUXDr06s2vPDuhwCcRLJf05D6hsb6dNr0ouxRlwCSDWuBwOz3k75sv6t0I/o7EPmdYTqEdVfBOsT8VZ7FLiFcrOlj6yC5A8PnB8u/MbH+G4EYTGQ6lUBMssOImJkBzQkCWBbCbBWuTsj+PyBm9i9H72TFeWJmZnVSowAMowWqXnI3AMmEu9vwXZevem/DtvaCPbhz4O9vr126bhOARF26sf/AmIc7Og8LhBspKURO0/DmdEMfB3D1BcgY74ODX/UWhmpNkD6EwZITrLaYnpO0sEtggqM/g4JnsbaQ3hkcOIvZrs6iN5LubSLyW5sBsNaQAqoCNnvqA+0jVbNQoNfssqHKF5Lv1k5E/o5ERGACCcttEkyfs6knSaUjSqeSAHbiQe6GbR1L122Kebgz8dDJ3yQHUE6yLpnuY85pAnNg7EXBr3qLsZHQR9ne0sRgc7WhMv3Lt0UBgc+qJkGxQkFVoUAB0H6V/ALJjt66Skx6A1kHMjPZR6pTs61ygbKBgKpYV1RUVfTWoKqY3ZS59oQAkHIL9ODOgc6sByCRqo95uNPwsMBOuzamU67jZTpy2Q5zzgKqwlY4h78xoCr6KLC/0aiKOoLDxbLdc1Y5CJYZKFb7ZLYLISVBASrqfgqpinVcCVUxDhb2JZIUhbxaMoJ7mrqG/i7lQotIUFUC9SLSNCBqbe0AMLKpETspdumbBpDtaI15uNPwsHBMmjFyCICN7y3PZTP6lPJKYdfCSISPMlQFKKAqdiFk9RysckKf81XF8MOoCmyp0efrMVUJfw2qirVbxarS3pF5b937APbYecNNOuEe0LwrgI3vLfc8T26MebhD87DoRPhdr65++8OtbiI5YMiIxr79ZE7OJXi5bKajPZPtzHR2Zjo7OzOd2VyunDPFiByThzZ9ZtzwdMLd3hXpRsQ87P0on4dFw01Hzrv71dXvbG4FkEo31Dc2Zjs6O9pbPS/u1N6C73967+1dhW6HzcOGvv3rUqmYh70N5fOwi2V+r67b9Pd/ren0rFWbRIlUQyKZqkul6lLpVCqVqquTswYu4DqQn816h4TeQnILw3EgV0lImQKQ0F7U1asbHMBxQKzWR4D8NRFEeh0EfI9KehkF21ZRWcyAj+W8GQE2MwJ6gGyPmbms9Q5qrGsKYW2qAdjLHOz1DoJZgEqsdxAMJtjrHQSDQYL5lTdWVtTNOzpiHu4cPCy87sZg72FN44b0u/vV1f/e1NrQt98ug3epr2/we5HgAmQvr5JrImB91ium1GfdH/Z2yl9eRQDDcVQXEgr8B3t5leoJK9VXqI8BlWPz83kEf72DXtwgx8yKKYH1DpoT5kiZd1MjWTORaUb9QVhVAvR5AXvM7M85QiUg1CdSc62l5WFnheThbUtWbGjpiHm44/Kw6+mrdMKd3TyUCJ1t25KplJ+91/ltP8HuZ+fDMwJk/mgdAl2MaQF/C1uzBnZS0EJeYh+BtLwpNzgjwCVmBIKqYqYcypwRgF40UbiP7fbxm053uJ4RgN2NPmvZnI0o2AofG6QT7iFjR8Q83KF5WNZs+cimPiMH9BFCbProQz97r82in2C3ctmBr7a3tA6BLgbBhglLBAFQbW4jL7EfnpvwT2xvLjEjoNP/qrX1lIPes+SMAAA1iYDwKc0GCn8orCrWUaEZAXlIJpsD0C+dDJ9lZ0fMQ3nkjsvDcheJzW4eCmDTxg9yuUy+qlBQRkKqAnv34qqSv7bCVhUOdRgXVhWydlDl5pGjW1QFJVXFEhM1tg6qivy/URVzhoKqks3mAAz4GNyZmY+Yhzs0D8sNNyOb+kwe2iSE+GDDBl9VZBVYrXEooSrIWwRh4HOGg1tCqoJC0pOnKhzcIX+AadjTM6rC9skIUD8J1RwcaEoyqmLOUFBVwpf0cULMwx2ahxUsgZ89alcAW7ZuyuUy/vCviKoEwjkrncmXGrOhoKrY3xlarOydgqqCPFUx2uBvrl5VUIWqkH0yrSqkm6M6VQm34McMMQ93XB5WEG76p+smD20CsGHDBn/4V0RVYHtO6lpVrAjqq0qYE/aKSQpu0cqTryoh91uDqiBSVaHY3VSHmIc7Lg8ru8FPCsvmLZvaOzq6UBX7K6srLKEqbE0B+KoS4oS9hYM6ow/0z9x9qmJVvAZVYUtV1FGxuykTMQ93UB5WFm76p+vkbSzr1q2x+yCkKuGKkNYZG0ENIetRAJS3j//VYhKhqKrYlSlTVVg1P8mWLKUqVsXLUBWLnUVVRR0Vu5syEfNwB+VhxY8vmLH74JTrtLa1tm5r9SsYVAy2/q8+FZIIHbWBQqoi9wkdYq6ctarYCpavKrJu5agKqeZn2ZLRqYovJlYlKZhOVEfF7qZ8xDzcEXlYcbhJJ1x5v/i699f7FSykKn51tAIE4EdtoDxVUTJCan8yhehjerOqaLHQ3CGyayA/xO6mfMQ83BF5WM3DmaSwbGtr3bJ1qw6r8prUDvmqohTARiFVQejA4CGyEFaRX321T62aNG8tKawI3h2qAt2DXaiKOn9IVfyqxe6mIsQ89I+0a9qLeVhNuEkn3M+MGwHg3XVrdFgFUJmqkH/F1tfQgUVUhbSq2EdBqwpzgB72WdA9qqJq6j8ItrCqMHNYVciuv75lJnY35SHmoX+kXdNezMMqHz2597CmfulkJpttaW1FEVWx20CpCge2BFQFlqpYsdqOofmqEvSnQVUxZVDwzN2tKoHNlqooQWDWPJLbrQtUqgJ1ROxuukbMwx2Lh9U/6dZevByKdKZu5rtSFQpsCamKf7jNj6BoFFCV0HmpgKoEzhwShx5TFViqwl2rirkWqwWVquQ8AeDj8HqpchDz0K52L+dhNA/WDkW6kKr441trj3xV8f9YTFV0d5VQFckDtsopqCq+OHSzqqgrjEZV5OVQe0cngP71cbgJI+ZhL+dhtzzHn4x5UzVTgmAF0FKqYr5QSK90mWT9F1YV+Kpi5/wCqoLoVMU6RUFVMeoRharIqwsqeIziiHlo1alX8LBbwg1bCoCSqmL6iUPHW/sEthtV0f9RqK11R0JThIN0kSQoriqoTFUMlVFEVbiAqviXV5WqhJs7RhHEPLTq3Ct42HPuJqAAWlUMGQqoiuzRoGqYv5DRkFBb56kKaeNqKlNSVRC5qsj8v60qMD+D2N10J2IeWnXuFTyMMtzY1ywvw0R3owBmj2KqQvmb4G8xf2GjIX7L+VtsisgTbUdV8Q27pSrqMmN30w2IedhreRhluLGvWV5GSARCqgK7d+1C8oWGAkfZquKH3hDJalYVjlBVzFA5djfdj5iHvZaH3etupLCY/0KqArPFyt7lq4q9JV9VTOgNkyyoKv6Zy1YVylMVWG9xrllVqEtV4djdVIWYh72Wh93rbqSwlFIVDnzV7aG/mH3KUBX/8oNbCHbkrklVYN6ybL4HmF2RqnAJVTFtWFBV7KmVGPmIedhreRhRuAk2tElvwZ/XV6oSHt8Gv+r28MtEIVVRYqU3hlQltKXHVIUKqwooyDRfVayqyr+Q1bElVMWeWokRQMzD3s3DiMINBdJgMMs3/Xl9pSrh8W1XqqKKtXVGi5XZ2KWqwGr4HlcVhCZSfVVRf/V3jd1NrYh52Lt5GJm7sdNg0AscSqiKBPl5d7U5pCqqWFtnSLeOpSoBkuWpCqyG3w6qYg2V/fpoVbH2jd1NzYh52Lt5GJ27sS9FK0lIVfwhYp7dLV9VVLF5hRRQFetUEaqKf5pSquJrT2ioLE9hVEXvoDfmqQrbDQQwc87zAJTzBviPHWIe9m4eRudujETor1JYbFXxh4glVcVEUhRSFVVsXiGm/dnojHWqylQFpVTFv+ZSquJrT2giQJ7CVhVdZgFVAcFUQxZJRJ2dGQC7NtZ30SkfQ8Q87N08jNjd2GPgAqpiK49GvqrYyhNQFfsQBDbaqqKDcQ2qgipVRZ+1fFWhkKrYpav+NQ1EqoT8NoyhEPOwd/Ow290NdIzVYVVtMf8UUBVLNFgTxUZImmDYAOsQXUhYVWwFQMSqYlWdrb38HfNUxaws19WwSi+mKhRqjhgGMQ97Nw+73d0gEGMDo1kdJgOqAlih2UhE8Gxdqkr+PnZ/1KgqbBVdjqpYlaLtpSofF8Q87N087Dl3YzTEjGbDqmItguhSVfyBtDnEUhXkKY/dHzWqCllFV6gqZkLBqmvsbiJEzMPezcMo3Q1QUlWMa2M7TluqYikA+QVbxcLfITSQLnpIXotsF1XR1fNVBXL/4qqi6xG7m0oQ87B38zCKcMMBQZBbSqkK7DhtbbEUgK2yYbWm2gFBVZEOlgodktciZaoKgGhURReVryqmfFkgB1UF+geAKFTlY4GYh72eh1GEGyqqKuT/PdANIVVh6yvKUBWEpgnkVy50SLWqAqAMVfFbvKiq6KIKqwp8VaEiqoIoVOVjgZiHvZ6H0bsbOwiy//dAN5g4zVpVYO9QTCKsM4ZURbWCidjs1yS/svmqAtljFauK3+JBVUHoxNtdVT4WiHnY63kYvbuxg2CXqlJQAYpKhHXGYPgFwdcZ0juExtWmwHxVgeyxyFQFoROXoSoUu5taEfOw1/OwG9wNwqqC0OLLoKrAb1e9QyFVCcbb8FeGryG9WVVg1TGoKhy7m1oR87DX8zAid2OFfz/kquAJhG4t6UpV1E7WNuawjHSpKkBpVQloBXpKVezW8lUFsbuJAjEPez0PI3I3dvjX20wN81XF7FRAVYJdLsvxVUXvE9CZQqoClFaVgFagZlUBc9WqIjeXUBUOqkpreweAkU19wtf2MUfMQ/R2HkbsbmB1k/Ff+apidiqgKiFDi8L7BHSmhKoUqmz5qmICutmzmKqAqExVMRW1FzLIk4cFQ9eVYB8de5siiHmI3s7DCMJNsF+qVBVfAQqpCvKUp6Cq+LsYnbHOYgosX1VM3Dd71q4qpt62qsiTh4fDtqr4Rwd2iWEQ81Ae1Jt5GEG4CfZLWFUIZamKP74NsaaIqvhbdDlsd6fRGessprSyVIWMqpC9Z1WqQnmqAsTuJmrEPJQH9WYedou7kbGVTdOXVhUupCp+8A3SyNqnmKoEttiyYA5l7lpV2KgK23tWpSpcUFXsK+xSVdg/OnY3hRHzEOjtPOwWdyNjazFVAVl9qbeHVcUSjQCNiqsK7KY1OsP+X60zUm9QFfsKu1QVq6Fid1MYMQ+B3s7DHnI3dteCrb7UR5ajKqF97K8hqhlVQe9QlcB3fWFs/b0cVeHY3ZREzEOgt/Ow1nBDCDdxQVUJXHUxVfE3gaiAqvjKA30IhfexT6I2dYeqqKPKVZXAFfrX5T8ptpiqsKUqFLub4oh5qMvt1TysPtykEi6AjkymXFUxkE1P+igjEfALYutuFN0UloxAHRI8KCxdZlP0qqKOqkBVrKGy2eo/KVadPE9VKKgqHGipGEDMwx2Kh9WHm1371gPozGbCBpK6UhUA7HdeKVXxg7wOsUFVCR5kxfQdU1XCkpGnKhRoqRhAzMMdioc15270dfnBlAupSgiFVIWsgvJVBaG7by1VMSwiS778PFp3qQp2IFXZ+RHzUH/szTysOdzowa0fTPNUJdg7AAqrit8x5akKLO9qVMWP2YYCZakKVa4q6EJVbJ1F7G66GTEP9cfezMMo3E0omKpY6KtKXu/4jZCvKmypit95+kQhvviqYgJ3nqqEDiqiKty1qgCVqYp/WEBVrNWh1ahKW2cGwC6NacSwEfNQf+zNPIzG3YSGimZLMVUxW4yqwHSVXaz8aKtKEPmF5KtKiGTVqwpQhaqwkUJLTMyHclSFg6rCnkD8Cs18xDzUH3szDxMV7V0A+apC/hZmMIEBJ+gqWcc5BihoVtW3oKpIPTFbDCivEL9eWtzIfNY7SwUIqkrhMTN0X5tSjQ6okxhnKgSIGGBPsDTpDAYEs2AWDI+ZQYJZfsgJ4TGDnJwQnuCcYAFmEDMLQDD0UUIeJRieYAHOZLLVdNNOj5iH8lPv5mGt4Sbn5drb2wlwCQR2HSJmAhyCS3AAAjsEwP/sAHILMTsEIk0Cweaz/MC6KEf2swrZTIDjqE4gLQwE1UFqkRIBzKqP9c7yr0Ld/cGeEEQkI7dOJpJgBlgwa6khMHuyFwULFpIybDihjbqQpQFCMIgEC93TELKPAU8IBnm6sz3ZqbLXBQMQUId4Qgj9ASDBzESeEJ3ZPG2NEfNwB+FhzeEml+vo6HAIqqeZHZIdAwh2HbK7lnRnk9XZ6gOz62hDCSbAdZRtVZ3KTASHSPc9mf6WA0q/47UcOI4c3zJ7cjfWfQxoYVA9B8helPolVUXdSSOE2pP10JqIhbKyzCBtXx3HUZvNk0GUWGmnKlQFYNgmqyeEHjZbR6oqGgEkoatXY5ftlIh5uEPwMIJVxYAaKlqDSTDDcQg66rMeEpsl0myOkuHcISGYrUe3GveovKsaggZOrIrV57X9Jjl6E6vSpNg4utWsCgfGzP42tYMesxPZY2b5lcw4l0gIIUe26pShKmlCaP1jM2Ymx4FO/gdmSwmqYprHBdIGMQDEPNxBeFhruDE9wXrYCb1FRkHWw2DZWmaJNJmjQNI1Oo6da9de1NhF0znWiVWx+jDlXmX7Cr2J/CYGoFWFrQprudB3uFin89NmRlXUnrpb9CiaHcdRlNOW21RJ1pXVWF2pipkRsFTFT+Dpa5Q6JmlkDf1jBBHzcIfgYTRv0exSVaADYgFVkfsoVfGvMqwqulgF60QhVVFR3lHBu4dVxReyylXFZ4d/jaQuIXY3ZSDmYS/nYQTrbgCdew+qimwjVsGxuKpQIVWBbldrJhJ5qiJLLKEqUgNkh/SMqvhCFlQVmQcMqYr6E3ehKhS7my4R87AGHjrtlFpNqdWcWk/dysOaJ8JlfXzF8Lc4RGA2I15WvyhWvUlyHzCzQyRVhUjl7WQRbJxq8ERqq2r+gKqQDs9GVZSHtlRFqBUErJNkek8CAbIxmVTPGIKQmjuQ+TzlvcncPStVRS6FkmSR2TZdY6VYejIi8IEckGABAkRIVZiYhZyYdBzyhIikv3ZWxDysiIfJVUi9guQqcrfY4cPt3JU37y22TIJI6yuPiIfRhBulKsaKaVUhvRKR9LIIYm0XtZ4rVylVBUpwZBFy7gDWEik9jA6qij6v7BHHARgsmBzjl1WHkD8jYKsKZPBm0//wVcV4aaMqKDkjoEsNzwgYMTFjeeuDcjdSCP1r06oCgEBePDPVFWIelslDp4PSC6ju5cLNmNpAuz7qDn6aN87gdTNFhDyMJtwA8jq6UBWpPcVURTZkQFU2Mr/oYYXwVuhoWg9nuONOchKTE85Add7AmNmoCpmhKRigUqoCe8zcI+4GgQ+WuwmPmWN3Uym6gYfQFAu5G5VbKeRuejMP3XXc8D+gji4a0u2gIU9T3frkO0fkRBq9yN0AcjRcsaqY9oIUAT2cxkbG/3n8fC58lnaIFUKsENn7cskZbt28JDWC1FIFnQNzIMezBMUeOZK2VIWqVhW1scfcDYdVJScEgF361kfWcTsZouWhLqKAuzFRxpx3R+AhreP6/wF1lJt86f+2M2ZL4o1TM5HwsPaZKf+3YZZbSsgrtAWBlfKoZJ1sN9YzAjB9vELQtZ0FYk0Q2ee9tp92iPeEXgClQrivKjq/JrcaVVG0YdVVsrLMzNCrPwFLpkgzTMkba8OsL9FSFXUQQ+fazCBfeXwtvGxWeSl340uj1YJatmQrOcSsFoPF90zloRt4aA6w7UzofH656P08pHbU30jlxxqJ+vedPRYkI+Fh7e6GzL+2qgC+qhhBkKoimB0CiqgKXsw5fy33dgxuR9tvO+tPT7mjpXJI6QAAFkFVQVhVtM1VJRWbEahRVfwTqF8BCYauiTpFme5GCOsWmxhhRM1D0w+F3I1/Pqs/HIfMPFS38tB7TYi1zJuZP2IMBDURhsGZ5HTJw+RD1OUYqiAGveZ+ONHdOlLUyMPaw01AVeywSaaf5N9VDGdXO1HTfmbMjLXs3F/ZrV/cjvYbOxvOTTm7U0FVUUJB4TGznKK0x8wMdkClx8zmOgqNmeXzBAJjZoDkMFsmCyXVZKwJupsiuRsQCzVmJodEnLspiih5yFZ5BXM38u927oYIQviOFd3AQ7Ry5hEv93SQAytVXT0I5xAHM0mkC/OQ1orEy5X5Ghu7P5547ZRMjTyM1t0E/uCrCquRbUBVZFPInzGUqri3dKK94hpwOzrvzSa+kYJFrICqmOF0bariL1Uo7G6ooKqQHhBF4m4qbp2PC6rkYeJ1L/mGcFd6tEkfVg9udjHZ4b1cNPjuxrc79vlMX7HvbkI8FB8h97qXfVtwux6B1VPdZKduchIN5fIws9jL3Jfjkr8O8ajAItDnHJ6AfB4mXqqJPA3vO30+cLYNEbXwMFp3Ewj/fqP7Q0mCugXOcnhaVZxHsn6XV4jcCpFZnKuboUeSHFYVIAJ3A5Xjr87dyEYAEcghz9Mrxy13o/cItGHsbspDxTysW8UNd3c6+ZRrBy3zsMyj+iwfksDsBLQDcqxyQ2ex3Y3J2HnvifZ7stnlBXots9QDsun9EqlDXWcQleZh5olc5/1eWc3QDr5F4HOEqQi7mzdqHYgPeNtpGezVwsPaU8WWqtibWf1y7AhNBG0B/IPJrOZ8sbwGLYLMkzn9m1YJOBl0VJsHVnNqdxOcEdARJFBnFHI3OqhYKTy5sktfqDUqMmFFuhswq6WrOjNAuqrqe+Cq1OBLWarY3RRHZTzs82Cu8U8dBWKNjXbQ/Tn8IYM2lfFR2TtW5/MHaNrdqC9EANoXZLde3Vkw1hh0PJfb+rPOzGKvBA+zz3vlxhqD/2W8iBAPnc2VlZGPvu84NfIwspkpawygv0Mua7BUhSEEO1Zd5U+WAGcdV21tJLw1zK2aCEF3A+2oUduMgFkpo+c1AjMCZmrJnhGAWUlBsj2Uu7HG+aaq+nugGcMzU7U00U6NCnjY8L+Z1LNlT0esEOK6Tm610jc6qljTjsrd6Bpw2+3Zjoe7mFpV5bej9fZsx5Ny5zAPvbXccUdZ5YRADzBv9HlIK6MRqhp5GJm7CTtYGZmLuRurn6TO04qarI2Et5ZNVVQwoaCJiMjdkLqrrWx3I2WxsLsxRkx9D3Rl7G7KRbk87PNYLr2kwh/wWuZbMuW4G9nzHffkss9Xxue2e7KZxV4+DzvuqSbWAEAHnLvZ5mGV5VhIdNbKw250N/6POd/dWP0kdb66+bkQvDWeqYoKJr3G3aBsdxPoytjdlIuyeJhcKRr+r5qnXvIK4S3M2e7G7zLL3TAju9TrfKqaGNF+b1Z8BJuHYg376+mrwEpgrV530xSBUOVSvdjd+D9mS/SLuZtIfkbcYVelh9yNSQJ36W5YcL67MQXH7qY2lMXDPlXFGlXSohy3+tzwuyzobtrvrfIU3I72e7M2DzPP1Wr56UXNw6YIfmFeune7Gw66G1Bxd1NzPfy6qKoE3I2o2d3wJhKvs/co5x7xco8KrATaZGAp192QIx/UqD+YloIllbG7qRJd8zC5XtStruEH3A7xQq6Eu2HmzGKPN1bfR9nXRO49YXhYk7WRWGd+WiSG1lpYy25ejTyMbN0Ns/WYe0h1V+tr5K9birx0Nw7MryxKd5MY45rTySV16tGw0A+XrWTdjVqvwZx50ss97YlNgXNJ2tJwOJ9xMTHkbpC/7gYAC3aIPPY/+K0jZz1ZxRf/NHnrboTHAPqn66JosJ0JXfMwtaxWsyBe85xPuZpg/uIG6BVYXsl5qHLgLRfucFfyUOUiawCt8nkopsBZUFNpm8YJopp4GJ27oUCuvkx3A71agSdGcBOQ06RPpwc5tbgbIvLeE22XZzP3h2ONf/Fr4d3iiesEbyrubiQxI3I3chnBgDjchNE1D+tW1hoLeKUIZIiVvOjpL+bc0lojWmap726igeZhbipzqvpiPpzodfbjGnkYXe6GA7l67Q7kjx6A724s5YfeAjGMUNuLId3hjjPYkWVCD3LMElOn8txNZrHX9vOsKGN6nlcy/8qjdUVyNzKWaFPD5oNpAliJgDh3UyXK4GEUsGOZWozDevqLiGuf8ehgw8NoYEx0PeVmVhnDvDpeOytXOw+jdDcopCqsc3fG3RAKuBsi8g6oaWRXd6Cr5cZP4ZrbZyqdmcq9Jjr/Usn8Qjv4ekFr0d3upsrW2fnRNQ9rStyY0ywXtrth1u4G8D6MYM23t4ajdDdp2DzMHkzeXtUU8+5ncp39RO08jNLdoFp3A4CZxQHJqg0ODaTUvgnNNVCeu6loZiq3htvvqHx+oQN8l0BbyN1oQQy6GyujGbubSNA1D3NDI3gRAA13CrsbwB0cRflpGB66o2t+UcowhHjYeRy8CnPG62flNk70IuFh97oboCt3A7UWk4hQz94p1aQkKI2Gr9Sxdfoa3U3HPV3cC1cUa4FnRdDdyERweGbKmq8NuBuO3U2V6JqHIh1BsKaGwDDHdjeR9I4zwjE8TE6u+ec5IcxDbkDb6dy5T7kFvDs3u36WFxUPo3nxC4qoClDK3aisinl2NBGPdsQXkpWeOvXZpLubnL/RwUOelapxN95yUcsEJD0Dag+7GzkFxvIp+crdFM7dKOdviovdTYUowcPcsJpf4jjc0VbVbPK/EpE7vNYOcgf6LjsxqWZ3MwH5PBRp7jge245lb0CpqNEylt86J7dpsgAi42FkDw9VXsIfFEh9t9ZYMcMhZjkzJfUeAIR8pyppfZ+eEALO/5Y1lqE00qenEmOVfAW8DAgMpgLupvQd4dmltY3AO8BvCExzoF2Uci4EAsm3QZN5UgHguxuhWwnsS1J8R3iFKMHD9qluwz+qX+YHwJnukupSjaC7cUe73tpqbzsAACQmO+aOcHcQJWe4ld4P4VdtJmGgDod5PBRTqWMKJ5ZxchUlNoA6ULeB2kcyA9vGia1jOTNAMAiScRHxMLJwY2YE9Ko4MJhsK0eksvf6ySOyEYy7IfMy5hkudnNwXxYlZy7dSW7dsYnEIH0friQWq4GLTuGox7hR2etusq/X+pN2lpGYpiWPlaowlLvxmC13wwiuuynobuQVxc+7KQcleJgd5uSGOon11fZvGs5k17YzkPOYQhGOQHVz3MzT1YcbSiM5xoVex8FAel4it9SrYsKLm4CDLZddhIed46l9PAtmj1mAPMECLBgMkj9TXVw0PIxsMGXGzGatTeDnrH2O8h1K0fV2FYxM5gU8jHBOHZ1VR9NdNAWujZooMTuRPjeVPj3pDlTDFMC3zfKj/t362Zxyczc1rApV52q3cjekczcAmfc3yxGl3iz/Z3I3sB9GF+duKkRpHrYcWf16JedTCQxUN5f7Hsd2N2BnECVnVC/h9cclUR+YIaU+aDivjiqdQkkDXyaur5iH6X9T/WpKbaBu4mH3uBv985c9YbISBd2NzuRZ7obUxDHGOM4YhwgOEdoYDKeRIFcJO8RCyIO1WwHpCUTST4Ql/+FCZbkb0RZBU9A6+IGua3ejdovdTSQozcPsKKdjaqLiO8IBGkbOAQnZE34HMcgBC7Z5WH9cMrc0V4UfcYdT3b4OtMs2679oONKnJztuzJZbZhr4moNhUN6mKx46m6jvc0i/icSWALs6duVtI/mDqdzZn3upu4E1FWV+zr5uG3cjD1H7s86h2L8ymAXB6ms9qEGrihUuYLsbNQVUvbtBe5VhO4AOdKUqjqUqarfY3USCLnnYcnwy21zhEvY0nLNTaNALbVCKh1SPhq+nKvUjzkBqPC+FIqvb3dGUPjfpjirj19pM+IaD4QBYCFGah06n0/gw7fIranyOQrEGQHoDDX7e2eu6uqHPJNxOpzfNTLEfK3xVUWmUQu5GO165XSVfYP/K5J72V/UDZc0kc81mbOZoYml3Az+0lTczRYMisA/cnDdmVterHmHPLMhKOMpA57cSwmNme0ZApphTyfjFL4VQHg9bvprKTC3b1w9z6PtpNKgyy+FhcjenTyURxx3h9D0vRQ1AcP0XqytiInJHUPq8RN0XXGdUYYrSKHJOcZyzHBqkNjjqPZ6qZUI8pE3ofxP6PNc14Yc+4479SyLR6dTOw4gGU7Z3DfxypKORIwWWWq3vlvQv3s7pSjAD5g5PvcXRP1B/mlv+Sb1dGQLq5nKGWlCnHGTQ3ZSemaI0al2KnmbAATELhqPz1wQiR6b0iRz1FkSQGseBy5yZ8gQD2LWxtjs+dlaUzcPWE5K5UU76/7Klnh+aBs9O0KwENfjbyuShO4L6fjfddnsm19WiiroZbsNxSacPCcE2D82zikltBAGJGU5iX1e0srdG8GbmjYwmQhPRMKBeB0GhskpCMDmFecit3P/3FbzcruF9Z8+/Jt/4fNZLiVp4GEG4Ia3ldh+ocRMhqNvK3Tja3ch4Kb8p0wEwZOMEDA/lj5n1uMzkbhy/Y0zuxjRxkdyNgj8zlZhc/dSjwijVInJApz0dmIX6IISduzHuJs7d1IJKeZiZ5uamuckXc8llwl3p2Q9442YHk1ye5jp9quehM4j6fiOVfdvLPOVl3w7PLlEadXsn6g9POAFDXfTJBMZEMTPq2RkNclxhvRHE1ExbdjJr3EI8RBv3vbniF041vO+Muy+57AuZ7fsmBh01gl9Ryt2YQCP3D7sb0uOsku6G81RFhfWgu0HX7gawVSU5yakx3Ii9WFFOQFZaXWMU7qaWiu3cqI6HuWkJMV1lNpx2kiMaB3Ac/y0btfCwbpybHOsSkF0u9FFE9Ujs5kgechEeFnQ3Zk9mTRUZQUgPI6mguwnwMPVPctdV08J933WGvuCune5tz3U3SlXI7wP5IawqqNXdALaqkM6AGFUhBzrxXLm7keUwkNzbcUc7VS8s5qnkDDKqgqrdjUlxx+6mTNTOQ8jsSffwMDlG5z7K42EJdyOzBESOCjo6DhV3Nz4P0Y66fwTypBVhxD8SGyZ4or7KwyNIFat2tb6aBDgAmDkX/dMy5sV3NwD0jDW0u/FnjcxZzKSAiSLwS4Z+BodinRaBfHcTmJlSMFwFM9KHVZuITQNHwswI6BSlzlaSeq0qkZ6Z0sbebyU9MUG6XvHMVJnY+XioYhj57kZejmSNcTc60Gl3o2NhQR4mllSQsslHopMGrnS358yUGTObr0ZVAPWbMpNEUr11B8v91e6WKfWnAAJn0cNmNVLVM1x6RoBCM1N23UIzU8zC9Bt0XYyquGOd9Ber8n1fc9Dgzwio2vgGWMhJJmVz1JX47kbuKathuxt7RqCaWn08sPPx0HY3pClhuRsyQUfVVV+mrGlBHrqra23nfu84VfMwencD3S62qrBeAiOdbZeqAhPdrbOYwblRFVuvSqgK5akKyRSfFoR8Vanb162ryOOkgRMotN6B9cUwM0tTY9yNdPixu4kOOyUPo3Q3ADO7b9Tazn0+3K7rbkKqAr+fSqmK1dlBVfE9cFhVKF9V1Ol8VSGqXFUk/fJUpe5QN/3FRFmrJ5rgfM2l6ao6BVWFtKmJ3U03YWflYbTupvZ27vN+9e4m+pkpKBsJMyMA/bOSrePo3tKJOt1wsttMEpUDMwJqi6MbVKoKjGIAekbAITCzvvOzgKoI5S/0jICywyzyZgQS0x1nQl32ES/3fJHb5NJwDiA6xGEUmhFgrXHyoz0zJQQRhE8Cf2ZKpjsVveKZqbKxE/Mwb2aKmX13w0AXM1MWD4HgxVTZ1FW6m2hmpkh3rdqi60T6D0TyhiYV3R0tEVK35e6OVg3NEt3AEibBLj87BDMjoPhE8knFsksEs36sBTNR6E0MSlV0ySVUxWngumPd5Dwn95oQa5jBWEsYDmZ2JjkYpsY7snqCGfaMgHG4pPrfn5ki+812gZkpYgiAdb3imakysXPz0PzEC85M8XIGEQ8AmrrmYRRNvV3dDVNgVBZQFb2PrSqwRMOoinkhjFGVwDVJWjgg9lXCVhUTcfNUhcg/i1YVx2HBamhdQFWIiUOqkpjs8iRpNeS5HOViLVWRJM5TFV1Ohe5G1it2N2XiY8JDU4z3thAvCrGCeVOwISYQjQbPLMLDFFFnTe28ZTexXd0NgqriD4n952AaVYF1B0MpVWFLVXRLq3YGIDNtQsgpAFJrKMj4ZekdHMf3r2FVUXeTFxszc5mqosbMRdyNukKTL/TdDcfuJnJ8fHgoPkL2r55YWeQ3v4yxDLQIzpHEE8M8zE1A8qWa2rltiNieM1OggIM1UwB2nXT3+WLB/jSkzFGQ0DaBdCE6WecXa/JgRlXUZxUOdFpQq4rvcUMzAo6jh7J6J8CaEaDqZgTkqfw7cVVt5eySPTOluM66ZDOhoN2N+vEgODOVyQoAIwf0iaDXdj58PHgoVqDzl9miscZgE+hWdu5CiIfe+CqNicHWkaJqHkZxi6ZeyFhAVaC2kramWk0sVZF5LS6kKrpAW1WgijGqon69jkNGI4yqSMFg6Ndp9oi7IUdyprC7ESr0+O9+kSXH7qZW9G4eZv/lmTkoAO4Ypwoeesu58w+VPKznRXYZ4rM+D72JEAPgbK6yjbfuJj4a7ZFXJQ+jCDfkD4D1V2bIxU72mFl/MmNmuUGmKmTHkGnsQPnmLOYRXNaYWTsFnwEBVZHyFuGYmW29C84IKCHSY2ZthQK5GxNiCOY5sERgYeVuUCR3w7k4d1McvZKH3gpufz6XeTX8bg+qR3KMmz4wmRiNMnnIazhzc+UPBlsCdwDlDvZ52HEENdxRaTEK730yWwsPo3Q31lcqR1UkfFVxAqri93RFqqIG6pa7kQORqN2N8h9duBs9c6HcDRuvTtZdM/nuhrW74djdlI/yeOhu5PQbudRLnrvW/81wE3kTXDHR5dEUFQ/Rjtbbs9kir/HldmSWepmlXt1kt8+X6tDQNQ/b7/Wqex+R+xi8aYT+iofZvTizD9W9XHE5a2bmWvbg7f0mBq0q5H8NqwpsfSHrX6pAVQD92y6pKvJn2jvcDYLuhvLcjRqgF3M38pDY3ZSFrnhI7ej7UKbgk0NpEyeeyeGZHI9yckclaQTVyENvDbfd2CnKeO51ZqnnXd3ReEYdjaASPMwtZ1HDO86Td7F3hs/D1uMEw0m9XEEJH0701szM1cjDKFLFOnvP/ldtC6zW1iRQ+6nfU9DdkLYF/oEmZGmPoYshpVr6OaFEamhMpMbM+iA2+8Os5hQCZjKipKoYwTTuxrqa8GpOPWbST1HTyWNZNTutaDgqT2QSlqQ9l+1u5BXFq4q7QEkeJteJQb9p7/IpxbRSJH/V6bzo1cJD3ojW35YVayS8jbz1N53ee1yCh7mna3ooCq0CbQrwcNtxon2/cg9fOzO3em62dh5GNDMlf1r+V1YzAlatONhPgAkGflJNNTZgjXKCqmLygKyNiaUqaojLwRkBeU9A1TMC+rp0nk8HGnmk8dXWzBT7M1OWuzETUjq8SmskT6TF0rgbGHcj68DxPVNdojgPk+vFwBs63M3ltp5zZ5aezlXHQ9HKrTd2Vjrq4Xa03ZHhtqI89JbX/D6iVWEebjtCbDxFdO5R6qhtu4vlJ2bXH+BFwsPIcjewl1qqXyb7naRNgHGhQCF3g8CY2QyH/P8r1Se5IlNaXnvMzIVyN/IXXXbuhgJjZh2ULHdDukJd5W7kEEzdIcWmAtC5G1glx7mbWlGEh047D76hw6nw4XX0t6yoB013K+Vh5umct6aaX6O3hjufyqYOT+Tz0FvBtT7QFqDNnM/D7Ch81Oy5a6nhFUqsh9OB1PvUuQt7abSOFFvGcesQT3BkPIwqd2MGFf6Ymfz8MKB/0GF3Y+VuWP0OA+7GHz+HVAXmmgNjZhXNgusdZDwpO3fDpXM3uuroOnfDvruBn7tR6WGdHohzNxGhCA8H3dZZaayRcP6WxUQXDRXwEO3IPFn9a+06Fnp1M1wMRIiHqNZN2HBWEh9UmIfZYbxpGAuGx+wJZkAwhJQ/ESUPo8rdUP6Y2Si83uj/I7fYPWeZUn/M7KuK3qJVRWXm5BbH8XM3rFeImtyNjBD5uRsqmrsJuJuacjc6SKnmULkbnUvS+R07dwNj93TlEeduykQhHqZXeanV1WY92oFHcqiEh5nF4QnvSpF5TeTzEBF1+3bnYVS5G84bM5vhkNno/yO3WD2nw4EdZcw+gUsj7WV9VRHCz92okY3v/VRSNj93w0VzNxxZ7ga2u/FTNrDOwtBBTTeMCdIEPakW527KQSEe9q3tpeB4JieLKpOH3opaOyi3VOTzEJF0ez22Ow+7z92QVeGi7sb8gFXIDLobf7Rsn6wMd+PoFinsbmi7uBtLTKyzqCFbnqqYygdUJSqZ2ylRiIeplbW9VAPAa175PPTW1jraza0o4G6chgj6XQzb/jzsOXdj/mYdBfMDViGTrX1RUFVQjruxs1kF3A3vqO6mI5cDMLKpseI++jggj4eplZ5T293PAHgtl8/D2l8wj0I8pOGgplojDg/d/jyM0t2oXinibvQ/ZB1V0N1YRq2AqiBfVaiYu2Fge7sbiaKqoi+ktKogdjflII+H0WAjl8/DSE5YkIfumFp/qt6E7c/DaF7aq36KOpiUcjem09SeyHM3wSspQJqQqsgXRml3A8vdEKACTU+7G60ifvsUVhV1IU5pVYEZM0f2G9o5EeJhYnMUE3mbpGrl/6EwD2tHQR4mD63pNc25TwO9gIfRhBv1U9TBxLgb/xdXyN0Ahd1NsGg/3OoDWcZZFSzkfUn6pNJthN2N7jNU6G5kDatwN1pF/PaxVYXtqQGQepZ27G5qRoiHuQFR0FuOYsrjoTu61jO6w6kgD91BSM6uNuKk4M0EegEPI3M3ql5Bd+OPi0q4G/bdDVm76qLz1hxIt2JUhcLuBgi7GxTJ3aiH4xV3N7KGJd2NloPi7sb3erpwspcXa1UxDWNLR+xuKkKIh9FgoJKTcnjoDq/1B5UY7RTjYd2hrjO8mgvLfllNS213HkbmboA8d6MW+ALw3Y1xnr67IYIOEAVsa3mqIq2KKoHD7gZFcjeO4+gTstaTSt2NHuwWdzd+JqtCVYGlKojdTRkI8bBzVE0DEFXm8ArcTXK/Ws+YmOwU4yEaUHdagpoqK9A7HjwK6B087EZ3IzO4CtrdsNkUdDdOEXdjciPWpgKqwmy5G6rW3ehSInI32otGoSqI3U0ZyOdh+141R5xJLsrmoTO8pvFUYrSTHOuU4KEzEOn/rCvX46Qgvkw8rRfxsBvdDYuy3I3MvCh349sHf69y3Q0C7sY0V0XuBsoiReJudKYtrCqoTlWEiHaQsBMin4ctn0zWVOI0Fa3K52H6sOrPmD7M7ZKHqOe6bycSRxNKvgGNp5L4poOJvYuHUdwzZWpjuxtpWEzE0Qww6RXb3ZCjHn/lP6NGQ/5s7Z7Wpimcu9H3V3ftbsw9U4KF4zggqHum5MSW7Axzz5RZdUFkVd+4G92dwXumQL7xUWFK7qpVxX+2Fpgch4SAnkVh+N1JRJCreNRdYLG7KYV8HnY0O53/4VZ5H0MaOFrFjvJ56I6l+i8m2++oeDVz/bGJxFgX5fHQne260+GtEN7rjE3gtYwOoJkAYAIwkdDELIR6qUev4WE04ca0uD3uYMH+QgQrkQHL8ZrpISHYVQ/cU0v1zM86YJFksQ7JYExEamZKNR+YmfQWqLvbAo/50O6GieBQnrvROeOAquhAqd0N6ZioZ6aYkXdHuJkWNfFOVwDmg2wzYVLLeovpTPY5HrubrlGQhx99KTX0mrYq1vvxvCQaquFhar+EeI87n67gXs26fROpOYnKeNhAziSHJrIcyMM8qwTca3kYce7GGncUzN3oPe0twsrdEAAysUbtFSxEFmvcig7Wsl+M0WBDuiK5Gyo/dwM9HKsqd0NmzKyHyjAfZJuRcli6QWzpsMbMsbvpEgV5yH3owzPSIlVhUYckeJpbNQ/Tn000fKncUVXDFxONJyU/DjyMOHdjqYpyEGQ3i9nTbOECuRt/mAo9rLQKMcVaeUE/d2OVqZrLPF8mmLvh8nM38GUBfgfLI7vO3bAZM+uhshkzqzZjISzfGhgzI87dVIJiPMwNdzZ9Ne0NKLf1vM8l+ZBEjTxM7Zvod0m6bkapXHXdjMSAS9Lp/ZO62J2ch1HmbkiPNOzcTcCFWskPBQKLUO4GzH4UlKrCVtsa0xRSFZh8uWpidR79pOpQ7obKz90YVbGqb/pId2eh3A0xs8zA6fqK8JgZahgGLjhmhj1mJsp5AsCujfW1dddOixI8zAx1Pvp6fb8HM+mXSo1xxChHfCZBYxxEwUN3IPqcVFd/OOdWeLnl7H0k36FKzkBKjnXc0U5isMOChSiXh9wGXs/MwK6EPtjheBhl7oa1WbJzN6F8vvwLNCFsd6NzNzB0gR4zK/cWGDPr2CxnBGDdGKXzKQwihpAvNqwldwN9A6hfcVmjArkbZsh7pli9Hs087MYfKvsfdOfr3wcQHDNb+Un5cFUGkE5EsJxkp0RpHnI9Wk6oazs4kX7DSy3x3HX+LQ6iiXiC6010eRRFzkNnEKUGJer2rZ6H3nLOveDlXhP2w3SoCdRENBHObGdH4WH3uhv5KeBuBKsMsfxu3A1Z7iY4xvNHioVUhcz5rAAPY6oIDipxN3roG1QVc7qu3Q3kWzQLqwoJloZUf5BjvbJVJZLO2olRDg9FE3XMSnTOTBDBITiA/ADBjkMO0Kt46G0UHffmcq8VuPmLN4E3MVZCLPKcz7s0agfgYZS5G5PiNWNm6Cjt72leoSy/6zyL0BIB069qyGlddGjMLCw5IJNo00oENXNYWe4GBcfMQNljZqkqZI3p9ZhZUg1sf5An5WDPFhszs9WOMQphJ+Nhbo1ovSZTMNbY4E3wrvPE/zLaejsPo5yZosBcnbof38qi6F11X8p/5CySflU7YBysokyeqhhKmVU6rKxrSFVkQfm5Gy4xMyUTaQjNCKjzkl8t427CMwJEYPlOCT2mN8MwZbntD1qQrYtEaEZAXVvsbsrAzsTD3Hui7beZ8h9FKl4Q4s+il/Mwanejl9IUVBV1rWWoin/Z+apiKKWfRkzbzd3oa0YpVbHax1cVE8fI1xd7hAZTPsXupmzsNDzkNmr7XQWxRtVrJfN93Jt5GL27YXP7Up6qqGsNqorcI6Qqft+WpyrwO0tVKF9V1AVX4W6gzhtyN0oQunI3Vvv4qiIP0KqiaG1GaH7Lxu6mEuw0PGy9seJYo074rODlvZeHPeFuTO3M+Na/FK0AZaiKOsZ72/MWe7mnc97bHrfpwOx3lqpQvqrIv1TjblTlw+5GDXerdTfQN/7G7iYq9CQPC7obRMFDsRbeihoeDPaQ6LU8jHRmSg061P/0LCHM/erGQvh9T4odcvbAIbMxqCptyD3i8UqPwy8MyzojKDnDTc1JMJuG0q0jVcWK66huZkpVXtaexHIGWKwEhjHqiYYyGoDiMwLm5A6RZ1SFIVXFXzMl1HWHZgRYCDkTH7ubLlE+D6mNk8tyifXsrhMEcJp4OPFoFwOIBxbnoflUxN0oOtfGw84na3uc+1rQOsKw3sjDSNfdMKAmufVP057z9juf/X70VQVmvYP6m/6/eN3z/ppFEW8p1nDnmlz2Ka/+xGRyT1ffIaJWNyC47gYhVSm43oFQ8F4V7z2RfUSIlaJATYbDmeXQNHu9A1i+6Qp+IcJa7yBbTV2v0Kqi6ezHVJ1ZZHWvSoxSKIeHzibu81gulf+y8GXA33MAxAEJcXCC+oR5yAT1DOrAvXhKLzW1mQgyiADw1rDTBKdPZTzM1WJtAAD8uuChVJqH3Ia61XDXE9rJ3YzMUDCjZZxo35W7j4fd5m7UYDU4/tURVvYcEHY3luUBCGiDuCXDZbS+2Mitv8vUfzFZt68LgMFOdO6G25C538s9X7waayH+V+DvoJMdHsbcDarCsbspA13yML0k1/fBDJV8qaazKOe8mOPPJTHZzXM3ftdYA7eAu+lc7HlLRW6FZydf3IGUnOym5yTcQfosRXjIH4naX+dA64gJxXjobqbU41T3MnyaAfVvAcCAp9xsf+ej2d6mydwdPIwk3HAJVYF1TUXdDWtamGEmAa0Q13dibQVNL+/6T++XIO1uCBBck7vhTej4n6wo563Pm4DrBY4CTbNVBbBUBQCbJ6RU4m4I5MXupgt0wcP6Jbl+d2fKKqkddEsW0wW+kLTdDUH2lsmAkH0CsVR03JsVhYKFt5G9J3MdT+bS+yUajk1Sn6I89CJ5dUw7g0PuBgCIkHgGqQWl4kVyCw19IDHgeV57pNe2a3BUWDMPI0kVk51VVTMC9hPqzX46b2VphBGI4IP+GPy/2YpijUT7HVlvjVBnN6uzdcoIpWYEKH9mitvQ8dtMWbFGogPOXcBr/oyAvEx5cschP6T5MwKA+ubPCNgZI+Ww9Mp3AP3ra3tk1E6LUjysINYYvODh3pztbpDnbsynzMJc242ZgrHGRsdzuU2XtefeEyV4WFklC0ES2J6ZkoUm70JqQVklpDfQHre7qfWmxGh4GEm4sVQFIIJ+Dohqetvd+M5TbTJByA9PYGCFwOtVJsxab8ios0sDrCYm1DmLzwhw/sxU+++zYlPFFXDuBq0jnfdXbQKG0Gmb4IwAWKhbXdTOZjwApSrGEXsCAPqn66prmZ0dRXmYXCf6PlhhrJF4JoflAoCej7KYy/5zLjruyGYWlvt0G27Hll93ZN/1CvIQDdVUM3wKMIIzUwzUPUjJlysoxO2gUXck6jeo4B0JD2sNN3K0FFIVIcp2N2q8jYC7AXB/9a929jZy5+KcnM40EwdVuJvcC0JUbq8AoAPOA6KYu9G+1Hc35FCZ7qbqNtnpUZqH/R7MOiXzNSXAd2blCfxxmjyjNiLZp7zc85VJI7dj6286RWsBHiZGROAAqCnsbtxlSPyz4nLcDtp9QcLtoKh4WOu1yVyLGrkUdzeGAWF3YyVL/MvYyFhX0wg285xn5iNC7obLdjedD9cwH7kKtKKwuwFZuZsK3U319dnZUYKHzkZR5cNDJTYxv+Ypd0NqWgHa3YiNnLmvgqf2+RVux7YbOgvy0K3q7S6BwkcF3U073AerJE/9BmfIi05UPIzO3ZC/uCnf3RgGlOVuXqz1NfK5FSK0LMK4GyrP3eReE7yppp83vWS5G1juxrRM7G6iQwke9nm5mnBgg18TtrvRZCYQMvdWX3h2ucit4HweJmfU/Ksc5djuxl0C2lx9abu84PZedwOU5W6sKbawu6G2GisFAJl/eUD17ib3dq1rH5xllruBcTcA8twN++6GY3dTFUrwMLWy1q6klaKgu+FWeK/VJI0d/8zl8zA52aWSb1noAlOJm5S7UYP3ZbXUEW4nDfgX9T53ozeG3A0KuRszmsp3N7yuVn7An5Cq0t141WVtbHSgkLtBAXdDvruh2N1UhRI8rGkkBQDwfa59iwORt6zWkrOv5fJ5SANRN6faJ6ilgYNJMUoItahtdY3VRN933V7lbkzqHshzNyjT3dRYlVDFTNaQC7sbgEvlbiLBSn8aI9/dcGBeLnY3NaEED6M8jX0DJ7N4r9Ye4XZk3/byeZg+PFldBoc+59AgzSjHARGtiIA29Rt6l7tBRe4GCLsb2GvbooA/J0qF3Q1ApWam2iOoDpnASsRg3904jjotc+xuIkEJHkZ5mqC7EWsjsOHFeNhwbl2lEYc+59Ak8hklBKLSKH37ca91N/pKdaCB5W4Af3aK1JSM5W5qeO2pgewqU4+K3U19BL9t0aSHjcwkbzaR7kYIdVqi2N1EghI87PyP6B7trJ4xrDQholBWmIdOH2o4ry51WHmVT8P5vONMJ7Dll6W7iaaO6C3uRsX7sKroK9WBRn4MuBszoSgvwxQ6qtZaOQPJ6eO7GxNzULa7cQZG0E3UpIeOyt04sbvpJpTgIdeuHIaQzI45S2QDtaI8dBoodXiiz3fq3JK/CJpG7vkJZ5r6uYXdTSSv7YjI3dR6z5RsGCekKkqz/du7Zdcw+/fLwf+TisZ+i4520ESoYR46/amEfOK6qYejojIVcTew3A0Y7I6h7PNVnx8AeC85SUL6csmTD5dW7oZ0Skm934f8J+GTSTnpNYGg+I7wkijBw7a9nPQbNRVOwzU3iQQLVwuYO9oRNd+97TSgBA/BoOGoPy/hrWDvPeGtZd7IYiXTKKJ6UDNookODZI5cPlVMEkm5GwYwLALatA+Jhoe1hhutKgzHz77IZlJv27PcjaPGMmon426MSfPD5nQXj1a5ooHSSExyyLwwOM/d6DtxYb3fBwQSLEiLQ3KS24Ga1muIZi20+jIdx/GYwUyOA/1UAE0vZq1wgQG3dSeu3NYvHd8wVQAleNi5V1KkMlW8tNfHbD2iCbobGlSrvXEGkjvCKcFD82QCZzQ5o90Eq2Wi+uEzynGoWANAP3eJoZ5MwIDYC05tAXfTOPVslRp5GEHuxrgY/zdiLAv83I3MTdi5G/lJr5XQb1SRpRyQwLAq+zJ9eNId7JhXI/sDllK5G1tViMFUj+Ts6sf83ASepZeAsKaREHKTzN0AqqVM7gYlcze5HAMYEN8wVQgleOiluXVWDTF6musM8qVL5m6Uu5lQa1YoMdotzUPoJxMYSjBbi0n87Gf4qZJ27kZMqKmSnf152+5eJDzsltyNDri+tgMqN2HnblhtV60pv6pWbYBzYh0qX+yUnOGmD0zo7Iyqo459JXI3oNDMFCF1WKLq1VZ8JOkmUSkZk7shUs/fUo2gH8vop7fi3E3lKM3Dlk8nc0OronoTOcckfbOpn/YihZMakCj5Tt4u0TA32SUP9RyrqgSRtZjEz36Gn5ltz0zxVOIB1Vdy/axcVDysPtzId+i1dXYqY2KPAPLcDUyuhsKPQjWtSfAbDQAPJ+ecVEURxx3uNByXlKcX+gmyZgqoIncDBuq5/txqVJGnEk80Qkul3Q3y3A3imalKUCYPN56R5lSlRQOn1XEDyFIuNQ2iz5Ocl6xak1L7JpwmROhu5OZ8d8Pg7PFVxoj2XXjjJBEVD6sPN5OHNaVcp72zs70zG2iPYu7GdJLenO9ujCVUx8mI09R1S1Ea6WMTjd+tQ706vaOfIGumgGTR5bsbInJGUN2JlaW3eCqJ41m7qcLuBmZSg3Uy2HI3KOJucoIRP30iD2XyUDRg01fTuWFlEz4NPjuF4X7WHgBYv6hXn8dpQN1x1WhSYoTTcFyyTB6iPHcjN+e7GwLxKO78bMVhItOfV5wob4iPhoc1uZvZo4YCePfD90VwQZFpIuj/Ic/d6ExxEXcjjQHBGUGJi1LuoYkSQScxye1zQapuTsJ0RGF3w5W5G3lBdfu69f9ZroLxweATAqoScDes3A3Mkg1S6YBy3E1rZwbAuCH9y6rKxwbl8zA3zNn8jXTr3GSXNodHOd63UhhuntAGE2Nsd8MAA+50JzWvMk2iNBrPqHP6VMDDGt0NQN4UZI6ooJIdu/A7x3tevaxWNDys1aLftmTFO5tbU8nEf+wyJOW6DkHe3kwM1yECy9cwOwQwm/cxqy0q2rGjVmQxWB4O0g8zNlbAIfBST6xlXsvcxtRA7ghyRzs0kNyBRP7QTOmD4z8fXzsm3WPmCVvyGbFm6algIcf/KrFvJVFEK+cWidxTHhd7bEoz4QTCIBIsWLAKIiAB9pgZJG/O9ZgFs8cQgCdYMAQgAI/ZEyoQCbBgCFZ/9YRg0Jb27LaO3C6N6TP2HVdLf+2sqIiHiU1c/1gusU64eXfniWkJnu7wKKcED8lsMT6VkF3sdd5R1kOaEiOc/t9IU0M1POSCM1OAjjFgQCj6Feah8zqnFpCzuYtKtozlNUfmsmmOloe1hpuOnHfbkhXvb+twHBq1666NdQn1mnew7BjZxw6BWD6WlYhZPonBMR0m/wSlIXZPqy0OsRCOeigzm5Upjoy4ykHqR+E7ZI+ndGDWK25khwmGdhTaBxm/oSZQhdYOZqUozPCWemIdeA1zO0CgYYQR4GaiJjBYWN3PQgiAQbKfmJATgkGeYMEsZOgBBCgnhBVlpBmCJ4QKOsC2Tm9TawbA6fuO27WxlpuFd1pUzcPESuFsFhjgUAN4GNXCQ/4I7XdkSrwiitKoPyiZ/lTC6VMrD5kFtIWHZrUMWF3y0Gvlun+i7iVyNxeo5LZxvHGGt20kdwcPI0hA2j2928CmwY0NJA0L1epuZB+XVhWVGynubqxrrd7d1KYqYKBqd7OtM/fRtgyAz4wdPmP3wTV21k6MXsJDsYazSz1vufDWCOmF3RGOO5CSk53U5AQ19CIe0jpyNsFZz8wQKXQMRfsunE2J7uNhNPMdpqcBDB/Qb3BjQyrhhlQFzE6eu4F8+U5t7saRKtE97sZ0c02qQiRYuVmPWQjlbjxmJqeEu9nUlt3cngUweWjTURN2r72ndm7EPOzlPIxyevXpVRsWrdogPw9qbNi9qV864RoNkQNpoyqkSeCrCjPQhar4wlLc3cjsvO1uWOfxe1pVVO8qVVFeJuhu5FNO891NW8b7qDXTkRMADmjedXbzrlF1006PmIe9locRr+Z4Z1Pr06vWv7O5VX7tl64b3r/v4D7pUqoCIviqQpZNLaUq8tgiqkKAEAFVUVfb06pCUh/yVEUPoAqpSkvG29ja2Z4VAFKuc8LezSOb+kTYRx8HxDzsnTzslsVj72xqXfzuB29/uNVs6Z+ua2pINdYl65OJfqmEY3oRqFpV/A8c/CpVReWQgV6rKsxCKFXZlvXaOr1t2VxLh1zWgJTrzBg5ZMbug+UythhVIOZhb+NhN65V3dKReXXdpn99sEWOpW2kE059MlGfdPskEwT0SyWTLjlAQ53bJ+GGVIWkGpRUFaHeRhhUFVI3t8iFDEDPj5mJAY+FnAjfkhFZwYK5PSM6PCHAWzpyOWYpIAa7NKb3HjZw8rCmONBEgpiHvYeHPbE0viPnvbOpdcO29g0t7eu3tbd0lLU8IenQgLR+ZarWkz51bt9kwoyGSe/sf9A6QoQwtKrIvpHSQHpxFPyeluUxBzYxQHrJlSpDltmZ8zZ35iAPoEApWcFbM2U9zrZfOrlrY/0eTY3jhvSL1w13E2Iedonu5uH2uRNnS0dmS3t2c0dmS0cGwIaW9s6cB2BTe2dLZ62v6ei12KUxLYWif7quf30dgD0GNKaSbryUZnsh5mEP87D33vjXkfPebwm7X8OM3oN0wt21sfAT0+JQshMg5mGE6L3hJkaMGDsZIngIeYwYMWKUgzjcxIgRo4cQh5sYMWL0EOJwEyNGjB5CHG5ixIjRQ4jDTYwYMXoIcbiJESNGDyEONzFixOghxOEmRowYPYQ43MSIEaOHEIebGDFi9BDicBMjRoweQhxuYsSI0UOIw02MGDF6CHG4iREjRg8hDjcxYsToIcThJkaMGD2EONzEiBGjhxCHmxgxYvQQ4nATI0aMHkIcbmLEiNFDiMNNjBgxeghxuIkRI0YPIQ43MWLE6CE4AFpaWq699tpDDjlk4sSJkyZNOuyww37zm9/kcl2/tPScc8456aSTur+SNaFXVbKjo2P27Nn777+/2dLW1nbJJZdMnz59/PjxJ5xwwiuvvFJL+cuWLWtubn7kkUdqrul2QMzDHsP24mECwGmnnfbuu++ef/75EyZMyOVyzzzzzLXXXvvuu+9eeeWVtZyyFkybNu2+++7bbbfdtlcFugm//OUv161bN3jwYLPle9/73gsvvPDjH/941113vfnmm0855ZSFCxcOHTp0O1ZyeyHmYY9he/Ew8a9//WvJkiW/+93vjjjiCLlp+vTpqVRq4cKF7e3t9fWF3zrcrVizZs3GjRt7/rzdjTfffPOmm2464YQTnnjiCbll9erVDz744B//+MfPfOYzAD7xiU/MmTPnlltu+d73vrc9K7o9EPOwx7Adeeh4ngfAcQJJnLPPPvuee+4xffzXv/71M5/5zLhx46ZMmfKtb33rww8/tHfetm3b+PHjf//735stmUxm7733vuqqqwB8+OGH3/72t6dMmbLnnnvOmzfv2WeflfssX768ubn5ueeeO+eccyZOnDh9+vQf/ehHQoh//vOfBxxwAIDZs2d/7Wtfs0/09NNPNzc3v/TSS2bLyy+/3Nzc/NRTTwF44YUXPv/5z48fP37ChAlf/OIXC7rBCRMmXH/99ebrhRdeePTRR5vKLFq06Mtf/vL48eNnzZr1wAMPvPbaa8ccc8z48eOPOOKIpUuXykNyudzPf/7zWbNmjRs37sADD7z55ptNaVdeeeXo0aOLNbQQ4qKLLjr11FPHjRtnNj777LPJZPJTn/qU/JpMJmfPnv3000/nH/71r3/9vPPOu/XWW/fbb7/x48efeeaZW7du/X//7/9NmTJln332+dGPflTsvDsKYh7iY8BDZ/To0bvvvvv3vve922+/PdR/EvPnz/+v//qvefPmPfzww7/97W+XLl16+umnM7PZobGx8cADD1y4cKHZ8swzz7S0tBxzzDGe55166qlLliz5zW9+8+CDD+6zzz6nnXbaW2+9BSCRSAC47LLLTjrppJdffvmaa665+eabFyxYMG3atF//+tcAHnjggZ///Od2TWbOnDlo0CD7RAsWLBg0aNCsWbNWrlz55S9/eciQIfPnz7/zzjsbGxtPOumk9evXl754A1mZn/3sZxdeeOGSJUv23nvvH/zgB1deeeWvfvWrxYsXNzY2XnrppXLPyy+//I9//OO3v/3thQsXfvWrX/3pT396xx13yD+NGTPm05/+dLFT3HbbbR988MH5559vb1y1atXQoUPr6urMlpEjR65atapgDZcsWfLvf//7scceu+222x5//PETTjhhyJAhzz777JVXXnnzzTdLru+4iHmIjwEPnbq6uj/96U/Nzc0/+MEPZsyYccghh1x22WWvvfaa2eOGG2444IADvvGNb4waNWrmzJk/+MEPli5dumTJEruUo4466pVXXjHN+tBDD40bN278+PFPP/30smXLrrjiilmzZo0ZM+bSSy/dfffd7Uh82GGHHXDAAclkcs6cOSNHjnz11VeTyWTfvn0B9O/fv7Gx0T6L67qHH354qJuPPPJI13Vvu+22urq6a665ZsKECZMmTbr66qszmczdd99d4srzcfjhh0+ePLmhoeG4447bunXrF77whf/4j//o16/fUUcdtWzZMgAtLS233377V7/61RNOOKG5ufmkk0767Gc/+8c//lEefvzxx5vPIbz//vtXX331ZZddFhoUtLS0yIs1aGxsbG1tFULkF9LW1vbd7363T58+06ZN23PPPYUQZ5xxRn19/WGHHTZgwABZwx0XMQ8NdmIeOgDGjRt37733PvLIIxdffPHIkSNvv/32o48++ic/+QmAbDb7xhtvTJ8+3RzwiU98AkCo0IMPPri+vl4monO53N///vd58+YBeOWVV1zX3XfffdXJHGfGjBk2RSZMmGA+9+vXb8uWLSXqCuDoo49evXr1v/71LwCvv/76u+++K0+0dOnSiRMnptNpuduAAQNGjhxZ6S9w7Nixpiahr52dnZlMZtmyZdlsdubMmeaQ/ffff9WqVZs2bSpd8o9+9KPZs2cfdNBBFdUnhJEjRxr96devn6me/Lp169ZaCu8NiHkosRPzMGE+jR07duzYsWeccca2bdsuvfTSG2+88eijjx41ahQz9+/f3+wmP2/bts0upb6+/uCDD3744YdPOeWUf/zjH5s3bz7mmGPkbp7nTZw40eyZy+WamprMV9MxErY3LogZM2YMGTLk4YcfHjdu3EMPPbTbbrtNnTpVnmjkyJH2nv379w9VskukUqkSX5lZFnjKKacQkdwow/9HH31kX1QIjz/++DPPPPPoo4/m/6l///6h7tm6dWtjY2MohVFm9YpVYMdCzMOdmIeJTCazYcOG3Xff3WxqbGy84IIL5s+fv2zZsokTJzqOYwd7+TlkvQAcddRR55133ubNmx9++OEpU6bIucO+ffumUqkHH3zQ3rPgNZQJx3GOPPLIhQsXfvOb33z44Ydlgk2eKKRIW7ZsGTZsWOhw0z0SHR0dFZ1dXvUvfvGL8ePH29vt1svHQw89tHXr1k9+8pPyKzMz8+jRoy+++OJRo0atW7eus7PT9NmqVavGjBlTUa12DsQ8LB87Lg8TP/3pT+fPn//444/bk/AySzRkyJBkMrnXXnvZtvPFF18EsPfee4cKOvDAA9Pp9FNPPfXoo4+ed955cuM+++zT2dkphDCOa82aNYMGDSqnZsXC5FFHHXXTTTf94x//WLlypXSwACZPnnznnXea9vrwww9Xr179+c9/PnRsv379bKlZtmxZSNZKY6+99qqrq9u4caPJ/H/00UeO49g5tnx85zvfOfPMM83Xe++996677rr11lt32WWXtrY2IcT//d//zZ07F0B7e/sTTzxx6qmnll+lnQYxD8upjMSOy8PEGWecsWDBguOPP/7MM88cN26c53lLly69/vrrJ06cOGfOHABf+9rXzj///Ouuu27u3LnvvvvuT3/60/322y+/m1Op1CGHHHLdddd99NFHRx55pNw4a9asCRMmnH/++ZdccsmIESOWLFnywx/+8Jvf/OYZZ5xRok7SJz/22GP777//nnvuGfrr1KlThw8ffvnll++5557mryeffPKtt9564YUXfv3rX89kMldddVW/fv2OP/740LF77733woULTz311IaGhj/+8Y+tra0VdXPfvn2/+MUv/uIXv2hqatpnn33ee++9yy67bMSIETIzN3/+/EceeeQPf/hD6KihQ4fay6WGDBniuq6seVNT0wknnPCjH/2ImYcMGXLddde5rnvyySeXX6WCeP31122Lm06n99tvvxrL7G7EPCy/rXZcHiZGjhw5f/7866+//oYbbtiwYUNdXd1uu+125plnnnzyyTJYHnPMMR0dHddff/3Pfvazfv36HXLIIRdddFHB0o866qgzzzzzU5/6lBEo13Vvvvnm//7v/z777LPb2tp23333b33rW6effnrpWk6ePHnOnDlXXHHF/vvvf9NNN4X+SkRz587905/+ZK9B2mOPPW677bYrr7zyqKOOcl13xowZf/nLX/Ll66KLLrrwwgsPOOCA/v37n3zyyccdd9zjjz9eVstpXHzxxf369bviiivef//9QYMGHXrooRdeeKH809tvv11wYFwaP/nJT6688spLLrmktbV1ypQpt91228CBAystJIRf/epX9tcRI0YsWrSoxjK7GzEPK2mtHZWHtNOkGGPEiNHLEd8RHiNGjB5CHG5ixIjRQ4jDTYwYMXoIcbiJESNGDyEONzFixOghxOEmRowYPYQ43MSIEaOHEIebGDFi9BDicBMjRoweQhxuYsSI0UOIw02MGDF6CHG4iREjRg8hDjcxYsToIcThJkaMGD2EONzEiBGjhxCHmxgxYvQQ4nATI0aMHkIcbmLEiNFDiMNNjBgxeghxuIkRI0YPIQ43MWLE6CHE4SZGjBg9hDjcxIgRo4cQh5sYMWL0EOJwEyNGjB7C9g83ixcvPuOMM6ZNmzZ69OiJEyfOmzfvL3/5SzkHvvfee83Nzc3NzVu3bq30pBdccEFzc/Nll11WeX27xrXXXisr9pOf/KQ7yo/RHbjzzjuPP/74yZMnjx49esqUKaeccsrixYvLOfCuu+5qbm6eO3duFSc94IADmpubH3nkkSqOLYabb7652cKoUaP222+/00477bnnnovwLNVhO4ebf/7zn1/60pcee+yxPn36fPKTnxw8ePCrr776/e9//89//nO0J1q7dm1zc/ONN94ov06YMOGggw4aO3ZstGeReOCBB+SHBQsWxO9E3iHw61//+sILL1yyZMnIkSP3339/Inr66adPOeWUpUuXRnui+fPnNzc3L1u2TH6dOXPmQQcdNGTIkGjPAiCZTO6zzz777LPPxIkT29rannzyyS996UvbPeIktu/p//znP3ued9hhh/3hD3+QWy666KI77rjj5ptvPvnkkyM8kQkBEqeffnqXb6SvDm+//fby5cv79evX0NCwbt26l19+ecqUKd1xohgR4qabbgJw6aWXnnbaaQDa29tPOOGEZcuW/fWvf508eXKEJwrx8KqrroqwcBu77LLLPffcIz+3tLTMnTv3vffeu+uuu/bbb79uOmM52M7uRo6DmpqazJbvf//7Tz31lG0v58+ff9RRR40fP37ixIlf+MIXnnrqqYJFnXjiibZ/efLJJ5ubm2fMmAHg6KOPvuKKKwD85Cc/aW5ubm1tDQ2mMpnMNddcM2fOnLFjx06ZMuXcc89duXKl/NMtt9zS3Nx81llnPffcc3Pnzt1rr72OPfbY119/vdgVPfjggwDmzJlz8MEHI49eMXonQjysr6+/8cYbFy9efPnll8stJRgSghzCGP9y5ZVXNjc3f+Mb32htbW1ubn788ccBHHnkkUcffTTyBlPr16+/4IILZsyYMXbs2FmzZv34xz9uaWmRfzr33HObm5v/53/+59Zbb505c+bkyZPPPvvsjRs3lnN1ffv2/cQnPgGgo6OjquaJDNs53EycOBHAX/7yl+985zuPPvroli1b+vbtu/vuuzuOqtgf/vCH73znO2+++eZBBx00Y8aMxYsXn3rqqY8++mhFZ5k3b96wYcMA7Lvvvl/5yleSyWRoh7POOus3v/lNS0vLUUcdNWzYsAULFhx33HFr1qwBkE6nAaxcufKCCy6YMGHCoEGDXnnllXPPPTeXyxU8lww3hx9++OGHH454PLWDQPLwoosuuuqqq5577rlMJrPrrrvaY5wSDCkTyWTyK1/5ivx8zDHHzJs3L7TDxo0bP/vZz9599939+/c/5phjPM+76aabTj75ZMk0ycO//e1vN9xww8yZMz3PW7hw4X//93+Xc+pt27a98sorALavtcF2Dzdnn322jLvz58//2te+NmXKlHnz5t16662yibdu3XrttdcCuPzyy3//+9/L1gdw9dVXV3SWM888s7m5GcBhhx12ySWX1NXV2X99+umnn3jiCSK66667fvGLX9x3330TJkzYunXrddddB0AGvuXLl//iF7/42c9+Jl33O++8U1Dc3nrrreXLl6dSqQMPPHD//fcfMGCAHE9V3jAxehSXX375oEGD2trafv/735944ol77733V77ylSeffFL+tTRDykRdXd0ll1wi6XTWWWedeeaZoR1uuOGGdevW7bHHHg888MA111xz77331tXVvfLKK9L7yANXr159//33/+xnP7vooosAPPbYY8VO9/777x933HHHHXfcMcccM3PmzPXr15900kknnnhiZe0SNbZzuBkwYMD8+fOvv/76E088cY899mDmV1999Yc//OH3vvc9AC+99JK0f8ccc4zc/8gjjwTw9ttvb968Oao6PPvsswAmT548atQoAMlk8tBDDwXw/PPPm32GDh06ffp0AGPGjOnTpw+ADRs25Bf10EMPATjwwAMbGhoSicQhhxyCeDy1I2DSpElPPvnkFVdcccQRRwwaNKizs/OJJ5447bTT7rzzTpTHkNohz3LYYYdJIzN06NCpU6eGzjJnzpy+ffsC2GeffQBs2rQpm80WLC2bzb788ssvv/zy0qVLW1paXNf997///dZbb0VY4Sqw/SfCHcc55JBDrrjiiieeeGLRokXSZN5zzz3vvffepk2bAKRSqYaGBrnzwIED5YctW7ZEVQF5Fjt/JM9iRzT7r/X19QCEEPlFyZHUkiVL5s6dO3fuXJlmisdTOwT69Olz4okn/u53v3vhhRfuvfdeObz61a9+hfIYUjsq4qEkIYrwEMCIESNWabzwwgunn376okWLvvzlL1exaiRCbM9ws23btocffvjaa681GawRI0Zcc801iUQCwL///e8BAwYA6OzsbG9vlzuY3JjdKxLSbZqiysyiAZBnkZ1tH2tCW5l48803V6xYAeCDDz5444033njjDemA4vFUL8fatWvvvvtuOUyW+MQnPnHJJZcAWLNmTS6Xq4ghRITtysN8DBo06Jvf/CaAzZs3b18qbmd385//+Z+//OUvr7zyykwmI7f8/e9/l4mb3XbbberUqalUCtZ45L777gMwadKkfv36hYqSiT2ZEgPwt7/9zf6rJEFra2t+HWbOnAngtddeW716NYBMJrNgwQKzvXzIkdTUqVNXWZgzZw7i8VTvxurVqy+44IIf//jH999/v9zieZ7MmAwdOjSRSFTEEJuHra2tcirKoEsePvroo/K3sGbNmhdffLHYWSqFmc9tbGysvbSqsT3X3TQ2Nn73u9+97LLLbrrpprvuumvEiBFbtmxZv349gGOPPXaPPfYA8M1vfvPqq6+++OKLFy1atHHjxkWLFrmu+/3vfz+/tIMOOuj+++9/5JFHzjnnnJaWFjmDaEYxQ4cOBXDTTTe9++673/3ud+0DZ8+e/alPfeqpp576/Oc/P2fOnKVLl7711ltDhgw566yzKrocGW5Cq0uPOOKIJ598csGCBRdffLGkWozehk9+8pOHHXbYwoULv/Wtb11++eUDBw5cv369HK2ff/75qJAhBx100F//+terrrrqzTffXLJkybBhwz744AObh2vWrPnhD384a9asH/7wh/aBZ5xxxvz581etWjVv3jyZS8pms7Nmzfr0pz9dxUXJVLH8vGXLllWrVgGYMmWKTPpsL2xnd/OVr3zlhhtumDNnTp8+fVasWNHS0rLPPvtceumlZu7p3HPPveqqq8aMGfPwww+/9NJLs2bNuuOOOwrG+2OOOeacc84ZPHjwokWLhg8fLldMdHZ2yr9+9atfHTNmTEtLyz/+8Y/QcJeIrr/++nPOOSeVSt17770ffPDBsccee8899wwePLj8CzEjKTn/bXDooYe6rrtu3bqXXnqpkoaJ0XMgol//+tc//vGPp0yZ4nne22+/7TjOnDlzbrzxxi984QuokCEXXnjhEUcckUgknnjiic997nOf+9znYPHwv/7rvwYPHrx69eo333wzdOCgQYPmz59/7LHHvv/++/fee28qlTrnnHNuuOGG6lTKpIpffvnlDRs2jB079tvf/vYtt9xilphsF/x/MTFCsnfEa80AAAAASUVORK5CYII=", "path": "image.png" }
Which solution has a higher concentration of pink particles?
[ "neither; their concentrations are the same", "Solution A", "Solution B" ]
2
The diagram below is a model of two solutions. Each pink ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the pink particles represent the solute. To figure out which solution has a higher concentration of pink particles, look at both the number of pink particles and the volume of the solvent in each container. Use the concentration formula to find the number of pink particles per milliliter. Solution B has more pink particles per milliliter. So, Solution B has a higher concentration of pink particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAVYAAAHFCAIAAAAmP0Y5AAAfY0lEQVR4nO3d32/bZron8IeSKFqySCeixh47CSpvnWTSHQWYOG3RBNg6Nw2wONObE/Rigd4vZvb/OnsTnIsc4KC9iX2RFEjiDMbqINPYHavIRFmnohqTimSalLgXmuNxEscWX1L8oef7uZpkxPqNJX71/uL7SJ7n/Ud9jwCAn0+q+ZxH9J9/QQQAcPSBns3E3QYAiBMiAIC13OE/XK3ml6tKXE2BiO25tPa3PhF9NJs5d0qKuzkQkZdW/9/Xuwd/RC8AgDVEAABriAAA1hABfB2891IGEwF85U5+CUyofI5uXsjG3QqIGXoBAKwhAgBYQwQAsIYIAGAN04F87ffpz80BEX1QlmansSjAFCKAr4FH7Z5HRL92cP/zhYEAAGuIAADWMBCA0Di2Z7Uds+VahtuzXCIqL+QLalYt57SKHHfr4GiIAAiH2XIef7vbs/qH/9JoOsP/Ua0VL11T42gXnAARACHYfPR6a71zzAsa9W77hVP7XEV3IGkwFwBBPf7m1fH3/5DZcu7dbpstJ4ImwegQARDIzra907BHf319zRpfY0AAIgDEOba3sbbr6xKz5Ty5n4IU4NNbwVwAX7kMfahniGhmSvC/8OS+5dqe36sa9e6ZC1MJnBQwms7Lxp5lOAezmAU1q1Vy5fl8tVaMt23jgwiIgtlyrLbbs/rlhbxalmUlEbvxchla0gO1xDIEvyp71kCrBPnJ4Xty32rUu2/9Zc/q96z+zrb9/OnepM5lIgLGyGw5f/3OOvhKISKi10SUU6SzFwpLy6WEZIEw03CFL5xbTMpZ1WbLqa9Zx/f8h3OZ569OLy2XImtYNBAB43LMOplrexOwSPZmtPnTbu4TTYfYGGGO7b27neF9Nh+9niplz14sjLtVUcJ0YPgc27t3u33iOtnwi+XvP/SiaRUcaWu9M+L9P/TkO6vr5/XJhwgI39Z6Z/T55PqqGdfkszugLcPbMjxzz/eUHhEVVPEPT0FNxJmFRtN5d/x/PNf2vl/1twiScIiAkAl8quJaKncH9KMx+NEY7AqVlS2qWTkvOJeh6YkYgW49OnlH07uMpjNJS4aIgJDV7/r+ijBbzuaj1+NozLipuuBEhpqMGRDhFQ3hedAEQgSEyWg6vY7IQLHd3A+9MREQWy3X9Jy+EH8EdK2+sy8yAiIiCxEAR7JE+4ftF6mMgLlFZc5/HdraijaOxvhltcRvYzPAtUmDCAhTkP5hSoeXtZUZXzMCS8ulhKyD5hR8+IkQAeHytbz0zrWDEFsSGVmRPvn96UJppBn+MxcK568mYjsABZuSLC/kQ2xJvBABYQqy2y+9X0paRb5+Sz9+RCDnpStfnLp8IxFDgCFZkUZMrnclZEUjFJPzL0kCVZd9PTl7WBJmyITJinTl5qmdbfv5057Zcg/PiZbn81oll8zd0FolJzZ9q1Ym58aZnH9JEpQX8rQucuFkfKvMLSrDnf+O7ZmGK+cpIcP+91lanhaI7GqtWEzG1qZQpLXzmUyanhPbLTNJY0sikhVJX5ATfv8TkVaR/T72UyhlJ+xJIURAmGRFqq3M+L0qrk/VVI5uXsjevJA9dypxXfTInL86XZ73kb+1GzMJHNEEgQgImcBS+eR9qtLlys1To7xlhVL2k9+XUz1lcyREQPhqKzOjTzVXa8XJ+1Sly3Au88oXp44ZxM1Vleu39Il8pyZhFippZEW6fkuvr+4eP9Uk56XaykxyTs5gbm5RKS/8aqexZxmu2XItwymoWVWXC2p2rppP/ryGMETAWBwsktVXd4/ciD5XVWor6P8ni6xIE3YcyCgQAWM0t6jMLc52rb7Vck3D7Vl9Tc+pFTkh/ck9l9b+1ieij2YznGcEmUMEjF1RzRbVLDr8kEyYDgRgDREAwBoiAIA1RAAAa4gAANYQAQCsIQIAWEMEALCGrUF85bP08bksEU0nYrMixAMRwFdGojK7HfHwNgwEAFhDBACwhggAYA1zAXy5A2r84hHR7DRpU3hYmClEAF/D4uJEpGQz2lTcrYGYIAIAEs2xvZ++f20artlyhxXrtIpcUDPl+fyZC4XgB08hAgCSa2fb3ljbde03zp4zW47Zop1tu1Hv1lZmAh5ChQgASCLH9upruzvbx51A27P6D+60q7VikHptWBEASKL66gn3/4FGvbu13hH+QYgAgMTZ2bZ9FTts1LtG0xH7WYgAgGRxbG9jbdfvVfXVXcc+4rj6EyECAJKlUe+6/m/mntXfaewJ/DhEAECyWIZgl94yXIGrsCLAV0aickEiIgUPCyeJ2RK5k4UvRATwlc/Sx+fQDUwWx/Z6nb7Yte0X+wJX4RMAMCGOqYx8DEQAQILIijR6Zfq3qLrIiA4RAJAsWkVweC52ISIAIFnEvsyJSNURAeDHnkvfPO1/87T/7JXIlhIYk2qtKDCq1/Tc2YsiR0EiAgCSRVak39087feq2oom9uMQAQCJoy/I1Vpx9NcvLZe0iuDwAREAkERLy6URU2BpuXT+6rTwD8LWIIAkkhXp0jV1tjpVv7v7vs1Cmp6rrWjC3/9DiACA5NIX5Ou39J3GnmW4Zsttv9iX85Kqy1olp4rO/70FEQCQaLIihXKrvw/mAgBYQwQAsIYIAGANcwF8obg4ECKAMxQXB8JAAIA5RAAAa4gAANYwF8AXiosDIQI441xcvGv1f3mxb7Zcy3B2Dbeo5jQ9p+q58rwccMt96iACgJ13y/WatmO2/nF6f8AqnamDCABGRinX26h3dxp28KLdaYHpQGDkwZ32KOV6h0W7D/oFkw0RAFxsPnpt+im5VV+zxteY5EAEAAtmy9la7/i9ZPPR6zG1JzkQAcDC1rrIzby13hGr2J0iiABgod0UqbdHRL7GDmmECIDJ17X6zr7gl7lwdqQFFgX54lNc3BIt101EljHh6wKIAL74FBd39gfi12IuACDtNKFie0PlhXyILUkgRABMviDb/oPERyogAoCF8rzgl7kqWuo7LRABfA08aveo3SN7wpe9iIh8leg7MFdVimo29MYkCiKAr/0+PXzWf/is/7Iz4TNeRDS3qMxVFV+XyHmptjIzpvYkByIAuKitzMh5H48A11ZmODwyjAgALmRF+uT3pwulkTr2S8uluUV/vYaUQgQAI1pFvn5LP35eQNNz1/+1HKRcd7pM+GwnwFsOina/bOwNa/UO/75QymqVXHk+X70sMnGYXogA4EhfkA8OBTJbDrfzAg/DQAC443z/EyIAgDlEAABriAAA1jAdyBeKiwMhAjhDcXEgDAQAmEMEALCGCABgDXMBfO336c/NARF9UJZmpyf/kTg4EiKAr4FH7Z5HRL92cP/zhYEAAGuIAADWEAEArCECAFhDBACwlrgVAcf2rLbTbu6bhuvag/JCXtVlVc9N/FnOALFIVgQ8uW816t3Df2M0/1HUUV+Qf/fFaQ4nugJEKSkDAbPl3Lvdfuv+P8xoOqv/9vPOth1lqwAmXiJ6AUbTeXCnfeLLXNt7/O2rpeUSn9NdxyqXoQ/1DBHNTMXdFIhP/BHg2F59dXf012+td+aqeebnvYUil6ElHQMr7uIfCGytd3pW39cl9TVrTI0B4CbmXoDZco4Z/x931UaX23nvk8RoOpbhWIbbs1ws+sQr5gho/9eEv187DRsRkEaNje7m445r/7OQ6eFFn9+uzCAIIhZ3L8AQrGvd6/gbO8C7Bh692iMimpZJGf8HoWv1v1/dNd4f+kbTuXfbOL9cEisEPmEONsjk8plhmaMx/aCYI8AyBHsBPavv2B62CQQxLC5ORB/NZs6dGu9vsmv17902Dn/5H8m1vSf3rZ7Vv3RNHWt7kqyx0W183313gkyryL/5TD0oghSWmKcD/U4EHibcg4Do1e+aJ97/Bxr1Ls8NIF2r/+BO+8l31pH3hdlyHtxpP7lvOSP/JkcRcwSounikhR6HMCaNje5B9c4RbazthvtBT76dbfvebeOYgdJQo969d9voBvjufEvMEVBeEBzhaHr8OxpgFF2rv/m44/eq4YhgHO1JJsf2NtZ2R+wo9az+93620hwv5ggoqIINCNJ9gCj1rMHoQ4DDrDajgV59ddT7f8hoOo0N36vpR4o5AuaqU3JeZCLqzEUUwUiHdtPfEOCA2RKcKk6dnW17p+F77mPzcSeU4UDMESArUm1lxu9V1VoREwFpIbzoQ4e2DEw2gfufiFzbE47Xw+LfIDy3qMxVldFfXyhll5ZL42sPhIvbrJ4A4ZS0wlgUiz8CiKi2MjPizgc5L125OYPtAClSCLDbT3iqKF2El7fN1qREgKxIn355+sTv9rmq8vn/+hWeEUyXIGs3HDYLBxns+F1qPVKCltbOX52eq+a31l+bLffw/l85L6m6XK0V5xZ9jBfgRFM5unlh7PeYKhrZ49sSmyhBZrVC+RUlKAKISKvIV26eIiLH9oZnB6oVPECWbvqCXChlBZ7p8DVDlGpivx8KNsg6kIiBwLtkRdIX5LlFBff/BKjd8L3oU57P83kSVKsIfhOHskEuoREAk0RfkH0t4sh5qXZDG197kmZWtL8zG8bQGBEAUTh/dXr0RZ/fXFNZ9f7OXiwIjOqXlkuh/JYQAXzt9+nhs8HDZ4OXr6NYuv/0y9OXPlOP3wxans9fu6Wf5bf1s3ZD87VNVtNzYR2im6zpQIhS9MXFq5eLs4vKX+9bby36EJGm585cKPAZ/7+lqGZ/c02tr5qjvFjOS7WV0AZKiACIVFHNHl706Vmupuew14OIzl4sFNRc/e7u8asD5fl87YYW4kAJEQDxGC76EOHm/yd9Qb5+S99a7xx5pq6cl5aWS6F3lBABAAkiK9Kla+qla6rZckzDtQw3l89oeq6gZsbUV0IEACSRVpGjGR9hRQCANUQAAGuIAADWEAEArGE6kC8UFwdCBHCG4uJAGAgAMIcIAGANEQDAGuYC+Bp4tNPxiGhmKlOUcdQ3U4gAvvb7tPFiQEQfzVJxzMXFIbEwEABgDREAwBoiAIC1N+YCjM5g6yWLQo5ARANPmpaJiF51+/Y+pgO52O0NDv/xjQjYbrnbYVQpA4C0wEAAgDVEAABrkud5P3cGJ78QACbOTCEjeR7mgQD4wkAAgDVEAABriAAA1hABAKwhAgBYQwQAsIYIAGANEQDAGiIAgDVEAABriAAA1hABAKwhAgBYQwQAsIYIAGANEQDAGiIAgDVEAABriAAA1hABAKwhAgBYQwSw9vXXX3/99dcPHz6MuyEQm9zJL4EJtb+/v7e3R0T9fj/utkBs0AsAYA0RAMAaIgCANUQAAGuIAADWEAEArCECAFhDBACwhggAYA0RAMAaIgCANUQAAGuIAADWEAEArCECAFhDBACwhggAYA0RAMAaIgCANUQAAGuIAADWEAEArCECAFhDBACwhggAYA0RAMAaIgCANUQAAGuIAADWEAEArCECAFhDBACwhggAYA0RAMAaIgCANUQAAGuIAADWEAEArEme58XdBojIy5cv//jHP574sj/84Q83btyIoD2QBOgFMDI7O/v5558f/5pKpYL7nxVEAC9fffVVwBfAhEEE8HJ8RwBdAIYQAewc8z2PLgBDiAB23tcRQBeAJ0QAR0d+26MLwBMigKN3OwLoArCFCGDqre98dAHYQgQwdbgjgC4AZ4gAvg6++dEF4AwRwNewI4AuAHO5uBsAcfrqq6/+8pe/xN0KiBMeEwJgDQMBANYQAQCsIQIAWEMEALCGCABgDREAwBoiAIA1RAAAa4gAANYQAQCsIQIAWEMEALCGCABgDREAwBoiAIA1RAAAa4gAANYQAQCsIQIAWEMEALCGCABgLUdEP3cGcTcDAGIwU8hIA8/7P//3VdwtAYAY/O//MY2BAABriAAA1t4oKLZYyf23WZQY42LgSS+7REQzChVyKCrFxW5v8Gh7/+CPb9zweimzNCtH3iSIx55L27t9IvrgdObcKSnu5kBEXlr9wxGAgQAAa4gAANYQAQCsYfKPr3yWLs9niGhmKkOE6UCmEAF8ZSSaV4ezgLj/+cJAAIA1RAAAa4gAANYwF8CXO6DGLx4RzU6TNoWtQUwhAvhyB/SjMSAiJZvRpuJuDcQEAwEA1hABAKwhAgBYQwQAsIYIAGANEQDAGiIAgDVEAABr2BrEV0aickEiIgWHxTGGCOArn6WPz6EbyB0+AQCsIQIAWMNAYIwc27PaTru579ierEjlhfxUKVtUs3G3C+CfEAFj0bX636/uGk3nzb9+TUQFNVtbmdEXMAUHiYAICF9jo7v5uOPaRx/I17P6D+60q7Xi0nJJVuJ8Sn/PpbW/9Ynoo1mUEuELERCyjbvm86e9E1/WqHfbL5xP/uV0vCkAgOnAMO1s26Pc/0Nmy9la74y1PQAnQgSEpmv1N9Z2fV3SqHffmS8AiBQiIDR/vW+9b/x/jPqqv9QACBciIDTt5v7JL3pHz+p3rX7ojQEYESIgHF2r7+wL1uSxWm64jQEYHSIgHEFuY9NABEBsEAHhCHIbWwZmBCE2iIBwlBfywteqOnYKQmywNSgcBVU8TDU9nnchn6WPz2WJaDryCDKazl7HzeUzhVJGqyAB44QICEdRzcp5SWxGUK3E8y5kJCoXIv2JjY3u8809s/X2wEdfkD9cVvHcRCwQAaE5c7HQqHf9XqXpOQ7PDjq2V1/b3dm2j/x/jaZjNNvVWvHSNTXihgHmAkKztFwqlHzfzLUVbRyNSRSz5az+28/vu/8PNOrde7fbjv/tVRAEIiA0siLVbsz4umRpuTTxI2HH9h5/uzvivkmz5fzp21/G3SQ4DBEQJn1BXloujfjiuapy/ur0WNtzPHdAW4a3ZXjm3hi/eJ/ct3p+tj8aTaex4Xs8BcIwFxCy81enywv5+t3dXue9n3s5Ly0tl6qXi1E27F0RFBf39ejkgc3HndlFhcMUSRKgFxA+fUG+fkuv1opy/oizAOaqyrVbeuz3fzR2GieM/4/k2p7YAxcgAL2AsZAV6dI19dI1tWv1rZZrGq6m5woquzVw4Y2PFjZNRwURMF5FNVtUs3OLStwNiYfwvmkTj05FBQMBGJcgp6G0X2AgEBFEAIxLkN1+cW2aZggRAGMksFdqCI9ORQYRAGOkiT7+gF5AZBABMEblecFnqMt4ZCgqiAC+hsXFywVpfMXFq5eLAt/n1VqR2+ppjBABfA2Li398LjM7PcZyJrUV7cgtUu9TKGVH32QNwSECYLy0ivybkR8BlvPSlZszqLAUJUy6wNidvVgoqLnjn5sgIk3P1VY0DAEihl4ARGH43MRc9b27JJeWS9dv6bj/o4deAF8Dj17tERFNy6SM/4MgK9KVm6cc2zMNt93c71l9WZEKpaxakXFkWIwQAXzt9+nhs6iLi8uKpC/gnk8QDAQAWEMEALCGCABgDREAIM5sOe+WRUgXTAcC+GO2nJ++7/Us9/CBCPqCrOryB7Vi6o48RAQA+NDY6D75znr3742mYzSdvz/tnV8uVWtpOhgSEQAwEsf2/vTtL8cfheTa3pP71svG3u++OJ2Wbc6YCwAYyeNvXo14FJrRdOpru+NuT1gQAQAna2x0fR1nuLNtn1hALSEQAXwNi4t/fC47W0pHlzUuXau/+bjj96qNtd1U1EdEBPA1LC5eLkTxgECqPf9hb8SaiIe5tvf8B9+VlKKHCAA4gXBBFOEyClEKP/8d27Pajtly3f1BQc2q5RyeAIVUE65rYrWZRYDZcupr1pGbpeYWldrnOA0G0sexveNPOjlGKjYOhhYBm49eb62/d8pkZ9s2mj9f/nyGbWmtBNrv05+bAyL6oCyN9fjAVAvyveXr0MS4hDAX4NjevdvtY+7/Idf2Hn/76sn9I3ZWQSwGHrV7Xrvn2Sn4roqTcFGDVBRECSECttY7o3d4GvVukFJzANETvpOFK6lEKWgEGE2nUe/6uqS+mo71UoChAL0ABhFQv+t7I2TP6mM4ACkiVhClPJ8/e7EwjvaEK1AEmC1HbLIUpaMhXWormq/Xy3mpdsPfJXEJFgGiOx96Vh9jAUgRrSL7qnG0tFxKy8EBgSLACrD5KRUbpwAOnL86fekz9cR1Pjkv1Va06uXUHBkQaLpCeNcUEbWb+zhJGtKlerk4u6jU75rvG8mW5/O1G1pavv+HAkWAVskJj+rLC4JlpwFiVFSzn3552mg6VssxDXf4+ICqy5qeS2lNlEAREGTNQ3ihBcKSy9CHeoaIZqbibkraTFI1lGC9ANHbuFDK4nmB2OUytKTjXeAu0HSgVpELJZFhD54UAEiIoFuDajdm/F5SKGV9ra8AwPgEjQB9QfZ7ZHLtBp4aBkiKEB4TWloujT4pUK0VJ2YeJe0GHrV71O6RjS0ajIUQAbIiXb+ln9i3l/PSlS9OXbqmBv+JEIphcfGHz/ovO9ipyVdoK3Pnr07PVfNP7neO3Clw5kLh0jUV/f8DZst5+ZNtGm7PGpgtZ1iOSqvkZj+Ywm8JohTm4rxWkT/98jQRDTdOOPteQc1oOs4OfINje/W13bcOmR+WoyKinGLhbCWI0lj250zSxolwGU2nvrrbs977eOXwbCUctQiRwSHi0TGazoM77WPu/wM72/aD//glgiYBIAIi4thefdXH8Spmy9l89Hp87QEYQgREZGu9M8r3/1uXpOIUakg1REAUulbf7wmLQ1vr6AjAeCEComCJHqyAg1Vg3BABUcAJa5BYeGg/Cu2m+HGppuGOaYV1Kkc3L6TpfBsYB/QCks61B3E3ASYZIiAKQU5JU9NQkQbSCxEQhYIq+HuW81K6zqKE1EEERGGy61JCqiECoqBV5PK8yFhg6eoYj1fa79PDZ4OHzwYvX2PRgS9EQERqNzS/1ebHfbwKiosDIQIiU1SztRUf5yzihEWIBiIgOnOLyoh3tabnrtzEw8IQBSw4RWp4tlJ91Txmv2C1VsTxahAZREDUtIp8/Zbe2Oi2X+z3rP5BFpTn81olN1udwmkrECVEQDyql4sHxWfNloOz1SAumAuIH+5/iBEiAIA1RAAAa5gL4AvFxYEQAZyhuDgQBgIAzCECAFhDBAAkmtlyuj6Pn/cFcwF8DTx6tUdENC2Tgg9CknSt/k/1rmX8o9IkEeUUaUbPqbr8Qa0Y7ikyeOf5GhYXJ6KPZjPnTmFeMCkaG93Nxx33zZOjXdsb1p79+9Pepc/UsxcLYf04RABAUji296dvfzn45j+Sa3v1VfPlT3ZYhWcxFwCQFI+/eXX8/X9gZ9uur/koUXkMRABAIgwfHh399Tvb9s62HfznIgIA4te1+puPO36v2ljbDV5sChEAEL/nP+y5/m9m1/ae/9AL+KMRAQDxswzBI1yDF55FBADEzxStPW21EQEAKefYXq8juP/PbAU9AR4RABCzIMv7fotTvAtbg/hCcfHk0PSc2Kg+eMm5yewFGE3H1xIrJJbZYvFWCt/JWuDC05PTCzBbzk/f90zDPTw60iqypuc++G0BR3SmSNfq/7j++t23sqBmlq5MT+Rbqem550IXqqIVaw9MSARsPnq9tX7Ezgqz5Zgt5/819s4vl6q1YvQNA7+OfEiG/vFW0s62ff7q9OSVWjtzsfD8ac/vWEDTc8GfF0r9QKBr9e/dbh95/x9wbe/JfevBnXbwrVQwPo7tPbjTfvKddfwmmc1Hr+/dbgefCU8UWZFqK5q/S/LS726eCv6jUx8B9bvmiJ8Go+mE9WTFZNhz6Zun/W+e9p+9SkQy1ld3R3xIxmw59TVr3O2JmFaRffVulpZLoRwckO4IiOvJCgjdzra90/Dx1pgtZ/PR6/G1Jxbnr05f+kw9cZ1PzkuXPlMPqlEFlOIIMFuO2JMVYz2GCQQ4trfhv4O2td6ZsOEAEVUvFz/5/Wnt/ZN85fn8tVt6WPc/pXo6cKexL/ZkxcttO8TfIAS30xB5SIaInj/dm7wFgmHhWaPptJv7luGYLVdWpIKaVXW5vJAPvepsiiOg3RRcLg7+ZAWEyxJ9R4S31iefviBHU2M6xQOBnmh/PviTFRAu4TuZw66hcUtzBMT3ZAWEK8idjJmdgFIcAcKCP1kB4SqUxBe35DzHz3CIUvzrO2bW9HjBn6yAcAlvdC+UsqGcostZiiNA+E4uL+TDbQkEFONDMpDiCBDuBRTUFP+rQzQsLv6hnom9uLhwKJfnkeZBpfhmqF4uCqRAeT4fYiWWVBsWF1/SJW0q5r60viDPVRW/VxVK2TN4KwNLcQQQkcCTFbUb/i6BaNRWZvxO0165GU45HebSHQFxPVkBoZMVqbYyM/rrl5ZLk7cvMBbpjgDy82TFlS9OYV9wks0tKle+ODXiQzLnr05H06qJNwkTqtXLxdlFpX7XfN8Ok7mqUltBp/Ft7oAav3hENDtNsU8HDM0tKuWFX9VXd9/31GB5Pl+7oaErF6JJiAAiKqrZT788bTQdq+X0Ov3hhlOtklP1nKbn0GM8kjugH40BESnZjBb3osABWZGu3DxlthzTcC3DHb6VBTWr6Tm1EtG2eVYmJAKGInuyAsZNq8gI7mikfi4AAIJABACwhggAYA0RAMAaIgCANUQAAGuIAADWJmpfAPiSkahckIhIwQI8Y4gAvvJZ+vgcuoHc4RMAwBoiAIA1RAAAa4gAANYwHciX3afVH/tE9N9/nT2L49S4Qi+AL++/Cnl6A5GSnjAZEAEArCECAFhDBACw9sZ04KPG/qMGqjWz02jG3QKID3oBAKwhAgBYy0lE//O3iTlBGgAiNKdm/z8spjQWy1xjZwAAAABJRU5ErkJggg==", "path": "image.png" }
Complete the text to describe the diagram. Solute particles moved in both directions across the permeable membrane. But more solute particles moved across the membrane (). When there was an equal concentration on both sides, the particles reached equilibrium.
[ "to the right than to the left", "to the left than to the right" ]
1
The diagram below shows a solution with one solute. Each solute particle is represented by a purple ball. The solution fills a closed container that is divided in half by a membrane. The membrane, represented by a dotted line, is permeable to the solute particles. The diagram shows how the solution can change over time during the process of diffusion.
In a solution, solute particles move and spread throughout the solvent. The diagram below shows how a solution can change over time. Solute particles move from the area where they are at a higher concentration to the area where they are at a lower concentration. This movement happens through the process of diffusion. As a result of diffusion, the concentration of solute particles becomes equal throughout the solution. When this happens, the solute particles reach equilibrium. At equilibrium, the solute particles do not stop moving. But their concentration throughout the solution stays the same. Membranes, or thin boundaries, can divide solutions into parts. A membrane is permeable to a solute when particles of the solute can pass through gaps in the membrane. In this case, solute particles can move freely across the membrane from one side to the other. So, for the solute particles to reach equilibrium, more particles will move across a permeable membrane from the side with a higher concentration of solute particles to the side with a lower concentration. At equilibrium, the concentration on both sides of the membrane is equal.
Look at the diagram again. It shows you how the solution changed during the process of diffusion. Before the solute particles reached equilibrium, there were 2 solute particles on the left side of the membrane and 6 solute particles on the right side of the membrane. When the solute particles reached equilibrium, there were 4 solute particles on each side of the membrane. There were 2 more solute particles on the left side of the membrane than before. So, for the solute particles to reach equilibrium, more solute particles must have moved across the membrane to the left than to the right.
to the left than to the right
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABhDklEQVR4nO19d7xcVbn2s9aedvpJTnqDQwohIUCAABI0gGIgQACxgAjSpOhn+0S5YsGClwvC5SJeCwoXVBQLAQGpftSIFG+ABEILJJCEVJKcOm3v9X5/rLLXnjnJaTNzzoT16O8w2VN2Wc9+3+cta21GRKhCrNiwffmGbW2ZXFsmX4HdjalPNacS8yaPnjKirgK7c6gWOB72C6zqzM2mzswdy1dXZnSLMamp7hP775mKeUOyd4fhA8fDAaDKzM2mzsxty1ZlfdFYV1ffPHpEfaopmajxkPSQ5EhwJBjiHHGOGAMHYgycgUH9ZQBj6qfkaQuCIFJ/GQJBAcEn8gUFYHlBeUF5ovZMbnN7ev17bW1d6b1GN31qzh5Ddw0chh6OhwMDH+oD6B+ee2dL1hdjR4xomji1obExEU8AANODRgADYyACEeSAMqb+L8dZWlf1cWNqw7cYyX8bOgAg1CTi40c27LPH+NpU4q0tba9s7ajI6ToMUzgeDgxVZm7e2dEJgJrGAghlGUEPKSAHWA62fJPU/0EAqeHTDLBcjHqLmPy3Lfr0p+Ixr7mxDsDyzW1lO0WHKoDj4cBQZeYmGfMAMBKw5GgFvAr054NAWBsc3qdwPBwYqszcTBlRDyDYvhFD4VVyvr91RzuAyfU1ZTtFhyqA4+HAUGXm5pDJo5Ie39revvWd13O5jNpafq+SD8TqjduefWVNEFBzbXL+lJbyn6vD8IXj4cBQZZUpAG2Z3F+Wr9ncmen9o2XAxKbaT+7fWnUFSIeSw/FwAKgydQOgKZWYMbppSHY9qr7mrIOmVd0YO5QDjocDQGyoD2DgmDFhbN3IsTUcFeh3eGPj9lfWba5LJobudB2GKRwP+47qUzcGzH5V9pg5AFCbipf5nByqD46HfUcVm5sQlaoIWCPv4FAEx8PeUMXmpvL9DtU7zA7lg+Nh31HN5sa8cl7FYejgeNh37BbmplJexcGhGI6HfUcVm5sQFfMq1etWHCoAx8PeUMXmpvJehVWxjHUoFxwP+44qNjfhNa+UV3Fw6AGOh31GVZqbsfU1AHZ0pdW/XUXAYSjgeNhfVKW5ke3bfhCof7uY2WEo4HjYX1SluSlE+b1KOpuHppeDQ89wPOwNu4W5Kb9XSefyAFrqqmx5EYeKwvGwN+wW5sbFzA7DAY6HvaGKzU140SsVM/PqDZodygbHw76jis1NiEp5FfuVg0MhHA97QxWbm8p7FVa1XsWhfHA87Duq2NyEqFzMXK1exaEScDzsDbuFuamYV6niJJ1D+eF42Buq2NyEdt9VBByGDo6HfUcVm5sQlfMqDg47h+Nhb9gtzE2lvEr1FiAdKgHHw95Qxeam8hWBKnYrDmWD42HfUcXmJkT5vcq2zjSAyc21lTkhh6qE42FvqEpz01QTB9CRzal/V8qrVOXFcigbHA/7i6o88qZUAkB7Jq/+XbGKQNXGzA7lgONhf1GV5qYQriLgMBzgeNgbdgtzU7mKQPnPxaF64XjYG3YLc+O8isNwgONhb9gtzE2lvIqDw67geNgbdgtzU7F+BweHXcDxsDfsFubGeRWH4QDHw96wW5gb51UchgMcD3tDdZsbZv7jvIrD0MHxsI+obnOjKoJl9iptmRyAhppEJU7JoQrheNhHVLe5qYxX8fMBgIRXrQ/3cSg3HA/7iCo3NxXxKrtBzOxQVjge9hFVbm7Mf1zM7DB0cDzsI3YLc+O8isOQwvGwj6hWc9OYigMI5NPgK+JVqn+sHUoPx8N+oVrNTXMqASCdyQCV8ipVPc4O5YHjYb9QreZGQh29i5kdhhSOh31EdZsbVLAiUM1OxaHMcDzsG6rb3LiKgMNwgONhH1Hd5qYy3ZzV7VAcyg/Hwz6ius2NgvMqDsMBjoe9YbcwN86rOAwHOB72huo2Ny5mdhgOcDzsI3YLc+O8isOQwvGwj6huc6NQEa9S/a7FocxwPOwN1W1unFdxGA5wPOwjqtvc2KMLuJjZYYjgeNg3VLe5YdboAs6rOAwNHA/7iOo2N86rOAwLOB72DdVtbpxXcRgOcDzsI6rc3Div4jAM4HjYR1S3uVGojFep/sF2KC8cD3tDdZsbZv5TAa9S/VLWoUxwPOwjqtvchPa+/F5lR3f272+8K5/14+AQgeNh3xAb6gMYCFZs2L6pM40evQrXXkVH1IyBIXQSkgSWVwmHXXsV6Zss1UoA4AfiubVbn1u7dVJT3aF7jJ4xqrECZ+ownOF42F9Uk7nJ+MG/1m59du2WrC/klo3d3RMSnkcxzjlX+hVEYDziVWA7Hj2sBDDGyPBD+iIiAHEO36dcQG0+cYYdftDUWF9XX9fR0dnV2b2urWvd8q66ZOzACS1zxo9oSlXxUw0dBoBK81BQW544o7bq5yEjW60NV7Rlck+u3vT6ljY5wA21qbrGhpHN9fm8n0rEQeRxBkLcYzWcpzye4CzJWZyDgzFORIwxOeCMqWCaCYCIsoKyggIiAnxB6YByQgBMEMm/xCAEgbFAEBhyftDe3vXeth2BH8hjmzN+xLzJo8fWp4byAjlUBL3ykHPGCAmPpfrMQwKE5GFAAWweEgDDQzAE1c/D4W5u5ACv2LBd/rO+NtXSMrKuNskZYwwc4AwM6jULJSuDyrsp2Bm3UJ+SDrP1v+RfIiIoJSzUCxKkXgsiAXR1ZXa0tXd0dMlfmjd51BGtY1OxKn6gqsMuMGAemmSO+stChcNCAgIIszRkpZB3Mx4Oa3Pz3NqtT67eKD1Jc2N9y+jmVDzBQB5jDOCMMSh/ol4zRiDOGAjWa2KMGc/CTFQMUqcvg2ymFA2p10K+JsaEIOmCzOuAiMACEjk/2L69Y/u2HQDiHl84Y+Kc8SOG+Ko5lBpFPByRisdDHnLGiLh+Df2aae4xWAzUf6E9ouSbfFdorhpFo2xNVGuTfB3ykHK+XxU8HKbmZlNn5u+vr39nRxeAkY31I0ePSMZjHIwzcAYO41KYciN6vVhVZ2TMSJuorrEzb8zyKCAomUOWwAEgyPyTCelbSFofCJLjjWw+v2HDlnQ6C2BcY+2imZOGuaZ16CMiPGyqHzFqRDIW8zjTcgba80kGMmhdwy19HSlC2b/OVNG7UONoK0OhF4QgQGkcEtoGCclDQBAFhNyw5+FwNDdLV296cvUmAMlEbOyY0Q31NdKTcOlJ1Bhrf8IY1GtijDGSkVSoawDpT8As8aoGOvxr6xrSukZbGeNbpMYBC0gQmBAkGAJBBOYL0dbetXnTVkmOI1rHzps8athqWoe+oIiHKQZ4nDGC1zceMliKJspDw0AMiodEkAxUSmeY83B4mZtNnZl7V76zuTMDoGVkY0vLiITncQZPaxnOwKP+xMTJ3NY1DIj2FIUKlizDo3Ws+ZiWNqHAEdYWo2uUbyHpWyjQSicfiC1bt7Xt6ADQkIx/Yv/W4eZeHPqCnnjIOWMeQyixi3kIWLmbkJl2mZwVMLCAh5beifKQCRBp9d0TD0kAASmZkxdiy5bhyMNhZG6Wb9j+t1fWAkglYmPHjqmrTcakD+GMa0/SY7QsX8PyMIX5mtDWyAGV76rXYeQsdORsK1g7Wo6+1l4Fsppg/nZlchs3bM7l8jGPnzRryozR1dQZ4dAjD7nUNZqBnp0xjL6GxUYinU8EI0vdFDNQmx2SHTcMKo+jFY3QuZtdZRKFVNyAL0gA3cOPh8PF3BjhOralqWlkc8LjHmOcwcRQMlrm6MGr8Gg1CtKrRDqnFMxrO1o2W4BQ35L6wyjqSSJexUTOQvoWkhonIAREGzZskfWCRftM3n9Y5u0cirErHtrSBmAszOBEeQggMvugIHdjqRqFSO5Gb6LIFtL6OsJDgUgmUWuc4cvDYWFu7n1lrSwxTpkwpqGxjhtFE+oaHSeHkbMVM1OkJqWbOMMqgFE60m+YmlS43VKz8oJIuxOtVVkxswiVTqBrBAIIhPnLfCE2v7dj+3s7AOwzrvnkWVOG8hI79AFRHtZz0K54WJy7sepQu+Zh1OZE2NgjD61aVQ+5m13wMAACQVve27FtePBwiM1Nxg/+/sa7KzZsT3h83LjRDQ21noyQVZysvYoaaeVJtHtRPsR4D9u3QFkWBbs+FcLSMnqDsS86cpbbo9kcU58KrPg5iMbP0r1sb+vctHELgD1HNpyy75Thk7RzsLFTHoJ5vGceerrjpiBjGPJQVy2YltmsWNhYCDPHhodQFsfwUOh3SXffBFXFw6E0Nxk/uG3Zm5s7M3HOJ02ZUJdKcIYYYxzkcS7/2jUpDuKMce0xpNLZWR2Kh80NxsPILUW6RhFARss96xrIUdcdxsbDmGjZ1AgEWCCEAPOJBMEXojvrr3tnvSAaUZs8++BpzuIMN/TEQ4oxrmN5supQUumQx7hdh7LzNYaHJncDZWpIR/qFDNSsi9yMItQ4kVqVICG3EyI8tOpTmoeSgSQEMZ8oncmvHWoeDpm5MWNck4iNmzCuLhX3GJMuxVI3YRWAA56sN0Vz/lLjKIsT7W6wlQ4K9Y70HvZrrV130gFBaowjSifQ8bOw/Iz2KtKxUEDI5v116zbmcvmmmuS585zFGUYo4mHCY9A8DDM1Rt2oqIqRUdYs2u2F4l4bpXGg35TbQ5ET6Ts1+jrS5h7qHSN2TLUU0rJYVarA6gsLLDZm8/l16zYNIQ+HxtyYMW6sSY6bNC4Z8zgg8/8xlRVmYeSsvQrCjmEzuqbHAYj6FhVPhTFzWBGQx2CXxUVB5NyTrpH+xGSOYc2lisbMzMzAMjWCvKB8INa+824ulx/dUHP+vOmVv+YOxdg1D6WiifCQwYso6wIeKnYVae3i3A0AuwhualUWA1HMQ+PzLM/XHx76gnJDysOhMTd3LF/z+tb2pprk2EnjEp7nMcQ486ycnPQqXliTsjL/PfU1sNCHaPEqTy/qYYzGKZzHYE9UQQ+VKduf2B4mUqUSEa9icnW+UCF0LhCr33xHEE0d3fTJOXtU/rI7FKAHHkpdo3ioEoVeTz1fRln3lYcqmwO9oYCHETWNvvDQ2rKLHhzFQ4JPhofB6jfXDgkPh2B5rYffePf1re0JzkdPGJ2IKVsTqUYx8hik9fGUh4nmiVUeR6tcPX9Kv4YHxBiLSSvGWJwzuZcYQ5xzjyHO5bvc05+R73qMGRtnahBabSlfV8A8DpLf8rhR4OpIPO0n5V7iHps0ZSJn7M0tbY+t2VL5K+9gw+LhmKTmYWhrOOMyurdGloGilW9mM1AyU/GQgWv2xrQ31UzjMQbJyTjnEZZCsTQmeSidrq5/hX0hsiOEM3MkHoPcb4GtNOdin13c8yYPEQ8rrW5MD1XrlAl1tUl5n3uWrZFXWY9uYUeD2dKzxpHTqcwWGWFZXZ3FrQ46V8PUQmtU2EOs/QlRUeRsGj3tbghTCzB6x9I45BPaO7rffXcTgGP2nnTwxJGVvPgOBlEepmxdo+9zFtM5xAIeRrKHins6ntLMLP4M9Gd21nhDoZaJ8rAoX0MkZzaEuZuCjjAKu29CNtoaxycaEh5WVN1s6sz8/Y31ACZPGFNXm5K2xlYB3FhoxsNaQNSTGI3jRTWOYYxREx5YnDGudY3yMEz7GeNJOOfKn7CY5QfiRq3sVNcUVUbNkXBW0LWhPBtjDfU1Y8aNBvD/3li/viNdyevvIFHEQ8S4YZTUAkxtsRho2Z1Q44R5Rs0TwxyLh0Zrc25xz2Yj12yMG36aX2AhD5WatjIMdu9P9GhVZS1yl1m/2VhfM7biPKycusn4wc+eeiXri9FNDWPGj5L3XhhJFdSktE7hrFCzhLPgoLpvdHVc9XoWR9GI9t0wq3ezxx5io2jUwiI6Ki6oCGiNY82uKoqcA53H8UPfQr6gdzds6ejo8jx24aF7V8U6bLsN+sdDveoAL9Is0deh9dkFD5W+tnWNBV0V7YWHRsXYtXBbB+kPK3WzSx7i3Q2bK8nDyqmb25a9mfVFQ01i9PhRHIgxxhnFIvkaZX3D3LCMThG+LrDlnsy/WFGx8hjM9Ecor2X0iPEAehZMGCFLvxHmrY3eUZ6HxUJFbdbcsaJoyUjpqRhTkbPO48Q444w0s/n48aNr62qCgG5f/nbFhsABFg/HjB/NgZitRo1qVv1fhSPLLDVtXscK9IhiTkHW2aqpmy2wNYvar2GmpzM4XshwxXY7X8nD4yTtocNowGg0o92MuuGAx1FhHlbI3Dy3duvmzkxdMjZ+0nhPX4UYi153FrEmnEPGL4xF7nBllaK2Rt3h0oKEyrNQ65qRiOhPXYCwM3/G7kTUr2GhrolG4nlmx/YUs/o1lMWxXnuMjRs/mjO2rTP9/MYdlRkFB5uHkbsxHCnbmlj6OpJJ1JwxTNaRkbmfpe3g+q6Wtib6O+EqcZbtgPq84RhnNsM9m5ms4LtM/76dz6boeYWcNJaxkjyshLnJ+MGTqzcCGD9uTNzjUXuv/L8VnerxIDs6DfWOZWsYB8VCu2B7noIalp39setZ0EqnIC8T5muMVynI8FserzDHZG+3Khq27wJnSHjeqDGjADz06tqMXnHWoXwo4qG596zRsWYFW3Uf66/WOKE3YoyDmSpnhIFFNayoPgpXVilY0SmaqQS3s4pgofVhRnMVMbCAyazwjjN6qpI8rIS5+fvr72Z9MbqxLlGTjFnnWXT+oT8xrz0Ooxg9Ds9Sv9rqF3uJyLW2s7lc1qqseDtad+jhF0zkVaBxPGZ5IRDnPeYRSdXFC7S6VjojmupTNUkh6K5X363AQLzPsTMe8tDiUCzKQxZ9rWYzyHs+WpfgRZwJI50erEAxG3tmoO0XeY881NGZrY9Mp4jhYcyyqryYh80V4mHZzc0727tWbNye4Lxp9MiC6MlY92KrzIzWIH111LU2eRb5lxVoGXXFdb6G6V8DwK2/LPra5oF0XKxQ70Sjbq13wvGzjrM432TyRF7R70wYPwbA6s3bV73XWe6xeD/D5qFt922164XKVOVBIuxiamUlz4rC9N2u7/NCixNaClhMQxEnCz5jsophBjPU5rrPS/EQOptjMZZsVofaxzpfK6pijIPGV4SHZTc3D7+xHkBLS1MqHo/mwyK9cDvzJ+GVsrSrtOvMioftiInJxD+R+ssYAzEGq6888pqZHnMAumhgx+f6L4w3CKP0iK2MxMy2RypYwcDekojHRoxsBnDfa+vKPRbvZ1g8jBX5PDtrW3iXRjhp9YjFLJtl80RmD41yAfSMYsO0nbORm9dk+AMWWjSdnWFWT6nRaHxnPFQWrSA/bUeOHmOJmFcBHpbX3MjMXG0iNqJlBNcdurbHKBrj0DOA9JWN2CbOWbhd6wgq+AXYnoSIgUGv26i7zgu3G1WFHnQvhWMZ5vnB7WiOyX1FcjcMocWxj9lkAaRXHDWq2Yt5XZncQ6s2lHU43reweNhslG9Bxk0rWWKIaopw3Ykwa+tplR3yRCvrHnhIZiUmzTrs5DUpDdUTD3vQXB6DJ7OKjHlRpW8fW0H2sFB/qZ4jXgEeltHcmMzchPFjjK3h4Z0WKggdx6r5lsW6xprNUORzmB5X2B6j8C+3/lozyPWWgr9RvRP1eJZmieahNMPUZ1h4nBHbariuY2x4jI0fNwbA8+u2Vumzn4czojyM6hqr/63Y54WclNGHXdXuWY/bPNwlG20GoufPRLQPgMj9Upgf9EILGHY5cwaZi4Dtj61uRmadi/ydcvOwjOZGZubGNdcnUklLxYXrDWvbEfUJXKkMW9d4RXc1s64+7HhY6Rc9iqZzvCe7Y2xN+Jmw09ya3Qv9qJmoZ5AaR1dAowpL6xqoTjCdCw/HmOysQW1tqr6+Tgj6xzvvlW9E3p+I8JBbtkNyz5ofx8I8C8kR9LQ24WCmV6UHHppsXchDW7+EDGR9YKCyQbb67ikCKPDH0Wym7oPltq0Jqy723C47wqqrKy8Py2VuMn7w+tY2AM2jRnqh7TDnadV0wnsSMr7ljDGyc3gRZVRwV8soV0dD9pjBjLTKnJHNgygn5Gtpa4y+DS0UDP+iUb2xm9qCcMtuRvtNEfoQMGZlkXV01tzcCOClDVvLNCLvT4Q8bBnhRWL5MOsn11EyUbbNMag4hUzVnEVywOGdHNEjsKMhvd4bLKax0I7Y/LSUDqKWqDinE3Is4svNcVKEq2pfKL77dEebjjHLysNymZvXt7RnfTG6ocaLeaygI46zyH1IkWunPAC3+iwL10UPoxXYngQFngTQTy8EA3b+l+kV1Qq+W+xhLC5Gsv2cI6xVoSDbbc6xB5aE+pax2tpkIhEPAnp63bYyDcr7ECEP4/Gi/hTFKMAenWieFTKG4maUvSKtYfFQZQa11YAVm4evIwxElI3Fn0c02xjhoe3JrFhPdhXKDhIzEyiaeTD1chaxoVRuHpbL3Dy3dguAmoYGZlV/mZU3VbYjmqkxdoRb58+tcQ3HGCgeFUhFU+Q9AD1paid/e1A9iHgYO4rWY1zQPaiPlhWr3zCKjpy71Q0gr0DziGYAz7yzuUyD8j6ExUPrmS3W6BTzEFZMFMZc0ZoGCnnIeuEh9cJAWJ8p4mFhRGbzsIdz0V6wBx5iJzy0V1wpJw/LYm42dWbkyq/1DXVFusZab1hHy7Z14KYTJxohG1VZqGsi4wFtF2CsA8iqi0dq5NHXoc9B+Ds2h3rSOLYFjMSMoaeye3+IhWNMPHqOHGhuqueMdWdy77S7meIlgOFhXUOdZd9116jmoY7B7b6Ygt7fAp9XrK97VNZRRvXKRlb0utCbSh5GjpYx2DwsOmaYbLf+lvp8aHF4eEbyu+XjYVnMzXPvbAEwemRD1PpGI4hCzRLJ8BeMceTzKBiJMEdjeRIQAMYsp2IePKVfs8hr+XkzW7cHD9OTxuntmJWuYeEnKcp7K3vHGAPqm+oBPP7WpnKMy/sNhocFuUIrYjL3qsoYMisWjjz1hReytGddE1XWUK+lcBkIG0OLVpxVLNQ4YNGjtXRc5JPWHaf/wnxSae0y8bD05ibjBys2bgdQ19RYmFVV5wxb15hrwZjVQxxVvOgxXxONkCnMxUQ8iVntnCFclrHwtfI5toexfm2XGsf07ITRYrSz0/Y/zDoXHj1HeQ+MHNEEYN22djeLapCI8jDqt7TtQKgRGItwsvDzoDCGwq51jWEOFKOIiPXKQPt1geKGbddQrHGgz8XOhNp3ENP20dJx8vNQdyUrPN8y8bD05kY+GGx8c308Hot4EkRHkcLzN7aGKS8EbWWhq0IMO8vXFGVqijwJYDzJzv7an9S/oDbtUuPAtoYEVXVi+jFYFGWzjpwL2WxlkRPxeG1tDYB/rnUV8UGhiIcF2fpd8hCah8xUeWB4KOuhO9M1hka2ZkGvDLT/Fmgc7IKHDETyHta9PHYMoR+DFeUh3xUPqaw8LL25Wb5hG4CGxgZ73hBnYIxM7iaMgyzfrm5UPZPF+J8eOhp69iehZ7A9Rt+xCw+zM41T1F8TxsySrFFdo7JCOm/HrHwztEeixqZGAK9tbivNeLxfIXnY2Ggiel2HIrIYVZg9VDy0c4hKU4TZVuxU11jqWLNoYAcfMlB72WhW0fAwUnFXXlnVts1cTYuH0Uyipd3CuZ1aGVBjcyOAV0vKw9Kbm82dGQBeTcqOpBDm2FT0AStaNtmsgmwIrDs52qkJ+1rD0ofFnqTv2JWH6cm3wOxc+wpzjoxFthhdg8h5FVgctb2mNglge5fLFg8Kkoe8JmWseTg6upfKZEOMb2f6DtQjGDKzMJNifqHHjCGgPzlAGCZbGkdvL5j9wArsTsSLh32z0rYaqwpmZnJZd2iocSQPd5SUhyU2N+9s7wLQXJtklsVloWoNFQoPxyzcYqs7WJkO85nISDNmEjPMytGUBH3ROMxoHL3dPv4ijgLQc2cA9JAFV52Ecc9LJOIAXt3q5ogPEBEeFmVJjccKNQ4Afff2UJ2I8pCoIGu704zh4EFkecGCPA5gspZ94KG9im6B4rY+aWU84rz0PCyxuXl7RyeAhroae5xYtL+WhWpF+/mwC86KTQAdeWldqu/zgjjZetlvRbMz9EXjQI0iYOX/C7oWudI+6tesq6Gug/4b0Xep2hSAVTu6SnQ27ztYPDRXu4CH6sobjWPnWXfBQ+tuj/Cwx4zh4GFY3UM+0erHoWIeFmUGEZ5R8V0ZXg07j1NyHpZc3XQCiKVqCqysOX+tEYwORFipCa9LWKtCRBOF/TVUlK8pE8LfV0/nKOgQNccG3f0JhDMerAxUgYfR3eiWvjWKj6WSKQDrtneU7bR2c2gephCJ5dXdy7WzQFTjRGvDMPetna0zPo+KdI2pcpYcdkYy0g0f6QCMHKexklHPp3NVIQ9tq2pHFeBl4GGJzc2mzjQALxGpSVlnYnXHFEVYxguFyqggN8YY6TYG825o9csGVlBl0IInGjkjeha2DoeOky1mmCtg3wP63OvqkgDaXPpmoNA8jBs7Ajk6FLmjGBBGQwhHRD/5w1iiaPYQ4b0tdU00X1P60zFHa3WHKQ9nWRxzLkWZRNvmhnYWRiVpTRDqGvn5kvOwlOZmU2cm64u6ZCwZjyFarzH2IhLrmu1Gr5JtoaM6yFhxqyPGWP2yIprHKZzhYiJnS/XY2ahoRyIz8Ve4GkZEAQGcsVgs5sU8IWidexBV/2HxMI7wqoarWxUqaDsLY9+fkW6XSPZQ36xlydfsDAXdYQh5VdARBnOnFOWnQq4y+5O615FFeIiS87CU5kYq2JF1tbBq2LYFtX2IzphamX/dZauugvQwO8/akGX1ywrttZipEdgZHBM5M61imN0xxExGWdWndqZ3VE+H/BZYTU0KwKtbXDzVb1g8JNuOF/NQeXsAuk5cVMHYJQ9heChflve8zF52lkmM8NBYEAB2xKAzjD3zMKyfAkDJeVhSddORBlBbV6OvAozttKu/+vyBMIY071pXwfY8ZEfLWtmWX9fYCCNnaG2ldQ8rqn1qi2PZJmZO2NTRrQqd0cOaPbW1tdB3jkO/EPIQzGJL6OeMzyBd+AnjYjt6su9P/Rk94rqnRmcPK3Z2drU0zCQiPP5Q7xTfWeF1gJ1dBhV8JoyzSsvDUpobuQIY82JhfBh6A2vM7EyV1rQckaxVdETN/dxzd0NloPZl+GrUjfobrY5ZfYCwrWSogIwXDeNEfd2IMRaPxwBk3VSG/kOtROfFrKtqaxZYEX2BPzBqyBovpWqBqJ+oZPbQBrOqpVGlryIsisaApjYaqhvbrxvzWzAPUV+30vKwDHOmgrDWW3BugLoP5XPXo9FmaH0QVQQsrPNVOlq2QeHxR3M3ticxXRLWuVi5Rql6dX7HZByjPLA7QYJKnuHuhWxARZGRHh07Pwhzp9kxvh4vBmNZjJKtfPbQRo+ZRO3tbDvY07mEGg0IeWhdnzAW0dcNDKXjYWlTxWkAiVQcJnrUuQzYeXsquj/tSDI88zBmCe9G25aXP1q2YY6/OHKO1ESL48Hic9zpNTGzwxjzOIBc4NRNv2HzsGi23S55WKy+ox2e6Cl7OCQqO8wkWj040dq8paZ756E5X2ulC5kG8hhKx8NSmpusLwB4cn3Unfh86jlyRhhZsPAqgDGKZsJgNMIQuf2CHhylccCs89L6q8BLhNGyzC4XeB7FANK6JpVMAMhm8xU/xaqHzcOCLEbU4hgVaVuisG5l7tgoD03PV3l7bXYGe4UDEz3BWJwID+0o0txTiESFxVGF9Hbl4WHpgykr4rWjZUuz2JFzxNbqTJW5G426iXiVSkfL0bMzkbydewt7vXS0aL9rbSm8MqzAf1p3haJwXrh4aiCwlKaOmGBuU8DyiICll3VmLcyMwGR5lJPRWf/y9tr0cl4oVNlQ6kbFShTpC4voNessIhN/jDmiqCWS75aEh7HB/4SEXBcjxtj2bds9CA9IeNwDOIiDYgycyOOMM+Zxxgmexzip1YDiHuck5FOWPc4ZCemaGMAYOOPQ9XI1rMpCwep5Me9IahHn3Lxrb1eqSkNuEUKYT5p3Cz5MmoXyH+pHOQeBe570MIJIEAQRAQFRQOpvXpAAAgI4IzBiTBAI8IV8VwiwAAD38oSAIBhnTHmCrKA4HxrbWo2I8pA8UMLjHgMnzUO1Ii3zPL16FqlVseO8Bx7qKeD946F5zazOLPTGQ1KWoifi9Y2HQvKZiAjBLnjIGDHFQwEEER4ycJ4XFICVnIclMzdrNm0DUOtRd7o7zlicM8FYjCPOeYwzkitQKOkJxhkJAudQ4yGYHEswkne+LESpUVI5IDD5I8T0ABSMqHlh25qdjaJEmIdnjIjszxR82Py40q4EIqIgIMAPAlJ2igUkABYQBaSG1hcUgPlCyHEVgCAE0jCBfEG+oLwgX5BP8InygnxCXohEMp7L5t/e3jV7dEOphmm3h+FhOt0dUzxEjLMID1HAQx3JWvOhiITU1KSXE4/wUEqJXfIQUVvTFx6iJ3vUCw9h8VAERCq2CoQgMNEnHpIALBKST/KfwieWF1RCHpbM3ISQo0jEOFNilUhGbWE0RORxrkeOOOPS4hDgcQ4SSgQr5cdJd+6YgjpZI21GtNgh2ENVvAWWXyqwNdi1k5E8ACNAHbkQ0qswxgJh4i39LUGMMQhZlyXGAEGMcRIUamCZFxAhI6WMdcHUwEAExkFETAkUySZu1b9BgrhngitiPOQhZ1zXH017C9cjBRNiUJRXtrEAIIQwnq8vPAy3pFlmed5/k4L3RH6VAOCNZHwki03j8X15bBK31Y1MPqgjp5CHQqhcp3SNjBlfHsZcACR7w2MTAqTOzGRLMdyCKQOVE+WMVGqU6ZCRWTEhEyQ8nbwiIq4ryoKE7EUO3iSp46hGxCZyMx1SJlNL6FXMVwo+0xevAkDqMph3heCM6cIhk5yWFkdaE4LKl0tmgIRU49BzNUHCfB6A76zNgCBvKM61pjY81CpbvSu0PZJjxzlpla17AmVGhxl1wxg3+eGCSGpgKrsgFss843ctyVF02kCwjYJtlF8l0g8gPo3Xnh7nI6Gz29D1B4K6jyCIOFeeTx4/KQ8nAEYkonvXFZgwn6V+E0KUkIclMzdGDUa9itEo3NQIUOBVQMyom27gefJfErm3okahBrGpPD6HJw/xjHMpoVcRtnXvc8xsqxtorwLpVcKft7yKUNk7MECEXkWdi0z5kOVVAADhdXLoAwp4KIhihSpbK0euVLb2H8Q5FyQ8rbJJq2wQiJFR2QTSUx9URnaQKjvc0o32X2eknNkF8qtE2w+ztafHkod48gekBQlVNnamsoVR2ZqHUZUN1RNnW0a505LwsGTmRubUpBchHU+BQU+vlXdRD7kbgAkSMcbpZUH3ktjew49TGvmXRP4lkX9OpE6OxSaykngVDCx3A1URULEeU6pNijnjVYy8Cb2KjpV0RCl1jfaQ0LlxUl5F3iSxIarBVSl65GGhylZmB4wzIYSnMqCSh4UquyB3U6Syd8pDewv6wEPqRttPM/66XmyNQfcffKSRPDIW7stS2bL6QRTyUPTMQ2mnAHNs6lKFKruEPCyxumG2reFyDWaVQ5UqxuRuOJcSSGYuOL9HsKd6b1/IrxL+f+dqTokn53mD9yqwbFaBrUERLfQ/9UkW5G6oMHcj/iXwFvjLImGp4tw+LN9K3QcwShhNJ+MmJs2XYSRK6lXeP7B5CCt3Q+rO40RmuTOQIK6rLaRzN2BcxlkgCt4EZ/DfFN40RmDeNOhYQ96WutNv0CpbdFG/bI1E910+apA8NNZD7gZMmN8nyHyFLwRsdQMZXEZzNxCah6VX2aVWNwTSuRudaWNa1zAz0lLXQXuV2J8FX9bX0JDS6P59ngGJebw0XmUQuRuSmbaoV6GXKf9Xn3qSaYlXKPEKah6h7g+wHQuEzBdITWt2Y2yQIAGgNlGGdP7ui5CHMFULHVGAaWZqla1GM8zdMM4BorfgLxW00qLKQ4AO6pMfisVncCpdhZSIuu/P99fWSKTv8mNTPd5izkWrbJCK7qHEntD1irAiAYBBqKNSRwKT8dDxl/xASXhYsja/KSPqAGz3lX8Wxj8TwerFlGclz1y+ji8VXp9tjUHX7/Pi3cII0/Yq9ujKr9jMMDBjX2xiCj4cjaQIJJcmYLJian4nd7vI3dKzrTHgGdQ/irG/YLxbXxPGCCTlDbRfyud8ABMaUv29OO9nhDxEeC9JUDEPzehLnnAutgl2I9GNUVtjfiGN/Eui82e5zp/m0B1RN4jyUH3esiy74KHYhvTjA2zbpTQyD/pAxBdKG6MiI0i2Wu9KhR7Nc8NIduirIe9isHwujxLxsGTmJhYzxi8cAyLTlin9NpjuCRayFrMdyfsHuMfOm3IFfsO8KPAqUMfQS+4GURPTs7qBSg8aA2GrnuwfguBffZ1dEt+Icb9krJspT6JKICZDpHadcD1+/YHFQ53HRQ88RJSHAMAYWy8SNxDe6sHQFCC/SrRfmwvWieIcIizKFWgffVSFPEw/OqgpArnnAtFt6Sxp3fS6KEY2CyIwrq0tqbeYqlLpa6LUjXXkpeRhKScxxBkAJCCg7aLcLvRQy7wazAgRUv9v4LsLtlHmGR+D8CoFX+kxWWN9Epa60WOFUMFm7wr8PtsaiVgbJvwO9nGq2haR53kAYnGvfxfFYec8RBgvhK+Z7m/i71Li14RMX/citlHHf+f89yJMG5jKzq7wB3XCgP+SkF02troxyo6M9RECZj6Qeo9knxGseEp2sIIxQYLzUvKwlOZmRNIDECdL3ej4UN7K0vSHEWYaiRf6HUbZyD4RYBBepeC7BTwoUjc6by/9oXol898UvEn5Jwcyaza5kY16gut4KjxO+QC12nh8AL/5PkfIQ6Nu5C2nDIuOHaDziQxIo/Y2Yn22NRKURtfNOdHVg7rpu8qmbohtg7oLAORXCZmlCtWNrmxoZSe7/lgYUer+Y6HUjcrmKBKq6IxLE1EqHpbS3DQm4wBICAL0ucm4UY+rip+Z7GiIrRnsHoP1hHTPFYHS5m6YidKh1I0OdJkQAozlHhj4DP0Rz7F4m5znoo5CCCGbd5rrXOKm31A8JAEGIYhg8RAo6CuRsVXN38B2DGRfwXrKPhlQlF39Utn5dSVY20FsI9VNqs8oEieGZ6pnjYeRVDiPPLQ4ujIldJ64VDwspblpqklASRlAzxOTEPpMtLrhRORtLMFO8+uCCuRuyOTVtG/UgS4xzoJ1InhrIGUFCS/DGl5Te1E/q3M39a4s1X8oHpJsXovWm6M8lEPMtw9KZWce99Ed9p1iQCp78FDdJ7p6HfpRpexUl4Yu2akjkTEXAYKImHV9FA+5PMxS8bCU5mZ8Yx2A7ryJmZVkFSorAYTqhsAY6y7FXjOVyN2o/jArgwutbkhQ/qWB2xqJES+pcZUzxQVRPpsHMKmxdpC//D5EEQ+ZDh3IZDQkD6UyTbwyqN1RGtmXAjtnPACVPXio3I2e60SATOeEaoUpy6LDJUDP19NHCH2tZAjGBIl8NofS8bCU5mbSyAYAXQFBjiVM3KhtjZ27EeRtKsFO/fWyu6n0uRt/FYkuUkkaXSEMZ5TozhvGWdBb13mvqNnEdGZB5qR5Lp8HsFezMzf9huGhrs6QTt8wbX2MCmBCUPKFwe7RXyEIYFz5jH6pbK+lBPcgq4HOeTNlcaA6wpT5gO4mDe9EZZu0ulHHppfplcdZYh6WUquPqE3Vxli3jySQEwIeJ5XoZlBqTUdSQoDz/J6UWDNYGx+f5hGp3k3bqwxszlR+hcg84+dXBWaCHKtBbCKPT/diciau9gNKvDGY7w4SPM3ySUUOxj0SlIh7I2oSJfnx9xUMD1NATgjP4wRGsltW3l2qHsyJiHMeG3RQH2wTDCAR8lBuN3zbBQ+9FsZSoH5mqQsQm8ZJd0WTzk8FJAiMGBHpiqdQik9rHCZImMjdTNozCeaS87DEq/lNqEsC4EEAuYKUPAEGKz5UMzsiFcpBQHoV+WuDyd3k3xDbv5du/3U2tyKwJ+NSGvlVovv+fPuPs+n780iHq/mRKrix4M0SWJyazQyyekKq6XNMQ93gf/b9iR55CNg8hMXDwSJYTyEPdR4QfVbZif0G6/W9fbkdE5GV/RVhhCGY6QBUHyOomEtHnbo4VSYeltjc7NnSCCDrq8KKPPTQauq+G5m1yswc7EizFBLTOenncgFA0VyEvuRu0o/m227IBL3VI9MP+O0/zvhvGIoy2bfqTS3BZewaLYS+VrmcD2CvFreq1gAR8tCqtghY+QuCVDqlyqHI3A1nplLSj9xN6tBBmRtvKvdauHVe0LkbkrkboScTh3krDbOdLFssQNIil5yHJTY308Y0A0gHar6GCM/f5J8gZJVOkD+eUXJQu4vvF5NDa82ZAPqZu2n/bbbrzr62dQbbqPO/c/kVavk+UvNuBnUWEn5Kx9gM2WwWwL5uEb+BogceAjpPbCxOGF8MEiwFArjmoWnF7aPKjk/nyUEInMRCT/8mCJDno2wr5KKRumLDmAjzwUr4BHoNJp3BUf1xACs5D0tsbmTYnA6QkllxgrCqLXIdXwCBIKkLuo4a1O5SC9S8cK57Q/U8LXX1e4yZ7V9IP53PPtvvns70H/LBekksJgR50wbrIbvHkO67Ic5iJCgRjzWlXOJmgAh5GKjqjFKOaiVpbXEEgXG/ebC78yZyaddCHgLoLXdjvs4Yq/90gg2otSW5MBab7ilLaqIHAGABKXUDXeUQ+r4zdQltf0HWfUoq/vBKzsPSP4lh6sh6AIEfCJAIrWao1kI9AnR9AEHzAHeUmOd5E5X30B1N6uLqEQX15FWMtwneo64luQHsmtLI3pUHkfQhfN/BXsYt+wbyliAgl8sDaHWR1OAQ8pBMdSbKQ5JxhMjtMdh9xabvmofmORyRSN9WPbyONX+5pr8WJz7PSx4bUzxUWfAwMpJbhC5OBdEMg0kJBxR2rqjum7LxsPTm5uA9xgHYngu4HGCt2dRVEBAmTw4Q0HY6BhBSeRNYzSkJ08XD1XrxehUSM8aqrsygla38C4CIuu4rXKKx7/BXidxzgfIDEznba+ACJ0jSln21aWYsk8kCOHqvsQP+QQfYPGRK2giyqxZqIxjrPmCwwXB8jgdoHhIQXd9W85Ck4yvmIQACYpN405dSfbc48Xle6tMxKwsu4wmp3SCMuiEIxSwma1VS+yjFB2gdpCt3QhpiXg4elt7cjGuoGZH0fGK1QojQq4Cs/kXoFTYJ8Mej42P9szhsJKs9L4kaCrsnSAB6kX1SHRAyhFbrJ0mta2JpxpBmucFNjfNXCL134scMfA7bxoNFLinHGzKSqq9JNLtIanCI8pCoIF4g7f8FZVuRHYTA8aZyb6JaNV2pGz0VW1kcALIrx2zhXGapmS5jyc/EJvGW79clD+klj8NGstpzEzWfjgPMJIPBjK0Jq8CBNkYkIynVc2SpPPl8GFJ3qLY7kJFUyXlYenMDYL/xIwH4eV+mo0x/tNE4gRC6QglByM5ibef21eLwCaz+a0k2ErpfQM0lU4lbMDCQEIwrryJ0spqHfdwAUfZ1f8DSRiJ4SVC3fMIGaCrD/IFYnO4xtHZ+YHJbmUwOwAETWgZ1ZA4AIjy0czeh1g5I8bDjyIHvpfbTCdMvx/Q8Qaan8EorA6j5vSaS4mr+pDEH5ufQ8JlE86U1qQVxPrJQMsfneKmTYw2XpGJz9BKFJlYS5v5iynZojy6iXcVG31lxpbwaZMKRMvGwLFNyZk9oeXzNlo1ZGpukPJi0uPJuF4wFRJxxQeRpJyAE+RPY9q+h9mmkHtmpsmUpxE+Jxed5yoHoOSCMMdlTAEAuNMtMj5+laYX5CxBjwbslKEkE6wWmqWeDicUcGeL/24+fTY+hV0/zla0B456XSXcD2G9s0+CPzaHvPMy2ov1YND7Q712kPh1nI2FmAxTxkO2Kh+YRqrKlArqqxZg3EfUfT9CpcQD+OhF0IzaRoQZg4YwEIpL7NVGhiRAFEOgYwuStlG3Vq6AL/QgqIUiACRIV4GFZzE1TKrH3yLrXtnWJrC+SiQDEiQuo0SVigRD6iX8gYuAsEMRqWPpolp/PYytF4hWwNNgOQoqxGrARjM/h3r6cawuFMN/GSVB0jUi1Bi3Z0ROpOiUPuw9KALGd5DKN6mmEn/C8JGJP9cnipMfQa6cF+VQ43n7WBzB1VJOrSZUEUR7GA8DjPCDiKuKQPJRxDToPQ2wHr326H7xIniydX8hDlZFhaiqvUDyUz59RG3vgockcCxV6MbWSOSMib6J+UJa0L7IPWOsUU+M3EYPQOiWIzJkCVDyla8SyF0lml4UQ+poIIfx8uXhYrgnHH545+bWnXt2SFaOSgsClP5FXOSDinAdCrdAh4yzOmCAwBj9J4kDmH8Q4YzEGDniMeWoGtmkNIM6YsSmMyacFmQoUuDVauiIOS90wAuVfL8HEf+omMB6oMYYA8idyby+WvDfgO3b6rSBJW+fRu0cEARlbQ5x73V2dABbOGD/4A3OQsHhIMjfBGAsIXNkCHgiS8Q6BtR1L/ng03tmH300hfnLMO8Qj85Q0xS7hv0HiXQFQfKLHWzyMpFDjkFqx3OYhTDVD+UsGkDBVJKbbf62PytVdBAnSYkfmbgwP1eww1VVMOr+jvwUmSEh1o61SqImY53W3l4uH5TI3TanEjBG1r2/v5nk/F094TOm0QBD3WCAE5558XKrQmlaOgce5IOIMRBSAgYEz9VRjkH6gB5jQakV9XnkVyMKiIMGZfD4ZF3pFj/BpViQAxCZ5+VWDtTg0gQdC5eSUfyDk9kF2Vsx7ScRfoeRKYtnw8117o30GtU2nTCIgxgIRdhJnsz6AVidtSoooD+MeMQHiTPOQBGeeIOJyO+dd+1NuT1b/KFIv7DyoP8iLLfR4SxidBV2UfyjwV/jRhbLyAGKTePLQWM2hSartmYeQ1JbWQZjih/KXKvMIvcKsnsUedg+RKjD5BTy01/qRj1OU6/aDBSRMN5xir8z7CCIgV04elnE5lfnTJr7+3BvbMkFjnAJijEFHy5DPoGAeFwSPIyDhMS5rS0IQZ5CWSGqZgODpeQ/C9Dymmf9Snt4i2kZyjPlI5rVwbypP7BfndVzn7ciKmeUzMYR0IKwUc1yFTAOZMTbdnET+LKT3YeJjaizVM+EDIR8fToIFOoYSgICqfx/npE2pYfEwHhAsHhJnvIiHzB9BHafy7kUs+SrFNjBvoyotYTxnE8Fmc17HSBsCzljuRT//x/zOyg7+OuGvy2UezdefWROfzot5qKtFUXUTsTVqfraUOQT46wLxpqC07tSfALEnp9ooD8n04MiAS2aOma7VkOoMQMjPCvCwjOZmXEPNHo2pt9szIp1jtamAoCIpsEAQ86SOBSPmcRaQiEmNw7kaD5hoVa9oJQc4Df8fQfCEj+gAi23krxJ4Buk7c6kjE6kjE6iRs8/DDmOpn2XfemxqCZZfFVNZIGScKCiMfkmp3LDqLwRBaRnIngitacECErlsQIKctCkHCnkoYygiDu4LEfc8yUMIFuNMEHmSh7UsMxfeQYyBcQbGWIwxBoqpGQrEGFg3srfkRB8m6AbbqO367vrPpFKHxRnjQgjOzdNWZQZHx1nRPlhd1QIA0Y38k77/jC+2FyovBvAJLDghJlop5KFdgQJBqmlCINRcB5XlUSqbCaJc1i8rD8tSCDc4ft894ww78uQFQlb4hdJv+t4jCIKw7G543+p1OtS3ZOfSu+T/Ih88WGhrbFAa6ftz7Td0++vJ5PClVmRczrgHgPjeseJCY79As3mgc1JWfVGpG2FmqAppU8g0m+kzEqqCAC+TyXqcOWlTJkR4aLpLiGSGVUTvPaHZEt6xqrIj/YT6sOhC7hd9sjUGnb/LZJ7OK28qU5XhspDhXG1oFhlrRKDc8qD7inTugXyxrZFg71LixnzqVwF1h2dnGt8gVwKF4R4JIqVrBOnsMs9ksh4rIw/La26aUokDJ44E0JnOmvuNZJwJFggKiPxQATKrG5ApSwSV4QsIYr1gv8jj3T7VDoJ1ouMn3cF6ObdVrTGsO52UOk0eOqgFn/35ngDTmbZIN4fq5pSNRZZXUV1IpDNZRAFRV1cawAdaxzlpUyYU8zAgEgSfNA+FzJsyobpXEOZHZAVHd7UEOi6mP/lY3+/yZufvMv46MnlcUzOS/TfhX2aOhARR9jE/c3OfOuC9t6juBp+9G+aAdUZCZU4FyUhK524s66N4uFcZeVhecwPg6BmT6uI8E4Dn/UDfYwTmG69C8IUgFGoEHXPqTqQuit24K1FTDEqj/fquYFu46oU1Bx8EJHrqpOojxCzuTzURst05jXCuivSZQahuJFOtsWdBgMAP6msSH9xj9MCOxKEv6A8P1X2ouCfpZzEzIIhVhJcH2LfVeWM3CmMlre4ZU7G2UDpLgOWe8XN39eNBVHwHGn4dULeymEIvxhCIXfHQrwgPy25uAJy4zxQA29K+EFK5sUAIeTVV3tSMuqUAtVdRd3LydwHrfxMwpdH927SJcQJBql4ovUotS316IEtg0AiW+0RMFQVEgZVUTJUG1Nfna/qvDJ8EY75Ad2cawAl7Tx7AYTj0CxYPZYcbM35OEElN6oe1wtCLmNBYeRTAu2fg01+CbZT+Z8501av7H0pbmRmF0jrkXw9yf+j3Q+9YBs03B3rOlLrLjMo2EaLMbFSSh5UwN62jGueMaQCQ6cpYZ64UnfQqQndhB/qOtdfpiK0kb3W/hauEvyrIPJ0XeuaEWt1D92J6071kfy1OCrmzYqJGR0asIDNnIkEKwrNTTAqE8ioB4AdBuisNYOb4ka0j3cJ9ZYfFw6yJnnyTGdQjpWcDqBhZwPBQ5XewDXzDANkokXs8b3JGyq5pKyD/r3v2KH/7QFYsABDbgJrnVfQny7t+YOduEBD5AqKyPKyEuQFwwr6tI5JeVsBP5wTBF1a+SqkbktvNHWsCVwJL/n1QDTK5x/O65qc7mijUI7FDY4nPJ1nfoioawbIXxv3xCML6ohCWlbQ0DpR2YywQIlAjLTUdAqJsNggC0VCTOGWfSYM5O4e+w+ZhYOduZDoGzBci3G6JGlvDei8Ptl0rWCeIcUlvw0NzRwjNmfyzPm0buF1ruE+YxE2gz1R26AQqMQqfKJupHA8rZG4AfGru1DhDZ14EOV9miwPLqxAg/YxRszqpzkT3YJ9IJdaJ4D1954cRje41IOLTvcR3aryFvWSO8x/xMl+K58ebBvBwroqdu1FnZ9RNoHxmYMXMvo9sJudx9pm5ew3q3Bz6CcNDkfOVfdEVUslDlUUOM7VmzpHSrWx7CdYbzb2WL+BhoDPTgfS+jIkVg5rWxzNIvGzxsKfcje8jm60cDytnbkbUpo7fZzKAHd25vKxHCh1VanUjMztS+xjDHB9oGGUj/4Yvf1nXucjUNaU3CwAsjPFvp9jiGD4Yo73UlaHxTMzm+U/G0pcn8sfEghplU4ScO2vNxDXZmbwQRtoEJIgxo9IFEAC+j67ObgAnzNrDLTRRYUR46AeGA4HydmTUt0+hxQmsyiMvxeReiu5XstEn8oVSwX5ANOiu9+Rqw0NSPAz3SJXnYUUf0rjPuBGrt7W/uLGtsyNTW59Kxjwm50kJEeMsIAHGIYQnc7ocnDEOeIOLkyXENuELwZjqrdTTPCOdVEQQzcCCOIX5/LCFgUBCZ7ih/SERyFpnRPEVLCARCOm4mLQ4Ut34gnKBqjjOmjBy1pjGwZ+aQ38R8rAzU1ufSsW8gBED8wXFOJNzqf1AeJz5gjzGwMAB2SgjOTN4BIK4fnyQmhulm4iJIEhgO/jgngYDIL6JAqH8oi+EYNKvM18Iw8PZFeRh5dSNxKJZe+w9si4gdHdmcoEI9FwPX1BAzKibAJDdEKJEwysIAiwvQiUpFY38m7c6gHydzTWFJNI5fNMDZg7M9CtGfGMgBBkNRQJM6x3kA+rqTJOgqaOaTprpUjZDBpuH2UAEZPPQ1GvIqFSjXnXX3GAhgDwp1gU6t+BbPAy2lkJDEQJQoPSaUjc+kc3DxRXkYaXNDYCPHTB1j8ZUQMh0peVVzltRpcyf+4J8ebuWcHSFvPPJB3wZQ5kxBvMJATGTw5ZRtFVgIgprFrqOSDKSYrJ/T7JT1lZ9UvbF6B2fyBfU2ZkmQXuOavzkfnuU4rQcBo4CHopiHhJ8Il/WE62aY24QC8Ua+ON5QLviYWlEFBAIBISgZx42VZiHQ2BuAHzsgKkjU7FcgO6OtLG7ygYzncfRI5FrKsEeKQll3ZmdM1Id3GGtimkLopI7EGStIcKkZWE6sR/2gIeaSLKWIBPDttfq6sqQoMaa5CmzXJfNsIDNw3wghM4cmztTl3WMLyEBZAZ9h9IIJmqZ1WsHGXoLEVamBv98COgMt08Uxg3C5mGl9fXQmJtUzPvsIXuPTMWyAXV3prN5IUc3AHypbEmYhG6mFGszB1M9nUOx50lCqC4vK+9rqlekKvEifCKPsBV1GJEJEYAsRkofRcar5APqaE/7+aCxJnnevGmpWAlmhzoMHhEedmWyee2NdIXURMTa4pAvKLvXYG1BMC8WkBBginWGb2H3nRCleHZ4tkm5bRlD5APq6BhKHg6NuYEe6ZaaeNanzo7ujB8IrScDIqkgpPDrHod886D2JUYwfwIjXZmSWd5wtojaI0y/g64xGYGDMMIyWX1d6s4bXQYEyjcKU/BStqajOwhEc62zNcMOhTzMB0rdhLkbNY5KJhDlBXUeNvB4ilLIHeTpbmYz8zOcyRX23cwa7O25fQYZlT0ceDhk5gZAKuadNW/GxIZUQOjqSGfz4b3qh7Vq+EK07T+oHeUP9oSaF2qiJ2tGpZ6VJ/R6i7qXXFsla0ZlpGdBQOf5VfVUdUzoCFnmhjs6uknQlBH15xzsbM1wRI88zAcU5SH5uh8nINrxAZYbN8Dd5Y6Ji5F8JzxkNg9zgzM3QRJbpothxcOhNDfQI73PqIaA0Nbenc34gjFfVY5gYuatB5MY6ON9KYXs/HhAUHkZk7sR9loQCKDiW613oGdRhDljncNWf7XGFqbC5QurDgWkc357WxcJ2ntM8xlz93K2ZtiigIeZjK/GVPJQkB+pBpBP2HwyHwAncwfFsh+KB0IIJjPQIQ8pjN3UuiuZg3gwYuAy6t2DlcoePjwcYnMjcfJ+rbPHNAFo78p0daTzQudBdMU6V4N1iweYqu9eHA9qwrxMOAMYtnJRlXKTJybZxadDd8mwvKqYCiNQZf+esUGBqX8ForM729WRBjBrbPPH9p1SyuvlUB4YHnZ0Zbo703lBUqX6sjnTzuwSdY+l9eewflmcYDxLnxiX85ONuolE9Hpmsu7eQufxAzQNXWPo7SMoL0RnehjxkJWqbWnwWL5h+8OvrcsJSsVYqr424XHOmMfgcSYXSB/zLMY/3D9j3/2RWPdHPKYXMVZrGMslYeVijWptEaFXolZrweoGPxBIroQUWLOHdSVL616m5hbLGZg5P+juzvp5P8b5wr0n7jd+RHkumENZUMjDGPfAuMVDzsD135qNbOxfRbK3STaUQvdHYpkPxuTDXay1iq31QxnMev42D+v/X9DwSP96cPwkLT+dto30hxsPh5G5AbCpM3P3S2u2dudiHKmaVE0qLkfXY4wxeIyNWs4m39PXX+s4PtZ9hMfkw2WsJ8PLLfpJPXqBe/3wHbOuoO4tDh86LJ/obnI9Ztq6UJ1gCAjpTD6dzpCgkXXJk2fvMbZ+QA+adxhSFPNQeT7NQ48xBkgbBMLoJ9D4AsV39Pxr2Vm8/fgYWniPDGRFPBSqmz3kYfPfROPTfbU4fpJePJ22NOaGIQ+Hl7kBkPGDh19b/9KmHQBq4168LpWKe0x6FcDjrHENptzLEm27+hG/GdtPjWdawTmXT4nRXoUYZySEeSSVIGIMUr+Eq3DJp3wVPMferI8Rib/gCwEwX4h8QN3d2XwuD2D22OaP7j3RJWuqFz3xMMZAof+zlA4Aj7OGVyi1mcW2U3wH/GYWjERmDxZM9KgG5skwjIHBqBs1aQHKzoSKBkAgwqe+EKH+eRp9v+DZnR8xAKBzDL24ONgWzwxPHg47cyPx+pb2h15f15H1ATTUJBK1yRhjHmdyFhVnGLWcNb2GptcLv9g5k3Xvw7oO9IiIM8YY4/J5DGAE9Twg82HLq6gVYaNeRY20XiIgsnqWaTgmIC9EJp1Ld2cB1CfjC2dMnDHaTYbaHbALHjIQD2UO4wycc0bEGONyDWJpXYg4ZwzqNeOh1jZ7IS2u5TbSzDSz86TE5t005iE0vkpeT0Yn00Sr54s1U7PDmYfD1NwAyPjBk6s3/WvtVgAeR31dTSwRi3Mu1az0KgxItbHEDnDG8s0IRqqxl2MMQD51k6tHh4OiI016i+VV1BM5LIujRt2sZSPMU9wBX1A2m+/uzpAgAEe0jp03edTwcSYOg8fOeGhncKTSAVRsxbnNQ6WvFQ/Nk4g4k5yRELvmoX7iJYCAqOk1pDYSAV6a5VOUT2LzNGpL5YY/D4evuZHY1Jn5++vr39nRBcDjqK1JJVKJGGceZ4zAeTje8i8DmNa3TG83usY8yVBPvdV2h5RwlevXkFrxTy5VqyYrqDWWdO7GF5TJ5NLprBzgKc11H5kxcZhEyA4lRw88rElIpRPhobY1modc2hfDQyuTGP54lIfq0ZeFPISlsquWh8Pd3Ei8vqX92Xc2r23rRmh04nHPYwDn4RhLiatGl6vnggNg+rnL8jm/wvIqqgpAgunnnIZPKTS5G2GeSYiAKBAim/G708qTTG6uO2Ty6OGmWh3KgZ3xEIDHQ43DGRgYZ0zlDRUbiWkvqJ5qL0gvhaKe/SIVDfXMQzOTRmmcQIhMxk9XFQ+rw9xIvLO964m3NsjBBpCI8UQqmVLjTZzJ+Alc2xoZMXOrFhCJmU1FQG2RQ0v6iR9msRudsglEOpPPZnOBrxY9mtJc98HWcVNGuGWG318o5mE8lazRdsfIbUk/EHHGzesID2V9SuWJAYJQiUSQCJ8aIuRTwKHsjh+IdCaXzearkYfVZG4k3tnetXzDtte3tGUDVRqsS8ZYIhGPeclETEVSpNWN5VW47rsR6lmFaqSjlSkWRPpuKJcPcrl84ItsVi1SnfT4jNFN+40fWRUD7FAm9IeHxDmPqBvFw2jfTai17Qqper178LD6zI3B8g3bX9/S9sbWdntjIh5LJOOJZJyBJeJez+pGtwqSdiuk1lWDIPJ9EQiRz/m5XD6fjzzfY/qoxv3GjxzmetWhwhggD3UQBRZWpuQ2AdBuysMqNjcSGT94fUv7O9s7N3WmN3cWrrboeZxzHo/HOJeFgsIapETeD4T6X+FbY+pTU0bUj62vmTG6cRim+h2GCQbGQ526UdA8FCIobOrbPXhY9ebGRsYP3tne9faOzs0d6YwfFI96XzCmPpWKeXJop4yoq96hdRgqOB7uDLuVuSlGWybXls5v6kxndF6tR6Ri3tj6mqaauHtKt0M54HgosZubGwcHh+GDYbEAhYODw/sBztw4ODhUCM7cODg4VAjO3Dg4OFQIztw4ODhUCM7cODg4VAjO3Dg4OFQIztw4ODhUCM7cODg4VAjO3Dg4OFQIztw4ODhUCM7cODg4VAjO3Dg4OFQIztw4ODhUCM7cODg4VAjO3Dg4OFQIztw4ODhUCM7cODg4VAjO3Dg4OFQIztw4ODhUCBxAR0fH9ddff8wxx8yePXvfffdduHDhT3/6U9/3e/3yxRdffMYZZ5T/IAeF4XCQQRD86le/Ovroo2fOnHn00Uf/4he/CAK1Iv/s2bNbo7jnnnsGvKOVK1e2trY+9NBDJTrwisLxsNwYch7GAJx99tlr1679yle+MmvWLN/3//GPf1x//fVr16696qqrBry/QeKggw7661//OmnSpKE6gNLiuuuu+9WvfvW1r31t//33f+65566++mrO+QUXXEBE3d3dX/rSlz7wgQ+YD0+bNm0ID3UI4XhYbgw5D2Ovv/76smXLfvaznx133HFy08EHH5xMJh988MF0Ol1TU1PyXfaK9evXb9u2rfL7LRN837/11lvPO++8Cy64AMChhx76yiuv3H333RdccEFXVxeAOXPmHHbYYUN9mEMMx8NyYzjwkEs1xXkkiXPRRRfdeeedZoz/+Mc/fuQjH5kxY8bcuXO//OUvb9261f5wZ2fnzJkzf/7zn5stuVxuv/32u/rqqwFs3br1q1/96ty5c/fee++TTjrpqaeekp9ZtWpVa2vrM888c/HFF8+ePfvggw/+3ve+J4R4+umnjzjiCAAf/OAH5XUxePLJJ1tbW59//nmz5YUXXmhtbX3iiScA/Otf//rkJz85c+bMWbNmnX766S+++GLx2c6aNevGG280/7z00ktPPPFEczBLly79zGc+M3PmzPnz5997770vvfTS4sWLZ86cedxxx61YsUJ+xff9//zP/5w/f/6MGTOOPPLIW2+91fzaVVddNXXq1B4uMef33HPPhRdeaLaMHz9e8rizsxNAXV3vj5T/P//n/3zhC1/43e9+d+ihh86cOfP8889vb2//j//4j7lz5x5wwAHf+973ev2FYQ7HQ7wPeMinTp06efLkb3zjG7///e8Lxk9iyZIl//Zv/3bSSSc98MAD//3f/71ixYpzzz3XfhhefX39kUce+eCDD5ot//jHPzo6OhYvXhwEwWc/+9lly5b99Kc//dvf/nbAAQecffbZr732GoBYLAbgBz/4wRlnnPHCCy9ce+21t9566/3333/QQQfdcMMNAO69997//M//tI/k8MMPb2lpsXd0//33t7S0zJ8//6233vrMZz4zevToJUuW/OlPf6qvrz/jjDM2btzY6+WTkAdzzTXXXHrppcuWLdtvv/2+9a1vXXXVVT/5yU+effbZ+vr6yy+/XH7yiiuu+NWvfvXVr371wQcf/NznPvejH/3oD3/4g3xr2rRpRx99dA+XmPM999yzqalJ/tP3/aVLlx588MEApFfpi+uOxWLLli17++23H3nkkdtuu+3RRx/9+Mc/Pnr06Keeeuqqq6669dZbJderF46HeB/wkCcSiV//+tetra3f+ta35s2bd8wxx/zgBz946aWXzCduuummI4444otf/OJee+11+OGHf+tb31qxYsWyZcvsXznhhBNefPFFc1nvu+++GTNmzJw588knn1y5cuWVV145f/78adOmXX755ZMnT7Yt8cKFC4844oh4PL5gwYIpU6YsX748Ho83NDQAaGpqqq+vt/fied6xxx5bMMzHH3+853m33XZbIpG49tprZ82ate+++/74xz/O5XJ33HFHr5fPxrHHHjtnzpza2tpTTjmlvb39U5/61J577tnY2HjCCSesXLkSQEdHx+9///vPfe5zH//4x1tbW88444yPfexjv/rVr+TXTz31VPN6F7j66qvffvvtr3zlK9Be5Y477jjyyCP32WefY4899s9//vPOvtjd3f31r3+9rq7uoIMO2nvvvYUQ5513Xk1NzcKFC5ubm+URVi8cDw12Yx5yADNmzLjrrrseeuihb3/721OmTPn9739/4okn/vCHPwSQz+dfeeUVaQIl9t9/fwAFP/rhD3+4pqZGJqJ93//73/9+0kknAXjxxRc9zzvkkEPUzjifN2+eTZFZs2aZ142NjW1tbbu+RieeeOKaNWtef/11AC+//PLatWvljlasWDF79uxUKiU/1tzcPGXKlP7egdOnTzdHUvDPbDaby+VWrlyZz+cPP/xw85XDDjts9erV27dv7+MurrrqqltuueWGG27Ya6+9AGSz2YaGho0bN15++eW33HLLIYcc8o1vfMO4qQJMmTIlkUiYQzKHJ//Z3t7er5MdhnA8lNiNeRizT3L69OnnnXdeZ2fn5ZdffvPNN5944ol77bUXERkBBkC+lubQoKam5sMf/vADDzxw1lln/fOf/9yxY8fixYvlx4IgmD17tvmk7/sjRoww/zQDI9HrA8vnzZs3evToBx54YMaMGffdd9+kSZMOPPBAuaMpU6bYn2xqaio4yF6RTCZ38U8ikj941llnMcbkRiEEgPfee88+qR4hhLjsssvuvffem2++WSYFABxyyCHLly83nzn00EPXrl37P//zP6effvoADm/XB1AtcDzcjXkYy+VymzZtmjx5stlUX19/ySWXLFmyZOXKlbNnz+ac28ZevpY608YJJ5zwhS98YceOHQ888MDcuXNl7bChoSGZTP7tb3+zP1mQDuwXOOfHH3/8gw8++KUvfemBBx6QCTa5owKP1NbWNn78+IKvm+GRyGQy/dq7POvrrrtu5syZ9nb76u0Ml19++YMPPnj77bfvu+++u/jYPvvs88wzz/TrqHYPOB72HdXLQ/6jH/1o0aJFBcm51atXAxg9enQ8Ht9nn31s2fm///u/APbbb7+CHzryyCNTqdQTTzzx8MMPS2EJ4IADDshms0KIqRqpVKr46veInZlJGcH+85//fOutt8yO5syZ8/LLL2ezWfnPrVu3rlmzpvggGxsbbVfTX5W7zz77JBKJbdu2mdNpbm4eOXKk0ZY7wx133PHnP//51ltvLRjjhx9++Itf/GIulzNbnn/++QL3+D6B42HfUb085DLNc+qpp/72t7995plnnnrqqV/+8pdf/OIXZ8+evWDBAgAXXHDBk08++ctf/nLt2rVPPfXUj370o0MPPbT4CiaTyWOOOeaXv/zle++9d/zxx8uN8+fPnzVr1le+8pVnnnlm3bp1d99996JFi2677bZdH5PUyY888oisHRTgwAMPnDBhwhVXXLH33nvvvffecuOZZ56Zy+UuvfTSVatWrVy58pJLLmlsbDz11FMLvrvffvs9+OCD7733Xjqd/slPfiIT8n1HQ0PD6aefft111917773r1q17+umnzzzzzG984xvy3SVLllx00UXF38pkMtdcc82HP/zh7u7upy3kcrkpU6Y8/PDDF1544dKlS59++ulvfvObTz/99MUXX9yvoyrGyy+//LiFqpBLjod9R/XyMDZlypQlS5bceOONN91006ZNmxKJxKRJk84///wzzzxTGsvFixdnMpkbb7zxmmuuaWxsPOaYYy677LIef/2EE044//zzP/ShD40aNUpu8Tzv1ltv/fd///eLLrqou7t78uTJX/7yl88999xdH+WcOXMWLFhw5ZVXHnbYYbfcckvBu4yxRYsW/frXvzbXF8Aee+xx2223XXXVVSeccILnefPmzbv99ttbWloKvnvZZZddeumlRxxxRFNT05lnnnnKKac8+uij/bmA+Pa3v93Y2HjllVdu3ry5paXlox/96KWXXirfeuONNx5++OHir7z11lsbN26877777rvvPnv7s88+u/fee//mN7/5r//6ry984QsApk2bdvPNNx911FH9OqRi/OQnP7H/OXHixKVLlw7yN8sNx8P+XK1q5SHbbVKMDg4OwxxuRriDg0OF4MyNg4NDheDMjYODQ4XgzI2Dg0OF4MyNg4NDheDMjYODQ4XgzI2Dg0OF4MyNg4NDheDMjYODQ4XgzI2Dg0OF4MyNg4NDheDMjYODQ4XgzI2Dg0OF4MyNg4NDheDMjYODQ4XgzI2Dg0OF4MyNg4NDheDMjYODQ4XgzI2Dg0OF4MyNg4NDheDMjYODQ4XgzI2Dg0OF4MyNg4NDheDMjYODQ4XgzI2Dg0OFMPTm5tlnnz3vvPMOOuigqVOnzp49+6STTrr99tv78sV169a1tra2tra2t7f3d6eXXHJJa2vrD37wg/4fb++4/vrr5YH98Ic/LMfvO5QDf/rTn0499dQ5c+ZMnTp17ty5Z5111rPPPtuXL/7lL39pbW1dtGjRAHZ6xBFHtLa2PvTQQwP47s5w6623tlrYa6+9Dj300LPPPns4PCp+iM3N008//elPf/qRRx6pq6v7wAc+MGrUqOXLl3/zm9/87W9/W9odvfvuu62trTfffLP856xZs4466qjp06eXdi8S9957r3xx//33u2ciVwVuuOGGSy+9dNmyZVOmTDnssMMYY08++eRZZ521YsWK0u5oyZIlra2tK1eulP88/PDDjzrqqNGjR5d2LwDi8fgBBxxwwAEHzJ49u7u7+/HHH//0pz895BYnNrS7/+1vfxsEwcKFC3/xi1/ILZdddtkf/vCHW2+99cwzzyzhjowJkDj33HN7fSL9wPDGG2+sWrWqsbGxtrZ2w4YNL7zwwty5c8uxI4cS4pZbbgFw+eWXn3322QDS6fTHP/7xlStX/vGPf5wzZ04Jd1TAw6uvvrqEP25jzJgxd955p3zd0dGxaNGidevW/eUvfzn00EPLtMe+YIjVjYyDRowYYbZ885vffOKJJ2x5uWTJkhNOOGHmzJmzZ8/+1Kc+9cQTT/T4U6eddpqtXx5//PHW1tZ58+YBOPHEE6+88koAP/zhD1tbW7u6ugqCqVwud+211y5YsGD69Olz5879/Oc//9Zbb8m3fvOb37S2tl544YXPPPPMokWL9tlnn5NPPvnll1/e2Rn97W9/A7BgwYIPf/jDKKKXw/BEAQ9rampuvvnmZ5999oorrpBbdsGQAsgQxuiXq666qrW19Ytf/GJXV1dra+ujjz4K4Pjjjz/xxBNRFExt3LjxkksumTdv3vTp0+fPn//973+/o6NDvvX5z3++tbX1f/7nf373u98dfvjhc+bMueiii7Zt29aXs2toaNh///0BZDKZAV2ekmGIzc3s2bMB3H777V/72tcefvjhtra2hoaGyZMnc64O7Be/+MXXvva1V1999aijjpo3b96zzz772c9+9uGHH+7XXk466aTx48cDOOSQQ84555x4PF7wgQsvvPCnP/1pR0fHCSecMH78+Pvvv/+UU05Zv349gFQqBeCtt9665JJLZs2a1dLS8uKLL37+85/3fb/HfUlzc+yxxx577LFw8VSVQPLwsssuu/rqq5955plcLjd27Fg7xtkFQ/qIeDx+zjnnyNeLFy8+6aSTCj6wbdu2j33sY3fccUdTU9PixYuDILjlllvOPPNMyTTJw3vuueemm246/PDDgyB48MEH//3f/70vu+7s7HzxxRcBDK20wZCbm4suukja3SVLllxwwQVz58496aSTfve738lL3N7efv311wO44oorfv7zn8urD+DHP/5xv/Zy/vnnt7a2Ali4cOF3v/vdRCJhv/vkk08+9thjjLG//OUv11133V//+tdZs2a1t7f/8pe/BCAN36pVq6677rprrrlGqu533nmnR+f22muvrVq1KplMHnnkkYcddlhzc7OMp/p/YRwqiiuuuKKlpaW7u/vnP//5aaedtt9++51zzjmPP/64fHfXDOkjEonEd7/7XUmnCy+88Pzzzy/4wE033bRhw4Y99tjj3nvvvfbaa++6665EIvHiiy9K7SO/uGbNmrvvvvuaa6657LLLADzyyCM7293mzZtPOeWUU045ZfHixYcffvjGjRvPOOOM0047rX/XpdQYYnPT3Ny8ZMmSG2+88bTTTttjjz2IaPny5d/5zne+8Y1vAHj++eel/Fu8eLH8/PHHHw/gjTfe2LFjR6mO4amnngIwZ86cvfbaC0A8Hv/oRz8K4LnnnjOfGTdu3MEHHwxg2rRpdXV1ADZt2lT8U/fddx+AI488sra2NhaLHXPMMXDxVDVg3333ffzxx6+88srjjjuupaUlm80+9thjZ5999p/+9Cf0jSGDh9zLwoULpZAZN27cgQceWLCXBQsWNDQ0ADjggAMAbN++PZ/P9/hr+Xz+hRdeeOGFF1asWNHR0eF53ttvv/3aa6+V8IAHgKEvhHPOjznmmCuvvPKxxx5bunSpFJl33nnnunXrtm/fDiCZTNbW1soPjxw5Ur5oa2sr1QHIvdj5I7kX26LZ79bU1AAQQhT/lIykli1btmjRokWLFsk0k4unqgJ1dXWnnXbaz372s3/961933XWXDK9+8pOfoG8MGTz6xUNJQuyEhwAmTpy4WuNf//rXueeeu3Tp0s985jMD6BopIYbS3HR2dj7wwAPXX3+9yWBNnDjx2muvjcViAN5+++3m5mYA2Ww2nU7LD5jcmD0qElJtmp/qYxYNgNyLHGz7u8a09RGvvvrqm2++CWDLli2vvPLKK6+8IhWQi6eGOd5999077rhDhskS+++//3e/+10A69ev932/XwxhjGFIeViMlpaWL33pSwB27NgxtFQcYnXzf//v//2v//qvq666KpfLyS1///vfZeJm0qRJBx54YDKZhBWP/PWvfwWw7777NjY2FvyUTOzJlBiAe+65x35XkqCrq6v4GA4//HAAL7300po1awDkcrn777/fbO87ZCR14IEHrrawYMECuHhqeGPNmjWXXHLJ97///bvvvltuCYJAZkzGjRsXi8X6xRCbh11dXbIUZdArDx9++GF5L6xfv/5///d/d7aX/sLUc+vr6wf/awPGUPbd1NfXf/3rX//BD35wyy23/OUvf5k4cWJbW9vGjRsBnHzyyXvssQeAL33pSz/+8Y+//e1vL126dNu2bUuXLvU875vf/Gbxrx111FF33333Qw89dPHFF3d0dMgKoolixo0bB+CWW25Zu3bt17/+dfuLH/zgBz/0oQ898cQTn/zkJxcsWLBixYrXXntt9OjRF154Yb9OR5qbgu7S44477vHHH7///vu//e1vS6o5DDd84AMfWLhw4YMPPvjlL3/5iiuuGDly5MaNG2W0/pWvfAX9ZMhRRx31xz/+8eqrr3711VeXLVs2fvz4LVu22Dxcv379d77znfnz53/nO9+xv3jeeectWbJk9erVJ510kswl5fP5+fPnH3300QM4KZkqlq/b2tpWr14NYO7cuTLpM1QYYnVzzjnn3HTTTQsWLKirq3vzzTc7OjoOOOCAyy+/3NSePv/5z1999dXTpk174IEHnn/++fnz5//hD3/o0d4vXrz44osvHjVq1NKlSydMmCA7JrLZrHz3c5/73LRp0zo6Ov75z38WhLuMsRtvvPHiiy9OJpN33XXXli1bTj755DvvvHPUqFF9PxETScn6t8FHP/pRz/M2bNjw/PPP9+fCOFQOjLEbbrjh+9///ty5c4MgeOONNzjnCxYsuPnmmz/1qU+hnwy59NJLjzvuuFgs9thjj33iE5/4xCc+AYuH//Zv/zZq1Kg1a9a8+uqrBV9saWlZsmTJySefvHnz5rvuuiuZTF588cU33XTTwLyUSRW/8MILmzZtmj59+le/+tXf/OY3psVkSPD/AbQ2ejAHOfOBAAAAAElFTkSuQmCC", "path": "image.png" }
Which solution has a higher concentration of pink particles?
[ "Solution B", "neither; their concentrations are the same", "Solution A" ]
1
The diagram below is a model of two solutions. Each pink ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the pink particles represent the solute. To figure out which solution has a higher concentration of pink particles, look at both the number of pink particles and the volume of the solvent in each container. Use the concentration formula to find the number of pink particles per milliliter. Solution A and Solution B have the same number of pink particles per milliliter. So, their concentrations are the same.
neither; their concentrations are the same
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAIAAACmkWkFAAA9YklEQVR4nO2deXwURfr/n+qe+85MAgmQ4HAZEkCisihBwQORG5VVPMBbxPVcEVY88ED5grJ+Eb8euPgDL9DViMipuwqCKKyLYCCcEiABcpFk7rO7fn/UzGTIOUfPTE+o94sXr56enuqark8+z1PVNV0IYwzpxslGR4fH5BnUSagJ5XyG6jBaJKmuQHPcfu5IrfVwrcXt5yxur8XtS3WNokYuYbpqlHqlrKtGOTAnQyFhU10jStRQHSYCJKrsptru/mT3UY+fb/+wDI0aAQAAQoAg8A8QBHYCIICzDpeX66CcJCCXMFMGmvMyaIhLJ6gOE4S47Gb5rsM1drdModYajHKZTCGVKuQyKQIJAyyAhAEJAgkCBgU22OA2i4ABYIN7yDYT3A5tIAAU3MYYeAAOYwzA8ThsO7Cfx8BjHLbdtD9wZGAbwkvgAbx+zunyOtxeq8NpszvlEuavVw5I9aWlRAHVYYJgUnv6ZlhcXgDI6HaBSpehUKqlMhkAEDtEKLgFgeiBg9tNB4RtN5ko2caAwz6JA8djhBDGgBACALINZD85FIWFKwQ4uB8hhIP7EQKMMQRLAAwSltWoFVkm3QU9ugJAh0GSIjaoDhOEuOwmL0MDAG6HlVxdkngFmgYHt8IamGw3HRC2HTwWAIeluMFPosDxCGMcaCcAsk3kQFRBDgpuAwruxxij4P6ASoIlhIrGGFxeHwB00SgEvkyUBEN1mCDEZTc9MzQA4HXYydVtFijSJaoEt6GhwQpB7VLSCKrDBCEuu+mXpZOzjMve4LZb0z2qON3esw1WABiUYxT8QlESCtVhghCX3egVsit6ZQNAXdVJnuPSN6pwPH+84gwADDd37SqCJJYSFVSHCUJcdgMAQ3Iz+2bqMM+fPvmHn+MgDaOKn+MOl5/2+rg8g/oKc9dEXCVKoqE6TASisxsAGF+Qm6VReD3uihN/uD3u9IoqTre39MgJl8erU0hvGnRBIq4PJTlQHQqOuObdhHD7uU92/1FjdzMM0yUzK0Ov1yoUYp7v4PFxDU5XXaO9wWbnONw3Uze+IFcM8zgp8UB1KCwitRvCurKK0qqGVNciaoabu4okd6UIAtWhUIjabgDgZIPjUJ3l14raph6zOMEYA4zq1z0vQyOGMTmKsFAdCoLofqLZjLwMdV6G+teKOgCYdvkgkoIiAASBjWYvIWw/BLNWhAP7Q3vIBo8BA/AYYwBMtgFjQDzGENiPyLs8huCewKdw6F0EPp7/YtchFqEhuZkpuEaUxEN1KAhiHCpuk+AAG2lXBGGD/OfeEQi9JMcDIgNpTe8G7wgABkxanYzABe4RBIJEMPVr2hMqFgeOJ+NzYTKidH6oDmMlrewmeA8AQ9O/UNOF3xEIvSTHAya3CeGcpg/EFhRoORy4LxkY7UeBbVJWcE+oWBQ4HgNCiOcxALBIxO1MERCqw1hJK7sRa1TBgagi3mamCAnVYaykld2INqoADwBIzFksRUCoDmMlrexG7FElQV+bIjKoDmMlrexGtFEF8yDuPjNFSKgOYyWt7Ea8UQWBuPvMFCGhOoyVtLIbsUYVDmMQdzNThITqMFbSym7EGlVIHZCIm5kiJFSHsZJWdiPWqBLsMyfqe1PEBdVhrKSV3Yg1qoh/vgNFSKgOYyWt7EasUUX8fWaKkFAdxkpa2Y1YowqIPqpQhITqMFbSym7EGlXIbE5GzPOrKAJCdRgraWU3Yo0q4p/NSRESqsNYSSu7EW1UEX0SSxESqsNYSSu7EW9UEfsQHUVIqA5jJa3sRrRRhRd7M1OEhOowVtLKbkQbVQBA3H1mipBQHcZKWtmNaKMK5kHcUYUiJFSHsZJWdiPaqCL6X+JShITqMFbSym5EHlXEnMVSBITqMFbSym7EG1UAxB1VKEJCdRgraWU3Yo0qwRuQifreFHFBdRgraWU34o0qpJlF3M4UAaE6jJW0shuxRhXxz+akCAnVYaykld2INarwoo8qFCGhOoyVtLIbsUYV8feZKUJCdRgraWU3Yo0qZJ+YowpFSKgOYyWt7EasUYUT/XwHipBQHcZKWtmNaKOK6GdzUoSE6jBW0spuxBpVxP9bFYqQUB3GSlrZjWijCg8g7gU3KEJCdRgraWU3oo0qpCIijioUIaE6jJW0shvRRhXRz3egCAnVYaykld2INaqQEsTczBQhoTqMlbSyG3FHFVbEzUwREqrDWEkruxFrVAlOHk/U96aIC6rDWEkruxFvVAEAQGJuZ4qAUB3GSlrZjXijitjnO1CEhOowVtLKbsQbVRCIu89MERKqw1hJK7sRa1ThRN9npggJ1WGspJXdiDWqkEqIOYmlCAnVYaykld2INaqIf/VCipBQHcZKGthNlc0FAAqpRLRRRSmVhOpJ6axQHcZPGthNWXUjAPQ06UUbVXJNOgDYX92QmAtAEQVUh/GTNnaTZzKINqp0z9BIGHTG6rK6vQm6CJSUQ3UYP2K3m9NWp83jU0glXbQq0UYVhkE9jDoAKK1qTNB1oKQWqkNBELvdHCAZbKYBEBJtVEGAco1aAPj9TH1iLgMlxVAdCoLY7WZfVSMA9DQamlpUfFEFA842aKQs0+jy1tjdibkSlFRCdSgIorabSovT6fOrZNJMraqpRUUZVRBArkkPwR4+pTNBdSgUorYbksHmZhogvEVFGVUQQnkmLQDsqxLvfQFKbFAdCoV47QZjHLgXYNRDeIuKMqpgjDM1SqVUYvP4TlmcCbkilFRAdSgg4rWbCovT6fMrZVKTRgXpEFUQQrmZZOJDY0KuCCUVUB0KiHjt5kBNIwD0NBmCsUTsUQUAcjO0AHCguoFvOj0lvaE6FBCR2g3G+GC1BQByTYZgLBF7VAGADI1SLZc6fdzJBkcCrgol2VAdCotI7eZko4NksBlqZRpFFYxxnkkP4p5ITokcqkNhEandkHsBF2RmQFMsSYOoghDKNWkB4ECNhePFlcdSYoDqUFjEaDc8xmU1FgDoYTJAUyxJj6iiUcgNKoWP4/84axP8ylCSCdWh4IjRbk40ODx+Ti2XGVQKSLeoAoB7iP6HuZRIoDoUHDHaDbkXkGfKIC/TK6oAoDyjFgCO1Fn9HC/ohaEkFapDwRGd3fAYH6yxAEBupp7sSbuoIpdJTVoVx+NDtVaBrw4lWVAdJgLR2c3xejvJYLUKBdmTdlEFMO5h1ILI8lhKVFAdJgLR2U0ZyWAzM0JhIe2iCiDULUMLAMfO2lw+v5BXh5IsqA4TgbjshuPxoeC9gFBYSMeoIpewXfVqDHBQNHksJXKoDhOEuOymvN7m5XidSqFRyNM6qmCA7kYtAJSJ8oe5lPahOkwQ4rKbAySkGA0QFhbSMaoggByDlkHoZKPD4RVFHkuJHKrDBCEiu+F4fLi2qZnTPapIWKarQQMA+8URWCgRQnWYOERkN3/U27wcr1crVQoZpH9UwRjIc6pF+BwASjtQHSYOEdkN+X1Kt4zAOj7pHlUQgi56NcugKpurwekR8EJREgrVYeIQi92ck8GSBkv/qMIglJOhBYD9NY3CXSpKAqE6TChisZujZ61+HhtUSqVc1mmiCgD0MOoBoPRM6rvNlEigOkwoYrEb8jjYHKOBBAHoFFEFAIwahUzCinYhDkozqA4TiijsxsfxR+usANDNqCdBADpLVGEYpluG6H6YS2kVqsNEIwq7OXrW5udxhlqllMk6WVTBGOcYyW3IRsGuFyUxUB0mGlHYzYFQBgvQyaIKQihDrZRLJTaPr9IirgfHUppBdZhoUm83Po4/UmcBksECdL6oAgDdRTPxgdIWVIdJIPV2c6TOymMwatQyqRSgE0YVAOgW+N1Ko9gW4qCEoDpMAqm3G3IvIDtDH7iAnTGqaBVyjULm9nMnGuxCXDOK8FAdJoEU243Hz/1x1goA2UZ94AJ2xqgCCHIyaH9KvFAdJocU201TBiuRduKoAjjwHICDIluIg0KgOkwOKbYbci+ga4ahyfI7aVRRyKR6lcLH8UfPiuJBR5RwqA6TQyrtxuPnjtXbACDHqG+y/E4aVQCA/G6ljPanRAbVYdJIpd0cqrXyGIxajYSVdPqoAgDZGYGFOLx+Lv6rRxEKqsOkkUq7OSeDPQ+iikzKGrUqjseH62h/SkRQHSaNlNmNy+cvr7cBQFeD7hzL77xRBQHKztAAvT8lJqgOk0nK7OZQrRUDGLVaqURynkQVDLirQYcAykWzEAeF6lCAixgxKbMbsiJq1wwDAJw/UUXCoEy9Bgcfvk1JOVSHcV7AqEiN3bh8/hP1dgSQZdABwPkTVQChrvT+lGigOkyyDlNjNwdrLBggQ6eVsCycT1EFMM7SqRmEKsSxEMd5DtVhknWYGrshK6J2yTCQl+dVVGEY1MWgAYB9IliI4zyH6hCSq8MU2I3L5z/Z4EAAmXod2XNeRRUEqIuB9qdSD9Vh8nWYArspq7YAgFGvk7Is2XNeRRUMOFOnkrCMGBbiOJ+hOky+DlNgN+ReQJbB0NQQ51lUAUCBhQ1pgpM6qA6Tr8Nk243D66todCAAk17X1BDnWVRBCEgeW0qHb1IE1WFKdJhsuzkQyGD1EoY5b6MKxmDQKKUSttHlrba54rmelNigOkyJDpNtN+ReQKbBgJsa6HyMKgDQlT5wK3VQHaZEh0m1G4fXd8riZBAy6rSoqYHOx6iCUKDbTO9PJR+qw1TpMKl2Q9a4ydDrWIY5z6MKxlirUihkEpvHV0EXhEkuVIep0mFS7Yb8QMNkMEBT8AA4X6MKAO5q1ANAGV3xLrlQHaZKh8mzG6vbe9rqZBAyarXQFDwAzteoAoC66AN5LF0QJmlQHaZQh8mzm7IaCwBk6PUMwwCNKggBYJVCRhbiOE4XhEkWVIcp1GHy7IY8M81kMISiBI0qGOPMDB3Q/lQSoTpMoQ6TZDdWt7fK5mIYxqDThqIEjSoIBfLYg7V0QZhkQHUIKdVhkuyG3NU36vRM8ELRqELKl8skOpXSx/FH6IIwiYfqEFKqwyTZDbmrb9TrIWjtNKqEys/K0ADtTyUFqkNIqQ6TYTf1Tk+N3c0wjE6rhaC106gSKj9TrwGAI3UWuiBMQqE6TLkOk2E3B0L3AhCiUaVlVJFKWINWxWM4RBeESSRUhynXYVLsJpDBGgCARpWWUQVjyNLT/lTCoTpMuQ4Tbjf1Tk+tw80yrE6jAQAaVVpGFYTAqNMghMrr6YIwiYLqMFj7VOow4XZDBucMej0KtgONKi2jioRljDoVpgvCJAyqw2DtU6nDhNsNefCygWSwQKNK61EFA2TqtUD7UwmD6jBY+1TqMLF2U+twN7i8LMNq1erALhpVWosqCMCgVTEMqrA4rG5vLNea0jZUhyLRYWLthgzOGQwGFDJ5GlXaiCoswxjJQB3tTwkN1aFIdJhYuwl0mHX6pl00qrQRVTDGwTy2IbqrTOkIqkOR6DCBdlNtdze4vBJWolapm/bSqNJGVEEI6dUKCctW2910QRgBoToE0egwgXZDMlhd6F4AgUaVtqMKQsikVwPAPvpEUeGgOgTR6DCBdhO4F6AznLOXRpW2owoAmAxaoOv5CgrVIYhGh4mymyqby+bxsaxEqVSd8waNKm1HFQDQKBVkIY4quiCMEFAdikqHibIbMjinNxgYBp3zBo0q7UYVhCDToAO6QoNAUB2KSoeJtRud1tDk7gQaVdqNKhgDuQ1ZeqYeN792lKihOhSVDhNiN6etTpLBqlSq8OE5ABpVOo4qKoVMLpU4fVylxRnNVac0h+pQbDpMiN2QewF6vQHC3Z1wnkUVnucxxjzH8zzP8RyPMcdzGPN+v5/jyP+cz+fn/H6fz+f3+71en8/nM2jVQBfYjBuqQ7HpUCJUQeHsq2oEAK3OAIEmxE1xAAGPgQHAGPMMQhgTT2UZ8POYAcAIMA8IBaIHAuABMwAMAg5jhIBBgQYmG+R/wJhBwCCEMQ7tJw2GEKCAAgJSQcG3eAwYgON5QIjnMQbgAfMYyPIXPA5sYwDyAFceY7ITA/A8D4jxcxxG5HjE8TwpDQMiJXA8BoQ4npSNyMcD7yJScuBTPA5cJVI+CzwAHKhuvK5fN6Z5XKZECtWh2HQovN1UWpxOn59hWZ7HDoeDAWAAMwhYBKS12GAzBDYAswwiGwiARQghjCBwMILAYaSBAWMWofAGZkg2CMAghCDYrsHmDD8AAQoOFwZcn7QrDrVccAMH24O0AQ62DWmPUCPxpIV4jDHwmLRWU1Thg1EFAFDg4xgQwhijoDLO6TOTE2EAABaBTMK4/Vx5vb23SSt4G50PUB2KUIfCd6ZIBqtSBSqHULDfGHjd1Acm1osQCk8PMckl2+gzI4Sa9ZnxOR3h4MEo1NtFwQIDeWXgyp7bZ0Yo0AcOdbxDfVqEULM+MwqGPAYxocq11WcmixmRTnX7feZzqs0wSpkE6P2pOKA6FKEOBbYbjDGpmVKlCe4JjooHXjf1gUl6Rlw21KyIjJS10WcOWDOE/wvvCAcPDtoz6dAG+9YIhVrr3D4zxoE+cKjjHeozY4yb9ZkDKTkCHvOhyrXTZ4aAmIJRpY07AudUm+fVCikAHKq1+Dk+3lY5LzlQ0whUhwLoUAbC6VDgzlRFMIOVyeVkDwpc5qZGw8EW4jFmESJRhYQWRK47DgyqEULHh0cVgND/ODz8BA5GAacODNcHmpg0Jg6OwJPXiMcYIYR5jEiEw4GognHA9TH5ZDD/DPTBMWYQw/E8+VKkIQOfDx4JGBiG4Xg+EFVwQHZ88EiEAvXhA4E0KDmGYXheLmU9Pu7oWVt+F72wzdTpOdnocHj9LCNJpg4Vjeuljh1S1z4EAJwFWD2W5/kNYzjtMCTJoDoEwe0mGFJ0gUYLdE1xqM0AN90pZINRhWFQKJULu4yhPDNwfMiMm3rFEK6hQN8YghGAHM8ExuiCeWWwCx0eVfiAAJqiSrBPy5OqoOCoWyCqIGiKKrj1qBJPnxnzPEKMQibx+Liy6kZqN9FCelIKtTY5OlTVr9KefpbhLM3rYf9JenYVZvW+LjO4rjOwRC8eHWq8+23SgiTrUEi7wRgfrLYAgEKlCbWr2LIb5D6OfJWM9ScAwKweqQb4FQVIYhBbVOF5XiWXWBweshCHTMIK2FKdHtKjT4IOGa4x89hkqWtfO5VBnEV2ZhGuX+3pvRKrBqUqu0H+hkz7l3r3LpPr2/Dq2aT9T6tuqlBM9jK6ROtQSLs52ehw+vwsK5HKZCLMbiSnF0nOrgbPyWbVlgH49WO8XR7waYaJKrtBmFfIWLeXO1RrHZiTIWBLdW5ONNjdfi4JOpS5SzNP3Ml6myuqVZDnpPzwZG+/NVg1KPnZjcn6+QUN8yV8Kyu6aH0HLrTM72VbUq6667jqTg/SJk6HQg4VkwxWrtKG2hJAFHcEGOt2RenFktOLWnoNQWLZqDpyg+bIDQxvgYCkEMR3R0CCLVr3L10cJbmNS4yuzQquMqo7AhjzCCGFVAJ0vl+UkMd6y9WJ1SHDN2ZUPBKh1wTO6bfIDk9mnL/jYEQM9qwgcXemJNjSq25Wn7OzW/WaEFLe1s++dGj9HVLemjgdCpbd8BiTZlaoNIAghqiic24DQAxCCGGftAcn7SlIdiM7u0p2/JFIvgJr36E9eI3dvMKnKIwnqhjsm4y2Lw3Ob1ueolE+9Jj2kUbFZZFkNzzPK+QsOOB4vc3l8yulCZmT2cngMT5UYwEApbK5DhX+4z0dn2U71+u8TX0fu3yARTm8VjfVJR8QVXZjrHhE5m6vD9UqyG+RHH/EX7g1adnNhaenqrwHIqye3n/wyvrJWzK+8iAdJECHwfnRcXO83r5qzzFGIs3MzmMAWKZpMhUDgAAHpleR/QAsAgDMIpTlWJ9pWW10bGhWoFsxwKEqrs96CksMoalWqI3ZnKENACDTOoloZGdXySPzmhCY1dX3/w9m9fy5064AIDTDCgdnc3I8zwMmnWoeY6mvIrd6lsb9S/unOKO68bDhGS/StTWbk5RP5nQ12D1ur/+6ft0v6WGK6oucnwR1KMnM7hnSoYY7UWBZlGdf1c4H69VjT3aZ75PloeDUPgYABScBouAeIjOlY3t2+eSYK+k3L+VMt4ZcLJJZxVHpEAeOQT2r/2qyfxlt9SyS/B+MaxKhQ8E6U2U1jQCgILOqEIRMDLc930Hr3TegcmK/09Nbeg0AKNz7TPXv9Tp6ialmETkeopzvwLpKZRXPRvtFEGfV/3FjaD4CxpHOd1B69verGNuh1wBAjrNkWNXIbs6S8OwGWmQ3JHwpZAwAlFU3RPtFzk8COlTqAAI6NHhLrz4zsn2vAQCjY8OAk1dl2DaQtmh/3o227r14Kik5/VoS5t0Y7Jti8BoA0PsP5jveggToUBi7CWWwCjKrKoI+c5Z9/cDKSXrXT+2XzHIWU+2i7JPTWa4x2rEbecUzqOW9yQiQuPar6pZF1WdWest6nZrKtts9DkfK2wob5hi9O6HdsRvAIJdKEIJKi5MuCNMhIR3KyQIvGHq41l1bNULGRyQDCWfpc3q60bIKOhq7Uds2xlVRz0nk+B0SPHbTo/6lmCvY27VSylsF16EwdnO83u72c4xUxkhkAB1nN1mO9QVV0yWRiQAANLYNOeWTo8puJA3rWduOmL+Rqnpx5FGF9Vu6Vz8ZudeEGFw/U8lVtp/dAAJFYCJ5LNZ5XhHQISthJXIAyPCXDqmPrisNAOaqR1Se0nayG4Vje/xVZew/QSKzG4Njs8x3KubqSXlbT0+J4DoUxm7I7D6ZUouCX7ud7EbjLc2viVoEcve+rMqHI89uJJZWOmiRgzir3LI+wqhisnyg9JTFcBYpb+tvebX97AZB6L4A7U91ANGhXKUjl/GKujsizGua0evUne1kN2xMKXNz/FZIZHajjqBT3z7dPP8WXIcC2A3H44Mkg1WqcfBrt5Pd9KubG3leE46mYbXcti3i7Ca+dBdAbt0cSVRhOYuxcXnMZ+nq+ZfWd6Cd7AYDlkoZhKCGLgjTLiEdylRajKGX41O1vyK2omS+kzl1i9rKbmSe/fHXFnlOQrvZDeM9qapdpj96Y5ffc7JLc3JKc3IO5Hcpv0lXs1hl3dhhdqOKKf6Fk+n7j+A6FMBuyhvsXo5npTJGIuswu8lwbze4Yu/jZNS+HunYTfRdm2aw3opIoorB+k+Wi+tcPVwl7Wc3AIE8dh9dQbxtwnQoRQjy7e/EU1qGZXVb2Q3P6OKrKQAAludBG9kNw1mVp58zlA1RnX5e6mj6Y2E4q9z5s752cVblfV0r75X6K9rJbmT+yvgrKbgOBbAbMrtPotSGrLqd7Cav8d14zqVw/MR6TnSY3bDWbfGcJUQk2Y087jBi9OxsP7tBCMnlEgDYR/tTbROuQ5XvRIYvrhxE5jup9JRCa9mNRzEgroqGFdcyu2Hd+zT7L1HULGv/0yrbph7low3177eV3cQzcBNC6T8prA4FsJvDtSSD1YSsup3sxuju4FZUh6htGzvMbiDsjDGDeEsk2Y0i7tRa7z/YfnaDMZayLMOgRpe33kXvT7VOuA61XBSTfdtC4/gJWstu/NLc+AvHikJokd2w7n3Kw5NRZMkyw1lN1S90PfPXVrMbr7R7/JV0SfKE1WG8dnO4zurleEYqZ1hph9mNzlva/kzqSJA6SzvMbjhlYZxnAQDM6CPJbhSeSKdstoOMt0K72Q0AZhEDAE6vL/7TdT6a6bCrJ96oBgAMJo0SeBnKbvzynl5FvALjjePh3OyG4S2Ko3dG6DUhdJZ/ahtXt8xuvJIecdYQEqDDeO0mmMFqIMyq28puJEIM6Ut8FR1nN5KM+E/EyXpEekcgbryMDtrNboD8/AvA46dP22qFZjoEAbJbaGfejVM/Lp6CedPUgC+EZTfS8keRN5ax7azaF6Xkp1th2Y1TXhBPDQHgtOwawXUYr91UNDoAQKrQQJhVt3dnSggiuTPl04+J8yxedXEk2Y1b3j/OE0FYtdvJbhDDAICXPtyvNZrpUJgw0MadKUDQkPUUJ4u9S+XvPrvZrGLk/F1iifFeKstZu9S+SCoXym4sqtExV49QJxsiuA7jtZugSQeauON5N0IQyZ0pLmNsXKdgtB799ZFkNzyjj+vLALjY7h2O3QTPD24/F+fpOiXNdFgtL46/TB6RlDN4CgAIehlCqK7H0tiK9V2wFMt7NstuJNVx/SpCa/+W5Szh2Y1deZldOTTmAn1Ic0J+o+A6jNduAidnzrHqtrIblxBjbB7lgEiyG6/xViyP/XSurAcwa4gku7FprovzG52V/imi7AYhAPBQu2mNZjq0sXnxl2lXF0Mb2Q3G2KMeXh+943CmW7jM21AoegXLZxrjnSamtX8bnt0AoNOGx2Mu7aD6YR+jE1yH8dsNAASe4dNhduOS9LTJ4x1j86qLI5p3g8DdY35sp8CM1pX1AEQ2m9OqiTdrrVTdGEl2Q5QkYxO1znJa00yHTmnPBmlcSvNKc13ygdB2dgMIHMZbo3IcX9cHvOa3IfDT7aY/GcZZGu0IcUuk/srw7AYA21XDqvV3x1DUGfk1f6juggToMF7tMuT6Yw4iG7upVwyP53Q8o3OriyPJbjAGv2Gct9vsaE+BGa21z1c8o4PIfqvik+Y2aqfE/I2s0vyzsqGRZDcchwHApJLHfK5OTEsdHtTMjKfABv2t7Yzd4OBv91zGW8/2XtPhOA6W53p6f+jLfTUUlM/JbvwC3EJRO39ult0AxpWmeXWam6IqxyK58DftggTpMF670SmlAMB7PRDZ2M0x42x/HJMyrVkP8hJDhNkNAPi6zfGbbom8fMxoHXlv+pQDovqtSlWXeRwT46JfpfqFHf5miqiHrLxhUiliO1HnpqUOj6lvc0hi7E17pblnMme3c2eKZDdEgR7N8Jr+v1nzlnpauzvBqQo9ufNd/bf4M8YG75k1z24Eo7Wn+R3vsrhKF2mOUyW/9ueMj/2sPkE6jPcBcbl69ckGB+/3QPBCEtMm9gokHQh7mp8fGSoMD5rrF8VwLp7RWYz3Iwwomqf5ec1v89rhkTzQD8t62Mwr/coBCOOonqLGMfozmfN61MyK9hsd0s21Svvjtp/mRwIpQois8cwipJHTZ/q1Qqs63Jb58TXVE6Q46n7Kse4fRvvMbLfxNrfxVgQgt/8EwVU0edUAYA3kMCZQYNBhUECuOPg8AAFo41nFJ4zPn1WO6nP2Kbm/zanGLrb7Yc0jlcobeYwTp8N4tdvDoIZm2Q3pagTTJoTCHQEAwbGMORmuWH45dabX11iSEcoFgv93vBKD33Qrry2Wnl7Inv2s1ZIxq/NmP+XpMoOHwC+BUZRPwG/U34wBcqNxnBOaO09o7wGeR22sxBA4IyAeY48PA0CWhqY2rdOqDhskA3eZ3iqumx5VUeXZS53ygUysK4L4tMVkI/ypkqj99c7iuKcRwivtAW2vxGBXDfuvYluGY7POs1Pv/kXjO0g+ZZPm26T96+WXVcmu8TI6nGAdxms33XUqAOB8bp7zs6ykw+yG9LNKsz8qOj1RE830/5ruS73KgdAiqkS4EgOW5/nMb3N5rzK2n5BrH3KfQN4KXjscA/YbxvgVA8KTCxTTM2IbdH92yvt3r3tJ49rZ/nfxI+0hwzOnVVNC40EdZjdurxcA6HrhbdGWDiuV47d2WTus9o5IchyO0ZVnv2XRjg3oKlnrnWF5T8zq4hwtdiovbyu7geCKIPWq0XXK63jAOKhn8oxRnixGnngdxjt2I5ewfTN1AOC1N0YydkNigp8x/N5tbbU2olEVntFV9P7BnnFrsz5zJGM3qNnazBIDZxjLdZvt7/V//vy1/m6z/d3mcIoBod4p+VRwpCbq54y45QOOdPvsRJfXOdR6e/iRtkp1486ua6vUUyCClRhIrfwc5/PxAEAfV9wW7eiwVjH83922Vqintl+CVTmstOeWBu3YULYS4dhNLDpsMXbDG+KdlepQXdbq2E1ghkCsa4QLq0MBHo1+xupc8etRQCgj28yyDAOYPESaRcGnSQMOPSOdCT5rmmwYnNv71jws97U5d7ve9EBD1mzMGhACBgFgzCIU/lB0JhglSOKKIGxk59wDECAmIJ1gVAHgAeNzHz1NpEBcnzy3HAcjAAYIPLAanfPAanzu86hJbFB49is9ZTJ/pc79iw/pHLL+LrZ7rXKUF+ng3KgSet51+HPRyfOuMQIeY7vT53D7LszS3ziwZ5yN1YkJ6dDYrTeDoKUOM7y/5zpWZbq367xNabVHmlunHluru9UlH8AyCAEwgBEAixBCGEHT49DZsIfzC65DcP4uL7s65u9u0U05lf33VnVIFEv2kwPaym6SoEMBxh1zdCqzUVNeb3da63XGzA7HbkJ9YB5ji2r4b+Y9Gk9ppvVTtWcfChwCXmmuSz3crh3Ds4bAM/Ghgz5zO2M3KVmb2SUvtEsLAKGTPHm6fqBRUcSraJJjeA47PT4AuLRHZvyN1Ylp0qGtQavPaKlDq3xQmXxgWyuCsEQPKVqrHqsG+Y23SOpbH1tsH57R1pmeAGhdhyTRiWc1VwF1KMzCL/VOzz92HuYw1mV2UyiUkWc3JJikMKokLrsRJKrwgOssLj+H+2Xpbhp4Qfwt1bkJ6TCja0+pVJJeOgR/o6Ls6hh+pVmVvbhRf3Na6FCYKapGlXzUhd0BwFZfxfNch2M30DQcS7IGgOB0qiT3mZt6sMI9AV/APrPV6fVz2KCUTSwQYFZ+pyekQ8vZU+QvJo10yDN6d5+VOMpZaVbdFJtharroULAZ8UXdjP2ydJjnLWerwicS49ZWYgAAHPB7COR7wWYN9L1CzR52RwCiWYkhMLSOcbDAwJUPXNlg+YI/AT90R4AUFVojHAeqjprOeO4qmudUm+cRYmwur9PtlzDo5ovMUvrbhcgo6mbsolHwfn9j3em00yGnGOAo+J7TXB7hl63J+Xt1tzfSSIdCinhc/1yjUu7zuOurT2Ec+H26+KOKOLObBrvb6vQCwI0DL6A/XIiKmy8yZyhlPm9a6hBL8xx9v3bmLcHtzlP3KgpOmTfbDLckWof1dpeAOhRs0V6Cy+f/ePcfdQ4Pw7ImU1eVUin+PrPYxm78PF9rdXl8vIRBtw7uRSawUaLC7vV/9N+jjS4vw0oyTV2UaahD4Czys6vAWyF17Zc6fiYf8Kgv90t6WE33ueUDEq1Djocai9Pj5wTUocB2AwBejv9sz7FKixMANBqtyZgpZRjU9hrhwVZvatp21mZGUa4RHmhjHBhsD43AQyCsAU7M2sykBI7HgBB37p2pwLsIwh0ttEa4xeU7a3NhDHIJM3Vwr246lbCtc/5g8/g+21tea3cDgEajMxlNVIeR67DR6a23uTGAhEG3X9xbKB0KbzeEn0/UbC+v9vMYADRqjV6rVUilMpZlGSTyqJL87Mbj5/08trm8VpePvJufpb+2XzetXJqIpjmv2Hzo1O5TZ8m2Vq3RUR22oUOOxx6O9/l5m9vncPs4jAEgU60YX5Cbo1UK1RyJshsAsHv828ur9lc30uddRk4vo/ZPeVlmoybVFek8UB3GQIJ0mEC7CXGguvFEg73W4a61uz20yc9FLmEyVQqTWt5Nry7oYpBL6B2oREF12A7J0WEy7IZCoVBA2BvhFAqF0g7UbigUSpKgdkOhUJIEtRsKhZIkqN1QKJQkQe2GQqEkCWo3FAolSVC7oVAoSYLaDYVCSRLUbigUSpKgdkOhUJIEtRsKhZIkqN1QKJQkQe2GQqEkCWo3FAolSVC7oVAoSYLaDYVCSRLUbigUSpJgAMBmsy1ZsmTUqFGFhYUDBgwYPXr0W2+95ff7O/zwzJkzb7/99sRXMi7EUEmO495///2rr746Pz//6quvfvfddzmOI285nc7nn3/+0ksvzc/PnzJlyt69e+M5UVlZmdls/vbbb4WodbKhOkw0KdehBADuuuuuioqKxx9/vKCgwO/3//TTT0uWLKmoqFi4cGE8p4yHSy655Ouvv+7Ro0eqKiAsb7zxxvvvv//kk09edNFF//nPfxYtWsQwzAMPPAAAs2fP/vXXX1988cWuXbuuXLly+vTpmzdvzs7OTnWVUwDVYaJJuQ4lhw8f3r1799tvvz1mzBiy69JLL5XL5Zs3b3a5XEqlYEvMRM6pU6fq6+uTf94E4ff7V65cee+995J2HTp06IEDB9auXfvAAw8cP358/fr177///rXXXgsAF1100YgRIz788MPZs2enutbJhuow0YhBhwzJpsgSwiEefPDBr776KtTGn3322bXXXtuvX7+ioqLHHnusrq4u/GC73Z6fn//OO++E9ni93kGDBi1atAgA6urqnnjiiaKiogsvvHDSpEk7duwgxxw9etRsNu/cuXPmzJmFhYWXXnrpCy+8wPP8L7/8Mnz4cAC44ooryHUJsW3bNrPZ/Ntvv4X27Nmzx2w2//jjjwDw66+/3nzzzfn5+QUFBbfeemur2WBBQcGyZctCL+fMmTNhwoRQZbZv337HHXfk5+cXFxevW7du3759EydOzM/PHzNmTGlpKfmI3+//+9//Xlxc3K9fv5EjR65cuTJU2sKFC3v37t3KJWaYb775ZsaMGaE9OTk5RMc7duyQSqVXXnkl2S+VSq+44opt27a1LOThhx/+y1/+8vHHHw8dOjQ/P/++++6zWq3/8z//U1RUNHjw4BdeeKHlR9ILqkM4D3TI9O7dOzc3d/bs2Z9++mmz9iOUlJT87W9/mzRp0qZNm/7v//6vtLT0nnvuCV8uRqPRjBw5cvPmzaE9P/30k81mmzhxIsdxd9555+7du996663169cPHjz4rrvuOnToEABIJBIAeOmll26//fY9e/YsXrx45cqVGzduvOSSS5YuXQoA69at+/vf/x5ek2HDhplMpvATbdy40WQyFRcXHzt27I477sjKyiopKfn88881Gs3tt99eVVXV/pcPQSrz+uuvz5kzZ/fu3YMGDXrmmWcWLlz45ptv7tq1S6PRzJs3jxw5f/78999//4knnti8efP999//yiuvrFq1irzVp0+fq6++upVLzDAXXHCBXq8nL/1+//bt2y+99FIAKC8vz87OlslkoYPz8vLKy8tbreHu3btPnDjx/ffff/LJJz/88MOUKVOysrJ27NixcOHClStXEq2nL1SHcB7okJHJZP/4xz/MZvMzzzwzZMiQUaNGvfTSS/v27QsdsXz58uHDhz/yyCO9evUaNmzYM888U1paunv37vBSxo8fv3fv3tBl3bBhQ79+/fLz87dt21ZWVrZgwYLi4uI+ffrMmzcvNzc33IlHjx49fPhwqVQ6YsSIvLy833//XSqVarVaANDr9RrNOYv4sSx7/fXXN2vmcePGsSz7ySefyGSyxYsXFxQUDBgw4LXXXvN6vV9++WU737wl119//cCBA1Uq1Q033GC1Wm+55ZYLLrhAp9ONHz++rKwMAGw226effnr//fdPmTLFbDbffvvtN9544/vvv08+ftNNN4W222HRokUnTpx4/PHHSYHky4bQaDQOh4PnW1l0zel0PvXUU2q1+pJLLrnwwgt5nr/33nuVSuXo0aMNBgOpYfpCdRiiE+uQAYB+/fqtWbPm22+/ffbZZ/Py8j799NMJEya8/PLLAODz+Q4cOEAskHDRRRcBQLNCr7nmGqVSSQai/X7/v/71r0mTJgHA3r17WZb905/+FDgZwwwZMiRcIgUFBaFtnU5nsVjav0YTJkw4fvz44cOHAWD//v0VFRXkRKWlpYWFhQqFghxmMBjy8vKi/Qvs27dvqCbNXno8Hq/XW1ZW5vP5hg0bFvrIZZddVl5e3tDQEOEpFi5cuGLFiqVLl/bq1SuqugFAXl5eKP7odLpQ9chLq9UabYFig+qQ0Il1KAlt9e3bt2/fvvfee6/dbp83b94HH3wwYcKEXr16YYxDCRgAkG273R5eilKpvOaaazZt2jR9+vSff/65sbFx4sSJ5DCO4woLC0NH+v3+jIyM0MtQwxA6XNJzyJAhWVlZmzZt6tev34YNG3r06HHxxReTE+Xl5YUfqdfrm1WyQ+RyeTsvMcakwOnTpyMUWFOe2P/Zs2fDv1Sr8Dw/d+7cdevWffDBB2RQgFSyWfNYrVaNRtNsCCPC6rVfgXSB6rAT61Di9Xqrq6tzc3NDuzQazaxZs0pKSsrKygoLCxmGCTd7st0s9QKA8ePH/+Uvf2lsbNy0aVNRURG5d6jVauVy+fr168OPbPU7RAjDMOPGjdu8efOjjz66adMmMsBGTtQsIlkslpycnGYfDzUPwe12R3V28q3feOON/Pz88P3hV68t5s2bt3nz5tWrVw8YMCC0s1evXmfOnPF4PKE2Ky8v79OnT1S16hxQHUZO+uqQeeWVV8aOHdtscI6MEmVlZUml0v79+4ennf/9738BYNCgQc0KGjlypEKh+PHHH7/77juSWALA4MGDPR4Pz/O9gygUipZXv1XasknSg/3555+PHTsWOtHAgQP379/v8XjIy7q6uuPHj7espE6nCw810Wa5/fv3l8lk9fX1oa9jMBiMRmP4GFurfPnll//85z9XrlwZ3sYAMHz4cJ7n//3vf5OXLpdry5YtI0eOjKpWnQOqw8hJXx0yZJjnpptu+uijj3bu3Lljx4733nvvkUceKSwsHDFiBAA88MAD27Zte++99yoqKnbs2PHKK68MHTq05RWUy+WjRo167733zp49O27cOLKzuLi4oKDg8ccf37lzZ2Vl5dq1a8eOHfvJJ5+0XyeSJ3///ffk3kEzLr744m7dus2fP//CCy+88MILyc5p06Z5vd45c+YcPXq0rKxs1qxZOp3upptuavbZQYMGbd68+ezZsy6X680333Q4HFFdLK1We+utt77xxhvr1q2rrKz85Zdfpk2bFpqbUFJS8uCDD7b8lNvtfv3116+55hqn0/lLGF6vt3v37lOmTHnhhRfWr1+/a9euhx9+mGXZadOmRVWrluzfv39rGDt37oyzwCRAdRg56atDSV5eXklJybJly5YvX15dXS2TyXr06HHfffdNmzaNmOXEiRPdbveyZctef/11nU43atSouXPntlr6+PHj77vvviuvvDIzM5PsYVl25cqVr7766oMPPuh0OnNzcx977LF77rmn/VoOHDhwxIgRCxYsuOyyy1asWNHsXYTQ2LFj//GPf4TPQerZs+cnn3yycOHC8ePHsyw7ZMiQ1atXm0ymZp+dO3funDlzhg8frtfrp02bdsMNN/zwww/RXEB49tlndTrdggULampqTCbTddddN2fOHPLWkSNHvvvuu5YfOXbsWFVV1YYNGzZs2BC+f9euXVlZWS+//PLChQuff/55h8NRVFT0ySefGI3GqKrUkjfffDP8Zffu3bdv3x5nmYmG6jCaq5WuOkSdZoiRQqGIHPqLcAqFkiSo3VAolCRB7YZCoSQJajcUCiVJULuhUChJgtoNhUJJEtRuKBRKkqB2Q6FQkgS1GwqFkiSo3VAolCRB7YZCoSQJajcUCiVJULuhUChJgtoNhUJJEtRuKBRKkqB2Q6FQkgS1GwqFkiSo3VAolCRB7YZCoSQJajcUCiVJULuhUChJgtoNhUJJEtRuKBRKkqB2Q6FQkgS1GwqFkiRSbze7du269957L7nkkt69excWFk6aNGn16tWRfLCystJsNpvNZqvVGu1JZ82aZTabX3rppejr2zFLliwhFXv55ZcTUT4lEXz++ec33XTTwIEDe/fuXVRUNH369F27dkXywS+++MJsNo8dOzaGkw4fPtxsNn/77bcxfLYtVq5caQ6jV69eQ4cOveuuu8SwVHyK7eaXX3657bbbvv/+e7Vaffnll2dmZv7+++9PP/30Rx99JOyJTp8+bTabP/jgA/KyoKDgqquu6tu3r7BnIaxbt45sbNy4ka6JnBYsXbp0zpw5u3fvzsvLu+yyyxBC27Ztmz59emlpqbAnKikpMZvNZWVl5OWwYcOuuuqqrKwsYc8CAFKpdPDgwYMHDy4sLHQ6nVu3br3ttttS7jiS1J7+o48+4jhu9OjR7777Ltkzd+7cVatWrVy5ctq0aQKeKGQBhHvuuafDFelj48iRI0ePHtXpdCqV6syZM3v27CkqKkrEiSgCsmLFCgCYN2/eXXfdBQAul2vKlCllZWWfffbZwIEDBTxRMx0uWrRIwMLD6dKly1dffUW2bTbb2LFjKysrv/jii6FDhybojJGQ4uyG9IMyMjJCe55++ukff/wxPL0sKSkZP358fn5+YWHhLbfc8uOPP7Za1NSpU8Pzl61bt5rN5iFDhgDAhAkTFixYAAAvv/yy2Wx2OBzNOlNer3fx4sUjRozo27dvUVHRQw89dOzYMfLWhx9+aDabZ8yYsXPnzrFjx/bv33/y5Mn79+9v6xutX78eAEaMGHHNNddAC3lRxEkzHSqVyg8++GDXrl3z588ne9pRSDNIFyaUvyxcuNBsNj/yyCMOh8NsNv/www8AMG7cuAkTJkCLzlRVVdWsWbOGDBnSt2/f4uLiF1980Wazkbceeughs9n8//7f//v444+HDRs2cODABx98sL6+PpJvp9VqL7roIgBwu90xXR7BSLHdFBYWAsDq1auffPLJ7777zmKxaLXa3NxchglU7N13333yyScPHjx41VVXDRkyZNeuXXfeeed3330X1VkmTZqUk5MDAH/605/uvvtuqVTa7IAZM2a89dZbNptt/PjxOTk5GzduvOGGG06dOgUACoUCAI4dOzZr1qyCggKTybR3796HHnrI7/e3ei5iN9dff/31118PtD+VJhAdzp07d9GiRTt37vR6vV27dg3v47SjkAiRSqV333032Z44ceKkSZOaHVBfX3/jjTd++eWXer1+4sSJHMetWLFi2rRpRGlEh998883y5cuHDRvGcdzmzZtfffXVSE5tt9v37t0LAKlNbSDldvPggw8S3y0pKXnggQeKioomTZr08ccfk0tstVqXLFkCAPPnz3/nnXfI1QeA1157Laqz3HfffWazGQBGjx79/PPPy2Sy8He3bdu2ZcsWhNAXX3zxxhtvfP311wUFBVar9b333gMAYnxHjx594403Xn/9dZJ1nzx5stXgdujQoaNHj8rl8pEjR1522WUGg4H0p6K/MJSkMn/+fJPJ5HQ633nnnalTpw4aNOjuu+/eunUrebd9hUSITCZ7/vnniZxmzJhx3333NTtg+fLlZ86c6dmz57p16xYvXrxmzRqZTLZ3716S+5APHj9+fO3ata+//vrcuXMB4Pvvv2/rdDU1NTfccMMNN9wwceLEYcOGVVVV3X777VOnTo3uughNiu3GYDCUlJQsW7Zs6tSpPXv2xBj//vvvzz333OzZswHgt99+I+nfxIkTyfHjxo0DgCNHjjQ2NgpVhx07dgDAwIEDe/XqBQBSqfS6664DgP/85z+hY7Kzsy+99FIA6NOnj1qtBoDq6uqWRW3YsAEARo4cqVKpJBLJqFGjgPan0oEBAwZs3bp1wYIFY8aMMZlMHo9ny5Ytd9111+effw6RKSR+yFlGjx5NEpns7OyLL7642VlGjBih1WoBYPDgwQDQ0NDg8/laLc3n8+3Zs2fPnj2lpaU2m41l2RMnThw6dEjACsdA6m+EMwwzatSoBQsWbNmyZfv27STJ/OqrryorKxsaGgBALperVCpysNFoJBsWi0WoCpCzhI8fkbOEO1r4u0qlEgB4nm9ZFOlJ7d69e+zYsWPHjiXDTLQ/lRao1eqpU6e+/fbbv/7665o1a0j36s0334TIFBI/UemQiBDa0CEAdO/evTzIr7/+es8992zfvv2OO+6IYdaIgKTSbux2+6ZNm5YsWRIawerevfvixYslEgkAnDhxwmAwAIDH43G5XOSA0NhYeKsQSLYZKirCUTQAIGchjR3+2ZC1RcjBgwf/+OMPAKitrT1w4MCBAwdIBkT7UyLn9OnTX375JekmEy666KLnn38eAE6dOuX3+6NSCEIIUqrDlphMpkcffRQAGhsbUyvFFGc3f/3rX//3f/934cKFXq+X7PnXv/5FBm569Ohx8cUXy+VyCOuPfP311wAwYMAAnU7XrCgysEeGxADgm2++CX+XiMDhcLSsw7BhwwBg3759x48fBwCv17tx48bQ/sghPamLL764PIwRI0YA7U+Jm+PHj8+aNevFF19cu3Yt2cNxHBkxyc7OlkgkUSkkXIcOh4PcigrRoQ6/++478rdw6tSp//73v22dJVpC93M1Gk38pcVMKufdaDSap5566qWXXlqxYsUXX3zRvXt3i8VSVVUFAJMnT+7ZsycAPProo6+99tqzzz67ffv2+vr67du3syz79NNPtyztqquuWrt27bfffjtz5kybzUbuIIZ6MdnZ2QCwYsWKioqKp556KvyDV1xxxZVXXvnjjz/efPPNI0aMKC0tPXToUFZW1owZM6L6OsRums0uHTNmzNatWzdu3Pjss88SqVHExuWXXz569OjNmzc/9thj8+fPNxqNVVVVpLf++OOPQ5QKueqqqz777LNFixYdPHhw9+7dOTk5tbW14To8derUc889V1xc/Nxzz4V/8N577y0pKSkvL580aRIZS/L5fMXFxVdffXUMX4oMFZNti8VSXl4OAEVFRWTQJ1WkOLu5++67ly9fPmLECLVa/ccff9hstsGDB8+bNy907+mhhx5atGhRnz59Nm3a9NtvvxUXF69atapVv584ceLMmTMzMzO3b9/erVs3MmPC4/GQd++///4+ffrYbLaff/65WXcXIbRs2bKZM2fK5fI1a9bU1tZOnjz5q6++yszMjPyLhHpS5P53iOuuu45l2TNnzvz222/RXBhK8kAILV269MUXXywqKuI47siRIwzDjBgx4oMPPrjlllsgSoXMmTNnzJgxEolky5Ytf/7zn//85z9DmA7/9re/ZWZmHj9+/ODBg80+aDKZSkpKJk+eXFNTs2bNGrlcPnPmzOXLl8cWpUJDxXv27Kmuru7bt+8TTzzx4YcfhqaYpIT/D2AeIOKv9fV5AAAAAElFTkSuQmCC", "path": "image.png" }
Which solution has a higher concentration of yellow particles?
[ "Solution A", "Solution B", "neither; their concentrations are the same" ]
1
The diagram below is a model of two solutions. Each yellow ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the yellow particles represent the solute. To figure out which solution has a higher concentration of yellow particles, look at both the number of yellow particles and the volume of the solvent in each container. Use the concentration formula to find the number of yellow particles per milliliter. Solution B has more yellow particles per milliliter. So, Solution B has a higher concentration of yellow particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAS0AAADECAIAAABFveBHAABDmklEQVR4nO29aXAc13k2+p7TPRu2wQ4QJMAFpEiKpBZakiXL15ZlReVsluSKHctKviTXrlT8M1VJOb/icvzju/l1b1WqYidefrgSWZ/jOJLj+JN8JUu6tmU5EiVRokhwESiBxA4MMIPBbN193vvj7XP6dPdgCAxWYvopFjjTc/r0+px3Pe9hiAgR1gJEtCzLsiqVilWpVGzbZgyEcG+jYfB4PBGLxRKJRCwW45xv79lGuClgbvcJ3DQQQpTL5eXl5eXlfKlUtG1HCCEEMoYADH0AxphhGMlkoqWlta2trampyTCM7b6CCDsXLJKHN4Rt2/l8PpvNFosF27YZYwCMMfpR3UAMQAjhOEIIYRi8qampq6urvb0jkUhs44VE2LGIeFgLjuPkcrlMJlOplIVAzjnnTPudPru3kLinCCkEbRBCoOPYQohEItHX19/T0xOPx7fjaiLsXEQ8XBH5fH5+fn55eZkxxjlnLlDSD0BR0CUf+MWh8D4J4TiO4ziIoqmpeXBwsLOzk7HIdIzgIuJhFTiOk8lkMpkMaZWSgUxnIGOgOChloI+NQghEQf8LobPRBsC+vv7Bwf2JRCQYIwBEPAyjUilPT8/k80tcAgDIIGQMdCoCEBXpFrqfpEbqk4r0l8xFoqLj2G1t6UOHhtva2rb8EiPsOEQ89KFYLE5NTZZKZcPgmi7K/L4ZgnfnXGkoaUk2ITUgqSiEZKKDjuMQGSsVK5lMHDt2vKOjY8svNMLOQsRDD8VicXJyslwum6bBOWOMexwEFpCEEkQ/oVw1iACgbENy3jgaEV06kki0LCseTxw/fmtnZ+cWXmiEHYfIVeCiVCpNTk5UKkRCzhjppMRDQ3EyLCQBXMZqROWcM8692Ab1xpi7kb4bhmGaZqlUOn/+3YWFzHZdeISdgIiHAACWZU1NTZXLFYP0UY+CXJOKjGxFvYFmPTLJUOpSUTRIXUlRorphmmaxWBoZGcnn89t3AyJsMyIeAiLOz88VCgUlCYkvmqADvwz0QW7xmsmvrmtHMy99bHSlJDdM01haWrp8+bJlWVt65RF2DCIeQjabXVhYNAxDcsMlDjGKc4+K4JLJ3TFMTsUx+Zkz5lrgGoGVeORSPHLO+czMzLVr1yJzvTHR6DysVCpzc3OMgWFwyRCuVErFPWnXgS4dqQeNip6JqEvNUEt9F1BUZAzef/9qNpvdwquPsFPQ0DxExIWFjGVVDMNgjHGuCz2dacEdlcKp+gFPYPqaycaeago+QcqVF4dzXi5X3n//qhBicy87ws5DQ/OwWCwuLCzq0kznCfhEmRfEr0ZL5v/msTjA2PCOunjknE1NTc3Ozm7sZUbY+WhcHiJCLpd1HEf6M0HlcCOiRkVvF80yVB+qE0yDLxVO8tnrRGc+58y2nevXr0UisdHQuDysVCq5XM7vhvHMQqlqAoAu0FARqaoFKL8GvC2K3r6vYTWVYiKzs7PZXG5jLzbCDkfj8rBQyNu2TaG8apabPqmCLEDXDSNTZ1bsGTFAzIC/VB0HQtuBMVax7OmpyfVeXoSbCg3KQ0TM5ZZo4jxJuRu1d/cC30wLD346qZ+rzpAKbNAjja7FODMzG8USGwoNysNKpVIoFMIapkYhyRJNKQVgiKD+gZ7rXaUHkNmn2ndkjAU2UmUNOpZrqObzS0tLS/VfXoSbDQ3Kw2Kx6Di2nIlbRRoq5VMqpaAmN1VrrKY/odRdPfkHwDTVtEoPJGXV7H7GoGJZUcZpQ6FBeVgqFQOiTCMb+LcHv4a2yOJQcoP2QZWu8X6SfA6Tnxq5bMxmF6PcmsZBI/IQEcvlMvh0zmBQ3t/e+6wrsTr9pDBUs4F9+2pcRf/eqJFTt1TZ8vKy4zgbcbkRbgI0Yt1EIUSlUiFjT5KH6eJI6ZnKrem38bDaZ5p3iAGi6lWkwE9Lf89uS0S3h3K5bFkV02zEB9SAaER5qIrEkOfTP4XXk3KSJx7AJ9lA3wIASrIpeivzUqercpPSzGDqQJFQnU+5XKlUIpdpo6BBh1t614VAmj8ow4OoyrEFI/GMAYAQQldf/QzU6aT69HWj+Csbe2dCjanvyCpsQDQiDxWDNAtNVSIVjHGKKyqpyLQEGU0GgnLDgEYeXbrqlRQ17mGAqNr5gN+7EzGyUdCIPAQAFbWTYQnPgam2q3i9p0pKQupiEKQLVFM/UX31K7QeLSmDVPETvWqLiCtERyLsYjQsD3VKMM6VRopCuKktiEEFFSkMr7k9FSsl2UDjVSCu6JFW0lsWk9KoqA6lUu0iNAIakYck6IQAzn2Syv1RKqEaC1Q+jU911Jmm6a1I5ds0jdTn7AlAD2Do8jOQ4xphd6MReWgYpmGYlUoFkQshOOda/UiGSKopCT9K/kaZj4Z+IRl2kCIxXCOaKioMyuTzy0DQ6g4rKop4PBaLNeLTaUw04pPmnMfj8eXlZU01RblOIQUzXDaiF+XzJB79JfUVNF1Ub1ZV4qlj0f+yH6FxFRHcYEYymYiWo2kcNCIPGWOJREK+/YIkGABnDBhzmFvoiREHA6F5xkBjoG7+VfWResJQMjAgKoVSYpVUJOOwpaXVMBrx6TQmGvRJNzU1AYDjCADGmAAgc5EqRKG0DxGRybQbF5J76qPuEQXwSnmTO9Tzx+o6p1zwAmWZb/ez6ooxlk63b+UNibC9aFAeplIp04zRPGAhOOd6fI+RDKTQBchIBv0EAHqIgvnS4JSsE6ALRaD1nnxkUySUf4mggvaNmfH2aNGLRkKD8jCRSDQ3Ny8sLAjBZSxRCOHWTiMGMqYCFbSTF2OUjHVdMuCjHRLxNAGoSzzPGlT0cyWkJ1cxnW5rbWndjhsTYXvQiPmlAMAYa29vl+uiKe3QWyNNaowg5ViAVD4/p1xGRvhJSB06av1DPyUFrT+jCEnZPADIGOvt7YsyvBsKjfuw0+m2RCJRLpcZo5vAGCOvqeuh0eIWK0658FRSV60NiEHlgyEvqGKdZLm7SBttc+goqWSir69/a29GhG1G4/IwHk90dnZevz5OfhoA4Jw7jlD+UnALYTDNPvRBaaH+WIX3kbRWKes0OeguxAaacShUb729fdHipI2GxuUhAHR1dc/MzFiWpe4DVU8Uws1mIZGoSUIVwSC+CfVFRfOVGAQARTBtYWCXgpqTRgh0iKsAkIgnhoYORJk0jYaG5mFzc3NfX9/Y2Bhjrk5Ii6JJjZRxjlJHVTFDPcdN104RQM+Moe2O7qFxtU9lFQp0HCE8SQiIuHfv3q6uaE3ShkND8xAAenv75ubmlpeXpVvEJSGppkKoWhWMSmz7q63psUSVUwqqGrcmD9HRBCEiOo7nI1JxjpbmloMHh2X1qggNhEZ/5IlEYnBwCABooWzHcUheuTwRjpJjAAJAEUmtek8eUTL2dL8o7avI52iSUO4pBAlMOhPDMI8cuSWyDBsTjS4PAaCrq2vv3r1jYx8YBiIanCPNBqa1fslXqi9KIXVO0OShCu2jH0r+CcdxZaMnGNERQqgpVIP7BmlEiNCAiHgIjLF9+wbz+fzs7EwsFkM0ubt8KFXB8M0/Cs/N1z7qDAQlMx1H6KSkr+SjoS4RRU93z7Fjxw3D2NIrj7BjEPEQACAWiw0PH65UrGx20TCQS4BvHmCgcr7KRHXnQ2nyUAgBmo/UbyLK7TIugu3p9pMnb0ulUttx6RF2BIJLEzUyCoXChQvnM5mFWMwgvZQxl4xqCQrEgEgEFUJUqqmePaNcNboYlJOegEh4x52nO9rbt+miI+wIRDz0oVAoXLhwIZOZlyRkanVETUFFdd9oYhRUsQtV9gx4NqKriyoSQmdHx2233xmRMELEwyDK5fKVK1cmJsYRXQWVeKhrp7LwKXLuzb6H6l4aRAQEXRdF6nlgz8Ctt55obm7Z1suNsCMQ8bAKHMcZHx8fHX2vWCwahhFYETFcgV/nIIBKDRdhBlK7ZCI5PDx88OBwLBbbhsuLsPMQ8XBFZLPZq1dHp6amHccxDK7IKG8YA19FcPQrqF5qjSqlgYiGYfb29Bw5cktnZ1eUvBZBIeJhLQghZmdnrl59f2EhYzsOZ2oRb9dhA76QBQCgylNTHlEAQBSmaban2w8ePNTfvyea0xQhgIiHN4Zt2wsLCxMT1ycnJ4ulcsyMAYCq9qt4KL+5/htiqW3btu0cPHBgcHCos7MrKv0UoSqigfnGME2zp6enu7t7cnLqfz31v4aHD+3Z09/e3p5MJQ0jZhg0o18ZjWDbVrlUWlzMTU1NXrhwoaen99P/9/+TTCa39yoi7GREPFwtGGMVy3799dfPnHk9lWpKp9Pt7emOjo5UKqlUCsagVCpnMpn5+Uwul8vn88vLyw888EBkCkaojYiHawPnXAixvLy8vLw8Pj4eboCIti0AgAqikrt1i09ytyKXy507d25ycrJUKm33uawXyWRyYGDg5MmTra2tEPGwPuj1MgJARNMMGI0RNgCLi4svv/zyfffdd+edd+6CHMBisZjL5Z5//vkHH3wwnU43+rynCDcFcrncSy+99Mgjj/T29u4CEgJAKpXq6+t77LHHXnzxxaWlpYiHEW4CnDt37r777tvus9gU3HvvvefOnYt4GOEmwOTk5G6dIZ1OpycmJiIeRrgJUCqVdoc6GkYqlSqVShEPI0TYfkQ83HhEbtIIa0XEwwgRth8RDzceUeA+wloR8TBChO1HxMMIEbYfEQ83HpGfJsJaEfFw4xHZhxHWioiHG4yIhBHqQDTfYoMRKaU7HG+88ca1a9dGRkbGxsYAYGho6NixY0NDQ3feeec2nlXEwzWA17sSE1UjjrC9GBsb+853vkP0UxgZGRkZGQGAoaGhL37xi0ND27PESPR+rApLS0uXLl1655231yruGGMzMzPPP//86OhosVjcpNOLcEM8/fTTX/3qVwMk1DE2NvbVr371mWee2cqzUojkYS1ks9mrV6+ePXv2woULU1NT165dWw0P9TaMsenp6W9961ttbW379u07ddttt506tX///qamps088Qg+PP3006sk2NNPP51KpR5++OEabS5cuPC1r33txRdfXFxcHBgYeOSRR/72b/+2s3Ndq8dGPKwCIcS1a9dee/31M6+/fv369WKxyBgzDGOV6qW+AAbI0hhLS0vnzp07d+7cj5ubh4eHP/zhD3/oQx/q7+/ftIuI4GJsbGxNUu773/8+WYxVfz1z5swDDzzwiU984sknn+zv7x8ZGfn617/+3HPPnTlzZj1ja8RDH4QQFy9e/OUvf3nmzJlMJgMAnHNVdbutra29vX1xcRERa/hFVVEMIURTU1N/fz8RmHOOiMVi8ezZs++8885//dd/3X///ffff/+BAwe24toaFd/+9rfXust3vvOdr33ta1V/+vKXv3zPPfc888wz9AKcOHHioYceevzxx0dGRk6fPl33SUY89HD16tUXX3zx17/+9eLiomEY4dUI4/H4wYMHFxYWstlssVi0bdu2bQj5SGnfZDLZ2tra1dWVSCTUT0quCiHGx8d/8IMfvPzyyw9+8pOfeOCBvr6+LbjGRgN5R9e619jY2BtvvBHm1bVr11577bXnn39eH4XT6fRPf/rTdZ5nxEMAgFwu98LPf/7//uxnc3NznPMa9bZN0+zr6+vu7rZtu1KplEolIYRlWSQhGWPxeDwWi8Xj8Xg8TmKQ1nvSO2FyPTdEnJmZ+f6TT77yq199+tOf/uhHPxqVOd1Y1HDM3HDHMA/fe+89ADhx4sR6TyuERuchIo6MjPzoRz86d+4cIlZdkTdsFpLESyQSVPRO0Uy11IlHrKtKRdJdGWMffPDBN7/5zbNnz372s5/dLtf5rgTFJDZqRxqgHcdZ1zlVQ0PzsFQqPf/8C//5nz9eXFyk9dXUT2ox4LApqG8JaKQBshHUWlFhKqrtnHPbtl966aXLly8/8cQTH/nIR6I1ujcEdcvDqtrs8PAwALz11lt79+7Vt1uWtc6luxo3fjg3N/fd7373qae+n81mlRzjnJOsk8seqnVIPehb6PNqXKnUc9i7oy2xyEzTnJiY+Id/+Icnn3xyeXl5Uy47wupQNUC1Z8+e+++//+tf/7ouEpeWlm677bann356PYdrUB6OjY390z/908svv+w4juKG4hJtCTMwDNWeOElY6aCBvfTt6rNhGKVS6Yc//OG3vvWtubm5DbzkxkTdSv5KO37jG98YGRl5+OGHn3vuufPnz//7v//7/fff39ra+qlPfWodp9mQPBwdHf3GN77x9ttvB8RgQNatpquVBGbt9oEGqhP6ahgGIj7//PPf/OY3IyquE8eOHdvYHU+dOvX666/v3bv3z/7sz06fPv03f/M3jzzyyEsvvbROB1vD2Yejo6P//M//fPXqVZ2Ea+JeVej71si5WekQ6ui0L53bq6++iohf/vKXu7u76z6xBseGy0MAOHz48Pe+9716z6g6GkseViUhaDRYD3Q1dTXmYuCIajgATYP9zW9+841vfCOSinXj9OnTg4ODa91rcHBwPUH5OtBAPJyamvrud78bIKFyk2zIIXQW1XB4hi1Mfbt+boyxV1999dvf/vbS0tKGnGED4ktf+tIW7LJONAoPFxcXv/e9712+fFmRUHeKbuCBdKlYm4o33Einxzn/1a9+9a//+q+VSmUDz7NxMDQ09Mgjj6y+/eOPP771IdyG4KFlWT/5yU/efPPNsE24GYejnnVLb6VmN9yojMaf/exnL7zwQjTJuD48+uijq6Ti448/XnuyxSahIfw0r7766vPPP6/i7+Qa3SQSEnSnS402zD8zA7Q8G9quFN1yufzUU08dOHDg+PHjm3fauxiPPvro6dOnv/3tb6+Ubjo4OPilL31pu5KZdj8PJyYm/uM//qNYLG7xpHjd0quaZwMrU1FtUQ0457Ozs08++eRf//Vf79aVjzYbQ0NDf/d3f/fGG2+MjY2F62JssWMmgF3Ow0ql8vTTT4+Pj9ehkSo+qMZ1qIVhmgV+XX0PhmG8+eab//vZZz/7B38QFdqoG6dPn95eylXFLn+cr7322quvvqqLplW++oH4QfinVYIyuVeiTdV5jIFD6HF/RPzJf/7nlStXVn8CEW4K7GYe5nK5Z599tlQq1UEkXYjpWiKsUSrW9pqudD4rnSTnfGZm5sc//rFlWas/hwg7H7tWL0XEX//616Ojo4oGq9RI9TZMzrdQ3At8vWFXtdvfsIFqpoxMwzBeffXVT37yk3XU+XMch6ZN2o4DgOAelAGAaZqxWMw0zRpzLyNsHnbtTV/MZl944QXbtlVNihvaVLodqESfzsn6zoQ6WclbQ67RABXVWKAMVF0mZ7PZn/zkJydOnIjH46s5erlcLhSWl5eXy+WyZVmO4ziOYMw9tDwEZ4yZpplKpVpbW1taWpLJBKu3TmSEtWLX8vCNM2d09wxNt129e4NpMw9VvZmAnLxhJ+othxWmJqquqvZWdSOlpL/99tsXL148depUjaNblpVfXl7KZQuFAtXvoMGEMW6aHADVlQmBZMeWSqVCoTA3N2eaZktLc0dHZ3t7Oha7MdsjrBO7k4eFQuEXv/hFpVJRWtbqk9fCxAiYl7BqE3H1GmzVfVfa3TCMbDb70ksv3XrrrVWNT9u2Fhez2exiuVwBQMa4acZktwAAmpZN0hgRkXMUgiNSHQ9nYWExk8mkUqnu7u6ent7VyN4IdWN38vDy5cthy7D2LgGlVHEgoKOqjWs6HwoA1hCJq+lTj6Mwxs6cOTM1NRWYGC6EyOVymcx8qVRijBsGZ4wzBowBnT74SMgQQQhkTCACotCunjHGHccpFIrvv//+3Nzc3r17Ozu7onjJJmEX8hARz5w5UywWAy6H1Rt4ymarutfqSaioyxhbZ1ETFqqJOjU1FSjQUKlUZmdnc7kcABiGqaZzkSdGXQexUWnNjAGigYhCgMzkQQBOzRhjjsPy+fzFixe7u7uHhvanUqn1XEiEqtiFw9tiNnv+/Pm63SphBKL5q+9ZCTqSh+s5h7Bu7DjOmTNnVPJ3Pr90/fq1XC7HOY/FTNOk6RrEReCccc44ByInuWC1EgKMc7e6B+ecMfeDYdA/wzRNxtj09PT58+8uLCys50IiVMUu5OF7V65MTk7W/d4HaBauCrVWpXQ1wZI6zEjO+aVLl6ampgBgYXFhYmKyUqmYpssm4hh9Ngyat0HcY2qL0j+pPWgTwdRUD9mJwTk3TTOfz7/77jk6aIQNxG7TSxFxZGSkXC4H6metSYjp0cLwh/q8LysZhyshcIjwERljCwsLFy9eTKfbZqZnEFHN5OJc6aJMtqX/dOcTIKqRhXGOAHRdFGIBzpWTmSFyAAMATNO0rMqlSxcRxZ49e+goEdaP3cbDYrF46dKlAOvWpKMqwoRJWPVrDSi/a+1dqnI77LwJt7Es67XX/ntwcB9j3DT1+joAwJVpqnUVdgiR8wYRiW9CCDIamXLYUKY6ABcCOUfTjFmWdenSRUTYs2fPBur/jYzdppfOz8/Xp5TekDABK3FNPdcQhjXiE4Fm4a+MsatX3y8UitK0M0gcEgmZv/yUxlIuTURSVoExUFv8UAqq9p1zwzBs27l48eL8/Pxa70aEqtht8nBqaiqfzwc2YrV06jB092ZgC9SVXLoarBTEX2WzxcXF5eV8R0c7AJA6qgSg+huStCAlHgCg1C3dHDfGSH0lPgvqkGSj1FeFYXAhDMuyLl4cSaXubG5uXt892FKUSiXLssrlsmVVACAWiycSiVgstr0rGuw2eTgxObmeHGhdKgZouUrChHur3eCGErgGGGOlUimzsCAdLT5BpjfTpaKfqLr0Az+NdSGshCdTjlbDMPL5/OXLl2Syzk6HZVmzszOZzPzSUq5SKdPNr1TKS0u5TGZ+dnZmG7Pn1ysPEdFxbMuyK5UKhcjU28MYmGYsHo9vWfYwIs5MT4elX0DKrbKrleTJ6nuAdcjPVdK+Uqlk5uc550IE1WZFJwBXAKqe/bLd/QYyxO/XlF3FWYpK954oBXV6erqrq7uOmmhbjKWlXO1aW8TS1tY2WrNki1EnPYRwSqXy8nK+UCiUy2XLsoVwlBUkBJn+SCaJaca07OHkmviwJjiOU7XEYH3huw1XQVc6ymoOtNJNQ8SFhUU9zwb8DNQ/gJdM43WrHd33TaqvIFVT6p8ywlFKXeY4cPXqaFdX105e4fiGJNRbcs6am1tWanDs2LEvfelLf/VXf6W2PPXUU3/6p39aKpXWc4Zr5mG5XM7n87lctlQqkQAk9YZzg3NDZQ/T6yUECoEye3jWNGMtLS2dnZ3pdHqd63JURaVSCRuHhLq9LOvHWiMWUI2cgU70X3O5rG07NGtJtZS5bO5fHfpN0KWeEo8AQjEZkUnTkSxJ+uuSUAjOOc/n82NjY0ePHt2W23tDWJa1pqqT2Ww2Hk9sxvtZA2vgYblcXlhYWFrKVSoWDYexWEw9af15IwqZRCIQQWUPO46zsJDJZOabmpp6enp6enpU/vGGoFQqVV2eRQixlcsn0QtNfKhBwrUanFXjKJzzM2fe+OCDsYGBgf7+/sGhoRO33trS0oLosjEAPWwY+EXyjYiKejNiJQBK5ypt5IzR6iDs+vVr+/bta2lZUYxsI+pIAFpcXOjp6d2Mk1kJq+KhbdvZ7GIms2BZFufMNE3OvfGSjAdEpMESESlfEVEg0naB6Nr4QjDHEcvLy0tLS7Ozs3v37uvo6Njw7OGVrMG1Won1HVoR7IaSsCoVb8hP/RI454uLi2+99RZ9bW5uvvvuu//kT/7HiRMnlAuU+CM7D3Yl44qBU6W9dDPRsx7BYzhjjBkGL5XK09NTLS2Ha1/v1qNUKtn2mr0vlmWVSqWt9KDemADFYmF8fHxmZsZxHNM06J+eiMiYoex2mcdI/wztHyUxGhKmYZhLS0sXL14YHX2vXC5v7FXV8XJvOG5IwtXPSAx/DbQ3TZNua7FYfPHFF//n//y/Ll68yP3LVyG6/0Bjst6V2hY+hCKjDHIE83UAYGJiYgdW66DgxMbu+JWvfMXU8MQTT9R7dh5q8RARFxcXr1+/XigUDMOg3EWZOqzzzcseBvBlDysfOucGY4ZKWqTXxjRNRJiYmDh//t1sNrv+iwHPOgoKPcoT2VQ2qs6xZuBeNa7hernhsQLrDeufTdO8ePHiP/7jP87Ozut+Ub+3JkA/X4ZNOFtNKqJuS+kQUjIRGGO53BJN9dhRqHuIr7HjX/7lX76l4e///u/rPTsPK+qlQoj5+fn5+XnGgASgHmACzZ+GqPz7IO0KkM5uIYTnA6AoMGNcvUWGgYxBNps9f/7dI0duWc/CRuVyeWJiolKpKHkSftF1t0TdB6qBNfF8pcbh7bXlYbgT0zT/+79fe/HFFz/3uT/Q0vSCB5I3Sh2ihvUYPEfNVnRh2dbs7HRXV9eN9t1S1C2ia+zY399/8uRJ9fXcuXP1HUJHdR4KIebn5+bn5xnjtC4gk9nD/tgu/adebgRgQgDxjlIWQWY2cs4pguA4QslJRMoehnK5NDJy4ejRYz09Pas/e9u25+bmLl26dO7cubNnz16+fLmtrY08XbVNwY01FJUYXFPj1ZOwxteVYNv2b37z6u/+7u+kUkmljuq7hvph6tQkG/XG+i7kBfDvzAAA5ufnHceJVhSvA1V46Cch6ZkuoyhxkZr5Pd0qjRg15w2Gsoc5ouCcUR4/Y4JzjoiGgQBmpVK5cOE84vHe3lquKiHE4uLiBx98cPbs2TfffHNkZGR8fLxQKCBiIpFobm6OxWJVaUaSgY5If9dPxTBJVhmlWJN6XAcVDcO4fPny1NTUwYOHAISMBPp60DivjyO0scZwEHbqAA3Q+Xy+VCrtqDS3WCxW3/o82x+3yGYX5+bm5aRQLjVSTy0FLUNFt0CIijKBA3WVVXN2U7CRasXriYvcNI1KpTIyMhKPx9vb2wNntbS0dP369XfPn3/rzTfffvvt69evZ7NZVf2JxmDGGG1RpmANG2xDSChNL/eIqyShOyzV7LPq16qoVCrhNoyx+fnMtevjw8PDVAnAL9N8p6PsQzWYao1dWqrf/afn/k//WZZdLBZ2FA8TiUR9PEwkEht+MjUQ5GE+n5+ZmeGcydncXm6+YiBUs680FxzISAaoHGmQWqvmzkEA5ByE4AAkoAzTxHK5dOnSpTvuuCMejxeLxampqXffPf/222ffeeed0dFR0nyUTULzxLm2lqhlWfpgX1UqKmFIpK16ObUR6BkRV1P2orb6utKvOhVRVnHSG6x0aCFEsbCsKaW+8KPslj7rHlGhtwxrp1pXnoQkQ9F27EKhsOL1bwfqLja30o4jIyOBLZ///Oc///nP13cUBR8PKcVOCIzFVCgiOB0GtcRLCOWpoJsbDf631N1D02OpGWcMOQfHca1F4v/o1dErV67Mzc29+eabV65cmZ6eJqOZJHOAe/r5I6JuXq/0xqv3WPfoqIGmNgJvc42jrLT7akRcoH2NBkII27arjjiISEmn4ZPUNVL1WdETQPfWVJHQWpcYQLFYXOWlbQ2SyaRpxtYaQjTNrZ5+4fEQEefn54vFUixmUpGv0LRuAE8e0i61s4fV01VpiijdqkpTdXMyqBvOjbfffuNHP/qP2dlZUrd07sGNKq8hIu2lzqSG/kmCUT//wDXq1xV+j2Et1iD4X9iV2gT01XDj8BHpkqv2xhgzDCN8UF0Syi0uCZW7OyCc0U1UVB9QJy1oolKIdZXD2gx0dHTMzs6sdZdNOpmV4PGwUCgsLi6qRXJ1Evo1Um/nVWRpoMrDUG1kwIMz5hCTqfIC51gsFl988aXr169TVJq6qs29AMrlsp7FRq/MSvk6+gow4Tc+QL8bUqIGbsjAVcrJcAOqk19VGHZ2dg4NDencDrDLb/sBAAhRRX3VGug7Bvw6EPq8UxCLxVpbW1efYrpJyc+14fKQooVCiFjMVIm8IGkAGgmrZZMCaJ4b/5NwLUOV/qa8NRpR3XeIc57N5SYnJyk7pA4/CmOsUqnYtq14qNw2NaSi+hygq/7Won/ZpjWlbusEW+k1rUrCsBwLNOCcW5ZFpfID2TOO4wwNDfX19YV5SHKPDHj/EEkFhYGy81VLypOlkxFChDRSJT93HAMVWlvbAGA1VEyn0zUmW2weXB4WCoXl5bxKgSHqqUaBl7iGSAxQUfuspzjqbwP9xHRTrT4SgrQPS6VSPB7XFU70G7ErQQ9sBLrVG6zpfPTPtUkYPmhgS9hDAwDFYpFMYuVzAqnC3HvvvS0tLX4Z6P1FFErblFuowL5LKv8w5PUhT0wgopSfKCm9Kht7W9Da2pZMphYWFlayFU0z1tHRsfWS0D06/ZfNZhFRvf9VvYirucMheei51MBNifKEISm8NLNGjeL1veu0F70i+Xy+paVFjyavkoeEOqYp1Ti3VUrCMAnDtmL4xBzHWV5exqBlDo7jHD9+/IEHHmCMLoeFVUo/wVDRSR6FvgrVgCgnZ9J4BHa/eqPqDuUhAMRisd7e3lKpZFkVWnKHNiYSiVgsvr11MUwAKJfLy8t5ilJooQXf2LZCnEKNkdX9GRo8n423CQNbmGGsauKFLqDCytvy8jLpaSEv7hrYuE4ETqlGs9VIQlhhdLAsq1gshp3Gzc3NTzzxhf7+flIjlVRTLmv/+IAenTRuaQm53kkqaSmEuvneU2AMtvdtXg2SyWQymdyOOfe1wAGgUChYlk26oZ68C5qTRoFeZvCEDMj2Vd5v7XWq/vYHdkolU62tLStJJER0NNi2HQ6IM8bK5XKpVApsr6rUbRL0t7kGCaGa3COsRhhyzguFQsBZKoRIJpN//Md//PGPf0wIm8SXKo+gJbsDAMpQoUdCfxtvI32QrAaKYupyldjOOd/Js/J3MkxEzOVyNJiB1BtJhICcgaYZHgFTwfsLHjN1qai/TL5mOtR7m0ql2trS4+MT2k+odM6q+4Zh23Y+n29ubg4siE1drT5UWAf0k7whA6uytCrlqnYlhCClVLXnnA8MDHz2s5997LFHDcNU3TMG1ESntq6gah8ULVG2Qf9PQqeq/CBo2rFpmMlktPpFPTAtyyqVikoXBQAAXGk+lCIeC1VbkA0Cr6CyTKpkDyuoFyWRSPT29pw/f16n32q4p58AImaz2c7OznCiqd7VhlPREzTr4GFYPFIdg/Due/bs+cxnPpPNZqenp2dmZgzDOHjwwL333js8PMy8/D5q7O6k/qK7uhOgLyQoFP2UCNVYSiqF11JyUqCkdFNTU7QKTX0wK5WybdsUuAf5YHRvDUGNrPpXDGUPhySh/nJ6Xjh9F/0QhmEMDw+//PL/t9ZSfPprjYjLy8v5fL6joyNcEUMdEbX82PUgTJtAg4ATBVYmYXhjjWHo5MmTH/vY/0HrUtCyx/E4TTQRADw8Dsj7T2Mo6mOiTkIM6rE0NAglP4mNyrOq2gNAe3t7tExifTArFUsIp6qDBDU9U75MABDgntdS3wK+aBL6f1Kvl+Kqt3loaH9zcyqXy9+QIQHu6T8JIebm5tra2jjnShcN7Oj3QtUZJgn8DYPi7LQmNh00kUjE4/FUKhXQmavSsqpZi4gdHR23336b4zgADmOcIj1KbDLmFqdB19xg+mmiF/Groo7SN+X/IgmoxKBGQvlZ7m4YRk9PXx23MQIAmOVyWb0AeogvnPClbfH21zmktoVeTqa/aZKB6quvt76+3gMHDp09e3YFx08tF4h6O4QQmUymt7c3nU6rORlhv6K6UjXirERIDMUGapOQMWbbdiaTyWQylFqgt2GMtba29vb26l6NqldU1beEiMeOHevp6XEch+aj0WRrLdqknxusNA7qo6Eim/zRc8MgCkRHfSbxqHXgisqmVNPWp4PtGpiVijf/H93JSihdNQDV1ColIfXYsf+NxNCLqpOQPlR/LZLJ5KlTJ9955x39rIK9aEDpNyD6mabZ2dl58ODBO++8c3Bw8IUXXqDM47CCqp+cuqKw5NS/KlaETyOA5eXlmZmZpaUlZe8F+slkMvl8ft++fe3t7eHoi7qucM+I2NHRcdddd8s2wDkCCDp98I8mkpPeE6z2VNB/j70IoUY5SrJxNA+NJw6ph97e3sg4rBumUu41fZJeSlDhprBsDH+Qn5UbAML00cZgbxftzXA5fOq22/a8+PPx8UnfzhpoCzkwyCna0tJy4MCBU6dO3XXX3adOnRwcHGxra7Msa25u7pVXXqF057CCGujQP5R4P9EuxJbwqBTG4uLi5ORkpVJRKYGB9nQalUplfHw8kUgkEomqJFwp0HLbbbf19HRTjJRzt76BygdWhFTHQvSS+/zcA2X16U9Kap4e5RBdEtJ26bBx7UYAiMcS+/YN7thkmp0PU7e/OeeqCCLKaYRQ7dWEEBX9X31qZzX2qXFU7wEQ0XGcnu6u++77yA9+8G+Bc1VvJ01BbGpq6u/vP3Xq1Ic+9KFTp04dOXKkvb1dF3rxePzTn/70hQsXstmskt7Mv/ZD+BC1N9ZmIGMsl8uNj49blhUig0+hoF+LxWImk+nv7696meH+hRCHDh366EfvJx+qprAwbZBRfu+wGBRSTVW0A0U/qYuC5JgioXAcIQQ6juM9AldUuj7tnp7udLq9xp2JUBumfD88OUYikRQemdXtPlHdlPLTT5FKTThSh/DIppQ0TWD6zBI5KMCH7733rbfOnj9/wTC4MvkQMZlMDgwM3HLLLbfffvtdd9115MiR3t7eGjmBx44d+9Snfvupp76vyzH0a5sbCNu2p6eny+WyorpyFIVFIiJyznO5XHd3tz5BZCVfMSI2NTU9/vjjd9xx+/nzFxzHobtNVUtoMicpolI26g+Fke4q7zPod4PuvMxcc+P1xEDpmFHC0OUkPUw6SiKeGB4+vKllaZLJZLFY3JV6b7FYTCaTppR+HkDaFXK4pU8qtOgrGSw3El2Vy1vx2etVdY5abQX1EujvhBCirbXtscceXVxcvHbtmmEYnZ2dR48evf322++88/TJkyf6+vpW+Ug457/zO7/97rvnzp49S2XnUSqoUNMxUwcYY9lsNp/P6/YzqY4Q8rioEyiVSvl8vr29vbakpTN/8MEH77vvvlgs1t3dPTU1KclmIAJN45THCgw1qH9QT4Hq1ujCEACEUC4Zd1kEIYTj0ACqRkSShK4wHBwc6uzc3DJtAwMDuVxuV/Iwm80ODAyYOv0UQ6RGqqjoklCtdqAzEDy26ZLQR23tLURSZgCEevYYBCCKAwcO/smf/I+zZ892dXU+9NDDd999d1tbWx3XmU6nH3/88fHx8fn5eRqz1fUG5gqtE47jqJI5EJK6YdWURKXjOAsLC3RpuHJ9DSHEsWPHPve5z1GAbu/evYuLC6VSiTETETk3aEhBVJOqlXYKylUD2oNTSUr+IdgdB9WA6DiCmEn8c0guCu/BtafThw4Nb7ZlePLkyRdeeOHRRx/d1KNsC1555ZWHH36YjY2Nzc7O0JQ/WXgbZM63O+FQn44od9ddOyAfIaxEQvWYhecBEGq4VRaH49jkenEcx7YdGpE5Y/fcc2/tIm61gYjPPvvst771LYp3hyOHfqf/GrrVPB8ghLhy5UqhUND71IVhQCQS6xCRc37w4MFUKrUSCRGxo6PjK1/5yp133qk2zs7OjoxcAADTNFQlIVW7WV4dyPFUOU690UCZCUoRkYIRSQASD+mpuTwUDtGS9orH4qdPf6i/f8/qb1rdyGazP//5z++77750Or0LBGOxWMxms7/+9a8/+clPtrW1mfF43J8bIRjj4BaKVbF7RC8iDKAxUH+umi4KmvXvuUMDYlNSVJn7ykvuctURAtExY/F1Zmkwxh588MGJiYlnnnmGCmyGPcC6NzVMVNRiG9oV+ailCKm+KtUUpOzVIx/uNTqOECKbzSaTSSWfiZ/q6KlU6o/+6I/vuOMO/aK6u7v37t33wQfvI6JhGJzTudEl6L4oj2m6TK72XNQrQEOk0IZLtc1BdCdSMcYPHz7S1+dzMm0e0un0Qw89dO7cuYmJiXUucrYTQJ6O3/qt36LFecx4IkGubURGKVFCIOdAzm6Z9u29tcxbbwSUR1RCpSzqfEP5sIUuLZV7RhuMhfTcgp7NH49vwNywRCLxh3/4hwsLCy+99JIIZXv7Rg5NX0VNt9TdLQFJqEA15tRXtTt1qO4GY6ylpaW7u7u/v7e7u7e7u6u1tbW5uZkxTiKxUFheWFjMZDILCwuFQuGxxx777d/+VEBWM8aGhoaKxeL09BQiysVF3Pp69PhkCCrgZgtYiYp+oHiolFOpmtKY6ct93T+0fws0Uh2tra333Xfflh1uK2EmEwnp0+MAgnNKuaZ0U1/xNfkIqmcPy43KclCvnUpc9NYn9Q+/ctSVjaVz1O25paVlQ7IWW1pavvjFLzqO84tf/EIpjVVfIyEXydCZRsJNtQkwEAAojLm4uKjTW30mgnV0dBw8ePCOO24/euxYX29vc3NzLBbXqp57g5dtO5VKZWlpqVgqnTp5olgspFJNAZ+kaZpHjhxBxOnpKblsvVpXBOQkUu9J6Y5b7XAgHTD6E/EehBAokOZney7xA/sP3Hrria1Z5rkRYCYSiVQqtbS0xJhgjEpCqFosTAhUUUTSVwOvn3pT/dnDFPlAcsaA68HT3QCgWCfHYHrqkqauOwcZY52dXRu1MFtHR8ef//mfA8AvfvEL0PhW1XEauNQw8cLt29raqHCt3pvjOKZp7t+//5577rnnw/cM7tvX1NREA5zWJ/ojDUAWezKZEALn5uYzmUxTU3N3d1d7e4c+KsXj8VtuuQUAJicnhDA4F9oKP95NCwVOUKnV+pAoP4CyD6VkdNQZMsb3Dw3deuvJKKV7A2FyztvaWrPZLGkmjDEAIeOHnBgoBC0qomcPKw+qHg/UFTxPDKo5TP7sYW8EliRUhEQVcY6ZsTWteHFDKCr+8pe/VGcLUnWsO5JBnRiG0dzcXC6XlSroOM6+ffseeuihj3/8Y93dPZTZI41QJKpoZ0FquZBqvLtYCGMghMjlctnsYjKZ7O/f09PTrZZwjcfjR48ejcfjY2MfWJYg65cxzrmjqTM+ywLcR+be5MDUe+9BuCejpv9iPBYbHj48PHx4u+q47FaYANDWljaMCSEEKV/SyxdIBAtkD+sOCdC3Swnp6aKSn3oZhZAPQJtRiuAJz3S6rXWjaxh0dHT8xV/8RXt7+09/+lNKzQH/gm1KQuIqIv76hQNAOp1eXFykDpuamj7+8Y/9/u///tDQftM0ZP9cdcm89ZWYHLMUYbjKVmFyWSXHcYrF0ujoe3Nzs/v2Dba3t9PpxWKxw4cPt7S0XL58uVgsUC12uVasOn/6ioHnpZRhpaf4rUHPsdTW2nr8+Ik9ewa20iZsEDB6AJcujSwu5kzTNNQSo1pFfdBeUHc3OcTqtPS/kV6MWA9X6Hxz4xWOkOkajm0LxxECHSFIEYKTJ04dPnxkM668VCo9+9xzP/y3f8tkMuFcEO1KV3zn1GDkH5VwbGwsl8sNDQ194QtfuP/+jyQSSQCkW0pdgmSgbrzpHmaNGOpeKZeJEMKhAMzAwMDevft00ZTL5a5evTo1Nek4bpVkuUCQd2WB8RRdDZWO5IUudEdrzIzv2zcwPHyEChBG2HC4w+Pc3OyVK1c454ZhktuNGKgWGA0769DnB0c9aKEerfxJOd+UvJTxYDdVm94zx3Ecx51+joiiuan5/vs/unn1JBHxrbfe+pd/+ZeRkZG6NdIAGGMLCwu9vT1/+mf/5y1HjjAGmj+IDoF+94nuugTdmawpil4kXQu02o7jdHR0DQ8famrylnZxHGd+fm50dDSTyTgCDW+JWHWGdBjPrQ1A+okbPdLOCk0z1tXZOTx8pKenZ6Os9AhhuESyLOv8+fPLy8u0Uq9cZMbnwwg8TgldTfXop7RTqYu6aqi0RoSfhK5gdIQjvQKAiEcOHzlx4tRma0Gzs7PPPPPMc889l8vlqID/eo6IiLfddur3fu/3enp6AFD5TJS2G2oOUimVnJASSWOjF9ATwpE3zrFtx7KslpaWY8eOB7R3y6rMz8+Pj4/Pzc2WK1Sx0z04AyY1U9/oqT1KZIwlE8nu7p7BwSGqMFL3DYmwGnhutNnZmcuXL9PkblJNOXeNGRkEUzxU/uva2cNCOW+kTQiaE45eJtSEoat80e6tLc0f/vBHNtw4rArbtt96660f/vCH7777bqVSUctprImQ9F7fccftn/70I52dHSBX49AWLVfCsEqVV23kcskQdmsRFeWdcmzbEcKuVFwqhvP+hBD5/NLc3Nzs7EwulyuVyyROwV3DUD1NcoQywzCSiWRbW1tvb19XV3dLS0skA7cG3gvhOM7FiyPz85lYzKSgsBKJctUnWMltERhNlZEjvFpPXoiCZCB9QC9SLBzhqNwaxtjJE6eGhw9v2Y0AgFwu95vf/ObHP/7x6OioZVna2o/e9Ai6hsBdoHto2/Ydd9zxmc881tHR6RVGr6bYK2+q+iu7cemntisPlhzIhJp75DjCcWwhhG3bllVpbm45ceLkSsOWEKJYLBYKhXx+qVBYprqSiK6GzBhLpZqamlItLa1NTU3JZCqi3xbDNzDnctnz58/bti2tREO+TaC7EmVzlK4a0CxD8PsbPKtDSx5WVFTqqRBIqYzksse+3r677rpnWyJUmUzm9ddff+GFFy5evEir+QUmMUFoJQy6ioMHDzzxxB/19/e7UlAzs8Hv+NGZrFRP/zdPqxDKfSkE5YQSJ23b1Skcx7Zt27Ksjo7OU6dOrWYBTX0IqEPyR9hwBJc0mpiYeO+9K5zTIhMqe1jF1gCqZQ/rSqn+DpGnFCQPdbUKwEdClT2MKJqbWu6+556O9o6tvhkalpaWRkZGXnnllbfffpumFOqmcgCImE6nn/ijJ44dPWYYjDGlTfh2kYIx6F8F8BzLASoqVUJP+CQ/luMoV7NrKNq2PTg4dPTo0Uia3XQIzk91HOfKlcvj4+OxmCmpqF4mJvMkgxWldB7Kv0IaNiBdpipa6P+K5Jshc0WYRvz22+8YHBzcyruwEoQQc3NzIyMjb7755qVLlyYnJwuFAmWo6QQzTfN3f/d3PvGJB03TC/vIwI87xUkXPgqo6w9SqwdwI+xSQVWGoTc3V+nzjuMgOrbtkEhEhJMnTw4MDGzpbYqwblRZkaJSKV+4MDI/P2eaJlc6lhzLlZtBGTmsSvawerWEELpvRqqqwexhd74P5/zY0eOHDx/ZaSO6ECKby02Mj3/wwQdjY2MTExPz8/OFQmFpaalSqRw+fPgLX/hCW1sr+ZlJJEIoR0fnoH7XA5oouDz0iUTNX6rupOM4MtjjaqeOZVnNzc0f+tBdu2BmUEOh+sowpVJpZGRkbm7OMDh5T2kJGvVeaW19EhGDHj8f97wXyU2bIpuHOMw450dvOXr48JFNrbCwIahUKqVSiXhYLpdLpWJLSwvNA5QaqU8p1VV6PwPprxyxqvPQi2FIbw3StEA33ircsKtl2YTh4eEjR26JTL6bCCuu0FQqlUZGLszOzqoJNf45pp4XEQCkMASQOpU2iUlITmKAgYgqcRFM07zlyC03BQkDyOWy4+MTnLuLhwd4CFKLUAI+zEMI+mdQemjUL0II3UR06xe6fmY398ETiaZp3n33Pel0ektvRIR1YMV5K8lk8vjxWxOJ0evXrwuBpG4BqDwpTyrSCM65l0rq105dUJQCMSAGARFSyeTx47cODg7tNHX0hhBCLCwsICLnbvqoDBUC+NMA0VutIGBg+zpkclEK+lHfLH/1VnTVBZ6KjnDOS6Xy5ORExMObCLXmjyUSiaNHj7a0NF+58l65XBJCzx4G+ba5+YqOG34HCNqHXl6IrMKOasYwY9Dd1XXrrSe7uja30NAmYXl5uVCgvGoAeVv0mETYyQxVtNOwSoIaCQm6o9X7LHOe5FY5FkxOTu7ffyCyEm8W3GAeJ+d8cHCotbVtdHR0ZmZaCFuG+On3oAWiS0IAWZEWlLXjvV6IkEom9u8/cPDgoZt0sS5EzOeXhMBYTHlHPUkYCHKgVg8WwJt8BD71XgdjDNXEY72ByuClZvKvZy9wzpeXC/Pzc/v27Qi3c4QbYlXzqdvb22+//baZmdnR0fey2axlC+4KRl/2cEAYknkoPTd6YAPjsURfX9/w4cMd7e3VclZvDtBCixrZmPZXbvL7SJm39ovPOJSN9Sn/VYVkFSjKy38MAASK6emZvXv3Rd6amwKrrWtgGOaePXu6urrm5+fGx6/Pzc1XLAuR3A+M3jcMVonWayUiUOWI5pbe3r7BwcG2tvRN55IJoFgslssVwzDCmmc1NqosXFXkBvxtwlJRVQMKtvdPmILAQcmjlsnMF4vFaIHemwJrqy8Sj8f37Bno6+tfWsrNz8/PzMwsLansYaFlD3uvBefM4LGmplR7e3tvb19nZ1dTU+rmlYE6CoWCFG6BXL+AOupySZmNVXtTyrxKUVLhnxueSTWfNyuVS0tLuYiHNwXqqfPDOU+n29Pp9gMHDhaLxWKxkM/ni8WCyh6WnnqjqSnV1NTc3NySSqUSicRu0pEQsVQq6iREf26D+iCNQF0RDXYFAH5h6DOkZeKuvgtovwZZiAgMmGU7uVx2y+oaRlgP1lVvi3Pe3Nzc3Nzc3d0DIb/fbmJdGI7jVCqVar/4qKigxyp0W9rfxgseAuiap+79UnXTUKMrBrRWQj6fX8clRtg6bGTdu91NvABs27ZtJ6Rgo1RNXSoKbYlIANCFp/qgyUM34UHvUApDPeuNfqAPTJaQQZ2ZdMxCoSBkIeMIOxnRE6oTVJnCL5p8hNHsPQBPvfRB+1X3J1Mekr7Z0z+1TAlEX20LkCalx+1KpWJZ1ibfiQgbgIiHdUIjBmoCiqRZkFTK3aIYqAxI3T2jfYAAzTQXjmc36qcDOmtX49uJsJMQ1WOuE0oiKcLoM3tVngO6WS9shdlhOsHkzj4x6WupOCmPjtpGIaUxah98lfAj7FhEPKwflCKjJByAkPqFvgpIYMFWF/54vQoq+twzspSBL6ShMbAKIbVqsQCyrn6EnY+Ih3WCMRYgAK2tSOFTIdwJFlX9ohIetRTTdM4GTEp9u/wVA8ISZCVS+klPtYuwkxHxsE7IwKBHMVrJ3PsRVUv3fwDQDDefIuonIWqyUZeEKkseAx90lVXpycTDSCDeFIh4WCdo2VaqO06VWQ2Dy0CCq7KSL0ZjIE1fQkSPpjShSTlaVfxQen3I6guUMw3aiv5fvQhkIpGIlmS6KRA9pDphmqZpmqWSLSOEKATSWqMAnMnlnGRit+sfVcuQgpSEWgapUjt97hzwZqu4O2lzgr051jqEO8Eam5qao+DhTYGIh3XCMIxEIlEoLGsLwtDyTMCYw5iqqcUYcxfM0qEFBr0gvlJQw8JN8i3QHqXM9D6qNozxranCHGH9iAbLOsEYS6VSSjrpy8hJddFdL0njjHK9gHST+igUUDWpbogfwq+LKn3VKw6L8oimYUZT8m8WRPKwfrS0tDBGSymDKjIsJaG7hKuM2LuWoT+vzaeB6okBQi6BCJpslDEJt+CylJBeVcWAqGxqaqK11yPsfEQ8rB9NTU3JZKJYLMkoPZJxKPlA4XsVHqSdRCDFVLcJQ7qo502VRSaVVFTrguiL0dASbe6Rurt74vHklt+VCPUg4mH9ME0znU7n88tUpk0IpLgFSUVZ04lcNMo76mXeBLwyqrAdbdNLMPt1XbVasNCEoZKJDk3IME2zr68vilncLIjsw3Who6PDMDjVLiR1UroxfXXLldRS60DK0uaqjeMTa65fVW1RIrFKLVMA4TgoBK1a58rS9nS6o6Nzm+9OhFUjkofrQlNTc1tben5+nsQeVQlxHFrbnJE4VBKvakhdl4GadgrKTpSy0VNHlVLqOB4naTPNgWKMDQzs25ZVeiLUh4iH6wLnvLevb2FhwXEcRDAMpILLiFwINRVYRg+97DYGoPtUXH1VulJ1v6ta6UnJQPSWUHZXYnNLMytFtz2d3rMnWuLiZkLEw/WiPd3W2dk5MzNNiSsqpYZ5qykjYkASehaj8tboDk+Nh0gLswa0XFpO1FN6wVHF0TnnBw8OR2Vpbi5EPFwvGOMDAwMLCwu2TTNuEcBgTDAGSjXV0kq9+qVaLps+c8IVjEKrqi+tRB1KNfWcptS8r7dv7969W30XIqwPEQ83AC0tLfv27R0dHQUAIgMt4aqyTNW8B21BHndf3SYMyUOh5awR9xy1iLJctU5IRysAQCqZuuWWY7FYZBneZIh4uDHo79+Tyy1NT08hGoZhIKK+5BOZh9VqCoN/xoa3jDl4C3T7ZKBag41oKddvdTXSo0ePdnVFbtKbDxEPNwaGYRw8eLBQWM5ms7EYcI6cq+BhsMa+f24+yBw337wnGYHQSYi0BDhFKbRFlN2u9g8dGBo6EE04vBmx4rprEepALpc7f/58obAs10LkcglXFbTQSYJakW/why68PBkt/CgNQm/9VlVDEfYO7D116vZkMkqguSkR8XCDkc1mL1w4n8/nDcOU60a6q7cCMM5dh2qoWg3IyARIMYhSTRUqSOgah6gi+C72DgxEJLypEfFw45HNZkdGLuRyOSkO1RquoEIa/rsectDIvDY1kcJxUGba+MQgY2zf3n0nTpyKSHhTI+LhpqBQKFy6dGlmZpoxJhfrJmHosVFixfghmYgrr9+K8Vj80KHhw4ePxGKxbbnMCBuFiIebBcuyxsbGPvjgg3K5ZBiG7jkFWd5GLSeqYolaBN8zERHU8uZCNoZ0W+uxYyf27NkTVaDZBYh4uIlAxMXFxdHR92ZnZx1HSDU1UGZf95TqUxCx2vqtiIiJeHJoaPDAgUPR9MJdg4iHmw7Hcaanp99//2o2u2g7ggGXi0YCADKm5isq0ehxT/PhCABIJpI9Pb2HDh3q6OiMxOBuQsTDLYJlWQsLmYmJ8bm5+UKxiK7bVNVfVG5TnXuuGDRNs7Wlpbe3f8/AQLotHZV+2n2IeLilQMRisbCwkJmbm8tms4VCwbZtRygHDKmpjHPDNHgsFmtubm5v7+jp6Umn2xOJxHaffoTNQsTDbYNlWeVyuVQqlUpF27YBaKo+A4B4PJ5KpRKJZCKRuNlXL4+wGvz/4M8uqSg2IccAAAAASUVORK5CYII=", "path": "image.png" }
Select the chemical formula for this molecule.
[ "CH", "C4H", "C2H4", "CH4" ]
3
Every substance around you is made up of atoms. Atoms can link together to form molecules. The links between atoms in a molecule are called chemical bonds. Different molecules are made up of different chemical elements, or types of atoms, bonded together. Scientists use both ball-and-stick models and chemical formulas to represent molecules. A ball-and-stick model of a molecule is shown below. The balls represent atoms. The sticks represent the chemical bonds between the atoms. Balls that are different colors represent atoms of different elements. The element that each color represents is shown in the legend. Every element has its own abbreviation, called its atomic symbol. Every chemical element is represented by its own symbol. For some elements, that symbol is one capital letter. For other elements, it is one capital letter followed by one lowercase letter. For example, the symbol for the element boron is B and the symbol for the element chlorine is Cl. The molecule shown above has one boron atom and three chlorine atoms. A chemical bond links each chlorine atom to the boron atom. The chemical formula for a substance contains the atomic symbol for each element in the substance. Many chemical formulas also contain subscripts. A subscript is small text placed lower than the normal line of text. Each subscript in a chemical formula is placed after the symbol for an element and tells you how many atoms of that element that symbol represents. If there is no subscript after a symbol, that symbol represents one atom. So, the chemical formula for a substance tells you which elements make up that substance. It also tells you the ratio of the atoms of those elements in the substance. For example, the chemical formula below tells you that there are three chlorine atoms for every one boron atom in the substance. This chemical formula represents the same substance as the ball-and-stick model shown above.
C is the symbol for carbon. According to the legend, carbon atoms are shown in dark gray. H is the symbol for hydrogen. According to the legend, hydrogen atoms are shown in light gray. This ball-and-stick model shows a molecule with one carbon atom and four hydrogen atoms. The chemical formula will contain the symbols C and H. There is one carbon atom, so C will not have a subscript. There are four hydrogen atoms, so H will have a subscript of 4. The correct formula is CH4. The diagram below shows how each part of the chemical formula matches with each part of the model above.
CH4
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD5CAIAAABNptIGAABeAElEQVR4nO29eZhc1ZUn+Dv3Re6Zyk1SakULAiSQ2QRmNS5scNuAbbyUwStm8bSnu6urq3pmqr6vq+ab6a965uupml7KXdOfq8BQxgbbTRls4wVsdpvNrJIQAqEN7VKmcs+MzIh7zvxxl3dfRGRKyl3S/SGkiBfvvXjx7n2/e87vnHsuiQgiIk5+CAQAREBkthBoNi8oIovc9J1aS7Gg86b9AQEUIDmqqkpqp+9LI04TiPBgsa935GDP6KHukUN9o4eHCr0CsDCBiAiMhqqWpuoFbTWLWmo6mms7GnLziNRsX/jpi6nkmgLn+0ePdubfP5rf35Xf2184OlToFbAIs4hSCViqVH1jVWtrzeL2uqXza5e31i6qr5o3hdcQcWqjyKNH8/veH9yyd2DLoeEd/YUjo3pIS1HMeCbwdrqIiBAECkl10jCvamFH/Zkrms5bMW99W93inKqe3R9yGoIm70PliwOHh3ftHHhj78DbXfk9g8WjWkatQQu4PgCY5mdhEQiIVI1qaq1Zsrj+rDNbLlretK65ZgFRNHojKqN39Miu/je29vzuwNA7g8VugSYiRYSsoyS+vwlEIMIiwiLMzCxKkoZc+7LGdee2X3lm64Z5Ne2z9GtOR0yGa6Qrv++9vlfe6f7d4fz2ER4ACZEiEBFEQHB8k3INRAAWgVhrh5lZElS3Vi9Z3XLx+gUfWta0tjo6WREBukcOvtX99ObuJ3tG92mMKlJEZLtXyDOS/i0AGOK7nECYRYTZ/GFCbkHtigsWXH/+wj9oreuYhV91+mGCXNOZf3/j0Se29DzTXzgoYEUEGkOJE6Qmjml484IhEGjWIsIQYa2lVjWumnfRpUtuWN1yYZR1IgYKPZu6n3iz65fdo3uERCkFQy8EAEZ8EWGQgjAQEI3jHc81bAY5Ec0iIsJgzaJpQd0Zlyy+8aJF1zdUN8/Kbzx9cMJc01fo2tj1+JtHf9VbOEAEUsq3PQgE5QcbMc1v4MxaHyuwf9h6VcwChrAUNddQ/ZqWS68+4w/PaF4XxbzTE1qK23tfeaHzoQODW4SKpJRxmAiAM2qISGC8JivTkOt1jGCQYwBg398EmhkswmCG1pq0Wtl84TUrv3BW2yWKkln6xac+ToBrtBS39b70wpEfHRx6BySkrL9sRRZKOcc0PwMkbowRFgR0I3bM8T2Amc1oIwzWoou6qap9w5Ibrlz2maaatqn/3RFzGIPFnpePPPxa56Mj0q+UIgKphIiOIecFpGNNFyffeNGQGcKAiGa2w5uAtehCoS7XcsWyz151xmdjsGKacLxcM1jsfenIP73W+bNRGVSJIihllJljqrlp25sXbHnINb8ImAEBa82mhwiYoQtaWFa1bPj4mXed0bJusj804iTB4aGdTx28d8fAy2TGM5WoYDADUMFVL+nCprOJSEl/c51NBKLZicYQgWZIQYOxdv6HPr7mzoWNK6b1N56eOC6uOTK864kD9+wc+D2UKCKlEjICTXqasmOMKxWcW0wjA2yaX6xxa3xpZsDodsLCAEMzRLMuFFtql1y/+vaLllwX7dtTHjv6Xv3NgX/oHN2uVKJIKSIo50STS86zLrrb6EOegTIIZ1CbAEQF60YALUVhYQGDBVwUaC4W9ZLGtTet/Rdntl04cz/79MCxuWZX/xu/2f/twyPbVaKOs/nJKDJ+i49CAQDYND9c8zPEuNOWbliL0W7ADClqXdTVqumaFbdcs+oLMUR1CmNb70uP7ftvffpQLskRQErZ8cx0MzeeKUq7FgVcw76zBYzjwIDxnqzzro1gzMJaiwAM1mAW0VwsFttqln3uvH971vxLZvDXn/o4Btfs7Hv9V/v+truwN5ckRMo2v1HmVCoJG+4R3/zuNWe4xp7TGDiGbsRZN1a74ax2Y5tfdFGT5D688ksfOfPLkW5ORci23pcf2//f+ouHEiMD+57mI5w+zmk6mPnXx5vMvxVHOEnzugBYjcamX0CYNVtTmm1wiotFbq1Z+rn1//bsSDdTh/GiPIZoeor7kizRkAKZlwRliMZ0CAUfNTI5VoqQOlve3TZQziFSthu5M5AyMhCBFJQiKEoSJVR8ZteDT7z3vVGdn55bETFr2Nn/5mP7/66/eEgppVTQ04IulPmDYDuC7Srobwbus2y01O1GtjvaTqgARUSUJOpoft8/bfqbnd2bZuWGnJIYk2v2DW791b5v9RT3KaUSlZjmt80JmM6gwtYNWx1lnUNZSxgAiKBMEEulQo87CnY2i+8KMOmBShFL4ZmdDzy78yEWPQO3JmJmcGR49xP7v91fPKiUUiqBSkAElQ5pyps2yo5MnjXsFreRXPZNJp3YdieXnEHWEndsRTacrhwpqUQRJUp1De/7yVvf6hzYOzv35ZRDZa7pHjn0m/1/31Pc65rftDlce2StlcCZSpvfNXZAJlmIAFA+y9x1FCK7NWh+QCkipRQx9NPbH3hj/5PTcCsiZgHDxb6nD953eGS7Ujllh7TAZA6NlJIOlN2e+llhSmkJ3ZSfw5s2bouyHZhIIUmSPb1v/fKdu/PFwan6vaczKnDNKA//9tD39w9vNkRDRgkOm1+l40MKyjZ/mXWT4SMY+iAy+X6Bk+XJxdu9yhu3CqQor/t/9c7de3vemYa7ETGj0FJ8+chPtve/oBKbQQFYXyblBsp2Nj+elfQ9/2/gW2X6pFI2L5RSt90elVrjsJEP48YrJElu48GnfrvzxxwmpkZMCKVcI5A3uh7f0vuUS9Wzza9UwBfIsENpbyhH4FhltxNUAt8DyKl94s4d9AAo61knSdI1vPfnW/9+YKRnkj8+Ynaxu//NV4/+FEqUVwMDHZDKe1coDqOsy2UZJNO1vWpDaZq7+IHNmjKhSU7+CAE/u+OHu45unq67cNqglGsODr738pGHGKPGafGes3FxM5Zo+pqOq/lDz8tuIW/c+nOSH3bMMETOcQNZn5uQqNy7R158YddPY6GvkxdDxb4XjjyU516bEOzU20yPrMAyZQNaOOxJZq9MZxPJHOzj6akb5exoeLfdmDlJ32jXE+9+P1+IntSkkGnZUc6/1PlwX/GQUkRGogst1nJbZixjhsp7DWB6QlkOoLVWg5OFJzbncF6Ys7SIQHh+1yP7erdN6tdHzB62dD+7d3CjleYCPz2IEIWdq9xjD/4ud95DorF7lQx02ZO5iER6PjMOEkghp3LvdL745v5nJv+rT2dk+GB73yvben+nVIXmH8+UzZwq6ATe5gjjlI5xkH6YOZdjElgWcqpNKiG70ebo6P6nt/+oqEen4DZEzCz6Rrte7/oFo0AEVbGnZRSZcpZBWcfJgMoZB4BIOrC5g9POFh7m+rK5HqVUESO/2/VIf3TbJ4H0vo/owTe6flWQIefZZLyeMh2/vPllvOYPytmU2EPZRD93RjfUAJDUvXLGroJSKkdqy8HndnW/NZHfHTGbkK29v+0c2UFery0xO9LcXxqfU0oRdKoK3jWRrWZSttmyjq144pwqa9mAiHIq2dP79qb9vz3+HxlRgpRrdvS/vmdwkzJpe57lKzc0ZT3j0qlv6V5BVxHK7hLslfmGsm9MNwTDEABFyUCx94Wdj0bT5uTCYKF309HfCLHzU1wEwDd72ivT6QZht0Tg8QSDXAABScBXHmTytdy3ePvbdmdnRIcH2mFXaRn9/e5fDI32T/yXn96wrVrk0c1HnyzKUImJWsmOybjKTtKhoPnJNr+Eloz7V0pd7wxRUcWtqR9uv9RuIaVo66EX9/ftOIFfHDHb2DP4VufILuWfeY/s4BT+Ew5pIgRXOyJzbPDaU4aUfAdRhf3TD4NPKdwbACml9va/s+totKMnCMs1h4Z37BncZApfZeZwl6TGlCLT3uM3f4WNZoOPAFToBmVKckkgC9RX6Nq479kYkDpZwFLc2vN8UfIwcUVXaq+0X0jJKwmaWNxoYzBGv/SZE2HX8CcJNlJgGEn4j3OlzIsEargwsGn/cxJzbSYEyzXv9b0yrHvJO6kASh5rVPSA091SlQcobX6xPnBgEYefSvqvlHzohqWMiZRKx4oSIrx96KXB0d5j/NCIuYHe0c59g1uUzWJwIOdlV+hBPkJArqeYzzJ9KPMdoe1c8onnGgqK2qQ7S3qQHV8lkI5BirZ3vtGb7zrRXx0BwzV5PbCz/w2nkKVanZSboBapx+RLCKPcrgkhwdnKOoabIV7+JaUut+ly3sQFQEodHti5t+fd4/q5EbONfYNb+wqHM6VdQ8e5NFJgeke6EIv9J2tPp8cGZyg1jPw7X5k45CNzjpDMwp5nVGOCInVkaN+e7pizPhEoAF3Dezvzu0oq7KVtIcF7+0qCdvFvx1CIy0MCJVpdaLiGpqyvCRAcZarKBhY0E2G4OLjtyOtj2l0RcwYism9wq5ZRBA5KSZSgkkPlQVlGKfsQwfgkrsREZp8yizvzYSAdZHfwsnRB53dHyWZCUAAODL83ovsDB8rbDAACxa7ys1yxa2R9ocCcYckOSq4kdXgcAlqrXGPU+VN+eHz/6JbRYqw1MdcxykMHBrelD7JLrUiHFo/SGNLYFFNxx9Lz+LeVLPUxu1jmA/dkyPvd78TONgEoEd438HZG7vKDTWjTSvbjdOv4bWu3SWgblx5RIeUhFXYkS1vhp87GIaUO9+/uHT4y5q+MmBvoHz3aO3oo1VuDfJaMy1P6ptSzKt016IkVuxiQemISWs1Izy1mTZfMiUtsdQWASB0Z2B3n4k0AKq8Hu/J7Uz04XcMpq8mnr8caYbJ9oqR70BjHlDd/Ga1Yy0fCb884XATqG+3uHDxw3L86YnbQP9o5XOw1GXJpfwgc5woskCK0MoLelKUj8r2I02iD21NKxjz7ua17LUYM9FZzuBMRTLVaAoYK/b35OLCdMNRwcaB/tMtzjYQ+i/F4x/SeMB49lNhE4loxbP7yGLlv/mCM8s1v4wWZaIR9rblwZGDfif30iBlHz+ihohSA0gFszKCClLwJOlDYlzxbUabTVUKFcLW3YMLDg+EN9nPX7/LFwe5oRJ841EDh6AinE1hFZEz9rJRYpPTvSs1byjBlvnGJ9UQI9nY9IGtklch2AKC52DW0v+IvjJg76B3tTGsqZlcZ9AtUBpvCriOl28v2EesHOeYq6cWhBR0cm8m0KPl2uO5nL9Cekln3Dnee6G+PUAOFo6M8kgYB/KwQ3/whqVe0WeBehzs4PVh8EWkpa077HRzSjfjwQfrdwVdIZouRmYyk3TfcqaU42fsRMZ3I64E0NCSuqD1K+aK0F5ktnO1vqNT32Bq+Eu7s+nEa7Q75xZ8jjKT6M7idQtlQgKHRvsndidMRqsAjzPYRFUP/WTlWSlo3bP70sOzGoOtkUmpKml8ciYWjEwKT2A9G8M0fHiIUuP2jeiQmdM51iGtUcS/D7uUCUrYPVox8B7SSYQ3J9Kx0T7vR9EWVYZOQhcSdwBs74Tn8wnaTvgGnM3IA3I03/7JAkfOkjERCzrQhr914CilRc7JDQabroGRP4dCoCa7CdCMJacX8RZkuYMkqtv9JA2HRoRQsYEUJfGcTO9eaKkqElca2TPeoHM1w28Ilyfzo5a8kKxtbs7qkdwXfqzla0CeMHEsxeIjLYAjITUuSkl1DQ7d8KEBq14Q7BL4Z+76SWqrOgcoMeqnhk/YJEUDIdwhmHWdFzW0QEUk4sFFgKPsOoOyolg5vCFzycJgLbBnbH3wNpSzdpOMWUvPZBz18L04Nek82Zs0y08GQOlZxCdYJIEeUWOtgrOb3+5Jt3dJhJzvIlDR/xVkOpUKdp5hs82dfZXqB/8x3orQ6csSchSjhzIggrGGWbIZ94sX9HQ5hfnokBf3EOsxhV+SSnpmue2ntZXeEHaGMV27WPkTQD81rtwY0AECHZ449bQLIkVn60sefjBslLiXbN7+He0vpBgBgNzIIVbJ97GtrsiBc1duPM+ZvBkRgmt99ypa8glQtgJBZJio2/0kB09pstBOGKNvc5BdudsaLUFYbDBmq0uCE7D7mtABK/PTMSZDVZpy/Ly6alX4WLeZJI2dqObOAXB6UEFiEXJqkp5tQojEvSlSb1BZFdnwIYXitLCKA7M6lZMVwhGj7GbOTGN2uijJlIyPmIJqq2glKfB6LnePGRAmYoVTFDmC9m9T0yZrDGbPXvHBDGpGwtpv9Yt5IY6NmGOPQqHEhCDckmvNl3DAiNNctmPq7c6oj15hrqaJajRERkrTyA6fF0QK68a0ZRMbh2yllHB8OGsOiSY9CpvkNl4iPJ/n0Bz/9P53PIGYBeLddmmrbEpWb4tsTMaWYV92uRIGZSVECEq8EiwBk6AZBx0gjkm5cK7GyS8YqvzmIcpaazwh6Ggf5Fpk8UhE4q0hERDvLGgByqnpebduU35xTHrmGqrYqqtE8LKSsBmyNWBa4ymlEAWuk7e2bP23yclPFH1dSGmDs5mdLTM6Bsq51egLvgntSU6Ra6hZStGvmNlpqFuVUnZYhcvaI0V8YTACgMs4UXA+x5o/bguyLEJkgdjbyUDqkuaHPx+BTo4bdwWa7pEcBAqnNNbbVd0ztnTkdoBqqWhqqWv3jLQEFsDjVJI1aAwg8ncAWtdvLica4zU6iY2HJ7masKGe/lMULHAfBhMiz5/dvlapa0Lhsyu9OxNSiqbq9PmnWkhHj/HhjvRzmTGdD0K9kjD5m9rIEY87OJYenhwZEw6EFbQwZye5tTSR3HgCCxurWppr2qb87pzpUba6huWYxsyGW9Om1Sq2wOIu0lG6O2QOsNGMbtULzm1CCgLPNj7DFHdH4jTBXxTq4HKmvapjfuGS6blLEFGFeTduC+hViOpuJDgR0A2Gw9oMTgNJeZ1DKRG5/OzKy67SV8v3cNMvUzHY7uGl3Ygc8Y1OziCE/bU/CwovnrW6saZ7WG3VKQuVU1dKGsyDEIiY4ZAyNlDtY20HIM06GdCT922/xtoxtKz1O83O2+eFaXPzpJeQjd3pAdCrd1VNro4ou9JyGiGzZtHXbSwdFkwjM2MbeNHazWFiYATf4ObMayPS9oCu6PmZMZpagzwABywRJXd78MTsI+0AnB6Z08CKwtIhoRdu6qAxOAArA0sZzclQrLMJsRHlPN/aptnZECjuShETj2z5rylZufnPmlM6CQ+C6HYPZzqUzH5jvYWYxfSL4FS//ctv//u/+/euvv651GAePmCs4cODAt771rW/+z9/88d89c3RXUUhYkI5t4UACiLB/vp3n7XqA+2PIiHXRnAZhwEGC1BgBS5CGx851sva2+14NZjtG+u4qIiJFEwL1jn19VdPK9vNm6S6e3MgBWNiwal5VR1dhN4lSLEykzIrabKvuiVmYUFgE5CeVSDAj3NkjZDoKKRHOTMoX/zEg3jMHkDZ/qQ8vQa5Npvm1YUXTn4jQs7u4/fneNzofefHFFz/zmc98+ctfXrFixUzexIhxMDAw8Pivf/3df/zHTZs2ASBS7/yqv2VpW1U9mFmRYtg65zZhT0FgsrTYJGEYFrGhblJpJNKSixuzAkPGHCZBNxPYTlbiPUlgvxjJgNPtZuc0BMEii5pWL563ekbu3KmGHIB51e0r5n2g8/AuJkAkYWEQKRBBufazzUkgP4DApxFbZsE4zW/tFyvBpAOF45gKze/SHDiwae3gE7hxxRHZ+duhkV6pqanp7Oz89re//dRTT33pS1+6+eabW1tbZ+QeRlRGsVh85ZVX7rvvvmeffTafzydJQkRJkhx4Y2TvK0OrPtTAEMUCECuTzBWUqhKIssMTgn7ku1+6XbJ7IOiu2c5m7WNnO6f2tTWf2dpSfjqeaC3BhG+AQGs7Plhf3TTNd+7UBJk7/1bnb//HO38lKFIOCREpBUWk7ArcaU1h94ICM6V0PqYfWCo2v/WDXPMzc0g07Ixe0/ypNAcwmJlZaxHRtgcQYd/rIxsf6uNC6lEVi0Wl1KWXXnrHHXdcc801dXV103kDIypjx44d3//+93/yk590dXUlSaKUUspOIhGNtjVVV//L9vr5CcEstEsgO7wBbnFT3+U8tZSjUmfzAqAZ28z4lhJNYDuX9DTHOxARrYswHpRThQXSVN32zav/5ozWddNyy051WIlrZfMHFtSuPjC0NWGllSgRxRAh9s3vm5vd3H/KkEn6InzvXtvm9xrb2M1vLRpPNM6fNxozvFYoACHfw7t+O6RHJKy7lMvlROTFF1/cuHHjddddd8cdd1xwwQVKZSozRUwfuru7f/KTn3zve9/bsWMHEVVVVXmWMaAE3TsL258dPO9T8ygRCBSbFC5CdvFBIDRpsmMaAg4SiHOyxI12roSNADZlL+xpXvS1fON9JQZgzeeSOvwifNaCDYvnnTkN9+y0gOWahqrm8+ZfdWDXVuOaMhhESilhgkqTxK1HbZiDshNqs7O9ERg41m9C2hdSU8Y3vxuC2E5HcCkYrvmNZM3O9jHn3fvKcM+eApXRiOniIyMjjzzyyIsvvviFL3zh1ltvXb58+ZTeuohSjI6OPvvss/fff//zzz+vtU6SxPhNFXYVbH9msOPc2oVnVzMLSJRSxBBj0igwQBKu3h6AM+cJBi/AO01uE2c6m+9Ldkiz+aCOVoLgg2ZjfaeRBqmvarps5Q1VSfVU3KrTEdaHAnB0+MB9b/551+ieXKKgQArKLDioFNxKu4TxF0TODD/OHgGAiuYMxml+ds1vvCpmZs0irO2ESyL07im+8t2efA+Pny2stRaRtWvXfvnLX77pk59sbWmZ3B2bTpigS3HUCwyATdompShX7VfUmWsQkS1btnz/+99/9NFHBwYGjMeUJOMVXtBFOeOKustub8vVEIw4SETGAjKmtIlIwHa8sm+0n2Z0GfuZG8TEllcLPXSB6V9Woxmrp5lcn9QwF33Rkuu+etlfVie1U3HDTkekXAPIU7se+PXOu5OcUopCuoFS3pH2eo3vAaklGxgy5p/y5rfCXHnzBxJdWfMLc9HEELjohR689Uj/7heGy42aiigWi0mSXHnllV/72teuueaampqaSdy0KYOw5pFBPTJQHO4rDvfooT4eHdajeZe7yP5BgkpUVV1SU5fUNefqm6vqm3O1TUlNPR3n759OHDhw4Mc//vEDDzxw4MAB5TDOtHuxE1EkV0OX3dm+4rIGACCQggJIKbeoquthburM2Cf0/7iiBd5s9p8GPc0OacZHd8ayuOR2zUXm1J8CIJCGqubbL/+rcxZeMgX363RFmJJEFy362FuHnt0/9A5yOSKAoUkUiRIRIiISN+YIQGTrSMCLvm7eii90ZLaGzZ8OMkhTeMxQA2ZY5yn1lYxoA59uY0YzhSPvjh54M3/8D5oRcZ599tnXXnvt4x//+G233bZ+/frZEnG4MFwY6BztOVjsO6wHu3g0L7pgkqhtkRYflBM320xEs4yYx4cUJVWqur6qaX51S0dd69LqxnZVNQvsOTg4+MSTT95z991vvfWWiIznNDmIiLE0AYwOydbH+uavqa1rS5RAAE0gZjIMasY5Iu8oWYSnT1nGut4anl1Ctx3GAbfxbzdpJs0ktAGpYolw4y/6g2fcsGb+hZO7W6c7QrsGAF4/+OuH3/5rjSLlVKKcKEPOxDVlYsgPNIFDlTmN+ChjaszYD8Zt/jBxmSECrTVEa3EGrQCE4pC8/mDf4bdHJjCoM7PWuqOj4w//8A9nWMTh4kih78jo0feLPfuLQ11SLJrRW1Fa8Id8tTnxPAxP0sbasUIWa5PgRrmaqqb5dfPPqFuwoqZpgcpVzcBv0Vq/+uqr3/nOd5577rnh4WFDMcdpzpR0ufM/33LuJ5opsT3L9zdTQcmcUUQs9ZhT2XyLgFOsEWMHM1+yr9Rv8q98Ko0d0sCsAa0FPsppTyC8rPmcu674v+MkmEmilGtGdf7hLf/p9UO/SnI5SpRSIADK2bFAuhSvOVCZxIh0BIY3XIh889vNqWozbvOLjzsyoFnAQfOTwp6X8pt+3DeZQuZexPnKV75y4003TbeIo/N9o13v5w9vL/Yfgi6Qg/ucYIMw1sj3NYAQPEIA/ARkSzfW5mfWLADlampblzYuXVu/4IxcTcP0/Zzdu3c/+OCDDz/88OHDh008e3xpBu6Gl3Q2ACJoXJj70L9qb1lea/qWIpvR5711MlxsbGt/IIKe5rcgM5LZ8n1e93U56Ja43W6WBFlrlBKNQBqq5n3pkn93/pJrJnnTIkq5BkDX4L7vbfw/Dgy+kyQJJQpGHabAxgntGCIV2jRpRl5pTSOIf3ic2yzeb7Lzu+04A9ghkLWGTXnwwa+RHn71/t7u3RXCTyeKGRBx9HBv/tC2kUPbJN8LEUrIPjrKZpCIvVVBlrVxUM2TSbbIi5+VYR4MuHwlaycwa6drgpKqpgXzlp/XuOTsqtrGqf053T09v/j5z7/73e9u27bNJOaNb8sg6zRV/JSZ11zbuOHWtqRKgZTyBo4vHoz0RYZr4CKkHkHhJO+bG5KGc+R9WrAPbwuzSduzPS04IRF9fO1d/2zd12KB4cmjAtcAeKfz5R9s+g/DuiexSX3K5PV5ukkfEH8i3/wl3vWYzY9UjktHHgAusYZt1qZkm3/H04NbfzmIKYKIFIvFxsbGKRdxeGQwf+jd/IGtMtwDk7JmCx0aKiGYCC9R0AKSql0ugue0cHERvVT3TAdpM/nQ3jrRrAVU3biwedWF85aek0yFlDM6Ovr888/fe++9L7zwguHo45FmKjpN6S1iNrxZ1aCu/uaCJevrAIIiMtl9LhZhv2Ocr3JjWJq8bmdyCoS81Sy+mKwXCsUSjU2yyfY0Ef7gGTd+7sJ/ExOFpwSVuUaEX9jz05+/8/9pjCjzkChlXOc0IGVPUH5weJ5gmx+cj9n8wsKaBTo7zhCh/2Dx5XuPDncJqfF6+YnCizi33HLLF7/4xSVLJueZsx7p2j205w3uPwyIUgombSDjNwHhbQTgbT1YQUz8DQGsV+nHZDEyOrtZqTaNwNCNtQlZhFR9+4rWsy5tmH/GZOoxv/322/fff//Pf/7zvr6+43Gajodlwk91US/b0HD5nQtr65XhX9hMYiNolYxrqVED72y625U6nuL8djHRhWAHlycMMa5dhSFNhM/tuPKWDX8Wy2JNFSpzDYAijz6x/XvP7HhAUyFRRhk2EjEINtJKFDhKlWBGGG/9G6Pfqg3pu7D5GWIrUEiZQcuatzzat+OZIRCM6T619cyNqX/uued+7bbbbvjEJ+bNmzeRkwz3Du15o3B4G7hg5rCSMtcLZMnFuEdm2E5lTsc1zooBTBoruSfTeAH2roqHjeF60rEVG7hYZMrVtq6+qG31xbnaExZxDh069E//9E8//OEP9+zZczxOk7nIYzpN/lPjYTEzJfjoH61cfGE1GXKhIAphedqIgPauQWziRcov3rH0nC0p53iWEbEeuolHlIS33VXxuo4rb734f21rWHyidyxiLIzJNQAKeuTJ7d9/euf3GUVS5J4W3wNsZpmU+NS2+SWNFaQ+EsEljYiLQAXNryFgiKmXVLbKuzTrM5759p7tW3fncjkvr05t3Nq4VFVVVVdfffVtt9121VVXVVcfd56oyOjR94d2vaIHDlNCZLUZWH2dSAX+ZSZn32kyoSTpThnYhqn7xOHdYz+BlW21BD/zQ2tr5WjhuvaVC8/9UEP78ZpsJp593733bty4UUSMLTNJacaKTQ6GZbTWjY2Nn/jEDbfecfOm0Z++1/VqkiQ2u8+6UWlcKrVpUuXGUEiqfZlYptlP0ilR3moWUypAXOmSktFSRM7tuPKWi/+XSDRTi/G4Bp5udjxYlBGVqDTebU0bp9eJH7IN87Adg+zJJX1m0kBuheY3GTRlzS8Azl7wwc+d/yedewbuu+/eX/3qVz09PVVVVQCOGWqdAAzjNDU13XjjjV/96lfPO++8Y55fdGH4wJbh3a9B5428aTwAUnBPCZGyU8iIMraM+5FOGPZDNABXqBCWd3yFJ+cyuf3Z/gcOLAfLNBDNUizqXF3zwvOuaVm2jsYlaK31pk2b7rnnnieffHJoaCiXyx2nNBPySMmnJSxjWElrrZS67LLL7rrrrmuvvbauru7o0IGfb/37TQefhDKjWiZhPc2zILeyh7j65753mZuG1F6GtQ2dlykul0sHB7qrSlTu0uWfuPG8b7TUx5USphjH4BoARR59ec8vH3/3OwOFo0ol5NIf0ikLzpoFAnrx3cI3v+sNnmVg8mnC5q9gzUqichuWfeym9f+8tX4hgJGRkd/97nf33HPPCy+8UCgUjHAwHYxjhtzFixffcsstt9xyyzgiDhfyg7t+P3rwbQWGUoqUssOyTUmDSxfwh5T7niLil4UMXQyEPqgt5mMdUPiCZca6MeaOSRdwE5e1DbSAGZqLoqoXnH35/LMuHSsNZ8+ePQ888MDDDz986NChkvnZY2GseLb/CRWdJhFZvXr11772tc997nPz58/3+w8V+p/d8aPf7vwfw8X+JKlKA6BuOAul4vA7JQxLSXrXjNUsbuJvJlcrAAvPq2m79qwvXn3mZ+uqpjFj4LTFsbkGgEC2HXn1529/+/2+t3Iq57SHlF/C2JSkR5kvcFvcvCc4/VcQNH+ZOoOg+T905mdrs83f3dPzy1/84r777nv77bcBGMaZbhHnEx//eHNzc8kOPDIw8N7vCp07VWIcOluQA2bJKnL/uVuT1hdzZ/AJas4INJTtDB1rFKZ04wRjbxMaO1KsymkTr13agImFixEoUNRFhmpdccHiD3w4qc5M7enr6/vZz3724IMP+lt6PPHs8c2ZEpZhWxZEt7e333zzzbfddtvZZ59dfiCL3nTwucffuXd//zZF5jICph43IOVMZrG6oBiH3Ic9KzlNEABntJx7w7l3rlt0uZoD0z5OSRwX1xgcHTzw+LbvvrH/8RE9lKgqpZw3Zc9UdkAqNJi/Xes7uXi85hchopWt6z9+7u3rOi4ba9bP3r17f/CDH/zoRz/at2+fF3Gmw6XSWudyuauvvvprX/va1Vdf7UUcPdI/uO23xe5dBKVyylEM2f5qw09AEDSh4LVkV6D2yqa9a0SWS8S7m/6SPM8I0vKYKVzhSzOVEMzGu4JmLmpmlraVFy4+/1pDNyaeff/99//ud78bHR2dfDy7ojRjbmNNTc0111zzjW984/LLLzde8FjoGjzw3I6HXtn7y/7CUUUqUYnPGMjm9DmuFscxsH0sKEjiFMAylhHh5poFl6/65FWrb44hp2nFCXANgIIe2XLohaff++Gu3o0snLNzNDMdQALxznVFsdxi593a3VyFkcxXmOenrbbjytU3X77qppZjLTAoIps3b7733nt/8YtfDAwM5HI5zJSII6ODA9ueKx7dTYlS6RRl+9UEG2TKCucpM7N1mgCfcm2+KP3GNLbizRa4G+iLrgAQZkfgjmt8YV1mLSJ+mQyRYkA3i9Z/+L2dux988MGf/exnPT09hq8nGc8ey2kCsG7durvu+saNN95wnDE+Fr2ja9Nvdzyy9dDzQ7rX3FkfokBJ3xErEyrA1XQMhrFK3aypuuXcxVdftfrTq9rOmwuzWE9tnBjXGPTlu1/f9+RLux/d1/cuo5gYEQekgiiBFeSAsJFtymYligFshKqldsH5S//g8pU3ntF6zrjmcgb5fP7ZZ5+95557Xn755UKhYBhnOlwq4wIsWrT4ztu+9IdXnil9e1QwE8gE56zr5MyZkGIgYnVZF9wWkZI2CB8NCYjGWzdmu1vXxLqiAogOhnUT83b5cjY733pVou1cZhwuNPzHe37y3o6dyXHMz8aEpBnz9+LFi2+99dZbb711AqWgi3p0R9eml3b/YtuRV3tGDgnYEHugFTsFsEQlLB/JICKsKGmt7VjbcdmlKz++su28nJqJGWQRE+Eag97hzjf3P/fmviff73k7XxzwyWr2vMgIEEatkMojDAskp6rn1y87b/FVG8746LKWsyeWEt7d3f3oo4/ed99977zzjh+fzSM0sd84Fopa/0+fuvKff+5Dylk0Ns+RCD4VKdjf+VFk74VP1MuYghAihMGawKXyzpH7SBzdiLN8bL13l0KQmjZm0RwR2MosAs2iNTNz38Dwtx567vdb91TlclMozSAbz/74xz/+9a9/fcOGDZPhfc3Fw/3vbzn44tZDL+/r3TZQ6GEppvHwsRO9/C1KKNdY3bqs5Zy1iy5f13HpwqblcebBTGLiXGOQLwy+37317YMvbTvy2pHB94cLAwwNAbm8iLIj3AgNAagmqW2uXbCybf3aRZetmX9RW8MUOMy7d+82Is7BgwenIxOHRdat6Ph//ujmZR0tQBpyImdFOcU8E3jyyQJASi4VtjjLBLbaaoZuWJiEvHbjnCn7LJlgi7ODTPwJ4kwbH5MSmJiUnSf+5rv7/vah5/oGR8YigvFZBuVJwM6WSZLkkksuuf2OOz52/fVTWPV5pDh8eGDPnu53dh/dsr/3vf581+Bob4FHWUqX61GUVCU1DVXN82rnL21Zs6Lt3OUt5yxoWhbrXc0KJss1HgMjvZ0De/b0bNvTvfXIwN7e4SP54uBIcZCzw021qq6tamyobm1vWLy4efXKtnMXNa1srlswtYt7icibb7557733Pv744/39/VMr4lTl1J/f9rGbrzkflsKc6+Qqiimf8RgiY/EJgjoS9tNUx/LGixmTrScFG+UOZBq3kp8NN/k6cmZVQUNOhmvcikhaa0CYoUW0ZhYpFIsPPPbao89vKb8zpm9MIAlYRFatWvXlL3/5lltuCePZUwsRyRcHB0d6e/Nd/fmjA6O9ADEXTbMAaKppaaptba6Z31DTXFNVH5d7n11MGdd4iPCozg+ODgyN9g4V+iBg0QIklABSnattqGpuqGmuztVNt59sRJy7777797///VSJOMxyzUVn/vt/flNzYx25+v9WpHEnpSzXZPQat4/YZJBUtbE7eK4RESJn5iBNhRXYbBpn2liXCdbyMTaPX1TQvTJGjfjsPmPaFJlFZO/Bnr954On9Xb3hbZHjmJ8dsoyPZ7e2tn7605++/fbbzz777KkVyyJOakw918w1TKGII4J59TX/17/81JUXrIZAKUqsDEzOpoHyT5eyWjmJrWpoNmcEdM81zBnTxrFM8DD78K0AwWLIvu4/jB3js/zSqt7GxTEzzWwFBbBZ4lRr1szM/MsXt97/q1ez0vKYGnCJS+Wdpurq6quvvvrOO+8M0wIiIgxOfa4xmBIRh1k+/5EL/revXp+ryhlJOCFFsHF/Ci0aE2/KJgp7BMETtyVkGaTWjXejzN5WpyE7I0qC46xq4ylC7IJaIsEyxSbNJp3jDM3azA052jf0X3703Fs7D7hMhTFZJiNRB/HstWvXfv3rX//kpz41p6vHR8weTheuQSDiPPbYYxPIxGGRxfOb//Mff3btqkUAFEEZx8lPRwVgsobNCz9zzJ3BJ+xl3Cj3EYeN4bmGyBotsHE9YTcPSMya9y7+bUmJwc7YETbCjSuv6rhGwKy9G6VNoS2RF9/a9a2HfjucHx3r7o0Vz+7o6PjCF77wla98JS5tHDEOTiOuMcjn808//fTdd9/96quvmppPOD4Rhwjf/OyH7vjkFSoxtZy8UONq6ZBNavQUU+I3hekgcGGmcIfQYEhL86UGDuCmYtopPk4hDlQbES1uBWvrVYkrqWVFYobRbWzwm7UhnZF84Z6fvfCbV7ep7H0whkzF+dn19fXXX3/9XXfddfHFFx+zDGjEaY7TjmsMjh49+sgjj3z3u9/dvn07gulUY7lUzPKBM5f89R/f3NE+z09EIEWKlPLJwSpdI5ZEXJEfyymhCYOsgROyT0oeBs5H8omwoEyujVdtmGFKXcJNM3RcE7hRzCKi2do1xvNiEc3GlZId+7r+4/d+09kz6FmyRJqRYH72hg0b7rzrrus++tGGhjhTMeLYOE25xmDHjh0/+MEPHnrooUOHDo0v4lTl1J9/7WOf/vAFICSKyDlQdm0JH2xKK25QCY+gkmlTUbgRSkvyITB2fGKkzaAJJBsRJw/DhqL8zAb28ozJv7GSjYhom2gjzJo1C4sUCsWHnnzjx89slICb/IX5ePaKFSu++tWvfv7zn+/oiBOIIo4XpzXXANBav/baa//4j//4+OOPm1otKBNxmPkjG87+P79xY0NjrSJSCuEifQjdJcpmTwMYY1JqSDfh9mzkKZWHyRXbEMnYNYZ8mN122DKrZsV7CeqEaucKSVDXxkSjWHNRhDWz5iO9/f/vA0+9+/6R8NK809Ta2nrDDTfcdddda9eujfHsiBPCVGbQnYxIkuTSSy9dv379DTfc8J3vfMeLOMZNMFZLc0PdZ669qKGhxkymTCsH+6QZ+0/5wveBIkPu2XUzNiio9eN3Zr81mL5Q8aRkx4nMyqUl//rXAoTfl87VsldCJGI2tjc1fOyytTv3dxWKGtl49lVXXfXNb37zqquumiOrhkacXDjd7ZoQRsS5//7733vvPQCmroIAt1634U++9JHq6oSgEmVmP1n3yVaE8CxDvhZzilIbxz/yFBCBQ5pTEzgv5nWJXQPrXknob5m1bzKTFdhMjQKCBGK2VSaMpQPNtlaoLjKzDI6M/LeHnn1+407ASsJnn332nXfeedNNN7W2tk7Z7Y44zRC5phShiKNUbvmilv/8bz5/9sqFNmVPpaqwsWzsQiyBUoOsLpPGvQnkpmyIsylKbRJjqwRv05g3AD9XXhznOG3YSDXwBKTdC5cQIy47xpWON6UmbEaf/ZtZaxHhje/t++vvPXG0f7BjwYJbb731i1/84urVq6f5xkec4ohcUwFexPnNb35z+w2XfuPTV1ECIlt0QflYN0AmUdgbNQHXeKTZNO4VuYLwIhmjhkvaw0a5S7kmNWqydo2jFF/x0mUYs1mAzdKOdmFvVxvUasbamTaa9UhR/+CJ14v1S2+//fZLL700xrMjJo/INWNieHj4hWee6MhvXdLWaIyZxGbWKJctDCDQgsu4xmfXUNZ+yVaSSFGqDfu3gQ5s40uumkSGa1wqjMnpg6t3w66+hE+xEZc97P0pE9lmrbXmotaauVg774KP3TGvpW0abm3E6YhYi2xM1NXVXX3xOR0tjQwgnVlp/Z6SdDfzd3lIO82BCfNrBJBMyb7KfJ9OTgg3epUn/TSMiocCtUsmNidLdR3/eTBbFC5QbumyqpiX0b4x705ExAnidI9DjQeRoc73RbRCEjALEcg86HZ6gg8bEUmZ9yQBxfjn2qi8KksiPkREPl3YJdqE5wl2LX8rKWHY7yLx700iMlE6Zyq8SneFhgqJaHRkuPfgruaFK0/spkVMGn19fZs3bz5w4EA+n5/ta5kUamtrlyxZsn79+qamJkSuGQdcyOuBrrDoCVmbJFBkwvi0Q3mGXklGnz1/sJFKHKhK53S2izjDynpmmXpb5gqzZCTOhrIiUao823fWrjHHKQITCQjo79zLuqiS2ElmDj09Pc8888wVV1xx0UUXTWGBsVnB8PBwX1/fb37zm4985CPNzc3RhxoTxeE+PdwLIihPBYB7lMf0elwC3lguknd3QgUnNWqCUwUTEUpPVF72ySXiCEDl15f6WFLha0t8OkV2IbjBnsOj+YGKPzRiOtDX1/f0009/+tOfXrhw4clONADq6uo6Ojo+85nPPPXUU/39/ZFrxkRh8KjoUSKnYWQz9ShDAS4jJuSK8sQZdyACwyezj1OCg68JvjLw0LwwHOzuhGOWki8md0iYy1eadWgvjsitdEFEhaH+/EBPhVsTMT3YvHnzFVdcMdtXMfW4/PLLN2/eHLlmTOihHhGGEGV4xYWWTSzJbCo3RypNTbA7uL+pZB/PBdm5lykfBQIwOw/M1QD18nBq8aSV/FJfzl6039/MUQCsNmy+jm3mDoq6kO8/Ov5diphCHDhw4DhXszm50NzcvH///sg1Y0BYD/cGrgr559NOtywVaDOmTUVVGG5jVsA1x2VD3YEZQi4TB4Y+/ASFjP2TemYcbHX1PzP+GpC1nMJfYS/eiVGs8/1dY92hiClHPp8/BVynctTV1eXz+cg1lcG6qIcHAAEF5oQzFtxkavtBhnayeTGoxC+UMoiEro1Ftuy5lGgs3rCCCRh5GnJHp/vab0vZy5kw8HlAFO4JwGRBpByX7++x5XAiIiaHyDWVIcVRLuYD54gNAxBIKMMggPNhfEzKE42JX5eRkZ9g4KyM4HC3PVzf3HyxU2dSN6ksVJX+4zhRxESaHPshYC5xGk+pjRbQ1ehwn4y9WktExPEjck1lcHGUCza7wcgvqRcjIQdUCkjZbN5A6/X2i6SrtWQe/RLTRoSCk5H7Rj8vwZ211IoqITayk64ggW5dZnghqJQjPv3P6MPFkaFi4eTO8oiYI4hcUxnCzKwJBCHnsWQFkuBNauOIwKyIEJ4KCBlHwsPdQrn+nGbPkGjKDs1epyMSQAjO3Uktl0C+cQzosoQCYcjxkYiAg3wiQLOOdk3ElCByTWW4mLT3Qawv5J93Uz7GayWGIzhjLWTCSYCbEeAf3eynob0RiEPGzamQnpf+CdjMHxcYQI5H0s/StxT8TtizQMyVUnofIiImj8g1lSGhPZNxPuzT6lNxS2M6JTkyYSQ7PbtnLHtE6r6UijtpHCvdKeN+hSzhdgv9oOzJJCvcZCnH/SARZispV5CuIyImhMg1Y8A6JuZlwAehpeBXMihXf7NOVtYOCaQXW8QKEijB/oSpymsWYHGvy559s4O1b8x0LSIK8mvKZ126i/JWTsqNzheMHBMxpYhcMwZIAW5l25JUFk8PAU+I4wv2O7k/4nRW+L8rCT8+JUec62SZgjNKjTeSmAOSECH33Z6bQk5Lz+xdqdQiEvP1Ir7YVnqJahLrEUdEhIjT6saEj0wDxpcxxgpZvwfWghASEgJDvLPjicM97uF8qjAJOTQcJPzHcJSzTCrGnhwpMYKN5iV7iyWrAIvVlCC2bpE5hry4Y35wiXgcETEliFwzBlzpchERMtEZUx1LRMzqT6K8sEpiIlZ+Ang5iZTMwwzphrIb/UOPEkcsPKejDmNSISCaUAoOdZ3gKE+h5JaSstFyp/hYA00BIFU2dSriZEDvHuS7MXAIw0cBoK4NjR2oa8W85bN1RZFrKkPlqlSulgsjUIkxZsSGom2iDZElBXIrJAgEPp8FUO4JpTEshIAjMtKMW3bF72YtGr9slNnszZ6sOE0cpvk6B4rTDe6bnRXjTSZveXldSkRy1XVJVVw14aTCcDf2PI/h7szGgUMYOAQAda1YfiXqWmf+uqJeUxmUq0au1jyYPvQTBpjd2/TJNB6VpwMOAsnhHw4IQrwR5D72zgyQ+V6kaov/103REqQlQSXdVuJ0aV0anJLMunUQNpdn2cf0jOq6BqViseGTBwc34t2flxJNiOFuvPtzHNo4g9dkEbmmMlSuWlU3GLVUOB39IexqhAOBkmIWfLMfeuVDHOOkjOCqUjllxa23zekZLCOUE41nD4YrX+4v2Maqxco3HLJbYK8YA8bNDk/fi9gjJaRIQk1jK0WuOVlwcOPxksjBjTjy9jifm7UGzcohCxcu/NSnPrVly5ZJXl3kmsogoqqGeX6GpX0G00BPEP8ONBKvmHhmCvyR0N4AAGEhcbaQ+xZzFKMk3Rf+1BnnyltDMOuwAL58jaRwZ7bmlDmPoTaS8JekF2DOTaTqmmJt85MEw90nZq3sf3U88wf4i7/4iz179uzevfunP/3pwMDA5z//+UleYOSasUBJfYsAZgkCcUEd1vAGgNjFT2DtFwQPqhdCAs9ISNgV+zVb2Be2CjjI1a8ITAxHF8bMCkQWSzRGo8kGx1OeCzgntYT8CUAkRPbExrFyITWVVNU2tU//rY6YCrz//Akfsme8Q5qbm5ctW7Z8+fLLL7/8j/7oj959912t9cQvL2rD46CqsQ2qikUTkAhYWJEylghYRFm5JaxunhIHXBKuqV7lt3jjJVzGxavC5rWkL4JgVBokkiDtL3W1rH8GMmvOBScSsRFu8z87wyYlRev8WbIi97VVtXW1jbMgIkacMEzU6UQx3I3ePWg+RmSqt7f3gQceuOmmmya5TFi0a8ZEdUNrUttonkC2VkPoDZmHnEuowXs6ItZsKfGnvJ/lUU40In5Wpvkayx12zUonxgiE2Us+tta5DrwnATgVgFKwXT7TiTdsdWJ269aZb6uft6C6vmkab3HEVGFcb2hiB/7lX/5lS0tLc3NzS0vL7t27//t//+8T/AqHyDVjIqmur26cLyxmnTYJgkROXmXjv7jHHeV/kOovkuGdkJoCcsmyDAe05IwZd05zkT6z0GnAzrWyRJO6c+kl2R+SMZzSA505RIR585cmuaoZu+ERE8fAwSk/8E//9E/feOONN99889VXX/3whz986aWXHjhwYILfAiByzTggpWralgiIxU5c8ioKAAhEu8Cy1W6M+mEPL3OF3FtHE+XEFMwAF2cfmXhT4Cw5eI7zhGReS8pVXnUWd6HuNJwyDqfxcjgfCgBUrrqpY0Wc6X1yYMJ2zdieV2tr68qVK1euXHnxxRf/9V//9fz58//hH/5hgt8CIOo146OubVlPVa0U8gwmgKGgmEBKFJmSV2zKL5AQAeJq15Cf9hQyDoLpUF7lCT81Z8huAHkzhO2sJYRRpgypZSZzeiJMicarM5k4laOaYL6liDQ2tze1LZ3qOxoxxyDH3sXuKFIoFCbzVZFrxkN1Y2vNvI7hIztJJWZaIolZPVLSaqAAYBRjI8K6dWstmwRlfbPUE0zDTJVcZ7sIbNAJ4haYg3OR2Fk6cN6TwNknrvO472J/8jQAxgFbMdhm90ALI1gVpqVjdXVd43Tc1YipR10rBg9P8MAx0Nvbu3fvXvPiRz/60ZYtW+65554JXyCiDzU+KKmqXbDCuifMwsxWGWEWNwlcIAxJn3+rlmhODQbr6HhZxD/1bHeyQSHr27DP1EsjTD6mnjFFANiL82YOnAnDThbWDHZxek51bqtsG1tITIKgG+aSXFXbkjVxJtRJg8ZFU37gX/3VXy1fvnz58uVXXnnlr3/965/+9KeXXHLJBL8FQLRrjon6Bat6a1/hkX6lckwgZlG2TJaJgsPU6GPALEzLZF+k5ooJhlurgSVcUTf0eCS1esKqm15kgRVZQu3GVwIsIRrvXTkOY6fpQGCShiRUalgkXYZGpKF1cdOCWZukF3HCmPD8pjEO3Lp168QvZgxEu+YYqG5srV+42sSDrcHBwq58jBVobfzZGDjuYXezD4yX4jkAMFFrDo2igEysFeP/BDKLpAEvAIZomMHM1t9KvyRDPYbq/OQKZ+8EBMXaKzUAiBau+kBVbcMs3O6IiaF5OWpPnG5qW4+ZXDOFiFxzDBBRw5JzSNUGjooYCVfETpUSl0rjfCDPOy4YlOEAB20MCruzyUiGTidlh3s7F8hP3bReGYIMHzauHYuI9qkzqd0DJwmbmBpbomQ7ISI1amqbWtqWrZvpGx0xSZxx5UwcMglErjk26luX1C1YwayZRTO0TXtz1oSAU7lEbDac4QsbWnZmTMAslonYTsiUQPp11o7JIfTJO8IcBLb9BThLyf5r3yH1nsyewdQIgackYYZmFkgozCxccX7dvDgN6mRDXSs6zj+B/ZdsmOHKElGvOTYoyc1bef7AoR0iRRGIKKOhEqBc8RqT+a+UEkhY65fKa2cFEHuedMIC++o1Xg92kSYvBItjJjeBG0Gk26bMwPtTcIUjnNfEbKale4FYnKoEFqlral245qJY9/OkxKLzARzXDMwlG7Bgpk3XyDXHhYa2ZY2Lz+rf+xYRMYtSlh2YWREJkRKA4OZAsn9WDfWUn9CzDBylcNZ3cgenLOPIRQTwE5xcyNwfkS455fQdxzJWYUrnNTAb/0vYFfQiokVrLm5oXjB9dzJierHofDQvx/vPj5mkV9uKM2anVlbkmuMCJbnW1RsGD+/i4pACmEmIlILJpyEyC0wSiZtxSaICukFQnNgl5kjmU78lyMExKydYoSdduNulzTiicYYOpxaNmflt5zlZjYbd3uwK8rAw2+Km5lK4sX1Jx5oNMdR9cqOuFefciN49GO7GwEGbUlzXisZFqJtRMbgEkWuOF3UtHS0rLuh69wVJREEUSHOiCApOoCUHl6EXPrIu4mNpRfweqXbr9gzcpQzROFbxFo1f/A5OD/IisvjAlpezAWjRrAVG+rFE47+UclXLzru6trFl+u5hxMyheTmalwMnouBMMyLXHDeIWldfNNj5/nDXHkkUFJFoJmU0G3IL0UEpsfWJYZfuFogX4SVTTUJEyM49cPnBhmKIxNWFYKRLZYrPkXHqi08fdJ+m1OKj2sJmoqh9y86iyYhIwgtXXDR/xXnTfBMjTl/EONQJIFfbMH/dVVRdbyI7LLBBHvZpNOLS5Fgza+/h+PwXn13jpmX7ABFcBVHr8QDW8UkjTXAhpDTsZU/I6ZRuNpUnXBEMZmaGaHGXidLqoQBEGlsXnXH+h5Nc9Wzd24hTHpFrTgyN88+Yv+aDDNLik+NsSNmYClqCKlRacxBwzkae07cw7OBISjyBOW5y0Wt4F8qHuU0SDYvoNKtPXC6wy9kDmJlFs5sbng2MSa66dsWFH61viZJwxDQi+lAnCKK2My8a7uvs2bMxpwBSZtEo4+YQKRN1UmQ0FqfRwEWn/bp0MB6U148dc2T0GrsXnECcLqvp/Cqj+DLbKQguvO3LlYO1o0ExVGirrfvLUJQsX391+xkxeS9iehG55oShctWLzvtQYah38MjuJAdhMqtHKQUIm4Ux2a9lZyd8S0aRcaeS0JVxWgyszkOOX6wX5fbK5P6lgM3c8yoyM7RzyzSDLdtYxdpdjyw886Il666MiyVETDeiDzURVNXPW3Lhx6qbFhSKRW29JOvLsEsq9tDauldWcJH0T2b2Qhp3Yud5sZVfTDxbQmkGzKL9RAOxc6OsWiSivcuUCkDayDQ29xAQkdalZ6+6+Ppcde0s39CI0wCRayaI2ub5yy79RG3TAq1TVcawgGab4eKVGc8DpqCve+2lGQlpITxKYH0eQzFWmoFmYc2atZujYCwqRzSec1hEa3c97sq9B9e2ZM2ayz4VKwpHzAwi10wcDW1Ll11yQ03jfF3URWZHOZZ0DC+4mZLaWhtWKdaOgEJmCeaD+4gVw80pd/xl5ngaS8rEs4yRY4ois7Bm1szM2ka2zb8mn9CCRVqXnHnWFTfHeU8RM4bINZNCQ/vSZZfeWN20QBeL5hk3dKIt45jJjd69Qsoozn9ia7yIZlfCKmvFiJmBCecciQuxwyYEW6JhmImUzKwN4QhrYV8By4vBJNK+dM1ZV3wmEk3ETCJqw5NFQ/vSlVfcvOe1xwaP7BaliIhIyESkiCBCIDMvwR/i0oDLqw47NghCVSJiygwba8fLOumnbp6TmHo6fgEWsLgVo5xMIyBauPriVRuur2lonrFbFBGByDVTgrqWhSsv+9T+Tc8e3f0msahEkVJMUK4esZ0bRXaypQ9R+SmWCGdPAmameIZcWHwWcpo445dkMbvY9EKxNT9LIJJU1Sw794pl530oV1M37TclIiKLyDVTg+qG5uUb/llNU+vhd14q5geTREgpthRDJuYNvwKmnTQFwM1agH0NN0EK3hhxNkw6y9KYMW46lK2Kw3BJxpKaRQCMaSNc2zx/xfnXLlx9QQxvR8wKItdMGZKq6sXnXVXfvmT/xmcGj+whYpXY1L70b+M1WSvHQezb1HFyLGPfBjl+Yuvb2JRlYVP5GBzoyh4EiIhKkvZl555x4Uca2xbPxI2IiKiEyDVTC2petLpu3oLD7/7+0PZXC8MDSiUEooTIrd7i13CRUK0JSkakZOHLR5h3mVlQVkg2Kzt4W8YbMp6q6lvmL117RceZF8UkmtMK24de6izs2pvffGR0J4AF1auW1a5fUL1qdd0HZ+uSItdMParrm5ZdcG3zsrMPvf3y0T1v62I+4UQpAinYGeFEYwcAhQHlpmXDSTZIfSifAZipih4mJYsAUlXbuHD1BUvOuSxOdDqtcGR056+7vmUoxmNvfvPe/GYAC6pXXd/+RwuqV838hUWumR4QNc1f1nBlR/vBDxx699XeA++NFkZskAoKBDLTp9w0BqSlPgHYCQnexPGF+owoQ7ZgMbysowJxB0BVfeOCZesWnr1hXvsyUjGt4TTCiz0/eKn3h+PscGR05wMH/vTyllsva75lxq7KIHLNNEIlVa1Lz2ruWNl35P3OnZu7928rDPZCNEgp5X0p4z2RDYSjxIWCE2zIBpsAgmS+xVayEaKkrqV9/rJ181d9oKltcdSATzcck2jCPaup/qJ5nxxrh7Vr177zzjvhliRJisXiZC4vcs20Q+WqWhaf2bxo9VDv4e6973bvf2+w62BhZBBmmqaNSaWBKQB21rd/7ewXQmb2ptFulFLVjfOa2pe1LT27ZclZdU2zUEo2YtZxZHTncRKNwbPd3zEKzlg7/Pmf//mdd97p306+3H3kmhkCETW0dDS0dCxee9lQ75Hegzt7D+0a7Dk8MthbKBSyRHNsCFBVXVPb1NLYsqhl0ap5HSvrmtpUElvz9MXjnX97oof8uutbX1r8n8b6tL29fc2aNZO7qAxi75xpJLnqpvalTe1Ll6y7YnSof/+ud//2v/xNZ2enIgJImco3dv5BpqiVwKyNCy1cU139b//sL85Zf1F1bWNUZCJM1OlEjzoyunP70Etn1l82DVdUAZFrZg1KJbWNLTVty97c0blzx06lFIiUUoqUSZdh5nB/ESmyBoNZ19XV/Wlta039vNm6+Ig5hZKo0wkdOGNcE4fE2YaIIlKKlKJEUS5RSUKJoZyyPzmlksS+LikZHHE6w8Szp/bAP/uzP8sFuPDCCyd4cQ7RrpmjUEqV2DUREWNhwnbNOJ7Xn/zJn3z961/3b2trJ5sLGrlmboGZkyQhIq31bF9LxKkPGds6XrRo0fr166fwu6IPNbeglMK4PSAiohwTzgOeyQTiyDURESc9ltVO0ACZ8IETQPShIiJOeky5XbN169ZJXE5lRLtmbiHqwRETwJn1l82vWnmiR82vWjljAW9ErplrUEFiXklW+OSTxCNOYXxs/r+egUMmg8g1Jw2iYBwxDhZUrzqhqdvXtN4xw5UlItfMLXgfSsWZBxEniOOvFHFN6x3jTPKeJkRteG4hUkzEZHB5y61n1l/2eOffjpWkN79q5cfm/+tYKysihVmmbravIuLkw4LqVV9e8p+3D710ZHRneQ3QmRSDSxC5Zm7B5A1jjDkKkX0ijhNn1l82i7RSEdFin6Ng5vI4VAxFRZy8iFwzd1FixUSjJuKkRuSaiIiImUDkmrmFGIeKOFURe/bcwjhzFKJYE3FSI3LNXERFWol6TcRJjcg1cwth/ZpoyEScSohcExERMROIXDN3EZ2miFMJkWvmFmL9mtMZtbW1w8PDs30VU4/h4eHa2trINXMLMeZ9OmPJkiV9fX2zfRVTj97e3iVLlsSeHRExV7B+/foXXnhhtq9i6vH8889/4AMfiFwzdxHjUKcbmpqarr322ocffvjgwYOngDM1PDx88ODBhx9++LrrrmtsbIzzvCMi5hCam5uvu+66zZs379+/P5/Pz/blTAq1tbVLliy5/vrrGxsbEWtKRETMNTQ1NV1xxRWzfRVTj+hDzSHEIHfEKYzINXMIJQJNOfVEMoo4eRG55mRCVIsjTl5ErjmZEO2aiJMXkWvmFsK84XIrJto1EScvItfMLfi84ZhAHHGKIXbouYsSjykaNREnNSLXzC14HypOwow4xRC5Zu7imCHwiIiTCJFr5i7GIpdIOhEnIyLXzC0cjyQchZuIkxGRa04aRIqJOKkRuWYOQACxL0olYUn/iIh74faPiDh5EOd5zzKEONeA6kZFYtbrTkiRMBQUkULCXAQBpCAAM1gkx6iuTYoYne1rj4g4AVAUGmcFLNwzcvD9gU3vHH35jXd/Ozw6qoeZFOkRIUWshRSq6lWumkaHmAiqBoqgWQQiDAitOWPd2o4Prmm5eHHjmrpc42z/oIiIYyByzUyjwCN7B7Zs6XluV99rfcXDjGKSKBDKxRjrKxFEIAwRiIj9m6WotWjUqIbFDWeva79qXfuVbXWLZuH3REQcHyLXzByKPLq7f+MbRx/bOfDqKA+Q8ZkMx5CTYCjQYgKuAUMc+4hAmFmEWSBS1Eys2muWX9hx/YUd17XWdczOz4uIGBeRa2YIh4a2v3jk4ff6nh/hAaUIZMNKBAgp8860hYiVhwkwcjCAUBVm84KZBZoZDDCKmoWlo3bV5cs+d8GiP6jNNczSD42IqIzINdOOvB58o+uxVzof6SscJEWkSJEyTDPeut2uXVhYUBKQsjaOMJhZmFkgGiLQRa04Oavtso+s/MrylnUz9yMjIo6FyDXTi678vmcP3f9u73OMAiXKsAwR4ZjJMp5rmAFIGeOwOB2HWTMLm5A5uMi6WGypWfzR1bdftPgjOVU9zT8xIuK4ELlm+iA7+994cv/dh0a2KaWUyrKMo5pUn6FUoAEC1cZwDSCs3auUbpgBEWFhZmaAwQLWwoVijmo+uPTmj67+Sn31vJn82RERFRG5ZlogkLe6n3rqwHcG9GGlrDkDM/+AAEM4YmlHnCpsBBorBrvsPr+HMGf8KacWG7qxvhRDBKwhmllr0eq8BR/+5Np/1VI3fxbuQkREgJjLN/UQyObuJ5/c/+0h7klUjgikFFzIicjSCpQzbgJDhwAha9yIOGPHiDtKKSEREbD4wxmkIEIKBBFWAoZSYCGFhIU3HXpSi7553R9HuomYXUSumWIIeHP300/s//aw9CZJTgFwREMKAJQnFVjrxrwQAQmEQH4f70hZw8dqPBL4WQRnHBGUImEICRGUIgaUIsmpLYefEZbPnPfHLXULZuIWRERUQpwPNcXY0ffak/v/flh6FJEyfpMiIpACERRZdrC6jbdxvL3jtpTsY0FEJpAFt52g4Pd0wXNDboqglCJSSr11+NlfbP374cLAbN2WiIjINVOJw8M7n9j/90NyNKFcohJv0UBBhdyBEgbJ/KHwtTNbMmnFhnCQbjfUY5jG0405mMy0KqXeOPDrp7f/QHNxZm5FREQJItdMGYaKvc8c/G5XYZdJoIFScCaGKjFSMsQRvFUpdxACYvJ7wnpSlNliNttPfTRdAUoBytINSH63639sOvjctPz4iIhjIXLN1IBF/77zp9v7XyJyUSfj4DiisaDs3yXUI5ndrCeF4HD7qaEuI/848yf9kPy3k7KGEimQorweeOyduw/27ZqGGxARcQxErpka7B3c8nrXz0Rp5aNO5ZqL4QMVGi1Bmg2VcVDwEYUNZVSbsPGyES57emW9KMCk9kCpqoMDO5547/sFHetRRMw0ItdMAfJ68MXD/zSkexQRqcQSTcnNTS2ayq5R5p17nVFyKlg3QcKOP5ycaYNAbDbUo5Co3KYDT7196MUp+eEREcePyDVTgG29L+4ceMXm7LmEPeu/qBJficqOLuedzIY0qi2Z5qKyV9kMnuDbnJ8FglIqzwPPbP/h4GjvZH5yRMSJInLNZDFU7Huj6zGNUfKs4FwnQjDnwHyQgXnr96DSTwBIoOFk90rTvYPEb0czBEAc8ZiJEc6ho0RV7e7Z/NbBFyb6iyMiJoLINZPF9r5X9g9vMYksFMg0gLMuMnQjY32QzoaiLP+U7+I+wVg85py4YDOlpg1RQUZe3Pno0GjfpH55RMSJIHLNpDDK+bd6ni7KSLrJzTAIBRT3CumbDBuU2TWotCGrGQtRZnsIkax8Y16mOylS7/e+tb1r43H+zIiIySNyzaRwaHD7vkFj1MDP4U713wyHhHNcJciDGXdVhPLaoIFdU1L+JrBxCEplPk1nYQEgBRrRQ2/sfTqm9kXMGCLXTArb+1/N6z4T9aHQ0AhRyiQEkJtdL2nMqPzIktneJacSsTPEJfuhUYlMaWKETpuZeWU4UZGi7Z2vHx06dPw/NiJiMohcM3HkiwO7+t900oy9k34mpEXKDlkjxxIFmVrl7qMyG8eU4KOSU9l3mcI3GZTKzOWhdkWqJ394Z3SjImYKkWsmjq783s6RXWl9cgAIxJpQBQbKTJTwiPDQYEdriDiUqb+Vz2UriGY+FHECj6MeIhRldNvh11m47DQREVOPyDUTx4Gh7SN60E2xzijAGX14TDWmXKnJBpmQXTuhxIEaJ1dHpHKZ0YD+BCCifb3bYjQqYmYQuWaCYOF9g1tFdLrJ2RrhygeViKb8gzKTp7JAE2531YbLj7aJfyJ+EYYSQcddKxEdHdrfObj/GD81ImIqELlmgihw/mh+XzrnOqvUllodGfopQSU+kMyGcSJV3mlKEfBPIOWIrawlYa4PDReHOgf2jvMzIyKmCpFrJoihYt9AoSuIPWU1GxmTHdI9Koq9IcsYvaZsuxdjLNGQk5CR8bNIHO8YnUZsJMofCkDz6JHINREzgsg1E0S+0D9U7PMqsIiU6iNeYQlNlVI7RCrSTsgdUm4lVQo9uUg3jP+EIBbmBeeK6nTP0OFY3z5iBhC5ZoLoK3YWpeA9EjIVgwEE7lQmQSaUYMbypUK/qUQSDoNFRowxayrAB54y1ObFGn+qNDQlYpbWNJfePXw4ZvRFzAAi10wQmosQ9sThtNjUd2JHAXaf8gS/irqvBIe4T1Kicdk4JfKz/VqnHGXsFKMgB2v1GgvMn0RzYWw5KCJiyhC5ZjIIZFazMpN/G/xTauMgpRVw1sxhu3/IC6WqjiU1LqEHS0mhT+a/ndxZUiXoGHpSRMSUI67ZMkGwFAXihVspM1sEdgEWGLOmxIpBKrpIoL/YWBZn94T7zH1sqcR/O/zfFpnDxWo43i+DkKc0Fh3T+SJmAJFrJghFuSAOBFhTQoj8UnIpUdiFn9zGzKRLmw4TcI0EK0BlRWABhHXG1pHS15Y2ODBlUl3YXo21wcT8kERRNG8jph2RayYKMX6Ts1kEAiZKUjnEP9/k90+r06SnkWwSTHD+wOfKRJhCo8bJvoakRJjTiHgq/YRBcjvvM7pQETOMyDUTRKKqAMWiSaAAYiABi5DRwHzBCJPVYucEpOyQructzhKhgERQgQwkTBSW7J6echBsMXTDVjo2vMMMCbONgZyqrjTbISJiihG5ZoJoqmrPUVUBRTAhAayFwoCyDpC3bihYmdvAxcetTkJl9OHhzBmIGFWl1KjxcxWy8Sm7m6Ux4VQDYmOQ+dhWS93CRMVuEDHtiJ1sgqjLzatLmkcLg0LK+EFOOmESgBTcyi3e+sgm1wV+U+orVfgil5mXJZrAlPHeE1tisp+xuR6z2cpANi0nDGK11i+k8lmaERFTjSgKThD1VU2NVe1aOJ3k6GwNYzS4dJsSadcKNyLZgHcli0aYXdaeZgSHwBk1nMnTC6UcFmfM+AhU5uT2PDlVPb9x2TTepogIh8g1E0S1qm2vXWbsBPPMp+YDIIaDmI1AUnrw2KKMc4osQ6T5wYE0I0bikQpEI+4C7P+hpQMws7D2AW6B1FbVL2yKXBMxE4hcM0EQqWVNa5UkbPwXDiQS+7RzGgUqsXH82xKTw0SRjEXDmoWlJJUGqejLHJzdG1dh2rE3cAJjygo3NmlQ2uuWtdcvmcHbFnH6Iuo1E8fihjU1qnFE+kUUsQiRKDe7msAKECaAoEjEVsWrMEXTqb/pPzZUlAlLIeULb+aIJyZvx7CVioUFzMISGjUAZxOGZWnLWXXVTdN3iyIiPKJdM3G01y1dULeSmdm4TGzlWPt4+/C02Ife+ltsjnA0YVVdL8pwKdH4s/lsGja2iZ+FlZFyvFoM/5GAWUS0uUgfgcqp6rMWXhQT+SJmBrGfTRx1ucbVzRdBkzCYGcKWbjw7sDNGHIn4P8yaRdjSEFuHK3W7Sv0mSybsQteB65TK0uJ2EIawjTc5/adEJBbh1rpFq9s+MDv3LuL0Q+SaSeGs1kvrcs3GVTEPt2gniyATaXKMExgrnlls3Cpjwvhj7dm8tiMAp6TlLRpDNCwAM9jRiv2IRbQOlBoAAjlrwcUt9R2zefsiTidErpkUFjeuXta4XmuGQLNoI+4yPOMwOwOHs0HuLKGU/uGAZQAx4SxHOZbY/ISFQPq1ZpXYbGHAhM51WeRbanL1Fyz7g0Qls3bvIk4zRK6ZFKqS2gsWXpugmjXAEBHNbNLnHDsEykvIOAjoJqShUJcRG2+ynKKN08XMHNpB4rJphAXCwmKTa9iQlECgA0EHAAuvbP3AquhARcwgItdMFme3fXB503qttYgxZ0Qzi3Fk2JKFdlm8PloERolV4v0sdtzh8vHMJiMI2TC4OIayrpMLPIGtcZMm1Ig2U6BEp1xTldReufpT9dWNs3fbIk47RK6ZLOqqGj+45MacVLG2syMFYPbRpTSxxVgonj28gsPONmFnxVjlxZozLDbOxWllGnHmj3iNhuHnH2hr0ZjYE3tFGQDAos9sv3Bdx+Wzc78iTldErpkCrJ1/xVmtl+uiZm1dJxvlZhZm0Qwt0EZmcX+MvWNMHmf+QNJ4trCwZtbahslF0mkKDIR+kxWDRVveMQRkycm7cg5SXzXv2rNuiUZNxAwjcs0UoCapu2bFLY25Vi5q1tZbEbZqMXvGMX6UFmjJiDXi+MURj0sddpk7Yc6OIybrOmnHK5nAk4gUhbVIJvYEQEQuXnb9OQsvnb27FXGaInLN1GB587rLl31WGKI1e3XWJfJqEW10HK3Zs0/4x203u6UUA+tSednY2TEQpxu7BB23AwtzESI2yB2mCQsvbT77I2fdmkuqZu9WRZymiHMUpgaK1JXLb97f997mI08SciKKiJQp0WfLZ0FE0rLEplqoDVNBgiI2boc0kS9MCPaJeZZlwlnjCIhGXLjdJ+9BGqqbbzzvGwvnnTEjtyQiIoPINVOGuqqmf7bmjs6hvQcHt+WUmSOloEgpgGHXnjRPPgHklkJw7COeWZC+8BuN/huKySnnOEIxXhfCQFVg1CSUu/asL523+Mppvg0REZURfaipxMLGFZ8851805eYXiywsYgQbLVYz1oE3pIPMGp19y/DRq1RO1t59MvMPhIOguJ1UxcYZQ5keDIF88IwbP7zmDxXF5L2I2QH5KGrElEAgGw8885O3/+tAoStJFBGICERQRCAkoHDtbwlqg7oFFQi2PA2s6eLcJyCtTgHLWS6R2BBbwDJZotmw9GOfvfCP59W2zeStiIgIEblm6iGQjQeefmTLfx0oHE2UIgXHODAVJggQsisquDV67aHBylDOiWIxzldmSpT/kLWJbQPQutRvggs8fe6CfzOvLhJNxGwics20wFg3j779d935g0mSwNCNsWhMdd90sSgCvHXjhGL3T2jFZFlGzOQDQXEcc0ZR7pJlH/v0+f8yWjQRs47INdOIHUff/OmWv9vX9zZIKUs2xsaxOxAyy6V4trFvxcnJfv6UZR9m1uaNTutIZL6aheurGq858wsfPedLdVUxbS9i9hG5ZnrRNbj/8Xfve33/41oKSZIDKC1NZQyasEqfZBnDB6GcLSNiFkXQcOVsOJuqZ8DCHY0rbjj3rguXXRvXY4mYI4hcM+0YKQ79fs9jz2x/sHN4j6KcUuTWSCEQaIyjXAkspPWwxK4j5xNqRCqYM1VJ7fmLr/nY2q8ubTlrOn9WRMSJIXLNDOFQ366nt//ozQNPDBR6E6WUFW0UjFYMEQFRRiIWga8xkVKMVPCYALCwIrW8Zd0frPnC+UuvqcnVzeSvi4g4JiLXzByKXNjZtenFXY9uOfj8QLGbFCWkjGFj/CoGKWQiUYZ7MnVFszC5NQnllsxbc9nKmy5c9gctdQtm5udERJwQItfMNIo8uvvo1jf2PfX2wRc6h/YXeYSIyErHDuXCTVkkW8AEaqhuXtG6/vylHz5v8RWRZSLmMiLXzA4E0j14eOfRjVsP/v797re7hw8MFwdddg1ZISfLN45/KKeqm6pbFzatOHvhhrMXbljSfGb0mCLmPiLXzDJYeGCk58jA+3t7th/q29U1uH9gpHtgpFucMGxEnOqktqm2rblu4YLGZUuaVy+Zd2ZL/YKaXP1sX35ExPEics3cQkGPjBSHR4sjxnFiYTODKVG56lxdTa4uLucUcZLi/wcB4srpT7vBwAAAAABJRU5ErkJggg==", "path": "image.png" }
Select the chemical formula for this molecule.
[ "BF", "B3F", "B2F2", "BF3" ]
3
Every substance around you is made up of atoms. Atoms can link together to form molecules. The links between atoms in a molecule are called chemical bonds. Different molecules are made up of different chemical elements, or types of atoms, bonded together. Scientists use both ball-and-stick models and chemical formulas to represent molecules. A ball-and-stick model of a molecule is shown below. The balls represent atoms. The sticks represent the chemical bonds between the atoms. Balls that are different colors represent atoms of different elements. The element that each color represents is shown in the legend. Every element has its own abbreviation, called its atomic symbol. Every chemical element is represented by its own symbol. For some elements, that symbol is one capital letter. For other elements, it is one capital letter followed by one lowercase letter. For example, the symbol for the element boron is B and the symbol for the element chlorine is Cl. The molecule shown above has one boron atom and three chlorine atoms. A chemical bond links each chlorine atom to the boron atom. The chemical formula for a substance contains the atomic symbol for each element in the substance. Many chemical formulas also contain subscripts. A subscript is small text placed lower than the normal line of text. Each subscript in a chemical formula is placed after the symbol for an element and tells you how many atoms of that element that symbol represents. If there is no subscript after a symbol, that symbol represents one atom. So, the chemical formula for a substance tells you which elements make up that substance. It also tells you the ratio of the atoms of those elements in the substance. For example, the chemical formula below tells you that there are three chlorine atoms for every one boron atom in the substance. This chemical formula represents the same substance as the ball-and-stick model shown above.
B is the symbol for boron. According to the legend, boron atoms are shown in beige. F is the symbol for fluorine. According to the legend, fluorine atoms are shown in light green. This ball-and-stick model shows a molecule with one boron atom and three fluorine atoms. The chemical formula will contain the symbols B and F. There is one boron atom, so B will not have a subscript. There are three fluorine atoms, so F will have a subscript of 3. The correct formula is BF3. The diagram below shows how each part of the chemical formula matches with each part of the model above.
BF3
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAVYAAAHFCAIAAAAmP0Y5AAAfIElEQVR4nO3d0W/b1p4n8ENJFC1ZpBNR17p2GlTe6ySTbmVg4jRFU2Bjv2yAxaQvU/RhB31f3Lt/18y+BAtMBhg0L2s/pMUmdopr9SI3tXuti6QK5CsqEWlLpkiK88COmziJLB5RJMXf9/MWQ0xOLPGrcw7POT/Bdd1/qx0zAKDnRiWbcRn79z8hAgAo+lBNp6JuAwBECREAQFrm9T9cr2RXK1JUTYGQHdts8y8OY+yj+dTFc0LUzYGQHBjO/93unvwRvQAA0hABAKQhAgBIQwTQdfLeCylMBNCVOfslkFDZDLt9OR11KyBi6AUAkIYIACANEQBAGuYCIL6a+2b7Rd/QLK1hMcYykjCnZmRVLC5ky0tYwxYMRABdfYf9sTFgjH1YFOZn4/VQwDLd2manuW++/kPbdLWGpTWseq1bqeaXVwuiFK9mTyNEAF0Dl7V7LmPst1a8bqTmvrmz2bFNd8hr6rVus25W1+bURTG0hiUS5gIgXvSW9fj+q+H3v6dnOI/vv+waTgitSjBEAMRLbUMf/cW26f6w0ZlcYyhABECM7G4d6Zrt6xKtYdV3ume/Dt4DEQAxsrd9yHHV7mOeq8CDCIC40FsW34W26WJGgFv0EaA1rJ9/7LVf9KNuCETM7xDgdT1jEGBLSInmoaBlunvbh+0X1qngV0picUHE816axrmN240+ng7yiSACtIZV2+j03tVz01uW3rLwvBcgNGFHQH2n++Q7Y/hreobz8F67Us1fvSmH0yqaMin2OzXFGJubibopjDHGFJX/01hczAbYElJCjQCtYZ15/5+o17pYCj5RmRRbVmM04MrJ/DNT48QHceFNB1qmW/O5imNns2ONsEoMkkEpiWKWJ5JyhTQmj7iFFwFPvjXeOf4fwjbd2ibWfhGyvFrguAoDxnGEFwE//9jjuOrUXjFItspKvrjgb1RfrkgYLY4jpAjgXvXBGPP2ikPg7AHb09w9zdWPYzTaqq4row8HxKxQXZubaHsSL6wIGGvVB/+1MIQ9YD9pg5+0QSdOZWXzcvrGnfO5wtnnmipq5sad85gFGFNI86jjrPrAwi9qlJL4+Zfq3vZhvfbe/T/Lq4VL12fDbFVShRQBfDO9QJYoCVdvyhcuzzTrfUOz9JbdO3QUNZOT07IqXrgyk5dx/HkwQooAucS/1A+rPshSSqIyxicnqSzTNdpWz3DkYmb8309IETDOat8ErPrQW5bRtvWWbWhWcTErq6KsZvA9Br50DefP3xl6yz71cF1dFOcrM5Vqnu+vDe/uyhXSvUPfOzqnfdXH28fgnTzgUEpi9ZaMbzkYRX2nu/v48J3nqXlHqh7Ujz9em+P4XglvXcC12zwPb6rr0/rIxzLdJ98aQ47B01vWg7ttvkMygJT//68vn3xnDD9PUWtYD+5qHOtowosApST6XftVqeandL+gZboP/+3lkAntE7tbRw/vtUNoEkypJ98aI56mYZvuzmbH7+kpoR4Zcun67OgDe0XN8C0XjYO97cPRV0Ph9Dt4H69owuiv5zhPNexTg27cKY4yb1Gp5m/cKU7pLIDft40xtvv4EEdfwSkcO+uY/2+UsCPAe957407xfcu/xKxw407x6k15Su9/xtj337z0e4ltun/+dtRt1EGZybDbl9O3L6cvnpvWX3Wy6drpyf8RNes+ZgSied6mLopr/1TSW5au2YZm6y1bKWVkNZOTM1M6+D+htyyrz7Pk3tfbBhQYvDtr9LaPC6N85J7IhR/jLGfWW1byfiHAjXtnjXek8ogPCKM/QThhxtkQNc61kDx8o4D/vHbUryJEQMAMjX9rMzZEQVDEkVfVIwICJqtTsxvi2Gbf/Oh886Pz7FWMzguAE+N8HkYfUSICAjbO2zbO+ZmQPNy7Y3xdiM9cwLjfNjErYOMQvE4ucX6WfHVFEQEBEyXB7+l3ngtXcoE3BqZaXk5zLJAVs4Kv81QRAcHzdfqdJ1fgebMh8S5dn/X7jfL3t/0dpoYICB5HeFfX56Z3NSRMlK9vFI6ddYiAiais5C9cHrVjf/UzedrXRMLk5OX0zS/VM/sCYla4+pnMUVJh6g/kia2VdaVckWobnSHrhXOF9LXbc1gRCMPl5fSnX5yv73T3tg/f+XEqLmSr6wrfdDIiYILKS1Jx8TdPvjXajf6pE5NyhXR5SUIZdRhdZSVfWclrDctoWd4OouJiVlEzcmmsQ+gQAZMlSsLKusIYs0xX12yjZcklEd1+4KYuBvz5QQSERJSEwN+8MWXT7JOLacbYbIwaBWFDBNCVElgRaxHIwxMBANIQAQCkIQIASMNcAF32gNVfuoyx+VmmzODZJFGIALq84uKMMSmdUmaibg1EBAMBANLQCwB4g1e3V2/Zhmb3DNsrA5srpJK6jhsRAPCrt6t3npSBVRdFvrqdMYeBAABjjHUN5+G99pDqnV7dTr91ouIPvQAA1jWcB3e14aV7GWO26T751ugZDsee3NhCLwCAff/Ne2vAv61e63LU8I4tRABQt7t15LeIy85mxxo5MmIOEQCkdQ1nb/vQ71XeiGAS7Qkf5gLoSgmsmBMYY1Iyn3aNxGhxFnEz2gmp/oYIoCubZp9cpN4N5K7jqPOW/Y0b6p8AIK7d6HNfe7JkYKohAgBIQwQAabkxVvslowZkEv4PANxQAxLTgXQd22zzLw5j7KP51MVzRM8LkHk3/4xTRT5W0AsA0tRFMVfg+TK/cCUhRywgAoC66vqc30uKC9kPklIJGhEA1KmLoq8ysGJWuHb73MSaEzZEAICPGt5iVqiuJaoMNCIAgDHGPv3i/NXP5OFlvIsL2ZtfquUlKbRWhQBPBAB+UVnJzy9Jf/7W0Fv2qTKwxYVsuSJVVvJRtW1yEAEAv8rLaW+c75WB7Rm2omaSemqgBxEA8A5eGVjGknzzezAXAEAaegF0obg4MEQAZSguDgwDAQDiEAEApCECAEjDXABdKC4ODBFAGYqLA8NAAIA4RAAEzDLd9ot+YortJB4GAhCM5097B3819ZbdM37ZYJOT00opU65IFy5j+UF8IQJgXF3D+WGj8/ah+j3D6RlOc9/8+Wnv47W5ZBy2mTwYCMBYnj/tPbirDS+qoTWsB3e15097obUKRocIAH56y6pt6KOU5bZNt7ahJ6YIV5IgAoCTZbq1TX/Vdf2+HkKACABOe9uHfr/V9Za1u3U0ofYAH0QAXV5x8WJO4CsuXq91Oa7a2z7k+cdgYvBEgK5xiouPM6rXW1ayj+KaLugFAI+eMYjkWggcIgB46JodybUQOEQAAGmIALoGLmv3WLvHTP/fysXFkWrvBH4tBA7TgXT1HfboGWdxcUXl/+SMcy0EDr0A4CFKwvDaW++TK6STVJAvARABwKm65rsmN2Ps6k058JbAOBABwKm8JJUr/gpslitSwmpyJgAiAPhV1+ZGHw54Zbkn2h7ggAgAfqIk3PxSLS6cPcPvleXGLEAMYW4WxpKX059+cb6+093bPrT679g1LGaF5dVCIstyJwMiAAJQWcnPL0ntRr9nDNqNfs9wcnK6uJjNyaniYhbnBcUZIgCCkZfT+SveGYGzETcF/MBcAABp6AXQheLiwBABlKG4ODAMBACIQwQAkIYIACANcwF09R32x8aAMfZhUZifxbo9ohABdA1c1u65jLHfWrj/6cJAAIA0RAAAaYgAANIQAQCkIQIASEMEAJCGCAAgDREAQBqWBtGVSbHfqSnG2NxM1E2JpfpOt3foGJqlNSzGmFISFTWTk1MffjybpEMQEQF0ZVJsWU3ORzlAesuqbRqnCqjrLcv7yX6tu3JrLjGnoSMCAN6wu3W0t3045AW26T6+/6q8JFVvzSWgO4C5AIBfnXn/n2jum7XNzqTbEwJavQC9ZRltu2c47UafMVZczMqqKKsZHHELjDG9ZY14/3ua++bzp70Prkz30UtUIsAy3e/vv/TmdU6c/LFSzS+vFhLQqfNl4LJXx4wxNisyicoHYZjahu73kiffGdN+SjqJgUBz39z4l7+duv9fV691H9zVhrwgkbzi4o+eOQeH7ygBQk1z39Q12+9Vtun+tdadRHtCk/wI2N06enz/lW2e8SnvGc7De+3mvhlOqyBuOO7/Xy5scV4YEwmPAL+ju53NjnVWWEAiedNDHPT2dHceEx4Bfkd3tukmY5oX/OoZDt+Ftul2ea+NgyRHQH2ny9G7a+6bp9aEACRYkiOg/YKza9esc14I0yvHO6svZgU8EYgp7q6doaEXQE5xMct3oaxOdz22JEcA/xwv74UwvRSVc2kEd3bERGIjYJwZGu7uA0yv8pLEkQJiVrhwZbo3WiY2AsYZnhUXpjvXgU91TfF7yd/dlKd6IoAlOALYGHeyUiKxXHYmw25fTt++nL54jtbK6PdRSuLVz+TRX1+uSNO+QYAlOwK47+RcYbpzHbhVVvLLq4VRXlmuSNW1uUm3JwRJjoALl3kGaWJWuDD90Q7cLl2f/fwfi0PmBcSscO2/n7t2+1wy9pUlucerlMTl1YKvBcKMsepaEs6BgHEoJfHzL9XnT3uGZust21tgoqgZWRUVNXPhSi5Jn5AkRwBj7NL12YP68egP+coVKTEHQsGYEjDOH0WSBwKe6poy4ti+uJBNxuhuRH2HPXo2ePRscHCEnVF0JT8CvE5dpZof/rLl1cKnX5xPUgfvTF5x8XbPNbEYkrCEDwQ8oiRcvSnPV2b2tg4NzbL6v37p5QpppZRZXp1VStO9zBOAD4kI8KiLovrFecaYZbre7ICiZkh97QO8jVAEnBAlQV3Edz4AYxTmAgBgCEQAAGmIAADSEAEApCECAEij+EQAPCguDgwRQBmKiwPDQACAOEQAAGmIAADSMBdA18BlzUOXMTY3k8qL2C9MFCKArr7Ddl4MGGMfzbM8ThClCgMBANIQAQCkIQIASHtjLkA7HOwd4BApKgauMCsyxtirrmP2MR1IRac3eP2Pb0TAfsveb6GiJgAhGAgAkIYIACBNcF33b4eDs18IAIkzl0sJrot5IAC6MBAAIA0RAEAaIgCANEQAAGmIAADSEAEApCECAEhDBACQhggAIA0RAEAaIgCANEQAAGmIAADSEAEApCECAEhDBACQhggAIA0RAEAaIgCANEQAAGmIAADSEAGkff31119//fWjR4+ibghEJnP2SyCh+v3+8fExY8xxnKjbApFBLwCANEQAAGmIAADSEAEApCECAEhDBACQhggAIA0RAEAaIgCANEQAAGmIAADSEAEApCECAEhDBACQhggAIA0RAEAaIgCANEQAAGmIAADSEAEApCECAEhDBACQhggAIA0RAEAaIgCANEQAAGmIAADSEAEApCECAEhDBACQhggAIA0RAEAaIgCANEQAAGmIAADSEAEApCECAEhDBACQJriuG3UbICQHBwd/+MMfznzZ73//+/X19RDaA3GAXgAh8/Pzt27dGv6aUqmE+58URAAtX3311ZgvgIRBBNAyvCOALgBBiAByhnzPowtAECKAnPd1BNAFoAkRQNE7v+3RBaAJEUDR2x0BdAHIQgQQdeo7H10AshABRL3eEUAXgDJEAF0n3/zoAlCGCKDL6wigC0BcJuoGQJS++uqrP/3pT1G3AqKEbUIApGEgAEAaIgCANEQAAGmIAADSEAEApCECAEhDBACQhggAIA0RAEAaIgCANEQAAGmIAADSEAEApCECAEhDBACQhggAIA0RAEAaIgCANEQAAGmIAADSEAEApGUYY387HETdDACIwFwuJQxc93//n1dRtwQAIvC//tssBgIApCECAEh7o6DYUinzX+ZRYoyKgSscdBljbE5iuQyKSlHR6Q229vsnf3zjhlcLqeV5MfQmQTSObbbfcRhjH55PXTwnRN0cCMmB4bweARgIAJCGCAAgDREAQBom/+jKptnKQooxNjeTYgzTgUQhAuhKCWxB9mYBcf/ThYEAAGmIAADSEAEApGEugC57wOovXcbY/CxTZrA0iChEAF32gP2kDRhjUjqlzETdGogIBgIApCECAEhDBACQhggAIA0RAPHVNZyom5B8eCIQL13Defmir7dsQ7O0hqWUxJycUtTM/IeSUiJxlIPWsA7qx95/3/tJTk4rpUxxIVup5qNtWyIhAmKkuW/ubHZs89cV+3rL0lusuW/ubh2Vl6TqrTlRSvID/N2to73tw1M/7BlOz3Ca++bPPx5Xb8lEojA0iIBYsEy3ttlp7ptDXtPcN/WWVl2bUxcTeA/oLau2aegta/hrHtxtX7o+u7xaCK1hiYe5gFh4eK89/P739Azn4b32SQ95TCmBFXNCMSdIUUeKZbqP73eG3/8ndreOnj/tTbpJdCACore7daRr9uivr210LDOA7b3ZNPvkYuqTi6n52YgHF3vbhz0/M39PvjMwUxgUREDE9Jb19uh3uJ7h+L0kzrSGVa91fV1im+4PG50JtYcaREDE9raPOK6q17qJ+Rrc2+KJM61hjThwgOEQARFrN/pnv+hdjJaPsUOcGRrnnexr9ATvgwiIkmW6Vp9zVJ+MG6BrONy/ASMRv4HI4aFglMa5jbm/PE8c22zzLw5j7KP5yEqJ9Az+qtZ6UvpB0UIvIEq2yX8DBPJQAAARECW5xN8LKy5mA2xJVBSV+m8gcoiAKOXltJjl7IGPc/PEhygJuUKa79pk/AYihwiImKxyLs3LyQl57xTertA4fSg4kZCP0fTi2/1WriRn4+Dy6izHVZVqPi9zdh/gdYiAiJWXJL8pIGaF6trchNoTPqUk+t32kyuksVMoKIiA6C2vFnyNh6trSdsyfOn6bHHBx9xedT1pv4EIIQKiJ0rCtdtzI05uLa8WykvSpJsUvmu3z5UrZ/+/xKxw404xkdulo4IJlVhQSuLnX6pPvjWGbJhR1Ex1TUnMFMApoiRcu32uuW/WNjrvWy9YrkjJ6wEN5+0EmeisByIgRq7elOcrMwf1Y71lt1/8sndAUTOyKipqprIS8LFZ2TT75GKaMTYbm1QpL0nFxd8068eGZnu/BEXN5OS0rIrlSjap8XdK13D+Wuu+fnRaRhLm1ExxMfvhx7OBJyAiIF7URfGkl9s1nInGf0pgxdzk/npOoiR8cCV+zQpLfae7+/jQfnPpp226WsPSGtZ+rbtyay7YkSAiIL7w0IsUy3S/v/9y+JFQtuk+vv8q2FMkMR0IEAuPv3k14pFwzX0zwDNjEAEA0avvdE9mf0Z6fa0b2BGSgfwtMI3sAdvT3D3N1Y+x6TBKXcPZfez7Wz2oIyQRAXR5xcV/0gad46ibQtvPT49t/zdzz3Ca9QDeOUQAQMT4D48L4tykqXwi0DUcQ7N7huPVmYq6OQBj4T89MYhzk6YpArqG8+fvDK3RP9VrysnpD67MYN8ITKNxTk/0NYP4PlMTAe9cMuHpGc7u1lGz3kfBOZg646z+4D5v5nVTMBdgme7De+0n3xnDp0y8gnMoNQVTh/vcJO7zZl43BRGwt304+iNQlJqCqcN9blIgpyfGPQL8VpuyTff7+yg1BdOEe0o7kNMT4x4Btf/n+37WW9buFk+VLoBIXLiS4xgLFBeygewXinUEaA2rd8jTq+d+0EpKfIqLEydKQnXd30lwYlaoriuB/OuxfiJg8NaNDORhSeJ5xcWjbgUwxpi6KFaq+dHHvMurhaA2ksb6EzBOvS2UnYXpcvWmPMraFjErXP1MDvD8mFj3AnpjzO33jIFSCrAtABN36fpsuZKtbejv+/IrLmSr60qwB0nEOgLGORQhI8W6gwPwTt4pks19U9dsQ7O8JcBKKSOrYnExO4lzU2MdAbIqNusm37U4ZPZMA5e9OmaMsVmRSbH+IJBTXpJCOyc61l+V3CsfUG1uFH2HPXrmPHrmHBzivAC6Yh0BiprhWwUdyMJJAApiHQGiJHDs/xOzwtWb8iTaA5A8sY4AxlhlJe93+eTf3z5PqtoEwDjiHgGMseq6MvpwoFLNYyIQYHRTEAF5OX3rf/7mzIJz3pIJDAEAfJmOmfMzC85NYskEAAXTEQGe8pJUXprXW5au2d7Zgd56iZycws0PwGeaIsCjlEScDgYQlCmYCwCAyZm+XgAEJYbFxSF8iAC64llcHEKGgQAAaYgAANIQAQCkYS6Arr7D/tgYMMY+LArzs9hVQRQigK6By9o9lzH2Wwv3P10YCACQhggAIA0RAEAaIgCANEQAAGmIAADSEAEApCECAEjD0iC6Min2OzXFGJubibopEB1EAF2ZFFtWsS6QOgwEAEhDBACQhggAIA1zAXShuDgwRABlXnFxxthH86mL5zAvSBQGAgCkIQIASEMEAJCGCAAgDREAQBoiAIA0RAAAaYgAANIQAQBn01uWZbpRt2IisDowprSGZWhWTk7nCimlNJHq3zMZdvtyehJ/czJoDeugfmxoltawvJ/k5LRSyhQXshcu50QpIespEQHxUt/p/rx7rLesUz8vL0nL12YnlAXwtt2to73tw1M/7BlOz3Ca++bPPx5Xb8nJeDsQAXHRNZwfNjonXzinNPfN5r556frs8moh5IZRo7es2qbxdgqfes2Du+1kvB2IgFho7ps7mx37rNHm7tZRs96/8Q/nE9MLjRvLdB/f7/QMZ5QX724dZcRUZSU/6VZNFKYDo2eZ7ij3v0dvWbXNzqSbRNbe9uGI979n9/Fh18/rYwgREL3axqj3v8cbFIz/7/Yd9ujZ4NGzwcFRMue6/dIaVr3W9XWJbbo/bEx3IiMCIvb8aa9Z930/72x2xn9G5RUXb/dcc9iwl5C9rdPzf6PQGtb7ZnCmAiIgYj8/Pea4yjbddqMfeGOI8zUEePNCO9iWhAkREDHuj52uTfHHLoYs0+0dcr4XxjS/F4iAKI3zsUMvIFjjRKreQgQAl3E+dnZ/EGBLgCxEQJRyMv/vP5PFexckdZF/qV9xMRtgS0KGj1GU8nJazHIu8lFKWNYVsFyBc8fEOFEeuSluejLIKueXj6wiAgLGnarKNL8XiICIlSsS34VT3fmMp7+7KXN0yirV/FTvF0IERKyykuf4DlleLeTlcff5esXFf6emUFzck5fTfrf95Aq+L4kbRED0qmuKr9craubS9dnx/12vuPiyKigz2HT0i8pKvrjgo3tVXZ+b9i1biIDoKSVx9G8SMSv4jQzw5drtcxcu5858mZgVbtwpjvMcISameBojSS5dn1XUTG2jY/WHrfwvLmSr68r4QwAYQpSElXWlXJGGvB3lilRdm/rvfw8iIC7KS1Jx8Te1jc47dw2JWWF5tTDtW9OniPd2tBt9XbPbjb53iJusioqaKS6KUz3/d0rYEWCZ7sFfj/WWbWhWR7PzckZRM7KaKS4k6tfKR5SEa7fPWabrfex6hiNKgqxmFDUziV8OiosPJ0pCeUkqL0mMBTDzEluhvvNvn42jm9bJCU2Van55tZCMztU4RElQF8UQBpkoLg4stAiwTLe22Rl+0EW91m3WzeraXAKmWACmRUhPBB7ea49y0E3PcB7eaw8/uREAAhRGBOxuHfnaElfbNCbXGAB43cQjQG9Zb5/HfuYlu1tHE2oPALxu4hGwt81zM+9tHya1fhNArEw8ArgPt8HBWAAhmGwEdA1n+HK3IXAwFkAIJhsBxhhnqhkangsATNxkI8Aa43w7zAUAhGCyS4PGOU0FR2JMGoqLA5t0L2Ccle1TfRgTwLSY+BMBXwcwvE7G8ZgAkzfxCKhUefa3lisSdsWTglXhUZn4N215SSpXJF+VM8WsUF2bm1yTICaeP+29fGHpmn1y/6uLoqyKxYVseYnzVFXwK4zOdnVtrv3Pfxt9gUBizmOJuWObbf4lms3CXcP5YaPzdkFer0pvvdYtL0nVW/gYhCGMbUKiJNy4c37EOg3LqwV8AyTb86e9B3e14QW5m/vmma+BQIS0WVgpiZ9/qQ6fF1DUzOf/WAzkbFyILa1h1TZ0e4RFHz3DeXz/ZZe38jKMKLxZd1ESrt6U5yszPz/t9Qyn/eKX9b+5QlopZYoLWRyMl3iW6dY2OqO/3jbdHzY6N+4UJ9ckCPvB2+tHYuktC+cFkrK3fdjz+a2uNaz6ThdfD5MTZR0B3P/U1Gtdnqt+4LkKRoRSIhAS7rm9nuFgw8jkIAIgJMYYi39weMTkIAIgJOPcxjg8YnIQARCScdb5cNT8hhFhKw5dXnFxxlg4xcXlMbZ+ypg5nhhEAF1ecfHQ/rlxdn+juszkYCAAIVFKIl9/HidHTBQiAMKzvFoI7SoYESIAwlNZyfs9QqZSzWPb2EQhAuiyB2xPc/c0Vz8Ob+FNdV0ZfTiQK6TRBZg0RABd9oD9pA1+0gad4/D+0bycvnHn/CjD++JC9sYX53FkwKQhAiBsZ+4cF7PC1c/kT784j8PjQoC5VojG1Zvyhcsz7Yala7ahWbpmFxeySimTK6Tnl3ByZHgQARAZpSRit2jkMBAAIA0RAEAaIgCANEQAAGmIAADS8ESArpTAijmBMSZhVp4wRABd2TT75CK6gdThEwBAGiIAgDREAABpiAAA0jAdSJfpsI2fHMbYf/1t+gMl6tZARNALoMv9z4NC3AFq9dCFCAAgDREAQBoiAIC0N6YDt+r9rTqKt5FTb0TdAogOegEApCECAEjLCIz9j49DKSsJADFTltP/ATIFTGUtfvV5AAAAAElFTkSuQmCC", "path": "image.png" }
Complete the text to describe the diagram. Solute particles moved in both directions across the permeable membrane. But more solute particles moved across the membrane (). When there was an equal concentration on both sides, the particles reached equilibrium.
[ "to the right than to the left", "to the left than to the right" ]
1
The diagram below shows a solution with one solute. Each solute particle is represented by a purple ball. The solution fills a closed container that is divided in half by a membrane. The membrane, represented by a dotted line, is permeable to the solute particles. The diagram shows how the solution can change over time during the process of diffusion.
In a solution, solute particles move and spread throughout the solvent. The diagram below shows how a solution can change over time. Solute particles move from the area where they are at a higher concentration to the area where they are at a lower concentration. This movement happens through the process of diffusion. As a result of diffusion, the concentration of solute particles becomes equal throughout the solution. When this happens, the solute particles reach equilibrium. At equilibrium, the solute particles do not stop moving. But their concentration throughout the solution stays the same. Membranes, or thin boundaries, can divide solutions into parts. A membrane is permeable to a solute when particles of the solute can pass through gaps in the membrane. In this case, solute particles can move freely across the membrane from one side to the other. So, for the solute particles to reach equilibrium, more particles will move across a permeable membrane from the side with a higher concentration of solute particles to the side with a lower concentration. At equilibrium, the concentration on both sides of the membrane is equal.
Look at the diagram again. It shows you how the solution changed during the process of diffusion. Before the solute particles reached equilibrium, there were 3 solute particles on the left side of the membrane and 5 solute particles on the right side of the membrane. When the solute particles reached equilibrium, there were 4 solute particles on each side of the membrane. There was 1 more solute particle on the left side of the membrane than before. So, for the solute particles to reach equilibrium, more solute particles must have moved across the membrane to the left than to the right.
to the left than to the right
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABcsElEQVR4nO19eZwcRd3+Uz0zO7P35iJ3YDlCyBIgSAQSMIBAIIQE5FQEgSCXFwKCIhJAlDcIIuircoSXKChnRORIwJ9yRI6IkSsBBEkgCTlIstl7zv7+/qijq4+ZnWs3s6GeD2R7aqqrq6ue+T5PVVd3MyJCHoinM5s64xs7etriyY0dPQA2dvYk0nY++xqUHY2xyPC66iPHj2qMVW3vuvQrDA8rCoXykOUON//Z3P6fT9s2dvRs6oyXqYYGZUM0bM39/PjPQsThPPy4tbMtntredTHwIn8eBoebeDrz2prNb67fqnrXYlY0Vh2JVEWqqhpq6xhDLBqJRapCDAywGEIMFoMFWHoKYDFYDIzAmNi2AAYwd2YGZ4P/C8ACGAOT3zK5I/8XJLYhE0GAzMw3iMAYAJFNB8k/BGKM8WYgEMRejCcQiZxExBNVTrUNBi2b8xVPsYkILENkE2wiG7AJGSICMoQMUYbIBrO1DERiLxsykWCDCIx/TKTSq9esjydSk0YMmjVxbK/dPEDBebhszafKvxgeDmgehgNTX1y18bU1mwFY4UjDoGHVNXXVsZjqRd6jIQYw3rAaGIicfpKn7XSVbEQnA2NOZ6gOIdlV0HZR3/Kj6CV4i1V9rO3EMxAcfhD/jhjJ7xgYgRhTncrAiPEOY4yICJCcYADxQoi0wsUByfkDRkTO6chMWpxnREQkDqoUgKC0QNSLZwMQCYfGjBr+waq1Gzt7Antwx8Bf3//krfWtAMJVsbrGwYaHA52HAeGGSwpj1qBRzbGaWgsIyRPgMd4BuT/KFIJoTTC5C4E4J0ikqJ7jtNBLIAZLboO5j6KlMJkZ5DqKShdHkYlM9jZjzGltAkBSQwJUBaRyyh31PUWzMFev6WVDlG9zvmuZGHMyMsYYiIHZmttkUH1Oqp6MKx1jsWgEwA48yN3YGX9rfavh4Y7EQ8ufxAdQVqQqEqtVx1SB2TX2Yu6PMkXZSMi9dG+pYrA6W0+ZzunrogDXtqiJW6wQqCrMVQCkX2VOgUyP3rJKxGQC03YkIqbvKQ5Nusq5ygZcqqKdUVZVkaluVVHZhLnO2DaAaCigB3cMJFIZAOFoteHhDsPDgEzD62LRkJVJxtOpuDpmgKqQFs7hJLpURe4FchKVqog9yFss6T2nlQN3ma5ipU8mvRAmJMhFRdlPHlXR9suhKsrBQj9FxkXBV0uCO6eqq+d7LhdSRNyq4qoXY5IGjHV1xQGMG1SHHRQ71ccApOJdhoc7DA+DY9KUccMAbF37QTqVlIfkZwq9FkoiHOShKkCAquiFMK3noJXj2fariuKHUhXoUiOP12+q4v3oVhUtW8Gq0hNPrl2/CcDOO264iYVDhzQPB7B17QeZTIYnGh4OaB5mvRD+yJur39/cHgpHmoaNrqtv4HNyIYZMOpWM9yRTiWQikUwkEslEKp3O50gGZcekEYOOHD8qFg5t74r0IQwPKx/58zBruImnM4++ufrjbV0AorGa6rq6VDwR7+nKZEynVgp+cMQ+27sKfQ6dhzX1jVXRqOFhpSF/HvayzO/N9a1//c+6REZbtclYOFoTjkSrotGqaCwajUarqvhVgxAQssC31XqHsExhPIVgWeCrJLhMAQhLLxqSqxsswLLASKyPAHPWRDAm10HA8ahMLqMg3SoKi+nyseS7IkDqioAcIOtjZsprvYMY66pCSJpqAPoyB329g01kg+VY72ATiEFf72ATCMwmeuOdDwvq5oEOw8Mdg4fB624U9hk5aPywhkffXP1Ra1dNfcNOQ3eqrq5xepEhBDB9eRVfEwFtW66YEtuyP/R05l9exQCCZYkuZAj4D/ryKtET2lRfUB8DYo7Nmc9jcNY7yMUNfMwsmOJa7yA5ofbk825iJKsuZKpRvxtalQB5XEAfMzvXHCEmIMQWE9dac8vDjgrOw/uX/3djR9zwcODysPfLV7Fw6NDmEYwh0d0ZiUad2Xs5v+1MsDuz894rAkx9qe0CWYxqASeFtKsG+qSgBt/EPlzT8qpc9xUBynFFwK0q6pJDnlcEIBdNBPex3j5O08kOl1cEoHejw1pSR2PM3QqfGcTCoaP2GG14OKB5mNfV8nGDasc11dq23bplszN7L82iM8GuzWW7PureUtsFshi4G8YrEQyAaHMdvol977UJ58B6co4rAnL6X7S2vOQgc+a8IgBAXESA95AqgXk3glVF28tzRYDvkkylATTEIt6j7OgwPOR7Dlwe5rtI7NDmEQBat36aTif9qsLcMuJRFejZs6uKf22Frirk6TAKVhWmZRDl+sjRJ6qCnKqiiYkYW7tVhf+rVEUdIVBVUqk0gKbPwJ2ZfhgeDmge5htuxg2qnTRikG3bn27c6KgKrwKJNQ45VAW+RRAKDmfIneJRFQRJj09VyJ3BP8BU7OkfVSH9YAwQPwnRHORqSqZURR0hUFW8p/RZguHhgOZhAUvgD911OIC29tZ0OukM/7Koiiuck9AZv9SohEBV0T8TpFjpmdyqAp+qKG1wkotXFRShKkw/mFQVJpujOFXxtuBnDIaHA5eHBYSbxljVpBGDAGzcuNEZ/mVRFeiek/WuKloEdVTFywl9xSRzp0jl8auKx/2WoCooq6ow426Kg+HhwOVhYTf4cWHZ1tbaE4/3oir6RxJnmENVSLsE4KiKhxN6Crl1Ru7oHLnvVEWreAmqQpqqiL2Mu8kThocDlIeFhZvGWBW/jWX9+nV6H3hUxVsRJnVGh1tDmPYoAObL43zUmMSQVVX0yuSpKiSan/GWzKUqWsXzUBWNnVlVRexl3E2eMDwcoDws+PEFU8YOjYasru6urs4up4JuxSDtX7EVJBEyagNBqsLzeHZRZ05SVXQF86sKr1s+qsJE8xNvyfKpiiMmWiWZezpR7GXcTf4wPByIPCw43MTCIX6/+PpNG5wKBqmKUx2pAC44URvIT1WEjDCRn6lC5D6VrCpSLCR3GNNrwDeMu8kfhocDkYfFPJyJC0tnd1dbe7sMq/ycRAa/qggF0BGkKvDs6N6FF0Ii8ouP+qFFk/rWkkKL4H2hKpA92IuqiON7VMWpmnE3BcHw0NlTr2kF87CYcBMLh44cPxrAmvXrZFgFUJiqMOeMtY+eHbOoCpOqou8FqSpELnroR0HfqIqoqfMg2GBVISKvqjC9/vKWGeNu8oPhobOnXtMK5mGRj57cZ+SghlgkmUp1dHUhi6robSBUhVwpLlWBpiparNZjqF9V3P7UrSqqDOY+cl+riitZUxUhCESSRzxdO0GhKhB7GHfTOwwPBxYPi3/Srb542RPpVN3UZ6EqzJXiURVnd50fbtEIUBXPcVmAqriO7BGHflMVaKpCvauKOhetBYWqpDM2gM/C66XygeGhXu0K52F5HqztiXQeVXHGt1oOv6o4X2ZTFdldOVSF84C0cgJVxRGHPlYVcYblURV+OqwnngDQWG3CjReGhxXOwz55jj9T5k3UTAiCFkBzqYr6wDx6Jctk2n9eVYGjKvqcn0tVUD5V0Q4RqCpKPcqhKvzs3ApukB2Gh1qdKoKHfRJuSFMA5FQV1U/k2V/L40pXqiL/Y562lh0JSRFy04WTILuqoDBVUVRGFlWhAFVxTq8oVfE2t0EWGB5qda4IHvafu3EpgFQVRYYAVeE96lYN9Q1TGuJpa5+qMGlcVWVyqgrKrip8/l9XFaifgXE3fQnDQ63OFcHDcoYb/Zz5aajorhRA5cimKsyfBCdFfUNKQ5yWc1J0ivADbUdVcQy7piriNI276QMYHlYsD8sZbvRz5qfhEQGPqkDvXb0Qv9Aw1166qjih10OyklWFyqgqaqhs3E3fw/CwYnnYt+6GC4v6z6MqUCna7J1fVfQUv6qo0OslmVtVnCPnrSrMpyrQ3uJcsqqwXlWFjLspCoaHFcvDvnU3XFhyqQq5Psr2kB9UnjxUxTl9dwqDHrlLUhWotyyrzy5mF6QqlENVVBsGqop+acXAD8PDiuVhmcKNu6HV9Bac6/pCVbzjW/dH2R5OmQhSFSFWMtGjKp6UflMVFqwqYG6mOaqiVZV/w7SOzaEq+qUVAxcMDyubh2UKN8w1DQa1fNO5ri9UxTu+7U1VRLG6zkixUom9qgq0hu93VYHnQqqjKuJbJ6txN6XC8LCyeVg2d6NPg0EucMihKhzMmXcXyR5VEcXqOsNk62iq4iKZT1WgNfx2UBVtqOzUR6qKlte4m5JheFjZPCyfu9FPRSqJR1WcIaLP7uavKqJYXyEBqqIdqoyq4hwml6o42uMZKvNDKFWRGWSiT1VIbyCAiNKZDIB83gD/mYPhYWXzsHzuRkmE/MiFRVcVZ4iYU1VUJEWQqohifYWo9ielM9qhClMV5FIV55xzqYqjPZ4LAfwQuqrIMgNUBQyqGrxIxlgikQQwvK66l075DMLwsLJ5WGZ3o4+BA1RFVx4Jv6royuNSFX0XuBJ1VZHBuARVQZGqIo+av6owj6ropYv+VQ3ERAn+NjQQMDysbB72ubuBjLEyrIoU9SdAVTTRIEkUHR5pgmIDtF1kIV5V0RUAZVYVreqk5XIy+lRFrSyX1dBKz6YqzNMcBgqGh5XNwz53N3DFWNdoVoZJl6oAWmhWEuE+Wq+q4s+j90eJqkJa0fmoilYptr1U5bMCw8PK5mH/uRulIWo061UVbRFEr6riDKTVLpqqwKc8en+UqCpMK7pAVVEXFLS6GndTRhgeVjYPy+lugJyqolwb6XFaUxVNAZhTsFYsnAyegXTWXXwtsl1URVbPURXw/NlVRdbDuJtCYHhY2TwsR7ghlyDwlFyqAj1OaymaApBWNrTWFBngVhXuYFnQLr4WyVNVAJRHVWRRflVR5fMCya0qkD8AlENVPhMwPKx4HpYj3LCsqsKc713d4FEV0j4iD1WB5zIB/0hBuxSrKgDyUBWnxbOqiiwqWFXgqArLoiooh6p8JmB4WPE8LL+70YMgOd+7ukHFaZKqAj1DNonQjuhRFdEKKmKTUxN/Zf2qAt5jBauK0+JuVYHnwNtdVT4TMDyseB6W393oQbBXVQlUgKwSoR3RHX7B4OgMkxk842pVoF9VwHusbKoCz4HzUBVm3E2pMDyseB72gbuBV1XgWXzpVhU47SozBKmKO956PxIcDalkVYFWR7eqkHE3pcLwsOJ5WCZ3o4V/J+SK4Al4bi3pTVVEJi2NyCsjvaoKkFtVXFqB/lIVvbUcVYFxN+WA4WHF87BM7kYP/zJN1dCvKipTgKq4u5yX46iKzOPSmSBVAXKriksrULKqgKhoVeHJOVSF3KrS1RMHMG5QrffcPuMwPESl87DM7gZaNyn/5VcVlSlAVTyGFsF5XDqTQ1WCKpu/qqiArnJmUxUwlqeqqIrqCxn4wb2CIevKoO9tvE0WGB6i0nlYhnDj7pciVcVRgCBVgU95AlXFyaJ0RjuKKjB/VVFxX+UsXVVUvXVV4Qf3Dod1VXH2dmUxUDA85DtVMg/LEG7c/eJVFYa8VMUZ33pYk0VVnBRZDundqXRGO4oqLS9VYUpVmJ6zKFVhPlUBjLspNwwP+U6VzMM+cTc8tpJq+tyqQkGq4gRfN420PNlUxZWiy4Lalah3VSGlKqTnLEpVKFBV9DPsVVXI2du4m2AYHgKVzsM+cTc8tmZTFTCtL2W6V1U00XDRKLuqQG9apTPkfKsdkVWCquhn2KuqaA1l3E0wDA+BSudhP7kbvWtBWl/KPfNRFU8e/aOHakpVUBmq4vosT4y07/NRFTLuJicMD4FK52Gp4YbB28SBquI662yq4iSBsQBVcZQHchfmzaMfRCT1haqIvfJVFdcZOuflPCk2m6qQpirMuJvsMDyU5VY0D4sPN9FwCEA8mcxXVRR40zO5l5IIOAWRdjeKbApNRiB2ce/klS6VVH5VEXsVoCraUFmlOk+KFQf3qQpzqwq5WsoAMDwcUDwsPtwMr68GkEglvQaS9aYqAMjpvFyq4gR5GWLdquLeSYvpA1NVvJLhUxXmaikDwPBwQPGw5LkbeV5OMKUgVfEgSFWYVpBfVeC5+1ZTFcUipsmXM4/WV6qCAaQqOz4MD+VmJfOw5HAjB7dOMPWpirt3AASritMx+akKNO+qVMWJ2YoCeakKK1xV0Iuq6DoL4276GIaHcrOSeVgOd+MJpiIWOqri6x2nEfyqQpqqOJ0nD+Thi6MqKnD7VMWzUxZVod5VBShMVZzdXKqirQ4tRlW6E0kAO9XFYKDD8FBuVjIPy+NuPENFlZJNVVSKUhWortKL5Zu6qrjhL8SvKh6SFa8qQBGqQkoKNTFRG/moCrlVhTI2zCs0/TA8lJuVzMM+cDdwUnRVcQ2JNUHwdAzpxfJNch1Ih78Qp166qui6gH5VFaakULE5SFVEun+9g1gJSnpjGgTA8FBuVjIPy+BugOyqIv8jrd2Rn6pA5dFUxSMsAarirpjoY+ZO3t6qwtmhqQqDOqT3FJhHVfwnagAYHqpvKpqHZXA3vJ4BqiKjYDZVYWrdAOT4EO5y+KbnlhZ3BlchvooRvCPtAlXF0/S9qwqpch1VgXMymphoquKcoWs+0bib/GF4KDcrmYd94m5EioyC2VSF1LoBCNFwCnCrCtMOBHcGVyG+ipWsKh5j2buqMFWuoypwTqZ3VdH60bib/GF4KDcrmYd94m5ESt6qootGDlWBKkTL4FcV74EGjqqQYodWN+Nu8oLhodysZB72k7tRohGgKloGpxxeCP9WXyTuVhXn0HrjkDdDf6qKqnURqsIUO7S6iYG7cTe5YXgoNyuZh2VzN1ICZA2VyZSBO6uqaBmceK3n0ReJu1UFAHKqCtwskcfqQ1VxGsKtKv4LAaSfa05VgXE3vcLwUG5WMg/L845wPZg6KVJSAlUFrBdV4SfnGkgHqQrcqsJYgKroTbO9VMUvJnJxpurcXKoC427ygOFhhfOwPOEmT1VRw1eVoqsK/KrCnHJUsR7R8KgKUbCq6MX6VAX9oypSTKA2ZAZHVVz9qKkKjLvJA4aHFc7D8oQbWadeVEUNXwNVhcuIrirwnbrSmWyq4siXu2quYr2qgv5VFagNmcFRFVc/GndTBAwPK5iH5Qs3DHrQy1NVwJyPJMvgIHc5qlimfw3JI203n2L4VcWfJ19VAe/bflMV8qpKdzwJYKf6ahgEwvCwgnlYVnfjC3p6gq4q/DsVgh1V8YT/gFOXLaypikdGfIrhVxU55eXk4U8wo15VBbxvC1AVtScjkDDq+asKc1SF/5POZGDumcoBw8MK5mFfuRsOPUGpigrngaqi9w0CTt2nKjKP6yNz5WFac2uCphfNn8/Kyq4qzgFADEwnZaGq4mlbg2AYHlYwD8vtbtzwyIwTQOVH58zURJrWN8hDVZhvkKxHdpWiqNCXqgK/qkANlZmjKlBHKVxVDHqB4WEF87Cc7sZfDfL0nK4qcAbAuVWFB3FnL/1rdxc6QuRRFXekLlpVqBdVcR9bK1nU06UqcqrRuJvywvCwgnlYTndD3gSpKlp0h+s8tOifXVV4EGfuXRR0VXFK9qmKkx/Fq4qzQqEYVQEJ7ogK+FXFW1cYd1M4DA8rmId95m7kdUGPqjgRWewE+FVFi6EuVZH9osuIoyr6KFVTFeovVVHlemrjVhVSGTVV0U/P3ZnG3RQKw8MK5mHZwg3zVENO+HtUxYnIPEXuC72PtRjqUhXZILqMOKrixHFXuZ5YXBZVIXcfyZ1YVlVhOVRFP3njbkqF4WEl87Bs4YY81ZARNlhVPP0kSxClFK4qrtE4uVrME4vLoipqsJ+vqgjGB6qKfvLSDDvVNe6mMBgeVjIP+9DdAG7V0FXF008ql09VAK+qgAWoijPw1KrCKklVkLequGyscTcFwvCwknnYh+4GcHe2riE5VcV1/iQ7Uu1FeamKMrd9rSqygN5VhVfXoyqaYhh3UwYYHlYyD/vW3WghU2zkoyoud8c0xciiKuJAblVRU3duppVfVWQBvasKGEhldNpAZjDuphwwPKxkHpbP3ZDT6IDLRjptrKJpgarCJCFUCs/gdFZvquKqV36qAt6NZVUVpjI6bSAz5KcqyWQKQGOsKqgTDAwPK5qH5XM3TOsJ5Ksq+uhRxXu/qhBcHFJdq8Vil6owj1gVpSrg3Vi6qiiqlkNVUuk0gCYTbrLA8LCSedjn7kbFRJ4owq5fZ7R434uqyGL1gbRHVUiJleoQvV59oir66UGvDVNULYeqGOSG4WEl87Cc7gZBqqJiIk8UYTebqgBQYTmnqpBGCPhUBUpVfEva+0xV9NPTD1xmVTHIDcPDSuZhOd0NilUVbQ9AheU8VUWlOAohUnRVcerpVKN4VXHq2LuqyKq7VUUr1ribcsLwsJJ52LfuBjLeq0Svquidp1K0AiH7wuWQEaAq7lL7VlWcOvauKkJDPKqiFetSFQpSFe/Ug0F2GB5WMg/L8+IXZFEVkZJFVVzd6VYVpq4yyr5QoVllyqoqqlhWKarCtAKlqqjvXarCMzh1Jv5UWncDGfhheOgrV8srzxrbmYflefELcqsK3Iky/jN3BpdEKI3QVUUPrG5V8R5IecWSVcUliowJEdCkQ1cVz1ciXamKEg1xJqQOrasKRDXEIY27yQuGh1q5FcvD8rsbTwh01U1VN7eq6CNt1Rf6kki4VcXfClQ2VXGJIu8Dt3ToqsL8qkJSVcSpMYJ2DvLQuqpAVEMc0ribvGB4qJVbsTwsv7vxhEBX3YJUxfOlU4hbVeAsiRQR2T1edR9JSZwvEm83VRGnRgzaOchDG3dTKgwPtXIrlod9425I635NNwJVBe4v9UKc6A63qsi296qKKlZWxh+JK09VYNxNGWB4qJVbsTwss7uBL5ar8A14w7+/9529yJ2BxAw/U7zxaYhLrLarqoidcqkK01QFxt2UAYaHWrkVy8MyuRty+tLTB4Gq4pnP43n0OTZXxJc641cVb7Hq03ZVFeZoolQVN+/lt57UvFQlnbEBRCPmxS9uGB5q5VYsD8vkbphzJt4+cPcf30U5XlWGV4vcqsJTvKriEysn+LpppKM/VYVkpWVNNLETqiLLzltV4okkgOF1sYBz+yzD8FArt2J5WAZ3I2JoFlXxxFRnF5+qqL1IkxFnJ7+q+MVKfZI08guLV1Vkcl+oCpOVdumCoznuc+7LMfOOD8NDrdyK5WEZ3I0+QkQeqsLQi6rwDESuYjyqIoKy2kFrM11V/MNmr6rI5L5RFUhV0XShNFUxCIbhoVZuxfKwfO7GqZi7PkpV3KKBwlUFSlg8Q06Se6lPhasKP5XeVAUFqgqKVhVZrHE3+cHwUCu3YnlYarhhCFAVcufwBEW/qiA/VYESFuYUokr2q4qnWGjf+lWFt31vqoLCVAW9qQrTzlmqCq+GLNa4m7xgeDggeFhquCHkpSou0ZBnp7dzvqpCjqow98pRv6rAVzftW89QXrR9mVVFq4lTUVmki2qaqjDjbgqH4eGA4GH53Y23Psw7dmVSZ3KoCk/x9AOp53VIVdHDbQ5V0cth6n/dQ/epqoiakCrUOaRxN2WC4eGA4GH53Y23PllUhbmn7pwM6jqiT1WYX1VUJaSqMO2RHQiqW4CqyBDfp6rilGTcTR/A8HBA8LA/3A08oiF1JlhV1HVE8obRAFXx1CRIiypZVZz6G3dTGgwPBwQPy+NuGLwt7sqhi0Z2VVESoVTFw52sqqJqorUdacX2m6pA3ykPVXHqH6QqPJNxN/nA8HBA8LA87oa8PeKFR1UgO1vPQLJEpSoe7iiJUPsFHkiKk1NsgKroIT1AVVhxqgJ9J0dVhFwUqio8k3E3+cDwcEDwsBzuRhpIlcTg6kJoqkJw5udyqYr7gWSQKUyFW76XVg1VjsjudESQqughPUBVqCyqIish5EJTFVGacTflguHhgOBhGdwND59MSyJydSE0VVHB16MqUGfBZJla7HaKRdAuen87plGkb0dVkWfoVxVRWqGq0tkVBzCuqRYGbhgeDggelsHdcBlxqYp7JQI00VDB11EVlUfu7qgKtAy+pzQCTkt6elel8KbVOdcPqoKcquKU5mWncTfFw/BwQPCwTO5G92N6u2uNTlp+6O3s7hilKu5jZFUVZYldheiq4pavcqmKkg6/qmiDe+ftPGqDiW3Xb4O5VQVZVMUgGwwPBwQPy+Ru5F0kMikvVYEvD//oir1qO09VcaeQLl96BUpWFTUwzqkqjphIaeBVYmJDSalbVSBVhYy7yQ+GhwOCh+V0N7pK+AOhX1XgztOrqsB3pgGq4k7Z3qoCt6qoKilVEWzLpirMuJv8YHg4IHhYNncD1W5BqgJdQrKrigrHrj4gJ1txquKvcAGq4nrkoqpZ+VSFXCUbd1McDA8HBA/DRe9p2zYAsu10Js0IYYtZDGCwQSHGbMBigCWvFjAQwWKwGGyAWeLJzMxyjCnpi6akhjAV1WXnubpNCZqmKtBSGJwQL/eAeAi9XjJxq0sMTNyvzwjkqIrsWxAx2f68rjyjKpdEB4uJNqUqjj4xMFuoCrMhpjdVyVJVmFIV27ibPKDcDRQZdMLo7sY/GpIUVRkMD/uIh8WHm3Q6DSCRSHS0d/A4wgALZEGEFYsBNqltRmSJ+W6VyEBkAYwhZDEQhSzGz5knWrLBLYuPU8EAy2Jky6Kk4yQiy2IWExs8nPOe5olM/msTMdW0wiWCyIaciocSC8YYYyTtJ2cyzykMp+QhpBIRwJhlixeesgwRGLOJbAIBNphNlCECszJEGSLbBjGWIcoQwGATCIwAG8T3sonELJ3+gzDwIWPb6VTaYiAGi7EQ4w1OIYuJMMQ3uBYSiMECwMAsGVFkMHDcDRNRRsQdcv5VeVSi2EV/loOWktXdgDwhSnM3jmnh3kRZJ7e7EdmC3A2gleDsLwtnjI+ynKlvl7shaW3ksZm+LKAoFB9uHOj2VBgZ4j8bdxMrtZDNZ8tX+XG3BmQytsW/YyBbBAnGAFsEbQaWyZDFmA1i4PFIBB2ezhjSaZeq8KpZWlVsGT94i9tilEo8EpGI5SKXTWTx0M73VbkdMRFBwbbJJpsxZtsExggiXhB4xCFbbCBDZAM2wQZsIJ2xibGMTQTYhAzZBEZEGZtnU9EKsCJl6K8dEclEoqOzgxGFGGMgXeF4nFEqCJtCFmOCPzwbFy2VGSCyGAtZDCDOHKV/aoyh5NCSgwyuhWqDT63wFK55kLO7vM6c4DJ+yTexgGwii1kq4vD9OA/Vj50ke7nE8dgoxQmKouLEwDK2DWZxHpLYQIaIGPMSkpONYIPALOVzFJPJEzgLQTnCjeNFeTwXzoIxwHYHIyUDRAxgloxMShAspnsGXVXUSk7d3fBz579w3q9iQ1MVS8RkKHfDKyJ9DbcljrvhsUZpgsVg21I5dOlQxheiAlBLIYJUxRl8M8jlIARb5LHlnTiQ4uaoiKKkrIZBMPjP2cdDaUNVHvnHmVbh+2u/IgYAGdu2AJtJeeMTBJxyAGOwCRZjfPDBo086TdyJK5dNMuJATH+4XDaRLQINOM0kxRgDYJPNg4hy2STmhwVjBYG1a/NcDjmPbDGXDBsAYxnb5qEkQ7C1+MJdNt/IEKRMgkeWjG0LIRQjMZaxKZG2i+uikh8eCi2gyJ8LCWg96LgQAIIWZAuHpiBSVJnMYYMaONq2an3x8ybiYkJQqqId1hlyMqEzvCJynM9//Za0zyAii1nqoLZNyhkxp2aa8eWBzOI1IchBlVZtrpfOqIycoTHkiTizjMraiqMSKVYxvbEMPJAjAw8PPVMmYr5Cn9TVxiGALERRBS4eqoL0zuQpXOr4QTkPJUXF9AfBSbH4YEWFDAjei0jJC2GWtDBk286Tg3mRJAc2+fDQtpXyS/0TtCQu5cKsB/HQEjPVBOdNm0ViO7ibsN1WE19Zk1hRnVoBIBUam4xNjFcfTOFGj7txj5YLcDdMUi7Y3UBITf+6GzHH5HE3/Mz87kYdyeVujL/JgRLcjRjAq0JA4ONoOAx0RxziuSQxBTMV/cQGU+oY5G4YI9tmzoQCnNDBGHO7G0sPBJo9z5OHlmVlbFvWnEm5g/L7Ml4F8NDWZm4EWYvlYd/N3ciOk3kYWHXy7Z03fbc6sSKwmI7GU7cOvsSu2tnpUy1gqTEjtxt8fMp9h3I3jDGPu4F0N2rMzCdidHcj5w3J5pODRBazbNhcY9TcDWSDq4GOmtaziZjFyAaRLcjHYxfpVwTc7gaCvlwMGWO29Kfqx8HkYcRonKEnlQIwblBdaR22g8JZXeLioXYNQLWpy904RpPrvHx/tqX98hzhlCCSUU2uWVHuBtJlKy8D6W6guRt9qkUESmKM85C4Ulp8NlDxUPp0EDlTv/nwULob7lBsOH6IpA4Khvt5aDFmA7Bt5W4SmQyK4mE53Y2IfAhwN6FM26jWW4a33Z2jmPq2h+rbHmodcmnbsMuYXrLL3cDvbpDN3agdi3U3lt0ebV8SaX/Gstsi3a8AyETGZMJj4vVHJ6oPTMUm9qoqCsHuhpxmy+FuAGLG3fQK6W48PPS4G/lHDqLUrVVed0M2ybmGAHcDv7th2dyNimLbz93IzGpHt7txok8ud0PK3RSL4sONCq7yo2NAPO6mJvn2+A1zq9Jr8il20JafR9Jrt468VZbrHC6LuxG2WbgbprkbVRlBqQLcDWVaY1vuqd66gGXa9eqFUmtDqbVVPa8A6G48qX3IdzLhsX5V4R2oR4dgdyM+BauKcjeOhpqpm5zgXe3hYbC7gZYirIrH3ag4wov2H8vjbkA2qbGzxTR3wwDASq0Jtz0Tbn0wFF/pFBJqSDcck244Ot14bF+4G3Wu2kxqkLtx4hXlcDfy4lfxHVQOdwMA8vdsi4DPFYMRwnbbhE9ODtvtvRchUdf2EAO2jPw5oKa6NHcj1Z4pZlgg5W4oyN3IQUme7obSrfWrTwtrtAhETdujsc5nW4ff1FM3w6MqzBuNXe7GkVDRWmRrcpvD3TATb3JCEs/FQ+lbAAS7myxzN+5ZUV/TM9mnTP5aGffd3N2Q426sTHtky4LoxlsCKpxpj7Q+FGl9KBObGB9xbbru4EB3A/c1kPzdjeJhoLvRfxHK3fh5WEZ3U44rUxJkk2Yo+Alh/MZzC4o1HLVtD9W2PQTwwCzK5F/ZfIZcNpb69SpVgdIk5tpRuRv+QRcf/cqU1fN20/vTeo01HFamfcgnF9a0Pey5IuBoiayA7m5EotvdOD7Oo6Qk54CMu+kNoqndPAS8hjfQ3aghhNAwYW9U0Y7RkQmqZ+SO0t0QiauZtk3hxIrqD08OjDU6QvGVtatPjW66VTomIu3KFC9K1YYxOGQT7ka4mWw8lE2hdhTRWLobyHgVwEM+BoS4cl+SuylnuOHXlSDrx4CdOh9siL9cXGmDNl1rZdrUPIfqe83dMCLl+GSvcJ3RBupqR97KmruBKoG4vWAMmbbadZd6BlC9YvDGK6o6X9ZUxdVtvAJqNAd1OuKTnFySvejVUSaXeVCApTfQIZrazUPoC9M0hddT+Awg+BCJyVuW9AAjeaglKHcjbZHFh0OMycs9kcSKmg9PCeUnXQBim35eve5S4dAY4+7GmXtWJyHdjRh0K18ifHIAD+Uv0jl3JdhiEkd3N/KM5eHEfIT4aZVAwj50N2AYu62XoJ4DVqa9rvVuNXzO7W5UzOZrJYp0N0Q1G67Nnxw6hm280Mq0u1XFFeZKdDcw7iYPBLobZgW4GyeUuN0Ny+Ju9Gkccawgd8NL5u6G2W3RNd8tVLqqWh+OtD5UVnfDVFPo516cu0HFupvaxNvR9NpSCqzd9rD62fbubuByN3pc5zv26m7CiZVV2x4prqpWpr2h7f/cquIKc5q7YSjK3ch5P4OsCHQ34l4Zjuzuht88JdwN/xVrAUaTD3msbO4Gwt3E1s0rTrpq111mpdaUz92Qagr93Akozt14wm5B6EN3M7h7cYkFhlJrQpk2j7sRywDJ527URDKfOdNGrXzHXt1NdHOu6/S9on7bvfm5G8Flx90gL3fDfH7ewIO83Y02ky/djVrjTvIO29zuRtLM525ARBRJrIhse7joE6lef13fuxt43Y17EiCbuymFhMWHG/JFOSZX+/P6hey24uslEY6vcCY7RLc6I+Rs7ga9uxv43U2kfUkpVbXs9tquZ3O4G8jPIpFvQObNy90Y5IJyNzoPg9yNw4oc7kaPMC5nSeJfOccS4G4in95VyolEOpaEUmv6yN2ok5DuBoC8ijWw3I3oCCIiqsuyerggCNsHeWkmyN3wcKSWLXG/05u7gcfdhOMrmN1RYm2rku/43A1T7kbAcTec1FJrgtyN9EUoUVU+I1DuRudhPu6G7wW3u3FpBJwOErv43A20WUW+KLQUhLpe9rgbTcBQuLtRp8zUSUh3A0h3E8hDIY3b19344VGVspQpJ7X87kbzJoByN8rvOLYwP3eDdDm8WGqtz93Im/SyuBuQpHKQu5GzPmbuJi/kcDduafe6G+lNenE3rkLkFKFyN5CziqHUGpYsadYSQKTrZY+70ZiMwt2NOuVgd6OmvgPdDSrQ3aj4yUN+2mosvUgxrFQLTxx3o3kTwONuXCPt/NyNVfjiID/C6bW6qoiK5XQ3YBArNXt1N0AylQIwvK669KrukFCzY3534/mReKcCmN/dwO9uXP5AThH63Q1L5LWAPjes1NpyuRuWh7sBkwPGXt0NkM4QiuJhWcMNc6lKe+zg0otMxlog1D3Y3ZDjbgDpbrjSCInKz93YVkPptbWtBtHBzOG+dDdKNRx3w/vTYixQVeBxN4CdIQCxcKj0qu6QkBE+u7vRcipTwv/43I0rJgl343zwuhs14c/0vi4NpbgbDw81d+OckXI3ThzKx93IhimCh2W7iUHWS1xPI6CtZiq2llReKjbRDjVaMoZLfsjVjeJJa/webX7rk8vdiAG4z91wN8HjvWVZxB84WdqpcySjExmTcweyz6W7kX1KVJN6J5Z8tyq9joCe0Kgua1Rr9ED47lWB7m7kk20NcoDPaHp4aPme4gaIq1eMOVpPNjH1ZCwVrjQT5Ai/5m54YUz+5tXcTVlOx3XPlHYLCwu4Z4oxIvc9U0znoU1w14rxH4utLecS7sZ/7x7XRVvEvlI4WNZwIy0Fl46uyN7tsYOLXlUMoLvxVB5dLFG2uJ1auBv1S2aQQYcPOhjpw2x5Ly257pmCUwKByE7VTS317IF0eLTubJW74YeuTqwc1fqTusQy/47x0Oh11Sd+VH1mkjUw54ZCeapwwpZBDji2RuOh42506bY0+wvlbojA5MOtpXyK0CVv5FX7yKlVtWKF37XNADs6tvRzsSNjAu6ZEoNFOBZG3DMleGd73A3UV87vBaIMdW+6z93IYYTL5Mnnn5bCw7IOprSxM59q2VR3atFlZSJjuhpPhZwsd+Zu1N2V/HK4yC5Y4Zq7kRoncuScu2FAsv7oEs4dALpqj5Q9rO6HZ0QUstuGtd4+fsOcwFgDIJZZt1vnrw7dcuTwxLOeuRvS5m4MckObtBF/5HQGSIs18jtAm8kQ97FAm7th8goVoHio7cOLgVwm50QnOzKWqsaUeC6p2oN9czfiq3zmbjw8pCzuhvzuJsvcDWlzN0WjvOGGqdEsn2r5tP601poZxZXVOmyeHWpUls6Zu5Hiw9RDgQDlbvS5G9F2+c3dEJAcMreUk++q/xKFmuSYWd2LS7Hkyl0/OWGnttt7LSFid0xu+/bY+GMqRQVQNdFjkAPapI3DQ+cZtc4PSc5reOdu1LiEJ2pT+N4hrjoi5DI58bvmw49UzUElnkum9mDf3I2sv3fuRo4fA+Zu1Fee4klOwSjPBAYxh+h8FFkJav1xaTws5zI/Namk3A2A/w77RXfVxEIL72o4pbvhWMBRldzuhg8v1SxdoLvhyOFuUrUHp2uLZ8m2wd/xq0okvXbchq9GCrmZY5+OH47v/l++bdxNQdDdjeKh393wzx5340z2au7GiTH5uRsmH9mXGH5ZKSeSbDo5ExnrdTcSPnejLEwud+MGkz8Wx7AQ5NNR1EeRdYC4GwCZUOO7ox4tKOK0D567ZfQvPKpiWbncDZHmbpSncbsbjhzuhjHWPeJasuqLOPMtO92Ujozxq8rojReFCl89OL7rf4ckl8HnbrwLjg3cyO1uVNtpV20cd+NM9vbiblw3mXjcDclHc2UiY1NNpxR9IvGdLmW+e6bUt+V1N8qwVLS7CYIYSQp3w5MIaavxvVGPbqnvvfUT0b3Wj32odfj1flWx7d7cDbncjahOIe6GiOzqls5xBd851VX/pe6mU/yqMqjt/6LJdwstjWNy59WQAZQIZNvaiRkEQ6kPNB4yeaFa8UCbQc3lbpgV6G5cMT/A3XArylh81HWZ2F5FnEXX6FvsqrHku2dKZSjB3SgS+d0N69Xd6FaoOJTZ3QBSVbSLdgzIWI2rh/3iPyMfbqsNnspJR8a0Dr103S5/jddM1afHc7gbi7ndjWg6OXmGYtwNETJ109p3eTB/j9M+5DutI28JVJWmtnsLaT0Xaux14xKPMVkYsywzd9MrlPpA4yGnRKC7ccZHQe5G3OrZm7sRT3TTfTd//UuoMT72F4Wa5WTTyalBp/L69YG7Ed4/yN1Qr+5Gt0LFobwXwtVPnfRVImpWpatm6ke106zMttrkyurE2yFqJ6shEW1JRFsQauTdrQ2CAChVIbJl0CXx7hebr7sRZGJkE3MuB2kH9rkbSm+z4itBgFVHNZPUJU752k6y66a17b64Zv11VR3P5DjbTGR027BreuqOJm29AxhfJoza7mfD6XWltObOicdWR0/gEsWZV0ppnwVwMffw0FIpilNM/tSY1FvOE+kRQpm2uq5noskVVT0rOKGSsZZ0tCXZcDS518oTwRbvdwXxxwnbBFtYknSspWv8M9Wr5+b5JIr4yHmJIefxmEXkW3cjYwbT1t1EEitht0e7XwWQjE7IRMbGI3vpPORRUHoj8bMk5W6caUHpbmw5WyobjE9IkXwTQyksLMOj0TX3wCBXxOh1Ylp+YrBDjV3VB3dVHxyyGOM+RRbijKeZfIsDX9UHZllqmbnjbmwiJtpJLgLkYVhEOClzRADCWx+MtD5sxVd4nniUqj8mVX9UcvCpYkTG38QQHtsx9u5I18uRziXR9iVWygkctlWfrDkoXnt0d9MpJFXFv94hmnin6LblGJp+TbgbkMWsjHmLZi9QP0gXD53BkcpHYim3o2skeBLOrBmy5dZ6/uBaDdHulwFgPXqaTukc+l27ahxPVzwEYMlRjKQoY2B2ZGzPbo9Ubb478uldOe4BztQeFB92qXhWsQwFuZ9VXNd6T6zt0UgiIJB11x7V1nh2T/VBzqhR/AoIkM8qVMtwxEDJeXqWnER3rbtRJ2VT8TwsPtyoWEvOes1e3I3z3EEmbkBQhlZMhKa3xZIrI+m1kdTaVGwvCjUlag7iYcR2uxvIZ9PzBmJQa9Vd7oa/FjPU83Zs7aVWT/Ad6pGOxZGOxdGtC7pHzMvUTSXtPVOp2oMTNQd1Db+WiELxFSzTnqg+iLSpASkdAe6mOl7qPcEAGjPvbrX25O4GYKl0GkBjtXlTeCBY/u5GOAi43E1D+0MjNl6a+xjV2x6u3vZw+6ifx5vEmjKheQBBuhvtAZ0WY2Q1JoZflhx0SlX7Eqvz5bD2nBOqGpNqmJGuOSjTNFO+Xg422bndTVX3yw3rLw+lsl7urOl6tqbr2bbGs7cO+haFmpy3fEDEYD4oCnQ3pLkbGY5c7gZyRqIIHvaJu7GYa4Snuxv9gyW6HRZQ3/5gQ9vD1T0BS5B76o7pHjI3XTfVcTd2Ae6m6pN5VXk8NysUX1m/+rSu0bekBp2m3jMFwLIs27YBpGMtRADZ2pmyHO4GxWuAg4jdzkKOu0mmMgAaY1VlKHoHhNfdcB4GuhtLPJvGcTc7bZ43qHVBnkdq+OTScHxl14hr0Zu7kRuww2OTQ7/Ohp0flx5BMdmZP4Kij9/dWPwXFNv2cMP6y/OpZGPbvfUdiz4ZdV9P1URAuhticnrT627k3Kh41YKMTORxNyDK2EBRPCx1qtg9NyLOw7b16wBy5kldRoIcNfHmS7w97qOjhm+4NDDWAKjuXDzko1MaP5prZdoANf0O7m64i9KGtQ6ziBD9+JJ8Yo1C7brLIq0PqneEA7DFi8d44VDxEnKmgDlV4uoKeUUg/8Pmgpi7sYt8CfxnBEKf3VemOA8dG64yq0sKsjsb2x/MP9Zw1Gy9O9b2ENzuRl4Fc9yNuIrq3AIqjmmJewLgdK4Y+Ysfv+/KlA0g2rE4z1jDYdntoz75ajSxwrl6wsS0jZz9da5MQXxyxgYq0KgrU0QlqWip4caZ9CaoBrOcl7kDYiSloiTPLKJ4fefTY9aeEg0af3oQ61w86ONTIvEVcvpdqApnjSqa5IUnALFNtxTxAMfadZdZPW/p7kYrHCp4IssVAXGJQhs4loLu0ChemGWV9xrijgbe67LZXTx0bLjkqpQJMWqo6X5pZG9jqEDUr7s0HF9hyZuqtatgcsPxO87Mo9IqJkY1snPlGF26G8+VKctKralf/71CK2nZ7aM2fsOidtFOJC5KyQgCdWWKj6AUc8WVPbiuTGmWoRiUz91o4we/u+Ed7HE31V3/GL3+vFDej6qPxFc2fXQK0tuYej+v9DJq+KLcDUt+XLXx58WdVN2a80t3N/FYwWup/eiyxhh3kw8cd+Pjoe5u5O/L5W522lr8+0Jq11+rniLsOBG3uwEC3A0r3N3Ur7us0Pc6cITTawfxNRlMczeqZQa0uwHycjeR9MdjNxR8j5KVaR/00SnC3VhMPutGTp7LeoAQ++Ta4s4IgJVcE219WJ5LMe4GjMWjny+6AhyfRI5g0ioZd5MbfncD5OVuantequkpflI/0v1yVVI+Tlt/+xBITynd3YQza0t5IOmQ1ttDdhtIuRsAPncDx93QAHA3sl897gZB7mbEp9fm72t0hOMrazf/HOLZ9F53IwKB3RYu7Tnn0a1iJF+cuwFRV90MmxVzP4TC+qojSJu7KbGnd2y43I2bh3q7+d1NfVep7wuJtD6kVE+5G+n2y+ZuopsLm1ryo677r5q7QYC7geNuWKW5G8eOioZVPsfrbuBzN7Vd/2joKj4cVG+5m2XaWBZ3Q0C4rVQOheMrWaYNWdyNukCYw92AaFvTOUVXoCc0an2VcTf5Qrob+Hmo/0KC3E3xz2PiiMSD3Y17NkeQxu9uAMrH3VR1l1rP+u6/km373Q0pY4MKdjfOZJuwjQW4m/rSXkHFMu1VHUtAwe6GAVb2JQn5g78mPNDdSNbmcjcEbGn6VqJqQnFHX177kxRr0N1N6We0A0O6mwCXncPdAIjlcZkiN8JdrwS6G+Z2N1A/Xbe7AVg+7iYcL3XVaCS9jvFnVyp3Y1nisLJWA9fdqHyAz900lmBtOKq6XgJzuRvZYERAthV9RaBod8PJs274bzKFD6n+U/uNLVWfh5huEO7GGJwcyO5uXBcrPe6mbNDcDWV3N1SCuykdseQ7JB4AKt2NbYvDylpVrrvhYOqvV1VcOUi+oo8jUrL7sFJrHXcDWbh0HnyFTongM3OluBsQ0uGxH4+6r6CIs6r6q+9VX8y3jbvJE0z4Bb+78S7FgshSnt+wAP+pyhV9SnuJXO5GxRwU7m7KAulu2MBzNxyk/uqq4vKvgDKSAIBQOWJBOL7SWTgA2TDSeaTL8uDh6F4o1d2AgHhk4uoR93XHer9QFQ+NerXp3nfqrnICnJm7yQ8kftvw89DjbmQXle03rO75ZmqVuYx5khj5uxv0nbvJsHqy5WsFAtwNP5kB6G5IFw9HVURNq9JleAsPy7TLJgCUu4E8Slne4lI1FiW7G75HItby3+H3rRnyPz3Zp3L+W/eN54f+v9aqA5WqwO1ueFJDzNwwFYBAd0NOFzk8lF0k8nRXl/qUz1St0DbH3ai5G7kCHsjT3SCbu0kX9egcHd3VB/KrKx53AziuAc79mVndDR+6FMfDUh9AobkbpkaA/K4RJwdzuZue6N4lHhRAqvYgqCfmS/aocVs61hItrXyy6tOxFmj3TCHI3ZCULM89UwAYkc25TeDU2Vr7pc01Xwqn19bFX63KfMLstrTV0Bma0BaZ0G2NsSGe1MQc2yTdDchiVjoDAE3mhqkg8B+o5bgbh4ea6+EXgkHkLI1przumlHU3ANJ1BwPiErP7yhTj7kZEHCICsyznd6tMcRZ347pnKhNrKXG2uDv2ebI5RfnNluAbgIgu/PCMP3mOOwhtzpXJe6YyGUKxPCw+3IRCIfjdDW9Y+buBlgPCpgFAxqov4pGaOmyrEfLxNEz+QOVRkKmbSlVjSnlxarJBPAaMuxs14ccfUsrkwwB5J/jvCIekN7/LljGWsW0+LEqGR2+uO8kmpG2bwGwgbdtg4t5PBtiaN3TcDdlgZjyVFdLdECwvD/ndmIqHMosQqvaaGSNwbdHHJas+UX80pBTJd1o5Nkd7LJYz+OYf5NtTmW3blmVBVJMF3hHe03BydNsjRdcTQEftkcySt4aKFrPE7Zi6u/HxkPnuCC8axTO4qa4WQHciASiTqmYctCGeqp42QuioPabo43Kkfe7G+YUyAIjvVMxdMAqJwWLFcz5zN8gydyOCLoFssphFJJ4aKMeW8vFpTKwuhZphCJq7CVnm5ZkB4O9y7E4kiC9X8/FQn7uBFHI5b4JU1bitTcW/gaNn6Nftqp0h+1y5XUiZsaX2yEmSIuduMvXTSnm7Q3vdl1KhsfrcDRGPIADEJCM/vJ+HFTF3M2nkoCqL9SQS3fGknILLOncDaLNzDJ3Vpb7PN9EwAyRe/wz33A1vqkzjMZnqIu9aSgyZm65u4dv5zN0gy9wNU4Jlccli6u0i4D8DNY+gjZn14KnP3bBQCObpEz5MGjkoGrJ6EomeREpZUP6Vf+4GwnVCzpuAAZ8OviwVKea1UOnYXj2D50J2n2fuRgyiLUkayJ8uK2buxrbtrhHzimsim9VvGnIV56Gau+ExTTSLMn9BPPTM3aRsG8XysPhwEwuHvrDbSABrNm/KZDJB7sbt07Tf0LaG04rrYI5448mZyDjIx4UA8j25cIy0bTUmxtxaxGsVMrG9uoddoqpdTncD+UxkcBkR7gZ5uJvq6urN2zoAjB/WWESL7cCIhUOH7joCwJrNm2zb7pWHHndDgB1qXDdygV0gVciqbx/1CzvUqLqPz8XIwrO7GyrG3ViWlY61dIy8uYgmWjf813ZoEOehGOCr+8LFDIS4GpWPu+lOpFAsD0uaDpgydui4plrbptWbPk3xiANeV23qNsjdAFi3063FHZSs+u7hlylPIX75cmEhc56gjkz13j27PVJQxMnE9urY5WEWHqSqXaC7QS53g2B3o+RRto3X3QCsO0XJVHqnutj4YWW46LaDQePhpl556Hc3BMSje3885pH8Iw5Z9a27PJKJtejdx69D8cI5D8vrbgDEm05pLzDibBw2P159MH/Wt3A3CHY3vKK53U17Typjo2geljr7eNI+u+xUF0ukUu+v39CTTvPEbO5GnRuArpqpm4cUM73SNu6edHis8hQed0PO+2EAIFO9d3z3R/N8g2piyLkduzyMcJPnaX6FuBthaQLcjWWpxc+FuhurqnrjljYAsyaOK6LFPguQPEz3ykOmvpDJvK0Tsb0/3OWVnjzmR5I1B23e45V0dQvB1X26u+E8LK+74UePN52ytfmpVLT3m2PS4dFrx/6ls/4kAjFmCXcj1+IX4W66k5nOeBol8LAMi4ji6cz9y/+7qTNuWWzM4EFD62oYyBKLrMhisAD+xlFGZFlMfgsAozdc0thRwBOw+DNiuYQwgFmMbLLkiJkxNRMHfcDOMm1VWxaEN92Z7dnUmdhe8RHXJWsPYtrT0XnDqNcz8GZSt4MRKaqRTQTGbL4PE7GP96YNssEIyMjrUBnbzhCIsXTGuTJFjGVsQYAMifdBZ2wixqyqmlXrNwM4co9RU8YOLa6PPgvIk4cg4o/id1KE6pIFWBar6f5H49YFtb77bGyrPlkztXvIXL7QhgkxEPGLGwR+ZQryPUVudyMhxUS9g8gm27IsdaOhvBoleAi52sXDw5rWu+s232YFUTodGd1Zf9K2hq9lrEYPD20im2ADNlGGYAMZW6RkiPhHxUMCU/k7E+ktnUmUxsPyrFlUPQ1gVFPD0LqaaDjEQwzvUdHN4vGxZDEw+QKGprYHe30eNQDbqt82dkGqdip/6wtj4lHHfIOLiUjRxlOQT2lkjCG9Ldy+hPW8HZJ3VKWrWxAZk462pGoPVp5I9LGM+3I4I8IHn30RbSa7n4S9Ev3Eow+IMkSiwwDi3cl72iYbLEOUIbEhCEGwCfwRhTZRKBxpS9gbWzsATBoxaNbEsaX31I6NonkIkEiRbwcBoabnJQZEEyvSsb0BStRw7tn8Vixx9ak3HjrXwoUcyhU3RMoUQwyXOM2k34Br3Y1gI5HiIVe4SGJlKLU2klhZ1f1KMjbRZg3dtUcmohM9PASzMrateEhgGaJeeQjGMradsWlbT3pbTwol87BsS6QBvLhq49JVG/n2mEENwxvqIhZTGmIxwHbcDZMkYAyR5EfDtt5a3x5sc2yrvmvI13sGz6VQI5eF3O6GD9p0d0M86MiPeapKGdwNFxPpbmwC8f7T3A3vbI+7sUJhhKMfb27rjicBHNI8/NDm4eXqph0eOg+H1NWMHdQQC4c0l83fRybcjeKhcjd8OtCSr3DgieI9H8qnA+jN3fDu1N0NyZm/srib4nhoE3HX7HE33Nr43U13MrOlKxlP2ygHD8sZbgB83Nr14qoNH2/rAhAOsUE11UNqqofWxnK4G0bgH0PpbXXdSyKptdXdLwHIWI2Z6pZUdK+eumPlLebEVN/Lrg1UFQbnAoWl3VrldJgzAyMndvvE3aie9rgb4V39qhKOVHWl2YZtHV3xJIBoyJo1cZyZHi4UOg8BNMSqRjXW5+AhQBYYg+NumDZcCsmJuAB30xsPbdvlbnh9yuhueHG98pD7FJ+7ycpDm9CeSLd2J3tSNoBoyDp5n+Zxg2pL7JcyhxuOj1u7lq359P3NzsP6BtXEBtVEa8KhmqpIfVVIDJ6VPhBZFuNrPQUVZGKgqqgV6NLmiElbS3c3EFeG0JfuhpdZpLuxbSKWIYJlpaxIMkNtPclP2zv5IvFoyJoybtiUsUP5MjaDIuDnYWOsalBNtK4qUh0JN0TDOg+LdjfOBo9HJEWRuxvGdB72kbvJn4cB7obItoW76Urb3YlMZyrdEU/zUFZeHvZJuOFoiyffXN/6n0/b+FhaR00kXB0JV1eFaiNhEDXEIhGLMaLaqnBN2JI3lFNIDZpkSjZ3Y+uzOcrdAGDK3TBob4bqV3fDL5dZVnuKUjaBsXiaetIZMLa1K5G2qSOe1Btnp7rYPiMHTxo5yASasiAHD2NhqzoSro6EaiNhBjREI1VhixHVVIVqwyGPu2HiklMud+PnoXiAvxzs6zzsb3cjL0G0Je2UTTZRT9KOZ2wb1BZPp23qSbsectIXPOzDcKMQT2c+bu3a2NmzsaNnY2dPezyVz16REBtS7dxoyXu3Phapr4owcfFRsEGMm5zlXQB8HyGyMvdjKxi/l1TIjNPTejCS1y7FLvL6Ktc1lkhnNncltMOqvyyRybR2u0JJNjTEIsPrqnceVDd+WINZN9xH0Hm4obOnI08eWqwpFlEXzDk5aqtC9ZGwmpVRRPNcGA0gIRx30xsPAWgPkBM1cGipayYByYy9LZFWKXCoiKRtdyTzel5SX/OwP8KNH23xZFtPals82RZPAtjY0ZNIZwBsiyfzDEYDETvVxbhQNMaqGqurAOzcVBeNhIbXxbZ31T6jyMbD1p5ERyK9vWvXV9iOPNw+4SYfxNOZTR1e96uYUTmIhUPD66oDvzKhZAeA4WEZUbnhxsDAYAeDeYSKgYFBP8GEGwMDg36CCTcGBgb9BBNuDAwM+gkm3BgYGPQTTLgxMDDoJ5hwY2Bg0E8w4cbAwKCfYMKNgYFBP8GEGwMDg36CCTcGBgb9BBNuDAwM+gkm3BgYGPQTTLgxMDDoJ5hwY2Bg0E8w4cbAwKCfYMKNgYFBP8GEGwMDg36CCTcGBgb9BBNuDAwM+gkm3BgYGPQTTLgxMDDoJ5hwY2Bg0E8w4cbAwKCfYAHo6Oi47bbbjjrqqJaWlr333nvGjBm/+tWv0uneX1p60UUXnXHGGX1fyZJQCZXMZDJ33XXXEUccMWHChCOOOOK3v/1tJpPhX3V3d19zzTUHHHDAhAkTTj755DfeeKOUA61cubK5ufmZZ54pR637G4aHfY3tzsMwgLPPPnvNmjWXXHLJxIkT0+n0P/7xj9tuu23NmjXz588v5ZCl4HOf+9yf//znMWPGbK8KlBe33nrrXXfdddlll+27777//Oc/b7rpJsuyzj//fABXXHHFa6+9dt111w0fPnzhwoVnnXXWkiVLRowYsb2rvB1geNjX2O48DP/nP/9Zvnz5r3/962OPPZYnHXDAAdFodMmSJT09PdXVwW8d7lOsW7du69at/X/cPkI6nV64cOHcuXN5vx544IHvvPPO448/fv75569evfrJJ5+86667jjzySAD77rvv9OnTf/e7311xxRXbu9b9DcPDvkYl8NDibsqyXJM4F1544Z/+9CfVxw8++OCRRx45fvz4yZMnf+c739m8ebOeubOzc8KECb/5zW9USjKZ3GeffW666SYAmzdv/u53vzt58uQ999xzzpw5L730Es/zwQcfNDc3v/rqqxdddFFLS8sBBxxw7bXX2rb9yiuvHHLIIQAOPfRQ3i4KL774YnNz87///W+V8vrrrzc3N7/wwgsAXnvttVNPPXXChAkTJ0788pe/HOgGJ06ceOedd6qPV1555fHHH68qs3Tp0q9+9asTJkyYNm3aE0888fbbb8+ePXvChAnHHnvsW2+9xXdJp9M///nPp02bNn78+MMOO2zhwoWqtPnz5++2224BTWxZf/nLXy644AKVMnLkSM7jl156KRKJfOELX+DpkUjk0EMPffHFF/2FfPOb3/zGN75x3333HXjggRMmTDjvvPPa29v/53/+Z/Lkyfvtt9+1117r32VgwfAQnwEeWrvtttvYsWOvuOKKP/zhD57+41i0aNH3v//9OXPmLF68+H//93/feuutc889l4hUhrq6usMOO2zJkiUq5R//+EdHR8fs2bMzmczXvva15cuX/+pXv3ryySf322+/s88++7333gMQDocBXH/99Wecccbrr79+yy23LFy48Omnn/7c5z73y1/+EsATTzzx85//XK/J1KlThwwZoh/o6aefHjJkyLRp0z788MOvfvWrw4YNW7Ro0UMPPVRXV3fGGWds2LAh98kr8MrcfPPNV1555fLly/fZZ58f/vCH8+fPv/3225ctW1ZXVzdv3jye84Ybbrjrrru++93vLlmy5Otf//pPfvKTP/7xj/yr3Xff/YgjjghoYsvaZZddGhsb+cd0Or106dIDDjgAwKpVq0aMGFFVVaUyjxs3btWqVYE1XL58+UcfffS3v/3t/vvv//vf/37yyScPGzbspZdemj9//sKFCznXBy4MD/EZ4KFVVVV19913Nzc3//CHP5wyZcpRRx11/fXXv/322yrHggULDjnkkG9961u77rrr1KlTf/jDH7711lvLly/XS5k1a9Ybb7yhmvWpp54aP378hAkTXnzxxZUrV954443Tpk3bfffd582bN3bsWD0Sz5gx45BDDolEItOnTx83btybb74ZiUTq6+sBNDY21tXV6UcJhULHHHOMp5uPO+64UCh0//33V1VV3XLLLRMnTtx7771/9rOfJZPJRx99NMeZ+3HMMcdMmjSppqbmxBNPbG9vP+2003bZZZeGhoZZs2atXLkSQEdHxx/+8Ievf/3rJ598cnNz8xlnnPGlL33prrvu4rufdNJJajsHbrrppo8++uiSSy7hBfKTVairq+vq6rJt279jd3f39773vdra2s997nN77rmnbdtz586trq6eMWNGU1MTr+HAheGhwg7MQwvA+PHjH3vssWeeeebqq68eN27cH/7wh+OPP/7HP/4xgFQq9c477/AQyLHvvvsC8BT6xS9+sbq6mk9Ep9Ppv/71r3PmzAHwxhtvhEKhz3/+8+JgljVlyhSdIhMnTlTbDQ0NbW1tudvo+OOPX7169X/+8x8AK1asWLNmDT/QW2+91dLSEovFeLampqZx48YV+gvcY489VE08HxOJRDKZXLlyZSqVmjp1qtrloIMOWrVqVWtra56HmD9//r333vvLX/5y1113LahuAMaNG6f0p6GhQVWPf2xvby+0wEqD4SHHDszDsNraY4899thjj7lz53Z2ds6bN++ee+45/vjjd911VyJSBgwA3+7s7NRLqa6u/uIXv7h48eKzzjrr5Zdf3rZt2+zZs3m2TCbT0tKicqbT6UGDBqmPqmM4dG8ciClTpgwbNmzx4sXjx49/6qmnxowZs//++/MDjRs3Ts/Z2NjoqWSviEajOT4SES/wrLPOYozxRB7+t2zZop9UIGzbvuqqq5544ol77rmHTwrwSnq6p729va6uzjOFkWf1cldgoMDwcAfmYTiZTG7cuHHs2LEqqa6u7vLLL1+0aNHKlStbWlosy9KDPd/2WC8As2bN+sY3vrFt27bFixdPnjyZXzusr6+PRqNPPvmknjPwHPKEZVnHHXfckiVLvv3tby9evJhPsPEDeRSpra1t5MiRnt1V93DE4/GCjs7P+tZbb50wYYKerrdeNsybN2/JkiUPPPDA3nvvrRJ33XXX9evXJxIJ1WerVq3afffdC6rVjgHDw/wxcHlo/eQnP5k5c6Znco7PEg0bNiwSiey111667fzXv/4FYJ999vEUdNhhh8VisRdeeOHZZ5/lxhLAfvvtl0gkbNveTSIWi/lbPxDZwiQfwb788ssffvihOtCkSZNWrFiRSCT4x82bN69evdpfyYaGBl1qCnW5e+21V1VV1datW9XpNDU1DR48WJ9jC8Sjjz768MMPL1y4UO9jAIcccoht2//v//0//rGnp+e555477LDDCqrVjgHDw/wxcHlo8Wmek0466fe///2rr7760ksv3XHHHd/61rdaWlqmT58O4Pzzz3/xxRfvuOOONWvWvPTSSz/5yU8OPPBAfwtGo9Gjjjrqjjvu2LJly3HHHccTp02bNnHixEsuueTVV19du3bt448/PnPmzPvvvz93nbhP/tvf/savHXiw//77jxo16oYbbthzzz333HNPnnjmmWcmk8krr7zygw8+WLly5eWXX97Q0HDSSSd59t1nn32WLFmyZcuWnp6e22+/vaurq6DGqq+v//KXv3zrrbc+8cQTa9eufeWVV84880y1NmHRokUXXnihf694PH7zzTd/8Ytf7O7ufkVDMpkcPXr0ySeffO211z755JPLli375je/GQqFzjzzzIJq5ceKFSue1/Dqq6+WWGA/wPAwfwxcHobHjRu3aNGiO++8c8GCBRs3bqyqqhozZsx555135pln8mA5e/bseDx+55133nzzzQ0NDUcdddRVV10VWPqsWbPOO++8L3zhC0OHDuUpoVBo4cKFP/3pTy+88MLu7u6xY8d+5zvfOffcc3PXctKkSdOnT7/xxhsPOuige++91/MtY2zmzJl33323vgZp5513vv/+++fPnz9r1qxQKDRlypQHHnhgyJAhnn2vuuqqK6+88pBDDmlsbDzzzDNPPPHEv//974U0IK6++uqGhoYbb7xx06ZNQ4YMOfroo6+88kr+1fvvv//ss8/6d/nwww83bNjw1FNPPfXUU3r6smXLhg0b9uMf/3j+/PnXXHNNV1fX5MmT77///sGDBxdUJT9uv/12/ePo0aOXLl1aYpl9DcPDQlproPKQ7TBTjAYGBhUOc0e4gYFBP8GEGwMDg36CCTcGBgb9BBNuDAwM+gkm3BgYGPQTTLgxMDDoJ5hwY2Bg0E8w4cbAwKCfYMKNgYFBP8GEGwMDg36CCTcGBgb9BBNuDAwM+gkm3BgYGPQTTLgxMDDoJ5hwY2Bg0E8w4cbAwKCfYMKNgYFBP8GEGwMDg36CCTcGBgb9BBNuDAwM+gkm3BgYGPQTTLgxMDDoJ5hwY2Bg0E8w4cbAwKCfYMKNgYFBP2H7h5tly5bNnTv3c5/73G677dbS0jJnzpwHHnggnx3Xrl3b3Nzc3Nzc3t5e6EEvv/zy5ubm66+/vvD69o7bbruNV+zHP/5xX5Rv0Bd46KGHTjrppEmTJu22226TJ08+66yzli1bls+OjzzySHNz88yZM4s46CGHHNLc3PzMM88UsW82LFy4sFnDrrvueuCBB5599tmV8Kr47RxuXnnlla985St/+9vfamtrDz744KFDh7755ps/+MEPfv/735f3QJ988klzc/M999zDP06cOPHwww/fY489ynsUjieeeIJvPP300+adyAMCv/zlL6+88srly5ePGzfuoIMOYoy9+OKLZ5111ltvvVXeAy1atKi5uXnlypX849SpUw8//PBhw4aV9ygAIpHIfvvtt99++7W0tHR3dz///PNf+cpXtnvECW/fw//+97/PZDIzZsz47W9/y1OuuuqqP/7xjwsXLjzzzDPLeCAVAjjOPffcXt9IXxzef//9Dz74oKGhoaamZv369a+//vrkyZP74kAGZcS9994LYN68eWeffTaAnp6ek08+eeXKlQ8++OCkSZPKeCAPD2+66aYyFq5jp512+tOf/sS3Ozo6Zs6cuXbt2kceeeTAAw/soyPmg+3sbvg4aNCgQSrlBz/4wQsvvKDby0WLFs2aNWvChAktLS2nnXbaCy+8EFjU6aefrvuX559/vrm5ecqUKQCOP/74G2+8EcCPf/zj5ubmrq4uz2AqmUzecsst06dP32OPPSZPnnzxxRd/+OGH/Kvf/e53zc3NF1xwwauvvjpz5sy99trrhBNOWLFiRbYzevLJJwFMnz79i1/8Inz0MqhMeHhYXV19zz33LFu27IYbbuApORjiAR/CKP8yf/785ubmb33rW11dXc3NzX//+98BHHfccccffzx8g6kNGzZcfvnlU6ZM2WOPPaZNm3bdddd1dHTwry6++OLm5ub/+7//u++++6ZOnTpp0qQLL7xw69at+ZxdfX39vvvuCyAejxfVPGXDdg43LS0tAB544IHLLrvs2WefbWtrq6+vHzt2rGWJiv32t7+97LLL3n333cMPP3zKlCnLli372te+9uyzzxZ0lDlz5owcORLA5z//+XPOOScSiXgyXHDBBb/61a86OjpmzZo1cuTIp59++sQTT1y3bh2AWCwG4MMPP7z88ssnTpw4ZMiQN9544+KLL06n04HH4uHmmGOOOeaYY2DGUwMEnIdXXXXVTTfd9OqrryaTyeHDh+tjnBwMyRORSOScc87h27Nnz54zZ44nw9atW7/0pS89+uijjY2Ns2fPzmQy995775lnnsmZxnn4l7/8ZcGCBVOnTs1kMkuWLPnpT3+az6E7OzvfeOMNANvX2mC7h5sLL7yQx91Fixadf/75kydPnjNnzn333cebuL29/bbbbgNwww03/OY3v+GtD+BnP/tZQUc577zzmpubAcyYMeOaa66pqqrSv33xxRefe+45xtgjjzxy6623/vnPf544cWJ7e/sdd9wBgAe+Dz744NZbb7355pu56/74448Dxe2999774IMPotHoYYcddtBBBzU1NfHxVOENY9CvuOGGG4YMGdLd3f2b3/zm9NNP32effc4555znn3+ef5ubIXmiqqrqmmuu4XS64IILzjvvPE+GBQsWrF+/fuedd37iiSduueWWxx57rKqq6o033uDeh++4evXqxx9//Oabb77qqqsA/O1vf8t2uE2bNp144oknnnji7Nmzp06dumHDhjPOOOP0008vrF3Kje0cbpqamhYtWnTnnXeefvrpO++8MxG9+eabP/rRj6644goA//73v7n9mz17Ns9/3HHHAXj//fe3bdtWrjq89NJLACZNmrTrrrsCiEQiRx99NIB//vOfKs+IESMOOOAAALvvvnttbS2AjRs3+ot66qmnABx22GE1NTXhcPioo46CGU8NBOy9997PP//8jTfeeOyxxw4ZMiSRSDz33HNnn332Qw89hPwYUjr4UWbMmMGNzIgRI/bff3/PUaZPn15fXw9gv/32A9Da2ppKpQJLS6VSr7/++uuvv/7WW291dHSEQqGPPvrovffeK2OFi8D2vxBuWdZRRx114403Pvfcc0uXLuUm809/+tPatWtbW1sBRKPRmpoannnw4MF8o62trVwV4EfR54/4UfSIpn9bXV0NwLZtf1F8JLV8+fKZM2fOnDmTTzOZ8dSAQG1t7emnn/7rX//6tddee+yxx/jw6vbbb0d+DCkdBfGQkxBZeAhg9OjRqyRee+21c889d+nSpV/96leLWDVSRmzPcNPZ2bl48eLbbrtNzWCNHj36lltuCYfDAD766KOmpiYAiUSip6eHZ1BzY3qvcHC3qYrKcxYNAD8K72x9XxXa8sS777773//+F8Cnn376zjvvvPPOO9wBmfFUheOTTz559NFH+TCZY999973mmmsArFu3Lp1OF8QQxhi2Kw/9GDJkyLe//W0A27Zt275U3M7u5tJLL/3FL34xf/78ZDLJU/7617/yiZsxY8bsv//+0WgU2njkz3/+M4C99967oaHBUxSf2ONTYgD+8pe/6N9yEnR1dfnrMHXqVABvv/326tWrASSTyaefflql5w8+ktp///1XaZg+fTrMeKqysXr16ssvv/y66657/PHHeUomk+EzJiNGjAiHwwUxROdhV1cXvxSl0CsPn332Wf5bWLdu3b/+9a9sRykU6npuXV1d6aUVje257qauru573/ve9ddff++99z7yyCOjR49ua2vbsGEDgBNOOGHnnXcG8O1vf/tnP/vZ1VdfvXTp0q1bty5dujQUCv3gBz/wl3b44Yc//vjjzzzzzEUXXdTR0cGvIKpRzIgRIwDce++9a9as+d73vqfveOihh37hC1944YUXTj311OnTp7/11lvvvffesGHDLrjggoJOh4cbz+rSY4899vnnn3/66aevvvpqTjWDSsPBBx88Y8aMJUuWfOc737nhhhsGDx68YcMGPlq/5JJLUCBDDj/88AcffPCmm2569913ly9fPnLkyE8//VTn4bp16370ox9NmzbtRz/6kb7j3LlzFy1atGrVqjlz5vC5pFQqNW3atCOOOKKIk+JTxXy7ra1t1apVACZPnswnfbYXtrO7OeeccxYsWDB9+vTa2tr//ve/HR0d++2337x589S1p4svvvimm27afffdFy9e/O9//3vatGl//OMfA+P97NmzL7rooqFDhy5dunTUqFF8xUQikeDffv3rX9999907Ojpefvllz3CXMXbnnXdedNFF0Wj0scce+/TTT0844YQ//elPQ4cOzf9E1EiKX/9WOProo0Oh0Pr16//9738X0jAG/QfG2C9/+cvrrrtu8uTJmUzm/ffftyxr+vTp99xzz2mnnYYCGXLllVcee+yx4XD4ueeeO+WUU0455RRoPPz+978/dOjQ1atXv/vuu54dhwwZsmjRohNOOGHTpk2PPfZYNBq96KKLFixYUJxKqani119/fePGjXvsscd3v/vd3/3ud2qJyXbB/wfISqKA+z6rzQAAAABJRU5ErkJggg==", "path": "image.png" }
Which solution has a higher concentration of yellow particles?
[ "Solution A", "neither; their concentrations are the same", "Solution B" ]
0
The diagram below is a model of two solutions. Each yellow ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the yellow particles represent the solute. To figure out which solution has a higher concentration of yellow particles, look at both the number of yellow particles and the volume of the solvent in each container. Use the concentration formula to find the number of yellow particles per milliliter. Solution A has more yellow particles per milliliter. So, Solution A has a higher concentration of yellow particles.
Solution A
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAIAAACmkWkFAABZOUlEQVR4nO2dd3xT1fvHn5PVNqt70UVaVltK2VA2QtlQEFQUcKIMFzgAUVEBRVDA9f2q+ENBQVERQdmgbMoS6aBldVFKmxbaZrZNmpzfHye5hKQtGTdtyve8X/y+v5vbm3NP7v34PM9Zz0EYY2htXK/W3POaaD9RM9SE8r8M1aGj8Fq6AtbU1huuViivVChq6w2KWp2iVt/SNXIYLx4nVOzj6yMIFfskhft787gtXSOKw1AdugPkUdGNXF27+fy1unpj05f5i0UIAAAQAgSmf4DAdBIAAdzW1OgM9yinGfDicaYkyaL9qYtrTVAdugnPMjfrz1wpV9cKvEUSvwAvgcCbz/f2EvAR8DjABeBxgIeAh4CDTAdc8zEXAQeAaz5DjjnmY+YAASDzMcZgBDBgjAEMRmxxbDpvxGDE2OL4znnTlaZjsCzBCKCrN2hrdJpanVKjVam1XjzOK4M6t/SjpTgA1aGb4LTs7a1Q1OgAwL9NW6HU39tHxBcIAICYQ4TMR2DyHth8fOcCi+M7RpQcY8AW38Sm6zFCCGNACAEAOQZynlyKLNwVAmw+jxDC5vMIAcYYzCUABh6XKxZ5BwdK20aGAsA9nSTF06A6dBOeZW6i/cUAUKtRkqdLAi/Tq8HmI4sXTI7vXGBxbL4WAFuEuOZvItP1CGNsek8A5JjIgaiCXGQ+BmQ+jzFG5vMmlZhLYIrGGGp0egAIEXuz/Jgobobq0E14lrmJ8RcDgE6jJk/XylG0Fq9iPoaqKiWYtUtpRVAdugnPMjcdgqVeXE6NuqpWrWztXkVbq7tdpQSALuEBrD8oiluhOnQTnmVufL0FA2PDAOBW2XWjwdB6vYrBaCwsLgWAAbLQUA8IYikOQXXoJjzL3ABAr6ig9kFSbDTevJ5XbzBAK/Qq9QbDlYKbOr0h2k80UBbqjqdEcTdUh+7A48wNAIxLiAoWe+vqaouL8mrraluXV9HW6rKuFtXU6aTe/Mld2rrj+VCaB6pD1vGseTcMtfWGzefzytW1HA4nJCjY39dX4u3tyfMd6vSGKm3NrWp1lUptMOD2QdJxCVGeMI+T4gpUh+zioeaGsDOnOKusqqVr4TADZKEeErtSWIHqkC082twAwPUqzeVbinPFFXdazJ4JxhggtUNEtL/YE/rkKOxCdcgKHrdE04pof1G0v+hc8S0AmJHShYSgCACB6cDqI1icB3PUirDpPHOGHBgxYAAjxhgAk2PAGJARYzCdR+SvRgzmM6ZvYeavCPRG49Yzl7kI9YoKaoFnRHE/VIes4IldxY1i7mAj7xWBRSf/3SMCzEdyPSDSkXbnr+YRAcCAyVsnPXCmMQKTkzCHfnfOMMVi0/Wkf85CRpT7H6pDZ2lV5sY8BoDhzj/m1VmOCDAfyfWAyTAh3PXqTb4Fmd4cNo1Lmnr7kemYlGU+wxSLTNdjQAgZjRgAuMiD3zOFRagOnaVVmRtP9SrY5FU89zVT2ITq0FlalbnxWK8CRgBAnhzFUliE6tBZWpW58XSv4qafTfEwqA6dpVWZG4/1KtgInt1mprAJ1aGztCpz47leBYFnt5kpbEJ16Cytytx4qlcxYAye/ZopbEJ16Cytytx4qlchdUAe/JopbEJ16Cytytx4qlcxt5nd9bspngXVobO0KnPjqV7F8+c7UNiE6tBZWpW58VSv4vltZgqbUB06S6syN57qVcDjvQqFTagOnaVVmRtP9SpkNifHk+dXUViE6tBZWpW58VSv4vmzOSlsQnXoLK3K3HisV/H4IJbCJlSHztKqzI3nehVP76KjsAnVobO0KnPjsV7F6OmvmcImVIfO0qrMjcd6FQDw7DYzhU2oDp2lVZkbj/Uq2Aie7VUobEJ16Cytytx4rFfx+JW4FDahOnSWVmVuPNyreHIUS2ERqkNnaVXmxnO9CoBnexUKm1AdOkurMjee6lXMA5Du+t0Uz4Lq0FlalbnxXK9CXrMHv2cKi1AdOkurMjee6lU8fzYnhU2oDp2lVZkbT/UqRo/3KhQ2oTp0llZlbjzVq3h+m5nCJlSHztKqzI2nehVyzpO9CoVNqA6dpVWZG0/1KgaPn+9AYROqQ2dpVebGY72Kx8/mpLAJ1aGztCpz46lexfPXqlDYhOrQWVqVufFYr2IE8OwNNyhsQnXoLK3K3HisVyEV8WCvQmETqkNnaVXmxmO9isfPd6CwCdWhs7Qqc+OpXoWU4MmvmcImVIfO0qrMjWd7Fa4Hv2YKm1AdOkurMjee6lXMk8fd9bspngXVobO0KnPjuV4FAAB58numsAjVobO0KnPjuV7F0+c7UNiE6tBZWpW58VyvgsCz28wUNqE6dJZWZW481asYPL7NTGETqkNnaVXmxlO9CqmEJwexFDahOnSWVmVuPNWreP7uhRQ2oTp0llZgbspUNQDgzed5rFfx4fOYelLuV6gOXacVmJsceTUAxAT6eqxXiQqUAsBFeZV7HgDFI6A6dJ1WY26iA/081qtE+It5HFSqrFHW6tz0ECgtDtWh63i6ubmp1Krq9N58XohE6LFehcNBkQFSAMgqq3bTc6C0LFSHrODp5iaXRLBBfoCQx3oVBCgqQAIAmaWV7nkMlBaG6pAVPN3cZJdVA0BMgN+dN+p5XgUDDvMT87mc6hpdubrWPU+C0pJQHbKCR5ubGwqtVl8vFPCDJMI7b9QjvQoCiAr0BXMLn3I/QXXIFh5tbkgEGxXkB5Zv1CO9CkIoOlACANllnjsuQHEOqkO28FxzgzE2jQUE+ILlG/VIr4IxDhL7+PB5qjp9iULrlidCaQmoDlnEc81NsUKr1df7CPiBYiG0Bq+CEIoKIhMfqt3yRCgtAdUhi3iuucktrwaAmEA/sy/xdK8CAFH+EgDIlVcZ79ye0rqhOmQRDzU3GONLcgUARAX6mX2Jp3sVAPAX+4i8+Fq94XqVxg1PhdLcUB2yi4eam+vVGhLB+ot8WpFXwRhHB/qCZ08kp9gP1SG7eKi5IWMBbYP84Y4vaQVeBSEUFSgBgNxyhcHoWXEsxQmoDtnFE82NEeOccgUARAb6wR1f0jq8itjby0/orTcY826rWH8ylOaE6pB1PNHcFFVp6uoNIi+Bn9AbWptXAcCRHr8wl2IPVIes44nmhowFRAf6k4+ty6sAoOgACQBcvaWsNxhZfTCUZoXqkHU8ztwYMb5UrgCAqCBfcqbVeRUvAT9QIjQY8eUKJctPh9JcUB26A48zN4WVahLBSry9yZlW51UA48gACXhYHEtxCKpDd+Bx5iaHRLBB/oxbaHVeBRBq4y8BgPzbqhp9PZtPh9JcUB26A88yNwYjvmweC2DcQmv0Kl48bqivCANc8pg4lmI/VIduwrPMTUGlSmcwSoXeYm+vVu1VMEBEgAQAcjxyYS6laagO3YRnmZtc4lIC/MDCLbRGr4IAwv0kHISuV2s0Oo+IYyn2Q3XoJjzI3BiM+ErFndfc2r0Kj8sJ9RMDwEXPcCwUO6E6dB8eZG7yKlU6g9FX5CP0FkDr9yoYA8lT7YF5AChNQHXoPjzI3JD1KW38Tfv4tHavghCE+Iq4HFSmqqnS1rH4oChuherQfXiKubkrgiUvrPV7FQ5C4f4SALhYXs3eo6K4EapDt+Ip5ubabWW9EfsJfXy8BPeNVwGAyABfAMgqbflmM8UeqA7diqeYG5IONjzAjzgBuC+8CgAEiL0FPK7HbsRBsYLq0K14hLnRG4zXbikBoE2AL3ECcL94FQ6H08bf4xbmUhqE6tDdeIS5uXZbVW/E/iKhj0Bwn3kVjHF4ABmGrGbteVHcA9Whu/EIc5PLRLAA95lXQQj5i3y8+DxVnf6GwrMSx1KsoDp0N7yWujGD3mC8eksBACFSscFgMGLM4QACqNapDt848VfxcZVODQDkJST4t5vSbmRSYDsEgACbfAsiIsAcdOcjh7ynuy4gCjF9NBoxBjACxhhjQEaMjRgbMWAAjLHR4iS5wGA0YgAjBiPGGDAGMJASMMamk2AwGjEgbFEU+VaAD79UX39RXh3pK2rJZ01pnMZ0aAQguuIQOSHmo+mA6tB+Wt7cXL2lNGKQ+ngb6vXaej0HgUan+iRr3c6ig7YXnyq78G3u1khR6Id95qeEJqM7r9x0AAAcBBxkciGml40BIYSI7cemqFVRp8qsLOjsLxPzRYAQ89bJiwQA5lWRA3KGvGkMYDQaAXGMRqMRMAbA5m9hbMRg8ipGI+ZwOAajMUDEL1XW5JRVp7Zvw7nj7ygehK0OOQAIAddCYHdMDLIWntM6RGZFGYzG+16HLW9uyFhAsEREfv2/FZkLTy1T6dVNfOWGRj7970VTZMPf7v6cn5fUIs7FpmY1NnkPjDEHIUAk4EXXVWU/5R08Ls+8rpYXqeVMgWOi+o6OShkR0UfCF4NJAaTNbCSvDgEyv0XA2NRqv6Eu/eP64UOlpy8rCpmiwn2CB4b1HhjWMzmgMxA1AIj4fG8et7beUFSllgVIWHt2FPaw0iECIhtT8wcs+m6IrkiTxaL7BtmvQ3NzyKJvBTBCYMSmXhimA8geHRqx0XRzzPTs3Om7MVkoz9ChuReqhairN3xy7KIRQ++4aC8ed2/RgffPr7H/6wn+sVuGfegrkNjjVb7K+X1l5maFrlFD5ssXLe353BTZsHt6FYVOvTJj/Y7rh5qoW7fAxOfjn2jnKzMYjUaMbypqSxTapHD/cfFR9v9ASvNgpUOOOZZpLdGN4e7oxtS2MtsmgxEDQp6gwxY2N9llVX/mFPv6eCdFt8m4deHFY4scLWFkZMq6QUtIIxmZW9eWTWUOQlmV1148uSarMt+eAh+WDVvTd57Rop3MNKrJO86pzn/66NtKvV39bQuS5oyMHIIx1OoNmaXVfC5n/sBELoe2pzwLSx2SPhouQghhyz4aLoKbmrLDN0/d1MovVeeTV9gnJCnRP25EZArTR9OEDs2dOIiDILMy74Q883hZpkKnwQC+AlFnP1m/0KSU0C62fTcN6pCEQpbGyMrWYIsryfkW12ELN6bIWECgRKzSKd84tdyJEvbdSF+btemVpOkklMWmF4zMvXEos/LaxH2LFE22ziz5peAvAFjddx7Gpn5+bIqoEcb47K2sF09+aKetAYBVWV8CQGrEYC8+VyTgaXT1124rOwb7OvFLKe6D0SFp3JBBJIRNQ9cAcLk6b3XGurMVmVZfPF2eCQBSvvjpTmlPd0zzE0ga06G5QHS87MLzJ9det2jLE3ZdTwcAX75oWc/nHoodhsl4OEIN6hBZNPY4iGMwGgHMLUCMyTVgvhIwkL4bDLhlddiSA+F19Yb8ShUABEtFW/N3qO22CFZ8e2mHQqcijWumzUyCtuo65cT9Dtgawi8Ff63J2kxCP9L9jwAwxrnV+Q7ZGsKqrC9Pys9ijP2FfDD3EVA8B0sdMkPMCBAz7+bjjK+mHnzB1tYwKPXqT7I2D9jx9MWqvAZ1SCbFKHSqGYffG79/ka2tYVDoNS+lr03d/WKxWo4s5t1Y6hCYvhvAd/puoOG+G2zRd0OMUQvqsCXNzeUKpRGDr9Cnpl77Xe5mp8tR6tXfXt7BeBUgXgUBALx17psmOmuaYG32lvTyDEQKMs93WHFhvaO2hvBR1leaek2A0AsArt5S6uoNThRCcROMDrkcLjOBDpPZdgDvnlv949Ud9pSj1KtH73nhl7z9YKNDhFB1nTJt/yISwtyT7KqCkXteyq7KZ+bdWOoQSAMNkVF44CAO00ndxKxiMHVIoxbUYUuaG1MEKxZduJ3lYlH7b6TbepXsqrwteQecLvPT7J8tvcqBG+lnbl10rih1vWZb0W4eF0m8+AYjvnLLIxLHUgiMDi0n0JHo5r1zqxuckNEEr5xac7Eqzza6STuwKKvKrt5DgkKveeSvxdV1KtajmxbUYYuZmxp9fUGlCgACJaLjpXaZ/Ca4WJWv0Cnhbq/iiq0BgPTyrFxFAeNVNl7b6UppvxfuRYD8hHzwjERHFIKlDi2XB2DAR0pO7nLQ1hAeOrCoWqeCu6Lsr7PtG6mwRKHXTD30JuvRTQvqsMXMzeUKJQaQCoVcDqdMW+Z6gTlVBXB3dLMlzxmtWJIuzyJeRaVTn6nIdqUodb0mozLbX+gFAAUesxEHxVKHltGNWqdem7nOuTIVevX6yzvArMPr6rKvc7c7V9TFqoJf8/9iN7rBgFtKhy1mbsiOqIESkbnz3nWs+26UOlfXhpyuyCZeJUdR4HL1ILMql4tA6s3H5uTblBbHUoeW0c3OooOl2kY7dO/J6szNCp2K6PCjTOf7JQHg04s/2RndHC47/X+Xf1mb/d3z6e++/+8X31759WjZ2Qajm5bSYcsMhNfo64sq1QggQCwyTY5kgbv6bk7IM1wvUanTmKMblla1IeQv8lLW6nPk1d0jAtkpk+IsVjrkcMgsGQwAx0pPulj43uJTU+NSAWBPsUt9BcWa8mJVWYQ4tLFZxYo65ea8XZvzdqoaGccYFTF4bvzjIr4Ymabt4JbSYctEN5fKFRhAIvThcjgIITGPhQVjkaIQsBkRcB3iVXJZiW5u5wDGvt58BFDsGRtx/I9jpUPL6Ob8LVeHL07KMxFCJ8szXI+yD9w801h0c7Yia8z+OV9d+rkxWwMAe0uOPHb4pX03DjPRTUvpsGXMDdkRNVAqBgCMcdfgZBcLlPJFUeJwsJnv4Dokuon3lbleVJfABDLxy89HAADZHrARx/84Vjpk+m5KNSx0Jhar5WzpUKlXN9h3s73wr2eOvdOEoWFQ12tWZX35w7Wt2BzdtIgOW8Dc1Ojrr1dpAMBXKAQAhFDXoC4uljkiMsWq7yYpINbFMgEgUhRCvIpEwNKCfYwRIF+hAOh8v5bGVodMdFNa43yvjSUIofRyV6MkAMipLrCNbv4uPf3WP587VM7317buLzmCTL3ILaDDFjA3OXIFAPiKhHwuFwAwxu394roGJblS5kOxw636bqR8SaLLFifeT0a8SgIr0Y1/PCCEAUu9eRzkERtx/C9jq8O7ElexAcZYyhO7Xk6kMMQqurmhlr91zjFbQ/g4+8uMyuyW0mELmBsyFuAvFhuxeTkJhqfipzldYN+QpJTQZNuRqTFRKS5W9SHZMHN0Ix7eprcrRYl4wuSAzsSrACB/OgGnpWlQhyS6aS9lITQmZXYOZMFRSb1EVtHNf3J/dm6COwBsytvWUjpsbnOj0emLqzUA4CcSknkOxKt0C+o6Onq4EwVK+aIlPWYBgO2s4uc6pblS1RERfSR8EeNVHm8/3pXSHmw7GptmXmGEQOojAIAs2n3TQjSmQxLdSAQSMd/V5nPngFiMcaQw1PXaRvjcFd2UaOTbi/52urTMypzMqpwW0WFzm5tcuQIA/EQiLodj5VUW93i1na/DXmXdoLcT/eMAwDa68RVIFiQ7GTRJ+cIl3WZaznfoG9Kld1Cic6WJeMIHY8YwbWaMQezF43JQdY1OrqpxrkyKKzShQyKhQeGuhsajolIQQjGSMNcb9SMj+1pGNwdLzrhY4IGSIy2iw+Y2N2QswFcsxqYMIHd5lS8GfDgovK+dRUn4op+GfZgS2tV8ooGVuK93md4/1JleoXe6PRslDrOazbmi10sSvtCJ0pZ2f03EE1lGNwDgJ/QC2p5qIZrWIQCMi0l1pfxIUUi/0GQiHxcb9VNkwyyjbIzxXzdPuVIgAGRV5baIDpvV3Gh0+hKFFiHkK/RBpsSId3kViUCyMuWdmfHT7hnK9g5O+nHYyj4hyfiutPYNrMT9fsjbnR10L/OTHn04brjtWpUIUejGwcsdtTgLkuZ0CUhg5jsQr4IQ8vOh+ShahnvqEAC6BXfp7sLwxatJ08Gsw+c6pUWJQ5wual7iVCsdlmjLnS6NIK+paBEdNqu5IXvcSEVCDofTmFdBgJ5NmL5j1HePtkvr4GdtJiR80bCIvpse+PDHYasS/eMQmLOSkK82lGfEz0v6R+qHdsY4Ur5w/cA3X+38WGN5Rjr5xn43yF6LI+YJSTY/Zq0KE91gjH0EPD6Xo6rTF9MNYZoXO3U4P3mWcz04KSFJj8SlglmHvgLJ8p6znKvq0x3G20bZJdoK50qzpEV02KzJQzeeu3ZTqY0OCw0QibgIADAXIa4pteKdRI2WOWJLNWWlNXIOmPIw9glNdjpH7Fc5v6/M3KRofIrns53SXk16VMIX25Or+MOM9X80mau4a0DCCwlPMrmKgdm+g8xDR2DEWK6qq1DWdI8IHNkxgsXnTGka+3V4pPTkgvRlDhWe4B+7dfiHvgKJlQ5XZfywKsOxxVMjIvqsH/SWrQ47/OrSGAhh94gtza/D5jM3ylrdf05eQgh1bhvD5XA4ZoPCAczlIGTex6fBHLHInIwaMOYiZGloLHPE7is+cao862JVPpjDnM7+sQPCksdE90XmHLE7r5/88dp+hU5zXJ4FAP1Dk6LEoZ39YvuFJSX4yRzKEXtDLf+79Owf1/++YrETQ5gwaFBo79FRQ+IkMiPGSp3qmrLomqoIYyyTxIR4Bwf7BIM5m2ytvv5aucqbx315YALdEKZ5cFSHuwoPrM78Wm3fqHOCf+yvw1f6CcSooVzFKx2xOA/Jhr3bfaaEL7LVYdrB+ZeqXV1Vs2vET9DsOmw+c3PqesWha6W+YnFMaAgHgPEqBcq8jFuZGbcz1ToNaQ71CErqEdylV0gXJmy5Zwb8rfkHlv6zrrEkob588cKu0+bET0TNlQG/RCP/7sqv/96+WFZjHffGSmLSoscMixhErrwmV9TVGx/pKoulG8I0C43psIko+0p13jvn1lypvkfCmqc7ps1PmubvJWkiyt5dnL743FfF6qY6X6R80bPxE17pPK0xHc458f5fN10anIqVxHyRspJxnM2mw+YzN9+dvVqmqokOC/MXCYmZyL6d8fG/a8oaWeYv4YtnJUyb1n5i09GNSq9+9K+FF+3Ik5YUELt5yJIYSRiY9/fB5t0LLV+n/dFNYxnwt+Tt/O7Kr6r6pvxhqHfwS51nJfolVKhrK5S1SWH+4xLohjDNga0O7YyydxYd2FF44FyF9aIECV80IjJlftL0KHEosmMnBmWd+qf8gz/mHbDdGiRKFDI6KoW06JvQ4bbCv95wakoxw8SY0c92fBws9odpHh02k7khESwHoXhZWy5CWr3qk4w1J+1I4tfRL3Ztv7ejRGENRje5VXmP/bVIaXfmc1+BeOeID7sExoF7ohulTj335LtXlYV21uelxNn9g/vnlavohjDNg5UO7YxuLKNstV51uTpfpdeUasvj/WUIwOndXK+ry65r5EqdprpOEyUOEfNFSQFx9uiwWF028eB8lV7r9HPYMODTEGGoZXRTq69vBh02k7lJLyo/nFfmK5ZEhQTX1KveOLkwX2lvLkUJX/ztkA/j/eOsohu1XjVu74s3NI6tposRhx4d97m/l4T16IbYmit22xrCC/Gz4gQ9avT1k5JiOtENYdyMpQ7N9oX9PsR0+YXcqoJijfxilWk7qv6hSUkB7Sz7EAHAlSj785yf/pPzs3MPIbXNoFeS5jK2jNmDvOiWxt06bKb0WmRUXyoSAoJF6QsL7LY1AKDSq585vGhr6ueR4jDT5BUAAJh1bJmjtgYAitTy6YeX7xy5EiHAGEjCIYQQNmJk2sPHyf19Fpxd5aitAYDvrv7wWkIbLwjOKaum5sbdWOoQm4c7jRhzESLzbsjkGwTW+0wB3Lme5G9gdGj+X4wA0uUZr51aW2wjyxPyTACIFoXOTpg4J34i2ZqXRD7O6fDxduMP3jxz2fEOYxFPOD1uCpOp6075GEuF/BpFvVt12Bzzbiq1deXqWg5CYh/hN9lfFSgczhGt1KtfOrkMyN7MGBDAmfKM084u7T9Wlnm8LMM0Mcc8+wAQk+kVzLNsHMiA/2fR3+dv5zhRGU299tfrWwDg6i0F3RDGrVjqEDDz6hqdd0OuYKJ/5npLHTL/lDr1a+mrH/lrka2tYbiukS8++/Wgnc9nVeaZ8kiYy3dUhxK++P0eLzoxx/3j3ktChcGW87+YJo7Yiw9u1mFzmBuSD1UsFlfUyP8s2O5cIZeq83/PP8B4le8uO1kO4Y2z68zjU6a5lYDBnMfe5FUcyoD/zZVfnK5MTnXuTf01I4bLdEMYd8Lo0DI2QeZZxRm3M7/L3fTysQUvHlv44rGFy859vOXq9ivVeZbRDdhEN+Tfxaq8ATue+rXArlT8WZX54/YtzLx9DUxKI8U6rMN4PwdmnAKAiCd8t9ur7aQyq9ntpHwA4HGR0IvnVh02R2OK7OPjKxR9d/VLV8r5b87mSbLhAEilVx0scWnZSGZlflWtytdLQmw86Y5h5iKbJYhMfXON5Ig1RTcY/qnILnVtoueJW4ceCm+XU1adFObvSjmUJmB0CEBMBvn/sCN/+w+XN9tu4rrr+kEA6OgX+2ryc72Ck5nohgkKyJCTSqeafWyZ/eMVAKDQqcfvX5Tx4LekDxHM0Y2jOuzkJ9sz8qt5p1aeu9cOaHHSmAVJc+MkbZlcxSSaM1pENxiD1Juvrat3nw7dHt1UausqNLUcDkfo43O6zKV00yUa+SVFPiDIudcMCHvYfeMUsBTd/HPbye3uGK6oLiOAgkq6IYy7sNQhAHmBkKfMe/7I3C+zv25iw+jL1fnPHVn0ztnVCrJ1FFhHN6+fWuNEH2K1Tv38ybWuRDdEh1K++NtB738z4L0egQ2nK2gnbbuoy9z1Az9uJ21rmavYNrpBCERefLfq0O3RDemcE4tEhap8TZNTUezhjDwz0S/uDBsJGYvUcnDWq9hEN66aG029tgqX+qHw3HIF3aHBHTA6ZP5TLlDlvXFiobrerqjkj6KDVxT56wd/6OslsYxuDt44ecDZQHvn9fTjZRkDQpOhER3uu5G+78apnKqCi+Yu4UhhSO/gzr1COg8N6y3mixgd9gxOWhfUWVmnvqQouKmtuFlTLuaJ2klj2knbinhiI8bMPlNNRzdcDhJ589S19W7SodvNDUm8LBaKK2tuul6aql4DLM0JYLwKCyNTrMCpAww5ZXRDGLfA6JB8lNeULTqxUGOfrSFcqs6fd3L5hqErLaOb3wpc2qn1w4wfd41Mth2Z2nvj5Dv/fFOssZ58fENbfqPo721Ff0cIQ+YmTE2LecBShxIvcc/gJMsZp0ZzU43D4fxzKyvjdk6eqqhMW56nKuoSkCDkCZP8E4aGDxDxJWCyPiD24qtr692kQ/eamwpNbVWNjsPhCL29C8pYaAHlVuaxtAfeXSMCLkY3rODN5yI9FCs0ylqd1FvATqEUALhbh+TMB2eXOmRrCGcrMlf8+9Xi7rNJdFOiKXOxD/FYWaZtH+JLJ9f8nP9X018s0Za/ee6zsxVZryU9JeaLTTpsaBdNI4YLt7M/zPzSaj1NZmUOAJwqP/fN5e8fCB/0VPvpPjwRAhB58RBylw7d23eTa4pgJQghkcvZGAFAKhADAgmfhXTTbI5MsUGId4jYmw8AOXSDTbax1CEA/F2836GZX5ZsurqjRFVGopsbLmyzyXCiPAssdPjE4WX3tDUM24sOzTy2RK3XMsNmZpUi0sOk1Kvf/GfVvNNLbdfuWfJ36dHZJ+cVqouIzt2nQ/eaG1ODWSgEgBBWkraKQgBDnxCXtm0gjIlMgbvnO1TrVHuvn1qT9eN75//v4b8Wf5L90yfZP16syrvnvJtwofPJkxhCfIJFXnwAyKEJjNnGUocAsOXqJldK+0/OZtLkZqUPMbMyH8w6fOHEmj03HAuXLikKV2WuZyYFWUY3pRr5I3+9cKzsrD3laOq1r51ZfLj0KAC4T4dubEzJ1bVVNTouh+vj7QMAIT6smJswQBDvHxchCimxadnaj69AlBwYZzS3mYs18lUZm7fc7VXIDkGfXtwi5YueaD/+xcRHG+u76RGUuLP4kCu/K8EvHgCEAi4HIbm6tkpbRzaNp7iOlQ4LlHnlNS5lwztbkWUaA2cDJso+VpaxJd+umTtW/HH9UI/AxHExQ8ncRNLnqNSp3jj3UdPrhG35T+7XMeLoaFG0m3ToxuiGRLBCkakNFSIMk7m8n8YDbfqQ2ZyTZS6lkn0sbjjTd7Ml/2D335/e0ngEq9RrPs/ZMnTXs7nV+Q1GN0PCeomdymHMMDR8EDkQefMAIJtmFGUPKx2ekbu6+XeJRp5TdY31PsQX0tc6XcjH2d+pdGrL6ObTixvtXypsyUdZazV6jZt06EZzYxoLEImReWJmnzCXckQ/0Kavr5eUjAg80SFN4mxnkK9AtCh5GqnU8yfWvHDSrtdcoi1/4sjbf908Zdt3I/ESPxo3zrnKAECwd1CvoB5g0Wym+/myiK0OXUet17DVhxgjDgWA3dfTm06C0zQqveZw6Vmm7+bf2xd3Fx92rqiK2lt7bu5zkw7dZW7KVDWqOj2Hw/USeDOLzqe2nxHi43w3xxvdZjFrVXwFkre7O5n/dUWvWWQ254cZm37KcyB8Veo1b577PLc633bN1NS2Y8KFQc7V56n2M0hOXIyxF49LNuIooxvCsIGtDrNvZbpebG5VPlt9iFGiEAA4Lne1VodLTzPRzc7iw64UdaT0mJt06C5zQzrnRGIxh4MsvcrMzrOdK3BG+7QI0Z0V4RhgcmzqUx3THC3nsbjh09qlYoBdxSc/dDB3LAAo9Zqnj76t1Gms1kxJvSSrei10tDQAGBo+qE9IT1MxCCEEIm+6QwNr2OqQlRHSCFEo6UN0OsQmRItDBoUnA4Btqi1H+ed2DhPdHC1zKddfRe2tXEWOO3ToXnMjFIoxs74VAAD6hvZ7NtHhqGRom74Lu822XYm7pPvseUkObFw3J37ilwNeAwAEsOjs145Wg6DUazbl/WkV3WCMO/jKPuz1ukOdOA+ED3oxYRZmVidjjLFpXCCrtLLZEi3ex9jqUOYb53qxEr5pTflTHSe6Us7YqBTykk/IXR3kUuk1RIdXFAVqFzJvEXKqL7lDh24Zmbqp1JII1tvLG5lW8t9Zxp8WOwkBrLto73/tE9oOX5j83N8lJw+VpP9VcspyLVyCf+yIyJQPer3435yfbzQ5UBUlDlnRc9a4mP5kdGnTtQPXXWgqb7q68zHZWKmX1DLfDcZ4SHifMGHworOryrS3mi5BxBO+nDirT0hvg9FIZnMCmFK9CXgcHgdp9YYbCm2UHwuu+H+WBnUY7M3CCGmkKIzpQ/zu8naVU9t1M32IrP3njAABKnV5FyoA0NZr3aFDt5gbMhYgEonBlKwM32lOYUAIJsZOChOGfn3xK3mTj0bMF01rP7F3SNK8k8vPVjTQuM2pys+pygeAh2TD4yQRfxQfy7FJWtw5IPbR2NTH4ob5eUnN+UzwrusuDU8o9ZpDZWfGRz9gO5uzgzR2w8CPfinY/Uv+LnV9w04mLXrU1NgHRXwJM1PZVIx5WrPQm6/U6i7Kq6m5cYUGddgnLOUL1/pJOvnFthGFEiX7CiQf9X1l9jHHNochMH2IrIEBY+xicgJCoaoI3KBDt5ib7LJqAPARisGUF/qu6AYDIID+4f36h6dsz9++v/hAnk3CrXBhyJCIlNnx0/4s/OuZw4vuecdfCw5GiULXD347UhSSW52PzDliu/jH+XqJkXnlK5NF7bjLsevZiotpMcOtohuyrkoikDzV4eGnOjx85Obpa+qiq9UFKr0mTBgSK46RSaJlkrZCnggQGM1Z1KyiG4xB7M1XanW58uoRHdrQDWGcpkEdiviSzgFJ2ZXOC2Bi21TLjDmpkf0my4b/Zl+yGwamD5FEN/1Dk1xvTxEdtvdt62o5ACKeEIB9HbJvbm4otFp9PYfL9fLyhkaiGwDAAFyEJsdNeihuYnmNXF4j1+jUGr0mQhQqEYg6+sVxANZkfvXj1R123rdYI3/owKJfUz/sF5qMLDLgm+flmdf6I1Rdp2xiczs7uaktv7NmqpG1KgPCevfDvbA5cboR7qyas1qJaxXdcBEIeJzaekNBpToukG4I4wxN6PCZxNnzjz3vXLFtRCGPd5xome8GAXzc91UEaKvdyzUXdZ32RvIMJlcxAESLQ100N0PCesHd/aSuECOJATfokH1zY5pVJTRVrrHoBlnkiA0ThrURhSKLDPgAsLPogP22hqDQqx86sOj0pG/9vaTE9yCSJNFkakzRTZYdu8TcE7VeY5WrmIlumNX9ZCWuwWjEgPNURRmVF8u0FfnqIowhVhIj5Al7h/SMEUXbRjeIw/ER8HT1uhx5NTU3ztGEDmXSuPGxE//M3+5EsYu6zmowV/HHKa+MiOy79PzXTfch9g9NWtFrVpfAdvjuXMVjo1IcmpNhy5DwPkSHHaRtXSmHECOOBmBfhyybG4wxGQvwMa/0bzq6IV/hcEgsgsH8X+5NTdm759Y4UQGFXj0/fe13g5eAOesaB1lHNy7+RoKYL7pndAMARqPxQuXFj2zW42ZV5QDAT/m/hXgHPSybPCR8kGV0g41GkTdfodVdrlCMNkTwuM26lft9wD11+GzC7EJFXtZtxwKKBcmzHojoB3dn8zP/QyOj+qWEJv2W/9cvBQes+hClAlGSf+yjcamPtUtFd3R4J7oZE50SJQ5xeqafmC8cEm6KbiQCcXvftlctdnZ1gnhpPLhBhyybm2JzBCvwMi21sCe6wTYZ8L/JdXhGDMOe4vST5ZkDQrtAI9HNwLBkl38oAMA9oxu1Tv1h1pfHm1wjV15764vcrw+VHX0tcZ6QL2KiG47R6MXn1ukN126rOoX4slLh/x3s0eGbvZZ8cmH1qTJ7l0S+njxrRoeJVtn8AJj/xWT26cz4ic/GTwSAU+UZJFzt7B/r7yUFokO4qw+RiW4QoAVJ0150dh3DtLhxEoEYm1aW46myscsu/Me5ogBgcNhAsUBkdIMOWXabueXVAOAjlDJNSKt5N2BHBnyVXrWryKXA8udrB0xhAsbmlPomk0PmQfkKXO1pbyMMsZp3A3dHN0qdet7p95q2NQwXq3IXnHuzQFXIRDcIcbwFPKDz/ZzCHh1K+JIlvd6d3nHaPSf+hQtD1qS8PaPDRABTBG67E4PFkk1E/q9faHK/kC79QpJ9BZLGdMhENxjwY+2GT40d7sSP7RmUODt+qqkUjAFgTNQQpzuMhTyfKTGT3KRDNs0NxviSXAEA3kIxE7WaE8SYscmAT6Ib82MHDPjITZdSFgHA3uJTpoW2CGHAcMermN7H2CiXVm8BwAPhvS1nFdvmGZl36r1ryiL7C6yovfXVpXXaeg0AIA4HY6PQiwd0QxjHcUiHMzrO+O+gLx6MnRjaUBaR9n6xr3aZtWvMxqER/RjdWuUqNv9jbBkGc8iDzDPqG9OhuYVPohJ4v9ezif6OLWPu6Nv2k75v2Orwza5znVs2PDZqVIgwxFQrtnXIZmPqerVGq6/ncnl8gcDUNHKq76a0xtWsRQq9+nhZxoCw5Eb6bvC0dsN/dKFnTsIXPhDRp4m+m++u/OrEetxC9fU1Fz99M3kx8SoIG70F3Fqd4XKFMinc3+na/q/hqA7biMPnJs1+IWlWvipfo1fLNXIJX+QrEIeLQiJEYYxDZqJy1EjfDdzxpJiZJg5N9SHe6bshdZPyxdtTV7x1bp2dGbZ6BSWu7btQzBeaTNfd879eTnjy/Yz/OvTohoQNeqjtZKNFHyK7OmTT3JCxAC+hBDAg81tyou/mfDkLi+gsvYpV3w1CMCAseUBoktOzb+bGP0rWTDXYd3NVVfhrwW7nSs6pzs2pzon3SzAajQghbz6vVme4KK+m5sZ+nNZhO2kcB2EUdNcIKWOhmOub6LthTpguNs//akyHln03ZB6WL1/8WcorKSFJS/5Zp2x8LYKEL5zRfvzc+EeZverJj7LU4ZjoB4wAK+y2OA/HPvhQ28nk60wfIrs6ZM3cGDEm24Z5C8VA5mU7G92wUh+m76Yxr7Ki16xx+xc6MQGno2/bGe3HGTFuLLpZf8nJzZsJ24q2L5Z2QohjNBq9vbiggcJKVY2+3offTDsst2rY1CEyz4oytXdM17svumFyZj8cO3xEZN+9xel7b5zaX3La8gf2Dkoc1qZvWsxQMV9EukKbiLLHRg1tJ237+cUNFyqb2uK1s1/8Ux1mxIhjyA/Ed0c3LOqQNQVfr9LU1hs4PD6PL3AxumGlPk1HNxggOTBuRc9Zc086Ntwu4Qs3DFpO3mVj0c0x+TlXap5bnas11PhwfRBCCIO3gFerq8+RK3pE0h0a7o09OixQ5tXUawqUeWE+YVKBKMQnOEIc3uAIKaDmjm6YHUF8BeKHYoc/FDvciLERQ7Fa3kYUYppdYdprgdypUR2SEdIOvrJP+r57XH72aNmZE/KzGouFNTJJTKh3UJ+Qng+0GWIwGjE0MP+LRDds6ZA1c5NTXg0A3mRWlWtepXtIl/O3XJ3QLeWLocnoBmN4rF2qEbCd6bUAIEIY/FnKG5Imvcp5l7e4A4Bzt84NChtsNBoBgbeAU6uDHHkVNTf20IQO5drS365tPitPt92DIc43dkrcpDExqR4S3ZCTyGJHkAhRCL7njiCNz//qF9IzJaQnxqDUqa6pCjGgzv4JcPf+MLaz25nohi0dsmNujBhfZiJYABejm3CXsxpLBaKkgDiww6tMazciShTyQvrae86w6h3c+YuURRKBuGmv4uL0KsJt3W2MjcRHefF5COluKLR0Q5h70oQOv8/9ck/h9sa+mKfIX3l+9cZLm97oMb97ULKj0c0NddlNbbnJ7iBI9Jf5CiQuRjfYif3O7JjdLhFIkgM6M1bmTvkNrd1johu2dMiOuSmsVNfWGzh8AYcnIJ7flehmcJu+y/5xqT6jI1OIU7LHqwwI63J+4nerMjfvLk6/WFVgW9rwNr2f7DChV1BnUwTbpFdRu7xTKCmH8SoA4C3g1dTV58gVfWOCXS/8PqZBHWrqVSvOLiiyY6eXMq385WOLFnd/ZWxMqj3RjUqv2nhlx7aCg7ab9vYL7fJIXOojscPB8eimuk6158bpvcXpCp0mpyofAyT4yyR8UWqbPsPa9DEnfnQsuiG7aMq1FWU1FRcqLwIgDDjJPyHIOzDEJ7SxtXuW0Q2woUN2zA2ZVSXwkSDzz3YlupHwJWNjhrsy0++RdqkIwQl5Rro8O7sqT1mnAQTRopCkwLgBIUldAuNsvcrrSdNeS5pWpC4rUstPlmcBgIQnivdrG+8XK+aLjOaO53t6FafrbAlCiIluECBvPq+mrv6ivIqam6ax1aHWoFp5ZkGRyoFVch+cX4MAxrVNbTq6+fzipu8v71A2srn4SXnmSXnm6oxNG4a+3dk/zs7oRqlXf5WzY92lHYq7E+icKs8GgAMlp8mmIDPajZMIxA5FN/tLjmwt3GUzEew3AIiVxIyPHjM4bEDT0Q0rOmTB3BiM+FK5AgC8fETEQDYW3WTfzuAgxAFAAGKBqINfHDQyIvBs/LQjN9PVTmUtejh2ePbt/KcOLVPYSiHvIAB0CYhd0eu5BvdmjhSFRohCU0LIzqeI9J851GYOcyEZM4NldIMx5vM5CEE53RCmSRrU4Y+5Xztkawjvn18TIQrtEdIFGopuVHrVyn/X/V54b3d4XSN/YOcLn/V75dG41HtGN9nV+Y8fWna9yRWeZFOQgzdPLe/xUkdfmT3RzWVFwZvnPmpiW7t8VdGnF7/8o2jX3ITZMnFMY9ENKzpEd83sdoprt1W/ZhRw+QJpSDSPAwhjDgCXY5q8wEWQezvjyI0Dtl10ocLQroFdnuw0LVwUxkEYWawIRwh2Fx1wYpVmqI9/gECaqyi655XT4oZ/0PM5qZfEYDQCQkYjxgBGwEYMTI4I0k1jxPhiVf7vhYdyqvPPVGSTr0cIQzr6yYaE9R4U1lMsEGNsGi+4pMh/8sgCR6ttxbzEl7sHdMemDeTBiLFKq6upqx/QNnRgLAvJ6O5LbHV4pTJj1Tkn30W4MHT7qA0IAdfcH0yUyUHw5KEFZyscG8r4vN8rj7ZLJXmXENzpKwFTmA+ZlXnj9y1U2O1fpXzRd4OWdfSLZebdGIFMVmbGrTAGdKT09AcX/mtnA1/EE76eND/BLx5bit9oZFGHLJibP3OKs8uqvKSBIok/BwEHMHkxXAQ19ap1WWvO3Wtnn9HRqS8kPecrECMALkLIbHq+yd30dY4DazVFPG8ESF1vb+74pIDYP1JXSM29v8wjxhgz0U16edZnF7ecNlsZWyR80aOxYx+RjRELxORbI/Y83lgePzv5YeBGoiGMTGMTdfWGamWtn49gTkonV0q+j7HV4Xvpc4odD20Y3u7xyvi2qcTEIDDZnZUXvtrkYF4UwuFx/0kKiCVjWBxTA80U3RSpygbuelGhc2zPcilf9Ouw1eHCEEa9VrbmiiL/yaOOWVsRT/hOtzejRdGMrWFXhyysmbpSoQAAgVBsDhNN/cFFyrx5h5+8p60BgD3XD8w7vvCmpgzIvBtTAxJmJUx/r+crdlajvW+UQ7YGALIq82cceR83vkf4b4V/Tzv8VhO2BgBUes26y7/MSX9XpVOTb42JHmp/HWwZGDqQrFVhaoUx5nO5HA6qrtFV1uhcKfw+xkqHt7RlrtgaADhy8yTAXX03ZysynLM1APD44aWm3gJTGILB3LKadmSZo7YGAJR6zVv/fAF37wjCrJkq1cpfPPmeo2Vq6rXv/fu+tl5rirzY1qGr5ubKLaXOYOTwvThcPtMQBQRFyrwPzizQ2kxwaIyrivyXjy9S6VTmhbOmoia0TV0/5MOewffY0Gd+0jQOcByyNYTjZZmrsjaT7hhmzTACwBi/evrT1898amc5VxSFM46+rtSpANDT7aeIec5vqjk5ZhJpMzO1IlaMizgAoNXpnS75PsZWh/9WpLtY5tHSUyqdion+EcB/LzqfF+W6Wv5T3gGm74ZZEb7p6gGnd305W5H9d+npBjMTrL/yq6M79hI09dqN1zZZ9t2wqENXzQ1Zn8LzEcOdTjDQ6lSf/fue/baGUKqVv3h8kWV0Q+gZnPzdkFXfDflwRvu0Tn53rZftE5K0pPus4xO+ixSFXrajv6ZBVmX8WKyRW0U3vxb8tbXArmVyFvWveCH9PZVeJRFIXkx80rnKTG47Kdgn2NarmKZuANTVG50r+f7GVofFqjzXi72iyGd0eENTds7BLhsrfso7YBvdfHlpuytlfpX7s210U6atcHoXTQA4UnbsVm0FNBTduKhDV0emiqs1AMD3FoP5QSKAny5/fcupVd1XFfnrczc9mzAdbEYEeoUk9wlNBoy5CJG2tPl/EQCe+pczW8oxrMr48bN+85kO+Rtq+aun7Y1rLLmiKFx/ZevLCU+OjRr67+2cvTcOO/T1wWEDJ8c8iG1GBEwjkRwOgFFnoOamAWx1eNvlvAIERof/uGZrAOCEPEtRp7TcEeS6qszFDe0uKQoVdUqxQGw5MnXYtW3tAODsrX9GRY5iXYeuRjdmI22a9UjazCdu2psj2pafr+1Q1ang7jYz2MzmtPiHL1blNZ0g9p6clGdZRjdrsn9yuqhf8neV1lRggDe7Pj8qYrD9XxwcNvCJdtMbazObo2+opblvGsJWh2zBFFWiZcF+ZVUVWEY3x1zffYHsn3l3dHPMZXNz7tY/4AYdumpuTDfnmBqiGMPJUudtDQCo9OojpaeA6QaymO8AjWRR23/D1Vb6dY08uzqf+IZitfxXB5tRVvySv5M8ikXJzy9ImiO6Vz+OkCd8WPbg8/GzhDxhE21m8qjrqLlpCFsd+vDY2RqJ0eE5NvKiWPXdFNtMR3aCS4p8q76b87ebWv9tD9fV18ENOnTd3ACAaaY0eZD/lru0YxwAnK/IBEeiG6Xjvfq2KOrUxDekl7vqcI6VnWUc7JjoB34c8vmMdpNDfYJsrwzxCRoaPuirfp88JJsMZDZn49ENUZKApklvCFsdRktZ2Jw3XBjKYqAEANfV5VZ9N65zZ/mWVcZCF9AYtOAGHbrad8MhdgAbAHjEq7g4+ggApVo5NLlWBd29Etd250wnKNaUE9+w1+VYqbSmQq1Xi3hiADAajWK++Il2D8+Ie+iqqkCt15KJ5DJJlJAnbiuOIZN9oPG1Kkyb2WDAABBIZxU3hK0OO/p3cbHM9n6xbURhjA47+sW62FUMANHiEKtZxa5jCvgt+m7YgnUdumpupD786lqdUVcHAi+22swk+4Q9K3EBAAOWupznHACkfBFZiat0ecc7ALiqLOwW2NlyJS5CqJ1EZsQ4yT+RrJkw4jtrZ5peq0JmWNUbjAAQKPR2vXr3H7Y67BiQ7MMT1biwYnZweApY6FAiELteT1+BxHLNFEmT4iIRwtA70Q0bE3cZWNehq5F5lK8IAIz1dcAM8bGE/X03Cf4shM2+XiIWfQPzKMhKXCICDBjIUj1zmGa5EhdsohvLNjOZ58xFSOxFc/o1QIM6HNF2ktMFivmiqe3SwEKHve41+evelRSHJAXEWvbdDAxztUwA6ODb1qrvxvV9e+N9O4EbdOiquYn0EwGAUVcH7I0IhAtDwJG+m0gRC8uIOvvFstfyvfMoOBwOgOlVIdOqOWSax2zudUNM07vxvps6PQaAYDENbRqmQR2mxc6Iljq2sQHDI+0mSvgSuHv+l+ReW8Q0Tf/QLlbzbpIC4qLFLq3pbSMMjveLs+q76R6Y6EqZAJDgHw9u0KGr5iZCKgQAg77WaKhna0QgXBgKjkQ3fUNcdRGd/WN9vcTEN7DSNGsvbctudFOr0wEA3cC3MWx1CACAYGbn14SOC3J09PBn42dYzm4HAAQwvcNEVyq5sMs021nFj8WlulJmWsxQ21nFY6IcmIHRID0Ce4AbdOiqufHicdsHSQFAp64mD7JbSD8Xy+weTDbANH28Z3QTJQ5z0eLMik9j5t2khLjaxRgmDBLzxSxGN/UGg15vBACaP7QxbHUIAIAhRho3r/s7DlmcrkFJLyc9Zzu7HQPMTZjeRuRkMDIrPi1aHGY7q3hufJrTmyy2EQZPix1nO6u4o29st8AE58oEgJ5B3WWSGHCDDlkYVe3fNgQA6jQKMBpZGREY3CYFHIluAGB+0jSnbxclDpkaO5xZMzUqsq+L9R8U2pvdvpvaOgMAdAz2FQn4LtbtPsZKhwBEMBAfkPxWn4+C7MtDNCo69YuBqyQCidXaPTDr8LP+S5xoUnUOiP2g1xzLSYhMdOMrkPy3n73rkK1YmPy01Evc4Jqpt7q+4NzCPSHP54m46W7SIQvmJlwqlAWIAWOtshIh6B8xItCFFFPdgpI6+JI0w6Yz94xuACAlNPmZTmnO3fH9Hs9ZrgiPEof2DensdP0BYEz0UBb7bowGrK3TA0DPyAZm7lAYrHQIQAQDABAjjfti6A8PtZ/eRJiTHJj0yYCVi3u8wox42kY3ABDvF/d5/7cdsjiJAbE7Ulc2sYvm2Oh+C5Md9pcLuzwzrE0KNLIiPFwY/HLnpxwtEwDmdppltYsmizpkZ9isUlv3f6evGDCWBrXx9va5UH7iiwtLnSvq95Eb2ohDkTnVFjLnGUEIOAgaWzNFDh468Lqjk/Te7/nc7Pg0q3w32ZV5I/e+7Fz9x0QNeTP5eQxA0nSR/CMkEYkRMJP1nslNzcy7YY6xRZ4RI+Bbipp6A+4QLJ2c1Na5Kv3vYKVDJu+SKTMWYA6C3MqMnMrMAkUe2R85zjcuXBjaPyyljSiUy0EIgAMY3Z13yVaHuVXXXjqxrMSOpTOjIvt+3v8VP4GEEaptvhsMYAT847UD9m8K8n6PF9NiHiDTKRrLd4Mx3lV86ANHNtJ8Pn7W4LCB7tMha6P0/96s3HvpBuJwAsOieRzulstf7i/a7mghb3Z/ZVzbVJLNzzaLGvOymfPM/5IDpU41P33Nvhv2bjG+oues2QkTG8zmtyb7x7VZDq+cChcGbRj0kZgvITbFYMSAkMFIykZm64Ms590w+/tgs1Ass6hVaWq1tfV+PoKZvTvw6XxiO7DSoWVWSQ4AAkwOOOQ8ABcBAOYixDXJyTqrZGM6VOtV31/ZseHydlUjKfgiRSHLe80eE5UCjFNsPJsfBjAYjSfKM184sba4SSvWyU+2OPnpXsFJthaBcWzYwp8dKzvzwYX/3DPfm5AnXNhlfoJfglt1yOakoN+yCq9UKPle3gHBbbgIrc/++FiJA+unno6f9kyn6U17laajGwQYAazO2vRN7nZlk3kYo8UhK3rOGhvdzwgYW/gHy2x+r5z+1KEcFGK+8D/93m0vjTW/MFejG4W2TqnV8Tjo6d4d6GRi+7HSoVV0w0V3DBCyPABsf3RjqcODJScP3EgvMa9+QgApYV1GRaYkBcSZuhfvFmpj0Q2jw5+uHdh9Iz1dnmW5aa+EL+wT3Hl4RN9JMQ8w6rpndEOuVOpUvxbu3lqwW9OQ0RHxhOOjR42NHEXGlN2qQzbNTW29YePZa5U1dXy+V1BoGx6H83veD9uubrLnu290f2VMTKo9XqWJ6Ia8RA6CGxr5x5mbTsozbXePSgqIfSwudW7CREuv0liu4nfPf/PdlT/tqX8H37Zvd32+va/Mcp8wV6KbSlWtulYPAA8ny+j4t0PY6tAd0Y09OiQuEOyObqx0WFWnyqnON2Ic7xsrEYgtPRM2f+ue0Q1Y6PBY2Zk8VZFKr8lTFnYJSMAASf7xif4JzaZDNs0NANTo6zedz7ulqeNwuYGBoUIfn+vKvB9yv8ypbLRLZWTU8Kfip7cRhTnqVRqLbu6sqEKQXZWn0mmK1XJfgchPII4Rh8ZIwhrzKg3mKt5Xcmr5hf8r0TSayB4AxkUNnZ/4BJOr2MXopt5orFDW1OmNPA56tGssmcBGcQhbHbovurFHhw5FNw3qkHy0yFLuQHTjOTpk2dwAgM5g/PlC/g2FFgDEYklgQBCfw6nQlp6Tp5+VnzQPL4KYL+oX1q9bUJcIcZineRXbnRi2Fvx1sOTU6YpslUV829FXNiS817iooeGikKa9iv3RjaJGf1tVgzF48ThTu8a2kTqfhPR/nAZ12LqiG1sduhjdtLgO2Tc3hPSi8uMF8nojBgCxSOwrkXjz+QIul8tBrd2rFKvLIsShLHqVunpjvRGranTKGj35a6dg3+Ed2ki86CwbV7mPdch6dNMMOnSXuQEAdV398YKyi/Jqmu/SfmIDJL2jg2UBLCwUphCoDp3ATTp0o7lhyJVXF1WpKzS1FeraOvrK78aLxwkSegeKvNr4ihJC/Lx4dLTbXVAdNkHz6LA5zA2FQqEAK4sYKBQKxR6ouaFQKM0ENTcUCqWZoOaGQqE0E9TcUCiUZoKaGwqF0kxQc0OhUJoJam4oFEozQc0NhUJpJqi5oVAozQQ1NxQKpZmg5oZCoTQT1NxQKJRmgpobCoXSTFBzQ6FQmglqbigUSjNBzQ2FQmkmqLmhUCjNBAcAVCrVp59+mpqampiY2Llz55EjR37xxRf19fX3/PKcOXOmTXN4K/VmxqMqWVtbO3DgwL59+zJntFrtkiVLevbs2alTpylTpmRkZLhSfk5Ojkwm279/v8s1bQGoDpuNltIhDwCefPLJ4uLiefPmJSQk1NfXnzhx4tNPPy0uLl65cqUrt3SFHj167NixIzIysqUq4CY++eST0tLSoKAg5syCBQvOnTv33nvvhYaGbty48fHHH9+3b19YWFgLVrKloDpsNlpKh7wrV66cP3/+v//97+jRo8mpnj17enl57du3r6amxsfHh9372UNJSUllZWXz39fdXLp0acOGDVOmTDl8+DA5U1hYuGvXrm+++Wb48OEAkJycPHjw4O+//37BggUtWdGWgOqw2WhBHXIMBgMAcDh3deLMnj37999/Z97xzz//PHz48A4dOnTr1u3ll1++deuW5cVqtbpTp05ffvklc0an03Xp0mXVqlUAcOvWrfnz53fr1q1jx45paWknT54k11y7dk0mk50+fXrOnDmJiYk9e/Z89913jUbjqVOnBgwYAAADBw587rnnLG907NgxmUz277//MmcuXLggk8mOHj0KAOfOnXv44Yc7deqUkJDw6KOPNhgNJiQkrFu3jvm4cOHC8ePHM5U5fvz49OnTO3Xq1L9//507d2ZnZ0+YMKFTp06jR4/OyjJtOlxfX79mzZr+/ft36NBhyJAhGzduZEpbuXJlXFxcYw/aaDQuXrz4iSee6NChA3Py5MmTfD5/0KBB5COfzx84cOCxY8dsv/7CCy88//zzmzZt6tOnT6dOnWbOnKlUKj/88MNu3bp17dr13Xffbey+rQWqQ/gf0CEnLi4uKipqwYIFP/74o9X7I2zbtm3RokVpaWl79+79z3/+k5WV9fTTT1tuFyMWi4cMGbJv3z7mzIkTJ1Qq1YQJEwwGwxNPPHH+/Pkvvvhi165dXbt2ffLJJy9fvgwAPB4PAJYuXTpt2rQLFy6sXr1648aNe/bs6dGjx+effw4AO3fuXLNmjWVN+vXrFxgYaHmjPXv2BAYG9u/fPz8/f/r06cHBwdu2bfvll1/EYvG0adPKysqa/vEMpDIff/zxwoULz58/36VLlzfffHPlypWfffbZmTNnxGLxO++8Q65cvnz5N998M3/+/H379j377LPvv//+Tz/9RP7Url27Bx54oLFbbN68uaKiYt68eZYnCwoKwsLCBAIBcyY6OrqgoKDBGp4/f76oqOjvv//evHnzoUOHpkyZEhwcfPLkyZUrV27cuJFovfVCdQj/AzrkCASC//u//5PJZG+++WavXr1SU1OXLl2anZ3NXLF+/foBAwa8+OKLsbGx/fr1e/PNN7Oyss6fP29Zyrhx4zIyMpjHunv37g4dOnTq1OnYsWM5OTkrVqzo379/u3bt3nnnnaioKEtLPHLkyAEDBvD5/MGDB0dHR2dmZvL5fIlEAgC+vr5i8V2b+HG53FGjRlm95rFjx3K53M2bNwsEgtWrVyckJHTu3Pmjjz7S6XS//fZbE7/cllGjRiUlJQmFwkmTJimVykceeaRt27ZSqXTcuHE5OTkAoFKpfvzxx2effXbKlCkymWzatGkPPvjgN998Q74+efJk5tiK8vLyjz76aOnSpVaNApVKRX4sg1gs1mg0RmMDm65ptdrXX39dJBL16NGjY8eORqPxmWee8fHxGTlypJ+fH6lh64XqkOE+1iEHADp06LB9+/b9+/e/9dZb0dHRP/744/jx45ctWwYAer0+Nze3Z8+ezBeSk5MBwKrQYcOG+fj4kI7o+vr6gwcPpqWlAUBGRgaXy+3du7fpZhxOr169LCWSkJDAHEulUoVC0URdAWD8+PGFhYVXrlwBgIsXLxYXF5MbZWVlJSYment7k8v8/Pyio6Md/S+wffv2TE2sPtbV1el0upycHL1e369fP+Yrffv2LSgoqKqqarrkd999d+DAgUOHDnWoPlZER0cz/kcqlTLVIx+VSqUrhXsCVIeE+1iHPOaoffv27du3f+aZZ9Rq9TvvvPPtt9+OHz8+NjYWY+zr68tcRo7VarVlKT4+PsOGDdu7d+/jjz+enp5eXV09YcIEcpnBYEhMTGSurK+v9/f3Zz4yL4Zwzy09e/XqFRwcvHfv3g4dOuzevTsyMrJ79+7kRtHR0ZZX+vr6WlXynnh5eTXxEWNMCnz88ccRMu0pT8z/7du3LX+UFYcOHTpx4sSBAwds/+Tr62v1epRKpVgsturCsLN6jVWgdUF1eB/rkKfT6eRyeVRUFHNKLBa/9tpr27Zty8nJSUxM5HA4lsaeHFuFXgAwbty4559/vrq6eu/evd26dSNjhxKJxMvLa9euXZZXNvgb7ITD4YwdO3bfvn0vvfTS3r17SQcbuZGVR1IoFOHh4VZfZ14Poba21qG7k1+9du3aTp06WZ63fHq27N69W6lUpqSkkI8YY4xxXFzcW2+9FRsbW1paWldXx7yzgoKCdu3aOVSr+wOqQ/tpvTrkvf/++9u2bTt06JDlIDzpJQoODubz+fHx8ZZh5z///AMAXbp0sSpoyJAh3t7eR48ePXDgwPPPP09Odu3ata6uzmg0MhFXSUlJYGCgPTVrzEyOGzduw4YN6enp+fn5JIIFgKSkpF9++YV5Xrdu3SosLHz44YetviuVSi1dTU5OjpVba5r4+HiBQFBZWcn0/N++fZvD4Vj2sdny6quvzpw5k/m4ffv2rVu3btq0KSQkRKvVGo3Gv/76a8yYMQBQU1Nz+PDhJ554wv4q3TdQHdpTGULr1SHvmWee2bNnz+TJk2fOnNmhQweDwZCVlbVu3brExMTBgwcDwHPPPTdv3ryvv/56zJgxxcXF77//fp8+fWxfs5eXV2pq6tdff3379u2xY8eSk/37909ISJg3b96SJUsiIiLOnz//9ttvv/TSS88880wTdSJx8t9//923b9+OHTta/bV79+5t2rRZvnx5x44dmb/OmDFj06ZNCxcufOGFF3Q63apVq6RS6eTJk62+26VLl3379j3xxBNCofCbb77RaDQOvWaJRPLoo4+uXbvW39+/a9euN27cWLp0aUREBOmZ27Zt2/79+7/66iurb4WFhVlOlwoODuZyuaTm/v7+U6ZMeffddzHGwcHBX3/9NZfLnTFjhv1VapCLFy9ahrje3t59+vRxsUx3Q3Vo/7NqvTrkRUdHb9u2bd26devXr5fL5QKBIDIycubMmTNmzCDGcsKECbW1tevWrfv444+lUmlqaurixYsbLH3cuHEzZ84cNGgQ46C4XO7GjRs/+OCD2bNna7XaqKiol19++emnn266lklJSYMHD16xYkXfvn03bNhg9VeE0JgxY/7v//7Pcg5STEzM5s2bV65cOW7cOC6X26tXry1btti6r8WLFy9cuHDAgAG+vr4zZsyYNGnSoUOH7HpyZt566y2pVLpixYry8vLAwMARI0YsXLiQ/Onq1asNNoybZtmyZStXrlyyZIlGo+nWrdvmzZsDAgIcLcSKzz77zPJjRETE8ePHXSzT3VAdOvK0WqsO0X3TxUihUDwcuiKcQqE0E9TcUCiUZoKaGwqF0kxQc0OhUJoJam4oFEozQc0NhUJpJqi5oVAozQQ1NxQKpZmg5oZCoTQT1NxQKJRmgpobCoXSTFBzQ6FQmglqbigUSjNBzQ2FQmkmqLmhUCjNBDU3FAqlmaDmhkKhNBPU3FAolGaCmhsKhdJMUHNDoVCaCWpuKBRKM0HNDYVCaSaouaFQKM0ENTcUCqWZoOaGQqE0Ey1vbs6cOfPMM8/06NEjLi4uMTExLS1ty5Yt9nzxxo0bMplMJpMplUpHb/raa6/JZLKlS5c6Xt978+mnn5KKLVu2zB3lU9zBL7/8Mnny5KSkpLi4uG7duj3++ONnzpyx54tbt26VyWRjxoxx4qYDBgyQyWT79+934ruNsXHjRpkFsbGxffr0efLJJ0+fPs3iXZyjhc3NqVOnHnvssb///lskEqWkpAQFBWVmZr7xxhs//PADuze6efOmTCb79ttvyceEhIShQ4e2b9+e3bsQdu7cSQ727NlD90RuFXz++ecLFy48f/58dHR03759EULHjh17/PHHs7Ky2L3Rtm3bZDJZTk4O+divX7+hQ4cGBwezexcA4PP5Xbt27dq1a2JiolarPXLkyGOPPdbiFofXsrf/4YcfDAbDyJEjv/rqK3Jm8eLFP/3008aNG2fMmMHijRgTQHj66afvuSO9c1y9evXatWtSqVQoFJaWll64cKFbt27uuBGFRTZs2AAA77zzzpNPPgkANTU1U6ZMycnJ+fnnn5OSkli8kZUOV61axWLhloSEhPz+++/kWKVSjRkz5saNG1u3bu3Tp4+b7mgPLRzdkHaQv78/c+aNN944evSoZXi5bdu2cePGderUKTEx8ZFHHjl69GiDRU2dOtUyfjly5IhMJuvVqxcAjB8/fsWKFQCwbNkymUym0WisGlM6nW716tWDBw9u3759t27d5s6dm5+fT/70/fffy2SyWbNmnT59esyYMfHx8RMnTrx48WJjv2jXrl0AMHjw4GHDhoGNvCieiZUOfXx8vv322zNnzixfvpycaUIhVpAmDBO/rFy5UiaTvfjiixqNRiaTHTp0CADGjh07fvx4sGlMlZWVvfbaa7169Wrfvn3//v3fe+89lUpF/jR37lyZTPbdd99t2rSpX79+SUlJs2fPrqystOfXSSSS5ORkAKitrXXq8bBGC5ubxMREANiyZcurr7564MABhUIhkUiioqI4HFPFvvrqq1dfffXSpUtDhw7t1avXmTNnnnjiiQMHDjh0l7S0tPDwcADo3bv3U089xefzrS6YNWvWF198oVKpxo0bFx4evmfPnkmTJpWUlACAt7c3AOTn57/22msJCQmBgYEZGRlz586tr69v8F7E3IwaNWrUqFFA21OtBKLDxYsXr1q16vTp0zqdLjQ01LKN04RC7ITP5z/11FPkeMKECWlpaVYXVFZWPvjgg7/99puvr++ECRMMBsOGDRtmzJhBlEZ0+Oeff65fv75fv34Gg2Hfvn0ffPCBPbdWq9UZGRkA0LKhDbS4uZk9ezaxu9u2bXvuuee6deuWlpa2adMm8oiVSuWnn34KAMuXL//yyy/J0weAjz76yKG7zJw5UyaTAcDIkSOXLFkiEAgs/3rs2LHDhw8jhLZu3bp27dodO3YkJCQolcqvv/4aAIjhu3bt2tq1az/++GMSdV+/fr1B53b58uVr1655eXkNGTKkb9++fn5+pD3l+IOhNCvLly8PDAzUarVffvnl1KlTu3Tp8tRTTx05coT8tWmF2IlAIFiyZAmR06xZs2bOnGl1wfr160tLS2NiYnbu3Ll69ert27cLBIKMjAwS+5AvFhYW/vHHHx9//PHixYsB4O+//27sduXl5ZMmTZo0adKECRP69etXVlY2bdq0qVOnOvZc2KaFzY2fn9+2bdvWrVs3derUmJgYjHFmZubbb7+9YMECAPj3339J+DdhwgRy/dixYwHg6tWr1dXVbNXh5MmTAJCUlBQbGwsAfD5/xIgRAHD27FnmmrCwsJ49ewJAu3btRCIRAMjlctuidu/eDQBDhgwRCoU8Hi81NRVoe6o10Llz5yNHjqxYsWL06NGBgYF1dXWHDx9+8sknf/nlF7BPIa5D7jJy5EgSyISFhXXv3t3qLoMHD5ZIJADQtWtXAKiqqtLr9Q2WptfrL1y4cOHChaysLJVKxeVyi4qKLl++zGKFnaDlB8I5HE5qauqKFSsOHz58/PhxEmT+/vvvN27cqKqqAgAvLy+hUEguDggIIAcKhYKtCpC7WPYfkbtYWjTLv/r4+ACA0Wi0LYq0pM6fPz9mzJgxY8aQbibanmoViESiqVOn/ve//z137tz27dtJ8+qzzz4D+xTiOg7pkIgQGtEhAERERBSYOXfu3NNPP338+PHp06c7MWuERVrS3KjV6r1793766adMD1ZERMTq1at5PB4AFBUV+fn5AUBdXV1NTQ25gOkbs3wrBBJtMkXZ2YsGAOQu5GVbfpcxbXZy6dKlvLw8AKioqMjNzc3NzSUREG1PeTg3b9787bffSDOZkJycvGTJEgAoKSmpr693SCEIIWhRHdoSGBj40ksvAUB1dXXLSrGFo5tXXnnlk08+WblypU6nI2cOHjxIOm4iIyO7d+/u5eUFFu2RHTt2AEDnzp2lUqlVUaRjj3SJAcCff/5p+VciAo1GY1uHfv36AUB2dnZhYSEA6HS6PXv2MOfth7SkunfvXmDB4MGDgbanPJvCwsLXXnvtvffe++OPP8gZg8FAekzCwsJ4PJ5DCrHUoUajIUNRDPfU4YEDB8h/CyUlJf/8809jd3EUZjxXLBa7XprTtOS8G7FY/Prrry9dunTDhg1bt26NiIhQKBRlZWUAMHHixJiYGAB46aWXPvroo7feeuv48eOVlZXHjx/ncrlvvPGGbWlDhw79448/9u/fP2fOHJVKRUYQmVZMWFgYAGzYsKG4uPj111+3/OLAgQMHDRp09OjRhx9+ePDgwVlZWZcvXw4ODp41a5ZDP4eYG6vZpaNHjz5y5MiePXveeustIjWKp5GSkjJy5Mh9+/a9/PLLy5cvDwgIKCsrI631efPmgYMKGTp06M8//7xq1apLly6dP38+PDy8oqLCUoclJSVvv/12//793377bcsvPvPMM9u2bSsoKEhLSyN9SXq9vn///g888IATP4p0FZNjhUJRUFAAAN26dSOdPi1FC0c3Tz311Pr16wcPHiwSifLy8lQqVdeuXd955x1m7Gnu3LmrVq1q167d3r17//333/79+//0008N2vsJEybMmTMnKCjo+PHjbdq0ITMm6urqyF+fffbZdu3aqVSq9PR0q+YuQmjdunVz5szx8vLavn17RUXFxIkTf//996CgIPt/CNOSIuPfDCNGjOByuaWlpf/++68jD4bSfCCEPv/88/fee69bt24Gg+Hq1ascDmfw4MHffvvtI488Ag4qZOHChaNHj+bxeIcPH37ooYceeughsNDhokWLgoKCCgsLL126ZPXFwMDAbdu2TZw4sby8fPv27V5eXnPmzFm/fr1zXorpKr5w4YJcLm/fvv38+fO///57ZopJi/D/upZcbR7gViIAAAAASUVORK5CYII=", "path": "image.png" }
Which solution has a higher concentration of green particles?
[ "Solution B", "neither; their concentrations are the same", "Solution A" ]
2
The diagram below is a model of two solutions. Each green ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the green particles represent the solute. To figure out which solution has a higher concentration of green particles, look at both the number of green particles and the volume of the solvent in each container. Use the concentration formula to find the number of green particles per milliliter. Solution A has more green particles per milliliter. So, Solution A has a higher concentration of green particles.
Solution A
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAh0AAAEiCAIAAADSxvdVAABgSElEQVR4nO2dd3xUVfr/n3Pv3KmZTHpIIAkQSkLoCSUIFrD3gqKrKCr2uijsuuqyrqss7qr7E3fVZfmqq6hrWdFdcRVEBQUUCL2XUEKA9CmZcss5vz/OzM1NIaRMGjxv5hXu3HbOnblzPvc5z3OeQxhjAHBchn1+8GqgMkBOe0wEnCIMtEOqudXH4q1yRoG3CtJCjLcKYYydkOFnT1dXCukKxsVCSmvaC7xVzljwVkFayLhYMAHAXj8AQJoZBjvAKXZxnZBOwKvB7lo4JsMef+saC7xVzjTwVkFaiPFWEQDApwEA5ODXf8bgFGGwAyDy1bccvFXONPBWQVqI8VYRAEBhAAAx+PWfSfBfu9LKjm+8Vc5A8FZBWoh+qwhdXRMEQRDktAJ1BUEQBIkmqCsIgiBINEFdQRAEQaIJ6gqCIAgSTVBXEARBkGiCuoIgCIJEE9QVBEEQJJqgriAIgiDRBHUFQRAEiSaoKwiCIEg0QV1BEARBognqCoIgCBJNUFcQBEGQaIK6giAIgkQT1BUEQRAkmqCuIAiCINEEdQVBEASJJqgrCIIgSDRBXUEQBEGiCeoKgiAIEk1QVxAEQZBogrqCIAiCRBPUFQRBECSaoK4gCIIg0QR1BUEQBIkmpq6uAIIgyGkCBVolVxXXFh/yH6qSqzSqmQVzqiW1n6Nfpj3TKTm7uoKdBOoKgiBIewnRUFFN0X9O/GdN9ZqSQEmtVqsxDRgAA4lJsULsAPuAySmTL02/dIBzgEBO844i1BUEQZB2scO747WDr31V8VWNVkMEIhABTCCAAAyAgsa0Klq11rP2p6qf3jnwzo2ZN96WfVuKLaWra92BnOayiSAI0nFoTPv3sX/fvuX2D8s+9BGf2WyWTJLJZBJNoiiKgiiACCAAEYkoiYIklCglL+568Z4192ys2NjVde9AUFcQBEHagsrU/zvyf7/a/avD8mGz2SyaRCISIhIQgS8IoiCKIhEJEAABQATBJBCJ/Fj54/1r7l95bGVXX0FHgbqCIAjSFj459sn8A/NrodZkMnHZACHyIuG/RCCEkLo1AoAAoiTu9+//9bpfb67Y3NUX0SGgriAIgrSaInfRC/tfqGW1okkMKwoxvAxvw9JCDNJCQDSJe317ny16tjJY2dWXEn1QVxAEQVqHX/MvKF5wRD4StlS4ikBES8CwTIAQg64YrBaTaFp1YtW7e97tssvoMFBXEARBWsf3ld9/W/WtZJIaCslJFsK6Aob1BEAASujivYsPeg52eI07F9QVBGkOxhhjrPk1yBmFQpUlx5b4mV8gQp2uNBaV+tQJi2FPURSLvcXLjizruNp2CagrCNIc4U4Mg5zwNSgtZyyHA4fXudeJRAwrRIMbocn7Ql9ZX34IEA205UeWB7VgB9S0y8BxkQjSBIwxLh4+n8/tdgeDAVXVGKOECHa7PTEx0eFw6Lt1dWWRTmWnd2dZqIyY6n/vzKAZzLAQWQ4/iLCGwiMQYXf17uO1x/vG9u2oGnc6qCsI0hCuFn6//8SJ44FAUBB0kwUUJeTzeUtLS+PiXP379zebLSgtZxr7fPtkJpsaN56NDRcuJYxRRsNvWb1NAECAVAYrS7wlqCsIchrDCCE1NTXHj5eKoslutwEQAEYpZYyaTKLJJCmKXFlZWVVVNWzYcKfTidJyRnEidIJFIIyEFcL4/fM1NKIf1LAS6kkLAwYAsiZXBCs6p/KdA/pXEKQBxOPxHDtWarFYLRarIIiCIAiCKAgiIQJHFEWHw0EpLSraEAgEUFTOKFSqhlWBsTorpMErIiqMhv81sxtjTKVqV19WNEFdQZB6KIpy/Pgxi8UiiiZBEERRMEII4X8IAavVpqrKtm1bu7rKSKdiApOuGYwyoNDwxepEJRzuodsotL7qMAYMCCMiEbv4qqIK6gqChOGe1crKCkqpKJrCo9kIRKwREokF4wgAzGazl5WVlZWd0A9HTnuSzcmEkrAtQmmdtBitEBreSimtt8koLTSsTGbBnGhL7OrLiiaoKwgShhBCKfV4vCaTib/lqwWBCILQVF9XWGGOHDnSuTVFupIBMQPMYG4gHkxjTGOMMqYxqlGNapRSxlg9L0v9FxcVRlm8Jb5PTJ+uvqxogrqCIHUEg0FFkQVB0MerMMYIEUVR1AexcMcrX2CMmUymqqoqSil6Wc4QcmNzk0xJTGP1pIXri0bDMqN3kRlFRau3wE0ZqtFB8YPSHGldfVnRBHUFQQAivViyLPOnTFYHUEo1TdM0/jjKKGWMUX4EYxQAQqGQLIe6+gqQTiLLkZXvytcUrZ7xYbBX6kmIvqzVM1aoRvmeIoiTMybbTLauvqxogrqCIHXwZ04W7tugXFEURZFlOfwYGn7pD6i8tyM8FB9dLGcCZsF8dZ+r7czOVAaaQTBYo78NREULv3hfGWhAVZrlzLqo70VdfU1RBnUFQeoQBIFrSaRTo+6laVTTwqZLZBe+UiUERNHokkFOc85LPW9i4kQqU1ABNAj/1V/0JMv1RQU0IEBuzLkx25Xd1RcUZVBXEAQgIglWq5UxpiiqVh+9K0xVNUpVLieqqmqaKsuK3e4wm81dfQVI5xEjxTyc83AvUy+qUFChaXVp6sVURlXKNAYaaJpWmFZ4a+6tXX010Qd1BemRnCypcDt7oqxWq9lsCYWCapiwliiKqmnhl6rSyFZVUTRFCfXq1av9RTc+HBMnd2fGJY97bMhjNmpjMmsoLUaBUete3FJhGgMVNFXrG9v3t+N+m2pP7epLiT6YxwXpeeh5UzRNk2WZMUYISJLZZDLpmYbb0CXFT5uSkrx3715+Kj7+EQC4i55bLaqqqaqiKLKiKKFQ0Gw29+3bt/2XwyscHvEAIIqinke5bZeDdDS/yP5FTajm5e0vB7SAIAr15mKBJsaycDOFWyqZzsz5E+eP6TWmy2rfkaCuID0PQkhtbW1VVZXfX6uqKqVU0yghYLVak5KSExISuLq0ti3m+6ekpB4/ftzj8djtDgCVn8rgqNco1RRFVRRFUZRAoHbUqHy73dHmFGH8QE3T3G63x+MJBoM88AyA2Gy2hISEuLi4tl0O0tFIgnT/kPsTzAl/3vLno4GjoigKQl0PEB9Lz1h4kAr3tTCVMcYKUgueKXymMK2wCyvfoaCuID0MTdOOHz/m8Xh4ni5RFHm7ryiKz+errKyMiYkZOHCQzWZrc1s8eHDOhg3r3e4au93OGEiSyWw266XU1oZkWZZlxefzDBgwYPDgHGirPcFr6PF4ysqOK4rKM8UIgolSqihqTU11WVmZw2EfMGBAe6QL6TgkQbpl0C158XkLti5YcXSFV/YKRBAEQc9kzE0WpjE+WiXVnnr9oOvvGXZP75jeXV33DgR1BelJqKp6+PAhRVFsNnukh4pFxiQSQgRJMnm93g0b1o8YMbJtmYYZYxaLZfTo/M2bN1VWVtrt9uPHq/fs2ev1eiml8fHx/fv3BwBVlYcMyRs+fER7LocQUlFRUV5eZjab7XY7hH0qlFLKVVOSlNra2vXr1w8dOiwhIQGlpRtCgIxOHv3Xs/+65tiaJcVLfjr+U4m3RGFKuE+MAlBwiI7sxOxzM869uv/VeUl5p1k2sMagriA9BsZYSUmJqqo2mw1A93zUTajEmECpYLfbfT7fxo1F48cXtiFMi3c6Wa3WgoIxx46Vrl279tln/+Dz+XR7JTc3Z+7cpwcPzk1JSW2nX726urq8vMxmswmCyG0exhilRBAIYyAITBAEbnht2rRxzJixmJO/22I32adkTDm3z7nHfMee+stTKzavIDEECIAK1EMf/MWDd191d6wUS042TfHpBcaDIT0APSNkMBiwWKwAgijytF08cxdPNEx4HnvuaAkGg7t27YQ2hWnpDXefPhk5Obl+v98ZwWKxKIo6YcIkLirtaeJDoVBZ2QmrNZyKP3JFguFiwhdmNlsAYOvWrYAO/O6NSMTeMb2Ta5ItGy32tXb7Grv1J6t5i7mP1scluc4QUQHUFaRHwDNCVldXS5IUyVSvpxnmC0RfIIQwBlar9ejRoz6ft81z0fMWnLtwIiMlKaWUZ6WEdjTxukwyxgRB1BMn6yXXT5wcHlhTXV1VWloKOKq/+yMACBAODyMAAkQS5Z8poK4g3R3ejPp8PkVRRFGIZEwBACIIoig2vocJISCKoqKox44dj0oFGkhIO40GHgDm8/kkqUHiZEEU6yVO1hWE22IlJZg4GekBoK4gPQO/v1Zf1scLRmaeZ40AxpggkKqqyqiUHlUTgUE4cbLCJ3ExJE4WBEGERtfDV4iiWFNTo2kadoUh3Rz02yM9A0VReC5hQeB/QdN47BSjkbku+B8WGTIAAKFQCNoRBGz8y/32+gJE+qpaf1oghCdO1s/GBIGbJhoA8MSXuqLwwnmJsiwriiyKp1XuW+T0A3UF6RlQyjSNT4REABilfLw96E0wrQ93iEDdBLCtEAB+QhJx1wiCYLVauY9H0zR9TmJeqHEoXKuKiGghFQSglAAQSmnkOph+CXyZr2eMssjACLRakG4L6grSMxBFUdNUTaOM1TMU9MHwPDmkniCSUqqqKo8z5iZCC+GjYQRBOHHixNq1a9euXZubm6vHK6uqCgB//OMfCwsLx44d63A4uCXRWnURRVHTqKZpvHqCQCJXAwZ1MSZO1lRVEwTBZBIBo8KQ7g3qCtIzsNvtPNUjj8rlyqL3I0XURItkilQVRVVVNSEhoVWlcPujqqrqww8/XLVqlcfj4SMWuXgAgCRJjLHVq1evWrUqNTX1yiuvvOKKKyRJarnhosd3ATBFURgDUWSMNZZJfiHhxMmqqsmynJAQL0mYOBnp7qCuIN0d3hDHxsYKghgKhSRJ4mNWCOHpIFnETKHhFMOKoiiqLIdMJjEtLb3lBXFtWLt27RtvvFFZWel0OvkQd27BsEj+R0JIbGwsY8zj8bz22msrV66cNWtWZmZmq/rELBaL1Wrz+2utVkKpIAg8IjVsr+iGV+SKVFXVFCWUnp4G2AmGdHswHgzpATDGTCZTcnJSbW2tqmqKonD9UFX+Cietj4iKoihKbW1tRkaG0xnbwlaYq8Lnn38+b968QCCQkJDAM48BgJ6IzHgexpgkSUlJSXv27PnlL3+5detWPidYCy8HAFJSUgKBgCyHVFWOXJGqXxFPbamqsiwriqIGgwG73Z6V1RewEwzp9qCuID0A3pJmZGTYbDav16OqKs/8yF+KwhfCBAJBWQ4lJMSPGDEKWtYKc1FZunTpwoULXS6XxWJprBCEEGPCWr6gaVpsbKwsy08//fTu3btbKC3c+klKSkpLS5dlORiU+SVE4KIiK+FrUmRZDgYDQ4cOs1isOCgS6f6cDrrC+0Ii2ag7/FfXycUhOoQIeXlDBUGsqanmEbeyHIq8gqFQKBAI1Nb6TSYxEKj961//VlJSAoahJ4bhIPXgorJt27ZFixa5XK7mx+cbQwa4tFBKbTZbKBSaN2+e1+vlcWKnvBa+z7vvvvvzzz9brWa/3x8MBmQ5FArVXVQoFJJlJRQK+nyevLy8fv36Yw8Y0iPowbrCgFGmMWAE+PxLAiECz8BDmRb1xzpeHAA0KE6vRnSLQxrDGLNarWPGjImLS6iqqqqpqeHNcSAQCgSCoVCIEGK1Svv27f3b315fseLbF198EQD4BC1gSI3CWNgrrndzybK8aNEiQRBMJpN+5zQ5PMW40jgZV0xMzKFDhxYtWgQGJaORcC6jtmmapiiKIAjff//93//+94ULF/3vf1/xWslyKBQKhkKhUCgUDIb8/oDH41aUUH5+wbBhI1BUkJ5CT/XbU0YFIhAiAoBXrvTI5SpVCRGcUmKcJVkgYmQf0qqBCyeBUcZ4cYxRt1zulaso00RicpmTnZYEUldcD9bp7g9vVc1mc35+/okTJ4qLi6urq0IhmVKVECEYDJSWlhYVbVy/foMsyxkZGf/+97+vvvrqCy64gLfsiqJQSkVRlCRJFMOJyhVFkSRp+fLl+/btS0xM1HuxdAUihkkbjdVoUDFN01wu19dff33FFVdkZ2erqtpglid9T+6tCQaDzz//vM1mU1Xl9dff+Omnn88779xevXrp08kAMIvFnJWVNXhwrsvlQlFBehA9T1f4HGwCEXxK9eaqr3fX/FgRPBzUaimljIIJbHFSr4GusQW9Lkuy9+aDrtvzg9SLqwqWbqz8cp/35+pQaUgLUMqAEjOxJ5ozcuIn5qde5LQkUEZ5CsHoXS7SBIyx1NTU1NRUWZZra2sVRXY6Y7ds2fz4478SRTEmxmG1WjVNM5lM8+fPFwRhy5YtR48era2t5bricrkyMzNHjhw5YsQIHkO8fPlyq7UJ18Upc1YadxBF0e/3L1269KGHHuKKUlxcvHnz5gMHDlRWVsqyTAhxOBypqakTJ05cunTp1q1bExISKKVWq7WoqOibb755+OGHHn98dnl5mSiKNpstLi7eYrEABoAhPY0epivh7iZCfir79IeydzxauSRaJclsk6x8HINGtQq5+MjR7T+UfFTY67oLs2+XRAtjlLTJkmBACQgKk1eW/nNd5ZIg80omq0mSbJINeHGafDS0Y/+hou8Pvzc547aJWdfxSqK0dCh6a242m/mIRUrpuHHjb711+ptvvikITt7HZbfb9+zZ8/jjj/fr14973fmepaWlmzdv/u9//5ucnHzVVVdlZmaWlJRYLJYmJYSPldGnnW8GxpjNZlu3bl0wGNy8efNnn322b9++QCDADRReZ1VVNU376KOPDh8+7HK5+LhIfkVZWVn33Xd/bGys0+k0jvoEDABDeho9SVd4e63Q4JJD87d5ltktLpc5GUg4yxJhRCSUECJabFaTPSTLy44s2le54baRz8fZktsgLQwYAcGjVHxU/LvDwc0xlrhYIZFFvL/AiEAoENFBHDZTTDAU+GTP/P2VG38x4mmzaEVp6WgatLycX/7yl1999VV1dbXNZuOhWWazWdM0p9Ope1MAgJsmlFK32/3GG284HA499b0RxhgXFajfshtLbLAsiqLb7X7qqaf2799PCLHb7bwso39FkqQDBw7o/Wx8U3V19e9///u0tDTegWYcKxOlDwxBOo+e5A8gQCjTPip+Zrt3eZw9RTKZiKgSkYoiE0UgIoAoCIIAAmVEE01iQkzKId+2139+xBuqJkRolWudC0OtUrN4/5xSeXucLUUUCRE0QaQCL04APokUEygImiSZ450pRWVfvbn+NxpVUVQ6Dd74CoKgaVpKSsrs2bMDgQBfAwCapqWnp3N54H/1xFwAYDab4+LiAIC7yo2uFONuRhqIhL4zRDTDbrcfOnSITwLG62B07/PsMvHx8dwG4rWqqam56qqrbrnlFj65ix5f0EmfIIJEmx6jKwwoACwr/fvu2lUuWwoTVCIyEMNT6BABBD4zEs/wIYIgACVqrCP+WO3e9zb+oW2Ffn7kT+XKAac1AQSFiMCLI7y4cLl86DcQARhRE5ypW8u/+2z7qwDAXTtIp8Fn3yovL09ISKitrVUUxWw25+bmpqWl8dzyus+c78/XcI+LKIqyLPM+Kz6en8eG6dN56R1WRl3RE1Dyc/I5g0VR1Geq1+umF82tqNjY2AEDBphMJlmWecbl3r17d+ZnhSAdSs/oB+N+jsO+bT9XfuK0JDFBIUJ4hkAAAMI7DYCQcNAxAUYICERQiRrrSNp8/Lu1B/87vu/lGlV5qFjzUEZFQdxU+dVu76pYexIlTRcnEKC8h4Tw4ohKFJcj6fvif41IOy87aUSb/TpIa+FjUN59992vv/562LBhpaWldrs9MTHRarUqimJ89udNvJ4sUk9dLAhCMBjknWNVVVWEkPT09MTERFVVjX1uRlGprKwsLy8nhHDrxOFw8POczNWv21U8cZnNZquoqHC73VlZWWvWrHn11VcffPDBNidIRroDwWCwpKSkoqIC6s+wcOjQoePHjyclJTXZ43r60ZMuck3ZhyDQcI93uJUnkRToDCIRxeGALAL8f0qo1Wxdse+9sZmXiIKpJSnTRSJSRteWf2yWbEBopDj+azcUB5ES+Qy4hACAIAiUaN/sWZydNKLDPgmkHrwt5q7y+Ph4URQHDhwIALwFb9zQN5AZrivcse/1eg8ePMh7wKqqqoYPHx4fH8+lRe8Z40llKisruRMFAGpqanJzc3VLqBn0Di6eazk9PZ2bU5qmffrpp/n5+YWFhSgtPRGv17t+/foff/zx4MGD5eXliYmJfMYgQogkSWvXrj148GBOTs4555wzdOhQPT326UoP0BXuP68OHT/o22iR7IxQfV7zyN+TO04IADCLZDvm3b9h/3cD4seE1NrmbQgG1EzsR+RN5XKxzeIAoHWWirG4RmVyZdGA2syO3eXrKnylSTHpGCHaCfBW+IMPPuDaoHdb6bOkNAgX1n3mENEYvU/MbrcnJyefOHFCkiRFUUpKSrgDxhgPxkerHDt2jBBiMpkURUlJSeFDTHQ9MBbRWNX0u0JVVd1gkiTprbfeGjNmzBnySHvaQCndtm3bp59+umfPHj49j8vlio2N5aEiuglbVVW1atWqdevWjRs37rrrruvTp09XV7wD6QF3MGOUEPGIb7tfc8daEqDOb8HqLbDIZOCMAaubz4k/Ztoc1qeem1P6E5Xs0Lzjgwgge9mAi22THk3UglQQSf2y6pYZqycxLDwbORMFk0euOFCxJSkmnQElcOrHWKTN8Kf7oqKiXbt2OZ3OBkProQVjUDi6tLhcrsrKSq5MtbW1sixDI2cJTwbJ+9MEQUhOTgaDGdTA695Y1Rova5rGo6JXrVp13nnnocnSU1AUZdmyZUuWLPF4PCaTSZIkiHzjhiGudY8vsix/++23+/btu/3220ePHt3Fte8wesy9e8JfXBfQFW7Qw7O08j+Uhht6ysOAI/oCvLknhKosGAwnyWieYCioqTQSHXTy4sInZ2FJY0yvGwVW6t7f+Z/SGcuPP/7Iw6ua3MoNl1OehDcHkiTZbDaeADImJsZsNnMfPod3dvFxM9yr73A4+OxejWOR+bOqHqxs3NRk6YIgrFixolUXjnQhqqp+8cUX//rXv3w+X2T6hrqnGf3b5zvrUR6SJB05cuTVV19dt25dl1a/A+kB9gonqHqBEUYZADAChNV5OgCAcVGhYTcZMAAKTDdcGAADQngcMmn+2ZXHekXGFhDGgFGo6zljYcOI8iIopRFdCetZuO+D+BVvh34gCESGmMiyvGvXrsYDG/VeCIg8MPKHx2bMF75bTEyM2+02mUyxsbFVVVV6D5juYuFBXx6PBwB4PLEeMKaXaxz+0mCHJuED73ft2uV2uzFxS49g1apVS5YsUVW1ma5LPTkpGAxZ7p9buHBhXFwc9wWeZvQYXWGREYncViCGmWUZA976A4u089yeoIzxv4wBZZQxjVKRklP0gwHwKcUZBUYpoyIFPSagrjiIFAeUl84YixRHSZ2thHQ8ZWVllZWVPGWkMXarwW4nG89oXMP/SpJksVgEQTh69OjJREgQBLPZzIcxNt7ajHSdbBOXq+rq6iNHjqCudH+Ki4v//e9/y7Lccn+Y7nXjjsBjx469++67s2fPjomJ6dCqdj49RlesopNqjFFufQiMRxVDPecGn8AVKFDKHa2MaoxqlGqMENBUTZZDIAmn0BWRyLKqKCqjQCkVKAEQGAMgfD6/SHHh2CBgkeIYBaYxpjFGgWrMYXF1+IdyxsN/otXV1aFQyOFwNG6LGWPclWocw2jMyGJcNrb4PPNKMyFeulHSTOuvu0n0UhrkNm7g2BcEQVGU8vJyaFaZkC5HVdUvv/yyvLycO1Q4J3umOVmciCiKmzZt+v777y+77LLWVoAB82v+ylBltVItU1kAwWlyJpmTXGaX2IKhFB1Nj9GVVFs/qhKqAQAVGCOCwAwGS6SDAsKiorG6hp4CpZSozGI1u1xxLfLbE2a2mFWFAiWUUgGAEAHqZIzVjcXmxalU0xjVgGqUUtBUSkDoHTegoz8ThMMTFQMAd3I0KS3Gt40NlwYr9VM1Xy738xvlqoEXpyVFG+vAWx8+UhLpzuzfv7+oqMg4hWgzkRongxCiquqyZcsmTpzocrX0MTSgBTa5N31T8c36mvUlgRKv6tWoRhixEmuKlDLEOeTc5HMnJk9MtaW24bqiRQ/QFR4WnBU71EpiZUWRQNQERphWf7QatyFAY0BVpmka1YCqYWMFKAkEgi8888rAxIKWxBlbBMcBX9HiA7922BxMYxqjhNDGxbGIhmmUMgpUpdw8UhTVaYnvnzQMAEjPiYzouRhb81MaEE0aKw3URY/9NR7bZEthNDiab0pY/cQwutnEDPBN2P3V/dmwYYPP52uyB6xV8YeCIBw8eHDnzp3jx48/5SEqU1dXrV50eNHqmtVuzR0+CYSTRnmp90TgxBbvlk+PfjrIPuimzJumZk2Nt8S3+tqiQU/QFSCM0Thr6gBnwZaa5bEkHgQmCMB0Bzyrc7FQjWlUY1xUVI2qQDUWCPmz4nOHZ00AABu0aERSXsy4XkcHnAjts1schDJoqjhKgWlUo5RpQBXGdYVpJBCqHdf37AR7Lxxv3znExMTwYSsQ6WhqEIIFkea7gajoLbvRn8/31DO4GE/S4Jz64Hm9CN7n1lgY9AGVxjX6UfpfbvE4nc7GZSHdB7/fv2PHDmj0HRFDItEWQggJhUKbN28+pa5UK9WvHXzt7aNvV2vVJtFklsLtWN1DCQFREEEATdW21W6bu3Xu8tLlTwx7YmTiyNZdXjToSa3e2Rk3EkWSFUVTqKqCpgJVgaqgaaCpoKlMVTVV06gKmsKoomkqaJpGFVA15YKcWwBAoyprARrVgJBJvW8MBIKawlSF6mVRjRfHNJVqqqZqlBenKRrVQFOoqmiSaOHFIR0N/2EnJyfHxMTo+VpY2NNGeWtODegHGjXGKEj6MvfHOhwOnpOYY7FYLBaL2Wzmb/kATJvNZsweZiyav20wZSQYvCwNJE3TNKvVmpaW1ikf3ukJAxbQAjVKTY1S41W9KlOjXkRlZWVZWVkDu8SoKC2RFqN5Wlxc3Hzn57HgsTk75yw4ssALXovZIppEIhJiIkQkgiiIJlEQBCISniwRTCCaRGZi35Z/e+/qe5cfXd6Oa20jPcBeAQBCBMpohiv37N43/e/gwgRnKtNUoyXAv1NGgXEnh0qpBpqqMVX0+CvG97u0IOtCBkwUWnS9IhEZsFFp52858d2m8q/jYpIVytssQsIjVRiPbGYa7/6iVAVV1UATPP7yq0c8kJUwBKeP7AT4b9vlcvXt23fjxo26E7X5x0ajqBj7vgBAEASPx3Prrbc6nc6PPvqopqZGkiQuIcY9g8GgIAjp6el33nmnz+d79dVX9f7xUz6xGhXOKGmMMT7NZUZGBqC90koUquz37/+p6qdN7k2H/Ie8qpdSaibmVHNqTkzOmIQxo+JHJVgSolJWTU0Nz5ndYP3JvnfjLdFknEhVVZXf7+dzuDWmSq56avdTX1R8YZJM4ZnW6w97AAaCKDDKNNCAAQgAIgADURIPBA7M+XnO/xv//yalTWr7BbeenqErACAQAYBdMvDuMu/hDSf+F+9MoYRGosEiUcgaYxoLh4GplKmC2185IGXkLWOebFuhN+T9uvKn0sPubS5HkkbUesVRHvrFQ86YplKmCjW15YX9L79q+L0ADEWlc6CUiqI4ZsyYdevW8R9w80Mgjc06i/jVjZaNzWabPHlydnb2mDFjvvvu23Xr1u/Zs4f/5rmjlU+EPHLkyCuvvDImJub48eNOp/NkEw8bYfVdLDzPh3FlKBTKz8/neZRbkm0MAQCVqT9X/7z46OJVVavK5XIVIrNUhEeYsaUnltoP2AfbB1/T55prM69Nsaa0s8RgMMhvm5bYJQ3uN31Bf0YhhPj9/oqKCpfL1fj+UZm64OCCpRVLTZKJiPVFBSID+BgABUKIAAIVKPCBEQKAAKJJLAmWzN0wd9HZi/rF9mvnhbecHqMrwMdBEnLLqN9Jm62rj3xqtzotEp80iTLgBgRjGjDKqAqyrPpC7hG9z5454Xmb2claORqAAGGM2aSYu8e+9Pb6p7ZX/Oi0xUkmc7i4sHnEQ4qBahAKyQG59txBN9wy5jcAhAHDp83Ogf8UJ02a9K9//SsQCPBG2ZjHhaO34MY1uqjwlp3/ws86a0J2dnZpaamqKjfccEN8fPzSpUtjY2O588Pj8QwbNuyee+6uqanZvXtXTk5ur1698vPzv/vuO5fLxdNcNhmTxhp5d4wr+V+73X7hhRcCGistpixU9trB194/9n6VViUKoiAJZjCD3nDzJ08RQlpoo2/jlm1bPj/8+WNDHjsv7by2Pfb5/f6SkpKioiJ+M7CmggCNNDBeGxjH+qaKiopf/vKX/fr1y8vLGzJkSL9+/ZKTk61WKwCsqFzxTuk7RCThbq5GeQrrsiQSIDzFOtTpCpeWrdVbF2xdML9wviTURUV3KD1JVwgQBkwk4s2jns5OGPXFzr9X1JSYRJMkWgRiAsaoxlRVlZWQoioua9K00TMvyJkuCvWGy7WiOEIYsBhz3L3j/7J877sr9i2u9JVJokUSzYSIjDJKqaqoshJSNTXVmXnLmCcL+13ORQ7n9eo0eLBvXFzcFVdc8Y9//CMpKUmfGrKZ7Cn6U6TRDQMAoijefPMtPp+3urrKarXW1gYsFmsoFAoGgzw0wOv1mkwmflRtbe2WLZsLCydcd911P/zwA097TA0jq5vscDcaKHrRgiC43e5LLrlk0KBBzTdViM5u3+6ndz+9smalIApms1mPjIokxWCUUJ6hAwBEEIHAevf6B356YFburBkDZ5jFFoXw8BFFu3btKioq2rx584EDB1RVzczM5F+x8es2HmX8fvU1upw0WFBV9cCBA9u3b1+6dKnVak1KSurbt29ubu6g3EHv0nd9kk+KlUA0ZG/nNMi4G86tThhhRrEBAoIofHbos2v6XTMpvZN6w3qSrkD4UwPK6Pisy4ennbP+yLLNR78tde+vlT2UUgLEanJkJuUNSz9rXN9L42zJlLfybX3640pGiHDR4BnjMi/76eDSbcd+OOE9HFR8lDECgkOKG5g4YFSfcwuyLrRJMZTRcOQf0onwVvi6665bs2bN7t27uW1xsnDPBs06X9Y0zWQyVVRUzJgxIzc3d+fOHXa7QxRFRZELCvJnzJjx/vvv87ivrKysO+64gw9qczhiqqoqt23bOnTosGuvvfadd95JTk7m1tLJvCwNgtB0PQuFQsnJyTNnzgQ0VlrG3tq9v9zxyw2+DZIkhb0OdSkxABgQRgQQKFBj6gtREquV6ue2PBfSQvfl3mc6icOVMeZ2uw8cOLBp06aNGzfu3r27rKyMu9YFQbBarbyjUk8O1MA+ZhGM5zQGaxgBAG4386hlWZZLSkqOHDmyatUqk2SiNupIcrAMRvtTOpqy5JMk8mggOVAnKlxXqoPVH+37aELahM4ZNUkYY/+pAAC4IqkTiosalGlCZLItv+x1BypUqoiCGGtNiImEbFNGBUIgCq08o6zOX+INVntCVZRqJlGKsybZzM7IPrQlk4Z1H9rwvXfbW4WbpEeOHHnsscd8Pp/dbm/gaGncBaH3RHFRqa6uHjdu3AsvvHDkyJFQKGCx2ARBFAQQBGKxWLZt275r12673TZixAiXy+XxeDVNlWUlGAz4fL5Jk86OiYl54okn1q1bp08F1thaMrrrjdaSpmmyLD///PPddvKV7narVMqVD29/eHn18jpRMX5mEZcDMGCUaZoGFIACaAAagApMYXZq/9OYP13X/zrjaQOBwNGjR7dv375hw4Zt27aVlJT4fD5+I+lfCn+bkZERExPTIKZcD0dsXOHGzxPcquaKUlVVxacCa4KIZx4I0OFUeUBhsawuNSIz7EOBUUY1yiiru14VQAVQQA2pGZaMTy/5NCs2q+2fewvg33sPs1d0BCIyYIxpBAS72WkPN+4AugUMQvQ850QgJHxaIjit8U5r3Wgj3o9LiNCzROU0g/dIZGRk/OEPf3j22Wc9Ho8kScapHnWMkV1631dlZeWYMWOeffZZTdNqa2utVu6l5/F/LBAI5uUNHTZsuKapPp/P7/cLgsBDi0VRVFW1pKQkJyfnySefnDt3blFRUVJSUoOwZo7RoaIv8PmJH3/88W4rKt0NBmzR4UUrqlaERUVo9OjI3wphbzYhhAksHChF+fThxKf6/rTlT8MShw2IGVBWXrZ79+6NGzdu2rTpwIEDVVVV3E9mnLXaaGFomubz+RwOBx+uZJScJmrLmCzL/NmFT6xgNFX5X5/PR5tKFRG+lsg6YbdADhE2goEGDa0W1ugv1NuHEHLMf2xr5daO1hVOT9UVACBACBEBIJKnnq8l+vpOKo4QnGGlO8B/tIMGDSKEHDx4sE+fPmazWe/+bmCvQMTECQQCsixfddVVDz30kM1mq6ysZKwutwKlIAhEFEVZlkOhIH/GFARB09TIOZgoilVVFQAQExPzhz/84S9/+ctXX33lcDisVquxr8PYMcJVhzt+jx8/np6efu6557JTRbIhnC2eLYtLF4MI9bq/jJ1gYOgXIpEB8IZ+IRBAFMWDBw8+++qzyRXJO3buOHHiRDAYhEheOB6wbuwyNX6Jmqbx8C0egA5N+Vf4zqqqVlRU1NTUaJomSVJycjK3pI0PN2az2Waz+f1+PtOPnk4fGveIUgDZYKbo1xt5MT3dLWuoMQRISAvtrNp5eb/L2/8VnJIerCs6hM85fJoWh7QQ3uX9xRdffPfdd3FxcYcOHbLb7UlJSZIk8UGOBrWgiqIEg0HG2IABA2bMmHH22WfzHgk+d2zEruCOWQAIR4uR8GzErC4mkFFCiN8fAADGmMVieeKJJwoKCt5+++0jR46YzWaLxcKbKr2ThDtgAMDtdldXV1NKf/rpp3//+9/Tpk3D8OJTwoB9XPrxMfmY2WxuQlSgfqAUM6zUF0h4k/MH5/pt64GEm3Lu3jAalMZHED5XNCHE4XD06dNn5MiRgiDs2LFDT/TQZPzhiRMnKioqWCSIXFGUvn376ncCfyiZOXNmTk7O7t27t23btmPHjuLi4oqKikAgAAxEQSQCIQIB7uuNYQ39K3qPH0RSqjcpLfxZmLGjvqNR+RZOyemgKwgCAKIoapr2xhtv8Jm4NE1zu901NTUpKSm9evWqqqriykEIMZvN8fHxOTk555133oQJE7hZo/tgjRHAfKWmaYzR+iP3w54RfYlFYg4ppRdccMGECRO+/fbbFStW7Nu3z+PxGEPU7HZ7KBSqrKyUZTni/3e8/vrrV155pc1mY5gev1lKg6UrKlaEHRukvmBwGvVFNRlHQygRg6JJNHHHjLGbK3yaSK4ExpjZbE5LS8vJycnPzx81atSAAQMSEhIOHTr0xz/+8fjx4/yRxXgsR1VVt9vNDJPxhEIhn88XExOj+9XGjRt3/vnn2+32QYMGXXHFFcFgsLy8vLi4eOeOnd8Vfbdm+xqoBhIgQIGIhI6nrBcDzSCZunhQaEJUGrwAgmqwc6JVUVeQ0wH+pP/JJ59s3LgxKSmJZziWJOnYsWP33Xffgw8+uG3bttraWkqpyWRKSkpKT0/nk16wSJgvi4y31zRN03iSsXqzuUTagrCc8PxhmkZVVbNarcSQ/5xSarfbL7/88ssvv7ysrOzgwYNlZWVcRRwOx/Dhwz///PO5c+dyN4ymaQ6HY8eOHe+9996dd95JKUWTpRm2urceCR4RRK4GhiCoxq6NSAvL/zXcaGJajGaiJsoapobjX4ooii6Xq3///iNHjiwoKMjNze3Vq5cxK35WVta0adPeeOMNHoOu3wDGszXOb+31eu12O7+XsrKypk+fbrfb9R2sVitPuHD22WdnlWb9+OOParUqlApCqUBSCZ1Ewy4iQzg1QH1RafCihq20aYntCFBXkB4P708IBAILFy7Uf7SEEJ/PN3DgwJkzZ0qSNHLkyAZ2AI1kqDT++HkIKR88z1gDXQm3ODqqqqqqpihybGwviDhsAICrFHfqpqSkpKSkGKtKCLn11ls//PDDAwcO2O12QoimaU6nc+HChVOnTsUZvZpnm2dbkAYlU/3xfayRvdLAg21c5gsCKBmKabMpHOdDKY8jt9vtffr0GTp0aEFBwfDhwzMzM5uZdGvSpElut3vx4sWhUIg/DRhvGG6bBgIBfX8+8FaWZUEQ0tLS7r///v79+5/s5C6LyxRrkuNlNpBRQgVRIBAZ9mi8FhYJReFhYFAnJ+FhoQzCmxjEWeI6R1pQV5AeCWNM/xXzZ/wPPvhgz549CQkJ3EciCILP57vnnnt4khXu1efHcquiwbMkP5fT6RQEMRQKmc2SIIiCwB8/dXtFo5SqKlcURVEUVVUo1Xr1apgpkkTmBGvQuwKR+YbvvffeRx55hD+rMsZsNtuhQ4fefvvthx9+WDdZ9K6zjvoQexoM2CH/IX2y7wbb6i3rccYndznI2bIp0URKiSiJKSkpgwcPHj169OjRowcOHJiQkNCSGApRFC+//HKLxfLee+9VVVUZHWkcu91eXV1t7ApTFCUQCIwaNequu+4aNmxYMyfvZenlEly1ai1hhAksPDaO58UnRLfDGGUUKOg5rWgTL64rIoj9XJ2UygV1BemR8F+vqqqyLAsC8XiCb775JrcnAEAQBK/XO2zYsF/84hcQCfI55Tm53ZOQkFBaelQQHIRoxhBSxqim8RcXFVlV1UAg4HLFpqf3hpMIQONIIa4Z11577T//+c8tW7bo3XEmk+m111674YYbUlJSQqGQJEm8dFQXHY1pPtWnxz4RRnjcMEDDQZF1nWD0pB1ENJbWTq617Lc8fNnDV591dWpaqtncohH4RkRRvOiiizIyMj788MPNmzfLsmy82cxms9lsNuYqppT26tXrV7/6Ve/evZs/c6o1tb+t/9Gao5FsZ4yRiCEbHlXPwl18Edd9PTlhdaLCXw7JMTRpaGsvsG2griA9Eo/HXV1dHQgEVFVljCmK8thjs5YtW/7dd995vV6n0xkIBO6//36LxdLyICv+o+3Tp09Z2Yna2lqr1aq358Z+MFVVVFWRZVWWZVWVhw0b36DT7JTwKt1///133XWXIAh+v19V1YKCgiuuuOLYsWOVlZWapgqCYLXakpKS4uLiAKB+X8+ZCxcJ3u0TMVfrh34ZvA6U0rpn+UYvRpnWXxP7iiPOGZHRO6PNVSKE5OXlzZkzZ/369d9///3u3bvdbjfvVeM+fx7BzBGIUFNV05LOKLvJPjFx4g+VP9QN+eRWCgEgkXD5RkMj615a+C/VKFCgGh2UOCg3IbfNl9kqUFeQHgQDILIsHztW6vf7RVE0mUwmk4kxJknm3Nwhubm5F1544SeffPLll18WFBRMnToVIvZBSwtgzGQy5eTkFhVtUBSF5/6DevaKyvvBQqGQ3+8bMWJkenrv1npEuA5dfPHFZ5111rJly8aNG3fTTTdNmjTRYrH4/X5N00RRUBTF7a4pLy9zOp0DBgzko2HOcKtFAMEu2HWnAvAUPkIjp73B61BPVGi9v4wxpjETmKyitf11czgc55xzTmFh4bFjxw4cOFBSUsKDwTwez6efflrrqyVAmMBIAjlkPfSPbf/IZtlUow7RkW5Lz7JnJVuTTaRha3xh2oVvHnizTC0jkeRfDXOCQaOr0+pJC9Uo0xhoQIBc2vfSTps+EnUF6UGQYDB45MhhxpgeRaMHBCuKKstydnb/OXNm5+bmjB6dz0OzWjXYkPeDx8bGjh6dv2nTpqqqKovFYjKJAEAp0zSNO+oDAb8gkPz8MQMHDmpbc8+PeuCBBwYPHjxjxgy73eb3+wOBAO9F4dXmwul2uzdsWDd8+Eins9VpuU8zBCL0sfYhGuFJGMNfPQt7HcJEfCqU0nqP8w1EJTLPRaw1NtmWHK0ams3mrKysrKwsfU0gECjeX/z9uu9ZLlOGK2pflbro39jfYDsAA4EJNrClSqmjXKMuSbtkUsokl9mlH5vryr087fJ/FP9DBBEYhDMLGL9/3afSwFiJiArVKF8YGDfwmgHXROsyTwnqCtJjUFW1pOQIIcRisUKki4pSxoXDZBIBzLIckmX5vPPO05MDtrYUXVomTJiwf/++w4ePeL0+SsPjVxijkiT16dMnNzcvLi6uzQ09V7vc3Jz+/fupqur3B0RRIuH+DRLZRxQEarc7fD7vxo1F48aNP9nUT2cOQ2KHSCBRSrmuMCGiKpEvQY/xbdrrYHRlM2CUZcVmpdjbOyNLM1hslozLM/wj/HQwBSsAAGGkri+OsVpau1/ev/fY3v+U/qfAVXDPwHsmp03mCe0FItw54M5VJ1bt9u8WmVhPV4yhxo3tFYOoMI2ZBfO9w+7tG9u34y6zAagrSI/hxIkTfN5fQgiP1OJQKhASHg/Pn/GDwVBJSUlMjDM7O7sNTT+XFlEUBw/Oyc4eUFVV6Xa7FUURBMHhcCQmJulxXO2xHrxeb1lZmcVilSTJbOYuetADh/jJBUEgBGw2W3V19fbt20ePHn2Gmywj4kakSWlHlCMCEfhgDkYYI4YRKg1cDszgbIg8yDONUUp5lq3xaeMdkqODautVva8fev39xPdpAhVIOEkln9spDA3ftwIRFE35ofqHLT9vua3fbQ/lPhRniQOA7NjsOXlzHlv3mFtxC6JQl2GTNHWZkVdYVFQADRhjNwy+4YbBN3TQNTYJ6grSMwiFQl6vx2KxGGOseENM+BTRpG5soigKdrv94MHirKwsnp+jtegD3EwmU0pKakpKqnFrVGK0KirKJcnE0xGSusdtLi0QSXUXfmuz2Y4fP1ZTU9MeI+k0INOReVbiWe+VvCcIQl3XEKex976xK1uLuLI1YJQlWBIuzLqwg6parVT/fs/vPzzxIROYPrA/XFNGuNVCSb38pCITfarvb3v+dtR39NmCZ5OtyQBwacalx/3H522ZV6vVhqWlQVeYcQgkZZRSpjIun4yyS/td+puxv7Gb7NCJYJ47pLvDG3GPx6MnVgHgmT+JIIiRofLM0KgAAJhMptra2oqKcv0MbcCYyslI4+jh1hIIBAKBoK55kcsRRNE4d3kdfPzN0aOdlN+p2yIS8frM6+OFeKYwXSca+E4aColBUUADTdO4K1vTtMkZk0ckjeiIega0wAv7XvjgxAcggmgSQaybwNH4IkLEOUTC89ITkYAJPj3y6bMbnvUpPn7Jtw+6/ZmRzySLyUpQYQoDBepeKoACTGFUpZqqaYrGFAYqUJWaiOmmnJv+dPafUu2pp6xwdEFdQXoGfn8tMUx8wJUiMgFGZPRbXTKO8FJVVVX7iyaNaM/ZeN38fj9j4Ywcen0JEQ1jVhjUKSLjnWNVVZVwxo9lGZc07pr0a3jrybt6whONaKd+heOjKFCNpjvS7x52dwtnjWwtH5R+sPjYYkEUBFEIqwhp4hXu6hQM0sL1xkQ+PvjxW7vf4h18JsF0y6BbFk5ceE7yOUQmclDWZI0qlCpUUzT+ogoNK4pCNVXLcmY9U/jM/Inze9l7dcQFNg/2gyHdHd6MKoqiB39BeMIVxpjC83RFxsNTpqd1ZZQxMA4d6FYoimyoJw9AAMZUxhilmj5cpq4fnlIeDncmd4JxJEF6IOeBzVWbi2qKRKmRN7vR+EfddtEtFaYys2B+aORDBakFHVHDXb5drx16TSFKuPur8cjNBvmVob7eCEAEohHtjR1vTOw1cWTSSAAgQAp7FS6KX/TloS8/2v/R5orN7pBbY1r4hAyAAWHEKlr7xfW7uO/F0wZNGxg/sKvmrkVdQXoGvJ2llPG5kYw9VHpOYf5XzwjJWOP5j7oLkdpyk4VnzicAmi6RjDFNa5hCudteTieTGZP5zMhnHl77cLG/WDTVl5YGgcUMuCtFH8nBNEYYmTF0xm1DbuuIujFg75W8dyh0SJKk5jL5R7xB3AJmhNVtBeCTB5cGSt/e9faws4bpkwfHWeJuGnTTlf2u3Fm1c0PZhl1Vu47XHg/RkABCvDU+25U9MnnkyOSRqfbUrn34QF1Bujv8CV0UhUBAjWQaFggJd4WxukzDGk8LyQfF89SQPCK5G8Inmoz4bPXpbJlxYD+laoNElyaT7Qw3VnTGpYx7ceyLT6x7YpdnlyiK4a4kjsFeoZTyLCZ6P5hFtNyRd8ecgjk2k60jKnbIf+h/Ff+rl8nfaJ3AyZ8NGvWSiaK4rGTZ3pq9OfE5xh0dkqMgtaAgtYABU6nKUzJLghS9GXLbS3epB4I0j81m4ym5IrmE+eh3vqypap2WRDINq4yxhISErq5409hsNkqpoqhaPaiqUv2KKNVUleqXJsuyy+WCdoQhnGZM7DVx4aSFl6dfLiiCElSoTJnC+Et3PIS9DkrY65DpzHz+rOefGvtUrDm2g2r1U/VPJcESgQhNTAnTRHxJ/a1GCAhEOBE48UPpDycriwCRBMkiWiyipfuICqC9gnR/+BN6XFz8kSMliiJTKgpCXWq/yIhF3iiHU0KqqhYMBh0OR3Jyin6GboKeONlkMoVCQcbMkcTJ+rAGbqzQiEAqHADKE1wiOjlxOQsmLvjvwf++s/udzVWb/aofeM8SI3oaMUaZSMTe9t4X9714Rt6M3ITcDvU6rKtepzDFTE4VDsAa6Y2+bECl6rrj6+4Ycke3ko1TgrqC9AB44haXy1VVVelwOPjUJpFNYZ+KISOkrChqMBjIycnh2cO6la5ApGcvOTm5uLiYT3MZuRzC4w7qi4qsKJrf709KSuIJ+bvb5XQtMVLMjQNvvCTzknVl61aWrNxSsaW0trRWqQUAEzHFW+MHuAaMTxt/du+zs+OydUdFB+HX/Ptr9xMg9XSicVIvqFvDGKsb1Wk0aCLelwOeAz7F13EGVkeAuoL0AHhL2q9fv6qqytra2kg6E+665x57TdNUReHGiurzeVJTUwcPzoFu2QrzKqWn9y4rK/N4PHa7A0BrlDiZd+YpsqwGgwFC2IgRo6Ddg/xPV1wW1/kZ50/JmBJUgzWhGr/ip0DNgjnWEhtrju1oOdEJqIEquYqPqK9TiAZfV/0MxJEY+SasFj5ncHWw2iejriBIB8AYs1gseXlDN24sCoVCfOpfPR5Md6soiuLzeePj48aPn8CHtnTb9PKEkNzcIUVFG9zumgZpNCO6oqmqGgj4FUUeP35CQkIiikrzECA2k62DHPItQQNNYxpEIkoIM2Ty1zGEFdSbHgbqxMa4oFEtHE/cc0BdQXoGXEVcLldBwZgtW7ZUVVXxJPmEAKVMVTVFUUKhIKVqZmbm6NEFFoulm7fCjDGr1ZqfX7Bly5by8jKTySRJEr8crpGyLAeDAYfDPn58YVpaeje/HAQABBAEJnDBoISKIIZDo4z9YJEkxIwxymjd/MENUvrTcPZMgQg9y7kCqCtID4JLS0xMzPjx448ePXro0CG3260oMh/YYTZL6elp2dnZqalperaVrq5yc/DqWSyWgoKC0tLS4uIDNTVuRVH4uEhBALvdMWBA9oABg7q/RiIcm2hziS49WTIFShipFwMNhgBovQcM6iehMZgyjLJYc6xd6tTsXu0HdQXpSXBpIYRkZGRkZGQEg0G/v5ZSKoomh8PB55FljIXzxvYcevfu3bt379raWq/XoyiqKBK73eF0xuoT3aOo9Ajsor2vve/amrUgAgBQoDw4LZLL35DJGBrNOdbUpPSMsixnllNydvWVtQ7UFaSHoY+0J4RYrVZ9SkeIUprhzkcXS4fD4XDUy9kelRyXSKdBCBkdN/qjko8g4hDhafyN32CdjXISRdHTEgMFAYTRqaNNQg9rqHtYtx2CcAyJjesSTfbcJrjJxMnQAzUSKUwsTJVSeXbLOp3QwiNpGqxv+hWZlJ5pLNGaOCl9UldfU6tBXUF6NlHJMdxNiGLWZKSrGBA74NykczVFC6dYpo18J8a3TWXy11OZaZo2MX3ikMQhXX1NrQZ1BUEQJGqYiOmWfrekmlKpSpvO3k+be8tUFp52TGUJloQZQ2ZYxJ43+TTqCoIgSDTJT8y/te+tgiKEZ4hRm50eRt+qAtWopmnh9QC35N4yIX1CV19NW0BdQRAEiSYCEe4adNclvS7RZC08pWPjKcgaiI0KVKNUpXxZ07QpGVMeHPlgj/PYc3pkpREEQboz8Zb4Z0Y9UyvXfnviW0EUiNgo16VhUH14UnqNgQpAw26V5yc+n2xL7pratxu0VxAEQaJPRkzGy+NfviHzBlEV1ZDK5Ibz0jO1Lp9/OJm/SgUQrht43auTX812ZXf1FbQdtFcQBEE6hHRH+vzx88ckjfn7zr/vce+hhAokMocbA8ZY3WgVjQogDHANuHPonTcNvslp7mEDIRuAuoIgCNJROEyO23Jum9xn8n+L/7v00NJd1bvcslulKh8dSRgxEZPL7BqUPOjivhdf2f/KrNisrpqUPoqgriAIgnQsGTEZ9w27b/rg6fvd+3dX7z7sPeyVvQDgkByZzszB8YOz47J7Vib85kFdQRAE6QxizDEjkkeMSB7R1RXpcNBvjyAIgkQT1BUEQRAkmqCuIAiCINEEdQVBEASJJqgrCIIgSDRBXUEQBEGiCeoKgiAIEk1QVxAEQZBogrqCIAiCRBPUFQRBECSaoK4gCIIg0QR1BUEQBIkmqCsIgiBINEFdQRAEQaIJ6gqCIAgSTVBXEARBkGiCuoIgCIJEE9QVBEEQJJqgriAIgiDRBHUFQRAEiSaoKwiCIEg0QV1BEARBognqCoIgCBJNUFcQBEGQaIK6giAIgkQT1BUEQRAkmqCuIAiCINEEdQVBEASJJqgrCIIgSDRBXUEQBEGiCeoKgiAIEk1QVxAEQZBogrqCIAiCRBPUFQRBECSaoK4gCIIg0QR1BUEQBIkmqCsIgiBINEFdQRAEQaIJ6gqCIAgSTXqqrnz99ddZWVk2m23Dhg1Tp049//zzo3jypKSkP/zhD1E8IdLlvPrqqyaTqatrgXQUp+X3u2/fPkLI8uXLG29q2/U201Q++OCDQ4cObXUVT0JP1ZV58+YlJSWtXr06Jycn6id/8cUXL7300qifFkGQHsr111//1ltvnXK3v/71rzNmzOjw2rSVe+6559FHH+2EgnqqwldUVJx99tmjRo2K7mkVRZEk6bbbbovuaZHTCX6TdHUtkDCMMU3TOrqUDRs2XHbZZS3Zrcn1XX7PqKoqiuIFF1zQOcX1PHtFVVVCyLZt2/72t78RQtauXatvWr9+PSFk/fr1+poBAwY8/vjjfLmkpGTatGkJCQkWi2XYsGGLFy/m61955ZVevXr997//TU1NnT17Nhj6wV577bWUlJSioqJx48bZ7fZ+/fq9+eab+snff//94cOHWyyW1NTUhx56KBAIdMLln4GsWbPmrLPOstlsvXv3nj17tizLK1asIISsXr1a32fLli2EkK+++qrJ/RucMBQKzZ49OyMjw2w2Z2VlPfnkk6qqAkBRUREh5PPPPz///PPtdntycvKcOXMopfr5v/zyy7y8vHHjxjVzEgCIjY194YUX7rrrrvj4eIfDcc0111RWVvJN5eXl06dPT0tLs1qtgwYNeuWVV/j6nTt3EkJWrlw5depUp9OZmpr68MMP86IBoKysbPr06UlJSVardezYsStWrOi4T7urePPNNwcPHmy1WnNycvRfmaZpTz/9dHZ2ttVq7dOnzwMPPFBbW8s3XXvttTfeeOMzzzwTExPz3//+FwAEQVi7dm1+fr7Vau3fv/+7776rn/zHH388++yz7XZ7TEzM5MmT161bx9dPmzbthhtuWLx48cCBA202W35+/s8//9y4boSQ4uLi22+/PS4uDgBUVf3tb3+blZVlsVgGDhz46quv8t3OPffcN9988+233yaEbNq0qXHDsm7dugsuuCAhISEmJmbs2LHGDq7S0tIbbrjB5XIlJCRcf/31R48e1TcFAoGbb7658V1hZNGiRUOGDLFYLElJSTfffPOJEyf4+oSEhFdeeeXyyy+32Wxut9vYD1ZaWnrppZfabLZevXr97ne/M54tCvcbY+zzcvZ5OetBlJeX5+Tk3HnnneXl5YqiXHfddVOmTGGM8dtl3bp1+p7Z2dmPPfYYYywUCuXk5AwdOvS7777btWvX008/DQCff/45Y+y1116LiYm56KKLvvrqq/379zPGEhMTn332WcbYwoULLRbLJZdcsmvXLlmWn3rqKUmSSkpKGGMff/wxAPzqV7/atWvX0qVL+/Tp84tf/KJLPo0204bvvfNvlQMHDjgcjltvvXXNmjX//ve/k5KSHnroIUppdnb2vffeq+/29NNP9+7dW9O0JvdnjC1YsEAURb7zHXfc4XK53n///b17977zzjsxMTGzZs1ijG3ZsgUABg4cuGrVqmAw+K9//UsUxQULFjDGdu7cCQDjxo17++23N2/e3MxJGGMJCQlJSUlvvPFGMBgsKipKT0+/7rrr+KZLLrlk8ODBK1eu3L1791tvvWUymT799FPG2N69ewFg1KhRy5Ytk2X5yy+/JIR8+OGHjDFVVUeNGpWdnb18+fIdO3Y8+OCDZrN569atnfUNMNbxtwr/qP/4xz+uX7/+pZdeIoR8/PHHjLH58+dbrdaPPvpo9+7dy5Yty8zMfOSRR/gh06ZNy8vLu/rqq1euXFleXr5gwQKz2VxQUPDpp5+uW7du2rRpgiDwT2n37t1Wq/X666/fuHHjhg0brrzySqfTyX/FN998c0ZGxowZM8rLy2tqai688MIhQ4Y0rl5JSQkALFiwoLKykjH20EMP2e32N998c8+ePa+99prZbP773//OGKupqcnPz7/xxhvLy8tVVW3QsAQCgYSEhGuuuaaoqGj79u2zZs1yOBy8GoqiDB8+PD8//5tvvlm5cmVBQcHw4cMppfyuGDly5IIFC7Zu3Tpv3jwA4HeF8X7+5z//SQh59tlnd+3a9c033wwaNKigoIBSyhhLTU0dNmzYk08+uXr1amNTyRibMmVK7969ly9fvn379vvvvz8tLS0vL4+1+37j33uP1BXGWF5e3gMPPMCXW6IrS5YsAYAff/xR35Sfn3/BBRcwxhYuXAgAX3zxhb7JqCsAsHLlSr7+yJEj+p5jx46dOHGifsi7775LCOF3SU+hR+jKnDlz0tLSVFXlb//5z3/eddddjLHnnnsuPj4+FArx9bm5uU888UQz++u/w4qKCpPJ9Nxzz+lFPPbYYw6HIxQKbd26FQCeeuopfdPFF19cWFjIIu3+7Nmz+fpmTsIYS0xMNN4bf/zjH00mk8/nY4wdP378xIkT+qb8/Pz77rtPP//vf/97fVN2djYvbunSpQDwzTff8PWapg0ePPjuu+9ux4faajr6Vhk7duz111+vv50zZ85f/vIXxlhNTc2hQ4f09Y899lhubi5fvvnmm81mc1VVFX+7YMECAOBqxBjz+/12u/03v/kNY+zRRx91uVx+v59vqqysNJvN/LvjdgD/ahhj77zzDgDU1tY2qB7vinjzzTd5lcxm89NPP61vnTlz5qBBg/jyuHHjbrvtNr7coGFRVfXw4cNer5e/9Xq9APCvf/2LRb7i7du3800bN26cOnVqSUkJvyvmzJmjl9W3b1/+1qgrI0eO5E0Z5z//+Y/e1vXu3XvMmDH6Jr2p1JWSr9c0rW/fvlxX2nm/8e+95/WDtY0NGzaIojh+/Hh9zdixYzdt2qS/HTNmzMmOHTlyJF/gVnB1dbWmaUVFRVOmTNH3OffccxljP/30U5Trfcazfv36UaNGiaLI306fPv3vf/87ANx+++0ej+eLL74AgJ07d+7cuZP7S0+2v87mzZtVVZ04caK+ZuzYsbW1tfv27dPf6pvy8vJ27dqlv9VvktaeRFXV/fv3A0BFRcVtt90WFxdHCCGEbNiwoaqqSt9Tv9MAIC4urrq6GgDWrVtnMpnOPvtsvl4QhEmTJq1Zs6aln2C3h1JaVFRk/AHOnz//kUceAQDG2O9///u0tDRRFAkhL774ovHjGjBgQHx8vPFU55xzDl+w2WyDBw/m392GDRtGjx5ts9n4poSEhOzsbP23P3DgQIfDwZf1H3gztd28ebMsy5MnT9bXnHvuuXv27NG7OhugX5coihs2bDjvvPPsdjshxOl0AgC/nPXr19vt9iFDhvA9R44c+dFHH/Xu3Zu/Peuss/SzJSQkGD8BAFAUZcuWLQ1uRQDQL7DJlo3b37p/WhAE/Y6Nyv12puiKx+NxuVyCUHe98fHxHo/H+PZkx+p3JIc/v6iq+txzz1kjZGdnA4DerYlEC7fb3eDz56SlpV166aX8AfPjjz+eMGHCoEGDmtlfh3/pxq+bL+s3A//Bc+x2u9/vb7BnG04CAH6/PxgMXnnllX6/f+3atYqiMMaMTQY0dafxc6qqGhMTo99sb7755ul0p/n9flVVm/zWHnjggS+//PL999/n1saTTz5p3Nr4N5uQkKAvOxwO7ozxeDwN9jT+9huXyz/2k8EPvOiii/Sv4/bbbweAsrKyJvfXi96+ffsNN9xQWFi4f/9+SqmiKPo+zd+0/P7hEEIaVK+2tpZS2syt2GTLxq0ll8ulr9GXo3K/9dR4sCYhhDRYo/vSXS6X2+1mjOn7VFVVGT/WVmG32yVJeuSRR+68807j+tTU1LadEDkZTqfzZE+CM2fOnDZtmtfr/eSTTx544IFT7s/hX7rxmZQ/ALpcLh5WZNzk9XpjYmJadRL+tsFJACAmJmbLli0HDhxYvHixHhx//PjxPn36NFNbfk6r1bpx40bjSt0gOw2w2Wwmk6nxt8YY++yzz5566qlzzz2Xrzl+/Hjzp/J4PNzmAICamhr+e3S5XA1MkKqqqlN+7CeDf8XvvvvusGHDjOv79evX/IFffPGFxWJ56aWX+LgT47U4nc6amhpKqfHBt4U4HA5RFJu5FU92FAC43W59jf75R+V+O63sFX5L6UJ9/PjxY8eO8eWCggJN04z9VKtXr26m76t5BEHIz88/dOhQToT+/fubzeZmjB6kbRQUFGzYsEE3Gt55551zzjmHh8RcdtllCQkJf/7zn/fs2TNt2rRT7s8ZMWKEyWQyxpKtXr3a5XINHDiQvzWa/Js2bcrLy2tcq9aexGKxZGdnc4HRTZkff/yRx4k0/wmMHTs2GAxSSvWbzWaztblZ7IaIojhy5MiVK1fqax599NFHH31UVdVAIKB/XG63+7PPPmv+49KjQ30+3/79+/l3V1BQUFRUFAwG+aaysrJ9+/a14bfPix4xYoTFYuGhQ5zExMTk5GSLxWLcrTFer9dqteqDGd9++219Z946/fjjj3zTjh07CgoKduzY0ZJaSZI0YsSIBrciNNuxDwCDBw8GAF08VFXVS4/K/XZa6UpmZmZKSso///nPYDBYVlb28MMPJycn800XX3xxXl7efffdt3bt2r179/7617/eunXrrFmz2lzW7NmzP/nkk/nz5+/du3fTpk3Tp0+fNGmSz+eL0qUgYe655x5FUW6++eY1a9Z89tlnc+bMycvL4491oijOmDFj3rx51157bWxs7Cn35yQkJNxxxx0vvPDCp59+evDgwbfeemvhwoWPPvqo/oP/7LPP3n///eLi4ldeeeX777+fPn1641qd8iRHjx6dO3fuvn37vvzyy1deeWXq1Kk2m23EiBF2u/3//b//V1paunTp0tmzZ1922WW7d+9uvpPh/PPPHzVq1C233LJy5cqDBw++//77o0aNev3116Py8XYTHn300RUrVjz99NMbNmxYsGDBq6++WlhYKElSfn7+W2+9tX///g0bNlxzzTXXXHNNVVXVrl279JBuHcaYyWR6/vnnV61atW/fvkceeUSW5ZtuugkA7r//flmWZ86cuXPnzk2bNnH/VqvGqFmtVpvN9v333xcVFdlstrvvvnvu3LkffvjhwYMHv/vuuwsuuOCOO+7ge8bHx2/cuHHjxo0VFRUNTlJYWFhRUbFo0aLS0tK//vWvW7du7dWr1+bNm91u94UXXpibm3v33Xd//fXXP/zww9133x0KhXjT3xIef/zxZcuW/elPfyouLl6xYsXjjz9+zjnnFBQUNHNIVlZWYWHhvHnz/ve//23YsOGOO+6wWq18U3TuN3YaxYMxxr788svc3FybzZaTk/Of//xnwoQJemBiSUkJjxA3m82jR49esmQJX8/DNnh/N6dBPJi+iT9vvvPOO/zte++9N3z4cLPZnJCQcNVVV+3Zs6fDLzuq9Ih4MMbYypUrCwsLLRZLWlraY489FggE9E08AnD58uWn3N8YP8OHnqSnp5tMpn79+j3//PM8KJPHg3344YeXXXaZ3W5PSkr6zW9+wzfxyJxly5bppZzsJIyxxMTEuXPnPvzwwwkJCXa7ferUqdXV1XzThx9+2K9fP5vNds455+zcufN///tfXFxcfn5+4/Pn5+ffeeedfPnEiRPTp09PTEy0WCw5OTkvv/xydD/hU9IJt8obb7wxcOBAs9k8aNCghQsX8pVbtmwZM2aM1WodMmTIZ599VlJSkp2dnZSUVFxcfPPNN5911ln64S+++GJCQsIPP/wwcuRIs9ncv39/Ho/L+fHHHydNmmS1WmNiYi6++OJt27bx9Q1OwiOpjhw50rh6zzzzjMPh6N27d3V1taIoTz/9dGZmpiRJvXv3fuCBB/Qor6VLlyYmJiYmJn711VeNG5Zf//rXycnJLpdr+vTpHo+Hn5M3UIcPH7722mudTmdcXNy11157+PBh1tRdp98VxvuZMbZo0aKcnBxJkpKTk2fOnKnfb717937yySf13YxNZXFx8ZQpUywWS0pKym9/+9snn3xSj2prz/3Gv3fCGPtPBQDAFUmtEySkp9OG77273Sq//vWvlyxZwgcVtv9s27ZtGzZs2KpVq4zRNW0gKSnp0Ucffeqpp9pfpW7CaXCrIJ0D/95PK789cuawc+fOb7/99sUXX3z//fejIioIgkQL1BWkRzJp0iRCyPz586dOndrVdUEQpB6oK0iPpLFftP0MHTqUnSo6qyV0RN0QpAdxWsWDIQiCIF0O6gqCIAgSTVBXEARBkGiCuoIgCIJEE9QVBEEQJJqgriAIgiDRBHUFQRAEiSaoKwiCIEg0QV1BEARBognqCoIgCBJNUFcQBEGQaIK6giAIgkQT1BUEQRAkmggAIBEAAK/WxVVBOhP+dUutnLgEb5UzELxVkBai3yoCAMSIAAC7a8GHN8GZgVeD3bUAka++5eCtcqaBtwrSQoy3CmGMnZDhZ09XVwrpCsa5IEVqxf54q5yx4K2CtJBxLiB8IqMTMuz1g1cDNQrTGiHdHYlAjAiD7JBibvWxeKucUeCtgrQQ461CojJBHoIgCIJwMB4MQRAEiSaoKwiCIEg0QV1BEARBognqCoIgCBJNUFcQBEGQaIK6giAIgkQT1BUEQRAkmqCuIAiCINEEdQVBEASJJqgrCIIgSDRBXUEQBEGiCeoKgiAIEk1QVxAEQZBogrqCIAiCRBPUFQRBECSaoK4gCIIg0QR1BUEQBIkmqCsIgiBINEFdQRAEQaIJ6gqCIAgSTVBXEARBkGiCuoIgCIJEE9QVBEEQJJqgriAIgiDRBHUFQRAEiSaoKwiCIEg0QV1BEARBognqCoIgCBJNUFcQBEGQaIK6giAIgkQT1BUEQRAkmpj4fx6PZ9u2bceOHQsGg11bIQRpIVarNT09fejQoU6ns6vrgiBIHYQxVlNT8/333xcWFjqdTpvN1tVVQpAWEQgEPB7P6tWrJ0+e7HK5uro6CIKEIW63+9tvv73qqqu6uiYI0kaWLFkyZcoUtFoQpJsgbN++vbCwsKurgSBtZ/z48du2bevqWiAIEkYoLS2NjY3t6mogSNtxuVylpaVdXQsEQcIIwWDQarV2dTUQpO3YbDaMN0GQ7gPGGSMIgiDRBHUFQRAEiSaoKwiCIEg0QV1BEARBognqCoIgCBJNUFcQBEGQaIK6giAIgkQT1BUEQRAkmqCuIAiCINHEFMVzBYNBRVFCoZCiyAAgSWaLxSJJUvcZz19UVHTkyJFdu3YdPnwYADIzM3NycjIzM0eNGtXVVQuz3/9ThXKwJLitXC4GgGRzvz7Wocnmfv1tY7u6agAAX1V/tcO/Y41nzQ7/DgAYYh9SGFuYZ8+7MP7Crq4agiDdhejoiqIoNTXViqIYV8pySJZDACBJUlxcvCRJUSmrbRw+fHjRokVcTnR27dq1a9cuAMjMzLzzzjszMzO7qHYAAOVy8bLKBVxOdEqC20qC2wAg2dzvgsSHks39uqh2sN2//bEDj3E50VnrXbvWuxYAhtiHvNj/xTx7XhfVDkGQbkQU+sG8Xk95eVkDUTGiKEp5eZnX621/WW1jyZIlc+fObSAqRg4fPjx37tzPPvusM2tlZG3NB+8dm9VAVIyUy8XvHZv1k/tfnVkrnZeOvnTJtksaiIqRHf4dl2y75OWjL7e5iJqaGkIIpiVGkNOA9uqK1+tpoWB4vZ7aWl8zO+Tk5Pz5z382rvnggw/a34e2ZMmSFgrGkiVLvv766+b3qa6unjVrVv/+/S0WS1pa2g033ND+pnBtzQctFIy1NR9s9PynmR3uvfde0ogffvihPdV76ehLfzn6l5bs+fLRl/9x/B/N7/Pll1/yabgcDsfw4cNffvllSml7qocgSHejXbqiKEqrrBC3292MWdMRHD58uFVWyPvvv9+MWeN2uydMmPD111/Pnz9/48aNixcv1jStsLBw8+bNba5huVzcKitkZfX/NWPWAMB55523tz4FBQVtrt52//YWigrn94d/v92//WRbX3/99SuuuGL06NFff/31mjVr7r///ueee27GjBltrh6CIN2QdvlXqqurW3tITU11cnJKewptFf/4xykenxuzaNGiZ555pslNzz33XHl5+Z49exISEgBgyJAhkydPvuuuu7Zu3TpixIi21fDrildae8iyygW/SHvpZFvtdvuAAQPaVpnGzDowq7WHPHbgsf8N/V/j9RUVFbNmzXr66afnzp3L1wwfPnzkyJHz5s3zeDztrSiCIN2GttsrwWBQVVttfCiK0mlTZfDor9Yedfjw4aKioiY3ffzxx/fddx8XFZ2FCxfecsstbashj/5q7VHlcvF+/09tK7FVfFX91U7/ztYetcO/46vqrxqvX7p0qaZps2fPNq4cP378Z599hjPLIcjpRNt1hQcTR/fAX/3qVyYDN998c1trBwDQTI9WGw6klB46dCgvL5ohT833aHXEga2imR6tNhx44MCBfv362e329lUKQZDuTtt1JRQKRf3AX/7yl5sMzJ8/v621AwDgMcTROpAQIoqipmntqVIDeAxxdA9cunSpqT6VlZVtK2WNZ00UDzSZTNH99BAE6Z603b/SZg98Mwf26tVr6NCh+tt2hlq12V5psveMENK/f/9NmzY1sKIURWnz0Jw2mx3N9J5NmjTpr3/9q3FNXFxc20ppJrC4eZrsPRswYMDBgwfdbrfL5TKub88HiCBINwTzuDQBY6zJ9VOnTn3jjTeOHTtm3HP69OmPP/54Z1WtrtyTbXI6nUPrI4piZ9YNABg0Ub1LLrnEYrE8++yzxpWbN2/u06dPSUlJZ1UNQZAOp+260uZnzE57OG3z+PmTHfjEE0/07dt30qRJixcv3r59+7fffnvNNdd88803d911V9sKavP4+c4ZeD/EPiSKB7pcrldfffXll1++//7716xZs2XLlr/97W+TJ0+eNm1anz592ldTBEG6EW3XFYvF0skHtpacnJzoHuhwOFavXn399df/7ne/y8/Pv+WWW+Lj49etWzd48OC2FdTHOvTUO0X1wFZRGFsY3QNnzJjx9ddf79+///LLL58wYcL//d///elPf3rllVZHWiMI0p1pu39FkszRPbCxt/zGG2+88cYb21YKdIC9AgAxMTHz5s2bN29eWytVj6jbK6+//no7qtOQNuf7aubAKVOmTJkypfH6uLi4Zjr3EATpQbTdXrFarSZTq3u0TKbOS288evTojIyM1h6VkZExevTojqhPY7Lt45Kkvq09Kknqm20f1wHVachF8Rfl2nNbe1SuPfei+Is6oj4IgvQI2uW3j4+P74RD2sPMmTM74ZD2cGHSw51wSJt5qf9JB/ZH8RAEQU4n2qUrkiQ5nc6W7+9yuTo5ojQzM/Oqq65q+f433XRTJ2fLTzb3G+ea1vL9z46/ozOz5efZ8x7t/WjL9/9t5m8xWz6CnOG0N87Y6YxtobS4XC6HI6adxbWBq6++uoXSctNNN114YRfMTzU+7sYWSsvZ8XeMir2io+vTgFm9Z7VQWn6b+duZvTrV2kMQpBsShXm9nM5Yq9VWXV19snRhJpMUH9+V83pdffXVo0eP/sc//nGydGEZGRkzZ87swnm9xsfdmG0f93XFKycb8Jgk9b0w6eGumtdrVu9ZF8VfNOvArJOlC8u1577U/yW0VBAEAQDy7rvvtjMNl04wGFQUORQK8RH1kiRZLBZJMnereYgPHz7ceB7iTnPUn5L9/p/K5eLG8xB3jqP+lHxV/dV2//bG8xB3uaN+8eLF0bqNEQRpJ9Gc395qtVqt1tY4XDqb0aNHdx8JaZJs+7huIiFNclH8RRfFXwS9u7oeCIJ0YzCPC4IgCBJNUFcQBEGQaIK6giAIgkQT1BUEQRAkmqCuIAiCINEEdQVBEASJJqgrCIIgSDRBXUEQBEGiCeoKgiAIEk0Eq9UaDAa7uhoI0nYCgUD3yRWEIIiQlpbm8Xi6uhoI0nbcbnd6enpX1wJBkDDCsGHDVq9e3dXVQJC2s3r16mHDhnV1LRAECUMYYx6PZ8WKFePHj3e5XDabraurhCAtIhAIuN3uNWvWTJkyJTY2tqurgyBIGMIYAwCv17tt27bS0lL0tSA9BavVmp6ePmzYsJiYLpgvDkGQk/H/Af3k1dc8yS+7AAAAAElFTkSuQmCC", "path": "image.png" }
Look at the models of molecules below. Select the elementary substance.
[ "fluorine", "cyclopropane", "carbon tetrachloride" ]
0
There are more than 100 different chemical elements, or types of atoms. Chemical elements make up all of the substances around you. A substance may be composed of one chemical element or multiple chemical elements. Substances that are composed of only one chemical element are elementary substances. Substances that are composed of multiple chemical elements bonded together are compounds. Every chemical element is represented by its own atomic symbol. An atomic symbol may consist of one capital letter, or it may consist of a capital letter followed by a lowercase letter. For example, the atomic symbol for the chemical element boron is B, and the atomic symbol for the chemical element chlorine is Cl. Scientists use different types of models to represent substances whose atoms are bonded in different ways. One type of model is a ball-and-stick model. The ball-and-stick model below represents a molecule of the compound boron trichloride. In a ball-and-stick model, the balls represent atoms, and the sticks represent bonds. Notice that the balls in the model above are not all the same color. Each color represents a different chemical element. The legend shows the color and the atomic symbol for each chemical element in the substance.
fluorine
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAIAAACmkWkFAABEi0lEQVR4nO2deXxU1fn/n3Pv7FsmmYTsgWENCQHCIshiQEVk10qV1rpjXWqtbVVaq+JaC9X6tfZbt+JXrNa2P8VdQKzKUhXUsATCTgIJ2bfZMuu95/fHmbmZLJPMcmfmDpz3ixevO3fuNvd88nmes9x7EMYYUo0zXY4htykyahNwJZTzGarDSJEl+wL64vJxx1utx1otLh9ncXksLm+yryhilDImW6dOUyuydeqy3HSVjE32FVEihuowHiBJZTfNdteblSfcPn7wzdJ1WgQAAAgBAv8/QOBfCYAA2h1ODzfEcRKAUsasLDMXpdMQl0pQHcYJadnNhj3HWuwuhUqrN2YoFQqVXK5SKuQIZAywADIGZAhkCBjkX2ADyywCBoANrCHLTGBZWEAAKLCMMfAAHMYYgONx0LJ/PY+BxzhouWe9f0v/MgQfgQfw+Lhup8fh8lgd3TZ7t1LG/OqiCcm+tZQIoDqME0xyT98Hi9MDAOl5IzSGdJVaK1coAIDYIUKBJfBHDxxY7tkgaLnHRMkyBhy0J/ZvjxFCGANCCADIMpD1ZFMUFK4Q4MB6hBAOrEcIMMYQOAJgkLGsTqvKMhlGFGQDwJBBkiI1qA7jhLTspihdBwAuh5XcXZJ4+YsGB5aCCpgs92wQtBzYFgAHpbiBPZF/e4Qx9pcTAFkmciCqIBsFlgEF1mOMUWC9XyWBIwiHxhicHi8ADNOpRL5NlDhDdRgnpGU3w9N1AOBx2Mnd7RMoUiWqBJahs9MKAe1SUgiqwzghLbsZm2VQsozT3umyW1M9qnS7PO2dVgCYmJsh+o2ixBWqwzghLbtJUynmjswBgLamMzzHpW5U4Xi+tq4RAOaYs7MlkMRSIoLqME5Iy24AYHph5phMA+b5hjMnfRwHKRhVfBx3rKbB4+WKjNq55ux43CVKvKE6jAeSsxsAWFpSmKVTedyuutMnXW5XakWVbpen6vhpp9tjUMmvmjgiHveHkhioDkVHWuNuBFw+7s3Kky12F8MwwzKz0tPS9CqVlMc7uL1cZ7ezrcveabNzHB6TaVhaUiiFcZyUWKA6FBeJ2g3ho+q6qqbOZF9FxMwxZ0skd6WIAtWhWEjabgDgTKfjaJvlu7rWnhqzNMEYAywYm1+UrpNCmxxFXKgORUFyj2j2oShdW5Su/a6uDQCuu3AiSUERAAL/Qp+PELQeAlkrwv71whqywGPAADzGGACTZcAYEI8x+Ncj8i2PIbDGvxcWvkXg5fm39xxlEZpemJmEe0SJP1SHoiDFpuKQBBrYSLkiCGrk790jIHwk2wMiDWk93wZ6BAADJqVOWuD8fQT+IBFI/XrWCIfF/u1J+1yQjCjnPlSH0ZJSdhPoA8DQ808ouuAeAeEj2R4w6SaEXkXvjy3IX3LY3y/pb+1H/mVyrMAa4bDIvz0GhBDPYwBgkYTLmSIiVIfRklJ2I9Wogv1RRbrFTBETqsNoSSm7kWxUAR4AkJSzWIqIUB1GS0rZjdSjSpx+NkViUB1GS0rZjWSjCuZB2nVmiphQHUZLStmNdKMKAmnXmSliQnUYLSllN1KNKhzGIO1ipogJ1WG0pJTdSDWqkGtAEi5miphQHUZLStmNVKNKoM4cr99NkRZUh9GSUnYj1agi/fEOFDGhOoyWlLIbqUYV6deZKWJCdRgtKWU3Uo0qIPmoQhETqsNoSSm7kWpUIaM5GSmPr6KICNVhtKSU3Ug1qkh/NCdFTKgOoyWl7EayUUXySSxFTKgOoyWl7Ea6UUXqTXQUMaE6jJaUshvJRhVe6sVMEROqw2hJKbuRbFQBAGnXmSliQnUYLSllN5KNKpgHaUcViphQHUZLStmNZKOK5J/EpYgJ1WG0pJTdSDyqSDmLpYgI1WG0pJTdSDeqAEg7qlDEhOowWlLKbqQaVQIdkPH63RRpQXUYLSllN9KNKqSYJVzOFBGhOoyWlLIbqUYV6Y/mpIgJ1WG0pJTdSDWq8JKPKhQxoTqMlpSyG6lGFenXmSliQnUYLSllN1KNKmSdlKMKRUyoDqMlpexGqlGFk/x4B4qYUB1GS0rZjWSjiuRHc1LEhOowWlLKbqQaVaT/rApFTKgOoyWl7EayUYUHkPaEGxQxoTqMlpSyG8lGFXIhEo4qFDGhOoyWlLIbyUYVyY93oIgJ1WG0pJTdSDWqkCNIuZgpYkJ1GC0pZTfSjiqshIuZIiZUh9GSUnYj1agSGDwer99NkRZUh9GSUnYj3agCAICkXM4UEaE6jJaUshvpRhWpj3egiAnVYbSklN1IN6ogkHadmSImVIfRklJ2I9Wowkm+zkwRE6rDaEkpu5FqVCEXIeUkliImVIfRklJ2I9WoIv3ZCyliQnUYLSlgN002JwCo5DLJRhW1XCZcJ+VcheowdlLAbqqbuwBguClNslGl0GQAgEPNnfG5ARRJQHUYOyljN0Umo2SjSn66TsagRqvT6vLE6SZQkg7VYexI3W4arN02t1cllw3TayQbVRgGFWQYAKCqqStO94GSXKgORUHqdnOYZLCZRkBIslEFASrM0APAgcaO+NwGSpKhOhQFqdvNwaYuABieYewpUelFFQw4x6iTs0yX09Nid8XnTlCSCdWhKEjabuot3d1en0Yhz9RrekpUklEFARSa0iBQw6ecS1AdioWk7YZksIWZRgguUUlGFYRQkUkPAAebpNsvQIkOqkOxkK7dYIz9fQEZaRBcopKMKhjjTJ1aLZfZ3N6zlu643BFKMqA6FBHp2k2dpbvb61Mr5CadBlIhqiCECjPJwIeuuNwRSjKgOhQR6drN4ZYuABhuMgZiidSjCgAUpusB4HBzJ99zekpqQ3UoIhK1G4zxkWYLABSajIFYIvWoAgDpOrVWKe/2cmc6HXG4K5REQ3UoLhK1mzNdDpLBpmvVKRRVMMZFpjSQ9kBySvhQHYqLRO2G9AWMyEyHnliSAlEFIVRo0gPA4RYLx0srj6VEAdWhuEjRbniMq1ssAFBgMkJPLEmNqKJTKY0alZfjT7bbRL8zlERCdSg6UrSb050Ot4/TKhVGjQpSLaoA4ALJP5hLCQeqQ9GRot2QvoAiUzr5mFpRBQAVZegB4Hib1cfxot4YSkKhOhQdydkNj/GRFgsAFGamkTUpF1WUCrlJr+F4fLTVKvLdoSQKqsN4IDm7qe2wkwxWr1KRNSkXVQDjggw9SCyPpUQE1WE8kJzdVJMMNjNdCAspF1UAobx0PQCcarc5vT4x7w4lUVAdxgNp2Q3H46OBvgAhLKRiVFHK2Ow0LQY4Ipk8lhI+VIdxQlp2U9Nh83C8QaPSqZQpHVUwQH6GHgCqJflgLmVwqA7jhLTs5jAJKRlGCAoLqRhVEECuUc8gdKbL4fBIIo+lhA/VYZyQkN1wPD7W2lPMqR5VZCyTbdQBwCFpBBZKmFAdxg8J2c3JDpuH49O0ao1KAakfVTAG8p5qCb4HgDIIVIfxQ0J2Q55PyUv3z+OT6lEFIRiWpmUZ1GRzdna7RbxRlLhCdRg/pGI3vTJYUmCpH1UYhHLT9QBwqKVLvFtFiSNUh3FFKnZzot3q47FRo1YrFedMVAGAgow0AKhqTH61mRIOVIdxRSp2Q14Hm5thJEEAzomoAgAZOpVCxkp2Ig5KH6gO44ok7MbL8SfarACQl5FGggCcK1GFYZi8dMk9mEsZEKrDeCMJuznRbvPxOF2rUSsU51hUwRjnZpBuyC7R7hclPlAdxhtJ2M1hIYMFOMeiCkIoXatWymU2t7feIq0Xx1L6QHUYb5JvN16OP95mAZLBApx7UQUA8iUz8IESCqrDBJB8uzneZuUxZOi0Crkc4ByMKgCQ539upUtqE3FQBKgOE0Dy7Yb0BeSkp/lv4LkYVfQqpU6lcPm40512Me4ZRXyoDhNAku3G7eNOtlsBICcjzX8Dz8WoAghy02l9SrpQHSaGJNtNTwYrk5/DUQWw/z0ARyQ2EQeFQHWYGJJsN6QvIDvd2GP552hUUSnkaRqVl+NPtEviRUeUYKgOE0My7cbt40512AAgNyOtx/LP0agCAOS5lWpan5IYVIcJI5l2c7TVymPI0OtkrOycjyoAkJPun4jD4+Niv3sUsaA6TBjJtJteGex5EFUUcjZDr+F4fKyN1qckBNVhwkia3Ti9vpoOGwBkGw29LP/cjSoIUE66Dmj/lJSgOkwkSbObo61WDJCh18tlsvMkqmDA2UYDAqiRzEQcFKpDEW5i2CTNbsiMqNnpRgA4f6KKjEGZaTocePk2JelQHcZ4AyMiOXbj9PpOd9gRQJbRAADnT1QBhLJp/5RkoDpMsA6TYzdHWiwYIN2gl7EsnE9RBTDOMmgZhOqkMRHHeQ7VYYJ1mBy7ITOiDks3ko/nVVRhGDTMqAOAgxKYiOM8h+oQEqvDJNiN0+s70+lAAJlpBrLmvIoqCNAwI61PJR+qw8TrMAl2U91sAYCMNIOcZcma8yqqYMCZBo2MZaQwEcf5DNVh4nWYBLshfQFZRmNPQZxnUQUA+Sc2pAlO8qA6TLwOE203Do+3rsuBAExphp6COM+iCkJA8tgq2nyTJKgOk6LDRNvNYX8GmyZjmPM2qmAMRp1aLmO7nJ5mmzOW+0mJDqrDpOgw0XZD+gIyjUbcU0DnY1QBgGz6wq3kQXWYFB0m1G4cHu9ZSzeDUIZBj3oK6HyMKgj5q820fyrxUB0mS4cJtRsyx016moFlmPM8qmCM9RqVSiGzub11dEKYxEJ1mCwdJtRuyAMaJqMReoIHwPkaVQBwdkYaAFTTGe8SC9VhsnSYOLuxujwN1m4GoQy9HnqCB8D5GlUA0LA0fx5LJ4RJGFSHSdRh4uymusUCAOlpaQzDAI0qCAFgjUpBJuKopRPCJAqqwyTqUBbXowdT3dQJAFqVymG3IwAGAYsAATCAWQaRBQTAIoQQRgAMAIMAgX8zhIBBABizCJH1gf8RACYLCDDZ0h9zem+AADGByEVcHwPwgDHGPFkOLGCMeYwxII7nyUcMiMcYA/AYeIwB9WzMY4wxBL7FGBAO2pKsJxvw4D8OBLbkMVYrGLsLqpu6RmboE1YW5zPk3X0mo1HIVoSQS1IPpvcXxCAgKLtBQnYjKA16ZUNkPUHY3Z/dQNAp+mU3gaSkJ7vh+2Y3fv30ym5wT3YT+LYnu+FDZTcYI9Rz/Mx0g72xLd46TJDdWF2eZruLQUivUeNACfEYswghRFyW3CHAgFEg7STgoBJFiFi5fz2Q7Xs2DGyM/CHEb/l+jfiLhXwXSGsRjzFCCPMYAUIIExtC/vLwC4nEAVJCCBApUgYxHM8DEBn5t8e4pywBA8MwHM+TsINwjyaE4xtU8lar60hL16LiAlaQISU+WF2eJpuTQUjOIJvdzgCwCAAwi5A/+AWFOgYABYIiCqxhgoKfsF74X1gAsn1Ah/6Yh/3KRMivQ/D/IQAG4HgeEOJ5TKKgP7BBr8BGvEOIfBiA53lADMfzPPQENhwUzwCA4zEgxPHk2CgQBZEQODEglvMBwJFWyyI+jjpMUGWK9OrrtToU5PUM+WP233eh6ooGqTMTMwiuMwcFEtSzMRbiAQ4c0G85/myzb1Tx14GFircQYTDGferMJF8BBDzmhYsLVWfmeR78qTLuX2fGGMtZRi2XeXl8nE4IE3+oDofQIcfHVYcJshvSq2/QaoTcJJAokqwBhGLFpKUsRJ1ZyG6C/gVXhAMbI6G2iwIH9N95f3n0rjOTIIQCNdzgOjNCqE+dGSFE6swMYoSLC1VnJg0E/uymX52Z7GXQyIH2TyUEqsPk6jARlamObneL3cUgpFNrIFCVxQBsIKowDMlPSWkIlZUB6szEjIPrzKQ6DP4NsRBVILA9g8gBA3c+0JTT2szVnPLZrNhm4TBARhaTnslo9cywfCaozsyTSwmuM5MQ1BNV8MBRhe8dVXghqvSuMwOATilvBufxNovHxylkbAJK5PxEmjoMzm74QCuMkN2cYzpMhN2QYQ46nU6ICSi8thtbG9fZyLfWeiFg0nIlyjPLMvNYnYERolBw+MFhtN001HNfbXe3tfSaZKexnicLOgOaOkdeMJJNTNsNYCxjkUYp63b7jrZZy3LS418g5ylR65AgbB9LG6LHDR1tvoZ6zmbl7VZeoUSZWUxGFjtilCy5bYiJ0WEi7Ib0SaVptAAQZlTpbOBqK92dDQNMu9V4ygcAI8bLS6crdAYmoqjiceEvPnXWnBjsbYl2K97+iadgJFM+W6HW4QREFYzBoJJ3u33VTV3UbuIH6ZOKSIcgXnbjc8OX25yn+2mv5gQAgEKFyibLJs9QJDG7SYAO4243Hd3utm43wzAatRoAwokqJ75y1R/0Dn7Y2sPes6d8k+coR5UE5pAfKrvxuPgP3nG2t4Q1c2D9Kb75rOviFYq0TCaKqNJ0nO+oA0sTcJ7A1QFKK8DaYZBuBiTvFVUQAq1SjsBZ02Fzen1qeeJGJ5w/dHS7Wx2uiHQoYnZzaK+3crfb48IQAo8Lf/+N91g1d8kSZXoWk5TsJgE6jLuySeOcTqsVmr8GjypHv3Q3HR/CawheN/72Py4GwcjxcgAYMrvZ8mG4XhM4Pnz+vmfecnmaCYUfVZpOwJl9vGug0VKWemSph+aDKHMcn1nKB0cVlkFalczu8h1usUzJN4V/kZQwiVSHImY3O7e5TlSHJWmblf9kk/PyH6iMmf4hiJFmNx0NuKsZW9uxowNcdr+7GXJAP4w3jQSFdojsJt46jHvPVFVjBwDoNDr/50F7BI5udzUd90R0/N2fuU4dJmXpjyrkmH16BL7/2tNYH/GMyF43fPsFF36PwNFdcGwXHtBrBDgPNFcxJ7fKOI8wBhQwgE5J+6fiCHkBeJg6BBCtZyp8ryF43PDBW67ONh4gsp4pnxuO7eH3buFr9uL2MxAsQmsTnD2ADryHar5GvDdkz1QCdBhfu2l1uLpcXoZhNCqVfxXuiRJ9xjt01Ppawstr+lC502238kQJQlQJHu9gs/LffxPl21i72vjj+zkEQv4ScrzD3s1804mQ2XIfXJ1w+gsZ5w7ETwCtUoYQ1FkcVldkhksZklaHq9PpCVOHZL0o424OVXoi8hqB/37m8bghoLqhx920nMY7/x935uAQ8ms/BVXvo+7OAcbdQEJ0GF+7OezPYPVIiBGho8qpaB3B68ZVuz2DZDfffxPTjTtxkBsyuzm8E7qaIjusqxNOfymDQFRBCOlUcgg81EMRkYh0KFZ243HjfbujlHRHK394nzfM7KbhON77GecL71ScB078h3V2hMxu4qrD+NrNIX8Gq+lZFSKqtBzzuu181CeqOeK1W0ngAeiX3Zw+GdPEXQ4rtrTxg2Q3nQ3QeCKai3d3QvshFgfuidafx3bGcrWU/vgbbsLQoYjZzYlqn8cdbrbbnyP7vV730NlN82l8YHtkrQScB05+zrrtA2c3EE8dxtFumu2uLpeXZVi1St2zNkRU6Tgd61R+9Sd9MFB2Y7VwsZQ6oaEWD5LdHNoZvVF2HkfYi8j1aRQsg1Cz3UUnhBGRZrur0+kJU4ciZjcnq2PKqT1uaD7LDZ7deN1o/46IWyQBgPPA6V3sgNkNxFOHcbQbksFqtNpea0NEldjtpvmsDwbKbuxiPALideNQ2U1HY08XQBTwHmSp6XkkTquSAcBB+kZR8Qhfh9YmztrI11W620/7LI28zxNkP5FnNx1t0QchQvNZfvDspuZguHWo/rg6wdGCBsxuIG46jGNH+EHSJ6XV+Z/gIIQY7xA7JIXBvcc79Dp1DHS1CyMU+o53aD0dq6ocDShtLECg2mxzeqsaO+aas2O/bAoIfVKhdWhp8LUd9nQNFPDS89iiCYpsswygZ/twxt1E0Q3an442fvBxNzVVMZ2l5SAyX9Jr3A3vT+j8OjzY1CmuDuNlN002p83jYxhWqVAFasUAMPB4B1tzrH+xAED6DoPHO5CqqUekfLBXdhM03sHWHuuRna3+vwOMsVLGsgyyuLxNNmeOXj30zpRBabI5bW5vKB1yHnzqi257Y8g/2s4GrrPBmZHHFl+oNGaxEOG4mxgJ6pkaYNxN21neG1vfkaMF+dyYUfTKboJ12OX0iKvDeFWmSOOcVqdjmEA7CmGgOrNSK0LpyBX+CAC9224UytiPDUYTCtV24xTj/WfBl60l/QK0PiUGg+jQ2cEd/8AxiNcIdDRwez5ytjVwEOG4mxgZvGeqvUmEk7i7mP5tN/HTYbzshvRJaTS6QGNHgIHqzCqDCJehMww87iYzS4RnW9MyEQ7RdhNLw42Az+G/FRj7+wUONHZgUSqZ5zfkr6W/Dj02vmZLtyfszlCfG+/5oNvaxoXZdqMUI8jp9MwgbTfemDtAAMDtGKDtJliHVaLqMC5202Dttnt8DMOqlKpAOhAgRI+AUhfrlWgN5I0eAL2zG7kKTFmxHjwzjwmV3ah0IqRmMq3/ViAEChkjY5DTy9VbumM/8vlMg7Wb1KT66JD34PovnJwn4r+ibz50+tw4nOwmXYwgpzWgwXqmYj8BgM8RMrshOuwWVYdxsRvSF6DV6qAnHQgQomcqY3isrUiFI+UQYtzNhHJFLEfOykM6fcjsRq0b8gBD0+eyNSo50Ak2YyaUDjsOe1wd0TSyet344H/dYfZMFY2MVdJF5sGyG5lClDjHh8puIA46jIvdkL4AtUYHPelAgBDZTe4EeSxn1OqZwlH+ljzond1gwGNL5LoY6msl0+R9xjsEZzf6mB9k0+XhPpftH9bZ1EknhImFg01d0E+HvAd3HI6+ibX+qLfbwofTdjOqJCZJp2ciYxYzSHYjSnqj1A4w7qaPDg+LNyGM+HZTb+nu9nIMyyqVKgg7u1Hp2WFjoi+eshkKIapAv+wGEMy7TDXY/qEZU8Zm5UFwVOmT3WQNj/UeqrJwn8tmEShkjJvjazrohDBRUm/p7vb6+uvQdsbLR16NCuZUlSes7GaULCMzem1MukAR1DM1QHZjyhHBb5TGwbIbokOXjxNLh+LbjX9UlcY/fUSY2Q0ANs9URpcfDstnR46XB/cI9MluAENeoSwKxzGaUPlc+eBP4mbkQnoMBc/IIc3M971shlErZED7p2IglA4ddbEOKG1rCCu7AYC5C6PsQi4ayRaOYgfvmcrMZ+QxNRKAIR/LlINlN6LrUGS7wRhXN/fUpCDs7AYAyZVo4hJ1pI6TnsnMXUIKdbDsBgCPK1XMX6hSKsM9foGZnb9CEepZFQh6ZmpkefS3MX0sj+R9sxvM86Qb8mhLl48TYVDS+QbGmPyF9NdhFC3EfbC2ceFkNwCQnsnMWRBxkMvIRLMuVUKvcTcDjyo2l8XUIG0owAOOKh5Ah60WUXQost3UBWpSikBPYPjZDQbQmthJSyNwHGMmc/EPNAql4GAhsxtSduNKFSuv1eQVDFFICgWUXSCfu1iuUA38rEpwdgMA6XlQWBJNgqMZhk2l3IBRhUGglLNeHp9ot0Vx5POcukBNqr8Onc0ijPcNM7tBCI0tlc+NJK3OyWcXXaVRqvwHGqxnCiHzBDbqBEc7DBvNWDg+hMhu/DrkeFF0KLLdHG7pAgC1xiAkNOFnN2S93iSbdpXGmDu0bY+dJL/4So1C2TMJIgya3ZBTGIzsiqs1i5ar8wrY/pmOVo/GT5ItXqUqm84OElX6ZDeAYcwMlDM6MsdRGXHBbA5CRBWEGBWtT0XL0DqMDY+LDye7IQU6pkS+eKVmyM4KhRLNXaBcvFIlV/qvdMjsRq7EUxZEk+CwciiYwQvDowfJbsTVoZgPMWCMjzR3AYBKoxMSGoSCx3cDhHhmKvgdsWodM2WZxtLI1VV5Oho4X+/sV6NnMvPZkukKfRpDtg+cyh9VEPR6Zqr/TAwIwYjRMvNoGY/BauEtFr7xLJedx2oNSGsAYfZCHOE7YsfPBQAI8w1b2mG4YA7HKBDH93pWxT+1GcPwPK9RyiwON50QJlIwxkeaLRBChzIt43PEWi9QqBgY9JmpPjrMK5StukV7qNJ7rNrT3tr37HoDk1vAzrxIoVAhPsKZGEy5aGIFG9E7KFg5jLqEU+oGeFdxvHUopt2c6XJ0ezmWlckVCr95EBuGIZ6ZGvAdsem5rClPjQC6Gjl/AEEgV+CMLJkwQWogqgj1s4jn99GlIa2BySlgcNCkqCjaN+CPmwOmInRiN3Y7Qt4lVg65U/g0M4+Djuk/TO+ogjCvUrAuD3e01VqWmy5iSZ3bnOlydHt9oXQo1yFf6NIJB3VgsO+Qz0z10eGEKfKyKXKvC9rb+PZWDgAys5i8Ahb3zFUfzTxTeWMQj5mDO8LyULURF13Iq9KJ1/R9V3G8dSim3ZC+AKVGDxhQIHOMIrvp8wb8jDw2eG7miKJKqOwG+0UASOw5wk1FOKOIaTuN28+ApanHd1g56LKxIR8bCgDJhXdTDxZVEEIquczl4Q41d1G7CZ/BdagrlMfYfJOZxwptNxC5DhUqnFfI5hUw/vYREEGH+WPAmIMO7eA7Qz9IxcohbyIeVgw8RnyImRjirUPR7IYP9AWoNDpAMEh242jmyGTvabkshM5ucCrPXmgqgvRCf72MqITHmAcsZDThRBWe51VKFhxQSyeECRseYzJ9XSgdanJirZbmmmUS1KFaD1MXM9Y2vuEE2DqwJfAqW206aNJBoQPTSKzQwuAzMcRbh6Ip+Eynw83xjEwukyv6RxWvnWs/4nHU+by9H4pTm9i0XDa3RKE2oFDZjZANQQyzFyYsu8E4mvl9QkUVhEGlkLk8vupmy9QCOiHM0JzpdLh8XCgdAmBlBps2SmE5GeXAYlMem2OWSTbL1mcyY0z+qCbENo7HgBDHY3KKJOpQNLupbukCABUZVRUUVTg3bv/eZQtRus52ztnOtR735pUqhk9RwLmS3aAIZy8MFVUAgUrBuDxQ3dxJ7SYcQukwOMvOnKSwn/Fy3pD1jkEYO00J/XRoaeVaG/mWep/XQzJ0yM5nM4axw0cGXn0vng5tVr7b7s+XAYEuHVhFyuhQHLvhg/qkAECIKt4OruMbp2eox+E4N66rdHec9k1crGZUIEp2Y7dyDqt/WIFSAZnDZKmY3WCMlXIZQp56S7fV5TGoYhtGeq7DY3xUqElBjw6hdxuiXMdkz1A27HJFevySWarMfDZYh61nuSPfulvO9lV4Uz0HAAolKi2Xl5YrVComxuzG64ajB3xna7Cl3ztJDSaUNwYVliLp61Acu6ntsLs5npErGJkCgNxM8Dn4ls8cOOxBnI527sAnzvIlGoaMcYoqu/G68f497uZ6vqO1lwIUKpRXwE4sV+YXsuJmN04rdDbx3TZyzVipQ4ZsrNSJFlUAQKWQOd2+6mbLzOFZUZfR+UBth93l4/rocMA2ROMoBQNQH4nj5I+TmyfKg3X4/eeu00cGm0bK48Z7v/GcqPZdskyVNUwWdXZz6rB331c+b4j3UlrbsbUdnz4EYy9gTEXkx4qf3YAYOhTHbsioKoVaj4Skzoc7dnSH7zUERzt3eIdz4gJ1dNnN/t2eI/s8A8674HHh2hO+2hO+vEJ2doUycxgbe3bTcBzXHORt7X1OhwFApYPcEpQ9ToSoggCp5DKn23eouZPazeD01+EgPaTG0QqZgqnbFdaLbybMUxUWB95wgsHnge3vd1vawurhsln5T95xLliqzitgo8huvv7MU3Nk6BM5bbD/P/yYmUzBeIhHdiOKDkUYVczx2N/1qNbiQJ7hOOLxdkbT3dhe62s85oWA60NQdgOh3zPicePtHzsP7HYPOcdLQx33wdvOhjouOKqQhEUYd4oC8QETn+83mtPaxu96lzuwnevnNX5cdqjZg/e+C3b/G5QRFqJKiNkLoV9UEa5KLmcQghY6IcygcDw+0mKB3joUVIQHGt1uKJKVrNQNKxmsapA7Vj73x9r8cfJgHVb+xxWm1xA8LrztI2d7KydkNySS9clu+uvwq/C8RuD4N3zNXhyc3eDe2U1ydSiC3dR02r08ZuUKRqYgKQln4+1VEVeMBWorPQC9shvol90E/cMA8J9N3XVhz13nduH3/193Qz159WxgLkEMgadq/FEFQr0jthG+/thnDWE0vU5kh4OfoLaT4I8qfgUMPHshkKhC6o8MgzEvXBUAkIHkB+kM4qGp6bR7OD5Yh4B7VISE0vV/9t9zmRLlz1CWX6sfe6mmoFxpyGUNuWxaLjt8irK4QnXRDboJ81VqfdCLIgGO7vE01Ub8WLnHhbd96BIcxv8XHtD5gDo8vM8XkdcQavfh9jP+Hy8cn2HIT0iyDkWwG5LayNR6wUrdZ2N6xt9l41trfeFnN99s80/hHhFbPnS2t3CRZjddrfx327yhatEDUvM1stTFFFUQQkqlDACqmjoi/ZnnD/11OGR2AwAYgEGIVSJjEVs4VTlhiXbiEs3EJRrzVGXuOLlMifro0OPGp6qi7ES3Wfnvv3aHmd3Yrfj7XdHMLw4AR3Zhn0f87EbQ4cHmzuguTAS7OUoqzBqdYKWuU7Hm/K21vjCzm+Z6X82gzXWhcLvwf3e4I8puvG746uOQLXaDUPMN8jiijyoYYznLMgyyuLwdTvEnij83ONZqgd46DCe7QQO9mQBI1uxvyPDvQdYf/9YdyzvJq/Z5wsxu9u+O0msAwOeBs9XiZzeCDrucnuh0GKvdHGuzennMyJUMKxes1NcV6yNwLhvfJ6qEym4O7one2hrquLN1vvCzm6qvuCi8BgA4D9R9D7FEFQDMIgYAuj3Rq/Ac5lib1cPxfXQYfnYDADi8OcIba2N6AMLjwg11fDjZzakjMVURmk/geGQ3MeowVrsJZLA6CLLq2LF38OFkN52tXP8hDxFxrNoXZnbTbYczx6I/l6UeuTqjjyok+gKA20fftjUAA+tQ7Oym28Y7bbHe/4Z635DZTd2pWF/K47KDyyF+dhOjDmO1m7ouBwDIVToIWHWknd8D4nPjPlFlwOym9WysZV97KtzspvFUrOdqPwWxRBXEMADgoS/3G4j+OgQQP7tx2kTQdnsrN2R209HvJRVR4LLFJbuJRYex2k3ApEnyAQgBEmM+CpWOCSe7qa+JtWbhcWGrBYeT3bQ1xqoAewsTW1QBAHD5RHgZ3blHfx0CxKXtJnbc7qHbbkCMWoKluef4omY3ANHqMFa78Z+c6WXVSB7r3VLp+/YIDJjdiILdhsPJbhwxRzZnZ2zZDUIA4KZ2MxAD6jAebTfiXO1Q2Y043oZ7ji9mdhODDmO3GwDwj5QWrFQxLNbByul5snCyG3EIr+3GEsZAmzDOFX1UIRJQsPGaZzmlGVCH0sxuMrOYxGQ3Kn1csptYdBirdhniA9g/WzspK0VhrHaTNZxNWHYD4bXdiHSu6KMKx2EAMGnEmH36nGNAHYqe3RhMIni93sAOmd0oxGiRUGrjkt3EosNYb59BLQcA3uOGIKtWmxWsNvojG3NZXSYbTnaj1YtQ/Ln5TDjZjUYvhufEEFV8PA8AJk2U8/Od2wyoQ9GzG7kS5YyINZSOGMUOmd0UjRLh1dTG3Lj0TJEZYKLTYax/roVpWgDgfW7oHVV0ZdEH4RFTldCvzjxgdjMsP9ZSMWUxYfZMaWKeC1yhjT67wZjHPGYR0inpO/0GIJQORW+7yTbHdP9zC1h92tDZjVaPtLGFN1NRXEYVY8xjHL0OY7WbAqMWBooqmlEKzchoXooxaqYqPZeFfnXmAbOb/JhnfR9XogiOKoNkN3nmWK0trQBHHVXcXgwAWTqa2gxMKB2K3nZTVCxXx5BTT52pIqcYPLtBCCbNiGmK8fwSEttEzm5i1GGsdpNv0AAA53XxnK9PVEm/UK3MjswOho2RF5YpBowqA2Y3CiUaNyn6N04plWhsCRtmdpMzItbKVMZIPuqo4vJ4AGCUSR/jNZyrDKJDgljZDQa4YFG0882XyPMKyXu6h8huMIZR42XZ+VH+eWaPRsacuGQ3MeowVrtRytgxmQYA8Ni7+keVYQu0urBzHPNM1bgKVaioMmB2gwEmzFBE3a5WVq5QqpgwsxudgSkaG32CoxsGmvQoo4qP47xeHgDo+0NDMbgOQbzsBgGkmdjyiyN2HFMWM+8yleAwQ2Y3AHDRYqUi8mCqy4AxFyAA8Z+Zil2HIjS1zh4xDADcDgvwfP+oYpqlzlmgVaYPdiJDLjvpSm3+BPL6opBRpX92gwAUSmbOkmgmfjePkk27UBHRE+HF06KcBJ6VQ+FUPuqo4vJwADAuK02riCnBPrcZXIciZjeAoHCcbEokjpNTwC5dqfXHzPCyGwBQKuGSKxQROY4uAyZczLAKDCB+duNyx6pDMXp2DBpzhg4w7rZ2DBhVNDmygqW6gsu0GeMVmhxWlcEAgC6H1eWwhTNUZVdoSxZrtSZmyKgyYHaDAWcXsDMvjSzaZGYxFy9UQYioMmB2gxDS6NHsZdG0FhVM5TUZUUYVnsNOlw8AphVkRnHq84chdShWdkN0OHy8/JKrNZow2nHKZyqX/lArVwW8KuzsBgNkDGMXXqM0msLK39Nz0NRFrFrvV5e42Q3P4W63F2LTIepl+dHS0e3+2+5jHMaGzDyVSs0gYABYBGSBAcwgYMkyAhYBCl4AzDKILCAAFiGEMAIQprIjmyEEDALAmEWICRwB+UMTRgCtZ/ntH3V7wnhia1yJfM48pUKJcM/shYADs2gSKZB5MzieJx+x/yWvwGM4fZSr/przhv38vflCbBo5wDxTZFmYulNYxiQWIYbjeR5wu9Xt9XFjswxXlY2IuoDOE5Kiw9NHvMf3e7r6vXFJq2dyC9jJMxWGNCZYqAgQ43cPf/YRjg6PHeAOfesLpTqVDo0qR7ljBJVi7E9k/JOdDTLfWZg6bLM4fRyOUYfi2A0A7G3o2HKkHjGsKadQxrAs01OoDAAC7C9msh6ARQCAWYQCpd5TtKQxzV+6gTVMUGEL64X/yYLXjb/d4T51OOSDVHoDM/8yVX4RC/6wBhiA43lAiCTgPGBhjnC+d/GDv2yAx2Bp47/9lHPah7h1MjmMnY+0w8ixUaDUEXkDdrCj8RgC4ugpaQyoq9vjcHqMasXqC8bK6XjiMAjokDHlFCVSh5wHd7byCKDbxusMjFIJpmGsf0CX4DUYEEIIet4NDBHqsP4U39bAd7XxgvIyclH2CEabDjz0GAoO8hHomWcqeh12OlzdLl/sOhTNbgDgnaraY61WhVKdnpVLyi+R2Q0pWgTg9eC6k74zJ32ewKQ/AJCZxYwrUWRlk7beCKJK/+xGKKRj3/P1x7BrINORySG3BOUUYySPPqpYnV6LwyVj0M0XjKWDicOH6FCuVGVk5SVRhyjgR6j3BtFlN4PoUNirj9eIld1Yut3Wbo8oOhTTblw+buN3Jzq63XKFMnNYnoxhEpzdkEJkEIgeVfpkN8F5pqWdbzkNwbVxUxGo0wFiiyrWbm+XwwUAV08y0/7viHD5uI3fnuhwuuVyZWb2+aLDOGU3HTaX3eUFkXQopt0AgNPre7PyVKvDxbKyDNMwjVpNo0qkUcXH850Or8PlkTHoR5NHkgFslIhwen1vVJ5sc7gZljWZsqkOo9Nhq9Xp9vIi6lDk5gC1XHb9tNEFaRqO87W2NHR2tPGkZVsg5h6B/j1TELShf2OhaR2hwAFRRD0CA/ZMQU8HBwIMDGKEiwt8i2LsEXDzqLGz2+HyKGXMtVNGUa+JDrVcdsO0MQVpGp7jWlsa2ttbqA4hEh3a3b6zHQ63lxdXhyJnNwJfn27ZVdPs4zEApOnTDHq9gmUULMsyiEYV6B1VPBzGCNndvk6by8dxAFCclXbp2Dy9ko6yiZVgHeq0ujS9XiWXUx0OqEO3j/fx2Ob0WJ1e8q3oOoyX3QCA3e3bVdN0qLmLvu8yfEZm6C8oyjJnxPw8KCUA1WEUxEmHcbQbgcPNXac77a0OV6vd5aZF3huljMnUqExaZV6atmSYUSmjvd3xgupwEBKjw0TYDYVCoYDoTcUUCoUSCmo3FAolQVC7oVAoCYLaDYVCSRDUbigUSoKgdkOhUBIEtRsKhZIgqN1QKJQEQe2GQqEkCGo3FAolQVC7oVAoCYLaDYVCSRDUbigUSoKgdkOhUBIEtRsKhZIgqN1QKJQEQe2GQqEkCGo3FAolQTAAYLPZnnvuuQULFpSWlk6YMGHhwoV/+ctffD7fkDvfcccd1157bfwvMiakcJHd3d3r1q2bO3ducXHxxRdf/OKLL/I8L3z18MMPT5s2rbi4eOXKlfv374/lRNXV1Waz+dNPPxXjqhMN1WG8SboOZQBw44031tXV3XPPPSUlJT6f77///e9zzz1XV1e3bt26WE4ZC1OnTn3//fcLCgqSdQHict999+3evfv+++8fMWLEt99+u379ep/Pd9dddwHA/fff/9133z366KPZ2dkbN268/vrrt27dmpOTk+xLTgJUh/Em6TqUHTt2rLKy8q9//euiRYvIqmnTpimVyq1btzqdTrVaLe75wuHs2bMdHR2JP2+c6Orq2rlz59q1a6+66ioAuOCCCw4dOrR58+a77rqrtrb2448/fuWVVy699FIAmDRpUkVFxeuvv37//fcn+6oTDdVhvJGCDhmO4yAwyZ7A7bff/u677wpl/K9//evSSy8dO3ZseXn5L37xi7a2tuCN7XZ7cXHxCy+8IKzxeDwTJ05cv349ALS1tf3yl78sLy8fN27cihUrvvrqK7LNiRMnzGbz7t2777jjjtLS0mnTpj3yyCM8z3/zzTdz5swBgLlz5/70pz8NPtHOnTvNZvPevXuFNfv27TObzTt27ACA77777uqrry4uLi4pKfnRj340YDZYUlLy8ssvCx/XrFmzbNky4WJ27dr1k5/8pLi4ePbs2R999NHBgweXL19eXFy8aNGiqqoqsovP5/vTn/40e/bssWPHzps3b+PGjcLR1q1bN2rUqP4nNRqNBw4cIGVMUCqV5IZ/9dVXcrn8oosuIuvlcvncuXN37tzZ/yB33XXXz372szfeeGPGjBnFxcWrV6+2Wq1/+MMfysvLJ0+e/Mgjj/TfJbWgOoTzQIfMqFGjCgsL77///n/84x99yo+wadOm3/zmNytWrNiyZcv//u//VlVV3XzzzcHTxeh0unnz5m3dulVY89///tdmsy1fvpzjuBtuuKGysvIvf/nLxx9/PHny5BtvvPHo0aMAIJPJAOCxxx679tpr9+3b98wzz2zcuHHz5s1Tp059/vnnAeCjjz7605/+FHwls2bNMplMwSfavHmzyWSaPXv2qVOnfvKTn2RlZW3atOnf//63Tqe79tprm5qaBv/xAuRinn766TVr1lRWVk6cOPF3v/vdunXr/vznP+/Zs0en061du5Zs+cQTT7zyyiu//OUvt27deuuttz755JNvvfUW+Wr06NEXX3zxIGdxuVzNzc1vvfXWJ598snr1agCoqanJyclRKBTCNkVFRTU1NQNeYWVl5enTpz///PM333zziy++WLlyZVZW1ldffbVu3bqNGzcSracuVIdwHuiQUSgUf/vb38xm8+9+97vp06cvWLDgscceO3jwoLDFhg0b5syZ8/Of/3zkyJGzZs363e9+V1VVVVlZGXyUpUuX7t+/X7itn3zyydixY4uLi3fu3FldXf3UU0/Nnj179OjRa9euLSwsDHbihQsXzpkzRy6XV1RUFBUVHThwQC6X6/V6AEhLS9Ppek3ix7Ls5Zdf3qeYlyxZwrLsm2++qVAonnnmmZKSkgkTJvzxj3/0eDzvvPPOIL+8P5dffnlZWZlGo7nyyiutVus111wzYsQIg8GwdOnS6upqALDZbP/4xz9uvfXWlStXms3ma6+99gc/+MErr7xCdr/qqquE5QG58cYbZ86c+Yc//GHdunUrVqwgByQ/VkCn0zkcDqEBL5ju7u777rtPq9VOnTp13LhxPM/fcsstarV64cKFRqORXGHqQnUocA7rkAGAsWPHvvfee59++umDDz5YVFT0j3/8Y9myZY8//jgAeL3ew4cPT5s2Tdhh0qRJANDnoJdccolarSYN0T6f77PPPiM/Y//+/SzLXnDBBf6TMcz06dODJVJSUiIsGwwGi8UyyLUCwLJly2pra48dOwYAhw4dqqurIyeqqqoqLS1VqVRkM6PRWFRUFOlf4JgxY4Qr6fPR7XZ7PJ7q6mqv1ztr1ixhl5kzZ9bU1HR2doZz/EceeeTVV19dtWrVb37zm9dffz2iawOAoqIiIf4YDAbh8shHq9Ua6QGlBtUh4RzWoUxYGjNmzJgxY2655Ra73b527dpXX3112bJlI0eOxBinpaUJm5Flu90efBS1Wn3JJZds2bLl+uuv//rrr7u6upYvX0424ziutLRU2NLn86WnpwsfhYIhDDml5/Tp07OysrZs2TJ27NhPPvmkoKBgypQp5ERFRUXBW6alpfW5yCFRKpWDfMQYkwNef/31CPnnlCf2397eHvyjQlFcXFxcXDx//nylUvn73//+qquuSktL61M8VqtVp9P1acII8/KGvICUgOrwHNahzOPxNDc3FxYWCqt0Ot299967adOm6urq0tJShmGCzZ4s90m9AGDp0qU/+9nPurq6tmzZUl5eTvoO9Xq9Uqn8+OOPg7cc8DeECcMwS5Ys2bp16913371lyxbSwEZO1CciWSyW3NzcPrsLxUNwuVwRnZ386meffba4uDh4ffDd609TU9OuXbsuv/xyIScvKytzu92NjY0jR45sbGx0u91CmdXU1IwePTqiqzo3oDoMn9TVIfPkk08uXry4T+McaSXKysqSy+Xjx48PTju///57AJg4cWKfA82bN0+lUu3YsWPbtm0ksQSAyZMnu91unudHBVCpVP3v/oCEsklSg/36669PnTolnKisrOzQoUNut5t8bGtrq62t7X+RBoMhONREmuWOHz9eoVB0dHQIP8doNGZkZAS3sfWns7Pzvvvu+/zzz/ucNz8/f86cOTzP/+c//yHrnU7nl19+OW/evIiu6tyA6jB8UleHsltuuWXz5s1XXXXV6tWrx44dy3FcVVXVyy+/XFpaWlFRAQA//elP77nnnpdeemnx4sV1dXVPPvnkjBkz+t9BpVK5YMGCl156qb29fcmSJWTl7NmzS0pK7rnnnocffjg/P7+ysvKhhx66++67b7nllkGuieTJn3/++cyZM8eNG9fn2ylTpuTl5T3xxBPjxo0Tvr3uuuveeOONNWvW3HXXXR6PZ/369QaDIbjPjzBx4sStW7fecMMNGo3mlVdecTgcfbLowdHr9T/60Y+effbZ9PT0yZMn19fXP/bYY/n5+aRlbtOmTZ9++umLL77YZ6/x48dXVFSsXbvWbrePHj26qqrqxRdfvPrqq9VqdX5+/sqVKx955BGMcVZW1ksvvcSy7HXXXRf+JQ3IoUOHglNclUo1Y8aMGI8Zb6gOw79XqatDWVFR0aZNm15++eUNGzY0NzcrFIqCgoLVq1dfd911xCyXL1/ucrlefvnlp59+2mAwLFiw4IEHHhjw6EuXLl29evVFF12UmZlJ1rAsu3Hjxt///ve33357d3d3YWHhL37xi5tvvnnwqywrK6uoqHjqqadmzpz52muv9fkWIbR48eK//e1vwWOQhg8f/uabb65bt27p0qUsy06fPv2f//ynyWTqs+8DDzywZs2aOXPmpKWlXXfddVdeeeUXX3wR1p0L8OCDDxoMhqeeeqqlpcVkMl122WVr1qwhXx0/fnzbtm0D7vX8888///zzL7zwQmtra25u7q233nrnnXeSrx5//PF169Y9/PDDDoejvLz8zTffzMjIiOiS+vPnP/85+GN+fv6uXbtiPGa8oTqM5G6lqg7ROdPESKFQJA59IpxCoSQIajcUCiVBULuhUCgJgtoNhUJJENRuKBRKgqB2Q6FQEgS1GwqFkiCo3VAolARB7YZCoSQIajcUCiVBULuhUCgJgtoNhUJJENRuKBRKgqB2Q6FQEgS1GwqFkiCo3VAolARB7YZCoSQIajcUCiVBULuhUCgJgtoNhUJJENRuKBRKgqB2Q6FQEgS1GwqFkiCo3VAolARB7YZCoSSI5NvNnj17brnllqlTp44aNaq0tHTFihX//Oc/w9mxvr7ebDabzWar1RrpSe+9916z2fzYY49Ffr1D89xzz5ELe/zxx+NxfEo8+Pe//33VVVeVlZWNGjWqvLz8+uuv37NnTzg7vv3222azefHixVGcdM6cOWaz+dNPP41i31Bs3LjRHMTIkSNnzJhx44037t69W8SzREeS7eabb7758Y9//Pnnn2u12gsvvDAzM/PAgQO//e1v//73v4t7ooaGBrPZ/Oqrr5KPJSUl8+fPHzNmjLhnIXz00UdkYfPmzXRO5JTg+eefX7NmTWVlZVFR0cyZMxFCO3fuvP7666uqqsQ90aZNm8xmc3V1Nfk4a9as+fPnZ2VliXsWAJDL5ZMnT548eXJpaWl3d/f27dt//OMfJ91xZMk9/d///neO4xYuXPjiiy+SNQ888MBbb721cePG6667TsQTCRZAuPnmm4eckT46jh8/fuLECYPBoNFoGhsb9+3bV15eHo8TUUTktddeA4C1a9feeOONAOB0OleuXFldXf2vf/2rrKxMxBP10eH69etFPHgww4YNe/fdd8myzWZbvHhxfX3922+/PWPGjDidMRySnN2QelB6erqw5re//e2OHTuC08tNmzYtXbq0uLi4tLT0mmuu2bFjx4CHWrVqVXD+sn37drPZPH36dABYtmzZU089BQCPP/642Wx2OBx9KlMej+eZZ56pqKgYM2ZMeXn5nXfeeerUKfLV66+/bjabb7vttt27dy9evHj8+PFXXHHFoUOHQv2ijz/+GAAqKiouueQS6CcvijTpo0O1Wv3qq6/u2bPniSeeIGsGUUgfSBVGyF/WrVtnNpt//vOfOxwOs9n8xRdfAMCSJUuWLVsG/SpTTU1N99577/Tp08eMGTN79uxHH33UZrORr+68806z2fx///d/b7zxxqxZs8rKym6//faOjo5wfp1er580aRIAuFyuqG6PaCTZbkpLSwHgn//8569//ett27ZZLBa9Xl9YWMgw/gt78cUXf/3rXx85cmT+/PnTp0/fs2fPDTfcsG3btojOsmLFitzcXAC44IILbrrpJrlc3meD22677S9/+YvNZlu6dGlubu7mzZuvvPLKs2fPAoBKpQKAU6dO3XvvvSUlJSaTaf/+/XfeeafP5xvwXMRuLr/88ssvvxxofSpFIDp84IEH1q9fv3v3bo/Hk52dHVzHGUQhYSKXy2+66SayvHz58hUrVvTZoKOj4wc/+ME777yTlpa2fPlyjuNee+216667jiiN6PDDDz/csGHDrFmzOI7bunXr73//+3BObbfb9+/fDwDJTW0g6XZz++23E9/dtGnTT3/60/Ly8hUrVrzxxhvkFlut1ueeew4AnnjiiRdeeIHcfQD44x//GNFZVq9ebTabAWDhwoUPP/ywQqEI/nbnzp1ffvklQujtt99+9tln33///ZKSEqvV+tJLLwEAMb4TJ048++yzTz/9NMm6z5w5M2BwO3r06IkTJ5RK5bx582bOnGk0Gkl9KvIbQ0koTzzxhMlk6u7ufuGFF1atWjVx4sSbbrpp+/bt5NvBFRImCoXi4YcfJnK67bbbVq9e3WeDDRs2NDY2Dh8+/KOPPnrmmWfee+89hUKxf/9+kvuQHWtraz/44IOnn376gQceAIDPP/881OlaWlquvPLKK6+8cvny5bNmzWpqarr22mtXrVoV2X0RmyTbjdFo3LRp08svv7xq1arhw4djjA8cOPDQQw/df//9ALB3716S/i1fvpxsv2TJEgA4fvx4V1eXWNfw1VdfAUBZWdnIkSMBQC6XX3bZZQDw7bffCtvk5ORMmzYNAEaPHq3VagGgubm5/6E++eQTAJg3b55Go5HJZAsWLABan0oFJkyYsH379qeeemrRokUmk8ntdn/55Zc33njjv//9bwhPIbFDzrJw4UKSyOTk5EyZMqXPWSoqKvR6PQBMnjwZADo7O71e74BH83q9+/bt27dvX1VVlc1mY1n29OnTR48eFfGCoyD5HeEMwyxYsOCpp5768ssvd+3aRZLMd999t76+vrOzEwCUSqVGoyEbZ2RkkAWLxSLWBZCzBLcfkbMEO1rwt2q1GgB4nu9/KFKTqqysXLx48eLFi0kzE61PpQRarXbVqlV//etfv/vuu/fee49Ur/785z9DeAqJnYh0SEQIIXQIAPn5+TUBvvvuu5tvvnnXrl0/+clPohg1IiLJtBu73b5ly5bnnntOaMHKz89/5plnZDIZAJw+fdpoNAKA2+12Op1kA6FtLLhUCCTbFA4VZisaAJCzkMIO3lewtjA5cuTIyZMnAaC1tfXw4cOHDx8mGRCtT0mchoaGd955h1STCZMmTXr44YcB4OzZsz6fLyKFIIQgqTrsj8lkuvvuuwGgq6sruVJMcnbzq1/96n/+53/WrVvn8XjIms8++4w03BQUFEyZMkWpVEJQfeT9998HgAkTJhgMhj6HIg17pEkMAD788MPgb4kIHA5H/2uYNWsWABw8eLC2thYAPB7P5s2bhfXhQ2pSU6ZMqQmioqICaH1K2tTW1t57772PPvroBx98QNZwHEdaTHJycmQyWUQKCdahw+EgXVECQ+pw27Zt5G/h7Nmz33//faizRIrQn6vT6WI/WtQkc9yNTqe77777Hnvssddee+3tt9/Oz8+3WCxNTU0AcMUVVwwfPhwA7r777j/+8Y8PPvjgrl27Ojo6du3axbLsb3/72/5Hmz9//gcffPDpp5/ecccdNpuN9CAKtZicnBwAeO211+rq6u67777gHefOnXvRRRft2LHj6quvrqioqKqqOnr0aFZW1m233RbRzyF202d06aJFi7Zv37558+YHH3yQSI0iNS688MKFCxdu3br1F7/4xRNPPJGRkdHU1ERq6/fccw9EqJD58+f/61//Wr9+/ZEjRyorK3Nzc1tbW4N1ePbs2Yceemj27NkPPfRQ8I633HLLpk2bampqVqxYQdqSvF7v7NmzL7744ih+FGkqJssWi6WmpgYAysvLSaNPskhydnPTTTdt2LChoqJCq9WePHnSZrNNnjx57dq1Qt/TnXfeuX79+tGjR2/ZsmXv3r2zZ89+6623BvT75cuX33HHHZmZmbt27crLyyMjJtxuN/n21ltvHT16tM1m+/rrr/tUdxFCL7/88h133KFUKt97773W1tYrrrji3XffzczMDP+HCDUp0v8tcNlll7Es29jYuHfv3khuDCVxIISef/75Rx99tLy8nOO448ePMwxTUVHx6quvXnPNNRChQtasWbNo0SKZTPbll1/+8Ic//OEPfwhBOvzNb36TmZlZW1t75MiRPjuaTKZNmzZdccUVLS0t7733nlKpvOOOOzZs2BBdlBKaivft29fc3DxmzJhf/vKXr7/+ujDEJCn8f63R2vbIJ8KjAAAAAElFTkSuQmCC", "path": "image.png" }
Which solution has a higher concentration of purple particles?
[ "Solution B", "neither; their concentrations are the same", "Solution A" ]
2
The diagram below is a model of two solutions. Each purple ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the purple particles represent the solute. To figure out which solution has a higher concentration of purple particles, look at both the number of purple particles and the volume of the solvent in each container. Use the concentration formula to find the number of purple particles per milliliter. Solution A has more purple particles per milliliter. So, Solution A has a higher concentration of purple particles.
Solution A
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAIAAACmkWkFAAA9FUlEQVR4nO2deXwURd7Gf9U9950LCCSB4QwJVzg8AA2oyA0irKKIi4Ig7nqtKIoHiri8IC6r+K4KCy+oeL0SEZFDfJVLEBYRBBLuAOFISMgxk7mnu94/aqYzOcnM9Mz0QH0/fPj09PR011Q9eZ6q7p4uhDGGeON8pe2a22SYtFEoCeVGhuowWGSxLkBdnF7uZKnlRGmV08tVOd1VTk+sSxQ0ShnTUqc2qhUtderuqQkqGRvrElGChuowEiBJ9W5Kqp1rDpxyefmmN0vQaREAACAECHz/AIFvJQACuGpzuLlr7CcKKGXMhO7mjAQacfEE1WGEkJbdrNh34kq1U6HS6k2JSoVCJZerlAo5AhkDLICMARkCGQIG+RZY/zKLgAFg/WvIMuNfFhYQAPIvYww8AIcxBuB4HLDsW89j4DEOWK5Z79vStwyBe+AB3F7O7nDbnG6LzW6ttitlzN9u7xbrqqUEAdVhhGBie/g6VDncAJDQup3GkKBSa+UKBQAQO0TIvwS+9MD+5ZoNApZrTJQsY8ABn8S+7TFCCGNACAEAWQaynmyKAuIKAfavRwhh/3qEAGMM/j0ABhnL6rSqlCRDu7SWAHDNkKRIDarDCCEtu8lI0AGA02YhtUs6Xr6mwf6lgAYmyzUbBCz7twXAAV1c/yeRb3uEMfa1EwBZJnIgqiAb+ZcB+ddjjJF/vU8l/j0Iu8YYHG4PALTQqUSuJkqEoTqMENKym7YJOgBw26pJ7dYJinhJFf8yVFRYwK9dShxBdRghpGU3nVMMSpZxVFc4qy3xnip2p/tqhQUAeqQmil5RlIhCdRghpGU3RpXitvatAKCs+DzPcfGbKhzPny26DAADzS1bSqATSwkKqsMIIS27AYB+6cmdkg2Y5y+dP+3lOIjDVPFy3InCS24Pl2HS3mZuGYlaokQaqsNIIDm7AYBRWekpOpXb5Sw6d9rpcsZXqtid7sMnzzlcboNKPr5Hu0jUDyU6UB2KjrTuuxFwerk1B05fqXYyDNMiOSXBaNSrVFK+38Hl4SrsjrLK6gprNcfhTsmGUVnpUriPkxIOVIfiIlG7IWzILzpcXBHrUgTNQHNLifRdKaJAdSgWkrYbADhfYTteVrW/qLRmxCxNMMYAQzq3yUjQSeGcHEVcqA5FQXI/0axDRoI2I0G7v6gMACbf2oN0QREAAt9CnZcQsB78vVaEfeuFNWSBx4ABeIwxACbLgDEgHmPwrUfkXR6Df43vU1h4F4GH57/ed5xFqF96cgzqiBJ5qA5FQYqnihvFf4KNtCuCgJP8ta8ICC/J9oDIibSad/1XBAADJq1OzsD5rhH4QsLf9atZI+wW+7Yn5+cCZES5/qE6DJW4shv/NQAMNf+Epgu8IiC8JNsDJpcJoVbT+7IF+VoO+65L+s72I98y2Zd/jbBb5NseA0KI5zEAsEjC7UwREarDUIkru5FqqmBfqki3mSliQnUYKnFlN5JNFeABAEm5F0sREarDUIkru5F6qkToa1MkBtVhqMSV3Ug2VTAP0h4zU8SE6jBU4spupJsqCKQ9ZqaICdVhqMSV3Ug1VTiMQdrNTBETqsNQiSu7kWqqkDIgCTczRUyoDkMlruxGqqniHzNH6ntTpAXVYajEld1INVWkf78DRUyoDkMlruxGqqki/TEzRUyoDkMlruxGqqkCkk8ViphQHYZKXNmNVFOF3M3JSPn+KoqIUB2GSlzZjVRTRfp3c1LEhOowVOLKbiSbKpLvxFLEhOowVOLKbqSbKlI/RUcRE6rDUIkru5FsqvBSb2aKmFAdhkpc2Y1kUwUApD1mpogJ1WGoxJXdSDZVMA/SThWKmFAdhkpc2Y1kU0Xyv8SliAnVYajEld1IPFWk3IuliAjVYajEld1IN1UApJ0qFDGhOgyVuLIbqaaK/wJkpL43RVpQHYZKXNmNdFOFNLOE25kiIlSHoRJXdiPVVJH+3ZwUMaE6DJW4shuppgov+VShiAnVYajEld1INVWkP2amiAnVYajEld1INVXIOimnCkVMqA5DJa7sRqqpwkn+fgeKmFAdhkpc2Y1kU0Xyd3NSxITqMFTiym6kmirS/60KRUyoDkMlruxGsqnCA0h7wg2KmFAdhkpc2Y1kU4UURMKpQhETqsNQiSu7kWyqSP5+B4qYUB2GSlzZjVRThexBys1MEROqw1CJK7uRdqqwEm5miphQHYZKXNmNVFPFf/N4pL43RVpQHYZKXNmNdFMFAABJuZ0pIkJ1GCpxZTfSTRWp3+9AEROqw1CJK7uRbqogkPaYmSImVIehEld2I9VU4SQ/ZqaICdVhqMSV3Ug1VUghpNyJpYgJ1WGoxJXdSDVVpD97IUVMqA5DJQ7sptjqAACVXCbZVFHLZUI5KdcrVIfhEwd2k19SCQBtk4ySTZX0JAMAHC2piEwFUCQB1WH4xI3dZCSZJJsqbRJ0MgZdtjgsTneEKoESc6gOw0fqdnPJYre6PCq5rIVeI9lUYRiUlmgAgMPFlRGqB0psoToUBanbTQHpwSabACHJpgoClJ6oB4A/LpdHphooMYbqUBSkbjdHiisBoG2iqaZFpZcqGHArk07OMpUO95VqZ2RqghJLqA5FQdJ2c6HKbvd4NQp5sl5T06KSTBUEkJ5kBP8In3I9QXUoFpK2G9KDTU82QWCLSjJVEEIZSXoAOFIs3esClNCgOhQL6doNxth3LSDRCIEtKslUwRgn69Rquczq8lysskekRiixgOpQRKRrN0VVdrvHq1bIk3QaiIdUQQilJ5MbHyojUiOUWEB1KCLStZuCK5UA0DbJ5M8SqacKAKQn6AGgoKSCrzk8Jb6hOhQRidoNxvhYSRUApCeZ/Fki9VQBgASdWquU2z3c+QpbBGqFEm2oDsVFonZzvtJGerAJWnUcpQrGOCPJCNK+kZzSfKgOxUWidkOuBbRLToCaLImDVEEIpSfpAaDgShXHS6sfSwkBqkNxkaLd8BjnX6kCgLQkE9RkSXykik6lNGlUHo4/fdUqes1QognVoehI0W7OVdhcXk6rVJg0Koi3VAHAaZL/YS6lOVAdio4U7YZcC8hISiAv4ytVAFBGoh4ATpZZvBwvasVQogrVoehIzm54jI9dqQKA9GQjWRN3qaJUyJP0Go7Hx0stItcOJVpQHUYCydnN2fJq0oPVq1RkTdylCmCclqgHifVjKUFBdRgJJGc3+aQHm5wgxELcpQog1DpBDwBnrlodHq+YtUOJFlSHkUBadsPx+Lj/WoAQC/GYKkoZ29KoxQDHJNOPpTQfqsMIIS27KSy3ujneoFHpVMq4ThUM0CZRDwD5kvxhLqVpqA4jhLTspoBESqIJAmIhHlMFAaSa9AxC5yttNrck+rGU5kN1GCEkZDccj0+U1jRzvKeKjGVamnQAcFQawUJpJlSHkUNCdnO63OrmeKNWrVEpIP5TBWMgz6mW4HMAKE1AdRg5JGQ35PcprRN88/jEe6ogBC2MWpZBxVZHhd0lYkVRIgrVYeSQit3U6sGSBov/VGEQSk3QA8DRK5XiVRUlglAdRhSp2M2pqxYvj00atVqpuG5SBQDSEo0AcPhy7IfNlOZAdRhRpGI35HGwqYkmEgJwXaQKACTqVAoZK9mJOCh1oDqMKJKwGw/HnyqzAEDrRCMJAbheUoVhmNYJkvthLqVBqA4jjSTs5tRVq5fHCVqNWqG4zlIFY5yaSC5DVopWX5TIQHUYaSRhNwVCDxbgOksVhFCCVq2Uy6wuz4UqaT04llIHqsNIE3u78XD8ybIqID1YgOsvVQCgjWRufKA0BtVhFIi93Zwss/AYEnVahVwOcB2mCgC09v1upVJqE3FQBKgOo0Ds7YZcC2iVYPRV4PWYKnqVUqdSOL3cuYpqMeqMIj5Uh1Egxnbj8nKnr1oAoFWi0VeB12OqAILUBDqeki5Uh9EhxnZT04OVya/jVAHsew7AMYlNxEEhUB1GhxjbDbkW0DLBVGP512mqqBRyo0bl4fhTVyXxoCNKIFSH0SGWduPycmfKrQCQmmissfzrNFUAgPxuJZ+OpyQG1WHUiKXdHC+18BgS9ToZK7vuUwUAWiX4JuJwe7nwa48iFlSHUSOWdlOrB3sDpIpCzibqNRyPT5TR8ZSEoDqMGjGzG4fHW1huBYCWJkMty79+UwUBapWgA3p9SkpQHUaTmNnN8VILBkjU6+Uy2Q2SKhhwS5MBARRKZiIOCtWhCJXYbGJmN2RG1JYJJgC4cVJFxqBkow77H75NiTlUh2FWYFDExm4cHu+58moEkGIyAMCNkyqAUEt6fUoyUB1GWYexsZtjV6owQIJBL2NZuJFSBTBOMWgZhIqkMRHHDQ7VYZR1GBu7ITOitkgwkZc3VKowDGph0gHAEQlMxHGDQ3UI0dVhDOzG4fGer7AhgGSjgay5oVIFAWphouOp2EN1GH0dxsBu8kuqACDRaJCzLFlzQ6UKBpxs0MhYRgoTcdzIUB1GX4cxsBtyLSDFZKppiBssVQCQb2JD2sGJHVSH0ddhtO3G5vYUVdoQQJLRUNMQN1iqIASkH3uYnr6JEVSHMdFhtO2mwNeDNcoY5oZNFYzBpFPLZWylw11idYRTn5TQoDqMiQ6jbTfkWkCyyYRrGuhGTBUAaEkfuBU7qA5josOo2o3N7blYZWcQSjToUU0D3YipgpBv2EyvT0UfqsNY6TCqdkPmuEkwGliGucFTBWOs16hUCpnV5SmiE8JEF6rDWOkwqnZDfqCRZDJBTXgA3KipAoBbJhoBIJ/OeBddqA5jpcPo2Y3F6b5ksTMIJer1UBMeADdqqgCgFkZfP5ZOCBM1qA5jqMPo2U3+lSoASDAaGYYBmioIAWCNSkEm4jhLJ4SJFlSHMdRh9OyGPDMtyWQSUoKmCsY4OcEAdDwVRagOY6jDKNmNxekutjoYhjEZ9EJK0FRByNePPVZKJ4SJBlSHEFMdRsluyFX9RIOR8VcUTRWyf6VCZtCoPRx/kk4IE3moDiGmOoyS3ZCr+olGI/itnaaKsP+UBB3Q8VRUoDqEmOowGnZTbnddqXYyDGPQ68Fv7TRVhP0nG3UAcLKsik4IE1GoDmOuw2jYTYFwLQAhmir1U0UuY016DY/hOJ0QJpJQHcZch1GxG18P1gQANFXqpwrGkGKk46mIQ3UYcx1G3G7K7a5Sm5NlWINOBwA0VeqnCkKQaNAhhArL6YQwkYLq0F/6WOow4nZDTs6ZjEbkbweaKvVTRcYyiQYNphPCRAyqQ3/pY6nDiNsNefCyifRggaZKw6mCAZKNeqDjqYhBdegvfSx1GFm7KbU5KxxulmH1Wq1vFU2VhlIFAZj0GoZBRVU2i9MdSl1TGofqUCI6jKzdkJNzJpMJCSZPU6WRVGEZJpGcqKPjKbGhOpSIDiNrN74Bs8FYs4qmSiOpgjH292MrgqtlyrWgOpSIDiNoNyXVzgqHW8bKtBptzVqaKo2kCkLIqFXJWLak2kknhBERqkOQjA4jaDekB2sQrgUQaKo0nioIoSSjFgCO0CeKigfVIUhGhxG0G9+1AIOp1lqaKo2nCgAkmfRA5/MVFapDkIwOI2U3xVaH1eVhWZlaran1Bk2VxlMFAHRqFZmIo5hOCCMGVIeS0mGk7IacnDOaTAyDar1BU6XJVEEIkk0GoDM0iATVoaR0GFm7MehNNe5OoKnSZKpgDOQy5OHL5bhu3VGChupQUjqMiN1csthJD1aj0QSengOgqXLtVNGoFEq5zO7hLlTZg6l1Sl2oDqWmw4jYDbkWYDSaINDdCTdYqvA8jzHmOZ7neY7neIw5nsOY93q9HEf+5zweL+f1ejwer9frdns8Ho9JrwU6wWbYUB1KTYcysXYUyJHiSgDQG0zga0JckwMIeAwMAMaYZxDCmHgqy4CXxwwARoB5QMiXHgiAB8wAMAg4jBECBvkamCyQ/wFjBgGDEMZYWE8aDCFAPgX4pIL8b/EYMADH84AQz2MMwAPmMZDpL3jsW8YA5AGuPMZkJQbgeR4Q4+U4jMj2iON5sjcMiOyB4zEgxPFk34h83PcuInv2fYrHvloi+2eBB4CCksq7O7dm6uYypblQHUpNh+LbzYUqu93jZViW57HNZmMAGMAMAhYBaS3W3wy+BcAsg8gCAmARQggj8G2MwLcZaWDAmEUosIEZ0hsEYBBC4G9Xf3MGboAA+U8X+lyftCsWWs6/gP3tQdoA+9uGtIfQSDxpIR5jDDwmrVWTKrw/VQAA+T6OASGMMfIro9aYmRwIAwCwCBQyxunlCsurOyTpRW+jGwGqQwnqUPzBFOnBajS+wiHkHzf6XteMgYn1IoQCu4eY9CUbGTMjhOqMmXGtgbB/YySMdpF/h75+pa9ma4+ZEfKNgYWBtzCmRQjVGTMjf+QxiBEK19iYmUxmRAbVTY+ZaxWbYdQKGdDrU2FAdShBHYpsNxhjUjK1Rudf4z8r7ntdMwYm3TPiskKzInKmrJExs8+aIfBf4EDYv7HfnsmA1j+2RkhordpjZox9Y2Bh4C2MmTHGdcbMvi45Ah7zQuGaGDODT0z+VGnkikCtYvO8ViUHgOOlVV6OD7dVbjyoDqWpQ5EHU0X+HqxCqSRrkK+aaxoN+1uIx5hFiKQKiRZE6h37TqoRhO0DUwVA+B+TDX+1AEJorwWlqyBdCdla3sj6T9f7mpg0JvafgSevEY8xQgjzGJGEw75Uwdjn+ph80t//9I3BMWYQw/E8+VKkIX2f928JGBiG4XjelyrYJzvevyVCvvLwviD1S45hGJ5XylmXhzt11ZrZwihuM133xEqHRS447kDH7AgADDLUTYupDgMR2W4KrlQCgFpj8DWab2iKhTYDXHOlkPWnCsMgoSsXUI1CP9O3vWDGNaNigAI78/4ltNfKWOo+PZ7N0uDHWvETWwAgXNNv9Q+hA1OF9wmgJlX8Y1qeFAX5z7r5UgVBTarghlMlnDEz5nmEGJVC5vJw+SWV1G6CJco6tHLwyRU2r4y50MAjYthhCfzUVvxAI6I6FHMwhTE+VlIFACqNTmjXyI2Zqzh48Sw7Np/dWlnfawAA8u3o2TPsTb/LjtiQdMbMVzzsYYfcRq5+ND5mxpjXKGVAJ4QJnijr8Fcruidf/t6lBr0GAGBzBfOnAtm9+WyVF6SjQxvPHHbIr3nuRlwditm7OV9ps3u8LCuTKxSRTpWLLniqUEZ6rU1T5ILxBbJ5bbkHUiBWqVLiYb+1qP5wyAvdtSo8S+npq3bepnFqGf+lh4BUQZhXKVinmzteaumemhB6w9xgRFOH664yL59jm1OqPRY0vkD2bnuuuzZmvZsSD/ujVbnHroiVDsW0G3ItQKnRAwbk7zZFYsxcxcGTZ2THHdf2GoLFC8+cZhFwD7TAUR4z24H91xX1j1ZlgwXLd8nzXfKvLdp79bZhOlvgmJnneYSQSi5zurmjJZXUbppPc3R4xIEcHDrnglYK3EKOW8mhjTJoHX5zlXmleV5DOGpD9xbI9vfymOTRPndjBzavXPFNldrGN/BXI+hwuM4+Tl8dOR2KZjc8xuTp7SqNDhDUTxUbD79VozIvOucCG4faq7GegVv0uJOKDzZVnjodhNcIvHqO7a7lumshaqly2iV7+4rmjOsalWznmU+r9Oc8sgcNFjX57jyPEMPzvErJgg3OllsdHq9aHpF7Mq8zmtbhOTdaV4GO2hl7vcss7VV4fBI/1ATN1OExR3BeQ7B4YVyBbFsPLpq9m2oezbqoa44O11p0Zz2yacaqCOlQNAWfr7A5vRwjk8vkijqpct7FfFqGCmobxBEHAoA1ZdBSzk5O4YYl8M1MlXXlzP7qoL0GACxeeOUssy7LG51UOe1mZ13UNxgmDbLTrj7nkb2ZUhaYKgiDSiFzur35JVV90pJC+NY3Go3p0I7hs1J2p7XR5jjjRG9fZD+5Am9keDur8DV1uPBC0F5DOGpDn5eiicl8dHRYjdHks8bm6/A3h6rUy76YVK5GvOg6FO1Ucf6VSgBQkbuqkP+EG8CnpejlIqag8c5IiQcWX2JnnJYVu8lHr3G/wweXQ2xmANhtQb9YGBDO1/lThQSFiPc7VPNoUbG2+W1MOO+RL6swgT9VSKlUCgYA8ksqQv7WNxQN6rDUA3+/yDThNQLFHphxWra5kmlah+uuotAyj7C4iI3OfTfVPHquKIjMI5z3yNdUGSACOhTHbniMjws9WPCdh7PxsLSY+aGqWYc47UTTz8hPOYWbLxu+IrC/mrkU3nQUX5T6giKiVwRWl6lOu0KxxV8c6gKXglwRIKVSymUIwYUqO50Q5po0qsMSpsgVxJ/cwovsxkrUhA63NU/VjXHeBd9fjYYO11aErsNdDrXoOhTHbs6WVzu9HCNXMDIFgC9VvrjKHLAF0cY2Dp49Kyt2N5UqP1WGHimEzRUR791cdqO8SlXIJVxZZQpMFUCg8t1IXhXmd7/uaVCH7xezQXkN4f3L7EknuWLlWxOow/9Uh/uHs9ty7d6NhUNry9ill+WTTyofPqmcc075aal8XzVj4VBzdGjlIK+i4WsUzeFbq150HYpz7obcVaVQ65H/lNV3VczuZvRd61DNwcvn2f/p6G1szHzcGW4zV3mh0gsmWaNj5qM25ocKlO9gLF6EATI1XKaKT5Xz/XR8M8fMayvV4ZSwjGOPe1Sd5U7fKB2QSi5zuLxHSypuaZsS5te/vqmvw902dMIZyq6qOVh6mV3a3ltfhxedUB32jVBH7DW9m/o6tPDwxjnZ2qv1Oib+oczMlu6JSR49i5vQ4WaLqjrIYVQgZRx7wK3JUdhF1KEIdsPx+NiVKgBQqrXEB+0YfqwK8XuecqKNlczIBL7BKwKicMSGbjPiwFQhVwS+KmWWXJRdcNc6zD5/jrWW4zfTnX203DWvCPxuD7dWDziVXRRunufJ6Sq5nEEIrlQ7K+yuBE3oeXV9U1+HgOC7itDz6Xcb2m5hBhv4Ojq85BFJiPV6N4IO3zgvs3BNHeWDEsW35fLX0xy9tXxjOvzFKg+zeL87lb2VThF1KMJgqrCi2s3xrFzByBSkYX6qYhxh/J5r6WUWGhkzi0WdMbOFR38qkD9XKK/jNYFc8qCpZ9SvXVBZeabpMfOZkEbLgRR5FcKYmYwtST/2CJ1BvHHq6/C4HV31hrXPnRYUTR0ihL4qZZ8rlDftNYRLHjS9UPP6BXVjOjzkCDf2rnIycXUogt2Qu6pkar1g1b+H97DBag5OOlCDY2ZRSFfWut+hyI3G58v2WJtVFesrZKOOa447mMbGzFZehCq180gYM5Mbz5VKGQAcodenGqe+Dg+FPYnALgtTX4etlaL5TZ3ezRelzN8Kg/OIDZXy9RVsw1emwua8RyauDkX42zhRWgUACo2OWHWZBy423kdoJjutTIOp0lohQku3VdWkisWLJuTL8+1B1IOVQ9ML1RYvajBVToV9dgkAirzywFTBGMtZlmFQpcNd7qDXpxqmjg4BoMgdbltUc1Dt76cLOmyjCHOvAADpSgy1ezeHbczr50Lpj8y7qD7hYH178evQKsZjSxyYEVeH4bbHiTKLm+MZuZJh5cSqy70i2Oold8NXBPrqwq3F/gZfP4ns/5VzbFHw5mjl0PNFmgZ7Nx1VIrRzZ4W7TqoAYBYxAGB3e8Lf//VHfR2Ktmf/7/ICdTjIEG4rD0/07VPo3cw9L2vwl8bNYd4llW8vfh3qxbjmnMRy4uow3EL5e7A6EPVsbrG74THzHSasC+/EyPCEmlT5pQp9VRpiDfxmY7dbFfV7N3pGBLtBAHVShdxfCgAuL33aVgNESIcANYOSWjpMCMvPDDIYoOcgoKhHbcweS+iFPulkTzjZuvfdhE0yy4mrw3DtpqjSBgBylQ4CrFoUGuzd6Bk8uUXof2/pSpjYgjz4AzCGZcVhff3Py+QNjpl7qsM7PwnQS+monyqIYQDATR/u1xCR06FO+DkOAPh1OCaBax3GkGpGKm+S17rvZlNFuAb5Rbmyjg4HaMMdd6fLGuhlh6PDcO3G9/X8J+zFSpVOKr7B3g1C6KEWXMgdnDfb8UbW17up4mBTGFdJAeCAnb3k8o+8A1JlgD7c8U5XpaehVAEAcNJn3zREgzpMkongOl00vp3U0eELaSE2RJoSprfi/QX2FZX8tiYcTjmZOjocaAg39nqrXOLqMNwv6Ts4U2PVaWKct2+laPjKFMbYwMCqTt4QHOe+FDwykRd+q3I4jN+8CJwgv7KtnSrDDC4tE3oldFG401lXA6mCEAC4qN00RH0dAkBPTbhS7KXFjenwTiP/UErQbaGXwerOnEkGgg7J/sMZSRFOOtn6vZswddhF7hRXh+HbDQD4nuFDrFrDQJuwrx/dZuAa690AgkwNfjEtuD7OfSl4aQcvrolB2BP2fegAcJJch6qdKnoWxie4Qt7ngwZL4G9VhFQhJVewkZpnOa6pr0MA6KLC6vBq6zYDbkKHL6bzY5OCGFPoZfBNV66blg/Uobinmero8IkWod+TMlZnFV2H4WqXIfWPOQiw6juNYdlNBzVurWj0F+Gkx3xvEv9J5+b2cZ5L49/r4CUtWydVwqXB+x0wnpLk6B/SyPkBgyVD7gn8rYqQKhyHASCJ3lXcEA3qUMPCXWFIsZUcRiRwTetwQVvu7+2alfNZWpzX1dtNy0dEh+ArXB0dDje4hxhC0eE9+uquSrfoOgzXbgxqOQDwbhcEWHV/LU4K44bGp1py0MhdxSRVMAAGyNTgn7p7nmzN6xs3nVsN+NdenlltOKFlRU6Vhu7mJL/cfSHV3l4Z3OB5oMYxTGcDgAZThcy8kaQJ/cef1zEN6hAw3GnkQ+7gPJnK6dlr63BcEv9jN8+4xrs5aUpY0oH7sbu3mwY3psMsrRiu05AO/9IiFB2O01shAjoM9zbndKP2fIWN97rAX5HEtO9L5D+4Eko7DzPh3nri0I0+zQ/5n4BvZOGp1vxTrbmtFcxxJ8q3Abn7u78BpynxrQa+rdI3e2FNy5LxJ0CWWpwGJoWr/xQ1HcKL21j/Vapp7MmhdZhktA7VVpMnywpPUSNBihAiczyzCOmU9Jl+DdCYDjUAL6Tyiy4H/auaYSZ8u5GH5ukwXQmLzPzLGdw+C3PciSxenG9nbjVgBDA0ge+m9U2e2cRMDMZwf/cCORpOFB0O1domGS0R0mG42k0zaaFOqmAADL11+H4Of3k1uC5EexX+a6qX/Pa2wV+EC6kCIPyPEcDdCfww34MrgEzS7HsEZOPz+7RViWA3vck170aeEatj8Aut7D3Unk/LNVe8jZpvV6XnXn11V6UL+5UsPEUN+58X6fJgAEjR0a5NwzSmQ8RAhhI/mMx/VhaE49xt4l9K44LVoZEN1CHfTB2SX4RPTOH3WMKynN5ab5g6zFB4JxusEdVhuHbTxqABAM7j5Dkvy8qEVMEY7jbyTsx8W95cx2mvwv9s5zWwzXoCPgLhHwro5/qmuCMeT7ZnUMOp0k2D05VQFPopXdCxuI+O43HDvRvhCfhD9K67dK5d1Ypf7fISL1voltl5lCLjU2RcO7nndo0zQ+4BYTb4RlLF6XYDAJ0vvDGa0CEgGKjHbRX8e8VMWTNGFX9uwU9J4Zo5E0P4OiQtPiyBAwjLbkYY3UHp8KhTDgAaBrdTeNvJPX1Urq5KN0RYh+HajVLGdko2nCyzuKsrZcbkwFQBgHsS+LYKtPzKtYNlXCL311SeIb2V4Hs3wgrfxs1LleEJ3LLi0Ns4V8/VnLu51uyFA3TuW7UuMsO8MJk89s82X3/2wsBU8XCcx8MDAH1ccWM0rUMAaKfCb2VwWyrRpspG1dhDg59v4yX370VThxiDSYaea8O9czFENY4weVoryNO+Ja1DEU4EDGjX4mSZxWWr0ugTMWICUwUA+mhxVlvvD1XMDksD2aJhoaean5nKt1b40iOaqfJ8Gv95GWsN6WYoHYsfS3GAX9ZNpAr5UiHMXiikitPFAUCXFKNWEe4TTK5jmtYhxqBBeHwivi+JL7CjAie64kWlHkAAPbS4pRwP0PFGOULgN4jo9m4w4MdSuS9L2cbmxmuCVDn+Wyunby/S1qEIdpNq0JgTdYXl1XZLuSExuU6qIAQ6Fo1P5O9L4ss8UMahAgdCAO2VoGX4HB2wAQ8LRdFNFaMM3mvPPXIilEiZnuJOUyLOFwfXThWEgpubWUgVnsN2lwcA+qYlh1DOG4dr6lBwhGwN7q7DDAADwCIAwCxCrEhz1YfWu0GADAy/sotnfL7cGswNdDoWL27r0DPYZyfS1qE494zd3bkNi5DLVuly2AH8qQIAAFh48ipACzl0U+OJSfzEJP4WPd+LPL6a1Ii/Wa85EwPgwEjxb+3fUEgVnz1j7N+hr6nr3O8wPJGb1iro+yNHJXgeTHY18QR8Yf9CqmAhVYSn0tZOlVrF9t/vgAFXVDsxhs4phowEbbDlvNFopg4BAHCNrsizTmKrQ6KKbDX/dVdPWrPvktWx+COzvZPSGy86FMduEjXKIV3aAIC1vJjnOcA1mYCE58r7Xtf0OMOcm9n/T2gbXLMx8h2TWLlPIw3d74AAzcvwPhfM719GJXjnpbkg1LmZa565f625mRFCFrvby2GTWjEmK6P5JbxhiWsdElVkq/k9Pd3PtLn2CL+Plvu8o72LkosjHYp2R3xO68TOKQbM81VXiwODJC5S5W+tvVu6eW7RX+OEto7Fb6Q557VxkK8R6d6N1eG2O70yBt3X0yynv11oHnGtQ4x99+8+k+rd0d01xMg1+HugwQbvP9o6l5vtbRR8fOkQ1WqD8HB6udX/OVXucMnlyuSWrWUMwyBgEZBH+5IFhoF6Y2ZAAAzCCIAhd80AIOQ7p4P8axjyEvkX/GvqvITa992Qe/wQ9g1HhTEq+GINMADH84AQz2MMsKyY/aGSybcja+2HxbZW4IeSPWMSPHoWk0/xPA+I4Xie94UVOcMPNef8ATgeA0IcT/aNeIybuCKA/R8n+y+3OqudHgC4r6eZXv8OiutAhzxgHvu6XRVeyLehfAerZ/lUOb5Jx/mVFn86FNNuAMDh8X564HSZzcWwbFJSS41azQAwgIX2ZvztV7MAmGUQWUAALEIooMkR+NsbAYMAMGYRCmxgxn+GnzQt2dIXOLU3QEAuVwD4rwiQdsX+mhWqGGN8zgkX3EylF/QMzlRzelZoRRAaSfhUnTbGAVuS9WQDHmoUILQ375v/GYRlL8+XWhwuDy9j0AO92pMb2ChBcd3oMNALsF8z8atDke0GANwc/+XBMxeq7ACg0+mTEpPlDBOPqcLXbn6AGseJXKpUOTxXrQ6MQSljJvZq39qgEbd1bhyoDiWoQ/HthrDn3JVdhSVeHgOATqsz6vUquVzBsiyDaKpA7VRxeXkvj60Ot8XhIe9mphjv6txar6R32YQL1aGkdBgpuwGAapd3V2Hx0ZJK+rzL5tM+UX9TRoo5URfrglw/UB2GQIR0GEG7ESgoqTxXUV1qc5ZWO120yWujlDHJGlWSVtnaqM1qYVLK6BWoSEF12ATR0WE07IZCoVBAxPtuKBQKpWmo3VAolChB7YZCoUQJajcUCiVKULuhUChRgtoNhUKJEtRuKBRKlKB2Q6FQogS1GwqFEiWo3VAolChB7YZCoUQJajcUCiVKULuhUChRgtoNhUKJEtRuKBRKlKB2Q6FQogS1GwqFEiWo3VAolCjBAIDVan333XeHDBmSnZ3drVu3oUOHvv/++17vtacNnTlz5qRJkyJfyLCQQiE5jlu+fPkdd9yRmZl5xx13fPjhhxznmybYbre/9tprffv2zczMnDBhwqFDh8I5UH5+vtls/uGHH8QodbShOow0MdehDACmTJlSVFT0zDPPZGVleb3eX3755d133y0qKlq4cGE4hwyHPn36fPvtt2lpabEqgLgsWbJk+fLlzz33XM+ePf/zn/8sWrSIYZjp06cDwAsvvLB///433nijZcuWq1evfvjhh7ds2dKqVatYFzkGUB1GmpjrUHbixIkDBw7861//Gj58OFnVt29fpVK5ZcsWh8OhVqvFPV5zuHjxYnl5efSPGyG8Xu/q1aunTp1K2vXmm28uKChYv3799OnTz549+/333y9fvvyuu+4CgJ49e+bm5n788ccvvPBCrEsdbagOI40UdMiQ3hTD1DqJ8/jjj3/zzTdCG3/55Zd33XVX586dc3Jynn766bKyssCNq6urMzMzP/jgA2GN2+3u0aPHokWLAKCsrOzZZ5/Nycnp0qXL2LFjd+/eTbY5deqU2Wzeu3fvzJkzs7Oz+/bt+/rrr/M8/+uvvw4cOBAAbrvtNlIvAjt37jSbzb///ruw5uDBg2azeceOHQCwf//+++67LzMzMysr64EHHmiwN5iVlbVs2TLh5ezZs0ePHi0UZteuXQ899FBmZuaAAQM2bNhw5MiRMWPGZGZmDh8+/PDhw+QjXq/3H//4x4ABAzp37jxo0KDVq1cLe1u4cGGHDh0aqGKG+e6772bMmCGsSU1NJTrevXu3XC6//fbbyXq5XH7bbbft3Lmz/k7++te//uUvf/n0009vvvnmzMzMadOmWSyW//qv/8rJyenVq9frr79e/yPxBdUh3AA6ZDp06JCenv7CCy989tlnddqPkJeX9+KLL44dO3bz5s3//d//ffjw4UcffTRwuhidTjdo0KAtW7YIa3755Rer1TpmzBiO4/785z8fOHDg/fff//7773v16jVlypTjx48DgEwmA4B58+ZNmjTp4MGD77zzzurVqzdt2tSnT5+lS5cCwIYNG/7xj38ElqR///5JSUmBB9q0aVNSUtKAAQPOnDnz0EMPpaSk5OXlffXVVzqdbtKkScXFxU1/eQFSmMWLF8+ePfvAgQM9evR4+eWXFy5c+N577+3bt0+n082dO5dsOX/+/OXLlz/77LNbtmx57LHH3nrrrc8//5y81bFjxzvuuKOBKmaYdu3aGY1G8tLr9e7atatv374AUFhY2KpVK4VCIWyckZFRWFjYYAkPHDhw7ty5n376ac2aNT///POECRNSUlJ27969cOHC1atXE63HL1SHcAPokFEoFP/+97/NZvPLL7/cr1+/IUOGzJs378iRI8IWK1asGDhw4JNPPtm+ffv+/fu//PLLhw8fPnDgQOBeRo0adejQIaFaN27c2Llz58zMzJ07d+bn5y9YsGDAgAEdO3acO3duenp6oBMPHTp04MCBcrk8Nzc3IyPjjz/+kMvler0eAIxGo05XaxI/lmWHDRtWp5lHjhzJsuyaNWsUCsU777yTlZXVrVu3t99+2+12r127tolvXp9hw4Z1795do9GMGzfOYrHcf//97dq1MxgMo0aNys/PBwCr1frZZ5899thjEyZMMJvNkyZNuvfee5cvX04+Pn78eGG5CRYtWnTu3LlnnnmG7JB8WQGdTmez2Xi+gUnX7Hb7888/r9Vq+/Tp06VLF57np06dqlarhw4dajKZSAnjF6pDgetYhwwAdO7ced26dT/88MMrr7ySkZHx2WefjR49+s033wQAj8dTUFBALJDQs2dPAKiz0zvvvFOtVpMT0V6v98cffxw7diwAHDp0iGXZm266yXcwhunXr1+gRLKysoRlg8FQVVXVdB2NHj367NmzJ06cAICjR48WFRWRAx0+fDg7O1ulUpHNTCZTRkZGsH+BnTp1EkpS56XL5XK73fn5+R6Pp3///sJHbrnllsLCwoqKimYeYuHChatWrVq6dGn79u2DKhsAZGRkCPljMBiE4pGXFosl2B1KDapDwnWsQ5mw1KlTp06dOk2dOrW6unru3LkrV64cPXp0+/btMcZCBwwAyHJ1dXXgXtRq9Z133rl58+aHH354z549lZWVY8aMIZtxHJednS1s6fV6ExIShJdCwxCuOaVnv379UlJSNm/e3Llz540bN6alpfXu3ZscKCMjI3BLo9FYp5DXRKlUNvESY0x2+PDDDyPkm1Oe2P/Vq1cDv1SD8Dw/Z86cDRs2rFy5kpwUIIWs0zwWi0Wn09U5hdHM4jVdgHiB6vA61qHM7XaXlJSkp6cLq3Q63axZs/Ly8vLz87OzsxmGCTR7slyn6wUAo0aN+stf/lJZWbl58+acnBxy7VCv1yuVyu+//z5wywa/QzNhGGbkyJFbtmx56qmnNm/eTE6wkQPVSaSqqqrU1NQ6Hxeah+B0OoM6OvnWS5YsyczMDFwfWHuNMXfu3C1btnzxxRfdunUTVrZv3/7y5csul0tos8LCwo4dOwZVqusDqsPmE786ZN56660RI0bUOTlHzhKlpKTI5fKuXbsGdjt/++03AOjRo0edHQ0aNEilUu3YsWPr1q2kYwkAvXr1crlcPM938KNSqerXfoM0ZpNkBLtnz54zZ84IB+revfvRo0ddLhd5WVZWdvbs2fqFNBgMgVETbC+3a9euCoWivLxc+DomkykxMTHwHFuDrF279n//939Xr14d2MYAMHDgQJ7n/+///o+8dDgc27ZtGzRoUFCluj6gOmw+8atDhpzmGT9+/CeffLJ3797du3d/9NFHTz75ZHZ2dm5uLgBMnz59586dH330UVFR0e7du996662bb765fg0qlcohQ4Z89NFHV69eHTlyJFk5YMCArKysZ555Zu/evRcuXFi/fv2IESPWrFnTdJlIP/mnn34i1w7q0Lt379atW8+fP79Lly5dunQhKydPnux2u2fPnn3q1Kn8/PxZs2YZDIbx48fX+WyPHj22bNly9epVh8Px3nvv2Wy2oCpLr9c/8MADS5Ys2bBhw4ULF3799dfJkycL9ybk5eU9/vjj9T/ldDoXL15855132u32XwNwu91t2rSZMGHC66+//v333+/bt++vf/0ry7KTJ08OqlT1OXr06PYA9u7dG+YOowDVYfOJXx3KMjIy8vLyli1btmLFipKSEoVCkZaWNm3atMmTJxOzHDNmjNPpXLZs2eLFiw0Gw5AhQ+bMmdPg3keNGjVt2rTbb789OTmZrGFZdvXq1X//+98ff/xxu92enp7+9NNPP/roo02Xsnv37rm5uQsWLLjllltWrVpV512E0IgRI/79738H3oPUtm3bNWvWLFy4cNSoUSzL9uvX74svvkhKSqrz2Tlz5syePXvgwIFGo3Hy5Mnjxo37+eefg6lAeOWVVwwGw4IFC65cuZKUlHT33XfPnj2bvHXy5MmtW7fW/8iZM2eKi4s3bty4cePGwPX79u1LSUl58803Fy5c+Nprr9lstpycnDVr1iQmJgZVpPq89957gS/btGmza9euMPcZaagOg6mteNUhum5OMVIoFIlDfxFOoVCiBLUbCoUSJajdUCiUKEHthkKhRAlqNxQKJUpQu6FQKFGC2g2FQokS1G4oFEqUoHZDoVCiBLUbCoUSJajdUCiUKEHthkKhRAlqNxQKJUpQu6FQKFGC2g2FQokS1G4oFEqUoHZDoVCiBLUbCoUSJajdUCiUKEHthkKhRAlqNxQKJUpQu6FQKFGC2g2FQokS1G4oFEqUoHZDoVCiROztZt++fVOnTu3Tp0+HDh2ys7PHjh37xRdfNOeDFy5cMJvNZrPZYrEEe9BZs2aZzeZ58+YFX95r8+6775KCvfnmm5HYPyUSfPXVV+PHj+/evXuHDh1ycnIefvjhffv2NeeDX3/9tdlsHjFiRAgHHThwoNls/uGHH0L4bGOsXr3aHED79u1vvvnmKVOmSGGq+Bjbza+//vrggw/+9NNPWq321ltvTU5O/uOPP1566aVPPvlE3ANdunTJbDavXLmSvMzKyho8eHCnTp3EPQphw4YNZGHTpk10TuS4YOnSpbNnzz5w4EBGRsYtt9yCENq5c+fDDz98+PBhcQ+Ul5dnNpvz8/PJy/79+w8ePDglJUXcowCAXC7v1atXr169srOz7Xb79u3bH3zwwZg7jiy2h//kk084jhs6dOiHH35I1syZM+fzzz9fvXr15MmTRTyQYAGERx999Joz0ofGyZMnT506ZTAYNBrN5cuXDx48mJOTE4kDUURk1apVADB37twpU6YAgMPhmDBhQn5+/pdfftm9e3cRD1RHh4sWLRJx54G0aNHim2++IctWq3XEiBEXLlz4+uuvb7755ggdsTnEuHdDxkEJCQnCmpdeemnHjh2B3cu8vLxRo0ZlZmZmZ2fff//9O3bsaHBXEydODOy/bN++3Ww29+vXDwBGjx69YMECAHjzzTfNZrPNZqszmHK73e+8805ubm6nTp1ycnKeeOKJM2fOkLc+/vhjs9k8Y8aMvXv3jhgxomvXrvfcc8/Ro0cb+0bff/89AOTm5t55551QT14UaVJHh2q1euXKlfv27Zs/fz5Z04RC6kCGMEL/ZeHChWaz+cknn7TZbGaz+eeffwaAkSNHjh49GuoNpoqLi2fNmtWvX79OnToNGDDgjTfesFqt5K0nnnjCbDb/z//8z6efftq/f//u3bs//vjj5eXlzfl2er2+Z8+eAOB0OkOqHtGIsd1kZ2cDwBdffPHcc89t3bq1qqpKr9enp6czjK9gH3744XPPPXfs2LHBgwf369dv3759f/7zn7du3RrUUcaOHZuamgoAN9100yOPPCKXy+tsMGPGjPfff99qtY4aNSo1NXXTpk3jxo27ePEiAKhUKgA4c+bMrFmzsrKykpKSDh069MQTT3i93gaPRexm2LBhw4YNAzqeihOIDufMmbNo0aK9e/e63e6WLVsGjnGaUEgzkcvljzzyCFkeM2bM2LFj62xQXl5+7733rl271mg0jhkzhuO4VatWTZ48mSiN6PC7775bsWJF//79OY7bsmXL3//+9+Ycurq6+tChQwAQ264NxNxuHn/8ceK7eXl506dPz8nJGTt27Keffkqq2GKxvPvuuwAwf/78Dz74gNQ+ALz99ttBHWXatGlmsxkAhg4d+tprrykUisB3d+7cuW3bNoTQ119/vWTJkm+//TYrK8tisXz00UcAQIzv1KlTS5YsWbx4Mel1nz9/vsFwO378+KlTp5RK5aBBg2655RaTyUTGU8FXDCWqzJ8/PykpyW63f/DBBxMnTuzRo8cjjzyyfft28m7TCmkmCoXitddeI3KaMWPGtGnT6mywYsWKy5cvt23bdsOGDe+88866desUCsWhQ4dI34d88OzZs+vXr1+8ePGcOXMA4KeffmrscFeuXBk3bty4cePGjBnTv3//4uLiSZMmTZw4Mbh6EZsY243JZMrLy1u2bNnEiRPbtm2LMf7jjz9effXVF154AQB+//130v0bM2YM2X7kyJEAcPLkycrKSrHKsHv3bgDo3r17+/btAUAul999990A8J///EfYplWrVn379gWAjh07arVaACgpKam/q40bNwLAoEGDNBqNTCYbMmQI0PFUPNCtW7ft27cvWLBg+PDhSUlJLpdr27ZtU6ZM+eqrr6B5CgkfcpShQ4eSjkyrVq169+5d5yi5ubl6vR4AevXqBQAVFRUej6fBvXk8noMHDx48ePDw4cNWq5Vl2XPnzh0/flzEAodA7C+EMwwzZMiQBQsWbNu2bdeuXaST+c0331y4cKGiogIAlEqlRqMhGycmJpKFqqoqsQpAjhJ4/ogcJdDRAt9Vq9UAwPN8/V2RkdSBAwdGjBgxYsQIcpqJjqfiAq1WO3HixH/961/79+9ft24dGV6999570DyFhE9QOiQihEZ0CABt2rQp9LN///5HH310165dDz30UAh3jYhILO2murp68+bN7777rnAGq02bNu+8845MJgOAc+fOmUwmAHC5XA6Hg2wgnBsLbBUC6W0Ku2rmWTQAIEchjR34WcHamsmxY8dOnz4NAKWlpQUFBQUFBaQHRMdTEufSpUtr164lw2RCz549X3vtNQC4ePGi1+sNSiEIIYipDuuTlJT01FNPAUBlZWVspRjj3s3f/va3f/7znwsXLnS73WTNjz/+SE7cpKWl9e7dW6lUQsB45NtvvwWAbt26GQyGOrsiJ/bIKTEA+O677wLfJSKw2Wz1y9C/f38AOHLkyNmzZwHA7XZv2rRJWN98yEiqd+/ehQHk5uYCHU9Jm7Nnz86aNeuNN95Yv349WcNxHDlj0qpVK5lMFpRCAnVos9nIpSiBa+pw69at5G/h4sWLv/32W2NHCRbheq5Opwt/byETy/tudDrd888/P2/evFWrVn399ddt2rSpqqoqLi4GgHvuuadt27YA8NRTT7399tuvvPLKrl27ysvLd+3axbLsSy+9VH9vgwcPXr9+/Q8//DBz5kyr1UquIAqjmFatWgHAqlWrioqKnn/++cAP3nbbbbfffvuOHTvuu+++3Nzcw4cPHz9+PCUlZcaMGUF9HWI3de4uHT58+Pbt2zdt2vTKK68QqVGkxq233jp06NAtW7Y8/fTT8+fPT0xMLC4uJqP1Z555BoJUyODBg7/88stFixYdO3bswIEDqamppaWlgTq8ePHiq6++OmDAgFdffTXwg1OnTs3LyyssLBw7diw5l+TxeAYMGHDHHXeE8KXIqWKyXFVVVVhYCAA5OTnkpE+siHHv5pFHHlmxYkVubq5Wqz19+rTVau3Vq9fcuXOFa09PPPHEokWLOnbsuHnz5t9//33AgAGff/55g34/ZsyYmTNnJicn79q1q3Xr1uSOCZfLRd597LHHOnbsaLVa9+zZU2e4ixBatmzZzJkzlUrlunXrSktL77nnnm+++SY5Obn5X0QYSZHr3wJ33303y7KXL1/+/fffg6kYSvRACC1duvSNN97IycnhOO7kyZMMw+Tm5q5cufL++++HIBUye/bs4cOHy2Sybdu2/elPf/rTn/4EATp88cUXk5OTz549e+zYsTofTEpKysvLu+eee65cubJu3TqlUjlz5swVK1aEllLCqeKDBw+WlJR06tTp2Wef/fjjj4VbTGLC/wM/qIRmQYn++wAAAABJRU5ErkJggg==", "path": "image.png" }
Which solution has a higher concentration of blue particles?
[ "Solution B", "Solution A", "neither; their concentrations are the same" ]
2
The diagram below is a model of two solutions. Each blue ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the blue particles represent the solute. To figure out which solution has a higher concentration of blue particles, look at both the number of blue particles and the volume of the solvent in each container. Use the concentration formula to find the number of blue particles per milliliter. Solution A and Solution B have the same number of blue particles per milliliter. So, their concentrations are the same.
neither; their concentrations are the same
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAIAAACmkWkFAABM+klEQVR4nO2deXwb1bn3nzOj0S55kZx4T5TETmJnXyBkIUlpCIQsLKGlpey0LG0pvaVwS9mh5YallLa3LVB4SQu0cEPYSUKALAQCITiLE8dOnNiO7XjfJFuWRpo57x9HGsuyLGsZSeNwvh/IZzwezYzm/Px7nrPMOQhjDKON0919Ix5TmG5Iwp1Qvs1QHUaLKtU3EIzLK5xosx9v63F5hR4X3+PypPqOokajYsYadWk69VijbnpOhlbFpvqOKFFDdZgIkKKym5Ze16tl1W6vGP6wDKMBAQAAQoDA9x8g8O0EQAAdff28MMJ5koBGxayfbivMoCFuNEF1mCCUZTcv7jve2utSaw2m9EyNWq3lOK1GzSFQMcACqBhQIVAhYJBvg/VvswgYANa/h2wz/m1pAwEg/zbGIAIIGGMAQcQB2779IgYR44Dtgf2+I33bEHgGEYD3Cs5+vs/F2/ucjl6nRsX81/nTUv1oKVFAdZggmNRePoiefh4AMnLH680ZWp2BU6sBgNghQv4t8EUP7N8eOCBge8BEyTYGHPBJ7DseI4QwBoQQAJBtIPvJoSggXCHA/v0IIezfjxBgjMF/BsCgYlmjQZtlMY/PHwsAIwZJitKgOkwQyrKbwgwjALj67OTpksTLVzTYvxVQwGR74ICAbf+xADggxfV/EvmORxhjXzkBkG0iB6IKcpB/G5B/P8YY+ff7VOI/g3RqjKGf9wDAGKNW5sdESTBUhwlCWXYzLsMIAHxfL3m6QYFitEQV/zZ0ddnBr13KKILqMEEoy26Ks8walunv7XL12kd7VHG6+I4uOwDMyMmU/UFREgrVYYJQlt2kadVLJmQDQHvzaVEQRm9UEUSxtr4JABbbxo5VQBJLiQqqwwShLLsBgPkF1iKrGYvimdMnvYIAozCqeAXheM0Z3iMUphuW2MYm4ilREg3VYSJQnN0AwOqSgiyjlne76utOutyu0RVVnC6+/ERdv5s3a7krZoxPxPOhJAeqQ9lR1rgbCZdXeLXsZGuvi2GYMdasjLQ0k1ar5PEObo/Q5exv7+7tcvQKAi6ymleXFChhHCclHqgO5UWhdkN4v6K+vLkr1XcRNYttYxWSu1JkgepQLhRtNwBwuquvqr1nf33bQI1ZmWCMAVYU5xVmGJXQJkeRF6pDWVDcK5pBFGYYCjMM++vbAeCa82aQFBQBIPBtBP0IAfvBn7Ui7Nsv7SEbIgYMIGKMATDZBowBiRiDbz8ivxUx+Pf4PoWl3yLwiOKmfVUsQvMLrCl4RpTEQ3UoC0psKh4WfwMbKVcEAY38g3sEpB/J8YBIQ9rAb/09AoABk1InLXC+PgJfkPCnfgN7pNNi3/GkfS5ARpSzH6rDWBlVduPvA8Aw8J9UdIE9AtKP5HjApJsQBhW9L7YgX8lhX7+kr7Uf+bbJufx7pNMi3/EYEEKiiAGARQouZ4qMUB3GyqiyG6VGFeyLKsotZoqcUB3GyqiyG8VGFRABACk5i6XICNVhrIwqu1F6VEnQ16YoDKrDWBlVdqPYqIJFUHadmSInVIexMqrsRrlRBYGy68wUOaE6jJVRZTdKjSoCxqDsYqbICdVhrIwqu1FqVCH3gBRczBQ5oTqMlVFlN0qNKv46c6K+N0VZUB3GyqiyG6VGFeWPd6DICdVhrIwqu1FqVFF+nZkiJ1SHsTKq7EapUQUUH1UockJ1GCujym6UGlXIaE5GyeOrKDJCdRgro8pulBpVlD+akyInVIexMqrsRrFRRfFJLEVOqA5jZVTZjXKjitKb6ChyQnUYK6PKbhQbVUSlFzNFTqgOY2VU2Y1iowoAKLvOTJETqsNYGVV2o9iogkVQdlShyAnVYayMKrtRbFRR/Ju4FDmhOoyVUWU3Co8qSs5iKTJCdRgro8pulBtVAJQdVShyQnUYK6PKbpQaVfwdkIn63hRlQXUYK6PKbpQbVUgxK7icKTJCdRgro8pulBpVlD+akyInVIexMqrsRqlRRVR8VKHICdVhrIwqu1FqVFF+nZkiJ1SHsTKq7EapUYXsU3JUocgJ1WGsjCq7UWpUERQ/3oEiJ1SHsTKq7EaxUUXxozkpckJ1GCujym6UGlWU/64KRU6oDmNlVNmNYqOKCKDsBTcockJ1GCujym4UG1XIjSg4qlDkhOowVkaV3Sg2qih+vANFTqgOY2VU2Y1Sowo5g5KLmSInVIexMqrsRtlRhVVwMVPkhOowVkaV3Sg1qvgHjyfqe1OUBdVhrIwqu1FuVAEAQEouZ4qMUB3GyqiyG+VGFaWPd6DICdVhrIwqu1FuVEGg7DozRU6oDmNlVNmNUqOKoPg6M0VOqA5jZVTZjVKjCrkJJSexFDmhOoyVUWU3So0qyl+9kCInVIexMgrsptnRDwBaTqXYqKLjVNJ9Us5WqA7jZxTYTUVLNwCMs6QpNqoUWMwAcLSlKzEPgKIIqA7jZ9TYTaElXbFRJS/DqGJQk73f7uIT9BAoKYfqMH6Ubjdn7E6H26PlVGNMesVGFYZB+ZlmAChv7k7Qc6CkFqpDWVC63RwjGaw1HRBSbFRBgAoyTQBwuKkzMY+BkmKoDmVB6XZzpLkbAMZlpg+UqPKiCgacnW7kWKa7n2/tdSXmSVBSCdWhLCjabhp6nE6PV6/mrCb9QIkqMqoggAJLGvhr+JSzCapDuVC03ZAMtsCaDoElqsioghAqtJgA4EizcvsFKLFBdSgXyrUbjLGvLyAzDQJLVJFRBWNsNep0nMrh9jT2OBPyRCipgOpQRpRrN/U9TqfHq1NzFqMeRkNUQQgVWMnAh+6EPBFKKqA6lBHl2s2x1m4AGGdJ98cSpUcVACjIMAHAsZYuceDylNEN1aGMKNRuMMaVLT0AUGBJ98cSpUcVAMgw6gwazukRTnf1JeCpUJIN1aG8KNRuTnf3kQw2w6AbRVEFY1xoSQNlDySnRA7Vobwo1G5IX8B4awYMxJJREFUQQgUWEwAca+0RRGXlsZQYoDqUFyXajYhxRWsPAORb0mEgloyOqGLUatL1Wo8gnuxwyP5kKMmE6lB2lGg3dV19bq9g0KjT9VoYbVEFAOcr/sVcSiRQHcqOEu2G9AUUWjLIj6MrqgCgwkwTAJxot3sFUdYHQ0kqVIeyozi7ETGubO0BgAJrGtkz6qKKRs1ZTHpBxFVtdpmfDiVZUB0mAsXZTW1nL8lgTVot2TPqogpgnJ9pAoXlsZSooDpMBIqzmwqSwVozpLAw6qIKIJSbYQKAUx2Ofo9XzqdDSRZUh4lAWXYjiLjK3xcghYXRGFU0KnZsmgEDVComj6VEDtVhglCW3dR0OnhBNOu1Rq1mVEcVDJCXaQKACkW+mEsJD9VhglCW3RwjISUzHQLCwmiMKgggJ93EIHS6u6+PV0QeS4kcqsMEoSC7EUR8vG2gmEd7VFGxzNh0IwAcVUZgoUQI1WHiUJDdnOx08IKYZtDptWoY/VEFYyDzVCtwHgBKGKgOE4eC7Ia8n5Kb4VvHZ7RHFYRgTJqBZVCzo7/L6ZbxQVESCtVh4lCK3QzKYEmBjf6owiCUk2ECgKOt3fI9KkoCoTpMKEqxm+oOu1fE6XqdTqM+a6IKAORnpgFAeVPqq82USKA6TChKsRsyHWxOZjoJAnBWRBUAyDRq1SpWsQtxUIKgOkwoirAbjyBWt9sBIDczjQQBOFuiCsMwuRmKezGXEhKqw0SjCLup7nB4RZxh0OvU6rMsqmCMczJJN2S3bM+LkhioDhONIuzmmJTBApxlUQUhlGHQaTiVw+1p6FHWxLGUIKgOE40qVReW8AjiifYeABhjNgqCIGLMMIAARAAGAQJgACMAhKQffRuI7AdAiIgA+/aTw0g5DTqAKMT3oyhiDCACxhhjQCLGIsYiBgyAMRYDdpIDBFHEACIGEWMMGAMI5AwYY99OEEQRA8IBpyKfytRxTR7v0Zbu/DRDap82ZTioDpNA6u3mRLtdxGDWaQWvx+n1MAgYAISA9ZUlkD1SETIB+xEE/wjkeOQLIb7CxoAQQsT7MfbHE5BKAhCSSp0UJABIRUU2yB7s/5QoioAYURRFwBgA+z+FsYjBF1VEETMMI4hipoFrsvdXNHevKMplBuIdRUFQHSaB1FemSF9Alsngr7qiMHVmjHFQndlfuL4DfQdjqbaL/Sf05ZW+bHNwnRljXx1YqnhLdWYSQgLrzBhjEqFELEo3N1ydWRRFADBwnFbFurxCXVdvop4jJT6oDpNAiu3G7RVOdtgBwGIy+KuuOEydGSEUVGfGgyrC/oORVNtF/hP6nryvPAbXmUkQQj4NQGCdGSEUVGdGiGTQwCBGurkwPQLkS1kMGlDGQHLKUBKnQw+PmxuE5kax9qSnqV7oaBW/zTpMcWWKZLBpOq1apfJVaAEB8vm3lG2Cv2CIbSMUFFUkJWApqnS2Cc2N4umTHoTAYccmMwKAvHzV+Ikq6xgmKKqI2Ne2L0UV0RdVRHIrCBDJUdsacVOd0FKLnQ5JXqAzgbUQLAVMWvZAVBEDogoCZNGrG3ucla09F0/OZxlan1IWidBhdYXn2EFPZ5sQdC1TGmObqJq3QKPRBmc3keuwz46basWOJuzhMcYCALBqyMhBlnzQmgZlN4rSYYrthvQFWExG8tgRee6Y+LTvGOwv0cCoAiD9iwPDDwboahP273Y3NQwqZkcPAMCZeuHrve68AnbuAk1+AYsxkPJDCGERI0AIkTTZt0ViBakS2zvwoS+87WcwDKHfAfVHof6omJ4DxYtAYySfBcBA6swYsIZjDWpVH++t7rBPzkqT/UlS4kFeHTY3CHs/dvXaQ09I7ugRD5fxlRWembO5eedp/F3jkerQ2QuHv/A21YQ4eVsdBoCMHJi8iFEbMSDF6TCVlSm3VzjV6QCALLNBSlrjrDNXHvC895ozyGuCaKwX3v0/59d73RBxnbmpRtz9niek1wTS3QRl7+KOuuA6MxkQkaHnwN9GQFEO8urwZIVn+2bncF4jwbvw13v5Hdtcrn4SJiPSYV2VsO1VPqTXSHQ1wZebxMYKGNp2k3IdptJuqtrsIoY0vY5lWKlY46kzf77d9fVnkY7R/novv+MjVyR15toqce82jyeyl2m9PFTswM3VOKjOjBDK1GsA4ES7nfeGc0NKkpFRh6eOefZ+HMVbApVHPdve74fI2m6+3iF8syPSKbJO7sPHPx9oG1KIDlNpN74M1mgIHLgUc1SpPOA5dcwT1Q1UHfV8sdMVPqp0tQn7Iy5jierPobcDw+CoomKRScMJIj7eroiJYykEuXTY0iB8GY3XEBrrhS92ukbMbo4f8tZVRecOLdW4qSJEdpNCHabMbvo93ppOB5C+AF+THECsUaWlQdgfcV4TSPkBT221ECaqfL41xikXq3YCDI4qCFC6ngPaP6UkZNThV9F7DeHwAU9nqxgmu2k7gw9+HosOT32N7S0AitFhyuymqs2OAcx6Pcsw8Wc35ftinzfoy93u4aLKkX3ewB6oqHD1QvOxQVEFA87QawCgRjELcVDk0mHNMU+fI/bFKr/Y7Q6T3Rz5Ona11B8KzrJTqMOU2Q1ZEdViMiCE4owqXW1Ca2PstVCHHZ8+JYSMKjVRpq9BNFUGRxUWgVnLYf/k25SUI5cOjx/k47mNM/WC2xU6u+lqE9rOxG5kPc3QdVopOkyN3fR7vHWdvQgg02jw9dXFkd3URNlkM5TaamFoVOlqwzGnNgR3L/TbB0UVQCjDoAHaP6UM5NKh14272uNdh7vulDdkdlNTGe+Z7S3B2U2qdJgau6ls7cEAJr2OZRgZshs5SnpoVGmNI6RI9LaSG/dFFcA4TcshgHplLMTxLUcuHXbGrUAAcPTgkNlN65l4+496WoOzm1TpMDV2Q1ZEtZiNABB/dtPdFm9h8+4QUYWXYxppVy854UBUQQjSdWoAOKKAhTi+5ciow/jpbBdDZjdd7XGl2ADg7AyR3aREhymwm36P93RXHwCk6fUAEH92w/Pxlge5zNC2m/jP6h8POhBVEKA0vRpofSrVyKjDEQf1RYLbFTq7if/MMKRnKlU6TIHdVLT0AECaQc+xLMiR3chzW6F6BOI/KzljYFTBgM1aFYMUsRDHtxkZdWg0y/B3ZBnDDNMzJQNDs5uU6DAFdkP6AjKMRvKyWfzZTYZVjm8xJKoYTDKcVWskJxwUVQBQBh2Ak2qi0qHXjcPokFPLcD9qNQqZ3ajjPrmKC53dJF+HyX5Fs4/31Hf3AUC6QU/GOWCMGQYBoJjfxE23snG2FmfnsTDkTdwxeSxAvH1exjG+LyVKUQVjhMCsU3f08eXNXYttY+O8BCUGRtSh4IbW0562Wm93k+B1D6QY2TaVNU9VUMxqtYykw4ws1mBi4hl3AwDjJ7E41BvhY/LYhpq4WovN2QPZTWp1mOzs5lhLDwCkGwwsw8iV3YzJZ+O8q/GTVEOjitEMelNc9SlDBtaZQ0QVjMGoUbEM6u7nWxz9cd48JQbC67DluGf/W33Hdrraa72BXgMAzTXeI3tcH7/qrNzvDtThmLy4RKjWoEwrEzK7GZMX7x+peWzo7Cb5Oky23ZC+gDSjEftmVBxUZ3Y5xJ4msbbMXfONu67c09UkeN1Yym6Ga7vJn6BSq2P3BbUGFU5gQ7bdlM6LS0PZU1HIOjMRU7qeTriVMsLo8MQu1/HdLlfYVMXjxsf28Z+87iT6RADTztXEcz/nLVUPN6rYNkUVT2VNxUFGQei2m+TrMKmVqT7e09jjRAil6XUkUWQRIlGl7QTfdNTT1xEiaRxrU9mmq7Py2MDsBkD6F6s1aPq5mm9iemcKAKbN4sxpjBhqnpEJU1VH9wuxDfbTGCBrIgDyzTOCEEIYsH+GJIRQuo7r6HVVtHR/Z1JObHdOiY0wOjz8Vm9fZ6R1op52Yefb/csv06k1yGBGk2dyVYdiqX1bs5gppWpBFEPOd6PW4OKZqqOxvseQU4I0RqwQHSY1uyFr3JgNeoZhpKjS1+498EZv9W5XSK8BgJYa75fvOr941+nhccjsBgAmz+JiazC2ZDHT53Bh3sRddFEssUXFwZTlAMP0CJA4plOrOJZxuD31dEGY5BJShxjjk7tdkXsNgTgO0eGc87UxiFCjQcsv1IZ/I7x4OptuiSV/N2RAzlQAxegwqXZDXtBIMxrB3wzWfoI/8o7THUEbW0ej8PErffYOcWjbDTlgxRV6gym6r6PRoJVrdJw63DwjGVnszEVR54BFi5HRgmCY8Q6+d38Bp5OB5HTFu+QyVIcA4GgW207E8t5Td5twZB9PdHjB5fqoHEejQeuu1FnGsOHnu1Fr0aKL1dGGPZUapnwHcRoAxegweXZjd/Fn7E6EUJpOBwAYwH5aqI2mBuRx48/f6e/rEUOOu1FrmNU/1GdGXNjWLGbtep0xDYWfZwRjPH4yc/7aSAtbpYY5a8BSGGKekaCoAoDStCoAqGjpFmUaXkEZkaE6JNnNyd2xt5UeP8ST2dfUGrTiCsOEqVwkn7JmMeuu1FmyWPAZQTgd6k2wdK0q8hxHY4QZK0FnVJYOk2c3Fa09AGA2GBDDAICrQ6j9LOoC9rjxV1tdvBsPzW4AsFqDVlyhL5k1cmFPLuHWXakfMaqQWdQAIWsu+s6V6sLiEVqOsyehOWuRwcJgf89a+Kii4VQaFePyCrV0QZhkEaRDkt1013n53ti7sT1uLL0nrNbAohXaFZeHy7U1GjRvgWYtUaBvtMfIOkzPYpesVRdOHrn7InsSmqtIHSavqZjMmZZmNBJ/btjnEmJ6+aCnXag+5Ck9Rx2Q3Uh95VijQfOXaktmqysO8KdPCUGjy01mxjZRNX0Ol5bGkKY4HPEM+HojzFnOFs9lTleJHU1iR9PAzWdko/RsGDsJaYwY+1d3DpoBP2i8g//82KxXt9ldFc3dEzLlGFZIGYkgHWIAFiFHU7yvKTac8kz2xTkEgHPy2fU3GrrahNMnha52we3vYLVmMbn53IQi8ncXsIZ3ZDpUa9DcZezEaai6HDfXCp7BlT+VGqyFKHsSSstWqA6TZDd2F9/s6GcQMul1GKCvWehtjn3kUvVhvmgmp9GSsTjBKzEgAFMau2CZdsEy8Lqho00AAAQoKwtpdAxgTAZyoShnwCd7DGY0eR6LgSWrFwqDVy8kZSyVJQTMgD+0R4Cc36zl2uyuyraei0W6IEzCCdIh8v9JOzvjfes6YMalAR1axqisY1gYsoqmL4bFqsM0KzNnOYiY7WkX3W4MwIhYZNXYaEEK12GS7Ib06psMRgQIAXRVxzVa1+PG7Y1C/kTV0OzGF7J8A7eA00BugQp8izRL43uijirIv74Pxr4KNkirF5IcyfdbDBB6fZ/hogrHMjpO1e/xnuiwT6ELwiSYIB2CP7tx98rYZhFChxhjBpHh8v76jRw6NFuRf7FwJGK/OBWswyS13ZC3Ts0GPelX6m2ON3dtrPEObbsByXiQr/aLFLOKZsg6M/mUmSzEQfunEk+QDsH/Jx1Pw42Ev+ZOdTgsybCbTqe7tdfFIGTU6cmoGU/cpeu0S/1TUuKHfP/DQHzAylibebgeAfIpo4YDgBPtPXRBmIQyVIfg75lSG2X4Q/C/F55iHXrd0O9QqA6TUZkiwxyMRiMxVrcckcTZ6+uyC9l2Q2rI4I8qfpP3parxtN2ggFdIGcQIoghAPM93fLR1ZsBYxSK9RuV0e6va7dOzM+J/OJSQBOkwsO1GY0S8bH0yEenwzGkvYgAArFaG06A4ddjWKLScFtvqcL9j4DZUasgsRJmFkJ6nFB0mxW5IX4DeAACAAcsxGxbvwiF7ppJTZ5ax7Yac06zlnG5vRXM3tZvEEaRDqcLCIqTPZB1x9F0AQP4E6U9pWB3ybrHsK9eZBrGjddC1TGnM+Ils0VRVhpWJVofOXlzxpae1NsTflJeH1mrcWg3mbMidjk1jU6/DhNtNp9Pd1udiGEav0wEAINBkxvsCNwCkWZlkZjfdbWLdcbG7XezpwGRAl9mCdCY0phCshYjVxJXdIAQGDYegv6bT0e/x6rgUL9x+VjJUh4HZTfo4rqUirqUUxuRJpRZah9/sdR85wPPuEL7g6BHLy8TyMk9xCXfOEjWniTS7aT+Dv94ueEeaG8veDPZmsJ0HmRNSrMOEK5s0zhkNBqn5CyFg1Si2QTcSag1KTnbT1S4e/NzbNmR1cHsHtnfgllpQaaCwBOVPRawm9uyGZZBBq+p1eY+19szJs8TzZCghCalD8Gc3phxWn8k4o3xhSoJTI9vASOJgHXp4/Ml7I6xbTzhe4Wlq8C6/RJNuHRiCOFx201Qj7N8eRUZWsxe5e1H2dDGFOkx4UzGZeNmoN/p+RoABzIURjfIOQ45NlYSeqdoqcfv/eYZ6TSBeN5w6gMu2Ya87xh4BEgFJQx3tn0oQIXUIA3/SMG6BLuaTF89ScwPzTwzSoYfHH27qj8RrCA473rrZRaaLC9MzZe8QD+2OuvZ3phw6TqVSh4m1m7Y+V1c/zzCMXqv17cKAAAzZ8V53TB6b6J6pqkPCvk8jHR/U24H3bhJj6xEgbUEGjQohqO/ps7viyuopQxlOh+DvmQIAUzaTUxrLvDJZeey0c9TD6XD3NldnW3S+wLvh84953h2uZ+rATsET0/zCDWXIy6dMh4m1m2O+DNbkSxvAF1UyJ6nj6XqcNIPTm5mEZjenKoWyPdGNRfTycHQH+Msy6uwGIWTUcuB/qYciI8PpEAKyG4TQuAXarKLo8u50K7NolW44HVYf85w+FcsQs8428evd/HDZzekqoacjxrYIgYe2KiZVOkys3fgqzHr9wC5/VClcHGPuyqlRyTkaf2qTkOymz46j9RpCbwc+uQ9iy24AwODLY7tiezKU4QijQzx4Nr+ipboxETtOrk219FK9vxkxhA4P7o09QThV6e2z45DZzcnyuIaStFWhVOkwgU3FLb2urn6eZVidNsBZ/D0Cphw2/xxtw76op+BbcqlOpfG1/cKQnqnTJ73dHQLvhq42ITOL0WiZnHw2N4+Nqmfq8D5vzGvatVTjwlmM2hBdzxRpV9arWQahll5Xl9NNFo2nxE94HaLBs/khhIuWaq3jVCe/dIcZIMap0fTFmvFTOTSMDjFA/Ulvb3yTpZ+sFGacowrqmfLyKObUhiDw0FMP5vwU6DCBdkMyWL3BMGhvQI/A2GlqT68YeQckp0ali9RpVjYgtfH1TPFufGAPf3LwqaT2ObUWTZ/NzZil0epG7pni3XCqMq53LOoO4OLF0fVMSao1aFWOfs+Rlu4ldIUGmRhRh6w/u5FWYrCMV42xcR11nrZab/cZweX3HU6NLLls9gRVznhWq2WG6hAApJ6ploa43zKvEabPZ4N6puJfohoA+ruRKV9Mvg4TaDe+vgCD0ddfQxgcVQoWaA0W5vRXbu9I/eI6E3PORdr0LFaqdUtRpeaY58Bn7pAjGgi8C3+zly8/4Fm3Xm/JYsJnN/UxVbYDsbdIleLoshtSbXb0e440d1G7kYtIdBiY3ZD9GLB1nCprvIpFvsMYBAwAQ35EMFSHQdlNR9xrSXe1iUPH3fTL8jZpoPKTqMNEtd00O/odbg/DsBq11tciQhhSZ7YWcdMvM2QVDdspwKlR0TzN+Vfq07JYX4oQEFWOfMV/9bErjNdI8C78f6/0VVV4IGzbTVfcKnH1grMTx9B2gzHWqFiyEEczXRBGDiLXIZZtNVdf202vXQZfGNp20yfHaV3dkBIdJiq7IY1zBqORYaSkFQBCRxWNERUt1RQv1XTVevs6RYEXezvEzFwVAhg7nk3LYklUgSErMdQc8xzZF10ry45tLpOZyStgh8tuOuVIVj080seU3SDABi1nd/IVLd3ZpthHglAIUekwKLtBGECaqAIGjh+qQwiV3cS5yh2hux2nWSEwu0m3MgDxvkKpTR8hu0mQDhOV3ZBi1uuNWOrvIYSNKpbxKttcTdFC7Zw1+glz1RPnqU1Wdrio0tYofP1JLIu9bHuv39EjhumZip/YeqZIDCP9AuVNnbLdzbeY2HQIcmQ3kU+bHYZ0KwrKblRyLBBM1J58HSbEbs7YnSSD1Wq0SBrNQgg13sH/ZQHI+AWfxfo+IR0fGFUwwNEo8xoJtwt/vZcPM+4mfmIYdwP+4UJqFaNikNMjNPQ45bmbbyvJ0aH/P+lv0pfdcBoZxDR03E1sCxwFkZYnpkSHCbEb0hdgMBgBIEFRpb1RaGuMPaWsqvD0dJNx4sHZjSxBiVPH2HZDPqXXJnWh+LOVJOgwTHaTnR9vS0WBjR3adqNS45zxcUmU5UCXmRodJsRujjR3A4BObwSABEWV2sq4ph8FgLpTvjmMg7KbjKx4n4lKDfpMFHN2AwBkWOcxuiBMfCRBh2Gym8KJ8c58kDeBCTmqeOL0uM6cNQWnSofy201Dj9Pp8TIsq9FoIWFRJZ7UhnCq2gOhspux8a0tDwCZBSiethsAYBGoVYzLK9R00gVhYiQSHQo87qjmWw7yZw64a7/sbzzgbjvhEdxEa3G33WSx2XFoyWBChRNUIUcVW3ORJSfGmpraAFmTxVTpUP6eKd+oKr1v+QjkKzeZewSccTf78zy5neCeKaMZ5dvYhprY7WxskX+995h6pjAGxDA6tYr38hUt3RMtdEGYWAivQ1eX0HbQ7TgdYozVCYD0HHbcHE1mLhtPzxQCOHeZ9p1XY1wJd+a5HKcB8M+jBP6eKaKcc1dy21/jPdG/IzHxfKxSIzFFOpQ5u8EYk74Anf9N/0RkN94IRtmMSHurAMP0TM1bEvv8GJZClD42xnempKiCRdGg5QCgqq3HK8jQn/ptI7wOW792nXq3L6TXELqbhEMfOCt3u7xuHHN2AwAZVmbxCi1Ez8QpqolTVSSXGZrdAIBKDeetjnr1+vELsC4jlTqU2W7q/RmsWuN71SIRdWaVHG3+/tsJ0TNlMKO5i2NxHJUaJi+G2N4Ih4A6M2IYBoGGYz2CWN3hGPZ6lGEYTocijxs+6us8FlFW0FTlKfugX5oHLtq2GwBACBWXcpNKotNSdh67+EI1+Po3Q7TdkK+TZmXOW63SGSP6W1BxMGkptkxMsQ5ltptjrd0AoNObpZiQoLab+MnND7c28+SZrG1KdDVNlRpmXgQqdYzz3cDgqIIQo1X7Vm6W4+t+uxhOh007nc5o5iTubRf2v9/v9bXmAESZ3ZACPf9C7ZILI81xJk3lLrpCI+lwuOyGfB2zFS2+nJ00Z4S/4qwJUHoJzihIvQ7lbLvBGFe29ACAVm+UcpMEtd3oTUyczTcaDZHFsHMVL7hAxanx8cMRqVOlhtkXIYMFiTiWuYqH1plFUdRrVD19brIQh1olwwTP3xKG02Hn1y5XS9RNco52oWqve9oybQxtN6RAAWByqTo3n939kSvMtH4WK7NgmWZsLlnYe0CHIdtuyJ8VBuDUuHiuKneS0FKHO5uwoxNcvb7aliETMgtQWjbWpgNZ8TXlOpTTbk539zk9XpZVcWq1zzyIDZN2U0LYN3HBl934vZZkdL7PgWTGCEGejT1xOC67GT9RBf7sZri5imctUllzmYOfe52OcK1FOZOYonOA1fg+BdHPVYx8YhoUVRAWtWrWxQtVbfbpORnxfNlvFSF16HGIPZUxzj7TWOXJLeay8kg6PEiHg7Mbqb4VYs5scxq7+kp9Z6vQ1CDWnvQAwJkGwZrFqDXImsUUTlTl5DMiHiQDFMFKDIBAxKLOjAqnQUEp8q+oibEvkQERIxFjhehQTrshfQEavQkwIH9+l6DspnAKd+Jw7ENvNBqUV8BC2OyGuH7+BDbXxtRUCk01YtsZMbAvwJyJMnKgoJTRmgBjkGKFXNkNQkjLqVy8cLSlm9pN5ITUYc/hWGcwAgCAunLemqeLObtB/hVBLGNU1jF4xlw1+NoQyB8CYABBFMPoEIbJbkC+9c6SoEPZ7EbEmCwbptUbAUGis5uMLDbPpmqsiXGyiBlz1Cbf9KPhshspqoyfzBYWMxhAxNDdLupMiFVjohLRV60mB8qZ3YiiqNWw0Ae1dEGYiBlOh876uMaFttZ6vW6s1qCYs5tRsd5ZonUoW1Px6a4+l1dgVJyKU0ueAv4egYHj5BvNOXOJhlPH0mpszWKmz+b8XhZuJYbhegQ4DYKI12Z2dsKZcjjxCar+hDn5Car5lDlThhxnmPA9AhiL5NpatQoDVLT0xPBNv4WE1KGrRRA94arDkdBc64VQOvT/J53fl91AYIHGtyKIl0dOBwTpECFE/pzkWiM8CTqULWBWtHYDgJaMqoo4u3F2CNiDtSZGZ2Kiym4QgNHMLL5Et+Ot6N4f02jQ8pVarRYlIaq0nYSGw9jdG+yJvS2oowoYNZNZLGaWhIsqgECrZlw8VLR0zc2n60+NTEgdCr0yLHrtcgwYRBKym642sbrS23BKCJw3h9NA7ng2ezwaO46JM7vpqYfeVuTqQoIHubpAPwZhAEMu1lpFVZqYIB3KYzcixlVSBgsQvu3G3St2VvB9LUJ/xyARGCysdRybP02t1qAR227I/qw89tzvag/sdvORLZKn0aC163XWMaxfNCO33UBMdWaPG5/4HHeeDvvQeGg/wjga0Nj5ApfuS/SC6swYYw2nQohv6HHaXbxZK8vsA2ctw+nQ2xdvagPDZNnS/gjbbojLEFMhvxuqw1477PvMffpkCIv0uKGuSqirAmsuKpqjsuSiGNpu7KdRQxniB492drYyANDfCgCsNkvMmOFVpWHZdShPZaq2s9flFRhOzZDZONDAqBmpXQMARB4373Md39TbXsEHeQ0A9HUIdWX8V6/31Za5AQbOIGU3EGq8w4Sp6u9crjOYRv4iOfns+h8ZrGNVIGW0/qhCAgUG7HZBV5uI/PEBY1/DjH+P9HXwQFSB4KjideMj2yC810i4u1HDLpbv9jVjBUYVKXz5Bz7Q+tQIhNFh/ITXYZhxN2TDP6DMZzm++ssQHTY1iu/+2xnSawJpP4P3vu+prxLC6NCvW4CA7KbmC3Tqs2CvCcLVxjR9ou6rY2TXoTzZDRlVpdaZkD+pG5rdiDyu/8jp7hzhOXrduOYbvrtJmHWhjtH4yydsVMnIYtddb6g55qk8yIecODonn527QJtXwEgZSmBUcblw3Snv8QpPU8PAZ8fmMQYzSrMwRTPYqLIbjxsf3gZ9nVHIXORR4y427wKsMsDQ7AYB0nKqfrf3aEvXgnFZkZ/2W8hwOlRnyBBWI8lueDfudwiZWWxs2c3pU8L296KYMe7QLsHpYIrmqiLJbniXeGw76u+K9OSd33CGdjZttltGHcpgN4KIK1t7AECjMxAfHNp2gz247q1eMeJ1wbvOCPvf75+/Wsdp0HBtN0F15okl6kklXJ9d7HPglgYBADRaZMlisrJYtRZ8DXYQXGfev9ddfoAfusxLS6MIjQAgHD/snbdMZc1lImy7qTsYndcQRB617FXlXsAPrTNjjDmOQQha6YIwYQmjQ5VBjimpLKS1NViHTrt4pkY4U+NpCRjCl5nFZmYxmVls6SwuwrabznZx10dRz055okzUGr25xcyIbTd1+6PwGkJfHcNZVNoCr1w6lMFuarp6eUFkOTWjUofMbjAPZ7Y7I/cagqNdOLLLNftC3YjZTWCd2WBmTGmQW6AiRzHkhkJFFd6N397U39E6QrbVZ8e73vWMm8zOWKhi1SNkN+5e1FgR4+BDvhv11rGGccLQ7AYD1qpV/W7vkebuJRPoCg2hCaNDLpNlOBRn51RGLhmoNUiHFfv4Y1+HGNHT2SZ0tgkAnmMH+MUXavMKVCNmN3t3hgh7kXDsK3FMIcNowmU3rZVMx6lYvn53GZdlFRmdKIsOZXB9MqpKpTNJVh3UdtN9zM2PVIcKSWuNt7HKk4g6M+/C70TgNRJ1VcLu93iPe4S2m5qDcQm6+xg7tO2GNO9pNCoAONISZXj6NhFeh7qC2N/yB4Ax41Vqf9We6NDjwp+87gzpNYE47OKWTc7d2/o9LhiqQ+lWK4/yTbFO4eR1Q/UBAWDYthuBh/rDsSuzp0wllw5lsJvjbT0AoNYb/WniQG83AGAPtsc6eBwATn7Dh6wzB/wnPUdfjwAEDhwYZrzDlnf72yP2GkJPOy7b5Q0/3qHjdFx24+1Dnh4EAeMdyCgMjDHHsgyDuvv5zn75F4o/Owivw4yZGoYLHpEQOZPmqgN16OXhs3f6e9ojldDxCs/7bzp5Fw7SoXSrxyviWt2ssRqTmws57qbtJAhxqIZvZ73dSBYdxms3x9vtvCAynIZhuZBRxVHtibYaFUi/Q2yt8YKs2c3Xe/kzw78pF4amGrGuUhguu+lqAm/cVuBqYyBUdgOAWcQAgJOPd9bUs5IRdcgaGPPUGLtvx03nglYE+WpLFF5D6GgVdm53hcxueBcO8+pmJHjd0FqHh8tu7C3xnBsAgO9gZdFhvHbjz2CNEGDVgVGlvyHePw95R3O6+8XyA7G7wtEvhTDZTfyIntDZje+rALi9dLatEIyoQ4Qgc6bWNCFqxzFZmMkLtRDQM1W1j+84E4s71FV7a6uFodlNe9wrKQKAo2PY7KazPt6Tu86wsugwXrup7+4DAE5rhICKaGBUcbXEuwZuv4MsmSBPdlNzyut2xZ5tedzQVCOEzG66m+OqSRF8A3BCZTeIYQCAp5P7hWJEHZJGN+t8jXliFI6TnsPOXa0H38kAAHg3PlUee7jau9sVIruRY3ZKgGHbbmRAJh3Gazd+kw74g4ZBUSV+Os+QJRPkyW5qq+O1v+Y6CJndaI1xnhgAgDNgGDa7AQBweWUYj3/2MaIOSaMbo0bZi7TWmRF14uZP4+as0XNa3ylIUTdUeT1xuIOjR6yt9iQiu+lqwiGzm/hrUgDgaWdk0WG8HeG+izMDVh043kFG/F2GeLhxN+T6UnYD/uODxjvE1moTSL9DBGCGjrvRGqU7iR3EAUDwuJvANyrc1G5CMaIOccC7e9aZmvRJXPsh3nHaI4RqWLSMUxWdp9WZEfmgL3QBAEBzTbyNAzUnhQlFXOC4G2vcaw0BQEYOCpnd6DPiPzeo0nwvQMSpw/jtBgAARAysNLplYLyDLJDXvoOyGwDp3+jeVXHHnbh2NPnKMmjcjdYoQ9qq0osAweNuAmcJULOJWmd5VDOiDqXR7eRHtYnJX6xlQOtsFnqbvYw/gKXlsuk5A2vSw5B39+xxLyHvsAvEEqRxN2q55t4ONe6Gk2NYKFKBLDqM124Y4gNYAFCFjCrxD68yWUOP5owtu5GJgLYbf3ajM4ExE3o74zqvLgfDMNmNIGAAsNBRxaEYUYeB2Q3AQD3LmMOm5bIIgAHMMv5eAP9fLgzJbjxxdLMSmhoEUuGRN7sZMy50242IwZCB+7ri0j6XPpDdxKPDeL+nWccBgMi7YZg6szY7XkczWxiQr+1GJkL3TFkL4ypU4ziR1QzbdkNW3rDoY1lI5KxnRB36B0z5iXXeJVkIartRaxGZyjZmVGowWdBwPVPmsfHGWU22KIsO47WbgjQDAIheNwzTI6CLe6Xk/MkcyNczZTLH7bCZELJnCgDGzQJNHA3G6VO9w40qxljEGLMIGTV0Tr8QjKhD/3BwP1gquuhWBJGFoJ4pAJg2O65Bz+OmMQDD9kxlT43rblkdVmcJsugw3r+9/HQDhI0qpknqeF6Qy8hhTdYQ76rEnN3En7hac5nhshuE0KRzYpRlRonAGf15+5Dsxu3BAJBlpKlNaEbUoVzZTWwTSAZiyWKCshsAyCtQ5cS6wi+nhvElDMAgHQZmNxojZE2M/baNU71y6TDev708sx4ABI9LFLzDRZX0GbFPCjVpnkaKQrJkN+MnxZsdZOag4bIbjLGlEE2YH3XRGnJxRokwcNtDshsXzwMAXcB3OCLRoSzZjSU33hV4cvNVQ7MbDPjCtVp1TF52ziWsivz5Dz/upnCuqM+IpTqoLxR15I1wOXQYr91oVGyR1QwAfG/3cFHFPEkTw2hOAJg4V5OZy0pRSJbsZnIJp4mjI0BnRDk2Nkx2A4DzSpEtGscxjcfZi7yDbntwduMVBI9HBAA6f+hwRKJDWbKbbFu84Wr8RNXQ7AYB4tRwyZVRO86M85k0KxtSh1J2AwCclrGdB2yUNTYuTTRP52XUoQxN4ovGjwEAd18PiOJwUWXMIq1ubHRhIaeYmzhPDTAQhWTJbhBCC5fF3rkzfSEb5o1wKarklcCUZUhjGOFsLAdZs8Sx873Btz04u3G5BQCYnJVmUMdVwz+7iUSHA0fHmt2MtaniqU9ZspjcgtDZDUKQaWVWrdcaTRGdn1PDvAvZ/MlMhLP56TNh8nexeiRNSuhyROtinlUjGXUog93kmPW2TCNg7LR3hokqBSsNaRGPH7fN1Uxb7qsfypvdYIynlHKTo1y2mTBxOpNjY8K8MxUYVSzjYPblMHEhhExiOQNkTRMnrhEyigWEhtx2QHYjCtjp9gDAvHxrDPf87SFCHfp/jjG7UWtQ6aLYw9V5S3WSDmFwdoMxIIQyrcy6H+pnnjuCPguK2fOv4LLHsyPq0Df+kWEAQJeJS1bhTNsIN8lwOG2qYD3Pw2qQvDpEgyw/Vjqd7n98dVzA2GzN1Wp1DAIGgEVANhjADAIWAQPQ3yKc+bzf0zvsWKn0HHb8XE1mrm+oFQJgySgbREZeYRYhst//LwLAZAMBJkf6Ep/BByBAjE86mHfhd/7PGdXg8cJids5yVsS+6fJFPGidKRFj3/bA6oXkGIwBvG7o7QQMGAMSMVYbsMrg2xZ9qz2AtI3JzLKIEURRBNze0+8VcHGW+Yrp4+MqpG8BkeuQbKDADf+4GwYwAmARQggjgJA63PdhP3lzOCqmzeYWLtMG6pDEQAwgAsYBihIxOOy4/qS3uVHsahf7HBgAODWkWRlrDsoZj0wWJgYdkgNEwO5e1FYJPY2MZ/CkxZo0bBwvGgoF4HAidCiP3QDAgTOdWysbEMNYsgtVDMsyA4VKOnJ8xcwAA9B72tvX7O3vFPhezPeKGiOjMSFjJpNdzJmsLAOA/CIggpCKnBS2tF/6V9oAcrx/VLHPa7BvnDFCvlnUAIB34a/3ug8fiGhMeuFkdt5ylb8sgx1BKkippEnAFEQMCAkiSe6Rv9SRJBQMSBBF3zn9H5fOjwF19bmcLm+6Tn3zOcUcHU8cAVHpkJgRAGYR8rvPgMWE0aGXx5+/4+yJZoRxUQm37ELtUB2igFU0ASGiFRGwL7DBIEORIpOMOnS0AAaEWFGdgROtQ9nsBgDeLK893mbnNNrMrFxSfrJHFbmyGymqtLV6v9jFh5ltRG9CsxayOTZWDIgVMUcVSQFSeYfJbnqcbruTVzHoxnOK6WDiyEmODkUeKr92V0e2cnRRCbdspS6MDodmN6TCFRiTsF8zo1eHctqNyyts/Lq6s9/NcRrr2FwVw8geVWTMbgKjSt0pob1VbGoQHHZf4jomjzGYUN54JncCm6CoEj676XS4el0eAPjeTBvt/46KZOqwp0345lNX9/BpjtHMLLlQm1egikSHKclukqlDOe0GAPo93lfKTrb3uRmWtVjG6nU6hWc3CowqXlFss/e7PaKKQT+YNYEMYKNERZJ1eOaUt7td7G4XutrEPocIAGPzWKOZKSrhcvJZqkMJme0GAHhBfP3gqYYeJwAYjSZLppVjGIVnN8qJKj39ng5HP8agUTFXzZqQa9bLWzrfHqgOFahD+e2GsLeudU9Ni1fEAGA0GNNMJi3HqVmWZRDNbmBwVHF7Ra+IHf28vd9DfjslK+27xbkmDR1lEy9Uh4rSYaLsBgB63d49Nc1HW7rpfJeRMyHTdE5hli1TjpkBKQBAdRgTCdJhAu1G4lhLd11Xb1ufq63X5aZFPhiNirHqtRaDJjfNUDImXaOivd2JguowDMnRYTLshkKhUADkeImBQqFQIoHaDYVCSRLUbigUSpKgdkOhUJIEtRsKhZIkqN1QKJQkQe2GQqEkCWo3FAolSVC7oVAoSYLaDYVCSRLUbigUSpKgdkOhUJIEtRsKhZIkqN1QKJQkQe2GQqEkCWo3FAolSVC7oVAoSYLaDYVCSRIMADgcjmeffXbFihWlpaXTpk1buXLlX/7yF6935CWQb7vttquvvjrxNxkXirpJl8u1ZMmSBQsWSHucTucDDzwwb968KVOmrF+//tChQ/Gcv6KiwmazffTRR3HfaQqgOkwaqdKhCgCuv/76+vr6O++8s6SkxOv1fv75588++2x9ff2GDRviuWQ8zJ0795133snPz0/VDSSIP/7xj01NTVarVdpz991379+//+GHHx47duzGjRuvvfbabdu2ZWdnp/AmUwXVYdJIlQ5Vx48fLysr++tf/3rxxReTXfPmzdNoNNu2bevv79fpdPJeLxIaGxs7OzuTf91EU1lZ+fLLL69fv37nzp1kT21t7QcffPDCCy9897vfBYCZM2cuXbr0n//85913353KG00FVIdJI4U6ZARBAACGGdSIc+utt7711ltSGb/++uvf/e53i4uLZ8+e/Ytf/KK9vT3w4N7e3ilTpvztb3+T9vA8P2PGjCeeeAIA2tvbf/nLX86ePXvy5Mnr1q374osvyDHV1dU2m+2rr7667bbbSktL582b99BDD4mi+OWXXy5evBgAlixZ8pOf/CTwQp999pnNZjtw4IC05+DBgzabbffu3QCwf//+733ve1OmTCkpKfnBD34QMhssKSl5/vnnpR/vueeeNWvWSDezZ8+eH/3oR1OmTFm0aNH7779/5MiRtWvXTpky5eKLLy4vLycf8Xq9f/jDHxYtWlRcXLxs2bKNGzdKZ9uwYcPEiROHe9CiKN57773XXXddcXGxtPOLL77gOO78888nP3Ict2TJks8++2zox3/2s5/99Kc/feWVV84999wpU6bcfPPNdrv9f/7nf2bPnj1r1qyHHnpouOuOFqgO4VugQ2bixIkFBQV33333a6+9FlR+hM2bN//3f//3unXrtm7d+r//+7/l5eU33nhj4HIxRqNx2bJl27Ztk/Z8/vnnDodj7dq1giBcd911ZWVlf/nLXz744INZs2Zdf/31VVVVAKBSqQDgkUceufrqqw8ePPj0009v3Lhxy5Ytc+fO/fOf/wwA77///h/+8IfAO1m4cKHFYgm80JYtWywWy6JFi06dOvWjH/0oKytr8+bNb7zxhtFovPrqq5ubm8N/eQlyM0899dQ999xTVlY2Y8aM3/72txs2bPjTn/60b98+o9H44IMPkiMfe+yxF1544Ze//OW2bdt+/OMf/+53v/v3v/9NfjVp0qTvfOc7w13i1VdfbWtru/POOwN31tTUZGdnq9VqaU9hYWFNTU3IOywrK6urq/v0009fffXVHTt2rF+/Pisr64svvtiwYcPGjRuJ1kcvVIfwLdAho1ar//GPf9hstt/+9rfz589fsWLFI488cuTIEemIF198cfHixT//+c8nTJiwcOHC3/72t+Xl5WVlZYFnWb169aFDh6TH+uGHHxYXF0+ZMuWzzz6rqKh4/PHHFy1aNGnSpAcffLCgoCDQiVeuXLl48WKO45YuXVpYWHj48GGO40wmEwCkpaUZjYMW8WNZ9qKLLgoq5ksuuYRl2VdffVWtVj/99NMlJSXTpk178skneZ5/8803w3zzoVx00UXTp0/X6/WXXXaZ3W7//ve/P378eLPZvHr16oqKCgBwOByvvfbaj3/84/Xr19tstquvvvryyy9/4YUXyMevuOIKaTuI1tbWJ5988pFHHgmqFDgcDvJlJYxGY19fnyiGWHTN6XT++te/NhgMc+fOnTx5siiKN910k06nW7lyZXp6OrnD0QvVocRZrEMGAIqLi99+++2PPvrovvvuKywsfO2119asWfPoo48CgMfjOXbs2Lx586QPzJw5EwCCTnrBBRfodDrSEO31ej/++ON169YBwKFDh1iWPeecc3wXY5j58+cHSqSkpETaNpvNPT09Ye4VANasWVNbW3v8+HEAOHr0aH19PblQeXl5aWmpVqslh6WnpxcWFkb7F1hUVCTdSdCPbreb5/mKigqPx7Nw4ULpIwsWLKipqenq6gp/5oceemjJkiXLly+P6n6CKCwslOKP2WyWbo/8aLfb4zm5EqA6JJzFOlRJW0VFRUVFRTfddFNvb++DDz740ksvrVmzZsKECRjjtLQ06TCy3dvbG3gWnU53wQUXbN269dprr927d293d/fatWvJYYIglJaWSkd6vd6MjAzpR6lgCCMu6Tl//vysrKytW7cWFxd/+OGH+fn5c+bMIRcqLCwMPDItLS3oJkdEo9GE+RFjTE547bXXIuRbU57Yf0dHR+CXCmLHjh2ff/759u3bh/4qLS0tqHjsdrvRaAxqwojw9oa7gdEF1eFZrEMVz/MtLS0FBQXSLqPReNddd23evLmioqK0tJRhmECzJ9tBqRcArF69+qc//Wl3d/fWrVtnz55N+g5NJpNGo/nggw8Cjwz5HSKEYZhLLrlk27Ztd9xxx9atW0kDG7lQUETq6enJyckJ+rhUPASXyxXV1cm3fuaZZ6ZMmRK4P/DpDeXDDz+02+3nnXce+RFjjDGeOHHifffdN2HChKamJrfbLZVZTU3NpEmTorqrswOqw8gZvTpU/e53v9u8efOOHTsCO+FJK1FWVhbHcVOnTg1MO7/55hsAmDFjRtCJli1bptVqd+/evX379p/+9Kdk56xZs9xutyiKUsbV2NhosVgiubPhbHL16tUvv/zy3r17T506RTJYAJg+ffobb7whPa/29vba2trvfe97QZ81m82BoaaioiIorIVn6tSparW6s7NTavnv6OhgGCawjW0ov/rVr26++Wbpx7fffnvTpk2vvPLKmDFjnE6nKIqffPLJqlWrAKC/v3/nzp3XXXdd5Ld01kB1GMnNEEavDlU33XTTli1brrjiiptvvrm4uFgQhPLy8ueff760tHTp0qUA8JOf/OTOO+987rnnVq1aVV9f/7vf/e7cc88dWswajWbFihXPPfdcR0fHJZdcQnYuWrSopKTkzjvvfOCBB/Ly8srKyu6///477rjjpptuCnNPJE/+9NNPFyxYMHny5KDfzpkzJzc397HHHps8ebL022uuueaVV1655557fvazn/E8/8QTT5jN5iuuuCLoszNmzNi2bdt1112n1+tfeOGFvr6+qIrZZDL94Ac/eOaZZzIyMmbNmtXQ0PDII4/k5eWRlrnNmzd/9NFHf//734M+lZ2dHThcKisri2VZcucZGRnr169/6KGHMMZZWVnPPfccy7LXXHNN5LcUkqNHjwamuFqt9txzz43znImG6jDyZzV6dagqLCzcvHnz888//+KLL7a0tKjV6vz8/Jtvvvmaa64hZrl27VqXy/X8888/9dRTZrN5xYoV9957b8izr169+uabbz7//POlAMWy7MaNG3//+9/feuutTqezoKDgF7/4xY033hj+LqdPn7506dLHH398wYIFL7/8ctBvEUKrVq36xz/+ETgGady4ca+++uqGDRtWr17Nsuz8+fP/85//DA1f99577z333LN48eK0tLRrrrnmsssu27FjR0RPzs99991nNpsff/zx1tZWi8Vy4YUX3nPPPeRXJ06cCFkxDs+jjz66YcOGBx54oK+vb/bs2a+++mpmZma0JwniT3/6U+CPeXl5e/bsifOciYbqMJqnNVp1iM6aJkYKhaJw6BvhFAolSVC7oVAoSYLaDYVCSRLUbigUSpKgdkOhUJIEtRsKhZIkqN1QKJQkQe2GQqEkCWo3FAolSVC7oVAoSYLaDYVCSRLUbigUSpKgdkOhUJIEtRsKhZIkqN1QKJQkQe2GQqEkCWo3FAolSVC7oVAoSYLaDYVCSRLUbigUSpKgdkOhUJIEtRsKhZIkqN1QKJQkQe2GQqEkCWo3FAolSaTebvbt23fTTTfNnTt34sSJpaWl69at+89//hPJBxsaGmw2m81ms9vt0V70rrvustlsjzzySPT3OzLPPvssubFHH300EeenJII33njjiiuumD59+sSJE2fPnn3ttdfu27cvkg9u2rTJZrOtWrUqhosuXrzYZrN99NFHMXx2ODZu3GgLYMKECeeee+7111//1VdfyXiV2Eix3Xz55Zc//OEPP/30U4PBcN5551mt1sOHD//mN7/517/+Je+Fzpw5Y7PZXnrpJfJjSUnJ8uXLi4qK5L0K4f333ycbW7ZsoWsijwr+/Oc/33PPPWVlZYWFhQsWLEAIffbZZ9dee215ebm8F9q8ebPNZquoqCA/Lly4cPny5VlZWfJeBQA4jps1a9asWbNKS0udTueuXbt++MMfptxxVKm9/L/+9S9BEFauXPn3v/+d7Ln33nv//e9/b9y48ZprrpHxQpIFEG688cYRV6SPjRMnTlRXV5vNZr1e39TUdPDgwdmzZyfiQhQZefnllwHgwQcfvP766wGgv79//fr1FRUVr7/++vTp02W8UJAOn3jiCRlPHsiYMWPeeustsu1wOFatWtXQ0LBp06Zzzz03QVeMhBRnN6QelJGRIe35zW9+s3v37sD0cvPmzatXr54yZUppaen3v//93bt3hzzVVVddFZi/7Nq1y2azzZ8/HwDWrFnz+OOPA8Cjjz5qs9n6+vqCKlM8zz/99NNLly4tKiqaPXv27bfffurUKfKrf/7znzab7ZZbbvnqq69WrVo1derUSy+99OjRo8N9ow8++AAAli5desEFF8AQeVGUSZAOdTrdSy+9tG/fvscee4zsCaOQIEgVRspfNmzYYLPZfv7zn/f19dlsth07dgDAJZdcsmbNGhhSmWpubr7rrrvmz59fVFS0aNGihx9+2OFwkF/dfvvtNpvt//2///fKK68sXLhw+vTpt956a2dnZyTfzmQyzZw5EwBcLldMj0c2Umw3paWlAPCf//znV7/61fbt23t6ekwmU0FBAcP4buzvf//7r371q8rKyuXLl8+fP3/fvn3XXXfd9u3bo7rKunXrcnJyAOCcc8654YYbOI4LOuCWW275y1/+4nA4Vq9enZOTs2XLlssuu6yxsREAtFotAJw6dequu+4qKSmxWCyHDh26/fbbvV5vyGsRu7nooosuuugioPWpUQLR4b333vvEE0989dVXPM+PHTs2sI4TRiERwnHcDTfcQLbXrl27bt26oAM6Ozsvv/zyN998My0tbe3atYIgvPzyy9dccw1RGtHhe++99+KLLy5cuFAQhG3btv3+97+P5NK9vb2HDh0CgNSmNpByu7n11luJ727evPknP/nJ7Nmz161b98orr5BHbLfbn332WQB47LHH/va3v5GnDwBPPvlkVFe5+eabbTYbAKxcufKBBx5Qq9WBv/3ss8927tyJENq0adMzzzzzzjvvlJSU2O325557DgCI8VVXVz/zzDNPPfUUybpPnz4dMrhVVVVVV1drNJply5YtWLAgPT2d1KeifzCUpPLYY49ZLBan0/m3v/3tqquumjFjxg033LBr1y7y2/AKiRC1Wv3AAw8QOd1yyy0333xz0AEvvvhiU1PTuHHj3n///aeffvrtt99Wq9WHDh0iuQ/5YG1t7bvvvvvUU0/de++9APDpp58Od7nW1tbLLrvssssuW7t27cKFC5ubm6+++uqrrroquuciNym2m/T09M2bNz///PNXXXXVuHHjMMaHDx++//777777bgA4cOAASf/Wrl1Ljr/kkksA4MSJE93d3XLdwxdffAEA06dPnzBhAgBwHHfhhRcCwNdffy0dk52dPW/ePACYNGmSwWAAgJaWlqGn+vDDDwFg2bJler1epVKtWLECaH1qNDBt2rRdu3Y9/vjjF198scVicbvdO3fuvP7669944w2ITCHxQ66ycuVKkshkZ2fPmTMn6CpLly41mUwAMGvWLADo6uryeDwhz+bxeA4ePHjw4MHy8nKHw8GybF1dXVVVlYw3HAOp7whnGGbFihWPP/74zp079+zZQ5LMt956q6GhoaurCwA0Go1erycHZ2Zmko2enh65boBcJbD9iFwl0NECf6vT6QBAFMWhpyI1qbKyslWrVq1atYo0M9H61KjAYDBcddVVf/3rX/fv3//222+T6tWf/vQniEwh8ROVDokIYRgdAkBeXl6Nn/37999444179uz50Y9+FMOoERlJpd309vZu3br12WeflVqw8vLynn76aZVKBQB1dXXp6ekA4Ha7+/v7yQFS21hgqRBItimdKsJWNAAgVyGFHfhZydoipLKy8uTJkwDQ1tZ27NixY8eOkQyI1qcUzpkzZ958801STSbMnDnzgQceAIDGxkav1xuVQhBCkFIdDsVisdxxxx0A0N3dnVoppji7+a//+q8//vGPGzZs4Hme7Pn4449Jw01+fv6cOXM0Gg0E1EfeeecdAJg2bZrZbA46FWnYI01iAPDee+8F/paIoK+vb+g9LFy4EACOHDlSW1sLADzPb9myRdofOaQmNWfOnJoAli5dCrQ+pWxqa2vvuuuuhx9++N133yV7BEEgLSbZ2dkqlSoqhQTqsK+vj3RFSYyow+3bt5O/hcbGxm+++Wa4q0SL1J9rNBrjP1vMpHLcjdFo/PWvf/3II4+8/PLLmzZtysvL6+npaW5uBoBLL7103LhxAHDHHXc8+eST99133549ezo7O/fs2cOy7G9+85uhZ1u+fPm777770Ucf3XbbbQ6Hg/QgSrWY7OxsAHj55Zfr6+t//etfB35wyZIl559//u7du7/3ve8tXbq0vLy8qqoqKyvrlltuierrELsJGl168cUX79q1a8uWLffddx+RGkVpnHfeeStXrty2bdsvfvGLxx57LDMzs7m5mdTW77zzTohSIcuXL3/99defeOKJysrKsrKynJyctra2QB02Njbef//9ixYtuv/++wM/eNNNN23evLmmpmbdunWkLcnj8SxatOg73/lODF+KNBWT7Z6enpqaGgCYPXs2afRJFSnObm644YYXX3xx6dKlBoPh5MmTDodj1qxZDz74oNT3dPvttz/xxBOTJk3aunXrgQMHFi1a9O9//zuk369du/a2226zWq179uzJzc0lIybcbjf57Y9//ONJkyY5HI69e/cGVXcRQs8///xtt92m0Wjefvvttra2Sy+99K233rJarZF/EakmRfq/JS688EKWZZuamg4cOBDNg6EkD4TQn//854cffnj27NmCIJw4cYJhmKVLl7700kvf//73IUqF3HPPPRdffLFKpdq5c+eVV1555ZVXQoAO//u//9tqtdbW1lZWVgZ90GKxbN68+dJLL21tbX377bc1Gs1tt9324osvxhalpKbigwcPtrS0FBUV/fKXv/znP/8pDTFJCf8f/hu/AguRnAMAAAAASUVORK5CYII=", "path": "image.png" }
Which solution has a higher concentration of purple particles?
[ "neither; their concentrations are the same", "Solution A", "Solution B" ]
2
The diagram below is a model of two solutions. Each purple ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the purple particles represent the solute. To figure out which solution has a higher concentration of purple particles, look at both the number of purple particles and the volume of the solvent in each container. Use the concentration formula to find the number of purple particles per milliliter. Solution B has more purple particles per milliliter. So, Solution B has a higher concentration of purple particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAIAAACmkWkFAABKD0lEQVR4nO2dd3gc1bn/3zNt+6qsZEtWsda2bFmybNnggg3IBoyxcYELSUgooSWUJJDcAA6E4EAIXBMIodxQ7oUAgZDwI6ZjG3MNLrgB7pa7JVuy1duutGV2Z87vj7M7Wq3altnVrDmfx4+f0Wh25uzMV9/3PWXOQRhjSDVOdXQPeUxhuikJJaF8l6E6jBZuuAsQjscvHW12HGnu9PilTo/Y6fENd4miRscxI82GNIMw0mwoz83Qc+xwl4gSNVSHiQBpKrtp7PK8tfOY1y8PfliG2YQAAAAhQBD4BwgCOwEQQGu3W5SGOE8S0HHM1eX2wgwa4lIJqsMEoS27eWXHkaYuj6A3WdIzdYKg53m9TuARcAywABwDHAIOAYMCG2xwm0XAALDBPWSbCW4rGwgABbcxBhlAwhgDSDIO2Q7slzHIGIds9+wPHBnYhtAzyACiX3K5xW6P6Oh2ObtcOo75zwsnDfetpUQB1WGCYIb38mF0ukUAyBhVZLRm6A0mXhAAgNghQsEtCEQPHNzuOSBku8dEyTYGHPJJHDgeI4QwBoQQAJBtIPvJoSgkXCHAwf0IIRzcjxBgjCF4BsDAsazZpM+2WYvyRwLAkEGSojWoDhOEtuymMMMMAJ5uB7m7JPEKPBoc3Ap5wGS754CQ7eCxADgkxQ1+EgWORxjjwHMCINtEDkQV5KDgNqDgfowxCu4PqCR4BuXUGINb9AHACLNe5dtESTBUhwlCW3YzOsMMAGJ3F7m7YYEiVaJKcBva2x0Q1C4lhaA6TBDaspvx2VYdy7i72j1djlSPKi6P2NruAIDJuZmq3yhKQqE6TBDasps0vXDBmBwAaGk4JUtS6kYVSZZrausB4Hz7yJEaSGIpUUF1mCC0ZTcAML0gqzjLimX5zKnjfkmCFIwqfkk6Un1G9EmF6aYL7CMTcZcoiYbqMBFozm4AYHFpQbZZL3o9tSePe7ye1IoqLo+47+hJt1e06vmrJhcl4v5QkgPVoepoa9yNgscvvbXzeFOXh2GYEVnZGWlpFr1ey+MdvD6p3eVu6ehqd3ZJEi7Osi4uLdDCOE5KPFAdqotG7YbwcVXtvob24S5F1JxvH6mR3JWiClSHaqFpuwGAU+3dh1s6v6lt7qkxaxOMMcD88XmFGWYttMlR1IXqUBU094pmGIUZpsIM0ze1LQBw/XmTSQqKABAENsJ+hJD9EMxaEQ7sV/aQDRkDBpAxxgCYbAPGgGSMIbAfkd/KGIJ7Ap/Cym8R+GT53R2HWYSmF2QNwz2iJB6qQ1XQYlPxgAQb2MhzRRDSyN+7R0D5kRwPiDSk9fw22CMAGDB56qQFLtBHEAgSwdSvZ49yWhw4nrTPhciIcvZDdRgrKWU3wT4ADD3/lEcX2iOg/EiOB0y6CaHXow/EFhR4cjjQLxlo7UeBbXKu4B7ltChwPAaEkCxjAGCRhp8zRUWoDmMlpexGq1EFB6KKdh8zRU2oDmMlpexGs1EFZABAWs5iKSpCdRgrKWU3Wo8qCfraFI1BdRgrKWU3mo0qWAZt15kpakJ1GCspZTfajSoItF1npqgJ1WGspJTdaDWqSBiDth8zRU2oDmMlpexGq1GFlAFp+DFT1ITqMFZSym60GlWCdeZEfW+KtqA6jJWUshutRhXtj3egqAnVYayklN1oNapov85MUROqw1hJKbvRalQBzUcVippQHcZKStmNVqMKGc3JaHl8FUVFqA5jJaXsRqtRRfujOSlqQnUYKyllN5qNKppPYilqQnUYKyllN9qNKlpvoqOoCdVhrKSU3Wg2qshaf8wUNaE6jJWUshvNRhUA0HadmaImVIexklJ2o9mogmXQdlShqAnVYayklN1oNqpo/k1cippQHcZKStmNxqOKlrNYiopQHcZKStmNdqMKgLajCkVNqA5jJaXsRqtRJdgBmajvTdEWVIexklJ2o92oQh6zhp8zRUWoDmMlpexGq1FF+6M5KWpCdRgrKWU3Wo0qsuajCkVNqA5jJaXsRqtRRft1ZoqaUB3GSkrZjVajCtmn5ahCUROqw1hJKbvRalSRND/egaImVIexklJ2o9moovnRnBQ1oTqMlZSyG61GFe2/q0JRE6rDWEkpu9FsVJEBtL3gBkVNqA5jJaXsRrNRhRREw1GFoiZUh7GSUnaj2aii+fEOFDWhOoyVlLIbrUYVcgYtP2aKmlAdxkpK2Y22owqr4cdMUROqw1hJKbvRalQJDh5P1PemaAuqw1hJKbvRblQBAEBafs4UFaE6jJWUshvtRhWtj3egqAnVYayklN1oN6og0HadmaImVIexklJ2o9WoImm+zkxRE6rDWEkpu9FqVCGF0HISS1ETqsNYSSm70WpU0f7qhRQ1oTqMlRSwmwanGwD0PKfZqGLgOaWclLMVqsP4SQG7qWrsAIDRtjTNRpUCmxUADjS2J+YGUDQB1WH8pIzdFNrSNRtV8jLMHIPqHW6HR0zQTaAMO1SH8aN1uznjcDm9Pj3PjbAYNRtVGAblZ1oBYF9DR4LuA2V4oTpUBa3bzUGSwWalA0KajSoIUEGmBQD21rcl5jZQhhmqQ1XQut3sb+gAgNGZ6T1PVHtRBQPOSTfzLNPhFpu6PIm5E5ThhOpQFTRtN3WdLpfPbxT4LIux54lqMqoggAJbGgRr+JSzCapDtdC03ZAMtiArHUKfqCajCkKo0GYBgP0N2u0XoMQG1aFaaNduMMaBvoDMNAh9opqMKhjjLLPBwHNOr+90pyshd4QyHFAdqoh27aa20+Xy+Q0CbzMbIRWiCkKoIIsMfOhIyB2hDAdUhyqiXbs52NQBAKNt6cFYovWoAgAFGRYAONjYLvdcnpLaUB2qiEbtBmN8qLETAAps6cFYovWoAgAZZoNJx7t80qn27gTcFUqyoTpUF43azamObpLBZpgMKRRVMMaFtjTQ9kBySuRQHaqLRu2G9AUUZWVATyxJgaiCECqwWQDgYFOnJGsrj6XEANWhumjRbmSMq5o6ASDflg49sSQ1oopZr0s36n2SfLzVqfqdoSQTqkPV0aLdnGzv9volk05IN+oh1aIKAM7X/Iu5lEigOlQdLdoN6QsotGWQH1MrqgCgwkwLABxtcfglWdUbQ0kqVIeqozm7kTE+1NQJAAVZaWRPykUVncDbLEZJxoebHSrfHUqyoDpMBJqzm5q2LpLBWvR6siflogpgnJ9pAY3lsZSooDpMBJqzmyqSwWZlKGEh5aIKIDQqwwIAJ1qdbp9fzbtDSRZUh4lAW3YjyfhwsC9ACQupGFV0HDsyzYQBDmkmj6VEDtVhgtCW3VS3OUVJthr1Zr0upaMKBsjLtABAlSZfzKUMDtVhgtCW3RwkISUzHULCQipGFQSQm25hEDrV0d0taiKPpUQO1WGC0JDdSDI+0tzzmFM9qnAsMzLdDAAHtBFYKBFCdZg4NGQ3x9ucoiSnmQxGvQCpH1UwBjJPtQbnAaAMAtVh4tCQ3ZD3U0ZlBNbxSfWoghCMSDOxDGpwuttdXhVvFCWhUB0mDq3YTa8Mljyw1I8qDEK5GRYAONDUod6toiQQqsOEohW7Odbq8Ms43Wgw6ISzJqoAQH5mGgDsqx/+ajMlEqgOE4pW7IZMB5ubmU6CAJwVUQUAMs16gWM1uxAHJQyqw4SiCbvxSfKxFgcAjMpMI0EAzpaowjDMqAzNvZhL6Reqw0SjCbs51ur0yzjDZDQIwlkWVTDGuZmkG7JDtftFSQxUh4lGE3ZzUMlgAc6yqIIQyjAZdDzn9PrqOrU1cSwlDKrDRDP8duOT5KMtnUAyWICzL6oAQJ5mBj5QBoLqMAkMv90cbXHIGDLNJoHnAc7CqAIAowLvrXRobSEOigLVYRIYfrshfQE5GWmBG3g2RhWLXmfWCx6/dLK9S417RlEfqsMkMMx24/VLx1sdAJCTmRa4gWdjVAEEuRm0PqVdqA6TwzDbTU8Gy/FncVQBHJgH4JDGFuKgEKgOk8Mw2w3pCxiZkd5j+WdpVNELfJpR75PkY62amOiIEgrVYXIYTrvx+qUTbU4AyM1M67H8szSqAAB5b6WK1qc0BtVh0hhOuznc7JAxZFrMHMud9VEFAHIyAgtxiH4p/rtHUQuqw6QxnHbTK4P9DkQVgWczLUZJxkdaaH1KQ1AdJo1hsxu3z1/d5gSAkenWXpZ/9kYVBCgnwwy0f0pLUB0mk2Gzm8PNDgyQabHwHPcdiSoY8Mh0KwKo1sxCHBSqQxVuYsQMm92QFVFHZqQDwHcnqnAMykoz4+Dk25Rhh+owzhsYFcNjN26f/2RbFwLITrcCwHcnqgBCI2n/lGagOkyyDofHbg41dWKADKuFY1n4LkUVwDjbamIQqtXGQhzfcagOk6xDLmlXCoWsiGqzmEVRZBEwCPwALAIEwAAwDDAI+TFmECAAjgk8QZZBgQPIkSgYWwI/IrJH7r0fATAMAozl4INGCBiEZBljAIwAACSyDYAByRhjjJVtQEiWZWWbHEmkJmPAALKMAZCMZQwgY4wBYSwrHyefwhgC10KIYWBEurmh3bm/oX1mYfaw3H8KgeowyTocBrtx+/yn2rsBwKQTyGNGAAzCyiNkABAKPHUE4EM9jxahnqcb9rDJBpAzoMATZUhwwIAQQsT7MVaMnjwnSZYh+NRlwDIG8ihljAMPkjy3wFNUnq4MiJFkWQaMATBWfosDmgCQZKIMcu7AU8eA9AwGgKrGDmo3wwjVYfJ1OAyVqarGTgBIMxn5QAaLQ9NDBGiQOjPGOKzOHHy4gQMDB2OltouDJwzklYFss3edGeNAHVipeCt1ZoxxWJ05GHJAxrJSuIHqzLIsQyBVJkVHGLBVzzFIEwtxfJfRiA7rTkln6qQzdf7vgg6HIbshfQEZZrOMMYsQQiiY6AWqtyjYqEbAIa1xCJGKamA/kON7DgwejJR8FQVPSO58IKrgnnZBJGOMEMIyRoAQIk8jsEU0gQO1erIHECDySBnESLIMENAmOR4Hvgwm1WeGYSRZJpVqhIPteQAZRr61WzzQ2HG+fWTS7jwllGHU4elaee8ub5cDtzT1Gtdry2bHTWTHTeQ5nQo67GhEAJjlsT5dKzpMtt10i77ajm4ASDcZSV0YY8wwJD8lkUO5jUorGgAoBhFoLOsdVZRWPKxEFQgezyBywmCrGQocFprdyAEj6okqciCqyKQoKJiXBqIKgp6ogvuPKnLvqCIrUQVjhMBqEFq7xX0N7dRuhoXh0qHokbduFA8fEPstVWuz1Nos7douTr9QGFPCxaBDlwPXHpRbToKnC0IarMGYiS0jYcR4xJuGU4fJtpuDjZ0AkG4ysQzznc1uZIzNOo5lUIdbbHS6R1oMyXsAFAAYJh2ePObfsM4jejAMiuiFr9aJDXXyrIv5yHXo98LhHfKZI/2f3NUGrjbUchxGlsDIScOmw2TbDekLSDObMQCb+tmNsw3XHZXb68HZGnjMnABpOdhWCOn5iOEHzG4whnSjrrXLc6Cxg9pN8km+Do9V+TZ8FsUaT8cP+gFg5kVchDrct1FWRDgQkghn9qL2WjT2Yhnxw6DDpDYVd4u+050uhFCa0RD8kyZuDUqTHAY8yHgHJaqE/FNuMe45GCkjFVDwhAGHCdR6QNEQiWmB8QvKoAllvANCKGy8A0IIALWewV9/Km15Tzq1H4c+Zr8IrafgyGb4dhWu2wvYz0DA1EjRsXLFdAMPdLzfcJB8HTbUyVF5DeH4Qf++r6XBdQgYPF1ox6fSkF6j4G6H4//HyOIw6DCpdkPWuLGajAzD4EDvYEr2TNUelrZ/IrWeGewBSyLU7YEDn2FJDO8RIFc0CBzPMk6vr5YuCJNckq/DbRvcsRV13w5flwMG6ZnyifDtOr8/yp4ldzvUbkfJ12FS7Ya8oJFmNkNPhSX1spuqrdKeDZFOFOJqgz3vI09XP9kNAE436QCgiq54l1ySrMOjVb7WZjnm0u7/2jdIdlOzf+g6VL846lDbCZRkHSav7cbhEc84XAihNIMBAMLqzH4vdJzytZ70e524q1UCAIOFMVjQiCI+x86aLIxG2m5OHpJO7I9OOpIIxzcy4y+WkdDTdkPOn6bnmh1Q1dgxf/woRtE1JZEMrsNEtN0crfLFU+DqQ1LpOazRivq23bi68NGdsRtZ837GkudnhOTpMHl2U9XUCQBWkwkxDAT/pFmEZBHOVHnrD4iSt5dJu52y2wltZ6RDWyB/Aj/hXMFkZYa3Z6rbIe+OOK/p9V3aoW4nUzhLVnoEyPl1PKfjGI9fqmnvGpNpifHOUqJhIB0mrmeqoS7eSfOa63FRGqPoUOmZaqyJJa9RELvB1cyY8+Sk6TB5dkPmTEszm5UowSLkapVqNntcrUM8j7rDvsYa//TLDFmjmNiyG9EjnzzhrznuF73Y6wWdDgAgM5vJzWdHj2EjzG4OfRN7JGk9ASMnYd7cK7vBGFuNQrPDU9XQQe0mOfSrQ0hYdlMft9cAQEezjCcwfbOb2iPxvl3pqEPmvOTpMEl24/CIDU43g5DFaFCiRHeL/+had1hSMxA+L97ygWvqRfqiiXxU2Y3XI+/c5t2/q5+E9nSttG+nz2JF02YJY0u4wbMbv4hOHYlLOs2HmVHT5NDsBiFk1fPNDs+h5s6Fcj7L0PpUYulXhwnNbnxiXAkIob018IJ4WHbjaI33zL5uIG2UydFhkpqKyTSFFpNZeXx+L67+whOh1yjsWu/pbJYi7xFoafL/82/d/XqNgtOBN3zmXb3K7fUO1jN1ujreSNJ5GoX2TJHz8yxj4DmfJB+lC8Iknr46THTPFC+o86c7QM9UvLg7IJk6TJLdkF59q8moxITq9S6vM5a6ybY1HtGLI+wReP8t15CDOAn1dfKaVR6fGDhR356plvoYCtsLsQtEZ6+eKZI9WY080P6ppNBXh8npIY0Tk6Wfnim/qMKpZTGpOkyG3bS5vE1dHgYhs8FIYkJXg9TVEGPFxOWQj+3xDRlVWpuk7RuiG43Q1iyvXeWBAbIblyP2hhsF0cWEZTcAYNbxAHC0pZMuCJNQ+uoQEp/dCIIKJTdZUN/shhNUyG54EyRTh8mwGzLMwWw2KzGhpSquF96P7RUHjyo+EVb/2y1GWVMDgLZm+ZuNYr/ZDagSp3A/2Q3HIqOOkzEcpgvCJJK+OoTEZze2Eaygi1c5+WOYfsfd8HF7mWDCydRhUuyG9AUYTQBAYoLjVFztID4vDmnB6SeqHNgpxuA1gdLu8Xc7cN/sBtSoKvdtuyEntuppfSrh9NUhJD67wRgKx8bVIWOyoDRbP9kNxtiWG+/frz49qTpMuN20ubzN3R6GYYwGAwAAgpirUaGcrpYGiSpVu/t/wT9C9u7w981ujFYV7pVglPtmNwiBSccjgOo2uiBMouirw6S13UydFVcSYi9hBxpVPLIo3rwpYwxOpg4Tbjekcc5sMikvCMhqdA0OElUa6qSYUxtC0xmpb3aTlRtvmQUTCJb+sxuWQSY9h+mCMAmjrw6Tlt1YrEzZVD62YpssqHwGP9A7UwUTGIM5dscxjcC69KTqMOF2s7+hHQDMRnPgZwTuNhWym6bT/oGiSvyDOLscuKMFh2U32XlsnKc1j+i/7YaMESINdbQ+lSD66jCZPVPnzTXYsqP+WxMEqFwkwADv7pF3poqnxW43IybhJOswsXbT3O1pd4sMwxj1+sAuDEIcfqwwIo8bKKp0qdGF5PWGZzdGM2TlxlXy7BJpoLYbBGDScQhBbWe3wxNXTZDSl351mLTshmwsvtoUreNUXq5Lz0Iw8MwEADh/ApNXHMtfce40bB6Jk6zDxNrNwUAGa+kZfoCAN8ebJsCgUUUVu+nbdoMQmjYv9jY/2xgwZoS/ER4aVRBCZtJQR+tTatOvDoluRKfccEA8s8t7ZrdYu9Nbu9PTWS+B2tkNQojXw+Krjbn5EYl/ZB6z+Br9iDymXx1CSHYDGKbM5TJyoguEGXacPQEnX4eJfYkhUGE2Gnt2YTBkquBxGVlMSFRRlICju+sDgzEGYMLemTJa0KTzuP1bo25FE0yQP00Onc1P7hNVMIBJxzvdvqqG9ll0QRhV6VeHHcfFliqfp0/VvhZEToeyRvPF5wm8DkX4zlS3A5+u9p8+4et2YBLwzFYmM5vJyedGj2WtVoZBSNDDku8ZjxzwfbtNdA4QFAUBVczkSyo4DIDJ+lARzOY3YzG7d4NcfzSiQJs3DWeVYHk4dJhAu2ns8rS7RZZhDfqQSQkRMAIyZDLutrhykNwxnFLHDg0/GCAnn2s8HW/zTajrY+h5V2XsZKajla2L5uUploexF8qcDskhcxX3vJMVeOoAAEaBZRBq7PK0u7wZRl2cX4FC6KtDX5d8+kt3X6NR8HtxwxGx5aSveJYuvyTQyouDzgK935nqcsgHvxarD4a/KNPlkLsc8qnj/h0bYNI0YdpMQadDgNCEMr5kklBz1NfSIp+p9QOA6MVmK5OZxeQWsBk2hteBDIPNTKC8M0VMgsxVPOlCNKqYPbJNcrYNeCvMI/Coycg0AsvDpMME2g3JYI0mU6+9GBACW6lQtznquRQVRpfwvevMvbIbs1WFFCfdhgaKKhWVDC/g6shmvTFmYPt5YMgIn6u436gCACY953T79jd2XEBXaFCJMB1626Taz1yRdI/6vfjgBk93m1QyWw8DZDctp6Utq92+oXpC9+8UTx73z1+szxrBkvqZvZi3F2N0nkBsRQaMQ5avG3xmAuiT3RABZeTA9GVMWz20nJKdbeD3Qnc7mDKAFcAyEtLzsSEDZCzLw6fDBNpNoC/AZCaZQmAvAgyQOU5orRJjS3B4AU0+X4eDZ+wvu4m3bSjfzur0Ae+H/qJK2WwuM0eq2ia7uwbTWW4J5FcwwMnkVGio7IZUm51u3/6Gdmo3ahGqQ1+XVBeZ1yic2ufjBWbcuULf7KbmoO/b9ZFGTWen/PG77iVXG7NGMAldESQjF6fnMv2toomHXYeJaipucLqdXh/DsDpB3+vV1WCPQOH5Bjaml2XLz9cJOjRIj4DZyuTE12ldMIbpO+4mrEdgpB1VXsNOupDJLWa43sO4TBlQOAVN+w80ejogrp/VC/vtmQIAjLGOY8lCHA3OGGe3pYQSpsPGL6PzGsLxb71N1f6wnqnOZmnvV9G9iyN68Uf/djk7ySLdAbkGuq6GYzXX5OswUdkNaZwzmc1McCH3wC9QoA5stLGjz9efWB/dlxk7mR8dwXw3M+fqP3grxnmeR+YxYyZyEOgZHSKq5BVDbjHGwGIM3Q6st4StzTzgOlMDRRUE2KTnHS6xqrEjhy4IEzehOuzY4/W2x9hieGirN2cMF5rdbFvtGbIO1RfRg79c5176PVP82U1jDe5sxaR7CWNsyoSMHMQK0a13lmQdJtZujEYzxgHnDhBs58cAGUX8uItR9Sa3FFnAmTRHP2YyR84wSNsNAGRkMaUVfNXuqOeIFQSYfoEQbZ2ZRBWDJfApiGAVzX7rzCSGmXS8wyXuq2+bNzanp+OWEhOhOuw8GPuLwW6nfPqwr2ACTwzi+B7RFdP0KQBwplaqOea3j+MgpjmznQ750LfyqcP9t3NnjUbjpiOdWaM6TEhl6ozDRTJYvU4fHCAQpPdozvTRXPkVJmvOEHUfg4U5b6lxzGQ+8vEOs+bqR0f/atz0C4WMbAYPMO4Geo93YBCjfJngbxEEMtWAqzLMgOtMhY13gOAwDYFjOAa5fFJdpyva8lNCCdWhu9Yn+6JORkJprPZDMLs5vjeu2c737gzM5KbopEcVg64Isucr/2f/8A3kNQDQchJve1c+/jXWpg4TYjekL8BkMkNPJTNIn9GcghmVLTaVXW4aUczrzL3Kwwlo1Hh+8jz9RdeabHlstKM5L15iKC6N9F0VQUDnXyKMncjBsNaZyaeMeh6CU89RYiZUh57GeN85bKzxAwAG6GyV3LGmNoQzdZLoBYim7Ub04A0fiMf2RTQCo+4A7F2D/V7N6TAhlan9DR0AYDCagaQDPfWdnrYb1HuO2LRcJj1XzwAwCFytkl+ErDyWHMYog6yiX5u5coHBls3u3OYd/KXN3Hx25gVCRjYTw3gHUjgUwRrhnjbwiWAaMUSdGWMw63mHSzzY2HEpXRAmDkJ1KMbaahOKyymbrUzraRVO1dIk5RWykbfdfP2Fr3nQZRTD6GiAg1/gsgUo5rabROhQfbup63S5fH6GZXU6PZB0YIC2m4FmwDdnsSjwFw4w1GjOgWbAh+Dx5dOECaXckSr/kSoxbHUxnQ7l5rPFpVzhGBbHMd6h3+yGPLmOetxyAjkbkbdL+SrACmDJw8YR2FokQ586MwCwCASO8fil6rausTa6QkMshOtQjXO6ndhkBVVmO29tkfMK2QjbbnZtEk9XRz1ytaMBqnfgoukIYmq7gQToUH27CYyqMgYKF2F2k4j1fYAEB8CCDpVPEyZP431eaGmSyF+9XgeZ2SwGkGQZ1BjvEJbduNrxia/B0dDPLZJE6KhGHdWo9QiTPUUyjJDDogpiGIPAiX6xqrGD2k1shOtQpdMGBBE3Xk9P283g2Y2zUz4SWR2qL2cOQm4p8MYYsxvVdahy2w3GmPQFGIJv+g/ZdoOTuEa4To/yCrm8Aja/gLVlsxBBnTm2tpu2U7Bvbf9eE4q3Heq+ZDurmfBiy7JJzwPA4eZOv6RC6v5dox8dqnFag4VMI6vGuYKZ+5BtN/u/juuNnFO7AWJtu1FdhyrbTW0wgxV0gVctBu+ZgkAeAYq9qP4mbvCEgScbW49AcE9EPVONx+HgF1iK+PX9pq/Z1gNsr2IzDINAx7M+ST7W6oz0RJQgfXWoy1BB6kYLo1Z2MyqPRLuhdXj6RFyN3M3HMcTUMwUJ0KHKdnOwqQMADEarkptoKrtBimtE3CMQbXbT1QYndkStx/YqxlnDhEYVhBi9wEFw5AglKvrqUDcy3naDkUUcAGCAnDEqzKBiSQssGTy4DhvqJDHuaWccDbFnN+rqUM22G4zxocZOANAbzUpukoS2m9PH/aer/d1OuTE4j19uPkve/beP44MnDLQ+Q8LeVSHHH1gv+2PSR+te1jgKI14mdWZZlo06rrPbSxbiEDgVJP4doV8dmgr5Vh7FM/RmhD0wSCLNxvJCXMtjZmUzFmtPDBxEh03R9EYNhKMRrLkxtt2oq0M1s5tTHd0un59lOV4QkpPd1Bz0ffx696ZP3ScO+hpD5gytr5MO7PL930fuVW9219fKSctu6o/K3q4Y754sos6jTGhUQQB6gZUxHG6mC8JEwUA6zJgc+1wKejNTMIGHoA7HTI5x7mFC+TQhQh0CVsFuII62G3V1qKbdkL4AndGi9HZDwtpuRC/e8X+eHf/nGXzuvrZm6ZN3u7d+6UlO283pqrhuoOM4o9SZMZYRQnqeAzreL0oG0mFaqS7mFpyJs3WhOhw7RYh5NV6zlZlQJkSoQ0AxXiWMmNtu1NWhanYjY0xmb9cbzYAgNKqont34vXjj++6aPhMaDcT+Xb4Nn7kTnd24ndA18MxGkSCLyN3EQDCqYIz1OhYAauiCMBEzuA5HzjUyfNR/wBPO04+wc6E65AQ45yL94J/qF0GHLltiiFyHWshuVNShanZzqr3b45cYjud4IdHZze7N3o6W6HoHDx/wbfnSndDsxhNrNSoUbwsDIVEFAdILHAaoauxU4ezfAQbXIW9mChYY2WgcZ8w5utGTg9WoEB3mjuVicJzzKnW2EUzkOhwZ9+RNAGAdGW92o5YOVWsqrmrqAAA9GVVFokowSVFGFcsi7m6SxDapu8FPkhhLDqe3INtontEhZVRxsCm2/1HFJw/5Tx2K5QW5fbt89nFCXgELMb2JO+So4u42dQIRBKOKLMuAQC8wHhGqGtvPybepdf6zmCF1qMtkx15lrvvC5WocImJxAio+T5c3IdBME6ZDAFQ0kUcA30Q2w5agQ5WX6u3juIDDkL/zoXQ4YpQKlSlrToyjilXXoTp2I2N8WMlgAQADCqZNpCtHFuXWvd6Og+F9Ns56CQBOgGfEeL5gqmC0MIP3TPlF2BflnEahfLPNMyrfmKCeKVXGtmMfAAR6BMgVdTyHkFjX6XJ4RKtejQXuz16G1CHJURgBFS00uRukhh3ufqeU5ASUN0konMTzetSvDpU2xNET+YxsZvdmb/Og02Pn5rOzKnVZ2SypP7U0ydXHffXBzg0MYMtmcvKY0WP5vjq0l7DVh2If6ZdZAACxjypWV4fq2E1NW5fHLzG8wHACadcIjSrdtb7mre7BZ1FrOuJrOuIbf6F+1ARhkOzmzAlfDHMaKZyplc7UyXkFTITZTWOd1NEqk9c7DRYwWJjMHDRQdqM3D3rtyEA8QO+oAgB6gXN7/VWNnbNG0xUaBmNwHYa9u2fOYYuXmv1dcnej39dFZtgDXkDpuYzZxrLk73LgLBsCngMZ2exFVxqbT8vVB8XTJ/xiiM7NFiYnny0u40flswxCAPjwAXHndtHZGe5xZ2qlfTtB0HnLpvJTZvChOpw0nY/HboqmIwA8UHbj6cK8KaLsBtTQoTp2Q0ZVCQYLCv75KVGl+4TYsiXSKfuObPQ4GqSJlfqBspvGmniXWKg5JuYV6AfPbpwOvP9r/6kTfl94IiUBQNYoVDqLNWdCWHajN0Owgh87DI+hd3aDAOl5zu31H2hsp3YzOIPocKDxXzoLo7PwLEIsAgTAoOBbvlGO/xqRz4zM1yMABkFHs8TrkDWNYVCwiQAhr0f+/CP3mUGXeBW9sGub7+Rxac4lQnpWYN4lsxWPn8we2RuL8kdNBIOl16ySYjdqPYE66pC7vecwRgBjtmzKk82jA6Xtm92ookMV7EaS8aGmTgDQGUyBxu1gVHHX+iL3GkLDEZ/FxhaU8/1GlfrqeDtoWpqJzQ+Y3Rzc7d+7QxQHrrG1nMEbV/mLytG4CmB1PdmNJTPOogEA6LJk6B1VMMY8zyAETXRBmEEZRIfQX3ajNMcONDMBybIdzZLsBwSQNarntYPQ7Cb4T/EylJHNKl08AIAQeD3yp/92tzZFZBltzfLaVZ5Lr9SnZ5EWQ1Qxh2tvwc1nontryZQBY2YgZTY/SYS6vajpUD+NQbIIXaeZrtNM2wGcOVkyjJL6Zjeq6FAFu6lu7xIlmeUFhhNCo4q/S27dGsu8yke3esw2Jis4vXloVIkfp7OnR6BvdvPV597jByNytJp9uKlGqriYMdkC2uR0OKsQtZyKvZScEesysNwnqmDAJI/d39BxwRi6QkP/DKRDwkDZDepvdLvkxWeO+RqP+LpaexmE0cLk2NmCCXx6NhuW3QwyM4Hoxasj9hqC6IXP3vMs/IHebA20rZy/UPjifW9Ha6TqMmdC+WVMwGExeDrQsS3gGmqghq8bNW7lrMUoY7K/b3YTvw5V6Agno6o4g0VJGUhUce7z4lhbT49u8/Ydd6NKWyypNvc73mH7xki9huBy4h2rJbcTlJESeaVxlc06rldUUUZhIIR0Og4A9je2D3GK7zAD6ZAQ+fiv2p3i1+90H9/qCfMaAHA55RN7fRv+n2vXeo/Pg0NSGxjk3b1d27xReQ1B9MLG1aIyLoYT8CXf48eVR9Qvnl8K05YyHB/o+XK1wYHPhvYaBcdRtuUbHhKgQxXs5khzJwAIRrMyiAAwSN2y60Ts75Z1tUjNNYG/fGW8Q8zjOEPR6QJ5Uth4h5PHpKrdUdfU/F6o2iQpIyUyclFaTowF44w4bbwcNt6BjMLAGPMsyzCowy22udVfKP7soF8dRjX+y+/Bhz53ndrp9Q/VHXHqkG/9/3N1NEs4kEUFR4uRqyqiRajLKR/YFePExu3N8olDUuj4r8lzuIuv5nOLBvyzzS5EFZcx42YyEBjLB5IPjm2FyOcnIHSfZDoPcqrrMN7K1JEWhyjJDK9jWB4FG7cBgbc23kaWphr/yOBLcRBiEHFiy+7nTVwZ403rYuxfb6uHU/txfikAAMa47CJmx/+T/VEKjOEhZ7a/3x4BHOytZBEjg+QSfZkG2h0ezkA6jKrtpurT7u6Il1p0OeSNH7grlxkyR7BhbTcQMqvkrq1xhYf9X/vtJVzo+C+rDc1cwHk9cKZGcncBDgxyB70JsgsRI2Ac7Fclo+FP7IgirwnFcZAVbJIuW00dxpvdBDPYQK+MElU8dXFNVQ8AzSfDsxvAYBsV7yBLi5UMr+yV3Rw92Kv/Mlpqq+TguEzECXjyQsRF+QafrUIS0nHf0ZxKVCEjgQDA66ezbfXDQDqMPLs5sckbudcQfF68dY1H9OJBsptT8c1W0+XA7c1S39Htgh4KJ7Djz2GLpzHjz+HGTWVGjUecXhn7jsiXd3cF5ruJDedhTl0dxms3tR3dAMDrzRCSMgACLMb7V6EktEp2Awhy7fGmY/ZxPPTJbg7sjMsc3U5oO0PCDwZApgwovwxMGRF9luGhYL4/LTBpcfi7KkqdGQAjhgEAkU7u1x8D6jCytpuOk/6Wo7GkId0Oefcm70BtN/W1/sHn5I+EpjM4qnf3IKhDwLi+Kq6re5sZycWqqMN47Sb46kevBhHA4OtQ4a+CLK8Rmt0UlvDxtOBYrEzR2H5mUWttibe0HY0AIVHFmIkmXYbyJ8PgaU6aHY++1K/PwEowHDS7AQDw+OMdeXRWMpAOI8xuTm2PdKnvvtQc8nU55H6zG1Xq/6I39vXOWk/Fe3VPPVJRh/EmC4GLMwFHV+rMqmCwMBCS3SAEnABjpwiHvo6xneXc8wTU512VejXW8ehqDfQgKHVmlof8KWAbgx2N0F6LvF3Y3YEAgDeBYMKWPGzOx5wRyxjLg47mxKEjzQG81G76YyAdRtJ242qQxa64NHB0j3jOhYa+bTcNcbdgAkBHS1AX0a8I4o1x5eoe3PWsYYxfLR3GbzcAACBjYINRBQNgEEZwYpM6cyaEjrtBCE2cIdRX+zqjz0fGl/JknpGwd6ZUGc7jEwEgOCo5ZJ0pg5URzHLmGBkAyVjuWUEcBVYTH/JdlaDCAiPNBTYhKxGmOgPpMJJxN+0n4+3sazoj9zvuxpymQuA1WSCqd/cUX+hoDPm+caCiDuPVLkN8AEvQu87MmuI9s8UWOENo2w154aPyCmO0VSpbNjOnUo+UXDQku1EpF+sVVZTzxznPSGidWZIwANjoqOL+GEiHkbTd9PuWZlR0NEv9tt2YLSrEBl7HxNx2E//VA2dTSYfx3g6rgQcAWfRC7zqzMDLeLqSMUT2jiiEkuwEEnA4tvMGUnhVp4YvGckuuNgn6QIUltKgIkKBOt3KvOrNy/jjnGQmtM5OVN2zGWGZ1OusZSIeRtN2oQpdDqVz0tN2Y01Swm4wsiLntJv6rB86mkg7jvR0FaSYAkP1e6B1V9Pl8DNOm9TrzpIAN9M1uEICgQ/OuNJbN0AmDpjmCDk2bpZu/1CDogYiwb3aTNUINTeQAJDK7wVjGGLMImXUJWWc51RlIh8nJbgCgu2ca39DsBmVGHBQHYkQeF1t2kz5SheyG4UFFHcar3fx0E4RFFQyAgdEhU4nOuS/GBv+c8bzRGnhOYW03SlzidKhshjBmInf6hFR9UGzv3ZqTk8+OHstPKOUFfU/JlLaS0LYbGWNbNhO2nm+0ZOQyAEOsER7bPCPkeK8PA0C2maY2/TOQDiNpuzFkMl0N8TbAZ2SHtEIrokVo9Di+rSX2GZrGlHCCDss4lrYbQEhnire1WJclqajDeO0mz2oEAMnnkSU/y3KhPQLmEsFTJ/qiXwqeE5D9HAEPNc8I+We2shMqmJIKnkHI55Xbm+XcAjbw28Bh5LkEU+w+PVMIQWkFH/OoYgDQm1F6Dg7W1ALZjfImLgDEM4saUY9HFAGALuA7EIPocMieKVUQdEzfnimMccVM4WiVb/AJ/Adh0nQW4lir3lYIZw7G9b30uTjYpaGCDuPN9HQcW5xlBQCxqyOszswIKKvSFEOVaupig8HCKMro23aDIfSfIhgs6BCZ27WnESSyVTTt47h4WvXGTEVhdWZ12278kuTzyQBA5w8diEF0SBik7Sa9MK5VXAAgO48daFQxQjCzMsbW/fIZvCUtkDXH1naTWxpXg4YhV2aNkoo6VKHZYk7RCADwdneCLIfVmTkzM3K+iYu4l4oTUMXlJnMWC0r1e4C2m5B//fQI9KQJka2iyQswszLGFuOMHDSqGIVFFXXbbjxeCQAmZKeZhHj/MM5iBtEhDNp2kz467iYFOz+IDkeP5WZVRl37GFPCTZnBKTqJrWfKYIbcibF/L2u5qK4OVbCbXKvRnmkGjF2Otr5RRWdj8xebTQVDP1FrLjv5ckPaqIBVx5DdQO+oAhFnNwih0WPY0oqobyInQMUlTN+oomJ2I0vY5fUBwLn5WdEW7zvF4DocJLvhzSi9MHbH4QVUNJEbXIeTpglROc7Yidyc+UIwl4k9u8EAhRXIlBFLlTHzHB9vRurqUJ0xY5eOz2MR8nZ3eN0ugPCognjImWvMv9RkKeD6XXPDmsuWXGKcfLnRZGODyUhSsxvi3zMu5CdOiUJ2BjOacTnL6fqJKmplNxhwe5cHYxifbS3MMEVetu8mg+twoOyGQahgZuxt8OMrBEGHhtRh+TRh/hKD2TrEX5wgoBkXCHMuESCg0riyGwTA8lB6KRKi1I6pUDaNllXXIer1DOJg15m2NYfqEMPYcgo5hmUZYAAYBCwCBgABJhsMA+4GCQG4GvzGTIbXMRYbw+kQmSOWfIQBQAjYYHsw2cOgQOsvE7Jf+V/ZAHI8CmQMZD5qhAOdPkpPEACQ1lwMIMkyIEQScBnwmVr5m03e9pYhbktmLjpnPs/wshxImsgoYegZNwwgyRgQkmRybiSTXsTeo4olWcakJMGPk1LJsowBtXd7XB5/ukG4dcZ4no4njoDIdcgAMAAsAgDMItR2VDyxKeqO1FF2bs7lhqh0eOSAeKTK13fSYlsWM3ocVzqF53UgA5Zx4FX1HkkEWowVpQV0AoiR5CF0KPnQgbWyqz2iphzbFMk8zp8IHapmNwDw7301R5odvE6fmT2KzDUdcArAyvNmgj7SswGYzFLPAEYAZAZ8xXoQBH0HAVk/gUUo1GiYYE8TebSop0MqsKEcgAAxgbsdyD6Iv+Dej5NUuPZs9x3e4xf7G91uy0X2cmbEaKR8KuwZB40Dgv4SEIEMPQpQ1BCqoVCvAcR0urwOl8gx6OYZ4+lg4siJWYfVm7zN0bwXnp7FVF5h1OlRDDr0enBLs6RkwSYrmK2orw5DYxIOakZRFwlakevw9B7UeAikgac/MGTj9FJJlyUlSIdq2o3HL73+9bE2t5fndVkjR3EME0lUCZ0BXwvZTWhUcXbiLiduOk0MAayZYM1CejOKPKrEnN20OT1dHh8AfH+KnfZ/R0U8Omw5Kh7bGFGOU1jCTzlfJ+hQEnQYf3aj6FASUVst7qxFrg7kCw7JMY7AujRsKZL5dJxQHappNwDg9vnf3Hm8pdvLsKzNNtJoMKRodqNuVIkqu/HLcrPD7fXJHIN+WDGGDGCjREU8OnS3+k9s83bWDzjwz2BhJpzL2ycKVIfRorLdAIAoyf/afaKu0wUAZrPFlpnFM0yKZjcqRpUIs5tOt6/V6cYYdBxzTcWYUVajuk/nu0OcOnS1SY4zcvNJnyRiZ6usNzNGK0qzMVl5XK6dozqMDfXthrD1ZNPm6ka/jAHAbDKnWSx6nhdYlmUQzW6gd1Tx+mW/jJ1u0eH2kd+WZKddMn6URUdH2cQL1aGmdJgouwGALq9/c3XDgcYOOt9l5IzJtMwozLZnqrEAMAUAqA5jIkE6TKDdKBxs7DjZ3tXc7Wnu8njpI++NjmOyjHqbSTcqzVQ6Il3H0d7uREF1OAjJ0WEy7IZCoVBArVHFFAqFMiTUbigUSpKgdkOhUJIEtRsKhZIkqN1QKJQkQe2GQqEkCWo3FAolSVC7oVAoSYLaDYVCSRLUbigUSpKgdkOhUJIEtRsKhZIkqN1QKJQkQe2GQqEkCWo3FAolSVC7oVAoSYLaDYVCSRLUbigUSpJgAMDpdD7zzDPz588vKyubNGnSggULnn/+eb/fP+SH77jjjmuvvTbxhYwLLRTS5XKtXLnyggsuKCkpueiii1588UWydjgAlJWV2Xvz0UcfxXyhqqoqu93+2WefqVTwpEJ1mGiGXYccANx44421tbW//OUvS0tL/X7/V1999cwzz9TW1q5cuTLm68XJOeec88EHH+Tn5w9XAdTl3nvv3b59+3333VdUVPT1118/8cQTfr//5z//OcbY5XLddddd5513nnLwuHHjhrGowwjVYaIZdh1yR44c2blz51//+teFCxeSXeeee65Op1u7dq3b7TYYDKpfckhOnz7d1taW/OsmiI6Ojk2bNq1YseKqq64CgBkzZhw4cGD16tU///nPu7u7AaC8vHzWrFnDXcxhhuow0WhBh4wkSQDAML0acW6//fb33ntPecb/+te/LrnkkvHjx0+dOvXuu+9uaWkJPbirq6ukpOSFF15Q9oiiOHny5CeeeAIAWlpafvWrX02dOnXChAnLli3bsmULOebYsWN2u3379u133HFHWVnZueee+/vf/16W5W3btp1//vkAcMEFF/z0pz8NvdCmTZvsdvuuXbuUPbt377bb7Rs3bgSAb7755vvf/35JSUlpaekPf/jDPXv29P22paWlL7/8svLj8uXLlyxZohRm8+bN1113XUlJyZw5cz7++OP9+/cvXbq0pKRk4cKF+/btIx/x+/1//vOf58yZM378+Llz577++uvK2VauXDl27Ni+F01PT9+7dy95xgSdTkdueFdXFwCYTEMvh/rzn//8Zz/72Ztvvjlz5sySkpJbb73V4XD813/919SpUysqKn7/+98PeQaNQ3UI3wEdMmPHji0oKLjvvvv+8Y9/hD0/wqpVq37zm98sW7ZszZo1//3f/71v376bb745dLkYs9k8d+7ctWvXKnu++uorp9O5dOlSSZJ+/OMf79y58/nnn//kk08qKipuvPHGw4cPAwDHcQDwyCOPXHvttbt3737qqadef/311atXn3POOc899xwAfPzxx3/+859DSzJ79mybzRZ6odWrV9tstjlz5pw4ceK6667Lzs5etWrVO++8Yzabr7322oaGhiFvH4EU5sknn1y+fPnOnTsnT57829/+duXKlc8+++yOHTvMZvOKFSvIkY8++uj//M///OpXv1q7du1PfvKTP/7xj2+//Tb51bhx4y666KJBruLxeBobG99+++1PP/301ltvBQASVSIJ3RzH7dy58+TJk+vXr3/rrbe++OKLq6++Ojs7e8uWLStXrnz99deJ1lMXqkP4LugQY3z48OFly5YVFRUVFRVdcsklDz/88L59+3CQRYsWXXfddcqPn3/+eVFR0TfffIMxvv3223/0ox9hjD/66KOioqL6+npyzD333HPppZdijL/44ouioqKvvvqK7Jck6aKLLrr//vsxxtXV1UVFRc8884xy5gsvvPCxxx7DGH/55ZdFRUW1tbW4D7/97W/nzp2r/HjBBRc89NBDGONHHnmkvLzc7XaT/e3t7cXFxc8//3xoITHGEydOfOmll5SP33fffYsXL1YK88ILL5D9a9euLSoq+uijj8iPr7322oQJEzDGDoejuLj4qaeeUs6wfPnyefPm9S1nv/zgBz8oKiqaPHnye++9R/bs3r27qKjowQcfrKysLCkpWbBgwTvvvNPvZ+++++7Jkyd7vV7y48KFCy+++GLltxUVFaTwBw4cKCoqWrt2bYRF0hRUh2e9DhkAGD9+/Pvvv//ZZ589+OCDhYWF//jHP5YsWfKHP/wBAHw+38GDB88991zFnqZMmQIAVVVVoZ518cUXGwwG0hDt9/s///zzZcuWAcCePXtYlp0xYwY5jGGY6dOn79y5U/lgaWmpsm21Wjs7Owc31yVLltTU1Bw5cgQADhw4UFtbSy60b9++srIyvV5PDktPTy8sLAwr5JAUFxcrJQn70ev1iqJYVVXl8/lmz56tfGTWrFnV1dXt7e2RnP/3v//9q6++es011/zmN7954403AMDr9VosloaGhhUrVrz22mszZsy47777lDAVRmFhoSAISpGU4pEfHQ5HVF9Wg1AdEs5iHXKhX7K4uPiWW27p6upasWLFq6++umTJkjFjxmCM09LSlMPINqnsKRgMhosvvnjNmjU33HDD1q1bOzo6li5dSg6TJKmsrEw50u/3Z2RkKD8qD4aAh1rSc/r06dnZ2WvWrBk/fvynn36an58/bdo0cqHCwsLQI9PS0sIKOSQ6nW6QHzHG5IQ33HADQoE15Uk/Ymtra+iXGoiSkpKSkpJ58+bpdLrHHnvsqquumjFjxt69e5UDZs6cWVtb+7e//e2HP/xhDMUbsgApAdXhWaxDThTFxsbGgoICZZfZbL7nnntWrVpVVVVVVlbGMEyo2ZNti8USdqLFixf/7Gc/6+joWLNmzdSpU0nfocVi0el0n3zySeiRYc2BUcEwzOWXX7527dq77rprzZo1pIGNXCgsInV2dubm5oZ9XHk8BI/HE9XVybd++umnS0pKQveH3r2+NDQ0bN68+bLLLjObAwu8l5eXe73e+vr6vn2NEydO3L59e1SlOjugOoyc1NUh88c//nHRokVhjXPV1dUAkJ2dzfP8xIkTQ9POb7/9FgAmT54cdqK5c+fq9fqNGzeuW7eOJJYAUFFR4fV6ZVkeG0Sv1/e9+/0ykE0uXry4qqpq69atJ06cUC5UXl5+4MABr9dLfmxpaampqelbSKvVGhpqos1yJ06cKAhCW1ub8nXS09MzMzOV3LJf2tvb77333vXr14ddNy8vb926db/4xS9EUVR+tWvXrrDw+B2B6jByUleHzC233GIwGK666qq///3v27dv37Jly0svvfSLX/yirKyssrISAH76059u2rTppZdeqq2t3bJlyx//+MeZM2f2vYM6nW7+/PkvvfRSa2vr5ZdfTnbOmTOntLT0l7/85fbt2+vq6j788MNFixa99dZbg5eJ5Mnr168nfQdhTJs2bdSoUY8++uiECRMmTJhAdl5//fWiKC5fvvzYsWNVVVX33HOP1WoN7fMjTJ48ee3ata2trW63+9lnnyUN8pFjsVh++MMfPv300x9//HFdXd22bduuv/76++67j/x21apVt99+e99PTZw4sbKycsWKFf/4xz927NjxyiuvvPjii9///vcNBkNhYeG6detuu+22zZs3b9u27f7779+2bdsdd9wRVan6cuDAgQ0hpES6RHUYOamrQ66wsHDVqlUvv/zyK6+80tjYKAhCfn7+rbfeev311xOzXLp0qcfjefnll5988kmr1Tp//vwHHnig37MvXrz41ltvvfDCC7OyssgelmVff/31xx577Pbbb3e5XAUFBXfffffNN988eCnLy8srKysff/zxWbNmvfbaa2G/RQgtWrTof//3f5X7CwCjR49+6623Vq5cuXjxYpZlp0+f/s9//tNms4V99oEHHli+fPn555+flpZ2/fXXX3nllV988UU0NxAefPBBq9X6+OOPNzU12Wy2Sy+9dPny5eRXR48eXbduXb+feu6555577rkXXnihubk5Nzf3Jz/5yZ133gkAEyZMeOONN/7yl7/87Gc/A4Bx48a9+uqr8+bNi6pIfXn22WdDf8zLy9u8eXOc50w0VIfR3K1U1SE6a5oYKRSKxqFvhFMolCRB7YZCoSQJajcUCiVJULuhUChJgtoNhUJJEtRuKBRKkqB2Q6FQkgS1GwqFkiSo3VAolCRB7YZCoSQJajcUCiVJULuhUChJgtoNhUJJEtRuKBRKkqB2Q6FQkgS1GwqFkiSo3VAolCRB7YZCoSQJajcUCiVJULuhUChJgtoNhUJJEtRuKBRKkqB2Q6FQkgS1GwqFkiSo3VAolCQx/HazY8eOW2655Zxzzhk7dmxZWdmyZcv++c9/RvLBuro6u91ut9sdDke0F73nnnvsdvsjjzwSfXmH5plnniEF+8Mf/pCI81MSwTvvvHPVVVeVl5ePHTt26tSpN9xww44dOyL54Lvvvmu32xctWhTDRc8//3y73f7ZZ5/F8NmBeP311+0hjBkzZubMmTfeeKMWloofZrvZtm3bj370o/Xr15tMpvPOOy8rK2vv3r3333//3//+d3UvdObMGbvd/uqrr5IfS0tL582bV1xcrO5VCB9//DHZWL16NV0TOSV47rnnli9fvnPnzsLCwlmzZiGENm3adMMNN+zbt0/dC61atcput1dVVZEfZ8+ePW/evOzsbHWvAgA8z1dUVFRUVJSVlblcrg0bNvzoRz8adsfhhvfyf//73yVJWrBgwYsvvkj2PPDAA2+//fbrr79+/fXXq3ghxQIIN99885Ar0sfG0aNHjx07ZrVajUZjfX397t27p06dmogLUVTktddeA4AVK1bceOONAOB2u6+++uqqqqp//etf5eXlKl4oTIdPPPGEiicPZcSIEe+99x7ZdjqdixYtqqure/fdd2fOnJmgK0bCMGc3pB6UkZGh7Ln//vs3btwYml6uWrVq8eLFJSUlZWVlP/jBDzZu3Njvqa655prQ/GXDhg12u3369OkAsGTJkscffxwA/vCHP9jt9u7u7rDKlCiKTz31VGVlZXFx8dSpU++8884TJ06QX73xxht2u/22227bvn37okWLJk6ceMUVVxw4cGCgb/TJJ58AQGVl5cUXXwx95EXRJmE6NBgMr7766o4dOx599FGyZxCFhEGqMEr+snLlSrvd/otf/KK7u9tut3/xxRcAcPnlly9ZsgT6VKYaGhruueee6dOnFxcXz5kz5+GHH3Y6neRXd955p91u/9vf/vbmm2/Onj27vLz89ttvb2tri+TbWSyWKVOmAIDH44np9qjGMNtNWVkZAPzzn//89a9/vW7dus7OTovFUlBQwDCBgr344ou//vWvDx06NG/evOnTp+/YsePHP/7xunXrorrKsmXLcnNzAWDGjBk33XQTz/NhB9x2223PP/+80+lcvHhxbm7u6tWrr7zyytOnTwOAXq8HgBMnTtxzzz2lpaU2m23Pnj133nmn3+/v91rEbi677LLLLrsMaH0qRSA6fOCBB5544ont27eLojhy5MjQOs4gCokQnudvuukmsr106dJly5aFHdDW1vYf//Ef//73v9PS0pYuXSpJ0muvvXb99dcTpREdfvTRR6+88srs2bMlSVq7du1jjz0WyaW7urr27NkDAMOb2sCw283tt99OfHfVqlU//elPp06dumzZsjfffJPcYofD8cwzzwDAo48++sILL5C7DwB/+tOforrKrbfearfbAWDBggUPPfSQIAihv920adOXX36JEHr33XeffvrpDz74oLS01OFwvPTSSwBAjO/YsWNPP/30k08+SbLuU6dO9RvcDh8+fOzYMZ1ON3fu3FmzZqWnp5P6VPQ3hpJUHn30UZvN5nK5XnjhhWuuuWby5Mk33XTThg0byG8HV0iECILw0EMPETnddtttt956a9gBr7zySn19/ejRoz/++OOnnnrq/fffFwRhz549JPchH6ypqfnwww+ffPLJBx54AADWr18/0OWampquvPLKK6+8cunSpbNnz25oaLj22muvueaa6O6L2gyz3aSnp69aterll1++5pprRo8ejTHeu3fv7373u/vuuw8Adu3aRdK/pUuXkuMvv/xyADh69GhHR4daZdiyZQsAlJeXjxkzBgB4nr/00ksB4Ouvv1aOycnJOffccwFg3LhxJpMJABobG/ue6tNPPwWAuXPnGo1GjuPmz58PtD6VCkyaNGnDhg2PP/74woULbTab1+v98ssvb7zxxnfeeQciU0j8kKssWLCAJDI5OTnTpk0Lu0plZaXFYgGAiooKAGhvb/f5fP2ezefz7d69e/fu3fv27XM6nSzLnjx58vDhwyoWOAaGvyOcYZj58+c//vjjX3755ebNm0mS+d5779XV1bW3twOATqczGo3k4MzMTLLR2dmpVgHIVULbj8hVQh0t9LcGgwEAZFnueypSk9q5c+eiRYsWLVpEmplofSolMJlM11xzzV//+tdvvvnm/fffJ9WrZ599FiJTSPxEpUMiQhhAhwCQl5dXHeSbb765+eabN2/efN1118UwakRFhtNuurq61qxZ88wzzygtWHl5eU899RTHcQBw8uTJ9PR0APB6vW63mxygtI2FPhUCyTaVU0XYigYA5CrkYYd+VrG2CDl06NDx48cBoLm5+eDBgwcPHiQZEK1PaZwzZ878+9//JtVkwpQpUx566CEAOH36tN/vj0ohCCEYVh32xWaz3XXXXQDQ0dExvFIc5uzmP//zP//yl7+sXLlSFEWy5/PPPycNN/n5+dOmTdPpdBBSH/nggw8AYNKkSVarNexUpGGPNIkBwEcffRT6WyKC7u7uvmWYPXs2AOzfv7+mpgYARFFcvXq1sj9ySE1q2rRp1SFUVlYCrU9pm5qamnvuuefhhx/+8MMPyR5JkkiLSU5ODsdxUSkkVIfd3d2kK0phSB2uW7eO/C2cPn3622+/Hegq0aL055rN5vjPFjPDOe7GbDbfe++9jzzyyGuvvfbuu+/m5eV1dnY2NDQAwBVXXDF69GgAuOuuu/70pz89+OCDmzdvbmtr27x5M8uy999/f9+zzZs378MPP/zss8/uuOMOp9NJehCVWkxOTg4AvPbaa7W1tffee2/oBy+44IILL7xw48aN3//+9ysrK/ft23f48OHs7Ozbbrstqq9D7CZsdOnChQs3bNiwevXqBx98kEiNojXOO++8BQsWrF279u6773700UczMzMbGhpIbf2Xv/wlRKmQefPm/etf/3riiScOHTq0c+fO3Nzc5ubmUB2ePn36d7/73Zw5c373u9+FfvCWW25ZtWpVdXX1smXLSFuSz+ebM2fORRddFMOXIk3FZLuzs7O6uhoApk6dShp9hothzm5uuummV155pbKy0mQyHT9+3Ol0VlRUrFixQul7uvPOO5944olx48atWbNm165dc+bMefvtt/v1+6VLl95xxx1ZWVmbN28eNWoUGTHh9XrJb3/yk5+MGzfO6XRu3bo1rLqLEHr55ZfvuOMOnU73/vvvNzc3X3HFFe+9915WVlbkX0SpSZH+b4VLL72UZdn6+vpdu3ZFc2MoyQMh9Nxzzz388MNTp06VJOno0aMMw1RWVr766qs/+MEPIEqFLF++fOHChRzHffnll9/73ve+973vQYgOf/Ob32RlZdXU1Bw6dCjsgzabbdWqVVdccUVTU9P777+v0+nuuOOOV155JbYopTQV7969u7Gxsbi4+Fe/+tUbb7yhDDEZFv4/KSZsMoWWNUUAAAAASUVORK5CYII=", "path": "image.png" }
Which solution has a higher concentration of purple particles?
[ "neither; their concentrations are the same", "Solution B", "Solution A" ]
1
The diagram below is a model of two solutions. Each purple ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the purple particles represent the solute. To figure out which solution has a higher concentration of purple particles, look at both the number of purple particles and the volume of the solvent in each container. Use the concentration formula to find the number of purple particles per milliliter. Solution B has more purple particles per milliliter. So, Solution B has a higher concentration of purple particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAh0AAAEiCAIAAADSxvdVAABVrUlEQVR4nO3dd3wUdf4/8PdnyvZkd9MhhRJKJHSkKdgQbNhORT1sp+iJZ0E8z45iOcHf6fm1nHrenXeeqOfBiYoFRUSQIr2E3gOEFJJsdrN1Zj6f3x+f7DCphrDJpryfjzxgd3Zn97O7s/Paz2c+n88QxhgAFEdgXwB8GqgMUKcnEUgQoa8N0k2nvC5uKl0KbiqomYybCmGMlURgrTfehULxMDoR0k5lf4GbSpeFmwpqptGJIAHA3gAAQDcT9LdDghjnMqE24NNgtx+OR2BP4NR2FripdDW4qaBmMm4qAgBUawAAefjxdxkJIvS3A0Q/+ubDTaWrwU0FNZNxUxEAQGEAAA78+LsS/m1XTrHhGzeVLgg3FdRM+qYixLskCCGEOhXMFYQQQrGEuYIQQiiWMFcQQgjFEuYKQgihWMJcQQghFEuYKwghhGIJcwUhhFAsYa4ghBCKJcwVhBBCsYS5ghBCKJYwVxBCCMUS5gpCCKFYwlxBCCEUS5grCCGEYglzBSGEUCxhriCEEIolzBWEEEKxhLmCEEIoljBXEEIIxRLmCkIIoVjCXEEIIRRLmCsIIYRiCXMFIYRQLGGuIIQQiiXMFYQQQrEkxbsArYMxYKzmMiFASFxLgxBCXUjnyhXGmKYRQQBBqJUllDJKiShiwCCEUGvrPLnCE4VIEgBofr9aVsZUhYiSlJoqOhxEEPT7YLoghFDr6RS5whivjqiVlZ4FC7yLvgju2K6Vl1NNo4IguNymM/Jcl01OmTLFlJLKNI0QAgIeWEIIoVbR8XOFUiCECMKJd94um/NH9dARUSSiRRYliQGhlKrFxwOHDnu++ubw889m/uGR7PseAEIYpQSjBSEUI2ooFPF51VAIAARZNjkSZLuddNWmkQ6eK5SCIGgez5E7bqv+32cmh8WU4gLGgFLGgAIIBASrSbRaZCZEPN79Dz5U9vVXAz/4yJyaitGCEDpNoYqK4nVrj634sWzrVn9RkRIIMABiMllTU915eZlnjcs6e1xidhYhXWtX05FzhTEQBK2q6uDkSyMrV9tS3aCqRFVrbgQgAJQBMGCgUaZJkpzgNlV9+/26SRNGfrvEnJoGjOGxFoRQC4QqK/b973+7Pni/fNtWze8HAN66zgAoQNWe3UU/rdj+/r8SevXqd/U1g26+xd07N84lbkMdPkWP3jUtsnK1JS2JKIrImAjA/4ToHwEQAEQChDBQNHtSYmDztk233BLvgiOEOih2fM3qb2+Z+tPMB078vIaEw7IkyZIkC4IkCJIgyIIgi6JJkkRKvXv3/vzSnPnX/mrbh/O0SCTeJW8jHTVXmKYBIeXv/cP3yXxzqptEIsYsAQACwGsiQvSyQEAAAhHF5k448c3ifa+9CoQwTYvny0AIdSiM0j2ffLLk1puKliwRKZVE0bjnqfMnAvCk8ezaufiB+5a/8Hykujrer6AtdMxcYYyIouYPlP3p/8k2E9E0wRAkEL2sLzFeFYAQVbVYpP2vvBKuqCCieHIEJUIINWnPJ/9Z+fsHA0eOSJJUp2lEqLWfqfm3Jl1EkQYDP//55R+ff14JBOP9Ilpdh8wVRikAeL9cpOzcJdpshNI6B0n41bpxoecMY5LFEjh85Nin/wNe9UEIoV9y9Mdla558TCkv59WU+sdmjekiRJfwqyIhhGrr33pz3V/fYZ39t2yHzBXO+83XAgBp6BNitS+wBm5gIsDxr78CADx0jxD6Rf7i4rXPPhMsKhIFoYldRmMNJwKAQAhTIqteefnwTyvbosTx0yFzhYgiAwgWbCNmkSe/MT9YtEtG3YXMGCtMlIl3x3YtHMamMITQL9o179+lP68RRbHB5DBqsB2eXxBFIVBSvOr/Xo0EAm1X9DbXAXOFMQDQqqrUsjIiSYwxaggSGr3QwB8DAOATUjLGQJIiFeWRyso4vxyEULvnO3pkz0fzCKPCL4VKg4xJI0riwR9+OLRiRSsWN946YK5wGqUaZUDAECfUkC6sdsDQmvoKo1CTQ4wQqlF+cKXTN3cihE7H0R9+8OzZQwRRX9LgMV1ozkJCIl5vwaef8uPEnVJHzRUiS0ySNMpovVypEzA1fxQoAz1UKABljEiSIMsA0GWnW0AI/SKmaUd+WMoUxVg7Mba6N7piQwsJABGEwtWrfSUlMS5ou9EBc4UQABATEsSMdDWiaIQ0GCrGaNEYUAoUmAZUA9AANEIURTGnppmTk+P9ehBC7VqosrJ8e0ETvz7rpEvTYQMAgkCqjh4t37cvViVsbzpgrgAwVQUA67Bhiko1ELTaWWK8qp4MFaB6qABQQhQVXEOHEVHkQyzj/ZoQQu1UoKwsUFqqT9OiYw1FCKtXlalzNwbAgCiBQOWhQ61c8LjpkLnCY8B1+RUKgKoxlYIKoEHNvzR6WQXQKGgaqAw00FRgmn4TIRQg8/LL4/1KEELtXcTnVUNBaCRIjFgjcVIraRgAAKU00Hk7DXXIXOHzECdNusgy6sxwdZVGBFUDldX60yioGmgUNGA8VFQ9bAQh5Pe7Bg7IuvwK/dEQQqhBjFLK6tZCGrhbtOEdGkoXY8dUBjVnjWqDwsdFx9ylEsLP/Jgz6+mgBhGmqYwpGmgaqBqoGmg8URjTgKqgqcAUABVAAVAAIoQoChv45FOCxYKNYAihpgkmExEFPTP0xnZjWuht71C7M2pjwx6AEMlsjuOLalUdM1f40EhNS71scsaMB4JevyJCBDQFNBWoClQBqoCqgqYA5VnCQyUCoIiiWuXvO+32nOtvqDnpPUIINc7idksJCZSx+qMXjF2E9AoKrV13qTXsgfGOqSDIckJGRjxfVWvqqLkCAEQUgLEzXn4ldPHEoNcvEAgBCwON1PyB/qcAhAFCQAgh1OePjBk14vU3AbsXI4SawZaa5sjOoYw1Ney6XgWl4bF0FBgAZczidCbndtozsnTgXAEgGtVAEH4cOWaO27XfYhEppYwFeUuXIESIoBASIUIQgDImUe24yfxWovPbAQNFi4ViCxhCqBlMDkfGyJEaqztarn47mFYvVGqNpWOgMdAAKKUp/fq5e/aM9ytrLR35fJEAfJSSqGkbbAnFSe5hlRUTfJ5sRQlHlAijIAgapQSISZaOy6blic6Nia5jHk82n8AYQwUh1Dw9J07a8ve/aX4/ECLUnvIL6vYhPtn8VWtyqZMDHgAI6TdxoiUxse1fSNvo6LkCAACE2KhGAJYlJK63OwZ6Ki53u9IlMRgIWK1WryAsOFFZ4E7yANgAbJRioiCETkn3kaO7n3X24W++Bklihtnv6yQK1KvBGKf84JUVjVJXdnb+VVfF67W0gQ7dDnYSI4QAOCglkvSlBv7fPzJx644L1226eNtO+9yXvxYlTZLslJLoTwmEEGo+k8MxdNpdYqKTt4Zp9f5o7dawOoO1qRZtAQMAgGFTp6afcUacX1Jr6iy5Eu2qQQDsjMqMAYBoswGAyJiNUsIYJgpCqMV6T5w04MapKmNqvUShjS+hrCZUatbStJwxY0bfdVfnbjXpJLli7Nmln3kFoqdmwURBCJ0m0WQ66w+PZJ93gaJqqiFCjBfqzibF+EC6k6GS1LPnJS+84MzMjPeraV2dJFcanui+U/8iQAi1sYTu3S/68/9ljjtHUTSVRefvMEwipRpnkIpOIqVEQ8Wdk3PFq6/2HDcu3q+j1XWSXMGRKAihNpDcr9/l7/y13zXXqiAoKj05cVT0j9Ka+T5UWjMiW2WMalrWiBHX/u1veZdeGu9X0BY6RX8wPDEXQqituHv3vvwvb2WNGbvunXcq9u4ljAmCwFtH6gxe0ShljDlSU4dMmTLugQc68YCVOjpJrtSpr/CY0fBckAihVmBxOsfee2//yy7bNn/+zkWLynbtilRXE0oBas5FywBEszm5R48+F1ww9MYbM4cN46cQ7CI6Sa7ojAEjiqK+BBvKEEKxREhS797n/uEPo++6q3DLlleffLJ4924zADCmAoRNpt8+8cS5v/qVPS2tC86Y3nlyhRDCGItEIrIsl5SUrF+/vqysLCkp6fDhw7IsK4rCGMN0QQjFlsXlyjzzzIrs7G0lJZIoMsZUTZMkyTlkiKPzzizZtM6QK4wxSqmqqmaz2e12DxgwYNOmTWvWrAEASqksy0OHDvV4PBUVFZFIhFKKLWMIodgijOk/WolhopeuqWPnCk8IQojD4ejVq5fdbjeZTDw5rFYrv4+maZTSjIyM5OTk6upqRVF4rYVSKnS9+ilCCLW2DrxjpZRKklRRUeH1eocMGZKcnCzLMqWUECIIAq/E8EP3giDwFHG73fn5+aqqFhUVSZJEO+/52ro4BoxFz8vXbnWIQiLUAh01V3hOFBcXP/HEE0VFRVarVdM0niiEEH5BFEX9gAq/rGmaxWKprKx8+OGHDx06xPMmvi8ExQplVGWqxjQAIED4HwPGF7aT3TcDpjFNZSoDphcSAPhCipMNoU6hQ+YKY0wQhKqqqueff76kpMThcEAjPb5EUdQbu3j3MMaYzWarrKx84oknSktLec2mLQuPYk5jGmVUIIJEJJGIjLGgFgxoAYUqBAhfSIDEN114ohAgIhElIhEgClUCWiCoBRljfKFABMooj0aEOq4OfHzl7bffLiwsTE5O5o1djTHmDa+gMMYcDkdJScnLL788d+7c1i8pai0MGGVUJCIA7K3e+13Zd2sr1x70H/QqXsaYDHKGOWNgwsBzU889J+0cm2TjO3d+/7akMU0ggkjEgBZYXr78xxM/FngLikPFClUIJYlSYi9rr1HuURMzJvZN7Kvfn3TpQ7+oA+t4ucJbwJYvX75y5Uq3262Hip4fdeofvFlMP8LP/9U0ze12//zzz4sWLZo8eTIew++IeKuRSMQ1FWv+fODPP1b86NE8IhFlQRZBBAaMsd3B3UvKlry+7/U+1j639LhlWr9piXJiG0cLfzqv6n338Lv/PvrvfYF9GmiyIPNaCzDQItp67/qPj33s2uE6L/m8Gf1njEkbQxllwASCmyXqeDreVisIgqZpCxcuNJvN+kLj4Mf6DWL6EuMFSqnNZps/f34oFGr71rA6T8cYw+a4U8IbvgJaYOb2mRetu+iriq9Ek5huT0+2JTtMDotssZgsFtmSaElMcaS47K4j6pHHtj12ztfnLC1aKhKxzdqaeKgsPbH0nFXnPL738WPqsSRbUpo9zWlx2kw2i2wxy2a72e62uVMdqUQmi0oXXbT0ogd/fjCgBnizWNuUE6EY6mC5wg+zb9my5eDBgxaLxbgv5pWSXxz5aKzWWCyWw4cPr169Wn/kNqP3ddY0yovNl2C6NAcPlcJg4SU/X/LmkTedVmeyLVmQBCpQJjAiEkEUiEBAAI1oKqga0cyyOT0hvTBSeOXSK18reK1tooWHyusHX79y/ZVH1aPdHd2tZisTGRUoiEBEQkRCBEIJ1UBTiQoiuKwuh83xl31/uWTxJYerD2O0oI6o47WDAcDatWt5f2LjwlMaTm+85+rVq88///y2HIofCAQ8Hk8g4FcUlTHKGJhMJpfLlZSUJIoizgvQNApUIMLR4NHL111+IHwg05GpEEUD7eTBCAbAgAARiECB8mP1DJjCFKvZahWsD61/KKSF/jDkD63aIMYf/E/7//T4nscz7BmCKKig1iokAcJqfk9QQkEDEEFjGgiQnpC+ybvp8sWXf3nRl9mObJ6jrVROhGKug22s/CjI3r17ZVk2/rRntdVZS1+i36r/azab9+zZoyhK2zSFqapy5MiRw4cPeb1VmkZFUSBEYIxVV3v379+3efOm8vJy/WgQqo8BE0CI0MhtW247ED6Qak1ViAICgAgg1P4D4N3Na85FLgAIQAllIktPSJ+1YdZ/9/+39WotPFTmF82ftXdWN3s3EEEjWgOFJAAEBF5K/l0UAARQQEmyJe0P7L/1h1sjWkQgQjvpJ41Qc3SkXOF726qqqvLyckmSGsyP+guNE7fUucAYE0WxoqKioqKidYsOAAChUOjgwUPBYMBqtVqtVrPZJMuyySSbzSaLxeZwOCil27ZtPXToEEZLY3ij0At7X1jhWXEyVOrU7sjJPyIQAtF+VQRAAEYYIyzBkvD71b8v9BXyfsmxLSQDJhLxSPDIH3b9IdGcCCIwwup+1YxzfQhQ0/lL/xNAASXFlrK8ZPlz65/TXzhCHUJHyhUuEAiEw+Fm7nnrJE39o+WCIITDYb/fX//W2FIU5ciRQkLAYrEIgmj4EwRB4BUXk8lkt9v37t1TWFiI0VIf71K8w7fjncJ3UiwpKqgnQ4Wc/PlfczUaNoSQWjtxApRQq2w9Hj7+4oYXAYDG+kTVPAPm7ptbrBRbZSsF2nAhDeWsGSBJaoWiwpRUe+pbO97aUb5DJCJGC+ooOl6ugKG28YsH2425YmwEq98g1rolBjh+/DhjzGQyESKIoiAI+tQAAm+uEQSBEEEURZvNtnv3zurqaoyWOnhb0LuH3/VSryzKjLD6KXKSvssmpO5+nIAKqtvi/t/B/+3z7BOJqFGNxYhGNZGI+6r3/a/4fy6zSwOtgRoV1I4W4MFiqFcBAAFGmCRKXtX7zvZ39JePUPvX8XJFkiR+LIT3FW5sz8sY4zNO6kv0y3XSRRAEuZVPuVNdXe33V5tMJgAiCHpf55qxNXr3aH5BkiRNo/v27W3VInU4vHGpMlL5Tdk3DtlBCW14Z63vxFl0SSOPJotyeaT8f/v/x6+SGGGEAcDC4oUVaoUsyPxqTUnq1FqiRan5v/6WTEBjmsPs+OrwV5WhSpGIGC2oQ+h4/cESExPtdntlZSWfl4V3DDOOXDH+eNTX0hNIr+Xwq6qqJiYmulwuffXY4vlXVeWpHSH8pgbuTwjh3cNKSkoikYjJZIp5kToo3gi2tnLt0dBRl81Vdy/MovtrABABtOhC/jO//ltNgAEzi+YlhUvu639fWA3H6tNnwMyC+fvS782iue5T88vGpjDt5Fon7wAnU4cBs4iWI74jPxf/fHHPi/XJBRBqzzpSrvAKitlszszMLC4u5uMi9fwgjYy3h9otZvwCjxnGWCQS6datW2JiImud3r38MQOBAK9jMcb00zQwVr8bW82/giCEQiGPx5OWltZKBetw+J53U9UmhSl8QknjbY3OeEKB0dq7bP0WSm1m29ZDW8+ZdI6gCjGbM4UBk9mxGcdsaTbKDL3h6xeS1F5LDyFWq7QEiErVjaUbL+55MWMsZuVEqNW0r1wxRkL9nSmf914QhPz8fD6EBZqME30tY6jwPTi/wKcLO/vss/lNvAIUc6qqqqrKB6YY61G8IIzR+m30AKBpWjAYaI3ydFD84MMB/wGBCDV7XmbYWTNDbYABUADKZ6JnAFBzYJ7V+yMADLxeL1FiNxcXAzDVe0aoea6awojRC7TmDozPl29MlOhlPpvLgaoDgKfTRh1Ee8kVZhhzXn85APBEkWX5888/f/vttxMSEvRsaHBqL75DMR6A0QNGj5nKysrjx49bLBaI1mlaaZYwXng90fi+kDEWLRSnGa+wZvRK6FL4jr9aqRZYzRB0wgjQ2scq9D11tB3s5AZQL1RYTe0QZEkmQBhhBE52lCDR6Rv02nCdq9DQzyAGDGjNt6qmcqoXEgwRqAIAgBYticYoo7UqK9RQTsYEEHyKT38TUPvBGPN4PDt27PB4PMbdl6ZpmzZt6t69e2ZmZhdszY5/ruiJomlqIBCMRCI8LSwWi9Vq1Q/Oi6J47NixZ5999uuvvzabzT179jSZTHrNw5hJxsPy+rPooaJpWvSYR1VZWZkgCDNnzty3b9+MGTP4zGOtUWvRNI33+WK1p2yJJg3VopmiaVTTNFXVGKOt3ZugQ4rufBmNNg/Sug1KerWAUlqzo69fU4lWERhjGtWIFsv6CtOYXltilBExGi11jrWwmhdSEyp6FcdYYGqoyqB2pqioaPny5evXry8qKiotLa2TK1988cWGDRv69u17/vnnDxs2jP9+7SLinCt8PxsOh0+cOFFd7VNVlVJGqaZplDFqMpnT0lLT0tIJIf/+97//9Kc/eTye5ORkVVVLSkpsNpssy/wnZGONYBCtiOiNS/xCIBCoqKiQJAkARFH8f//v/61evfqll17q3bs3r1s01uBQqyUrynhMvg5N0yRJSkx0ejyVoijwyNRv5TUTLUpVNU1TNU1VFEUUxcREZ4ve1M6JH3ywi3Z+FhX+K6FmOD2re1egQBllLBoq0YUnKzT8uAsFYKCpGqixOx05q4kQwgijjBIqgFATLfVfksZOlhNqJx89GSqUUrts198EFHfhcHjFihWLFi0qLi7m332n0xmJRPgeRhAEh8Nhs9n8fv/69eu3bt06YsSIKVOm9OjRI94FbyNxzhVCSGVlZWlpCQBIksR/ofPjKKqqhkKhAwcObt267Z///OeyZcv4DFqKolBKebRkZ2frR1kaPB6jZ4CeLvz+Xq9XVVU9V9LT09euXTt58uTZs2dfd911vOpQp+LCH6qJyDm5p4vitZ/i4uLvv//+zDPPjEQikiQLAuWdvgAYpaymlhINFVVVFEULh0MulzMxMRGwST2K71J72XppmkYYAT78kAJhhAik1v1qWhtZTYoAgFavEkAZo4xQwoBJskRi2MLEgElMD62a9lUQiHEYTbTLxsmaCos239Fax10opSIVKaW9nb2B18Vxc2hNTexPdD6f75NPPlm2bJmqqnyXRQjp3r17UlJSKBTi33qbzcbPdC5JkqZpK1euPHTo0O233z5ixIi2ezHxE8dcYQDkxIkTZWWlfAh6zVLDoGJZlp1O1/vvv79kyZLs7OxIJBIOh3lOmEymI0eOhMPhzMxMWZZFUax/NMLYIGY8skIpLSoqslgsfDIY3tTmdrvD4fD999+/fPnyZ5991u1284Pten2IJ0o4HD506NChQ4dOnDjBZxVzOp3Z2dl9+vThMaD3e+a5tWvXrrvvvrukpOTNN99ISkqORML62ZH1djBNozxUIpFIJKIoiqIo4dzcPmA4vIT4Xnmoa6jEJKYxXiegAuVjRvS7sZrmrQYalIx7bb6vrw5Vj+4x+r9L/htRIzHsZ2wSTDcU3LDWv9ZhdlBKGWEaaHy0kl7Imn/rVFCMlSoNmMYYZUxjEkjD0oYB/shoNeFw2O+vDgQC/GcrIcRsNickJNrt9jq/L/1+/wcffLBixYo6494EQbDb7Xa7nX+r+Xmh+K9MSqksy8eOHXvzzTfvueeeM888s41fXduLY64Qr9dbVlZqtVoFQawZU8YYpYT/4meMCYLIGD3zzDO///57vscFAEEQVFUtLS3t37//nDlzSktL//KXv/AZt4wDU6B2m1XNQVRCQqEQpfSWW25ZvHjx8ePHk5KS+OF6SqnJZEpNTV2wYMHGjRtfeumls88+W984BEEoKipavHjx+vXri4uLFUUxVoNEUXS73fn5+ZdccsngwYP5ViVJ0ueff/7oo4/yB5k3b979998fDIZlWdLrNLy+UtMGpiqRiKKqqt/v7d49s0ePnoD7EQM+oe+o5FHd5e4exSPJEhMYUGCEMWDGqsDJoxF6JaCh/bVIxbASvrDHhcmpySpVJSE23wWVqRKRJqRPWLFrRaKcWDOJC6uZl+xkIaF2OesUMhp+hJKIEsl0ZI7OGA2gT06JYkZV1crKCt6AAQCM1bSXeL3ekpISm83evXt3/pMRADRN++yzz3io1O/jY+z0wXcpYKj6iKJYXl7+7rvvut3u3NzctnuF8RC3zZRSWlpaYjKZonNkET7+XBAIn9qEECJJYigUGjFiRO/evX0+Hz9Zvcfjqa6uvv/++7/77rtzzjnn2muvffHFF91ud1lZWSgU0jvt1D8KEolEKisr3W73rFmzXnjhhQULFowbN660tJTVlpqaWlxcfOONN86dO5dXacPh8Pvvv//QQw99+umnZWVlVqvV6XS6XC6Xy+V2u5OTkxMSEgKBwPLlyx999NHZs2cXFxeLovjiiy/+7ne/EwTBarXKsrx06Q+ffPKJ1WqJRIXDkUgkzP/C4TCvqfh8VU6na+TI0fH6XNotfoL6FHPKpLRJ1aFqkYq1Wo14dcTY3kUNdRSt1n0opUBBVVSX2fWrPr/iD85ihFeersq6ykVcqqrWKmSdwtSpSGm1/qhGefj5wr5JPSelWFM0puHvjNgKh8NFRUW8K5epRs1UsCaTSRRFr9e7a9fO4uJivjPZtGnTkiVLeGw0/cj6J6XniiAIvPPRhx9+GAh08iEEcaivsGh3rEhEsdtt/G0/OXrMkAU8IUwm+fbbf/PUU7N8Pl8gEBg+fPgf//jHESNG8J8VhJDRo0fn5+d/+umnixcvPnbsGG/T5B88rzrwFq1u3brdcMMN11xzjdPpVFW1R48eH3300Ztvvvnyyy8TQhISEvgRe0qp3W6nlL7yyis///zzI488snDhwq1bt7rdbl650ePKeFmWZT51/6pVq/bu3UspXb58eUpKCqWU93CzWq0ffvhRUdHx66+fIghElk28exh/FYqihEIhRQl369Z91Kgx/JRluBOpgzeF3dnnzv8c/o+maCBCzRgU4/xgxqP0rIHg0TSNqUyi0onQiVsG3JKXlEcZFYWYdQLkE0TmOfMuz7h83tF5yfZklUbnxzR2Mah3iL5OjYpqFDTQVM1hctw96G7ATsaxpihKSUlxJBKRZVkQhGjvfxptO6lp5AiFwvv27SWE2O32L7/8MhAIGJu/jF9SVq87j3FJ9LeytGHDhtWrV0+YMKH1X2LcxCFX+Cfh83kFgehvO2NASN2pTRgDQRCCwWD//nkPPjjj3Xf/dv311z/00EOiKPIM0Jsv7Xb7zTfffO21127ZsmXjxo2HDh3yeDz8Pi6Xq0ePHsOGDRs6dChv/eTBw1PhvvvuO+ussx566KFdu3alpKTo24EgCKmpqTt27Jg9e3ZCQkJqaqreU1nfkvhBHX0hT4iUlJSioqIDBw6kpqYqiqK3pCmKUlVVlZSUNGrU6P3795eVlUYiEX6AmVIqiiQx0dmnz/AePXqS5p34sgsSiKAxbUjSkNt73v7qnlfTE9MVqpwcGkJqty/V32XzUNGYQIWIEkm1pT4+6vHWK+1jAx9bfGxxOBwWZZHx4+11jgA2kitMY5qmgQYylUuCJTNHzBySOqRVT0HWBTHGysvLI5GwJJn0Q54AQCmfuI8JAhEEURA0SZJUVTl48IDPV71v3z5JkurXReokCtTOmzqXI5HId999N3bsWJvN9ouF1MdFNDZQr32Kz/EVxhg/qzw/8EEp6D8QeKetWg0LhPj91UOGDHnmmaeHDx8uiqLelYvjP/w1TbNarWPGjBkzZgzUbuvU72lMI32tESNGLFq06Lnnnnv//fcTEhLMZjN/XkmS8vPzedWhsSGKerDpD6goSlJSUlVVVTAY1O/j8/kYY6+99tpNN93EGBs5cmQwGKyoqAgGA7xC5nS6nU6n3oKHodIYfpTl6WFPryxZucW3xW1zK1q9U7A0eCQ8GipEIwIVqsJV/5j4j1xnbmvsr3n+9U7s/cLQF+5cfWdqQqpGtJrZl43lpNF/DdFCNUo1CirIVK4MVo7KGDV7zGz9haNYCQaDPp9PFCXeBC8INT9qSS0gCIIkibIs+/3+ZcuWKYpi3PPoSL2px+snjU4UxX379u3bt2/w4MGN3ScSCXu9vkDAHw5HKNUYY7yPmcvlstns7X//EJ9c0WdkYYwyRgBqztUYjZKTA875CA8ACAaDiqL4fD4AqD90kRBinCjF2BtYTwXevll/LUqpzWabO3fu+PHjH3/88YqKCt4ZjA+95OVs4rXoPQ4gunlJkpScnHz48GG+YllZWY8ePd5+++0RI0boE7pYrdbMzMw6D4WJ8osIEMqoTbL965x/XbL4kuLqYpfVpVClbq5ArZ01o4xqlNdUiEaK/cWzxsy6ZcAtrVcJ4GeivLnvzfu9+5/f+nxGQgYT2MkTsejlrF1f4bMu8JqKJ+TJdGR+cPEHNtmG5yGOOZ/PyxgVBEnvUVy/vQSAaBrdvHnznj17GWNFRUX1hxk0kR+NIYQEAoGCgoIGc4VSWllZ6fFU8qYOfWEkovh8vpKSErc7qf2P4Y/PxhptNaKaxmez16KTl1DGND7sRNMoD2rDvCZagz8WjA/Lw6NOxVMUxToLjfi2oqrq5MmTv/nmm/POO+/48eP8mDw1zOxS62dM7SfVl+jVF5fL1a1bN1VVfT7fhRde+OWXX/JQ4ZXo2v2MawD2/moeXhvITcz9YuIXuZbckqoSSZVEVQQFQI3+KcCvMpVpqqYpNc1K4XC4PFT+/NnPzx47u7XnBuYHWp4Z8czsIbPLqsrCwbCsyUQhJ0touEBVqioqVamoiZImlVaX9nP3++qqr3JduRrTMFRii1IaCAQMPz2Nf7VaSjZs2PDGG2/Onz//22+/1VsgdHqo6F/hxm6ts5wxduDAAWNycJqmlZQUV1SU6/0I5Bo1nQoASHFx8a5dO+sXpl2Jz/bKG6NUVeWnSIlGCx91TvVBgtE+uFp0ahP4xRbJluHH0zRN69at2wcffPDMM88kJyeDYZBj8/f4/J6U0tTU1KysrG7duj333HNpaWl12u6gbo0bE+UU8F12f1f/7y/7fmrPqWVVZR6fBxQQVVFQBR4nTGVUoUxlgiZImqSElBJfSYo1ZcFlC54Y9UTb7Kx5BD4x/IlPLvjERVxFnqJIOMILSVTCFMYURlVKVQoqSFQiCvH6vRXBilvyb/nhmh/6ufvhxPitgfeUgVrDpWsGKfP2Eh4TkUh4xYoV1dXVkiRZLBbe2tFgSNR/CmPLeYN3KCkpKSkp4cXQ73biRFl1dbUkyZIkCYIkihLvBCuK/E/kjXJer3f37l2RSCRWb0jMxa0/mNVq8/vLJElkTOQnToSaj/nkEPRowCiqqipKxGSSXS536xWMdwcQRfHiiy9esWJFnSH3pPbMg0b1U4EQwo/hC4KwcuXK3NxcTI7YEohAGXWZXf84/x839rnxlc2vrCpe5Vf9sijLgiwSkU+9pWpqRIkAg5zEnPuG3nf/0Pt5h90221nzBrEre115dsbZr2197cO9HxZWFQKASTRJgkSAAAWNaoqiKJpil+3nZp07c8TMiTkT+Y4OayqtgTeHCAKJtrobb9EbSGgoFCorK9PrLswwhqHpr7Oxp2iDdRpBEPbt2/fb3/42PT09Ozs7JycnJycnMTHRZJKdTicfehFtlxN4P4LooXtRFDVJkioqKgoLC/v06dMqb9Bpi9u4yKSkpOPHjyuKIghUb7XUfyxQqqkqVVU+r4miqmowGMjKyrLZbG1wEOKnn34KBAJu98kMa7qdqrE2VlVVCSFr16695ZZbWmkS/q5MIAJjjDI6MXvihdkXbinb8vWhr9eVrDvkPeSL+BhjsiynWdPyk/PPyz5vYo+JbrObMdb2Hat4tCRbk58d/eyDQx/8rvC7ZUeWba/YXhooVTSFiCRBTuiZ0HNkt5GX9LxkSOoQfgzJOD4fxRaPB03jrdyMEKb3Jowe06X8J2ZiYoKxpRoMI6wbe3C9j6jx/mCcZAEAACKRyKFDh3bt2gUAfOi+2Ww+//zz77lnuiTJhqEXpL7oUJij3bp1s9vtrfIenZ649TNOTEx0OhMrKyvtdrum1ZydN3rUnueKxkMlElHD4bAgkLy8M1q7bLzha//+/XwwinHraay1FBr6SaL/azabjx49euLECd6JGfcUsUUI4eMlCZChqUOHpg4FgIgWCagBBkwWZLts14d9aFQTiBCXZiV+CmGNaW6ze0rfKVP6TmHA/IpfoQoBYpNtJqHmMCxllAK2fbUuURQlSQqFgvz7zmsDYJjziTeWiKI4evToLVu2BoPBcDisH21tbA4xfXXjEn0SEP2CvnPgze/8npqm+Xy+goICvz9gNlv0gU6NtI4QQSB+f+DEiTLMlbpyc/ts2LC+urraOIO04XNVFUVVFDUSCQcC1UOHDne7k1p118wfPBKJlJeX61OH1blDg2s1Vl8BAFEUq6urS0tLMVdaD98L6w1HJtFkEk/2ltGoxoDxBur4lREIkJp0oRohRCSiQ3bot+qFx4avNiAIgt1u8/m8hAiUMt7TWO9JYzysO3z4iNtui+zatSsSUSKRiDFajEdG9agw7gqMGcMMp4Ni0TOg19lv8N5M0fgBw78nAehPQRhjFRUVfMKn9iZuucJ/yw8aNHjTpo0ej8dqtfJhkrxlU1Vr5swKBoPhcDA/f2Be3hlts1+ORCKhUKiZDan1f54YL/DVNU3r9NM2tAf6Ttk4mTwBEt84qYMA0SciM5YTE6WNuVzukpISRYlQKhl6D+u5wnsPKQBsxIgRAwcOrKryfP/9Uo+nqk5/Tmho8AoYegRAtGWM1eb3+/nEtWDo7JOUlGS1WjSN6p2eo71k9Yack48DAMFgkLba2QhPR9xyhX8YCQkJo0aN3r69oLi4GAAkSQQglFJV1RQloigRh8M+YsS4nJwebfljX99KaJMnJzZuOlCvqmv88dJEhQbFXEeZ76SjlLNTstvtyckpRUXHJImKYs2EhIb6CtU0VVXV6FR+4W7dug0ZMvSHH37g+/EGW8j1q8avf50LHD9BSzgc5vPqQzRa8vMHmM1mSrU6OWcYhnHyqr6k7d61ZotnOxghBIBZLJYRI84sLy8/cqSwoqIiFAoxRiVJdLtTu3Xrnp2dw88L2Wahwk8DY2wVbew8x8ZQAUPPQlb7EAs/92VbFB0h1Gzdu3evrq4uLz/B5wernSuaqp7MFbvdOnjwkOTk1DVr1vBTdfD7N3h8pc4PSuMQb/3Bzz777F//+telpaVHjx49fPhwYWHhgQMHZFk+55xzjDED0aYzTaupQvGRGJSq/JI+EWJ7E/fzENfUKJOTk5OTkxljqqowxnjHbX6PNgsV/iwWi8XtdpeWlvIJXWi98xxDveYvMPQsNNZaAEBVVZvNlpqaCo13J0MItT1Zlnk/3dLSYgCiz1QbzRVNUSKapjqdzkGDhrjdSQ5HwvDhw1esWKH/7tRrOXyOff10Tfzx9YMlxlBhjCUmJk6ePLlXr169evUaPXo0f9IjR44cPXrE5XLxxjHDmM2T7XLR4X2qqmqqqlJKExIS2udeJe65AmBooCSEyHLNEVd9SVu+cbwTSK9evbZt22b80WGsl9TPOWPPQn1L4mspipKdnZ2eng6YKwi1M2azOS8vz+l0FhYe9vl8fJLH6NeZWSyW7t179e6dy/tcybJ85ZVX7tq1q6ysjE+cwRiLRCIlJSWBQIAxZrVak5OT9cltWe2DK/qSSZMmDRw40FgMQkhqamplZYWiRBiT9cqQXn/SuxKo+tgLRRVFITU1LS7v2y9qF7kCjQwtjFcx+EyUxjO+QXSSGH65ztQ9xlDRNwW+JBwODxs2jB+9xyEsCLU3oihmZWWlpaV5PB6PpzIYDDJGZVlOSHAmJyfbbDbjjig3N/f6669/9913w+EwnzSksrKyoqKCzzkbCoWqq6tzcnKsVqu+HzBeoJSOGDHimmuuqb8rsFgsCQkJJ06c4JO4E1IzLlI/phINFSV6StlIRka6253Utu9Wc7WXXGkn+DY0dOjQrKyskpISfd5JQRAikUhZWZmmaQkJCW6327jR8HWN1V6IZozVar3gggsAKysItWMmkyktLS0t7Zd//p933nnV1dUffvgh7zVaXV1tbG4JhUJer1dvQofah1gGDRo0ffr0pKQGwoAQkpHRrbKyMhQKSZJcewoSvR2Mj+dTwuGw2Wzq27df0/MlxlF7POYTR7wLuSzLl112GZ8XSK+NHjhw4OjRoyUlJXv37t2zZw9v36wfKnpVmhDi8/nGjh3bv3//9tkXECF0qkRRnDx58rRp05KSkvx+v9/vNx5bBQB+bqfo8fYahJBx48bNnDkzKyursUe22Ww9e/ailAaDgXA4HA5H+B/vkhaJhEKhcCgUDodDkiQMGJCfkpLadi/7FLXTuIsjXqW99NJLf/zxx40bN9rtdlEUS0pKSktLExIS+Akly8rKzGZzdnY2P16nb1g8VDhN01wu17Rp0/jDtmWXNoRQ6xFF8bzzznO73Z999llRUVF1dfXx48fLy8v5qSctFovxOI0gCJmZmZdddtlFF130i2Pjk5OT+/fP27t3T3V1NT87O28K0zTK5x9RVcVut51xRn5WVnbbvNiWwVxpmCiKv/nNb5KS3MnJKYTAoUOHd+zYsXfvXp/PZ7VaRVH0+Xy80ZPfv06HQgDw+wO33nqzySRXVFTwmi9GC0IdGmMsEAh4PJ5AIJCQkHDjjTdomhYOh8vLK3bs2L506Q/Hjh3j3cNEUUxISMjOzh41atT48eO7devWzO9+cnKyzTb0yJHC48eLA4GApqnR9g+wWCw5OTm9evVOTExs7Vd6mjBXGuDxeE6cKJNl6aabbuKTlTHGgsHQwYMHv/rqy8WLvw2HI9nZ2cYuH8a+H/wo/dVXX3XuuecVFhaqquZwOHJzc9tm0kyEUGvQNK2ioqKqysPHrwiCKIoCpVSSZIvFmpGRPmjQoJ07dzocCQ6HIzk5OTs7u3v37i2Yv8tqtfbr1z8np4fXW+X3+1VVFQTBZrM7nU6r1dohdiCYK7Vomnbs2DG/v1qWZVEUI5GI3hmDMdq7d6/77rtvyJAh77zzV4fDwUco6U2rvPIrSVIwGExJSbnmml+FQiG73a6qanW1b8OG9fn5A5OSWneKM4RQa6CUlpWV8lMXiyI/8TXv6KVFD7DTpKSkkSNHut3u3Nw+p39E3WKxdNzx1Hgw+SRKaWFhYTAYtNlssmySJFmWTfrZ2mRZ1jQaCATGjh372GOPyrKsKIpxpiA+O2koFDp+/PiGDRuKiorMZjPvS8abzjZv3uT1ehucTQgh1J5VVFT4fL7oGbdqzrbFZ6zn593iFwRBKC4uPnjwYBf/jmOunHT8+PFIJGy1WgRB5BuOIAiE8HPsEEEQ+MnagsFgr149J0y4wFvD5/V6Q6GQqqp8YobKykreGz1aXxYIIWazmRAoKNiG9RWEOpZgMFhV5dH3CdFhi3wWZP2cKPp5t8SjR49UVlbGu9TxhO1gNfx+v9dbZbVa+bkNoouJIIBhSmyBECLLcigU7N+//6RJkzwej9VqGTAgf926dX//+9/tdjtvGbv33nvT0tKrqjz6moyBxWKpqKg8duxYVlYWpgtCHUVVVZWmUZOJj4SvOeMWY2A8+5YhYARVVY8dO9rgOJUuAnOlpptWZWVFdJgrAQA+2FWfrVqfToYQAkBEUaRUmzz5Mn7iervdcdZZZ9lstoKCgtTUlKuuunrUqFE+n08QBE3T+BxofG3+W6aJPuwIoXZF09RAwC8IBAzzTxvOjFKzwLAGIUQoLy8PhUId9wDJacJc4WMhNb8/IIqi4TRtNf/yTUcfV68vlyT58OHDAGC32yMRxWw2//73DymKIkkyP/UbIaCfK0F/KFEUPR6PoiiyLMfp5SKETgGfNYXvHPiBVOPptmrPYlyzhBAIBoPBYABzpUuLRBRVVUTRfHLbgJoz7TDGAPRz6VD9MiE1fcB4a6umaZWVHkEQKPVHKzon19IvAwA/nUP98xwjhNohPkc9Hy7NDFP/Ra/xUWv65ZrZnSiliqLGt+RxhLkCUGvOUUYI1TSBEF7JMG40LPp3cuvhfYujbWlCTSIRMIyS5CMl+b8aX1i71owQas9OnkoLoi3hdZbXpmkaZYx25R+NmCs1okMaNUJA7wms/0LRND0YKJ9WgW86jDFV1XjbK48iqBl7zxijmsb4GJeafzSqaSohRBQlAOjKmx1CHYUoSgBMVTU+QkA/1KrvHFRV49PY67PZa5oqCILJZI532eMGcwUAgB/tUBQ1eoydGM8vHZ1PVDVuN6qq8s1LVXnb68kZi/kGF52CVNVX0DQtEok4HHar1QoAgKehRajdk2VZkuRQKERIzZm7DDMN1wya5jsG1SAxMcFms8W77HGDuQIAIMuyyWQOBAKEEMZEvZ+xvukYthtNURRV1cLhYGpqisvlrqqqslqtlDJ9xmK94TWaKDUTxqmqGomE09N7A84VhlAHIYpiYmJidXVNTxx9BvvocRTNcHIUfsYtRdPUjIyMrtw3B3OlZhefnJxcWVkhyxKlmiCcPAUyb+wynKyNbzlqJBLp0aOX251UWloiy5LxVDzRCR6oHip8lVAoLMtyr165cX25CKFTk5ycXFpaEg5HZJnqJwk2NJLzcwPXnHErEok4HI7s7Jx4lzqeMFdq2q/S0tKKio5VV/utVishWoObDt9oVFUNBKpTUlKysrIFQUhKSjpx4oTd7iAE6lSQKdX0IFIUJRisHjp0uMPhwMoKQh2I2WzOzMzat2+PpmmSJBLCWyZOtoNFdw5KJBIWRZKXd4bd7ohzoeMKc+Wkvn37bdy4we+vNpstAIxPLaf38NBbTgMBvySJZ545ijd89e/f3+/3ezyVPFp4fYUf3lfVmqazSCRcXe3r06dPXt4ZgOeORKijSUlJCYfDBw8eiETCkiQCCPq8k9GvuRqJhEVRHDBgQDs/OUobwFypwRiz2+2DBw/ZtGljMFhpsVgMPdZrDpNEIpFAwG+1WsaOHedyuXi1QxSlYcOGb9u29fjx4yaTLEky7zfCN7hIRAmFAozR/Pz8QYOGxPtVIoRaghCSmZlpMpn279/v83n5EkNzt8oYdToT+/XL6949E384Yq7U4FuJ0+kcM2bsjh07iouP8zGPAEAp5c1ZokhycnIGDx5a50wqkiQNGzY8Pf3Y/v37q6qqVFWJDnNhsixlZGTk5Z2RkpLKuvYUpwh1aISQtLQ0p9NZUlJcUlLi8/kURQFgJpOclJSUkZHRrVs3i8Ua72K2C5grJ/FosVgsw4cP93qrjh0rqqwsD4fDjDGTyeR2J2VlZTmdLmioNxdjrHv3zG7duvt8Po+nMhwOEwIWi9XtTuIn9sFjKgh1AmazOSenR1ZWdiQSUVUFACRJMpnMendQBJgrdegnR0lMdCYmOuvfITqivm5C6GOmEhMT65wltLFVEEIdlCAIFosFoItO//WLMFfq0vt0NXG1OSvWWY4QQl0E5krD6oRB87MBUwQh1MVhmyBCCKFYwlxBCCEUS5grCCGEYglzBSGEUCxhriCEEIolzBWEEEKxhLmCEEIoljBXEEIIxRLmCkIIoVjCXEEIIRRLmCsIIYRiCXMFIYRQLGGuIIQQiiXMFYQQQrGEuYIQQiiWMFcQQgjFEuYKQgihWMJcQQghFEuYKwghhGIJcwUhhFAsYa4ghBCKJcwVhBBCsYS5ghBCKJYwVxBCCMUS5gpCCKFYwlxBCCEUS5grCCGEYglzBSGEUCxhriCEEIolzBWEEEKxhLmCEEIoljBXEEIIxRLmCkIIoVjCXEEIIRRLmCsIIYRiCXMFIYRQLGGuIIQQiiXMFYQQQrGEuYIQQiiWMFcQQgjFEuYKQgihWMJcQQghFEuYKwghhGKpC+XKG2+8IUlSgzfde++9AwcO/MVHyMrKevLJJ0+nDAMHDrz33ntP5xHQ6Wvic0xJSXn++edP6dEKCgoIIT/99FMsioaa69prr73wwgvjXYrYu+mmm8aNGxfvUpyuzpAr27dv79mzZ7xLgbqozMzMt956q0+fPvEuCOqorrvuun/+85/xLkUsdYZc2bBhQ7yLgLoixpiqqm63++67787IyIh3cVBdqqoyxuJdil/W+fZgccuVefPmDRs2zOFwpKSkXHHFFfv379dveu+99/r372+xWPLy8t577z19+UcffTR48GCz2Zyenn7fffcFg0EAeOaZZ2699dbDhw8TQl599VUAWLdu3cSJE5OSkhwOx6hRo5YsWVL/2YuKii699FKr1ZqRkfHMM88Yb1JVddasWT169DCbzX379n3jjTeMt4qi+Nxzz2VkZCQmJk6ePLmkpMTn8zkcjj/+8Y/6fTRNS0tLe+yxxwBg5cqVQ4cONZvN/fv3X7BgASFEv1tpaenNN9+ckpJisVhGjRq1dOnS03pDUT2Kojz88MPdu3e32+1nn332qlWr9Jvqf471V1+5cuU555xjs9kcDscFF1ywbt06vvxXv/rVDTfcMHv2bIfDsWjRImM72PXXXz9lypR58+b17dvXarWOGDFi7dq1fK2mtyvUAoIg/OMf/+jVq5fFYhk5cuTGjRv58qSkpNdee23y5MlWq7Wqqgoa/yj55/XWW29lZmbabLYrrrjC4/E88sgjKSkpycnJ999/v/5cR48evf7665OSksxm86BBg+bNm8eXv/XWW2lpaT/99NPAgQMtFsuwYcMKCgo++OCD3r17OxyOSy+99MSJE/yejX3fCSEHDx78zW9+43K5+BJJkhYuXNi/f3+bzWbchMrKym6++eZu3bpZLJZ+/fq99tprevHS09Nff/31Rx99ND09vc4mHZ8NjzH2eRn7vIy1pTVr1gDAM888s3PnznXr1l144YVDhgzhN/3nP/8RRXHOnDnr169/5ZVXCCHz589njM2fPx8AHnnkkV27dn311VdZWVm//vWvGWN+v//+++/Pzs4uKysLBoPBYDApKenqq6/euHHj9u3bZ86cabfbjx49yhh7/fXXRVHkzzJhwoTMzMwlS5Zs3779nnvu6datW35+Pr/pvvvus9ls77333p49e9566y2TyfTXv/6V35SZmZmXl3fvvfdu2LDhs88+s9vt99xzD2PsN7/5TV5env7qvv/+ewDYtWuXx+NJSko677zzNm/e/PPPP0+YMCE5Ofl3v/sdY0xV1WHDhuXm5i5ZsmTHjh333nuvyWTatm1bm7z9NVrwubf9pnI6pk+fnpKS8vHHH69fv/7WW29NSEg4ePAga/xzZIwlJyc/99xzjLHdu3dbLJbrrrtu06ZNGzZsuOKKKxISEviGdP311+fn51911VXLly8vKyvbtm0bAKxYsYIxNnXq1Ozs7Ntuu62srMzj8UyaNGnAgAH8kZvYrtq/dripXHPNNVlZWeeff/6yZcuWLVs2aNCgrKyscDjMGEtPTx80aNATTzyxatUqRVGa+CinTp2alZX10EMP+Xy+lStXiqKYn5//yiuv+P3+//3vfwCwePFixlg4HM7Lyxs4cOCyZct27dr11FNPAcDnn3/OGHv33XfNZvN11113/Pjxo0eP5ubm5uXl/frXv66oqNi9e3dycvJjjz3Gmvy+Hz16FABef/318vJyXqTevXtPmjTpp59+Wr169YABA/RN6JJLLunfv//y5ct37979z3/+U5KkTz/9lN+UmZnZo0eP1157ze/379+/v1u3bvom3cYbHv/c45MrwWBw//79mqbxq1988QUAlJSUMMZGjRp13XXX6ff8wx/+8Oqrr/Ll48aN05d/8MEHhBC+cTzyyCM9evTgy1VVLSws9Pl8/KrP5wOA//znP8yQK/oHye+jaVrPnj15rng8HpPJ9NRTT+lPNG3atH79+vHLmZmZo0aN0m+67bbb+NWVK1cCwLp16/jy6dOnjx07ljHGf9ToabFv3z5CCM+Vr776CgC+//57vQz9+/e/6667TuddPVXtcGcRQ/yjfPPNN/nVcDh8zTXXfPvtt6zxz5EZcmXGjBlOpzMQCPDl5eXlJpPphRdeYIxNnTrVZDJVVFTwm+rkSkJCQnV1Nb/p3//+NwD4/f6mt6v2rx1uKtdcc40kScXFxfzqsmXLAED/fEeOHKnfs+mP0uVyhUIhftOQIUPOOOMMfcXk5OQ5c+YwxhYuXAgAK1eu1G8aMWLExIkTGWPvvvsuAPz88898+QMPPAAAeqmuueaaiy++mDX5feftLu+99x6/aerUqVar9cSJE/wqP+7i9/sZY8XFxXwnqZdh+vTp/HJmZuYFF1yg33THHXfwd6DtNzz+ucenHcxsNn/88cf9+/c3mUyEkMsvvxwAKioqKKUbN24cOXKkfs+5c+c+8MADmqZt3LhxwoQJ+vLzzjuPMfbzzz/XeWRRFDds2HD++efbbDZCSEJCAn9k43127twJAMOGDeNXBUEYNWoUv7xly5ZIJHLBBRcYn2jPnj3l5eX86tlnn63flJSUxB/5rLPOGjBgAN+JUEo//fTT2267DQB27Nghy7Le0yw3Nzc1NZVfXrdunSRJ55xzjl6G8ePHr169+lTfSdSYrVu3RiIRfVsymUzz58+fOHEiv9rg52i0YcOG4cOHW61W/T65ubmbN2/mV/v06eN2uxt83r59+9rtdn6Zt2xUVlb+4naFWqB///7p6en8Mv8679q1i1817kOa/ihzc3PNZjO/7HK5BgwYoK/ocrk8Hg9/BFEUx4wZo980atQo/REAQF/L5XIlJyfrpdIf4ZS+73l5ecnJyXppAaCyshIATpw4ceutt7pcLkIIIWTDhg3G7Xbo0KHGkvNV4rXhNdzvtrX97W9/mzVr1l//+tdrr702MTFxyZIl/AsfCARUVdW3AF0wGFRV9YUXXpgzZ45xef1m8e3bt0+ZMuXuu+/+/PPPMzIyNE2TZbnOfXglxul06kv0y16vFwAuuugi/UAIpRQASktL+Sdts9n0tQghLHpU8I477pgzZ87LL7+8evXqqqqq66+/nj9RYmKi8amNT6SqqsPh0G9SVVXfmNDp4w3r9bclrrHPUef1enNzc41L3G433zz45caet/4zMsZ+cbtCLWB863iW+/1+ftX4ATX9UVosFuNNda7yDcPr9TqdTkEQGnyEOms19gjN/77X2Tj5g4RCoSuuuCIrK2vNmjV9+vSRJKlOd+Q6G57+vBCPDS8+ufLpp59eeOGFt99+O79aXFzML1itVkmS6mepzWaTZfmBBx644447jMv13wW6L7/80mw2v/LKK3yoiv7IRnwT5PsdTn9Gvt//4IMPBg0aZFylV69eTb+iW2655bHHHvvhhx++/PLLq6++mj+O3W43bnx1nshisWzatMl4qyiKTT8Laj5eVW3x7zKn08l/8ekqKiqysrJa/GjQou0KNcH4FebVAuOOW3f6H6XT6ayqqmKM6XvniooK4w/T5jzCaX7ft27deuDAgXnz5uXl5fElxcXFv/gq4rXhxacdzOfz8a899/777wMAY0wUxaFDhy5fvly/acaMGTNmzBAEYcSIEYcPH86L6t27t8lk0n+V6L83fT6fxWLRxz/+61//Mt7K9e/fHwD0z1hVVX6ABACGDBliNpvLysr0J0pOTk5NTdVryo1JSUm56qqr/vOf//z3v//9zW9+oz+RoigFBQX8akFBgV5vHTVqVCgUopTqT2S1Wlu820L1DRkyRJZlfVuilJ577rm8rbI5zjzzzI0bN4ZCIX61tLR03759xtaVUy1My7Yr1ITdu3fzOAEA3iqVn59f/26n/1GeeeaZmqYZW91XrVp1So/wi9/3+jXmOngri77bXLly5f79+39xrXhtePHJlbFjx3733XerV68+cODA9OnT+Ziy9evXBwKBGTNmLF269KmnntqwYcPrr7/+xhtvjB07FgAefvjhBQsWzJ07d+/evZs3b7755pvHjx9fXV0NAG63u7i4ePny5QcPHhw7duyJEyf+/ve/FxUVvfnmm9u2bcvIyNiyZYvxp02PHj3Gjh374osvfvPNNxs2bLj99tv1qmtiYuJdd9319NNPf/LJJ4cOHVq2bNnEiRP1elXTpk2b9v7774uiqLdmTp48OSEh4d577127du2PP/5411136RWsCy+8cNiwYTfddNPy5csPHTr00UcfDRs27O23347de9zVuVyuW2+99aWXXvrXv/61YcOGu+++e+PGjWeddVYzV7/nnnsikci0adN27ty5efNm3q596623tqwwp7NdoQYxxlwu1x133FFQULB58+ZHH320Z8+eDY5UP/2P8uKLL87Pz58+ffqaNWv27t376KOPbtu2bebMmc1/hCa+7xaLxWq1/vjjjxs3blQUpbFHGDJkiM1m+7//+7+ioqKvvvrq4Ycfvuyyy3bv3t1gF3ld3DY8Fo9OPpWVlVdffbXD4ejevfvzzz+vadpFF12UkJDAO2698847ffv2NZlM/fr1e/fdd/W1Pvzww8GDB5tMpqSkpCuvvHLPnj18Oa/HOByO2bNnM8YeffTR1NRUp9N58803e73e2bNn2+32Bx54wNjP+ODBgxMmTDCbzWlpabNmzXriiSf0PhKKojz11FM5OTmyLGdmZv7ud7/Te5dlZmY+8cQTenkeeuih3Nxc/aqmaQkJCU8++aTxlS5ZsiQ/P1+W5b59+86fP3/cuHF6p6+SkpKbb745OTnZbDbn5eX9+c9/juVb3AztsJNPbIVCoQcffDA9Pd1qtY4dO5Z32WJNfo56fzDG2MqVK8ePH2+xWBwOx8UXX1xQUMCXT5069eyzz9ZXr9MfzHgT7+h45MgR1uR21f61w03l8ssv/9WvfvX222/n5OSYTKbRo0dv3bqV31Tn82XN/ijPPffcqVOn6ldzc3MfeeQRfvno0aNTpkxxOp0mk2n48OELFy7ky3l/MEVR+NWnn346MzNTf4Q77rhj9OjR/HIT33e+j8rMzKysrGxiE/rkk0969epltVrPPffcnTt3fvPNNy6Xa8SIEfVfsnGTbuMNj3/uhDH2xQkAgMtTWj3DOrdvvvnm8ssvP3DgQHZ2drzL0iwt+NxxU+macFNBzcQ/9/gct+9kjhw5snXr1jvvvPO3v/1tRwkVhBBqJZ1hfrC4mzFjxpQpUy6++OI//elP8S4LQgjFGdZXYmDBggXxLgJCCLUXWF9BCCEUS5grCCGEYglzBSGEUCxhriCEEIolzBWEEEKxhLmCEEIoljBXEEIIxRLmCkIIoVjCXEEIIRRLmCsIIYRiCXMFIYRQLGGuIIQQiiXMFYQQQrEkAIBMAAB8WpyLgtoS/7j5R998uKl0QbipoGbSNxUBABwiAMBuP1TjRtA1+DTY7QeIfvTNh5tKV4ObCmom46ZCGGMlEVjrjXehUDyMdkKafAr3x02ly8JNBTXTaCcQxhgAlERgbwB8Gqgs3oVCrU8m4BChnw3STKe8Lm4qXQpuKqiZjJtKTa4ghBBCMYH9wRBCCMUS5gpCCKFYwlxBCCEUS5grCCGEYglzBSGEUCxhriCEEIolzBWEEEKxhLmCEEIoljBXEEIIxRLmCkIIoVjCXEEIIRRLmCsIIYRiCXMFIYRQLGGuIIQQiiXMFYQQQrGEuYIQQiiWMFcQQgjFEuYKQgihWMJcQQghFEuYKwghhGIJcwUhhFAsYa4ghBCKJcwVhBBCsYS5ghBCKJYwVxBCCMUS5gpCCKFYwlxBCCEUS5grCCGEYglzBSGEUCxhriCEEIolzBWEEEKxJPH/vF5vQUHB8ePHQ6FQfAuEUCdmsVi6d+8+cODAhISEeJcFodZCGGMej+fHH38cO3ZsQkKC1WqNd5EQ6rSCwaDX6121atUFF1zgdDrjXRyEWgWpqqr64YcfrrzyyniXBKEuZOHChRMmTMBaC+qUhO3bt48dOzbexUCoaxkzZkxBQUG8S4FQqxCKiooSExPjXQyEuhan01lUVBTvUiDUKoRQKGSxWOJdDIS6FqvVin1kUGeF/YwRQgjFEuYKQgihWMJcQQghFEuYKwghhGIJcwUhhFAsYa4ghBCKJcwVhBBCsYS5ghBCKJYwVxBCCMWSFMPHCoVCiqKEw2FFiQCALJvMZrMsy+1nPP/GjRuPHDmya9euwsJCAMjJycnLy8vJyRk2bFi8i1Yj+OUipWBb+KcVkW3bAMA0aJB53Hh50GDrpZfFu2gnLa5cvCOwY7V39Y7ADgAYYBswNnFsvi1/kntSvItWV+GiLyoLthWvWFGxbSsAJA0anDF+fNKgwdmXTY530RDqtGKTK4qieDyViqIYF0Yi4UgkDACyLLtcblmWY/JcLVNYWPj3v/+dx4lu165du3btAoCcnJw77rgjJycnTqUDAFC2ba343XSlYJtxYXjlT+GVPwGAPHBQ0ptvyYMGx6l0NbYHtj904CEeJ7o1vjVrfGsAYIBtwMu9X8635cepdLVUbN268p7fVm6r9X6W/LSi5KcVAOAeNOjsv7yTNDjO7ydCnVIM2sF8Pm9ZWWmdUDFSFKWsrNTn853+c7XMwoULn3766TqhYlRYWPj0009/9tlnbVkqI++cP5acO65OqBgpBdtKzh3nnftiW5aqjleOvXJJwSV1QsVoR2DHJQWX/PnYn0/nWYYOHfrGG2+cziMAwJYXX1g0/qw6oWJUuW3bovFnrZz+29N8IoRQfaebKz6ft5mB4fN5/f7qJu6Ql5f3pz/9ybjk448/Pv02tIULFzYzMBYuXPjtt982fZ/KysqZM2f27t3bbDZ369ZtypQppz/buXfOH70vzWnWPee+WP3Wm03f58SJEzNmzOAlTE9Pv+qqq9asWXOaJQSAV4698uqxV5tzzz8f+/Pfiv/W9H1a423UbXnxhS1zmhXA+z+ct/MvTWXYxx9/TKJsNlteXt7cuXNjVEyEOq3TyhVFUU6pFlJVVdVEtaY1FBYWnlIt5KOPPmqiWlNVVXXWWWd9++23c+fO3bRp07x58zRNGzt27JYtW1pcQmXb1maGCud54jFl29bGbi0rKxs1atRXX3317LPPrl27dsGCBenp6eecc85pVsW2B7Y3M1S4Zwuf3R7Y3titrfE26iq2bm1mqHDrHnu0Ymuj7ycA2Gy2I0eOHDlyZOvWrTNnznzyySc/+eQT4x0YY5TSFhYXoc7otHKlsrLyVFfxeE55ldPxt7/9wg/n+v7+9783dtMLL7xQVla2fPny6667bsCAARdccMGCBQtuuOGGbY23t/yiinvuPuVVfje9sZuefPLJcDi8YcOGm266aciQIePGjXvnnXfuuuuuO++8MxKJtLiQMw/MPNVVHjrwUGM3tcbbqFs5/a5TXuWeplrDCCFZWVlZWVl9+vS56667BgwYsHPnTgD4/PPP+/bt+9JLL9lstq1NJhNCXU3LcyUUCqnqKVc+FEVps9NO8N5fp7pWYWHhxo0bG7xp/vz506dPT0pKMi589913b7rpppaVMPjlImX7Kbf/KAXbgl8uavCmBQsWPPDAA3XObvvkk0+WlZUtXbq0ZYVcXLl4Z2Dnqa61I7BjceXiBm+K+duoK1z0ReWpt6dVbttWuOiL5txz6dKlBw4cuPTSSwFAluUTJ07s379/z549AwYMOOWyItR5tTxXeGfi2K74yCOPSAZTp05taekAAJpo0WrBipTSw4cP5+fHsrNTEy1aLVixqqqqvLy8/j4uIyMjKSlp//79LXuuJlq0WrBia7yNusqWvp9NrOj3+10ul8vlslgsl1566Zw5c0aOHAkAhBCPx/P4449nZ2ebTKYWlhihzqjl/YzD4XCLV6z9e/qkBx988LbbbtOvfvPNN08++WTLngUAeB/iWK1ICBFFUdO0FpenvvBPK2K4oiRJANBgCSmlhJCWPddq7+qWr5hZd2FrvI264hUtfD+LV6wY8ljDN9lsts2bNwOAoig7d+58+OGHy8vLZ82aBQCyLPfo0aOFZUWo8zqd+koLj8A3sWJGRsZAg6ysrJaWDuA06isNtp4RQnr37s13MUan0xMh0njH4l9asYHWHrvdnpGRUf8oRXFxscfj6devX8ueq4mOxU1rsPWsNd5GXUVL6ysVjX8QhJCePXv27Nmzb9++V1xxxdy5c1944QVVVQEAqykINQjncWkAY6zB5ddee+0777xz/Phx4z1vvvnm3//+921VtJPP3ODS66+//vXXX/d6vcaFc+bM6d69+3nnndcW5TJgjRSyPb2NJ0vQ7DsySmkr1bcQ6hxanistHj/fZgPvWzx+vrEVH3vssZ49e44fP37evHnbt2//4Ycfrr766u+///7OO+9s2ROZBg6K7YqzZ892uVzjx4//9NNP9+7d+/PPP99///1vv/32P/7xD95K1gIDbC08KN3YijF/G3VJLZ2PoIkVGWNHjx49evTo4cOHv/vuuyeffHLy5Mlms7mlZUSo82t5rrT4q9Vm38m8vLzYrmi321etWnXdddc988wzI0aMuOmmm9xu97p16/r379+yJzKPGx/bFZ1O59q1aydNmvTwww8PGjToiiuuOHbs2MqVKy+66KKWPREAjE0cG9sVY/426jLGt/D9bGLFQCCQnZ2dnZ2dm5s7bdq0Cy644L333mtpARHqEsgHH3zQsm5XoVCooqK8BSsmJSW3zUyUGzdufP3111uw4n333Td8+PCYl6e+4JeLym/+dQtWTP73h9a2mjlxceXiO/e2pCbxbt93L3K3PM9aoHDRF8um3tiCFc+b91HO5MtjXp6mzZs37zR7PCLUPrW8vmKxWCTplFu0JKntpjcePnx4dnb2qa6VnZ3dNqECANbLJsv5A091LTl/YJuFCgBc5L7oDNsZp7rWGbYz2jhUACBn8uXugaf8froHDmz7UEGoEzut4/Zut7sNVjkd06ZNa4NVTkfSX95ug1VO0yu9X2mDVWLi7Lf+2garIISacFq5IstyQmNDURridDrbeLb8nJycK6+8svn3v/HGG9t4tnx50ODEPzza/Pu7Xnix7WfLz7flz8ic0fz7z8qZFa/Z8pMGDx7yaCNDURoy8sU5OFs+QrF1uv2MExISmxktTqfTbnec5tO1wFVXXdXMaLnxxhsnTYrDmakSH328mdHieuFFx/TftXZ5GjQzc2Yzo2VWzqxpGW1a56tjyGNPNDNacm/89Rn33Nva5UGoq4nB+JWEhMTU1LQmjrVIkpyamhaXUOGuuuqq2bNnN3GsJTs7e/bs2XEJFS7x0cfTf/ypiWMtcv7A9B9/ileocDMzZ3498OsmjrWcYTvj64FfxzdUuCGPPTF5xaomjrW4Bw6cvGLV2W9jCxhCsdfy/mD1hUIhRYmEw2E+dlqWZbPZLMumdnUe4sLCwvrnIW6zA/W/KPjlImXb1vBPK/hQfNPA6HmI29N5cxdXLt4e2F7/PMRtf6D+FxUu+qJy29Y65yF2DxrcHg7UY38w1FnFMlcQQs2HuYI6K5zHBSGEUCxhriCEEIolzBWEEEKxhLmCEEIoljBXEEIIxRLmCkIIoVjCXEEIIRRLmCsIIYRiCXMFIYRQLAkWiyUUCsW7GAh1LcFgsP3Mb4RQbAndunXzer3xLgZCXUtVVVX37t3jXQqEWoUwaNCgVatWxbsYCHUtq1atGjRoULxLgVCrIIwxr9e7dOnSMWPGOJ1Oq9Ua7yIh1GkFg8GqqqrVq1dPmDAhMTEx3sVBqFUQxhgA+Hy+goKCoqIiPNaCUOuxWCzdu3cfNGiQwxG30xEh1Nr+P+G3jKaAD0ffAAAAAElFTkSuQmCC", "path": "image.png" }
Look at the models of molecules below. Select the elementary substance.
[ "bromomethane", "acetaldehyde", "chlorine" ]
2
There are more than 100 different chemical elements, or types of atoms. Chemical elements make up all of the substances around you. A substance may be composed of one chemical element or multiple chemical elements. Substances that are composed of only one chemical element are elementary substances. Substances that are composed of multiple chemical elements bonded together are compounds. Every chemical element is represented by its own atomic symbol. An atomic symbol may consist of one capital letter, or it may consist of a capital letter followed by a lowercase letter. For example, the atomic symbol for the chemical element boron is B, and the atomic symbol for the chemical element chlorine is Cl. Scientists use different types of models to represent substances whose atoms are bonded in different ways. One type of model is a ball-and-stick model. The ball-and-stick model below represents a molecule of the compound boron trichloride. In a ball-and-stick model, the balls represent atoms, and the sticks represent bonds. Notice that the balls in the model above are not all the same color. Each color represents a different chemical element. The legend shows the color and the atomic symbol for each chemical element in the substance.
chlorine
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAIAAACmkWkFAAA9e0lEQVR4nO2deXgURfrH3+qe+85FEiCB4YwJVzhWJWhQF5FbF1ZxERdFuXZVXFFWVFDEZUFY1uPnxcKCitdiQAS5XBVhQVARBMJ9JkAucsxk7umu3x/VMxkmB8lMz0xPqM/Dw9PT09NdU/XN932rqqcLYYwh3rhQbbvmMZkmbRRKQrmeoTpsKbJYFyAYp5c7WW45UV7j9HI1TneN0xPrErUYpYxJ1amNakWqTt0zPUElY2NdIkqLoTqMBEhS2U1prXPN/lMuL9/0YQk6LQIAAIQAgfAPEAg7ARDAFZvDzV3jPFFAKWPG9TRnJtAQF09QHUYIadnNin0nymqdCpVWb0pUKhQquVylVMgRyBhgAWQMyBDIEDBI2GB92ywCBoD17SHbjG/bv4EAkG8bY+ABOIwxAMfjgG1hP4+Bxzhgu26/cKSwDYFn4AHcXs7ucNucbovNbq21K2XMX27tEeuqpbQAqsMIwcT28kHUONwAkNC2o8aQoFJr5QoFABA7RMi3BUL0wL7tugMCtutMlGxjwAGfxMLxGCGEMSCEAIBsA9lPDkUB4QoB9u1HCGHffoQAYwy+MwAGGcvqtKqUJEPH9qkAcM0gSZEaVIcRQlp2k5mgAwCnzUJqlyReQtNg31ZAA5PtugMCtn3HAuCAFNf3SSQcjzDGQjsBkG0iB6IKcpBvG5BvP8YY+fYLKvGdwX9qjMHh9gBAG51K5GqiRBiqwwghLbvpkKADALetltRuUKCIl6ji24aqKgv4tEuJI6gOI4S07KZbikHJMo7aKmetJd6jit3pvlJlAYBe6YmiVxQlolAdRghp2Y1RpbilUxoAVJRc4DkufqMKx/Pnii4DwCBzaqoEklhKi6A6jBDSshsAGJCR3DXZgHn+0oXTXo6DOIwqXo47cfaS28NlmrS3mFMjUUuUSEN1GAkkZzcAMDI7I0WncrucRedPO13O+Ioqdqf70MnzDpfboJKP7dUxEvVDiQ5Uh6Ijrftu/Di93Jr9p8tqnQzDtElOSTAa9SqVlO93cHm4Krujorq2ylrLcbhrsmFkdoYU7uOkhAPVobhI1G4IGwuLDpVUxboULWaQOVUiuStFFKgOxULSdgMAF6psxytqfioqr+sxSxOMMcCQbu0yE3RSGJOjiAvVoShI7ieaQWQmaDMTtD8VVQDAxJt7kRQUASAQNoJeQsB+8GWtCAv7/XvIBo8BA/AYYwBMtgFjQDzGIOxH5F0eg2+P8CnsfxeBh+fX7jvOIjQgIzkGdUSJPFSHoiDFoeJG8Q2wkXZFEDDIf/WMgP8lOR4QGUire9c3IwAYMGl1MgInzBEIQcKX+tXt8Z8WC8eT8bkAGVFaP1SHoRJXduObA8BQ98/fdIEzAv6X5HjAZJoQrmp6IbYgoeWwMC8pjPYjYZucy7fHf1okHI8BIcTzGABYJOF2pogI1WGoxJXdSDWqYCGqSLeZKWJCdRgqcWU3ko0qwAMAknIWSxERqsNQiSu7kXpUidDXpkgMqsNQiSu7kWxUwTxIu89MEROqw1CJK7uRblRBIO0+M0VMqA5DJa7sRqpRhcMYpN3MFDGhOgyVuLIbqUYVUgYk4WamiAnVYajEld1INar4+syR+t4UaUF1GCpxZTdSjSrSv9+BIiZUh6ESV3Yj1agi/T4zRUyoDkMlruxGqlEFJB9VKGJCdRgqcWU3Uo0q5G5ORsr3V1FEhOowVOLKbqQaVaR/NydFTKgOQyWu7EayUUXySSxFTKgOQyWu7Ea6UUXqQ3QUMaE6DJW4shvJRhVe6s1MEROqw1CJK7uRbFQBAGn3mSliQnUYKnFlN5KNKpgHaUcViphQHYZKXNmNZKOK5H+JSxETqsNQiSu7kXhUkXIWSxERqsNQiSu7kW5UAZB2VKGICdVhqMSV3Ug1qvgmICP1vSnSguowVOLKbqQbVUgzS7idKSJCdRgqcWU3Uo0q0r+bkyImVIehEld2I9Wowks+qlDEhOowVOLKbqQaVaTfZ6aICdVhqMSV3Ug1qpB9Uo4qFDGhOgyVuLIbqUYVTvL3O1DEhOowVOLKbiQbVSR/NydFTKgOQyWu7EaqUUX6v1WhiAnVYajEld1INqrwANJecIMiJlSHoRJXdiPZqEIKIuGoQhETqsNQiSu7kWxUkfz9DhQxoToMlbiyG6lGFXIGKTczRUyoDkMlruxG2lGFlXAzU8SE6jBU4spupBpVfDePR+p7U6QF1WGoxJXdSDeqAAAgKbczRUSoDkMlruxGulFF6vc7UMSE6jBU4spupBtVEEi7z0wRE6rDUIkru5FqVOEk32emiAnVYajEld1INaqQQkg5iaWICdVhqMSV3Ug1qkh/9UKKmFAdhkoc2E2J1QEAKrlMslFFLZf5y0lprVAdhk8c2E1haTUAdEgySjaqZCQZAOBIaVVkKoAiCagOwydu7CYzySTZqNIuQSdj0GWLw+J0R6gSKDGH6jB8pG43lyx2q8ujksva6DWSjSoMg9onGgDgUEl1hOqBEluoDkVB6nZzlGSwySZASLJRBQHKSNQDwK+XKyNTDZQYQ3UoClK3m8Ml1QDQIdFU16LSiyoYcJpJJ2eZaoe7rNYZmZqgxBKqQ1GQtN0U19jtHq9GIU/Wa+paVJJRBQFkJBnB18OntCaoDsVC0nZDMtiMZBMEtqgkowpCKDNJDwCHS6Q7L0AJDapDsZCu3WCMhbmARCMEtqgkowrGOFmnVstlVpfnYo09IjVCiQVUhyIiXbspqrHbPV61Qp6k00A8RBWEUEYyufGhOiI1QokFVIciIl27OVpWDQAdkky+WCL1qAIAGQl6ADhaWsXXXZ4S31AdiohE7QZjfKy0BgAykky+WCL1qAIACTq1Vim3e7gLVbYI1Aol2lAdiotE7eZCtY1ksAladRxFFYxxZpIRpH0jOaX5UB2Ki0TthswFdExOgLpYEgdRBSGUkaQHgKNlNRwvrTyWEgJUh+IiRbvhMS4sqwGA9kkmqIsl8RFVdCqlSaPycPzpK1bRa4YSTagORUeKdnO+yubyclqlwqRRQbxFFQDcXvI/zKU0B6pD0ZGi3ZC5gMykBPIyvqIKAMpM1APAyQqLl+NFrRhKVKE6FB3J2Q2P8bGyGgDISDaSPXEXVZQKeZJew/H4eLlF5NqhRAuqw0ggObs5V1lLMli9SkX2xF1UAYzbJ+pBYnkspUVQHUYCydlNIclgkxP8YSHuogog1DZBDwBnrlgdHq+YtUOJFlSHkUBadsPx+LhvLsAfFuIxqihlbKpRiwGOSSaPpTQfqsMIIS27OVtpdXO8QaPSqZRxHVUwQLtEPQAUSvKHuZSmoTqMENKym6MkpCSaICAsxGNUQQDpJj2D0IVqm80tiTyW0nyoDiOEhOyG4/GJ8rpmjveoImOZVJMOAI5II7BQmgnVYeSQkN2crrS6Od6oVWtUCoj/qIIxkOdUS/A5AJQmoDqMHBKyG/L7lLYJwjo+8R5VEII2Ri3LoBKro8ruErGiKBGF6jBySMVurspgSYPFf1RhEEpP0APAkbJq8aqKEkGoDiOKVOzm1BWLl8cmjVqtVLSaqAIA7RONAHDocuy7zZTmQHUYUaRiN+RxsOmJJhIEoFVEFQBI1KkUMlayC3FQgqA6jCiSsBsPx5+qsABA20QjCQLQWqIKwzBtEyT3w1xKg1AdRhpJ2M2pK1YvjxO0GrVC0cqiCsY4PZFMQ1aLVl+UyEB1GGkkYTdH/RksQCuLKgihBK1aKZdZXZ7iGmk9OJYSBNVhpIm93Xg4/mRFDZAMFqD1RRUAaCeZGx8ojUF1GAVibzcnKyw8hkSdViGXA7TCqAIAbYXfrVRLbSEOih+qwygQe7shcwFpCUahAltjVNGrlDqVwunlzlfVilFnFPGhOowCMbYbl5c7fcUCAGmJRqECW2NUAQTpCbQ/JV2oDqNDjO2mLoOVyVtxVAEsPAfgmMQW4qAQqA6jQ4zthswFpCaY6iy/lUYVlUJu1Kg8HH/qiiQedEQJhOowOsTSblxe7kylFQDSE411lt9KowoAkN+tFNL+lMSgOowasbSb4+UWHkOiXidjZa0+qgBAWoKwEIfby4VfexSxoDqMGrG0m6sy2OsgqijkbKJew/H4RAXtT0kIqsOoETO7cXi8ZyutAJBqMlxl+a03qiBAaQk6oPNTUoLqMJrEzG6Ol1swQKJeL5fJrpOoggGnmgwI4KxkFuKgUB2KUInNJmZ2Q1ZETU0wAcD1E1VkDEo26rDv4duUmEN1GGYFtojY2I3D4z1fWYsAUkwGALh+ogoglErnpyQD1WGUdRgbuzlWVoMBEgx6GcvC9RRVAOMUg5ZBqEgaC3Fc51AdRlmHsbEbsiJqmwQTeXldRRWGQW1MOgA4LIGFOK5zqA4hujqMgd04PN4LVTYEkGw0kD3XVVRBgNqYaH8q9lAdRl+HMbCbwtIaAEg0GuQsS/ZcV1EFA042aGQsI4WFOK5nqA6jr8MY2A2ZC0gxmeoa4jqLKgBIWNiQJjixg+ow+jqMtt3Y3J6iahsCSDIa6hriOosqCAHJYw/R4ZsYQXUYEx1G226OChmsUcYw121UwRhMOrVcxlY73KVWRzj1SQkNqsOY6DDadkPmApJNJlzXQNdjVAGAVPrArdhBdRgTHUbVbmxuz8UaO4NQokGP6hroeowqCAndZjo/FX2oDmOlw6jaDVnjJsFoYBnmOo8qGGO9RqVSyKwuTxFdECa6UB3GSodRtRvyA40kkwnqggfA9RpVAHBqohEACumKd9GF6jBWOoye3Vic7ksWO4NQol4PdcED4HqNKgCojVHIY+mCMFGD6jCGOoye3RSW1QBAgtHIMAzQqIIQANaoFGQhjnN0QZhoQXUYQx1Gz27IM9OSTCZ/lKBRBWOcnGAA2p+KIlSHMdRhlOzG4nSXWB0Mw5gMen+UoFEFISGPPVZOF4SJBlSHEFMdRsluyKx+osHI+CqKRhVyfqVCZtCoPRx/ki4IE3moDiGmOoyS3ZBZ/USjEXzWTqOK//wpCTqg/amoQHUIMdVhNOym0u4qq3UyDGPQ68Fn7TSq+M+fbNQBwMmKGrogTEShOoy5DqNhN0f9cwEI0ahSP6rIZaxJr+ExHKcLwkQSqsOY6zAqdiNksCYAoFGlflTBGFKMtD8VcagOY67DiNtNpd1VbnOyDGvQ6QCARpX6UQUhSDToEEJnK+mCMJGC6tBX+ljqMOJ2QwbnTEYj8rUDjSr1o4qMZRINGkwXhIkYVIe+0sdShxG3G/LgZRPJYIFGlYajCgZINuqB9qciBtWhr/Sx1GFk7abc5qxyuFmG1Wu1wi4aVRqKKgjApNcwDCqqsVmc7lDqmtI4VIcS0WFk7YYMzplMJuQ3eRpVGokqLMMkkoE62p8SG6pDiegwsnYjdJgNxrpdNKo0ElUwxr48tqpltUy5FlSHEtFhBO2mtNZZ5XDLWJlWo63bS6NKI1EFIWTUqmQsW1rrpAvCiAjVIUhGhxG0G5LBGvxzAQQaVRqPKgihJKMWAA7TJ4qKB9UhSEaHEbQbYS7AYLpqL40qjUcVAEgy6YGu5ysqVIcgGR1Gym5KrA6ry8OyMrVac9UbNKo0HlUAQKdWkYU4SuiCMGJAdSgpHUbKbsjgnNFkYhh01Rs0qjQZVRCCZJMB6AoNIkF1KCkdRtZuDHpTnbsTaFRpMqpgDGQa8tDlShxcd5QWQ3UoKR1GxG4uWewkg9VoNIHDcwA0qlw7qmhUCqVcZvdwxTX2ltQ6JRiqQ6npMCJ2Q+YCjEYTBLo74TqLKjzPY4x5jud5nuM5HmOO5zDmvV4vx5H/OY/Hy3m9Ho/H6/W63R6Px2PSa4EusBk2VIdS06FMrBMFcrikGgD0BhMITYjr4gACHgMDgDHmGYQwJp7KMuDlMQOAEWAeEBKiBwLgATMADAIOY4SAQUIDkw3yP2DMIGAQwhj795MGQwiQoABBKsj3Fo8BA3A8DwjxPMYAPGAeA1n+gsfCNgYgD3DlMSY7MQDP84AYL8dhRI5HHM+Ts2FA5AwcjwEhjifnRuTjwruInFn4FI+FWiLnZ4EHgKOl1Xd2a8sEx2VKc6E6lJoOxbeb4hq73eNlWJbnsc1mYwAYwAwCFgFpLdbXDMIGYJZBZAMBsAghhBEIByMQDiMNDBizCAU2MEOyQQAGIQS+dvU1Z+ABCJBvuFBwfdKu2N9yvg3saw/SBtjXNqQ9/I3EkxbiMcbAY9JadVGF90UVAEDCxzEghDFGPmVc1WcmF8IAACwChYxxermzlbWdk/Sit9H1ANWhBHUofmeKZLAajVA4hHz9RuF1XR+YWC9CKDA9xCSXbKTPjBAK6jPjqzrCvoORv7eLfCcU8kqhZq/uMyMk9IH9HW9/nxYhFNRnRr6QxyDGX7jG+sxkMSPSqW66z3xVsRlGrZABnZ8KA6pDCeowAnZTVg0Aao2OvMTYNyouvK7rA5P0jLisv1kRGSlrpM8sWDME/gvsCPsO9tkz6dD6+tYI+Vvr6j4zxkIf2N/x9veZMcZBfWYhJUfAY95fuCb6zCCIyRdVGpkRuKrYPK9VKQDgeHmNl+PDbZLrD4wx+QuhOgxbh3IQT4cid6YuVNlsbi/DyhRKJdmDhGquazTsayEeYxYhElVIaEGk3rEwqEbwHx8YVQD8/+NiF1x2o31WhADpWdRDx+dowcT6QpZwQiTUp6+X7hu0QzzGCCHMY0QiHBaiCsaC62PySV/+KfTBMWYQw/E8+VKkIYXP+44EDAzDcDwvRBUsyI73HYmQUB5eCKQ+yTEMw/NKOevycKeuWLPaGMVtplZPUY3d7vGyTFR1GJgGCQcjIWOgOiSIbDeFQmqjFxpN6Jpif5sBrpspZH1RhWGQP5ULqEZ/nikc7zdjf694dSm7vhIdtaOrS8EAwNAEfnIan2fAjDBG58srfV3owKjCCwKoiyq+Pi1PioJ8o25CVEFQF1Vww1GlwT5zqZct9TIAoEZ8RwXXWJ8Z8zxCjEohc3m4wtJqajcthfSkVNoo6dCX3WAAqOHQMTsggGwt9sU8wFhaOmzm2I3oOhTTbjDGx8trAECt0fnbNUJR5agdPXFGdrHxBwBtrWK2VjE3G/DKbl4TG+Ooss2q2GtX7rEpggr5G42rn8p5q9ZZP6rwPK9RympsLrIQh0LGitRKrZ9o6hB8Z/z8CvpvFbO9+qrRCQMLQxP4OxPxiEQsneym1M2UehkAxGPcUenVIL6J7EZcHYppNxeqbXa3l5XJZApFRKPK+krm+fPN+tp7LGjcUdk/O3E9tbGJKr/Y2H+UGUlGU599duU+u3Jtje4BU20/lSMoqiDMqxSs080dL7f0TE9oYWtcv1yottncXpaNuA5JdvN1NfP3IrbByGfh4D8VzH8q4GY9nt+R76HlY5jdHHTIv7Yo99gVNv6q3kBHhTdb6R5rsKkR32B2I6IOxRwqJhmsUq33tyWA+DMCzfcawhEbGlsoq/EKLSu0B/g1FMEZgW1W5exLhsa8xk85xy67YtxSqw2cEcCYRwip5DKg9/u1EKEnpYmsDskZVpexj51u2GsC2WNFQw6xn5YzJHOKsg5reTS/VP/XS4ava5VBXgMA59yyr6yaxy4nFVi0wmkipkPRshseY/L0dpVGBwjqR5UjdnTMgQodCAAQQBsFdFbhXhrcVcU3P6octcPi4hancxYOfneU/aYnF82o8p9K1dsV6uYX8sMavY1HY3RW8EUVnudVShZscK7S6vB41fKI3JPZyvDrUNmIDgXEyG7eKmHfutyCgD3zNAvA3Z8C0dThCSf7VLG+vssEYeeZtRbdEZdiZmK1GnGB2Y2IOhRNwReqbE4vx8pkMrkCMCBfKyAEW6rZdZXIHjSP5oBvahAApMrZWW25XB3fnD7zqxdl1pAWFD1iQ5+Uo/vb4Oj0mXda5S3yGsI6qy6J9eapHaTPTCYRVAqZ0+0tLK3p1z4plG9+nUF0yDSkQwSozIN/sTE7rOi8q+7Pr40cbtbzeXrcR4ubP3azvpJpkdcQZp5me2q8PXUQHR2edDLN8Ro/R12KVyoS5iRXEccRXYeidabInJRSYwAAIaoAXHCh54qYNRX1vCaAUg88fZ5dfFFWy5GPNnq/w4+16Ofa5lZcfV44zyJ/Lnp1VBH3fgcrB6+WaBorRtN8VGOw8QyJKqRUKgUDAIWlVSF/8esKokPV1ToEgFoOPqhAT56XvV/BBHoNAJR54ItK5pnz7NPn2FNO4Y7fpu+7qfHiELJswqQTsqjp8KmiFngN4YJH/mG1PjC7EVGH4tgNj/Fx0pPS6gGETPWCC/39ElPkata33VaN/nJOZuWa6jNvqAyrtBYvbKpkotBn/rxaVdvCNvZjx8x2u9bfZwYMSrkMISiusdMFYa5JgzoEgAsuNLeI3Vp9Df0ctKNpp9nN1cINuE2M3bxbwoaWZQNAkQveuRwNHb5ZrglNh7sc6l0ONQSM3YilQ3Hs5lxlrdPLMXIFw8oBABCUu2HxZcbRkhsRTzvRk+dkTUSVb2vCLe3mStT8qFLDMXutaK8VFbugRVFlS3XwhHeL2FarCYwqgEAl3EheE9aXvw6or0OMhbBX0exFaF+9yP7nCtt0dvNFZVjzwZ+WN1eH1V7YW8sSHVq8LdDhZQ+7rSZ0Ha636uHq7EYUHYozdkN+uKBQ65FvyOqt8pZ5DeG0E71+GT2RjhvsM9eGGk/8FLkAX6vPfMGJ/l0m217FFruvigwDtFy6Ak9LdaXLoYk+8wknc82pqKZxYKaIU7ZnXUIvHZBKLnO4vEdKq27qkBLOmVs99XVohxaHPQB4q4QxyPAIU8M6/NGCwpTiYRs678Ad1I3q0MLDf8rZf5cGi7CdHLdV8NNS3f11XNNjN2urwop5FRx71KXIUrrJ2I1YOhQhu+F4fIzMBai1xJV321Bx8/pQ9Vl7hb3kAagXVX60hj5qE0gTUaWag5cuyG49pPx3qSyomQHgRxu7oUp230nNmnJ5E1HllEsEBz/qkvujCgYslzMIQRldEKZJ6usQELxVwoYQ9gDgzcuslQdoKLv52S7CX02Rm4FGdLi8hB10UPFyUQMivOhBP9rYyWfUM8+parzQhA531YZlNwDwi1MVmN2IokMRKu5sVa2b41m5gpEpSCjYWBXWaf9dykK9PrMo1HCN3u9Q40X3HZOvLL2GWVg5tKREOf6U5riDbbDPXOoRoUqdwPr7zCSnJ3nsYbqCeOPU1+FxOzrhDPFstRysLGWgkbGb8NltEc4UpMOZZ+Tzi2QW7hrB9VuLbNQJ7YYqeWNjN+Hr8IJXHjh2I4oORfjbIHdVydR6YtVFblTZ7H5yg+yyMlAvqnTTiNDIRrbh7Oa8E+46LC9sdtQ64WCnntMUu3D9qBJ+Icl5AqMKQkiplAHAYTo/1ThBOgSAb8LLiNdeYaGRsRsREFzmKh0+dFy2tqK5IrRy6MVi1Zc18vrZzQmnOGOyQdlN+DoUoVgnymsAQKHREas+4Qy3NWo5OOlAQVHFKMZvhjKUDWc3fzkrL6qXuF6rkOiZIo3V6ztL3YyACCCEAqMKxljOsgyDqh3uSgedn2qYIB0CwPGwpbjDwkQouzEwwjn9OlxSLLvm3Fl9XipW77fJg7IbGyfC3/UFrywouwlfh+EW60SFxc3xjFzJsHJi1U4xHs9i5RqIKoON4Z46z8jXz26WXpLtsYSiyxNO9hMyIBeQ3XRWhj2gDZDIeIKiCgBmEQMAdrcn/PO3Purr8IQDhS/F005UX4c6MSJfD62QJ5Hz76qBpRdDPO/SEkVQdtNZFV7/AgAAMmXe+tlNmDoM1258GawOfFYdfnYDACedDUSV24xhhRW9DIYl4KDsxuJFy1t+b6iff5UprRwKzG76aESwgyyFJyiqkIwHAFxe+rStBqivQ1G45G5g7Ka/ToQm6KHhIaCoy0tC97CTTnZjlTDxT3RoEMMQNYivn92EqcNw7aao2gYAcpUOfFadKBMh10xT4PpRZUwSnx7GcPvUNN4kCx67+bicueawXNNsqlYEZjd6BjqFl+C0l3uSG8puEMMAgJs+3K8h6uvwighZJpS4G8husjQ4HB0CwLAE3iSv0+EFJ2wJb3ZlU3Vwlt1bE26C013pbjC7CUeH4dqNL1moG2ZPFuNWHj2DG+wzP90uRBHpZTAljcMQPHYTWjcqkO+t8qC7Of/cJqx1TodqbY1EFQAAp1eMP6NWR30dJokR4dMUDetwenpYrTAl/aose7c13D/D/XaWFM6vw0G6cLPsvkqn6DoM93sKF2fqrDpy2Q0guN3ITU9vsa3qZbDuBq9RhlC9+24Oh30PxUkXE3RXca7a01sdYmzprnAPUjsajioIAYCL2k1D1NehKLRVNDwzNTqBaxtqgnOzAQ8y4kAd/i/smAcAP9tkgTq8y+jWMqHXQp7akSLjRNdh+HYDAMIzfIhV9w57xrqzCrdVNPqckRnp3OikFjiOXgb/7MT10AIRYVB2Uxz2fXO1V4/dkFK+1K42hMZWM/yjpmq4+rcq/qhCSq5gI7XOclxTX4fd1CJYTmdVw9kNQui1Tt4Qxoz1MljdzRukw2b+rvDaBOhQz/B/TA7xpiM1w9+jt0IEdBiudhlS/5gDn1VrGOiqCuucwxOEX4UQAqMK+Vn+wg7cKx2aZa7tlVBwAzc8se4pakHZjTjUe86IgcFL21tb5Dhqhp+TVJnMctDQ/Q4AmOMwACRplOKVu/VQX4cAIkS+fAPfmA6z1PiVDlyLHKeJLFscrtbh703OOw2hTFc/YLBESIfh2o1BLQcA3u2CgJTh3sTQhzNT5XBvEgeN3M2JkPAUtbuT+O09PHc3nuboZfCX9vy+XG+Olvfdm9VAdqMX5UdjDT1FrauKW9LO2sxh40y59/nkqo4Kr3AXRkNRhay8kaQJz8tbKQ3q8HZ9WH/Kd5l4aFKHd5j4VV2bm+Nka3HBDd4Gs+wMpUiWU0+HM9rYWzpx8TtD7a1aZ4R0GO5fW4ZRe6HKxntd4PuDRgAZSnyHgf+vJRQveyxduEUSX+sZsRlKWNSRez6T32tBxx2o2I0uuiBbwxtlaGgC30NDfoQCTT8Bv4cGhzlanCbH9bMbBMBj6Kz0Lm5bs65Gva5aZW/kUQBqBg/X2e/S2dWI44UBxLqnqJFAihAiazyzCOmU9Jl+DdCgDrtrcDcVhPY7Bi0Lj7fl4Fo6zNbgb3p63rzEvF/WqOvoZfBoGj8ljTcKw5rBOswUI2FNl/MNZdnwXqZlUYlmu7VZ15iaaLlFbY+cDsPVbnuTFoKiCgbAMD4ZF7lb3NIz0vhbDBz57W39X+IGZjfgizYGFt+ZgIcm+BZpBiCLNJNtdK31fXpo+D2WsOYwcrXewF/ikqeoYd8T8A0y9ECCfbTBvsem/NUhL/UyZV4WANrIuGQZl6Py9FM6NQzPYyJr38/0fE9Rw77nRbo8GABSdDS1aZjGdDgjjXv2Qii/0nwsndMzAHBtHepZmJPBT0rl99UyX1chK4f2WpGehWwNzlDBQAM/NIFPkCEADI3ocKCeD7OfoWVxWwV5HmYDOnw61Xanwf1qqbas8WcV3Kp1jjXUJrNcRHUYrt20M2gAgPM4ec7LsjISVQABxvDnNO6TK8zuZv9uZUYa//skrvlPwPf9QwF5rrC0GDFn1Iz1fe5L4cO5wwoARhjdjWU34FvfR8/Ab3XO23UO7HvWrH9NeLIgtPDX0XhUcbrdAEDXC2+MxnSoAXgmnW/pMyj+2IYfbsLNzLLJvwwlylDy45IaXiO8aR3mGXF7ZVizFvl6LylcYzrsqXKv7uA+5ZRttyrOuGUY4KxbZlZ4NYjPUXn7qx3JLEeOjKgOw7UbpYztmmw4WWFx11bLjMn+qIIY0CJ4tA2fKme2VKOmGztVDtPTuFsM5D7LqK5e2FML2RpcGLwwXnNJk+N+Wm9jUQXCWL0wMKp4OM7j4QGAPq64MZrQYaYS/7Ut/0ZJc5+w9XQ7briJxwDR1OH4FH5JcegJzqNkEqrxLJvosJPSM1XpJUFOiHxIiHwcD1HQoQizqnkd2wCAy1YDvG8YP+AZsXcn8Ms6eIca+QZv/zOr8JRU/sNu3kEGobWafooamZkKSG18R/sO9Gc3gj03Y23m+R1Cv/9ybju7cJZ6UQUHZDeo5WszB84IOF0cAHRPMWoV8pCL2uppQoeZSjw/gxt0rZHjXlq8pCM3zCQ0WTR1OKu9t32oIzjjE11tlT41S1uHqO52ujD45MCZs5W1Sq3JkJiMMGYAWAYYAAYBi4ABQIBZBBdcyI6hwgs6BukZ3EbOt1MiFgECYBBGIHyEAUAIWF8uSvaQoRmEfBu+PUEvoW7sBoOw2jxGvu6oP5sAAJJnYgCO55deki1t+ZOup7RxT0528sJEA4kSdb0kAOB4DAhxPJE/aiSq8JiUxPdxUiqe58mRXo6vsDgwhgm5nTMTtOE3Vivmmjos9+D/1TI/1tZbiUHH5xlwHy2OoQ4P1sLYY3JrC2NfVxX3cRcHx/NxoUNx7KbS7vrX3hMcxqbUDIVcQRqGRb4WAuxvb8bXfnUbgFkGkQ0EwCKEApocga+9ETAIAGMWocAGZnx94Ab7zIEHIEDCU/Z9fWYMwAPGGPMYnjgjb/6jRgBghMkzr51DaNer29jXYOBrV0EEPNQpIGjsBoQGrmtjQAzRUEWNw8vhbimGsT07ht9SrZt41+GvNmbo4RYkDl3V3Lsd7ToGx4sOxblFNVGjHNK9HQBYrlwmJfX3eJH/ufLC67px3XBWLwz457dLXHcwEq5J+sxN3Hfjf4raP82e5V28erZZ5nt/kvuldo5rrl4IAAwjPNYfCUXH/iuC735whOoV23e/g8Xu9nLYpFaMzs5sTsGuc+Jdhz21eHcv903Nu12on5ZbbnYaGBxHOhTtjvjctondUgy811tdccn/KHkg5h2YQNU9AI/4PQijWb5mjf7YjW9YDIYmeHf1cj/Upql0tp+W+7iL/em2Lmh8JQax+sxWh9vu9MoYdG9vs5z+dqF5xLsOM1X4syzXq2ZPE5GvrRz/o4NzudluYPn40qE4nSmC08ut/vFkpcMtkytTUtvKGCZo7IYBYEhfGoBFAIBZJImxG0CI9Gt5wDyGwzZU6EDFLvSDlT3qQDeosZ7hszR4lMndVtFAnhmJPvMVq8Pm9ALAvb3NdP67RbQOHVZ50REbFNqZQgcqdjEAQER4u8HbTcVh36circNKq7PW6QGRdCim3QCAze1ds//0FbuLYdmkpFSNWh0XfWah5Xwb2NcepA2wr238PWHSSP5Pidtn5jAuq7G7PLyMQff36URuYKO0CKpDUcZuKiwOm8srog5FTtG1CtkD/bqkaFU8x5WXXaq4Uub7ZZcPSfaZ/b8KITuxr/eLyIlauHphOH3mWqfn4hUb8ZoJfTtTrwkNosM2OkGHVyqoDlumQ7vbe6nKZnN5lTJGRB2KnN342XO+bNfZUi+PAUCn1Rn1epVcrmBZlkE0qsDVUcXl5b08tjrcFoeHvJuVYvxtt7Z6Jb3LJlyoDiWlw0jZDQDUury7zpYcKa2mz7tsPp0S9b/JTDEn6mJdkNYD1WEIREiHEbQbP0dLq89X1ZbbnOW1Thdt8qtRyphkjSpJq2xr1Ga3MSlldAYqUlAdNkF0dBgNu6FQKBQQfaiYQqFQGoPaDYVCiRLUbigUSpSgdkOhUKIEtRsKhRIlqN1QKJQoQe2GQqFECWo3FAolSlC7oVAoUYLaDYVCiRLUbigUSpSgdkOhUKIEtRsKhRIlqN1QKJQoQe2GQqFECWo3FAolSlC7oVAoUYLaDYVCiRIMAFit1tdee23IkCE5OTk9evQYOnTom2++6fVee2306dOnT5gwIfKFDAspFJLjuOXLl99+++1ZWVm33377O++8w3Ecectut8+dO7d///5ZWVnjxo07ePBgOBcqLCw0m83btm0To9TRhuow0sRchzIAmDRpUlFR0cyZM7Ozs71e7//+97/XXnutqKho0aJF4VwyHPr16/fFF1+0b98+VgUQl2XLli1fvvypp57q3bv3jz/+uHjxYoZhpkyZAgDPPPPMTz/99NJLL6Wmpq5evfrBBx/cunVrWlparIscA6gOI03MdSg7ceLE/v3733rrrWHDhpFd/fv3VyqVW7dudTgcarVa3Os1h4sXL1ZWVkb/uhHC6/WuXr168uTJpF1vvPHGo0ePbtiwYcqUKefOndu0adPy5ct/+9vfAkDv3r3z8/Pff//9Z555JtaljjZUh5FGCjpkSDZFFtnzM23atHXr1vnb+NNPP/3tb3/brVu33NzcJ554oqKiIvDg2trarKyst99+27/H7Xb36tVr8eLFAFBRUfHkk0/m5uZ27959zJgxu3fvJsecOnXKbDbv3bt3+vTpOTk5/fv3f/HFF3me/+GHHwYNGgQAt9xyC6kXPzt37jSbzb/88ot/z4EDB8xm8/fffw8AP/3007333puVlZWdnX3//fc3mA1mZ2e/9957/pezZ88eNWqUvzC7du164IEHsrKy8vLyNm7cePjw4dGjR2dlZQ0bNuzQoUPkI16v9x//+EdeXl63bt0GDx68evVq/9kWLVrUuXPnBqqYYb788supU6f696SnpxMd7969Wy6X33rrrWS/XC6/5ZZbdu7cWf8kf/7zn//0pz99+OGHN954Y1ZW1iOPPGKxWP7+97/n5ub26dPnxRdfrP+R+ILqEK4DHTKdO3fOyMh45plnPvroo6D2IxQUFPz1r38dM2bMli1b/u///u/QoUMPP/xw4HIxOp1u8ODBW7du9e/53//+Z7VaR48ezXHcH//4x/3797/55pubNm3q06fPpEmTjh8/DgAymQwA5s+fP2HChAMHDixdunT16tWbN2/u16/fG2+8AQAbN278xz/+EViSgQMHJiUlBV5o8+bNSUlJeXl5Z86ceeCBB1JSUgoKCj777DOdTjdhwoSSkpKmv7wfUpglS5bMnj17//79vXr1eu655xYtWvT666/v27dPp9PNmzePHLlgwYLly5c/+eSTW7duffTRR1955ZWPP/6YvNWlS5fbb7+9gSpmmI4dOxqNRvLS6/Xu2rWrf//+AHD27Nm0tDSFQuE/ODMz8+zZsw2WcP/+/efPn//mm2/WrFnz7bffjhs3LiUlZffu3YsWLVq9ejXRevxCdQjXgQ4ZhULxr3/9y2w2P/fccwMGDBgyZMj8+fMPHz7sP2LFihWDBg167LHHOnXqNHDgwOeee+7QoUP79+8PPMvIkSMPHjzor9avvvqqW7duWVlZO3fuLCwsXLhwYV5eXpcuXebNm5eRkRHoxEOHDh00aJBcLs/Pz8/MzPz111/lcrlerwcAo9Go0121iB/LsnfddVdQM48YMYJl2TVr1igUiqVLl2ZnZ/fo0ePVV191u92ff/55E9+8PnfddVfPnj01Gs0999xjsVjuu+++jh07GgyGkSNHFhYWAoDVav3oo48effTRcePGmc3mCRMm/O53v1u+fDn5+NixY/3bTbB48eLz58/PnDmTnJB8WT86nc5ms/F8A4uu2e32p59+WqvV9uvXr3v37jzPT548Wa1WDx061GQykRLGL1SHflqxDhkA6Nat2/r167dt2/b8889nZmZ+9NFHo0aNevnllwHA4/EcPXqUWCChd+/eABB00jvuuEOtVpOBaK/X+/XXX48ZMwYADh48yLLsb37zG+FiDDNgwIBAiWRnZ/u3DQZDTU1N03U0atSoc+fOnThxAgCOHDlSVFRELnTo0KGcnByVSkUOM5lMmZmZLf0L7Nq1q78kQS9dLpfb7S4sLPR4PAMHDvR/5Kabbjp79mxVVVUzL7Fo0aJVq1a98cYbnTp1alHZACAzM9MffwwGg7945KXFYmnpCaUG1SGhFetQ5t/q2rVr165dJ0+eXFtbO2/evJUrV44aNapTp04YY38CBgBku7a2NvAsarX6jjvu2LJly4MPPrhnz57q6urRo0eTwziOy8nJ8R/p9XoTEhL8L/0NQ7jmkp4DBgxISUnZsmVLt27dvvrqq/bt2/ft25dcKDMzM/BIo9EYVMhrolQqm3iJMSYnfPDBBxES1pQn9n/lypXAL9UgPM/PmTNn48aNK1euJIMCpJBBzWOxWHQ6XdAQRjOL13QB4gWqw1asQ5nb7S4tLc3IyPDv0ul0s2bNKigoKCwszMnJYRgm0OzJdlDqBQAjR47805/+VF1dvWXLltzcXDJ3qNfrlUrlpk2bAo9s8Ds0E4ZhRowYsXXr1scff3zLli1kgI1cKCgi1dTUpKenB33c3zwEp9PZoquTb71s2bKsrKzA/YG11xjz5s3bunXrJ5980qNHD//OTp06Xb582eVy+dvs7NmzXbp0aVGpWgdUh80nfnXIvPLKK8OHDw8anCOjRCkpKXK5/IYbbghMO3/++WcA6NWrV9CJBg8erFKpvv/+++3bt5PEEgD69Onjcrl4nu/sQ6VS1a/9BmnMJkkPds+ePWfOnPFfqGfPnkeOHHG5XORlRUXFuXPn6hfSYDAEhpqWZrk33HCDQqGorKz0fx2TyZSYmBg4xtYgn3/++X/+85/Vq1cHtjEADBo0iOf5//73v+Slw+H47rvvBg8e3KJStQ6oDptP/OqQIcM8Y8eO/eCDD/bu3bt79+533333sccey8nJyc/PB4ApU6bs3Lnz3XffLSoq2r179yuvvHLjjTfWr0GlUjlkyJB33333ypUrI0aMIDvz8vKys7Nnzpy5d+/e4uLiDRs2DB8+fM2aNU2XieTJ33zzDZk7CKJv375t27ZdsGBB9+7du3fvTnZOnDjR7XbPnj371KlThYWFs2bNMhgMY8eODfpsr169tm7deuXKFYfD8frrr9tsthZVll6vv//++5ctW7Zx48bi4uIffvhh4sSJ/nsTCgoKpk2bVv9TTqdzyZIld9xxh91u/yEAt9vdrl27cePGvfjii5s2bdq3b9+f//xnlmUnTpzYolLV58iRIzsC2Lt3b5gnjAJUh80nfnUoy8zMLCgoeO+991asWFFaWqpQKNq3b//II49MnDiRmOXo0aOdTud77723ZMkSg8EwZMiQOXPmNHj2kSNHPvLII7feemtycjLZw7Ls6tWr//a3v02bNs1ut2dkZDzxxBMPP/xw06Xs2bNnfn7+woULb7rpplWrVgW9ixAaPnz4v/71r8B7kDp06LBmzZpFixaNHDmSZdkBAwZ88sknSUlJQZ+dM2fO7NmzBw0aZDQaJ06ceM8993z77bctqUB4/vnnDQbDwoULy8rKkpKS7rzzztmzZ5O3Tp48uX379vofOXPmTElJyVdfffXVV18F7t+3b19KSsrLL7+8aNGiuXPn2my23NzcNWvWJCYmtqhI9Xn99dcDX7Zr127Xrl1hnjPSUB22pLbiVYeo1QwxUigUiUN/EU6hUKIEtRsKhRIlqN1QKJQoQe2GQqFECWo3FAolSlC7oVAoUYLaDYVCiRLUbigUSpSgdkOhUKIEtRsKhRIlqN1QKJQoQe2GQqFECWo3FAolSlC7oVAoUYLaDYVCiRLUbigUSpSgdkOhUKIEtRsKhRIlqN1QKJQoQe2GQqFECWo3FAolSlC7oVAoUYLaDYVCiRLUbigUSpSgdkOhUKJE7O1m3759kydP7tevX+fOnXNycsaMGfPJJ58054PFxcVms9lsNlsslpZedNasWWazef78+S0v77V57bXXSMFefvnlSJyfEgk+++yzsWPH9uzZs3Pnzrm5uQ8++OC+ffua88G1a9eazebhw4eHcNFBgwaZzeZt27aF8NnGWL16tTmATp063XjjjZMmTZLCUvExtpsffvjhD3/4wzfffKPVam+++ebk5ORff/312Wef/eCDD8S90KVLl8xm88qVK8nL7Ozs2267rWvXruJehbBx40aysXnzZromclzwxhtvzJ49e//+/ZmZmTfddBNCaOfOnQ8++OChQ4fEvVBBQYHZbC4sLCQvBw4ceNttt6WkpIh7FQCQy+V9+vTp06dPTk6O3W7fsWPHH/7wh5g7jiy2l//ggw84jhs6dOg777xD9syZM+fjjz9evXr1xIkTRbyQ3wIIDz/88DVXpA+NkydPnjp1ymAwaDSay5cvHzhwIDc3NxIXoojIqlWrAGDevHmTJk0CAIfDMW7cuMLCwk8//bRnz54iXihIh4sXLxbx5IG0adNm3bp1ZNtqtQ4fPry4uHjt2rU33nhjhK7YHGKc3ZB+UEJCgn/Ps88++/333wemlwUFBSNHjszKysrJybnvvvu+//77Bk81fvz4wPxlx44dZrN5wIABADBq1KiFCxcCwMsvv2w2m202W1Bnyu12L126ND8/v2vXrrm5uTNmzDhz5gx56/333zebzVOnTt27d+/w4cNvuOGGu++++8iRI419o02bNgFAfn7+HXfcAfXkRZEmQTpUq9UrV67ct2/fggULyJ4mFBIE6cL485dFixaZzebHHnvMZrOZzeZvv/0WAEaMGDFq1Cio15kqKSmZNWvWgAEDunbtmpeX99JLL1mtVvLWjBkzzGbzv//97w8//HDgwIE9e/acNm1aZWVlc76dXq/v3bs3ADidzpCqRzRibDc5OTkA8Mknnzz11FPbt2+vqanR6/UZGRkMIxTsnXfeeeqpp44dO3bbbbcNGDBg3759f/zjH7dv396iq4wZMyY9PR0AfvOb3zz00ENyuTzogKlTp7755ptWq3XkyJHp6embN2++5557Ll68CAAqlQoAzpw5M2vWrOzs7KSkpIMHD86YMcPr9TZ4LWI3d91111133QW0PxUnEB3OmTNn8eLFe/fudbvdqampgX2cJhTSTORy+UMPPUS2R48ePWbMmKADKisrf/e7333++edGo3H06NEcx61atWrixIlEaUSHX3755YoVKwYOHMhx3NatW//2t78159K1tbUHDx4EgNimNhBzu5k2bRrx3YKCgilTpuTm5o4ZM+bDDz8kVWyxWF577TUAWLBgwdtvv01qHwBeffXVFl3lkUceMZvNADB06NC5c+cqFIrAd3fu3Pndd98hhNauXbts2bIvvvgiOzvbYrG8++67AECM79SpU8uWLVuyZAnJui9cuNBgcDt+/PipU6eUSuXgwYNvuukmk8lE+lMtrxhKVFmwYEFSUpLdbn/77bfHjx/fq1evhx56aMeOHeTdphXSTBQKxdy5c4mcpk6d+sgjjwQdsGLFisuXL3fo0GHjxo1Lly5dv369QqE4ePAgyX3IB8+dO7dhw4YlS5bMmTMHAL755pvGLldWVnbPPffcc889o0ePHjhwYElJyYQJE8aPH9+yehGbGNuNyWQqKCh47733xo8f36FDB4zxr7/++sILLzzzzDMA8Msvv5D0b/To0eT4ESNGAMDJkyerq6vFKsPu3bsBoGfPnp06dQIAuVx+5513AsCPP/7oPyYtLa1///4A0KVLF61WCwClpaX1T/XVV18BwODBgzUajUwmGzJkCND+VDzQo0ePHTt2LFy4cNiwYUlJSS6X67vvvps0adJnn30GzVNI+JCrDB06lCQyaWlpffv2DbpKfn6+Xq8HgD59+gBAVVWVx+Np8Gwej+fAgQMHDhw4dOiQ1WplWfb8+fPHjx8XscAhEPuJcIZhhgwZsnDhwu+++27Xrl0kyVy3bl1xcXFVVRUAKJVKjUZDDk5MTCQbNTU1YhWAXCVw/IhcJdDRAt9Vq9UAwPN8/VORntT+/fuHDx8+fPhwMsxE+1NxgVarHT9+/FtvvfXTTz+tX7+edK9ef/11aJ5CwqdFOiQihEZ0CADt2rU76+Onn356+OGHd+3a9cADD4Rw14iIxNJuamtrt2zZ8tprr/lHsNq1a7d06VKZTAYA58+fN5lMAOByuRwOBznAPzYW2CoEkm36T9XMUTQAIFchjR34Wb+1NZNjx46dPn0aAMrLy48ePXr06FGSAdH+lMS5dOnS559/TrrJhN69e8+dOxcALl686PV6W6QQhBDEVIf1SUpKevzxxwGguro6tlKMcXbzl7/85Z///OeiRYvcbjfZ8/XXX5OBm/bt2/ft21epVEJAf+SLL74AgB49ehgMhqBTkYE9MiQGAF9++WXgu0QENputfhkGDhwIAIcPHz537hwAuN3uzZs3+/c3H9KT6tu379kA8vPzgfanpM25c+dmzZr10ksvbdiwgezhOI6MmKSlpclkshYpJFCHNpuNTEX5uaYOt2/fTv4WLl68+PPPPzd2lZbin8/V6XThny1kYnnfjU6ne/rpp+fPn79q1aq1a9e2a9eupqampKQEAO6+++4OHToAwOOPP/7qq68+//zzu3btqqys3LVrF8uyzz77bP2z3XbbbRs2bNi2bdv06dOtViuZQfT3YtLS0gBg1apVRUVFTz/9dOAHb7nllltvvfX777+/99578/PzDx06dPz48ZSUlKlTp7bo6xC7Cbq7dNiwYTt27Ni8efPzzz9PpEaRGjfffPPQoUO3bt36xBNPLFiwIDExsaSkhPTWZ86cCS1UyG233fbpp58uXrz42LFj+/fvT09PLy8vD9ThxYsXX3jhhby8vBdeeCHwg5MnTy4oKDh79uyYMWPIWJLH48nLy7v99ttD+FJkqJhs19TUnD17FgByc3PJoE+siHF289BDD61YsSI/P1+r1Z4+fdpqtfbp02fevHn+uacZM2YsXry4S5cuW7Zs+eWXX/Ly8j7++OMG/X706NHTp09PTk7etWtX27ZtyR0TLpeLvPvoo4926dLFarXu2bMnqLuLEHrvvfemT5+uVCrXr19fXl5+9913r1u3Ljk5uflfxN+TIvPffu68806WZS9fvvzLL7+0pGIo0QMh9MYbb7z00ku5ubkcx508eZJhmPz8/JUrV953333QQoXMnj172LBhMpnsu++++/3vf//73/8eAnT417/+NTk5+dy5c8eOHQv6YFJSUkFBwd13311WVrZ+/XqlUjl9+vQVK1aEFqX8Q8UHDhwoLS3t2rXrk08++f777/tvMYkJ/w+IQEt3E0lHXAAAAABJRU5ErkJggg==", "path": "image.png" }
Which solution has a higher concentration of blue particles?
[ "Solution A", "neither; their concentrations are the same", "Solution B" ]
1
The diagram below is a model of two solutions. Each blue ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the blue particles represent the solute. To figure out which solution has a higher concentration of blue particles, look at both the number of blue particles and the volume of the solvent in each container. Use the concentration formula to find the number of blue particles per milliliter. Solution A and Solution B have the same number of blue particles per milliliter. So, their concentrations are the same.
neither; their concentrations are the same
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHSCAIAAAD+M18XAAC8x0lEQVR4nOy9d5Qcx30nXtU9eXMO2IBFjgQIkCBAMCeQIpgTKFJEpCRKfrZP9snyST/r2fds+Xy6OydZNklQSAwQEwAGMCeQBAkQAAEi58UCm8PMzk7s7qrfHzVdU9Pd09MTdhfYqc/DW8z0VHdXd1V9P99UVRBjDDg4cg2EkKIokiQhhAAAGGMIIcZYFEW73S6KoiAIo11HDg6OGGyjXQGOsQOEUCQSCQaDwWAgEolKUlRRFIwRxoAoHOSvKIp2u8PlchUWFhQUFLpcLgjhaNedgyOvAblNwJE9otHo4ODg0JA/GAwpigIABgACACCMc4DKBxghhBDCGGOMbTZbQUFhWVlZaWmpw+EY7efg4MhTcCbgyArhcHhgoN/v90ejEgBAECCEWrcPEfrq/xhjTJgAIUycSBhjl8tZUVFRXV3jcrlG4zk4OPIanAk4MoQsy/39/V7vQDQqCYIgCJAAAEBCAgAAYhwgRGiAUkGMBshnRUEIIVmWEVLcbk9dXV11dbXNxv2WHBwjB84EHGkDYzw0NNTT0x0OhyGMcwBhAQBAAhewtgAG1CAgbiKGDLCiKCSuUFxcMn78+OLi4lF7Qg6OPANnAo70gBDq6+vr6+tFCIuiACFJAhKSBX3V/oVZUIOAuokwVhQFK4qCkCJJksPhGD9+fG1tHQ8mc3CMADgTcKQBWZa7urp8Pp8oCoIgAAAhhIIQ8wiRMsQyYJKFyAcaLQCUCRBCGCMaNSBuIkIGsixjjBsaGsePbxFFcdQemIMjP8C9sRxWIctyR0eH3+8nswGIOwiqRgEAQHUNARDjA3IkRgbqV0R8RwBAQRAQAgAAQUAICYRRiGYiikCW5dbWVkVRJk6cxMmAg2NYwZmAwxJkWe7oaPf7hwgNMLEBSAkg0ZMDMcZq5AADgMhRMsMMQnIwTgYQInJcEASMsSBgURQxRufOtWGMJ02azMmAg2P4wJmAIzUQQl1dXX7/kM3G0kDMO0TKJHPoE48QhAJLBoKAEUKEDCCEGFNaESBEDBnYEJLOnTsniraJEyfymAEHxzCBz/jnSI3+/j4aG1CNgBgNxOQ3ayMkcoNankh54lCK/Ur9SywEAdKLCYIgiiKE8OzZs52dnaP4Bjg4xjY4E3CkwNCQv6+vT2BtAUEjvWMS3+SgejH6mdJA7AtzhFKLoBKDoCjy8ePH/X7/qLwBDo4xD84EHGaQZbm7u0dREKunAyAk6v6ABHspNGQA4rIesA4lWpheR40rQDUWTW4oiKIYDAZOnDihKMrwPzQHR96BMwGHGQYG+sPhEA0P0IRRRnOnEj/+T0UCGaiH4hKfRBroBRkOoKfE7kLIoLu7i/uIODiGA5wJOJKCrClEvDRUcGuWFdIEcVVvT+xvIgeQz5g9i/UIscyhnguZnwRFQWfOnI5EwsP1wBwc+QrOBBxJMTAwEI3KggBZFw5ICAkkPTfROKCrT0D1nxbsDMdYthEDQQAQAptN9Hq9HR0duXk8Dg4OFZwJOIwRjUb9/kF2Bllizo9+EpnWPqCyPdFHxP6Ng3ExxW/E/EpzlsCFCxckScrJM3JwcBBwJuAwBllo2mh1OYOpA9SZQ78mBwYAMxZD3BSAkJBHwhH14jGGEATB6/UODAxk93AcHBwJ4EzAYQCM0eDgIJW/NKUHJNIA0frZNebIJ3XasOG1IXMKYJ1FzNUI82CM49ECAMj0M0GW5a4uHjfm4MglOBNwGCASiYbDITW3JyHqSxeSAwmyHmJMlfrYB82q1MzlWYrAlEIYJxK7VBG5AptsCnt7eyKRSI6elYODgzMBhxGCwYAsy1ZKUoPAMImIcgBjScQ3L9OJe7q5TfwyzNUg/TA0FOCzzDg4cgjOBBwGCAaDrBqu2WMAqFKb2AEU1A4gHygHxPepie1cxp6CdR80d6QXpHsjQ1mWvV4eKuDgyBk4E3BogRCKRKI0mUcDw9RRjXw3KsA6lGIcQQ6wpdTNDFjCwIkFyP0xtwk4OHIIvhYphxaKokhSNNmvrKYPIdQTgKrFx60H6vahtgGEgGxQQ/c3pucmXjBuf6iUEPsWDAbIngbZPi0HBwe3CTj0kGVZliVGRrPiOIZEH5GWDfQ+H/bHxAJav5BqGWD2V+oaotcLh8MmdMXBwZEWuE3AoQVCCCGSsolJUhAB2XnG0AtkSAaJB2mgmDUaAGM2IABiOxYwYYYEY4K5FFAURVFQzp6ZgyO/wZmAwwCJYVv1WCyGHJfJ6hoSCYAQIoTi5zDSnLEitB9A3DWkiRYk/GW8U8Pz5BwceQnOBBxaYEw2mxSo/I0HBXB840mQKJUN3UeMTNeaCPQAQwbxgiqFYOYu9DPGGCOkuSAHB0fm4EzAoQWMbScJ6JwvJjiM6HKkbOiYPR1jxCwaQTV6NnYQvyxCiAj32P8JVgOtABH9gJQhx8kyGCPyPjg4xj44E3AYgEhestswhKIgYGoHkN9JCAFoPUixX9Vr0Itp7AME4tHghIlmsYgB0n6gYWSGUrhBwMGRM3Am4NCCbEqDEEYIi2JMPYeQ+IuInwgLggAA9RSBRJ7QZI5ql53AmCxMxNoG8UwhJh6AyGeEAEJAJQYSVQaiaLfZeO/l4MgN+Fji0MJmswmCqChRACDGsX8IYQhJ/j4xBUhMGNIwMvESsUIfJCaGqmo++RVp7ADGicTaAQhjhJCi/8nlcnEm4ODIFfhY4tBCFEWHwxGJRFSVHAEAiBGAEIIQAiCos8PiBgFC7BEWCeJeDQmwAQBCAyiRD5D6mQQQSECBVAYDAAsKCvm0Mg6OXIEzAYcWgiC43S6fz0fkPl03CADqC0JqAJmGCjSzw9RvTPiXZqYy/EEDxRqVH8XsBzWMrJJHLDkVQlBcXDzsL4KDI2/AmYDDAB5PAQAAIQShAAASBKgu7RAPDBAyYHa1xBjTnYoxkyGaMFdA1fETXD1kLpsq+2MEgBBGCClK7DeE4g4lu91eUlI68q+Fg2OsgjMBhwEKCwttNpuiyIKAMBYQUgRBQIhuXUk2EcMQCqqoJxOSgUoJgBCGOsMsTgnqWkOITgjQ+YVilKCKfhorxuq5uLi4uKioaFTeDAfHmARnAg4DOJ3OwsLC/v4+4osXBEF12kByRJ1wgJhNKNlIMtDZBPSvGiVgChD1n1KASgTUGiDfFRqmrqqqttvtI/pGODjGNDgTcBgAQlhWVtbf36coCAAIQCxoDCFQgwexrCEi0BPnl8U/skEAOk1M9f5TKR+nAZ1BQA/GfEoAAKfTWVNTO+KvhINjLIMzAYcxSkpKXC5XKBSGEEAoIAQwBoIABSGWVwohsQxic5HZNSfYvwAAdqowjq0uF7cMVBGPMGsLqAEDEiegU5ExxhUVFTxIwMGRW3Am4DCGw+EoL69oazunKBAAKAhYEBBCZFtjutIDJFFiukZpYu4QosmmdNaY0URiFFv/VA0aU6eQ+k1hJpSJDQ2NoiiO9Ovg4BjT4EzAkRTV1dW9vd3hcBjEFHyBxI2Buh4cjDEC1C1BFF9oQp1Kps0VRYgEkBWVDjDGiFoANHFIjRzEDILq6hruGuLgyDk4E3Akhcvlqq2tP3XqFAAKOYIxEAQyqVhITBOi0w7ipydOMAY0QsCYAkwWEY57gTAGccMAKTRC4HA4J06cxGPFHBw5B2cCDjNUV1f39fUODPSLIsZYxBhjLEAIIFRi+aSAbmhDpxoAoA0SxL7Gw8AYE4cPiRjrkoUUhDBCiqIoJHOUXKWpqamqqnoU3gIHx1gHZwIOM9hstvHjxw8NDalbRWKMsZpaSmiArjsE2cnGQLMYKTNdQF1kIp4pxKYLIaQoCqUBRGmgoqJy0qQpfCVqDo7hgMGeUxwcGnR0dBw/fgwALIqiIIhksjGkUQIIjQR03BRQpT+gc4wZz5A2VkxiAyoNxNavdrvdV165oLKyamSfm4MjX8BtAo7UqK2tDQYDra2tCGFRxKIoqpONYxlElBJIeUPXEF17jo0OEEcQARMupslCEGNst9tmzJjBaYCDY/jAmYAjNSCE48e3KIrS1tZGPDqCkEAGJGAAACbfVJcOSFyACNAlRbXOoZhBQIgBsU4hu902Y8bMpqbxo/bwHBx5AM4EHJYgiuLEiZMwBm1trRgjQcCCAKmbCMTIgCQR6XcpiJkCiRHjOAEwfiKaKYQxxna7fcaMmRMmTOLhAQ6OYQWPE3CkAVmWW1vPnjlzFiFFFAUIIYSCuiadoIaLY3PNEALMitaAuoZIOhBdVI5EjDFGioIBiDuF3G739Okzmpqa+T4EHBzDDc4EHOkBY9zR0XHixIlgMMAGDFS/EAAgtlQ1u/AEiDOBZtU5ugw1oYHYiRUVFTNmzKqq4rEBDo6RAGcCjkwwODh48uTJrq4ujBHhA8BEjNk1iECijwhjahPEJg9QdxAAAGPgcDgaGxsnT57q8XhG59k4OPIPnAk4MoSiKJ2dHWfOnPF6vRgD1T4wSCrV7VEc33mGLDwHAMAYi6JYVVU9adKUyspK7hHi4BhJcCbgyAqRSLi9vePChQs+30A0KkWjkiRJ0Wg0GAwihKLRqCRJiqIQ6W+z2UTRZrfbBQEWFBTY7TaHw+50Op1OZ2VlVUNDY01NLV9MgoNj5MGZgCMHkGWpt7dv7dq1H330USgUpFtOKkpsqjD5KgiCIAiiKBJWsNlEt9u9bNmyRx5ZVlxczFcY5eAYLfAsUo4cwGazV1VV+Xy+1tZWm80GIRRFkQkcxEAoQZJkMm8AYxyJRCKRaFlZ2ShVnIODAwDOBBw5BIRQEITE6ceGxeKxBFJ+BOvIwcFhAB6X4xg1cA7g4LhIwJmAI/ewKOJ5jIqD4yIBZwIODg6OfAdnAg4ODo58B2cCjtzDotuHxwk4OC4ScCbg4ODgyHdwJuAYNfCIMQfHRQLOBByjBu4d4uC4SMCZgGPUwG0CDo6LBJwJOHIPi8o+twk4OC4ScCbg4ODgyHdwJuDIPbjbh4Pj0gJnAo7cg682wcFxaYEzAUfuwWeWcXBcWuBMwMHBwZHv4EzAwcHBke/gTMDBwcGR7+BMwJF78AAAB8elBc4EHKMGnjvEwXGRgDMBRy6BVaQsxpYf/npxcHCYge9oz5EDYIwDgQAAoLS01Ol02mw2QRDIX6AT9wghSZIURZEkKRgMKooSiUScTueo1Z6DI+8BuUbGkTEQQv39/SdOnDh8+PDJkyfb2toikQiR/uYgvQ5jjBDyeDzNzc1TpkyZOXPmxIkTS0pKeJiBg2OEwZmAIxP4/f5jx47t3r372LFjPT090WhUEAQIoV6IU6GfrKcRPkAIOZ3O+vr6WbNmXXHFFZMnT3a73cP+GBwcHAAAzgQcaQFj3N/fv2vXrs8///zcuXORSARCSDjAyrkgeSCBHFQUBWNcUFAwZcqUG264Ye7cuSUlJcPyJBwcHAw4E3BYxcDAwI4dOz755JOOjg6EkEUC0CMlJSiKghByOBxNTU3f+973FixYUFhYmH39OTg4koEzAUdqhEKhXbt2vfPOO62trYQDcnJZhBBlBfY48ReRv3a7ferUqffcc8/cuXPtdntO7svBwaEBZwIOM2CMz507t2XLlm+++UaSpGQcAGHmHYkI/WRkAABQFKWgoOCGG2645557ampqMrsLBweHCTgTcCSFJEk7duzYunVrV1eXCQdoaEDz1crcgmSeIhJJBioxTJgw4dFHH50/f74oihk+EgcHhxE4E3AYY2Bg4PXXX//kk09IXhA9TmMD5AP9S/08evvA0AWkAWsEsGAtBlmWi4qK7r777qVLlxYUFGT/jBwcHAScCTgMcP78+fXr1x88eFATE4YMzK+gmUqmP2h4SjIyoFcgH6699toVK1ZUVFRYexoODo4U4EzAocXx48efe+65s2fPajxCJGEUpLnAnMbtY768RLKYASEJWgYhNGfOnB//+Mfjxo2zXhMODo5k4EzAkYBjx44988wz58+f19BAsoljFkHle0pPkaFlwJIB+aAoymWXXfYnf/In9fX1mVWJg4ODgjMBRxzHjh17+umnL1y4QGnAujsoJTRMkK5loPEREXAy4ODICfhapBwxnDx58plnnmFpAGRtCrBgGcX8goZ3FASBVkwQBFEUBUE4cODA7373u87Ozuyrx8GRz+BMwAEAAF1dXZs2bWKdQkTa5ooGWFAySHblZGyhOYXELfbv379hw4bBwcHcVpKDI6/AmYADBIPBF1988ejRoywNDAcHgORSXl/MnAnoekeCIHz++eevvPKKLMs5ry0HR56AM0G+AyH0zjvv7N69Wx8bGKY7sjaBiVlghQzIZ4zx9u3bd+zYMUwV5uAY8+BMkO/47rvvtm/fToOxw8oBLKzMSDCMKmscRAShUOiFF144e/ZsbivJwZEn4EyQ1yATif1+v168mp+YJWGwer1JGf0SFxpbgX4QBKG9vX3z5s3hcDjjWnFw5C04E+QvMMbvvvvu8ePH0/ULUZ+M9XQgk4uYF7BYGQCAIAhffvnlZ599llY1ODg4AGeCfMapU6c++eQTKouJTE+54jQr+jU0kAEZmBNPWtYJhFCSpC1btnR1daVVDQ4ODs4EeQpZlt9///3+/n59ANYErDVgUiBdmF9N86umnuxnURTPnj378ccfZ1AHDo58BmeCPMXhw4d37dpFl3e2IsFZEcxOFc4mZmB+brKlKZKRAfnw7rvvtra2ZlYfDo78BGeCfISiKJ9//nkgELAeKNZIW9anpC+ZFjGYhwqsGB/sZ0EQOjs7v/zyS+sV4ODg4EyQjzh9+vS+ffvY/V5Sym6Neq6R0dZXG9Uj5a0NQxeavXE0RPXJJ590d3dbrwMHR57Dls3JGGNJkiKRSDQajUYjkUiUjFCMMYQAY2y3O5xOp9PpdLlcdrs9V/vfcmSJ3bt3Dw4OalxD1hV5CGG64t7KBa0XIKI/2WwDQRDOnz+/b9++JUuW5KqGHBxjG5kwAcY4Go0ODQ0NDflDoZAsy8wywhgAgFDsL/Uj22w2t9tVUlJSXFzsdnsyditzZI/+/v49e/awR6zHijURYzZOQDpAytxQQ5gvUp2SdTQbpZEkoi+++OKGG25wOp1p1YRj+ECWj5VlmawLwraX3W632Wx8U9JRRHpMgBAKBgMDAwNDQwFFkQEAEAoQCqJIlf14IJGCNL/X6/N6vaIoFhUVV1ZWlpSU2GxZWSQcmeHkyZOdnZ2Z2WcaiQyZTSv1v1pHSpsgrdOJWXDixIm2trZJkyZlfFmOXABLkhQMhoLBQDgcjkajsizRfSYwBsSFIAiC3W5zOp0eT0FhYaHH4+GsMMKwKosxxoFAoLe3NxgMEBVMFG0aVRJjAGHMFACxjQYxxghCKAhYEASywUhfX19/f19BQeG4cePKysq4y2gkgTHev39/NBq12+3kiEX7TJM5Si0AqNu/Pl2Dz/wUQ5Kgd08WuIYQer3eAwcOcCYYLSiKEggMDQ4OBgIBSZLUliLNJABAGh0T3VFRFFmWAoFAX1+fIAhut6ukpLSsrNzj4f6DEYIlJohGI729fYODPoQQsQAgTEgmYcYqVp3IseMIQUEgfIAFAUIIBEFQFMXvHzx2zF9eXt7Y2FhQUDg8T8ehhc/nO3bsmOEqDuYn6nN19PYB+zktHZ+uemQI0mGsX41UQFGUb7/9dunSpQ6HI61zObKELMs+n8/n84ZCYYyJxBBVDoiBevyI10AUMUIC8R8ghIaGgoODQx0dHSUlJTU1NcXFJZwPhhspmABj7Pf7u7u7IpGoKAo2m031KceahtgBEEJ14JNYMSJ2H0JAEATS6GS0C4IIIQKxsSp3d3d7vd7x41uqq6u5cTACOHfuXHd3t36D4gwupQkVkPZNlwP02r2+gOF8As1B/VdBEM6cOdPd3d3Q0GC9PhzZgIiL3t7eUCgIAFk2XFQ9B5BkkaglyWeMEMYYYoyJvqieRdwHqKenp6+vv6qqsr5+nMfjGdWHG+MwYwKEUF9fX19fH8bIZrOpS9Yn5JkIAg0VkqaFGJPgQcwsIM4ihIAgAIyJfzAmhjAW7XYQjUaOHz82NDTU3NxMXRYcw4RTp06FQqEs37PGJ0P/ZpxQZHKWOUmYXJM4iE6fPs2ZYGQQjUZ7eroHBwcxBsR1LAisrCCfAXEHEacgQoiUUfcrhRAqGAMAYl4HYtt1dHT09/c1NjbV1NRyfXGYkPS1IqR0dXX29vZACGw2mygKiYCx/yBkjpB/pO0FCMmv5B/5Gj9FFMkGhKLNZoMQnzvXeuzYsWg0OpIPn29QFEU/+dZKcg4w9QVlQwAW5zEYHjSPLgAAJEni61SPDIaGhtra2rxeH4SCzSaKIvEh0/Ee0yFVrzKRD0QOQEEAVJhAKJItiFQRIYiiaLPZIpHoiRPHT5w4EY1GRvtZxyaMbQKElM7OLq/XSwgAQgFCIAix9gMAa7x+BOrIxAAQ3R8wHiQoCAJCAAAkCBAhcgRiLEAoCgIQRdDV1QkAnjJlKnfsDhOCwWBHR4c+uGrxdDZ5lB6hF8ksc1RRFPMKmHiHkt2RXhBj3NraKssyz1IbPmCMvd6B7u5uhLDdTrzHRKMHJKWAFBMESJw/pEkBABjTdoeCgKknmcSM1COxEjYbVhTQ3n4+EAhMmTKlsJBHFnMMA5sAIdTV1eX1DqhquyAIkDC8GiFgTYEYmQMQ+6d2BUgtA0GI2XrUMoAqyJXpBuUdHR3Hjh2VJGnkX0Q+YHBw0Ov1ZhN808hfNu6X2QXNKcTcL6QPYmvOghB2d3eHQqHM6saREhjjgYH+rq4ujLHNJgoCEReAlQyq3ADq2I97C1QRQT0HkJESMFHIEP+BfWCg//Dhw0NDQ6P96GMNBkzQ39/v9fpEUaQbmguCQL091H+n8RGrfAAAs9ow+ZFOXVIPURpI6Bbkjp2dHWfPnskmu5wjGXw+XzAYNPwpLXrIJiQALPujrFzH8DP9KgjCuXPnNm7c2NPTk+W9OPRQaaAbACiKxKsDqCsYAIFqjZQAAADqQTLqgSoiYl4j9XRIPUsqZxAyEOx22+Cg7/DhQ5wMcgstE/j9/r6+XpLrSRV3Vraze52zf0G8ECkPVOlPj4PEYrGGpx2FKhFnz57t7OwYuXeQN/B6vcm2fc8g4Sdj0K7ATE1PA3oi0fMKvUUgEPjd73731FNPbdu2LRAIZFFrDi0GB31dXd0QAptNUD3+IuEAjazQQL0ABIAqkDF1kPxAj6rCgaUH0Wazeb3eI0cO8/3pcogEJpAkqbu7GyHEWgOs3Gc/sO3KkoF6MU2rU2Kgp1BPIqC3ImYgQuj48RN+v3/4Hz+/MDAwoJnoD3KnoacLKzFqi6ml+pJsJANj/O233/71X//1z3/+8z179qQ7NYHDEKFQsKurGwAgiqIaPoSqd0DQyweduIBqFEFfSnUxx64DGMdRzGiw2WwDA/0nTpzgrZkrxJkAY9zX1xcOhwkNqF48bRMStk78Z0gMsdQxfduTZFMQ+5ktE+tAoigGAoHTp0+bTzjiSBfRaNTwlWbp608X1rknWbhYf0R/EDBBCLvdrijKu++++9RTT/3TP/3TuXPnuPsxG8iy3NXVrSiyzab1GOvB+o0BiEt5NbIIVFET/zWxLKCJRonOA6G9/UJbW9sIP/tYRZwJQqEQWRcokQC0/JwSiYWwqvtTIwAwhh51EFFHk0C6iCgKnZ0dvb29OX3YfEey9oPMHLFhrQDGWM0cz8ogsFiY3I58hhDa7Xav1/vcc889+eSTGzdu9Hq9aT8ABwAAgP7+vkAgQHxBVEZr8gnVEU0+a6eeMD8JpOmYgEG8PLmSekHWeQDJwkSnT5/2+XzD/sB5ADrJC/f29iqKIjBOOUraBHoxQs0CwNA3OyYTm1N7Pi3IqA90RoIgy/Lp06eS+bU5MgAxpU0kqSWqH36YpyTpXUP6AvSzoijsV5KVcPr06X/4h3/4kz/5k48++ohPYUkXoVBwYGBAFFlNjqj2rEMfsiogiMvxBHWSUgI9roodtghrc9CDAoRQFMVwOHTmDHce5AAxJgiFQoHAkJAwfy/BxFMPsT8DwEhzwCRssI2tGacaM5F80NRJpQSxv7+/r68vo+fiMIAhW1OwGnTOwYpv664hK1fWs5c5T0AIyfSCnTt3/uxnP/vVr351+PBhLkosAiHc29unKAo7ZSzRCRzXDjVgVUZdq2HiP1CLUT8Eq2uyKiPhISAIYkdHJ9+VKHvERL/P51MUxHqEGKMs9oEsJUSbk/xoeFEcm4Kk6RY48VzA/Mp2DqpiQEVRLly4wF26uQJkkvdNQqw5vy+r41v3QVkxCPRHNL9qbAIKCKHD4QiFQq+99tqPfvSj3/3ud+3t7VZqlecIhQJ+/yCdWgQAsKgyAkYpJE3GOgzY4U9/oZYqPc6WpJSgKEpr61keOs4SAgBAkiS/f5AuFKEx3+hAIlKbTBimi4cAnQqQfJzHVqlTC2D1IgnmBWtaQij09vbw5L+cw0TIpiWsLd4rLe+TeQVSMgHQeYdM7kWyULq6uv71X//1qaee2rJlC89SNwHGwOv1YYzZtBG9ykihOZBIDwmcQbRM9QjWlUkwDphrQAiBIAj9/f0DAwPZPl5+QwAABIPBaDRKpwICrdqudfUw+mPsL8v2pH0wxnRRCvYsNoigdxyx9gcAUBCEcDjU18fjxrmBy+UiDkBzWZ9DJmAJAKvh4pTlgZk+oS1vQgPkjub0Q9zNoigeOnTol7/85c9+9rNdu3bxWe6GiEYjQ0N+Zq0BqE4WS0YDUBMqMAI5iunQZ06nl9WHHiGTzAIlSeImXZYQAABDQ35VWOv9d/qlx+jA1sYAaPlEj3D8RKaZ491E5Qz2FrEehjFGCHd3d5FFTDmyRFlZGV2BxyRUQD05GXvPWb1e/yHlucnuay73DQtYdBpACEmm6UcfffQnf/Inv/nNb1pbW3NoGI0NBAJDkiTRxWOoqDASGoAN+WNsJi7INRhtMv6XACFA3UQYY4YGYnoGhEJvbzefaJYNBEVRgsEgdQppWks/GEgDk8+sVyeZNpfYJ+IeQPIjuQwACZMM1FvE/EQ+ny8S4QkeOUBpaSm7FltKswBCmNk0YKguR5GWx8mKX8ioQyYNEpBtT9Kqtt1u9/l8GzZsePLJJ//whz/09/dbP31sA2Ps9/up1575a3JKzJ8MQPwDvZqmMMMrAADMltGYC/QM1jE1NBTgDqJsIEiSJEmSaovRd22gebGkrSF5ps0MUgI0V8KYjmpKEnSns4TChPnD4RAPFeQEJSUlHo8npYZOZS6z32wKOc6Keyp/07IqMqABQ5Zij5DtTixWgEIQBLvdfubMmf/1v/7XT3/60/fee48rmwAASZJCoVBiqkhMuWPfOSvQDeMEqVRGY9NBRwNAdT7H/FSKovT28tWlMocQjUYURdHJcDY2gJm/eqNBW0wdsdqRy6puINFZhNUNjNgC9BRZVpKtm8aRFkpKSsrLy1npbG4WgEQRTCeFaX4yvIimWMq6WbmaTnYkHNEXUBQlYwcX2Z5v9+7d//2///df/vKX3333XZ5nmkYiYUmSqO8AAMC4a9jmjpVP1BTpEb2KGfvH/IQ1UsUQqucgnnvq8yVdVosjJYRoVEIoNuGIvlxGlBso+xo+oGUYHU3TuvSCGgEBE3sAoMXoAQAAxigY5BkdOYDL5aqrq2OVMnMxzf6qsQ+SgfSBdIWmeU1oh7FyHfZrlrKbOIvC4fCWLVt+/OMf/8u//MuFCxeyueAljUgkvkUMcfXoW4QlA42Cby7cjWiDNR2oxIgdU4/ES0IIA4GgJHE3coYQ1HeHGSc+YG0xdoQDnarIgr2uztbDifyBE//GL6AhA9LhQiFunucAgiBMmDCBzh/EFpJ5QKJ2z55IPyc7YqVKmt6VrID+V80phvQjSZLFaphAEASHw9HT0/Mf//EfTz755CuvvJKfayOGwxGmAyT8ZDj86Qd9CzBtGtc71fQRjV6ouVrsvMRrxtxTkiRxQZExBBx3+mvlLyvwgU4i6H+irUvbWL0axlhThh5k+0qM54n2yVQy7f2wOJJh8uTJBQUFmvFmkQw0IpuNB2DGfWS9MvSy5omeRoLGoM76I8mmlWUAkml6/PjxX//613/2Z3+2c+fOvHJEYIyj0SgrA6iezpbRtIvGc6ABLYN1QUfG4Ii7jNjqJN465iCSZSkc5rsSZQgbQoi+d1Yoq3NGcEpBzDaJzgVED7JcEucMdZ9Ltnz8FCJ8DO1QjsxQUVFRUFDg9/vZdFKEkGaNEBPohXJmNdGoBSnLmBzERgYBEV4pacY6aKbpZ599duDAgTvuuGPFihUTJ07MycUvcqhKgPagGjOA6ldoQu26pkzQFOlHoNU1EVVVdWexRgPEWMkres4tbGpbsqJZwJik9yI2VQCr/rgksiChhbDmm7Yh48TD+JEwAAhjRMvTU3I0lvMaCKFDhw5t2rRp9+7dFRUVRUVFzDy+GBkAa9OAcwJDKa8poDcyYrIhUe4bXgdjLEkSKamZOZ8NCB8MDg6+8MILX3311UMPPXT//fdXVlbm5OIXMyhrAwAwZkMFmM0QZSYJGVwBJIgLPaHjRGkQ1yYZmaD5ypIHFxOZw0bmdKgDLEbyRNyrDRxjemIcJBm6VLUHuqaNnaGO6tgAZxX/RMIgZxp7GDkyw/nz51955ZXXXnuts7OTLNXidDqdTictwLbssJIBO3RNaCDl6SZHKBRFoVmkULdQfjYgzqKzZ8/+9re//eCDD1auXHnjjTe6XK6cXPwiBBEPjMVPj7Op5wn6ItDxgUYXJEJAHeasBEiQ76wSSWQFQnGeAHHHAy3AkQlsIP66iTVAmhZjDIkTWBCQOveYZV2s+o4AS/bqJ8B0GrYtE9giseER85c1DjBZWmRkX8vYweDg4Hvvvbd+/foTJ04ANTkyGo329fXV1tayLxbnzpGSDDSuAHRiggVmoDmerLD+RgsWLHj44Yeff/75M2fOkMckK0/ksC/ZbDaM8d69e48cOXLTTTetXLnysssuG5N9lTGqEMYCABBjBKFIh7Zm6TC1UeIdipHdCZJBPRL/qn7CieI+/itgcoc0XWXELNqxB5vD4WBeJkKI7EKMBEHAGAIAEg0FchYxF+KNRP/XNS3GGKjkH7cDtCXibE/rgandACH0eApG+sUkAcY4EolQiUZ7ns1mczgco1o1LSRJ+uqrr9avX79r165IJEJ3JCV19vv9Ho+npKSE9RFhddmoHLpT2Itj1ZVspaSeBvTHDWkAAOBwOG655Zbrrrvuxhtv3LBhw7Zt2/r7+4ngxhjn0DggzqJoNPrWW2/t3r37vvvuW7ZsWUNDw9gTSWQgIwSInEcICAKCEKq54PGpZIntE/vAWgyJynucGEACJ9BjGndxXFhpzgXArF9xmMPmcDgghBgjjCFCWBDU14+QKg6g2kiAuuyp94a1AlUzLd486gfi1cXsQeIroo2KMXEfIXX6UsyLBAAAALrd7lF4NwBgjIPB4MDAQGdnZ3d3d3d3t9fr9fl8xOdAV2nHGLvd7uLi4vLy8pqampqamurq6tLS0tHiBoTQsWPHNm3a9N577/l8PlEUiSnAiieEUH9/v8vl0vg0NII1e4mmGeHmNAASZEGK4zhJ+ilCaMKECZdddhkAoKWl5Ze//OWSJUvWrl27Y8eOaDQqiqKiKLl1FpH9FHt7e59++umPPvroiSeeWLp0aVFRkZVzEUKRSCQSidAtpslG4uSyxInHrhEyKiCvi21DRheErI8o2RslY1zV5TUBAKzKEw0NaI+rciMmPcjcFXqKINjs9otLG7uEAEOh0NGjR0jnE1Soy8BCuhgcSN7GQOeqY5uQCQ/EmpAOYYTIygQK+aoosqKQaaFIlhXyFULQ19d3/nz7gw8+OH369JExvRVF6e3tPXXq1OHDh8+cOdPT0zM0NESS03FyFwpWFWqn01lUVFRfXz916tRp06a1tLRYFAo5QXt7++uvv/7KK6+0t7dDCKkpYFi4rKysurpa/1YhswQ8fS6LFaDymjqLKRmkPBEkSUU13PPSZFmhH/3oR/fccw97JBAIvPvuuxs2bPjuu+9AfAvVXDqLCCRJstvtCxYsWL169aJFi+x2u6YAQsjn83V1dXV0dLS3t3d3d/t8Pr/fHwqFaAEidkVRLCkpKSoqqqioqKurGzduXF1dXXl5+ahoGG1tbd3dXTabTRAEQRCFxI3rmVXhAABAHSWsDxkkeo8BDS5SpZBxHsZTlBFCqqBAGCuKghFSZFlBSCGriRBZgbHicDgWL762tLRs5F/OGACUZfnYsWOBQMBms4kihFBUyYDIAjJmQJI1p6hSQD0/tL0xq/Inen7INFSsGgEKpQRZRhgTGiCcoACAPvrok+3b36mrq7v//vsfffTR2traYXoXGGOv13vo0KF9+/YdP368t7dXlmVD5REz+ozhdeiTulyuhoaG2bNnz5s3b9KkScMaVBwcHHz//fc3btx47NgxrPpATCQdKVNfX8/mEWnAcgClB/rUlCdYjtTL/ZQcAEyNBmyk+yfbDxkhNHHixL/5m7+pqanR36Wrq+vFF1989dVXz58/z7rLcssHGGNJkkpLS2+//fYf/OAHU6ZMEQRBluWurq6jR48eOXLk9OnT/f39oVCIPpeJekELOByO4uLicePGTZ8+febMmc3NzR6PJ4fVNkFfX9/27dsrKyvr6mpJt4JQEEVR3TYgvnGNfoFSTRtRGtB4Dpi5q/FFTZDqI1AUhLFCvsiyrChEaCiKosiypCgIY1RUVHTttde5XKPjP7jUATHGra2tnZ2ddrtNEERBiO1PzZIBaWxC71QQkB9VDtCGgoHK9gAk0AC1BuINjZASY3eFfiUGAQDgwoW2jRtf8Hq9pBPMnDnzscceu/3223OrZSOE2tvbd+zYsWfPnvb2dkmSiIVk5VwTEQbURdAwxgUFBZMnT7722mvnz59fWlqaw8oDACRJ+vrrr9etW0dCAtS2M682eaVFRUXjxo0zf15DDtB4/HUD3pLTloq5ZJI9LRoAAAiC8NRTT915550mdzxy5MjatWs/+OADv99P/DC5dRbRSiqKUl9f/9hjj02aNOnbb789efLkwMAAdSrqb5dSwwDqdLmCgoLm5uY5c+ZceeWVDQ0NessjVwiHw5999tn69eu//fbbRYsWrVq1sqCgUNUxBKomkr3HAQDM+qDA8CHYB6Q0wIwgdnUrVmtUqPdYlhVVShDIxK9QW1t31VWLSINypAuIMfZ6vceOHRNFQvICJQNq+VFBAJj0IbWl451WH/lR/2fnolImoEvUIEVhaUAhbUwsv61bt+3e/Q1VNhVFsdvtV1999erVq6+88srs/acY47a2tvfff3/v3r29vb3ZqIcmlEBqjhCy2+1NTU033XTTtddeW1xcnGXlyZVPnjy5cePG7du3k5BAMimTrJLELCguLrYeKGaJgYpyi6I/WX2AEXkYSnxDbqDlZ82a9atf/Sol10aj0c8///yZZ57Zu3cvIX7AuIwyeBBDYIzdbjd5vYQArKsXwDRkQr0npaWls2bNuvnmm6dNm5Zbi1NRlO+++279+vWffvrp0NAQiTY98sjDd965VBQFuqe8RkQwb4/6hWBieCCBAxIfk8YLaSOzzoOYDxmhmLSgKiPGCGM0bdqMGTNm5vAN5BUgxliSpCNHDgeDIZvNZrOxBgFkET+HGSmsEQAS0gRjNIAQ29ikLTFpObVDUxagEQIFIQVCcPjw4c2bXw6Hw+zdEUKyLJeWli5duvSJJ57IZpJnb2/vhx9+uGPHjp6enly5CJLJKZb6bDbbxIkT77jjjkWLFrFJ/emiu7v7tddee+WVV9ra2qgvyESQsbTMwu12NzY2klGdc9XYBIxDwFisG8pBE+vB4/H8/Oc/v+qqqyxWYGBg4M0339y4cePJkydZt3f2PQFjbLPZKioqqqqqsnHrYzV2ApIwJTERPB7P9OnTly5dOmvWrJzYB62trZs3b966dWtPTw9VLwAApaWlP/nJU7Nnz8YYq52FVRkBERqJEQJN1pDWc0B6ZaKOQiQDDRdgVk1UIwRUg1QAQKJoW7jw6urq6uyfPT8RU+Xa2s61tZ232WyiKFDCJ4MCqDpg4vBgA0FawieJXwAANRaEVFaIJQipHIAxps3JNraMMQoEAs8//+KpU6cMhyUpOX78+EcfffSee+5Jd5KnLMt79ux5/fXXW1tb6QPmEIZ8wApihJDD4ViwYMFDDz3U3Nyc7vWHhoY++uijDRs2HDp0CKnRfmD6IFSLNERdXV1ZWRketixSDcxNAaC+QP2vJn4hjPG99967evXqdC3F1tbWTZs2vf766319fTR4kA0jEtFcV1dHLK3MLqK5YDL7ADH2tcfjueKKK+66665JkyZlfN/+/v633nrrhRdeOH36NPUB0ashhObOnfPjH/+YPJogkKRzyHY/COOuIRhLPWcDxfrWZ0cGoQGaThKnAUZljAeNVYMAl5WVLV587cWWyX0JIcYEwWDw0KGDsqyIYiyHiBkMkKF6AOJxQo1BECcGttMybJ+QJ6rSgKw2LaJOIdL8X3zxxVtvbTcc8/RGiqKIojh79uw1a9Zcf/31Fq3j3t7ebdu2ffbZZ+FwOJn2Zz6QTGpFC5gPXdr3a2trH3jggeuvv96icSBJ0p49e9atW/fll1/SkEBa7iA9EEJut7upqYnKUMr9ueWDRDXQuD7JKsxKC8NHmDZt2v/4H/8jM61QUZR9+/atXbv2008/DYfD2QQPBEEoKyurra11Op0p+0laMHkztFMhhCorK5cuXXrrrbcWFhamdf1wOLxjx45169Z9++23sixrJqBQQAgfeuihu+66E4AENzIAhj4iABLXLmP7APUckG/MsGB9RDGqoy5kjON+Ibqi/rRp07lrKBvQuQL41KmTXV2domgTBGoOxpnAyAMYNwvYKJeG6tl5A4kGQaxFKT3Icqy5AcD9/f3r1m3o7u5OOQ4xxrIsFxQU3HDDDatWrZo9e7Z5tszRo0dfeumlY8eOGXZxzV8ClLgrOjsOzYc6tqDYksjHzTff/NBDD5lbNhjjkydPbtq06d133+3v708ZEgCppCdghAiEcNy4cWVlCRl4TNZADmYV0Ec24QCQhCfM+QxjXFpa+pd/+Zfz58/PppKBQOCDDz7YsGHD/v37McakI6Xl3Hc6nbW1teXl5SQNVFOANBZ7nP1qhTas0CSxEefOnfv973/fou8UIXTgwAE2JGDStTDGVVVVf/Znf9rSMp7ki1GVERjQQPws+oEJMdIMIkB0f6AuJoGQokqPRHMAYzWUKCsKAkABADud7quvXszzR7NBvCMGAoFDhw5KkiSKtvi8AkYpYHNJE5cVoW2c0N60xzJacAITsFAUTA0CjJX33vvg008/s/4YJHhQW1t77733Llu2rLGxUV9GUZTPP/988+bN/f397Nimwo6OXvOurHlAaBosTSaLWV8N6dwzZ8588sknJ0yYYHid7u7u119//eWXX25ra9Pb7Mnum0x0Ap3/CmNcWFjImgUUdPacdVbQSzeTmrAl9S41WlWQXFba7faVK1fee++9KStmBb29vS+99NIf//jH8+fP05dshQ+Ki4vr6upoZidrQwPde6M9Td+vQCpWMHSRsQ2KMZZlua6u7rHHHlu8eLG5u4yEBLZt29bd3W1RvVAU5brrrlu1apXDYacSgvEkx8VFYiVjdYMJ21yDxN6akFiI44lDJCCCSK45OUKYA2Pc1NQ8b94VIzPZaKwioana2s6dPXtGFG1E1IgiQwWQcgBWQ0Dx9CH1AglZAawpAABg5g8T0Y8Ywo/HCAQBtLa2btz4vN8/lK4qSjrL5MmTn3jiiTvvvJPNNJUk6a233tq2bVswGNTQgMa2tQh2KJqLuWRCmR3PZOg2Nzc/+eSTc+bMYYsFg8EPP/xw/fr1bEggGw4AupgBbaPm5ma6/oShwUSGMX2B7EHKi4ARZ5DJLzKBSZ3ZLpTsWQAAK1euXLp0aUFBblYlwRifOHFi7dq177777uDgoLmzCGNss9mqqqqqq6vJghYg0U9i3q/YR2ZpIIMehRPZnawzeP/99997772GjtP+/v633377hRdeOHXqVFrqBULI4/E89dRT8+fPBwBrBlGiysi6hshnlOg8oA5kKjQU1t2lKIhOJkAIsxnnZG6a0+lcuPDq8vIKk5fMkRIJTCBJ0pEjh7zeAVG0q91CEASNgwiT5sa6UAHRb8iY1XEAcRYhldgJz2M6aRDFNh/Hsiy9+urr+/btF4RMPBLkijab7aqrrlq1atXChQsdDockSdu2bdu6dSvZiDX+8FkHBunbM/fAJBu3rIwjb6Curu4nP/nJ3LlzAQCSJO3fv3/9+vWfffZZKBSiK0aYVNhQWzQpQD6TcVVdXT19+nSfzwcsqMCswsteDTJzzUxOZ0EmjhiW14g2w3O9Xq/X67Xb7ddff/3KlSvnzp2bq7UZIpHI119//fTTT+/evZtmmmr6DMbY7XbX1dWxeaujqF7oyUAQhFtvvfWJJ55gwwbhcHjnzp1r167dt28fDQmYt7im5yCELr/88p/85CcejwdCoEoJyD4xEReah2ACyKw5EBu5ibeKq4mqJxmr+eUKUNehmzRp8qxZl2U8ijkItCN2cHDw0KGD0WiE+ogSI0K0nTURoTgl0O5C2hIngHqDsJpRGksIw1jBGAsC/O67Q3/848uSJGXzVBhjWZaLiorIJM8jR45s2bKFTBiOPbbW1sn8RoAZtOZDVy/UcKJFj9S5SE899VRpaenzzz//9ttv9/b25iQkoCcJaoh5PJ6bbrppxYoVtbW1//Vf/7V//36aMgCGJ7GKrXOyl5aSBiKRyMDAAFmkgTxIeXn5vffe+/jjjzc2Nuaq2l6v9+23396wYQNZzFWTbFpaWlpbW+t2u2k9s1QvQGJ3yowMcFwJw2SRpdtuu2358uWFhYUIocOHD2/YsOGjjz7y+/0pJyEmuwsAwG63r1mzetGiRRiTp2b5D+jWI4i3u6oyUpsAM50z/k3tn8SlHDMO6BQzUrXS0tKrrro6V7ZgPsNAd+vs7Dx27AjGmCGDGNsDgNUwchyJJI/Vr9TfB0izqdyONU4hkkgKAIYQDA0FNm16gS4jnCWIdJg2bVp5eTlrDeQwEEpAx4m5ZQCM/OCGZFBRUeH1eo8ePUrFSmZjlS2gdweRzKt58+Y98cQTt9xyC3Fwt7e3//u///uBAwcoDeSEMtmXAEz3uWRfhcl1AoHAwMCAZo8qolhMnDjx+9///t13360JgGeD8+fPP//886+++irJr4cQ2u32urq6qqoqURSx6hHK1btimcCEDECS5GD2IPlMyOC222574403tm7d2tHRkb16gRCaOXPGT3/604KCQpiAeDopWc8YJGacq1dmH5PmwgIAqMMA0WllehoAANhs9nnz5o8b15DibXJYgAETYIzPnWs9ffoUxmRHDn2iWIKDhRAAqxAzPZhOEYwRgEr1sTllNHIAAIAQfPbZju3b383h49nt9paWFqoy5FausWAHrYmMM5SA+nGLMQ6Hw93d3bIsZ8MBIElIgNyiubl52bJlDz/8sCZn6cKFC08//fTevXtBohcoM48HW1WQyglu5YkURSFLthlKKKzmFl9xxRWrVq265pprcpVjrijKgQMH1q5d+8knnwAAmpqaNB6hnJtQRIKbG0bJhLW+UxHRf/ToUTrb2byq5rtAk5uKorhq1cprrrkGAGDkPNBfH1PngVo9nNjo1G8Qn4nJzDxVKA1ACKdOnTZt2gzuF8oJjP25CCGGDBJ8RKzdBxP8gITkAYTUGmDBcgDpuyT6j0nYB0LY2dm5bt2G3t747J4snw1jXFNTM27cOFrbYaIBYE2JSybmNAxBR+DQ0FBvb2+6vEKhcQdRkUG8KEuXLl2+fHmyKUgDAwPr1q375JNPUGIGLWUCzVlQtyyd5rWA5NKfrZ45B4BEj5D51Uhu8ZIlS5YvX57DVWzD4fBzzz337rvvFhYW4lybAhqw9JlBp6L7tdGughDq7+/3+Xzmb8NK10JqxuqsWbN++tOfFBR42KRzAOgyROQzK2cw60VIkBHxWXLUQYTVFSqpNRA7t6Ghce7cecO34FK+wTi2JghCU1MzxuD06VPRKFmODQqCyCiF8bRCAowxdf9hbEgG8XmDtKWBOutEEOA33+zt7Oyy2WxI3Rohy9Hr8Xiqqqro1+GjAcD0dZiYYKspQz5oftVUSRAEMoYLCgrC4bDf79dcJ10OAExIwOVy3XzzzatXr77iiitMRlFZWdmPf/zjpqamV199lSxnxNacfVKYKok22U9sGSscgDEeGhry+XxWYkgQQrvdHg6HX3vttZ07dz788MMPP/yw4eqk6WJgYOD8+fMej2e4aQAk7zCaMsk6G9snyWcy602SpHA4bHi1dLsWhPDEiRPHjh2fM+cyAJDqbgJq1hApA9R90XHi02AcX4w6LjFUkzXuGqLOInIWAKC+ftzs2XM4DeQQKYZxR0fHiRPHQ6Ewm1FKzErVAxhbhoiuMUeaCsU3KY2tKsXMio/NKqB6gcdTMG3atK6unrVr137++edZTvKkaGxsrKqqIg+Y0iWaE1BBmcy1mmyksQOMLRONRru7u6nsSyk06VjSXJk4BObMmfPEE08sWbLEYoQNIfTtt9++8MILR48eBdrlRnIAixwAAJAkyev1BgIBK9SiAaHVGTNmLF++PIOZtyyCweAzzzyzc+dONo825zOxNWBfkeHj4yQhKI1jkNqaoVCop6eHWgyau5h0Lc0tyPVlWb7ttlsfffRRZhKSNg4HmXVJ2QdRe2u8/uSIotCOjOm8AUok9fWNc+bMHcO7Ro8KUmf7+Xy+Y8eO9fX1AgBozACoriHyP06cUwYAUGcPJjim1VSiOLcDACoqKmfOnFVRUQkACAQCH3744bPPPnv48GGsrrCfgXGAMS4sLJwwYQJJKLR+ERON3iL0+riVAhoJzo7hwcHB/v5+aoxbvzL75pubmx955JGHHnoog8UY+vv7t27d+s4775DM+iz5gBEBqV1GBIFAwOv1RqPRbG4qy7LD4Vi8ePGTTz55+eWXZ6ZOvvnmmy+++CKt8wjQALDmeNQIfXqiYafCGA8MDJB0YX0xwwpoCrBda+rUqStWrGhubh4a8jPZqGSdajbVGFBBAWFcU1QNAvY+mLEGMA0MYIxFUWhqap4+fSangZzDUt63JEltbefOnm0l07KoWaCLCGEq/bEaLmYIIHZQbVfg8RS0tIwfP36CZsmdzs7OV1999aWXXrpw4QJLBtaHnCAIzc3NZEk1YNkg0Dm7Mllp2cq40gt0zVlsGVmWe3p6zNVhE3dQWVnZXXfdZRISsAJFUQ4dOrRly5Z9+/aFQiE23mjxmljVW9mvVu5rEhxOF4QPysrKSIykubk5rRdy8uTJ//t//+/AwAAbLEnJi1Y8PFZqbs4Ehp1KcxwzkQNJkrq7uyORiPllQZKMA3Kpmpqa+++//7HHHmtqavL7/cePH+vp6YWQDjfNfGPAqozq37hOwPoM6H+MuMAul3vKlCnjx08Y9b08xyTSEHZ+v//s2bOdnR2hUBiqGxXROeWJBiBKZAKWADAA0OVy1dXVTZgwKdlijRjjY8eOrVu3bvv27RlsJ1JWVkbHeQY0AI1mzFoH1d9NCuiHHzvkNAM4EAh0d3drzHl9SfY6CCGiAq9Zs+aqq67KiUc1Eons3r17+/btR44cCQQCRAEkP5m8Xlq3dF9jMBjs7++PRqO5VbpJpmlLS8uyZcvuu+++8vJyi5X593//9z179tCQScbqBf1svc5WmMCwQDIHEcbY7/f39PSk1UupelFYWHjLLbesWrVq1qxZVC5LktTa2nr27NlIJKxZHJfRGmPXo9Ugd6CaUKLWiNQgolBZWTF16vTKyqrhtsDyFumpvRjjoaGh9vYLnZ2dfv+gLMsAQI0cUC+I1RhRvDPZbLbCwqK6urr6+nFFRcUp9aloNPrll18+++yzu3btIjMhgYURaLfbJ0yYUFBQgC2vsRwPciWR/mm9JVaIGxYw1OA0B1kNTlGUnp4eTehYfxGspgYJgjBz5szly5cvWbIkJ/vhsAiFQt99992HH3743XffDQwM4DR3OTYBqb/NZvN4POfOnevv78fq4hY5D1GQ9NzLL7985cqVVlax/eijj5577jkqNy0qJRr1AiR2iXQ7FWC8anpQYao5yHYSlhhkWe7u7g4EAoaXSqZe2Gy2K6+8MtlLwxj7fL4zZ053dnbKMslV1coHAAAdHFRNZJhAqzUWFxe1tExsaGjMZicPjpTIcKupaDTq83l7err7+/vJbu+yLOsvBSEQRdFudxQUFJSXl1VV1ZSWlqXboj6f74033ti0adOJEyeo0DGRDjU1NfX19eSzFcUt0ZuJNcfNZbohzDU4nCS+BxIzuDVmQSgU6urqohOpDG12gqampgcffPCRRx6pq6uzXud0Ictya2vrnj179u3bd/r06cHBQaRmfKXFCvRFiaJYVlY2efLkK664YurUqR9++OGLL75Id+AZDo88xliWZY/Hc8stt6xcuXLmzJnJepTX6/2nf/qnU6dOWTcIknUqTQXSqq1JpwKmyQgmtmZXV5emI2nohHYtjPGUKVO+//3v33PPPeaGlKIofX1958+3dXd3R6MRjGPTj1kSBDE+QJqwEVUcRVEsLi6ur29oaGgoKMg8yM9hERkyAYUsy5FIOBgMhkKhUChIW5SME7fb7XK5PZ4Cl8uVpXfv/PnzZDuRnp4eE+ng8XgmTJhAnCEpPbkmwzUby8BE1lMYTtsxseURQv39/XQ/Z72+pihKaWnpHXfcsWLFimnTpo2YER0Khdra2g4fPnzo0CGiyAeDQVrzZK4/8pPNZisoKKisrGxpaZk1a9bUqVPHjRtHJoJhjE+dOrVhw4Y333xzYGCARv5zzgcIIVmWa2pqHnzwwWXLllEdgsW2bdtefPFFtrekrEayX7NUL0Byr6OhTQB0Th624ymK0tvbOzg4SEsasgIJCdx3332PPfaY9V2VEEJ+v7+7u7O7u9vn80WjErk46ykCqn1A7gYhFEXR7fZUVlbW1NRWVlZxO2DEkC0TjCRkWf7uu++effbZjz/+2DDTFELY1NRUUVFBZU3KmB49ESS6cQEzUKG1BTXZs8zVN5B8kQD2LMw4iBBCkUiko6MjEoloLkJCAldffTUJCYzWtk2yLA8ODnZ1dXV2dnZ2dnZ1dQ0ODhKPFlbnowIAIIQlJSUlJSXV1dV1dXVkwYaioiLDZpJl+euvv167du2XX34ZjUaHb/d5YmxNnz79Bz/4gcal5vP5/vEf//H06dPUICACy+RqVqxMinTVC5NT2A7DHkzmIEIIhcPhrq6uaDSaTL0oLCy8+eabyc4fmSlzsiwPDQ35fF6fzxsIBMLhUCSSkAYmCILL5fJ4PEVFRSUlpcXFJW63m8cDRhiXEhMQBIPBjz/++A9/+MP+/fsRQoK6nQiEsLS0tLm5mR2x1p25MHGWLIRQL6nTJYN0g8YgUWXTDFqE0MDAQG9vL704CQmQTPnbb7895yGBLCHLMk39pC0FAHC5XGn5/f1+//bt29etW3fs2DGgTmvIefAAq5mmV1111ZNPPnnllVcSy/LDDz9cu3YtW9LiQq2s3NdrGGmpF8BCnABYjj+xDiJFUfr7+/v6+jTlyYK+V1xxxcqVK2+44YZcZW0ihGRZYlefJWNNFG1kqd2c3IUjA1x6TEDQ29v76quvvvDCC9SVTLaJp9Iw3VgxexCruacaY9li3ViDwPAsShLmg5ZlCzJoJUm6cOFCOBwmxFBfX//www8/+uijwxoSuEjQ3t6+efPml19+mayeRhs3t3xAnEVlZWXEzzZu3Lj/83/+z/79+9l9PS3elJTETA5CNkFjlgMycBAlCxUQW7O9vV2SJJwYEnj00Ufvvfdei7lVHJc6LlUmAABgjE+cOLFx48a33nrL6/XW19c3NDRoJn+CVAnvrEFAhy7WTSYwNBGS1Yr9a8IE+p/06htr7BNzoaurq6enp7i4+LbbbjOPc449YIy/++67devWvf/++0NDQ0Q6D8fscUVRFEWZMGHC9ddff/LkyUgkQq9vPQchmXpBe4X1TgUSe1SyTmX4q4lNANRO1dPT09fXR/pbVVXV3XffvXz58vHjx1usG8cYwCXMBATElfzss88ODAyw7sW0XEP6I3TgwfS3XmEVeZNBmzJOAHTxPYxxKBSqr69fs2bN4sWLRyskMLqIRCKffPLJc889t2/fPuIfA8PmLCovL29paWH9jSkNTY1WARInl9GDGGOWFazUx7xTAQu7Wuq/ks/BYLC1tdXhcNxwww1r1qzJ4W4/HJcKLnkmIHjllVf++Mc/st03swllIHG4AiZ+YH3EglRBApDELNAf1DABQsjj8fzN3/yNZofLPMTAwMDWrVs3btxIdrMYDmcRxri2trauro5VL6zcwqJ6AVKt36epDEsGycpY6VT6+JOiKCUlJcuXL7/xxhvpPswceYWx4FiIRqMnT57UH7dIA9QdZHiWdfudQnPBZAWsXEdf4XA4fP78+XSrNPZQVla2YsWKZ599dsWKFSUlJWQ6C1I3Ps/JLUjwKUu/k944oH/TMjQpzE8xrK2VgbBkyZI777yT00DeYiwwQX9//7lz5/TavRVgJo5nKKBhmjkeFiuQwTUJZFk+fPhwBvw0JtHS0vLLX/7yd7/73a233mqz2QgNEC9/9nwgCII+n91i19K0ryZWPEyGeMadCgBw4sSJlLs+cIxhjAUmaG9v9/l87BBNJtY1YF1AINGfm9IST4lhUvcghK2trUNDQ5nVauxBFMWFCxf+v//3//7+7/9+5syZNPuFONOyuTKxCTI+10TDyEy9MIfF7ppM3Wlra+vp6clhfTguLYwRJmC3KQbMOLQC6rfFushwZmM1LRJiYaXOEMK+vj4yq4CDoqCg4P7773/66af/9E//tL6+nnUWZcwHhlFoi249jZKhOT3dfmWlRxkmLBkW01vPEEK/38+9jvmMscAEFy5cwEmmB1uExmxnvbrpXiczpUxTDRNACAOBAFffDFFXV/enf/qnTz/99AMPPFBQUEB8RJkFDzDGNpuNtQkyy1VF6vaf2VsA5r3LxA62cutoNNrW1pZV/TguZVzyTCBJEtnsV9Pd0xp4LBNk7My1aEyY6G7mgoZeU5blrq6utOqWP4AQTp8+/R/+4R/++Z//+aqrriLTA6mzKK02FUWRXVWC6gcWL6JxMGbsb0zXCtHDCoFhjIlGlVbdOMYMLvmsYcOdfgmwaQKPYfksK2MlPmFiEGjOTXYpstZjllUd23A4HDfeeOPcuXPfeuutDRs2nDx5ks4Ytz7zwGazGaoXaSWqZpYgpLljyn5lbnaYdCr2c09PTzQa5Yu+5ScueZsgFAr5/X7D8WbFV5MrWL9RslFtkQYIBgYGePpQSpSVlT3++OPPPPPMmjVrysrK0s00dTgchppEZuZmZmCzGMzvYt0vZHiQhAp4+lDe4pJnAlmW2eU5KTJ28mQGNlHEpJi5f4A9rvFKa04JhUKcCSyiubn5r/7qr37/+9/fcccdDofDeqap4YKjI6leAGtWJltYf1DjE0t2KQjh4OAgZ4K8xSXvHTJHug6ijO9iZbhm5ibmyB6iKF5xxRUzZsz44IMPnnvuue+++w4AIAgCWazCMBQsCII+hTQD71D2sKJeWGcLk+EgSZLhDqkc+YBL3iYYYd0/WQWs5IeYDFf9T4bLBhh+5rAIj8dz9913P/300z/72c8aGhpoZpHhXhEQQlEU9e0CIUw38pwZrMt3Ew1Df4WR0Y04LjmMBSYwGS04yaqfObx7yjpQpJtNaFJyZITRmER1dfVPfvKTZ5999uGHHy4sLGQzTVk+SDatbGQMu3Q7iXX3kT4cxX7mLse8xSXPBOyCo3r1Z1gtBs31MzbhrWh/ml/JAv3pV5kDAAAghJMnT/67v/u7f/u3f1u8eDFxE+HEYLIgCCYbk1n3xmQAVr3I5kbpdqrMJkxwjA2MnTgB6feGXZlsmMW6cXJyL/Z2KYdruqNao6xxCyDncDgc11577WWXXfb2229v2LDh+PHjgNmeyOl0smvTsifixMVEc1urdNULK8XMT2fBmSBvccnbBKIoUis+2XgYjmVeqAJl6GXWwApPpFU+WYIjR7ooKSl59NFHn3nmmR/96EeVlZWyLJMGpXECw7NwInJSE8x4Mq2vVJrMT2hYN8Mj2dWaY4zgkmcCl8tVVFRkohzRAZalAkWvlq4USHlfzU9YF9vQn1tWVma+qTpHWmhoaPiLv/iL//zP/1y6dCnJNNUsIZfsxNxqGOwdU6bxZKBemNOA0+kkWzdz5CEueSZwu92FhYUWRyNrd2dwLz0HWBEE5hyQMvarP10QBL67bM4hiuLll1/+v//3//7tb387f/58OtU2WfPhxA2BM+YDQ93CopS3rl7oj2gMWYxxcXGx2+3O7Ck4LnVc8kxgt9tZsWgybgnoqsVWlHr2LP3YszL4zUesfthb4QabzVZTU5Py1hwZwOVyfe9733v66acffvhh9njKfgIy3dQI6ILDFnklZVdPWVjT8TgT5DMueSaAENbX19Ov5ioVK8Q1wt0QmlMMP5vAnG+SVdV8DGOM3W53dXV1yrtzZIzy8vJrrrmG+t9M2hon+h4NdxLWn8KqF8n6m5UrpMUE+mKaI9XV1dw7lLcYC7lDDQ0NdrudaGRkDJjvHEk+0HivSXSOlsFqHM/KQGXvZSIXMhuxGOOKioqqqirr1eDIAFVVVR6Phy5pRTuAYWFNG5l0p5QkkbJiGasX7EG93SkIQkNDQ8q7c4xVXPI2AQCgvr6eDRVY0csIWB0fMKNFo+JZTxVlr2xeDRNtjj1iONO4oaGhsLDQYk04MkNFRUVZWRnbQ8w7Ffur3v1IPmiOk69Ug7FeN+s1oUdSXtPhcHAmyGeMBSaorKysr69ncy2sMIFmQNIRq7fZ0/X/WpkAbChZrIxhQRCmTp2a8a6KHBZRUFDQ2NhIm966boETtXJW1mvogZoIFmkAM1Eu87vrz2KPG3az0tJSzgT5jLHABG63e9q0afq+bn1JhmRyOYPK0GGfcsRiC+q//khBQcGMGTMyqBhHWhAEYdq0aexicxZ7FDaCPiiV1nohhh0my2LsEYTQ+PHjKysrLdaHY+xhLDABAGDWrFkej4dV3i0qcbkFZnxKJmX06yHrxzA2skUwxk1NTU1NTTmtNYcxJk+eXFBQoOlU6aoXmiMZVyYlfyTTZvT9Sn8FQRBmzJjhcDgyrh7HpY4xwgQtLS3jxo3TTMZhlbLhrgBOvqqlBobyXV/DZNWeO3cuDxKMDMaNG9fS0pKsU41YNax0Y0OSoH2SPWhYrKio6LLLLstttTkuLYwRJqBdOWW/zzlwquAwLZZMp0umzemLFRYWzps3LyfV5kgJl8tFOpWhoj0Cy3ZiJqqcsnfpjxge1J+LEGppaWlubs6ythyXNMYIEwAAFixYUFxcrB8zVFUfDkqg481ca6NlDA0CoBuihrVFCE2bNm3SpEm5qjxHSsydO7ekpETjzWMbffhuzcaZTYrh5GFki/QgCML8+fM9Hk/WVea4hDF2UlDGjx8/Y8aMnTt3QgjZpaqBOgDY6F82y7dhdSlKdlylFArJxqqVQDGB3W6/5pprXC5XxjXnSBeNjY0zZ8784osvSOfR5xOTzpDb1QDZrmXR0DQ8rjk9WQ+srKxcsGBBbqo+1jE4OHjw4MGOjo5wODzadckWLpervr5+1qxZRUVFYCwxgcPhuOWWW/bt2xeJRMjI1C8mTMctO6HM4jDWaIXW08CTmQvJnELJDILJkycvXLjQSlU5cgW73b548eJvvvlGkiRD9YI9kiUfsMYlOWJljdtkNKDpWiadcP78+Y2NjdnUPE/g9Xo//fTTRYsWXX755WNgWY5QKDQ4OPjBBx/cdNNNJSUlY8c7BACYPn06SSc1jNxSBYpN9ARGI5D9wIKa4WnRgMm6wfpVwJIZBKIoXnfddaWlpSnvyJFbzJkzZ/LkyWy7s9D0isymielXtUrWDdizkpUx/CmZQVBYWHjzzTfzdW1TYnBw8JNPPrnnnnuqq6vHAA0AANxud01NzX333ffxxx/7/f4xxQQej+fOO+90u91UcJsPFY18Z8/SfDAsYFITOp6TFU7mFDK8LDEIbrrpprTfCEfWKCgouPHGGx0Oh5UeBRInGAMj4Z6s72lONIFJ9zaMGSSzLTDG8+fPnzJlitV3kcc4ePDgokWLRrsWw4KFCxcePHhwTDEBAOCyyy6bN28eHZMmwTR2OLGDkIAECdMan5qLm986LSZwOBzf+973ysrKrL4Fjpxi4cKF06dPJ+mkmu2OKTSNjhgAXX/DmaoXOFHD0BQwNIWTXRljXFJScvfdd9P1tzlM0NHRUVxcPNq1GBaUlJS0t7ePNSZwOp133313eXk5Spzrm5aeha1Z6MmuY0Ie9C6Gxw1vhxCaP3/+Nddck25NOHKFgoKC22+/3ePxmAtiCla+A0ZPZz+kq14QIGanZcOb6g/Sv/qfrrnmmqlTp6ZVgbxFOBweG04hPdxudzgcHmtMAACYMmXKnXfeqVknIDOxnhbYu5jQgP4nk+phjKuqqh555BGe5De6uOKKK66++mpWvTAnAwp9o2fWDzXmheYWJgaooQWDEGpqarr33nv5AlYcBGOQCSCEt91225w5c2RZJkfIeFAUJZk+lQ1Y0W8+IJPRgKFRTyCK4r333jtt2rTc1pkjXdjt9vvuu6+hoYFOOU6LDzIG7Vfm6kKyfpWsvNPpfPDBB3nKEAfFGGQCAEBRUdFjjz1WU1OjnxNk0VlkBXQEEt9xynCiYWzARJQghK655po77rgj+6pyZI+GhoYHH3zQ6XSy2j1p95xrGKwlYdK1yK2TxZxMOuR111133XXX5bDCHJc6xiYTAAAmTZr0/e9/n+xOriEDOnhM9CwTGI5Sk4sku4u5RokQmjhx4uOPP879QhcPrrnmmltvvVXTahl3JEOw/cpQyqe8Kb2C4fURQpMnT3700Uf5FEUOFmOWCQAA11577QMPPCCKol7m4sTwHc0UokOL1fvoEVbup/QM0CubmAImNFBTU/Pkk0/yJeMvKtjt9gceeGD27NmSJGnajm3rdO1OtkdZ0S0IDA0R826JMS4rK1uxYgW74SsHBxjbTGCz2e65555bb70VGI0Q1oLWjENykPp82EFuhQNAKlmPUzmFSkpKVq5cOXfu3Kyen2MYUF5evnr16gkTJkiSpG9EqlVo+oxGsTDseCC5+UhBfiURL/2vyHSpIoyxy+Vavnw5X8SQQ4+xzAQAALfb/cQTT9x2221kYQlz6cyOUo1yp7EYDMGeTo0MfRlzFiE08MMf/vD666/P+Kk5hhUtLS1r1qypr6+XZdlwegFtela3YBUL2rvYDmZRvUhWjF4z2bkOh+Phhx++5ZZbcrtKEsfYwBhnAgBAYWHh8uXLCRmwAzKl9W0d7MhPNvMIWMg2oTRw00038eF6MeOyyy77yU9+UldXl9Kfo9Ew9IpFSulvXb1IdilCA8uWLXvggQd42iiHIcY+EwCGDGw2G6v1Z5nyYWhGJCtpEv0jQAiVl5dzGrhUMHfu3J/+9KcsGQyHhgFM1Qsr9gRLA3xXMo5kyBcFobCwcPXq1RUVFa+++mo4HBYEgYwcRVGgCpC47LB+KVPNZ/ZvMlix+omx0tTU9KMf/WjevHmcBi4VEDJ45plnWltbyUxGrC52m+5KtxREsuuXPdcXAxY2YkIIFRYWPvTQQ/fddx+ngYsE4XBYkqRIJCJJUQCA3e5wOp12u310s7nyhQkAAC6X64EHHjh69Oibb75ZXFzsdrvJEozseKPjlkhnei45TotZ0fuo09a8sCRJgUDA4XCsWbNm/vz5mTwYx+hh7ty5f/EXf/H0008fOnQIAEAlOFUssNHK1aRLkF/Zs2hXSeZgJLDYtRBClZWVy5cvv+mmm/hqoxcDJEnyegckSWIPRqORaDQCALDb7aWlZXa7fVTqlkdMAACw2+0Oh2NwcDAYDDqdzqKiIo/HY7fbDXcgYU9My+S3YgdgjCORyNDQ0NDQUDgcrq6uLi8vT/NpOC4KTJgw4S//8i83b9784YcfRqNRahwApttQYjAR8Sn7GKUKi9GFmTNnrlixYtasWdzKvBjg9w/6/X6TApIk9fR0FxUVk61jRhh5ESfQgwji/v7+rq6u3t7eUChkroWlvBob1jMPPyiK4vf7u7q6urq6Bga0CgLHpYjKyso1a9b88Ic/rKmpkWXZMKiLk0eMU0p29gpWPEJut/vuu+/+xS9+MXv2bE4DFwNS0gBbMhAYMikwbdq03/72t+yRl156KXvPUn7ZBBpACGVZHhoaCgaDDoejsLDQ4/FYt6NZA8KKmqYoytDQUCAQoPOSqH+A41KH0+m8/fbbp02btnnz5i+//DIajdpsthzuYmbRIQkhnDx58rJly6666iqeJnSRQJIkizRA4PP5HA7nCLuJeF8BAACEUCgUInxQUFBQWFhIRxHrzAXM4KTHrWhz0Wg0GAyGQqFIJDK8T8Ixqhg/fvyf//mfX3nllW+99dbx48ej0agoimxKQkqwncpiBwMqW9TU1Nx888133HFHVVVVds/BkUsMDAyke4rXO1BVVT0clUkGzgQxEMkeDocjkYjf7y8sLCwoKCBqneFQtDg+I5FIIBCIRCIm8ww4xhKcTudNN900f/78Tz/99P333z979izZAxkAQDLWDCmB7U5pmYmkU9XU1CxYsODOO+9sbm7m7qCLCuFwWJbT9gBLkhQOh0cymyh/mcBwv3ugqvD9/f2Dg4Mej6eoqCiD9DtCKoQDOAHkIch2YNddd92uXbs+/fTTo0ePBgIBhBBNX84SJGbgcDiam5sXLlx44403NjQ0sHtycFwkIKmimZ2YjAn+6q/+6he/+AX9ijHO3pWUv0yQEtFoNBwO+/3+oqKikpISmv6RTOciXAIhjEajg4ODoVAIAMAHZz6jtLT0tttuu/baa0+cOLF79+4DBw60tbUFg0HAdAx9Pij7mRSjvY6Ei+12e3V19YwZM+bPnz9nzpyysjJuB1y0yNghHIlEkuUQ/bf/9t9WrFhBv77zzju/+tWvMrsLRf4yQUrVjIwuSZK6urqmTJly9dVXd3d3Dw4Oer1esgcOa+m73e6SkhIyJl9++eWhoSEIIU/i5gAAuN3uyy677LLLLhscHDx9+vThw4cPHTr09ddf+3w+qj3QfDPMrB0EIaQOJQihzWabN2/enDlzZs2aNWXKlKqqKt7BLn5knBxocmJtbe2sWbPo14MHD2Z2Cxb5ywTAaCKx5lfyASE0ceLEp556SpblSCQSDofJWFUURRAEcgW73e50Ot1u9/Hjx1977TXDC3LFLc9RXFw8d+7cuXPn9vb2rlix4ty5c4IgiKLIGo50XVIKuk6JzWa7//77lyxZMuIV5xj7yGsmsA4ixG02m81mKygoyOwiPGGUg8ButxMdwqJyQD2TozUBlSNj2O32aDSTUMEItzX3YicFV+E5Rh68140xOJ3OET4xM+S1TcBHHcfFBm44jjHY7Rku/JfsxKNHj2qOLFu2bNmyZZndhSKvbYKUs4KH9focHHpYdxlxXBJwuVw2W9p+HpttpJcmzWsmGO4hx4c0R7pItrAE1youXZSVlY3AKVkir5lgdGFxMRmOvEIy7YFrFZcu7HZ7WsuLlpSUjHxqQP4ywagPLe4H4ODIE1hfa7qkpKSgoHC466NH/kaMLc4s4+AYSXAzcayiqKjY5XIPDAwkW4bIZrOXlfGdai4+5CRizOmEIy3wDjOGQZYJCYfDkhSNRCJkFjGZlGq3O/julXkKHifg4MhDuFwul8s1GvuSmYHHCYy/Dsct9L9yBZCDg+NiQP4ygUYf16vnXExzjAp4x+MYeeQvE4Dhn1nGwZEB+HwCjpFHXjPBcCtffPRy5ArcUOAYVuQ1E5hLaj72ODg48gT5ywQpA7bZa/ScSzgyAO82HCOP/GUC7rrhuBigl/u8Z3KMPPKXCTg4LgbwpDWOiwGcCTg4Li7w3CGOkQdnAg4ODo58B2cCDg4OjnwHZwIODg6OfAdngqTggTuOUQHveBwjD74WaVLwGB3HqMCw43F6GDPYu3dvW1vb0aNHz507BwBoamqaNm1aU1PT5ZdfPoq14kwwauCrUnPokaxL8K4yBnDu3Lm1a9cSAqA4evTo0aNHAQBNTU2rV69uamoalbrltXdodFeb4KtSc+jBu8RYxZYtW379619raIDFuXPnfv3rX2/dunUka0WR10zARx3HxQau+49JbNmyxaKI37Jly5YtW8zLHDlyZNmyZTU1NU6ns6Wl5c///M/7+/uzrGFeMwEfdRwXG5JZilxruXRx7ty5tDT9rVu3mpgOe/bsWbBgQTAYfOGFF/bu3fvb3/72k08+Wbx4cTAYzKaSec0Ew70CHQdHBuBzjMcY/vVf/zXdU/7t3/4t2U9PPfXUggULtm7devPNN8+cOfOBBx749NNPW1paSLAhY/CI8TDCfEd7HjHm0CNZl+A2wSWKvXv39vX1pXtWb2/v3r17582bpzne1ta2e/fuDz74gO0PJSUlb7/9dpb1zGubYLgjxnwfY450wXvFGEPGqrrhiadOnQIAzJw5M6s6GSGvmcAiWOUdYxwOh4PBYDAYDAQCQRXRaJQtP0o15RgL4N6hsYTPP/88sxP37dunP2iz2QAAiqJkVScjcO9QUpCxByH0eDwDAwPvvPNOZ2en1+v1+XykJRRFEQQBQogxdrvdxcXFlZWVsiw7HA6bzYYQMvcOceQzMvANcjK4FBEKhTI7sbe3V39w4sSJAIBvv/123Lhx7HFJkux2e2Y3IshrJkgmpjHGgiC4XK7CwsKioiKXy9Xe3r527Voyek3OIqZ9dXV1aWlpOBweGhoKh8PDQeAcly4QQn6/3+l0lpWVORwOURRFUbTZbKRfaRhClmVZlhFCkUgEABAKhWRZJoohxyUBt9udGRm43W79wbq6usWLF//P//k/b7/9dlEUyUG/379gwYLf/OY39957b8b15F0qDjII7XZ7QUFBSUlJQUGBw+EwlPtkrCZT62w2m81m83g8xcXF0Wh0aGgoEAiQkcyRt5Bluaur6+jRo0eOHDl16pQois3NzbR3EcvS8ETa2RBCr7/++r59+6ZNmzZz5szm5maPxzNyD8CREZqamo4dO5bZiYbHf//731977bW33Xbbz3/+88bGxiNHjvzt3/5tUVHR7bffnk09ORPE4XK5iouLS0pK3G435VtDsPSAGWiK2Ww2URSdTmdpaWkwGBwcHAwEApIkcZdR/gBj3NfX99133+3du/fkyZMDAwPEqSgI2hAdJQPDvgQhFEXR5/Pt3bt3z549BQUFzc3Nc+bMufLKKxsaGrL0DHAMH6ZNm5YZE0ybNs3w+OzZs7/55pu/+7u/W7lyZX9/f2Nj47Jly/76r//a5XJlU8+8ZgLqz6Ec4HQ6TbQzQ9BkD0NKIANYEISioqKCgoJwOOzz+YaGhiRJ4m7fsQ1FUS5cuPDll1/u2rWrs7NTkiTSE/QcQEFVBJYSNN3JZrNhjEOh0OHDhw8fPrx9+/ZZs2bdfPPN06ZNy1IWcAwHMl5HyOTESZMmbdiwIdMaGSOvmYBEg0tLS4uLi6lWlbGAJpRArHjNRSCEZPx7PB632x2JRLxe7+DgYDgczvIROC5CYIzb29s/+OCDnTt3DgwMkNZPS20nlECVEoQQYHomUS9EUUQIeb3eHTt27NmzZ/r06UuXLp01axa3Dy4qzJs3r7Gxsa2tLa2zGhsb9ZMJhhX5ywROp7Oqqqq0tDS38TcySvV8QMQBUfGcTmdNTU1JScnAwIDX65VlOYcV4BhdeL3eDz/88NNPP+3u7iadIZurEUogPQfo1BSiXhATYc+ePUeOHLniiivuuuuuSZMmcQ/kxYM1a9b8+te/TveUYapMMuQjE9jt9qqqqoqKCqfTmaxM9gtRUJcRe4T1I7lcrtra2qKiop6eHhOPAcelAkVRvvvuu9dff/348eMk/SxXV6bmpt5fxJJEKBT69NNPDx06tHTp0ltvvbWwsDBXFeDIBk1NTffcc4/1pYceffTRkV+bOr+YACHkcDiam5tLSkr0sp6a5CCRCRBCmhCxxp+rB+sp0hQTBIEehBCSDCVBEHhy0SWNwcHBt99++4MPPhgaGiKzTPRlaK9gj7CTFs1voemE7HHCBwghURT7+vo2bdp08ODB73//+yT9nGPUQfI7rZDBo48+ettttw17hXTIIyZQFGXHjh2nTp3S0AAV/VS90gxjYuCzXlrAJHiYRJhZjxB7nJABPd1ut2OMN23a9OSTT06YMCF3T8wxQjh79uzmzZv379/PmgJshqj+q76nscfNNQy9esHGFUjv2rVrV1tb22OPPbZ48WI+/+BiwL333jtv3rxnn302WcygsbFxzZo1o7VTTXp5MpcuJEl66623tm3bFgwGWbMdqgBpLjTEyvdkEwvYX/VlCBnQkS/LcnNz85NPPjlnzpy0Ho1jFIExPnDgwPr169vb2zX9CiT2LpMraD6bkwFI3qM00SlFUZxO5/3333/vvffytKIs8fzzzz/22GM5udTevXvPnTun371yhEPELJ5//vm8UBYkSdq2bdvWrVslSdIM12SGfEpoNLsMCFVzBVEUW1tbf/e73/3kJz+ZO3duBlXiGGFgjD///PPnn3/e6/VmrF5oClj0PbLl2eOsuSmKYiQS2bx5c39//xNPPMHDBhcJ5s2bN4pCPxnGfqCS0MCWLVvYKV1kzGRMA/Qi7IBPdqlk99IojKRYe3v7f/zHf3z77bcZ14pjZIAx3rFjx8aNG30+n169IM2dbu9iVRPz0yED/RVofQRBUBTl3XffXb9+/dDQUFqV4cgrjHEmkGX5jTfe2Lp1qyzLdMxkPFD1gIkwL2xIBuzIFwRBFMX29vbf/e53+/fvz7JuHMMHSgODg4O5VS+A5U6VzKLVxB5IpOq9995bt24dJwOOZBjLTIAx/uyzz7Zt20atATp4ckIDFBYtA/Nz6WdBEDo6Op599tkzZ87kqoYcucUXX3yxceNGkiZEjrBdK/vr0+uk5BWoTlpkoTELCBm8//7769evz3hpTI6xjbHMBPv379+8eXMkEmHFdG45gIWVKxuWYQ+SkS8IwpkzZ9auXZv9RtUcOcfBgwdfeuklv9/Pqhc5pAEKCCFWF0RJWdLkCLkCQuiDDz7YsmULn8nIoceYZYLOzs7Nmzf7fD6Nxj18NMDeJVmZZEzAfiXanCAI+/fvf/nll9k9cDhGHe3t7Rs3buzt7SXNNKzqhZUrW7c1IYSyLL/22mufffZZzqvKcaljbDJBJBJ57bXXzpw5w9rIw0cDBBaFgmFCiOYs+vm9997LeM8jjpwjGAy+/PLLra2t+kyhYbqjxpxNViZlwID2/1Ao9MILL5w4cWKYKsxxiWJsMsHOnTu/+uorVicCybUnFlmOaqguCWB+fXMHEf0MIYxEIn/84x/Pnz+fcZU4coiPPvpo165d+tjAcN/XvFsm63UwMYQA1cBDR0fHpk2b/H7/MNWW41LEGGSCCxcubNu2LRqNWvHYsMiAOQwvkpk5b3gRQRDOnTv3yiuvSJKUQWU4coiTJ0++/fbbZH4vsOxszN53lLEGo7k1/SCK4r59+9555508mVXKYQVjjQlkWX777bcvXLiQrl9I45yBloN1htcxX4Nef1mTuwiCsGPHjl27dqVVDY7cIhgMvvbaa319femqFxRW/DzZwPCyrK3AFlAUZdu2bZntoMIxJjHWmODkyZMa+93KWawRoNehMhi32HQve8OfNOoby2TBYPDtt98OBALpVoMjV/jqq68OHDhAl5i2bhCwn/W+GotgWSRZAROzQH9TURR7e3tff/11vu6hRbhcrrGagBsKhVwu15higmg0+s4772gm+6TrrmGXlstMdzM/0coSApojoigePHjwiy++yKAyHNnD6/V+8MEHrIPOolOILWkeQEoJK13RMFSgN3bJZ1EUd+/ezWezW0R9ff3g4OBo12JY4PP56uvrxxQTnDx5cv/+/RqDwFw3Z8voF3c0tKytwMpNzc/SfI5EImTFY+t14MgVPvvsszNnzqRrEBBopHOWrqG0dBr9cbaAIAihUGjr1q3c1rSCWbNm7dy5c7RrMSz48ssvZ8+ePXaYQFGUzz77LBgMWh9phuv60rGqX4ba+jXTWms+2XGW0kRRPH78+L59+6zUgSOH8Pl8O3fupIFiAosSWVMse/XCxOuY7GqGdSAQBOHIkSOHDh2yXoe8RVFR0Y033vj66693dnaODTdRKBTq7Ox8/fXXb7nllsLCwrGzFumFCxf2799v0u8NQYYWHWCsX0izhQi0tuCo/mrmJdkjZL0wtm5s4VAo9Nlnny1cuJBvVDuS+Oabb1pbW9lNKC2K72QWHj2Slr/I4oY2KXsp27eJWfDee+/NnTvX4XBYrEneoqSk5JZbbjl48GB7e/sY2IHc5XLV19fTve3GDhPs3bu3v79fY8KnPIv1DmlcunRzMXrQemXIFZINy2QiwNDPS3lIEISDBw+2trZOmjTJek04skE4HP7qq69kWaabvaTlr9f4Htlz040ZQCaZTWOg6ItpjpjQA+lUZ86cmTp1alr1yU8UFRUtWrRotGsxLBgj3qFQKPTtt9/qx4D1K1CBS89lx1sGHicr5oh5AXYAEybwer3cQTSSOHPmzIkTJzQGQcqWZX2MGunPnp5uwMDc0DTcuwaYRqpJZbxe71dffZVWTTjGHsYIE7S1tWnWACBIK6yH1W2HqQimf61rcBm4DjTVYMtoiiGE9u7dOzbclJcE9u/fz0aeLFqZrCdHH21iu1YGyorJfa1fSnPWvn37+JTjPMcYYYJDhw4FAoGM87XpKVC34Xi6YT16OruPoOGNDH3H5hcXBOH06dMXLlywXh+OjBEIBA4ePKg/bt5M+igR2w1YbjBx8phc3ORXi0SlKUbmsZ86dSrdynCMJYwFJohGo4azJa1Y8YDx6RueldlwNZ9ZZtHIMAwb+P3+o0ePplsljgxw/vz58+fPs66hDMCqF5qglMUcBA0yIIOUAyEYDB44cCDdmnCMJYwFJujv7z937px5qkYysBqcoYBON8fDYgUyuCaBoihHjhzJgJ840sWxY8f0ScnW/Y0a4xJYzv/JGBl3Kozx4cOHudcxnzEWmKC9vZ3dhwAkF+saGOZ4aE7PeNAOk7oHIWxtbeVTzIYbsiyfOHEi49anThjDrpiZemEOi93V8L6CILS1tfX09OSwPhyXFsYIE7C71YM05+xgNd0T6/I+M9awrJMQC4t+3r6+vt7e3gwqxmEdgUCgvb1d3yIW3XoaJUNzerr9ykqP0qcqJSumt56J15Evfp7PGAtMcOHCBZxdsrbGbM8gr4OenplSpqmGCSCEgUCAq2/Djd7e3oGBgex3pEEImWd/Wod57zKxg63cOhqNtrW1ZVU/jksZlzwTSJLU29urHwNpDTyWCTJ25lo0Jkx0t5RJKeSDLMtdXV1p1Y0jXZw8eTIQCOjVC+thXo2DMWN/Y7pWiB5WCAxjTDSqtOrGMWZwyc8xDofDyVKhsWkCj2H5LCtjJT5hYhBozk12KUVR+vr6sqwqRzJ0dna+/PLL27Ztc7vdHo9HTwYmm0/okVmCkOaOKftVykln7OdkKktPT080GnU6nRnXluPSxSXPBKFQyO/3Q6PFuajrfwSqYX20JxvVFmmAYGBgACGUlkjiSAm/3//ee+9t2rSJ5Ok2NzcXFBToi6XVqbJULzSTHE3uYt0vZHiQhApCoRBngvzEJc8Esiwb7raBmfTQESADGnO2YhBY0d00+eaaU0KhEGeCHCIaje7atWv9+vVfffVVNBoVRRFCKMuyoXoBMp3QmwGsdCq2sP6gZoZjsktBCAcHB0OhUGlpaUY15bi0cckzgTlGhgYsDtfM3MQcwwqM8bFjxzZu3Pj+++97vV5RFG02G+kzhAk0hUGa3qGc1NCKQWCxX5kMB0mS2KVwOfIKlzwTJNOaR7gCVjLETX7Vn6tfrMKKZseRFjo7O1955ZXXXnvtwoULEEKbzUZ2vQYAYIwjkYjewQghJNbYcGsY1vUGk5L6foWTL5HLkc8YC0yQUsIO37hNS81Pdz6RSUmTRY04rICEBJ5//vkjR45gjEVR1HcSRVEQQprVJnDihhbDhHQ7iXX3kT4cxX7mc9fzFpc8E7ADGBvNKhi+aAGrMGZjwlsPMFAQR3ZGtc53SJK0Z8+edevWffHFF9FoVBAE8jL1q0oghJJJRr2tkEOwwj0t1UF/nbQ6VWYTJjjGBi55JqAwGZzEnGeJISf3Ym+Xcrim5cwFOmWNWwDZA2N86tSpTZs2bd++fWBggIYEknUJYnjpOxXrYBkm9UL/OVlhK8XMT2fBmSBvcckzARnP5HOy8TAc45ZeyoqjJt0CKcs7HA4+aNNCT0/Pq6+++sorr7S1tWlCAobAGEuSJEmSYValXpvOvoasQCcXtOKrSdb9DDUPwyOZ15hjDOGSZwKXy1VUVNTb28uuHcQWYA9mTwkayz2tU5KV1/yEMdZn/mnOLSsry3K15PxBIBD44IMPnn/++e+++474/SGEJvk/rAyVJMncEZRbDYONJKWkgQzUC3MacDqdfIvsvMUlzwRut7uwsNC6UM4mbEDHEmu/WznL/IIpPQCaAoIglJeXW6pxfoOEBDZs2PD5559HIhFiPppzAEjUsklWpWFvoQyRpXqh6UsWlYx01Qv9EQ3TYIyLi4vdbnfaD8AxJnDJM4HdbmfFYrIxqRlv+uUYDcGepZ/Qb50Gko1Y/bDXGwR62Gy2mpqalLfOZ2BdSMAwO0hzChGObKPT/Hpz1YH8msFcP0Ppb12tsdipkhXWdDzOBPmMS54JIIT19fX0KzZN8sOJqT6aebyGyJgD6F3SGrH6I5rTMcZut7u6utpKBfITfX19W7dufemll1pbWy2GBJKxr6Io5vo+7UjkK1151KJ6wX7AljP9M+hXKbsZAKC6upp7h/IWlzwTAAAaGhrsdjtV6FKqb+QDDcqZ8AEtQ8WBRQ6g90ppv6c7YjHGFRUVVVVV1quRPwiFQh999NGmTZv279+vKIoVO8C8jWRZBgwZm0cLKEy6U0q1w+RXK3U2US/Yg3rmEwShoaEh5d05xirGAhPU19cXFhbSbcuokZ7Sb6tXykBiVJmwi8VVwDRXTkkDyc5ijxjONG5oaCgsLLRYkzyBoih79+7dtGnTp59+GgqFBEEwzxAFTJKo4a/EUIhGoxpV3UromFoG9BTD/kOKWTcF2HuZlLeiXujhcDg4E+QzxgITVFZWjhs3rr+/X5NOas4ELA2w0wLYYZMuARBYSf5LZhCkHMOCIEydOpU+KQfG+OzZsy+++OIbb7zR19dnPSRgLkzJtDI2TgDS1C00fki93ZCuhmFFvTC0BlKmomGMS0tLORPkM8aCQHG73S0tLfv376dHsJoEYnHapImhnS5YJ5XJ7Syq//ojhYWFM2fOzKBiYxIkJLB58+bW1lYAgJWQADZdU0FfgJXpVlYcMuRySiQsVVh5QP1FzIuZdzy2GHsEIdTS0lJZWWm9ShxjDJc8EwSDwU8//fTNN9/0er2VlZU0ecOiEpdbUAYyL6Nf8VE/hg0FFoQwFArt3r27vr6+pKQkR7W+JEFCAs8///y3335LQgIWZwmYCErN8hIYY1mW2Ywgi2RAC6c8Yh0pK29iZZobBAAACOGUKVMcDkfG1eO41HEJr0ooy/L+/fvXrVu3Y8eOYDDocDjGjRunkY900A43JVgRNAQ0HcX8XMNFbzDG3d3dwWDwyiuvfPLJJ6+66qo8HL0IIdLun376aTAYJL4g8/RNvYfEvABpC0VR3G73lClTNNOMSacaMSXDStcyfEDDg/ruRw6OGzdu9erVV111FXc85icuVSZobW3dtGnTW2+91dvbS/3CLpdr3LhxIzxu6RA1N+Hpr3r5bhi61I9YCOHQ0FBPTw9CSJbl4uLiJUuWrFq1atKkSfmz8kRra+sf//jHLVu29PT0UDsgS3eQRlzSCIHH45k0aZLT6dTcgnan4d6ogPaKlJEnfRcy5I9kjOjz+bq6usrKyr73ve89/vjjedWjOAguPSYYGBh44403Nm/efPLkSSII2IFaWlpaU1OjGaKQQW4rw9KAucoGktCAoagyNAgQQt3d3aFQiH5VFKWxsfHBBx986KGHxvwMg4GBgTfffPOFF144c+YMUAne3B2U0g7AupAAeauCIMyePXv16tXjx4//53/+Z5/Pp1n8dfh6FAWJcmkmu1l5CvZZNOca9itJkrq6uiRJoj3q+9///v33319RUZGzh+G46JEzJlAURTMhE2NMEjlyNVrC4fBnn322cePGvXv3yrJs6BoWBKG2tra4uFh/U5YwsqkSfTpW+pu/xmRSybpRDwDw+/19fX2a4yThffbs2StWrLjllls8Hk9mDzUcQAiFw2HyGTMJWg6HIy0XRCQS+eyzz9avX79v3z7a7iZSOKU7Rf+GsZoshBBqbm5etmzZgw8+WFNTI0nSP//zP3/xxRf6nFT6Ned8QCtPmcC8ZDL1QvMGkmXN9vf3+3w++lWWZQjhnDlzVq5cecMNN1xUPYpj+JA5E2CMJUkKhUKhUCgSCUejkiRFSU9TVWAkija73eZwOD0eT0GBx+VyZ7ZumizLhw4dWr9+/ccffxwIBKg7yHAEEh+R3W7X/MqOW8xMMLY4jDUvKqWyxp5o3RpIRgOSJHV3d0ejUcNbSJLkcrmuv/76lStXXn755aOyOB1CiHBVV1dXV1dXT0/P4ODg4OAgeRaiaJMXXlRUVFRUVFVVVV1dXVNTU11dXVRUZMgNCKEDBw5s3Ljxo48+Stnu9BRzDjAUkUQdLi0tveOOO1asWDFt2jR6iy+//PJf/uVfJEkyjEawnJQlH+iNy5S9K1kwSf+MyfpVOBzu7u7WpDBgjGVZdrlcN9xww5o1a2bNmsWDB2MemTCBLMtDQ0N+/2AgEJRliXY5CInqR/oiIEMSIYQxwhiIouB2u0tKSkpKSgsKCqwPm3Pnzr300kvbtm3r7u62IgswxhUVFZWVlckEIns6HcOYyTXCSVaYoGXooE1ZeWxkpBPoh3EyzgA6xU0PIssqKiruueeexx57rLm5OWXdcoJoNNrR0XHy5MkjR460trb29/cHAgES5EjGsvQ1CoLgcrlKS0sbGxunT58+bdq0hoYGl8tFimlCAubtTlsk3ZAAxlhRFKfTuWjRotWrVy9atEiz4kIgEPjNb35z8OBBk/QktmJkJwzr3Zt9UbSPpexaWI0fGPYrPRcaBooxxj09PYFAwPAWpEdVVlbed999jz/++Lhx4yw+kSEURZFlKRqNRqNSNBolzwoAICLI6XQ6YrALAl9kdxSQHhNEIhGv1zs4OBiJhAEAJFyn0gArH7EGqtqFEEI2m1hSUlJZWVVaWmoecyMhgT/+8Y8nT54E1lzD5F4Oh6OxsdHlciWTHSwTsOOWpQS9amb9XWHVg5TMVW0xxEdgqLgZgmy4OGnSpMcff/zOO+8sKyuzWOF0gRDq7Ow8cODA/v37T5065fP5iF9bH7/Vq7qaX6n4LiwsbGlpmTNnzqxZs3bv3r1p0yY2JDAc7iBiqUyfPn3FihW33357cXGx4ekffvjhf/3XfxFHXDJvp8Ys0GsY+n4FslAvkj1vsgiTYeFAINDT02N+R0IhkydPfuyxx5YuXZpu7rIsy8FgcGjIHwwGo9Eo6Z8AkCeNqYwYkwpDQRCcTmdhYUFJSYnHU8AXQRpJWGUCWZa9Xm9/f180KjEjkyrRgPZw6h0iTU6Hujr2EIkoQAjLy8vHjRtXWFioH1rhcHjHjh0bN27cs2ePFdcw0HX3srIyEjpOeWLsRSQOXWxkFlgEq9kZKmJAXe7YpP5seRPFzRDkjc2fP3/NmjWLFy/ObaZpNBo9derUjh079u/f39vbizFOmcRJYC6vqWiGEBYUFPT09HR3d0ciESvcb84B2CgsTNDQ0PDII488+OCD5gpvIBD4p3/6p2+//ZZYmSmfV6NYkMKaGmamXgDTbTXTogFFUbq6uiKRiJVbS5Jks9kWLFiwatWqq6++OmWPwhiHw2Gfzzc4OChJUYQwkRUYA/Ju2AFCQdsFQuhyucvKSisqKt1ud27DMByGsMQEQ0NDPT3doVAIQqr2xXs7AJCQPIg3cKxD0l6IMVJbOj6PX1Fkm81WW1tH3PrkCiQksGHDho8++igYDAoqktWNso7mQURRbGhoIPGukUwAZ+WOoVg3lFw4ufUwNDREBG661ZBluaio6JZbblm1ahXr+M4YsiwfPXr03XffPXz4sN/vt0gAhnUDSWZCkeOEJhVFGRoa8nq9yaIj5iEBkGSWAA0J3H777cuXL58+fbqVp9i5c+e//uu/hsNhmIiUJ7JlqCjPQL0AFrqWYfYBTuIx83q9AwMDad2d9Cjy3qZOnZrs8cPhUG9vr98/pCgKhDHPAQBsYTJmaTdAAGDVmYwxjumLCCk2m728vKy+fhwPXA83UnRKhFB/f39vbw9CWBQFCAXVDjDoBmSAg7gujBGKd1C1T8YYQVHIkJRlWSkrK58wYUJhYeG5c+c2b968devW7u5uygHmIYFkAhQAUFJSUldXl+7QzRjmAg6Y0kCy4ZqW4qYHQkiW5YaGhgceeOChhx6qq6vL7DoY49bW1u3bt+/Zs4dwQPZvkn0VJrwoSRJxSGr0+mRvTH8FAhoSsNvtV1999erVq6+++mrr/gdJkv7zP//zgw8+oMEnQ1fY8IE+jnX1AiSxEgAA0Wi0q6uL+LvSrQaZhvbII4/cf//9tbW17K+yLPf39w8M9MuyTBK8ibgg9jatLwCAxBETK49YWUE8yURfdDqdtbV1tbW13F80fDBjAlmWurq6fT4flchEtwYAJDYtDRQDtrOqZECpHmOsIITVIYkVRcFYURRFkiSPp6C/f+B3v/vdiRMnAGOAZ+MaFgShsbGR3dFsOEYvTkwqNeEA9gP7kwmZpau4GYKo2NOnT1++fPmSJUsKCgrSOj0QCHzyySfbt2/v6ekZDtlnqNqzrwVjHAwG+/v7w+GwlXZPFhKAEE6ZMmXFihV33nlnBmt1nD9//je/+c358+dZMhhuDQOnUi9A8heY7CyMcV9fn9/vz7hKhF2mT5++evXqm2++mfSoQCDQ1dUZCoXJpG8AIB3BGFN3GaAWGmDojXgL6EfM+A8IGSiKUlJS0tIyIVkshyNLJGUCSZI6OjqGhoZEURBFkbQoIQOGA+J+IRDXVjBle9IhSRur6glSySBuAxLLoLu7e8OGjadOnSIjzXpIwLAAKVNWVtbQ0MBeivqdc6LVAgv5HuZj0oQGMlbcDCHLssPhuOaaa1auXHnllVdazDQ9derUq6++Spb7T+ZF0bxJfVDU/BbJ3g85QlVaSZJIApVJ5FyjAqsCBSGE6urqHnrooUceeaSxsdG8Pib4+OOPf//730uSpOlRIHG2SvagryIDDgC6V6dBKBTq7u42sags1pBkml5zzTWrVq2aNGliT0+voijEc8As8qLNxWAfjX1EVSxgjBEZFqobGSGkIKRIkuRwOFtaJtTU1PDIQc5hzASSJHV0tA8NBWy2ePaeqvtoxwAAmLkOZpoW0D6JMaBkgDFWjYNYNhFCsizLioKOHz+xfv16utOAHuaiE+jGhiiKzc3Nei1YE4dMq2NZHKXJqpTyOL14b2+v3+/PYacnL7q8vPzuu+9+/PHHW1paTArLsrxz585XXnmls7OTpQ3IZFtp1GHyODTSTn+y8paStSz7lhRFGRwc7OvrkyTJpBhgRKGiKNS1PWvWrCzXh5Akad26dW+++aZe7ucqFoXj2RZmJEqLpUsDKHGmepZACEmStHTp0h/96EdkOXAAIPMmEhiTPhDGmE0fYvVFtRsg6ihSFEX1JCuyLAEAm5vHNzU1DfdSH/kGAyZQFKW9/YLfP0RpgOn3xrZwIttTpxCgQgChWFBIHbFUV0NMM8uyLH/44YdvvfW2vh9jBoZPohclpBtVVFSMGzdOb8XTrkpO0RADTswdov4fTX1M3qxJhVM+CwAgEAh0dnZijHPukCEDq6Wl5bHHHrvnnnsMM01DodDWrVvfeeedcDisp0zDga5BsndlLt0MRRir6WOMg8Fgb29vMBikR/QhAQK73b5gwYLVq1dfe+21uUqg8nq9//iP/3jw4EH91EWg8gHLlFauyQ6fxKFkdoqhbWQSTiAgVGqlVlaAMS4pKfnFL34xa9ZMAACJIxKZoRbRvwH2MRElA0rllAyogygmJxSkKLIsSxiDlpaWpqZmTgY5hHbqoKqKDrFzeWAsRGw8/nHiPBrSAwUBqO0KIcSCEBsegiAgdSMw4mvCGJJ9BARBFEW8aNGikydPHjp0mF0KOCUHaCQIZlzDZOUJpMt21wwY9nRSBqlbSulvl/K10voYFjZR2civoih6vV5JkkRRpLNzc8UHZAmQs2fP/uM//uM777xDFhVgl+3z+Xwvvvji559/rvEIpeVYY9+zxm6wciJbjDw7pWSPx1NbW9vf3+/1eok0ZGmGtvvUqVOXL1+eQQq8CSKRyLfffnv69OnOzs7y8nK3263hadq3SZ/UL3DCVpUeSaZt6IGTmwLAgiURjUYHBgZkWc4470tfn8WLF0+bNhUmgvULETAPS77GDpM3wRzB5FwqLQiXkFxcjAVRtEmSdOrUKYzB+PHjc6sk5TO0TDA4ONjf369GiGPimo2NkWKGZgEz+IFaLDbPgESNEjcBjDW5IBD5QkYBLCwsvP7661tbzwUCAWg6OYtA7xqm4qC+vv7++++/77773nvvvffeew+ri8snq7/+sxWhb3hWMkGf0hRACJWWlj7++OMdHR0vvvjimTNnRFFE6pY7OVSCbDYbxvibb745evTozTffvHz58tmzZ0MIfT7fhg0bdu7cCRLfUsZspKFeQ3I1LMkeJxN36Vu12+2VlZU2m62np4eSATUFamtrH3744SxDAhoghA4fPkySm0n2VDQaLS0tLS4u1hsHrHqhMUNNupkVO8BE1qd0NjocDlmWydaepHCW5iZCqL6+/s477yT2FowFEQXK3PpnZ+gQAkC+QkGIdQ0AYpPO1J5GPwuCgDCOdQNRtMly9PTpU06ns76+PuP6c7BIYIJoNNrd3Y0xttkERvTEHQJq80AmB0A7TVftiwllAAAQMiSgagEYx60NQYAICQCgyZMnz58/75NPPk28oBZ6kqCyoKio6NZbb125ciVxDZPsyffee4+UT1RecgB25JuMZyusVlJS8uSTT950000QwhtvvHHdunVvv/221+sVRVGvZmYJCKHdbg+FQlu2bPn6668feuihO+6449133/3yyy81lJ89CSWTlfpi0GgBTr1MEQShrKxMFMXu7m6SU6QoSmFh4a233rpq1arZs2fnkDU7OjpefvllEjIRBIGYyxhjr9cbDofLysro7CeLGoZ1pKVemNPAsmXL5syZs2HDhu3bt/v9fmJuwiyy6QRBuO2225qbmzAGalZhXF0wXKOJagMgpi8SPqDVhgAIANCtBskViDUPMYYYQ0GAoihgLEqSdOLEcY/HU1pamkHlOTRIWFOhs7Ojv3/AbrfRVH7atLSBk0wjMIyjaroo8frF5xQQNU5NIqKuQElRUHt7+zPPPNvV1WXYR/UildoBNptt/vz5P/rRjxYvXkxXsAEADA0NrV+//oMPPiBLLYJcpHxoHhmkIi2TAgAAhFB5efnq1asJDZCDkiTt3r376aef/uqrr6LRKM2qGo7gAQBg7ty5DoeDlTg5n5RHL27iHwPWUkvJ56GhoQsXLiiKcsUVVyxfvvzGG29k2z1LDA4Ovv/++5s2bTp69ChCyHCuuyiKJSUlJSUl1NzMrYZhoj2wr8LkIoQGHnjgAYfDEY1Gd+7c+dxzz3311VfE/UjqnO6qhQihKVOm/H//368qKipg3G2YOOnUiP6xdinf+DNiTCIHGGOsKDSgqJDjjJSIxRQlSSovryCdNq3Kc+gRZ4JAINDWdg7EVlYRRJE0aqxzqy2tngYBYLxALBkktjHCsaXoAJM/SlpY0eeKEUiSjJDy8cefbNmyRS8LcJKQAABg0qRJTzzxxF133VVeXq5/1HA4vGXLlldffZUYyPFXkMBzxt5tkCjEWblvruiltAMIEEKNjY0//vGP582bp5cjg4OD77777vr1648cOQJUbStXrl5aT7LsD528wxiFuQTbSUDyt5eSCQDjGAyFQvfcc8/jjz+eQ/UwGo3u2rVr3bp1X3/9dTQapVNqDKU8hLCgoKC0tJT6SQj0vSglyFMnykrjYiCVDUoKFBYWPvTQQ/fddx8rLgcHB996663169fT6TsgzR5lt9v/5E9+csstt+KYnRpnQXoRKiVY94Cm6TEmUgLrKJ4lAzIFKRY4xpgwQYwPpkyZOnHiRIvV5kiGeJJvW9s5v99vs9mZjOAEg0ATAQIA0wbWNDPDBDGeJwqxag3QDCJFZYKYNEcolh6gKMjnG/zDH/5w4sQJ2rEMQwLkrJqamvvuu+/73//++PHjTZ5WluXPP/9806ZNHR0dhkoQq86wY0y1Z9OIH2ALdgD5VRAEos9OmDDBpGR7e/tLL7308ssvk7RO2io5EdaCIDQ3N5eVlZHa5ly9ZUGlGEj+cpK9PbYPUJkBIVy6dOmKFStyMgcVY3zs2LGNGze+//77xC+X0ggjNbHb7RUVFYWFhYDxqgGgdW3Rh2K9JRq5b0W9SFkMIVRZWbl8+fKbbrrJsLe3tbW9+OKLW7ZsIcOBdqeUjY4QWrRo4V/8xV94PAWCQE0BNnuUPq+xvggSVEZEhBCRCiCWZMjmGSoIAdVnoGCMVLNAkWXJ4XBeeeWVRUVF5nXmMEesLwaDwdbWVgAw3RVWECCECbYwaV3atKxZkKSNEWDsPlalU1ctRtRTpLaxIsuxiWYI4W+++eall14iy84YhgSIa/imm25avXr1nDlzLMrEU6dObdq0ac+ePTQSm5t3qcKiHQDUwMD3vve9e++910qKC0Lo0KFDzz333Pvvv0+28AW5cBZhjMvLy2mO9jBZA5o7aowDfQFgpPMamgUYY4fD8cMf/nDJkiVZVqyzs/Pll19+/fXXL1y4AHU74hnWk62PIAilpaVlZWWat0cpwaRXpOwwKV+apuTMmTNXrFgxa9Ysk/ojhA4cOLB27dqPP/7YYo/CGBcXF//1X/9i7ty5OLa+nlZhTHZDVmVkyIzKCqI4xs0C6kOmgkKWFXXoy5Iky7IiSVJzc9OsWbOHQ2vJH8S6ZmdnZ29vj91uF+I8oDUYE11Dscg+Nf0wTsb2GMfWGInbgJQJNA4idsqxoijBYHDTpk3ffrufbWOVORSbzTZv3rw1a9Zcf/316bqGh4aG3n33XbLAkX47qnRh9OApgBASBGHGjBmPPvro3Llz0/LShsPhTz/9dO3atXv37lWHYlYOfZvNNnHixIKCAjwM4fRkwAySFTBkAipE2DIIoerq6l/84hdTpkzJrD5+v/+99957/vnnjxw5gtXIvAkdmtS/sLCwoqLC6XRa6QkWoXlwEyCEPB7PLbfc8tBDD1VVVVm5eDgc/uSTT5555pkDBw4gNb8uWY/CGN99912rVq222Wwk8S/ReQBAoimgyRzBzJo06tvDgJlPoHMesERAfAAKIpNRZUlRkCTJdrtt4cJF3CzIBhBjLMvymTOno1HJbhcFQVT9Qpo5ZQZBAo3px2pqgPEAJmMChBTav9XJxmRCoSxJ5AP+7rsD69dvIGtAYqZTTJo06Qc/+MHdd99tGBKwAozxiRMntmzZsmvXrqGhISsLX+uvQD9YJAB6Vm1t7a233nr77bdnXP/+/v7XX3/9xRdfPH36NB20mRkHNTU1NBvP4kU07rIMYIUJDGUfNjILAACKoixcuPBnP/tZugsrSZK0Z8+eP/zhD19++SUJy5v3BCs1J56ioqKi7DUM672LEPnEiROXLVt21VVXpbvRWG9v75YtW1544YWzZ88m61EIoYaGhl/96pdNTU0gxhZsniEAjPOAqVjCB93AQYlvlBoEdL4x9SETf3IsoCirDgRJkqZMmTJ16rS0npeDBcQY+/3+c+fOCoLIuIZSWHwa1xClBMoBamOrK4kgQJmAri7Ccj3DBCRUIJPGDgaDmzY9v3//fggh+bm6uvr+++9PGRKwCEmSDhw4sHXr1kOHDlE+AEYBA1b2YWZyhHVpSJxRFRUV11133R133KFZECkDYIxbW1vXrVv3xhtv9Pf3k5GfLh+4XK4JEyaQmWXW/UJQDYdigwTiNOpvrufiJGaBIROQmqxevfqee+6xXoGTJ08+//zz27dvHxgYsLgjnrnrjxYQRbGiooJux2SxRdhOZb2DkTdZU1Nz880333HHHRZNAUOcPHlyw4YNb775ptfr1fOBIAhPPPHE/fffqy41akAYEMYEgnok5jwAiUyQyHBUKMTtA9YmUH+NrVxJViKSVTkRjUaLi4sXLUq9cQJHMkCMcUdHR29vD4kVE5sgGRMQoQ/VSR96qtf0YJbtyQFdLCjW0opCmIEGjSnno3379mzc+Hw4HCYhgVWrVs2ZMye3W/WGQqEjR4689957Bw4cGBgYwKrLJSfAajhx3LhxV1999Q033NDQ0JDD+kuStG/fvqeffvrzzz+nmabWnUUNDQ1UcFg8y1xQWq+5FeXakCrYvRhZ0awoSm1t7a9//WuisZqjp6fn1VdffeWVV9ra2qC1kEAGvFVSUlJeXk5IWki+sSV7VlrvkNSnpqZmwYIFd955Z3Nzc/ZuPVmWd+3atXbt2i+++ILNXQYAzJ079+c//3lpaTFNKlHnhxo4D1ToPclxFscG3iGSKYTV98kyATEHEMkUkWWJhA0kScZYWbBgYXV1dZbPnrewIYRCoaBmdjjG+uYEIGFGeCw2wKQPJaQ9qA0cu5rmA70PAIBMLgMJa5rGb4gxmjBhQkPDuLKy8ieffPKGG27IYbY4hdvtnjdv3uzZs8+dO/f111/v27fvzJkzQ0NDlBLSHV1YtXJtNltlZeWUKVOuuuqquXPnVlZWZj9QNSCr68yYMeP999//wx/+cOjQIfqTeV4gxri4uJi6p6w4x1iDCSdMGY0XsC7IUhZOVkAQBLrqDqkzKSYIQnt7+3vvvbd69WqTBwkEAh988MGmTZsOHjyIEKKmQLLyGTAWVm3e3t7eqqoqj8czNDREXPBpCXqTKiGEHA5Hc3PzwoULb7zxxoaGhlypLzab7eqrr549e/b27ds3bdpEehSEsKioaOnSpcXFRQiR5WSoIyihPwAAMI4XIK+NGgq0/omPwz5ZgkJJWpiqkqzMUZseAABkWenp6eJMkDEg2YxQlmWbTVTzR8mcMpiYFpZgFhBo2hVqF4dgv1GGp9lEcdeQ6gSMe4cURVYURLLEJCkKALzuuusrKytH5qUEAoGzZ88ePHjw4MGDbW1tXq83EokgZrkkw7NIPyX6kcfjqaysnDx58syZM2fOnFlXV5eu0zYzdHV1bd68efPmzR0dHVTBT+bwEUVx/PjxJSUl2Fqg2PwnjSpgBeyYNzwrmQjGOgcRLUP2I/ubv/mbqVOn6i9IQgLr16//4osvIpFITkICmgKs9lpZWXnPPfc8+uijkUhk165dBw4caGtrI2vnscPKIuiN7HZ7dXX1jBkz5s+fP2fOnLKyspyrFxSdnZ3PP//8a6+91t7eftddS9esedLhcAhCbL6RZiYBKyVoj9OHi1lBT0U8TSFVX2Dcc6DJK8EYIySrbuSY8yAajVZUVCxadPXIDLSxBxgIBE6fPgUAJCuPxrJHRbLIhMY7FLf+NONCMyYBs3OZ2u5EkCLqHSIZAvo4gWoAyrKM6FzCyZOnzJo1ewRfSwzRaLSvr6+9vb2tre3ChQu9vb2Dg4Ner5fsGcAqQW63u6SkpLS0tKamprGxcdy4cXV1dXTe6UgCIXTkyJE//OEP77777tDQULLgAca4srKysbGRNq65Xsy0vsFMC2Cg5VmNn6cUtYZ+eRoeIGWoiYAxliTp3nvv/dGPfqR5XpI9nMOQAMtAbK0URfF4PDfeeOOqVasuv/xyKpsGBwdPnz59+PDhI0eOnD9/3ufzhcNhpE6JSFYHUkm73V5UVFRTUzNx4sTZs2dPmTKlqqoqtz5Sk8c8fPjwli1bFiy4srGxicgH0l80bmTAqIzMIyQ8DntZHFcZY2oi8zkuKGimCPnLpg/R0LEkSU6n45prriPzOTjSBRwYGFDDxTZRhILAzqNJaGCTzgp0QQIQ268GUS2AUr3a0vE1J9QgQUKcACFFlhVJkmU52tDQeOWVC4ZP8bEIWZYjkQgZvQAAukooAMButzudTqfTOfKi3xDRaHTHjh1r16795ptv6JKirLPIbrdPnDjR4/Fg1Z5LGWfWu4YwTlhQU+8sMgfbc8yVbr13nmUCzVdZlqurq//2b/+2ubmZHOnr63vllVdeeeWVc+fOQQipKWBSMcObsgU0JIFi82AVURQvv/zylStX3nTTTcl23yVrgnZ1dXV0dHR2dvb29vp8PrJnALkyEfE2m62kpKSsrKy2tra2traurq6iosLj8YzKQBgY6G9rOy+KInEekKBSMiYgYPNKCGg/YRo99pd1HqhGABUUiM46ZgSFQqYZI0ScB1EI4cKFi6qquIMoE9gURSFePwAAUBeJxRjTNk05sBMJIHaM/sL6DBjbkDUP6UVoRyBH4n1IkiQ6PEYRNpvNZrOlm6Q4KnA4HDfffPO8efO2bdu2adOm06dPQwjJGCISv7Ky0u1201azIlxY1VVfPgPxBLXrU6YoaXI7jZnS1dX11VdfNTc3B4PBjz/+eNOmTfv370fqwkGZzRKg0JBQXGXFeMKECWSFH3NPpsPhqKmpqampueyyy8iRaDRKN6dDTEa/0+kcdQWIIBqVAEAAiAAAhLAgAHaYA6OVWkw8B+rXOA2oRWLvngkskwUrWUUzRiggTjYYY6gocjCYmx148hDEbqXCF2MskCAPWSBQpQQI1CRIjTdA5yBmDQKW5A38g4ncEG97dhySCrDxZA7rKCsre+KJJ2688caNGze+/vrrfX19ZI3rwsJCdh6DRZ81Vf3YkAlW3Re0P4B0zAKQPEjA/qovoCcGltUwxjt37qyqqtq6deunn34aCoXIrgzZcIC+APnMhgR+8IMfmC8ZkgwOh+Miz4CMRiOqFCaKIyYqI+02iFmCm+0M7BFg0DdoNjYtydIApktVA0CVxdgNqQxRL4xDoWAunzmfYFN7NqVZInkJGQD6mZ7AjgQI2VZkNX3NcNJIdtYySGARdqSxZcyFBYcJIIRNTU2/+MUvlixZ8txzz3388ceyLFdVVWnkjkXFk216vZ6ebhuxV0t2uv4uKUG0/pMnT/7qV7/q7e0VBCHlNPKUNGAeErjhhhtWr149d+7cnCx8dHECY0A3pscYsA4DfaxI06A4wSMEGMVO4waIyyIQlwmAfqPXU+tDGYJWMqvNmfMZNjX8G3/7ECKMBbrDDAAAJNnumBkbrDuIXgowQ4x1rSYQA8aaxcjYzoGp4XmR2MiXKERRvOKKK6ZPn/7++++/+OKLJpvCpwTL0xo+gIkTzdK6ZlringogjeihoIYL4YAsTQFNSACrdoAgCHPnzl29evWtt96aLCQwZqB/UaQjQAjZcWryGpkBHhf0ql8IqDpfgrtYFfeYWZIoQU2ksiVBXnCkDxt5gQgBCDFCCEIBISAIGKHYXkIQArK/WDI+YJuWoXfyN2GJGLXxENOKCU2rfkXquQl2A0eWKCgoWLp06fHjx3fv3k0PZsayhmM+A9eQlfKGQQIrd3G5XGRrtmQF9Jq+pmI4MW6MmZBAU1PTo48++uCDD+ZJDjuO+36JPo4gFFQHESC+BIyNPUL6r4w0YA/ExTqlDVb3p3KD0oa+YhyZwSYIgvr2EQACVieDQAjIPr4AYAAEZl8hLVg2ZmiASPzYV13Txj4xDU8nGWCEAE0ujtXSZuM2QU4wMDDQ1tam15GtBAmAauZrkoiwagegxM0arcCKQMeJG5/S+qQ8YrfbRVGkkVjNNVNmiGo4AKumQHl5+Z133rlixYpJkyblT7ek04OJvsgEbMlbJF/jbxTHHUdxcQ8YccG8/AThr7IvZnRB1oPEapw48WpYEPKlOXIOm8PhUIcQVYAEQSDSn3oGMcZAJQMIYjsTxFeeIcxBPXoAAFWyA4xZzSuxDeNNGvtHVyVSiQQRxx/ZOnyUXtGYQmtrK9mnOrPTNVq/3p6wItn110x5lpUC+jKCIOiZgMp0k0vpM0QJB7jd7muuuWbNmjVXXHHFGA4JGEKlAUyaC2MMIQJAIPoihLFNiWlh9QNSMz40lBB3IAOm+XTyAaifNSqj/gwCzgQZwkb0JkWR1eRRMk6gICASe6MGoOoKjJmBtLFo1rDarrTZtDRAP9KxxrQusQPoPIPYeAQAQCgUFPDZIrlBa2trNBpl52FSOjdXbzUFmGQBrP/VIuKCIX3+0Jyiz18iH2w2WyQSoaek5ABs5A6iIYFVq1bdcsst+Tl3yW63J+pvUI0TUH0RgNge9ADHQow0MACJK458xQmxX1YsUAFPu1aC6KcVoCojQiTKiADAEEK32z2yb2XswGaz2RwORyAQJbvJC0KsXUlLQ4ggZI0D0sYYJ6w4pP6SoOuDxC+0RUFif6LTRuI2BI55YwHpKKIo8pXHcwJFUdra2oB2+o9VCU7FPRW45EgGTiH2mhkXMPmJsgKZg8J2uGSXMuQAgubm5mXLlj344IM1NTXmtR3DcDqdqqqHMIbEeUBMAUEQ1JR/KhbYkAD9ihmJwaqMmI56tRgRCESVBGqogB7EVGWkxEAEBWeCjGETRdHj8QwODgoCgurCQbRpAQAAII3oUMV5PM2fFfAgHi2IJwsxigBdToRdVwTQqeSaYYsxdrnchYWcCXKASCTS3d2djWublaTkM5sRkPGlzMskK2meqUI+iKLI9MOkd2EL0M6pKEpZWdntt9++YsWKadOm5U9IwBBOp1MQIB2VhA+IzwchJAgQY+JypK8RgMRVSNXjlBUoEyQ0gfr+yUfEEAOiC5XhBMSUSLvdPuYzuIYPNgBAUVFRZ2cnozTFRrfq+MMYk1AMZPVCoA5FyvnkLPaIyuSYunoY50/8hlT5YlIzSIQAAwBKS0uHY/3RPITf7/f5fBqZiNN37Ojzx7OhgXTPTXaiYWXITDoTwjAMCSCEnE7nddddt3r16kWLFuVbSMAQTqfTZrNFo1HS+oIgIIREMaYyIkT8B1AlAAL6YrFGcWSEPuvpZ6OVWCMrqAKJVSNAXY4idqLHU+BycZsgQ9gAAIWFhU6nIxKJ0pwQUYyZ/CSzCEJIXj2MrTEbEwWMPgjUD5htZsYCAGoEImGVQVXoK4yhEGcDAACEQk1NDQ8X5wTBYDAQCOijAumSQcayW3+dzC6lPzGZ958sraG/i54DMBMSmDVr1ooVK5YsWVJcXJxB9cYk7Ha72+0OhcLUeUBksTr/NCbKVTKIzTMAAKizU6nnh5p6GocySuQIpMoKrHEEqaYBJYZY05eWlnHOzhg2AIDD4SguLunq6lQUgfC96vkVFEWBKkBcGUwYWawuxnJAIi8gTUMmrkrNMj9i3USFhYUVFZlvwMTBwuv1SpJk+BNS1yMascqYe2yAJuJk9BP7NdlFyKJ7hvmg7BFqCjQ0NJCQAN3Ok4MAQlhcXNLX109foCAAhGKxenUTHhooxjSyqNncj40gkgKqQNcj5oYC8V3MiNAAjMpIroNFUcyTiR3DhFgOSUVFRU9PN0KKosRWoyO5GKSB6fL1ODFUqBuNcY5PDAfFjiBEe0A8VJDoF6KZo8Q1hGtqai6JFd8uCYRCIUPdGWeU+TMCSMYE1qHZq4fJZItfn5gCpaWld9xxx/Lly6dNm8ZtUEMUFxfb7TZZVgCAoiioyjgkuiOICQ0AAJs4pMkr0ccUMd3XFjCskLgWaayVGNcxkRcKxgq5RmFhUVlZhluCcwDKBEVFRUVFRV6vl/r4yGBAsVXniCkX8wMaMQHrEKQcQL9i2rQAaPJEE/xCdNVZcimHwzFuXOPFKaQuRaSVJzpMSFQOUhRL9yc9qDmLTUMC11577Zo1a3hIwBwul6u4uKS3txchRJwHam4hlRJUZTQLJlHhQLVGtWVinmR1bml8fpnqLIrvW0DNCCJ8amtreTQxG8SYQBCEmpoar9eLUHxFGnUUQZJaSjIHQDwrACWuPxEfoVoSiBsHisYUoMzPWgZqFwF1dfXl5WUj+TrGNtihOCr8al2IMwqj1cKGdyGOC3bfY8CEBCCEU6dOXbNmze23385DAikBIaysrOjr603cOhSQLX/o+pWMX0hLBho6UAW9+l0rLuJaoqojYjWJKO5DBgA7nc76+nEj9yLGIuIzjMrKysvLy3t6esisI4wB3f0QIbKWAHENAWa6YMJwpUcYJk9wyzJtq3UKUROBKgIej2fixEmCMMp7EowlJAurEpAG0E8bzhWsK/IpaUD/k3lhNe6VEBKoq6t7+OGHH3nkkYaGBosV4yguLiksLPT5fKSPkCgMxpDGE1klg5lxBkDilAKgrj3HJo7i2PTSBJVf9QLFnMasGqkuUAZqampLSkpH6h2MTcSZQBCEceMavF6vLEsAYIxFjMlWpTRiTMYSPYMmBhB6h2Q5CjWGA7C6yKhqlSMmEwAhhBQlbv2RPSvpwoQQwvHjJ5SWcoMgl6Bb/ZAxpkkfAhntNmMRGjMx+0uZ/GpYgIoVRVGKi4uXLFmyfPnyWbNm8ZBAWhBFsb5+3ODgoKIo1O4itgFZwBgk9KL4TEQY3/KWKIiA6pG0U6iCArNrDajhAbKDMVKUmA9ZVRmB2+2eOHESb8cskbD7c1FRUUND4+nTJzEGZG4mWW2C8AFInMevnoSoAkcam4n8UAMQqfaBkujyi1kDiqKQRFLqOqypqWlpyWTHDw4TpBTBbIFcsQLtCckSOk1OSfaT5oi5rUPPUhTFbrdfffXVq1atuvbaay/ynWEuWpSWllZUVHR3d5GvGAuEA2LZQ7Es0vjidEQyJDYREREx0UETSVQgxnOAFSWmLGKMyTa3qg85dpempmauMmYPm+Z7XV2d3z/Y2dlBzAJBwBCSAUzzSGOLDoIE+wCAmDUASEaBygFxvxCV+9QTRHledQrFShYWFs2YMdvpdI7EC8gnkNUGgZFNoEFuTQT2phbZKFkxQyYwL4AQkmWZhASWL1++dOnSkpKSDJ6Cg0AQhIaGRp/PG4mEAQDklQuUB1QxwfYgjEn8gPQ6ciQWN9ZwgEoFcT5QPUXUJ6QgpFCVsby8fMKEiTypJHtomUAUxZaWCcFg0Ov12myYrObIeIcoMSRMH4cJOcP0Y0IDM/m/iIkSK6rLLzZ6HQ7HjBkzy8o4yecepaWlNptNkqRkujnLEHRsZ3w7egsrBMCeYkIDhhVO9pVAUZSamhoSEmhsbLRYeQ4TFBQUNDe3HDt2RJZlURRJqjmMAyTyAVEZkbo0BTmCWTFBXAvxAHHCcgPEpxenAfVE4HK5ZsyY5XbzFSZyAC0TAABcLtfUqdMOHz40ODhos4kYY0GAZB06CCHGCEKyjWn8FGIKsCnD6hGGDWKty04S0dKA3W6fOXP2uHE8gjcsKCgo8Hg8oVBs128TQQ/VdeUyNg7YoQ6SC3fDs0xYSuMI0jOB5ixBEJYuXfroo4/Onj2bu5JziOrq6qGhoXPnzmKMRNEmCMQsiKcbMPYBAEw6SSIBABpGZPmAzSEhsQEiK0hkkVxHFIUpU6ZVV+fvmoC5hQETAAAKCwtnzJh5+PAhn88rikgQiJsonpxNikFI88bYxABMZwjT5UHoMGbnCtJMIXKm3e6YOXPW+PEt3NYbJhQWFhYVFfX29kJ1VwlgJOVZy4BFyukI+oukVT2T8oYMQetJj0N100paoLy8/Kmnnmpubk6rJhwpASFsbm4Oh0OdnR0YY0EQRVEkyqLqDIRsYJE1EUGCfkCTiIh0AAwNYJo/qsYGaHgAtrRM5KHEHMKYCYBKBkePHunt7RNFROZqqqafoO5rRtqZXZA2Lv3JQTVOkGANkAZW2xVijN1u94wZs5qamjkNDB/cbndlZeXp06fJVypGDd+5Ruwmcyjpj5t/TQaq7yczCAwPagwCvcVQXl5eXs6nng4LbDbb5MlTMcadnZ2CgDEmC5YITEARMttbESQ0GvUXqHKfVRlZl3I8nYRcecKEiTNmzKS5cBzZIykTAAAKCwtnz77s5MmTFy6cl2WZrktDGIG2bmIIKNbIdNIHMf0oq6tMgAGTX1xeXj5z5qyqKr5syPDCZrM1NjZ+/fXX9EgyGqC/gsR4LwkeAN1ONfQIPWgxTYjeSHM1kzLWgTGur6/nKxUPHxwO+5QphAw6UFxdVBPPISTaIck0BQBQ347OexxzL5ODikLkhkKTDOmJggBaWibNmDGT3W2JI3ukeJtOp3P69OnFxcWnTp0KBAKCIIgi2a9Os9sJwMwSg6w1T0merhbCcoDdbmtoaJwyZRpfXGhk0NzcbLfbMdNIKRee0+jd5ANi5moBJq5Aj6RLAyaC3opBYHgEQjhhwgSuOQ4rHA7HtGnTnU5Xa+tZVV+MzU8kqec0u4QEkJnugRmfAWsQsPlCmHEgA6fTOXnylAkTJnIayDlSv1BBEBobG8vKys6cOdPR0R6JRFXqByDRd0yZIHFsx+eMMxyABUGorKyaNGlSTU0tD+WNGMaPH19cXDwwMEDfOaFn8yYwkcUaUyCtyrCy24QGDHlCtSzjxfSuIY/HM3ny5LSqxJEB7Hb7pEmTCgoKTp48EQwGY3aBEJt4TMpQOYEQZnawYeMElAOwOvEIMzYELi0tmzFjZk1NLXcgDwesUmthYeGsWbPq6+taW8/19PSQVGJiBjKlEmwCNloA4qtNAZvNVlZW3tDQOG5cA5/dM8Korq5ubm7u7e1lmcAkWqCBXl6nK/31J5pYA4YFDMsbHqmtrR0/fnxm1eNIC4IgjBs3jjgPOjo6EJIFQaRmAYivUkNbCieqjCBmDyRojbFsFIfD1djYMGnSZL6f+fAhDSMLQlhRUVleXuH3+zs7O7q6ugYHfZIUpWOQNDZtaaByPvlVFMWCgoKKiqq6urqKikq+6OOowG63z549e9++fazoR+quRCOpbRlq+howcsHsRL1BQA7OmDGjtLQ0d1XmSIGioqLLLrusrq7u9OlT/f39ikJCB7EkIn0mARX6DOIb2gCA7XZbVVXdxImTKysruSkwrEjb3QYhLC4uLi4unjBh4uCgb2BgwOsdGBoKhMMhWZZUL0HMGBRF0eFwejyekpKSsrLy0tJSl8vNW3R0MXv27KKiIr/fzzrQWdk6rA1E/UgWTQFDp5D+oP50p9M5b9483tlGGGRV4/Ly8t7e3vb28z09vZFIBGOs5hTFoXIAoN4C+gFCweNxV1dXNzQ0lpdX8KjACCDzV2yz2crLK8rLKzDGsizLshQORxAi61JhMvvM6XTY7Q673c4jARcPxo0bN3HixD179hA7gB5Hw79tGRXi5jTAqohWrqk/iBAaN27c1KlTs6ktR8aw2+11dXU1NTVDQ0O9vT09Pd0+32AkEpZlmfUK0vIkA8Vms7lc7tLSkurqmoqKqoKCAk7kI4YckC2E0G632+12Pu37koDT6Vy4cOG3335LRK0m5o+ZZQNye1/rNJCsjN4gwLr9ZygWLFhQUVGRm6pzZARBEIj/YPz4lnA4HAgMBQKBQCAQCoXUjKBYT/N4PB5PAYHT6eKK48iDm135iLlz59bX17e1tQF1z3dyXC9Ss+QDVgE0VAYNYSjcTWIG+puWlZUtWrQo83pz5BSCIHg8Ho/HU8W3JL9Ywbk3H1FVVXXdddexCaAsYpE7Bla8NJor0LPo54xjAyDJHIVkV0MILViwgOePcnBYB2eCPMVVV11VU1NDJb7mV6wDq5IbKvjsT4Ywrw/LPcl+0h805IyioqLrr7+eTyjj4LAOzgR5iqampptvvpl8NlH89WTAKvj0M/lAtgtmD1qxJ7CRB0lTASsH6U+LFy++7LLLUr4BDg4OCs4E+Yvrr7++ubkZMTuMmohXjXBnwRKA+XWSXTkZZ7A0Y1gfffmKiorvfe97PO+QgyMtcCbIX1RXV9955502m42IVOshAY1BADKdaazhD8O7WD8OAIAQLlmyZMqUKRlUhoMjn8GZIK9x3XXXLVy4UFEU8tW6SydL6LnEsID+12S0AQBACM2cOXPp0qU8CZ2DI11wJshrOJ3Ohx56qL6+Xk8Gw8EHmIkqE5+SYZlkFTChAYxxSUnJsmXL+G4EHBwZgDNBvqO5uXnZsmUulwsl7vaVWzKgF1QURVEUw/UhNOEH/U8m9RFF8b777rv88stzUlsOjnwDZwIOcM0119x+++1ETLPHieZufTaABvQUllTMr2BiCpjQAEJo8eLFd911F5+bysGRGXiKBQew2WwPPPBAT0/Pjh07QOKsY8BsSkO3IaMCl25NY7KHZUr+YF1GyeLDIDmFKIoye/bsFStW8M2OODgyBmcCDgAAKC4ufuKJJ3w+3/79+zHGZDMi+qtGFrO+HfN9yqzYECay3twjRGrS0tLywx/+sK6uLuWNODg4kiGNzWY5xjza29v//d///cCBA+q2U8O1NCk1I0wEvRUaGD9+/J/+6Z/OmDFjOCrJwZE/4EzAkQCWDAAAdOXqXFGCuS+IlkkZluA0wMGRQ3Am4NDiwoULv//97/fv389K/yxNBNb/kyUHAAAQQhMnTvzpT3/KaYCDIyfgTMBhgL6+vj/84Q87duyg4WKgriUPVPvAhBWwuu0BK9OthI4trlN0+eWX//jHP25qakrnmTg4OJKCMwGHMQKBwBtvvLF169bBwUH9up4sPQDt/lMJRywGjUkUOqUp4HQ6lyxZwmeQcXDkFpwJOJJCUZTdu3e/8MILp06d0mx1mStYtAOAuiHlww8/fOONNzocjpzXhIMjn8GZgCMFurq6XnvttQ8//HBoaMhms2XJBxYDBiwQQg6H4+qrr37kkUdaWlqyuTsHB4chOBNwpIYkSXv37n399dePHDkSjUZpjqn1K2hEv8VehxASRXHixIl333334sWL3W53ZvXn4OAwB2cCDqsYGhr66quv3njjjTNnzlA+0OQXgcRwMUgzYEBLYoxFUWxoaLj11ltvvvnmsrKyHD8MBwcHA84EHOnB5/Pt2bPnww8/PHr0aCAQAMziE9mDxAzcbndLS8uNN9549dVXV1RU8FWmOTiGG5wJODJBKBQ6duzY119/feDAgQsXLoTDYaCjhGRhANaSYGcaOxyO2tramTNnLly4cMaMGcXFxSPwIBwcHIAzAUc2wBj7fL4TJ0589913R48ePXHiRHd3N1m+lIp4oJtRTNxKxP8jCEJ5efnkyZOnTp162WWXTZ06taKigi8pysExwuBMwJEbRCKRf/u3f3v66afJ5ANRFKnir0kVJaxAVsCWJOmuu+76+7//++LiYu4F4uAYLfC1SDlyA6fT6Xa7ibg3l+nsFGWMsdPpLCws5DTAwTGK4GY4x7DAomTnBMDBcTGAMwEHBwdHvoMzAcewgMefODguIXAm4ODg4Mh3cCbg4ODgyHdwJuDg4ODId3Am4BhN8HACB8fFAM4EHBwcHPkOzgQcHBwc+Q7OBByjCT6zjIPjYgBnAg4ODo58B2cCjmGBRWWfR4w5OC4GcCbgGBZYFPHcO8TBcTGAMwHHsMBcxGewpSUHB8fwgTMBx7DAXMSze5aNSHU4ODjMwJmAg4ODI9/BmYBjWMCVfQ6OSwicCTg4ODjyHZwJODg4OPIdfB9jjhyDbFjPeoc0O9rTMoDnDnFwXBzgTMCRS7hcrsLCQpvNZrfbS0pKBCFmdFImIBzg8/kikQhCis83yCMKHByjDsiVMo7sgRAKh8Nff/3VhQsXKiurXC6nIAgOh1MQIJH/IEYGAABMCsuyEo1Ge3p6SkqKb7zxppKSEpuN6yUcHKMDzgQcWUFRFL/f7/UOBINBjLEgiBACTb/CGKvGQBwIxT4oioIx8ng8lZWVFRWVDodj9J6GgyNPwZmAI0NgjAOBod7e3kAgAAAUBAFCACFx9ggAYGIKYEz+xcwCAADGSI0cAIyRoiCEFEVREEIFBQX19fUVFZWiKI7u03Fw5BU4E3BkAkmK9vT0+HyDGGNBECCEggBBfBoBJDQAAGCiA5hQAqLmgEoJCCGEsKIoiiJjjMvKypubmwsLC0ft8Tg48gycCTjSxtDQUHd3VygUFkUBEmMAQsPJZHR5IZouxPqFCAuoR+LGgSRJTqdz/PiWmpoaHk/m4BgBcCbgSAMY44GBgZ6eHoQUURQhhNQaAACyqwlhjNhV5tS4cQIZIIQwRqqRQMwCpCgyQoosywCAhoam5uZm7ini4BhucCbgsAqMcV9fX29vLwCAWANqYIBQAPULAcY1hOn/6hQChDFQgwQJZIAQRkihloEsy4qiNDQ0TJw4iZMBB8ewguftcVgCoYGenh4IoUoDUBBofDgOCCHG5C+ZX4YBgBCSaDHAGEIYOw4hBEAgxyFEEAIIBUEAGGNBAKKIMcZtbW0Yg0mTOBlwcAwjOBNwWAJxCkEIbTbWKRSLEIDEKEHiBGOgkgE9AgUh5hIilyL/CwIGAGIMBUEAAGMsiKKIEDp3rlUQhEmTJvGYAQfHMIGvO8SRGoHAUE9PD4TEKUT9QQIAMTJgDgL6l/lKigmJpWKfmXMhAFAQiKlBbA6BEM+5c2fb29tH9yVwcIxhcCbgSIFoNNrV1YUQEmLOoLjcFwQhljnEHKHCHgCNlCdHAPmRliJkQLmDvRj5K4qCoqATJ054vd5ReQMcHGMenAk4zIAx7u3tJQmjROyLIoRQoJKdQOO3MTQOiFlAFH/yNbEIVElCwzSEDMRQKHTixAlJkkbisTk48gycCTjMEAgMDQ76RFGkqj+R1BpTgAjxxH9xTxCI+4gwMw+ZfGB7oKAzFIA6exmKotDb28N9RBwcwwHOBBxJoShKX18fQlgUBaqqM34eVpEnR0CibZDAB0ymKWaLUdoAWhuBfoy5iTAGZ8+eDYWCw/vYHBz5B84EHEnh9/uHhoZojpDGdcPo+7HyhlNT9NsVsH4hXfGEBCTVRwRIhEIUBb9/sK2tLUfPx8HBEQNnAg5jIIRIhFYQIIRExieEiwHQWwDJPmtoIGGDGr0ZocYSYrfAGJCcImIcdHR0RCLhHDwhBweHCs4EHMYIhULBYFAQRI3014NIdeo4spD0j9UFKmLrlbLTD8h/NNigTjmIRRcEQRgcHOzp6cnu4Tg4OBLAmYDDGH7/IEIKEyU2KEM1exhT9OPLUDNl9D4jyJSBGENaBGPtbWhsWf0KMcadnZ18lRQOjhzi/2/v/JvaOJIw3DMrJIEXCgEhmLMRoSo+H3Hlvv83uVycw459FLYxOEiABNru+6N3ensX4SREwBW8T1GwrFZLaYvqd/rHdEMJwBSKohgOh3U/IEwL65eoZU+RHDPf9qo4w12t+vXXFHqi672OmrcRQjg6+nx2hrwxADMDSgCmMBqNxuNxSF2D7HzDVHvTf11L6ivWPfhX1T/wb0rfxebbOLegzFmfn4+Oj49u/vEAAHWgBGAK5+fnzOxrRokozSDz30sz7cI71UHdFShnWNrUmnSudoENPdYwUQjB9MBnIyybDQCYCVACMIXxeJQCPlX0hoh8Pag30OTSA408gb/4CtWtfP9qPfA6kVSEKOUkTk5+K7ubAgD+MlAC0ERERqORLfZ1ee6NcsOsew24eisdQqC/JeM+xSFIBLuPDbe5+rc0QITOEwDMCigBaFIUxWRyaWba+wSGjxGlM7VXPf4a+2pcpa87kahdT5XelNdcXIwuLsaz+9AAPGownwA0YeaiuBrf18kzNYuvNZ1Tb3LFdaiSwN6BSLa+UgTve1CpQ14qSiaTyWRSzOLjAgCgBGA6Zo/1Z0jr9K8Y//r7pWm+629ju8A7BKo6TkRMNvypctfxzT8cAKAOlAA0kTRx3hUIiUjwtf/WNKKRQKakFV4GfAjIG39XF+Q9huot7sAXHVkECRljAGYDlABciwiLRBs/Sc4vuLYaqOkNNOw7XWPxxdWP1hII6ZbleZUoKntUIMsFwGyAEoCplHaYmUPImNUbCLYet+4P14eKmCrT36g35ZQSUNj7AF5jyped9ff3aZQVAQBuDJQANIkxEgVmidGW7UTEaXAxiXA5yPIavCm3lb6L8NQW/ulPiF/1qwS478JMzKVsEFGWtbIsu+UnAcBjAUoAmmRZ1mq1Li7GRCyiHeLUG2AdFxNCYPabznQ/sLjWEaIXuNJPUoPPXHkDzOoNmItQbjyQOqzvqZ9ut9vtduc+Hg8ADxAoAWgSY+x0OsPhUINCap5jjERiLSiclfcaUK7x3a408tkCO0jGncxFMEPP3HAFagfMrG5Bt9udm5u7r0cEwAMDSgCmMD/fTeliSZ6BzxOwb02aiovI7zZouAK2k8DLgNWSpjCRLfyb5328SO+/uLiE6BAAswJKAKawsPAkhKAeQIxR4zaaP7A8bcohk3MIyvkzrkaocgVoSlmR+QGllTcHwPwA5vJkOiAiijEuLy/f7SMB4CEDJQBTmJ+fb7fbo9E4xqgWOUYyMRCRECSNE6hSBa6YR5IaUEMDUm5Azb2dZxFitsxBeWzykI7L93a7873eyp0/FQAeLFACMIW5ubnFxaWzswPmSESqB0RcFBJd2ZBU/SckDZuURoDIdZiwUE+jitTW+6ypCGYWKcqfKUeg59WZ6PV6eZ7fy5MB4EECJQDT6fWWP378OJkUrfQ/EmMMQXcY1KaZla5BlRiodgRUClDfJ8xsp6v4j4WDzPTbBfqK3j/GbGPjaYzYVgbAzIASgOnk+eKTJwuDwVDLhdIsgBBj0OHDlEbdS7XxuLbzWI27OQ3aHMKKhiwQlJwD7wFUglAUXgZERPJ8aX19/c6fBwAPGSgBmE6r1VpbWzs5OSmKQBSyjJk1/hO1+YQOFFNrnvRA6ruOLVHMLkZEROycAAsWmQ4USQnYVMGVG9Hm5ubCwpM7fx4APGSgBOBaVlZWDw4OTk9PiUh3FIQQtYRUC4c0N0BlIalPGksjSVDbSlwlCcilhVMMKMkAs5hDkHLFlOf58+f9+3kcADxcEGwF19Jutzc3/0ZEuk4vysV64Vfx3KQoCruyTAmk6qCaDGhamMiKgnxQSCxFzFwwV11Ot7d3lpaW7vWpAPAAgU8Avsbq6urhYe/z509EEmNGJCIxBI4xEJHmDPRKSxKnxqW2b6DsJkS1PqMmDCYYoipiqYKiMBkoi0fX1tb6fTgEAMweKAH4GlmWbW31B4OT8XicZSQiMUoIUcRyxRojIj86RpPDmi4mouQW0BUNICsbdT6ElwG2lnPdbvfly390Ot37eAwAPHD+2AAq8Lj58OHDTz/9S4SzrBVj1C0FNh7ASkqtrrTei9R8gmYXOScDVZ7AYlBeBkKIP/zw6vvvX9z5RwfgUQCfAPw+6+vrp6fDN2/2RCTLMpEsxmgTC0IImnCyzWXkthekmqJmh1F1DjQclLyBIqUHTAZK+v3+d9/t3M+HB+ARACUAv08Iod/fnkwm7969Y5YskyzTncYxhYY49ab270tL/5QhsA3GlhtwaedmCanegYiePXu+u/uq1cL/KgC3BaJD4I9SFMUvv7z+9de3IYQYMxUDjRFZdCiVk1Zuge875DYNaGiokTEuvYGUdiYiefZs68cf/4n0AAC3CpQA/Akmk2Jv7z9v375h5izLtFOpBoXcxgJyQ48bI8nYlQ9ZflgVgjVSZBoQQuz3t3Z3X0EGALhtoATgz8HM+/v7r1+/Ho3ONXtMFGJUVyCkEtLSPxDnF1iWWNImg7SDjLVU1CtHp9N98eLvOzs7WYagEAC3DpQA3IQvX778/PO/Dw8PNYes/eD8aGOvBFRGitg0wBwC26RmnSpCCKurKy9f7n7zzfrXZiUDAGYHlADckMvLy/39/+7tvRkOB0Qh5ZBreuDriFJ0SNLIYhOA6sI8X+z3t7e3txERAuAugRKAv8TZ2en79+/39/cHgwEza+KgvsusmmFJrpY0bS8gTQnkef706dOtrW00kwDg7oESgBkwGo0+ffp4cHBwdHQ0Gp1bpyBqdquuNEB3pHU63V6vt7Gx8e23G+gwCsB9ASUAM4OZz85Oj4+Pj4+PB4OT8/Ozi4sLZus8UcaO5ubaCwvzeb7Y6/WWl1fyPMdsegDuFygBuBWKophMLsfj8eXlhIhEWIuLWq2s0+m0WnPYKQbA/w//A2AngBaW5BxlAAAAAElFTkSuQmCC", "path": "image.png" }
Complete the statement. Benzene is ().
[ "a compound", "an elementary substance" ]
0
The model below represents a molecule of benzene. Benzene is a chemical used to make plastic and styrofoam.
There are more than 100 different chemical elements, or types of atoms. Chemical elements make up all of the substances around you. A substance may be composed of one chemical element or multiple chemical elements. Substances that are composed of only one chemical element are elementary substances. Substances that are composed of multiple chemical elements bonded together are compounds. Every chemical element is represented by its own atomic symbol. An atomic symbol may consist of one capital letter, or it may consist of a capital letter followed by a lowercase letter. For example, the atomic symbol for the chemical element boron is B, and the atomic symbol for the chemical element chlorine is Cl. Scientists use different types of models to represent substances whose atoms are bonded in different ways. One type of model is a ball-and-stick model. The ball-and-stick model below represents a molecule of the compound boron trichloride. In a ball-and-stick model, the balls represent atoms, and the sticks represent bonds. Notice that the balls in the model above are not all the same color. Each color represents a different chemical element. The legend shows the color and the atomic symbol for each chemical element in the substance.
Use the model to determine whether benzene is an elementary substance or a compound. Step 1: Interpret the model. . Use the legend to determine the chemical element represented by each color. The colors and atomic symbols from the legend are shown in the table below. The table also includes the names of the chemical elements represented in the model. You can see from the model that a molecule of benzene is composed of six hydrogen atoms and six carbon atoms bonded together. Step 2: Determine whether the substance is an elementary substance or a compound. You know from Step 1 that benzene is composed of two chemical elements: hydrogen and carbon. Since benzene is composed of multiple chemical elements bonded together, benzene is a compound.
a compound
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABWUElEQVR4nO19eZgUxf3+Wz0zO7O7s7ss97lkVRBYQFARBA0eUQ4RNJ6J0XjggYnGKxKNkXjFH8YjHt8kHhCIMVGjaNQISB7jQRSIwYPDW45d5GbZe86u3x/VVV3dc8/0zM5CvY8PztRU1/nu532ruqaHUEqRBgKR6K7WwM6WjqZAaGdLB4CdrR3BiJ7OtQqOo8rn6eMv/d7Q/lW+ks5uS0GheFhUyJSHJHm4+WJP8xe7m3a2dOxqDTjUQgXH4HVrlx0z9GCIOIyHWxtbmwLhzm6Lgh3p8zB+uAlEoh/U7/lk+z4xuxrRvL5Sj6fEU1JSWe4nBD6vx+cpcREQQCNwEWgEGqDJKYBGoBEQCkKM1xpAAGLNTGC+YP8C0ABCQPinhF/I/gU1XoMnggI8M3tBKQgBYGSTQfn/KCghhA0DBYVxFWEJlBo5KaUsUeQUr0EgZTM/Yik6pRQkSqlOoVOqAzpFlFIKRCmilEYp1UF0KQOlxlU6eCKFDkpB2NtgOLK5fnsgGB7Vt3rGiEEpp7mLgvFwTf1u4V8UD7s0D91xU9/dtPOD+j0ANLensrpXaZm/1OcTs8hm1EUAwgZWAgGl5jzxbptTxQfRzECIORliQiifKkiXiE9ZLXIJ9mLFHEsXsQwUJj8o+4wSyj8jIBSUEDGpBIQSNmGEUEopwDlBAMoKoVQq3KiQmv8DoZSa3eGZpDhPKKWUGpUKBaAQWmC0i2UD4HG7Bvbv89Wmhp2tHXFn8MDAv778dt32RgDuEp+/qrviYVfnYZxwwySFEK26f62vrFwDXLwDLMaboNa3PIXCGE0QfgkFZZygRoqYOUYLuQRKoPHXINZapBTCM4NaahHpRi08kfDZJoSYo00BUK4hcVQFVOTkF8pXGsNCLLMmlw2jfJ3xXcpEiJmREEJACYguuU0CMedUtJMwpSPE5/UAOIAXuTtbA+u2NyoeHkg81GKT2AJK85R4fOWiThGYLWsvYn3LU4SNBL9K9pYiBove2so0uy+LAiyvjZZYxQpxVYVYCgD3q8QskMjRmzeJEp5ApAsppUS+0qiayipnKRuwqIrUo4SqwlOtqiKyGeY6qusAvK44M3hgIBiOAnB7SxUPDxgexsnUx+/zurRoKBAJB0SdcVSFSuEcZqJFVfhVoGaiUBXjCmovlsozJ5UDa5mWYrlPpnIhxJAgCxX5PNlURbouiaoIBwu5i4SJQkwrKaw5RVttnzO54CJiVRVLuwjhNCCkrS0AoKbajwMUvSt8AMKBNsXDA4aH8WPSuJpeAPY1fBUJh3iVrKeQWyEkwkQaqgLEURW5ECLNHKRybK9jVUXwQ6gKZKnh9RVMVexvraoiZctYVToCoYbtuwAMPnDDjc/tOq62D4B9DV9Fo1GWqHjYpXmY8Eb4C59s/nJPs8vt6dZrgL+iku3JuQiikXAo0BEKB0PBYCgYDIaC4UgknZoUHMeovtXfG9rf53Z1dkPyCMXD4kf6PEwYbgKR6IufbN66vw2A11dW6veHA8FAR1s0qia1WHDLSaM7uwl5h8zDsoqqEq9X8bDYkD4PUxzz+2R747++2BaMSqc2CXF7y9web4nXW+L1eb1eb0kJu2vgAlwa2Gtx3sHNUwhLodA0sFMSTKYAuLkXdfHTDRqgaSDUOB8BYp6JIISfg4DpUQk/RkFlq2hYTIuPpTF3BKi4I8AXyPKamaZ13sFY64pCKDfVAORjDvJ5B51SHSTJeQedghLI5x10CgqiU/rxp99kNM1dHYqHBwYP45+7ERjdr3por8oXP9m8pbGtrKKyd8/epaVl5iwSuAAiH69iZyIgveYnpozXfD7kdBJ7vIoAFJpmTCFBnP8gH68yZkLa6os3x4Cxx2bu5xGY5x344Qa2ZjaYYjnvwDkhrmT7bsZKVtzIFKt+K6QmAbxeQF4zm/ccYWxAGK+Ica81uTwcqGA8fGbt1ztbAoqHXZeHqW9f+dyu42v7EoJge6vH6zV37/n+trnBbu7O2+8IEPGhdAl4MWIEzBQq3TWQNwUlxGzsw7ItL8q13hGgSe4IWFVF3HJI844A+KGJ+HMsj485dHzC+R0ByNNospaK2gixjsJBA5/bdcqQAYqHXZqHad0tr6kur+lWrut649495u49N4vmBru0l215K3tL6RLwYmAdGLtEEADGmMuI2di335swK5aTk9wR4Nv/xmjzWw48Z9I7AgCMmwiwVykSiP1FfFWRrrLdEWCXhMIRAJU+j72WAx2Kh+zKrsvDdA+JHV/bF0Djvt2RSChWVYhVRmyqAjl7YlWJPVshqwq1TRiNrypEymCUG0OOvKgKkqqKJCbG2tqqKuxfoSqihriqEg5HAHQ7CL6ZGQvFwy7Nw3TDTU11+ai+1bqu796501QV1gRqnHFIoiqIOQQhYHKGWlNsqoJ40hOjKtSaIXaBKdhTGFWhcmUEMP4kjOGglqEkQlVEDXFVxd6lgwmKh12ahxkcgT/+kD4AmpobI5GQufxLoCqWcE4NnYmVGpEQV1Xk9xRcrORMVlVBjKoIbTCTs1cVZKEqRK6Mqwrhw5GdqthH8CCD4mHX5WEG4abKVzKqbzWAnTt3msu/BKoC2XOS1KoiRVBTVeyckE9MEmsKV55YVbG53xxUBY6qClHuJjsoHnZdHmb2BT8mLPubGjsCgRSqIr+lRg+TqAqVbgGYqmLjhJxCrTrDLzRrzp+qSA3PQVWopCrGVcrdpAnFwy7Kw8zCTZWvhH2NZfv2bfIc2FTF3hDCdUaGVUOI9CgAEpPHfCsxiSChqsiNSVNVqDH8hI1kMlWRGp6GqkjsTKgqxlXK3aQJxcMuysOMH18wblBPr0tra29ra20zG2hVDCr9a7yKJxE8agPxVIXlsV0iek65qsgKFqsqrG3pqAoxhp+ykXROVUwxkRpJrNuJxlXK3aQPxcOuyMOMw43P7WLfF9++a4fZwHiqYjaHK4AFZtQG0lMVQ0aIkZ+IQvg1xawqXCw4dwiRW8BeKHeTPhQPuyIPs3k4ExOW1va2puZmHlZZn4wMsapiKICMeKoC24XWS1gh1Ij8xlu5amNIY86SQorg+VAV8BlMoSpG/TZVMZum3E1GUDw0r5RbWsQ8zCbc+Nyu7w0dAKB++zYeVgFkpirE7LH01nZhAlUhXFXkq8BVhVILPeRakB9VMVpqPgg2vqpQSu2qQuT286/MKHeTHhQPzSvllhYxD7N89OToftWVPk8oHG5pa0MCVZHHwFAVakmxqAokVZFitRxDY1XF6k+tqiLKINaa860qlmRJVQxBoJTziKVLHTRUBcYVyt2khuJh1+Jh9k+6lQ8v2yKdaJt4b6gKsaTYVMW8XOaHVTTiqIqtXhJHVSw128ShYKoCSVVoalURfZFG0FCVSFQHcDD8vFQ6UDyUm13kPHTmwdq2SGdTFXN9K+WIVRXzw0SqwqcriaowHlCpnLiqYopDnlXF6KEzqsK6QzoCQQBVpSrc2KF4WOQ8zMtz/Ikwb0bLDEGQAmgyVRFviE2veJlE+s+uKjBVRd7zs6gKnFMVqYq4qiLUwwlVYb2zKrhCYigeSm0qCh7mJdxQSQGQVFXEPFHb9VIeS7pQFf4fsY01n0hwilArXRgJEqsKMlMVQWUkUBUaR1XM7mWlKvbhVkgAxUOpzUXBw8K5G4sCcFURZIijKmxGraohPiFCQ2xjHaMqhBtX0ZikqgLHVYXt/8uqAvFnoNxNPqF4KLW5KHjoZLiR+8y6IaK7UACRI5GqkNgkmCniEyo0xBw5M0WmCKuoE1XFNOySqhjdVO4mD1A8LFoeOhlu5D6zbthEwKYqkGdXLiRWaIjlKllVzNBrI1nOqkIdVBWxVFbuJv9QPCxaHubX3TBhEf/ZVAUiRdq9i1UVOSVWVUTotZPMqipmzWmrColRFUi/4pyzqpCUqkKVu8kKiodFy8P8uhsmLMlUhVre8vHgb0SeNFTF7L41hUCO3DmpCsSvLIv3FmZnpCo0iaqIMYyrKvKtFYVYKB4WLQ8dCjfWgRbbWzDv6xuqYl/fWt/y8TDLRDxVMcSKJ9pUxZZSMFUh8VUFxMo0U1WkprJPiDSxSVRFvrWiYIHiYXHz0KFwQyzbYBDHN837+oaq2Ne3qVTFKFbWGS5WIjGlqkAa+IKrCmw3Uk1VMT41syp3kysUD4ubh465G3kbDPyAQxJVYSDmvruRbFMVo1hZZwgfHUlVLCSLURVIA98JqiItlc32cFWR8ip3kzMUD4ubh865G7krXElsqmIuEWPsbvqqYhQbU0gcVZGqclBVzGqSqYqpPbalMqtCqArPwBNjVIXKAwRQSiPRKIB0fgH+oIPiYXHz0Dl3IySCv2XCIquKuURMqioikiKeqhjFxhQixp8KnZGqykxVkExVzD4nUxVTe2w3AlgVsqrwMuOoCghEM1iRhJBgMASgj780xaQchFA8LG4eOuxu5DVwHFWRlYcjVlVk5bGoinwJLImyqvBgnIOqIEtV4bWmryrEpipy6cb8igEiRgmxY6hgQPGwuHmYd3cDHmN5WDVSxP/iqIokGpQTRYZNmiDYAOkSXohdVWQFgMOqIjWdSrnMjDGqIk6W82ZIpSdSFWIbDgUBxcPi5mHe3Q0sMdaymuVh0qIqgBSahURYa0upKrF55PnIUVWoVHQ6qiI1inSWqhwsUDwsbh4Wzt0IDRGrWbuqSIcgUqqKuZAWl0iqghjlkecjR1UhUtEZqoq4oSC1VbkbB6F4WNw8dNLdAElVRbg2KsdpSVUkBSBmwVKxMDPYFtIJL4kZkU5RFd48U1XA8idWFd4O5W4ygeJhcfPQiXBDLYLAUpKpCuQ4LaVICkClsiGNppEBVlVhDpbEuyRmRNJUFQDOqAovKlZVRPmsQGpVFfA/ADihKgcFFA+LnodOhBuSUFWI+bllGmyqQqW3SENVYLtNwN7SeJdkqyoA0lAVc8QTqgovKr6qwFQVkkBV4ISqHBRQPCx6HjrvbuQgSM3PLdMg4jTlqgI5QyKJkGq0qYoxCiJiU7MlsY2NVRWwGctYVcwRt6oKbBV3uqocFFA8LHoeOu9u5CCYUlXiKkBCiZBqtIZfEJg6Q3gG27paFBirKmAz5piqwFZxGqpClLvJFYqHRc/DPLgb2FUFtsOXVlWBOa48QzxVscZb+1sKU0OKWVUgtdGqKlS5m1yheFj0PHTI3Ujh3wy5RvAEbF8tSaUqRiYpjVK7jKRUFSC5qli0AoVSFXm0TFWBcjdOQPGw6HnokLuRwz9PEy2MVRWRKY6qWKeclWOqCs9j0Zl4qgIkVxWLViBnVQGlWasKS06iKtSqKm0dAQA11eX2vh3kUDxEsfPQYXcDaZqE/4pVFZEpjqrYDC3i57HoTBJVidfY9FVFBHSRM5GqgJA0VUU0VD7IwCq3CwZvK4F8tfI2CaB4iGLnoQPhxjovWaqKqQDxVAUxyhNXVcwsQmekWkSB6auKiPsiZ+6qItotqwqr3L4cllXFvNqSRUFA8ZBdVMw8dCDcWOfFrioEaamKub61sSaBqpgpvBwqT6fQGakWUVpaqkKEqhA5Z1aqQmJUBVDuxmkoHrKLipmHeXE3LLZSMfTJVYXGUxUz+FppJOVJpCqWFFkWxKWUplYVKlSFyjmzUhUaV1XkHqZUFWperdxNfCgeAsXOw7y4GxZbE6kKiDSXPN2uKpJoWGiUWFUgD63QGWp+KtVIikFV5B6mVBVpoJS7iQ/FQ6DYeVggdyNPLag0l/zKdFTFlkd+a6OaUBUUh6pY3vOOUenzdFSFKneTFIqHQLHzMNdwQ2Af4riqYul1IlUxk0BIHFUxlQf8EmLPI1diJOVDVYyr0lUVSw/NfplPik2kKlRSFaLcTWIoHvJyi5qH2Ycbr9sFIBAKpasqAmzoCb9KSATMgqj0bRQ+FJKMwLjEepFdukSS86piXJWBqkhLZZFqPinWqDxGVYhVVahlpBQAxcMuxcPsw02filIAwXDIbiBJKlUBQM3JS6YqZpDnIdaqKtaLpJjeNVXFLhkxqkIsI6UAKB52KR7mvHfD+2UGUxpPVWyIpypEKihWVWD79q2kKoJFRJIvcx8tX6qCLqQqBz4UD/nLYuZhzuGGL27NYBqjKtbZARBfVcyJSU9VIHlXoSpmzBYUSEtVSOaqghSqIusslLvJMxQP+cti5qET7sYWTI1YaKpKzOyYgxCrKlRSFXPyeEU2vpiqIgJ3jKrYLkqgKjS1qgCZqYp5mUVVpNOh2ahKezAEoLffBwUZiof8ZTHz0Bl3Y1sqipREqiJShKpATJVcLHspq4oVsYXEqoqNZNmrCpCFqlAhhZKYiBfpqAq1qgqN6lA/oRkLxUP+sph5mAd3AzNFVhXLklgSBNvEULlY9pJaKpIRW4jZLllVZF1AQVWFCCkUbI6nKkZ67HkH4yQolQdTIQ4UD/nLYuahA+4GSKwq/D8qjTvSUxWIPJKq2IQljqpYG2bMMbEmd7aqMHZIqkIgqrR3gdhUJbajCoDiofikqHnogLth7YyjKjwKJlIVIs4NgK8PYS2HvbR9pcWawVJITMMo7CvtDFXFNvSpVYWKck1VgdkZSUwkVTF7aNlPVO4mfSge8pfFzMO8uBsjhUfBRKpCxbkBGKJhFmBVFSJVBGsGSyExDctZVWzGMrWqEFGuqSowO5NaVaR5VO4mfSge8pfFzMO8uBsjJW1VkUUjiapAFCJliFUVe0VdR1WoYIfUNuVu0oLiIX9ZzDwskLsRohFHVaQMZjmsEPapfEjcqipm1fLgUHuGQqqKaHUWqkIEO6S2GQt35W6SQ/GQvyxmHjrmbrgE8BYKk8kDd0JVkTKY8VrOIx8St6oKACRVFVhZwuvKo6qYA2FVldgbAVTua1JVgXI3KaF4yF8WMw+d+Y1wOZiaKVxS4qoKSApVYZ2zLKTjqQqsqkJIHFWRh6azVCVWTPjhTDG5yVQFyt2kAcXDIuehM+EmTVURy1eRIqsKYlWFmOWIYm2iYVMVSuOrilxsjKqgMKrCxQTiBc9gqoplHiVVgXI3aUDxsMh56Ey44W1KoSpi+RpXVZiMyKqCmK4LnUmkKqZ8WZtmKdauKiisqkC84BlMVbHMo3I3WUDxsIh56Fy4IZCDXpqqAmK+pbwMBmotRxRL5I/BeSRdFqMYsaoSmyddVQGb24KpCrWrSnsgBKB3RSkU4kLxsIh56Ki7iQl6coKsKuwzEYJNVbGF/zhd5yMsqYpNRmIUI1ZV+JaXmYc9wYymVBWwuc1AVcSVhIIaRj19VSGmqrB/ItEo1HemkkDxsIh5mC93wyAnCFUR4Tyuqshzgzhdj1EVnsfylljyEGm4JUGTi2bPZyWOq4pZASgBkUmZqarYxlYhPhQPi5iHTrsbK2wyYwZQ/tbsmdhIk+YGaagKiVkky5FdpAgq5FNVEKsqEEtlYqoKRC2Zq4pCCigeFjEPnXQ3sc2gtpmTVQXmAji5qrAgbl4lf2ydQlOIbKpijdRZqwpNoSrWuqWSjXZaVIVvNSp34ywUD4uYh066G2pP4KoiRXdY+iFF/8SqwoI4sV4iIKuKWXKMqpj5kb2qmCcUslEVUIM7RgNiVcXeVih3kzkUD4uYh3lzN/y+oE1VzIhsXATEqooUQy2qwudFlhFTVeRVqqQqtFCqIsq1tcaqKlRklFRF7p51MpW7yRSKh0XMQ8fCDbE1g2/421TFjMgshV8LeY6lGGpRFT4gsoyYqmLGcUu5tljsiKpQ6xzxi0hCVSFJVEXuvHI3uULxsJh56Fi4obZm8AgbX1Vs88RLMErJXFUsq3FqGTFbLHZEVcRiP11VMRgfV1XkznMzbDZXuZvMoHhYzDzMo7sBrKohq4ptnkSuGFUB7KoCEkdVzIWn1BRSTKqCtFXFYmOVu8kQiofFzMM8uhvAOtmyhiRVFUv/KZ9IcRVNS1WEuc23qvACUqsKa65NVSTFUO7GASgeFjMP8+tupJBpvEhHVSzujkiKkUBVjIqsqiK27qxMc15VeAGpVQUEVGQ0x4BnUO7GCSgeFjMPnXM31Bx0wGIjzTEW0TRDVSGcECKFZTAnK5WqWNqVnqqATaOjqkJERnMMeIb0VCUUCgOo8pXEmwQFxcOi5qFz7oZIM4F0VUVePYp4H6sqFBYOiamVYrFFVYhNrLJSFbBpzF1VBFWdUJVwJAKgmwo3CaB4WMw8zLu7ETGRJRphN1ZnpHifQlV4sfJC2qYqVIiVmBC5XXlRFbl7kFtDBFWdUBWF5FA8LGYeOuluEE9VRExkiUbYTaQqAERYTqoqVCIEYlQFQlVijrTnTVXk7skVO6wqCsmheFjMPHTS3SBbVZGuAERYTlNVRIqpEEaKrCpmO81mZK8qZhtTqwpvulVVpGKVu3ESiofFzMP8uhvweC8S7aoiT55IkQoEnwuLQ0YcVbGWml9VMduYWlUMDbGpilSsRVVoPFWxbz0oJIbiYTHz0JkffkECVTFSEqiKZTqtqkLEXUY+FyI0i0wJVUUUS4pFVYhUIFcV8blFVVgGs82UPZXWOkAKsVA8jClXyst7jU7moTM//ILkqgJrIo//xJrBIhFCI2RVkQOrVVXsFQmvmLOqWESREEMEJOmQVcX2kZEuVEWIhtETKqqWVQVGM4wqlbtJC4qHUrlFy0Pn3Y0tBFraJpqbXFXklbaYC/lIJKyqEjsK1DFVsYgimwOrdMiqQmJVhXJVMbpGKKQ+8KplVYHRDKNK5W7SguKhVG7R8tB5d2MLgZa2xVMV24dmIVZVgXkk0ojI1vWqtSYhcTGRuNNUxegaJZD6wKtW7iZXKB5K5RYtD/Pjbqg0/ZJuxFUVWD+UCzGjO6yqwsferiqiWN6Y2EhcfKoC5W4cgOKhVG7R8tBhd4OYWC7CN2AP/7Gzb15FrRmoscNPBG9iNMQiVp2qKsZFyVSFSKoC5W4cgOKhVG7R8tAhd0PNubTNQVxVse3nsTzyHpsl4nOdiVUVe7HiXaeqCjE1kauKlff8U1tqWqoSieoAvB71wy9WKB5K5RYtDx1yN8TsiX0OrPPHLhGOV5Rh1yKrqrAUu6rEiJUZfK00klFIVaG80bwlktgZqsLLTltVAsEQgD5+X5y+HcxQPJTKLVoeOuBujBiaQFVsMdW8JEZVxFVUkhHzolhViRUr8Y7TKFZY7KrCk/OhKoQ32qILpuZY+5zPNfOBD8VDqdyi5aED7kZeISINVSFIoSosA6WWYmyqYgRlcYE0ZrKqxC6b7arCk/OjKuCqIulCbqqiEB+Kh1K5RctD59yN2TBre4SqWEUDmasKhLDYlpyUXyXeZa4qrCupVAUZqgqyVhVerHI36UHxUCq3aHmYa7ghiKMq1JrDFhRjVQXpqQqEsBCzEFFyrKrYioX0aayqsLFPpSrITFWQSlWI1GeuKqwZvFjlbtKC4mGX4GGu4YYiLVWxiAbvnTzO6aoKNVWFWE+OxqoKYtomfWpbyhtj77CqSC0xG8qLtFBNUhWi3E3mUDzsEjx0Z38pACAaibS3d2gELkAjxn8EIJSabylLpC5CCKhLI1SnIqeRHwCoixCAanwojI+kowNyCht0jRCAEkAjhBpBHNRIB9UpYTmMb9ADgG4IH6UAIYS9JQQ6pQREp5S9ZiqhU8pKZoOs84sBolNK+Uxz8lGWh2iaTvWoTkGITqlOoVOqg72mOkhE1ymgg0Siug7ogJGHIkp1VnhUp5SQqK7rFBSIUprDRB/gUDzsEjzMNdyEw+FgMMAm0kVAQDUCjXs39lqebI0AnAGgEi1AmZCwSdH41LIpF3PJ5pcAmkZAqYjhMLb0IXROpDC90AhhM83mklJdqIqu8/DOJVKab7Z1B/4vKNWJpuk6ZTcXxZzrnCyUGkbUEECQKNV1ChASYRPGZg4kqlMKRCmijAegOgVlVACiuk4NckCnlIJEdaorh5MAioddgocOPO9GrAFF1DOiLhtH7ld5JKeE8CUxX5ey7MaIifuIlM2upSLCVcUYS0glUMqkQNYQuW0sRSOsIgKxGCUw3S6lrF4KY451au7PszWzruswPpUK14i8ZiZEM9fMZiONDhOiGeMgBorvLFBKdaoLlwz+FDVq20JQiIHiYfHz0IFwY1hKMa9iQUn5WtbIw4aTUL6K5ht1RnaNqwLvvHW1S41LqHCfwtwafOJ2VVhTMedGvRQwnCorztQhwQdChJtlzGAO1mgCs82aBuNTo7WEEKoLn0sIIZTqtjWzufomhFLdGAcxUJz0hBCNaIYrhrFmhvltXYWEUDwsfh46425YwIyvKmYeU1XAJQKSqug8xgtVsWz2ETEVZl2yqlBDJYyZ1UxVseiMoSqMRAlVRctOVXhzbKpCeCMzUxXWLuVu0oTiYfHzMNe9G/AGURgrW5iiYT5/kBAQfnePpTOJIMSqKpwOhE+EEZgNGTBJwTKzK13heldwg7vjU1aOXloX9Y3QPYM0zfSvcdfMBo1sqgI20MaaWTOFwVQVtmYWKkcI0S2qAqYqnMuUp+rGCOiUXWJTFUpBCNGg6VZVMTiqK3uTDFnwsCy0vrLtDQDeSH3YM4gAbf5Tw76R2fGQEML2hs04RoiuU8VDAQfCDQufmlAM3nlN2DY+QMZnfDY0riqEEDYBGgB2/42INTOPpuxSzQi/lFIClOx/vnTvU+7AxthGRX0jwj0vj3Q/l8aoik45iZg5ZCYRVAclRss13fCZ5h0BMF9Nmapwn0xAKHRKiUaozvpIKaVE0yh0iKaDclWhxszpupg4o4G6MRo61QkXKUoI1XWhKuEwBVDTrdyBWTvwkDYPXXpz7/1P9Wp60qU328rosfeBqKuyqdvslu6zqVaZJg+FqyL8bAvfsqGaZvgKxUM482h0al0zS6oirRjNPSexipZNq7Cd3OxCzBy3quArYgDwBDdUbTqnYtsNcWMNAFdgo6/h+vLPJrg61rNobVkzsxlKuGbWc1kzg6+ZeWsF/4ygy0rmppbZb7V3kzPS42F5aH3dlvF9Gx+IjTUMrmhz970PDvpmgie4ISUPWV2sPr4fRMRcc7vB128HPQ+dCDfcsoglKG+3ueY1Z1xyN0YnrRPDt/IAwRtJVdhguAMbqjad42l/P3XTQvWl35zjaXzO8TUzTGrY18zga2ax4gVAKfVEGiBNrdBcxk95zQy1d5MF0uBhj+bnhjdMSRRoZGjR5gGbp/ibn0diHoLXxeoT7kaedOFu+Oqm83lobuQUnIdOLKaMQeOBk4p2U2mkIRtBiIOYsrvRLHs3ECVY18yewIZuW84h0dSMMcqPNvsabgh4ayLlxzq4ZjaMb7w1M8w1Myo6VpS1rfC3rXDpLaJJ7Z5hzb7x35ZfFHANAudn3DUzVXs36SMVD6vbltbuvj6jIntsv4FqFR0V02J5yDIQc+/GmCmNbw6zv3y2d8P/hImmObx3kyYPiWZs2YiIIkKMuEdWAB466W6QWFUgBktyNzAsarruBoCmN1fVz9bSjjUC3s2XauF6FFBVSgOrarad3m/HnKqWJXKsAVAW/qxvy+Ijd5x8WONcN21OoipEuZv0kZSH3sjWTGMNQ/cdN7oj9axA6d9U7oYftCsOd2OaGioCJW8/j83J3I1TPHRo74Y3ir8ltjUzePfkvRtjEiR3I1ah4H2GsHoUAMr2PuUK12fRRhJtLtn2a2SxZtbsa2bCm55kzVy5f0H/b3/kDX2avFW9218at/Ok8tBG25oZVlXJfc18UCApDwfvnedOYw0VCy3aXLnrARsPU+/dGLdfpb0bLqtZ7t1kxUPT3UjbSXy0jPYbNdI4ezdwmoeOuRtzRyqRu7HOExDH3Yg4bWoINVXFFd5avvvBrJvpbl6mdazPWFV0u6pQbswSqUqvnTf12HNPuq3SW8bsu6gy8qlyN7kiMQ/Lw+u7ty/PuuDy5hc8gQ0Wd8P/J1MopbuR/m4zdzeZ8zCVuzHeEuPnw7u4u+GRxACxulAgtbvhW39GLb7m7BnD4G58Pg1VIbmoir/5xYrWlzJrld4yZt9FHtoM5W5yQWIedm/LlTmlrcst7gaUSOwFJ4ZwNzSeu5H+btNxNznx0OJuYLobabS422Ivu5S7EYe6TVURc8GQ0t3wqxK6G0/7qhxb6mp9Pw1VoVmrijtc33PXzVk0zKO3HNF4DZS7yQWJeVgVeC/Hsr1t79ncDZXYy1NMd6NpdnfDli2ZuJvseQijadzdwHQ30miZ7oaxrQu5G5LC3RhRkwdPwIwjotuWHXqWx+JuXOGtObZU69ggVIXkQVW67Xsk67ZVh9dUh1YDsKkKlLtJE4l5WBlIfWYiObztq5K5GwAwQgxzN7pudzdsUzbW3eSDhzCalr27QX54mD93Qy1zYURNHjwBM47IW2hWd0M0yd0AnkCKndd0IFSFOq0qWrTZ37Ikl7YNbn8aAFMVcFWBcjdpIgkPHSpffhPrbliIsbkbsZecyN04zsNU7obISw/hblhFRPoDzQcP8+duiGUuErgbsa/Pvr5hczdUl9yNQ2CnGPKhKmVtb+TYturwGnBVQVxVUQYnCZLw0KHy5TfpuBt2ygaJ3E1+eJjK3VB56SHcDaso1t3AUR4Wzt2IrNJV4HMBolndDctidTdRz8DcG8u+I5cPVXFHvs2xbR69pXtodRJVCUajAGqq/TlWdGCioO6G73EkdTe6bvxtI667yQ8PC+Busuahk+7GiA4J3A3/H5GuiutuzM1km7vJPdzQkoH5UxVfR64bBAyxqkLV3k06SMzDZt+xOZYdLJtgG/9Yd0MSuRsWmDrV3cjDFMfdIC13kzsPnQg3MDaZjOiApO5GNNbIiRh3Y4qIrW/Biik5tjNSNTX/qpIrYlWFqL2b9JCIh/vKcmVOwG8vIcbdgLJdYYNCkrthgYlTrpDuxvI3yK+O427A3I2W3N3kzkNnwg1TEUNVYKqK2bB47gaI727Mi6jl21WBylxJE62cmpGqAEhfVaJaRY7NY1DuJmsk4uG+8qk5ltxeOYVY/8zYHhGR+EzYPW+DQvHcDcnS3SATHsruxhoPjauFu6HGN8KFu9HlpWdRuxsgjqqY66Ik7oaa7oZIWcHdjSgk6qkJVJ2ddSN1/7FR/0RZVdgTQ5KoCtjj7M32IEZViFCVsLcu67YJRLRKoSpQ7iZDJOJhwFWz239O1sW2V50TdddQ658ZYy6V+GxzN4Dd3SDB3o2zPEzkbgwPJbkbFvts7kZ0KB88dMzdADGqQqkpCNzdiJ0z091IE0OlrIhxNwBae99AszURgX6/hlVVNE3jFfIpy1hVqFCVUMmw7BomECH+ZvdwoSqQVAXK3aSBJDxsqL4xSrJhjq5V7O95vY2HSOBuOIOMX3GxuRsk2LtJzkNE9rvb33dHG9LkYSJ3w//0MnY3cI6HTjyAQrRGN+IL0xRNM1O4rREWxnQ3bHuNTYx48pmRhU2ItH0V9dTsH7Sgesu5mbYwMPBBWjYK0lPUKIVOdU3TQGA8RY0/+8PyFDXd/hQ1rhKcGuzbuhoJlE7IbvQEdnlPBlMVPtOEEOi6cjdpIgkPg+6aTwe8OLLh1EzL3DX4Bb1ksI2HMIID+LNITXfDPtEIAUnhbpLwUIs2lexd6Gl/XwvVa+EGUWnENyJQdXZH1dlRUpmIh+JpfmAtJjw+me6GHRcmhD99nRk1QjQCHdzT5IOHeXQ3ZqxBMnfDVryGu6FmVnC62FQlXD6xZUBmX9QMDHww2uP8TFUlU3ejuypbK76fUcNs2FZ6JhKrCs1BVQ4SJOdhe8nIr/ssSN/j6FrF7v5Phrx1cXmY0N3A4m6Ev0jf3Xj3/73yy4mlux90t70vxxoA7sBG/847e3x9XHnjgrTdjSnerKHc3SA7d5MLD/O4d8PuCxqwLyBNd8M0gT92SMpquBvYu0fQUXVu4yHL9ZLU98WpVhEY/FSk+3lprZlprmvmfT1v07Nd633rm9VYMh4J1syWlalCAqTkYaN/2hcDXgilcaIi4hm4veaF9oppSMxD86YSDHdD+b6LcDdi9ySdvRstVO/fdG7ZthuTPz1OizZX7Lqrx6ZpWnQ/Uu/dEHlwpL0b2PdutNR7Nzny0GF3Q/jbBO5GhNhk7kYsD6kYGLkQCkIQLR3ZeMjyjsRbOVSrCPW5oW346nDlVMRRFTjubgCqu6r29fxVFgMYcPX/vPJW9lq5m6yRDg/bS0ZuqFld3/uhDu+IuIUEvSN29Xmw/pBVYV9dSh7KfI51NyS1uzF5SCJN/q+nutvSPb3lCX7avf6HWrQpU3cjOsHdjZGb6nl3Nw7v3ZiPIYy/dwPb3g1g/HyyvHdD2U8y8L0b8+45/9dYc7mq2nvd0NH7Bndgg6d5OQFcHRv0sjoAkdIJ0YpJrGrCW2hdMyP9vRvZ3STZu2Fr5tbKs0i0qcfedJ93AyBCKj6p/r8IqWRv5TUzpDWzcjcpkT4P91acu6/iXG9ka0Xg/ZJIA9P3iGdgoPzYiHuQRtjiIi0eSiUb92PBDxzS1Hs3Bg9dtKVsUwaPxGXwBDdW7rmrsc/9aezdGFs25jYqQMwnhxruBnr8vRuneOhMuDFVhYdw9uerCSsnuxv250qNjgt34zLWU+wkuDF9LEYT8eQkwlVF1E0RLR0Z9dURo2zDx7LNLxCwX8wwfCPhv7jMDn2SGHcDQgDxjFgYqzyx2QbA6sK4qsjPiG3qdqnuquy1a246Q9fqOXx99f+1aQOFDGpEM12s4beNv6KsJ+ggQaY8DHtq9ntqCDF+ApzFAxfJkofsR6cEDwmI8fswafCwZOdTrgS/KZIcZU0vBspP6fBPieUhDyNG+7ixsrsbscFtHEHmETkfPHRy70asDuU1s816Udt7Ert3A7H5TcxbdkZm4xK5WK4q4saeCOdGD+OvmZH+3o1kR5F874Z1EZS2VJzdMOjVDt8xSQYtQirqK3/6SY+nA+5B8oEkec0Mec0MRKIUQB9/aZJiD2Z0UR4isLlkZ/aPqazafXfyvRvmrqil9fLejfk+3zx00t2AJFYVKScR9xAR190YXbaoCqRrrKpC2ZpZelQaWz6L5aaOgrob9h6gQc/whv5/LQltrGh50Rf8tCywhjU4Siqavce0+Mbv8X2v3TVAZ5xNR1WosYfgc7scmbUDD12Uh57WFbn02hVuKG1Z1u6fEpeHYu9IbBsZDZbcjbk7kGceOrl3Y+xXSWtm9kqeaXbXwJwnwvduiNi7AeWmi4VsM+Ba1szg1BJrZsCqKgQAgYZka2b73g0BpbF7N7yxaezdsIJYDwmlwZK69urhFKAgEV2nIBSIUhplM2v2hKZeMzsyVQc0uigP3U3Lcux4ScfqDv+UuDzUaFNZx+rytn+5ww2eyDZPpKHVewxAmsq+t9d3codroLBDBeCho+4GhmIIVSF8d1yoAFMA2FWF6hR2VaGgbI4JtLiqQo0pF6oCq6qw5mTsbkhcdwNk5m5MZ29VFUohWpKxqjgyWQcwuigPXW25PhW3JLAxLg8rWl7osecezfoTFP7gGgD+4OoBuGdP+ZlbK65pdw0ACsFDR/dupLUzX0bKq1eehWkCe2usmcVPtQOCAcTY3rerilGM8dYQFWqMsWXNTAGS4d4N4u7dGJWms3dDjNpNZ2+dHsLNNiyqknjNTKU1s0JydEUeItKUe8dLOlbbeOjSm/pv+2GvXXO1pD9307PtpdG7ZvXsWAEUgodOuxvCZCG+qpSG1vdoecHf8Z/SoLkJH/YMavVPaa44J1I6UqgK+KozjqoYNXFV4b85n4u78TQvdbe84erYIO4ORMqODftGUM/AQPXZulaVwN2QdNyNdagMdwOA8h8WZXcthTm3qQoxT7srd5MCafLQcD6gALRoU2l4ozdc74k0RNwDw56BEV+drlUWjIdwVznSd5mHWrSpz7YLUv7MGYNbbxm276ek22+2l56Vbx46uncDHt1hXzOXRLbW7Pl1t/Y4a1RPuL668anqxqday6fu63N71FPDHCzfU49ZMxs18jUzC+qG7+VfkpBVha+Z2YW2vRtP+6ryhhu0kP2n8tzt77vb3wfg27egpf8DobIJiLN3Q5Pu3Qj9iuNu2E6dkFYA0I2stjUzVXs3aSMlDxkYIapbnuvZ9JSsfAJt/qnN1ZcGyiYWhoe5I+oZQNjRQY2QcFOfby8oSS/WCBy+/9YO18C9JcfklYdOnipm/yfG0Vzj/jwhqOx4b0TDqXFjjQx/27KBW6aWtyw1VYUa++qGJkkTQ/jk8wUNhKqYHxOAQuc3KdiF8mnOsm03lH1zTmyskaGFG6q2nFdZfwWJNglTw2vju5LSac403I2xagOJcTesRuk0J8S3WghxgpYHOJLzUPydlAbXD204ddCuG+LGGgDlrcv61Z/bb+s5mt5UAB5m/ZADgah7oOBhVePDJcFsfkRgZONP3NHmvPLQ4b0bsP0mtmYmBEDP5ueGbT87zd9L1aLNvb+93N/8PISqmMtJYlMVec0M/ncsVMVwENKa2aiCew7v1us8jX9Ps4Pe1uXVW8/X9Cbr3g1NZ+8G/F/21nA35jKYGLs4/JRH7JpZyqyQDEl4yP0OurUtHfLtOaXBDSlL83W8P+CbY0tCG/LKQ0oRKc/12aYh3wjWAHe0oXL/ouwKcestNR1/zisPHXY3AFcVEEppeWj94H3zMi2t5/YbSkIbUqoKq9JUFcKfQAoA5jomrqp4dz7g2Z9urGFwBzZ223J+tu6G8lex7oamdDfIWVUOEiTiIThhykLrD90525X2j4Vr0ebeW8/xBNbniYfM3USrcn/Y4NmsAf7GhbmUU9vymJs254+HeXM3oISQw3demt3vwPdqmG11N9LunFGjMemyqlD+4HvzKYfxVEVr+U92hzg9wY3+vQ8ndzf8foTD7kbt3aSDRDxkn3oiW4d+m/HTILVoc/X26zW9yXEeCncT7HZOLuupUOn4sK+ONaC8LacTgwC6B1fnj4eOhBsaV1V6tTzrjTQkvzIR3OH6yn1PCncD+4arec+Ocndrbs4ChKsK2z+DVVW8u7I/MO7f8zt3pCGJu4Hd3TDk6m6IcjepEZ+HYh4G7nsgO/ErCWz071vgOA+Fu9E0LdT3xuz6DKCpz+2MUiWhT13hbVmXw1AR/Tx/PHQk3JC4qtK/+clcCvU3LhTuBjGqIpK45hj12lRFWFzKF9nuwAZXa06/0OJtWZ6mu5EWusZdUcPYxHM3VHI3ZqSSVAWcslWlnlzaf+AiPg8ZAbyRrT1bM1s+y/A3PuWKNjnIQ9v5r1DPy8NZPfm/tfqSUMkIg1JOHOGpDq3JHw/z4m40jfgi9eWhbL7hKuAO12uhLfHdjZSUUlX4jQmjBFfOB8ZLm5ak6W6khS776h43NlZ3Q3XLQ2A19twU4zpTVQBEdQCo8pXk2IUDFHF4KNxN36ancilaizZ7W5Y7yMPY5910DHgw6hueUas6Ks9q7nW7xMNcumjrVl54mGu4YfpsUxVdp+XB9TmWDKC89Q1jDsUNAKlWm6oAdlWh7IkfmtXdpP34okTwBDfm4m74zJnuhmgkTXejkAiJeCjcTWXHezlWUdqy3EEexp5up+6qttoXwt3S2l3StYrm3rft73c/LDzMsYtyt/LCw1zDDdNnYz9MUhV/OCdrw0CizcYcGpHVUqtNVQC7qrDDFzZVceTv1hVuQLbuRj6Ukam7UUiERDwU7qYsN68NQNObnOWhzd2Agroq2wY+1FbzZPIH4wb9p+455N327rNjXHaOXQSAZs+w/PEw11PFpqpops/UnXoQFOFzaERWPqDmnzPANITVy3/fh4K/iFEVktVmoQ2ucH3EPdBQFdtT1AjATxVD1/ntKeMPgMmZ8VdhuhuAUiqd5qRCQgmhuq7cTUok4qFm3BJyYPRK2lc5ycOETyZAqGJKuHKqp2mZp2W5Fm5wdWwgeku4bLzuGRTxDQ+WHRvx1ek6FZQQPAyUTtC1Ck1vyaWbLa7h+eNhruHGoip8XjXNuUUkFc9H06VYC742YX/gvF6jAYSrCiHsxzc0wgXHmYZRVxW4iDF3o1vdjeHmzXPDBk0BwHiMI+E2R+zkgH0b1PiuCjWsD+HfsnHMKx+ISMRDQkEp9VAH9lABphjO8JCmejJBuGpasHKKeDIB+INmqEGN+N/dC5ROKMvtXnijdxyjcj546NzejbR21HXa6on/3OmMEBFPzKdicM1aqfkHzuvlAUWs2GNVBa6q3BsW9o5A0r0bbmbEt6KIyUvhSIW7IebeDVF7N1khEQ8ZEyKaA5Me9Qx0kIck4ZMJhAjZnkwg/y4C72zMHmJr9SW59HF/ybgObWD+eOjU3o20ZwFoGmnzjsyxZACBMv5DcdJjAUStMP/Aeb18v0w+SwpqWTPnfmA87B3O9Sbh3o3N3VBd53s3EHMmLmDHi4wFltq7yQqJeCiYEHKn/rGX5Ih6BjrIQ7F3A1DrL4JQfljC9osg8u8iQHI3Fh4GfBOCpckeWZscX1TemlceOuVuYFOVgHtQW0lOBifqGaiXDDbexFMVJh+IURViVRUQi6pEumf8C5w2BCtO5e4kmbth5CEACIjGZIq7G/ZDH6J9yt3kjEQ8FExo9uUqMx0VUxzkoXA3AMna3cTl4b6et2f3Y2ebK37a4hmeVx7my90Q4NvKy3MpuaX6MnOHz3g+CE/gNkJWFZpYVfh6mALQPYOi/pyY1159aTruhpGH2Rj+5X3ubnSdt58od+MIkvCQMaGxLNfvJXVUTHGQh3lyN1SnIe/wXX3/mGnvdpaescn/03zz0AF3Y3TbrirYXXF+MFsHG/UMbK6+3NzZpVQTtSBGVagx41TsE1KLqoi5BkAICfa+Iev+tlVfEtUq03Y3sLobotxNnpCEh4wJ+/zTWnIwOO2VZ0c9Nc7yME/uBiCBsgnbBr2qp/3zxLtKz/i8en4BeOiAu6E0RlV45z/vszD9n2QW0LWKXQMXEDGNMN0NEbWan4EfqYL5vEbpKSexqqJXTAr1vCyLzka8w1t6355IVeK5G3B3Qw0axXE3UO4mdyTnIcuxrTrL7yXpWkVTrxsAh3kYz90gd3fDCgqVjGioeTWQah8n5B7wWffHvug+HwXhYV7cDeUBt61k5Jaed2Za5r7ed4S8dbx4VqKhKhRmsui3qSpizcyfUAvEV5Vg/zvD3c7JqFUR3/D9g55Mrirg7YhxNyTW3bCRMhooHuufWFXYDdFKn/rCVBwk5yHL0VI6cVOvh7IovLH/Q1FPDeA8D2PcDRxxN6ygiGvgt/3/tq3fX5r9Z0bcA2ydavUeU19967re/9hXekrBeOjAuRvKfiiDjzAA/q0RSgh2+88LuQcN2XmJK43TR7pWsaP/glD5RKM8i7vRXSK08gNVBMYtZkYxvmYmxokGzZwNTbOfdwgMeoh6B6X5JIqIb3hjzXO6VsWOXej8hCjlqhJ77oYAOu+EUSllB6VgnLsBd95CVZKeu4lGKYBu6gtT8ZCSh2wq9lWeVx5e33v/gvRL3tvvwY6KqfwmlPM8TOxubL8Iook/fuFu0uFhoHRCm288iBbV9dKOVQDpcPUPugdFKdXZ2VJKC8bD/LoblqOldOLGQSv2+lO4iZbKs+sHLw+WTxQl29wNZOPKP6M0lapIZhNWVenodX3rsPej5fx2ewK097q+sXYZdVWlqSrC3RjnvqzuhhBk526SN/IgRzo8ZKjvfueWXg9G07h3o2sVOwc93151br55mCd3E8vD9rJjW0vHhz2DOouH2bsb9ht67cEgZb/cTmkSVQm5a7b0/t3ubrN7tP7d3/Ge/IzYoHdEe+mxLVXnhr11LL8xiDZ3o+ua9AQOQ2ziqQobNl2nmsYfKMN0Jp6q0JKa1toXShqfJ+F6d9v77MA4AKpVRH11oYpTA9Xn6lqlISgJVAUJ9m50UEADpUncDY1RFWKcMbWrikRyBRMZ8RAAAfZWnNdeNrHvvgeqW+I/kkLXKpqqL2+pvoy6q0hBeCjKysXdFD8Psw83o/pVv/vNjo5gsCMYLvN6jGYakYKCsq8ymN+6oEBHychtPUZqBBrAgj7rkMYflw8Kc6lr/GP0VtNkznBVIWLoDVVh22+UUvZFCtECarAQhH9XBZRRRwNBqPpcAB3GL2eyPLpYqUryBEoNVaFCOtksWr8zRQhh31OgzN2IH/qQXRs1shvKxBUu0XdVwroO9fSJGGTBQw0IugfV9/ndjp53+APv+UIbfYENLr0p4h4Y8daESoa3+adp/CGLheQhI4tOddYJ66+5ml+e6Lo8zMndHH9I3399+W39nl1D+vVzEc2mKlKUBR9xaJwNVP5FVEqZNBH+szxsVUzESQrNoiqmlaVcVSilhBeuJVYV0qmqAh2Unb4xB4Wyp9imoSrtwTCAob2qsp6yAxK58DDqqmr2T2vFNMOeUEoIFA/zx8Oc9m7GDepZ061c1+nmXbvC0ahtzSwHUPDp5utVoRc8K183Eq4aLBcbECqpCrikCFVhZZprV6uqIEZVHF8zw1wzk7hrZmPvBtJTb4gxKIRRX1oz03hr5uaOcFRHb79vaK/KXKbsgITiYVfhYa5bxWeN/k5vvy8Yjny5fUdHJGK0jfce/B/wWWEmE7IdJXwaeGRlH1OwmGqsgnWdd52fC6BgHxllMu3gPzVvBH7RAsKLFkY3sapkfN5BUhXm3zmn+QYUe1a2eLikIR+8L0JVjGGJOe/QHoq2BiIAZoyoyXG+DlQoHnYJHuYabnxu1wVHHtrb79N1+vWOnfva2sHnKFZVwBUA6akK0eyqwgrKSFVMGhVKVQjvHVcVwn4JhElJpqrSHoo2toUAfG9I/z5+X47zdaBC8bBL8NCBZxXLM711z74d+5vDkajRCf6PgRhVkb7DFkdV2NNAUqqKpiVTFZNGWamKGeCzVxVjZW2oCkxVYd8ST6IqTe3hva0hAKP6Vo8b1DP3yTqAoXhY/Dx08kDHu5t2rty0k73u4S8bVF3pc7vEfSgCynbUNL4bR6x3ptjgGXcE2FWa8fwhItJZo0VcJlxkeJjWNGMPTFozc8PMB88gDH+Kms4HXU90Z0psxfEvGUPMFCFMBcCJSEHZb4QzaaBAlBpONapTSohOaZRCB6I61SmilFJCouxTgFJEqU5B2kPRvW2hQEQHcFxtn+Nr+zg1TQc8FA+LlocOnx/b2tj27qYdW/e3sbeVvpL+VRU9y30aAajxJEdCqUaMiQSoBsJ2/sXcE5gzzVRF0wjVdeZjiXVqCYHGxYTdESAaIezBkfw0p3QHkd8XYCJg2FQz5DM+yHcEhNM2lrpUB5cs8OlnAkj5cpjNOiiNUoCQqK7rxnxTChKlVNehA1FKo5TqIFFKKYUOqlPoFC2h6L62YEdYB+B1aWePrq2pLndwjg4GKB4WJw/zclx1a2PbmvrdX+4xnwpc5SupLvP6SzylHnel162JWQSyVhXzBTXfmqpCjOUr8qkqrOQsVYVSXTdUpTUcbQ9GW8ORlkCEUcjr0sbV9Bo3qCc7xqaQBRQPi42HeTwd3xQIfbK98YvdTbtaA7aPfG6t1OMu9bjKPW4CVHo9HhfRgLISV7nbZVMVYiyGk6mKbjzz1aoqhN8OJMauWeeoCtXZQ4ibQnpYpzqlHSE9ENV10KZAJKLTjoguD05vv290v+6j+lWrQOMIFA+Lh4eF+DJOIBLd2ti2s7VjZ0vHjtaOlkA4nas8Gunm83BFMPShvMRV4XGL1bDYPTNfcB2RdtbMz4wPeZcpP2EpNsxEVnMPjW+38fmG2GVjr0JRfX8wIlJ4YQAQ0vWWkGUKE6HS5+njLx1c7R/aq1KdG84TFA9TIt887Jzv/jUFQk0d4f2BUFMgBGBnS0cwEgXQ2BFsCUYK357CoLffx4SiyldSVVoCYHA3v9fjUre3OwuKhwXmYfF+1TgQie5qsbtfwYzigc/t6uMvjfuRCiUHABQPHUTxhhsFBYUDDA4c81NQUFBIByrcKCgoFAgq3CgoKBQIKtwoKCgUCCrcKCgoFAgq3CgoKBQIKtwoKCgUCCrcKCgoFAgq3CgoKBQIKtwoKCgUCCrcKCgoFAgq3CgoKBQIKtwoKCgUCCrcKCgoFAgq3CgoKBQIKtwoKCgUCCrcKCgoFAgq3CgoKBQIKtwoKCgUCCrcKCgoFAgq3CgoKBQIKtwoKCgUCCrcKCgoFAgq3CgoKBQIGoCWlpaHH374lFNOqaurGzly5JQpUx577LFIJPWPls6ZM+eCCy7IfyNzQjE0MhqNPvnkkyeddNKwYcNOOumkP/7xj9FolH1UV1dXa8Wrr76adUUbN26sra194403HGp4QaF4mG90Og/dAC6++OL6+vrrrrtuxIgRkUjkP//5z8MPP1xfXz9//vys68sRRx111D/+8Y+BAwd2VgOcxUMPPfTkk0/eeOONRxxxxH//+9/77rtP07QrrriCUtre3n7ttdcee+yxIvNhhx3WiU3tRCge5hudzkP3F198sXbt2t///vfTpk1jSUcffbTX612+fHlHR0dpafxfHc4rtm3btm/fvsLXmydEIpHFixdfdtllV1xxBYDx48d/+umnr7zyyhVXXNHW1gZg1KhREyZM6OxmdjIUD/ONYuChxtyUplk2ca666qqXXnpJzPFzzz33ve99b+jQoWPHjv3Zz362Z88eOXNra+uwYcP+8Ic/iJRQKDR69Oj77rsPwJ49e66//vqxY8cefvjhs2bNeu+991ier776qra2dvXq1XPmzKmrqzv66KN//etf67q+atWq4447DsDxxx/PxkXg3Xffra2t/fDDD0XKRx99VFtb+8477wD44IMPzj333GHDho0YMeIHP/jBxx9/HNvbESNGPPHEE+Lt3LlzTz/9dNGYlStX/uhHPxo2bNikSZNee+219evXz5w5c9iwYdOmTVu3bh27JBKJPPjgg5MmTRo6dOgJJ5ywePFiUdr8+fMPPfTQOEOsaa+++uqVV14pUvr168d43NraCqC8vDz2Kht++tOf/uQnP/nLX/4yfvz4YcOGzZ49u7m5+f/9v/83duzYMWPG/PrXv05ZQpFD8RAHAQ+1Qw89dNCgQTfffPNf//pX2/wxLFmy5Be/+MWsWbOWLVv2f//3f+vWrbv00ksppSKD3+8/4YQTli9fLlL+85//tLS0zJw5MxqN/vjHP167du1jjz32z3/+c8yYMRdffPHnn38OwO12A7jzzjsvuOCCjz766IEHHli8ePHSpUuPOuqoRx99FMBrr7324IMPyi2ZOHFijx495IqWLl3ao0ePSZMmffPNNz/60Y969eq1ZMmS559/3u/3X3DBBTt27Eg5fAysMffff//cuXPXrl07evToX/7yl/Pnz3/kkUfWrFnj9/vnzZvHct59991PPvnk9ddfv3z58ssvv/yee+7529/+xj467LDDTjrppDhDrGnf+c53qqqq2NtIJLJy5cqjjz4aAFOVdKTb7XavXbt2y5Ytb7755jPPPPPvf//77LPP7tWr13vvvTd//vzFixczrnddKB7iIOChVlJS8tRTT9XW1v7yl78cN27cKaeccuedd65fv17kWLBgwXHHHXfNNdcccsghEydO/OUvf7lu3bq1a9fKpcyYMePjjz8Ww/r6668PHTp02LBh77777saNG++9995JkyYddthh8+bNGzRokByJp0yZctxxx3k8nsmTJ9fU1HzyyScej6eiogJAVVWV3++Xa3G5XFOnTrVN82mnneZyuZ555pmSkpIHHnhgxIgRI0eO/O1vfxsKhV588cWUwydj6tSpo0aNKisrO/PMM5ubm88777zvfOc7lZWVM2bM2LhxI4CWlpa//vWvl19++dlnn11bW3vBBRd8//vff/LJJ9nlZ511lnidBPfdd9+WLVuuu+46cFV58cUXTzjhhOHDh0+dOvXvf/97ogvb29t//vOfl5eXH3XUUYcffriu65dddllpaemUKVO6devGWth1oXgocADzUAMwdOjQl19++Y033rjttttqamr++te/nn766XfddReAcDj86aefshDIcMQRRwCwFXryySeXlpayjehIJPKvf/1r1qxZAD7++GOXy3XMMccYlWnauHHjZIqMGDFCvK6srGxqako+RqeffvrmzZu/+OILABs2bKivr2cVrVu3rq6uzufzsWzdunWrqanJ9C9wyJAhoiW2t8FgMBQKbdy4MRwOT5w4UVwyYcKETZs2NTY2plnF/PnzFy1a9Oijjx5yyCEAgsFgRUXFjh075s2bt2jRomOOOebmm28WMmVDTU1NSUmJaJJoHnvb3NycUWeLEIqHDAcwD91yJ4cMGXLZZZe1trbOmzdv4cKFp59++iGHHEIpFQYMAHvNwqFAaWnpySefvGzZsosuuuj999/fv3//zJkzWbZoNFpXVydyRiKR6upq8VZMDIPsjeNi3LhxvXr1WrZs2dChQ19//fWBAwceeeSRrKKamho5Z1VVla2RKeH1epO8pZSyAi+66CJCCEvUdR3A3r175U7Fha7rt95662uvvbZw4UK2KQDgmGOO+eSTT0Se8ePH19fX/+lPf/rBD36QRfOSN6CrQPHwAOahOxQK7dy5c9CgQSLJ7/ffdNNNS5Ys2bhxY11dnaZpcrBnr5nPlDFjxoyf/OQn+/fvX7Zs2dixY9m9w4qKCq/X+89//lPOadsOzAiapp122mnLly+/9tprly1bxjbYWEU2RWpqaurXr5/tcjE9DIFAIKPaWa8feuihYcOGyeny6CXCvHnzli9f/uyzz44cOTJJtuHDh69evTqjVh0YUDxMH12Xh9o999wzffp02+bcpk2bAPTq1cvj8QwfPly2nf/73/8AjB492lbQCSec4PP53nnnnRUrVjBjCWDMmDHBYFDX9UM5fD5f7OjHRaIwyVaw77///jfffCMqGjVq1IYNG4LBIHu7Z8+ezZs3xzaysrJSlppMXe7w4cNLSkr27dsnutOtW7fu3bsLb5kIL7744t///vfFixfb5njFihXXXHNNKBQSKR9++KFNHg8SKB6mj67LQ41t85x11llPP/306tWr33vvvccff/yaa66pq6ubPHkygCuuuOLdd999/PHH6+vr33vvvXvuuWf8+PGxI+j1ek855ZTHH3987969p512GkucNGnSiBEjrrvuutWrVzc0NLzyyivTp09/5plnkreJ+eQ333yT3Tuw4cgjj+zfv//dd999+OGHH3744SzxwgsvDIVCc+fO/eqrrzZu3HjTTTdVVlaeddZZtmtHjx69fPnyvXv3dnR0PPLII2xDPn1UVFT84Ac/eOihh1577bWGhoZVq1ZdeOGFN998M/t0yZIlV111VexVgUDg/vvvP/nkk9vb21dJCIVCNTU1K1asuPLKK1euXLlq1apbbrll1apVc+bMyahVsdiwYcPbErqEXVI8TB9dl4fumpqaJUuWPPHEEwsWLNi5c2dJScnAgQNnz5594YUXsmA5c+bMQCDwxBNP3H///ZWVlaeccsqtt94at/QZM2bMnj37u9/9bs+ePVmKy+VavHjxb37zm6uuuqq9vX3QoEE/+9nPLr300uStHDVq1OTJk++9994JEyYsWrTI9ikhZPr06U899ZQYXwCDBw9+5pln5s+fP2PGDJfLNW7cuGeffbZHjx62a2+99da5c+ced9xxVVVVF1544Zlnnvnvf/87kwHEbbfdVllZee+99+7atatHjx6nnnrq3Llz2UdffvnlihUrYi/55ptvduzY8frrr7/++uty+po1aw4//PA///nPv/vd737yk58AOOywwxYuXHjiiSdm1KRYPPLII/LbAQMGrFy5Mscy8w3Fw0xGq6vykBwwW4wKCgpFDvWNcAUFhQJBhRsFBYUCQYUbBQWFAkGFGwUFhQJBhRsFBYUCQYUbBQWFAkGFGwUFhQJBhRsFBYUCQYUbBQWFAkGFGwUFhQJBhRsFBYUCQYUbBQWFAkGFGwUFhQJBhRsFBYUCQYUbBQWFAkGFGwUFhQJBhRsFBYUCQYUbBQWFAkGFGwUFhQJBhRsFBYUCQYUbBQWFAkGFGwUFhQJBhRsFBYUCQYUbBQWFAkGFGwUFhQKh88PNmjVrLrvssqOOOurQQw+tq6ubNWvWs88+m86FDQ0NtbW1tbW1zc3NmVZ600031dbW3nnnnZm3NzUefvhh1rC77rorH+Ur5APPP//8WWedNWrUqEMPPXTs2LEXXXTRmjVr0rnwhRdeqK2tnT59ehaVHnfccbW1tW+88UYW1ybC4sWLayUccsgh48ePv/jii4vhp+I7OdysWrXqhz/84ZtvvlleXn7sscf27Nnzk08+ueWWW55++mlnK/r2229ra2sXLlzI3o4YMeLEE08cMmSIs7UwvPbaa+zF0qVL1W8idwk8+uijc+fOXbt2bU1NzYQJEwgh77777kUXXbRu3TpnK1qyZEltbe3GjRvZ24kTJ5544om9evVythYAHo9nzJgxY8aMqaura29vf/vtt3/4wx92esRxd271Tz/9dDQanTJlyh//+EeWcuutt/7tb39bvHjxhRde6GBFIgQwXHrppSl/kT47fPnll1999VVlZWVZWdn27ds/+uijsWPH5qMiBQexaNEiAPPmzbv44osBdHR0nH322Rs3bnzuuedGjRrlYEU2Ht53330OFi6jd+/eL730Envd0tIyffr0hoaGF154Yfz48XmqMR10srth66Dq6mqRcsstt7zzzjuyvVyyZMmMGTOGDRtWV1d33nnnvfPOO3GLOv/882X/8vbbb9fW1o4bNw7A6aeffu+99wK46667amtr29rabIupUCj0wAMPTJ48eciQIWPHjr366qu/+eYb9tGf//zn2traK6+8cvXq1dOnTx8+fPgZZ5yxYcOGRD365z//CWDy5Mknn3wyYuilUJyw8bC0tHThwoVr1qy5++67WUoShtjAljDCv8yfP7+2tvaaa65pa2urra3997//DeC00047/fTTEbOY2rFjx0033TRu3LghQ4ZMmjTpjjvuaGlpYR9dffXVtbW1f/rTn/7yl79MnDhx1KhRV1111b59+9LpXUVFxRFHHAEgEAhkNTyOoZPDTV1dHYBnn332xhtvXLFiRVNTU0VFxaBBgzTNaNgf//jHG2+88bPPPjvxxBPHjRu3Zs2aH//4xytWrMiollmzZvXr1w/AMcccc8kll3g8HluGK6+88rHHHmtpaZkxY0a/fv2WLl165plnbtu2DYDP5wPwzTff3HTTTSNGjOjRo8fHH3989dVXRyKRuHWxcDN16tSpU6dCrae6CBgPb7311vvuu2/16tWhUKhPnz7yGicJQ9KEx+O55JJL2OuZM2fOmjXLlmHfvn3f//73X3zxxaqqqpkzZ0aj0UWLFl144YWMaYyHr7766oIFCyZOnBiNRpcvX/6b3/wmnapbW1s//vhjAJ1rbdDp4eaqq65icXfJkiVXXHHF2LFjZ82a9Ze//IUNcXNz88MPPwzg7rvv/sMf/sBGH8Bvf/vbjGqZPXt2bW0tgClTptx+++0lJSXyp+++++5bb71FCHnhhRceeuihf/zjHyNGjGhubn788ccBsMD31VdfPfTQQ/fffz9z3Vu3bo0rbp9//vlXX33l9XpPOOGECRMmdOvWja2nMh8YhYLi7rvv7tGjR3t7+x/+8Ifzzz9/9OjRl1xyydtvv80+Tc6QNFFSUnL77bczOl155ZWzZ8+2ZViwYMH27dsHDx782muvPfDAAy+//HJJScnHH3/MvA+7cPPmza+88sr9999/6623AnjzzTcTVbdr164zzzzzzDPPnDlz5sSJE3fs2HHBBRecf/75mY2L0+jkcNOtW7clS5Y88cQT559//uDBgymln3zyya9+9aubb74ZwIcffsjs38yZM1n+0047DcCXX365f/9+p9rw3nvvARg1atQhhxwCwOPxnHrqqQD++9//ijx9+/Y9+uijARx22GHl5eUAdu7cGVvU66+/DuCEE04oKytzu92nnHIK1HqqK2DkyJFvv/32vffeO23atB49egSDwbfeeuviiy9+/vnnkR5DcgerZcqUKczI9O3b98gjj7TVMnny5IqKCgBjxowB0NjYGA6H45YWDoc/+uijjz76aN26dS0tLS6Xa8uWLZ9//rmDDc4CnX8jXNO0U0455d57733rrbdWrlzJTOZLL73U0NDQ2NgIwOv1lpWVsczdu3dnL5qampxqAKtF3j9itcgRTf60tLQUgK7rsUWxldTatWunT58+ffp0ts2k1lNdAuXl5eeff/7vf//7Dz744OWXX2bLq0ceeQTpMSR3ZMRDRkIk4CGAAQMGbOL44IMPLr300pUrV/7oRz/K4tSIg+jMcNPa2rps2bKHH35Y7GANGDDggQcecLvdALZs2dKtWzcAwWCwo6ODZRB7Y/KsMDC3KYpKcxcNAKuFTbZ8rQhtaeKzzz77+uuvAezevfvTTz/99NNPmQNS66kix7fffvviiy+yZTLDEUcccfvttwPYtm1bJBLJiCGEEHQqD2PRo0ePa6+9FsD+/fs7l4qd7G5uuOGG3/3ud/Pnzw+FQizlX//6F9u4GThw4JFHHun1eiGtR/7xj38AGDlyZGVlpa0otrHHtsQAvPrqq/KnjARtbW2xbZg4cSKA9evXb968GUAoFFq6dKlITx9sJXXkkUdukjB58mSo9VRxY/PmzTfddNMdd9zxyiuvsJRoNMp2TPr27et2uzNiiMzDtrY2ditKICUPV6xYwf4Wtm3b9r///S9RLZlC3M/1+/25l5Y1OvPcjd/v//nPf37nnXcuWrTohRdeGDBgQFNT044dOwCcccYZgwcPBnDttdf+9re/ve2221auXLlv376VK1e6XK5bbrkltrQTTzzxlVdeeeONN+bMmdPS0sLuIIpVTN++fQEsWrSovr7+5z//uXzh8ccf/93vfvedd94599xzJ0+evG7dus8//7xXr15XXnllRt1h4cZ2unTatGlvv/320qVLb7vtNkY1hWLDscceO2XKlOXLl//sZz+7++67u3fvvmPHDrZav+6665AhQ0488cTnnnvuvvvu++yzz9auXduvX7/du3fLPNy2bduvfvWrSZMm/epXv5IvvOyyy5YsWbJp06ZZs2axvaRwODxp0qSTTjopi06xrWL2uqmpadOmTQDGjh3LNn06C53sbi655JIFCxZMnjy5vLz866+/bmlpGTNmzLx588S9p6uvvvq+++477LDDli1b9uGHH06aNOlvf/tb3Hg/c+bMOXPm9OzZc+XKlf3792cnJoLBIPv08ssvP+yww1paWt5//33bcpcQ8sQTT8yZM8fr9b788su7d+8+44wzXnrppZ49e6bfEbGSYve/BU499VSXy7V9+/YPP/wwk4FRKBwIIY8++ugdd9wxduzYaDT65Zdfapo2efLkhQsXnnfeeciQIXPnzp02bZrb7X7rrbfOOeecc845BxIPf/GLX/Ts2XPz5s2fffaZ7cIePXosWbLkjDPO2LVr18svv+z1eufMmbNgwYLsVEpsFX/00Uc7d+4cMmTI9ddf/+c//1kcMekU/H8dLBs9+vUZsAAAAABJRU5ErkJggg==", "path": "image.png" }
Which solution has a higher concentration of yellow particles?
[ "Solution B", "Solution A", "neither; their concentrations are the same" ]
2
The diagram below is a model of two solutions. Each yellow ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the yellow particles represent the solute. To figure out which solution has a higher concentration of yellow particles, look at both the number of yellow particles and the volume of the solvent in each container. Use the concentration formula to find the number of yellow particles per milliliter. Solution A and Solution B have the same number of yellow particles per milliliter. So, their concentrations are the same.
neither; their concentrations are the same
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABle0lEQVR4nO19d4BcVdn+c86dmZ3d2ZZsNr1teoUECIEEDQQRCCEBAUEp0qT5UfyJ8IEICigfTQT8VEAQVAQUAtJD+KihBQiQTgjpIZVk+0675/z+OOWeO7ObbTOzO+E84mb2zuzccp77vs9b7jmEc448xNKte5Zs3V0TjddEEznYXe/icHk4NGVQ5eAekRzsziJfYHnYLpC8Mzfb66NPLVmXm9FNx8CyyCn7Dw0HnC7Zu0X3geVhB5Bn5mZ7ffTRxWtiSVYaiRSXV/YoDpcVhAodFDgooAhRhAiCFEGKAAEFAgSUgED+JAAh8qvEaTMOxrn8SeAy7nIkOU8y7oIkGE8wnuC8NhrfUdu05euamoamYZVlp04c0nXXwKLrYXnYMdCuPoD24cONO2NJ1qdHj7IBw0tKS0PBEAAQNWgcICAEnINziAElRP4nxllYV/lxbWq9twgXv2s6AOAoDAX79SwZO6RfUTi0dmfNyl11OTldi24Ky8OOIc/MzcbqegC8rA8AT5ZxqCEFxACLwRZvcvkfOMDl8CkGGC5GvsWJ+N0UfepTwYBTXhoBsGRHTdZO0SIPYHnYMeSZuSkIOAAIZzDkaA68CtTnXZcZGyy+obA87BjyzNwM7lEMwN2zDV3hVeLJ5K7qWgCDiguzdooWeQDLw44hz8zNwYN6FTh0V23tro2r4/Go3Jp9r5Jw2bptuxetXO+6vLyoYPrgiuyfq0X3heVhx5BnlSkANdH4k0vW76iPtv7RLGBAWdH396/KuwKkRcZhedgB5Jm6AVAWDo2qLOuSXfcqLjzrwBF5N8YW2YDlYQcQ6OoD6DhG9e8T6dmnkCIH/Q5fbNuzcvOOSEGo607XopvC8rDtyD91o0HMV1mPmV0AReFgls/JIv9gedh25LG58ZCrioAx8hYWabA8bA15bG5y3++Qv8NskT1YHrYd+Wxu9CvrVSy6DpaHbcc+YW5y5VUsLNJhedh25LG58ZAzr5K/bsUiB7A8bA15bG5y71VIHstYi2zB8rDtyGNz413zXHkVC4tmYHnYZuSluelTXAiguqFJ/m4rAhZdAcvD9iIvzY1o3066rvzdxswWXQHLw/YiL81NKrLvVZpiCSh6WVg0D8vD1rBPmJvse5WmeAJARSTPphexyCksD1vDPmFubMxs0R1gedga8tjceBc9VzEzzd+g2SJrsDxsO/LY3HjIlVcxX1lYpMLysDXksbnJvVcheetVLLIHy8O2I4/NjYfcxcz56lUscgHLw9awT5ibnHmVPE7SWWQfloetIY/NjWf3bUXAoutgedh25LG58ZA7r2Jh0TIsD1vDPmFucuVV8rcAaZELWB62hjw2N7mvCOSxW7HIGiwP2448Njcesu9Vdtc3ARhUXpSbE7LIS1getoa8NDdlhUEAdbG4/D1XXiUvL5ZF1mB52F7k5ZGXhUMAaqMJ+XvOKgJ5GzNbZAOWh+1FXpqbVNiKgEV3gOVha9gnzE3uKgLZPxeL/IXlYWvYJ8yN9SoW3QGWh61hnzA3ufIqFhZ7g+Vha9gnzE3O+h0sLPYCy8PWsE+YG+tVLLoDLA9bwz5hbqxXsegOsDxsDfltboj+x3oVi66D5WEbkd/mRlYEs+xVaqJxACWFoVyckkUewvKwjchvc5Mbr5JMuABCTr4u7mORbVgethF5bm5y4lX2gZjZIquwPGwj8tzc6H9szGzRdbA8bCP2CXNjvYpFl8LysI3IV3NTGg4CcMVq8DnxKvk/1haZh+Vhu5Cv5qY8HALQFI0CufIqeT3OFtmB5WG7kK/mRkAevY2ZLboUlodtRH6bG+SwIpDPTsUiy7A8bBvy29zYioBFd4DlYRuR3+YmN92c+e1QLLIPy8M2Ir/NjYT1KhbdAZaHrWGfMDfWq1h0B1getob8Njc2ZrboDrA8bCP2CXNjvYpFl8LysI3Ib3MjkROvkv+uxSLLsDxsDfltbqxXsegOsDxsI/Lb3JijC9iY2aKLYHnYNuS3uSHG6ALWq1h0DSwP24j8NjfWq1h0C1getg35bW6sV7HoDrA8bCPy3NxYr2LRDWB52Ebkt7mRyI1Xyf/BtsguLA9bQ36bG6L/yYFXyX8pa5ElWB62Efltbjx7n32vUt0Ye/WLr8RaPxYWPlgetg2Brj6AjmDp1j3b65vQrFehyquoiJoQEHhOQpDA8CresCuvInyToVo5ACRd9uGmXR9u2jWwLDJ1SOWoXqU5OFOL7gzLw/Yin8xNNOl+tGnXok07Y0kmtmxrbOwfchweoJRSqV/BOQj1eRWYjkcNKwcIIVzzQ/gizgEEKZJJHnd5TZJTguqkW1ZaHCmO1NXVN9Q3bq5p2LykIVIQOKB/xcR+PcrCebyqoUUHkGseMl6T4JTwmvznIeGmWuuuqInG3163ffXOGjHAJUXhSGlJz/LiRCIZDgXBuUMJOIIOKaQ07NAQJQWUBCkoCKGcc0KIGHBCZDBNGMA5jzEeY9zlnANJxptcHmcMIIxz8ZMTMMZBiMs4COJJt7a24evd1W7SFcc2sV+PKYMq+xSHu/ICWeQErfKQUkI4Qg4Jt5mHHGCChy53YfKQA9A8BIGb/zzs7uZGDPDSrXvEr8VF4YqKnpGiAkoIIaAAJSCQr4knWQlk3k3CzLh5+pSrMFv9Jn5yzjmkEmbyBWdcvmacM6ChIVpdU1tX1yC+acqgXodV9QkH8nhBVYu9oMM81Mkc+ZN4Cod4BATgZWm4kULex3jYrc3Nh5t2vb1um/Ak5aXFFZXl4WCIgDuEEIASQiD9iXxNCAenhIDDeM0JIdqzEB0Vg8vTF0E2kYqGy9dMvOaEMMaFC9KvXc45iMtZPOnu2VO3Z3c1gKBDjx41YGK/Hl181SwyjTQe9ggHgx4PKSGcU/Ua6jVR3CMwGKh+QnlEwTfxLlNc1YpG2hq/1ubitcdDHk8m84KH3dTcbK+Pvrp6y8bqBgA9S4t7VvYoCAYoCCWgBBTapRDpRtR8sbLOSIiWNn5dY2beiOFRwCFlDjcEDgDG9a+ECd/ChfUB42K8EUsktm7d2dQUA9C3tGjWmIHdXNNatBE+HpYV9+jVoyAQcChRcgbK8wkGEihdQw197StCmd9OZNE7VeMoK8M9LwjGAalxOFM2iAkeAoxzlyPe7XnYHc3NwnXb3163HUBBKNCnd2VJcaHwJFR4EjnGyp8QAvmaE0IIF5GUp2sA4U9ADPEqB9r7aeoarnSNsjLatwiNA+JyxkEY44zAZZyDJBmrqW3YsX2XIMdhVX2mDOrVbTWtRVuQxsMwARxKCIfTNh4SGIrGz0PNQHSKh5xDMFAqnW7Ow+5lbrbXR59fsXFHfRRARc/SiooeIcehBI7SMpSA+v2JjpOpqWsI4O8p8hQsNwyP0rH6Y0raeAKHGVu0rpG+hQvfwl2ldBIu27lrd011HYCSguAp+1d1N/di0RY0x0NKCXEIPImdzkPAyN14zDTL5CSFgSk8NPSOn4eEgXOlvpvjIWeAy6XMSTC2c2d35GE3MjdLtu55YeUmAOFQoE+f3pGigoDwIZRQ5UmajZbFaxgeJjVf49kaMaDiXfnai5yZipxNBWtGy/7XyqtAVBP0z4ZofNvWHfF4IuDQueMGj6rMp84Ii2Z5SIWuUQx0zIyh/zUMNnKu8okg3FA36QxUZoeLjhsCmcdRioap3M3eMolMKG4gyTgDGrsfD7uLudHCtU9FWVnP8pBDHUIogY6hRLRM0YxXof5qFIRX8XVOSejXZrSstwCevuXyB+F+T+LzKjpyZsK3cKFxXA6X861bd4p6wayxg/bvlnk7i3TsjYemtAEI8TI4fh4C8D19kJK7MVSNhC93ozZx3xau9LWPhwy+TKLSON2Xh93C3Dy/cpMoMQ7u37ukNEK1ovF0jYqTvcjZiJm5ryalmji9KoBWOsJv6JqUt91Qs+KCCLvjr1UZMTPzlI6ragQMcJn+SZKM7fi6es/X1QDG9i0/YdzgrrzEFm2An4fFFHxvPEzP3Rh1qL3z0G9zfGxslodGraqZ3M1eeOgCLuM7v67e3T142MXmJpp0X/3iq6Vb94Qc2rdvZUlJkSMiZBknK68iR1p6EuVepA/R3sP0LZCWRcKsT3kwtIzaoO2LipzFdn82R9enXCN+dv3xs3Ave2rqt2/bCWBoz5ITJwzuPkk7CxMt8hDEoc3z0FEdNykZQ4+HqmpBlMwm6cLGgJc51jyEtDiah0y9y1X3jZtXPOxKcxNNuo8u/nJHfTRI6cDB/SPhECUIEELBHUrFT7MmRcEpIVR5DKF0WqpDUa+5QXsYsSVN10gCiGi5eV0DMeqqw1h7GB0t6xoBA3EZYyBJzhlHkrHGWHLzxi2M8x5FBWcfNMJanO6G5njIA4SqWJ4bdSihdLhDqFmHMvM1moc6dwNpariK9FMZqFjnuxmZp3F8tSrGmdjO4eOhUZ9SPBQM5IxxkuS8KZrY1NU87DJzo8e4MBTo279vJBx0CBEuxVA3XhWAAo6oN/lz/kLjSIvj724wlQ5S9Y7wHuZrpV1b6IDgcox9SsdV8TMz/IzyKsKxcJcjlkhu3rwtHk+UFRacO8VanG6ENB6GHALFQy9To9WNjKoI18qa+Lu9kN5rIzUO1JtiuydyfH2nWl/72tw9vaPFjq6WQlgWo0rlGn1hrsHGWCKxefP2LuRh15gbPcalhQV9B/YtCDgUEPn/gMwKEy9yVl4FXsewHl3d4wD4fYuMp7yY2asIiGMwy+IsJXJuTtcIf6IzxzCepfLHzEQ/gaVrBAnGEy7btPGreDxRWVJ4/pSRub/mFunYOw+FovHxkMDxKesUHkp2pWnt9NwNALMIrmtVBgORzkPt8wzP1x4eJhmPdykPu8bcPLVk/epdtWWFBX0G9g05jkMQoMQxcnLCqzheTcrI/DfX10A8H6LEqzg9v4fRGif1OQbzQRU0U5ky/YnpYXxVKubzKjpXl2QyhI67bN2XGxnnwyvLvj9xSO4vu0UKmuGh0DWShzJR6DTX86WVdVt5KLM5UBtSeOhT02gLD40te+nBkTzkSHLNQ3fdl5u6hIddML3Wgi++Wr2rNkRpZf/KUEDaGl81inCHQFgfR3oYf55Y5nGUylXPT6nXcIAAIQFhxQgJUiL2EiAIUuoQBKl4lzrqM+JdhxBt43QNQqkt6etSmEfBxV85VCtweSSO8pNiL0GHDBw8gBLy5c6aN9bvzP2VtzBh8LB3geKhZ2sooSK6N0aWgPsr38RkoGCm5CEBVewNKG+qmEYDBIKTQUp9LIVkaUDwUDhdVf/y+kJERwgl+kgcArHfFFupz8U8u6DjDOoiHuZa3egeqqrB/SNFBeI+dwxbI66yGt3Ujga9pXmNIx6n0ltEhGV0daa3OqhcDZETrfHUHmLlTzhPi5x1o6fZDaFrAVrvGBqHJzlq6xq/+mo7gKNGDzxoQM9cXnwLDT8Pw6auUfc5CagcYgoPfdlDyT0VTylmpn8G6jMtNd5wT8v4eZiWr+FcPNng5W5SOsK4133jsdHUOEnOu4SHOVU32+ujr36xBcCg/r0jRWFha0wVQLWFJtSrBfg9idY4jl/jaMZoNeGABAmhStdID0OUn9GehFIq/QkJGH4gqNVKi7omrTKqj4SSlK4N6dkIKSku7N23EsD/fbFlS11TLq+/hUAaDxGgmlFCCxC5xWCgYXc8jePlGRVPNHMMHmqtTanBPZONVLExqPmpv4F4PJRq2sgwmL0//qOVlTXfXWZ8Z2lxYZ+c8zB36iaadP/47spYklWWlfTu10vce14klVKTUjqFklTN4j0FB9l9o6rjstczPYqGv++GGL2bzfYQa0UjJxZRUXFKRUBpHOPpqrTI2VV5nKTnW3iS8a+27qyra3AccuHU0XkxD9s+g/bxUM06QNM0i/+1Z332wkOpr01dY0BVRVvhoVYxZi3c1EHqw1Ld7JWH+GrrjlzyMHfq5tHFX8aSrKQwVNmvFwUChFDCA758jbS+Xm5YRKfwXqfYckfkX4yoWHoMovsjpNfSekR7APUUjBchC7/h5a213pGehwQ8Ra3n3DGiaMFI4akIkZGzyuMEKKGEK2bTfv0qiyKFrssfX7IhZ0NgAYOHvftVUiBgqlGtmmX/V+rIEkNN69eBFD0imZOSdTZq6noLTM0i96uZ6agMjuMxXLLdzFdS7zi58tBeNKA1mtZuWt1QwKHIMQ9zZG4+3LRrR300UhDoN7Cfo65CgPivO/FZE0oh4hdCfHe4tEp+WyPvcGFBPOWZqnX1SPj0pypAmJk/bXd86lezUNVEffE8MWN7HjD6NaTFMV47hPTtV0kJ2V3f9Mm26tyMgoXJQ9/d6I2UaU0Mfe3LJCrOaCaryEjfz8J2UHVXC1vj/x5vljjDdkB+XnOMEpPhjslMkvK3RH2/mc/m/vPyOKktYy55mAtzE026b6/bBqBf395Bh/rtvfT/RnSqxoOb0amndwxbQyh4wLMLpudJqWGZ2R+zngWldFLyMl6+RnuVlAy/4fFSc0zmdqOiYfouUIKQ4/Tq3QvAK6s2RdWMsxbZQxoP9b1njI7xVLBR9zF+Ko3jeSNCKIiucvoYmFbD8usjb2aVlBmd/JlKUDOrCOJZH6I1VxoDU5hMUu84radyycNcmJtXV38VS7LK0kiosCBgnGfa+Xv+RL92KLRidCgcQ/0qq5/uJXzX2szmUlGrMuJtf92hmW/QkVeKxnGI4YXAKW02j8hlXTxFqyul06OsOFxYwBh/ZtVXORiIbzha4iH1LA4P+HlI/K/l0wzinvfXJWgaZ7xIpxkrkM7G5hlo+kXaLA9VdGbqI90ponkYMKwqTedheY54mHVzs3FPw9Jte0KUllX2TImetHVPt8pEaw2uro681jrPIn6SFC0jr7jK1xD1bQCo8ZP4X5s8EI6LpOodf9St9I43fsZxpuebdJ7ISfue/v16A1i3Y8+ar+uzPRbfZJg8NO2+qXYdT5nKPIiPXUTOrOQYUZi629V9nmpxPEsBg2lI42TKZ3RW0ctgetpc9XlJHkJlcwzGcpPVnvYxzteIqgih4P1ywsOsm5sFX2wBUFFRFg4G/fkwXy9cS/7Eu1KGdhV2nRjxsBkxEZH451z+JISAEwKjr9z3mugecwCqaGDG5+ontDfwonSfrfTFzKZHSpnBwNwSCgZ69CwH8OLnm7M9Ft9kGDwMpPk8M2ubepf6OGn0iAUMm2XyRGQPtXIB1BPFmmkts5Hq11zzB8SzaCo7Q4yeUq3RaEs8lBYtJT9tRo4OIaGAkwMeZtfciMxcUSjQo6IHVR26psdIG2PPM4CrK+uzTZQSb7vSETzlG2B6Es4JCNS8jarrPHW7VlVoRvdybyy9PD+oGc0RsS9f7obAszjmMessgPCKvXqVOwGnIRp/Zc3WrA7HNxYGD8u18k3JuCklywn8msKbd8LL2jpKZXs8Ucq6GR5yPROTYh1aeM2lhmqOh81oLofAEVlFQhy/0jePLSV7mKq/ZM8RzQEPs2hudGauf7/e2tZQ707zFISKY+Xzlum6xniaIc3nEDWuMD1G6k9q/DSeIFdbUn769Y7f4xmaxZ+HUgyTnyHecfpsq+a6irHhENKvb28An2zeladrP3dn+Hno1zVG/1u6z/M4KaIPs6rdvB43ebhXNpoMRPOf8WkfAL77JTU/6HgW0OtypgQiFwHTHxvdjMQ4F/E92eZhFs2NyMz1LS8OhQsMFefNN6xsh98nUKkyTF3jpN3VxLj6MONhqV/UKOrO8ebsjrY13me8TnPj6V6opWb8nkFoHFUB9SsspWsgO8FULtwbY25mDYqKwsXFEcb4Oxu/zt6IfDPh4yE1bIfgnvF8HPHyLFyMoKO0CQXRvSrN8FBn6zwemvrFYyBpAwOlDTLVd3MRQIo/9mczVR8sNW2NV3Uxn+0yI6xIJLs8zJa5iSbd1btqAJT36ul4tkOfp1HT8e5JiPiWEkK4mcPzKaOUu1pEuSoaMscMeqRl5oybPPBzQrwWtkbrW89CQfPPH9Vru6ksCDXspr/fFJ4PASFGFllFZ+XlpQCWbd2VpRH5ZsLjYUUPxxfLe1k/MY+SjrJNjkHGKVxXzYkvB+zdyT49AjMaUvO9wWAa8eyIyU9D6cBvidJzOh7HfL5cHyf3cVXuC+l3n+poUzFmVnmYLXOzemdtLMkqSwqdgENSOuIo8d2H3HftpAegRp9l6rzoXrQC05MgxZMAavVCEKDln0TNqJbyt+kexuCiL9tPKbxaFVKy3focm2GJp28JKSoqCIWCrsvf37w7S4PyDYTHw2AwrT9FMgowR8efZ4WIoageZSdNaxg8lJlBZTVgxObeax8D4Wdj+ufhzzb6eGh6MiPWE12FooNEPwnkzzzoejnx2VCebR5my9x8uGkngMKSEmJUf4mRN5W2w5+p0XaEGudPjXH1xhhIHxUIRZPmPQD10FQLP5tRPfB5GDOKVmOc0j2ojpakq18vivadu9ENIK5AeY9yAB9s3JGlQfkGwuChsWaLMTrpPIQRE3kxl7+mgVQeklZ4yFthIIzPpPEwNSIzedjMuSgv2AwP0QIPzRlXssnDrJib7fVRMfNrcUkkTdcY8w2raNm0DlR34vgjZK0qU3WNbzyg7AK0dQA36uK+Grn/tedz4H2PyaHmNI5pAX0xo+epzN4fTrwx5tR/jhQoLyumhDRG4xtr7ZPiGYDmYaQkYth31TWqeKhicLMvJqX3N8XnpevrZpW1n1GtspGkvU71poKHvqMlBCYP044ZOtut/kp+3rM41Dsj8bfZ42FWzM2HG3cCqOxZ4re+/ggiVbP4MvwpY+z7PFJGwsvRGJ4EHAAhhlPRC0+p18T3WnxeP63bjIdpTuO0dsxS1xDvk9zPeyN7RwgBisuKAby5dns2xuWbBs3DlFyhETHpe1VmDIkRC/tWfaGpLG1e1/iVNeRrIVw6wkbPoqVnFVM1Doj/aA0d5/ukccepn9CflFo7SzzMvLmJJt2l2/YAiJSVpmZV5TnD1DX6WhBi9BD7FS+azdf4I2Tu5WJ8nkTPdk7gTcuY+lr6HNPDGN+2V42je3a8aNHf2Wn6H2KcC/Wfo7gHevYoA7B5d619iqqT8PPQ77eU7YCnEQjxcTL18+BeDIW96xrNHEhGcc5Jqww0X6cobph2DekaB+pczEyoeQcRZR8NHSc+D3lXktTzzRIPM29uxMJg/cqLg8GAz5PAP4rcO39ta4j0QlBWFqoqRNBSviYtU5PmSQDtSVr6aX5SfYPctFeNA9MacsiqE1HLYHE/m1XknMpmI4scCgaLigoBvLfJVsQ7hTQepmTr98pDKB4SXeWB5qGoh7akazSNTM2CVhlo/kzRONgLDwk4F/ew6uUxYwi1DJafh3RvPORZ5WHmzc2SrbsBlJSWmM8NUQJCuM7deHGQ4dvljaqeZNH+p5mOhub9iecZTI/RduzFw7SkcdL6a7yYWZDVr2tkVkjl7YiRb4bySLy0rBTA5ztqMjMe31QIHpaW6ohe1aE4NxiVmj2UPDRziFJTeNlWtKhrDHWsWNSxg/cYqLysP6uoeeiruEuvLGvb+llNg4f+TKKh3bxnO5Uy4KXlpQBWZZSHmTc3O+qjAJzCsBlJwcuxyegDRrSss1kp2RAYd7K/UxPmtYahD9M9SduxNw/TnG+B3rnyFfocCfFt0boGvvNKsThye2FRAYA9DTZb3CkIHtLCsLbm3uioXiqdDdG+nag7UI2gx8zUTIr+hmYzhoD6ZAehmWxoHLU95ekHkmJ3fF7c65sVtlVbVRD9JJdxh3oaR/CwOqM8zLC52binAUB5UQExLC7xVKunUKg3Zt4WU93ByHToz/hGmhCdmCFGjiYjaIvGIVrjqO3m8adxFIB6dgZAM1lw2UkYdJxQKAhg1S77jHgH4eNhWpZUeyxP4wBQd28z1Qk/DzlPydq2mDHsPDg3vGBKHgfQWcs28NCcRTdFcRufNDIeQZp5HmbY3GyorgdQEik0x4n4+2uJp1aUn/e64IzYBFCRl9Kl6j5PiZONl+1WNC2hLRoHchQBI/+f0rVIpfaR32ZcDXkd1E+fvgsXhQGsqW7I0Nl842DwUF/tFB7KK681jpln3QsPjbvdx8NmM4adh2Z1M/lEox+Hp/MwLTMI74zS70rvaph5nIzzMOPqph5AIFyYYmX1+SuNoHUgvEqNd128WhV8msjrr+Fp+Zoswft+uTpHSoeoPjao7k/Ae+LByECleBjVjW7oW634SLggDGDznrqsndY+DsXDMHyxvLx7qXIW8Gscf20Y+r41s3Xa5/E0XaOrnBmHmZH0dcP7OgB9x6mtpN/zqVyVx0PTqppRBWgWeJhhc7O9vgmAE/LVpIwzMbpj0iIs7YU8ZZSSGyOEqzYG/a5n9bMGklJlUILHHznDfxamDoeKkw1m6Ctg3gPq3CORAgA1Nn3TUSgeBrUdgRgd7rujCOBFQ/BGRK38oS2RP3sI794Wusafr8n86eijNbrDpIczLI4+l7RMomlzPTsLrZKUJvB0jfh8xnmYSXOzvT4aS7JIQaAgGIC/XqPthS/W1du1XuWmhfbrIG3FjY4YbfWzCn8eJ/UJFx05G6rHzEb5OxKJjr+82TB8CgighAQCASfgMMY324Wo2g+Dh0F4V9Wb3SpVQZtZGPP+9HW7+LKH6mbNSr6mJaR0h8HjVUpHGPSdkpaf8rhKzE+qXkfi4yEyzsNMmhuhYHtGimDUsE0LavoQlTE1Mv+qy1ZeBeFhWs7acMPqZxXKaxFdIzAzODpyJkrFELNjiOiMsqxPtaR3ZE+H+CuQwsIwgFU7bTzVbhg85KYdT+eh9PYAVJ04rYKxVx5C81C8zO556b20lEn08VBbEABmxKAyjM3z0KufAkDGeZhRdVPXBKAoUqiuArTtNKu/6vwBL4bU7xpXwfQ83IyWlbLNvq4x4UXOUNpK6R6SVvtUFsewTUSfsK6jGxU6rYcVe4qKiqDuHIt2weMhiMEWz89pn8FV4ceLi83oybw/1WfUiKueGpU9zNnZmdVSL5MI7/g9vZN+Z3nXAWZ2GTzlM16clVkeZtLciBnAiBPw4kPPGxhjZmaqlKal8GWt/COq7+fmuxtyA7kvzVetbuRPf3XM6AOEaSU9BaS9qBcnquvGCSHBYABAzD7K0H7ImeicgHFVTc0CI6JP8QdaDRnjJVUt4PcTucwemiBGtdSv9GWExf0xoK6NeurG9Ova/KY8h6iuW2Z5mIVnplyv1ptyboC8D8W66/5o07M+8CsC4tX5ch0tm+De8ftzN6Yn0V0SxrkYuUahelV+R2cc/TwwO0HcXJ7hvoWYy9MiIzU6Zn4Q+k4zY3w1XgTasmglm/vsoYlmM4nK25l2sLlz8TQa4PHQuD5eLKKuGwgyx8PMpoqbAITCQejoUeUyYObtedr9aUaS3pl7MYt3N5q2PPvRsgl9/OmRs68mmh4Ppp9ji9dEPx1GiEMBxF2rbtoNk4dpT9vtlYfp6tvf4YnmsoddorK9TKLRg+OvzRtqunUe6vM1ZroQaSCHIHM8zKS5iSUZAEfMj9qCz+fNR87wIgviXQUQwv2ZMGiN0EVuP6UHR2ocEOO8lP5K8RJetCyyyymeRzKAK10TLggBiMUSOT/FvIfJw5Qsht/iaBVpWiKvbqXvWD8Pdc9XdnttWoI5w4GOnqAtjo+HZhSp7yn4osL0qEJ4u+zwMPPBlBHxmtGyoVnMyNlna1WmSt+NWt34vEquo2X/2elI3sy9eb1eKlo03zW2pF4ZkuI/jbtCUjjBbDzVERhKU0VM0LcpYHhEwNDLKrPmZUagszzSyaisf3Z7bVo5L6SqbEh1I2Ml7usL8+k14yx8D/5oc8T9lki8mxEeBjr/FQJiXowAIXt273HAHCDkUAeg4BQ8QEA5dyihhDiUUA7HIZTL2YCCDqWciVWWHUoJZ8I1EYAQUEKh6uVyWKWFgtHzot8R1OKUUv2uuV2qKgWxhTGmP6nfTfkwVywUv8gvpRQc1HGEh2GcMw7GOQdczl0ufyYYZ4DLAUo4CCeEcXAgycS7jIG4AKiT4HA5GKGESE8QYzxIu8a25iP8POQOeMihDgHliodyRlriOGr2LC5nxQ7SZnioHgFvHw/1a2J0ZqE1HnJpKZojXtt4yASfOecc7l54SAgnkocMcH08JKA0wbgLknEeZszcrN++G0CRwxubGoOEBClhhAQogpQGKOFiBgopPUEo4YyDUsjxYESMJQgXd74oRMlRkjkgEPElnKgBSBlR/cK0NS2NooCXhyeEc25+JuXD+sulduXgnHPX5UDSdbm0U8TlDCAu5y6XQ5tk3AVJMibGlQGMwxWGCTzJeJLxBONJxpMcSc4TjCc5EoyFCoLxWGLDnobxlSWZGqZ9HpqHTU2NAclDBCjx8RApPFSRrPE8FOdMaGquphP38VBIib3yEH5b0xYeojl71AoPYfCQuZzL2MpljIOwNvGQM8AgIU9y8StLcpJgPIM8zMLkoVxfESnhVLeCp06F+tAZckqoGF0OUEqhi8zgordFZYt1WqQZb4AWhInemOJn9Cf1i2bdiPlJ713OVVJAfad+hoUQxnW85f2VjhyJzu8I+wtzNi/4zogDNpjqKLjXmSKHQvLQ68kAZ5xoj61HSo4IBVQ6h3MoHkJ/m/qnWR6KF0I1t52HgoTwm5jmeahPUr6rnlM3+KZzo8I1Kr+ersKotmbyr/T5qmwpMsTDrORu9NnKgreKErlKGhNCGGdaknJ9rwKMM5meEYG0ypPrweJyL834DdNFpOvblryK/tt03dusV5FnJMv5XOgyeDaFU28siTH20ppwaX712HOhxuHvjFAmGklrbToEkcSgxGOOTp9qlyHUDVGk5IxRQgUPOWNe4oL4K63yq8Q7aJaH4kWKyhZ/0lIklf4ZdSLN8VD9pm4WT+9wxSgx56k6dcFDKjR42t7VuSgnaugDnkEeZiyYMq4UCAXnnFCqE08ArU/Ur6/ftLR6JSGEcIwuGzqqdPDASB9xx4p4igOUUHAGz0sAoJ66UQlzbtz/6V7ls6/XzP/qQ/1rWSgya+Ahg4v7tDTSjDF9Fs1KJO9XfZJCfgMyEuRM6hpCmOcHlGISESIzxo+BEMoZ886FeabI80uAY/M27UEKDxnnAUoMlS3zL+AABefcoVRFJZxSyjhzCOWAQynnTMU24IQTUA6+pWHHpsadekym9Z7YLA/VMfi1hjrClraYZ9EKDz11BUiVzQSjCCEMnBDisjSVLXnIDR5yQihnKoaA7IlL0WvIEA8zZm5UTg0yvKX6nqGvbVv4/Ob5a+s3pv/VqNIhPxx23AmDvh2QXsXL3TQfMyvTnu5VCCG1iYb7Pn/uvs+fq0mkztBx7cd/GRzpffV+Pzytaqa5XX8DaXvuBpC5G6iPaXUDbKjf/sHXKzbW71hRs64kEBldNnRkyZARpUMLA0Ug4MISSaXDCKCKqlxmHXU1gTFxkwRyWfbIfwgeioupeSgvrqouKbMDQgljzJHxFGGcBVTfJuOMGrmbmnj971f+++UtizY1pq6+dOyAg2cNPOTUoUdohqRQKEX7tKSy9Yu28pADhnUjhFTH6+Zv+fDlrz6oiTe+t3NZaTAyrnzomNKhY8qHHthzXO/CSunhfDwUdgrQxyYvFREeVKu/jPAw9bQ7jDXb9/x7+aayABAOhRzqgAcduie2674vHlxevWrvf9u/qPLuKT+bUD4stSIgu5MpzPmNAFX/81mcFze/f9kH96YbmhRM7FF17yGXT+wxTPxqjmsLbiTNq6ixEZEd44wQyhh7d9eyv3zxwvwti5rd74EV468Yd9bw0qEyM+cyEJpkzOVIuCwJJFwmqgNJjgTjSSAWdWOx+NyJVeNsqrjNEDwsD4IXhIIOCYgKKUGAkAAlIceh4A4ljq6QUm+dbK9CCjgOIZyLCuldK5946IsX906t6b0n3DT5XM0rLXNyUyHlHLcvf+zO5f9q6fBKg5Ezhs06b9TJDITJ+hRnHC7jnJAkYy7nCcZdjrjrihpWNniYMXOzdmfNE0s3lAfAC0OiMrWlceMtS29rcBvb8uelgcjVE846ZegRcrUtMVMskYlVY85nGZqm+I0/r3r2l58+1MZDLQtG/vOd35gWB815FRhDrn/VEbL4VYx2dbzud8v/9cAXz7e66/NGnnzy0GMigWJVuiJJlyW5LE65HAnOE4y5nMQZj0YTiXjyBweOHFpW2MZTsxA87BEAC4eClAQpCRASoMLc0CAlAbUSk0OIXPuUUoeAEhIAD1DqEG/t1vpEw88X/3H+V827kBSUBSM3TT73B8OOTJE5KRp8L7mbvZgYc0c+HnIsq1539jv/s6mh9UUvR5cN+em4H02uGO+qijjjXPyUNSkfD7nLEWcsGnUT8URGeJixVPHgHhEA1Ul5adbXb/htm20NgNpkwy8+/dP7O5cR4qtDQceTyuiLoTMrAo+t/b+22xoANYmGua/+YumetTBGLl24poTT/kiKi5QhAamO1Z7yxvVtsTUAHvziyXMXXlOXqBd5OxFKycyxKMNxDsjaViKeBNC/JNz2U7MQPNyTlO1szLyrjZ5gsZl5NQ1wzkGpqFRwDkIpB7/g/dvaaGsA1CQaLlt072Nr/69Zq9HGTA1akDOp70LycFn12u+9/su22BoAn9dsuOi9G5/f+AbSOobUNZHSXeydcQ6QRDyBDPEwY+YmENBpINKQbPjfz//Q2GZbo/Ffi+7cWL8dug6lGhz0xZBNE5zrK/XOjqWXLbq3vTuqSTSc9dZva+L1Zu4GbawI6CwSOAc/993bllWvb/uutzbtvHzRTfXJBs4ZoIuzqiLgZYjkrkO2x689MHgoBoqIThSutkBXCQGV3QcgK1PKFoAx9vOP//j+rhXtPYBffvLQsup1kF/ZjgqpfpFij/bCw5pEwznv3NpqAiEFNy3508e7lnHI1KOPh6rt2jiGTPIwk4XwIAGAANj/bXt1V6wjq2HVJhp+u/wR7+JK0aHql4DsyDHUze3LnujY0W5s2PHnz581fUhrXgVmnliM1Z3Ln3hv5/L27npN7YZbl96nI3DT+8naFueO4wAIBJ2Ond03GYKHITAo/yzfEOlRzs3XxOgFg64tciz6evm8jW90YO81iYbrFj9IctB3Q8hlH9yzsW26JgW/XfLnukS9+DpREYZKBHHORQcrCGGcUZpJHmbS3PQocABUN339/OZnO/wlC776cGXteg511QlRtWGoXLHWfPyJ9a+/2/67XeO+Vc/VJhq4t6u9exWVtxeHQrCpftsdyzto7N7Z8dHb2xZBtgkQFU8B3j1AARQFgx0+u28sBA+DnHjqBqJFSrVzQXWryAyI9OA6tgLB3Sv+3eEDeGfHshc2vYcs9928s33py1992LEj3Nq089/rX9I2BdreKTHDZTccFSYiUzzMpLkpLQgCWFXbSh2qVTy14Q1pV7i0svpaKFMjlfA7O5Z1Zkc1iYYXNr3fltwN0XoKqgrOcceKFgsBbcHfv5wnTk/wm3HvKBhjonmnPGITN+2G4CHnDASMcS7bo5T39veVyNhKRupUfH5z/Y5FX7c7jDLx+LrX0NHcDdrGw/vbli5sCS9vfkt1byhvpy2OiD8FD3kmeZhJc1NWGALwWfUnnfyeV7d+yPXoeJUgDumghMkhnPOXtnzQyX0Jg9Vq7obrvJryjSDo5N6/rNuwrWmnCOEY92yp7OIBB1Acylhj1DcHgoeEi+Y1353sXWfdy+5tAeNMXPlXt3VQNWi8tGUROpq7wV546HVpkZdbaLloI7Y27fzk62WiLsEBxjknSOOhfL4hUzzMpLnpVxoBsCO+u5Pfs7lxp5YwKrJQEYeasEJUr2oT7c5Gp0Cn9PeeuyFKT+kM7rI96zq/98/2rIT0e0TVSiDGPhFLABhYWtTJXXwDIXjYmPByN7LmZ1T9hE1njOkYVrTgis+vrFnf+cN4Z8fSjOduiMpwL9yxpPNH+OnulRym/oK6VqJKShhniVgcmeNhJs3NwJ4lALY0be78VzFP3Eh1o+eIkRUqEFHJ7iQ2NexoLXejYjfpW+S773YujhPYHt3J5OhylVkQOWkaTyQADCu35qbdEDxscDlXs7uq9A1R1kf9VE+cCH+u8/RfNe7MyJFkPHfjqexM9PjWJxoMdSP3q6bpFXvJMA8zmiouCgczVLStjdcLE8u83A3R5UwoddP5HWnr3pJXMZ5eA6H6iRK0t/rYLOoTjZC1AHGywquAUIczHgo6PQpDnd/LNw09isJFAZLkJAy4jHGZ+JSRAtP5MhVP6awZIUTnejKCjuVumlXZRHfKAITSTmYtBdbUbpD3FwDl47kyz9ngYYafCB9SGu4XHtj57ykJFUsDoLwQl6Up1QlHyPjyqs7vaHCkD1rO3cBL1HvzoahsdQYQCRRJf6t3JFoIGQfQuySSmd1889A/UgCAuq6oaisuwcxTyHhKCVioLgTDqXUWHcvdpKtspPFwcFHvzh/e/hXjAIiqhMlDnjUeZtjcjOnTI0w72+ncv6gXAHnyhhfy3IMas9JgZzXeoIgctvTcjdwZNBd8Ue60yvGd3DWk6STKq4gZjzgH4vEkgGEV9lGpDmJoRSmAWJLp3CfnYMq+cJWnYFxHW6oWwzkHOajXuM4fw6Ci3hnJ3ci/guSh0OMDIxkwN5BRpJEtBhjnDFxY5IzzMMPmZmTfnuNK9u/klxxcMV7MdAfAs7teBYFrrhw78JBO7uuwPhNbyN0oXwRVOzViOhCUhIo7uWsAVcVDuDfSRMp+glgsBmCCfTKzoxjRuxxAkytjJaaqUcyzKaqvjzHp2LwePz66dGgnD2BQpHJwcZ8M5G4I8ZrNIDYQxvmEHhmQ9sOKh3DAZSqGUvlyLgU8yTgPM2xuwgHn25UHdPJL5g6awZWhESfOuZ5FTfYVCxt/bP8pndlRabDo2AEHp+duiNG7LSLmlIw155hQXjUwUtmp8wTGlY01qgASlAQ446FgoCxsEzcdhEjfNLkIu0zYcakc5UzSyuIwDkL91odzYEbfKSWdE86zBh4Cw7KY9qXtfTeqJssBL7JSuj5yzICDO3OEkUDR/j3HKvsrbY2pcQhxMs7DzM/md0j/qgPKOi46DqwYd1CvCUxVoORVMJ+1U5aBM37swEM7E9RcNGZOeUEJ0nI3IjkEM2YWuoYpdQMAOKZ/p8Z7Zr9vFQUjut9B3BIciMcTAKpsJNU5DO9ZDMBNusLKmA7MmMhM99RCah8iKhLk9GGzOrzr0mDRzyecBsNqcKlcTI75FE2zfTcGD7nHQyJ5eEz/qZ25PtN7HxQJFHMOl+uOAdV9kzUeZt7cTBxYeWTlrA5ncH4+4WxX8YN5MS2kDRYyx+iFu/nA8zu2owk9qi4aPcfM/wMgUv2qjJkuTYmJL6iXR+TAT8ed2pnk0cx+3xaWU6hZYWE5IdFoDMDMYX06/M0WAA4a0hfAnrhLiZQ22m8JH8a83LAXs2vr/8Oq4zoscC4aM6c8VOyzNdKCAKo6Ln5CM1z9bSoPJXSJ1FPZpw6bOa58aMeOMBIoOnP4SQxgAEBc6e04QBgThphmg4eZNzc9isIDI73PGHRBB/72+v0vGVE6lIMwyHibG12PIPJRDqluOAfI+PKqe6Ze1t4dlQaL/vfQK8pCxXoUhfPhjBNKVegK6LqgHAmZvZdfEiq+YuypHThNAMcPOmZc+VitaJgyryKSKi4MldtIqnPoW1LYo8BJclLEmBY4XrzAlX1hXNdiZFcxBweKAkUPTPtVB/Y7rfeEqyb+UHsrztVM7JR6WyhlqrytK9wChKhZASj1bJDXLaHzmIRz/P7gyzrm8C4Zc1afot7e+jCiCcOzOxCRVMZ5mIWVGICJfXsMi4w+d/BZ7fqry8f+6LiBMyBtDWEcjHs+B1ID+1UlOEBOrZp5z9TL276j0mDRs9/57YTyYdBeRYocrubKhtoMQOZv9AyhkK6Sc45zRx3/vcGHt+s0AVSVDDlv5BlccJ1ri8MZRzQaBzCpf0V7v9MiHfv16wkgmUj6czdeVOVypirlKrYSfTocIHRk6ZAbJ1/Srj1O6FH1yLeu4aodlMt5cwDI53t1JCXmbOdKXZuWBTra0t/rWSQfD8eVDb1h0rntvSzfHfDt7w6YYV4HqbKVxskeD7Nibg6t6hskGFF8yPUTr68oaP2IiwNF1+530ferjhUeRigaofQ4IS60rfH6Arw6ETgIObXqiIe/dU1bLP2EHlVvzbpnYs/hqn9PqRv1nYQSzQAuatVK3SgbB6jsI+f89imX/mjEcW2/OMNKhvzmgF8wgDHGDO3GQKjjRJuiAPbrU9b2L7RoCeP7VwDYFuMFUiybV1vcXd7TahxgTFXKFQ+PH3T4vw6/rY1R1alVM+cdcVNZqBi6mEl9uRvBW6Z6C8VUlaoOmsZDYvCQt8jDU4bOvP/QqwcUtbVqcdKQY6+eeIm4CGIJKsZ4zniYmhLPFBas3PDR1ppeBbTWSby5fcGrXy1ocpvSPxYJFJ089NhThh5bEogE1Bqb4NwR88USUEDM9kgpIea8omJo1HpVhBJw1CYa7l/97ONr/29TQzNN6CJZc/qIo3wzvIlxZWo9HQImn5H1PqRqFkJpq1wjl+ZGzPb67o6l1y7+w1eNu/Z+Wc4YftJpw05yOU+4jIEkXJbkSDKWBEkwlkyisaFpeK+y7+83pMNX3sLEvE+//Hx3Q2UBTRQEA4SEHErBg4Q4lAQd6oj5iSFXc3UoJWJ+YoKAwcOGRP2j617846oWp6QYGKm8Z+rl0yonqMq3mlycg1KifooVY8TyB5wSwjjfWL9dPLU3vnxoeUGJ5CEAgLHUJ0ib4SGTOYeaWP1dK5545MsX9nIp+hb2unrixfv3HC9W1Exy7jIuVs6UPORirmKWdLPFw2yZm2jSveut5QAqSkMgNEDIlqaNn+5eTAlZuWfVxIqxFBhRMvRbfaZoCyJGnQDyV0ICBBRwCHGIt1F/AFzaIDGwRK7vwQGyvHrdi5vf06NbGig+bvAhgyK9lUZVa1xwPY+kFEpmzbI6Vr+set3y6nU1sYbSUGR8edWYsiFloWIv1yiyj4BeFPWPnz/x7MbXt6YZnUigaHqfKScOOWZIZIgYZjE1rJ6DOsk5J7R6Tz2AS6aNsSXwTKEmGv/ju6sA9CoNcUIDlAQIcYCgI+Ywpg5BgFKHgsJjoGP6NiBAiUNIQ6L+ta0ffrhr+ZbGnVDxzfjyqu9XzZzYY5hSKlwt/ipfcMlMo0rF+WNr/+/Fze+/uOl981DLgpHpfSbMGnToaVUztc8T/FT/A3wqjMlslFyRFcuq183b8Pqq6nWratfXG88Pf6vPQYf1mXL0gBkcxOWMcZJkcoZsV/6Us6AnGWeE1mSNh9kyNwCe+mTN6j2NlYU0EQyFKBGz4TsEQYc6BEHqOAQBSggQoBRi5WYCh1LItYFACZGfUauJO4QQpW62NOwoDRX1DJdyrXGkFAU4F+uTqVXKZK1RrsXDmT5Ir7KolpZhjL+7c+n9nz/30uZm5pcYVNT75KFHXDbuVC6bgJFknBOxFqq3RvjHu5ev2rO+3m3oXdCrb1HviT3GMhBjdHnCZYxodcNdIBZnTY3Rql5lp1lpk1EIHvYupPFgMERpKzyUK9lLHgrWUUIcIOCYPATxnB8B5HpVYiU5aW6UR+Tc4+ELm9677uMH9j4F3/TeE2868LzxZVVEzUwiIKIwlzEYsQ/nMtuSwsPNDTu2NG4fWVpVFIhwSA3uMsYg1l2An4dcrsSQZR5m0dwIxxIgvKwkDEIDFA7kkuEiPgo6NECIQ0EAh1Ci1t9QQsaTPA4gVud4esPri3YtW/DVh7XGE5KDIr2PGTD11KqZE3sO5/p5NvWApelVlHKRIsisggvpWx2ru/6TB8XcSHvBuPKhv9jvnCm9JrhiRXc1nb3It4nKIlM+R9S55ZrwLhNrMCQZ1GLMLMnhgtTVNnLGrbTJOLbVNf31wy8ChJeWhImPhwhQmsZDQggcQpvhoVLZjjQ0XMhtcE4pEa9FDliTLYWHf1rxzHWL/9LGw75n6uXfV2uiyWyuCvbN3mimV1NI46HMgcoEjWCmiJi4sC/C6CiVnQseZtHcAHj6s7Wrvq4vDxFSGHYIgtqrAAHxk5IAlfmaAKUE3jpThECswik48fHuZbcteXjvE5GcWjXzyvGnDS7pCy/C8qkexjilVK+ZCfEEinx2BtWxuu+9dt2yPevaeHZnjZh99cRzXMaZsQK8yL1xAr2aDwdxpT9hSe7ZHSbyNRwJxuIxFo3GrLTJEv750eoNtdHyICFFYQc8SKngIQUPOo6jwqUAJWIdGBlPqXWmKAEhJEAIAQ8QIkS38I6muhFaBhxUR1ZCd4MTQm9b8ujtSx9r12HfffBl3x92JGSFVDT3QayN6dkUaWiQZIwT6uMh97q6/DzkLldWxq+yYzE3qzzMSmVKY+bogUGC6jinLhMVfuntCVzGmLTNEP0syloz1dEv+25czv/+5fPnvP2rVic9emLda9+Z/9Olu9eq+oL3NLmIeAk11ib3akwcQE28oV22BsDf1jx/7cf3srQn3GA8p8NVBcpVDGD6OnAm7RGn0WjMoeTYUf06eKEt9orjJgwNElQnuOMyr7tE6FDBQ0h1wPVoMu5VsiAzdAxE6AhBXXkP6woXMbp4hBahVOzlsS8XtNfWALh80T3v7lgqyqOuCpqUBSGu6JRRqUN15Eafmno6QfCcMck3taYdl5bI84s0Go05JIs8zK65KQuHpg/tDaChKeYaFjcprpeysqoOJ66O91o8qHnHsodvX/ZwG/dYk2j4zvwrFm77TD/lJO0OoOZS0vOViRYHGVVd+t7v22VrBP6z8Y1Xt7zP/c+buJypCVbAOYT2YRwuk9KXc1lxFIFVY2MUwKFVfW0YlSWUhUMHDOgJoF7xUKwhmeSKh4xLq8FkhAJ99wKcQ23nro5ZIKyPvsOJy5i455nupWKMELInVvfLj9saQ6Xgig/u0RUJrjqhOSHmWUg7qI7Q46Gc6wfKwxGXyZUzmeo/Mq1PQ0MTgEOHZZGH2TU3AA6t6tu3KBh1gUTSVfcYh8hpQWVbmWmV1U/OgOc3vfHY2r2V95rFuW/f8tnXa7TW4Ko3T81v4j1BI7a8s3Ppyx2dePjXn/6xJlavLA7Rc1CKXnAGuK6nbgRTjbEniQR3k25xYehbQzr7wKfFXjBz1MBIkEZd0NZ5CBV9qPnq/c9buRzqP6HWmVZG4g5Xsl1uuX/1sx2ejG1Tw447lz2mdbH0UmqPLoerjAUn5pOWRFtMbapctjceJl3kgIdZNzcATtivKkhQ3ZTkTCg3zw8I9+6NuqEAGfBVw47fL3ukA3usSTT86pOH5Pcoqw9CXMZBiOvNmyd9wh1LHu/w2dUlGp7b9IbPq0iCEsZ5knn80L2LcowJSSRZtDEKYPboQR0+AIs24vixgwHsbkoyplZM1pkOzoUm1TzUdkfd5MadDHGTQyoLQuVr1SWoQzBRD3pgVcfXQQLw5PrXufpC8Z1McpgIq6didi96MLPFXN1lWmWztG9LMjTWNyH7PMyFuelRFJ42pBJAU2PUOHOuHlOAGGMjpyVV4oNf/Lsu2UG38O6OpS9tfk/miWSFiAmLI4JhPTZLdq99b2enpmJ8YdMbfnVGvHqBPDvClI6VTTpA0mUijBrbr2dVTztxX9ZR1at0Yu8SANGGmI6eklyvli1HSkUlsquFGc+1Me1LOFzOkxwukBSRMgcjRHgX6VoYALJk95ednEJ/U8OODfXbJW0YGGTnRFJnAwGXo4XcDXdlMIWka+ZuIMqjDEi6blNDE4Ax2edhLswNgGnD+vUMB2Iu3Ka46BHw8lVS3ajeAeN5hZc2v9mZnf5r3f9xjz2Q0bWhS8Xrzk9yvrp2fXW8zqfAvd4/qail6BUM4HA5j8WS4im4E8ZmYLpVi7Zg9oSqHgVOjCHZFHfN3A3nIvMqe1JUDtgzNGZmhMlIWeVZiWd3QJIq2mJAkrNXOr02EYBl1etcIamklUnJ1EBnalxzi7KYOoYQWWHR18fkEfJ4nLkuKykMnZh9HubI3ACYO7EqSFCXYG48yZWF1l6FK2ut1exb2zq1jA6AV7Ys2hOr0xbHNXJsuhLBgPcysYbGF7Xrdcwsz06rG1f6TNeImZMuYtG4Q8hZk4d1fu8Wbcepk4cHCeoTjMWT0r7AU9laWWvPp4s7rtatqo7hcu7XGrrLTlWL1DNZncSKmvUug3zywFNk/ieZic46yeQRV52lPu3mz90kkjzaFHMoOSMnPMyduelbUjhrzEAA1Y3xhKhHMhVVKnUjfQXjDFhTt6HzO11WvVbYr6T6Zq7qQbquWRPv7HJRMKoGDEgwpqWNy5nu9ZQVRyAWZw11jQCOHTfYVqNyjB5F4ePGDoLgYdIVHHAN26HVd5J7Fsf1z3SnIixfRjbJuEtIkskgywVJeG0XnQLnOlukZ0eAyjrByxMZFVJ5PB4PVc+x14fBk0mVshk3JDcTnuTO3AAY16/nUcP7AKivi0aTrqu6GGTuhjMXXh5naybW+pERtciVMMaABOOuyrGJ8ciA99EzSCi75nImyt4uJ0nGhKpygSTjiQRrbGgCMK5/z4n2ye+uwNi+PfbvWwagvj4aS7qMw4UeO2V3XCbtDm8md6Nyc7LeLOvKRGlYyKdVWIbUTSQQSaqOYeGVPdsHroyO10/EVKwg0z06biAkycE4STKecFHf0AhgYv+Kcb1LO3+QbUFOzQ2Ag4b0mdi7xOVoqI/GXWFfhN3lLida3bjAtsa9PVfSRizfsz7hcpeTJAOT3kYqSWmDOB+TiQVkhLuTvtFljGsNxUX3sDBwCZfXNzQBGFJROneMTdl0GWaNGzK6Z8TlaKyPxlzZa6t4qOs1njpgZp+u+lVH6Pp+5l5uDi6QYKw4kIEp9EeVD5GWBWBI7bthMnXNdL5J8FA+MQP5sIKM9TiSnCdcXl/fyBkfUVk2e8yAzh9hG5FrcwNg9oSqUT2KGEdTfZOwLAkjqhT58yTjVSVDOr+vUeVDXaVuhLKVT75qdQNEOr16DIDKgkrBTsG5JGdevlBmE3nCZWKMB/Ys/eH+Qzu/U4vO4HuThg8pDbsc0YYmoWtSecjlc21Cs/g6UXVnjerxFZUg0Smu8ymckBn9OjV7v8DIkiqvvsFVnphxzonZ36xjKDNTI5I+rsHDJOONDVHOeHlRwfG5LVN0gbkBcNLkEX2LggmGxrombXelDSYyj1MUyIAVYNzrwpLWnZg5I7iMH96vU1NMA+hT2KtXuFLH/wkRIYvwmMkYyuW8oSHGGYoLQ6dMsF023QLfmzS8ZzgQd9FY1ySeYhOZY31nqrIOlC8xNIXqfDG1BgdhzEvuuIz3j/Tt3+a5r5rFjL5TIsFixsWMbsTlureDeOoGMOaUUJEUkypbzHki4wbGGxpirsvKigrOOWhEOOBk6mK2BV1jbgD84KBRPQqcmMsb65tiCVVBBJJC2XI2uLiz6qY4WHRgrwlcjYrI2hrPyIjMERlVVjWqbGhndvSdATNccIORRD+KKfM1Lq+ri4quzR9PGZnjMbZoCeGA86ODR/cMB2Iub2yIxhLKG3n5RK4LC3r+EN1krJ8V0JUgUQ3QfTei3nrB2NM6c5CnDZ8tkkE6iEvP3ai6mMwP6MxR0h/ZJVxeV9eUTCTLiwrOzbmtQReam3DAOXvqmJ7hQCzJ6+oao0lX1RSFdSAH9TqokwLnwF4T5Nio1YWSzHsay4t+QU4bNrvDe4kEimYPOlb6PekbZSQlvE3C5XW1DW7SLbW2pvtBWJyKwmAsyevrGqMJV6obL3cDbyYqLueFSTJPv+gnsKV29p5jkrORHDd45qiyDuYHD6gYP6nXBM69XDUzOmhErKTmx2IyhuJwmbQvrqGyJQ9dVt4Vukagy8wN1EiPqShmHPV1TbGEd6+KcZ016JjOfP9pw2e7HLqrWPgl6X/MJyoZnz1k5gEVHVyv6rRhJ4ediKw7yio+0bI27vK6ukbOMaSi9CeHjrG2phsiHHDOmjJqQEnY5Wioa4onmQskXK55KJ7GTnrVZW+aNFUDIvoJKfXMlPd0Due4/sBLi9ufIiwOFt0y5SrdxSO6DdN7ZwTZRL1JZyRdPw+bYknBwz6lRV1la9C15gZAOOCcuP+wSf3KGUdNbWM0mpR1a44kx9EDjumwwPl234MnVUwwqpvgBGpOM+6KaNbTOPifqVf3bX+MPbP/jFmDjpEKVsX82qs0RhN1NQ2c8bH9etrccHeGsDhje5W4HNU1jfFYUkUlEKniJAMzMjiy1MANH8YVu4y6le6BGFk27I+H3dwui1McLPrDtBsjwWLGdU1K6inBtKQxOZaoUcg+UvGu1/+FxlhS5IZH9y7vkhhKI7vTa7Udn2ze9fLqrwBECgIFRQVBSsUcjp9Xr/zNp79p77f1Lar867fvLC0oJiCEqmlBm1ubWb4AAKyuXnfNh/+zrc39Pkf0+/ZPxl2k+waZoaESLmtoisWjCQAzRw2cOrBne0/Bokvw7LINy3fUACgOB8JFYTVlOpFT+UHMK+rNme0Qqqf10zNnizXKiJoenchptMnnNWuv+eCWtjSUjSgbeu2kS0eUDoUxlZ+cY4BxV1bBOJes4y4HV405upeNgyQYa2yMx6JxAJMHVhwzKnc172bRXcwNgNU7a59bviHOeEGAFBYXhRwqpk17Z/vb96+6r+3fUxws+v20G0eXDeNqpjU9VzHjjMq5iuUaVcISiXlJOOd1iYa/fv7Ek+tan/Li+8NOOqXqZJGvEf2aqk8a8aTb0BB1k65DyXFjh4zvk6MeKouMYMnWPS+s3AQgHCBFJUUBhzraykDMHGpOKiqsDFdzG1M1v5/kHiXE4yEhdbH6f697/sFVT7S09+Jg0SnDZp9cNTsSKNIzwwlbwxjnciUsIp7bYrpGls5DIBZLNjQ2MZcHKDl69MD9+vXI3UVsAd3I3ADYXh/992dr62JJhyIcDhcVBsXovrPt7Ue//HtjsvWnDYaXDr1q0k9Glg0DB1VzxHrrhJkrvZuranAuDJDonlhds/b2z/73y9r1ze7i4MoDTxl28pDioVrRMKVuXI6maLypKcYZLyoInLb/sD7F4YxeIYtcQPMwQFFYGA6Hg8LzqZmMiaPVDSXgcCghKRMYq6mOueIhNRhYn2h4e+sHb29bVJ9oWFO7DsCI0qq+Rb0nVYw/rO/BkWCEq+e5hbRhHIKcckIJxsUsovoJTJOH4gmpxqZYU2MMQM9IwQnjh3QTHnYvcwMgmnQ/2LDj3Q07AQQdWlRSGA46BNgd3fXPNX9f/PXHLf1hJFB0QtVxJwyZVRoqAeCIGfApFR5GzI/Pxap1jOlVUhnnYg5j3yxcIIyzunj9l3Xr19ZuEHansrDX0OKhY8vHFAWKVY+pVK0ASTKWcHl9fZObdAEcMrT3EcP6Zv9qWWQL0aT73PKNa76uA1AYdMLF4VAgQPR6IYQQQ+lArxVDKVFzoatZ06Xe4XqOdOgVQcStp/2dt4YUIGbPMRe00zUpBj3vhLI4Onpy/Twc36f8u6MHdJ8CRbczNwLb66P/Wbru66YEgOKigoLCUIAQh5JNDRs+2fXRyj0rN9RvEGKnsrBXVfHQCT3HH9p7St9IHyj3wtWc+JSoVaWEsk3L3Yj/c7lgpulV5Ejrx/zN2bP0jDYcSDAWiyYaG6LoZs7EopNYvbP2ldWb62JJACWFoVBRgeChFjJ6dnRKPFtDCWQSR63TIBefkusvNptDFMucASpZA+n5oKSNZKc5dwozeCi6b6JNcSFqiguCR48aMKqyewXy3dTcCLy1dts763cAoAThwoLCwlCQqvVh1GpTjvItepU7vRYHhFcBqFrfjvtHmqsthlchjDO/xZGj7j3/pldxB5KMR5viTdEYZzxI6dQhld+q6tN1F8wi84gm3bfXbf9o0y4ADkVxpDAQCgQpNTM4e+Uh9TI4kBkcpbK9W4/tnYcifZPGQ2YUKGKxRGNjVHznYVV9pgzq1X1EjUa3NjcAaqLx55Zv3FTTCMChKCwMF4RDYq0YwkGpN97UqAhQudKL3K51jbGKJmBWprgUrmLeEG50jnoVAS5XdBEKVhmaKGcAMKgscvz4QXY2iX0V2+ujr67esrG6AYBDUVQYDinF7eOhXtlV8lCs+uLx0Mgkel/u5yHhnDfDQ2MyrVQeqnQhgMHlke+MGtBtxXV3NzcCq3fWLtq4QxudosJwKBwMOg4Ra4cb/oTo0ZUr/qh1NcUqmoxTKtZjkOByXiJGvLU7mJyF35gFVqwbxWUfJ4tFk41N0pMMKo8cPKiyu6lWi2ygJR5Cr/arksQERFemINmo1zsjnCl1Q2QXhqiTCkXDm+eht+oLFA+j0WRTXvEwP8yNwMY9DW+t3SoGG0AoQEPhgrAcb06JiJ9Ala0hamVVXY3yxcy6MiW3iKFVa8UgNVR2XdYUTcRicZGEAzC4PPKtqr6De9hphr9ZSOdhMFxQqOyOltu6KkoJNSukHg+JWqCey4VdmUwkgjNv1RCRtWEqYZx0WVM0Hosl8pGH+WRuBDbuaViydffqnTUxl4ktkYIACYWCAacgFFAVAaVuDK9CVd8N45xIf+KtC65jZlfFz0K+xhNuPJ5wkywWi4vdFTh0VGXZfv165sUAW2QJ7eFhyhr2hEsespT1o7W3gzG3OfYhHuafudFYsnXP6p01X+yqNTeGgoFQQTBUECQgoaDTvLpR0zly5Va4mtOPcZ5MMpexRDwZjycSiaT55SN7le7Xr2c316sWOUYHeaiCKBCvMiW2MYDvozzMY3MjEE26q3fWbtxTv72+aUd9NOVdx6GU0mAwQEXvZ1oNUiCRdJn8X+pbvYvDg3sU9ykuHFVZ2g1T/RbdBB3joUrdSCgeMqYUk8a+wcO8Nzcmokl3456GDdX1O+qaokk3fdTbgt7F4XDAEUM7uEckf4fWoqtgedgS9ilzk46aaLymKbG9vimq8mrNIhxw+hQXlhUGbSXbIhuwPBTYx82NhYVF90EXz3djYWHxzYE1NxYWFjmCNTcWFhY5gjU3FhYWOYI1NxYWFjmCNTcWFhY5gjU3FhYWOYI1NxYWFjmCNTcWFhY5gjU3FhYWOYI1NxYWFjmCNTcWFhY5gjU3FhYWOYI1NxYWFjmCNTcWFhY5gjU3FhYWOYI1NxYWFjmCNTcWFhY5gjU3FhYWOYI1NxYWFjkCBVBXV3f33XcfddRR48ePnzBhwtFHH/2HP/whmUy2+scXX3zx6aefnv2D7BS6w0G6rvvAAw/MnDlzzJgxM2fO/POf/+y6ckb+8ePHV/nx3HPPdXhHK1asqKqqeuWVVzJ04DmF5WG20eU8DAA4++yzN23adMUVV4wbNy6ZTL7zzjt33333pk2bbr311g7vr5M48MAD//Of/wwcOLCrDiCzuOuuux544IGf/exn+++//4cffnjbbbdRSi+44ALOeWNj42WXXXbooYfqD48YMaILD7ULYXmYbXQ5DwOrV69evHjxH//4x2OPPVZsOuiggwoKCubPn9/U1FRYWJjxXbaKLVu27N69O/f7zRKSyeQjjzxy3nnnXXDBBQCmTp26cuXKZ5999oILLmhoaAAwceLEQw45pKsPs4theZhtdAceUqGmKPUlcS666KKnn35aj/ETTzzxne98Z9SoUZMnT7788st37dplfri+vn7MmDF/+tOf9JZ4PL7ffvvddtttAHbt2vXTn/508uTJo0ePnjt37rvvvis+s2bNmqqqqg8++ODiiy8eP378QQcd9Ktf/Yox9v777x922GEAvvWtb4nrovH2229XVVV98sknesunn35aVVX11ltvAfjoo4++//3vjxkzZty4cT/4wQ8+++yz9LMdN27c/fffr3+9+uqrjz/+eH0wCxcuPOOMM8aMGTN9+vTnn39+2bJlc+bMGTNmzLHHHrt06VLxJ8lk8ne/+9306dNHjRp1+OGHP/LII/rbbr311uHDhzdziSl97rnnLrzwQr2lX79+gsf19fUAIpHWl5T/r//6r5/85Cf/+Mc/pk6dOmbMmPPPP7+2tvZ//ud/Jk+ePGnSpF/96letfkM3h+UhvgE8pMOHDx80aNBVV131z3/+M2X8BObNm/ff//3fc+fOffnll//3f/936dKl5557rrkYXnFx8eGHHz5//ny95Z133qmrq5szZ47ruj/60Y8WL178hz/84YUXXpg0adLZZ5/9+eefAwgEAgBuvPHG008//dNPP73zzjsfeeSRl1566cADD7z33nsBPP/887/73e/MI5k2bVpFRYW5o5deeqmiomL69Olr164944wzKisr582b969//au4uPj000/ftm1bq5dPQBzMHXfccfXVVy9evHi//fb7xS9+ceutt95zzz2LFi0qLi6+4YYbxCdvvvnmBx544Kc//en8+fN//OMf/+Y3v3nsscfEWyNGjJg5c2Yzl5jSoUOHlpWViV+TyeTChQsPOuggAMKrtMV1BwKBxYsXb9iw4bXXXnv00Udff/31k08+ubKy8t1337311lsfeeQRwfX8heUhvgE8pKFQ6C9/+UtVVdUvfvGLKVOmHHXUUTfeeOOyZcv0Jx588MHDDjvs0ksvHTZs2LRp037xi18sXbp08eLF5rfMnj37s88+05f1xRdfHDVq1JgxY95+++0VK1bccsst06dPHzFixA033DBo0CDTEh999NGHHXZYMBicMWPG4MGDlyxZEgwGS0pKAJSVlRUXF5t7cRznmGOOSRnm4447znGcRx99NBQK3XnnnePGjZswYcLtt98ej8efeuqpVi+fiWOOOWbixIlFRUUnnnhibW3tqaeeOnTo0NLS0tmzZ69YsQJAXV3dP//5zx//+Mcnn3xyVVXV6aef/r3vfe+BBx4Qf37SSSfp13vBbbfdtmHDhiuuuALKqzz11FOHH3742LFjjznmmH//+98t/WFjY+PPf/7zSCRy4IEHjh49mjF23nnnFRYWHn300eXl5eII8xeWhxr7MA8pgFGjRj3zzDOvvPLKddddN3jw4H/+85/HH3/8TTfdBCCRSKxcuVKYQIH9998fQMqXHnnkkYWFhSIRnUwmX3311blz5wL47LPPHMc5+OCD5c4onTJlikmRcePG6delpaU1NTV7v0bHH3/8+vXrV69eDWD58uWbNm0SO1q6dOn48ePD4bD4WHl5+eDBg9t7B44cOVIfScqvsVgsHo+vWLEikUhMmzZN/8khhxyybt26PXv2tHEXt95668MPP3zvvfcOGzYMQCwWKykp2bZt2w033PDwww8ffPDBV111lXZTKRg8eHAoFNKHpA9P/FpbW9uuk+2GsDwU2Id5GDBPcuTIkeedd159ff0NN9zw0EMPHX/88cOGDeOcawEGQLwW5lCjsLDwyCOPfPnll88666z33nuvurp6zpw54mOu644fP15/MplM9ujRQ/+qB0ag1QXLp0yZUllZ+fLLL48aNerFF18cOHDgAQccIHY0ePBg85NlZWUpB9kqCgoK9vIr51x84VlnnUUIERsZYwC+/vpr86SaBWPs2muvff755x966CGRFABw8MEHL1myRH9m6tSpmzZt+utf//qDH/ygA4e39wPIF1ge7sM8DMTj8e3btw8aNEhvKi4uvvLKK+fNm7dixYrx48dTSk1jL14LnWli9uzZP/nJT6qrq19++eXJkyeL2mFJSUlBQcELL7xgfjIlHdguUEqPO+64+fPnX3bZZS+//LJIsIkdpXikmpqafv36pfy5Hh6BaDTarr2Ls77rrrvGjBljbjevXku44YYb5s+f//jjj0+YMGEvHxs7duwHH3zQrqPaN2B52HbkLw/pb37zm1mzZqUk59atWwegsrIyGAyOHTvWlJ0ff/wxgP322y/liw4//PBwOPzWW28tWLBACEsAkyZNisVijLHhCuFwOP3qN4uWzKSIYN977721a9fqHU2cOHH58uWxWEz8umvXrvXr16cfZGlpqelq2qtyx44dGwqFdu/erU+nvLy8Z8+eWlu2hKeeeurf//73I488kjLGCxYsuPTSS+PxuN7yySefpLjHbwgsD9uO/OUhFWmek0466e9///sHH3zw7rvv3nfffZdeeun48eNnzJgB4IILLnj77bfvu+++TZs2vfvuu7/5zW+mTp2afgULCgqOOuqo++677+uvvz7uuOPExunTp48bN+6KK6744IMPNm/e/Oyzz86aNevRRx/d+zEJnfzaa6+J2kEKDjjggP79+998882jR48ePXq02HjmmWfG4/Grr756zZo1K1asuPLKK0tLS0866aSUv91vv/3mz5//9ddfNzU13XPPPSIh33aUlJT84Ac/uOuuu55//vnNmze///77Z5555lVXXSXenTdv3kUXXZT+V9Fo9I477jjyyCMbGxvfNxCPxwcPHrxgwYILL7xw4cKF77///jXXXPP+++9ffPHF7TqqdCxfvvxNA3khlywP24785WFg8ODB8+bNu//++x988MHt27eHQqGBAweef/75Z555pjCWc+bMiUaj999//x133FFaWnrUUUdde+21zX777Nmzzz///G9/+9u9evUSWxzHeeSRR377299edNFFjY2NgwYNuvzyy88999y9H+XEiRNnzJhxyy23HHLIIQ8//HDKu4SQWbNm/eUvf9HXF8CQIUMeffTRW2+9dfbs2Y7jTJky5fHHH6+oqEj522uvvfbqq68+7LDDysrKzjzzzBNPPPH1119vzwXEddddV1paesstt+zYsaOiouK73/3u1VdfLd764osvFixYkP4na9eu3bZt24svvvjiiy+a2xctWjR69Oi//e1vv//973/yk58AGDFixEMPPXTEEUe065DScc8995i/DhgwYOHChZ38zmzD8rA9VytfeUj2mRSjhYVFN4d9ItzCwiJHsObGwsIiR7DmxsLCIkew5sbCwiJHsObGwsIiR7DmxsLCIkew5sbCwiJHsObGwsIiR7DmxsLCIkew5sbCwiJHsObGwsIiR7DmxsLCIkew5sbCwiJHsObGwsIiR7DmxsLCIkew5sbCwiJHsObGwsIiR7DmxsLCIkew5sbCwiJHsObGwsIiR7DmxsLCIkew5sbCwiJHsObGwsIiR7DmxsLCIkew5sbCwiJH6Hpzs2jRovPOO+/AAw8cPnz4+PHj586d+/jjj7flDzdv3lxVVVVVVVVbW9venV555ZVVVVU33nhj+4+3ddx9993iwG666aZsfL9FNvCvf/3rpJNOmjhx4vDhwydPnnzWWWctWrSoLX/45JNPVlVVzZo1qwM7Peyww6qqql555ZUO/G1LeOSRR6oMDBs2bOrUqWeffXZ3WCq+i83N+++//8Mf/vC1116LRCKHHnpor169lixZcs011/z973/P7I6++uqrqqqqhx56SPw6bty4I444YuTIkZndi8Dzzz8vXrz00kt2TeS8wL333nv11VcvXrx48ODBhxxyCCHk7bffPuuss5YuXZrZHc2bN6+qqmrFihXi12nTph1xxBGVlZWZ3QuAYDA4adKkSZMmjR8/vrGx8c033/zhD3/Y5RYn0LW7//vf/+667tFHH/3nP/9ZbLn22msfe+yxRx555Mwzz8zgjrQJEDj33HNbXZG+Y/jiiy/WrFlTWlpaVFS0devWTz/9dPLkydnYkUUG8fDDDwO44YYbzj77bABNTU0nn3zyihUrnnjiiYkTJ2ZwRyk8vO222zL45SZ69+799NNPi9d1dXWzZs3avHnzk08+OXXq1CztsS3oYnUj4qAePXroLddcc81bb71lyst58+bNnj17zJgx48ePP/XUU996661mv+q0004z9cubb75ZVVU1ZcoUAMcff/wtt9wC4KabbqqqqmpoaEgJpuLx+J133jljxoyRI0dOnjz5kksuWbt2rXjrb3/7W1VV1YUXXvjBBx/MmjVr7NixJ5xwwvLly1s6oxdeeAHAjBkzjjzySKTRy6J7IoWHhYWFDz300KJFi26++WaxZS8MSYEIYbR+ufXWW6uqqi699NKGhoaqqqrXX38dwHHHHXf88ccjLZjatm3blVdeOWXKlJEjR06fPv3Xv/51XV2deOuSSy6pqqr661//+o9//GPatGkTJ0686KKLdu/e3ZazKykp2X///QFEo9EOXZ6MoYvNzfjx4wE8/vjjP/vZzxYsWFBTU1NSUjJo0CBK5YH9+c9//tnPfrZq1aojjjhiypQpixYt+tGPfrRgwYJ27WXu3Ln9+vUDcPDBB59zzjnBYDDlAxdeeOEf/vCHurq62bNn9+vX76WXXjrxxBO3bNkCIBwOA1i7du2VV145bty4ioqKzz777JJLLkkmk83uS5ibY4455phjjoGNp/IEgofXXnvtbbfd9sEHH8Tj8T59+pgxzl4Y0kYEg8FzzjlHvJ4zZ87cuXNTPrB79+7vfe97Tz31VFlZ2Zw5c1zXffjhh88880zBNMHD55577sEHH5w2bZrruvPnz//tb3/bll3X19d/9tlnALpW2qDLzc1FF10k7O68efMuuOCCyZMnz5079x//+Ie4xLW1tXfffTeAm2+++U9/+pO4+gBuv/32du3l/PPPr6qqAnD00Udff/31oVDIfPftt99+4403CCFPPvnkXXfd9Z///GfcuHG1tbX33XcfAGH41qxZc9ddd91xxx1CdW/cuLFZ5/b555+vWbOmoKDg8MMPP+SQQ8rLy0U81f4LY5FT3HzzzRUVFY2NjX/6059OO+20/fbb75xzznnzzTfFu3tnSBsRCoWuv/56QacLL7zw/PPPT/nAgw8+uHXr1iFDhjz//PN33nnnM888EwqFPvvsM6F9xB+uX7/+2WefveOOO6699loAr732Wku727Fjx4knnnjiiSfOmTNn2rRp27ZtO/3000877bT2XZdMo4vNTXl5+bx58+6///7TTjttyJAhnPMlS5b88pe/vOqqqwB88sknQv7NmTNHfP64444D8MUXX1RXV2fqGN59910AEydOHDZsGIBgMPjd734XwIcffqg/07dv34MOOgjAiBEjIpEIgO3bt6d/1Ysvvgjg8MMPLyoqCgQCRx11FGw8lQ+YMGHCm2++ecsttxx77LEVFRWxWOyNN944++yz//Wvf6FtDOk8xF6OPvpoIWT69u17wAEHpOxlxowZJSUlACZNmgRgz549iUSi2W9LJBKffvrpp59+unTp0rq6OsdxNmzY8Pnnn2fwgDuAri+EU0qPOuqoW2655Y033li4cKEQmU8//fTmzZv37NkDoKCgoKioSHy4Z8+e4kVNTU2mDkDsxcwfib2YFs18t7CwEABjLP2rRCS1ePHiWbNmzZo1S6SZbDyVF4hEIqeddtof//jHjz766JlnnhHh1T333IO2MaTzaBcPBQnRAg8BDBgwYJ3CRx99dO655y5cuPCMM87oQNdIBtGV5qa+vv7ll1++++67dQZrwIABd955ZyAQALBhw4by8nIAsVisqalJfEDnxsxRERBqU39VG7NoAMRexGCbf6tNWxuxatWqL7/8EsDOnTtXrly5cuVKoYBsPNXN8dVXXz311FMiTBbYf//9r7/+egBbtmxJJpPtYgghBF3Kw3RUVFRcdtllAKqrq7uWil2sbv7f//t/v//972+99dZ4PC62vPrqqyJxM3DgwAMOOKCgoABGPPKf//wHwIQJE0pLS1O+SiT2REoMwHPPPWe+K0jQ0NCQfgzTpk0DsGzZsvXr1wOIx+MvvfSS3t52iEjqgAMOWGdgxowZsPFU98b69euvvPLKX//6188++6zY4rquyJj07ds3EAi0iyEmDxsaGkQpSqNVHi5YsEDcC1u2bPn4449b2kt7oeu5xcXFnf+2DqMr+26Ki4t//vOf33jjjQ8//PCTTz45YMCAmpqabdu2ATjhhBOGDBkC4LLLLrv99tuvu+66hQsX7t69e+HChY7jXHPNNenfdsQRRzz77LOvvPLKxRdfXFdXJyqIOorp27cvgIcffnjTpk0///nPzT/81re+9e1vf/utt976/ve/P2PGjKVLl37++eeVlZUXXnhhu05HmJuU7tJjjz32zTfffOmll6677jpBNYvuhkMPPfToo4+eP3/+5ZdffvPNN/fs2XPbtm0iWr/iiivQToYcccQRTzzxxG233bZq1arFixf369dv586dJg+3bNnyy1/+cvr06b/85S/NPzzvvPPmzZu3bt26uXPnilxSIpGYPn36zJkzO3BSIlUsXtfU1Kxbtw7A5MmTRdKnq9DF6uacc8558MEHZ8yYEYlEvvzyy7q6ukmTJt1www269nTJJZfcdtttI0aMePnllz/55JPp06c/9thjzdr7OXPmXHzxxb169Vq4cGH//v1Fx0QsFhPv/vjHPx4xYkRdXd17772XEu4SQu6///6LL764oKDgmWee2blz5wknnPD000/36tWr7SeiIylR/9b47ne/6zjO1q1bP/nkk/ZcGIvcgRBy7733/vrXv548ebLrul988QWldMaMGQ899NCpp56KdjLk6quvPvbYYwOBwBtvvHHKKaeccsopMHj43//937169Vq/fv2qVatS/rCiomLevHknnHDCjh07nnnmmYKCgosvvvjBBx/smJfSqeJPP/10+/btI0eO/OlPf/q3v/1Nt5h0Cf4/ATsEKWgGF4YAAAAASUVORK5CYII=", "path": "image.png" }
Which solution has a higher concentration of green particles?
[ "neither; their concentrations are the same", "Solution B", "Solution A" ]
2
The diagram below is a model of two solutions. Each green ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the green particles represent the solute. To figure out which solution has a higher concentration of green particles, look at both the number of green particles and the volume of the solvent in each container. Use the concentration formula to find the number of green particles per milliliter. Solution A has more green particles per milliliter. So, Solution A has a higher concentration of green particles.
Solution A
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAS4AAACsCAIAAABKLdZzAAA+T0lEQVR4nO19eZwcZZn/932rqs+Z6e65kplkMiEJhwgE5PYAEUJgZQVE2RVlgZ+4HCYcGgLhkmOFsIHIpSiscokogqzocizHqpyiHIIgISSE3HP2fVe97++Pt7umurq6u/qYSULq+8ln0kf1W+9b9XzrOd7nfV7COYeDHQWcQ9yvKneNEPNfBzsC5G3dAQdVwTkYAwBCJv7V9XPxr4HfOphaEEcrbnfQ+SNJJZ+reYyN8bExpNN83YdIpUApAGRScHuKNONkcBf4/aSnB6Eu+P0lLTAGzkGpw8ntEI5W3J7AGMBBpQJVOMfwMHv371i7lq9ehQ0beDyGSATZjNWPOcABAgCUIBRCWxvp6cXcXcmue5Dddidz5kBxTZyonOoOtikcrbgdQFihurJKp/nq1fzlF/nrf+UfrUMkCjUPRQaVIMuQZRBSoFzlFqGq0PJQ89DynHPS1s6n92PPT0qHHUE+sRfp6Smci2kgBIROwSgdVIdDxW0KoyMH8NXv82efZn/6A9atg5qHrMDlKnLPYLjagR62EZzV8sjnkM1yibKOID30M/SIo6RDPgO3GwA0zbFatzkcKm4jGDVhOs3+9Af++9/xt95EKgWPB243CBHEa9kdIgAFOOOqinSagWPurtLhX5D++QTSP3OC5NTRkNsGDhW3BXSzMJPhTz+lPfQgVr0HSYbXC0kSjpywQbmgT/F3RV+w8IIbvrIHDnCQgh7mmYyWTqGzS/qnf5ZP/jrpn2HS0g6mEg4VpxZC1ilFJsOefor96kG8vwouF7xeoSeF6hIgBsqRCqxjhq9s30hW+EsIpxJX81oiTkJd0j/9s/wvXyd9/YXpE0c9Ti0cKk4hGAMBCOV/eZX98Bb+7jtwueH1EsYI5wBqRmN0cMORglh0gmE2G+D6sVySmKqyRJx0dsvfOF0+6V/g8zkO5BTDoeKUgHNwBiohHmM/uYP95mEQwOcXJLTPwIrNG+xVXmrH1vodKxxFiEop1DxicbLf/soFF9G99gHTAOKox6mBQ8XJR9Eo5X9+WVt5Iz5ci/Z2QghhrHkSmk9V5Bax60xyQBOvGMAIgSQhEYfLLZ9yunz6N+FyQdOcGcgpgEPFSYYIk2oa+9ld7J6fgVLi8RBNg8EnbC10xUiNNmgNaIKzBSZTCsZ4NCod9Gnlsu+RmQMOG6cADhUnE0KCh4a066/lLz5POgKEEMrssaNpGFWijVNq+uEawIV6jEVJqFu+5Arp8CMc13Gy4VBx0qBpkCT+4Vp20Xf4+o8QDEqqOvWCPGGA1gCbiOLoP5Ek5HI8nVYuvkI+6WQw5sxzTB4cKk4OBA///Ip26VLkcsTrJaq6TaIftqlYGlPVf0UpwPlYVP76acqSpQ4bJw8OFScBBR6+rF2ylDANiosybRsKr7jBzPC6MiacxgkCEwJKMRKWvv5vykUXO2ycJDhUbDUED199Rbt4CWFMUhRMlXNYBYZZi5oHTujGCfeRAETCSFj6xr8pF11cSJFz2NhSOFNGLYWuDy9eAsbo9sFDAQrQ2nMnxJhoMCEcHGAaekLqA/flVyzX82Mnr7c7IRyt2DoIHv79bW3xOWCMKi7K7Llp9kGKE+6WZTWMRTTEisRSGHMAqmJCiTJz9FXC6Jh81jnyt89zZjhaC4eKLQJjoJSvX69duBhDW6nXS7XW8VDMImga1DyyOTAGSYJEzQsXGQNnUDVQApcbigJJmijJIQ6xlbA6YaYyM3UJGEEiqVx2hXTiSQ4bWwiHiq2AWM2QzWqLz+F/e5N0BCRNbU3LlIJzZDLI5eDzYXof5s7DrFkYnI3OLvjb4HYVzMVcFokkxsew/iNsWI81a7B5M1IJuNzweESaAeqgIoyKsYSNjEBl0FTltjukAw4s5DA4aBoOFVsBxkCp9oMb+S9+TkMhqraCh4KEiQQUBbvvgc8ehoMOxty58Hht/Tybwdq1ePXPeP6P+Me70FT420AIGCuzOS0xYaOWRHLEe1CkMmTGTNddPyNdXYUnkYPm4FCxaQgX8X+f0r53KfG3gbFmLTaxlDGZgKLgc4fjpK9i/r4TdqCxBpwFOLjBpQSgqXjjDTzya7zwJ0FITWMEvJbHOKEYzVQUHxOJR6L06IXuG250FGNL4FCxOXAOQviWLdrZ30Q4TBWFNnk9KYWqIpXCoZ/Gt87GXnsXzqLP5tnUP3r1DT1b7c038JMf4bW/srY2iCzT2mycUIwlcyG8wEYWiShXXq182XEaWwCHis1BmKZXXsaffJwEAlRrbipfkpBOw+PBOYvw5a8Ie7JQA84IPXxqGUEtV1D6UmBNxa8e5Hf+mGsa93h47cDShJ+omXjLAEagaczn89x9H5054JipTcKxK5oAY6CUPfk4/98nSEdHC3iYTKKvD7fdgZO+OlH8xshDxqBpBd1IKSSp5B+lBR5qWsl8pvicMRCKU07FLbeTrm6aTNalx8xzkgQAh6JgdDT7g5uaGbcDAUcrNgqhBGJR9YxTMTJMFJfUzJWUJCQS2HU3rFiJadMtlkEY083yeWzdis2bMDqCSASqCkVGIIieXvTPwPTpkOVCD4WBauyzmAjZuIEv/Q5b9yH3t6GabpzQihb5OgzQACppibj7+8vlY451nMZm4FCxUWgaJInd+WN25x0k1Em1JlZdUIp0CgODuPVH6O0F00o0oc4ozvHO3/Hs03jzDaxfj0wamgZNKzwUhGL0ejFrEPt9CkcdjT32BIFFyqjw6zZvZhcsYps3weOpnBJUOY4qPlIBSnkmw3fZxXvPz4nH45ipDcOhYkMQAjcyrJ55OqJRKkmNR2sIgarC58Ntd2Derub4h87Dt/6Gu3+K1/6CTBqKCy5XQW3qci+OZAy5HPI5eL04+FCc8U184pOV2Mjfe4+dfy7PZguZAFbj1Amo87DkOA1ggCSpsZj7yquUE77sxG8ahmNONATOAbBHf4Mtm4mikGYeZ4Qgl8OFSyx4KCikqrj9Vnz7LLz8IhQFgSC83sK0vnAdxT+R6UYIvF4EgpAU/PEPOPtM/NdPCp8bOylJ0DSyxx70/O8gm62sx4j+l1imsNLC1SCKknvol8jlKrPaQQ04VKwfQk0ND7HfPwavT1RMbBCShFgM/3Qcjj6m4MXpEH5XLIal38Xd/wWXC+3t4NwckimH4Cc4Ojogy/jxD7FsKZIJCzYyRv7pOLLwWMTjlVVZyeAssloBMEa9Xv6Pf+Sf+J9CBxzUD4eK9YMzAOy3j2LrZrhcjatEoQ+nTcOZZxXeTpyCg1IkElj6Hbz4PLq6wFE1vmIFTQMHOrvw3DNYdjHSaTMbCQEgnXUuenqQy9nx8SrVxSKcQ1HyD/0K+byjGBuDQ8U6wTmohFSKPfcM3J6mVCKlSKXw1X9FX19hisKE/7gar/0VoRBUtY6CwyaoKjo78dILWP5981cixbyvj570VaTTlYOfxPgfN30jPmWMer3a+++pr7wMlC0ZcWADDhXrBOcA+MsvYu1auN2iimkjIATZLGYN4oQTgdJ5eeEi3nc3nvnfIg+bg6oiFMLjv8dDvyqmDRRBKQBy/JcxY2ZNp5HrryqNSGPq479vtrc7KxwqNgL23LMAmlrHTikyaSw8Bh2BEpUoXMQP1+K+e9DeXrdRWgmMwe/Hz+7E+o8K8yIChEDTSGcnPXohMuWKkRtfWFinho8IY9TnU199lW/dWnIKB/bgULEeiMrCmzby1/8Kr5fwRuMTIi7aEcSChYW3JtzzM8RjkOWWCTTnUBSMj+P+ewtvjZ0ByNHHoL0D5rVdxPTCIm1VpyLnRJb52Ij63DOAE7ypGw4V6wFjAPjrr2FkBIoCzhu8fIQgncb8+dhlTklCjFCJq97Dn/6AGnkw9UPT4G/D/z2LD9cW8uAEKAXnZO48stfeSGfKFGM9ip9zyIr64gsAnNnFeuFQsR6IDUlfeVnoq8atU+GwfeZzgJX2ePJxJBOTIsqyhFgUTz4OlCpGxgCQQz8DTa249gpApQjqRJYBJ2639v4qvnWr+RQOasGhom0I9RUO83f+DpcLvOaSv8rQNLS1Yb/9AZSky1CKdBovvShisy3qtwGMweXGC8/DlGEjbNT9PoW2jjJVXDJKi/GSEhsVisJHRtTX/lo4nQPbcKhoGyJ2unYNhrYKKjbYDqXIZTFrNmbMBEqpCODvb2PTxqbarwLO4XZj/UdY9d7EGYt9IHPmkr7pZROM3Mg2C5VooGrxIMLefF1v1oFNOFS0DUHFN17XA54N7gNFCHJ5zJ0Dl1KYtzC0j7f/hmy5w9Y6UIpsBm+8PnFGFA1mRcGuuyOfL6WQeYiVwjaFrziHomjvvOOs0qgXzsWyDeEofvC+LqkNPvNFRui83QqvdQjBfefvkJXJ9bII5atXTZxR7xVAZu9S5i5O7A1n3adSrUg4Jy4XG9rKNm4AHBu1DjhUtAfdkdu4UWizpmwvQjBrsPBCb58QZDLYvHlyE8cY4y4X1n5Y0H6mEw0OwuU2fMiLBmrx1+UNmi4E55AkHgnzTZta2/GPPRwq1oNohG/eJKYxGueKcNh6ekyfAsDoKCLhwsLfSQORJITHEB4v/ZQAINP74HKVqrKSsI21r2j6lBBwrq35AHCCqHXAoaI9CEdxw3rk8yAUALG7i2gpxOR+IIhgqPC20D4AYHwU0WgrZ/bLIdR7NouxscJbvWMACQQrnH1iit8i4ab8cMbZmjUt7PXOAIeK9iCouGWzMcBoKYS1wRi8Xvh8Fl9FolPgXHFCkM3ycBgo01p+P3y+kmBSWQVjiyHT0q+EjTo6AljVvHJQAc6VsgchsiOjUPO6eDUUQSXgDG433G7TCQAgmWh8BYY9cIBTynNZHotafO12oa3d8Diw0ILWjZa+JJLEYzFrd9RBBThUtAdBv/ExSAX7jVsmZNaE0KSyXHAITQZqLj/JTCyejXOSy1l8IcuFUjdEX79vs1RqSeuQJT42xlOpVnV4Z4BDRXsQMxljoy1Yc2AsE2xC3ooeLUVxzSHhlmuvCCUTFa640Tqt+NwpV5ycQ5J5JAyHivVgcoN1HzdIUvnS2VaitfnfVpio2lb7gVLiLlZzYU3ZNii4i6BOtk0dcLRiPShVZfb2gSlvpPLEt6I00J4dcMO/wi23nDLhnBdWfrGi6VnoqsUSfquzOGgYDhXrQTYjZjJ0mEuD2gIp1Ggr/QwAXO5W69mS5mG0My1pr2rIZkGpoQrxBCoaqBbnI2CMF9xRh6G24FCxHkjmObe6g6icgxLkc8hlC28nWgL8/pbbvIXTAjCapopC2totjsvnkEyCkmKxxYmfV+STIfBk2PiNgxBSWOflmKm24FCxHpT5io3EUQlFOoN0xuKrjo7Jk9uJZDbG4PYgVJpjIJBKIREHlcC12vreMnyqQxQsd2AbDhXrgjlcWLeByjlkGbEYopHCWyM6O1u/eF+cVg+GikUYbhdCnYB5iRaPRaFqhtQaw3/lLVq176BhOFSsB8yCJHWrMUqRShbyziZaIQDQ3YNQJ9RKS+kbgYXeYgxt7aSrq/xgPjyEnKj7Zlb+ZpBi68V3pYY7KVQrd2AbDhXtgTMApHeaZcmJuiWOM2zeBJSmgHKO9nZ091jXRG0C+uQgFyfK58jgbHi9JVvNiJ589FEhbFOhkUofleaME6gq6eqGv61VQ9gZ4FDRHhgHgI4OMDMVzTmaNSE0xur3zZ8LMnxiT6j5llBRN57LeKJh3jygdE5F5DB8tA7UItG9po1qVomaRjo6iMfTRPd3OjhUtAfBjb4ZUJTyWUFWl7PEOSQZa9cCMG8aBWCf+S1cr0jKnxScQ1Ho/P2A0piNyCJa9R5cLhi2Bq8YlzLvQlxyWq6qpKsLigLOWqvhP8ZwqGgPYg1RX79YrFj+fR2hVLFece0aDA8X3goIs3Cf+eiZVlbVom4Ynw4lKjGfR+808sm9Cm8LRzMA/KN1fPNGKPLErIfp50YYvEPzwAnAGBELMpnjLtqFQ0V7EFScMRMet2XwBnVpRVlGJIy33gQMVqIwXDs7sf8BVoW664AxVFPSK0qRTtMDD0IwWF5Wh7/1N0TGIZck2VY0TQ2xZDMVOUAJnTO34f7vnHCoWAd4IIi+Gchb7C2hK5AqM20TIARMw0svFV6bsPDYhsvbsOLuo9xyooVzuFzk2C9a9AfgL71gTHbXswLM/eCGcxiOLDmCUElQ0bFObcOhoj0QAqYRt5sMzkYua5nobGEQVgJj8Hjx2qsYLV3qITThIYdiv/2RTNarGHkx+8c6X5RSJBPkgAPJp/YvKUkuXm/ezP/2OsQO3vXY29wkQ4RAVWl3NxkYKLx1YA8OFW1DCOZue1SZ2Lc2Cy2O41Bc2LoFz/8RKMyUFCDs1X87o95UFeODwDodj3PICj3tjMLr0jOy557B6DAU2a51qv8aKLHXxWTJ9D7a119468AeHCrahnAX5+/HXW6winaobhnWWrfBISv4/e+gqqAG1ondLA46CMd/GdGIzZJTJTOHllalLCMWpSd8mey3f0mFUrGaKZ3mTzwGj7tAy0qWtm6alg62BITwfF7ae2/AqbxYHxwq2oag4i5zeO805Cvu0atHNPS/1pQVFW7efRv/9xxQulJRtHzuIuw9H7FYJTbyUk2oVfFUZRmxGNlnP/rt8yba17sBsCf/h3+wWrdO9c5XO2U1EGnv+QCcbJu64FDRNggBY6S9g3zqAJ7NglSTSlb6ouJxVMID9yGTMe9gwTn8flxzHWYOIB4vZ6PRKa0RKJJlxOOYMYNe+/3SYhlFlRiPsV/eD5ciJh54FcZRcy3wcpWIXI729UkHHgg4Nabqg3Ox6oFgy6cOUFXVsA9vhWNLp8EtDmUMPh/efQe/fKDwVoeY2Jg5EytvwexdeDgMSSrEOYutGUtBVZj6I5AkRMKYvYv0g9tJ/wxz8XzOAGj3340P1wiVWGM8pWeyOC+lLJPhc+ehs6skq86BDThUrAOcEAYonz3cO2cusllOKsZvjGCGf0ZmchQ3A77/XrzzNiSpxEwVTuOsQdz+Y/KFI3kkwnI5SBIoZUVOWlukhIBSSBJyOUQi5AtHSbf/mMyaZeahpoFK/LW/8F/9HG2F7Y2rTcaUfmd5JOPcS2nbwmMBsOb3Ld/J4FDRLhhjjHMKvLFp8yWjsRwgEXAbzpPRo+PFkKMIcnLOuSTxTIYvvw7RKCSpRDcKNnZ14foV+N61vH+GFouyZJJrGqcUksSpxCmF+CdJkCRQCZqGZBLRKPr76VXXStf9J+nsNPOQMUgSRkfZ8mugMVCqU8t6PKxUEVtBBToo/WUmd+bjT4yOjFBF0TStmSrqOxuIc7HsQNM0SimAH/7whzf953+O5PL/r7fzlp4OlYMUXKjaxlj5/kyF7DFJQiyGz36OLl8BxVVmRvLC1F8ywZ97lj/zNFu9CuPjYJqpugc4A6UIdZLddidHHU2POBJtbQXn0BSqoRTplLbkPP76X4RK1AxxJjOMNC39YOL6AB2UPpNKfWtofCQcnjM46+Zbbz3yC19gjAGgjtNoAw4Va4BzzhiTJGnjxo2XXHLJ73//+1Ao5KJ0KK8u7Wy/tDuQZUwCrcu+KOcklyQSjWDBQnrVf0BRoGnmeUUDP/nWLVi1im/cwIeHEA4jn4eiIBQiPdPIwAB234NMny66XtB+Je1ooBJSKe3ypfzFP6IjAE3jVcJLZXYwL1OQDPARsjqf/9KmoRhjbYqSSKc5Y2ecccb3vvc9n8+naZrkrOivBYeK1aA/1B977LHLL7988+bNoVBI0zSx+3eS8bv7Oo9t82QYZDQoahMFoCQJ0Sj99GfoVf+BYBCaZi6XKqhVqYaqEZZHFpnJR4bZ95bx11418rDaJGkp80zzpSLbRgNO2DL8VibXRqACEiEgJBwOH3DAAStWrNh///0d9VgTDhWtoSvDSCRyzTXX3HPPPX6/3+PxqMVoBAXyHH5K/ntG1+5uOcdA69SNFpAkxGNkcBe67HKy737gvLDIyGyI8oJLaeKkuJXlXC20Q0EIf+2v2nVXYfMGtHVAU2ss7zKn0hQ+M6nEDkouHIvcF08GCckZFu/LspxIJAghV1xxxaJFiwghjnqsAoeKFmCMcc4lSXrttdfOO++8f/zjH52dnYKcxsMkIMb4gR7XQ/1dHgKGOvzGipAkZNIglJz8r9KppyEQLPiKgNnlq4nSH/JolN/3U/brB8E5PB6hD6vFYrh5USIz/BVQgSAlDyRS549GgpRoxUeYLlSSJGmaFovFPv/5z99888277LKLpmmEEEc9lsOhYgl0Zaiq6o033njrrbdyztva2tQKoXmFYFhl3w62fb83mGVMAoCmKw6KBPF4HDMH6ElfJcd+kXR2FqbpOCusAKxESyP9RDuEIBplT/yO/fpBbPgI7R0ghDNGqq945kUqFlFeEEAD/ISszqsnDo2mGJfJxFeCjUK0BPGi0WhPT89VV111yimn6Be58Uv0cYRDxQnoyvCDDz5YunTpc88919nZSQhhVXMpKZDi+K/poS+2eYtsJObMlAYgSchmkU6jr5989nP080eQPfdCWz3VYtJp/u47/I/Psef/D5s2wOOB21MjSCNgNa1h6SIC+Nrw2J+zuXZCyhdxMsb0SydJUj6fj0ajp5xyyvXXX9/V1SWC0sRJAyjCoWIBumT84he/uOqqq8LhcDAYrKQMjaBAjvOQRB+b0T1bkXOc08LHaNZYFZotl0M6DUVG3wyy2+7kE3ti1iDp7yeBALw+KEohUU7NI5XmsSjfshkb1vP33uWr3sOmDchl4PHC7RYl2KrltQnwIu1K1+mXz14EKL1iPPKjWKKT0kqXyaQeJUkKh8ODg4M33njjggULnFiOEQ4VJ4zSkZGRSy+99Ne//nUgEFAURbNdj1QCoowf4XM/2N/JuE4+8T81vG4IuqmZzSKfh6ZCktHWBpcbigxaVL9Mhaoim0MyjnwOsgxFgcsFOlEH0ZQuZw1mpl25S6kBAUp+k0yfMxpuI6R6whHn3HglZVlOp9Oqqp5zzjmXX3652+12YjkCOzsV9Qfz888/f/7553/00UednZ0NpInIwDhjV3cFFnW2ZxgrW0zRipL1wj8UOpBp0BhEtk8BHFTkncogAGcTfqNV5qoZxoSgqqYpA9yEbFa1E4dGxzTNVYuKEElFhqAXpZRzHolEDj744BUrVuy7775OLAc7ORXF8ziXy91www233Xaby+Xyer12jNJy6BULH+7vOsDryjAulTCPGv62BMS4hVoJk8puKCt7YQ212IahXYtEU6CdkrNHw48k0iFK7F8sU3BVluV4PO52u6+44op///d/p5Tu5OpxJ6WiHqF56623li5d+uqrr4ZCIRSVZGMQcxuH+9wP9HWKT8o8RZ2QvJhn1pie1IlHigmtsDQ5a0xXGI+zCqeWf6YCQUr/K5a4ZDwSpLSBHQWMFgellDEWiUSOPvrolStXDg4OqqoqSdLOGcvZGU0CYQ5JknTXXXcdf/zxb7zxRldXlzHc12CzQIdEnkmk7wwnXJTmeblWEe/U4iyB6XsTl3jpPz0jmxk4okdXzDw0/rKGXJcvGyn20qQSWWH2Iv+f0bif0MYuliRJeuCUMUYI6e7ufu655xYuXPjQQw/JsgzAvpf+ccLOpRWNCaVXXnnlI488EgqFZFluyb0X/pDGOTh+O9i7v9edMpipZRrQtFaeFt8yQCq1OVF8Uc4pawYaKxHXuLtlJIR5QrHkWC8h3xoZ/59UOtCQSpw4Ran3KNyEVCr1jW9849prrxXZhTvbVMdOREU9NvDEE09897vfHR4eFre8JVdAV6oSEGPssz7Pb2ZNUzk3mqGkhkmq25nGQ+rom3G2sPbPjLq29GPLlFRhmj4QTy4eC3c2x0MdxqkOQbzx8fG5c+euXLnyiCOOEM/Hncd73CmoqCvDZDJ59dVX//SnP/X5fMaE0iYbN+XESQRRjX2vJ3RBdyBZmPQH9DWKBq+gmWe+rkONn8Amd60m8atMOTLAQ8iH+fxXtoxEAIWQVglN+VRHKpXinJ977rlLlixpa2ubVPVYSfi3iTaeOirq87x2DrNzpE3oEZpXXnnl4osvfvvttzs7O42hvGZgigoK6DllTw5O29vjSjFu8shJ6YsG/HUjYUxGaY2fkWJmadnRlexSABrQTsk3t44+kkh2SRJvKTdM11BMaYyPjx966KErV67ca6+9WjjVwTmvt+c25bZ5TC4Va46cMVblEjd/FUR8XFXVW2+9deXKlaqqtre3t0QZogIPBSQgythxbb77Z/SkYKaiEaSUmcy4bKrIUiPTjJrQLgN16AndVkYpKjQlEmt+m0j+v62j7bSQ4EYpbeE0oLiGunoUQbVYLOZ2uy+77LJzzz23mVUdllKkqqqmafl8XnwrTBsx4QlAURRJkhRFMf2qASbbR+upWN5dVVWz2Wwul8vlcqqq5nI53ZzTz84Yc7lckiS5XC632+1yuTwej/Fm13sVdKN0zZo1y5Yte+qpp7q6umomlNbVePVLR4EkYz/r6/1SwJ/UVMmqoLgJJmfRSD9e+lUd90z/JSuzaAFUTwoHOCATkuT8ixu2fKiqXsOEvtBUrVWPpliOWNVxzDHHXH/99XPmzKnLWDUJDGMsk8mk0+lMJiPkkDFmGSkQNpQYncvlcrlcPp/P5/MZmTkZnGwlFY39Y4xls9lEIiEGL8YsDqg0Bv1OiAMURfF4PO3t7X6/3+VyiQ9tXgLdpHnooYeWLVsWj8cDgcAUKEMjKJCldBD8t71dXX6/Co1M8cyR6CAzsLHsy5qzjhqlAc6Xj44vT6RCgFo2asGNFspledpqJBKZNm3a97///ZNOOkl3N6q0YBQSTdPi8XgymUyn0/l8XkiX3uEqoqj3RD+jx+Px+/0dHR0+n69VgzWiNVQ0Dj6dTsfj8Xg8ns1mxee6ctPpZN0Vw3UR3rwgsCRJXq83GAx2dHQoiqK3YHkddWUYDocvvfTSX/7yl+JXrZqusO9kyrIcDYf9vb2P7/PJvdd+kGrvoKJ0anMp4vY6WhqBsXILdZ5WgyQhmSQdHV8cDb/64bppnZ2a1fCnQD3mcrlEIvH1r3/9uuuuqzLVYRSMVCoViUSSyaSwQo2PDPsyrx8vVKjwp3w+XyAQCIVC4onQKg3ZMq3IOY/H42LwuvYjpNn29avAOXe5XB0dHZ2dnV6vF1aXQE8offbZZy+99NI1a9YEg8FWRWhQmilSBcLlCIfDhx922E0/+MHuAzNzNyxnv30Ufj9kGZoGaRJyK4zRm6pVillNBqKQg86jUTpnrv/a67b09F520ZJHHn20ra2t0nOttd4jrBY9RiKRXXfd9YYbbvhC5QJWnPNEIjE2NpZOp1soh3rjRmkMBoPd3d1CPTSPFnSRcx6LxcbHx9PpNIoWS2tdUHFL9MdSIBDo6ekxElJXhplMZsWKFT/84Q8lSfL5fK0ySo1iUR2iigSl9IILLliyZImiKJwxQqn66CP5lTcinSaiCpvOFWqY3recxrdEecTGqAOtulllrsIMSUI+z+Nx5Z+Pd19yKWlvFxf57rvvvuaaa2KxWEdHh+VTaTLUoyltVTzoFy9evHTpUo/HY1KPiURidHQ0lUphcuRQQDdcGWOKooRCoZ6eHlmWm1SPzfY1lUoNDw+LwUuSNHnxWN1iEZyklHZ2dvb29iqKooe/3n333Ysuuuj555/v6elBcwmlRthUhkIQw+HwvHnzVq5cefjhhxdcVrGWglL2/vvZG65jf/2L1NEOaih5alxHZfyL0kCNeMEMSay8+JZU04R1kJBSEMJjUdLZ5V58vnL8iWJ5BysGM1avXn3hhRf+4Q9/CIVCIoO0/CK0fI2FkZCi5bGxsYMOOujWW2/da6+9BAFyudzw8HA8HheS0MKzW0LwUEQBRcRx+vTpIo25YTRCRTF4xtjIyMj4+Li4SZNHQuN5jXEdVVXFJQgGg4SQn/70p1dddVU+n5+a6QoTxCr1RCJxxhlnXHvtte3t7WZ/RtRT1LTcz+9V77qTpFOkrR2AebslU/AUpVTU/9qIpRp1ZO1pD0JAJWQzPJ2Sj1zg/u5S2t9vqjqnzwzdfPPNK1euzOfzlUqNTIF6jMfjPp9vyZIlZ511ViaT2bp1q6qqIoV1CkQRRZUAQCdkMBicPn262+1uTD3WTUVxmlQqtWXLlmw2O/VrzPQUM3EJNE3r7++/+uqr77777r6+PmwLZSiiRN3d3cuXL//KV76iW8vlXQcAStmHa3O3/EB78XnCQfx+EEJalABtnPyoUTXDMABQimyWJ5N07jz32efKRx0NiVrUYjXkS7z88ssXXXTR22+/HQwGYXXNW85GlN4RWZZFZP6+++7bbbfd0um0MBFbeLqaMHmzqqoqijJjxoxAINBAa41oxbGxseHhYRTjExWbNkzCNNCzKjCuouCcy7L8+uuvL1++PBqNtuR+1KUMxdzXwoULb7jhBlHRrIYIigqlnKt/fiV//73qq38mnFOfjwrHhvOG103pc4ewOfEoNF42y1MpOnu26+SvycefUHRlK+4DpT9oEonE1Vdffdddd3m93kpZhC2P5ei3hhCSyWSuv/76BQsWCOe8/ODqD4IWBnJ0NorXvb2900VV6HpQHxUZY1u3bg2Hw5UmdkzTNbqm1ufW9ShLvR01whTsZox1dna+8MILF110kSzLTbZvf7WUMJM8Hs8ll1yyaNEiFE04O+fQ1+Orf34l//N71VdfJfk8fD6iKOCcFBfg6zZpJeNUH2dtE1SHUIOM8XQa+TwdHFRO/lflhBOJv21iU4BaMObWX3LJJevWrQuFQpbPr8kwVgkh0Wj0nHPOOfvss+PxeDkP9dMZtYUQDPFX/7AlD25jSFmox0AgMDAwUFd6UB1SyxjbsGFDIpGopHn0eRuTthSetFG+bUYjq8AYxQGgqmooFHrwwQdXrlwp4nsNt2nTKCWEjI+Pz58//+abbz7ggAMayZPUNFACQsGY9uYb+cf+W3vpRTY8TGQZHo/YU5EUa0MVzqt3ta6BARPFOBhDLsczGeLxSPt9Sj56oXzkUaQjUEfpcb0PRfW4ZcuWZcuWPVp5qqO1sRxJkqLR6IIFC5YvXy5KHht5rk9dCCE0ZoYYqQgDCZuXRjFkI+dFiuXg4KB9NtqlYnUe6oHj8oefaeJef2G6HA3ANMHAOfd6vddcc80TTzxhs1ibqTX7yjCTyWQymUWLFl166aVer7epShCG7WX4yLD6xz+qTz+lvb+KRyIAiNsNRQGVxL5TE8Uyqlw3/YLrtVIZg6bxTAaaRnw+Mn26fMQX5C8skPbcs1gppz4SGqEb5Pfee+8VV1yRTCY7OjomL5ZDKc1kMgMDA3fccYff71dV1cjw8kyaShEUk+A1KZAmxQADG2fPnm3zGWSLioKHyWTSFCk1PoFgL2/bZKA2eQmMbBThhFwud8EFF6xatcrn89mkVl3KUJKk8fHxgYGBFStWHHvssZUmmuuG0T1jjG/epP7lL9orL2urV/HNm3kuC8YgK0SWC3ueFnc+tYCmgXNoGjSV5/NgnLjdCAakebvSvfaRD/88nTOXeL1i5M2QUIeuHlevXr1o0aKXXnopFAoRq3TfJtWj7ozdfPPN+++/fzweF0/AcgbWCyORGlYPpjhfvWysTUVLfagPW78E5VqlepESI4Usb5vNNo3HaJrm9/tXr169ePFi8bysObq6IjSqqkaj0ZNOOun666/v6+trfSGWcm6kUtrateyD99kHH7CP1rGNG5FM8FyOx2JQVUsKkfZ2KAppayc9PdLgIJm9C919D2nePNLVPXF81cBMYxCmQTqdvu2221asWAGg5VMdlNJkMnn22Wd/85vfjMVigoe6IWqyVMsD4HLZPuoCJgZWeYJXb7NcXOtiY20qbtq0KRKJmOxS03OIc+73+8WMin5MPB5XVbXSFTceaUkGYXB6vV4j/+PxeD6fNxm9xp9rmhYMBh9++OHly5d3dHRUV4x1GaXRaDQYDC5btuzMM88kk70Ti+CkiK+UfsiHhngyybZsQTYDQgCCTApuj04z2tcHr4/298PjsW6z3r03bEO3Ef70pz9ddNFF7733XjAYtPTEGlCPYtnU5z73uZUrV6ZSKaMOtCS2cFyNBBMJAJaN2zHTOOdtbW0ul8t4cDweNwbzyyVZsLG7u3vGjBmVrOXCkdWpODo6Ojw8bGmX6lTknLtcrldeeWXVqlXGji5YsKCrq6sKG40DgCHKqrf51ltvvfnmm6JNMaTPf/7zM2bMMLKxfPyMMa/Xe+211z711FNiqr3SSe0oQ2PRzltuuWXPPfec0qKdooe6EquXQoxNqNkpWZmuG6vJZPKyyy675557fD6fy+WyvAv2bQpCSD6fDwaDt99++8yZM8WEdhW7lBDy7LPPDg0NiQRRYS4tXLjQKJ/lPUdlKnLOZVl+4YUX1q1bJxrhnCuKcvTRR4tSA6SYfWn53Mnn8zNnzuzu7q7CRmuVLZBMJkdGRkxmXrklIGjz8MMPP/zww2KeTXy+55579vX1mZSYJUR81UQnj8fz9NNP33HHHaJNccydd945Z86cXC6nt6n7q8Yeqqq6ePHid955Z2hoyO12m1RfXcpQ1HdYsmTJJZdcIkRqSqutiGEazyiCNzXDNuJJIfYGn0IId1rTNJ/Pd/PNNx911FFLly7duHGj2CTDJKb6Q62mhAhpvvDCC+fOnRuNRvVbYBJFGIIRP/rRj/72t78J6eWc9/T0HHbYYWL+0/J0xGqqwwhZln/+858/99xzkiQJcfV6vQcccEAwGNTTbkQ1V9MPRRRjy5Ytfr9fJE5bouJ90jRty5Yt5d2tdAlcLpforoAkSTaz4ap428Y2dcfAYgyl88iEkFwu19XVde6556LU9OfFnHI7vZIkaXR0dNasWQ8//PCVV14pbsC2r3okrFZJqvhvyulXDnGVNE077rjjnnrqqeOOO258fNzy6tkxT4Rp+qUvfenoo4/WXcRylSCgi5NReAAoilLbWzOYu5YMN7ZJCJFl2dRmJXNJPBE2btxYZaQVOzc8PJzL5UwiToso76WQb7WIuiqp6Y9GU8vGNk1TN5aN6K8lSYrH40ceeeQpp5wiAr+oP0IzPj5+2mmnPfnkk4cddphQyzt5Jfm6oKuImTNn/uIXv7jpppsAiOBfuZRXeT5SStPp9O677/7tb3/b6CLWvB1CYITwiBc2u12J5KY2Oefib3kL5T8UijGRSAwNDaGCGFsPJpFIRCKR8ghkpS62BM00Xv5DSqlIzp4/f34ikYC9nFLxqItGo4FA4Mc//vHtt98uttDYaUtWNwNhWQimnXnmmc8888xBBx2kp0yaDmaMWUo255xSev7554dCId22nFQ55IYUscZasHxGCN9yeHg4k8lYtmz9G3G9TCCTs/pLPykqT8jagen2CEUty/LixYs9Ho8dl1XIzdjY2OGHH/7EE0+ccsopO1spzskApVR4j3vsscejjz66bNmyXC4nsrfLDxbqURczYd2cfPLJhxxyiGWC2ySBF3NKm/l5OQghmqZt3rzZ8luzqQkgEomk0+lyI7iZztmBcJcbe+ARq0IJlNJUKjV//vzTTz89mUxWv5FiWaqmaVddddUjjzwye/bsnbBA9eRBeNqyLF9++eW/+c1vBgcHx8fHLW0NZihdkUwm991337PPPtt4+yZVJZrQmChWkjQRho3FYslkEuXiamqFMTY+Pl4eNW2sW/WiSRu1/Lfisfq1r33tsMMO0z1+E8Rje2RkZM8993zssce+853vABAxBoeHLYTw7jRN+/SnP/3MM8+ceeaZY2Nj+XzeUj1yzvP5vNvtvvDCC0Veq9E0nez7wg05qw3/3PIrMREgrE7TMSXVDQFEo9FMJmOZ6j6p49cvccM2cKUfiqXGF1xwQXd3t3EWRECW5Ww2G4lEFi1a9Lvf/U4kdjsRmkmC8B4ZY+3t7TfddNP999/f2dkpFvqY5ZLSeDz+jW98Y99999UDb1PDQ12tNbzwtYoYC8UoDE/TVyUBUgDRaJSUTdNNjZ2mG5mNsbESeUQIbpdddvna175mNLxJMaF0+vTp99577/Lly8VcraMMJxtCnDRNO+GEE5555pljjjkmHA4bpzqEabr33nufeuqpJltmykSxmbBI9eeFsD1HR0dRqj9KxDeRSKRSqQZWYbYEDZNQR6VOiompr3zlKwcffLBYZiqezeFw+LjjjnvyySePP/54fae3ZjrgwCZIMRNg+vTpDz744C233MI5j8ViYqqDMSZMU8v0jCnoXkuCiFW+pZRGIhHd6i58aDxCJOmZWiGV8w9aCz1sNRnGoQgln3XWWV6vV8xzUEpvvPHGBx54YNq0aY4y3CYQIWvG2Omnn/7UU08dcsgho6OjImnuhBNOOPDAA02KYcoCNkIUm5HD6hPgYglRNBo1HjlxMk3ThICWZ99NjaOsn6vl7iIAsWhgn332OfHEE9etW3fIIYc8+eST3/rWt5zpim0LPZaz1157PfbYYxdffHE8Hu/u7j7ttNPK59+mQB+gFSrRZj/D4TAM+lPWzyoqmW/DcEWTvqKuVCv9nFKazWYXLlzY39+/ePFiv9+/k2/+vp1Aj+UQQi6//PKDDz743Xff7e3tLZ9/mjLhJMV1f5NEfmH6pdNpvUodBBXFiXXrtDxm08wTwn7nLDPi60W1HD9Kc7lcf3//kUce6fF4touEUgdFCDHTNG3BggV777332NhY+bq8JmfebaLJmI1NCMWQTCYDgYDg18RjRtgDlplHO4oTVbOfInA3MjJi52AHUwzdiYpEIpXWEuwQk0w1HTrd9BNz/QIF5Sh2XKtSOasBsCJsHs8NBULED+t6ONl8mImnERwqbn8QD/1sNssq77rZjGLQBbJmC7rs6RJVlyTXhD5BKrKjRX8Khf5FdVfLJN2GDVSv19vW1mYzIsoN9S2FoSJWYds/nZ1Ub/HXZKM72K6gb0BWHj4ULxqjIiHE5/OJylRVWtD1lSlmwRjz+Xw2PRo78Q5e3F9AF8WCOFYaP5rQHuedd57f76/3WaJ3Q5blTZs2oZ6ppOrj13NcxXazDhW3NwhJK8+I0tGYdSqkYnx8/OSTT26mYjWldM2aNbAnkDYVQz6fn6CiPv4qjZIKhRWrY9WqVXUdX6UDLWkHRSOWMZbJZETVHMdM3d4g3AdLlaDblg3ctXw+//bbb7ekhzXFxv6cHOc8k8l4PB7OeUEzCK1tOf6G5bV5D9v+xIbNI3lxlXOVR4+DbQjhm1jKGy9uV9pw41MjkPYlVpBLX9NcmFesZEDz5rbIal7ntFAlGp2NfD7fqmYdtBD6Ht2VDpi8ZDQ7aJU0GtvJZDLihYziCrFKP2Ol25fbx9SkC+qo6zKJR5FjnW6HqHIfjQWgG7h3LdkE3g4as+ZshS5MgV2bV+HQQw8VBfMrHV+lu5xzRVHef//9NWvW2J9ynZrEKAeTCpu3W9cQNpt1u92f+cxnjJVRddh0bcSGZcPDwzUdRTutlX9YRxSx3lyHa6+99sADD6y0fL5S1FhA07RQKHT11VffdNNNlgXtLPvmYEeH/WkA+3IouB0KhX7yk59Y6gZj9d1KZ2eM+f3+U0899fHHH6dW2y2beminSyhlU8FAtWmC15V8FI/Hw+Gw5aor4xktRyW4p5vR1WFS2tUPQ2ntYwfbFWxS0ehP2uQkY0yshDBRUczd6+VSq/xcpME033+UymqJgSoCUzXdZfFCT9pGrasgFSGoaDy9ncC0/kM7qEsrNhmLcjB5oMUtyWoeaUpatkPI8tq8nHNL+bQ8XauW0RnpalSBtPwjOw3px9vngN6++Lmd8duEzeeQY8Ru/7B/m4RdoyeyccPWt3YaN52oVXLYjJjJdXWFl+4UafT3LA9G6Zj1i0VatxzZ5vhNBzi03G5hRyvqmtDo49hUkiaJbdU6DCGEdh4HFYsvo1iH1874dTOdFHe600lViY3icz2bVr92rSJDA9Y5AJHd6hBye4PL5SpfvF4JrLi7pm6mladxG6ELsPHbVkUNGovzE0L0XTQoitUH7culcdlEFSaYrotu0LaWAA1Yp5zzuhLNHUwZSHF9rM3jTaaZURmWN6Knjk2SKNpx8UxyKLSgeFsYtizLdhaPVGq6+pB0+6Hlg7f5SDONn1Lqdrtb2A0HLYTL5WpAFHWNV2V5ndipoYH1d3bObnNbJBMIIUIUib50uDHR1HloOTajM91yEqIebpuOoZR6PB442TbbGcRtMm2Y20ALdny2FqIu2S63znQDrUBFkRvecpU1qc6YfR6axi9JkmOgbrcQWmHHcuMbFkWXyzVhoArN4PF46rLRtznsP/lMXnJda0AdTCWEKIq7s2OJos3eGiVW2Ix+vx9FES1oRZfL5Xa7K61P2d5Qb50O0yc+n8/ycwfbAxRF2YFE0b5KsDQS29ra9NcT8+xixf12K6B6x4yTSDVhGpGI2XR0dMBxFLdLiJsldkz4mCUnmiSWMeZyuYRWFKI4kf8lCLrdUlHATsC2/HjjW5fLJWI2DrZDCKEUJZG2Z8WgozEvUYzO6/Uaq7pMLP3y+Xwul8ty59ftB5WitZUOLh9/e3v7juWK7ITw+Xxer7euPeS3Fbi9jFHLgYRCIeNXEzmokiR1dHTsEI8imzBZOOKqdXZ2bqv+OLADcZs6OjrqtYC2W5T7k8I6DQQCMDhKEzucAQgEAiKOut0S0n6vyofAOff5fMIOdxzF7Ra6KIq0k+1WFG2inIfCOgsGg6Zs05K1Qn6/X+wkMRkz8lOJSuMXKnGHHtpOAo/HI4I3HwNRLFcJlFIhikaVYN51OBQKcQPsn1JffNhAFZyaLdfVpmXPhUkgrHNHJe4Q6OrqaiZZ1CiQaO6mm85uv81ylS5UQkdHh4idGmHedTgYDPp8PmPOe13dbYDDVRpsoE3LgwkhmqZ1dXVZljZxsH2ira2to6ND1HNowEw1Cg+aM4VEI3oYyWabOonKezVt2rTyn1PTcYSQnp4eXlxyYv8SiFQydxEul6vJ55CIJBnbRHG/oSo/tOyzUIk9PT1wVOIOhZ6eHr3URb1+o8vlQlF4KKXibb3QPR1xaqOQi1SEKmujKqmEQCBgGbCwbmjNmjXJZFIP+osyB1WEmBCSSCTS6bTxmEAg0LAWEht4JBKJZDJpXP4fCARcLleVwVuaBKqqzpw5c9q0adwpB76jYePGjcYN3sQqKjs3MRqN5vP5ifgkpcFgsIEFH3pKCSEkFotls1m9EUJIMBi0LM5SJSFst912E/leJlhTMZFIfPjhhyU+ZS02lpeiaWCKkhfXGeuPAFOyaPU2y2eixHPI6/XuvvvuTj2bHRH5fP6DDz4w1oYiBlT5oSzLpuWLeh3umqgULrEp5FVUQn9/f19fn6VKqLih4tatW4eGhozxVn3wlYopmptu4gnUQJuVnkOc83nz5rW3tzsqcYeDuGWRSOSjjz4yiaJ4UUVDNiyQlkSy36aliyhUgs/n22233SqpBIs6qKL13t7eeDyeTqf1X+quqmX4qLFlx6RY+o1bpdXav3aWhVLFc6ivr8/h4Q4KPZQYi8XC4bDORuPDmlcoi1rX7dbNMVK16pKdkGklfUApHRgYqGKaVf6C0pkzZ5p+KbooUnWbnHvVfXHe6ApovR3L3woetre3T58+HU60ZgfHjBkzRCqc6T4K+dGl0dKqrAT9YL0RNLfIthIPhUrs7+/3+/1VGq/mPnm93r6+PsvlKqLrgkLVL4HpAWZ57WqPsgKq2BKMMUVRBgcHHRfxYwBJkoRiKJd1Xa6MEmUSS9OHxoMb4HA5qqgToRK6u7t7e3tRVSVUK9TPOe/q6spkMiMjI5ViocxQhsRoKpgmZ5uZq63SvSrPMM757NmzRXUGRyXu6OCc+3y+GTNmrF+/vtKyb5N0GcM8+gG6uLZQDstPbeyDMM0GBgZqNlKNiqLT/f39qqpGIpFKBRqNH5Zzr/yYlqA6Dxljs2bNctYlfmxAivtecM43btxoc0t50wvLt02iihwKu7StrW3OnDl2Omx3b9QNGzYY/eZtCN2uqHQAY2xwcLCrq8vRhx8ziBs6Pj5uk42T3Zkqcij0YVtb27x582xWb7G1kxQhZGBggHNeRTdODaorQxT1ocPDjyXEDRWJ1NuWjdXlUOfh3Llz7VdRsrupGyFk1qxZAMLh8DbJ5KzuW+tpeoODg93d3Q4PP8bgnOtsJHWWMG7J2avHeHT/cM6cOUJv2RTF+jYM4Jxv3bp1eHh4iium8QozhwLCKJckafbs2YFAwOHhxx7iFieTyfXr1+dyuamx1HhxSrOKUSoEtbe3106cxvzzeqlICAmHwxs3bmSMTfYlMD5+KilDMfi2trbBwUFRzdXh4c4DVVXXr18fi8VEmtvkSaNlDo0RQhnKsjwwMNBYpYi6ey9kPZPJbNiwIZFIKIoySZegSkKtgFCGAHp7e/v7+4Wh4vBw5wEv7p40MjKydetWzrmo2tTaCTPUmvcXfVBVNRAIDAwMNKwPGmcR53xoaGh4eFjTNFmWW2Wy68OuOXiR5z0wMNDe3t78eR3soNB1w8aNG+PxODFsCNNMm9UdQgFdDhVF6evrE6vwGtYHzSq0TCazadOmaDRKCBHhnMaSUXX61Ry80JaSJE2bNq23t1es5HKUoQMA4XB469atqVRKLKHQDaWaEiIEz5iAalMOZVkOhULTp08Xa/eakcOmqKifOx6PDw0NxWIxYSSUJzroL1hxl0VhXurjr9HL4q6MYvBdXV29vb36wkWHhw50SeCch8PhoaGhdDrNORe7dhtlTN/u2ig8NlOg9XULnHNFUYLBYG9vryir27w+aKWbl0gkxsbGIpGIWF1m3Fe9gWwjI3vFlfJ4PJ2dnZ2dnfoOJw4JHRihiwTnPB6Pj42NxePxfD4PQChJNCqEvJi5Sin1+XzBYFDUZzGdtxm0bPdjvSu5XC4SiYTD4UwmIxZrClqidGCorM2MvrIw/dvb20OhUEdHh341HRI6qASTNEaj0Xg8nkwm8/m8LngmgSxvAaUBfEmSRBE6UQ5DJ3wL5bCVWtFEsEwmk0gkEolEKpXKZrP6wCxXl6E4cnGNxMh9Pp+ojaU74g4JHdiESRpVVU2lUkIa8/l8Pp+vXn2cUirLstjWqa2tzefzeTwe08qH1nZ4UuYhTB1ljOVyuWw2m8lk8vl8NpvVTXOh8cVPXC6XoihiTwtRxsfYiENCB42hXHIYY6qqapqWyWSMhSP0w4QoyrJsCsZOamxiEmdF0VzX9Y45DHTQEjQgUVMphJNLRSNqjsrhnoMpRvW566nsCYD/D1aDHiUVUW7OAAAAAElFTkSuQmCC", "path": "image.png" }
Select the chemical formula for this molecule.
[ "H2O", "HO", "CH2O", "H2" ]
0
Every substance around you is made up of atoms. Atoms can link together to form molecules. The links between atoms in a molecule are called chemical bonds. Different molecules are made up of different chemical elements, or types of atoms, bonded together. Scientists use both ball-and-stick models and chemical formulas to represent molecules. A ball-and-stick model of a molecule is shown below. The balls represent atoms. The sticks represent the chemical bonds between the atoms. Notice how each ball is labeled with a symbol made of one or more letters. The symbol is an abbreviation for a chemical element. The ball represents one atom of that element. Every chemical element is represented by its own symbol. For some elements, that symbol is one capital letter. For other elements, it is one capital letter followed by one lowercase letter. For example, the symbol for the element boron is B and the symbol for the element chlorine is Cl. The molecule shown above has one boron atom and three chlorine atoms. A chemical bond links each chlorine atom to the boron atom. The chemical formula for a molecule contains the symbol for each chemical element in the molecule. Many chemical formulas use subscripts. A subscript is text that is smaller and placed lower than the normal line of text. In chemical formulas, the subscripts are numbers. The subscript is always written after the symbol for an element. The subscript tells you how many atoms that symbol represents. If the symbol represents just one atom, then no subscript is included. The symbols in the chemical formula for a molecule match the symbols in the ball-and-stick model for that molecule. The ball-and-stick model shown before and the chemical formula shown above represent the same substance.
H is the symbol for hydrogen. O is the symbol for oxygen. This ball-and-stick model shows a molecule with two hydrogen atoms and one oxygen atom. The chemical formula will contain the symbols H and O. There are two hydrogen atoms, so H will have a subscript of 2. There is one oxygen atom, so O will not have a subscript. The correct formula is H2 O. The diagram below shows how each part of the chemical formula matches with each part of the model above.
H2O
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABS6UlEQVR4nO2deZwUxd3/P9UzszN773LfuCqIrCCoRAQN3igiaMQjMRjvK4m3Eo1RURMfiEfU/JJ44CNJTDwAj6iA+hgVAkIMHgheRNAFYQGBvXdmZ7p+f9TR1d0zs3P0zM5ifV4eMzXdVdVdn/2+v1XdPUMopUhB7dHY9ub2+qa2hvZIfVMbgPrmtnDUTGVfLc9VGQr0LSs+fviAylBRV/clr9I+LCil60OSPNx8vrPx8x0N9U1t25vbPeqhlmcK+o2Lvjf8uxBxmA+/3t3c0N7R1X3Rcip1H8YPN+3R2Ht1Oz/aukuOrkGMYKg4ECgKFBVVlJYRglAwEAoU+QgIYBD4CAwCAzDUEsAgMAgIBSH8tQEQgNg3JrBesP8CMABCQMSnROzI/gvKX0MUggJiY/aCUhACgG+mior/UVBCCDsNFBR8L8IKKOVbUkpZodxSvgaBspn1ESsxKaUgMUpNCpNSEzApYpRSIEYRozRGqQliKhtQyvcyIQopTFAKwt6GO6Kb6ra2hztG9aueOnJwp8PcTcV8uLpuh8xftA+7tQ/9cUuXbax/r24nAMMfqKjuXVxSVhwKyVFkI+ojAGEnVhEBpdY4icO2hkqcRGsDQqzBkANCxVBB2UV+ylpRa3BWK8dY2YltQGH5g7LPKKHiMwJCQQmRg0pAKGEDRgillALCEwSgrBJKlcp5g9T6Hwil1DocsZES5wmllFLeqCQAhWQB7xfbDEDA7xs0oO+GjZvrm9vijuDeoTe++Gbt1t0A/EWhssoe2ofd3Ydxwg1DCiFG9YCaUEmpAfjEAbAYb4na34oSCn42QcQuFJR5gvISOXLMFmoNlMAQr0HsrSglRGwMamtFlvNWRCERo00Isc42BUAFQ+JQBVRuKXZU9+SnhdhGTa0bvH6T+V3ZiBBrQ0IIASUgppJtEsgxp7KfhJGOkFAwAGAvnuTWN7ev3bpb+3Bv8qHhLmITKCNQFAiVyjZlYLbNvYj9rSiRaSTEXmpuKWOwPFpHndbhq1CA7TXviR1WiEsVYqsAIl8lVoVEjd6iS5SIAqLsSCkl6p68aapSzlY3YKOKckQJqSJK7VSRm/HkOmaaAIK+OCO4dyjcEQPgDxZrH+41PoyzUd+yUNBnxCLt0Y522WYcqlAlnMMqtFFF7AVqFUqq8D2os1qqjpxSD+x12qoVeTJVKyEcQTYrinFyUEXZLwlVZAYL9RAJg4KrlxT2LWVfHZ8zXAiI2Kli6xchwgaEtLS0AxhSXYa9VH3KQwA62lu0D/caH8aPSeOG9Aawa/OGaEdENMmOFGovJCIspUAVIA5V1EqIMnJQ6nG8dlNF+kNSBSpqRHt5o4rzrZ0qymZpU6WtPbJ563YAQ/fecBPy+46s6Qtg1+YNsViMFWofdmsfJrwQvuCjTV/sbPT5A1W9B5aVV7A1OR9BLNoRaW+LdIQj4XAkHA5Hwh3RaCotaXmuUf2qjx8+IOT3dXVHcijtw8JX6j5MGG7ao7GFH236ek8LgGCopLisrKM93N7WEovpQS0U3Xzs6K7uQs6l+rCkvLIoGNQ+LDSl7sNObvP7aOvuNz7fEo4pd20S4g+W+APBomCwKBgKBoPBoiJ21cAH+Ayw1/J+B78oIayEwjDA7pJgmALgF7moT9zdYACGAUL5/REg1j0RhIj7IGDlqETcRkHVVJGnmLY8lrquCFB5RUBMkNU5M03pfgc+15WVUJFUA1Bvc1DvdzApNUGS3O9gUlAC9X4Hk4KCmJR++MmXaQ1zd5f24d7hw/j33UiN7l89vHfFwo82fbW7paS8ok+vPsXFJdYoEvgAot5exe6JgPJa3DHFX4vxUMuJ+/YqAlAYBh9Cgjj/QL29io+EstQXb4wBvsZmrecRWPc7iJsb2JyZO8V2v4PwhNyTrbvxmay8kCln/XYpXQJEu4A6Z7auOYIvQPBXhF9rTY6HvVXMh0+t+W99U7v2Yff1YeeXr0J+31E1/QhBuLU5EAxaq/difdtaYLdW551XBIj8UNkFohp5BqwSqlw1UBcFFbkW9mFblpf12q8I0CRXBOxUkZccUrwiAHHTRPwxVs+PderEgIsrAlCH0XItla0RYj8L3xmF/L4Thg3UPuzWPkzpavmQ6tIhVaWmae7+dqe1ei+SRWuBXVnLtr1Vc0tlF4hqYD8xTkQQAPycq3It7DuvTVgNq8VJrgiI5X9+tsUlB7Fl0isCAPhFBDiblAXE+SI+VZS9HFcE2C6RjiiAilDA2creLu1Dtmf39WGqN4kdVdMPwO5dO6LRiJsqxI4RB1Wgbp6YKu57K1SqUMeA0fhUIcoGvF6XOXJCFSSligITPre2U4X9V1JFthCXKh0dUQBV34EnM93SPuzWPkw13AypLh3Vr9o0zR319RZVWBcov8chCVXguglCyvIMtZc4qIJ46HFRhdo3cE8wpXvyQxWqNkYA/ifBTwe1nUoiqSJbiEsV5yF9l6R92K19mMYt8Eft2xdAQ+PuaDRiTf8SUMUWzinnjBs1siAuVdT3FAJW6kZ2qsBFFckGqzhzqiADqhC1MUEVIk5HZlRxnsHvmLQPu68P0wg3laGiUf2qAdTX11vTvwRUgZpzks6pokRQiypOT6h3TBJ7iSCPmyqO7DcLqsBTqhCd3WQm7cPu68P0HvBjYNnTsLutvb0TqqhvKT/CJFShyiUAiyoOT6gl1M4ZsaPVcu6oonQ8C6pQhSp8L53dpCjtw27qw/TCTWWoiD3GsnXrFnUMHFRxdoQIzqiyM4QoXwVAXNtYbxUnESSkitqZFKlC+ekn7Ewmo4rS8RSoorgzIVX4Xjq7SVHah93Uh2l/fcG4wb2CPqOltaWlucXqoJ0YVPkvfxUPESJqA/GowrZx7CKPnAqqqARzU4X1LRWqEH76KTuT3lHFgonSSWJfTuR76ewmdWkfdkcfph1uQn4fe1586/ZtVgfjUcXqjiCATVbUBlKjCscI4dsTWYnYp5CpImAhvEOI2gP2Qmc3qUv7sDv6MJMvZ2JgaW5taWhsFGGVHRPfwE0VTgBV8agCx472XVgllEd+/lZtmp9S172kUCJ4LqgCMYKdUIW376CK1TWd3aQl7UNrT7WnBezDTMJNyO87fvhAAHVbt4iwCiA9qhDriJW3jh0TUIUIqqh7QVCFUps91FaQG6rwnlpfBBufKpRSJ1WI2n/xyIzOblKT9qG1p9rTAvZhhl89Obp/dUUoEOnoaGppQQKqqOeAU4XaSmxUgUIVJVarMdRNFXt+aqeKrIPYW841VWzFClU4ECgVPmLlygFyqoDvobObzqV92L18mPk33ao3LzsineybfM+pQmwlDqpYu6v+sEMjDlUc7ZI4VLG17IBD3qgChSq0c6rIY1HOIKdKNGYC+C78vFQq0j5Uu13gPvTmi7Udkc5BFWt+q2zhpor1YSKqiOFKQhXmA6rUE5cqFhxyTBV+hN5QhR0OaWsPA6gs1uHGKe3DAvdhTr7Hn8jkjfeMA0EJoMmoIt8QB69EnUT5x0kVWFRR1/xsVIF3VFGaiEsVSQ8vqMKOzk5wrcTSPlT6VBA+zEm4oQoBkJQqcpyoY39lG1u5pIr4hzjOtRhICItQu12YCRJTBelRRVoZCahC41DFOryMqOI83VoJpH2o9LkgfJi/7MZGAEEVaYY4VGEjaqeG/IRIhjjOtYsqRCSusjNJqQLPqcLW/1WqQP4Z6Owml9I+VPpcED70Mtyox8wOQ0Z3SQC5RSKqEHcRrBL5CZUMsc6cVaJahDXUhVSxEnaFKvwwdXaTA2kfFqwPvQw36jGzw3BAwEEVqKOrVuIGDbHtpVLFCr0Ok2VNFeohVeRUWWc3uZf2YcH6MLfZDQOL/MdBFcgSZfXOTRW1xE0VGXqdJrNTxWo5ZaoQF1Wg/Ipz1lQhnVKF6uwmI2kfFqwPc5vdMLAkowq1vRXnQ7yR26RAFevw7SUEauTOiiqQv7Is39ucnRZVaBKqyHMYlyrqpRUtt7QPC9aHHoUb+4mWy1uwrutzqjjnt/a34nxYdSIeVTisRKGDKo6SvFGFxKcKiN1pFlWUrrJPiDKwSaiiXlrRskn7sLB96FG4IbZlMMjbN63r+pwqzvltZ1Th1aqcEbCShZ1SBcqJzztV4LiQalGFf2ptqrObbKV9WNg+9Cy7UZfBIG5wSEIVJmKtu/NiB1V4tSpniDg7ClVsJnNRBcqJ7wKqKFNlqz+CKsq2OrvJWtqHhe1D77Ib9VAESRxUsaaIrnQ3darwal2VxKGK0pSHVLGaSUYViz2OqTJrQlJFbCAKXVSh6gkCKKXRWAxAKr8A/52T9mFh+9C77EYiQrxlYFGpYk0Rk1JFRlLEowqv1lWJPP9UckZpKj2qIBlVrGNORhWLPY4LAawJlSqizjhUAYHsBquSEBIORwD0LSvuZFC+g9I+LGwfepzdqHPgOFRRySPkpopKHhtV1F1gK1SpIoJxFlRBhlQRraZOFeKgilo7H195ggivwX0Otbi0DwvbhznPbiBirAirvET+Lw5VFGhQYRRVDjRBugHKLqISJ1VUAsBjqihdp8pW1oYuqsg7y0U3lNoTUYU4ToeWlPZhYfsw59kNbDHWNpsVYdJGFUAJzRIR9tY6pYp7G3U8sqQKVapOhSpKp0hXUeW7Iu3DwvZh/rIbyRA5m3VSRbkJolOqWBNpuYtCFbjIo45HllQhStVpUkVeUFD6qrMbD6V9WNg+9DK7AZJSRWZtVI3TClUUAhCrYqVaWBs4JtIJd3GdkS6hiuieRRWw7RNTRfRDZzfpSPuwsH3oRbihNiCwkmRUgRqnlRKFAFSpG8rZ5BvAThWWwZJ4u7jOSIpUAeANVURVbqrI+lmF1E4ViD8AeEGV74S0Dwveh16EG5KQKsT63DYMDqpQ5S1SoAoclwnYWxpvl0ypAiAFqlhnPCFVRFXxqQKLKiQBVeAFVb4T0j4seB96n92oQZBan9uGQcZpKqgCdYNEiFBadFCFnwUZsanVE3dn3VQBG7G0qWKdcTtV4Gi4y6nynZD2YcH70PvsRg2CnVIlLgESIkJp0R5+QWBxhogNHPNqWaGbKmAj5hlV4Gg4BaoQnd1kK+3DgvdhDrIbOKkCx82XdqrAOq9ig3hUscdb51sKiyGFTBUofbRThersJltpHxa8Dz3KbpTwb4VcHjwBx6MlnVGFb6SUUerESKdUAZJTxcYK5Isq6tmyqAKd3Xgh7cOC96FH2Y0a/kWZ7KGbKnKjOFSxDzmrx6KK2MbGmXhUAZJTxcYKZE0VUJoxVVhxEqpQO1Va2toBDKkudR7bd1zahyh0H3qc3UAZJpl/uakiN4pDFUdCi/jb2DiThCrxOps6VWRAl1smogoISZEqsqPqjQyscScwRF8J1L11bpNA2ocodB96EG7s45IhVSwCxKMKXOSJSxVrE8kZpRVZYepUkXFfbpk9VWS/Vaqwxp3TYZUq1t62TbSktA/ZToXsQw/CjX1cnFQhSIkq1vzW4ZoEVLFKRD1UHU7JGaUVWVtKVCGSKkTdMiOqEBdVAJ3deC3tQ7ZTIfswJ9kNi61UnvrkVKHxqGIFX7uNlG0SUcVWomJB7kpp51ShkipU3TIjqtC4VFGPsFOqUGtvnd3El/YhUOg+zEl2w2JrIqqAKGMpyp1UUaBhs1FiqkA9tZIz1PpUaZEUAlXUI+yUKsqJ0tlNfGkfAoXuwzxlN+rQgipjKfZMhSqObdS3DqtJqqAwqGJ7Lw6MKp+nQhWqs5uk0j4ECt2H2YYbAucpjksV21EnoopVBELiUMUiD8QuxLmN2ggvygVV+F6pUsV2hNZxWd8Um4gqVKEK0dlNYmkfinoL2oeZh5ug3wegPRJJlSpS7NQTsZdEBKyKqPI0ijgVCkbAd7Hv5ESXLPKeKnyvNKiiTJVlqfVNsbxxF1WInSrUdqa0AO3DbuXDzMNN3/JiAOGOiDOBJJ1RBQC1Bi8ZVawgL0KsnSr2nZSY3j2p4kSGiyrEdqa0AO3DbuXDrNduxHFZwZTGo4pD8ahClIrcVIHj6VuFKtJFRMGXtY6WK6qgG1Fl75f2oXhZyD7MOtyIya0VTF1UsY8OgPhUsQYmNapAyV0lVayYLS2QElVI+lRBJ1RROQud3eRY2ofiZSH70IvsxhFMeSy0qOIaHeskuKlCFapYgycacvjFoooM3C6qOHZKQBXaOVWA9Khi7WajinJ3aCZUaQ1HAPQpC0FLlfaheFnIPvQmu3FMFWVJIqrIEkkVyKFSq2UvVarY5a7ETRWHyTKnCpABVahEoQIT+SIVqlA7VWjMhP4JTbe0D8XLQvZhDrIbWCUqVWxTYgUIjoGharXsJbU1pMpdidUvlSoqF5BXqhCJQunmeFTh5e77HfidoFQ9mVpxpH0oXhayDz3IboDEVBH/UOW8IzWqQG6jUMUBljhUsXeMjzGxF3c1VZg7FKoQyCadh0AcVHEfqBagfSg/KWgfepDdsH7GoYqIgomoQuR9AxDzQ9jrYS8dj7TYN7BV4uoYhXOmnSZVHKe+c6pQWa9FFVgHo8BEoYp1hLb1RJ3dpC7tQ/GykH2Yk+yGl4gomIgqVN43AA4NqwI7VYjSEOwb2CpxdSxrqjgSy86pQmS9FlVgHUznVFHGUWc3qUv7ULwsZB/mJLvhJSlTRYVGEqpAVqJs4KaKs6HuQxUq3aH0TWc3KUn7ULwsZB/mKbuR0IhDFWUDqx5WCftUvUncThWrafXkUOcG+aSK7HUGVCHSHUrf+MRdZzfJpX0oXhayDz3LbgQCRA9lkikCd0KqKBtY8VrdRr1J3E4VAEhKFdhdItrKIVWsE2GnivtCAFWPNSlVoLObTqV9KF4Wsg+9+Y1wNZhaJQIpcakC0glV2MHZJtLxqAI7VQiJQxX11HQVVdwwETdnysFNRhXo7CYFaR8WuA+9CTcpUkVOX2WJShW4qUKsemS1Dmg4qEJpfKqo1bqogvxQRcAE8oXYwKKKbRwVqkBnNylI+7DAfehNuBF96oQqcvoalyoMIypV4Dp0yZlEVLHwZe+arVonVZBfqkC+EBtYVLGNo85uMpD2YQH70LtwQ6AGvRSpAmK9paIOJmqvR1ZL1I8hfKTs5iKGmyrubVKlCtjY5o0q1EmV1vYIgD7lxdCKK+3DAvahp9mNK+ipBSpV2GcyBFtUcYT/OIcuzrBCFQdGXMRwU0UseVnbsG8wo51SBWxs06CK3JNQUJ6op04VYlGF/Scai0E/M5VE2ocF7MNcZTdMaoGkigzncamijg3iHLqLKmIb21ti24Yop1sBmlo1+35W4jlVrAZACYhqynSp4ji3WvGlfVjAPvQ6u7HLgRkrgIq31pHJhTRlbJACVYhrkqxGdlkirZBLqsBNFcipMrGoAtlK+lTR6kTahwXsQy+zG3c3qGPkVKrAmgAnpwoL4tZe6sf2IbRA5KCKPVJnTBXaCVXsbSs1837aqCKWGnV24620DwvYh15mN9RZIKiiRHfYjkOJ/ompwoI4se8ipVLFqtlFFWt7ZE4V6w6FTKgCyr3DO+CmirOv0NlN+tI+LGAf5iy7EdcFHVSxIjLfCXBTRYmhNqqIcVExYlFFnaUqVKH5ooqs19EbO1Wo3FChinp49sHU2U260j4sYB96Fm6Ioxtiwd9BFSsisxKxL9QxVmKojSrihKgYsahixXFbvY5Y7AlVqH2MxE4kIVVIEqqoB6+zm2ylfVjIPvQs3FBHN0SEjU8VxziJGngt6VPFNhuntjPmiMWeUEVO9lOlCnd8XKqoBy+SYau7OrtJT9qHhezDHGY3gJ0aKlUc4yS3clEFcFIFJA5VrImn0hVSSFRBylSxpbE6u0lT2oeF7MMcZjeAfbBVhiSliu34qRhIuRdNiSoyuc01VUQFnVOFdddBFYUYOrvxQNqHhezD3GY3SsjkL1Khii27IwoxElCFN2Snily6szvNe6qICjqnCgio3NA6B2IDnd14Ie3DQvahd9kNtU46YEsjrXMso2maVCHCELKEbWANVmdUsfUrNaqADaOnVCFyQ+sciA1So0ok0gGgMlQUbxC0tA8L2ofeZTdEGQmkShV19ijjvZsqFDYPyaFVYrGNKsQBq4yoAjaM2VNFWtULqnREowCqdLhJIO3DQvZhzrMbGRNZIQ+7bs4o8b4Tqohq1Ym0gypUwkoOiNqvnFBFPTyovSHSql5QRSu5tA8L2YdeZjeIRxUZE1khD7uJqAJAhuWkVKGKIeCiCiRVXLe054wq6uGpDXtMFa3k0j4sZB96md0gU6ooewAyLKdIFVliEYKXqFSx+ml1I3OqWH3snCqi63aqKNXq7MZLaR8Wsg9zm91AxHtZ6KSKOniyRKkQYixsGTLiUMVea26pYvWxc6pwhjioolRrowqNRxXn0oNWYmkfFrIPvfnhFySgCi9JQBXbcNqpQuRVRjEWMjTLjRJSRVZLCoUqRKlQUEV+bqMK28DqM2XfSms/QVpuaR+66lW2FUeNLvahNz/8guRUgb1QxH9i38CGCMkIlSpqYLVTxdmQzBWzpooNioRwCCjoUKni+IiXS6pIaPAjobJplSrg3eBN6uwmJWkfKvUWrA+9z24cIdDWN9nd5FRRZ9pyLNRbImGnivssUM+oYoMiGwM7OlSqEDdVqKAKPzRCoRyDaFqlCng3eJM6u0lJ2odKvQXrQ++zG0cItPUtHlUcH1qV2KkC65ZIHpHt81V7SxJxrkjcZVThh0YJlGMQTevsJltpHyr1FqwPc5PdUGX4FW7EpQrsH6qVWNEddqqIc++kiqxWdMYdiQuPKtDZjQfSPlTqLVgfepzdwBXLZfgGnOHfPfrWXtS+AeUr/ET6xsUQG6y6lCp8p2RUIQpVoLMbD6R9qNRbsD70KLuh1lg6xiAuVRzreWwbdY3NFvEFZ9xUcVYr33UpVYjFREEVu+/Fp47SlKgSjZkAggH9wy92aR8q9RasDz3Kboh1JM4xsI8f20VmvLIOJ4vsVGElTqq4YGUFX7uNVOWTKlR0WvREgR2niqg7Zaq0hyMA+paF4hzbd1nah0q9BetDD7IbHkMTUMURU61dXFSRe1EFI9ZObqq4YSXfCRu5weKkiijOBVWI6LSNCxZz7Mecyznz3i/tQ6XegvWhB9mNOkNEClQh6IQqbANKbdU4qMKDstxBOWcqVdzTZidVRHFuqAJBFYUL2VFFK760D5V6C9aH3mU3Vsfs/ZFUsUMD6VMFEiyOKScVe8l36VOFHUpnVEGaVEHGVBHV6uwmNWkfKvUWrA+zDTcEcahC7Vs4gqKbKkiNKpBgIVYlsmY3VRzVQvnUTRV27jujCtKjCjqjClGOWVCFdUNUq7OblKR92C18mG24oUiJKjZoiKNTz3OqVKEWVYj9zlE3VeDqm/KpYyrPz73HVFF6YnVUVGmzmkIVorOb9KV92C186H124+wPcc5dieBMEqqwEsc4UPl9HYIqarhNQhW1HiL/VXPonFKF94TKSq0mdXbjkbQPu4UPvc9unP1JQBViX7qzNpDXEV1UIW6qyE4IqhDlKzsQr29xqCJCfE6pYtWks5scSPuwW/gwH9kNHNAQnIlPFXkdkTrDaByqOHoSj0WFTBWr/zq7yU7ah93Ch95kNwTOM27bQoVGYqpIREiqOLyTkCqyJ8q5o0q1eaMK1J1SoIrV/3hUYRvp7CYVaR92Cx96k91Q54g45aAKxGCrG1BRo6SKwzsSEXK/uA0JOFnVxqGKGtLjUIVkRhWoO1lU4bhIlypsI53dpCLtw27hQy+yG5FAyiIC2xBCoQqFtT6XjCr2LySDKCEy3LK9lG7Ievjm1kDEo4oa0uNQhXpCFdEJjguFKrw2nd14Je3DbuFDD7IbFj6JUkSpbQihUEUGXwdVII+CiDqV2G1Vi3i7qONtJY28vAupIo7QTRVeW7pUaW5pBzCkqhRadmkfdgsfepDdMIzYqGK/EwEKNGTwtagitxG7W1SBsoHrWxoB60w6RleWsFOrei4PVEFSqli1Od2ps5vMpX3YLXzoUXaj5mPqeVdOOlW2h3qe7QMjqWJvIyFVZEpsq0Slih1fXlFFosNNFWVyb/06j3xB+Gvb3waxUwUJqKKVSNqH3cKHHmU34ikSUZQSVeDahr21xV75OkWq2Euoii+1A1lTRU6Mk1LFgolAA+sS4S8kSu1UgaAK1dlNatI+7BY+9DK7USnhDoRuqsC+TadUgetI41DFXtLVVIGdKrJLkircbYmoQnR2k5q0D7uFDz3LbiDPWzyqQEVIYqrIcGwbA2ptlhlV3B1Ogyq2r1yUPfOOKtRWs85uMpP2YbfwoWfZDexz4DhUcY+TiyoyHFsMkVHdPpyy+VSoQm17pEkVxQ8y9mdHFSKoQnR245W0D7uFD/2Z7woAiJlmtCNqEFACgxAfAQVMUJ9B+BiwF6A+QkwKSmCwQzTkSBJ5qPJkE3W8qfVfuY0s5Luoz9ArJQmpgiR3c0KlijJADqrwzeJRBVBqoHZvUv6DPlTZ2U4VKpAi2ibq5ViteNI+7BY+zDbcRMLhpuYmQqmPEAJqEBgEhFKDEDa+BsAKYVKfQQgoESWEr7rJjQFKDUJ8BgGoQQgAAyAEhpLbsbdsA8kbwyDyBZvSshKDnWWxqsb6bFLxC14ERP4CBqhJqUEMOdJsP5NSg1jPqrHBIew3TwlhnjQpBf+RU2kZZm4SM00Qw6TUpJTyF4hRSglhL0zApGD/pfw1BTGo4ItJKQUxqeNHm7Vs0j7sFj7MNtywUyIGgcVziGketVJQHsTFAydQslM1OSMAEDNNAzAJNQgxQYkJGASUEnHLkklhEEIJWKFBSDRKDYMjwDAIGyWDg4tNOwmbf5qUEhBKTT7AgGmKzFcwyKQmGzwW4inlOSuloNTkI0oplGuipknFPWXE5Gt4MAEQEjNNNoQxClMZ1xilpslfxCgoqElhUrARjZlmzKQUMHlmS2ImDUdND8Zrb5X2YcH7MOsvD4WYGVqzVTbVlGmo3Mb6HytR8z9AVAIYROxIVDfw3YRJrKmkaVLDYHNL9oKvbEFOO2GVGCxJlEMF25yZdd0ghkAHNU3rG1vVKwKQiS+r3CDWR8qxm6YpJ/1yqswOlk24+QxZOTEytTX4CiGF9QuHWomlfVjwPvQi3Eiq8LV4RhWidNhOFVHC5sD8LFhogiljNVXdwHcTa2/WQrlhENPk6DBNSghLZTknKKVEmbuKDJYSItJadchYJdRkC2mEEMOwvo+eVckyYljWACGEmtT6SDl2wzBk/qugFnxqTOWoK3N+MZ4mXyEkkL/fnMW0ee+X9mHB+9CLyZS17s1ve+BMIXLNS46WjSqUJ7n8DFPxu8WGjLEEkEFZiFKRK4vVdEkViDmzZAgEVaBQRZ3icm9RQkBNULY8ZhDDZFkupXLODB77rSU3uaxnUkoMQk1QarJMGoSv9wuqMDKYsDjEqELlIpwp8lOZ+huEmABMU1IlHIsBGFJd5sGo7X3SPkzqw5K2VaWtb1S0vhGIbpZHEfYN3FV8fH3J6Y3+Eci9D71cuyFsOov4c2bxP4EJ+UgLVagCClCTiqRLbq5Oq7mdCD+hoMTgI00A/oLhRbrHMWcmhJqmhIOTKvY5s6Gml4Iq4oVwKiGmjSri2DnN+N6sD5IqppXTcngIb4vJvAhF3LWmzm2SSvswgQ+DkfW9d/66uH2V+5wFY1v6N8/v3zx/Z+j4DRW/aDEG5dSHXkymGKzZEhORb615IyDHSUlJ+ZbgJXLibWWnrGp3W6yYWtHdFH/JjAAULKfl0CE2zshrBDmdM1MqD1AeQLw5s5UFJ5szE712k5q0D90+LG9eOPCbH8eNNap6tb9x2M7TqyOrcupDb8IN6w8xiEQ6sXgBwEEVqyTenJkqf6JyXq0WQDBM7GgQiQ6TKnNmZggxPc5gzgyWFcuDEFTpdM5MiDxA2XtrzkzFtQYo2Y08Me45M5VzZq2k0j50+LCieWGf7bN8ZmMqZ89vNh2y6ycD2p+XR8xeeOhDLyZTYjJATb5+JufMVF6kl3NmF1UIFbc9UMruWhDZKauanUelLfavvBOSWFQBu5oAJ1UAG1XknNmkpmEYncyZzeRzZkIodc+Z5bFSy7TW2g0hMHl2I7NgdrnSOmLZc5imuKXCk7Ham1UgPvQ3rwi0rvK3rJBRLVo2IVZxoll8UD59GGpd2Xv7rHTP4fCmexr9Ixp8B+bCh96EG9YhYhCYVIRmQL0hSFm/kGmoIAYLByiK1kUDg1kyax0RcR6dQhX+10r43RBsuksNEH6NoLM5s0EM0TexpgjbnBnyfi3W+zhzZhp3zkxkgkxk/LHWbmRPxPGJ7MY+Z6bKnBl67SYFeeJDg981l4kPi3Y9U7zjASNS5+iYr2Ul6u+jRYMjfa/vqD4zDz40Yo396q/M4BwGzKYxe37+ds83cuHDHGY3hmGVSKpQKjJbgkDH1z32zCttWxEKr5dVmb6K1rKT2spObCs/ie9HU6UKxL0SGWY3lLJuepTdiBs/vMhu9NpNKsrMh1CyG5Igu+nUh8RsKP/vmf52y8lukUhdsO6awM7H2vdbYPgqc+rDiob/NVKbQ7lVHNsysO35r0PTPfehZ2s3gHPObI0x7FQBfLGGgfXXDtt0RM89j6uxBoARayxreLb3lov7bTwxyNLRFObMAGUl7F4JwxDTWetvP86c2TBcVEl7zizGOs7aDZWnQj12KmJfp2s3VJkzw7rCpZVQ6fpQlvAVHx5TeNagrt0k96G/fV3V50ckjzVSRtu64s9PJK1rc+rDsqaF6Zw5p4a2/TkXPvTsyhTgvCJAlPTPWpijtDjy8QFfja9qfDZ5nUXh9b2/PrN81+POw2OX/WTaQEBNThlKqcxu5J+tO7uhkirsHgN1yCirhF8RAFsGki0TwHlFgO8Y78oUkaeC7S2XdPjMjmXvoOrSMmSYlKGKbakfmUpBaflQLaHsepZISQmHujqXQiIfIrqn/OuLSSyNVIJE6kKbr0N0T458GAiv83dsSb0/blVEPw3F6kRznvnQ4+yGKP2LRxWURNbtt+XMFJfKAVTW31G97VpbJfxGiWTZDek8u0H+sxt5ECK7ASDWeXR244VS92Eq2Y0aYTgo1EqEDyvrLjI6nIs1ncpoW1e86aIc+bC05Y10++NWSWyraK5QsxtrbSkeVYqiX++3ZUbqsYapZM9zxXuekZW4sxs2RnIJVuY7SbMbpE4VawKfSXYjQWqtFYjsBhDZjXqpRM1uoLObdJSiD+WWthJXdqPOn/g0WN2FgFL4m//lb3k3s976Wlb6WlbkwoeZ9cehntHVojnPfJjz7EZF+9Dt16Yba5iqvrnO1/G1nSoCUPwPm2c31JXdmFlnN9J1GWU3EqTxsxsO0QTZDXR2k45S9KHc0iqhKWU3tkooCEHpzvuz6XDRzsdz4cNsuqTIex96md1IZKhUkZ0rb1tR1pYhBwCU77jfnt2I1uJlN1AmJ0bXZTckhewGxHkjSMLsBojGKIC+ZcUZn8a9W6n40LalFHFnN3BnN7aRJEC0IZBpasPkb1yKaENhZjfIgQ+9zG4kMuJQBejT8Hg2TRQ3LDCiDYAzuxHTFuVxW1HCEJXn7Ia/tz5SQAremsxuLPemkt2IP5KQ35fNmdyLlYoPYX0EKDmnK7uxxSSe3VhvAIpQ89Ls++xrX+e5D02jPPuOfev/nmjOMx/mNruBko+Wt63IspUgG117diMCi/JlIqKETcDTy24Qlyq8A6lkN/x9nOzGqoMZWmIo9exGK7lS8SHf0rSSY/Y/nt1AyW7soLCGSGQ3RmQzspavZaXnPmwrPjz7jjX6DxDNeeZDT7MbOKnCiyjK21b4aFOWrfg6NgNKdgNndgN7dsMMkl52g7hU4R1IJ7sR34bgzG6oCIvIILvRSq5OfWhtKb7y057diNFUsxuRy1hDpKzdeCLPfdgRrI0GBmbTpUb/AVGjUjTnmQ89zW4Uutio4tGo+NvXKS2CyrRAZDdwrN3QLsxuxBcZZJ3dUJ3dpKw0fEjjZjdiNNXsRuQyzuzGO+XCh83lZ2TTpa+Kf5ILH3r5zBT7OyLiQRJrzuwRl41Yg9IiZFwxiDgL8qQQwuIxKEz25dXOZ6YoIYj/rAqJ96wKty+sFMZ6BgpEeVZFHXuZZimiVPCKwnbrDVzfMyJmi/KpC53fdKLOfSgymrK2lRWtS0rC64qimwMddR2BwR3+QeFQbXvxEa3lJ0lsQO5F+Y838HzHu4hjBgYlyG6y8uHu6qvLmhZmdrNfk/+ALcWnE3vw9sSHXj4zxdMuVsDSPyo+8UKmr1JpESCUiOyG5SxEpDC27IbPufg5Es9MgYpnVXzhdYg2+ltWUqM8VlwbDY40/FXqsypyNkScz6rwdUX7M1OEKvM31+NswkoUEhT8qRuTe1t9ZooCVDyrorObTpWKD8vbVgzYfX9Z+0p1x0BHXaCjrqRtJXY/Hg0M3t7vvnDJBAEtAPGzm0jJ+JKs+2wW15qm65kpAkqdz0yl68P6vn8cuHlauv2JkrKPK+9BbnyYj+yGADFfRfatREO1Sou27Iaq2Q1JmN1ArN1QkxpmQ9HOeUW7nyWu53fNwKBo6RHNfW+DrzLpk7hZZTcSFDq78Uqd+nDwt7f17ewKqb+jbkDdWc2VZ+7s90C87IaCP3+CjtIJ1CgnZuaLktQoN4sPsr4zsNPshm2Ymg/Dwdodfeak+x0UH1T9vtF/IGhOfOjx2g3EaoVcK2GcaS06KEayvTgXDR6otGhbu+GnXslueAahrN2wHVls8jcuLvl0fLD+PnesAWB0bC7a81z1honBPc+ZSn7imjPLBZpkazdsV/6vzG6sabB4plhw1D1nVjbWSqbkPqzZfnWnsUaqrOG5PlsutuZNVnZjLdkCCJdPzqbDHT3OSmMNUSh1HzaWnfHNgKfM1P70oqRsda/ndxcdnjsfenxlCuJajFxRJ2J09pSelGUrkZIJSosijvBZCyWEf50a+5yKibec2bAdTUqL664p/qrzZ+pIrLHsm+urvjqbiDUj1xUBefkp2ZUptiuUeTc3Cl/kZytwfPIHxc7sigDhV9n0lanOlcSH++y6rVfzc2nVVtK8pOe2a11XpqwlWwAt/WfTTG9yoUZ5pM/1aVwhlTum48O20OFfDX6psez05J2pLz7tvd4vNvkPzKkPc5bdKM/4s8++LT8rmybaKmc41m7E11NZ2Q0V81vrWw5d2U1o6+3+3WnYLtD6bqWIOKlQBbnJbvTaTSpK5MOKthX9MrrLtKzhuZLmxYDMbpyrxKZR2dx/dma9DQ+YTf2V6WY3gZaVRW3vFrWuSt2HMf/grb1/u3HAizuqrmoNfU/tQ1Pwe5sqb36v3/99Vj2nzTcw1z70ZO2GKlQRc2ZYFxTZZ03FE74tO7NnmoRhMo3yxr53qCUsu+HTWpE9ystPBPIF2C9msI/8DYsDO9K2nb99fVn97MYB92e0dsOWZCj4TNi9dkM7Xbuhyrf/aSVWQh/uv/OajCut2n7ntoopYsWGOH4ChhB0VJ8dblkR3LMgrWo7qs+M9jwHqV0hJbGG0oYFRXuec3ylTiwwKFI0sqXHBeHi8Z36sL1oZFvRyO24KmqaFDBBYqZpshcsf8m9Dz3JbqxLZkic3QDY0nt2JDAogwYa+802fVWOQvalZ0TkMqxdR3YjzjkopSTWWFR3bQatAwg1LAy0rEw3u2HnAgCDo5XYxMtuqEIVOcAqVSAeN60sDmR2FHu74vuwZ+viYDTz23/9HXXFTYvF1MKZ3QAwKW0e+Ltw1YzU6+zofXFkyINU/G3bsxviyG6Kd82r3jCxZNts99d3+To2F7e81qvuh9X1N/piDYXvQ0/CjUoVEALDsObMUMYnSio39XsiluZct6Hv7W1VZytRi7+Uv9BO7NkNRAlPgMVPDgV2P5PWdyA5VLbzd6nMmaGs3bD1A95jqizb2NduwN9Zc2YZIuWcmZXETACoDBVlfBR7teL7sMJ+zTsDFTctFVMLksiHzQN/1zLw/k7XcahR3j708ciAOxPf3U7VtZuyLdeVbJvdqW9LGhb03fT9kpbXCtyH2YYbHhftVGG/i+7ObghBa1Ht54NfawuOTLH+Xf3vb+lxCcsxHa06shuIRRzY8h356B0N7MzqGdFA67u+aF322Y0YOYsq4O86p4pWIiXxYVlkXbI9U1CoeSmUR2YcrUofhqvPahyxqr3PdbHQge5KYsUjI32vaz1wVbRyCpLd3W5lN2VbritKeY5mxBp7fnN5WdPCQvZhtms3LC7KaMrmzAYhhNrWbtiqNqUwDNIRGLJpwIKeDY/33POYL/E9C+GS8Xv6zu4I1vKsj5oyfsk1YNvajTK9tK3dmJQYxDAbSdYP1IUalzZXX5j62g3EcLIAyPYCIZT9kq9Yu+HcFF9xL++KdsyZoSNOYiXxYfbZjRFr5Gs3nfnQNCra+1wX7ns9CX/l69hixBoASv1VtGhQzD+Y/a4m5Jpr0rvbi3fcn3qskepRf2OHb0BbyfjC9GG24caiimHlmaZJDX5JiB0ZD5lEfJlI1Fe5o8f1DRVnVrYsLW5dWdq2whBxp71kfCRU21p5VqSo1uDfCgoxQiIlJLwVwufTlD3HwFaFrRJY2Q1p/TjLIwVAaJMa4Hl2Y7+bkw0XGx/r95YJJxfDGf+rsKhCAVDlrmKxlMzv5tTZTadK4kOvGkjPh8GhseDQqPAhxC5U5EfEdXe7WOCGSc1Ay4rQ9gy/uKv627tbi/9RmD70PrsBYBjJshseQQg6AkN2VV1Cqi8hlP+yMihlD74SYv08c0KqGITd6yfvrRYBTsluCM9urH2zUFHLSvS4OpXsBgBUqgibAgD/BRiFKuB2NPmFVp3dpK0kPvSqAa98KGclSbKb4LdPZNzTovAn5U0Lm8pnFKAPvVu7IZD9cKzdQHwillZFzsM/4nedWEvLPAlUmpH3DSutymdkrXsTBDqU1Rye3SD8dZZHKttOZe0GjjkzkXNmWCuakiqw5sziTOi1m/SUxIctRakuFHaurH2oZjeJ1m5I5OtAU1Zf3FXc8nph+jDbcCOoIqI5q9R+ZQo23rPMxlpxE0SyluBEyqA0I+4bVlsl4htArDsvRZhS72nmJzo4JMsjBdARqrVSGCS7MsXHmPArAtQ0xRUByDGzgALIKwKs84muCGglUhIftgRqk+2ZgtrKxJMKWfuQyBUGOZcBdVyZyvILSQGUtrxRmD70KrtBWtkN4MxuqHJruAQClP3dVJH7OKhC7FRhJzqW3bcN8eMKDBRpsOx5wuxGmIeCgBjs9lBBFcPgByFYp7ObLJXEh43FE7OsvE0+GJW1D93ZDUAc2Y2/Jdu1bQChtncL0Ie5y25EZBGBBkp2A/ADgshuiD27AWREZhuz76kRQYryQpUqNDFVKIDgUFqUyR2GqiIlR6Se3cjUGFQ+vC+oYpr8IOQh6ewmOyXx4bclk6NZPB5sGuXhCvG4X9Y+TCW7MTo8+E5S0bHC8qEH2Y1YH3VQRUQWEWjAN1GyGytH4AW8TgEEK5Lyb7QRPHFQRVzzpnKdkNqowko6KrJ6RtQMDIyGatPMbmCnCtHZTY6UxIcxX9WmnndmXHNTj0ti4ms0PfFhp9lNxl11qvB86EF2Q6mLKtaZtbIbAf742Q1gneYk2Q2RrcJqzrpCJLwm0g0bVTp6XZTxw7sAmntdy4YunewGgiqUgy4OVfgR6ewmGyX34Y7ys5tCR2RQbSR4YGOv67z1YdLsBhTUzOhBnzgqPB/mJLuhFvit7EaAP9XsBlZ9FlWobFX52KKKnDOLb6iV1VFKadHQaJ9LMzvMjpLD26vOZEOXUXZD3FSxH7OSACagCruLoiKkH5iKo059+Hm/J1rTvEQVCwyqH7IAXvswaXYDAmIWDc7oHNgUDQwsQB/mJLshFviTZTc8IbVnN+opSkIVGZKJeFTKSlcVqrAaZViI9L0+WpH29yFRo7xh0GPgvkoju6ECFipVKGV3TME6ZnCqIClVYjEAqNIPTMVTpz6MkspPByxsTfnpmXDwwC1Dl5q+ylz4EEmzm1go2yv3plEe9Q8uQB/mKbsB4mQ3lJfLvQB7AuigitwG1oSTh6dkVFHCAoDIkN/FSsenfoDUKG/Y51nqq4TwVerZDWF3UtmpQggyo0rqff4OKhUfxozKTwa9sbX6uuRfLGka5bt7Xrdt8ALqr0LOfJgku4mUTzazu6zRWnp8Yfow83DDfkOvNRymVDxnkDi7EQdg5TK27EZsQEji7EbeOwVRawKqsObZ1xFRa1tOFdOoaNt/Ubj/Hams40RLxjfWPCe/IzlRdoPE2Q0hRnKqyL8MSRXotZt0lK4Pt1Zf//HQVfU9rnc/JxwOHrir13V1Q5fu7nVdzKjMqQ+TZDeEkEhVVt9Ft6fH1YXpw8wfYhjVv3rZl9vawuG2cEdJMMBDBe8rhXhewcpuAENmvDL6sBKxASgMcYqcVJF3hoPvzpqjfMD43dZsCCml7MsWZQ+ocCEhxKQ00vuSjuqzgnXXBJpei3t0ZtGgtt7XtleeaSpfX0YIKOXZDZXoZO3an5mCSEdNRhX5gzOSYWwLeXoIqEU4KsMZhfWsSodpQn/7hEsZ+NA0KrdWX1ff4zoDCEa/DnRsjgUGdQQGG+JnG0i+fAgCUKL8EgP3TLjnhUV7ns3sVzobq87v8A8CQQH6MKvs6N91O9/44hvDIMP69w/4DIMQA9QgMAAC/vSTARgEBr/cD59BCHswim8GQsCfmRJzb/nYlM/g9/8ZBqGmafBnS9gpED8vRUDE5TteYthGGvyhFfGUCqUyGQEhJNZAWj72hdcZbeuMjs2xUC31VUbKT4iFDjLFyaZMPDk1IZAFQTMKUJPy2zUpX9gHpTFKQYyYabJfTItSk1ISo9SklH2FmgnEKGKUUgoT1KQw2ZeiEhIzzZhJKWACJqUUpL6hLWbijFH7DO/twc9a7E3aC3wI8fWgYo2B+NrXlX05I92feYgER2wd/ErB+jCrRzTHDe71+Y6Gr/e0bNq+fZ8+vYM+n0oVECdVkmc3bLCcVOHPfNioQhJTxTDSpIqvMlY+IVo2AYD4TR+Wssjf97EeyUshu6HJqAIifjLERhV2tMmp0tjWETPRpyykY41be4MP7dkNIYgGR7YOur/060tSPw+R4Igdg5621hALz4fZLhWfMXqfPmWhcEf0i63b2qJRVihWe51rN2IyzYsdazdiRMHnloI5LAsx5VekivsC2GI7nzOLGwupmXjOTDufM7P5qv0b8K1TlMLajcCTe85MCOWwEehRjyXpnLk1EmtujwKYOtKDJ7/2Su2VPgyXT27cb0m0JKUrG+Hiw3cMejpGKgrZh9mGm5Dfd+4h+/UpC5km/e+2+l0trVASQvkfiIMRq/GcKpAhFJwqfHmLcFuwdTlJFVaRgyosueCAclHFOmWCKomuCPAJk/Mb8MVymlgTdF+ZgnVlCrzntisChP0iDT8mnrjbj0W5IgD7FYHWSGx3SwTA8cMG9C0LZTlee6v2Vh9GQyMba55r7XtbkisbscDAXQMe2Tn4adOoKHAfenOFtT0ae2rNf7c3twMYUFXRq6wk6Pc55syg/Du31Dkz2E9cJpoziygt58wKZ6w5syFg4smcGbD9eqH0YuprN2zSa5szAxSIUUrZVNnkc+aYmDwnmjPvaYvuaesAMKpf9dSRHtz9tXdrL/YhYg3+9vWB1pVGpM7XsZltFC4eHy4+PFI6obv40MsbOpZtrF++sZ697llWMri6IuT3sRU7g4CAEj48MERg5SPNvwmJgnuCyEL+i6sQY886LeOymBOzOTOsX263qAKZMIt0mY+f+BY1U6SU6tqNSfk6vCnMwU6TKbam8hYvdp8lIaZJ+fezmWLsAbYax17ETEoJMSmNUZhAzKQmBVuoY2+ZS2LUpCCtkdi3LZH2qAngyJq+R9X09WqY9nppHxasDz2+f+zr3S3LNm77ek8Le1sRKhpQWd6rNJSMKiAEFlWIXIRLThV5zTIeVQj74kiFKvxo853dgPHBRRWYQCKqNIaju1sjbR0mgKDPmDG6Zkh1qYdj9F2Q9mFh+jAnt6t+vbtldd2OL3Zav1ZRGSqqLgmWFQWKA/6KoJ9RxRBTxMyoYr1gPmDf2yipIifeuaQKqzlDqlBqmpwqLVGzNRxr7og2tUeZhYI+Y9yQ3uMG92K3sWllIO3DQvNhDu+Ob2iPfLR19+c7GthcWlXIbxQH/MUBX2nAT4CKYKDIbxBKS4p8pX6fgyqEL/Uno4rJv/PVThVmEE4VAuR/7QYgJEb510s2RMwOk5qUtkXM9phpgja0R6MmbYua6snpUxYa3b/HqP7VOtB4Iu3DwvFhPh7GaY/Gvt7dUt/cVt/Utq25ram9I5W9AgapCgXkhUoGhNIiX3nAL2fDRGzMxh6CNvJ6nk2CKvKQqbjDUl6DlJtSq4j1gIrx5lsLMiESM/eEo7JEVAYAEdNsitiGMJEqQoG+ZcVDq8uG967Q9w3nSNqHnSrXPuyaZ/8a2iMNbR172iMN7REA9U1t4WgMwO62cFM4mv/+5Ed9ykIMFJWhosriIgBDq8qCAZ++vN1V0j7Msw8L91Hj9mhse5Mz+5XOKByF/L6+ZcVxP9KhZC+Q9qGHKtxwo6WltZcp27uKtbS0tFKUDjdaWlp5kg43WlpaeZION1paWnmSDjdaWlp5kg43WlpaeZION1paWnmSDjdaWlp5kg43WlpaeZION1paWnmSDjdaWlp5kg43WlpaeZION1paWnmSDjdaWlp5kg43WlpaeZION1paWnmSDjdaWlp5kg43WlpaeZION1paWnmSDjdaWlp5kg43WlpaeZION1paWnmSDjdaWlp5kg43WlpaeZIBoKmp6cEHHzzhhBNqa2sPOuigyZMn//73v49GO//R0iuuuOLcc8/NfSezUiF0MhaLPfbYY8cee+yIESOOPfbYP/3pT7FYjH3U2tp62223HXbYYSNGjJgxY8aHH36YTUPr16+vqal57bXXvOh1vqV9mGt1uQ/9AM4///y6urprrrlm5MiR0Wj0X//614MPPlhXVzdnzpxsmsxGhx566Isvvjho0KCu6oC3euCBBx577LHrr7/+4IMP/ve//z137lzDMC699FIAN91003vvvTd79uy+ffvOnz//vPPOW7p0ab9+/bq6y10g7cNcq8t96P/888/XrFnzhz/84eSTT2ZFhx12WDAYXLp0aVtbW3Fx/F8dzqm2bNmya9eu/LebI0Wj0fnz51900UVsXA8//PBPPvnkpZdeuvTSSzdt2vTKK6889thjxx9/PICDDz540qRJf/7zn2+66aau7nW+pX2YaxWCDw2WTRmGbRHn8ssvf/755+UYP/PMM8cff/zw4cPHjh179dVX79y5U924ubl5xIgRf/zjH2VJJBIZPXr03LlzAezcufPaa68dO3bsAQccMH369BUrVrBtNmzYUFNTs2rVqiuuuKK2tvawww674447TNN89913jzzySABHHXUUOy9Sy5Ytq6mpef/992XJBx98UFNT88477wB47733zjrrrBEjRowcOfKHP/xh3Gxw5MiRjz76qHw7a9asU089VXZm+fLlP/7xj0eMGDFx4sSXX375448/njZt2ogRI04++eS1a9eyXaLR6P333z9x4sThw4cfffTR8+fPl7XNmTNnv/32i3OKDeMf//jHZZddJkv69+/PfLxixYpAIPD973+flQcCgaOOOmrZsmXuSn72s5/99Kc//etf/3r44YePGDHi4osvbmxs/J//+Z+xY8eOGTPmjjvucO/SvaR9iO+AD4399ttv8ODBN91009/+9jfH+DEtWrToF7/4xfTp05csWfL//t//W7t27YUXXkgplRuUlZUdffTRS5culSX/+te/mpqapk2bFovFfvKTn6xZs+b3v//9K6+8MmbMmPPPP/+zzz4D4Pf7Adx5553nnnvuBx98cN99982fP3/x4sWHHnroww8/DODll1++//771Z5MmDChZ8+eakOLFy/u2bPnxIkTv/zyyx//+Me9e/detGjRs88+W1ZWdu65527bti35wUuxztx7772zZs1as2bN6NGjf/nLX86ZM+ehhx5avXp1WVnZ7bffzra8++67H3vssWuvvXbp0qWXXHLJr3/967///e/so/333//YY4+Nc4oNY5999qmsrGRvo9Ho8uXLDzvsMAAbN27s169fUVGR3HjIkCEbN26M28M1a9Z89dVXb7755lNPPfXPf/5zxowZvXv3XrFixZw5c+bPn8+83n2lfYjvgA+NoqKixx9/vKam5pe//OW4ceNOOOGEO++88+OPP5ZbzJs378gjj/z5z3++7777Tpgw4Ze//OXatWvXrFmj1jJ16tQPP/xQntZXX311+PDhI0aMWLZs2fr16++5556JEyfuv//+t99+++DBg9VIPHny5COPPDIQCEyaNGnIkCEfffRRIBAoLy8HUFlZWVZWprbi8/lOOukkxzCfcsopPp/vqaeeKioquu+++0aOHHnQQQf99re/jUQiCxcuTHLkbp100kmjRo0qKSk5/fTTGxsbzz777H322aeiomLq1Knr168H0NTU9Le//e2SSy6ZMWNGTU3Nueee+4Mf/OCxxx5ju59xxhnydRLNnTv3q6++uuaaa1iF7GClysrKWlpaTNN079ja2nrjjTeWlpYeeuihBxxwgGmaF110UXFx8eTJk6uqqlgPu6+0D6X2Yh8aAIYPH/7CCy+89tprt95665AhQ/72t7+deuqpd911F4COjo5PPvmEhUCmgw8+GICj0uOOO664uJgtREej0TfeeGP69OkAPvzwQ5/P973vfY83Zhjjxo1TLTJy5Ej5uqKioqGhIfk5OvXUUzdt2vT5558DWLduXV1dHWto7dq1tbW1oVCIbVZVVTVkyJB0/wKHDRsme+J4Gw6HI5HI+vXrOzo6JkyYIHcZP378xo0bd+/enWITc+bMefLJJx9++OF99903rb4BGDJkiORPRUWF7B5729jYmG6FhSbtQ6a92Id++WrYsGHDhg276KKLmpubb7/99ieeeOLUU0/dd999KaUyAQPAXjc3N6u1FBcXH3fccUuWLDnvvPNWrly5Z8+eadOmsc1isVhtba3cMhqNVldXy7dyYJjU3Diuxo0b17t37yVLlgwfPvzVV18dNGjQIYccwhoaMmSIumVlZaWjk50qGAwmeUspZRWed955hBBWyML/t99+qx5UXJmmecstt7z88stPPPEEWxRgnXQMT2NjY1lZmWMJI8XuJe9Ad5H24V7sQ38kEqmvrx88eLAsKisru+GGGxYtWrR+/fra2lrDMNRgz147Ui8AU6dO/elPf7pnz54lS5aMHTuWXTssLy8PBoOvvPKKumXcY0hRhmGccsopS5cuveqqq5YsWcIW2FhDDiI1NDT079/fsbscHqb29va0WmdH/cADD4wYMUItV89eIt1+++1Lly59+umnDzroIFm47777bt26NRwOyzHbuHHj/vvvn1av9g5pH6au7utD49e//vWUKVMci3Nslah3796BQODAAw9U087//Oc/AEaPHu2o6Oijjw6FQu+8887rr7/OEksAY8aMCYfDpmnuJxQKhdxnP64ShUk2g125cuWXX34pGxo1atS6devC4TB7u3Pnzk2bNrk7WVFRoaIm3Sz3wAMPLCoq2rVrlzycqqqqHj16qGtscbVw4cLnnntu/vz56hgDOPLII03T/L//+z/2tq2t7a233jr66KPT6tXeIe3D1NV9fWiwZZ4zzjjjL3/5y6pVq1asWPHII4/8/Oc/r62tnTRpEoBLL7102bJljzzySF1d3YoVK379618ffvjh7jMYDAZPOOGERx555Ntvvz3llFNY4cSJE0eOHHnNNdesWrVq8+bNL7300pQpU5566qnkfWJ58ptvvsmuHTh0yCGHDBgw4O677z7ggAMOOOAAVjhz5sxIJDJr1qwNGzasX7/+hhtuqKioOOOMMxz7jh49eunSpd9++21bW9tDDz3U0tKS1skqLy//4Q9/+MADD7z88subN29+9913Z86cKe9NWLRo0eWXX+7eq729/d577z3uuONaW1vfVRSJRAYOHDhjxow77rjjlVdeWb169c9+9jOfzzdz5sy0euXWunXr3la0atWqLCvMg7QPU1f39aF/yJAhixYtevTRR+fNm1dfX19UVDRo0KCLL7545syZLFhOmzatvb390UcfvffeeysqKk444YRbbrklbu1Tp069+OKLv//97/fq1YuV+Hy++fPn/+Y3v7n88stbW1sHDx589dVXX3jhhcl7OWrUqEmTJt1zzz3jx49/8sknHZ8SQqZMmfL444+r9yANHTr0qaeemjNnztSpU30+37hx455++umePXs69r3llltmzZp15JFHVlZWzpw58/TTT//nP/+ZzgnErbfeWlFRcc8992zfvr1nz54nnnjirFmz2EdffPHF66+/7t7lyy+/3LZt26uvvvrqq6+q5atXr+7du/ddd901Z86c2267raWlZezYsU899VSPHj3S6pJbDz30kPp24MCBy5cvz7LOXEv7MJ2z1V19SPaaJUYtLa0Cl34iXEtLK0/S4UZLSytP0uFGS0srT9LhRktLK0/S4UZLSytP0uFGS0srT9LhRktLK0/S4UZLSytP0uFGS0srT9LhRktLK0/S4UZLSytP0uFGS0srT9LhRktLK0/S4UZLSytP0uFGS0srT9LhRktLK0/S4UZLSytP0uFGS0srT9LhRktLK0/S4UZLSytP0uFGS0srT9LhRktLK0/S4UZLSytP0uFGS0srT9LhRktLK0/q+nCzevXqiy666NBDD91vv/1qa2unT5/+9NNPp7Lj5s2ba2pqampqGhsb0230hhtuqKmpufPOO9Pvb+d68MEHWcfuuuuuXNSvlQs9++yzZ5xxxqhRo/bbb7+xY8eed955q1evTmXHBQsW1NTUTJkyJYNGjzzyyJqamtdeey2DfRNp/vz5NYr23Xffww8//Pzzzy+En4rv4nDz7rvv/uhHP3rzzTdLS0uPOOKIXr16ffTRRzfffPNf/vIXbxv65ptvampqnnjiCfZ25MiRxxxzzLBhw7xthenll19mLxYvXqx/E7lb6OGHH541a9aaNWuGDBkyfvx4QsiyZcvOO++8tWvXetvQokWLampq1q9fz95OmDDhmGOO6d27t7etAAgEAmPGjBkzZkxtbW1ra+vbb7/9ox/9qMsjjr9rm//LX/4Si8UmT578pz/9iZXccsstf//73+fPnz9z5kwPG5IhgOnCCy/s9BfpM9MXX3yxYcOGioqKkpKSrVu3fvDBB2PHjs1FQ1oe6sknnwRw++23n3/++QDa2tpmzJixfv36Z555ZtSoUR425PDh3LlzPaxcVZ8+fZ5//nn2uqmpacqUKZs3b16wYMHhhx+eoxZTURdnN2weVF1dLUtuvvnmd955R00vFy1aNHXq1BEjRtTW1p599tnvvPNO3KrOOeccNX95++23a2pqxo0bB+DUU0+95557ANx11101NTUtLS2OyVQkErnvvvsmTZo0bNiwsWPHXnnllV9++SX76M9//nNNTc1ll122atWqKVOmHHjggaeddtq6desSHdErr7wCYNKkSccddxxc9tIqTDl8WFxc/MQTT6xevfruu+9mJUkc4hCbwsj8Zc6cOTU1NT//+c9bWlpqamr++c9/AjjllFNOPfVUuCZT27Ztu+GGG8aNGzds2LCJEyfOnj27qamJfXTllVfW1NT87//+71//+tcJEyaMGjXq8ssv37VrVypHV15efvDBBwNob2/P6PR4pi4ON7W1tQCefvrp66+//vXXX29oaCgvLx88eLBh8I796U9/uv766z/99NNjjjlm3Lhxq1ev/slPfvL666+n1cr06dP79+8P4Hvf+94FF1wQCAQcG1x22WW///3vm5qapk6d2r9//8WLF59++ulbtmwBEAqFAHz55Zc33HDDyJEje/bs+eGHH1555ZXRaDRuWyzcnHTSSSeddBL0fKqbiPnwlltumTt37qpVqyKRSN++fdU5ThKHpKhAIHDBBRew19OmTZs+fbpjg127dv3gBz9YuHBhZWXltGnTYrHYk08+OXPmTOY05sN//OMf8+bNmzBhQiwWW7p06W9+85tUmm5ubv7www8BdG1qgy4PN5dffjmLu4sWLbr00kvHjh07ffr0v/71r+wUNzY2PvjggwDuvvvuP/7xj+zsA/jtb3+bVisXX3xxTU0NgMmTJ992221FRUXqp8uWLXvrrbcIIQsWLHjggQdefPHFkSNHNjY2PvLIIwBY4NuwYcMDDzxw7733sqz766+/jgu3zz77bMOGDcFg8Oijjx4/fnxVVRWbT6V/YrTyqrvvvrtnz56tra1//OMfzznnnNGjR19wwQVvv/02+zS5Q1JUUVHRbbfdxux02WWXXXzxxY4N5s2bt3Xr1qFDh7788sv33XffCy+8UFRU9OGHH7Lch+24adOml1566d57773lllsAvPnmm4ma2759++mnn3766adPmzZtwoQJ27ZtO/fcc88555z0zovX6uJwU1VVtWjRokcfffScc84ZOnQopfSjjz761a9+ddNNNwF4//33Wfo3bdo0tv0pp5wC4IsvvtizZ49XfVixYgWAUaNG7bvvvgACgcCJJ54I4N///rfcpl+/focddhiA/fffv7S0FEB9fb27qldffRXA0UcfXVJS4vf7TzjhBOj5VHfQQQcd9Pbbb99zzz0nn3xyz549w+HwW2+9df755z/77LNIzSHZi7UyefJklsj069fvkEMOcbQyadKk8vJyAGPGjAGwe/fujo6OuLV1dHR88MEHH3zwwdq1a5uamnw+31dfffXZZ5952OEM1PUXwg3DOOGEE+6555633npr+fLlLMl8/vnnN2/evHv3bgDBYLCkpIRt3KNHD/aioaHBqw6wVtT1I9aKGtHUT4uLiwGYpumuis2k1qxZM2XKlClTprBlJj2f6hYqLS0955xz/vCHP7z33nsvvPACm1499NBDSM0h2SstHzITIoEPAQwcOHCj0HvvvXfhhRcuX778xz/+cQZ3jXiorgw3zc3NS5YsefDBB+UK1sCBA++77z6/3w/gq6++qqqqAhAOh9va2tgGcm1MHRUmlm3KqlJcRQPAWmGDre4rQ1uK+vTTT//73/8C2LFjxyeffPLJJ5+wDEjPpwpc33zzzcKFC9k0menggw++7bbbAGzZsiUajablEEIIutSHbvXs2fOqq64CsGfPnq61YhdnN9ddd93vfve7OXPmRCIRVvLGG2+whZtBgwYdcsghwWAQynzkxRdfBHDQQQdVVFQ4qmILe2xJDMA//vEP9VNmgpaWFncfJkyYAODjjz/etGkTgEgksnjxYlmeuthM6pBDDtmoaNKkSdDzqcLWpk2bbrjhhtmzZ7/00kusJBaLsRWTfv36+f3+tByi+rClpYVdipLq1Ievv/46+1vYsmXLf/7zn0StpCt5PbesrCz72jJWV953U1ZWduONN955551PPvnkggULBg4c2NDQsG3bNgCnnXba0KFDAVx11VW//e1vb7311uXLl+/atWv58uU+n+/mm29213bMMce89NJLr7322hVXXNHU1MSuIMpZTL9+/QA8+eSTdXV1N954o7rjUUcd9f3vf/+dd94566yzJk2atHbt2s8++6x3796XXXZZWofDwo3j7tKTTz757bffXrx48a233sqsplVoOuKIIyZPnrx06dKrr7767rvv7tGjx7Zt29hs/ZprrkGaDjnmmGOeeeaZuXPnfvrpp2vWrOnfv/+OHTtUH27ZsuVXv/rVxIkTf/WrX6k7XnTRRYsWLdq4ceP06dPZWlJHR8fEiROPPfbYDA6KLRWz1w0NDRs3bgQwduxYtujTVeri7OaCCy6YN2/epEmTSktL//vf/zY1NY0ZM+b222+X156uvPLKuXPn7r///kuWLHn//fcnTpz497//PW68nzZt2hVXXNGrV6/ly5cPGDCA3TERDofZp5dccsn+++/f1NS0cuVKx3SXEPLoo49eccUVwWDwhRde2LFjx2mnnfb888/36tUr9QORMyl2/VvqxBNP9Pl8W7duff/999M5MVr5EyHk4Ycfnj179tixY2Ox2BdffGEYxqRJk5544omzzz4baTpk1qxZJ598st/vf+utt84888wzzzwTig9/8Ytf9OrVa9OmTZ9++qljx549ey5atOi0007bvn37Cy+8EAwGr7jiinnz5mVGKblU/MEHH9TX1w8bNuzaa6/985//LG8x6RL9f9wL60Cf/1CsAAAAAElFTkSuQmCC", "path": "image.png" }
Which solution has a higher concentration of yellow particles?
[ "neither; their concentrations are the same", "Solution B", "Solution A" ]
1
The diagram below is a model of two solutions. Each yellow ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the yellow particles represent the solute. To figure out which solution has a higher concentration of yellow particles, look at both the number of yellow particles and the volume of the solvent in each container. Use the concentration formula to find the number of yellow particles per milliliter. Solution B has more yellow particles per milliliter. So, Solution B has a higher concentration of yellow particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAh0AAAEiCAIAAADSxvdVAABYjklEQVR4nO3dd3ybxf0H8O/d8zzatjxjx47t7DiLOIMMMptB2GUlQMNeZZU9SwukQEtKGSVQSiE/SkvKSksoM4TRhJAEspcznWE7zvBeGs/z3N3vj5NkWXaMYyuRknzf+BVkSY90kh4/H9147ogQAgAO6rDLA/UMTAHopKcSSFCgjwMyLEe9Le4qpxTcVVA7he8qRAhxSIcf62JdKBQLoxKhy9EcL3BXOWXhroLaaVQiqACw0wMA0NUC/ZyQoMS4TOg4qGewvREO6LDDc3QHC9xVTjW4q6B2Ct9VKAA0MACAfPz4TxkJCvRzAgQ/+vbDXeVUg7sKaqfwXYUCgCEAAFz48Z9K5F+7cZQN37irnIJwV0HtFNpVaKxLghBC6KSCuYIQQiiaMFcQQghFE+YKQgihaMJcQQghFE2YKwghhKIJcwUhhFA0Ya4ghBCKJswVhBBC0YS5ghBCKJowVxBCCEUT5gpCCKFowlxBCCEUTZgrCCGEoglzBSGEUDRhriCEEIomzBWEEELRhLmCEEIomjBXEEIIRRPmCkIIoWjCXEEIIRRNmCsIIYSiCXMFIYRQNGGuIIQQiibMFYQQQtGEuYIQQiia1FgXAKF4x4FX6VV7Gvfs8+yr0qsYZxZqybBm9HD2yHXkJmgJsS4gQvEFcwWhI/Jz/9qatR8f+nhF9YpSb2kja2SCgQAQoAktkSb2dvSe3GXyOVnn9E7oTQnW/hECwFxB6EgK6wtf3fvqoopFNayGUEIJBRUoUBAAHJhgVbxqZd3KH6p++Ofuf16ee/k1va7pYu8S61IjFHv4DQuhSEyw/xz4z3Ubr3v/8PsNpMFisWiqpqqqoiqKolCFggJAgShE0RSq0VKj9Lltz/1yxS/XVayLddkRij3MFYSaMYX5fyX/99D2h4r1YovFoqgKUQhRCCggL1CFKopCFAIEgAIoQFVKNPJ95fe3rbht6YGlsX4FCMUY5gpCzfz7wL/n7J7TCI2qqsrYABr8IYF/CSWEkKZrKAAFRVOKPEUPr3p4Q8WGWL8IhGIJcwWhJmtr1/6x6I+NolFRlUCikLCfsF8D0ULCooWAoio7G3Y+ufbJSl9lrF8KQjGDuYJQgId55u6ZW6KXBGoqMkUgmCUQdpkAIWG5ElZrURX1u0Pfvb3j7Zi9DIRiDXMFoYAllUu+rfpWU7XIIDnChUCuQNj1BIACJ3z+zvl76/Ye8xIjFJcwVxACADC4sfDAQo/wUEKbcqVlqDTXFCxh91QUZU/9nsUli49daRGKZ5grCAEAFHuLV9WuUogSSAjR/GbRyiZNVzaPHwKEAfuq5Csf8x2DkiIU7zBXEAIA2Fq/9bD/MCHNKyaitcui6bIQIuIaiRK6vXr7wcaDx6awCMU1zBWEAAB2NezShd7KDaJ5bAQvCyG44M1uDbsbAVLpqyytLz3m5UYo/mCuIAQAcMh/SARFZokkr+FhF6B53gTvI0AAgM70Cl/FcSs/QvED5wdDCADA5GYgFYQggrTSoSKafgQP/Bd+ZdMPDzyOyc0YvBKEYg1zBSEAABXUUGYIEARIs9HGUugOoWoNhFViglUZeRMRRCFKDF4JQrGGuRJlgY7coMh+YBSv0i3phJNAXQQ4Bdp02qMUzAzOuRCiqUFMNI8WDoILwYWFWlLtqbF8SQjFCOZK1AghAudgt7geMGDiXm9XbwtYGGcg6yTAA+fTy2gREKihyOpIeC9L8x8ZKoKLZFtyN1e3WL8shGIAcyVqCCGcc4+n0ev1miYDEJpmcblcNpsNgqkT6zKiI+qf2D9NTTvIDspTHQUIQQQhTR0tzYYUh4cKa3aBcw4cOON9k/t2dXaN3QtCKGYwV6KDc15ZWVFdXWMYhhCysYSbpikEOBz2bt26JSa6MVriWZ4zb7h7+H8P/VclwT8KEhjZJesrAM3HE8sqC2tWWeGMCyaAgwLK5JzJdtUek9eCUGzhOOMo8Pv9e/bsqayspJQ4HHan0yE5nS6r1dLQ0Lhhw4Y9e3ZjqMQzC7Vc2O1Ch3AIUwALCwzR4t9QHSX0LwNgIJjgjAMDbvK8hLzp3afH+jUhFBuYK53l9/v37dsrBLPbHZpmoVShVFEUhVKqKFRVVbvd5nA49+zZvX37NmjRsY/ix88yfjYudRzXOZgADAL/hn74ES43DxVgQIBcnn95L3evWL8ghGIDc6VTOOf795cSQiwWG5V5oiiUUkIopZRSQqlCCFUU6nIl7N27t7S0lBCC0RKfXJrrzvw7M9VMbnAwofV0ae1HmIKbXDABDBhjY7qOubr/1bF+NQjFDOZKB8lsqKys1HXdYrESQqgcmBpcmYMQKkeBUUrlrzabbfv2bYZhYINY3BqVPuq+AffZuV3oIjJawgPGbPqRNRXBBJjATNY9sftjox7LcGTE+qUgFDOYKx1ECBGC19TUqKoqswQAIvIibNgxAQBN07xeb2lpKWBrWBz7Ra9f3NP/Hhu3cZ2DAWAAmMF/m/8IUzCTMYMJQ4ABzGS5Cblzxs05PfP0WL8IhGIJc6VjBAB4PF5d1xWFiqahqM3uEzgrGwSAkPlCKT10COe4jWsa1W4bcNuTQ5/MVDMNn9GULgaAAcIQwhDc5MxkzGTCEGCCMARnfETGiFenvDotb1qsXwFCMYbjjDtCCCAEfD6vkJN+BPIjUFuR52OHC2YMp5TW1zfggOM4p1Htyr5XDkweOHfT3G/2f1Ov11NCKaWhmYzlwDDBhDxbJcORMaPvjF8O/mW2KzvWZUco9jBXOo4xFgwOznnTmfby5BWZLpzLX+QFIYRgzGSMqSq+83GNABmWPuyVCa+sOLBi4Z6FPxz8obS+1BBG4MsDB+DgVJy9UntNypl0Yc8LB6YNxNnAEJLw6NYpjDHO5YTp0DxXBOecMc45C4QMZ5wzxriqUqysnCgcqmNKzpRJ3SYdaDjwmxd/882Gb4iLAAEwgdfxO35xx80/vzlRSyRHWqYYoVMS5krHaZqFMWaaTFWbTdMiqzCMccaYDB55wTSZYRgul1tR8IvtiUQhSrYrO70m3brOqmoqAHDOTcPsdlk3t+aOdekQijvxnytCiGaTNsbDNI7y2Z1OJyHEMHQhNEWh4bnCuQimCTMDDNNkhqGnpaUDThd2IqIANNiJRgBocJYXhFBz8Z8rgcOv7K6Q54LIG2J7aBZCWCwWl8tVXV3tcADnlBBKCAS78blsB5OxYhiGYZi6rqsqzcnJjVWZEULoOIj3XGlsbKypqfF6PYZhcs4JAYvFmpSUlJKSQimNYbTIp83O7lZeXu7z6aqqUBoYtN28Hcw0DEPXDdM0PZ76Pn36ut04ASVC6GQWn7kiAIiu6wcPHmxoaKAUCAkctRljdXW1FRXlFoulR48eyckpsTtGEyGE0+nMy+u+ffs2p9MFAJQSQmhYfYUZhiFbwerr61JSUk87bQjEuhEPIYSOqfjMFeL1ekpKSgDA4bDLCbUCh2quKAqVJ65v2LChV6/eOTk5sYoWWbBu3boZhl5UtCspKZlz7vf7GGMAACBMk5mm6ffrHk9DWlra2LHjVVXDygpC6OQWj7ni9/tLSkoURdE0TU6GEjy7EACEoiicc6vVCkC2bduqKEpWVlasDtbyeU2TPfnk04MHDxoypCAvL9fhcPj9fo/HY5qmYeiapvbv33/gwMGqqmKoIIROevGYKwcOHCCEaJpFTuYIAEIQzgWlQghBiKBUoZQpimKz2QsLtyQnJ9vtsVlASabdV199tW3btoMHD3755eKsrKz8/PyhQwv69OmtaVp6enq3brkul0tGI4YKQuikF0e5Ig+7dXV1Ho/H4XCEZgiWCIHg+vHyzHZCCFgsWkNDfVHRrkGDBsfkqC3PRFm8eHFiYqKsphw4cGDVqlWZmZm//OUtjDF5B0wUhOJTaLB4PJ/cekIUMlzczTtZU1OjKLQdB2Eie84tFsuBAwdM0zz+B255pv3mzZu3bNlit9vlCsSKoqSlpZ133nnyPlhNQSjecMFNYTLBACCwtAUQAUJeGSenJQkQTDBTmAJEqJAAIK/kgse6gG2Jo1whhHDOvV6PHEAMIM8FCf20OpMjUEq9Xm9NTS0AmIzzYz//PBdgcmEyYZgcABZ/9VVjY6Ps9aGUNjQ09O3bd9iwYQCgKErYVPkIoRhjgnHBKaEqURWiCCG8zOthHoMbBIi8kgCJbbrIRCFAFKKoRCVADG54mMfLvEIIeSUllAsuozEOxVE7GAAwZpoms1ioHP1FaWAK+tD0ji2ihQMAY8zv9wKAQgkhRAAwJpRoz8IlBDAhFEIoAXkCpKqogrNvFn1it9uZAAGEEuLxeKZNm0YpDTWCIYRiToDggsu5QXc27FxcvvjH6h/3NO6pM+qEEBpomdbMQQmDJqZPnNBlgkN1yIP78Z9LlAlGCVWI4mGepZVLl1Qs2Vy3+aDvoMENwkmimtjD3mNk8shpmdP6JPYJ3T/e2sfiK1eEgOBEwDJZApPPNw0zbprDMcBk3KKI/6yqaFyv9kihg3Oc/bIcqkKEAMaFQqPzdjMuKCEqJYyL7WW+jSWe4gofEKWy4nBhtdNhs4K3moBiCovd4Zw+/SzAk1QQihuy1UghysqqlS/sfmFJ1ZIaVqMQRaOaAgoIEEJs927/qvyrubvm9rb3vjrv6hv73pioJR7naJFPV2fWvb7v9X+W/nOXZxcDplFN1lpAANPZ6rrV7+5/N6kwaVLqpLv73T26y2guuABBSRw1PsVXrlBKheCMmfIsyIiZHIMzo8jz2DljjHNmmkyl8PeldWv3GdRq2iwwoKvl8jFp103KSnFpMg86c4QXArgQCiVVjeabSyvf/aGqsMzv8XHgAgQnlDiGzLY07LFXrHZWr/XsXz/m9IIhQ07jXIROv0cIxZBs+GowGx7b/ti80nmc8ERLYgbNECDkd1gAEFxQlRIrEUyU6CWPbHrkH0X/eH7E85OzJh+3aJFP9E3FN/cW3rvVszVRS0xxpBBCeFg7DVEJsRDCiWmYnxz+5PP9n1/f4/onhz3p0lzyZR6HcrZHfOWKqqqqqhqGTqkihKA0lCsQPuNWaIZgw2CCGXV+UguJrnRNBWaa5vpSffU/9r70ecnTl/W4ckK2rPR0LFrkAk4KJW8vr3r03weKDxuqVbVZrO5EQojs9uGmyfSEPv7Efg3sQk/aWmtBktyUC2jP8AOE0LEjj7bF3uJZa2f9WP9jhiODUsqAceAQODmOCCEECMYZCAACVs3qTHAWe4t//s3Pny54+s5Bdx6HaJFPMXfP3F9v/7XVYs1yZTFgInAEAiKIXEqOcy4LCQok2ZOEJv6y6y+ry1e/PentPFde/ERLXBRCkl8cEhMTfT5dTtVommbYlMDMNJlcFMsMzuWoG6YifLtqbSUNdgLEBApUddisySnOww3kqhc33/K3TTw4BODoywNAgHNxy1vFV71afLiBJKc4HA4LURRGqCkCP6AoRDBqergQ9pyR/9qRdc7TP9Z6GCXkOAwiQAgdCQdOCS31lp6/6vz1nvXZrmyhCEZYYGrq4A9RCFUooUT+KqgwiGG32hMdifetvu+PG/6oEOWY9pDLUPlT0Z/u23ZfsiPZZXWZxBRUNE2hTYFQQhVKKQUlkCuMME55RkLGurp15y86v6ShRHbmH7tytl8c5YqsU6SndxFC+P3+wCzAcipgM/RjGkbTDX6/HwhdvD/DJAqhFIACpRyowanFqiWnJrz2WemsF9dCh4d2CDHrtb2vLa5OTnFYrRoXlIBCiaLIVWkpAUIBKCgKUAsQVTB/ooN+vrb67KdW1jQalBBMFoRiQoCgQHWuX7vh2t3+3en2dIMYQAEUiMgVACCEUEpDB3GgwAkXishIyHhszWMfFH1w7KJFhsqCsgWP7Xysq7OrDIxWCkkACMjjTuCwTQEoGGCkOFKKPEXXfHuNznRKaDyMk46jXAEAIYTVas3Ozq6vrzfDgyVI1w3D0A1D13W90eNzWsTK3b6VBxITLMAJCbz9lALIdCEpaa73lx546B9bCAHGj+LtZlwQAg+9X/b+8rqUNDsXlAAloBCQFygFSolCaHA3pARAAaoxoaSkuH7YXnfd3LXH7o1CCLVNfnN/eufT39V81xQqES3TpOmHUEJC5x3K9XWIEEQk2BLuX3F/cX2xHJcc3UIKEApRSrwlD257MNGaCAoIIiKPyqFCQqDiEl5sGS1pjrSlh5Y+ufrJ0AuPrfjKFVllycnJycjIqKqq8vv9uq77/XoYv9/v93p9jY0eh91atLfkX68+Y/UeINRGQL71NHAKEVAgVGfEneL800dFX647pFDSzmiRA8m+3Fz3py8q3Mk2k8sastLswwRKgRAiEyV00hIFSnUTklOcC5cffOWzoqPNM4RQ58khxYX1ha8Vv5ZmSzPBjFiTrelITZrChhDS7CBOgBNu1+wH/Af+sOYPACB7ZaJbTgCYs2vOQeOgXbNz4K0XMqycgWNNeLQQMISR7kx/tfDVwspChSgxj5b4ypWQ/v0H5OXl1dTU1tbWen1ej9fXGPzxev0CwO6wrl239sWX/uKpq5Cjiql8wwEC73zg/acAClHU2e8WAgiFkp88xsuOegAxe+GBQItX4ENuKewLTrNnpyYnNpd1zn92VNT5FYqtYSc2n89XVFRUUVEB0Oz83H379h08eNA0zVgXEEWSbUGv73u9jtdpiiaIaJkiTUKHbEIij+METDCTbcn/2fOfXTW7FKIwzkSUMM4Uouxq2PWfg/9JsiYxYK3UqKB5tIA80oTVqwCAgCBCVdQ6s+61La8BxH4l0/gaDxYihOjbt19aWvrOnTurqyo0YqpEcM4JF16/sbe0ZMmyVctXrFD9laTPpUZCb2I2ckJa9KMQAMIEJDgsy7dXf7HmwFnDsxjjbZ/UwrhQFfrFxtrlu7zuBDsXhB4xfWXXPhGEgICwMAPBic2qlRyqmf+/vXdd0I9xoSo4NuzEU19fv3r16u+//37v3r3l5eWpqalyth5CiKZpK1eu3Lt3b35+/sSJEwcNGmSxWGJdXgQQbFyq1qu/KP/Cpbk44UfMEg4ggoeNI/yBChCaoh3UD/6n6D8PDn9QQNSmZZJH/4UHF1aZVRnWDE6ClYyIulSohMHDWyvNcQSYYC6r67N9nz3heyLZlixnf4lKOTsgTnNFzo2fkpIyatSoi5/fXFZRm5dMAKDRtJbUkIov32al3zsSko3cGY0FjxBugGwFO0JIE0KAw7+Xl541POsnJ1aRN/57VQ2IFveU6ww3J1r9ckCAc0Es6ocr9t91Qb9onZ6JjhvO+ebNmz/88MMdO3Ywxiilbrc7MTGRMSZzRc42VFVV9d13361atWrUqFGXXHJJt27dYl1wFGgE+7H6x1JfaZIjKfIoLIKtTACgALDglUf+WxYgrIr1q+KvftXvV37TH8VcsVLr14e/tirWyKeWl8ObwljTVk13gKY4FCBsiq2kvuSHgz+c1f2s0OQCMRGnuQIA8g3bX+X/dhev0VN/rNIoURSgiqpYx7+i1e+qpTbm7k2YDkIHICL0xoMIHv0D7z1j3O5yfL5s05UrXxTtyHAC/H/2a+3OHowzEn4SSivtWfJTFsFbQyPOQQiwW9QtJXX7Kz3ZqQ4uBJ7OcqIwDGPx4sULFy6sq6tTVVXTNAh+11EURZ6iC8HuQEKIruvffvvtrl27rrvuOjk1HIoh+Re4rnadIQw5oWT4bUc8AHAQvPkhO3QL5w6rY+PejRPOnEBNGrVqgAChif1373d0cXDBm+KqZSFJ861CISSalZYAMbm59vDas7qfJUR7DnXHSvzmChdCIaTosL/BayQ5VUEMSjkBKoQpgOrJA0FwYjTKmgoHDiJ4ZA9oihYBglLaWNe4bNMy+OnzhggI1jh2BrVTwWVWcYhs+BQQnAwz+KShvTc4oxkIVSHVDfrugw3ZqQ7Rxg6N4olpmp9++umHH35oGIamaeFfTkNBAsHZrEOzKmiaVlJS8vLLL996662nn356LAqOAmT7z+7G3ZRQCP51Nh2sQwcJCvJkQ9kaFqjW8LD7RGwroK6ujhjRa14SAJYWzwjBti9ZGCV4IdhkJ+Q314hDXbC+RQndXbsbYj2PVPzmilTZYJpMCADGgZPQ0Z0ToxFANlrJQzsXgofVGIIXQICQew1QhbrdbkEoCIh4z+UuJeesBAAiWD1VmiZSDpzt2mzHFAA8kCvQ2pMCCCAAzOQVdf7j+Iahzvruu+8WLlxomqaqHvGvQ8ZJqNYi/4ZVVa2srHz99deTkpL69Olz3AqMIsgDf4PRQEXgPEEiSOSXw9CROtgOFprTpWWoBL5BAmiqRoAIIgiQUPOarMjKf1v9FZr3iASuAQE8cAAOzNESKiSEHWnkoBAWLAkTXPBmlRUeVk4hKNB6oz70JsRKvOcK5wJ48D3jnNPAOGL5pgUP/FwIARwC7zHngfe7aZJ9AMEFF7qut6O+Iu8cSCkhBCeCApe9KxD8ZsCBi0DZ5JOaIDgQTkEQIoByAKFw+cTH8g1CUbVnz57//Oc/uq63ESoRZK7IQ4miKAcOHHj77bcfeOABl8t1TIuKfkLw4Ct4sKedt2x0AHk95zxwoG9ZUwlWEeQILsKiWV8RTIRqS4ILogSjJaKvJfANORgqoSpOeIF5WFUm1uI9V+wWAoQD5wAAnAjgnNJQB33gewSXlYZgqMi6BOcgOAgm201BCEJAUWiLk45aQQQQwkFw+TgCgFMS7NGXtRUe7EfhAAwE5YpLsYDQ6z26bhomMBO4qQgTmLBpcTqYG0UwTfPzzz8vLy+XHSpS+OSn4XcOxQmEtY/JaFm/fv2SJUvOPffcoy2AAOFhnkp/ZbVRrXOdAk1QE9IsaW6LO4Z9sCcc+ZfpVJxyFZWmFkva4pgrDxWhL6ai6cqmCo3sd+EAApjJwIxeg7YIRAgRRHDBCadAA9HS8iUx0VROaJ58vClUOOdOzRl6E2IlfnNF/jnnpFjtmmBMjuwmwIkQQoR3cIlmeQ2cB4JE1iQEA8GBcwJgGGZlZRWhigCAFseIwOPJCixnhq4TwUFwoBw4CEFkZTrwpE3tXUxQi2rUOCtWN9RVQpehA3Mz+qZAok3hpna4xrel1Mzt4jxe7xnqlKKiorVr18rV2OQ1EZ0rrYzvbIEQYprm4sWLx40b53a72/nUXuZdX7v+64qvV9esLvWW1pv1jDMiiI3YumhdBiQMmJQ+aVz6uAx7Rgde16lGHlJ7OHowxuQfLRccOBBBSPjIzGAjSKCmIo/XrEUlgAvBBeFEgFA1lUSxhUmAUEUotEItMs1OowkuadhUUxHB5rvw8BPAOVe4wjnv6e4J8msQ9tu3JN/aXhm2bknqvhrDaiECAAgFQUC0rM0K4DwQKsCAs8C/goNglPBGj2/0gN5/+s0HHp21PS6LC3BYyP2fW1aWNjptGhccCIAgzccxB0KFU6u9bod77WzaUHrRtGnnXjKmT0+3U+MAwDnXTbO81g/1++vqSGKiW+CCxPFtzZo1DQ0NrbaAtT9U5BDkvXv3bt26dfTo0T+5iSnM5VXL5xXPW16zvJbVBh4kePCq5/WHvIc21m/8cP+HfR19r8i94tK8S5OtyUf92k4l8r0rSCpQhSqYkHUCTrmcvTh0t0DvaIteCnkICR215bG+wdcwKm/UB199oJt6FMcZW6jl8s2X/9j4o8vq4pwLIhgwAiSiltysr140VaQgeMATTAguBBMqqEO7DAXstz8SOQOKw6pM6Oea978Kh0UxmQAqgtO0hMh2MBFo/gIGLBAnwBkIBpxT4Ew3Lhw7ePTY/ib7iVMUTS5USi6sKv5+1z5qVziD1p4UgHMQoHKva/2zSbTu/j/OnTRxAjd9ft3wclUIzrjgnCY6qdfbuHHjxq5ds3r16nVM3ikUDR6Pp7CwEFr8QcpEaU+ohG/i9/s3bNjwk7lSbVS/uvfVt/a/Vc2qVUW1aIEzK0OnZAMBhSpAgZlsc+Pmxzc9/lXZV48MfqQgteDoXt6pRM4VPzJ1ZJaWVWPUqJoqqAAOgggBIrwq0NQbEaoEtHa8VrjiN/xT86ampqea3FRpdA6bpjBVok7JmPLdtu8StcTAJC4iMC9ZUyGheTkjChkMP8KJbujZruxRmaMA4Mhncx8PJ0DT/9UTMhRicm4CmMAZMAaMBWonTK6kIPtCGAizKVSYCcIEzogwdcNITbLNGJcLIIRgbROcA4gZo9NTXaDrOmn9SRkwExQNanYmk6o/PP/KlJ9NaGyo1w2uKJpFUzRVtWrUoimEKlabzeFw7Nu3t7BwS6zfyxOVAOFl3hqjpsaoqTfrTRH9qVMqKysPHz4cUS8JT5T2REv4GKE9e/b4/W0NBTzgO/Dg1gfnlsyth3qrxaqoClEIUYmctl1RFUopUQKTt4MKiqoIVXxb/u0ty2/5av9XnXitJzm5QH2aNe3MLmc2+BoUrjRrNZLVkfD2Lh5WR2HN7sM5Bw6mYSZZky7ufbF88PbP1NI2WXm6sNuFSSTJNM1mhYwoTERFijX74YzL8Kv315/Z/cw0exoTDOsrR6RQwgVM6J98/lD3wtW1SW67KTgQBeS436YpDpq3g8lQke1gzFQpq2/w3zFzUF4XJ+NC+6lxPgoA4yIv3X7DpC5/XLg/OdVpcA6EgqBhTwpAOBF+v7Dc9eCjQ4cMrq2rt1qtRI57FgDAOReUgqoqQnBKaUJCQklJid3u6NGjBzaItZPBjSJP0Q9VP6yvXb/Ps6/erOecW4glw5KR78o/PeX0oclDU6wpUXmumpoar9fb8nM5UpyER47sGY64f1VVlcfjsVqtrW5epVf9ZvtvPq34VNXUwAy1oe94wT2aKlRwwYAFOngVAAGKpuz27n7wxwf/PPrP47uO7/gLPqnJprCbet/03r73mMHkW9dsTklo3ksvWgkexpgwhcrVCl/F1QOuzk/J54IrNGoDKOQEkfnu/PMzz59fOj/VmWry4PyY4UMMWnTRR9SoOOPAgJnMZXHdMviW0MuPobjOFQCQu8Mzv+izZMsPfr9f1TTOebNWqdBg4sDYDgbcDLSGcVMlrK5R798j+deXDQRo7wKO8m6/vrjnx6sP7zjsSXDaTBb5pAqB2nr93KHdzpyYUlvfKENFDguCQDs7JUQE29sJIcThcOzcuTMzM9Nut0f/fTq5mML8sfrH+fvnf1f1XbleboIZGlouu1I/O/SZY7ejn6PfRd0uujj34i62Lp18Rp/PxxiD9tVLOOehLAmv0IRawwkhHo+noqLC7Xa3XJHaFObcvXM/q/hM1VSiNA8VCPu+xAMzZnPKA2Nk5XI/qlLqK318zePzJszrkdijky/8pEQJZYINSRlyfffrX9zxYkZihsGNplNDSFiotHrIlqHCBOVUN/R0R/qvR/762JX2kUGPLNq/yO/3K5oS6G+PGBJ2hFwRTDDGgIHGtUPeQ/cOv3dI+pDjtnByG+K9HYwSwrjol+366839PQ0N3PRTYQAzgJmBH26CkE1eBpg6cAOEvN5QwfT5dYdF+fs9o90OjXPRzkoCIcC5cDu0v98x2EF1n9ergtn8SZlgpgrs8qGUCJMqigyV0E/4UMTgr0QusVxcvA/ad/A6ZR32H356x9PXb7z+g8MflPNyqlGLZtE0TVVVRVUUVVE1VbEofupf17Bu9ubZ1y679uuyrzs8N7jH49mxY8fatWtlVIjgNC1HEtHdEh4nEPbJVlRU3HPPPXfddddf//rXpUuXlpSU+Hw+edM3ld/8s+yfRCFNzVwSCbsQ/AnUZqApV2S0bKreNHfTXIMbHXvVJz3Zy/L40MdPd59e3VCtcQ2MYNuRGdmU1OwaE5jJhCkII5TTWn/tM2Of6eXuxQSL+iq/Mv96JvZ8uuDp2oZaxVSIScBsUUKzlWJzkzPGwASNa9Xe6pGZI2ePnh164bEV//UVkOumzDwjq9Zj3PLXjapms1pVwXlgqZWms9zleSocOCOCqYTVNvgT7NoHj4wb2SdVLqnS/iellDAuRvZO+vcDw2Y8u7quXne7bCYPzmAM4DN59yQyOFvzmVRRiBBNk1LKw0uoHhs6BAkhFEU9ePBQv3752A52JNsbtv92+2+X1iylCrVYLE3DOkVwLCbhoXNNFVCAwOra1bf/cPu9/e+9ts+1FqVdkwobhlFeXr5t27a1a9du2LBh9+7dpmnm5ubKAV0RJ9KHNDVxtlZHibhgmubu3bu3bNny2Wef2Wy2tLS07t279+/fv2//vm/ztxu0Bi1RC6zpI5onSvhXDiL/IZEzvROgCv1o30cX9bhofBa2hrWCAOGCO1THWxPeOnvR2QcbDibZk4zAHLVBLU5YEVxwxmVNhTBysPHgY6Mfu3rA1ceuEiBXoryqz1VFdUVPbXwqMyFTUNG0EEuonM3rK5xz2fylca3GV5Ptyn77rLcdmiNOlrg/AXIFABRKTCZumpqXm2a/7dXVZXWGYk0AwQjzQ6CvQoAQRHAKHITp8+v1HmNoftrf7x59Wvekow2V0JMyLqYNSV/61BnXzl27bkeNzWW1WVV5FDAN1j3F6rYrBhcaFbLxQ24Y3jXHebOeOkqJx9Oo6zrOqd6qnY077ym8Z03DGk3TmtbFkwTIM8goUB48FVZSNKXaqH5649N+5r+1/61HGq4jhKitrd29e/f69evXrVu3ffv2w4cPy651SqnNZmOMhU5e4ZyToNDmETUVCMuYiC5ZAJCtanLUsq7rpaWlJSUl3333naqp3M6daU6RI3hPzodxkX6Ek9giIgea1WOoQqt91R/s+uCMrmfEvN0jPsnaQK/EXh9P+/jyry8vrC3s4uwiiGCCNZsrTH5l4YJzLpgggmhc8/g9jWbjU2OfenTko8d6bmDZ0fLE8Cc0ov1u3e8SbAkOi8MUZmBUWPN+oECiCFC4Qhg53Hh4UPqg9895v1dSr3hoAZNOjFwBAFUhhsmmF3Q51/7VgiXLrTmj6hz5fmcOKHamewQ3heCmyZhhAoi8zITbrzztjvP62i1Kx0JFktFyWnf393+Y8PKnu175rGjfwVogxGJRuF/YCCVEcCYbTiIOQJzL3VQIOc2MvAAApmkyZgJYsPc+QqVe+cSOJ5qFSvgXr1CXAyUUaODQQAKtQ1Shfu5/YfMLWfasS3peEv6wXq93//79W7ZsWbNmzebNm0tLSxsaGoQQlFJKqTzuCyEMw/D7/ZqmhT6XwKCdFvM7hUSECgQ78OVln88XvlWol0VwQRoIqSewG5SlCl/LjdsNkSgCEdLO9lECAKAQZdmBZaX1pXmJee18k0818pDdL6nf1+d+ff+K+/+161+qoiZYExSqBCZGkSexcAECqKCEEZ/uq/RX9nD3+MeEf1zQ64Ljc7CWEfjosEcHJQ+6b8V9e2v2JtmSbKotOMMLh9CMkxxUoTKT1fnqmGBXD7z6ufHPJduSYzsxfoQTJleEEJqqHDp8ePl3S1JInbr/Uzv/XLdn1yYWKDljNItNIbSL2zUoz33msK5nD89yOzQuBO9EqEgKJZwLq0YfuKjfzdN7fr667Mt1BwtLaosOeWyqME0uQwUC5z3I8WCBROGcM8Y4Z5wHLjLGILguEIZKOAFiXvG8b6q+CYRKq0uRAwAN9GYTQgQVgYFSPLDud4PZ8OzGZwenDu7t6n24/PD27dvXrVu3fv363bt3V1VVmaYps0RRAn9+4TUMxlhDQ4PT6ZSrrTTFQGuJIoTQdZ0xpqoqpTT0cYf/29DQEKr0RG4fVg+j2ynZR8QQETgvofmbEvkvNLsPIeSA58Cmyk2YK22ghHLBk6xJ//ez/7ui9xXPr39++cHljWajpmga1RSiyFwxmakbOgjITcz9VcGv7iy4Uw7YPW4Ha9kg9vMePx+bOfaljS/9a+e/imuLAcCiWFSqEiDAgXFmGIbBDKfmnNht4r3D752WO40LHifNXyEnTK5wzhVF+W7p0kOHy9PS0nTDBGCktijb2P/hPx9Iy8gUzEywN81qzpiglETlraaUCAGMC7dDu3xC3uUT8rgQHp3X19UdKNlts1HOA9MOhs6hC4ZKIE5MM3ByjGEYVqvFYml97OmpbGPdxvll80GBZs1fEUNCQ+1CJHgCfFi7EFBQFGXv3r1PvvxkekV64dbCQ4cOya5y2bolZ/0KHfohrKdd5oocvmWz2Y7UvyLvbJpmRUVFTU0NY0zTtPT0dIfDEXpY+ZgWi8Vut3s8Hl3XAYAGQcvvExxAD++PC77eUPtMcEWfZifHBd4P4mf+rVVbz+txXuc/gpMYJVR+65+WM21qztQN5Rs+3/v5qkOr9tbtrdfrhRCapnWxdxmYOnBSzqRpedOSrclCiOPfrCSjJdWe+rtRv7un4J7FxYv/V/K/LVVbDnsOG8wgCknQErondD+96+lndz97SPoQ2YcUfn5+nDhhckW+cYsWLVIUKgQX3KSU1nuMKdPP65GbxRhXrBYAYFwIAQolSlTX/SUEFBJIF0KAUuKyKvaUxEP7qWHoAKAoNJgrEGoE4zx0tqVpmoZpMl33Z2ZmyKUG421XiCEBYkHZggP6AYvF0kqoQFgDUXhLUcvRUwISliWs3rwaCEQ0c4VaqERYl7v8bAghTqezW7duBQUFlNLCwkJFUVqNFrn5oUOHKioq5OP4/X7DMLp37x7edKYoyo033pifn799+/bNmzcXFhbu2bOnoqLC6/WCAIUqhAYmqiJAhEtE9q+EemgBQm2orURLcP72/Q37o/IpnNzkgE0mGAFSkF5QkF4AADrTPaZHgNCo5tScodM+GGeU0Jg0KylEESCYYMnW5Jl9Zs7sM1OAaDQaDW4QIA7NYaGBrlkuOIc4avsKd2LkCuecUlpWVrZmzRqXyyXXgpW1gnPPORsCf89ACBzTFX8JgdAcMJwLRVHcbvehQ4copZzLE1ZCB5dAqpgmY8w0DMMwTMMwOOe5udhkEanMV/ZNxTfyNJ9mffUR9ZUwrZ75RThRfIqqqLJjJqIjHYIBI/cfi8XStWvX/Pz84cOHDx06tHfv3ikpKfv27XvmmWcOHjyoqmqrM7iYpllbWyuCC2xQSv1+f0NDg8vl4sGvEqNGjZo6darD4ejbt+/555/v8/nKy8v37NmztXDr/9b+b8WWFVANxEuAA1EIH81FpgDW4qQKCExSGxkqET8APtMX28XMTyDyKBxqOLIolvABhIwzAUKhShRPfuwAAiSQLpwRQhSiuLSmNRdChY+rhq8IcZ4rMi0CU2t8/vnnJSUl3bp1k+N2vF5vt27dxo8fD4HqwnEtGaUEALKysg4ePOjz+eTCgqGhxsFDDJc1FV3XDcNsbGzo2rVrZmZXwM6V5jbVbirxlVBFpkHYIKiWXRvBI2yrS5ELVTAXU7kqz2UJb+aSR3z5VaBnz54FBQUjRozo379/ZmZm+Kz4eXl5l1122Wuvvebz+UJjw8K77mWWNHtSIerr6x0Oh/zQ8/LyrrrqKofDEbqDzWbLycnJycmZMGFCXlne999/b1abtIzSMkoyCB/PA11E4SOUoHmoRPzwsFt57E+uPuGEDsrh+xABEts4iUCAhEY2hpczzhNFit9cCfZYgGEYDQ0NMkgKCgoOHjxYW1trs9kaGhrOP//8pKQkebyISQmtVluPHj0LC7c4HE5VDfUGB3KFc9MwTNM0DcP0eBrsduuwYcNDL+34Fzhuba7b7OM+TdWaXSta1FcierDDL8sLFIwcQ92gQnDWcdM0AcDhcHTr1m3QoEEjRow47bTTcnNz21h0a/z48bW1tfPnz/f7/XK/ilhGweFweL3e0P3lqfW6rlNKu3btetttt/Xs2fNID+62utVEVU/WRR/BCacKlf2xka8luHxhYBJ1aHbuQmhcrLycZE3CaOmYE+V9O1HKGRKnuSL/gGUDQmNjA2OMMX7WWdMnT/7Z7t27f/jhx5UrV65bt+7888+PYSFlRSozM9Mw9K1bt2qaZrVaAEigFSzQDmbquuHxNDgc9rFjxzudLgyVCALEPs++0FKvEbc1uxwcwt9Gl4PeS1dTVVJGFE3p0qVLv379hg0bNmzYsD59+qSkpLScUqUlRVHOO+88q9X6r3/9q6qqSglMptD0kTkcjurq6vCmMMMwvF7v0KFDb7rppsGDB7fx4JnWTDd1N5qNRBBBBRfBAWMECCGhepiQC4aEVprirfzIXFFA6eHGqVxQfInTXCGEVFZWlJeXE0IsFo0QqxyHQ6nSr1+//Pz8Cy44f+3atfJvuD0Hi2NXTiFETk6u3e4oLNxSVVVNCFEUKqsshmEahp8QyMnJGTJkqBw1hKESgQnWYDaExj61sso3NOtOkIfdIzUQ8UTeOLnRWmS989w7Lxx7YUbXjA6cgqooyvTp03Nyct5///0NGzbouh6+2JfFYrFYLOFzFXPOMzMzH3rooezs7LYfOcOW0dPec3/N/uBsZ0KQ4C4ROKu++aIg0DxORFOoyB+n5hyUNuhoXyBCx1Sc5srhw4crKytsNhulocYlrqoq59wwDF03NE07/fSRu3btdLlc4W3Zx5+MlrS0tLFjxx08eLCsbH9dXZ1hGIpC7XZXSkpebm5uSkoqYPPXkYng+uGRS5E3bxqS13M5dzlvESrB1iHWkyndlSETh+Rk53S4SISQgQMHPvjgg6tXr16yZMn27dtra2tlq5rs8w9N9gUAlNCaqpr2NFY4VMe41HHLKpeFzwkWWBSEBM+VaV4Di5xnN7BwHQcOnPG+qX37p/Tv8MtE6FiIx1ypra2trKyw2+2UKmEnhQRGkqqqKgSYpmGaut/vk6snxfZ4LUuoKEp2dnZ2drYQgnMGQMLPvwPsqz8CCtRBHaFOBWhjKfJgr0Pk6n5h/woRWDXPptg6Xzan0zlx4sQxY8YcOHBg9+7dpaWlcjBYXV3dhx9+2NjQSIAIKkgK2Wfb98bmN3qJXpxxp+LMsmflOfLSbekqifwTO7PrmW/ufvOweZgEJ/9q5TT7iFfXfGUOOYEVMCBAzul+Di4fieJN3OUKY+zw4cMWi4VShdLAKC9CCOdNk8/LAamUUofDWVlZuWfP7p49e8W2NhA+ZIgQoijBgRyYKD+FEtrN1o0wIidhlL1TcoWB8Haw0LCuZl/nI0KFC7nAX6ItMd2eHq0SWiyWvLy8vLymAeJer3dP0Z4lq5aI/sI4zTC7m9zN/yL+AlsABFBB7WDP0DKGuoee3fXs8V3Guy3u0Lb93f3P63reG3veUEABAYGZBVpOhthyUZBgqMgJBznjfZL6XNT7omi9TISiJY5yRQZDbW2tYRhOpyPQnSmbocO+zYWSRh6srVbrvn37evToEZ1z6zunZX5gorTHgMQBGsiVdUAIIWgwVYJvXmiMb+u9DuFd2QIEF3mJeV0cnV2RpQ1WuzXnvBzPEA/vx8EGAEDkWnPBXqJG3likF+08sPPjso9HuEf8ss8vJ3edrFENACihN/S+4btD3233bFeE0ixXWkyG2Ky+EhYqggkLtdwy+Jbuid2P3ctEqGNifywOkYfg+vo6RWkqVdOqXWHXhP+rqmp9fX11dTUEjz7ohDMkaUhXrSs3eXjNIzBlAeecc1kRiei7jmgdEkxwzuUsW6O7jnZqzmNU2nqz/rmi595JfYcP4dRO5Wl0ElUCKwcThVCVqppqKMay6mW3/3j7MxufqfHXyEfoldjrwYEPJkESN3jkYhtHXhokEComAAMhxMy+M2f2m3mMXiNCnRFHuQIAQgi/3x82y1YoV4Kn14emtYDQBWCM1dXVxbrsqONynbljU8dykzctPB6+CDlr0SjU8m6yK5uB4CLFmnJm3pnHqKjVRvVj2x97cd+LdaJOVVSq0sDyXAoE1qVXFKrQwAJcCoACiqo0QMNfdvzl4VUPl/vK5eOck3POAwMfcHIn1zmYAAY0/dviR5iCmYwbHAwQpuCMn9P9nF+P/LVDjeWIFYSOJL5yJTTHRuj8D94MC5t/PjBvrJyF3jBw1bwTmEKUGbkzkmmyMETT9/TmfSethErYl3q5aqy8MDln8pC0IceinF7m/eOuP7576F2ZFqA0LeAY/kNosHOIBNKFKARU+LDkwyfXPNlgNMiXfF3f62YXzE5X0g2fIQwBBjT9mAAGCENwkzOTMYMJQ4AJ3OQqUa/Iv+LZCc9mODKOxWtEqPPiK1cIIcFpgEMpwsJ+mgJGThUcujN2Y5zoRqWNuijrInn0bGoLatko1NpPYHwUB854ljPr5sE3t3PVyKP1btm78w/MpwptqpGQVn7koJKmiZlDeaOSBXsX/H373+UpnSpVr+x75evjXp+YPpHoRPfpTGfc4NzgzGDyhxs8kCgGZybLS8ibPWb2nHFzMh2Zx+IFIhQVcdRvD8HpxA3DkHOihE5plpdDM26F1jJhzDRNUwjhdB6rxnR0fGhUuz3/9g1VG9bWrFW0Fr3ZrU2QJassoZqKMIWFWn5V8KsRGSOORQm3NWx7dd+rBjEC81q2PHMzYn5laJ43FAgljLDXCl8blzmuIK0AAAiQMZlj5iXP+3zf5x8UfbChYkOtv5YJFnhAASCACGJTbD2SepzV/azL+l7WJ7nPCTerBzrVxFGuhCZfKi8vl8slBccZy5lRmmaeN03OmClDRdd1q9WSlJQMwaFi6ASV68qdXTD7zpV37vHsUdTm0RIxsFiA7EoJnckhl4+9dtC11wy45liUTYD4V+m/9vn3aZrW1kz+wTNRAuddEdF0KwQWDy7zlr217a3BYweHZjhPsiZd0feKC3pcsLVq65rDa7ZVbTvYeNDP/RRosi25l7uXnNc9w5GB9XJ0QoijXJFSUlIPHDig64aiUHleJIT66AUPLmbCTNPQdcM0mc/nzc3NtdvteDb7SWBUl1HPjXzukVWPbKvbpihKoClJCquvBEaIcRFqB7Mq1usHXv/giAftqv1YFGyfZ98XFV80m8k/YjL/Iw1FbNFKpijK4tLFO2t25ifnh9/RqTlHZIwYkTFCgDC5Kadk1qgW/5PXIhQhjnZZ2eSVkJCQlJTU0NDAGDMMXf6YpmHKRUwM+T9dzjzv8/kVhebn4zwWJ49xmeNeH//6eVnnUYMaPoPrXBhC/oQ6HgK9Dkag1yE3Iff3Y3//m5G/SbQkHqNS/VD9Q6mvlBLaypIw4XOXQWu3hiNACT3kPbSsbNmRnosA0ahmVaxWxYqhgk5E8bXXygpHz569FIXW19ebwTDR9cCPTBRd9+u6qet+r7dh8OAhbncSVlZOJvlJ+XPHzX1+9POjUkZpTNN9uu7TDd1gOuM6ZzpjOjN1UzCR7ci+cdCN88+ef82Aa2xqFCZuOZJV1asMYfx0v4ZokTehy2FMbq46uErWSBA6+cRdO5ic1G/IkCFr1qyprq622+2U0uDivjy0SrzX6zUM/5AhBX369MVQOfm4NNflfS4/O/fsVYdXLS1durFiY1ljWaPRCAAqUZNtyb3dvUd3HT0he0KvpF7HeilWD/MUNRYRIM1youWkXtB0Tdg8/pGTMQMAIWR33e4Go+HYVbAQiqG4yxXZGuZwOEeNGl1YWFhWtp9zLmcp55ybJpPNYomJiaNHj87KysZQOYm5re6pOVOn5Ezxmb4af43H8HDgFmpJtCYmWhKP28reXtNbpVcRIE2T8wNE1l2az0AcudRj2H3kmsHVvuoGHXMFnZziLlcgGC0Wi6WgoKBHjx4lJcWVlZU+n49SYrdbu3RJy8rKzsrKVlUVQ+VUQIDYVfsx6pBvDwaMCRZIBblCDIStHCw1n6u/WQKFz/QVvMA4C4wnRuikE4+5AmHTA7vdbrd7MAAwxgBEaIQYBMclx7KU6NRAgVJBZWBwwhVQAv2S4e1gwUmIhZBzmwXXD46Y0p8HZs88IVYpR6hj4jRXpNBJkYS0spYJhgo6PuyK3a24Q5Mlc+BEkGZjoKHZ8jBNfSvhk9CEVWUEF4mWRIeGs3uhk1O8f2NqmR+YKOg4cyiO7o7uoQmVg3MJcbnWC3AQTHDGGWNNNZWWSz2GLUovuMhLyEvQEmL9yhA6JuI9VxCKOULIsKRhCldCkyg3TeLPmmZHjUwU1kqoyDWUKdBhGcNUGtetBQh1GOYKQj9tTOqYDC2jaQ0YmRMsOKF28+tb/wkuSi+YSLWljs8aH+vXhNCxgrmC0E/rndh7UtokZrDAFMu8Rd9JxIJjLWbyD01lxhgblzVuQOqAWL8mhI4VzBWEfppK1Ct7XJmhZnCTtz57P2/rV7kYl7yQYk25dsC1VsUa69eE0LGCuYJQuwxPHX5196upQZst5nikVWFCt5og+2AC1wNc2f/KM7LOiPWrQegYwlxBqF0ooTf1venszLOZzpotGBy+BFmLxeo544H1lU1gjE3JmXJHwR3YY49Obrh/I9Reydbk2UNnN+qN3x76liqUKC1W2AobDyZHfwkmwATggW6V34/7fbo9PTalR+h4wfoKQkchx5XzwugXZubOVEzF9JtCj1yXXphN8/kHJvM3OQV6SZ9LXp78ci93r1i/AoSOOayvIHR0spxZc0bPOT3t9L9t/duO2h2ccEpo4FxdAUKIprNVGKdAe7t73zDohiv6XZFgwRMh0SkBcwWho+ZUndfkXzO52+RP9nzy2b7PtlVvq9VrTW7KGVyIICpR3RZ33/S+Z3U/64KeF+Ql5uGi9OjUgbmCUAfluHJuHXzrVf2uKqot2l69vbi+uF6vBwCn5sxNyO2X3K9XUi+cCR+dgjBXEOoUl8U1JH3IkPQhsS4IQvEC++0RQghFE+YKQgihaMJcQQghFE2YKwghhKIJcwUhhFA0Ya4ghBCKJswVhBBC0YS5ghBCKJowVxBCCEUT5gpCCKFowlxBCCEUTZgrCCGEoglzBSGEUDRhriCEEIomzBWEEELRhLmCEEIomjBXEEIIRRPmCkIIoWjCXEEIIRRNmCsIIYSiCXMFIYRQNGGuIIQQiibMFYQQQtGEuYIQQiiaMFcQQghFE+YKQgihaMJcQQghFE2YKwghhKIJcwUhhFA0Ya4ghBCKJswVhBBC0YS5ghBCKJowVxBCCEUT5gpCCKFowlxBCCEUTZgrCCGEoglzBSGEUDRhriCEEIomzBWEEELRFNe5cuWVV44bN64zj7BgwQJCSEVFRVTKc+mll06dOjUqD4Xa4+WXX1ZVNdaliLJdu3YRQr766quWN3Xs9baxW95xxx2DBg066iKioG7duv3mN79p9aa0tLSnnnrqqB5t8+bNhJBly5ZFo2hx7WT7oz2mfvnLX/r9/liXAkXNjBkzzj333Guvvbbtu73yyiurVq36+9//fjzKdPRwtzxRZGdnv/rqq7179451QY65UzFXTNNUFIUQcrQbTps27ViUB7UkhGCMHetnWbNmzbnnntueu7V6vWEYmqZFu1BHQe7JuFvGP7k/Jycn33LLLbEuy/EQ1+1gAKCq6sKFC/v16+dwOIYPH/7jjz8CwGOPPeZ2u71eb+huL730kt1ur6mpMU3zjjvuSE5OTkxM/MUvflFbWxu6T0pKyksvvXTeeefZ7XZ5/fz584cOHepyudLS0i644IKioiJ5z0GDBpHmPvnkE2je4JCRkTF37tyHH344IyMjMTHxvPPOO3TokLzp8OHDV111VVpams1mGzly5DfffHNc3qp49Oabb/br189ms+Xn57/55pvySsbYb3/72169etlstm7dut1+++2NjY3yposvvvjyyy+fPXu2y+WS7zmldOXKlcOHD7fZbD179nz77bdDD/79999PmDDB4XC4XK7JkyevWrVKXn/ZZZfNnDlz/vz5ffr0sdvtod0mAiFkz5491113XVJSEgCYpvnYY4/l5eVZrdY+ffq8/PLL8m6TJk16880333rrLULI+vXrX3rppczMzE8++SQjI+OBBx4AgFWrVk2bNi0lJcXlco0cOTK8gausrGzmzJlutzslJWXGjBn79+8P3eT1emfNmpWQkJCRkXHnnXdyzluWcN68eQMGDLBarWlpabNmzQrtYBF7cvhuWVZWds4559jt9szMzCeeeCL80XC3bINhGA888EBWVpbT6Rw7duzy5ctDNymK8uSTT2ZmZkb8mYc70q4YsT+Ht4O1sZceaVc8kQgh/lsu/lsu4tCsWbN69ux55plnLlu2bMWKFQMGDBgwYIAQYs+ePYSQd999N3TP8ePHX3755UKIJ598UtO0N954Y8eOHa+88kpeXh4AlJeXCyEyMjIGDx786KOPLl++3DCMlStXAsATTzyxdevWVatWTZ06dciQIfLRiouLdwadeeaZKSkpZWVlQohLLrlkypQp8j7Z2dl5eXkvvfRSY2NjUVFR165db7vtNiGEaZpDhw7t1avXV199VVhYeMcdd1gslk2bNh3XN659OvC5H9Um7733nqIozzzzzOrVq59//nlCyIIFC4QQc+bMsdlsH3zwwfbt2xcvXpybm3vXXXfJTS677LKBAwdeeOGFS5cuLS8vnzt3rsViGTFixIcffrhq1arLLruMUirfzO3bt9tsthkzZqxbt27NmjUXXHBBQkJCaWmpEGLWrFk5OTnXXntteXl5TU3NmWeeKXebCKWlpQAwd+7cyspKIcSvfvUrh8Px5ptv7tix49VXX7VYLH/729+EEDU1NcOHD7/88svLy8tN03z11VddLtf06dMXLVpUVFTk9XpTUlIuuuiitWvXbtmy5d5773U6nbIYhmGcdtppw4cP//rrr5cuXTpixIjTTjuNc75z504AKCgomDt37qZNm/7whz8AwPvvvy+EmDt3rqIosnj/+Mc/CCFPPvnktm3bvv766759+44YMYJzLlrsyeG75ZQpU7Kzs7/66qstW7bcdtttXbt2HThwoOj0bnmsd5WYu/XWW9PS0t59993Vq1dfc801CQkJe/bsEUJkZ2fn5+ffcccda9as+eijj5xOp/wzF0KkpqY++eSTos1dMWJ/3rRpEwB89913os299Ei74glBfu7xnit2u72iokL+Khu4GxsbhRDTpk0799xz5fUHDhyglC5atEgI0adPn0suuST0CFdffXUoV7Kzs08//fTQTV6vt6ioiDEmf/34448B4NChQ+EFWLBgAQB88MEH8teIXJk8eXLonjfccIN88M8++wwAvv76a3k9Y6xfv34333xzlN6SaDrWB4uRI0fOmDEj9OuDDz744osvCiFqamr27dsXuv6+++7r37+/vDxr1iyLxVJVVSV/nTt3LgDINBJCeDweh8Px61//Wghx9913u91uj8cjb6qsrLRYLE8//bR8kISEhIaGBnnTP//5z9BuE07Wd998801ZJIvF8tvf/jZ064033ti3b195edSoUddcc428/PrrrwPAp59+Kn81TbO4uLi+vl7+Wl9fDwDvvfeeCO4JW7ZskTetW7fu0ksvLS0tlbny4IMPhp6re/fu8tfwXCkoKJg2bVroPnL//P7770WLPTm0W4aSUl7PGOvevbvMlU7ulid3rshP/5VXXpG/+v3+Sy655MsvvxRCZGdnjxw5MnTPa6+9NvRrKFfa3hXD9+eIXGl1L217V4x/8nOP93aw/Pz81NRUeTklJQUAqqurAeDGG29ctGjR4cOHAeDDDz/MysqaOnWqruu7du0aOnRoaPPRo0eHP9rpp58eumy1Wt99991+/fpZLBZCyPnnnw8AVVVVoTuUlZXdfPPN11xzzaWXXtpq2QoKCkKXk5KSZMFWrVqlquqECRPk9ZTS8ePHr1ixohPvwQmJc7527drwN3zOnDl33XUXAAghfve733Xt2lX2cj333HPhb3vv3r2Tk5PDH2rixInygt1u79ev37Zt2wBgzZo1w4YNs9vt8qaUlJRevXqtX79e/tqnTx+n0ykvy2Yu+ekcyYYNG3Rdnzx5cuiaSZMm7dixo7KystX7h16Xoihr1qz52c9+5nA4CCEJCQkQ3ItWr17tcDgGDBgg71lQUPDBBx9kZ2fLX8eOHRt6tJSUlPB3AAAMw9i4cWP4YMiRI0cCQOgFhr+xIVu3bgWA0P5PKZVbAe6Wbdq4caOu66G31GKxLFiwINRr1fYnBT+1K7bcn0Na3UuPdleMT/GeKw6HI3RZ9rQLIQDgwgsvTEpKevfddwFgwYIFV199NaVUfid1u92hTcIvA0D4B/zGG2889thjjzzyiKwPLV68OPyeQojrrrvO7XbLr8ytCu1JoU0AoK6uzjRNl8tlC3rzzTdbbZM9uXk8HtM0I94i6fbbb//888/feecd+RXv0UcfDb+15R+h/D4hOZ1O2RlTV1cXcc/k5OS6ujp5ueXzyk/nSOSG06dPD31q1113HQDILy4thZ56y5YtM2fOHDNmTFFREefcMIzQfWpra1t9+VLEjh1RvMbGRs55+AuUl0MvsNVDlawttbr/427ZBtnbeqQPq+1PCn5qVzxSqLT6jEKIo90V49OJOh7MYrFcddVV77333i9+8YulS5f+9a9/heAeEN5X30bIf/jhh1OnTr3++uvlrwcPHgy/de7cuV9//fWSJUvkN9D2c7vdNptt3bp14VcqinJUD3ISsNvtqqq2fP+FEB999NFvfvObSZMmyWsi3vmW6urq5Lc5AKipqcnIyAAAt9sdUQWpqqrq1q1bx0orj79vv/324MGDw6/v0aNH2xt++umnVqv1+eefl+edhL+WhISEmpoazjmlR/3tzel0KooS/gLl1+SI70ktt4Ij7P+4W7ZB/o13uEIQJ7tiXIn3+kobbrrpphUrVvz5z38eNWpUnz59AMBqtXbv3j38j+d///vfkTavr68Pz4x//OMfEPxWW1hY+NBDDz388MPhVeB2GjlypM/n45znB9nt9g7vZCcuRVEKCgqWLl0auubuu+++++67TdP0er2hd762tvajjz5quzIhR1gAQENDQ1FR0cCBAwFgxIgRa9eu9fl88qbDhw/v2rWr1dahtsmnHjJkiNVqLS8vD31qqamp6enpVqs1/G4t1dfX22y20MmMb731VujOI0aMYIx9//338qbCwsIRI0YUFha2p1Sapg0ZMiR8VJK83PYL7NevHwCE9n/TNEPPjrtlG4YMGaJpWmhf5ZxPnDhRdni0R7R2xVBh2t4VTwgncK70799/zJgxc+bMCT+v7Yorrvjvf//72muvbdq0ac6cOaFWzpbGjBmzePHiFStW7N69+9Zbb5UnK61evbq+vn7WrFlZWVmzZs3aFVRTU9POUk2dOnXo0KFXXnnl0qVL9+7d+8477wwdOlRWp041d9999zfffPPb3/52zZo1c+fOffnll8eMGaNp2vDhw//+978XFRWtWbPmoosuuuiii6qqqrZt22aaZsQjCCFUVf3973//3Xff7dq166677tJ1/YorrgCA2267Tdf1G2+8cevWrevXr7/mmmuSkpKuueaa9hfPZrPZ7fYlS5asXbvWbrfffPPNjz/++Pvvv793797//e9/06ZNC9Vlk5OT161bt27dupYTN4wZM6aiomLevHllZWWvvPLKpk2bMjMzN2zYUFtbe+aZZ/bv3//mm2/+8ssvly1bdvPNN/v9fnnob4/7779/8eLFzz777J49e7755pv7779/4sSJI0aMaGOTvLy8MWPG/OEPf/jiiy/WrFlz/fXX22w2eRPulm2Qe84f//jHt956a82aNbfccsvatWvPOOOMdm7e+V0xXGJiYhu74glDxPHIjVmzZo0dOzb0qxwSU1JSErrm2WefdTqdtbW1oWt8Pt+NN96YmJjocrkuu+yyf//73wAgRwlnZ2c/+uijoXtWV1dfdNFFLpcrKyvrqaeeYoxNnz49ISHhb3/7W8t36dlnnxUtxoOFP9p9993Xq1cvefnQoUNXXXVVamqq1WrNz89/4YUXjsWb03nHYZDPa6+91qdPH4vF0rdv39dff11euXHjxtNPP91msw0YMOCjjz4qLS3t1atXWlranj17Ij7x5557LiUlZdmyZQUFBRaLpWfPnnI8rvT999+PHz/eZrO5XK6zzjpr8+bN8vqf3G1CZs+e7XQ6s7Ozq6urDcP47W9/m5ubq2ladnb27bffHhrl9dlnn6Wmpqampi5atEiOBzMMI/QgDz/8cHp6utvtvuqqq+rq6uRjypHTxcXFF198cUJCQlJS0sUXX1xcXCyEkOPBFi9eHHqE4cOH33DDDaL5eDAhxLx58/Lz8zVNS09Pv/HGG6urq+X1Efte+G65Z8+eKVOmWK3WLl26PPbYY48++mhoKFFndsuTezyYEMLn891zzz0ZGRl2u33MmDFyyJZo8888NB5MtHtXjBgPdqS9tI1dMf7Jz50IIT6uAAA4P+24ZVl0CCHOOOOM00477bXXXot1WU5IHfjcT9BdBXUS7iqoneTnfkL223u93l27dslmBzkkDCGEUJw4IXOlsLBw7Nixubm5CxculGfUI4QQihMnZK4MHz48NPoCIYRQXDmBx4MhhBCKQ5grCCGEoglzBSGEUDRhriCEEIomzBWEEELRhLmCEEIomjBXEEIIRRPmCkIIoWjCXEEIIRRNmCsIIYSiCXMFIYRQNGGuIIQQiibMFYQQQtFEAUAjAAD1LMZFQceT/LjlR99+uKucgnBXQe0U2lUoALgUAIDtjdCAO8GpoZ7B9kaA4EfffrirnGpwV0HtFL6rECHEIR1+rIt1oVAsjHJDF+0o7o+7yikLdxXUTqPcQIQQAHBIh50eqGdgilgXCh17GgGXAn0d0MVy1NvirnJKwV0FtVP4rhLIFYQQQigqcDwYQgihaMJcQQghFE2YKwghhKIJcwUhhFA0Ya4ghBCKJswVhBBC0YS5ghBCKJowVxBCCEUT5gpCCKFowlxBCCEUTZgrCCGEoglzBSGEUDRhriCEEIomzBWEEELRhLmCEEIomjBXEEIIRRPmCkIIoWjCXEEIIRRNmCsIIYSiCXMFIYRQNGGuIIQQiibMFYQQQtGEuYIQQiiaMFcQQghFE+YKQgihaMJcQQghFE2YKwghhKIJcwUhhFA0Ya4ghBCKJswVhBBC0YS5ghBCKJpU+b+6urrNmzcfOHDA5/PFtkAIHRWbzZaVlTVo0KCEhIRYlwUhBABAhBA1NTVLliwZM2ZMQkKC3W6PdZEQOgper7eurm758uWTJ092u92xLg5CCEhtbe23337785//PNYlQahTFi5cOGXKFKy1IBRzdMuWLWPGjIl1MRDqrNGjR2/evDnWpUAIAS0rK0tMTIx1MRDqLLfbXVZWFutSIISA+nw+m80W62Ig1Fl2ux1HnSAUD3CcMUIIoWjCXEEIIRRNmCsIIYSiCXMFIYRQNGGuIIQQiibMFYQQQtGEuYIQQiiaMFcQQghFE+YKQgihaFKj+Fg+n88wDL/fbxg6AGiaxWq1apoWP+fzr127tqSkZNu2bcXFxQCQm5ubn5+fm5s7dOjQWBct4NNNns1lxrJdvk37dQAYnG0Z19s2ONtyzqB4mWd6UfWiQk/hiroVhZ5CABjgGDAmccxAx8Azk8+MddEQQnEhOrliGEZNTbVhGOFX6rpf1/0AoGlaUlKypmlRea6OKS4unjdvnoyTkG3btm3btg0AcnNzb7jhhtzc3BiVDgBg03799ncqZZyELNvlW7bLBwCDsy2vXJE6ONsSo9IBAGzxbLlv930yTkJW1q9cWb8SAAY4BjzX87mBjoExKh1CKF5EoR2svr6uvPxwRKiEMwyjvPxwfX1955+rYxYuXPj4449HhEq44uLixx9//KOPPjqepQr3zBc1E/50ICJUwm3ar0/404E5i2qPZ6nCPb//+bM3nx0RKuEKPYVnbz77hf0vdOZZ7r777ksvvbQzj4AQirnO5kp9fV07A6O+vq6xsaGNO+Tn5//pT38Kv+bdd9/tfBvawoUL2xkYCxcu/PLLL9u+T3V19b333tuzZ0+r1dq1a9eZM2d2fm72Z76oaWdgPPNFzatL6tq4wy233EIpXb58efiVLpdr5cqVnSnh8/uff3H/i+255wv7X3jj4Btt34dz/uc//7mgoMDhcKSkpEyaNOnjjz/uTPEQQnGlU7liGMZR1UJqa2vbqNYcC8XFxUdVC3nnnXfaqNbU1taeccYZX3755Zw5c9atWzd//nzG2JgxYzZs2NDhEm7arx9VLeTXC6vbqNYAQEpKym233cYY63CRImzxbGlnqEi/K/7dFs+WNu5w5ZVXzp49+/rrr1+5cuUXX3wxevToiy++eN68eZ0tKEIoPnQqV6qrq492k5qao96kM9544ye+O7fUxgHu6aefLi8vX7p06YwZMwYMGDB58uR///vfl19++aZNmzpcwtv+VXG0m9z+TmUbt86aNauxsfHll1/ucJEi3Lv73qPd5L7d9x3pps8+++ydd9758MMP77zzztNOO23kyJHPPPPMCy+8IDu6EEIngY732/t8PtM86sqHYRjHbcUXOfrraLcqLi5eu3btsGHDWt60YMGCW2+9NSUlJfzK119/vcMllKO/jnarTfv1Tzd5zh3saPVWSuncuXMvu+yymTNndu3atcNlkxZVL9rq2Xq0WxV6ChdVL5qePL3lTQsWLBg3btzEiRPDr7zjjjs6XkSEUJzpeH1FDiaO7oYPPfSQGmbWrFkdLR0AQBstWh3YkHO+b9++gQOjOd6p7Ratjm0ohDjrrLOmTJly331HrDS0X9stWh3YcPfu3dF9DxFC8abjueL3+6O+4T333LM+zJw5czpaOgCADjettLohIURRlCj2WwCAHEN8LDZ88cUX//vf/3777bcde/yQFXUroruhqqrRfQ8RQvGmM/WVDvbAt7FhZmbmoDDdunXraOkAOlFfabX1jBDSs2fP9evXR1zfmZEIHa6v/GTrWW5u7qOPPnr77bcbhkEI6dizAEAbA4vbdqTWs969e7d8DwHANM2OPRFCKN7gPC6tEEK0ev2ll1762muvHThwIPyeV1111f3333+8itb0vD95n/vuu49z/txzz1ksMTibUkDrJZwxY8bq1as/+eST8CtfffXVM844oz0vCiEU/zqeKx0+f/64nXjf4fPnj7ThI4880r179/Hjx8+fP3/Lli3ffvvtRRdd9PXXX990000de6IOnz/fng0tFsvLL7/81FNP6XoHa0UAMMAxILobTpky5brrrrviiiueffbZDRs2rFq16qGHHrr77rvvv//+ztSrEELxo+O5YrVaj/OGRys/Pz+6GzqdzuXLl8+YMeOJJ54YPnz4lVdemZycvGrVqn79+nXsicb17uC4uHZuOHXq1HPPPbehoa3TUds2JnFM1DecN2/en/70p/fee2/s2LHTp0/fuHHj4sWLZ86c2dEyIoTiC3n77bc7NuzK5/NVVbV1IsWRpKSkHrdxxnPnzu3Ahr/61a9aHWccdZ9u8lz5f+Ud2PDt69OPNM44uhZVL7ppZ0dqY6/3eb3VccbH1Pz58zs5hhAh1Hkdr6/YbDZVPeoWLVU9ftMbDxs2LCcn52i3ysnJOT6hAgDnDnYMyjrq93BQlnZ8QgUApidP7+/of7Rb9Xf0P/6hghCKE53qt09OTj4Om3TGjTfeeBw26Yy//CLtOGzSGc/3fP44bIIQOml0Klc0TUtISGj//d1u93GeLT83N/fnP/95++9/xRVXHOfZ8gdnWx6a7m7//X9/YfJxni1/oGPg3dl3t//+j+U+hrPlI3Qq6+w444SExHZGi9vtdjpdnXy6DrjwwgvbGS1XXHHFmWfGYHGqh89Kame0/P7C5FsnJh7r8rR0b/a97YyWx3IfuzHzuFb4EELxJgrnryQkJKand2mjr0VVtfT0LjEJFenCCy+cPXt2G30tOTk5s2fPjkmoSA+flbT0/q5t9LUMytKW3t81JqEi3Zt97+eDPm+jr6W/o//ngz7HUEEIdXw8WEs+n88wdL/fL09B1zTNarVqmiWu1iEuLi5uuQ7xceuo/0mfbvJs2q+3XIf4uHXU/6RF1Yu2eLa0XIc4HjrqcTwYQvEgmuvb22w2m812NB0ux9uwYcPiJ0Jade5gR/xESKumJ0+fnjwdsmNdDoRQvMJ5XBBCCEUT5gpCCKFowlxBCCEUTZgrCCGEoglzBSGEUDRhriCEEIomzBWEEELRhLmCEEIomjBXEEIIRRO12Ww+ny/WxUCos7xeb/zMGITQqYx27dq1rq4u1sVAqLNqa2uzsrJiXQqEENDBgwcvX7481sVAqLOWL18+ePDgWJcCIQRECFFXV/fNN9+MHj3a7Xbb7fZYFwmho+D1emtra1esWDFlypTExJitI4AQCiFCCACor6/fvHlzWVkZ9rWgE4vNZsvKyho8eLDLFbMFfhBC4f4fpdhuWK3gYhAAAAAASUVORK5CYII=", "path": "image.png" }
Look at the models of molecules below. Select the elementary substance.
[ "chlorine", "hydrazine", "carbon tetrachloride" ]
0
There are more than 100 different chemical elements, or types of atoms. Chemical elements make up all of the substances around you. A substance may be composed of one chemical element or multiple chemical elements. Substances that are composed of only one chemical element are elementary substances. Substances that are composed of multiple chemical elements bonded together are compounds. Every chemical element is represented by its own atomic symbol. An atomic symbol may consist of one capital letter, or it may consist of a capital letter followed by a lowercase letter. For example, the atomic symbol for the chemical element boron is B, and the atomic symbol for the chemical element chlorine is Cl. Scientists use different types of models to represent substances whose atoms are bonded in different ways. One type of model is a ball-and-stick model. The ball-and-stick model below represents a molecule of the compound boron trichloride. In a ball-and-stick model, the balls represent atoms, and the sticks represent bonds. Notice that the balls in the model above are not all the same color. Each color represents a different chemical element. The legend shows the color and the atomic symbol for each chemical element in the substance.
chlorine
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAVUAAAHFCAIAAADNCP06AAAl30lEQVR4nO3db2xTV94n8OOAQ2PjxJSEEHu69NnacXBXxahOJf5NmyhSodIwb2BSiVSbqFlNIhU9sBJV2GFDm6ElKiuFqkhktCDySDDaFN7Q0RYeKXKWJ2l5YfPEdDXBjs2z0PY6KS7g+MYOtUmyL9zmSUPi3Ht8/9nn+3lF4R5ySvL1Pffcc85PNzs397//7xMCAIwp0pHVc3Pk2t+RfwDm6HSkSO0+AIBqkH8Adq1e+B/ufyh+ddMatboCCnuUJN7vZwghr/2maJ1Bp3Z3QCHe/5f61/s/ZX6N+z8Au5B/AHYh/wDsQv7ZpfvlkV9XhId/Rq1e+RIoUOtKyJvVq9TtA5cYH4vdDU6GgpNhPjXlrnA5yuzV5pesxip1O8YI5B/UEU/xfxn9p4vhywt/0xv1Z35Rb9354asdpcUmFXrGEoz/QQXe6EjjQOui8C/k4Ybfuva2hxtSslcMQv5BaR5uqPXGoUhyIvtlfHrq8M1jV+9dU6ZXbEL+QVHxFN/p6xZ+/anbZ7jEuHz9YRzyz67JJ3Pe72a9383yP80p9kU7fSf59JTw6/n01HExnxcgCvLPrqezukfTc4+m557OKPQVvdGRwchX4lv58RQgE+QflOP7ZXpfrOBkWNKOwM+Qf1CO74GfrmHwMfIvC+QflBOcDNE19P3ol7Qj8DPkH5TDpxNqdwF+BfkH5TjMNrqGJr1R2p5ABtb/LiGe4scmw5nJKixHl5CjzBaM0TzJO8rskncGCPK/iIcbOnX7zLNL00z6tU32fW3OFlV6VTAsxo10Dd0bXJJ2BH6G8f/P4in+8M0/Hb55bMl1qXx66uxoX+PAu4EY5QwWEEL2btpNN5Kvs+yUvDNAkP8MLjH+1rW3Pdxw9ssCsXDrjUMFsynFoCcvrS96aX3Rc3qF9v9bjVVtm0WPodqczTVmjP9lgfwTQsjhm8cELkrl01Odvu54ipe7Swoo0RPbep1tva5Er9wXbare7y53Cb/eYba147FLNsg/OTt6QdSkFJ+eOn4LK9LpddV2CHwRYDFUdrk75O5P7uIp3hcduRS63Ok92Tt6YZAbzpc9S6zP/3GJ8d7RPrGtPNywhxuqt+6SoUeFz2qs+rzh/NnRC9n/5Q/Y97Vtbtb4ESBcYvy4r9u71Lpmk35tz/YTtRVbFe+UCKzf/wdXeuZftmGEsiFktDtb+hvOuctdi2YETXqju9x17vXT7285qPHwe7ihxoHWJcNPCOHTU603Dp3yn9Hy0yLr93/qjSVj+b8jZTpNuPgcIcRaqugUwLwas/38G58SQuIpPnP+n8Nsy5elFp/c/uxS6MqKl10MX/ZEhvobzmnzs4z1+38kscIpNMsJUK1j0ZRkmtx9OHv34eyTtHL7/5dUWmyqrdhab92VL+H3RkeEhD8jkpzQ7IQR6/nPZWOJNzoiXUcgb8RTfKdXXJ4zE0Yy9ScXrOdf1LuoRTQ+tQMyWXKF6IpEnXqmGNbzT70ilXorC+Q7H9W4j09PaXDAyHr+HWWUMaZuCPkukvyBrqEGTzFhPf91VsqF5ViRzqZc7uEaPMWM9fxbjVVtzmaxreosO7D4h018SsThxYtQv2ySD+v5J4S0O1tEPcyb9MYu91H5+gNaZipeS93WsU5zz4zIPyGEdLk7hO9L7XIf1eZaDlBALi99NDhnhPwTQkiN2f7lnv46y47slznMtv6Gcxj5M4761Y8G3xkh/z8rLTad3v5xz7YTyw0E2pzNnzecL6SN6OsN5M3qVW9Wr1pnUGj/f2Ggm/q1GCo1+MPD+vr/Reqtu+qtu7jEeCQ58cv5f7Y8WpQOCmh3tgxGhsUeZNhVq8U5I+R/CVZjldVYheV9sJwud0fjQKvw69uczdr8ccL4H0C0GrNd+MEk7nKXZo8wQv4BaPz+xT39Decshsrslx155b3MHmdtQv7Z9TBJ/nls5p/HZh4nVd7/m6dqzPb+hvMH7PuWnDOus+zobzjXVL1f+Y4Jh+d/AHqlxab3txx8f8vBzBEmvqjfYtjoMNs0ONW/JOQfQAKZI0y0OcmXBcb/AOxC/gHYhfwDsAv5B2AX8g/ALuQfgF3IPwC78P6fXaVrSO0Lqwgha9eo3RVQCfLPLv0q8nyJ2p0AVWH8D8Auae7/Hm5obDLsi/q5xEQkOVFb4XKU2R3rbG9U7cBReQCalWv+l6x/7o36M79j0q/tcnfgwDwAbcpp/H/13rUs9c8JIXx66vDNY53ek1ougc6s6TQJP5wLP5ybTqvdFVAJ/f3fww0JLGl49f51/ulUz7aPqL8WyCFT/5sQsr6kqESPI0BZRJn/eIoXVc/Uww1fHLus8bMQIL94oyNjsXAwFo4kJ0zFax1lNkeZvdr8Eg5rFY4y/52+k3xaXCGk3jt9ddad+N5A7gKx0OGvjy0qwu3hhjO/aHc2t2n1vD2toXn+90ZHBiNfiW3Fp6cuha9QfDmAhc6OXmgcaF0U/l9f0Nc48G4gFlKyV3mKJv/UZYw1WP8Y8suhr/9b72jfipcFYuHWG4e4xLj8PcpvVPmnLWPs+9FP1xCAEHJx7LLwgSefnjouZoqKTTT5z6WMMUZlQIdLjPfe6RPVxBv1nx29IE93CgRN/vmn9CXQAeicuv2Z2ClnQkjvaB/WnmRBk/9cyhjny7nIoDVi6+39e0Pax1UWKJp/DdY/ZtnqornnS3TPl+hWr1K7KyuJp/hI8ge6tr7l16cCzft/xzra/OcwcADJlT2nq30hP5b95XIPD2LKaXk09//aiq3uchdFwwP2fRStAHLBpxJqd0G7KPf/dNV2LFnzLIs2ZzMe/oGOSb+Wui31cJUFlPm3GqvaNotYYukw2zRbAhm0L5c7B546s6Df/9tUvb/N2SzkSne569xvT1N/IQBCCN0jJ8Gsc1Y5nf/R7myps+zs9HUv927GpDe2bW7Btj9tepgkvu9nCCGv/aZonUHrE4F1lp0U60c1W4o3EAuNJ34IToYyrycyVYMdZptb2QqiuZ7/U2O2f95w/uLY5eBkODgZznwQmPRGR5ndvcG1d9NubPgDSTRV7x+MDIv6CDDpjT3bTsjWI0rxFP+X0X+6GL68+A/uE0JIjdn2obtDsc8sac7/W3iHj6d4nPkHcujZfuKta418Wuh8ftvmFq3dfpbcufzrC8KNA62KbWGW/vxfhB9kUlps6tn+kcAXTwfs+7T24OmNjmTfuTzv7GjfJ7c/U6BLOP8b8kltxdYv9/TXWXZkuSYz7H9/y0HFeiVEPMV3ekXsR7wUuuLhhuTrTwbqf0CeKS02nd7+sYcbuhS6EpwMLXwccJe7LMaNR7a8p8FBaO+dPiF3/oU6fd3uCpes/y/IP+SleuuuzLnyXGI8kpww6ddqc54/IxALXQqJPvyKT0/13umTdSCD/EN+sxqrtDbJ9yz6zYsyH5mF538A2Wn2yCzkH0B2udzGZT0yC+N/dqH+d16gOPVIOOSfXaj/rRiLcSP5kbKtrPuXMP4HkJ3FuJGyoaFS1vd/yD+A7NwVLrqGcm9eRP4BZOcos1kMlRQND9jlXcKM/LML9b8Vk9m5ILbVAfu+Wpm3AyP/7MrU/777cPZJek7tvhS+GrNd4Hk5GRZDZdtmEdfTQf4BFNLubMm+c2mexVDZs/0jBXYxIP8Ayjm9/eOebSeyb2E+YN/X33Beme0MeP8PoKh66y53hevU7TORxMTC5b0WQ6XDbNu7aU9mX5MykH8ApZUWm/5cezTz60AsxKenHGU2VfYsI/8AalJ32zKe/wHYhfwDsAv5B2AXnv/Zlan/TQjRfv1vkAnyz648qv8NMsH4H4BdyD8Au5B/AHbh+Z9d6RnCpwghxLSG6HEjYBK+7eyK/0S83814v5uZeoL9v4xC/gHYhfwDsAv5B2AX8g/ALuQfgF3IPwC7kH8AdiH/AOxC/gHYhfW/7EL974W4xDghxGqsUrsjikL+2YX63/EU/9fwFV/UH4iF+fQUIcSkX1tjtrkrXL/btJuFzwLkHxjl4YY6fd2Z2M/j01PeqN8b9V8MXelydyh5FL8qkH9gTjzFH7/V7eGGs1zDp6cO3zxWb9354asdqpzMrwzM/wFzOn0ns4d/nocbPn6rW+7+qAj5Z9fkkznvd7Pe72b5nxja/3v13rXByFfCr/dwwx5uSL7+qAv5Z9fTWd2j6blH03NPZ9TuilLiKf7U7TNiW3X6uuMpXo7+qA75B4Z8ce/6ogk/Ifj01KXwFTn6ozrkHxgyGBH02P+sYCwkbU80AvP/msMlxseTE8FY2GG2VatUFrZQRZLjdA3Hkz9I2xONQP61gkuM/49vzngf+BcNUC2GjfWWXX90/md8EOQuQhvjQCwsbU80AuN/TfBwQ40DrR5u+Nmn00hy4mL48n/5l0OBAh2CgoqQf/X9d+/JwzePZZ+XCsTCjQOtV+9dU6xXBclhttE1dJe7JO2IViD/Krs4dvmL+9cFXtzp68YoIBcWQyVlQ+NGaXuiEci/mgKx0KlvxL2OPl6476IVUGehXM/vKKMcOGgc8q+mTp/otaWBWLj3Tp8kX92gJy+tL3ppfdFzelaqAP/+xT0UQwCH2dZUvV+O/qgO+VcNlxgPUs0qDwpbu76iEj2xrdfZ1utK9JL8ffmhq/ao6CbuDjl6ogXIv2rowk8IiSQnNP4IEIiFBrnhQW44c6iGptRWbG1zNgu/vs3ZXGO2y9YdleH9v2qCk/SvlIOT4dqKrRJ2RhIebuiv4SveqH/hb5r0a2s3uP64WUMpane2mFav7b1zgU8nsl/Z5mxud7Yo0ytV4P6vGt8DP33bX2dMdfEUf/jmnw7fPOZ9pmN8esrDDTcOtPaOXlCja0trqt5/7vVPs7wOdJht/Q3nCjv8BPd/Fbk3uHw/+inbVrhy74BU9b8DsVDrjUMr7qs5O9o3GBn+n789rZGFjDVm++cN5z3cUHAyHIyFMo9jDrPNYbY7ymwFf/JPBvKvGouB/pVyLm3nxX8ivu9nCCGv/aZonYHyFUA8xR/+eoXFS/MCsfDxW9092z6i+1pyqLfuYiTqS8L4XzXUa9FMeqN2jqbsvdMXSU4Iv97DDWMVY4680RFfdESSvwr3f9XUmO0mvXHFKahnSTL4l4Q3OnIpJHpj/KnbZ9wVLu18hOWFQCz0lzt9kcTEwp1INWabo8z2R2cz9T8m7v9q6nKLfhdt0huPbDkoR2co0G2n59NTWpu/1Lizoxcy28MWbUMMxMJX719vHGi9FLpM9zcj/2qqt+7au2m3qCZd7qPauXMGH1O+wszl3SdTuMR448C7vaN9Wa7h01Of3D7TeuMfKVaFIP8qO7LlPeETAXs37dbUZBX1+wvqDw7WdHq7BR494I36KY4qRv5VVlpsOvfb0wfs+7JfZtIbj7zy3p/Fr12VTy47Eak/OJhyceyyqH8oiqOKkX/1lRab3t9ysGfbCZPeuOQFDrPt3Oufam0LSi7r+ajffbCDYm8oEX9UMeb/tSLzIjoQCwVj4UhyIhgLZRaiOMw27TzwL+Iw2+h2MRTqdloJUc+tfnHvuvBbBfKvLTVmu3bWya/IYqhE/mVCvTxc1Nwqxv/sWm8gb1averN6FfXiP3c55R4k9wYXXUN2BCcpp1ciCRHLsZB/oNdUvZ/iSf6AfV8ejXFUEU/xFAvDMkRNGSL/kBOxZ2NYDJVtm5vl6UvhyGWL1HKzyEtC/iEnNWb7kVfeE359V+1Rjez/0zjqVySOMhFjK+QfctVUvT/Ly8t5mR31Gjy2RJuop0hFza0g/+ySsP53vXXXl3v66yw7lrugzdn8ecN5PPYLR51/UQ3x/o9dT2d1j6ZnCSFPZyQ4/7e02HR6+8dcYjySnPBF/cFYyKQ3WYwb3RUuB6oYitdUvf+Lb6+Lfb3qLneJWiGO/IOUrMYqq7EKg3xJdLk7GgdahV9v0ht7tp8Q9SUw/gfQqBqzXdRRxV1u0XOryD+AdrU7W4688t6Kc6smvbFn2wmKvaHIP4CmNVXv7284n6UAaZ1lx5d7+uk2huP5H0DrrMaq82986o2ORBITwclw5vQExzpbZntYLm9VkH+A/FBbsZVUSPx3YvwPwC7kH4BdGP+zK1P/mxDCTv1vWAT5Z1em/rfavQA1YfwPwC7kH4BdyD8Au/D8z66fZsij5BwhZL1BV7xK7d6AGnD/Z1fiJ/LN+Ow347OJnPf/Q55C/gHYhfwDsAv5B2DXr+b/Hk3Nhh+k1eoKKCw1qzPqCSFkIv704ZTavQGlPErMzP/6V/n/t+jTf4s+Vbw/AKAOjP8B2IX8A7BLNzc3F52aVbsbAKA0XSb/ancDANSB8T8Au5B/AHYh/wDsQv4B2IX8A7AL+QdgF/IPwC7kH4BdyD8Au5B/AHYh/wDsQv4B2IX8A7AL+QdgF/IPwC7kH4BdyD8Au5B/AHYh/wDsQv4B2IX8A7AL+WfXt99++84777zzzjscx6ndF1DH6pUvgQI1Ozv75MkTQgjOgGcW7v8A7EL+AdiF/AOwC/kHYBfyD8Au5B+AXcg/ALuQfwB2If8A7EL+AdiF/AOwC/kHYBfyD8Au5B+AXcg/ALuQfwB2If8A7EL+AdiF/AOwC/kHYBfyD8Au5B+AXcg/ALuQfwB2If8A7EL+AdiF/AOwC/kHYBfyD8Au5B+AXcg/ALuQfwB2If8A7EL+AdiF/AOwC/kHYBfyD8Au5B+AXbq5uTm1+wAK+fvf//7BBx+seNkHH3zw8ssvy98dUB/u/wx5+eWXnU5n9mucTifCzw7kny1/+MMfcrwACgnyz5bsQwDc/FmD/DMnyx0eN3/WIP/MWW4IgJs/g5B/Fi15n8fNn0HIP4ueHQLg5s8m5J9Ri+72uPmzCfln1MIhAG7+zEL+2TV/z8fNn1mr1e4AqGZ+CICbP7OQf6bhzs847P8BYBee/wHYhfwDsAv5B2AX8g/ALuQfgF3IPwC7kH8AdiH/AOxC/gHYhfwDsAv5B2AX8g/ALuQfgF3IPwC7kH8AdiH/AOxC/gHYhfwDsAv5B2AX8g/ALuQfgF2rCSHRqVm1uwEAKtDNzM4d7I+p3Q0AUJpOh/E/AMOQfwB2/ar+13+sWP0PFagIxorUrO7RNCGErC+Z0+NGwIy7D57e+/Fp5te/Svvza4tsG/RqdAlU8ChJvovPEEJerly1zqBTuzugkMeJufn842MfgF3IPwC7kH8AdmG2j13GNeSVqiJCiHENHv4Zhfyza80qUmVC8pmG8T8Au5B/AHYh/wDswvM/u6bThIvPEUKspbqSQl/2FU/xY5NhQkh1ma202KR2d7QC+WdXMk3uPpwlhKwvKSrRF+ZEoDc68tfwlcDjcCQ5Mf+bFsPGmnW2P25urjHbVeybFiD/ULDOjl7oHe179vcjyYlIcsLDDbc7m9ucLYr3S0Pw/A8FiEuMNw68u2T4Fzo72tc48G48xSvSKS1C/qEAdXq7A7GwkCsDsfDxW91y90ezkH8oNGdHL/h+9Au/3sMNXxy7LFt3NA35h4ISiIVWHPY/q/dOH5cYl6E7Wof8Q0EZjAxTtOLTU4McTcN8h/xDQfE98NM1DE4Kmi8oMMg/FJRIknIYP8Zk/vH+n12ri+aeL9ERQlavUrsr0okkf6BrKPB9QYFB/tlV9pyu9oXCXPZHwaQ3qt0FFWD8DwXFXe6ia+goY3EtMPIPBcVi3EjX0L3BJWlH8gPyDwXFUWZTuGFeQ/6hoDRV76d4BHCXu+qtu2TojtZh/k998RR/K3o7OBnyRf2BWNhq3GgxbnSU2d6w7JR1g+rDJPF9P0MIee03RYVU/6OrtqNx4F0+nRB4vUlv7Nl+QtYuaRbyrzJvdKTT271wd3ogFg7Ewh5u+OxoX71154evduC8ClGsxqq2zS2nvjkj8Pou91Fm/4Ux/ldNPMWf8p9pvXFoYfgX8XDDb11728MNKdmxAtBUvb9n24kVX+mZ9MZzr59mc+SfgfyrptN38mJ45W1nfHrq8M1j3uiIAl0qJPXWXV/u6a+z7FjugjrLji/39NdWbFWyV1qD8b86Lo5dHox8Jfz6w18f+3LP/2J2mEqntNh0evvHgVgoGAsHJ8PBx2FCiHuDy2LY6DDbcPgXUTf/8RTP5g80lxjvvdMnqgmfnjp+q7tn20fy9KiQ1ZjtiPpyFM1/PMX/7f71zIdxZrl15iRGR5ntd5t2W41VSnZGRb2jfXx6SmwrDzcciIXwowwSUi7/z050kwUnMV4MXelydzAyE0O91TQYCyP/ICGF5v8+uf1Z9onuzCzX4Zt/YuEwxiDtVjM296iDfJTI/9nRC5dCV4Rc6eGGC/4wxkAsRN02M4MFIBXZ8y/2PLaCP4yR4sn/39s+pW/7rNI1pPaFVbUvrFr7XOEs/gNRZM9/p0/0/bywD2PM5YWztHtU9KvI8yXk+RKixyoQVsn7nfdwQxTPunx66ov71+Xoj0Y4zNijBpogb/6p56uoT3HMCxZDJV1DxzrkH6Qkb/5xGOuSDtj3U7RymG2ML1YFycl9/6ec6+bTU4U9BdDmbBbVxKQ39myTeI/qdJqEH86FH85Np6X9iyFvyJt/k36tKm21r93ZImoWoG1zi+TrIzP1v+8+nH2SnpP2b4Z8IW/+LQbKH1mLobLgtwZ0uTsEfgS0OZubqmkeGQCykzf/1GcqUn9w5JEas/3zhvPZHwQshspzr59uZ7tGPchH3vX/1O+r2DmMtd3ZUmfZ+cX968HH4fmqtRZDpcNsc5dv3fvi7oIfB4GK5M1/vXWXw2wTuwTApDcesO2TqUsatHCDaiAWshg2IvOgDNlXfnW5O8RWVmH5PLYas53Z/3dQnuz5rzHb2zaLeHyts+xgZBcwgOqU2P+fmbsWch7rAfu+ts3NsncIAAghiu3/b6re399wLsvrrsxE9/tbDmL0C6AY5c7/ybzuunrvWiQ54XvgD06G+HTCXe5yrLM5ymx1lp1IvsIKsv43iKL0+Z+/f3EPIYQ4Ff6ysATU/wbs/AZgF/IPwC7kH4BdqP/DrvQM4VOEEGJagyPAGIVvO7viPxHvdzPe72amnmD/L6OQfwB2If8A7EL+AdiF/APksXiK90VHqJtj/h8g/1wcu3zroT/wODxfU7PGbHOU2d6w7BS1fRb5B8gngVjouK878MyZOoFYOBALX71/vd6688NXOwTupsH4HyBvXL13rXGg9dnwL+ThhhsHWgWWmUX+AfKDhxsSWE0zkpxovXEonuJXvBL5B8gD8RQvqpQun576rzePrXgZ8s8u1P/OI52+k2Irx3uj/otjl7Nfg/yzC/W/80U8xQ9GvqJo+LdvV6ijje88gNZRl8PNPlNI8P7vWYFYaP40fmCENzoyFgsTQhxmW3WZTWtH0fmifuq23uhIlrLRyD8hhFy9d+1W1B+cDM9/XtKtpoD84uGG/nKn79mbpMWwscm+j65MuxyCwl7mLSmSmCAVy/4p6/nnEuPHfd3eZz5f6VZT5JfJJ3Nj0TlCSM0GnWkNW1OA8RR//Fa3hxte8k8jyYlPbp8ZjAx/6O6QvOwyBZOe/scvex1tpp//M6spng3/Qh5u+K1rb3tzWGKtWU9ndY+m5x5Nzz2dUbsrygrEQm9de3u58M/zRv3CF9LIirqOJiHEYtyY5U/Zzb83OtLp6xbyToVPTx3++hiXGFegV6AAgd938su3XshCGlk51tHnP/tkFqP5j6f4Tq+41RTHxay+AM365PZnogrSRpITvXf6ZOuOIFkm8LJzl7uyX8Bo/nvv9M1vnBJIyGoK0DguMX4pdEVsq0uhK6o/ALY5mylaHXG9l/0CRvNP8UNACLkUpmkF2vHF/RXWwyxnMLLCZIHc2p0tWcrnLanN2bzim2wW80/9WS52yABa43vgp2sYfEy5AkdCPdtOmPRGgRc7zLZ258p1t1nMfy7fS9XHgZCLSJJyEtf3o1/SjtCwGqvOvf6pkFFAnWXHud+eFvJ3svj+n3o1JSEk+DhMPRlTkLjE+P+JDEcSPwQnQ96oP7NuymG2vWHZqYU354tEkj9Qt42neNWXgWSK6H5y+7PlHmBNemOX+6jwRWss5t9UnG1FhHxtC8/Fscu9d/oWvkvLrJsi98knt8+0O5vbBAxBlWQxVFJ/BKge/nnvbzm4d9Nu3wN/ZHoi+DgcnAw5yuzuDS6LYaPYOtos5l++1RT5xaAnL60vIoQ8pxe9+G+5dZMLnR3tyyyh085+Couhii7/K75IU1iN2S7JvyqLz/9i51EXKqTBf4me2NbrbOt1JXpxDeMpvvXGoezhzwjEwq03Dmln6RT1QppcVuBoGYv5rzHbhc+jLpTLB0chOXX7jPBXIZpaOnXAto+uodbu/1JhMf+EkLbNNM+lR7assJqCBR5uSOxbdO0snbIaq+osO8S2qrPsKNRtoIzmv6l6v9hP9AP2fYU0+KdGtxhW9SW087rcRy2GSuHXZ2bU5euPuhjNPyGkq7ZD+FOAxVDZtrlZzu6oID1DHk2TR9MkPSuilajF8/P49JQWNtIRQkqLTV21R4V/67vcR7Uz8y85dvMvfDWFu9x17vVPC++HgKL+dy7LnyIJrayerK3Y2t9wfsUBoMNs6284V6gj/wx2809+WU2RZWeFSW888sp759/4VINLWVSRy9LJXJZdSc5qrDr/xqdHXll2QqfN2fx5w3ntvLmUCYvv/xdpd7bUWXb6HviDk+HgZDgYC7vLXY51NkeZzV3hQvIX4p+KO4L6V21FHl+tgKbq/U3V+wOxUDAWznw8ZRYvFnzs5yH/hEi3mqLguStc1G1zWXYlK5a/+0yP/0GsXDKM1RMahPyDCKXFJlEvzxZi9h6rZcg/iHPARnMq9gE75cI7kBXyD+JQLJ1ymG2Ft3qiMCD/IJqopVOEkC53YRZQKADIP4hmNVZ1uQUtoTPpjV1a2v8Li+D9H7vWG8ib1avo2tZbd7krXJ2+k1nq0rrLXV21mqifA8tB/oFSabHp9PaPPdzQYGQ4kpiYPyHPYf556dTvX9yjagdhZcg/5KTeumt+hTxKJ+cdPP+DZBD+vIP8A7AL4392sVz/GzKQf3Y9ndU9mp4lhDydQfgZhfE/ALuQfwB2yT7+90ZHxpM/BB+HI9PjmdfC1WU2rAYF0AIZ8/9scSgP93MR5Xrrzg9fxZpwAJXJMv7nEuOtN/7x1DdnljvyycMNv3XtbQ83JMdXBwCBpM8/lxhvHGhdsTgUn546fPPY2dELkncAAASSPv+d3m7hJz32jvblcqQ0AORC4vyfHb0wvw9EoE5vdzzFS9sNABBCyvxzifHe0T6xrSLJiUvhKxJ2AwTK1P9+aX0RRf1vKAxSzv/TVYYihPge+IlTwo6AIJn632r3AtQk5f2fusCL2EcGAJCElPn3PfBTt+US49J1BAAEkTL/uRSHiiS1UhwSgB1S5p+6MgTRcHGoAkZX/xsKiZT5d9Ae/2LSG7EWWHkU9b+hwEiZf+rikI4ynBsFoAJJ7/9lNlFlIebtfXG3hN0AAIGkzH9psaln+0diW7nLcVA0gDokXv9bW7FVVKVHk97Ys/2EtH0AAIGk3//TtrlZYH1Ik97Y5T6KmT8AtUif/9Ji0/k3Pm1zNme/zF3u6m84P186AgCUJ9f5P+3OljrLzt7RC76on08nFv6Rw2zb+x92N1XTlJEHAAnJeP5Xjdl+evvHhBAuMR6MhSOJCcc6W23FVvm+IgCIosT5/1ZjFYrAAmgQ6n+wK5f631AYcP4/ALuQfwB2If8A7EL+AdiF+T92PUwS3/czhJDXflO0zoCDAFmE+z8Au3D/B1BCIBYam7wbfBwOToYIIY4yu8VY6TDb3KquiEP+AeQVT/HHb3XPF7/NmC+QV1vh+tDdodYCOeSfUjzF/+3+9WAsHJwMB2JhQkhthSvzof67TbuxqREyvNGRTm93luNtvVF/40Bru7P5gF2FHTHIPw1vdOTw18cWlTn0Rv2ZD/Uv7l//0N1RQ3saIhQMDzd0+OaxFS/j01Of3D4TT0+1O1sU6NVCmP8TJ57iT/nPtN44lKXGaSAWbhxo7UVpY7bFU3ynr1v49b2jfYFYSL7+LAn5F6fTd/Ji+LKQK8+O9qG6Ocs6fSeFF8LOOC7m80ISyL8IHm5oMPKV8OtV+UQHLQjEQqJ+VH5pFb44JujuIhXkXyixw7kM5T/RQQsGI8MrX7QU348j0vYkO+RfqEvhK2KHc4SQQCx89d41OfqTO9T/lk+QdtwXjN2VtifZYf5fKOrvqGZLG6L+t3yCMcpa2Ar/tOD+LxT1dzSXssiQpyLJH6jbKlkLG/kXJJ7iqb+jwUnKDw7IXwKPwH+WSW9Uci0g8q8AVNdkjmMdZT1rhWthIv+ClBabqKuba7a66XSahB/OhR/OTafV7krBoa5nT/3BQQf5F8phpvzGuDe4JO2IZJJpcvfh7N2Hs0/SGKFIrM6yk7IW7iZFa+Ei/0I5aNfzWwwbpe0JaF9psanLfVRsqzZns8LbRpB/oQ7Y9lF8ojvMNlQ3ZlO9dVedZYfw6x1mG/b/aBfdJ3qXu0OOzkBe6HIfFfgiwGG2qfKjgvyLIPYTXfnhHGhKphbukVfeyz5ybHM2f95wXpUfFeRfnC73UYEzNG3OZuWHc6BBTdX7+xvO7920e9EUssVQWWfZce710yr+nGD9rzilxaY/1x6ts+zs9J1cVNd4nsVQ2bP9I9z5YZ7VWPXn2p8fHr3REUKIRgrhIv806q273BWuL+5dD06Gg5PhzNJgd7nLYtzoKLPtfRHnf8GyNJL8DOSfUmmxqalahQPbACSE/LNrddHc8yU6QshqFAFmFfLPrrLndLUvYP8v0zD/D8Au5B+AXcg/ALuQfwB2Yf6PXY+SxJup//3CqnUlavcG1ID7PxAyh/3/jEL+AdiF/AOwC/kHYJduZnbuYH9M7W4AgNJ0Otz/ARiG/AOwa7VOR976T8+p3Q0AUJqOkP8PZ5yzgJ/E4N4AAAAASUVORK5CYII=", "path": "image.png" }
Complete the text to describe the diagram. Solute particles moved in both directions across the permeable membrane. But more solute particles moved across the membrane (). When there was an equal concentration on both sides, the particles reached equilibrium.
[ "to the right than to the left", "to the left than to the right" ]
1
The diagram below shows a solution with one solute. Each solute particle is represented by a green ball. The solution fills a closed container that is divided in half by a membrane. The membrane, represented by a dotted line, is permeable to the solute particles. The diagram shows how the solution can change over time during the process of diffusion.
In a solution, solute particles move and spread throughout the solvent. The diagram below shows how a solution can change over time. Solute particles move from the area where they are at a higher concentration to the area where they are at a lower concentration. This movement happens through the process of diffusion. As a result of diffusion, the concentration of solute particles becomes equal throughout the solution. When this happens, the solute particles reach equilibrium. At equilibrium, the solute particles do not stop moving. But their concentration throughout the solution stays the same. Membranes, or thin boundaries, can divide solutions into parts. A membrane is permeable to a solute when particles of the solute can pass through gaps in the membrane. In this case, solute particles can move freely across the membrane from one side to the other. So, for the solute particles to reach equilibrium, more particles will move across a permeable membrane from the side with a higher concentration of solute particles to the side with a lower concentration. At equilibrium, the concentration on both sides of the membrane is equal.
Look at the diagram again. It shows you how the solution changed during the process of diffusion. Before the solute particles reached equilibrium, there were 3 solute particles on the left side of the membrane and 7 solute particles on the right side of the membrane. When the solute particles reached equilibrium, there were 5 solute particles on each side of the membrane. There were 2 more solute particles on the left side of the membrane than before. So, for the solute particles to reach equilibrium, more solute particles must have moved across the membrane to the left than to the right.
to the left than to the right
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABb4UlEQVR4nO19eZwVxb39+faduTPDLCwDsgk4yCbIphINaHCJooig0SS+ZzQmmqjZ84uJiUk0i4kPo89nkveSaPRJErM9Jca4gCZu4EYMgiiCIKvIvs3CzNy5t7+/P2rp6uXeudsMd7DOR5l761ZXV1ed/p5T1dXdxMzIAm3J1K7mtp1NrQfbEjubWgHsbG5tT7rZbGtRdPSuLB9YU/XhMUN6V8YPd126FZaHJYVceUiZw83bexrf3n1wZ1Prrua2ItXQomioKHOu+sCY90PEETzcsr/5YFvH4a6LRRDZ8zA63LQlU69u3fP69n26dx1yKiqrysvj5fF4XXUNESoryivL4zECAQ4hRnAIDuCYKYBDcAjEIJKfHYAA8mcmeB/EvwAcgAikfiW1ofgXLD9DJYIBlVl8YAYRAJnNBKs/DCYi0QwMhtyKRAKzzMnMIlHn1J9BMLJ5P4kUl5lBKWaX4TK7gMtIMTOQYqSYU8wuyDUyMMutXKhEhgtmkPja3pHctHV7W3vHxEF954wf1mk391AIHi7bulv7F8vDHs3DssjUJRt3vrp1DwCnrLyu74CqXjVVlZW6F0WPxggg0bAGCMxeP6nD9rpKNaKXgcjrDN0hrLoKxib6V7EXs4RgsbqPjY1EBobHDxa/MbH6jUAMJtKdSiAm0WFEzMyA4gQBLAphNgqXO2TvD4iZvcNRmYw4T8zMLHeqFYChtUDWS2QDUF4WO3rIwPUb393Z3BrZg0cG/r7uvVXb9wMoi1fW9O5nedjTeRgRboSkEDl9hzRU9qp2gJg6ABHjPbD/q0phyNYEqU0YLDjBMkX3nKCFWQITHPUZ5N+LkUIqM9i3F50u96ISSfU2EXmtzQBYaUiEqoB1TrWhuaVsFvL1mlk2ZPmu4LuRicjLSEQEJpBruE2C7nPW9SShdESVFeUAjuBB7s7mtlXb91seHkk8dMJJYgDllMfLK6v1PnVg9o29yP9VpWgbCbWV6S11DNZHGyjTO3xTFOD7LGviFytEqgr5CoDyq+QVSGb0VlViUglkbMjMZG4pd82myvnKBnyqYhxRWlVRqX5V0dmkuU65LoCKWEQPHhlo70gBKKuosjw8YngYkWlgTWVFzEkl2pIdbXqfEarCRjiHl+hTFbUV2EvUqiK34GCxbPacUQ78ZfqKVT6ZzUJISpCPiqqfAqpibJdBVbSDhXmIJEQhVEuGP6eua+B3IRdKRPyq4qsXkaIBUUtLG4DhfWtwhOKo2koAHW0tlodHDA+jY9K04QMA7Ht3fbIjoXYpjhRmLbREeMhCVYAIVTELIaPnYJQT+BxWFc0PrSowpUbtr9tUJfjVrypGtpxVpbUt8e72XQBGHLnhprIsdmrDQAD73l2fSqVEouVhj+Zh2gvhD76+ad2exlhZeZ8BQ2tq68ScXIyQSnYk2loTHe2J9vZEe3t7or0jmcxmTxZFx8RBfT88ZkhlWexwV6QLYXlY+sieh2nDTVsy9dDrm7YcaAFQUdmrqqamo629rbUllbKdWir41pmTDncVuhwmD3vV9o5XVFgelhqy52Eny/xe377/729va08ZqzaJyip6lZVXxCsq4hWVFRUVFfG4uGoQA2IOxGe93qFMpZBIYTgOxCoJIVMAypQXjanVDQ7gOCCW6yNA3poIIrUOAp5HJbWMgk2rKC2mz8dy6IoA6ysCaoBsjpk5q/UOcqyrC2FlqgGYyxzM9Q4uswvKsN7BZTDBXO/gMhjkMq98a0NO3dzTYXl4ZPAwet2NxqTBfccMqHvo9U2b97f0qq07qv9RVVW9vF4kxAAyl1eJNREwPqsVU/Kz6g8zncLLqwhgOI7sQkLEfzCXV8meMKb6ovoYkHNs3nwewVvvoBY3iDGzZIpvvYPihN5SzLvJkay+kKlH/X4YVQLUfgFzzOxdc4ScgJCfSF5rzSwPRyoEDx9Y/s7OpjbLw57Lw84vX1WWxU5rGESE9kPN5RUV3uy9mt/2Jti92fngFQHSPxqbQBWjW8BLYeOqgTkpaCA0sQ/ftLwu139FgDNcEfCrir7kkOUVAahFE9F9bLaP13Sqw9UVAZjd6LGW9d6I/K3wvkFlWezs0UMtD3s0D7O6Wj68b/XwPtWu6+7fu8ebvVdm0ZtgN+ayfV9Nb2lsAlUM/A0TlAgCINvcRGhiP3htwtuxmZzhioCa/petrS45qJwZrwgAkBcRENylTqDgh2hVMbYKXBEQmyQ6kgDqKsuDeznSYXkotuy5PMx2kdhpDYMA7N+3O5lMhFWF/DISUBWY2dOrSnhthakqHOgwjlYVMjLIckPk6BJVQUZVMcREjq39qiL+1aqi9xCpKh0dSQB93gd3ZoZhedijeZhtuBnet3rioL6u6+7eudNTFVEFlmscMqgKQosgNDzOsD8loCqIkp6QqrA/Q3iAqdnTParC5s4IkKeEbA72NSVpVdF7iFSV4CG9n2B52KN5mMMS+NNGDgRwsHF/Mpnwhn9pVMUXzlnqTFhqdEKkqpjfGUqszEx+VUFIVbQ2eMn5qwryUBUyd6ZUhVRz5KcqwRZ8n8HysOfyMIdw07syPnFQXwA7d+70hn9pVAWm56TOVcWIoJ6qBDlhrpgkf4pSnrCqBNxvAaqCoqoKWXeTHywPey4Pc7vBTwjLgYP7W9vaOlEV8yvLI8ygKmxcAvBUJcAJM4X9OqM29PbcdapiVLwAVWFDVeRW1t1kCcvDHsrD3MJN78q4uI1l+/ZtZh8EVCVYEVI6Y8KvIWQ8CoBCebyvBpMIaVXFrEyWqsKy+Um0ZCZVMSqehaoY7EyrKnIr626yhOVhD+Vhzo8vmDasf0XMaTnU0tLc4lXQrxhs/Cs/RUmEitpAlKqIPIFN9JGzUhVTwcKqIuqWjaqQbH4WLVk8VfHExKgk+acT5VbW3WQPy8OeyMOcw01lWUzcL7591w6vglGq4lVHKYAPXtQGslMVKSMk85MuRG1TyqqixEJxh8isgfhg3U32sDzsiTzM5+FMQliaD7UcbGxUYVUck8wQVhWpACaiVAWBDf2biEJYRn751dy1bNLQWlIYEbwrVAWqBztRFbn/gKp4VbPuJidYHnpbmjUtYR7mE24qy2IfHjMUwNbt21RYBZCbqpB3xMbXwIZpVIWUqphbQakKs48e5l7QNaoia+o9CDZaVZg5qCpk1l/dMmPdTXawPPS2NGtawjzM89GTkwb3rassT3R0NLW0II2qmG0gVYV9KT5VgaEqRqw2Y2hYVfz+1K8qugzy77mrVcWXbKiKFARmxSORbhygVBXILay76RyWhz2Lh/k/6dZcvByIdLpu+rtUFfKlBFTF29zkh180IlQlsF+KUBXfngPi0G2qAkNVuHNV0cditKBUlWTKBfB+eL1UNrA8NKtd4jwszoO1A5EuoCre+NbIEVYV78d0qqK6K4OqCB6wUU6kqnji0MWqIo+wOKoiDoda29oB9K6y4SYIy8MS52GXPMeftHmTNZOCYATQTKqiv1BAr1SZZPwXVBV4qmLO+flUBcVTFWMXkaqi1aMYqiKOzq/gFulheWjUqSR42CXhhg0FQEZV0f3Ege2NPL50rSrqPwq0tepIKIqwny6CBOlVBbmpiqYy0qgKR6iKd3h5qUqwuS3SwPLQqHNJ8LD73I1PAZSqaDJEqIroUb9q6F9Ia0igrUOqQsq46spkVBUUXVXE/L+pKtCngXU3XQnLQ6POJcHDYoYb85jFYejorhVA50inKhROgpeif2GtIV7LeSkmRcSODqOqeIbdUBV5mNbddAEsD0uWh8UMN+Yxi8MIiEBAVWD2rllIWGjIt5WpKl7oDZCsYFXhIqqKHipbd9P1sDwsWR52rbsRwqL/C6gKdIoxexdWFTMlrCo69AZJ5lcVb89ZqwqFVAXGW5wLVhXqVFXYupu8YHlYsjzsWncjhCWTqrDvq2oP9UXnyUJVvMP3pxDMyF2QqkC/ZVl/9zE7J1XhDKqi2zBSVcxLKxZhWB6WLA+LFG78Da2nt+Bd15eqEhzf+r+q9vDKRJSqSLFSiQFVCaR0m6pQtKqA/EzzVMWoqviFjI7NoCrmpRULHywPS5uHRQo35JsGg16+6V3Xl6oSHN92piqyWFNnlFjpxE5VBUbDd7uqIHAh1VMV+auX1bqbQmF5WNo8LJq7MafBoBY4ZFAVAfLm3WVyQFVksabOkGodQ1V8JAupCoyGPwyqYgyVvfooVTHyWndTMCwPS5uHxXM35qEoJQmoijdEDNnd7FVFFhsqJEJVjF0VUVW83WRSFU97AkNlsQutKiqDSgypCpsNBDBzMpUCkM0b4N93sDwsbR4Wz91oiVBfhbCYquINETOqio6kiFIVWWyoEN3+rHXG2FVuqoJMquIdcyZV8bQncCFA7MJUFVVmhKqAoKshiiSi9vYEgIE1VZ10yvsQloelzcMiuxtzDByhKqbyKIRVxVQen6qYm8CXaKqKCsYFqAryVBW11+xVhQKqYpYu+1c3EMkSwm1oIWF5WNo87HJ3AxVjVViVKfpPhKoYosGKKCYC0gTNBhibqEKCqmIqAIqsKkbV2cjlZQypil5ZrqphlJ5OVSjQHBYaloelzcMudzfwxVjfaFaFSZ+qAEZo1hLh31unqhLOY/ZHgarCRtHZqIpRKTpcqvJ+geVhafOw+9yN1hA9mg2qirEIolNV8QbSehNDVRBSHrM/ClQVMorOUVX0BQWjrtbdFBGWh6XNw2K6GyCjqmjXxmacNlTFUADyCjaKhZchMJBOu0moRQ6LqqjqeaoCkT+9qqh6WHeTCywPS5uHxQg37BMEkZJJVWDGaSPFUAA2yobRmjID/KoiHCxFbRJqkSxVBUBxVEUVFVYVXb4okP2qAnUCoBiq8r6A5WHJ87AY4YbSqgp5v/u6IaAqbHxFFqqCwGUC8ZWjNslXVQBkoSpei6dVFVVUtKrAUxVKoyoohqq8L2B5WPI8LL67MYMge7/7ukHHaVaqAjNDOokw9hhQFdkKOmKzV5NwZcOqAtFjOauK1+J+VUFgx4ddVd4XsDwseR4W392YQbBTVYlUgLQSYezRH35B8HSGVIbAuFoXGFYViB4rmqogsOMsVIWsuykUloclz8MucDcIqgoCiy/9qgKvXVWGKFXxx9vgV4anIaWsKjDq6FcVtu6mUFgeljwPi+RujPDvhVwZPIHArSWdqYrMZKQxB2WkU1UBMquKTyvQXapitpanKrDuphiwPCx5HhbJ3ZjhX6XpGoZVRWeKUBV/l4tyPFVReXw6E6UqQGZV8WkFClYVMOetKiI5g6qwX1VaWtsADO9bHTy29zksD1HqPCyyu4HRTdp/hVVFZ4pQlYChRXQen85kUJWoymavKjqg65zpVAVEWaqKrqi5kEHsPCgYqq4Ec2vrbdLA8hClzsMihBt/v+SpKp4CRKkKQsoTqSpeFq0zxl50gdmrio77OmfhqqLrbaqK2HlwOGyqire1L4uFhuWh2KiUeViEcOPvl6CqELJSFW98G2BNGlXxUlQ5bHan1hljL7q0rFSFtKqQmTMvVaGQqgDW3RQblodio1LmYZe4GxFbWTd9ZlXhKFXxgq+fRkaedKriSzFlQW/K3LmqsFYVNnPmpSocqSrmEXaqKuxtbd1NNCwPgVLnYZe4GxFb06kKyOhLlR5UFUM0fDRKryowm1brDHu/GnukUlAV8wg7VRWjoay7iYblIVDqPOwmd2N2LdjoS7VlNqoSyGN+DVBNqwpKQ1V839WBsfF7NqrC1t1khOUhUOo8LDTcEIJNHKkqvqNOpypeEogiVMVTHqhNKJjH3IlM6gpVkVtlqyq+I/SOy3tSbDpVYUNVyLqb9LA8VOWWNA/zDzcVZTEAbYlEtqqiIZqe1FZaIuAVxMbdKKopDBmB3MS/UVC6dFLxVUVulYOqGENlneo9KVbuPKQq5FcV9rWUBWB52KN4mH+4GVhbBaC9IxE0kNSZqgBgr/MyqYoX5FWI9auKfyMjpvdMVQlKRkhVyNdSFoDlYY/iYcFzN+q4vGDKUaoSQJSqkFFQWFUQuPvWUBXNIjLky5tH6ypVQQ9SlSMflofqYynzsOBwowa3XjANqYq/dwBEq4rXMdmpCgzvqlXFi9maAlmpCuWuKuhEVUydhXU3XQzLQ/WxlHlYDHcTCKYyFnqqEuodrxHCqsKGqnidp3YU4IunKjpwh1QlsFEaVeHOVQXITVW8zXyqYqwOzUdVDrUnABxVUwkLE5aH6mMp87A47iYwVNQp6VRFp2hVge4qs1jx0VQVP8KFhFUlQLL8VQXIQ1VYS6EhJvpDNqrCflXhlAv7Cs0wLA/Vx1LmYRe4G3gppqr4hsSGIAQ6hs1ixUf27chEuBCvXqaqmLqAblUV0lKo2RylKjI9vN5BrgRlszEtImB5qD6WMg+L4G6A9Kqi/mOj3ZGdqkDnMVQlICwRquKvmOxj8icfblUR7DBUhaB3GTwECqhK+EAtAMtD/UtJ87AI7kbUM0JVVBRMpyqk1w1AjQ/hL0d8DNzS4s/gKyRUMUZwpJ2jqgSavnNVYV2upyrwDsYQE0NVvCP0zSdad5M9LA/Vx1LmYZe4G5miomA6VWG9bgBSNLwC/KpCxo7gz+ArJFSxglUlYCw7VxXS5XqqAu9gOlcVox+tu8kelofqYynzsEvcjUzJWlVM0cigKtCFGBnCqhLcUc9RFdbsMOpm3U1WsDxUH0uZh93kbrRoRKiKkcErRxQifjUXiftVxdu12TgczNCdqqJrnYeqkGaHUTc5cLfuJjMsD9XHUuZh0dyNkgBVQ20yVeBOqypGBi9em3nMReJ+VQGAjKoCP0vUvrpQVbyG8KtK+EIAm8eaUVVg3U2nsDxUH0uZh8V5R7gZTL0UJSmRqgLqRFXEwfkG0lGqAr+qEEWoitk0h0tVwmKiFmfqzs2kKrDuJgtYHpY4D4sTbrJUFT181SmmqiCsKuSVo4sNiEZAVZijVcUsNqQq6B5VUWIC/UFl8FTF14+GqsC6myxgeVjiPCxOuFF16kRV9PA1UlWEjJiqgtCha51JpyqefPmr5is2qCroXlWB/qAyeKri60frbvKA5WEJ87B44YZgBr0sVQXkfWVVhgD7y9HFkvkzFI+MzUKKEVaVcJ5sVQWib7tNVTioKofaEgCOqq2CRSQsD0uYh0V1N6GgZyaYqiJ+0yHYU5VA+I84dNXChqoEZCSkGGFVUVNeXh7xBDPuVFUg+jYHVdFbEoOlUc9eVchTFfFPMpWCvWcqAywPS5iHXeVuBMwErSo6nEeqitk3iDj0kKqoPL6v5MtDRnMbgmYWLZ7PSkVXFW8HYAKZpMxVVQJtaxENy8MS5mGx3Y0fAZnxAqj66h2Znkgz+gZZqAqFBslmZNcpmgpdqSoIqwr0UJk8VYHeS+6qYtEJLA9LmIfFdDfhanCg50xVgTcAzqwqIoh7W5k/+7vQE6KAqvgjdd6qwp2oin/fRsmynj5VUVON1t0UF5aHJczDYrobDiYoVTGiO3zHYUT/9Koigjj5N9EwVcUrOaQqXn7kryreCoV8VAUsuSMrEFaVYF1h3U3usDwsYR52mbtR1wUDquJFZLkREFYVI4b6VEX1iykjnqqYo1RDVbi7VEWXG6iNX1VYZzRUxTw8f2dad5MrLA9LmIdFCzcUqIaa8A+oiheRRYraFmYfGzHUpyqqQUwZ8VTFi+O+cgOxuCiqwv4+UhtRWlWhDKpiHrx1N4XC8rCUeVi0cMOBaqgIG60qgX5SJchSclcV32icfS0WiMVFURU92M9WVSTjI1XFPHhlhr3qWneTGywPS5mHXehuAL9qmKoS6CedK6QqQFBVQBGq4g08japQKakKslYVn4217iZHWB6WMg+70N0A/s42NSSjqviOn1VH6q04K1XR5rarVUUV0LmqiOoGVMVQDOtuigDLw1LmYde6GyNkyg/ZqIrP3ZGhGGlURe7Iryp66s7PtOKriiqgc1UBgXVGrw1UButuigHLw1LmYfHcDXuNDvhspNfGOprmqCqkCKFTRAavszpTFV+9slMViG4sqqqQzui1gcqQnaokEh0AelfGozrBwvKwpHlYPHdDRk8gW1UxR4863odVheHjkO5aIxb7VIUCYpWXqkB0Y+GqoqlaDFXpSCYB9LHhJg0sD0uZh13ubnRMFIky7IZ1xoj3naiKKtYcSAdUhbVY6Q4x69UlqmIeHszakKZqMVTFIjMsD0uZh8V0N4hSFR0TRaIMu+lUBYAOyxlVhQ1CIKQq0KoSWtLeZapiHp654yKrikVmWB6WMg+L6W6Qr6oYWwA6LGepKjrFUwiZYqqKV0+vGvmrilfHzlVFVd2vKkax1t0UE5aHpczDrnU3UPFeJwZVxew8nWIUCNUXPoeMCFXxl9q1quLVsXNVkRoSUBWjWJ+qcJSqBKceLNLD8rCUeVicF78gjarIlDSq4utOv6qQvsqo+kKHZp0praroYqlUVIWMApWq6N99qiIyeHVm8VRafwNZhGF5GCrXyKuOGoeZh8V58Qsyqwr8iSr+kz+DTyK0RpiqYgZWv6oEd6S9YsGq4hNFIikChnSYqhL4SaZrVdGiIY+E9a5NVYGshtyldTdZwfLQKLdkeVh8dxMIgb666epmVhVzpK37wlwSCb+qhFuBi6YqPlEUfeCXDlNVKKwqrFRFHhoxjGNQuzZVBbIacpfW3WQFy0Oj3JLlYfHdTSAE+uoWpSqBH71C/KoCb0mkjMj+8ap/T1riQpH4sKmKPDQmGMegdm3dTaGwPDTKLVkedo27YaP7Dd2IVBX4fzQL8aI7/Kqi2j6oKrpYVZlwJC49VYF1N0WA5aFRbsnysMjuBqFYrsM3EAz/4d73tmJ/BpYz/KR5E9IQn1gdVlWRG2VSFTJUBdbdFAGWh0a5JcvDIrkb9voy0AeRqhKYzxN5zDk2X8RXOhNWlWCx+tthVRXyNFGpip/36tdAalaqkky5ACrK7Ytf/LA8NMotWR4Wyd2QdyTBPvD3n9hEO15dRlCL/KoiUoKqEhIrL/j6aWSiO1WFVaVVTQyxk6qiys5aVdraEwAG1lRGHNv7GZaHRrkly8MiuBsZQ9OoSiCmepuEVEVvxYaMeBuFVSUsVvqbolFYWIKqopK7QlVIVdqnC57m+I+5K8fMRz4sD41yS5aHRXA35ggRWagKoRNVERmYfcUEVEUGZb2B0WamqoSHzUFVUcldoypQqmLoQmGqYhENy0Oj3JLlYfHcjVcxf320qvhFA7mrCrSwBIacrLbS33JXFXEonakKclQV5K0qqljrbrKD5aFRbsnysNBwQ4hQFfbnCATFsKogO1WBFhbyCtElh1UlUCyMX8OqItq+M1VBbqqCzlSFjGNWqiKqoYq17iYrWB72CB4WGm4YWamKTzTU0ZntnK2qsKcq5F85GlYVhOpm/BoYysu2L7KqGDXxKqqK9FHNUBWy7iZ3WB72CB4W390E60PBsSspncmgKiIl0A+sn9ehVMUMtxlUxSyH9P+mh+5SVZE1YV2ot0vrbooEy8MewcPiu5tgfdKoCvmn7rwM+jpiSFUorCq6EkpVyHhkB6LqFqEqKsR3qap4JVl30wWwPOwRPOwOd4OAaCidiVYVfR2Rg2E0QlUCNYnSolJWFa/+1t0UBsvDHsHD4rgbQrDFfTlM0UivKloitKoEuJNWVXRNjLZjo9huUxWYG2WhKl79o1RFZLLuJhtYHvYIHhbH3XCwR4IIqApUZ5sZWJWoVSXAHS0RervIHSlx8oqNUBUzpEeoCuWnKjA38lRFykWuqiIyWXeTDSwPewQPi+FulIHUSQRfF8JQFYY3P5dJVfwPJINKIR1uxVZGNXQ5MrvXEVGqYob0CFXhoqiKqoSUC0NVZGnW3RQLloc9godFcDcifJKRxOzrQhiqooNvQFWgj4JUmUbs9opF1CZmf3umUaYfRlVRRxhWFVlarqrS3NIGYHifalj4YXnYI3hYBHcjZMSnKv6VCDBEQwdfT1V0HrW5pyowMoSe0gh4LRnoXZ0imtbkXDeoCjKqildakJ3W3eQPy8MewcMiuRvTj5ntbjQ6G/lhtrO/Y7Sq+PeRVlW0JfYVYqqKX76KpSpaOsKqYgzuvbfz6A8kP/vODfKrCtKoikU6WB72CB4Wyd2ou0hUUlaqglAe8dUXe/XnLFXFn8KmfJkVKFhV9MA4o6p4YqKkQVSJ5ActpX5VgVIVtu4mO1ge9ggeFtPdmCoRDoRhVYE/T6eqgtCRRqiKP+Vwqwr8qqKrpFVFsi2dqpB1N9nB8rBH8LBo7ga63aJUBaaEpFcVHY59fcBetvxUJVzhHFTF98hFXbPiqQr7SrbuJj9YHvYIHpblvykAQ1WgG1S1steR8FJ8bc4qeKoMDJVHaQjpqG4Wa+ye/dc7Je38qgJjvwTIh9CbJbOwukwgeb8+MdhTFdW3YCbV/qKuIqMul2UHy4k2rSqePhHIlapCLuT0pi5ZqQppVXGtu8kI13UBsOsmU0lilDnkEEBwwTEiF3AIcEiTjRkOwSG4ADnyCeHkkOVhN/Cw0HCTct1kR9IhMMEhihEYcMExh2QYEh9E3zOY4IhDdFRPqk7wVIVk78r+Zu9fnUcnyk3Me+iNlLSqggyrOWGqCjz7GVAVmS1KVQCjBG97VTiRcLfelKNPVVhJito3mZdjLfxIJpMA2tvbmxqbRBwhwAE7kGHFIcBl/ZmYHXndRScSmB2ACDGHwBxzSBBEJDrqxHccMV8CAhyH2FVFyURiZschh+QHYSsE0UQiqX9dZvIYLHgCZhfqkhA0D0mSQhslgEROeFRTm4joBBA5rnzxLqWYQeQyuyxOT3KZU8wgJ8WcYnZdMFGKOcUAwWUwSJzIYiuXGWI8ZRqE3FFouEm0tzc1NxFzjIjAZo+KOKN7HS7HHCIwQXe86CSdGWB2iGIOAewQAV5/a2+nu99R5k70vf4ghrQiRfQx1KyaqLPL6g1eBNJvwAC7zA45uqfFdi6zQ969aqI7BTlAJGKj6gxlwJU4MijluiDHZXaZWX5AipmJxAcXcBniX5afGeRofXGZGeRy4KXNFiF4Vp/1hIU4bfwtp12LkhNXvVJSjBqAVMoV7GICuzJIEAGuNA8ESqXYIXIln2WZRBDpREgmfe5GVM0xquKq+CEY5crZEhaRiKWnkLkED12lXa7O7ZkaGRRcl112ich1WVBUxAvBIpfZlR/89AOSKZeJUi4LHqbYZRAzp1yRTUcrwCnPr4sKDTeivVQwEL5CR3T2jKIM4uqGE8D7yQyWBAAp13UAl1R3CkPMrGXEZThEwvSJ6JNMslAerSqsIg7ksNOnKsyuDDSA67JnL4gAuOyKIKJVheW8nNQfltFIdbbqfqE8rpzDgwuAKOW6op9SDNfoYKEq4kOKoWgBEVlSris7XjpgSrncnnSL0F9HKryxuY+HRIDrD0baFjMTQI6KTNogCwopz2C6bL2i2HQ3QgvEGS5YJz8YLttRzNc8FBUhTSe/uxGxRntkhwRRAb/L9gZgkBWAXpIT5bK9SSCCWpYkmCr26J2gvnU33pYEVY08UPDDQyFlBOqclaoSGqrKcaI5mWaMQwBViOgYMvL4pUlLgh5Kiq4VOxXuRvQo1LCT4aU4YrCi+xiSTZKhohBylIVh1/We2CqKZDWw0YfIzGLCQP5kHLvraqar/pY2jgV1pTgZDaOHWI6cIWR4bzi0SA8dUPw8ZJNCngsBIGWyo5X37+C2Zu8sYpe9vPDx0GSdUiN5ejMLc83QLtvYrcdXxUNRETXvKc5+R00nQPBQ79R1WTsj8mqWLQ+NK1PeqIy9KRqoA4ngodwrs1ZZPVDIFYfZ3UjDqgsBQ/hGGH3sizgscpEywkJnRMQhpSoizKuBUsjdELHrkmeg4XUZEfndjWN2gCFHWaqK4zgp11U1J+/6otI3xZOgqkAOo2QoIpJDaou0yMXdtDZh5/rUwZ1u015OJrwy6upp2JjYsNFOPG7OiBjuRs0dZuNuCB7ZI9wNJDm7193IOaaAuxFHFnY3ek8+d5MvD4sRbryr+uaY2Zzz0l7G5268wCp0Xr232DGO2COKArNik1oroN0NlKpoLwPlbmC4G3OqRQZKJgK78joAHHLE6JeZ9dwN1Imvp35liGK4zOQQu2B2JcXEsbN2N8KhuPB0iFW/SxK4apykg7RD5AJwXe1u2lMpAMP71hSh1448mAHF4CGbYkwg0OYVqW2rk2aU0Wjcy2++lHx7OcaeUDbqeMcrWfFQz6EJuyF4KHyHdjdEFHA3UO6GDHejeQjJUnEdhV1xsYTZIceFK4yHy7x7OzF453tcXoE+famqhqtrDanMyEN9hgbdDWQYFU6HiMI8JKXIrM661o4O5MXDYrobGR4R7W7UHzWI0re0BN0Nu6zGeBHuBmF3Q+ncjY5ih8/dqMx6Q7+78aJPJnfD2t1YZIByNwEemu6mZa+77oVky75OWrKjHW+8lGzcGztxZswr2eduEHY3SOdu9IZ5uZvmJqz6F2/d5Cbag/XsU09DR/D4EzrnoUa0u2Gv2TK4G4Dp8LsbGfhIB/5M7gZGirQqAXej44goOryvgLsBu6y9okOGuxHmh4gZe3endmxHot2zoSOOob79qYvcjT5WY+Ygyt14POEM7kZd/Cq8o45A6O5QXxHgoXY3LfvcNxd3pKJMTSS2vJ06uNc98yNlgMfD9O5GDt+kuyHD3ejKSInNwd0seyH51qq0J/eBvXxgLzatw+STMWREJh4G2kcckeduFFUjXbZ2N95Zly8VixNulIyI8Oi5G2PKRf/x3E2auRv/rCgFD41UhCZ1tpLQGeFuOOhu3n4rteJVt6kx2GevLUO8AhMmx4473olXRLsb+Of8snc3pKeho9yNqW/a3eiGse6mEIR5KFQvlUBOsUbg4F5+/aXUlOllmoeeu1FqT1opHbB2NxzlbtSgJBt305GgRY8k9+/pvNNbmvDi3zH5FIyakJaHvvbRVx70SSdbi90oHobdTeikzBZFczcgkusXDHejpSCTu2G1/IbZkfbG524Y6kKCTICcxGMZewPuBoCYJ963x/3HolQ40Ggk2vHastSbK1NnziobNBTR7sbN7G6ImDO7G5XdczdEcEPuBmFVUTJq3U1OCPBQGOhN/0zmGmsE3nnDHXoMDxgseei5G+7E3UCzWFVGFBgxh8jsOI7pbjraafHfsoo1GitfRlk5jxiT1t1IK2O4G5nodzdhHqrvRXA3xbgQrlpQrFaANDtypYyEofBmihjxQsQdUreKmAGZfLEGPnejbJEjhkNE6nKP49DmDanH/5rMEGs0Eu1Y9Ehy3RpXOjQi4W68uWd9EMrdqHCgfInUBa0qWslUUxjHrt2NnMQx3Y06YrU76b8FkfMeML/fEOAhAa373T3vpPIu8K3lSc1DTWDD3RCzPjdlL8vLjrLnfRsKXhnuBroEFvaCaNmL7r5cYo3Av5bQrm2I5KGugB7N6akG+UFPLoV4qLeX5x5HTHFkieKEGxk4XTaGqUxOcPgKeNZAuxuoSzPSkeo4onIFZ/hVnFXDFbFKQq27IQJhzy736UWp8NRaBrzwjLtujQtZiFx3A2GUdGVIH4IUCmXFgusdWFky9uyNt+5GaqA3leejhbfeQUdtBB7lYpEJAR6CsHt9Qcsjd7/HB/coT6Do6LL02N5EIUP3siMNO4C07kZ8Macaxbqb7dv4nbV5Vvi1FxDJQ12Bzt1NiIfqO8tzrzTdjfa0QCZ3I26eku5Gjm294wyMpJDB3UC6m0QbFj2SzOMoXn3R3bcXxXM3rJvCPHZWo/dc3U0g7FqkQ8hlY//WQldjb9vM2bob+NyN6XPFhp26m1dfyN+ItTRhy7oIHuoKGO5GDdhzdDdqhJYPutndGDNXyt3IFZzeqLgTdyNEw3MN2t1AuptXXsjN12gk2vHPF1Jd727UCF+7G7/pTeduKM8uft8h7G4SLYWG6j3v6figlBOep/a5Gz2RLImam7vZv4f37S2oqlvWO9m5G6ntnrtBVu6GQvMb2aPI7obU1zTuxovxGdyNGWF8kZTlv2qOJcLdNB5016/JXxx2vMc730MXuRt9EMrdAFBXD6y7yRccapcADxu3F+FGM81DUpNoagFFJneDzt0NAu5m+3uFVnXPDiQTmdwN1HeZKD5A5c3K3eSJIrsbVl+zdDdiK/jdja9NYMxLSRIF3Q2MUfTWTYUey5aNqYC7MToMubsbfcikD0K5G0C5G/OSneluYN1N7gjwsChzXpqHusCwuxHhSC/jVJcmM7sbhN1N4bU9sA8hd0Pa3Uh47oahahrJQ2i6K3eTN7rc3filPehulDfpxN34ClFDYu1uYIyid2wrVMq2bg66G8OOInd3ow852t3oqe9IdwPrbnJHgIdFuaKneRhyN4Y3AbS70X7HG55k526amopQXeFD/O5G3bScxt2IC9yRPISme0nN3egAbrqbwEkStL4UdjcIuxufP1BD4kh301xwbzU3Budu8nY3lIW7ASmj3qm7AZIpBjCwpqrAYzzC4edh3eAikLy6Vj5NIuRuDG8CBNyNMZQJDmrSuZuiWFjhQ0wedupuQJBruzp1N0CiowN58bBoq4rlH2/CAuyy4Qy8nOL8UkNdz92ox50pywBAeRfZCCxPSxVn1WNKHHk2EtG+vUUQh7Y2t6LCv6rY66rAqmLZoXo1p+pg1k6WzMv/hrvRt554qqJkU58tosnkDI4aP1aWxQo/xiMZfh6C0asvHdpfEDH61KuAQnJRQtDdQCyPV2Nk8VglUtlZPrMJXu8b7gaeu4nHCzt2AFAFGjxU5GR1/QkgOriDWg5SazMO7ScnjqreblkvrjsmFeAhoA5VjR/dVJ48LOaqYh0mxBE6oacWAfKqAWmjJtYE6ydjaRNsnJ9ewDXcjSiM1IgG6r7XohyOQw7DW1XsVTarVcUk5w7kTwFDRyIsusbyBeluolYVM+SqYs8NWXQKPw/hUN/hsUP781kboTH4GDUq0jdkqTubIJ88KR4RLG598rkbOSEZcjfCTbB/VXG//rxlU6E0rqoJ8tBwN5xM0LtrnU2vB03fwXcdAM7Ksroh7oCJSS73nsbguRv1hOX8UMy5G29WSs3dyCSj9Ug98lPPXIjrSmwGGVZzODBOPiNFzt3IQbKeuwGIBg4pwllZFg/M3cj0bOZu5HcdfL25G68MYeIYIXcjv6aZuyn8wN4vCM7dDDouVpbn4y4BYMgIp7pGPhw9Yu5GThjruRtpYCV1SQlmdnM3hRO4dz+urg3yUM/dHNjpvPpELBxrNNwEHdgUe2dxvOU9z4v45m4KqFtR526MORw1neHNzHtZ1ZSL+CPXbauTEFDRS3mZoLuRxUAtk5PntQjAFRWF9lZ1LYXmbuRP2czdyO+s7n5L42447G7SzN2wMXdjkR18PAQhFsfA8Xka+fI4Jk2PaR56czf67kpxOVxmN6KSnrtRXkvmyDh3M3goFTieGjw8goeCnG+8EPvXU05bc+dUchO0/eV442Y5XNIBtEAeFtvdqNn7SHejxtPqM9K6G+/0C7sbuSflbtQpXyx3M+KY4Kri9O5GW5hM7sYP6W40DyEiKgPmM2RlVoZef2zdTQ7w8VA067ApsbqB+bB94ikxOU8ccDdqqpH0Q9KAwt0NA5On5T83Vx7HsePdMA8B3vyWs31DbmfH7n/FD70XgxFAS87dsFoUE3Y34nvA3XjDIcPdeDEmO3dD6pF9IxoKPaKjG0LuRiHkbrSFyeRu/JDuBoZhYainAeivMqt1N52DQ00c4KEyIxh7Znl139xacdIpZSPGOoDHw8zuRvBQdXG0uxHIcGXquInoV597QwAARk1AeUUED/ftcNa+ms+psXt5PHmIepK70fVTEdc4pXSo6dzd+BZVB9wNq0dzVddi/KT8D2rgEBo81Am6G7P+xXM3Wiisuyk2ItwNEcrjOP7ceO+BWZ0vVTV08tllx05yAjx0nEzuRvBQdXG0uxHI4G6IaPoZsTyGVCNGY9yUaB6u+WeeUcLtoINr4gF3E1xwnDWK7G4AT1VEDGIjSqiIa9Q3yt2QE+lufMcY4W5E6CWaOq0sv9FvPI4PzHA4dM+UzlCAu9GTUWF3Q526G9MKWWQBHw9lEoOBsjgmnRcfc2qsLCNDRk5wTr+obHCDE+ah63bmbtjnbmR1cnE3zFw/gM6Zm1vEGTAIkz4QzcNdW6hxf/70adla1nFITYe7rnFgOaOo626MuXodPoLuRr3ZTvaj525Ir7uRN1vJTlIPHZJXHvUe5Tod9t5PKB/rF6+g8y4se+LhZCLHxylNm+H06+8gh6f5yQpQxLobFVdlsGR4L35Wl9JlKPGeL6GGmb51N2Ssu8mja96X8PFQJinuMPPAY2NDRpft3Zzas4Vbm93mfZxMoN8gqqunXjXOoGOoupa82RrXx0PBMShLonkIT/kA75Fvhrsxn3odcDfGuhthSZhRP8A5Zy6/8Iy7P4s7NkdPwKRTAETzcPuWQl3FoS3lteMSBAY5pgDniqKuu9HXa8Cs3nUJGApBaiBBylbJUKPCk0hz5MMfRQY19iL/HuHK9xmCxXPVXIYrLUnf/nTW7PJ/PN6RfcQ59Qxn5FhZv8DT/PRlB1Lrbja+jUPN2LVdtnvvftynniqr0W+gCyL4192o45QOhvR0Y8DduGp2QB2smAhg9SYG626yho+HAZMhBhgE1A93jjqGSIYMSUhH9jIbgyAAHg/Z9cKWeDq6K9bd6D53mbzLQcaOQ+4mct0NvNd2cv2A2JyP0lsr+fV/uemYPGAQxp+AAUMI/vVfJg+b9hXaoO17nBpmZqnEeZdTlHDDGdwNjDiR1t2weP4i7diUatonGUKMeKUzeDhq6oQy+V4BI1RFGhDlHpXgEIEGDeHZF5YteTq1t7N73mpq6dQznIFDtR1O624SbVj7Bq99Ex3+B1zs3i637T/YmTCN6/qZ7ob0bGEh7ob0OlQLP7TpM+ZGItwN4IUJiEZX4ufIACPfXg9lC8LuhkCOo2+78dyNKxa1y4GV3AvpKx7mcmSFtjbet5fb27iykqqqUVsXdDek3sQwbhKNmxTbv5e3bOTmJrQ0MYABg9GrBkcNpl41asV5epfduL9Qd9O+NybCtENO6nC7G8re3bBa4Wa6m44ErVmW2rk51RF8To278kVU19KEk5xjRgebTPYxwFDuxnhAp0PUrz/N+7iz7q3U6tfdyKBTU0ujxznHTXLEINllV4W+CHezfw8vfYqbmzI1xJ7t9NwjNHaKe8xxXF5hPNUekvtiyjfS3bDhblQ48rkbKAfeu6qAJWtHHLT3ZG/9eufuxttYzjMqKyMnyri1mdsOobXJBVBT61TVcG0tid4w3Q3UuzqEYBD0nck+dyNfMA1s38bLl3U0NyHwWNvaOhrWQOOPd2rqSHNPv2cKQO9+mFTv6Ctt6h3h4nICKysd7W6K0s6s3A1AHckk8uJhl7gbR1xNiXI3jnw2jedutq1z31qWSqZ/IFZLEy97JvX2KvfUs2M1dUI7gM7cjfqAUWOdMcfFmpuweYObSMi+iZdj8FD0G+DAeEc4qYGO3904zLx/D//jMQ5Fw2isXeFs34IPzkrF4iQnA8FgOeMTdjf60omr3I0MzH53A+aUCwC9K4txX82RggzuxiHf9TzT3ZhfTHfTkcCmN1M7NruNvpvvUgCqa+mYsc64ibGycmPclLW7SbTTKy8k334r+mFMTY28eiWvXulOmeYcN9Epj3vuRsBxHFepl7rqpY+0E3eTf+MaMN1NoiOFvHhYaLiR+ux3Ny6zk527WfNycvPqrB4ZcWAPL16YPGtOWd/+cvAYcDcwL4cJvyN45RCAmlpMmBwjtSEAMFzXdRxHkTOdu3EP7EX2sUagcR9eWhw7+ZykugLiuRs5wWS4G7kiOgt3Y5EOag5QfPPxMCt3AwDY+nZqzbKwxZZoaeI3X029vSp1/ImxsROddO5GT+JA7ZkZmze4S55JZvOQyRX/dLds5FlzY+Vxn7txXUlIqDlESRZ0h7spr0uZ7ibvcgod1IkTV/WgHKI6DpFxhpA6ZDUpLM+rd15LZRlrBDra8Y9Hk81N0g6I97EwoPfl9Yfnd7yRtu4bkqMaOI6jjoHVlW8i/7OKkx3OS89xHk8jbdyHdSsd1dnqBlLzGpOUXvm0AH0SiPUiUEZZ1JyKQZojGAyvpQM81HlICZ4XuvX8GrDm5eSqJWljjUZHO157MfXKsylSK8uEuxG6qotmJWkA1q9J/WNRVrFGYN8eXvxIqiMRdDdG4apodUlBH4g3pSC+E4G5rm+hWlXWSxYmT5l8UWi4MdwNVBPIgSUZWqPOLzVRB+zZ7G54LeenfHa0Y+mTKelu1FOEvTUyhrtRZ6x+wAXrvmE1LyvdqSSnHNqwf93Nlg2pvB+wtukt51CTOnKSF6W82OG5G6jJYnk4OnrqdTfW3WQG6Ss/IR7qPCraG6FbDTdWPZ/a9GYOyrdxrfvyM0nS7+dVXkbRz3M3+3a7S57Omef79vA/X0g55Oho6crXTItaw5sW0u5GSKl+7hKp6RaifoMKJU/l4KR0N25Bj68rvrsBsnI3a5fl+UTh/Xt41T9dGHczeSuAlYUx/E6h7mbV8vyqKbF+ZUweOasrVAi5G3juhq27yQthdwNk5W5AeG+d+976nNm4Ya27ZkUK8mnWyqey3r1MeXlpnjxfv9bdvCFVoLsRB3zM+ELDTa/BqdJzN6o5Au4GIXfz3rpUW3P+TbD2jRSMe7VNd6PUrTjuZud78rpj3ti5FfLIpbtBhLuB527Iupu84HM3fh6a2cLuJtmGtcvyfBTOquWp5ibjiUiGuxHdumWju+O9/DtuzRveg5bzczfigHtV89Bj869G77EdVM7a3RSifMVyN6a+BN0NQu5mz5aCTp5EO97d6FIad+OfzYExdedzNwB36m52FsAVgWQCTfvArht2N6wVENbd5A/dmGoYHeShmTnsbjasSGa4KpoZiXasetWlNO6Ggc0bCuLPjm28f7csIdLd6EsKmd0NiI6b5ub3xJ+yXtx7XILURFCJuJsIVcngbnZvKfQB5jvfE/f8AiF3Q353A33q+t0NQJ26m8yrbLJERweRWDOq3Y2jFpSpWll3kze8iw9yGJ2LuwF2FaZ8725ywdHuhoD1a/N/B5HAls3yQ6S7USqeyd2IsFQex5QzUrlGHKecB57cBjntVUJzN2F345ucN91N894ivPdn3171yGLlZTi9u1FTdzm7mwJHUgKtzeLGNvLcjevK3apaWXeTNzpzNzofEHI3TXvdQgb1ABLt2LqJTXejBISzeT99p9i5rVB3I8ISA/0G8olnJ7OPOGW9eMhp7fE+0q9pd1OIwSmCuyGKdDfBpQeQWbgjUaQzR/eyWtGnucbsczc65iBHdxOvKEI1q2qg3A1Zd9NFIP03xEMzh3Q3Kq1pXxFadf8e82nWnvMoijXOPHeTtbsRuVHXn044O9lnYOdHXX9c8phzW+O91cLC0nE3zCF3453hnqqogFs8lfZaX62qVFzTayKydjeIdDd964tRWwa76jHaEe5G5rHuphCw/hvioZlDa5BAW3OR9u75Ds95FKlo+bcwdyNrxC7X1dOUDyfHnJKqPzqihuW9uHaIe+x57fXjk2RE5mLN3RRhVbH0Cw700hHxLBpxv4LpbhyAmStrCtyngtHH6q0PyuaIFFnFoLtR79MhY1UxCBReVVxdWwTS1NUzOeQajxwkx5E3LOjiCayclqvYS/5VxUKq6yrtDVMRCLobg4fyN5+7KbJVJG+9r74Pk4oTcfzuxlvewUKElIOh6FXFUKFPBB0iSrkuEQ0exUeN7EgknOZ9dKjZbW9xqo/ieF3KqUDKFSbf4yFMd8MuxRzky8NCw42oh+O5G1bHxYbrkdMszHCIqmoL3CcA9K2Xs+6kHxfizd2QCPPyHWHMDHIcb1SiRSCNu/HumRp2DL1UWD3r+nJZOVz59BMROMB6JbjmpHxxjmwtc46B1D1TqRQD6GNvmIqC4W4owEMvBwXdTXm8OJ6R9dtgjCtT/foXofCBg/U8VMQ9U54sKXcTuGcKADG7IgCLJ12Qk5SDTCord+sGUvVR7CLlMlIM189DfW1HuhuwQ04yBeTLwy6Zu9EBV+YQiWqhI4ABwwvd76AhUkZYPQzNGzZ5g1hZR202kXbuBunmbo4eURBpRhznQjz3S83dkHiKgYDpbvT0lp27yQWxmHx2N4DA3I1xU4GXwxjBoqZfESJCda06BfTcDQBQRQX6FTwYr6mTHwqZuyFt4B15uznJkYces+tyIniIwNxNAceU/2kv3qF3qL2dxXI19u6QM+OiPqOUASIw+g8vqBvicQxtkLcjEfmiu2xWGea9hS35zd0AmDwt/yaqqsbRoykwd8MsxkcA1KAauuthktbO3WSDPjXVAA61twPyBAvwUELHHeMcqi1GuBnWEDPdjeemCMNHFiSr8TiOHeO5m07nbpBm7kaaFRYvtnWY5TOR4amad26GeQj/3E3Myf9FEfk3x8TBfStiTmt7e2t7hx5Qip+i3Q2UuyEMGR2rrMm/p0+YHlMBLsLdSNPo3QusTl3K2d0A6N2Px03Ms6onnpEST38LuBt9CV9NbfncjSZtwN10uC7s0ydCmDi4b9yh1vb2Q20JdUkio7sxzqGyChxVmNE+agjF40xOhLsBY8KkfJ5wrjFqbCf3TAXcDXJ0N2KYJFRQn5thHsLvbigWQ748LMjdnDZyEICte3a5rhulKmndDYCxJ+cZI/vWo2GsowKccjf60jundzecj7txHOfE6U7DmJwjzuQZbm0/JnI8dwPjvnA1n8h6Mq8zd3OovQPAmAG982u3IxWVZbEPHTsYwNY9u1KpVKc8NN0NgGETCnrh+sSTYlAPvgHA+tI7MwjxCkydluf0aDyOiSd5k9rFdDdQb3yAIJ50N/qEQnp3U1VVtedAE/LlYUGhfdqw/sP7VLsub9q1q0P0tGgOc8osyt0AOGqEM/bknHsiHseZF5STciyeu1ELC8VbHIrobkSeD55OY4/PIeJMnuEePUoMoAx3g2h3Iyqa2d00tnakXBxVUzlmQF3avb5fYfBwd6c8NN0NgH6DKW+Dc9QQEnOInrtRCwtJvR9mwhQnv3efnTM3VlmZt7tRc6mR7gbR7kafUPDzEMrdAHSogxMdybx5WOiU7cWTjjmqprK9I7lu+47WpLzVLZ27UZM6MnnEBOfYqTloS68aOvOCsnilcgRR7kY/Jb+I7kbs/YTpdOb5Tq/OruJX1eCDs9xho+Vkm+duSN5Zk4e7OZRINbclAcwZPzz75npfQfGwo1MeQgmeTj7+tLI8JnGqa+m0c8q0pwi4G/beD4PTzioblOPLXaef4dQPcDp93k16dyMtTYS7cRy9+DlXd+PEq3buPYgCeFiESx5tydQDy9/Z1dzmOHR0v779a3oR2JGLrFg8414EU/GYey8FcIBt61JrX0l1dPbKhAGD6UOzysorpB2Q/kBGbfGyMREdwu5GH6tsPO9pfuw6jqNvrFFP8IOIOFCrXfRUNADX5TeW867tOLAXgToPHo6Bw93hoyXnRFRxwS6IAZfZZbiAy5xiuEDKlSkpZvFVbJJil0E6f3N7cm9zAsCHRw+ZNqx/gZ11BCNLHgr1dxxSvwJAexOv+EeyMetFxtU1dNqsWP0AB+J1IA6xy46aQSTSVyagJzBfXpJ88/XOl+QOGkInTaf6AY7mIUtyBnmo1UvPnLrMIHLFNhTNw5TrMsgFUq6bYjBRMiVTkq7LRCYPxTMXUi7Dcai8auP2PSiMh8W5wqp7GsCQPnX9a3pVlMVE14oeleFGPj6WHQLJV22wQ5Rs481vuZveiA46ffphyozyAYMERSCvPpF8xKz4IMREpvgjjup+teKGWYsA5HBJiIXyG/73TEmxYmVK2IWyTi3N1NIke7T/QNbTMqLXwZxiBjkp13UBBlLMDEoxuy67oBSzmElOiUk4iFfXyM1Trpty+UBr8kBrB4CJg/rOGT+s8J46spE3D4mQasfyv3fs29H56dCnHmddUF5R5T2rOAMPoSKOQ/Teu+4rS5PpXg0Sj2PySbHxk9WwRj2rWDJQTTppHrJyN1BhiKW9iuChFDDFQ6l8nfFQyGSsrLwlSdv2HEDBPCzmgo4lG3cu3bhTfK6v6TWsb11lWcxQFfH+HeluSJEAQmQcIubGvbxvBycTAEBAdR2GDHfilSCtS5A/ZXA3orFNd8NqpFsUd5ODqghTo9xNymUmCrgbYW3C7uZQIrW3JdGWdAGc2jDwtIaBxeqmIx6ZeegQ4HruRvOQCMS8bb27brnbmua+zV41dPxJzsixck2XmDBM527EoM28PMuAQ9TYyOvXuE2N3NQoX/PQrz/qBzh962G8EcTjYRHcjcHDlOu6DBZ6ZrgbEXQC7gbkUHnl9gPNjS1tKAYPi7x+bMv+liUbd2w50CK+1lXGh/Su7V9dmcndgAgswg2pmCL6KaYGno5D7Lo+d6NCTKSqkHiko+Fu5NEW1d1koSoQPiXkbuQYKlJVGtuT+w8lWjtcABUx55JJDcP7Vhexj94PCPGwYkjvmgw8JAIxxFdibtrPOzZx417uSDCAeJz69KchI6jfAEkpQT92uVMeqksU3ss2oXjon4FRE7tqxqeo7kZHnIC7ScvD8nhFS4p3Hzx0sKUNxeNhlyxX3bK/ZdnW3ev2NOqU3pXxvr0qauLlVeVldRVlchJHTYBrdwOpP6QT5Vt7otyN90HEI1YkEO6GxIUgoCvdjSg5T3fD7LrS3bQk3UPtqeaOZFNbUoSyipgzbfiAacP6i+WUFnkgzMO+vSr79qroVRbrFS+vjcdMHopA4zgk7uyTIUklRvJQP6xW2Rw5aeuY7gYweSie558TD7NxN9nzMMLduC4zpZjhOB1OeSLFB1sTuxubxU0zxeVhF66OP9iWeH37/rd3HxRjaROVZU5VeVlVeay6vIyAuoryeJlDzL3iseqyWMDdkLzklMnduOYoWrsbkkvaxSUnoMhzN9m6GzXldjDhdrjsMrcm3LaU64IPtiWTLrcmfTOIR9VUThrcb+LgvjbQFAUZeNirvKyqvKwqHqsuLwNzXWV5uUPEXB0v61XmqBvK2eRhZncT5iGr2yOVu/F42N3uRlwuc5zGDu5wGURtSW5NpkC0r6U96XJTm2/qtCt42B0347QlU1v2t+xsbt3Z1LqjubWprSObrcod6lNZrpyJFITqeKy2vEzPyugLT4ELAfp6ng/K3RgXFPVd2mIj3RTG4yBlDTxOmBxhIJFyD7QndYoqDAASrtuUyOr5IHWV5QNrqkb0rRkzoM6uG+4imDzc2dzamCUPY1Rf5T33SDCttrK8Nl5O8tqxVEc5bgpwL0xFObVMnfFQsVX9UWs55CbqOr84E6g9mdrT4j0G1SAjtadS+w91dukXQNfz8PDc+3ewLXGwteNAW+JgWwLAzqbW9mQKwP7W9qb2PJ9TXfo4qqZSCEXvynjvqjiAEX1qKspjA2sqD3fV3qdIx8MDbYksg1FPxGHkYeneatyWTO1qCrpfzYzSQWVZbGBNVeRPNpQcAbA8LCJKN9xYWFgcYSj0JgYLCwuLLGHDjYWFRTfBhhsLC4tugg03FhYW3QQbbiwsLLoJNtxYWFh0E2y4sbCw6CbYcGNhYdFNsOHGwsKim2DDjYWFRTfBhhsLC4tugg03FhYW3QQbbiwsLLoJNtxYWFh0E2y4sbCw6CbYcGNhYdFNsOHGwsKim2DDjYWFRTfBhhsLC4tugg03FhYW3QQbbiwsLLoJNtxYWFh0E2y4sbCw6CbYcGNhYdFNcAA0NTXdddddZ5999oQJE44//vhZs2b9/Oc/TyY7f3nuddddd9lll3V9JQtCKVQylUrdc889Z5555rhx484888xf/vKXqVRK/HTo0KGbbrrppJNOGjdu3CWXXLJy5cpCdrR69eqGhoYnn3yyGLXublgedjUOOw/LAFx55ZVbt279yle+Mn78+GQy+cILL9x1111bt26dP39+IbssBCeeeOJf//rXo48++nBVoLi4884777nnnq997WuTJ0/+5z//edtttzmO89nPfhbAN77xjVdfffX73//+wIEDFyxYcMUVVyxevHjQoEGHu8qHAZaHXY3DzsOyt99+e/ny5f/zP/9z3nnniaSTTjqpoqJi8eLFra2tVVXRbx3uUmzbtm3fvn3dv98uQjKZXLBgwVVXXSX69eSTT37rrbceeeSRz372s5s2bXrsscfuueeeD3/4wwAmT548c+bM3/zmN9/4xjcOd627G5aHXY1S4KEj3JTj+CZxrr322r/85S+6j//0pz99+MMfHjNmzNSpU7/85S/v2bPHzNzc3Dxu3Lhf/OIXOiWRSEyaNOm2224DsGfPnq9+9atTp04dO3bsvHnzXnzxRZFn/fr1DQ0Nr7zyynXXXTdhwoSTTjrpe9/7nuu6L7/88qmnngrgtNNOE+2isWTJkoaGhtdee02nrFixoqGh4fnnnwfw6quvfuxjHxs3btz48eP/7d/+LdINjh8//u6779Zfb7jhhgsuuEBXZunSpZ/4xCfGjRs3Y8aMRx999I033pg7d+64cePOO++8VatWiU2SyeR//ud/zpgxY8yYMaeffvqCBQt0afPnzz/22GMjmthx/va3v11zzTU6ZfDgwYLHL774Ynl5+Yc+9CGRXl5eftpppy1ZsiRcyBe+8IXPf/7zv/vd704++eRx48ZdffXVjY2N//Ef/zF16tQpU6Z873vfC2/Ss2B5iPcBD51jjz122LBh3/jGN37/+98H+k9g4cKF3/zmN+fNm7do0aL//u//XrVq1ac//Wlm1hlqampOP/30xYsX65QXXnihqalp7ty5qVTqk5/85PLly3/+858/9thjU6ZMufLKK9euXQugrKwMwA9+8IPLLrtsxYoVd9xxx4IFC5544okTTzzxZz/7GYBHH330P//zP82aTJ8+vb6+3tzRE088UV9fP2PGjA0bNnziE58YMGDAwoUL//znP9fU1Fx22WU7duzIfPAaojK33377DTfcsHz58kmTJn3729+eP3/+T3/602XLltXU1Nx8880i5y233HLPPfd89atfXbx48Wc+85kf/ehHf/jDH8RPo0aNOvPMMyOa2HGOOeaY3r17i6/JZHLp0qUnnXQSgI0bNw4aNCgej+vMw4cP37hxY2QNly9fvnnz5qeffvqBBx545plnLrnkkgEDBrz44ovz589fsGCB4HrPheUh3gc8dOLx+K9//euGhoZvf/vb06ZNO/vss3/wgx+88cYbOse999576qmnfvGLXxw5cuT06dO//e1vr1q1avny5WYpc+bMWblypW7Wxx9/fMyYMePGjVuyZMnq1atvvfXWGTNmjBo16uabbx42bJgZiWfNmnXqqaeWl5fPnDlz+PDhr7/+enl5eW1tLYDevXvX1NSYe4nFYueee26gm88///xYLPbAAw/E4/E77rhj/Pjxxx9//E9+8pNEIvHQQw9lOPIwzj333IkTJ/bq1euiiy5qbGz8+Mc/fswxx9TV1c2ZM2f16tUAmpqafv/733/mM5+55JJLGhoaLrvsso985CP33HOP2Pziiy/WnzPgtttu27x581e+8hVRoDhYjZqampaWFtd1wxseOnTo61//enV19Yknnjh27FjXda+66qqqqqpZs2b16dNH1LDnwvJQ4wjmoQNgzJgxDz/88JNPPvmd73xn+PDhv//97y+44IIf/vCHADo6Ot566y0RAgUmT54MIFDoWWedVVVVJSaik8nk3//+93nz5gFYuXJlLBb7wAc+IHfmONOmTTMpMn78eP25rq7u4MGDmdvoggsu2LRp09tvvw3gzTff3Lp1q9jRqlWrJkyYUFlZKbL16dNn+PDhuZ6Bo0eP1jUJfG1vb08kEqtXr+7o6Jg+fbre5JRTTtm4ceP+/fuz3MX8+fPvv//+n/3sZyNHjsypbgCGDx+u9aeurk5XT3xtbGzMtcBSg+WhwBHMwzL9afTo0aNHj77qqquam5tvvvnm++6774ILLhg5ciQzawMGQHxubm42S6mqqjrrrLMWLVp0xRVXvPTSSwcOHJg7d67IlkqlJkyYoHMmk8m+ffvqr7pjBExvHIlp06YNGDBg0aJFY8aMefzxx48++ugTTjhB7Gj48OFmzt69ewcq2SkqKioyfGVmUeAVV1xBRCJRhP+9e/eaBxUJ13VvvPHGRx999L777hOTAqKSge5pbGysqakJTGFkWb3MFegpsDw8gnlYlkgkdu7cOWzYMJ1UU1Nz/fXXL1y4cPXq1RMmTHAcxwz24nPAegGYM2fO5z//+QMHDixatGjq1Kni2mFtbW1FRcVjjz1m5ow8hizhOM7555+/ePHiL33pS4sWLRITbGJHAUU6ePDg4MGDA5vr7hFoa2vLae/iqO+8885x48aZ6WbrpcPNN9+8ePHiP/7xj8cff7xOHDly5Pbt29vb23Wfbdy4cdSoUTnV6siA5WH26Lk8dH70ox/Nnj07MDknZokGDBhQXl5+3HHHmbbzX//6F4BJkyYFCjr99NMrKyuff/75p556ShhLAFOmTGlvb3dd91iFysrKcOtHIl2YFCPYl156acOGDXpHEydOfPPNN9vb28XXPXv2bNq0KVzJuro6U2pydbnHHXdcPB7ft2+fPpw+ffr069fPnGOLxEMPPfR///d/CxYsMPsYwKmnnuq67j/+8Q/xtbW19dlnnz399NNzqtWRAcvD7NFzeeiIaZ6LL774t7/97SuvvPLiiy/+6le/+uIXvzhhwoSZM2cC+OxnP7tkyZJf/epXW7duffHFF3/0ox+dfPLJ4RasqKg4++yzf/WrX+3du/f8888XiTNmzBg/fvxXvvKVV1555d13333kkUdmz579wAMPZK6T8MlPP/20uHYQwAknnDBkyJBbbrll7NixY8eOFYmXX355IpG44YYb1q9fv3r16uuvv76uru7iiy8ObDtp0qTFixfv3bu3tbX1pz/9aUtLS06NVVtb+2//9m933nnno48++u6777788suXX365XpuwcOHCa6+9NrxVW1vb7bffftZZZx06dOhlA4lEYujQoZdccsn3vve9xx57bNmyZV/4whdisdjll1+eU63CePPNN58z8MorrxRYYDfA8jB79Fwelg0fPnzhwoV33333vffeu3Pnzng8fvTRR1999dWXX365CJZz585ta2u7++67b7/99rq6urPPPvvGG2+MLH3OnDlXX331hz70of79+4uUWCy2YMGCH//4x9dee+2hQ4eGDRv25S9/+dOf/nTmWk6cOHHmzJm33nrrKaeccv/99wd+JaLZs2f/+te/NtcgjRgx4oEHHpg/f/6cOXNisdi0adP++Mc/1tfXB7a98cYbb7jhhlNPPbV3796XX375RRdd9Mwzz+TSgPjOd75TV1d366237tq1q76+/pxzzrnhhhvET+vWrXvqqafCm2zYsGHHjh2PP/74448/bqYvW7ZswIABP/zhD+fPn3/TTTe1tLRMnTr1gQce6NevX05VCuOnP/2p+XXo0KFLly4tsMyuhuVhLq3VU3lIR8wUo4WFRYnD3hFuYWHRTbDhxsLCoptgw42FhUU3wYYbCwuLboINNxYWFt0EG24sLCy6CTbcWFhYdBNsuLGwsOgm2HBjYWHRTbDhxsLCoptgw42FhUU3wYYbCwuLboINNxYWFt0EG24sLCy6CTbcWFhYdBNsuLGwsOgm2HBjYWHRTbDhxsLCoptgw42FhUU3wYYbCwuLboINNxYWFt0EG24sLCy6CTbcWFhYdBNsuLGwsOgm2HBjYWHRTTj84WbZsmVXXXXViSeeeOyxx06YMGHevHl//OMfs9nw3XffbWhoaGhoaGxszHWn119/fUNDww9+8IPc69s57rrrLlGxH/7wh11RvkVX4M9//vPFF188ceLEY489durUqVdcccWyZcuy2fDBBx9saGiYPXt2Hjs99dRTGxoannzyyTy2TYcFCxY0GBg5cuTJJ5985ZVXlsKr4g9zuHn55Zf//d///emnn66urv7gBz/Yv3//119//Vvf+tZvf/vb4u7ovffea2houO+++8TX8ePHn3HGGaNHjy7uXgQeffRR8eGJJ56w70TuEfjZz352ww03LF++fPjw4aeccgoRLVmy5Iorrli1alVxd7Rw4cKGhobVq1eLr9OnTz/jjDMGDBhQ3L0AKC8vnzJlypQpUyZMmHDo0KHnnnvu3//93w97xCk7vLv/7W9/m0qlZs2a9ctf/lKk3HjjjX/4wx8WLFhw+eWXF3FHOgQIfPrTn+70jfT5Yd26devXr6+rq+vVq9f27dtXrFgxderUrtiRRRFx//33A7j55puvvPJKAK2trZdccsnq1av/9Kc/TZw4sYg7CvDwtttuK2LhJo466qi//OUv4nNTU9Ps2bPffffdBx988OSTT+6iPWaDw+xuxDiob9++OuVb3/rW888/b9rLhQsXzpkzZ9y4cRMmTPj4xz/+/PPPRxZ16aWXmv7lueeea2homDZtGoALLrjg1ltvBfDDH/6woaGhpaUlMJhKJBJ33HHHzJkzR48ePXXq1M997nMbNmwQP/3mN79paGi45pprXnnlldmzZx933HEXXnjhm2++me6IHnvsMQAzZ84866yzEKKXRWkiwMOqqqr77rtv2bJlt9xyi0jJwJAAxBBG+5f58+c3NDR88YtfbGlpaWhoeOaZZwCcf/75F1xwAUKDqR07dlx//fXTpk0bPXr0jBkzvv/97zc1NYmfPve5zzU0NPzv//7v7373u+nTp0+cOPHaa6/dt29fNkdXW1s7efJkAG1tbXk1T9FwmMPNhAkTAPzxj3/82te+9tRTTx08eLC2tnbYsGGOIyv2y1/+8mtf+9qaNWvOOOOMadOmLVu27JOf/ORTTz2V017mzZs3ePBgAB/4wAc+9alPlZeXBzJcc801P//5z5uamubMmTN48OAnnnjioosu2rZtG4DKykoAGzZsuP7668ePH19fX79y5crPfe5zyWQycl8i3Jx77rnnnnsu7Hiqh0Dw8MYbb7ztttteeeWVRCIxcOBAc4yTgSFZory8/FOf+pT4PHfu3Hnz5gUy7Nu37yMf+chDDz3Uu3fvuXPnplKp+++///LLLxdMEzz829/+du+9906fPj2VSi1evPjHP/5xNrtubm5euXIlgMNrbXDYw821114r4u7ChQs/+9nPTp06dd68eb/73e9EEzc2Nt51110Abrnlll/84hei9QH85Cc/yWkvV199dUNDA4BZs2bddNNN8Xjc/HXJkiXPPvssET344IN33nnnX//61/Hjxzc2Nv7qV78CIALf+vXr77zzzttvv1247i1btkSK29q1a9evX19RUXH66aefcsopffr0EeOp3BvGoltxyy231NfXHzp06Be/+MWll146adKkT33qU88995z4NTNDskQ8Hr/pppsEna655pqrr746kOHee+/dvn37iBEjHn300TvuuOPhhx+Ox+MrV64U3kdsuGnTpkceeeT222+/8cYbATz99NPpdrdr166LLrrooosumjt37vTp03fs2HHZZZddeumlubVLsXGYw02fPn0WLlx49913X3rppSNGjGDm119//bvf/e43vvENAK+99pqwf3PnzhX5zz//fADr1q07cOBAserw4osvApg4ceLIkSMBlJeXn3POOQD++c9/6jyDBg066aSTAIwaNaq6uhrAzp07w0U9/vjjAE4//fRevXqVlZWdffbZsOOpnoDjjz/+ueeeu/XWW88777z6+vr29vZnn332yiuv/POf/4zsGFI4xF5mzZoljMygQYNOOOGEwF5mzpxZW1sLYMqUKQD279/f0dERWVpHR8eKFStWrFixatWqpqamWCy2efPmtWvXFrHCeeDwXwh3HOfss8++9dZbn3322aVLlwqT+Ze//OXdd9/dv38/gIqKil69eonM/fr1Ex8OHjxYrAqIvZjzR2IvZkQzf62qqgLgum64KDGSWr58+ezZs2fPni2mmex4qkegurr60ksv/Z//+Z9XX3314YcfFsOrn/70p8iOIYUjJx4KEiINDwEMHTp0o8Krr7766U9/eunSpZ/4xCfyWDVSRBzOcNPc3Lxo0aK77rpLz2ANHTr0jjvuKCsrA7B58+Y+ffoAaG9vb21tFRn03JjZKwLCbeqispxFAyD2Ijrb3FaHtiyxZs2ad955B8Du3bvfeuutt956SzggO54qcbz33nsPPfSQGCYLTJ48+aabbgKwbdu2ZDKZE0OICIeVh2HU19d/6UtfAnDgwIHDS8XD7G7+3//7f//1X/81f/78RCIhUv7+97+LiZujjz76hBNOqKiogDEe+etf/wrg+OOPr6urCxQlJvbElBiAv/3tb+avggQtLS3hOkyfPh3AG2+8sWnTJgCJROKJJ57Q6dlDjKROOOGEjQZmzpwJO54qbWzatOn666///ve//8gjj4iUVColZkwGDRpUVlaWE0NMHra0tIhLURqd8vCpp54S58K2bdv+9a9/pdtLrtDXc2tqagovLW8cznU3NTU1X//613/wgx/cf//9Dz744NChQw8ePLhjxw4AF1544YgRIwB86Utf+slPfvKd73xn6dKl+/btW7p0aSwW+9a3vhUu7YwzznjkkUeefPLJ6667rqmpSVxB1KOYQYMGAbj//vu3bt369a9/3dzwtNNO+9CHPvT8889/7GMfmzlz5qpVq9auXTtgwIBrrrkmp8MR4SawuvS888577rnnnnjiie985zuCahalhg9+8IOzZs1avHjxl7/85VtuuaVfv347duwQo/WvfOUryJEhZ5xxxp/+9KfbbrttzZo1y5cvHzx48O7du00ebtu27bvf/e6MGTO++93vmhteddVVCxcu3Lhx47x588RcUkdHx4wZM84888w8DkpMFYvPBw8e3LhxI4CpU6eKSZ/DhcPsbj71qU/de++9M2fOrK6ufuedd5qamqZMmXLzzTfra0+f+9znbrvttlGjRi1atOi1116bMWPGH/7wh8h4P3fu3Ouuu65///5Lly4dMmSIWDHR3t4ufv3MZz4zatSopqaml156KTDcJaK77777uuuuq6ioePjhh3fv3n3hhRf+5S9/6d+/f/YHokdS4vq3xjnnnBOLxbZv3/7aa6/l0jAW3Qci+tnPfvb9739/6tSpqVRq3bp1juPMnDnzvvvu+/jHP44cGXLDDTecd955ZWVlzz777Ec/+tGPfvSjMHj4zW9+s3///ps2bVqzZk1gw/r6+oULF1544YW7du16+OGHKyoqrrvuunvvvTc/ldJTxStWrNi5c+fo0aO/+tWv/uY3v9FLTA4L/j8mSddLzCZzTAAAAABJRU5ErkJggg==", "path": "image.png" }
Which solution has a higher concentration of purple particles?
[ "Solution B", "neither; their concentrations are the same", "Solution A" ]
0
The diagram below is a model of two solutions. Each purple ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the purple particles represent the solute. To figure out which solution has a higher concentration of purple particles, look at both the number of purple particles and the volume of the solvent in each container. Use the concentration formula to find the number of purple particles per milliliter. Solution B has more purple particles per milliliter. So, Solution B has a higher concentration of purple particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAh0AAAEiCAIAAADSxvdVAACBDElEQVR4nO2dd2Acxdn/n5ndvX5qpy5Lbrg3bGMwxg3TQ7GN6YaQQiBAEhJIfYGX5E3yI+VN3kAKCZBKN802JiaE4gIGAhjj3ossy+r92u7MPL8/Znd1lm0hyyfJlufDcb7bcje7t5rvPs888zwEEQGgyoSdMWjlwBAU/R6dQFiDYQEo8BzzvupSOaVQl4qii6ReKgQRq034T0tfN0rRF5yVAfnH0l+oS+WURV0qii5yVgboALAjBgBQ5IERQQhrfdwmRS/QymFbFA6asD12bJ2FulRONdSlougiqZcKBYA2DgAwUv38pwxhDUYEAZyfvuuoS+VUQ10qii6SeqlQALAQACCkfv5TCfnXbh2j41tdKqcg6lJRdBH3UqF93ZLeRwB2duuFyBFFr7VGoVAo+hl6XzegN0FABEKBACK3zEorUc7MOkSGQDQt0/CVen1lVPMBgJQWQk5B3VUoFIrj4pTRFRRACBBqJQ+0NS2Pt6xh5n4UMUSGCAJBcILgJVqePzQpK++yUOZ4AEAUSloUCoXimDg1dAU5EI2z5ubav8ebXwXRouk+r9cLkAlAEFEIFAiCC8uqb21Y3Fi7zB+aWjz49kBoGCInhAKQvj4GhUKhODk4BXQFORAtEf2ksfJB5BUeTyYluYQgACKghBAkQhAAQjya5mOMJVrf3bb2w6JBdxaWXQcogICSFoVCoegK/V1XkAPRok3/bjr4U8Oj60YuIZwQZ9weAQkgEhsQAIjIqUZ8/kxqsfIdP4tH9w8e9R0AoXRFoVAoukK/1hUUQLRYy6rGgz/2eYOaphHC5HAJIYAyblI4ckEJIBXAKYIGgIi6RoKh/Or9/0DQh4z6lhprUSgUiq7QjztKBEKtxN6myge9Hr+maYQKqgGloFEgBCgFSoBQAAqUyNdEI1S+ppRQCpSyQKjg4N6/HSxfSghV8ccKhULxmfRjXQEAaKz6DaVRXfcQKmwhIUAIoYQQAsRZAgQIyHgxQqTqECCEUgKEoNcf3rP1N/FYJSEUQKXQUygUis7op7qCAoBEm94yYx8aRiYBTmz9kHpCgAAhBMBWFHCkxX1lawwBSlDXvZzV793+VwBAVLqiUCgUndFPdYUQAGhreEnXDUrQ1gkpLQAdbQ5HT+zNbG2RHyPVR3i94drK12PRA4RQUNKiUCgUR6df6ooAIMnYdjOxWdMCQARJieRyJaZ9ETpPCIC2pCA4IkSAEKCaYVkNNZVvAQCCGmVRKBSKo9IPdUW6quJtHwPGCbHz3hE4xEpBQFtF0FEUZ7lrjRxqlqBGjfrq990PUygUCsUR6Ye6Il1Xyfg2d5gdHeFARIHCng4JiNAuKugIjFwHtq64IiOo5om27uUsrkbvFQqFohP6oa7Ig2JmFRDdtj9Qzq23TRAUCAgoAEX7cnf+vfwIgSAtH3tSPiAhmmk2JRN1oEbvFQqF4uj0z3mRiELwBCDhHCmxdUUAEAQg7baG1JIU1UHbkBHuW2eVAAAiuMlZvA+PS6FQKE58+qmuCGEx7tGI14MWI4QAFYAEQE6zJ+3DKigAAQSCECCEEIgyvTEiSJeZECA4CgGcoxD2fgqFQqE4Gn3iB5PjGsJ5pLOn5pwLIaimZ2WGYjG2fafpMUBKBbiOL/c5RVQQhcxq7KxFRFtODAM1jWg6hkKGpvtS3WUKhUKh6EBv2itoF0GxxeyQqCpEDkC6nYALEYUQlFJN0wCgoqLyib/V/uvf1fsqtC/dkPHN23PjCdQ0IJgyEi+fBQhEYf8PKIAjcAFCCC6AMfB6cMt269F/RL0e64Jz8yfPDBMCAJRzTgihNC3C7Iz8QEp0s0KhUJyc9I6uSEXRgGgAgMJirEGwNgRBiK7p2bqR6QQEy6z1x9BZu/27pmmWZa1Zs+a5555btWplY1PC7/f4vPDHvzWNH+s9b2aoLYqaRojrBLMHV1C6v6SlIgQIAXIR50ApNjax//tjtKKS6RrZsLnqn28uvOaaa+bOnZuTkwMA0nMmxezYzwoHkBnK2mdsOgjnPCiBUSgUJxm9oCsCgADRBG+LtayJtayxEjs5axA8KQBRUCABqhf4AmMzIucGw+NkekdCSOddKiJyzjVNk316ZWXl4sWLly5dunnzZiFEKBTKzvIKgRoFXSfPL26ZOc3PuZOhxfkI4QR7yQEVIYALEFxwbhsrAR/+e0XywEGRk61zjoja9u3b77333t///veXXnrpDTfcMGLECEixlkhHeTha6zkQaqssMmbVcqsJkQEQqoUNTz7V/PKTVFUxhUJx0tHDuoICCBUi3lr/YrRxMbcqKaWUeqihg67LQXLOY8za1ly7vqH6OU9gQv6AmzNzpgIIuxb9YbgGiq7rjLH3339/0aJFK1asqK2t9fv94XCYECKE4BwBgDE0DLFzd6K2jodDlHFslxU4JP5YIAgOwgYYByFEPCk+3WxqVDBGpKcqFAqFw+G2trbHH3/86aefnjFjxsKFC2fOnGkYRmrbOjkjAAhEQ7TirR9Gm1eY8a3MqkUeF3b4mUG0LN0zJJR1TmZktm5kStlSKfoVCsXJQk/qil2ocUPjwV8Ia6dhhD2BCCFy/oiMtpK3+ZpGA7oRZIwn4+t2b/w4K/ey0uF363ootT/tMIJSXV29dOnSl156adOmTZzzUCgUiUTkNuDML5HWQ2uLFQ7qhBDOQGB7ljB38qNjrCBywQVyAZyDYIJzjoK0tnLT4kGgAgEA5Od7PJ68vDzG2Jtvvvn666+PGTPmmmuumTdvXiQSgU6cY/bwEok2/bu17inL3EEJUOr1GgYaPhnWLARy3pCMVkab3q7e/3hW3tyCAddpegiRu7kDFAqF4kSmx3QFORCtrfGfzdW/0HXq9ecRwgG4TO+IAEiAIhFUE1wACBCAGnh9GZouGmuXtLVsGTb+V75AsQzTAgDp8uKcf/DBB88///xbb71VU1Pj8/lSDBQOKYqSTCZbW1s1CsOGZn9pYY7PCwkTNY20FxROmQuJAqWZYosKF4xzxsDQcMZUo6LSqqlt9HmNYCjkfgXnnFKanZ2NiLt27brvvvv+8Ic/XHrppddff/2oUaPgCM4xAYQyq66x8hfJ6GrD8Pt92YQSOZQimyEEEoKUGFTzcg9YZmttxSMN1a+VDf+vjOxJSloUCsVJAUHEV+oAAC7PTd+n2qKyrPngg15/pkYpkckfUzp06egStgOKM4GCA+PAGOdci0abKC0adcaffP5CabXU1NQsW7bs5ZdfXr9+PWMsFAoZhnG4gSKEiEajsVisID/voouvuOzSiXn+P4bDRtIETXMT5BN02iFnQgphRxtzDkJwzgVjwBkkTWboelVN056qWW+t2Pfppx9qmp6RkaFpWqpJJMUjmUy2tLQEAoFp06YtXLhw9uzZHo8HbOcYUqon49sbKv6LYLXhyaZEAAg3iMCe8C9ACOSCy5YwTgSHeCKaSLCBw36QP2BueqWlG797+i8VxcmAulQUXUT+7j1hrwggWqJtbXPV/3p9mRqllAqn/AkAACIQBNQABFABAIBUo8iRoEZBUIqC+XxZ0baKbet+MGLiIxs2bFi06Lk33nizqqrK5/OFQqEjGiimaba0tFBKx48fv2DBgvnz5xcUFABA5T7Yt/VnoYx8aQ0Qgh1MFikqKGOLueAcBQeLo2VxRKO5uXbE6M9d/YVffesea+XKlU888cTq1atjsVhGRobX65XfLrXNMIy8vDzO+YoVK958883Ro0dfffXV8+fPz83NBQAzsau+/B5dixqebAIMqBNAgEDAGeahgEAoaIicUtAQUaDH4wMQuzf/EAEK0i0tCoVCkXbSbq8gABE8Wr37KxqpNgy/W6hRBmPZ89yd+CsQIJz5IowLwYAJYIxbFiaThJLY22vCP//NLo3Gg8FwqoECAIiYaqDk5eWdd955N9xww9SpU3VdBwDOOQBqmr5/52P7d/3W78/SdI+saO/WYUHbYYUoBBdoGwpMMA6Ck2SirnDA+aef/b+EeAmxA6C3bt361FNPLVu2rLKy0u/3S52TjQE5B4dSRIxGo9FotKio8JJLLr/++rmFod8yc6/Xm0EIo4eGFqdmi0GUvjjBuR0+wCxuMWKaLB6Lj5r8SFZkUrqG8dVNqKKLqEtF0UV6xl5BAURrqXtGsD1ef57sQ2XpX6d8VrulQAggAYJgd8jgVt+ilHBNE4x5Th/dPGq4/8BBv653NFAsy2ptbQWAcePGXXnllfPnzy8uLpYbMMbcEGREXnraVwxv/u7NvwBo8PoyZewAONny0Zm8wgVwjoyDEISZcc6Tg0fcPHLCtymVZ8meCzly5Mgf//jH3/rWtxYvXvzcc89t2LCBEJKRkaHrupNhDAEgGAyGQqFkMvGHPzxeEln2+WvzEiJECCMUZKljV2UBgAAIsBPMEAKUEqk0lAClhFKh6bqmw44NP504/QldD7QXilEoFIoTjPTqCgLROGuMNS0zjDAhnDh14+HQbvQQiO0Lsis2OupCKREccrJ958/if/p7W0hvtwmkKZCbmzt//vzrrrtu+vTpMszXDcSS9or98URD5IWlc0OZY3Zu/k1T7buUgmEECNUJoY7lhFwgF4IzxsyEEFZG1vBhY79RUHIuonBaCVKo5Lfk5OR86Utf+vznP79q1aonnnhi1apVjY2N4XDY5/O5zjFKwbT0Sy4ccN2CSDxJdU0QCu1Cm6KyCEDQzmBGEJySlQgAQCglgoDweEItzdvLdz01ZMRXEIXyhikUihOTtOoKCiBatHmV4DWaJwLA2yv6AgA40oL2G/ueWzibHLIlAAGqQSIhJo4zcnNIaxsgsubmFgAYNWrUlVdeedVVV5WUlIBjoFBKjzZxhBANUYQyTjt96u/qaz6o2PNCU/3HZrIBBWsPCUMEoIaRkZM3uWTQFYWlF2ma74gzNOW3SI+cpmlz5syZM2fOtm3bnn766WXLllVUVEjnmL0NxwWX+QydcIZuLeRUUWnXWkdf28shp2xPCAIIrzd0cN9LAwZf4/FkKpNFoVCcmKRVVwgBgHjre4RqIIfHj0R7rUYA92VqDS2Ado8QFxDJ0QeXiVf/VTNgQOSKK664/vrrZ8yYIUOtjmigHKVpVFoekfyzIvlnJRMNLY2bW1t2JuM1KCwAzePLCoUHZ2SPDoQGyK/vfBiDECLNF+kcGzFixI9+9CPpHHv22Wc3bNhACXh94UEDvWdM9CaSTgqZ9uM7VFScw+9QDtnVNCkwmu5taz5QW7myZNAVymRRKE4cWCJhtrawRAIAqGF4QmEjGOxqAo5+Rxp1BQGo4DErsVujHkA8pIS88xaxvefEFHUBx98k37rdLQEQgk+ZXHj6GbfefPNVpaUDwUnicqxpH6VIyASXXl9OXtH0vKLpRzwQmT2li2Pjqc6xrKysL3zhCzfeeOPq1auffvrJJUvfGjPCk5NtRGOoH0kCCBDEFJV1W+BkTD5sDVBKa6veKRl0hTJWFIo+J9HQUPXhfw6sXlm7fn20stKKxRCAeDz+vLzskSNLpk0fcM70jNIBp1q+jPTqCmFWHWdNuldHp4yv7B8Jae8p3eKMqa+dIXQQ7msAQKAabW1pvfC8WROn3QMohOCI4I7Jd4OUBJfiyOsJ7YYd0ME5du6555577rnfuGtXY+WP4/F9lAZSEynbukkcmU2x2A4vhwypOotCo962lh1CWJQayhWmUPQVicaGnS+9tPXJf9RvWM+jUQAA2QkACIDm7dsq31m96R9/Dw8ePHz+gnE3fT57yNA+bnEvkj5dQQACnLUIkUT0y/FwIgABgNpr0Z2r4eqKnUnFKdSITo5hBLCXEyA0kWiUs+4pTZfnh/SEE+lQ5xiMGzu0OpRlxnZ5fcTWCbRD4JAgyLk77dP+21PLuJJiv04plkyonkzUJRN1/kCRkpXegXNuWZYMW6dU83g83b6tUfQL8OD773/40/+pXLUKLItqmuH44V2vvqwrxYVo2bHjg1/8bNuSxVO//d3RV12teTx92/TeIe3zIlNqwiNxazISJxqs3f3lTra389IfklXFnt3iTOkAQEo/I8PxCYWjLiwRb9SIJoUS3JLGqXkHHFFxExC0l0AWIOT8mpQyyQCE8ySz2sARqT47yFOAZDLZ3NwcjbaZpsm5XVBU1/VwOByJRPx+f183UNHboBA7Xnj+g/v/K1peruk60bTUv8D20WLXQUEpAWjauuVfd329btu2c77zXU8o1PvN7mXSrisaIhECBUdCNCBABRDquHckzq23O8tdyFt5e947thdwRBRIhEBKdHvPk6obpZTKqTKIiIIIClSAoPaQvcRV2fapkU45ZPvGR1axtBXX3f5IEduK9IGITU2NDQ2NnHNKiaZplFKZ5cE0k1VVbTU1NcXFRfn5BWmq7aY4Odi+6Lk1373HrKvTdf3wChaub50CCMdTAwCgaVY89sH//Yolzdn//YAR6Od3JOn7kyAEADQjG8Er5Nx1LoQAAU6xLKf0r8D2hVwIt1CjkEmFheB2fS0UArhAzpnXF4H2wYiTBkIogiZrUTpp8J1yyM4D3HNiP6SsOLYLd9KXCVtxuRAAlNDeLPR5yoGIdXW1dXV1hIDHYxiGobdjGIbH4/Fwznbv3l1evs9NAKHo91SsXPH+fT+w6ut1TdOOdJNLAagTxkmdJfKtRggR/KNHfv/ho3866bqyYyXNt1qGkUdpLuOWQMKFEFxwjtzN6ojA0VYUIVDYngVHYzgIIZwNhJQlzhGFCGWeBgCHxUad4AgAoFoO5zKPpBAi1fV3qMraWS+lIrunSNaDcV/INDNcN4IebxY4WS8VaaexsbG5uUnKiKbplGrOg2qafGiGYVCqlZfvq6ys7Ov2KnqDaFXVf/7nh/HKSo3STv7wUv31JOVBASghaJlrfv2rfe+82xst7jvSqCsEURCqe/wjLTMhBJXmiJPqCmX2LSGntXNZldF2eXEBXNjRXraxwoXMqsK5oNTIjpwuvyJ9re1x5C2J4R3EmCUEEQI557K+iyux3JEZwWUaYyGcURZZuVIgtgutAC6AMdMfKPZ4cwDg5DohJwuJRKKxsYFSzVEUQimRKasJoTK6XT7pukYI3bNnT1SGAyn6NVufeqLmg/c1TTuicqRCDl2e+kLTaKy6as1DvzFjsd5req+TXnsFASCUM5NZyBlyDpyDzI/CGOfywTl3Cv2iAMFtUZGdKhfAGbhJhRlHZiWC4UHZuRPh5Ls9JwAQCJ/OGeHtPj15AlAOQQmBnAvO5NE7KsvdWAYhuF3FUpp9XIBgZnZkPNgTcRTpp7m5WRbXIaT9inOzJDhvCQCV4X+JROzAgQN901ZFb9FasX/7M08RFPSzROWIpCqNpmt73n577+rVPdjcviaduiLn/mRkT9O9w0yzjXHCZbfIXaMEZacpUhSFc0TGuRCM2zW1OONcgMUE55SzePHAz1HNK+czprG1PY3shoIZk6heYpkJWUyFc2mEcWZLLOdccCeVMronypFe5mwvODAmOBNU8+SXzJHf0LcH2C9hjEWjbSnV2Nqrix7mE3dyhhJaW1vDmNWb7VT0MhVvv920fTtJmedwuI1yOEdeSIjZ0rLx5Zex/47MpddeIYicUiO3+Pp4IsE5yoTz8iEVxTZiOHABjCNngjPOBDIGjAGXhRo5MAstDsxKBEJlpUOvAUe0TioIItf0QDhyYSLRJgRxhDNFaLkT0SBPiGu62W5AEBw5Y1yabpwwM5odmZiTNxlOyhNyEmBZpmlaAKQ92vuQIG83Y7Vd7gEACIFoNBqPJ/q46YoeAznf//ZbaFmp1skhM5qPtuORFhIAQmn5e++1VlenuaEnDGnumwjRADBSeGkwY3os2sg4ZRbjTHCGjCOTzxyloggmfWJSUYBzzizOGHCGJuPICWex4WO/5vFkYfukj5MJ2fXnFV8FtDCZjDMmGEdXZbmjssyuOiN9YpxzweRChrbKMjCZEBwQxZCRX4RDs94o0ghjXAiOziwqJ1xCBsPbIfF2iVF3vQDGmGWZfd12RU+RaGys37SxEz98B3XpXGwAgFLSXFFRv3Nnulp4otFT97wDR/wXkIJ4vM3iusUEY1IzOLc4tzhnnDFhcbAYWLIDZYxZgjGwLExaXAgjmagbOOyG4oGXpauMVV9AEIXhiRSW3RqPtTFOmSWHmQRjh6ks55wJxtGyhVZwzhhDzsCyOHLNTDaUDJqbVzTjZD4hJzqOYtijW+6zIypCFhXtgJL5/k2stjZWU+OmaXHBI0kIHmbKdNgMARCIFYs17t3bww3vM3qieyKIwuvLP238/zIWiLU1JpOQtMBkYFpgcTCZIyeWoyiMWRYyBqYlTCYE15PxmpKBl42e+H0APNmG6w9B5lHOK74iO//K1pZqixuWhcxyhNbizFVZBtI04QydtcAYJC3OuWYmmzNzxoye+D04+eIXTiY0TUNExlzp4Jxz59kNbmxfyDnnnFFKZQUgRb/EbG1hiTgcRUhSwaPISYc0gAAghIg1NvZos/uQHpleJzvTUMbIUZP/uGvTfVTsTyZ1AEhJeSA91yjs4GNZqBE5p9xKMtY0aPiNoyf+wLkrP7m7UUIIAA4e9X3LbG6oWR4I5hMChCBJqd1lz4J0bpRtFxlDk3FmEcaaQuGBk6b9RjdCyljpUTweD6UaYxYhoB1a28CxVOxoCxl5Ie+KMjMzfL5+PoP6VAaFEHiINhyxS3Izg8GR1KX94RRj78fj9j01bZsQKjgLZZzGvd9Y/MKtn7sgx9AhaQohgFIq0xujAIFECGACOQNmJTmL+YMlY8/4b+n+kp/UQy3sRQgAEkKHT3hw1+acqn1Pe7xBw+O3M4LZqZ7l2UC00xCAxbhpIiXE52Xe7MkTzvqZL1CoRKWnMQwjFArW1taBXfHTDit1xlSEEJwxbtvYlmVZjHOWn1+g7JV+DPV4iEYFgADQnJySHSKMO1gn4tAElIc/gBDd6+2Tw+kFejAdiKy48uKLyx/5U8PH6/XzZxpjRhqZGXo8HjNNRoiGKO8BmeCcEC0YLiseeFnZ0Gs93mxZAaVfiIrEro552pjvhzNP37314VjTfo8noBs+uRqRIIIQRCBYFrOY0AiEgrSlObl2Y9ad3/qtLxBWotI7RCK5tbV1pmnquu4GHLuD9TJGXIqKaZqWlQwGAwMGlPZ1qxU9iC87Ww+HraYmSog4LCQMDn3bQVTAeSscY0Wm2KCGES4s7L1j6F16SldkGcfq6urXXns1Py+0aUtyw6ZEcSEZXMbnXjZx2Gk5rS21hAClhteXG8ocmpM7OTtvsq4HwC7U2P/ykBNCAJEXDLg4J//sij0vHNy/rKVlL6JFqQagSccgYywUDHh8ekMTf+/D+L9XxjdtqZo+Z+O0aWdL20bR04RCoYKCgvLyfZwLTaNOIWrps5VeMGZZlmlapmkCwLBhI8LhcF+3WtGDBPLyQ6Vl0fJyqRNHu7mTutLBUhEdrBYhU+6iPzMzMrTfVmTpKV2R5a0WL1588GBVTk6OpnEUcOCgtX2X+d37Hhg/brTgzHYypHSWx1So8SSEEKIhCsOTMXjEl8tOu7Gp/tPGurWtLTvNeL1ABkgCwdzX31j70Sc1e8pJZZXp9Wi6Zj777DPTpp3d73PVnTgUFxcnEvHKykpNo5RqhBDHXpETWplpysBiHDZs+MCBA/u6vYqexRMKFU6ZUvnOaulCEUeaaX9EP5hwHvZrmb0JQAiRO3x49qBBfXI4vUCP6Io0VkzTfOmll3w+nzNARRKJ1ssuvWT8uNFCcKo5lXBQOP7G7hRqPOkghAIgItc0byT/zEj+me4qzrmmacve+t9XX/95WWlBRkjjQgRD4TfeeOPAgQMlJSWIJ3d03MmCpmlDhgw1DGPfvn3xeELXpc8WhZAzrphlWYGAb9iwEQMHDkpfrTnFicugCy789M+P82gUHAe9m/ILOsYQt7u/UtVF1pSSr4GQ4Rdc4MvI6P0D6R16xDKQmcPffPPNzZs3BwIBdwoZItxww0I4tHqIlBNCjph2ur8iq1UiIkfk7uwHqRnXXze/dECOEBYCQUSPx1NTU7N06VJwTqyiF9A0beDAQRMnTsrJydm3r7yurq6lpbm1tbWxsb6q6mBZWdnZZ08fMmSoKhx5ilA85aziaecwzjkAP1wzAMSRlqcutLPNAnAhskpLx8yb19fH1IP0iL0iKx09++yzqTfX0Wh0/Pjxc+bMAaec4ilPx1rIsnLUkCFDZ8yYtWzZspycHBmB5Pf7X3755dtuu02dt96EEJKRkZGTE3nmmWctywoEAojY2trq9/svueTSjP57s6k4HE8odPott1asWcOjbUDI4fFgkg4xYK66CO54wAAAYOLChQWjRvX2MfQi6bdXhBCEkA0bNrz33nuhUIhzLr038Xj82muv1TSNc5WI96jIQZSrrrpKviaECCECgcCGDRtWrVoFAOrs9T7RaLSiomLHjh07d+6sqKhQWfFPTYZccOHo6xcyRAbAUx6uXXLEJQJtUbH34rxs6tSzbr21fwfhpF9XZM+4aNGitrY2t0RrPB4fMGDA/PnzwbFmFEdEnpzZs2ePGDEiFovJqXlSXRYtWtTXrTtFkTVXXNQQ16mJ5vFM++73SmfPsRhnKRKS+qKj+wuBi0NEJWfQoEt++tPMkpK+PpqeJc1dvByxr6mpWb58eSgUkuMBhJDW1tbLL788EolwztWfZScQQjjnHo9n3rx50WhU9mJCiFAo9Pbbb+/fv18mGunrZioUpyLh4uKL/u+hkukzLYszBAbgCgxznu2FTsJyhmA5opJdVnbFb34zaPr0vj6OHifNuiKFZMmSJZWVlR6PR0ZnMsZCodD1118PKrdVF5CnaO7cuZFIJJlMSgvG4/HU1taq0XuFom+JDB9++Z8eHb7gKgbUYoIhyEd7BVjh1AERYEmZQRScD5g8+arHHx/5uc/19RH0BunUFWmsWJb14osvyvBiACCEtLS0zJo1a8yYMU5iDEVnyNH7QYMGzZo1q7W1VbrC5Oj9Sy+9xBhTJotC0YdkDxly+R8eOe/Bn2UMHWZawjQ5Y+gWmrIEWAgWgAVgCcE4D0Yi0+68c+EzzwydPbuv295LpLOXl/fRb7311qZNmw4NL8aFC2V4seoNu4Q7ei9n5EldCQaDmzZtWrlyJSiTRaHoU3yZmWd/7Ws3Ll167o9/XDB1KmRkmIRYiAyRIUrPGPV680eOPOfOO29++eVLf/GLfjwL8nDSGWcsHTjPPfdc6kIZXnzeeeeBGrHvMvJESSNvx44dwWBQCgkiPv/88+edd55yJyoUfQwhOUOGzPrud8+69dbyTz/9zX33VW3b5gUARAaQ9Hhuu/feWVdeGczPJ6dev5e2A5Y+ro0bN77zzjsdwouvueYaXdfViH3XkaP3hmHMmzcvFovJMCTOeTgcfvvtt/fu3UspVcafQnEi4MvKKjnjjIbS0g1ZWesikU8ikU+ysrZnZGROmBAqLDwFRQXSqCup4cXu9L1EIlFSUjJv3jxQxsoxIk/X5Zdfnpuba5qmjDY2DKO+vn7x4sWgXGEKxYkEQXTvmg/PHnaqcTx9ffuUUkShaVptbe3h4cWXXXZZfn6+MlaOFTmmUlZWdu6557a0tLij94FAYMmSJaZpqtF7hUJxYtINXUFAnlLYhgJQIRAAli5deuDAgdTw4mAwqMKLu42UjWuuuUZKiKsrW7ZsWbFiBSiTRaFQnJAck64IQAFAgGgARPCEmTyQjO1MRHdwq9IyW1588UWv15saXjxjxoxx48ap8OLuIU/a9OnTx4wZI72LrjzL4IhD1BoFIgdUSqNQKPqYLseDoQBCgBBm1kRbViZaP7SS+zhrEoIxjuGQseId3LR5Xyjok4HFAICCq/Di40GO3muaNm/evAceeCAcDssloVBo1apVu3fvGTJkMOeMUkoIBUIdkemvhdF6HUTgSau1jnPmFlVDAM6sZEst5keI4T21vegKxZHpmq4gB6Ixq6al9slYyxsgGgnVNeLRPBqibgikBJcur6Ipt89tba3jJ0y54IILAFBl4e020mS54oorfv/735lmUtN0RNQ0Wt8Qf/bJe+66raSmtknTKIBPMwq9gRHBzDP9waGEaIAC7VovimMGuWU1HUzW7eYt1Vh9cEhBOBmLmowDgNfwDckPxbe/dbB+g5FVHCw4zZddTHVV3F6haOczdQUBEYjW1vhac83vCDZ6jLBGc8EuoAdy4iPVIBanSRMzwpQBApBEwrrkotNkeLGm9adK9b2KNFBKSkrOP/9zzz33ZCQSkZnzgwHvsn+uvfbyWp9f5wwFCiuxobXxtZoKn9c/JqfomqzILEIIolDSckyg4FZjReLABtZSRdAihBRmB3761UsrapqaWhMAmBHwFkcyQwEPizXEWmrbKjZ5sgdkDp4YzB14akaUKhSH0wVdIbSx6vexxic9ngxNixDCATgBAAIIgEg4IYYO994T+f6ParZsN3VNJE2WnZ0xedT7uzZ+d9DIHwN4nXF+RTcQANrcyye/8MKTAEApQSQeD5ZXaA3NvuG5nmiMA4DQwRCEMW7G15Vv/bA2fFbpad/xBwcicuUT6yIi2RYvX2vV7iCCGRqlxAAAIJCXFcrPDiHKkn+CccGFkEmOGePJ2t1VdftDpWNzh5+l+0J9fRAKRd/Tua4IANp48Dexpmd8/nxKBCGMuIHZCIBAAAgF04QRp/n+9vuiJctb3/8wVtdgXXJesKwsp+bg68lkYuTEX1OqK2npDig0zWipe35U2Z9HDMvZvC2ZEdbbosKyxDduzR093BNLoGFQIQQBAQC6DkAyNEPE2z7c8vEXBo18ICd/tpKWrsBaa2O73hVt1bpGqaHLCUNElpi1RwjtK55qMgzSiZsgxGKseffHiaaawgnn+zLz+vIwFIoTgKNb7igAaEvdoljTs35/gUY41ZBqQDWgFCgF4jwTAroGiST6fPrN12U+9GDR335XetXcbDNphTIKmuvf3rXpl6BG77sBCiC0ueZvTVW/ygh77vhyZECxlpernT8r/Pc/lH73rnyLoU5Bo0AppZomfxdNE5Siz59h6GLH+m/XVi4nRENU1cA6g7XWRLevgGi1Yei6rmka1SjRCFBKqHymRHOqr2iEUEo1Z6FGqa5puq7F6/bt/3BZvKmmr49GoehjjmavCCA0Gd/eWvuo15tDCScUKAFprBAgCEgIIAIIQApEgKYB59DSikKgEGAx0DTChRUI5Fftfy4jMqWg+Hzl7j8GUAChbQ2vtNU/GgzlJhJ46YXhWecEGcfcHJ1QaG0VhABoAAI0CgAEkSIK2Q+i4Lph+PyhnRsf0D252blT1Mk/GjzWFN2xmiQadN3QKCEEKCFuOT9CCMjBRAIUCFAqhKAUASiioJRqiAKpRlE3dLO5av9HywdOnesNZfXpMSkUfcnROhoCAM3Vj1FqapoGFIltmhBCCBCQz3JD4jwTAppGpEGjaUAIoQQIBY/Hu3frI5wlCKHSr6D4LAQQasZ3Ntc87PVmUoqahkkT/X6SGdZicdHWJjQNKJWx30AAKAG3mCElQCilRGi6YRjajg3/YyYb1ck/IsjM2N4PIFan67pmWycUKCWEEPlMHINFXvuOg4zY1zcQ24IhGqW6picaKio3rBTM6usjUyj6jCPpCgoAkmj7xIz9xzDCBLjbeUljRW5F0L2js/ez/9jc3Dj2PR8ankA8uqNy/6sAgGriXpcgANBU/YhGkpqmE0BCQaOACFyARomuE8d2dM+zc/4JuL0eAW54gmZ8355tfwLlijwSiertvGGfrmuUUqnHxEUaK3IUxb2w7YvcNmvcreVrSommaU3lm+r3bezrI1Mo+owj2isIAG1Nr1HKCKXtY+0kRVwAELBdZJz92t8S948QAFDTPFX7/wlqRkVXQAFA4q0fmLH/6J4MApxQVzOc22YAcMRbvrKlxXnt9HoAILy+zOqKZdHWvYRQpeup8ERLsnIjlQNUBAh1TXKA1OyBrm7b0nLIb5Bix0jDhhIQ1Vs/MGOtfXRYCkUfc6RenmhCxBPRTyj1yygjO/4LEV1HioyPwfbXzmJMXeBurRu+1qat0dZ9AER1bZ8BAQBoa1xGqXT0p9h/HbcCcDo9aJeYlLVEOid1zloqy18BAOUKSyVZswsTTdJ7aJ+3jka4DUmRFnC3OERd7HeUEE3TEk019eWbe7r9CsWJyZGtByuxn1u1hBoddALkVEhoFxiBchaLndxYTpYEsOdTuntRojPW0tK4xV6nOCoIQJlVn4x9qul+AAGQIuypP4X7Ah2ZP+yznGlGqBu+2qp3VH6XVISVMGt3E9uXZbu85KqOogL2PVQH69w94+3Sb98HEAJYv28Tt5I9fRQKxQnIUXQlWYGYAKCOXLSLiTPPHlCAQKdTs7exVQUxRW/cvhAx2ra31w7sZAURAJKx7YI1EGLAYUJin1HXXmyfWOGsbV+Czk2B0DRPvK081lbem4dygsPa6ni8gVLy2Zs6HDZAhQAdVci2LCmNNVRFVcyx4pTkyLrCWDPahW8PfQg55dh+a/deQtZgASezi+sfQ2wXIkAAM9nYi4d2UiIVw0zsQWBuj4WO2YiHYCt3u+q7pxrbJUd+KCEaY9Foq9KVdqzmauBW6ljJ4biOXvt2CVLfOxuknmoAcDxkzIy31lWkv90KxQnPkeevIApEEIgEkQChsnwXASQpN8iOqCAACkCBMpGx3d8JgaJdZhwpUiMrXYJZtYAEHbejPM/t98UIQGw5b/8JHF2Hdo1xXgACUCFYMtFvb58558lkMplMcs4BwDAMn8/n8XiOqhmIrK3eeYkABAGIU+PhkA1d7y+knGdXZOQJd++yXBMRABCjjdU9cbCKEwdEbGpq2rx5c1NTU+rFxjn/5JNPiouLS0pKPB5PH7awTziyrhDQEAEFCkBKCMqZDx3mP0jBcLxeAu0E+ShASJlBEAIEChQgEBGRUpX29TOwR1KEZZ9/AgSBCBAUiN35QUo35jonO+q6a7zYVqZAABCC9enB9Qic8+bm5paW5mTSFIILgUJwWfInFArn5+cHg8HD90LBWLINIOVMArr5idqlxXXsHmILoiP5KfZ5yr/g/KEko01CcErVmFb/pLKyctWqVR999FFlZWVNTU0HXXnllVc+/vjjYcOGnXvuuRMnTvT5fH3Y1F7myLqiGbkCqRAAIISM46dAhBPYmmKyCAQh0NEUQAEcQdoqXIAQ8jUIjijA58/vxUM7KXGEg9rdlgAkBAGIACRgjx0fMtICKfqN0jRM1XVEFAhcpqXud0HeiUSitrYmkUgQQgxDQ9QQUQjBGLMsq66urr6+vqSkuLCwqIPhgkIgM0m7SCAhBDFFWuzt7IGsI4qKcHdOfd2+CTAziZzDseuKYzipfHonKMlkcvXq1cuWLauqqpKu1MzMTNM0OeeISCkNhUKBQCAajX700Ufr16+fPHnyNddcM3DgwL5ueC9xZF3x+EoR/YxzHYCB0IBQJ6ySOOPw8kZPaop7p8yFLTOOqHDBUXBgXBCihzKG9uaxnbxQLZMLOcIlCNEgxVhJPf+2tAtAIYRAAU4whZA/AsibdxSyYjHxeLP69LDSTCIRr6qq4pwZhiGnLcoePrU7Nk1z9+7dlsVKS0vlckSMx+N11ZUkHvc7ziuBCEgoceK+UsbnsX2gUG5pn1tba4TrcnSlpX0Y7AhjL0cHEROJRDQaTSTijDEhUNc1vz8QDoe9Xq/SmN5B1vbufNSttbV10aJFK1asYIwZhiG3Ly4uzsnJSSQSshZfIBDQdV0IIWuFvPvuu3v37v3Sl740efLk3juYvuOouqIZA5i1l5IASF+XsGcVAwAAaf/TQRSOs4VL84UL2ScKgYILLoBxZMzy+nIyskeCmhrZBTzeMsFBRk5wwhEooe2JpO3xFXTdX8Lu0QS4NqL9ggvOgQtgjGuaPxAs7dPDSieMsZqaGs65rhuUarITcEqVAiJqmiaEMAyDc7Fz545otC0Wi+/YsWPr1q07duxorK/5/rXTxgwuQCGQavaVDLa0YIpZCK6EC1c1HBURgFJmUv8chLCFipCqquqD//rX8JGjS0pK/H5/J4eTTCbq6xui0agQXB6IEIJzVl9fTwjNyckpLCw8Bd30vUYymYxG22KxmGVZQghCiNfrDYczgsFgh7KE0Wj0ySefXL16NaVUioqEUhoMBoPBoLwM5DifrMsnr8MDBw78/ve/v+OOO84444xePrre5wi6ItOqBzKmNVZt0bSg/YdKkBAE4U4/bnflyyAxbrtfuBDIOTAOXHZqHLgAbsXyCmd4fXkq+2HnyLskX3CEgCDjTAd5qgVN1XUn4Bvk7bMTnseF1HXerutCCAFcIGemz18QDPcfM7ypqSmZTBqGQanmxgpTSjhHNw8LpVpDQ83rr/97x44d9fX1ra2tsVhMmm4+r9HYGhMIIJBzBE16fIm0zA8RFUi5iQLnxNpeRxT2fZX7LN2PKAQSQrbv2vP4/z2fkZk5ZMiQsWPHjh8/fuTIkUVFRR1c7W1trTU1tUJwTaO6rskfVgjkXGPMsiyrsvJAU1PT0KFDjzhWpDgeGGONjQ0tLS2MMbAdAIJz3tLSUl1dHQgEi4uLMzIy5Mac8yVLlkhRoYeVcUPHzCWEUEo7mD6aptXX1z/22GPZ2dlDh/Zzz80RdEWehez8S+qrnmfM1DQNZVrDQ26YAZyhSmmvCG47xBgHzkEwzrngAiwmOAdC6IDB83vtqE5mKAB6/WWGd7iVXE98YdtelOnYBHEHAGxHi4zwFiAQOHd0XQDn0nAEzoFzwqxEcdkZmh7oH7VYGGMtLS2U2gm6AMDOrg1ACEG0Z78j4rJlr7766qvy71w+y+7AYvxgfYtAAYISKoigQOUUUiCEuHGP7Za5cyPliooj22jHCdhL0PZJokDAuuaYxVh9fX1tbe3777/v8XhycnKkxkyYMGHEiBGFhYVC8NraWgA0DEPecqE93CMIQQBdfn9ra8u2bVtHjRrdud2jOCaSyWR1dXUymdA0TZqDaDv2NcaoZVktLS0tLc1lZQMLCgoIIZ988skbb7whL6TOP7k9FQMh8lKklGqaduDAgaeffvqee+4JBAI9fnh9xxH9YBRR+AIDMyKXNFY/GwjkCBQygRI4CSjbw5Ds4WX31hgYA8EF44IzsCzBObGSLXlF5+QVngOAylj5TOSs+Mzciw7u+UgzEBE0bM+0RmyLxYmesAftba+jLSoMOOOMC86BMcEZUM0oHng5APSP0mrxeNyyTMcLgakDIpgSlBWPx3fu3CG1JGXMAwCAC7Gzos60uEcnhMvoB0oJQSIIENL+adBumqPj9RLoKAvaD4HuKqksXAgmxP7qZkSQySgBQAhRW1tbXV29Zs0ar9cbiUSGDBkyaNDA2bNnDx48xL2xRUQhgFJAREqRUo1SbhhGS0vL7t27R40a9ZmdmqIrWJZVXV1lmqZhGJRSJ6+CcJTAvqVIJJI7d+4ghASDwVdffTUWi6W6v1KHYdyry12VukR+rK7rH3/88XvvvXfeeef1/CH2GUe+QOXJKhp4C9FKEokYc/sphkw+OHKGnAnBuFzFOCQtsCwA5FxwywKLocVQcKYbgRHjvgmHnXfFEZHSm5N/seYZmkxEObdNQM5BOM9y9MX2NwrgXAjGuUDGbV2XTkiLCcaJZbbmFZ6Tk3dGv9H1RCIhnQyHdvpgjzQdIiFEOIEljuTYoyAbdh2ob47KtdLads0O7jykU9fxfXEh2odTnC3lXo69gkIuQYDmaGLPgTqBIqUxQAjRNE2O5VZXV7/77rv/+McTy5a96qQUdROMtue3dM0sTdOqqg42NqrJxWkAEevr600zqeuGpumUumXbbCOYUiIX6roOAHv27H7vvfd27typ27nEAVJ+ocM/P3Vhh9eWZf373/+OxWJdaaSMbGSMORf8ycHR6noRRGF4sgaOuG/7uq8jcE3XKBE0NfmeM3lFevY5A78XGRP1TRwQDAOSpgCkltk0bsqPw1kj+ocHplcgiIJqvsKyr+zZ8n1C/RpllFIEQu36XWCPs7SPFaNwBu0555wJxoFZaFkouNB037Cxd8rt+0dYkYzmlOOrAO1/2ML1QyFyLrxez9ChQ7du3epqiYRSGggEqC+jPiYiGRztPwNKqDxBKSfJHdJCFBztQAkUTiS9DFFxpMiWc24JDgS37a0+UNMkpcxx1hH3BTgaAwBNTU1CCBl9cPitl9uJUUo55wcPVkYikR49vacC8Xi8tbVV03THQdruR00BKKW6rhmGEY1GV6xYYVmWlJkOdDBNoNN7aE3Tdu7cuXPnzvHjxx9tG9NMtrS0xmJROStLxqEEAoGsrKxAIHji/xUftb49IRSRZ+ZMGTTygV2b7vN4A7rhJdLB77jCwI1zReHRcc2HydfeSu7bb1qWuG6+/6zJ3pbm+lETvlk6ZIESlWNCJrTPyT+vuf7KuoPPBUMFwK1ggHAOmkY8BonFBWN2yU45T4ULOcTFOUfGgDG0mEChmcm6MZPvzcga1Z9+Aikbjli4tVHaw7E4FzKwatasWZ9++ml5+T5N07OyMgcPHjJ8+PBRo0YNHz68tKzME6tu2vwmAgcADZEibXc2EiCExOPJjburqhtaC7LDIwflB7wGF0KkhNcLIbh0P3LbUuFCCBRUM4aePv3iZM7WrVuqqqpisZj0sNuV1w6NZI1EIlJgDuua0JltCc58TdLQ0GBZVqorRtENWltbEAWluvs7HEnUCedi3bp127fvQMTKykr353Pphg+GEBKLxTZu3HhEXRFCNDY2NjU1yogyd6FpWq2trdXV1dnZOSf+HP6j6goAyLroecWXEM2/c8MDyUSD15dFCNhJdgHkWeVcGDr89dnYi0uTmga6jtGYWPzP6MRxxtgz7hs0bKFKo9sN5OU7aMR3EvGqproVkUj+0tdal78RD4e08aP1Sy4IZmbQeFzOonfnDAnpJbO4sCxEQZOJmiEjvjho2I397CcwDEMIzhgD0GXNFABwdEXaDTbFxcVf/eptW7Zs8Xi8o0aNPP/8C4LB9ts9bmVGKzebDfsBAJFSRKdCJCEU2uLJ372w+vUPtyct5jP0KaNK71wwPT87zB3Pmjt0z+xvFIxzJgSiyCocMm329fNu0Orq6nbt2rVhw4Z169Zt27aturo6Ho+7GgMAuq6PGTOGEJAhZK5p5dqiHTx7iURCDgn01cnvBwghYrGYexmkDM6lTqBAQsjHH3/8hz/8oaWlJRwODx06tIOx4joAjqgu7sLDTRlE3L17t5zpkrqKc15TU93W1pYaR4Boj7FRSkzTqqqqam1tGTZs+IkcwdGZroAjLbkFswPBf2zf8LOm+jW6ZhieAKUUbA8Yegy6ay976ZV4MEg1jXBGMzPovv313Pffg4Yt5NzSNPU30A0IABKqDx//i12b7ivf88bj/7Ba25Bq7J33o8tej37/ruxhQ4xEwk74KQQIDowj4ygE5cxkVtPQ0beNHH93/4vt9vv9iCADQ90OOsUlaIsKY5wxq6CgIDs7Ox6PDx8+PBQKpX6OZviyh0452FhtWZbQNQ3dapGgAV2348C/PthqMkEIJEzrzY+2FWSHbp03zR2cd0Zi7FF6xrmMgjR8odKxMzTDAwAFBQUFBQXTpk2T8/937dq1fv36devWbd++vaamJh6PT5w4ccKE8YxxcNwprtPOPZx2IbMXnkyu9hMQzrllWfJsS79oal4FR8vBNJOrV69ua2vTdd3n8zk25SHO5KPZK6m/0RG3qa6urq6uzsvLc28RELGurratrU3XDU2jAJQQGXHuDiVqui6EMFpaWrZt2zp69JgT1mr5DF0BW1pEIDRwwtl/qKl8e/+up1saNwgeJVQjREckcQJeg+XnJhua/V5i+4OFIMtf++SiixceLTRA0QUIAALRh0/45Wtv3d3Q9GJ+XnYyaQZ8tLzC/PUf6n794zzGnUmp8sEJY4yZTV5/7tjJ9xcPvKzD/PP+gd/v9/l80WibcytnX2PyRl92xFJULMsyTTORSGgaLSgoOPyjggWDMwad3rDjAwNAUKTULi2MiFv2Vict7k6OQYTy6oakxSgBZ0BL2oiCC8EYtzjnKAilpWOnZxUO7vBFhmEUFRUVFRVNnz7dsqza2tpPP/30k0/WnnnmWaFQiHOW6s2T/Z00vBxXm3wrNO2zg1wVnSM9pZQS15WasgZdFU8kErW1ta7t4j5/5jilk9bK/sT2j3ZeU0p37tx52223FRQUlJaWlpWVlZWVZWRkeDxGZmamvKQdvxwlBAhBJ3xD0zSu63pDQ0N5eflpp53WIyfouPlsXQHH3Q8ABcVzCorPbWnaUV/zfkvj5ni0kvE4Z2LQkMzz5zT+7akNfm+AIyJiOBx+443lBw58s6RkwGf+DIqjQzSNcs7fWFHu8xiWJThHQUCjGPBzy8KkZUfcc8YYS6LgXl/OgOELh4z8ss9fgMgJof0jtjgVSml+fv6OHc2IKONznIFTdMY8OGPM1RXGrMGDB2dlZR/+UYTQ3OFnJdua2g5s0XRNo4QQQglJCrF9fy3aCdtk74AluZkECGPCCSZGzu1YPMY5R4EARcMml4w6Gzq94A3DKC4uzsrKKisrJYRalkXdQP72KRRSVFyXHmeMcc6CwfAJe5d6siCvFs4FpRScDHxyBMsN7pBOqoyMcKoTEhx56KRDk7u7b919U58BwDTNvXv3bt26FQDk1H2v13vuuefeccftum6kFpk7HGcqTEVRUdGJOVW2S7oCTvCr7KcysoZnZA23V6AQQlBND+bteWnpZRbjmqYhosfjqampWbJk6R133CGE6OBGVHQReXGvWPH2p+s+yM6OWJYFAIDIGL9wTolAiMeSlBJCDY+3ICdvcG7B1IKS83yBQtk79acxlQ5kZ2fn5eVWVlZKp4Hr5nb9YFJVTNM0zWR2dtawYSOO1hdoHl/x6edXCN56YKumaRollNLGllh5dWOKCx51jQ4tyRUyolsgt/1gXI6pCOQApPC0SUPOuFgzvF05BK/XQwg1zY5ZA2TAtNO5ccY453awKWMsJyeiBleOExnqnUjEpeUnrQFIiUGXQq5p2llnnfXpp+vj8XgymZQeMzh6DjF399Qlwi5k1f7CFRhCiDtgwzlvbW3duHFjNBrzen0pc88PiyUgBIBQSqLRWF1d7cmtKxLZTyEKORmNEAqEUo0KIQYPHjx9+vTly5fn5OTIcxcIBJYsWXLrrbfquq5Mlu4hT9qzzz4nz7yMrG1riw4fMfSrd72EvJWxBCGgaQGvP6Jp9jgeorCHnvsvhJCysoGmaVVVHaSUahp18k6ivLm3LNkXW1lZWRMmTOr8z0/3BQdMvvigN9Cwex1jzND18urGuqY295IViBl+b1FepmkxJkO+UHAumBMOphnekpFTyybM1j1dHU3VND0rK6uiYj8AaJpw+yn3KFK8eaZlWaZpeTxGcXHJ8Zw3Bdi5vAKtrS2EUCHkqBo91ANpM2nS5C98wdy6datpWqZppkpL6uQVVypSZSBVY+Ty1HlUjLEOmkEIcW0dN9rW/VhnR/crCCI2NDQMHDioh89Wdzg2XZEc3mHJQ7366quXL1/unqxAILBp06Z33nln9uzZymTpBvIi3rp16zvvvBMOh91h6lgsdvVVV/v92ZxnBFLOqtR7ArR/K4qLruvDhg3z+3379u1ra4sRZ6KJ6zfSNK2srGzEiFEdhuuP/GneQMnp5/uzi6o2r0nGmiob475AyPDyRCKRTCY54/nZoaygL2kxZwal4DJZNIFQpKRs/Ky8gWPIMabEz83NraurlVO43RhWR1eE4/2yZKfGuTV48Gk5OTndOluKQ8jKyq6urrYsUwg9JXr4kJEtxiwAnDx58tixY5ubm958862mpuYO8g9HmrwCjqi4cpIS4GcTjUal/xOc20chRE5Ojt/v41y4Qc8iJa+pcIpcuV8dj8ddqTuh6I6uHI48sJkzZ44cOXL37t3BYFDqOSIuWrRo9uzZyljpBvLSef7559va2nJzc5PJJCEkkUgUFhYuWHAl2BH39g2R9Lv2ZXP7Ak3TBg4cFInkVldX1dbWxWJRxpiu68FgIDs7u6ioJBLJ6XpZLarp4ZKRceJvrK6YXHDm8OnzTNOsqanetGnTB//5sLQgRCkkTVOaKwKRanoouzB/yISCoRO9wcxutN/j8QwcOHDr1q3xeFzXDekKc3VFCGl1McsyLcssKMjvxJunOCaCwWAkkltZeUDXhT2qlhLkzbmQI3SmdKQmk0VFRRMmnP7222/LfryTkLBDzQvo8EIiC7Qkk0mZVx8caRkzZrTX6xWCd9A5N5Qg9a27pPfOWpdJj64QQjjnHo/n8ssvf/DBB+XtISKGQqEVK1bs27dv4MCByhV2TCCipmkNDQ2vvvpqKBSSVrOmaS0tLfPnzy8sLDw8+P2UJRQKhUKnDR482DTtJOeGoev6sQ1CcM4bGhqam5sFgj+3zA+Yj8i5GDp06OTJk8+dc168egcjrYSi7g14AhmhSFF20WlZhYM9gfDxND4zM2vYsOHbt2+LxaKaZtua0hxiTBYoMxFFcXHx2LHjT6magz1NcXFxW1tbfX2dayym+sHkaJbUlWDQP378hEgk7/33308mk1IYjja+kuoNc60W12SRH37OOefccMMNNTU1FRUV+/btKy8v3717t2EYM2fOTJUZcFxnbioHOU1KCCZf6bp+AhorkC5dAcdkueKKKx599FHTNOWYihy9X7p06de//nXlCjsm5Ol69dVXKyoq8vLykskkADDGfD7f9ddfD6qY4GFQqvl83bzALMuqrq6Ox2OapunUgEMHWnXdKC0tSeTmUCs6ZPCgUGaO4Q3qHl/nQV9dJycnZ9y48Xv37q2urk4mYym3pRwAQqHQwIGDBg4caBgqDCydGIYh43RraqpkmhxwfncZLmFZJucsMzNz3LgJ2dk5oVB40qRJq1evNgwjdegeEaWPWtO0VJ+YO1iSKiqImJGRcdlllw0ePHjw4MFnnXWW/NL9+/dXVOzPysqSzrHUgBHXLydFRQYGyoxh4XD4xOwH0qYrctBp4MCBs2bNWrJkSSQSkbodCASWLl361a9+1TAMZbJ0HRlW9/zzz/t8Pre4aWNj48yZMydNmiTf9nUb+wlyknMiEZdxWalzFNwxG0RhGJ44F7WtLKc4O+13SMFgcPTo0WVlZfX19S0tzaZpEgJery87OzsSifh8J+7M6pMar9c7cuTIzMzM8vJ9ra2tbt45IQQA+ny+4uLBQ4bYZW8Mw5g7d+7WrVtra2tldDsimqZZXV0t8/T4/f5IJCJLex0+uOIuufDCC8eOHZvaDEJIXl5eY2ODZZmIhmsMufaTG0rA3PB5i2kazcs7QSu7p01XwPEzLliwYOnSpW4gRDAY3Lx584oVKy644AJlsnQR6eNauXLl+vXr5S2MXM4Yk8aKOpNppKmpSY6ca5pGiJyPJmdiywhUO+cKpZquaVVVB0OhUFlZWdqbQQgJh8Ph8HF51RTHiqZpAwYMyM/Pb2pqampqjMfjiMIwjHA4MxKJBAKB1FvhoUOHXnvttY899lgymZTXRGNjY0NDgyzEkEgk2traysrK/H6/KwmpL4QQkydPXrBgweF/vD6fLxwO19XVIYKTVtkuzXCoa84yTcuyLMsyCwsLsrNP0CCOdOqKvIOeMWPGqFGjdu7cGQqFXHV54YUXLrjgAmWsdBF5ohYtWuTe8hBC2traRowYcdFFF4FzqhXHj2VZzc1NKTnSAeyUEYdPRpOJ08n+/eUFBQVeb5cmqShOCjweT35+fn7+Z9/+z549u62t7emnn04kEvKv0vV9ybCalpYWr9eb6kd1RWXcuHG33377ESP6CCGFhUWNjY2JREJGcKRMyXL9YHKer5VMJr1ez7Bhw4+YXPlEIJ3dkxy913V93rx58XjcPS/hcHjVqlV79+51a3MqOkEGnOzYsWPlypUZGRlueHE0Gr366qulW0wpdLpICfe0606meLYPn5IGlNK2trbGxobebqjixEDTtMsuu+yWW27JycmJRqPRaNR1cMlnXddd35c7D4YQMn369LvvvnvAgAFH++RAIDBo0GAhRDweSyaTyaQpHzIkzTQTiUQykUgmkwldp6NHj8nNzeu9wz5G0nzbK++jL7/88ry8PNM0ZfdnGEZjY+PLL78MqrRXF5Cn6IUXXmhubpbXqLwPys/Pv/LKK0EZK2nFLa+E9qSz9iphboBP6nKZO10V1zqV0TRt9uzZd95559SpU6dNm3b66afn5+dTSmWMu7zzc8dCELGkpOTLX/7yt771raKios4/ORKJjBgxUpZ7icWiiUQskYgnEvFEIhGPJxOJRDKZCAR8EyZMPDGnQ7qk2YySo/cDBgyYNWvWSy+9lJubmzp6f8cdd0gLUd1uHw0ZTNzc3Lxs2bIO4cULFy4cMGCACi9OI4hoWaYrHkJgykB9qlsc3YrDcvJpV4r9KfofiBiLxeSAXDgcvv766zjnyWSyvr5h8+ZNb7319oEDB2R4mKZp4XC4tLT0zDPPnDFjRlFRURc7vUgkEgicvn9/+cGDVbFYjHOGdgk78Pl8ZWVlgwcPycjI6OkjPU56yj131VVXLVmyxPV6BQKB7du3r1ix4qKLLlJjzp3ghhfv27cvNbzY6/UuXLgQVHhxunGnmMnorw7z0dx4X+nYcAquCHc6quLUwZnh1IR2+RxN06gQQtcNn89fWFgwbty4LVu2hELhUCgUiURKS0uLi4u7kb/L7/cPHz6irGxgS0tzNBpljFFKA4FgZmam3+8/KXqA9OuK9NJMnz597NixW7du7TB6f9FFF50U56WvkIp7eHjx2WeffcYZZ6jw4vQiB+TlTDMAQqlrSUsbBZ1paMJRFzmBgB/rpEvFyY4Qora2RpYulsnonJsP7gwki5ycnClTpmRnZw8detrxj6j7fL6Tdxpsj3RSnHNK6dy5c1NH7zMywu++u3r3rp2Hjt4LRO4ksjzVkafl3Xff/fTTT4PBIHcKkVqWdcMNN8ChxYIUacHr9Top6FMRnAvG7Glojru83WN+4jsiFOmloaGhtbVV1w1d16WlQqkmM9bLtKfyBaW0qqpqz549p/hAco/oirynvuyyy/Lz85PJpEaJphFCjH3lDU8+/RIcMnpPCdFkjRBEfiqpCwIKRJ5S1Bnk4S9a9Ky8CZLOmWg0Onz48EsuuQTUiH0PEAqFhUCZ+Zgx7jyYLHYiRYWxlOloluXxGJFIbl83XNF7xOPx5uYmKSZ2RLoTfO7Go1Pq1t3SKir2n+KRHT0yviJ9C8XFxXPmzHnhhUWE5MYTVlGBNm1BUVnem7XlTcl4A8ohaj3H8A0OhE4PZIyl1OtUDenfvScCCiBaylCJ7c3XNH379t2Ll7zp84Y4Z5QCIbStre3KK68MBAJqxL4nCAaDwWCwubkZESnlqSWNMSWpsOXAmFVSMjAjQ81ePIVobm7mXHg8ciY8OMEdqVHpJEVgKGPswIGKUznzdE+N28s+8+qrr3nq6cVjy8hVc3Omn+XNzzMAeWvrKiAUEYQAK8GjTf+uF5pmlGXkXpJbOF83MvprlUMAABRACBBNiEQiuj7R9omZ2M3MeiEsIdDnz6na2zz3EmPbTrpjVxwBDD2Zmxu56qqrQRkrPQOltKioqLm5KZFIGoZbetLO3eLmtXVKhJnBYHDo0GH9/dZH0Q7nLBaLutU8JSmVUewFKXsQQmh9fX0ikTh5B0iOk57SFVn7bvz4Mb/48Zhzp0UjOb54HBMJIET3+bNkqI2cTiQEYRwts7J2/8O1B14sHnRnpPAiWZmqf0mLbaYI3trasDjatJyb+wEYIRqARoBQgFjr7kEl+n/dXdjQYK1dH1j6Wvy1f++/+Qs3DhxYpoyVniMjI6OsbOCuXTsZs2TqQAAiw8Hs+s6MmaZlWUmPxzN27LjMzO6kxFecpEg7VdM0twZxarmtQ7MY20sIgXg8Ho/HlK6kFwGEMqsmWvPD+ZckLMsfjaGuEa8GgIAgkAAFIgQILgCEDgAev6b5k8mmPVt+0NK0btCIbzsVp/uHtCAAAtGizW83V/8e+QFdDxj+DEIo2jmAhBCo68A5xGLC69NmTfOffWbgjAnJmRdc6nyCoqcoKCggBHbu3BmNRt2stDIITBornLOMjIwxY8YWFn7G1DZFP0MGccgMYG52FnCykabOcLLvloW9wrJY37a8D+kJXREAlJkHa/d9i+CBJGbqVGgGAAECUlcAEARKo0YD4ACoA1oAhscTpLm1B542E/XDJzwoi4Oe/NJi1w1trPpdrPFpwwhqnjxCOAEE4PKEECSUEiEEgCAEOCcJEzgXC67IT1p/bGkqysgag8j7cb36voUQUlBQGAyGysvLa2qq4/G4m9qWEAgEAkVFxYMGDT4xa4krepj2UlrglJfvsPxQOOfC8bicoqRdVxCACt5Wt/8HFA56vNmEMEKBENv6kJsgApWqTwGQCuSEgEYAKaGEBUOFjTXLd27MHDbuXntA4qSH1Ff8NNH6is+fRwkSwmyVlaN/CARAEACggCAjxAwghJCkqSUTlds/uWP46Q9lZJ9+CgQ19CWhUGjUqFGDBw9ubm6OxaLS9xgMBjMzM1Wm+lMWTdMBkDEurVi3nJdrvjAmJzZxN5s954xS6vGcuplJe0JXSOPBh9Da7vXnEWIRCpTKlH6OvUIABQhqSwtSQpEiCIpABaGUEGH5gwXVFc8FM8cVl11xcnemKIDQxqo/JFpf8fvzqauyMqQEgKAtJRRl1DeVY8YaBdSooTPiD8bjsa2ffGfsWX8JBEvtMBRFz0AI8fv9fr9SEYWNYRi6biQSCULsyl0pmYbtDPZSUFgKGRnhQCDQ123vM9LbXwsAGmtZE29Z7vFGCDiiQtpzjkt1sTtWJye5W8+TUCCUUAKUotcX2rvt98lEveMNOxkRQGiseVWs8WmfP0+KCtXkYYJ9cuT5oUAIUHk2KKUECAFKgFCNEO7xBFE0bF//I+wn1ptCcdKgaVpGRoYze6ldOZzXVqqgyI04Z4WFhYZx6iZlSK+uUABorXta13VKEJwbc1dSbAVxO0bntt2J/U55QVDXfVby4P7dzwLAyZmOSboE4801f9QNLyVIHBVpn1blHjXIswAEgIJznghQKiPrmNeX1dLwn4o9iwAAkffxkSkUpxKRSETX9WTStCwzdSYTY5YUGFloyzRN+U8oFCotTX/lt5OINOqKAIB42zorsUHXg0AEOWzAHe1R+5QV6HSpKYsdUwY9nkB1xXJmRQnRTj6TBQUAtDUuE9YeQw8QIkCaIMT5v8Nhp6pLu1EiZ1oBIejxBCp2P3Oyng2F4qTF6/WWlAzg3EokZDkUu2ijfGEXSLHLpSQ1jYwcOSoYDPV1q/uS9OkKIgDEWlYDWITQ9lmoR964/RmhvZN0Y78IAAHUdG88VtFQ+xGcjCYL0RBFtGm5pvvlEbYHktgHbR/2EZTVeXbtOQA0DF88urem8m04Gc+GQnEyk5ubW1o6kDErFoslk/GkLLxlJk0zkUwmEolEMplMJuOUktGjxwwYUNrX7e1j0qcrRAOAZGwjpR5bKOyAJ9tOQUj9z13ubHLYvFWUbiHkjXVr09bI3kMAQDK2xUru0TQfIU7QoZzH4sYxHKqsKNW53awDaLfhCBCgGq2ufDtlsUKh6A0IISUlJSNGjPR4vNFoLBpti9nEJaaZzMzMmDRp8pAhp6mU7emKB0MAwqxGZlYZuuFU27NjlzBVQACELTLOA8GZt3rIQ34AoXpbyy4AOLl6UkQkBBLRjYAJIEFIMS/aNcM1WrBdWpzdnRPmnihERKFp3tamrYzFdD3QL2b2KBQnDYSQ/Pz8zMzM6uqq6urq1tZWy7IA0OMxcnJyCgsLi4qKVDy6JJ26wlmz4FHQNXS6Q0y98XY2tGVDuBLiGDN294rtYoNACE0m6gHg5Ao1lv29mdhthyS6IkLsug32dq7E2pkhHNMNZVoC6JBsm1I9Hq9PxA6GMoaqspsKRe/j9XrLygYOGFBqmiZjFgDouu7xeFX6vlTSOX8F0ZJigIgCCUUAASIlpLj9xlykmCYChW2wtMtJygsihHXyTWEhFACYVQ9A7aRBApDah9wuBwiIIMBOHtbRegNwsxA5qYco54lkoiGUMbSvjkyhUFBKfT4fwCma/uszSe+8SCKkTggkhMhp5O6tOjjPUkIEgEBwqroCChAAKAQKFALQzrFDZHcqhNC0k0pXAAAAhYVAXJ0gCELOP0E7+Vn7gIoUFQF2pjBXZQWKdgF2VEdY8uP7+PAUCoXiSKRLVwgAaFoI0RCCE4GE2F4ags5M+5QBBdlX2gXDpaggCAHyrRAgUAgBiMA4yw5GNE2XxRNPlpy+QggAzT40WTtdI1QAIYAEsF1v211hQoCwc9cBOk4wmeZOCHD0FQGJY7opJ5hCoTgRSacRoBkRSrMZZ0KAEFxw5AK4rRPA5bPsMQXIYuF2qny5VgghkEt1EUIIsJgwdH3P3ubNW/ZomqZpmiw5ftw1PhGQI3L57D7SYgHINEGUEkrBMHI450IQeTiploftCZSCaosK2MlRnTMmuLOXTBchgAlOqGF4VZ52hUJx4pIuXSGAglLD8A21rIRAyjkwzgUXXKqLACFAcBACOUcuOHdvzO21KLiwjRUuOAfOwbK43+9f+uq6OXPOu/XWW1auXCmEkCl6ZPd9jI1EsMWDANEI0eSz+5BVN7o3NQQRZeVzWay0qurgz3/xu5cWv+cPBBgTXKDgggtsV1lXPBAEBy6Qcy44SitNCBBcptyWa7ngIARwxgxPps9fCABq0F6hUJyYpG18BQEJQDBzWmvD69xjCxaCIAA0dXbfISPztqWCApFzLoBxEBw5F4IDY4IAtLbyvfv1YABfXfbPZcv+OWHChOuvv/6KK67IysoCAHl/3yXnmFOoEQCt5IFkbKuZKOesCZEj6LqR5/EN8QVHGp5scGYddjFSgHMui4/qum5Z1po1a55//vl33llVXl530fm5l19UwIWgnDAUGhInHao7c8UdkxftioLApYGCwLlUXJTqy1kyM3uwx5utgowVCsUJS9p0RfbCGTnTq8uLLLMZDa+GSBEIAUEwJQCqPdTYtU6kk4dzEAwZ51wA52hawu8lH36S3FdhBgOa35+DiJs2bfr2t7/90EMPXX755TfccMPw4cPBTiwqKKVHuYWXMVgURbKt+Y1o42tWYjuKVgAhS78JIftxCiTLF5qYkz8vnD0FADoPQpMeOemdA4CDBw8uXbr05Zdf3rJlCwBkZIRLSwt27ub7D5jFhQbjRAcAsIUFUueMOqVMpa64phsXKI02IaTiIudEcJZXeI7TtpNjqEmhUJxqpDEejCBy3cjIyp9bs//3QepFRIqEusklySGzNORYtBACOXKUlgpwzjlHzsBkApEg0DdWm7IH51wQQkKhUEZGRlNT0x/+8Icnnnhi1qxZN91004wZM3RdhxTTIaVVcoI7jbWsbq75Ezd3a5rh9fgJyZaRWgKFPcjB0WLJWPMbzXVv+sNTS4Z8LRA67YiltFINFMbY+++/v2jRopUrV9bX1wcCgezsbABgjAmerGrkq99L3HiNJxoV4KEaAiUABF35a59p3z6mIodSHFHhnDPkHBhDZlleX6Sw9EIAIGlOGKpQKBRpI51xxvLuPr/kuvrqf8UTFR6Pn9J2M4J09IMJGUTLuT2cwDlnUlQsblng94rlb9Sveqe+oCCDUq9T50AQQrxer9/vZ4y99tpry5cvHz9+/HXXXTd37tycnBw4xDkm51mKxoO/iTW9aHh8nkCEABJ3yj+CQCKIIAIJIhg6pTmGweNt721du3bA0HvyS+a60uJaRdJAqaqqeuWVVxYvXrxp0yZEDIfDeXl5nHPLsuTAD6UkENCX/Ss6+xw9J9vPmEDNToCfala51TOFcOvPgbTeOOOMC8bBYoILyqzW0iEL/IFiVThSoVCcyKR5/gqi0PRA2bDvbV93J4DQNKpRTg5J0OvoigyCku4vIQTnjANnYDLOOeVWq54x7NrP/04YL7366tKDB6sCgYCskyPjwaTFkJOTg4hbt2793ve+9/DDD19++eULFy4cMWIEANg1ZIlZt/9+Fl/lD+RRggQ4ULCTKLtjLnZ9Fw4CATlq4PNnUpPt3fJAMlFTOvQrnDMAIl1enPMPP/zwueeee/vtt2trawOBgBzpYYwlk0np0pJSmkgk2tpaqqv11R8Uz70kaZq6oTOqUbcukDTg3IwDcpTeDXDgnEmVZUwwBsyKB0KlQ0fdAidb6gGFQnGqQRDxlToAgMtz0/OJ8m66+sCSPZt/6PNn6rpOiBwGby9FbLt9BCAKeyyBAedgMi6EZplRw5Nx5qzHwpnDAKCuru7FF1989tlnN23apGlaOByW/Tsiyh5cRoglEomWlpZQKDRz5sybbrpp5syZhmE0Vt4fbXojEMynYMnaJ6kz/1E4tgIC58g5lzrHmGAMTUZammoGjfh+yeAbAKCmpmbZsmUvv/zyxo0bOefhcNjj8ciio27ha0qpEKKtrS0Wi+Xl5c2ZM2fhDQsnTzlzz6a7os0f+AMRQixZPdMVWjuFTbsfTI6v2KabxYVloeDAWHTy9N/mF81MY+qBbvzu6b1UFCcL6lJRdBH5u6dfV8CVlooluzb/xNA1wxMCEISkJMUCFPaMehQcuABmxxZTM9EYCA2YdM5vMrJGuoYCAJim+dZbbz3xxBPvvPNOLBYLh8NerzfVdpEwxlpaWhD5+PFnXvG5oXPO/mjQwEgiYVFNjm3YmYTtHGUIQiabQel64pyj4GBx4IybFmhUNLcko3DXv15f//q/ltXU1kmziRDCGJMON3AMlGQy2dLSQggZN27cggUL5s2bV1hYKGXAMhs2f/RVM7HL548AYdQZcAInM5gzgxKF4MJRWYsLxkBwtMymMZPuHThsYXo9YKqzUHQRdakoukgP6go40tJUv3b7+h8nYju93rCme2VqMCcZSfvkFSaAM2RWTPBEQcl5Yybf7/PnuzfmbuSVvMffsmXLE088sWzZssrKylTnmPQvSXUBgLa21kTSysnO/N43IjdcnR2LC11zrASSEuucGt3LZYCAnDojqIZvrYo/82LLnn0tnEPnBko0Gs3Lyzv33HOvv/76adOmyTgCITgiUEoIoWaidssn3442r/UFciklAM7ovbRXZJI0e1oocI4WQyEoM2OIfPTEH5Sddm3ah1VUZ6HoIupSUXSRntUVcKSFWW3lu56q3PdiMnFQ03RN8xKiy0xiQiDnjDOLsSQBmpE9YsiILxWVXQx2nvmO3p7UcK/6+nrXOUYIycjI6OAco1TTdVJbl5wy0ffC38sSSZRDG+BGYCGiPZvdCfDlyLngAhkDgRiLsVvuqquqEdlZBiIwxoXghxsoADBmzJgFCxbMnz+/uLgYDhNCADmSQzlP7Nr8fwfLn9c14vGECKVy2r1wshdL36BUWc5MZraGMoeOmXx/JP+snhirV52FoouoS0XRReTvnt5x+0MgREMUmh4cMvK2AYOvra58s/bg6raWHclkA2dJe9a7FggESzJzxhQOOD9SMJVSTydzEqVDTHqfIpHIrbfe+sUvfnHFihVPPPHEqlWrotGodI65kWMA1GPQ3IhBKSFgpxF20gTLJrangHRqANuFHQkA5+AxaDCAlmVxLtw2SAOlra0tEonMmzfvuuuumz59umEYkBKKJu2VlHNBAZBSz/BxP8gtumDvtsebGz5CYWqah2oGAU0AoEAmOLcYZ0lE4Q8WDxn5pYHDFhpGWAWAKRSKk4ge1BWw5QERucebVTp4QengBZzFE/Fqy2wFEIToHl+215dPqWwGdqUDlfaKtAl0Xb/gggsuuOCCrVu3Pvnkk6+88sqBAwf8fn8w4EdAAiKe4GdP8esGiBhQQEcyDinIeGhlLTu2gHPIztRKimn5gWQoaNektyzW0NAAAKNGjZo3b95VV101YMAAcJK4uC64o54MAogiJ/eMnNzJTQ2bqg/8u7FuXTx2gFltaIcme/yBwnDmsLyi6fnFsw1PpvQYKlFRKBQnET2rKwAAQAjR5PQPAKLp/mB4UIctEDkAOEm6uvqhqXMhR44c+ZOf/OTuu+9+6aWXnn322U2bd2mUJk0cM8o3/9KMaJugdl4ZJ32KU6ixXVTsljjlkBEIhUsvCKx+L8YYmJaIRhPhkOeKK6647rrrZsyY4fF4oBMD5aitJoiCEJKVMzYrZywAmMlmM9mAaAEQ3Qh5fRFKPe5pIYSqKZAKheLkohd0RUIczUC373ZW0OO5H091juVkZ99yyy033XjlkueufWHJ/nhC/8m9RaEwTSRQ1wERiV1UHtvT9bvigiBSCmoRAtGoOHuK/4YFwWdeainINa+eP+HOb/yhrKxUqs+R5vZ38URIe0sAICHU4830HJqf2F2lzBSFQnEy0mu64kJ6IhGv4xzjKDQC0fNm6ufPGqRpmq5BLIa6BijkzBVH1Nwqv8IxWZzqv2DX2kIAiMXF56/LOHuKz++NFw+IlJWVyhAvNy1Yt0kZQDpEaAmhatqjQqE4qel9XelB5Ex2IRKNTUm/39B11CjoGgiElAmRzj9OTUYBTo2TlETLbpHHZFIMLDWam83GxlbBGdXSfsZ6RGgVCoWir+hXuuJApPUio3sFAhWABICAcMflU0TFrv4rw31tO0bO2bQnLSbiyDj6vZQcu9dLoVAoTjX6ma4QAKDUJ1AXAjlBImQOYSByKL69+K/t9LJnuaNwizna+R/bE0EiAhFC6HpAeagUCoXiM+lnugIAoBsRQjM5r6eUCi4AqFNZrL0Slq0rTkl5p3q8U/5EoMyyzIVdXl5w5g8UwWcVZVEoFApFP9MVAoBU8+ueUjNWqWkekFkl3SqNLq6zK7VQo139l9uvBRcChQDGEYXIyB5l76lQKBSKo9Pfbr3ldP1AeAqzTC6ItD84F+5DcCG44JwzOSlfSFcYcOFU/5XlkO20LrJQI9f1QCT/TABQ1X8VCoWic/qbrtjlkCOzBGRZZlImkeTcyf3FBeeCCcEFOkaJVBTgHAXnbqFGzpj72jJjmZFxGdmj5LSSvj5EhUKhOKHpf70kQRReX3E45/xEopVzwjhK5RDcGUHh7SXFGAcugDOBnHMOjEkdYrIcssU45wDIBp52HTjGkEKhUCg6of/pip0Mv2DA5wXmmMkks5AxwTjIhzRB2t8yIT1ilrOWMc45cg4mE5xTK9mSW3BO4YALAVBNgFcoFIrPpB/qim2y+IuKB98ZjbZYjDBLMIsxxjkTjAnGhC0njHEuGEfGgTFgDDljjAlmgWkJxoAz0/BkjJr4PUhJHaZQKBSKTuhn8WA2hFBEkVd8RbR1V3X5XwKhQkIEpUgAgbRPjURwyiHLEXu7ZiVYjDNOOOOCJyec9bNQxhAVXqxQKBRdpH/qCtgD+GLQiG8JzqrK/+EL5GiaASAOCTZGu1CjEEIOujCOjCEXGjNjADj+rAcLSuao8icKhULRdfqtrgCAdIgNGf0dr790z7aHCLR6fRmUEJm9Reb/OqQIsZCRYNwyG4PhQeOm/E9O3hlKVBQKheKY6Oe6Qggg8pLB12XkTNq95XeNtWsALN3wa9QAosn8kgKRc+SMWywpWMLjzRo84gunjb7V8GQpUVEoFIpjpX/rCsi6L4ginDl8wtSHG+vXHdi7pLHuw7ZYleAJmfwLAAhouh4MZwzLL55ZMvCKQKgUVaFGhUKh6Bb9XlcAnGF8AMiOnJ4dOZ2zRLR1b7St3Eo2AQqiGT5fbiBjcCBYIoVElnTsp8FyCoVC0bOcEroCh1Zp1HRfRvbIjOyRh22FiByAqNAvhUKh6Daniq5IPkswiHJ8KRQKxXGibswVCoVCkU6UrigUCoUinShdUSgUCkU6UbqiUCgUinSidEWhUCgU6UTpikKhUCjSidIVhUKhUKQTpSsKhUKhSCdKVxQKhUKRTk4yXcnNzf3JT37S1604BjZu3EgIeeeddwCAc37VVVcFg8Grrrqqr9ul6Ih7aaX+ZIoTlquuuur888/v61aknxtvvHH69Ol93Yrj5STTlZ4jPz9/7969PfoV77zzzosvvvirX/3ql7/8ZY9+kaIb/OpXv/rc5z7X161QnIpcffXVf/vb3/q6FelE6QoAQHl5eW1tbU9/S11dHQAsWLBg8ODBXdzFsqyebJGinZtvvnnSpEl93QpFOmGMoayEcWLz8ccf93UT0kwv6YplWd/5zneKi4uDweA555yzZs0aAJg5c+aFF16YutmVV1559tlnH237DlRUVFx77bU5OTler3fcuHFPPfWUu+rdd9+dOXNmIBAIhUJz5sz58MMP3VXvvffeOeec4/f7S0pKvvOd75imuWLFioEDBwLA4MGD582bBwC1tbU33XRTUVGRz+cbPnz4ww8/7O7++OOPjx07NhAI5ObmLliwoKKiAgA++ugjQshHH33kbnbaaad9+9vfTm3tfffdJ91f+fn5F198cSe7PPzww4WFhcuWLSsoKPjOd77TjbOt6ITVq1fPnDkzKysrHA5Pnz591apVcvkRXayc8/vvv3/o0KE+n2/AgAF33nlnNBqVqwoKCn77299+//vfLygoyMjIuOyyy6qrq+Uqxth///d/Dxw40Ov1Dhs27He/+12vHd0pBaX0L3/5y+DBg30+35QpU9auXSuX5+TkPPzww5dddpnf729uboajdwjXXnvtNddc88gjj5SUlAQCgSuuuKKpqel73/tebm5uJBL5xje+4X7X0XqbRx55JD8//5133hk7dqzP55s4ceLGjRuffPLJIUOGhEKhz33uc/JuEgBqampuuumm3Nxcn8935plnvvXWW3I5IWTPnj1f/OIXs7Ky5BJd1xcvXjxixIhAIDB58uT//Oc/cnkn/dIJdzUi4tJaXFqLPcrtt9+em5v77LPPfvTRRzfffHM4HN6zZ8/f//53SumBAwfkNm1tbX6//49//OPRtkfESCTy4x//GBGTyeTIkSPHjh27YsWKrVu33n///QCwdOlSRNy2bZvP57v66qs/+eSTjz/++IorrgiHwxUVFYi4e/fuYDD4+c9//r333nvppZdyc3O//vWvm6b53HPPAcDatWtbWloQ8ZJLLhkxYsSqVau2bdv2t7/9Tdf1l19+GRFXrVpFCHn00Ud37tz5/vvvz5o16+yzz0ZEeZl++OGH7vEOHTr0nnvuQcQNGzYAwOrVq6PR6F/+8hcA2LZtW3Nzcye7PPLII6FQ6KKLLvrXv/61a9eunvtRuvG798Kl0qO0tbVlZGTcdtttmzdv3rRp0x133BEIBBoaGjDl0nJ/MkT8+c9/7vP5nn/++W3btv373/8uKyu766675EeVlJQMHDjw4Ycfjkaju3btKioquuOOO+Sqr3/964FA4K9//ev27dsfeeQRj8fz6KOP9s0Bp4kT8FJZsGDBgAEDzj333BUrVqxYsWLcuHEDBgxIJpOIWFBQMG7cuHvvvXfNmjWWZXXSISxcuHDAgAH33HNPa2vru+++q2namDFjfv3rX0ej0ZdeegkA/vWvf2Gnvc1jjz3m9XqvvvrqgwcPVlRUDB06dOTIkTfccENDQ8O2bdsikcgPfvADRGSMTZw4cejQoW+88cbmzZu/9rWveTyeDRs2IKK8N/3tb39bX18vmzRkyJALL7zwnXfeee+990aPHj169Gh5yEfrl/BEuhrl794butLU1OTxeH7/+9/Lt8lkcsGCBa+//nosFsvMzPzlL38plz/33HM+n6+pqelo22PKH//ixYsB4N1333W/ZfLkyRdccAEifvOb38zMzIzFYnJ5fX29x+P56U9/iojf/e53i4qKpHWMiP/4xz++8pWvIOLy5csBQEoXIlZVVVVXV6d+8u23346IDz30kM/nk9eu3OyDDz7ArukKIj7//PPypqPzXR577DEAePXVV4/vrH82J2Bn0dN8+umnALBq1Sr51rKsFStWRKNRPIquNDU17du3z939nnvuGTVqlHxdUlIyZ84cd9WXv/zlKVOmoHO133///e6qW265Zfjw4T1+bD3JCXipLFiwQNf1qqoq+XbFihUAIHuJkpIS+VtIOukQFi5cmJWVlUgk5KoJEya4vy8iRiKRn/3sZ9hpbyP/WmU/gIh33XUXALitWrBgwcUXX4yI//znPwHgzTfflMs55yNGjLj11lsRMR6PA8Bf//pXuWrhwoV+v7+urk6+leMu8hI9Wr+EJ9LVKH/33vCDrV+/3jTNKVOmyLcej+eFF1644IIL/H7/DTfc8MQTT8jlL7744vz58zMzM4+2fepnfvzxx5qmTZ061V1y5plnrlu3Tq6aNGmS3++Xy3NycoYOHSpXffTRRxMnTtQ0u8jKTTfd9Oijjx7e4Lq6uptvvjkrK4sQQgj5+OOPGxoaAOC8884zDGPGjBmPPvro3r17CwoKzjzzzHSdpQ64h69IIyNGjBg1atQNN9zws5/9bO3atZqmzZo1KxAIHG17RPyf//mfoqIiTdMIIb/61a/klSA5/fTT3ddZWVmNjY0A8Omnn5qmOWfOHHfV7Nmzt2/fXl9f3yOHdAozYsSIgoIC+XrixIkAsHXrVvk29c+nkw4BAIYOHer1euXrrKys0aNHuztmZWU1NTVBp72NxN0rKysrEom4rXI/4cMPP9R1febMmXI5pXTGjBnvvffeEY9r5MiRkUjEbS0AyEvraP2S5IS6GntDV6SL0/1dU/nKV76yfv369evXJxKJf/7zn1/84hc7396lpaUlMzOT0vb2Z2dnt7S0yFXZ2dmpG7urmpubO/9YAEgkEldccUUsFnv//fcty0LEc845R64aM2aMtEz/67/+a/DgwVOnTv3kk0+6cAK6Q4dDUKQFr9e7evXqG2+88c9//vPkyZMHDRr0zDPPdLL9nXfeuXz58meeeUbe7d57772paztcS4gIAPJKu+iii3wO8qquqalJ//Gc2ridLwAEg0EAcEe/Uv98OukQAMDn86Wu6vDW/U2P1tscvtfRPoExFgqF3Kvir3/9qzsE0oHUGx1CiPyQTvolyQl1NfZGvchwOAwAR1TIiRMnTpw48bnnnpsyZUp2dvZ5553X+fYumZmZzc3NiCjPOwA0NDRkZmbKVVKrXRoaGgYMGCA/+TOFev369bt3737qqadGjrQLFVdVVcndAWDMmDF//etfhRDvvffe9773vUsuuWT//v1uG1ykbdsJ3dhFkRYikciDDz744IMPbt++/Ze//OXChQtHjx49YcKEw7dExCVLltx3332zZ8+WS6qqqj7z8+VF+OSTT44bNy51edeDABVdRN6ASqRZEAqFDt+skw6hi3TS23T9E3w+X4fbUNdx0hU675c6+V7oi6uxN+yVCRMmGIbhBt4IIWbNmuW6v77yla88//zzzz333Oc//3l5R9D59pIzzjiDc/7BBx+4S9asWSON3zPOOGPt2rWJREIur6mp2blzp7vq448/jsVictUTTzwxa9YsIYR8KxW+tbUVHG0DgHfffVcOngPABx98IE1XSuk555zz4IMPVldXV1ZWykAO9/6lqqrq4MGDnZ+TbuyiOH727NmzZMkS+Xr48OF/+tOfdF1PdWikwhiLx+PuldDc3LxkyRL8rLjVCRMmeL3e2trakQ6RSCQvL891tijSxbZt26ScAID8EceMGXP4Zp10CF2kk96mi5x55pmJREII4V4Vfr8/VRU+87rqpF/qhL66GntDV7Kysm6++eZf/OIXf//73z/++OOvfvWra9eunTZtmlx7ww03HDhw4MUXX/zCF77Qle0lF1988ZgxY26//fb3339/x44d3//+9zds2HD33XcDwB133GGa5i233LJly5Z169ZJj+TNN98MALfddptlWQsXLnzvvfeWLFny3e9+d8yYMZRSaSa/+uqrGzdunDBhQiAQeOihhyorK//5z39+5zvfufTSS7dt21ZdXf3aa6/NnTv3xRdf3L1797p16x566KGBAweWlZWVlZXl5+f/4x//SCQSNTU13/jGN/Ly8jo/J93YRXH8lJeXL1iw4Fe/+tW2bdu2bdv205/+FADOOuusI25sGMbkyZP/9re/7dq16+OPP54/f/78+fMbGhq2bt3KGDvaV2RkZNx6660PPPDAokWL9u7du2LFigsuuOBLX/pSTx3SqQoiZmVlffnLX964ceO6deu+//3vDxo06Igz1TvpELpIJ71NFzn//PMnTpx44403rlq1au/evc8888zEiRP/+Mc/AoDP5/P7/StXrly7dm0n89U66Zc6+d4+uxqxV4J8EonEt771rYKCAr/ff/bZZ8tgG5dLL710+vTpXdneDdpBxIqKimuuuSYzM9Pj8UyaNGnx4sXu7u++++6MGTN8Pl8oFLr44os3btzorlq1atXZZ5/t9XqLioruueeeeDyOiIyxSy65xO/3y+CNRYsWDR482O/3z5o1a8uWLa+99lpWVtbkyZMZY/fdd9+QIUO8Xm9eXt7cuXO3bNkiP3b58uWjRo3y+/0jR4585ZVXpk2bJgNSjxYP1skuMsJEulB7lBMwyKcXePLJJydOnBgMBjMyMs4+++x//vOfcvkR48HWr18/ZcoUn883evToJUuWyEDS3NzcPXv2lJSU3Hvvve7H3nPPPUOHDpWvLcu6//77y8rKDMMoKSm58847W1tbe/1A08kJeKlcfvnlV1555R//+MeysjKPx3PWWWetX79erurw0+DRO4SFCxeec8457mazZs1auHCh+3bo0KHf+9735Ouj9TYd/lofeOCBkpIS9xO+/OUvn3XWWfJ1dXX1TTfdFIlEvF7vyJEj/+///s/d7Ec/+lEwGCwpKWlsbOzQpFdeeQUA9u/fj0fvlw4/5D68GuXvThDxlToAgMtze1zDjkhtbe2QIUMeffTR66+/vm9acKrSjd+9by8VRV+hLhVFF5G/e1/mcamrq/vPf/4zf/78IUOGXHPNNX3YEoVCoVCki77UlaeeemrGjBmapi1ZsuSYQiMUCoVCccLSl7py1113JZPJlStXDho0qA+boVAoFIo0ovIZKxQKhSKdKF1RKBQKRTpRuqJQKBSKdKJ0RaFQKBTpROmKQqFQKNKJ0hWFQqFQpBOlKwqFQqFIJ0pXFAqFQpFOlK4oFAqFIp0oXVEoFApFOlG6olAoFIp0onRFoVAoFOlE6YpCoVAo0gkFAIMAALTyPm6KojeRP7f86buOulROQdSlougi7qVCASCkAQBsi0KbughODVo5bIsCOD9911GXyqmGulQUXST1UiGIWG3Cf1r6ulGKvuCsTMg3jmF7damcsqhLRdFFzsoEgogAUG3Cjhi0cmDY141S9DwGgZAGwwOQ7znmfdWlckqhLhVFF0m9VGxdUSgUCoUiLah4MIVCoVCkE6UrCoVCoUgnSlcUCoVCkU6UrigUCoUinShdUSgUCkU6UbqiUCgUinSidEWhUCgU6UTpikKhUCjSidIVhUKhUKQTpSsKhUKhSCdKVxQKhUKRTpSuKBQKhSKdKF1RKBQKRTpRuqJQKBSKdKJ0RaFQKBTpROmKQqFQKNKJ0hWFQqFQpBOlKwqFQqFIJ0pXFAqFQpFOlK4oFAqFIp0oXVEoFApFOlG6olAoFIp0onRFoVAoFOlE6YpCoVAo0onSFYVCoVCkE6UrCoVCoUgnSlcUCoVCkU6UrigUCoUinShdUSgUCkU6UbqiUCgUinSidEWhUCgU6USX/7S0tGzcuPHgwYOJRKJvG6RQ9Et8Pl9xcfHYsWPD4XBft0Wh6FkIIjY1Na1cufLss88Oh8N+v7+vm6RQ9EPi8XhLS8uaNWvmzJmTmZnZ181RKHoQ0tzc/Pbbb8+dO7evW6JQnBIsXrz4vPPOU1aLoh9DN23adPbZZ/d1MxSKU4WpU6du3Lixr1uhUPQgtLKyMiMjo6+boVCcKmRmZlZWVvZ1KxSKHoQmEgmfz9fXzVAoThX8fr+KjlH0b1ScsUKhUCjSidIVhUKhUKQTpSsKhUKhSCdKVxQKhUKRTpSuKBQKhSKdKF1RKBQKRTpRuqJQKBSKdKJ0RaFQKBTpROmKQqFQKNKJnsbPSiQSlmUlk0nLMgHAMDxer9cwjBNnPv/atWv379+/devW8vJyACgrKxs5cmRZWdnEiRP7umkOzfsh0Qht1RBvAADw50CoAPzZkFHa1y3rCE++L6w93NwgrN0AQI0hmmccNQZr3ql93TQAgPJlrzRu3FC1enXDhvUAkDNufOGMGTnjxpdeellfN02h6OekR1csy2pqarQsK3WhaSZNMwkAhmFkZWUbhpGW7+oe5eXlf/7zn6WcuGzdunXr1q0AUFZW9uUvf7msrKyPWgcAAPFG2L8G4o2HLGyrhrZqAAB/NpROA392nzStA4LtNpt+I9ieQxaaG4S5AQCoPtiT9U2qD+mj1kHD+vXv3nFb44YNqQur31ld/c5qAMgeN+6cP/wpZ/z4PmqdQtH/SYMfrLW1pba2poOopGJZVm1tTWtr6/F/V/dYvHjxAw880EFUUikvL3/ggQeWLFnSm606hKr1sP3VjqKSSrwRtr8K1eu7/Q3f/OY3r7rqqm7v7mK1PZ2ou6uDqKQi2J5E3V1W2zPH/13d4NMHf7psxrQOopJK44YNy2ZM+/Rn/683W6VQnFIcr660trZ0UTBaW1ui0bZONhg5cuT//u//pi559tlnj9+Htnjx4i4KxuLFi19//fXOt2lsbLz77ruHDBni9XqLioquueaaNOQ8r1rfVcGoWg+1Wzrf5K9//evkyZMzMzNDodD48eMfeeQRufxrX/vaj370o+NsqdX2dBcFw2p7mkU7O+379u27+eabS0tLvV5vYWHhNddcs2/fvuNs3qcP/vTTnz3YtS3/37u339bJBiNHjiSEEEIopfn5+VdcccXmzZuPs3kKxSnCcemKZVnHZIU0Nzd3Ytb0BOXl5cdkhTzzzDOdmDXNzc3Tpk17/fXXf/7zn3/yySdPPfUU5/zss8/+9NNPu9/EeOOxWSGVH3di1jz33HN33XXXd7/73W3btu3cufOb3/zm3Xff/dRTTwHAaaedNmbMmO63E0Cw3cdkhZitjwu2+2hrL7nkkra2tuXLlx88ePC1115rbm6+8MILhRDdbl7D+vVdFBXJrqefaljf2Zm/77779u/fv2/fvqVLl7a1tR1u7THGutNQhaK/c1zjK42NR/fbHIWmpsa8vPzj+dJj4vHHHz/WXf785z8f7b7+pz/9aW1t7fbt23NycgBg9OjRc+bM+cpXvrJhw4YJEyZ0s4nla455l/1rYPilR1zz5ptvXnjhhddee618+6UvfSkSiRQUFADAN7/5zYqKihdeeKGb7QQwm37TjV18uQ8fvryysnLLli2LFi0aO3YsAOTk5PzjH/9YsmRJPB4PBoPda967t996zLvccdvl77x3tLWZmZkDBgwAgNLS0q9//etXX30151zTtLvvvru5ubmhoWH16tV1dXXda61C0Y/pvr2SSCQYO2bjw7KsXis+IaO/jnWv8vLytWvXHnHVCy+8cPvtt0tRcXnsscduvPHGbjZRRn8dK/FGaD7ycY0ePfrtt99euXKlu2Tu3LlTp6YhQIsn3+9kTOVoCLaHJ98/fHleXl5ubu6vf/3rlpYWuaSgoODWW2/ttqiUL3ul8dgdko0bNpQve+UzN2tubn766acvu+wyTdMAwDCM11577dxzz1VlHxWKI9J9XZHBxOnd8Xvf+56ewsKFC7vbOgCATjxa3dhRCLFv377jdCV1pJOB+m7t+LWvfe2mm2668MILy8rKbrrppr/85S9NTU3dbl0qMpg4XTsahvHKK6+8//77eXl5M2fOvPfee99//wjy03UaN3QzoqGTHe+///6srKzMzMysrKx9+/a5I1WEEI/H841vfKOwsLB7X6pQ9G+6ryvJZDLtO37rW99al8LPf/7z7rYOAEDGEKdrR0KIpmmc8+NpUkfaqtK7o67rv/nNb2pqan77298WFBT87Gc/GzRo0FtvvdX9Fjpw86gRVt3bcerUqZs3b/7Pf/5z1VVXbdq0afbs2fPnz+/26a1avTrtO959993r1q379NNPP/7441mzZk2ZMuXgwYNy1Wmnnda9r1MoTgWOx17p5gh8JzsWFhaOTUF6t7tNt+2VI3rPCCFDhgxZt25dh+XHFYnQbXulU+9ZZmbm3Llz//d//3fbtm2XXXbZ3Xff3c1vSeE47JXOvGcTJkz4xje+sXjx4rVr177yyiuvvPLZXqkj0tBde6Vh41H1Mjs7e9CgQYMGDZo0adIvf/nL3Nzcxx57TK7yer3d+zqF4lRA5XE5Aoh4xOVXXXXVn/70J/emVW550003ffvb3+6tprlffIRlnPOvfOUrq1atcpcQQqZOnZra4L7gCG1dvnz517/+9dQlo0ePzs7O7oOmHuW3PtKG2MvRjArFSUr348EMwzDN7gyx9NrE+7Kysm3btnVvxyMu/8EPfrB06dIZM2b86Ec/Ov3002tqah566KF33333nXfe6WYT/dkQrenmjoehaZppmgsXLvz1r389ZcoUQsh//vOf//f//t+VV17ZzealQI0hwuzOMDU1jjDxvqys7M9//rNpml/96lcLCgqqq6t/97vfRaPRiy++uHvNyxk3vvrd7vwKOeOOOvG+ubm5oqJCvli0aNHmzZv//Oc/d695CsUpRfftlW67AnrNhzBy5Mj07hgMBtesWXP11Vf/8Ic/nDx58o033pidnf3hhx+OGDGim00MdXfg9yg7Pv7447fddtsPf/jDsWPHjhs37ic/+cndd9/98MNHiPQ9VjTPuDTuOGbMmJUrV1ZXV19yySWDBw++/PLLW1tb33333cGDB3fvWwpnzEj7jj/5yU9KS0tLS0unTZv273//e+nSpWeccUb3vkWhOKUgTz75ZPfCrhKJRENDfTd2zMmJ9E4myrVr1/72t7/txo5f//rXJ02alPb2HIHm/bB35WdvdjiDZkFmr2ai5Mn3k40/7caO3ux7eyETZfmyV1YsvL4bO85+6pmyyy5Pe3s656mnnjrOWEeF4kSm+/aKz+fT9WP2aOl676U3njRpUmnpMXe+paWlvSQqAJBZCr5jTyXpy+5lUQEAzTuV6sdsTFC9l9Ibl112efbYsce6V/bYsb0vKgpFv+e4xu2zs4+5T+zGLsfDLbfc0gu7HBdl03pjl3TgyfpmL+zSbc555NFe2EWhUHwmx6UrhmGEw+Gub5+ZmdnL2fLLysrmzp3b9e2vv/763s6W78+GgmPJ2V48ua+y5VN9iBE6Bl+TJ3xLb2bLzxk/fsL3f9D17Ydef4PKlq9Q9ATHW38lHM4AgK5kn8zMzAwGQ8f5dd1g3rx5ANCV7JPXX3/9hRde2OMNOpzC8QDQpeyTxZMhb1RPN6cTjNANANCV7JOe8C168BgUPS1M+MG9ANCV7JNTHvzZqDu+1vMtUihORdJQ1ysczvD5/I2NjUdLF6brRnZ2X9b1mjdv3qRJkx5//PGjpQsrLS295ZZb+rKuV+F4yCyF8jVHnfDoy4ayE6KulxG6QfNNPbyul0vf1vWa8IN7Sy+9/N3bbz1aurDssWPPeeRRZakoFD1H9+PBDieRSFiWmUwm5fQxwzC8Xq9heE6oOsTl5eWH1yHuvYH6z6R5P8Qboa3Knorvz4ZQIfj7YKD+M+HJ94W1+7A6xENOoDrEG9Z3qEOcPW78iTBQr+LBFP2bdOqKQqHoCkpXFP0blcdFoVAoFOlE6YpCoVAo0onSFYVCoVCkE6UrCoVCoUgnSlcUCoVCkU6UrigUCoUinShdUSgUCkU6UbqiUCgUinSidEWhUCgU6YT6fL5EItHXzVAoThXi8fiJk9lIoegJaFFRUUtLS183Q6E4VWhubi4uLu7rVigUPQgdN27cmjVr+roZCsWpwpo1a8aNG9fXrVAoehCCiC0tLW+99dbUqVMzMzP9fn9fN0mh6IfE4/Hm5ub33nvvvPPOy8jI6OvmKBQ9CEFEAGhtbd24cWNlZaUaa1EoegKfz1dcXDxu3LhQqA+q2ykUvcn/B5p+9r+65Zr0AAAAAElFTkSuQmCC", "path": "image.png" }
Look at the models of molecules below. Select the elementary substance.
[ "cyclooctasulfur", "silane", "bromomethane" ]
0
There are more than 100 different chemical elements, or types of atoms. Chemical elements make up all of the substances around you. A substance may be composed of one chemical element or multiple chemical elements. Substances that are composed of only one chemical element are elementary substances. Substances that are composed of multiple chemical elements bonded together are compounds. Every chemical element is represented by its own atomic symbol. An atomic symbol may consist of one capital letter, or it may consist of a capital letter followed by a lowercase letter. For example, the atomic symbol for the chemical element boron is B, and the atomic symbol for the chemical element chlorine is Cl. Scientists use different types of models to represent substances whose atoms are bonded in different ways. One type of model is a ball-and-stick model. The ball-and-stick model below represents a molecule of the compound boron trichloride. In a ball-and-stick model, the balls represent atoms, and the sticks represent bonds. Notice that the balls in the model above are not all the same color. Each color represents a different chemical element. The legend shows the color and the atomic symbol for each chemical element in the substance.
cyclooctasulfur
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAh0AAAEiCAIAAADSxvdVAABPcElEQVR4nO3deXwW1bk48OecmXn35M0eEiAQ1gAREBRBUSkKLtWittVWtPpz6a2oV4rVqq1brVehbrfaa71q1aq1Xr23UK0W96WCC/smENawZF/eJO82M+ec3x/nfSeThZhlkhfJ8/3kA3knM++cmTlznjlnzpwhQggAqNRhVwSaGZgC0DFPJZCmwFgf5Lt6vCxmlUEFswrqJntWIUKIKh2+bEp1olAqnJQOeT0pLzCrDFqYVVA3nZQOKgCURQAAClww3g9pSorThAZAM4MdYajQYWekZ4UFZpXBBrMK6iZ7VqEA0MIAAErw8A8aaQqM9wMkD333YVYZbDCroG6yZxUKAIYAAAjg4R9M5Nlu9LDhG7PKIIRZBXWTlVVoqlOCEELomIJxBSGEkJMwriCEEHISxhWEEEJOwriCEELISRhXEEIIOQnjCkIIISdhXEEIIeQkjCsIIYSchHEFIYSQkzCuIIQQchLGFYQQQk7CuIIQQshJGFcQQgg5CeMKQgghJ2FcQQgh5CSMKwghhJyEcQUhhJCTMK4ghBByEsYVhBBCTsK4ghBCyEkYVxBCCDkJ4wpCCCEnYVxBCCHkJIwrCCGEnIRxBSGEkJMwriCEEHISxhWEEEJOwriCEELISRhXEEIIOQnjCkIIISdhXEEIIeQkjCsIIYScpKY6AQghdIxgjBmGwRgDEJQqLpdLUZRUJyoFMK4ghFBfxePxUCgUDrfous4Y55wLIVRVTUtLy87O9nq9qU7ggMK4ghBCvSeEaGxsqK9vYIxRShRFoZRyzhljuh6vrGyprq4uLCzIy8undLDcd8C4ghBCvSSEqK2taWxsVBTF5dIIIUIIIQTnnBAKQAgh8Xh8z549sVisqGjEIAktGFcQQqiXGhoaQqFGVVUVRSGEAoCMK/KvQlAhFE3TGOPl5ftVVRs2bFhK0ztABkXwRAghx8VisYaGekoVRVEpVSgllBJKKSGEEEqI/J1SSlRVIYTu3bs3HA6nOtUDAeMKQgj1RigUYowlA0liIiHQ+gHk75QQoihKLBY5dOhQatI6sDCuIIRQj5mmGQ63yKAip8j/hQCrHSxJJGegNTXVpmkMZDpTAuMKQgj1mGHoum4AEBlIhIDkj7y/IiwAIAMNIRAOh6PRWIqT3v/wvj1CCPWYaTLOmRCKEFwIwjm3OoMJkXh+Jfl7YgrnYJqmYeipTnu/w7iCEEI9lowYnHMCAIRQQmS9xJrO5QOSdkLwVCd8IAzeuCKEsN9ek9VV+xSEEDoSRVGEEKbJZKFBiNW3OFFJYUw+HMnkv4wxxkxKqaZpKU34QBiMcUVGlHYhRH7E6IIQ6g6Xy0WpYpoGIaAoir3QsAcVxrhpMsaYaZqmaQaD6R7PsT+my2CMK4SQWCwWCoUikbBhmEJwQqjX683MzAwEAtChKoMQQu1omhYI+GtqagGAc04pBUhcmybvpjDTlOHEMAzDMEzGzLy8fKyvHIMMw6iqqmxuboZkvYQxzli8uTl0+PChtLS04uJRXq8XQwtCqGvZ2Tk1NbW6rquqanU4trWDybhiGLLrmBH3+33Dhg1PdaoHwuCKK9Fo5MCBgwDc4/EmO5vLHKBpmmYYRmNjaO3aNZMmTcrMzMLQghDqQiAQyM/PLy/fzxhXFBlXCIDgXCRbwUzDMHTd0HUdAMaOHZ+WlpbqVA+EQfT8SjweO3DggKJQj8erKAqlCiE0Sf6m+P0+SpX16zeEQiHZazDVqUYIHb0KCwvz8vJisWgsFo3H47oel//qeiwej8XjsVgsHo/HhOBjx44bMWJEqtM7QAZRXDl8uIIQomkuQqiiUEqpHCqO2MILALjdLkrJ5s2bZIf0VKcaIXT0UhRl1KjRI0aMYIyHw+FYLBqLxaLRWDQai8XiMqh4PK7jjps8fnwJpYPlHV/HfjuYbM5qbGyMxaI+nw8AbCMvACGtXcNkgAEAj8dTV1e3f//+4uJibA1DCHVBUZQRI0ZmZWWXle3cvHmzz+dTVVUIEY/HIpHI8cdPGzt2XHp6eqqTOaCO/bgio0JjY4N8Iah9MB+eeESJ2Ju75Ayaph48eKC4uBiDCkKoa4SQ9PT0rKzsV175q2EYPp9PCNHc3Oz1es8557uDLajAYIgrAGCaZiwWU9XExtqjiP1lCdYnIYSiqE1NTdFoxOv1YZUFIdQd4XC4urpaFheGYRQWFqY6RakxKO6vGIZhmibYh4ITIPtsyD6BQsguHHK0OC4jjWEY0Wg01WlHCH1r2G/W2oc6HmwGRX3FGgaOcw6JkXzajBBnDd0jo0ubgeIQQgj1xKCIK4RQzrlpMvlArDWSj62neeL5WGswH9NkAMJqOkMIIdRNg6LcdLlchFDTNAghAPabJa1xhTGTMc4YN02TMdMwdJfL5fP5AYcLQwihnjj2768IIRRF8ft98XiMMdMwTDkMXHKUBSYDCWPMMEzTNEzTNE0Wi8Wys7NdLhc+GokQQj0yKOorAJCbm1ddXa2qRvL5R1kFab27IkfySQ7mYwDwUaNGpzjRCCH0LXTsxxV5iz4YDGZnZ1dVVQUCaQCmfBbS6hWWqL2Yhq4bpmmGw80jRxbn5w/BHsYIIdRTx35cgeQNkjFjxjY3NzU2Nvj9fjk8HICMK9bbEZhpGs3NTTk52dOmTQe8s4IQQj03KOKKpCjKlCnHb968qaqqyu12KwqV/YkZk/UVruvxeDw2dOiwGTNO0jQNKysIIdQLR0VcEdB6b5xAPxblmqZNmzb9wIHysrKyWCzudrsBBKVACBiG7vV6pk6dOnJkcYduYw4bsO0dtKw9fDTv3m9FIhHqhZTFFQGCCy5AKESxn1dccA6cAqWkX/qqcc6HDy/y+wPXXnttZmZGRkYG5zwUClVWVj799DOFhYXJYYydP9U73TQBgglGgFBCsXzpC7l7CRB7jjradu+Rsj0TTIDov2yP0EBKQVyRpxYlVCGJUaMNbhjCIEDc1E0JpUABwDr9nFy1EPKNoYqi7N69u7a2VlFUeW/F7/fLgSllXHG2smIVbdamxXlcgNCIplFNJSokS8CjpPj7dmm3e4UQMR5rt3vlbCncvTLbK0TpmO091GNN7I9sj/qdEMDiRnMtY6YQkHhnIAAzjXhTjcjLJpq7Py5Vj1oDHVeYYIQQhSgxFvus/rMPaz/cHNpcEavQuU4ESaNpI30jT8w4cd6QeSXBEnC0LJABQz5CX15erihKWloapVQ+y6Ioyr59+/Lz8+UMyRdW95VVmgDA9ubt79a8+1XDV/si+5rNZsGFC1wF7oLj0o/7Tt53Tsk9xaN45EU3FivdZN+9ZS1l79a8+2XDl3vDe5uMJiGEBtoQ95DStNLTc08/Le80n+qTwXvgd6/MxgpRIizySd0nH9d+vKVpS2Ws0uAG4SRdTS/2Fs/InDFvyLyx6WMh1SEQdZ9ghtFYEa/dw5qqRFXFqPy0eCSsmwwA3JpnVF4guvODirrNWkahP3+MJ7OQqsf+y+0BgAgh3qgFADg/p99XJk/pCIv8qfxPzx94fkd4hwGGRjWNaAQICEj2yzLTSfrsrNmLxy8+bchpXHAA6Ev7gBwIjFIaDoffe++9Tz/9dO/evdu3b0/et2dyhokTJxYXF8+ePfuss84KBoN9r7hYKf+k7pPH9jz2r4Z/NbEmhSga1RRQQIAQwjRN3dA1ro33jb+y+MqrxlzlU30DU/b14rgPWFbpDmv3fl7/+aN7Hv24/uNG1thx9xqGoXBljHfMT0b85Jpx16Rr6QMcWuTqmsymp/c//eLBF3dFdjFgsiJlZXvDNJjJMmjGnOw5i8cvnpk3s+/Z3kHf9qzSHwRnRsPB2KHNZlMlEQYhhBDa2BI9WN3Y2BwDEOk+d2F2MOBzmYyZJuNUdWUOCxYf788ZQZy4Zj06yeM+cHHFFKZK1FX1qxZvXbwxvDFNS/OpPgIk0eIshBCCCEIEIZwwgzXHmsGAy4oue2D6AxnujF6XBVZQ+fTTT1988cWKigqv10sI2bJlizW4pPxl8uTJhJBwOJybm3v55ZefddZZfQktMsGNRuPtX9/+0uGXgEK6K122ychKieDJ7RVEmCKqR1siLVPSpjx64qOn5J8yAGXft7qwkE2pLWbLXTvuevbgs5zwdFe6SlUBiWFDAUBwQQUlggiW2L0TfBMeOeGRuYVzByy0yBV9UPvBkm1Lvo58na6le1UvIcTK8/Zsbxpmc6xZMZSriq+6b9p9AS0gN3MA0tm1b3VW6Q883hItX2fUlBFuUoXSxJsBgUDiwTghgHNuMs4454wzzk2TGabJiRYYXpoz7iTVE0j1RvQLedwHKMsywVSiPlv+7LlfnbtL31XoL/S7/UIRXOFCEUQhVKGEEk44A2YSU6gi6AsG/cHn9j0375/zdoZ2KkRhgvV0vbJ84Zw/+eSTy5YtC4VCWVlZXq/X5XKpqqrrunwoUtd1VVVdLpfb7c7KyopEIsuWLVu6dKlhGL17y70sTcpayuZ9Pu/5iuezfFnZvmyqUq5wrnBQgCqUKERQwQgzwWQK87g8+en5ZdGyc98795ntz/RuewcJWdqWR8vP+eKcPxz4Q9AbTOxeygVtzU5AIbF7CXNr7vy0/HK9fMEHC36/5fcDs3tlNnh87+ML1iw4aB4sDBR63V6hCE45KEAUQhRiz/agQIY3I+AL/Neu/zpn5Tn7W/ZTQmXFBR09zOaalq/fM6q+VgnXNFVVFEVRVEVRqEJbu/wIIEAVolBKFaoqiqoqmqZRMEN71h788o1YqCbFm9GfBiKuyLPryX1PLtq6KM2Tlu5ON6kpTy2grT9UoZRSUAAIyBKBEZYXyNsR2XHeyvN2hXYpROnpOUYI4Zw/8sgj//jHP7Kysjwej7xCVBSlpKRkyJAhfr/f7/cPGTJkwoQJmqYBAGNM07Tc3NyVK1fee++9uq73NLTIFv/d4d3nrTmvLF5W4C/glDPC2mwvgcQbGiiRHznlBjH8Hr/f67/+8+v/sPUPGFo6xYFTQg9GD57/1fkbIhuGBoYKRTDC7HkJKNijC1AQVBjE8Lq96b70m9fcvGzjsv7evTLbP7T7oZu335zpywy4AyYxBRVWBgAKhJI22V4BRhinPD8tf33T+vNXnn+g5QCGlqOK2Vwd3vkRhKs0TVWTwUQhkDiVKaGUKMm3ryiEUEqV5ESFJgJMtHb/ga/ejDZWp3pr+ku/xxV5dv2z+p+37rg1z59HVcposoQlbQqCRFELNJEoCkDBACPDm1GhV1z24WUtRgsl1P7wR9fk21OeeuqpTz75JDc31/5qSM651+sdN27c5MmTp06dOmHChEAgIFu9KKWyWSw3N3f16tW/+93verS9AoRsn/nJhp9UmpVZ3iyDGKCAFS/bl32E2neFDD85gZxbv7z1rf1vYWhpR3bG1bl+5cYr98T35HpzDWIAhXbXKDILyaNp372ccKGI/LT8u9be9dru1/pv98ps//rh1+8qu6vAXyADRieJJEfM9lm+rN2R3Vd8eIXO9B5le9R/WKQxXPYpidWrqqbaIgehNPFGL0IoACFA5XRCKIXkLzLAUIVSVVP1UOWBNW/HWxpTvU39on/jiuwxWROv+fm2n3s0D6WUE97JOknyXwqJXjCktSyQ59jaurW//uLXkLxb+41kh66PPvron//8Z3Z2NmPtiw/OuWEYMtLIW/dyuvWWN8ZYTk7Ou+++u2LFClnv6dZ6BQeAu3fcvbZ5bbYn2wADaIcehtYGAhBKiPVgHAEgIEAABY/Ls3jV4ppojUIULFMscvfeX3b/p42ftgaVI+1e0mH3UhBECCLSPGm/WP2L8uZyhSiOD1kts/2B6IFbt9+a7k4HBQQR7bO9LQ+0z/Ykke1zfDmfVH1y35r7oNvZHvUfYeqRfV9ApFZV1URNmFKglBAi4wohyQoLIYQASQBCiDy+JBGHiEKpqqix+oOHN3/MTSPVW+a8/o0r8mR4ePfDe2N7A64AJ9xegLaeV9Dml3blLBDQhZ7rz31ux3NrqtZ0pzVM3qhvbm7+y1/+4vV67X8i1tG2Df+VuLBtS8aStLS0F198sba2VtZjvnF7FaKsaVzz/KHnc7w5bYJKp9sryz7SvkzhhPvd/r3hvcvWLQMsU5Lk7t3WvO2p8qdyPDkmmG12L7XtYduubrN7AYAAJ9yreSviFQ+sfQAAODi8e+XxWrpraaVR6dW8HHjnibSlk0Ay/tl+DGHk+nOf3PbktrptvWgERs6KVe1k9ftVVaGUUgJWLJGlSSKAQKJYIQCJiAIkUX1Jzit/p5QoitJYvrVu/5ZUb5nz+jGuyKu2Q9FDr1a8munOZMA6PaNaWV0q2k0kAAQUqsR5/MnNT4J8dqxLsnby3nvvVVZWynsqiS/rLKh0ZM0ghHC73bW1tW+88QYkqzVdkGf+U/ueiomYStX2xRzpbKvbrzsxgynMTE/mX3f99VDLof64pv42kvW2p/c/3cSbNEUTRHSMIq2sIpuQ9rmOgAlmpifz//b+367GXQpRGP+GI9t9jDOFKLtadv1f5f9luDMYsE5qVNDJFUZrOpP/CiJURW0ym57a+hS0Hf4HDTAWa4of3iIbtWRQAVtX0dYzO9ExjCQm2ruTJmowYKvYUAK8avsXeqQ5RZvVX/oxrsiW6zcr36zUK12KS4Boc9q0O0e6KG0JgAAGLOALvHP4nYpwhUpVsAWJjlRVFUL861//crlc7b6sRwW0rLJ4vd6PP/5Y9hnrYr1AQKVqRazivYb30rxp7a+CO67WuqDuEExla5hLdVVEK/6+5++Q3JmDmbxMadAb/lnzz4Bmq/vaWRUCSO7wI+QrAUJTtDq97v92/5/82EV26hFBBAAsr1xeb9ZrVBPWS6/tFxn2SJP8eyc5kwATLOAOvLX/rYZYA7aIplC8ereINcpG8sRhbI0XbRBbaAFrDmKPLolPlBBFUWKN1XXl2/o7/QOsH5+3lzci3699X4aBNidSx9AiWj/Kh1ra/EkFwYU76q5pqflg5weXllzaEG840vMHspKxa9eugwcPut3ujqernNJxOums35cQwuVyHTp0aP369VOnTo1EIkd6Dp8Jlqllfnjww5r6mixPlsgQoNg21tpeYfso5P+i/a5IrlpTtPcOvHfd5OuOhocYUks2gn3Z8OXB2MEMX0b7IyWS5TUAKAAsObHj7pUICBBuxf1e+Xs3jr8xbsbJkeuvPSJAuKn7/er33Yq78yNrbwpjrUu1zgCteUaA8CieA80Hvqj84uyRZ1uDC6CBxI2YXrOHJNqyEk1e8k8d21xkziT24q1t4Zas2CRa/AmIuv1b80ZPVTT3QGzMgOivuCK7RYXN8PaW7W7FzYEndi5pP1/7BYVoPRetReIQ+HNA3a8GlMDSl5Y+oT5hzSM6G82ec56enp6fn9+u9LFm7jR+WBM7LuV2u2+99dZoNNpF6SO7KkVYpFAUUoOyMSy2OAau5Ia0C6VWVhPJ1Yn2e0MI4Vbc2xu2h42wX/MLEIN5YA95xNeH1ssxtdpfeRxpx3AQvG2Rbf2Fc5/bt2nfptPmn0ZN6tiuFSA0cWjxIV+ejwvemmE6JpK0XcoKQm1zAgFicnNd9bqzR54thBjEWSBlzJZaFq3XaA92fYcSRgC0zwCysYxQGqmvDDdWp+cO72tCjxr9FleEIIRUxavq9DrZKpUoE0W7UA4AADx5LvFk+S5sU9zC+7nXu9kr0gTowARrFI1drJoQYppmIBCglJqm2S7wHKkd7EiRRpJfVVeX2JYu1k4JVUEVVLhWu9gMpp+jkxaSqLi0fnXrT2Jr7fEm+a8AoVK1NlpbFakaFRzVaQQdPGT+2RPeQwm178DWgG3VBgQAT2SqxMHitnnaLSugqamJGM6FbAHg6rBGsGV7DqAkf+Gt2aDNzLYtkpdoe0J7oMubgqj/GKEqYAZRtC4vKxP/ysaQ1qm2XzteO8oWMjMeba49iHGluyJmxGCGoipCCCII8GRLhf3ocNuVOxdc8I5nl3pIBS2xrEIUBbpqCpDN3PLFXHCECk071sgfYKu42OOHEEJVVVVVuzMYJQcOFLiL0z20kxYYe/HBgXOeKAftf0qWNQSIwYywEf7GlR7zZMHfYrRQkXhOsDVHWYfXKqmT7WCtR7ZDUEnEdABN1QgQQQSB1oZQ2ShqNY12/Ahtc0hiCgjgibNKZqROsr0AMAEAgCVTwpLZ3konb5MNKNBmo9naCagvGGPxeDwej8vePZqmeTwel8t1xFJCCLOlLvmrACACwMoHbWaUM4hkBEleNYrWP4P8KJKZxyp0wg1V/bGxqTIg4xnL/csFoaR9a5j9XGLQJqjYTi3OuMlMwQTwbz61ZH3FKlC+cYwvOUSY/WMiabbokujqY3vMpevNBQGEEc6SMaNti0drUBG8tbLC22yyrLp1EpYGOdslSOKYdrF7OU8U9B1rKskqguzBRZiT9RWZUVuzvZIMLZ3VWVuvpaxri06zAeaEPmOMhUKhpqZQPK5zzuQ7yOWDboFAWl5ent/v77iU4KYZbwGwAgIIEK2t2q3tnImSwroybY0rrQGmdR5I1mrkgY2HGzlnlB4jN8/6N654Fa8qVM45EJCvtEr0fRJtW8N44uxqXwrwxI85xHTH3cItCCcceNcd+WVcMYzWp41k1ukYWmQGsAcVe2XFjhDCGDMMozvtYLKIEnHBh/PE5sg1WJssEkGFC57YRmi/yVahoxHNp/q6s7ePbTLG+hW/YEJWRAAg8Ti9aD9rImaLZHaCDvtW3nfhAAKYycD8pv7fPUmoTBIRRHDBCadAE6Gl4yYx0ZpOaBv5eGtQ4Zz7Nb+1E1AvxGKxmprqWCxGCNE0RQhFnvuyrKitra2rqxs6tHDIkIJ2BYXgXJg6aQ0SiWpr+75HiSjReVDh1sL231tnAVOPC8ag53HFXoE+evRXXJHbme/Oz1azK1iFi7oEFxw4FRQIJCouUrKxorUUsBcBACRK9Mk6XUPpASo0oYKa6Glz5FXL2yH2mkfyLZCtB8CKGdaC9hgjf7FXWRhjXq+363YwAiTO4wYYxCBiitBn6SRMQADhxB5U5IoSQVSukLUp8mREEVyYppnryc3z58HRl3UGmDzixb5ixhgRBOTjhxyIIMR+Q7WL3WuvBHAhuCCcCBCqpnbS1bsvCVWFFbRkYihQYn+MprWI4dYRl1X2dhcWnHOFK5zzUcFRILPioM4FvRSLRSsrKxkzNU3eIyFy99vPKV3X9+zZYxjm8OHDrXbOaDRaW3WYRKPeZOMVFwIEoSQRSIi9AAGwBxUuOBeCW/eME7/Yw4y9FOpBnVQIEYvFwuFwLBY1TZNzoaqK1+tLS0tzu91HQ0HRb3EFCBc8oAXG+cftq9vnUT3yTauMMjkquDWnSFySdVJNSfyYIDTRckWL2qA2Rhuf+M4TPx7/4+70M37wwQc1TZNvgbRCiD2utFvK3nRmVWXklFgstnTp0ilTpnTdzzjDlfHq/ldv2nhThjfDzDTBDcIUkHzsts32WqUJJNvZ5cayxL+cc8JJ3IiPLxifpqUdJeOlp5DcgVMzpqpCFUzIOgGnXD4zYs3Wuns7NCjZS21Z1rfEWk4acdJr772mm7qD/Yxd1PWjLT/6MvxlwB3gnAsiGLBELkgmMvFvuwqKPfMzEEwILgQTKqjH5x0Pg/7aondM06yurmaMqapGqZJoPbXuuwmhKArnXNM0xviuXWXhcEskEi0rK9u+fXtZWVlDXfVtl5w8qThfcC6okigZIBFa2rW8JA4pt6JGMopwEDLM2FpBEm/oEAIIqaysqli5clzJxKFDh7YbIqSdeDxWV1cfDoc5Z3JDOOeMmXV1dYTQrKysIUOGdHxub4D1YzuYbPj6Tu533qp8izACNHklTkTrM5JgO6/Admq1vXDjBgcAPV3PCmadddxZvoDPIzxdl7PTp08vLCw8ePCgx+OxR4JOW7FaK0y2WotVZdF1vaCgYObMmW63OxgMHunclts73zc/qzIrpsQUogg9MSqUoB06T3dsnLH9yKtpRSgGM+YWzYXkyPDd3PPHJLn5M7JnFGqFjUajqqmCCuBdZierEtBZea1wJW7EzxxxZnZutsnNxFNWfSbfM3RG/hmfbv80XUtPDOIiEuOStSYS2qaTdZIZ5LWFbuhDA0NPGnISJJ8JQz3S2NgYj8c1TaNUocmqLaWEsdaHYSlV6uur33nn3bKysrq6uubm5kgkwjkHIB631tAc4QKAC8YEKACy8YNQIG2Dir39HASXTfbJ10txIXgizID1kXPBuSCE7Ny995lHX0sPBkeNGlVaWjp58uSSkpKCggKPx2PflpaW5urqGs6ZolBVVYQAGZ4YU0zTMAzj8OFDjY2No0eP7vRe0YDp9+cizx96/rKvl+mGTlUqqGgz5Ea7Y9Lhek3+JEoBpjS1NJ07/txhgWEmN7se2oQxpqrq7Nmzn3/+ea/Xa5qmHLi645z2Son8KHuJWC/7IoTEYrFTTz3V7XabpqkoR1wvAcIEG+Yd9p3gd16reC3Tl8koS2wm62x7RYftTf7COSeMGIaR58tbMGoBHDXvDUwhuXtz3Dnz8+b/qfxP2Uq2KdqOD2Y/LEeq+7LE7gUOpmFmuDMuGnOR/PIuslPP0ikIELhg2AWP7XjMNM3Wobu7SGeHFAIDzrjgQuVqQ7zhknGX5HhzUvIG5W870zSbmprkQMPJlvDErRBCiBCJp9+FEG+++Y9//OMfpHUc4kSJYZisoq5JtuITKu+XycdqIVFVlgeUgBVRZG3FCiqySiEbxRjnPDFFvlUwcV+5NhQxTLOurq6mpubzzz93uVxZWVkyxkyZMmX8+PFDhgzhnNXU1AAITdMIoZAIY4QQTogAUOX6m5ubduzYPmHCxK7rPf2qP+MKoUywEYERPxj6gyf3PJkTyDG5aY1hDiTZ9g1HLgU4CCaYyWR0camu6yZfJ7+56wYB2fZ19tlnv/nmm5FIRNM0GSc6PshiL02sjmFWsBFCmKaZlZW1YMEC+bVdr1e21fzb2H9bcXCFvL0MwjZ4ULvr6COUKYwxYQpNaNWx6uunXD8ifQQWKJLcvdeOufbV/a8yg7UOZ2C/WLFXBI+8e1Wu1sZqfzLxJyVZJVxwxbl+OHKAyJJgyflDzn/54MvZ/uxEtidtu4QdKQ8ka1SccWDATBZwBX523M+szUc9Eo1GDUOXr1aS2aX12RJbp6xoNLprV5mMJbZ7HgAAjPNdB2t1g7lUQpgA4AIoJUQQToC0VkGtps3EjwwcIhlZROJHXq8Kwbn8yBnnJucHqkJCgByMEgA45zU1NVVVVatWrXK73dnZ2aNGjRo5csScOXOKi0dZHVyFEJwDpSCEoFRQqlDKNE1ramras2fPhAkTuvNcRH/o37XKKssvJv1imDYsFo9RToEBmND6bxc/JghTMMaAgca1ukjdwpKFJxee3J0WIUII5zwjI+PSSy9tamqSE0XyrcP2dw9bf2KMWc1fssrCGFMUpaWlZeHChfn5+dad/662l1Au+Ky8WZcWXVrXXKdxrXUz220v72R7wQRmMsEE5TSqR4cHhv/yxF8Ctn4kySuVKVlTrhp5VZvda7bNVOYRcxdjid2rG3quL/eOGXf0X2pvL709h+TocZ1wYj/EXSTPqqC3Zvto3TWl10zJncIEwzprL8RiseRpbi/0W5u+bSGEWCWDddEpS4nNuw/VhcKJgoMlgoGsc7DkD+eCMUi2fTHOW2+nJOeUSyXrK4LLKQIgFI7tPVRrDacrU04IURRFVVXGWFVV1WefffbnP7/45puyRpUYSiYZYFqHp5OhUVGUysqKhoaGFO31fi6wCCFMsEJf4bJpy8LhMDEIMck3RxT72WWCytVQLFSaW/rA7Aeg27cu5XXHueeee+aZZ9bU1MhI0/GwdRpdZDVFVdX6+vo5c+ZcfPHFQohuRn6ZvPun3T/JPykUDqlcbV/qdRpmbKUeYYQwEjbCD5/+cKG/kAmGd2stsmy9+/i7Twye2NDSoHENjCPv0rY7nJlMmIIwQjkNxUMPnvLg6ODo/iivZfwblT7q/qn3h1pCiqkksr3ZWfLaTuQml9le41pDtGHGkBn3zrwXsCG0t+QzZ7wziXYoIRjjbrdr9OjRViAxTVPX9Xg8bhiG1+OhnvS6CDcZM1mb0MJYm68jRBAiAARngnMh5GyMJ4OKaA1FjDPGGWMGZ0DEjn1Vh6obOWOy/LFKoXaFlaIojY2NsrzqtEiwBi2jlDLGKioOD9Rubq/fn4uUr+S7cOSF9zbde8faO/LS8gglnHUYjLZtqwXnXLYDaFxrijVlebJeOvulTHdmL25fL1mypKmpafXq1Tk5OVZrGCFE1/X6+vpYLMYY83g8mZmZ8hF9mbFkUJk+ffodd/TsklZ2hMtwZ7xw6gvffee7oXAo3ZNugNHJwGi2TRY8cYlKOQUTqqJVy2Yvu2jMRdgC1o7cvT7V98JpL5yz8pzKlsoMb4bB2+7eDn0i5MWhrKkQRirDlXfNvOsnE3/Sf7tXZvvLx16+u2n3bzf9dkjaEEFF64tYrHSKI2b7xljj0MDQl85+yaf5sNdGr8mwkTytrXejtHbHkiU5AJx++ukbN24sL9+vKGpGRrC4eNS4ceMmTJgwbty44UVFrkhV47b3BTAAUISggsqGKPl9hJBoNL5lT2VVfXN+ZlrJyDyfW2OccwGJ8MVtMYYlaiqMcy44VbTRU2efHc/avv3rysrKSCQir2KtR+7sj3VnZ2cnO7i220rR9sl+IITU19cbhpFsAxxQA/G8vTzHbpl8iwbaHWvu8Lg8AXfABLPNGK7JcjZxk4OBIhTCSE2kZkzGmFe/+2ppdmlPSwF5O87lct19990PP/zwO++8I/t3y1WUl5fHYjFFURhjzc3NshMFSb4psrGxce7cubfffrvP5xM9HJhLXq6WZpW+Me+NH73/oz2hPbn+XNnZtM32isSDb5xzwQThRBVqOB6Os/gjpz/y8+N/jkGlU3L3jk4fLXfvttC2PH+eIIIJ1masMAHyMaDE7hVE41okHgmb4d+e8ttfzfhVf48NLG+03DP9Ho1ov1n/mzRPms/lM4WZ6BXWMdszDgIUrhBGqsPVpbml/3Pu/4zOGI3ZoC80TeOcmaYJoMp3pgBAMq7IekNCYWHhz372b19//bXL5Z4woeTMM+f5/X7rxGdGMHx4m15/AACEoFSI5BsiCaHQEo0/8fqn73y1M26YHk09ccLw678/Oy8zjbXWjBLRxUyskZuMmZwLwTOGjDp5zo8vuFSpra3dvXv35s2bN2zYsGPHjqqqqmg0asUYAFBVddKkSYSA7EJmXQQnG/Pat+zFYjFd14/ZuALJ0LJ48uKJmRMXf7Z4Z8POoCfoUT2EEG49JMQTN7pVrnKTN8ebDWb8cNwPHzv9sTxfXu/OLrn3NU274447Jk+e/Pzzz9fU1Pj9fkqpFcnlDIZh6LpOCAmHw9nZ2ddee+1FF10k/9qLZii5vZOzJ3943oc//+znr+973aW60lxpClUEJJ7aE8nnQKmghJGYHquL143LHPefc/5z/oj5WJp0QRbZ4zPGv//d93+x+hd/2fUXVVHT3MndK59gFyBzlH33FgeL/3zan783+nsDs3tlCPzVtF+VZpbevPrmfY37MjwZHtWTHOGFgzXiJAdVqMxkTbEmJthPJv3k4VMfzvRk4sD4feT1eoUA0zQBwCqgkyWy4MmwYprMNI38/PzMzMxoNDpu3LhAIGD/HkXzZI4+saKhyjAMriqKsN4WCQrQDWWHVn6xXTc5IRDTjffX7MjPDPz0gpOtm/PJOzGJu/QmYyZjjDPNExheeqqiuQAgPz8/Pz//5JNPls//7969e9OmTRs2bNi5c2d1dXU0Gj3++OOnTJlsmgySJVsysnBrc9o18fHuvT3dcQMUVyBZ1M4fPn/Vhav+sPkPf97x571NewUIl+LSqEaAAAfGmMEMwzS8qndWwayfT/v5d4u/K8/AXp9dMipwzs8777yTTz75jTfe+Oijj8rLy+UxsQ8gqOt6UVHRaaedtmDBgtzcXP5NA4t94/ZywfN8eX+Z95eF+xY+uuHRL6u/jPCIRjWNagpRZMFnmIZu6gRIcXrxL6b/4vop12e4MzCofCPZRSLDnfGn7/zpx2N+/MiGR1ZVrgqbYU1ps3tNZuqGDgKK0otunHrjv0/99wHusCuz/YLiBacMOeX3m37/l7K/lIfKAcCluFSqJrI9Z4ZhGMzwa/7Th52+ZPqSeUXzZGs8Nn/1kdfr9Xg84XCLELK7VGJ/ygt9WRDLoCKvLGOxmKLQ/Pz8jl/lzy9OHzm1vuwLDYBTQWni1cJCiK/3VcUNZj0cIwSUV9XHDZMS+YQKsOT9GMa5aTKDMSY4oXR46eyMIcXtVqRpWkFBQUFBwezZsw3DqKmp2bhx4/r162bMOCkQCDBm2lvzZPCQFa9kU5v8yBWlk9erDwwihHijFgDg/JyBWB8TTI5p0aQ3vV/+/gcHP9hSt6UqXKUznRASUANF6UUn5p949sizp+VNk2UHOHTT0ooTjLE1a9YsWrRI13XZDiZv7j355JOnnnqqvJnf/Rv137DSZPq54Ouq1/1z/z+/qvqqvKm8xWgRQrioK9+XX5pTOnf43DOKzkh3pQshOAzQJWovjvtAZpXukDVdSqgAsbFm49v73v6q6qt9Tfua9WYhhEa1PG/epOxJc4bPmTdiXqY7cyB3r53sHUCANMQb3i1/96MDH22t31odqTaYQQhJ09JGpo08seDEc0aeMyV3iryHZH8+P+W+1Vmlvr6+rKxMUaiqqiQZCQBE8p4HM03TNA1dN+LxuK7Hi4uLp0w5vtOdz/TYoXUrWw59raiKQgkhhBLCOP+PP7//r017FEoBgHOuG8aPzjj+6u+dzBhPdiYW8qZ8oqYiuAAoGHfCmBnf7c7rvCKRyN69ewihipK48yJ71ltdEpK1LtMwTMPQY7FYNBpNT087+eTZA9wOJo/7wNVXJPkuVSZYuiv9wjEXXjjmQgAIG2Gd6wSIT/W5lMQIBEIIZ68rZQ8x2dGrpKRE3kTRNM00TdM0fT7fhAkTFEWRDz86FedlRJTR9IT8E07IPwEAdKZHzIgc8EOOJygxziihWFPpPtnAzQQjQKbmTp2aOxVsu1ejml/zW499pHD3Wtk+05158diLLx57sQARNsIGNwgQn+Zz0US254KnJPIdwzIzM3Nzcw4fPqyqmowGkCiRE+1gcuhJXdd1PZ6ZmTF27PgjRXTF5SmceuZBzpoPbVcURaGEUtrQFCmvarAP0qMqdPTQHM65yZjsDMa5YJzJeypcMAAyZMy0USec3c13RLrdLkKorrcfNUAkb0gnN4QxZhqGIcu0rKzslNxcgYGPKwBAgMjTjCeHpPVrfj8kildZ/SeEfON7VnqzapJ47IgxVlpaWlBQkJ2dzTmvq6vbu3evfGyl05GP+0gWE0wwIQQl1KW4WsOnbT84+HTeoCJ3r9VwZN+9AMA4EyAUqqR291rZnnEms3dAa23BtxKPDV+OI4QUFY3QdaOysoJSqig0Oe6kkFf5hiHLYiMjI2PKlGldj4CievzDpp9d4fbV79lgmqamquVVDbWNLa3vABIi3esuyA3qhmnKLl+CM8bNZHcwRXMPLZlZNGWO6uru8/CKomZkZBw8eAAAFKW1fd7aCltrnm4Yhq4bLpdWWDi0L/utL1IQVyQCxDrP7YMT9/epRQhpaGioq6u95567vV5vsp8Ga2lpqaysAICCgoJ+WrVClOQ7M1u3174fUF9YOedo3r0EiDUQ2UBm+0FOVdWxY8d6vZ79+/e3tETkdWMyrjDGTEVRioqKxo+f0O52feff5vYNnXqmN7OgctuqeKTxcEPU4wtobhaLxeLxODNZXmYgw++JGyZP3klnnDPBgUAge2jR5NNzR0wiPcyWOTk5tbU1cvQQ69o3GVe41Qym64au64wZxcVjsrKyerW3HJCyuGI3YANUMMYOHToUDre4XBohVHbjk3VIeSts9+7d1dVVEydO6tcBQXFAjn71bdm935Z0HhsURRkxYmR2dk5VVWVNTW0kEpZN4n6/LzMzs6BgaHZ2Vvdfq0UVNW1oSZR4G6oOTs+fMW72BbquV1dXbd269YsvvxqeH6AU4rouqytcCKqogcwheaOm5I8+3u0P9iL9LpdrxIgR27dvj0ajqqrJpjArrnAua12mYeiGoefn53XRmjcAjoq4MjDkMyu6rvt8PkKoEEJRZLcQriiK7L1HaVpTU2jdurXTp5+QqqZJhFA/CQQCgcCY4uJiXTdkRx5NU1W1Z2c6Y6y+vj4UCnEB3pwiL4g8IRjjo0ePnj59+nfmnhGtKjNJM6FCdftcvvRAdkFmwZiMIcUuX1pfEh8MZowdO27nzh2RSFhRqBx6UlaHTFO+oEwXghcWFpaWTm43EPIAG0RxpaKiIh6P+3xea2RT2dNY/qIohHNKCPP7/Q0NDVu2bD7++GmpTjJCyHmUKh5PL1tHDcOoqqqKRiOKoqg08QAcT45Xq6ra8OFDYzlZ1AiPKh4ZCGZpbr/q8nQ+7krPZWVlHXfc5H379lVVVcXjkcS7XXhiyIBAIDBixMgRI0Zo2rH7/pWjSjgcbmoKeb1e2YeI0sTb3gAAgFBKOJedBikA+P2+ioqKwsKq/Pz83j0XiRA69jDGqqurYrGo7JdlPZxoPecmnyfRNFeU8ZpmM6swU3YUcpDf7584cWJRUVFdXV1TU0jXdULA7fZkZmZmZ2d7PCkbG9/u2I8r8qg3NNRT6wlZApAco02IxGsY5JTkeDyUUrpv375OH49CCA1OjY2N8s65oiiEUEJACCKE4BzkoJM0QVEVpbKyIhAIFBUVOZ4MQkhaWlpaWp9a1frVsd8FhRDCOQuHI/YLB9uI2dZoOskXhyZHdmloqNP1OFZWEEIAYBhGKNSYHBGSWpenpANKiXzK5MCB8ng8nuqEp8CxH1cAQNcN0zSg9S2h7YJK68Bt1jyEkHhcD4cj0PbdXwihwSkcDhuGQWniHaXJ5g1IDPvQFiFAKW1paWloqB/ohB4FBkVcSY7F1slrGKygYp9ie4TVTHXaEUJHhUgkIn+Rw8DY3xJmXbLapwMQxngKX66VQsf+/RVJjsUmb65w3vo2exluGGPJByRb39Xj1BBhCKFvOyGEYehW8OBc2G7UJy5MrfLE+gEQVjQaVAZFXJFPopimmXxPTutLxq337ciRe+QvcowdVVW9Xl/qUo0QOopY7RjJ967YX+XS2t9XXpRa16mydX2wGSxxxe12RyIRSokQ9lHbrMPPrGFNGTNNk8Xj8aysTK/XC91+8zFC6FhlDYXOOQcglFqPH8g6iki+RJhb47bI4VV6+tDlseHYjyvyJnxWVnZ9fb2qqoQwShVCrPv2iYxgmjKumLpuyOEQRowYaS2e6o1ACKWY2+1ubGw0TVNRQD6yIqfbmtBN21vCTNM0hRDp6empTXZKHPv3D+Thz8vL8/l84XCYMSaH/DRN+WPKlxZYQ2WbphmJtGRnZ48cWQxYWUEIAQBAIJDGuUgWHSz5Y5qmfKmKmWzzkIWJYRiGy6VlZx8Fr6AZcMd+fcUyduy4tWvXMMbcbg+ASI6Vbb0VJzFwWzQaVlXlhBNmyIdpMa4ghADA7/f7/f5QKCSEoJTZX2lsH1TYSDJNY+jQEenpR+/Ti/1nsMQVIYTf758yZer69eui0Qav1yOHnhTCercP03UjEmnxej2zZs3OyMjAoIIQslBKCwoKQqHGWCyuadarJxPN6bLLj+0VYbrf7x89eiwZlK8/GCxxRVY+gsHgzJmztm3bVllZwVjiioNzLquulJKioqLJk6f6fD4MKgihdtLT04uKRuzevcs0DUVR5Ms1ZHcwzu03aOMul6u09LhgsDdD4h8DBktcgWRo8Xg806ZNa2oKHTp0uKGhPh6PCSFcLldmZtawYcOCwQzAe/UIoSPIz88nBHbt2hUOh2VosTr/yMoKY2Z6evqkSaVDhvTXGwKPfoMorkAytABAenowPb2TSwn5VwwqCKFOEULy84f4/YHy8vLq6qpoNMoYk6GFEPD5fAUFhSNHFnf9MuNj3uCKK5CMGdZ4Pp1+RAihLgQCgQkTJhQXF4dCoUgkzBhTFMXv9weDwaNkpPrUGnRxRWoXPzCcIIR6hBDi9Xrlo9OoncHYVwEhhFD/wbiCEELISRhXEEIIOQnjCkIIISdhXEEIIeQkjCsIIYSchHEFIYSQkzCuIIQQchLGFYQQQk7CuIIQQshJGFcQQgg5CeMKQgghJ2FcQQgh5CSMKwghhJyEcQUhhJCTMK4ghBByEsYVhBBCTsK4ghBCyEkYVxBCCDkJ4wpCCCEnYVxBCCHkJIwrCCGEnIRxBSGEkJMwriCEEHISxhWEEEJOwriCEELISRhXEEIIOQnjCkIIISdhXEEIIeQkjCsIIYSchHEFIYSQkzCuIIQQchLGFYQQQk7CuIIQQshJGFcQQgg5CeMKQgghJ2FcQQgh5CSMKwghhJyEcQUhhJCTMK4ghBByEsYVhBBCTsK4ghBCyEkYVxBCCDkJ4wpCCCEnYVxBCCHkJIwrCCGEnIRxBSGEkJMwriCEEHISxhWEEEJOwriCEELISRhXEEIIOQnjCkIIISdhXEEIIeSkgYgrpaWlN9xwAwBs2bKFEPKvf/2ri5kvu+yy2bNnd/qnH/zgB2eeeWa/JNEJzzzzDCHENM1UJwR9g2HDhv3617/u9E85OTm//e1ve/Rt3cnV6FhiZRI89EcyoPWVoUOHPvnkk2PGjBnIlfarP/zhD1deeWWqU4FS6djL1ahrDz/88LnnnpvqVBzV1IFcWWZm5s9+9rMBW51hGJqm9esq1q5d26/fj45mQgjG2ADnapRyV1xxRaqTcLTrl/rKZ599NnXqVLfbPX78+P/93/8lhMjp7aqNzz333Pjx4z0eT0lJyXPPPWctrqrq8uXLx48f7/P5pk+f/uWXX3ZcxcGDBy+55JKsrCy3233ccce9/PLLcvqmTZsIIW+//fakSZNOOukkAIjH47fccsvw4cNdLteIESN+9atfWU1V+fn5//mf/7lo0aJgMJiVlXX77bfX1dVdeOGFfr+/qKjoz3/+s7W6V155ZfLkyW63Oz8//8Ybb4xGowAwZ86c55577oUXXiCEbNiwQc65c+fO2bNne73e4uLi559/3vqGl19++fjjjw8EAjk5Od/73vd2794tp19yySUXX3zxyy+/PHbsWK/X2257O10v6ibDMG655ZbCwkK/33/KKaesWrXK+pOiKPfdd9+QIUPS09PPO++8qqqqjot/9tlnp512ms/nCwQCc+fO/eqrr+T0iy666Ec/+tG9994bCATefPNNe67u4miapnnXXXeNGDHC7XaPHTv2iSee6P8dgPrk008/Pe200zIyMtLS0mbPnv3JJ5/I6Z02ljLG7rzzztGjR3s8nmHDhl1//fXhcFj+KT8///HHH7/tttvy8/Pb5bdjNlcIIf5eI/5eI5zS2NiYlZU1Z86cDRs2fPHFF2eccUZ2dvb1118vhNi8eTMAfPrpp0KIV199VVGUBx98cM2aNY888ggh5PXXXxdCLFy4cNSoUfPnz//Xv/61evXqiRMnTpw4UX7z97///TPOOEMIEY/HS0pKSktLP/roo+3bt995550A8Pe//10I8fXXXwPASSed9MILL2zcuFEIcdVVVwWDwVdeeaWsrOzFF18MBAJLliyRXzh06NARI0a88sor0Wj0oYcekgu+9957kUjk5ptv9nq9DQ0NQojXX38dAH75y19u3779rbfeGjZs2KWXXiq3dPr06T/60Y9qampM03z66adVVf3Od76zfPnyTZs2XXzxxZqmHTx4UAjx+eefA8A999zz9ddff/XVV2eeeeaUKVNkGhYuXDh8+PArr7yypqamsbFx/vz51vYeab1O6cVxdzar9LfrrrsuJyfnr3/965o1a6644oq0tLS9e/cKIYYOHVpSUnLDDTesXbt2xYoVfr9/0aJFcpHs7Oz77rtPCLFjxw6Px/PDH/5w/fr1a9eu/d73vpeWliaP5iWXXDJp0qQLLrjgk08+qampsefqLo7mjTfe6PP5nnvuuZ07dz755JMul+u///u/U7JbeuGYzyodtbS0pKen/9u//du2bdu2bt26aNEin89XX18vbJnEfuiXLl3q8Xhee+21HTt2vPvuu0VFRTfddJP8KlnO/P73vw+Hw7t37y4oKLDy27c6V3RKHnfn44qsOmzevFl+3LVrFyGkY1yZMWPGD3/4Q2upW2+99bHHHhNCLFy40Ov11tbWyunykj8cDgtbXFm+fDkAfPbZZ9bi06dPnzdvnhCirKwMAG655RY5vba2VlXV+++/35rz5ptv9vv98XhcCDF06NBzzjlHTm9oaACA6667Tn6USf38889lUmfPnm19w0svvUQIkUXMSSeddMUVV8jpTz/9NAC89dZb8uO+ffusj9FodPfu3Ywx+ac33ngDAKqqquT2pqWltbS0yD+9+OKL1vZ2sV5HHNuFRWNjo8vl+sMf/iA/xuPx73//+++8844QYujQoTNmzLDmvPLKK62PVpGxePHiYDAYiUTk9Lq6OpfLJTPSwoULXS6XLGJE21x9pKMpE3PnnXdaK73mmmvGjRvXnzvAScd2VunUxo0bAeCTTz6RHw3D+Oijj+SJ2WlcaWxs3L9/v7X4zTffPGHCBPn70KFD586da/3p6quvPvHEE0Uyi357c0Wn5HF3vh1s27ZtmqaVlpbKj6NHj87NzW03D+d83bp1J554ojVl6dKlN910k/y9pKQkOztb/p6VlQUAstC3rF27VlGUmTNnWlNmzJhhtUQBgPXNGzduNE3T3sFsxowZ4XB4165d8uPEiRPlLxkZGR0/NjY2MsbWrVt3xhlnWN8wZ84cIcQXX3zR6eafcsop9pTX19cDgNvt/utf/zp+/HiXy0UIOf/8860/AcDYsWP9fr99vQ0NDT1dL2pn06ZNuq5bOcHlcr3++uvz5s2TH63DBABZWVnWsbCsXbt22rRpXq/Xmmf06NFWHhszZkxmZman6+30aG7cuFHX9blz51qzzZkzZ+fOnXV1dX3aSNRvxo8fP2HChEsvvfTBBx9ct26doiinn366z+c70vxCiN/85jcFBQWKohBCHn74YXummjp1qvV7RkaGLNCO4VzhfFxpbm5OT0+3TwkGg+3miUQipmlaJ2079oMn780IIewzNDU1BYNBSlsTn5mZ2dTUZP9ozWn/aP1uzezxeOzf3O6jECIajZqmef/993uSRo8eDQCdtsjbE29P+TPPPHPXXXfdfvvtsh727rvv2hfpuB96sV7UTigUgs72rdQuj7XLYADQ1NTULnLY89iRgkqnaxRCyAXPOuss62j+v//3/wCgurq6m5uDBpjb7f70008vu+yyZ599dvr06SNHjnzllVe6mP/6669/++23X3nlFVnH/dWvfmX/a7tcIfPbMZwrnO8P5vf77UU8AHQMv16vV1XVXoflYDAYCoWEEFaPgPr6+o7RC5IhzV7dkRcRnc7cKZ/Pp2naTTfddPXVV9un5+fndz/Bf/vb384888yrrrpKfqysrByY9Q5maWlp0Fne66ZgMNiullxfXz9s2LBefxsAvPTSS8cdd5x9enFxce++EA2A7OzsBx544IEHHti5c+fvfve7hQsXTpw4ccqUKR3nFEKsWLHi17/+9Zw5c+SU7pzjx3CucL6+Mn78eMMwtmzZIj9u2bKlYyODoihTp061+lcAwOLFixcvXtzNVZxwwgmMMXuL0KpVq+ytapYpU6aoqmrvCLRq1apgMDh27NhurotSOn369P3795ckjRo1yuVyWVesHS91O2pubpbFnCR7mnW94DeuF3VtypQpmqZZeYxzfvrpp8sbHt1xwgknrFu3LhaLyY/V1dW7du3qNI91MzFut7umpsY6mtnZ2bm5uW63u3dfiPrb3r17V6xYIX8fN27cU089paqqvbHdzjTNaDRqneOhUGjFihXfWDIcw7nC+bhy3nnnpaWl3XDDDV9++eXHH3/805/+tNNL7MWLF3/wwQd33nnn2rVrH3/88SeeeGLWrFndXMXZZ589adKk66677vPPPy8rK7vttts2b968ZMmSjnNmZWVdddVVy5Yt+9vf/rZv377nn3/+6aefXrx4sar2oKJ2yy23/O///u/SpUvLyso2bNhw+eWXn3rqqS0tLQCQmZm5fv369evX19bWdvENs2bNevfdd1evXr1nz57rrrtOPkO3Zs2aSCTSu/Wib5SRkXHFFVcsW7bshRdeWLt27c9+9rN169adfPLJ3Vx80aJFuq5fc801X3/99YYNG6644gr5hb1LTHp6+k9/+tO77777f/7nf/bt2/fRRx/NmzfPqr+io1B5efn3v//9hx9+eMeOHTt27Lj//vsBQD660JGmadOnT3/++ed37969du3aCy+88MILL6yvr9++fXsXA3Acw7nC+Xaw7Ozsv/3tbzfddNPs2bNHjhz5wAMPPPbYY4ZhtJtt4cKF4XD4oYceWrZs2ciRI//4xz9ecskl3VyFpmkrV65csmTJ2WefHY1GS0tL//a3v9lvf9k9/vjjwWDwhhtuqK6uHj58+J133nnbbbf1aIsuuuiil1566cEHH7zrrrsCgcCpp5760UcfBQIBAPj3f//3yy+/fN68eX/5y1+6+IY77rhj165d8+fPT09PX7Ro0e23375nz57rr7++6wuTLtaLuuOJJ55IS0v75S9/2dTUNHXq1Lffflveo+qO0aNHv/fee7fddtu0adNUVZ09e/ZHH33UsQdK9z3yyCMZGRm33HJLRUVFXl7eBRdc8OCDD/b621B/O/3001944YWHH3747rvvVhRl0qRJK1asKCkpOdL8zz777NVXX11aWjpq1KgHHnhg+vTpH3zwwamnnmo99tSpYzVXECHEG7UAAOfnpDotaGD14rhjVhmcMKugbpLHHcczRggh5CSMKwghhJyEcQUhhJCTMK4ghBByEsYVhBBCTsK4ghBCyEkYVxBCCDkJ4wpCCCEnYVxBCCHkJIwrCCGEnIRxBSGEkJMwriCEEHISxhWEEEJOwriCEELISRhXEEIIOQnjCkIIISdRANAIAEAzS3FS0ECSh1se+u7DrDIIYVZB3WRlFQoAAQUAYEcYWjATDA7NDHaEAZKHvvswqww2mFVQN9mzChFCVOnwZVOqE4VS4aQg5Gk9mB+zyqCFWQV100lBIEIIAKjSoSwCzQxMkepEof6nEQgoMM4Hea4eL4tZZVDBrIK6yZ5VEnEFIYQQcgT2B0MIIeQkjCsIIYSchHEFIYSQkzCuIIQQchLGFYQQQk7CuIIQQshJGFcQQgg5CeMKQgghJ2FcQQgh5CSMKwghhJyEcQUhhJCTMK4ghBByEsYVhBBCTsK4ghBCyEkYVxBCCDkJ4wpCCCEnYVxBCCHkJIwrCCGEnIRxBSGEkJMwriCEEHISxhWEEEJOwriCEELISRhXEEIIOQnjCkIIISdhXEEIIeQkjCsIIYSchHEFIYSQkzCuIIQQchLGFYQQQk7CuIIQQshJGFcQQgg5SZX/NTU1bdmypaKiIhaLpTZBCPWCx+MpLCwsLS1NS0tLdVoQGuyIEKKxsfHjjz+eNWtWWlqa1+tNdZIQ6rFoNNrU1LRq1aq5c+cGg8FUJwehQY2EQqEPP/xwwYIFqU4JQg5Yvnz5GWecgbUWhFKIbt26ddasWalOBkLOmDlz5pYtW1KdCoQGNXr48OH09PRUJwMhZwSDwcOHD6c6FQgNajQWi3k8nlQnAyFneL1e7HuCUGphP2OEEEJOwriCEELISRhXEEIIOQnjCkIIISdhXEEIIeQkjCsIIYSchHEFIYSQkzCuIIQQchLGFYQQQk5SHfyuWCxmGEY8HjcMHQA0zeV2uzVNO3qe51+3bt2BAwe2b99eXl4OAEVFRSUlJUVFRccff3yqk5YUOgCxBmipgmg9AIA3CwL54M2E9OGpTll7KxtWbotsW920eltkGwBM9E2clT5rkm/S/Mz5qU4aQiiVnIkrhmE0NjYYhmGfqOtxXY8DgKZpGRmZmqY5sq7eKS8vf/bZZ2U4sWzfvn379u0AUFRUdPXVVxcVFaUodQAAEG2AA6sg2tBmYksVtFQBAHgzYfjJ4M1MSdLa2RrZevOem2U4sXze/PnnzZ8DwETfxIdHPTzJNylFqUMIpZgD7WDNzU01NdXtgoqdYRg1NdXNzc19X1fvLF++/O67724XVOzKy8vvvvvuFStWDGSq2qjcBDv/0T6o2EUbYOc/oGpTr9ewePHiH/zgB71e3PLIoUfO2XJOu6Bity2y7Zwt5zx66NFer2L58uU5OTm9XhwhlFp9jSvNzU3dDBjNzU3hcEsXM5SUlDz00EP2KX/961/73oa2fPnybgaM5cuXv/POO13P09DQsGTJklGjRrnd7oKCgosvvtiBUdkrN3U3YFRugpqvu57lueeemz59ejAYDAQCkydPfvLJJ+X0G2644d577+1jSh859Mhjhx7rzpyPHnr0mcpnup7n7bfflq/h8vv9kydPfvTRRznnfUwhQijl+hRXDMPoUS0kFAp1Ua3pD+Xl5T2qhbzyyitdVGtCodDJJ5/8zjvvLF26dP369S+//DJjbNasWRs3bux9EqMNPauFHF7bRbXm1Vdfvemmm2699dYdO3bs2rVr8eLFS5YsefnllwFgzJgxkyb1qW1qa2RrN4OK9Jvy32yNbD3SX//4xz+ef/7506ZNe+edd1avXr1o0aL777//yiuv7EsKEUJHgz7dX2loOHK7zRE0Njbk5ub1ZaU98swz33DJ3NGzzz57pOv6+++/v6amZufOnVlZWQAwceLEuXPnXnvttZs3b54yZUovk1i+qseLHFgF477b6V/ef//9+fPnX3LJJfLjVVddlZ2dnZ+fDwCLFy8+ePDg66+/3st0AizZs6Sni9y85+Z/lv6z4/Ta2tolS5bceeedd999t5wyefLkqVOnPvDAA01NTb1OIULoaND7+kosFjPNHlc+DMMYsNdjyN5fPV2qvLx83bp1nf7p9ddfv+6662RQsTz99NOXXXZZL5Moe3/1VLQBQp1v18SJEz/88MOPP/7YmrJgwYKZM2f2Mnk2KxtWfh35hia4jrZFtq1sWNlx+ltvvcUYu+WWW+wTZ86cuWLFCnzLHELfdr2PK7IzsbML/vKXv1RtFi5c2NvUAQB00aLViwU55/v37+9jU1J7Xdyo79WCN9xww+WXXz5//vyioqLLL7/8T3/6U2NjY69TZ9dFi1YvFtyzZ09xcbHP5+tbohBCR6Pex5V4PO74gj//+c832CxdurS3qQMAkH2InVqQEKIoCmOsL0lqr6XS2QVVVX3ssceqq6sff/zx/Pz8Bx98cOTIkR988EHvU5i0umm1gwuqqurwnkQIHTX6Ul/p5R34LhYcMmRIqc2wYcN6mzqAPtRXOm09I4SMGjVqw4YN7ab3qSdCr+srXbaeBYPBBQsWPPTQQzt27DjvvPOWLOnxfZGOuuhY3LVOW8/GjBmzb9++UCjUbvoAd+tACPUHHMelE0KITqf/4Ac/eOqppyoqKuxzXn755b/4xS8GKmnWijuZxhi79tprP/nkE2sKIWTmzJn2BA880VlazznnHLfbfd9999knbty4cdiwYQcPHhyopCGE+kXv40qvn58fsAfve/38/JEWvP3220eOHHnqqae+/PLLW7du/fDDDy+88ML333//2muv7WUSe/38fGcLKoqi6/rChQtfe+21ffv27d+//7XXXvuP//iPiy66qJdrsZnom+jggsFg8Iknnnj00UcXLVq0evXqTZs2/dd//dfcuXMvueSSPlZSEUIp1/t+xm63W9d7c+ve7Xb3eqU9UlJSsmPHjt4t2Ol0v9+/atWq+++//5577jlw4EB2dvb8+fO/+uqrkSNH9jKJgSEQru7lgp155plnli5des899+zfv59SWlxcvGTJkptuuqmXybOZlT7ri+Yverdgp9OvvPLK4cOHL1u27LzzzovH4yUlJb/73e+uuuqqviUTIZR65KWXXupdt6tYLFZfX9eLBbOysgdmJMp169Y9/vjjvVjwxhtvnDZtmuPp6UToAOz7+Jtn62jk6RAc0JEoVzasvLasN9Wyp8c+fVbmWY6npwsvv/xyH3sSIoT6ovftYB6PR1V73KKlqgM3vPG0adOGD+9x4Tt8+PABCioAEBwOnp43hXkyBzioAMBZmWdN8E3o6VITfBMGOKgghFKuT/ftMzN7XCb2YpG+uOaaawZgkT4pOnkgFnHCI6MeGYBFEELfdn2KK5qmpaWldX/+YDA4wKPlFxUVLViwoPvz//jHPx7o0fK9mZA/uQfzF05P1Wj5k3yTFg9d3P357yq6C0fLR2gQ6ms/47S09G6GlmAw6PcH+ri6Xrjgggu6GVp+/OMfz5+findSDZnc3dBSOB1ye9wY5aAlQ5d0M7TcVXTXNUMGtuaHEDo6OPBer7S0dI/H29DQcKThwlRVy8xM5Xu9LrjggmnTpj3zzDNHGi5s+PDh11xzTSrf6zVkMgSHQ/mqIz7w6MmEoqPivV5Lhi45K/OsJXuWHGm4sAm+CY+MegRrKggNWs68L1LTtLy8vFgsZhh6PB6XT01rmuZ2uzXNdTS8h7ioqOg3v/nNunXrysvLO76HeOBu1HfBmwnjvwuhAxBtgJbKxKP43kwIDAFvCm7Ud2GSb9LK0pUrG1ZujWzt+B5ivFGP0CDn5PvtPR6Px+PpyQ2XgTZt2rSjIoR0ITgcgsMBenLHJUXOyjzrrMyzYGiq04EQOsrgOC4IIYSchHEFIYSQkzCuIIQQchLGFYQQQk7CuIIQQshJGFcQQgg5CeMKQgghJ2FcQQgh5CSMKwghhJxEPR5PLBZLdTIQckY0Gj0axg1CaDCjBQUFTU1NqU4GQs4IhUKFhYWpTgVCgxo97rjjVq1alepkIOSMVatWHXfccalOBUKDGhFCNDU1ffDBBzNnzgwGg16vN9VJQqjHotFoKBRavXr1GWeckZ6enurkIDSoESEEADQ3N2/ZsuXw4cN4rwV9G3k8nsLCwuOOOy4QSMG74xBCdv8fyZZK5kLTuZoAAAAASUVORK5CYII=", "path": "image.png" }
Look at the models of molecules below. Select the elementary substance.
[ "silane", "chlorine", "dichloromethane" ]
1
There are more than 100 different chemical elements, or types of atoms. Chemical elements make up all of the substances around you. A substance may be composed of one chemical element or multiple chemical elements. Substances that are composed of only one chemical element are elementary substances. Substances that are composed of multiple chemical elements bonded together are compounds. Every chemical element is represented by its own atomic symbol. An atomic symbol may consist of one capital letter, or it may consist of a capital letter followed by a lowercase letter. For example, the atomic symbol for the chemical element boron is B, and the atomic symbol for the chemical element chlorine is Cl. Scientists use different types of models to represent substances whose atoms are bonded in different ways. One type of model is a ball-and-stick model. The ball-and-stick model below represents a molecule of the compound boron trichloride. In a ball-and-stick model, the balls represent atoms, and the sticks represent bonds. Notice that the balls in the model above are not all the same color. Each color represents a different chemical element. The legend shows the color and the atomic symbol for each chemical element in the substance.
chlorine
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAASoAAACPCAIAAADC/gGRAAA3p0lEQVR4nO19d7wdVbX/WnvPnH57S256BUIJMQFiJEgRkWLHBj7fz8JDxF4Q4YmKHRSeBRQVn4iiT1RAsVMEhUAakNDSb8pNbq+nz+y9fn/sc+bO6XPKPffm5nzJJ0zOmdl7z5z9nbX2ahuJCGqoYXogORep4LREZACAkz2gSQbW6FfDVIEACEgSERBDZIBYJKEIiAAESQRgyBCg2BamFjX61VA9EAAASSIJxJGxDKoIkoh4INrXGxvWkBEAAsZkXAL5mFsCAQABuVA/MbAAADiyNL4RgEkCATkiAE5zLtboV0M1IIkkSIbIgFkfCpIHY/1bxnYdivbtDB/uiva+HDwQlfFxEQmJiMUrIglAiBok6Acasla9QZBcEVgw39O2zDdnrrt1Vf2ypd7ZPu6x2icgQZIBQ5ymUrFGvxomEZKkBOCICEgACDBmhp8cfWHz6K7ngnufG99zINIXEyEwI4AckAPjAAjIACdYqphDkDpRpQkAQAJIgDSAubgWaHHVv6Ju2Qm+ea+oX3ZO88o5nlZ1LgEIEgwQkU0rFtboV0PloVZ0AMSRq092hA49NrLtocGt/xp5vifSgyJKyIG5ADkyrgFTqzg1G53MSMUiRAQABiiBhBQAAqQBwgDU69zNq+qWndty6mtbVp9at8TLXZCQh8QA2fRQS2v0q6GSkEBEhMn5vTN86MGBpx/o27Bh5HnDCAIQMDcyXUNGQDJJt4pMQQQAQGXCEUCSTDBjABLQvdy38OK2M94668y1jcerN4JaZGYuPquMGv1qqAwkSQJgiAgYEtF/DG39+eGH/tK/IWqMASBoPmUmkSSlI/FWLpQtFNQbwYyBGUfmObnhuA/MveDts8/ucDUmRTRwm6JbZdToV0O5kEBApJZV/fGRHx760y96Hto5uguAUPOxpLSZwhEyZIxQgAQjQqbZ6O24uH3tZxa/bWXdYmWMJSI2FSSs0a+G0kFEEkhJvB3hQ7cd/MO9vY/3BA8gczHNA0mROH3AgQGhNA0yw249cPGs9VfMfd1rW9cwRPWCqLIkrNGvhhJhLZ+GjfEb9t79owMPxI0x0LycuRQtp3qAOYGEDBhJIY0QMP3M1tW3HP9fpzUcp9RR9Tap1khq9KuhSCj7Ckc2ZIx//+Afbj/4QG+4m3EfY5oEKY+KGUUAgByRBEgjpGnet8w++wtLL18RWKCicKojBmv0q6EIEIAkqeTDA31PfnLnD/eO7WLch1xXs3aqB1g8JHBiRFIa43Xulg8vfuv1i9/p597qmEZr9KvBKZQrjyHbF+n54Mvf+3vv44icc58gcVQSz4IEBGTESBrSDC5qWP6dEz70+va1lAyOm7yea/SrwREESeXN+2H3nz6380cj0UGuB2CqTZqVgYrHMQEBOHJTRIHEFQvf8pXl/6/d1ShITh4Da/SroQCUQYIj640Pf/Cl793f/TemeZC5BImy2kVn4S1VAwFIAAKGiITCGF1cv+Tuldeta1ohSDDl0aw0avSrIR9UlJaG7F/Dz7/n+a93Bfdper1wuMzDpGABW2aeBGAA0vatxUOaUk6q3kViAJxxYUZ0YF9b8aFPL7qUJsc3WKNfDTkhQSoT/M37f3vDjjtiZHLudSr01ERVkwttB5mwKCqTB5RsofqKrZzolCFjJE0j+Ia559950idbXQ0VV0Rr9KshOwRIBkhE73nh5l8euF/T6yQyWXClZ8k6svHK+sr6JwGwVEGHyXlPGSdUc4YSgO31goAMmYiPLm1Y+uCarx3nn2uS0JJx5OWjRr8assAkqSHriQ1d8uzntww9y/W6wn4FZqOcpV5iquijDAEokxdiYukFkOSedYmsrlIqbO8CAADQkJtmJKD7f/WKL1zSdrpBQkNekYVgjX41pEOpWAei/W945rrnRl7U9Hozl8Jp6Yr2BR4mp2+mmpZJP0oVielDSW25mrpoqhjkyIWIuZn269VffFP7OpMErwQDa/SrIQVKuXpy9KVLtlw7HB/hmi/nYs/iHrN9Uv6UpIxjq6Oq6aKWTLbdOkOGJIQZvXHFBz+/5PKKMLBGvxomoOTehtGXLtp8zYg5ntPQYjdagk3DrKxl3lJl7cvIaiqiGVooA0QAYQZvXPGhzy+5XKno5fSglTvEGmYKFPeeHH3pki3XjJhBzj3ZucdShdJkEA+SLWc2y2zdTTYJM3qXQADItcANL95OBDcsvbxMW+iUJRqCyrKifBUd839bQwVhkuDItozvvmTzZ4aNIOOeAuEszGYdsQ4mA3azDbOxvQrzgmV9BZAE0LTAF1687eZ993JkORfGDlBV5VP1VU70QPkt1JAJlWXTEx957eZPbB/bzbVATp3TevDVfG9nrgbBthSsQu92jwgAJKo/EZK4b81X39C+tmRvRDXoR0RphJFSxuPxeDwuhIjH46ZpqhOklJBkFxHpuq5pmq7rbrfb5XKlNZLZbA0lQAIxwL74yPmbP7Nt7OWc3EvTOauvNlm92/0T1YG0/Z0EIiNpuhHvO+3rF7auKU0LnUT6pdHDNM1wOByJRCKRSDweJyIhRH4KKTYCACJyzt1ut8/n8/v9Pp+PMZa1lxqKAiX+wndtu/H/Dv1FczWZZGY5D7Mt+aYE0jaSDKE0iZ1mIzxDLkVknqft4Vd+Z5mvU4JkRb6WJl36xePx8fFxRTzTNIlIMUdxxhJ06tiuW9p5JaUkIimllBIRdV33+Xx1dXV1dXWapkFNKS0V6p396V0/+vaun2ruZlPm4J5l6qhYvEdJSAsNVavB8gK/nUJk5zlHLozgysbjnlh3m5+7CaioTPkK08/iDBGNj4+PjY2Fw2HDMBDRYl3JPaprhRCKhwDgdrvr6uqampq8Xm8ae2soCLViua/vibds/RzXfFlsLWkrPZpaU10Saph2Z30V3PEi2VcGNMbN+Nj7Fr7lzpM/JUkWFZZdeeknpRwZGRkZGYlGowBgaYmVhSUMpZScc5/P19raWldXV+OeQyhzy87wofUbP9YXG2Zcz1Ikwr7Mm27PNc0eM9mWmGzLPwscmTDG71z1+ffNfV1RzsBK0k8Rb3h4OBaLYRKTqtwqpVRREQD8fn9bW5siYW1NmAcEgECC6Nwtn368fyPX67KYWzJt/dPncdrtn2l5EoWAgLlsJBIoX0y5zEk/BCQS9Zr74bW3rqlf7lwGVowewWCwr68vEokwxhhj1fFnpHkOlS2noaFh1qxZHo+npovmgnpD37D7f7+880fc1Zideyxp55iGz6900YdAJpih7I1yDzBPzrbIZoPJAEcmzPCpjSueXvd9F9McRiKURT8lYYQQvb29IyMjaoFXfUe5JQAV04QQjLGOjo7W1tYa9zKhzC2Pj2w/Z+MnCBnl8mGjzaVeISAAgNr4a6KYn/0XSo6DKFFaJmNnFQtWRoUVhlY4FwqJjE5Px0Utp5sgU/slD3NtGt2xZfRFxlw5qyTmFoCgzDDxkeuPv+Iry9/nUAUtK+gMEcfHx3t6euLxuKZpUxWkYnFM9c45J6LDhw+PjY3NmTNHicEaDxVUCb2giH7i5dulNJjmpTR1yz6nK8Q9VSQGAQVIkoJIAJlAUpUsTE/7Q6Y0REANGEdkXG3AQurUbBPM2aRjiMKMr/Iv+vGJn1DeTusrZYW6dd+9W4a2cO6R+aPMc0CQQL3uG7vvuaDt9PVNJznxBJZFv76+voGBAURU3Ct4vt3NUFkox6C1FAQATdNCodCePXvmzJnT2NhY8R6PUkgijnjbgfu3Dj2bXe2EjETYUmFttCKkIUQcpIHc69MC7Xr9CZ45Ha7mBr3Op3nczIWIBGBK05Bm0AyNGOO98aEXo93DZjhqhkwRBqYB6sh0DTkRSZBkGWOtpamT7HjEmDQguQWn9bGiX0jGADDfrVv+zxwnMeTCDH9hx52PrL3VSZHCEulnmmZ3d3cwGCxB6NndehWkolJ9FQNV+4qQ+/fvD4fDnZ2dlero6IUqm7cncuSr++4BzZ/TzEDlLvnUTnpCGkJEEbDZ3ba+7oQzGlacXrd8uW9eh6fFxfSCjYRFtC86tDfSvSm4a/v4nifGd3RHew1zBFBH7tGQS5ISKcUNWBgJPUhDbqeHOuLo7MWTO+JUkOB63aP9m35w4I9XzX+9IMHzBqOVQr9oNHrw4EHDMJSal32ESWVPrQYtKwgiKitlphuwfCpmMlBJ5v7+/lgstmDBgknyghwtICJAvH7XT8Zjg1yvz2ntLMO/xwARUYqYlLEGV9vFbWdf2r7+rMaVLe7GlJEAEEgiINvuYslwGlQrQx/3LPR3LvR3ntt6GgBERWz7+O6Hhp75w+BTW8d3xs1RYG7G3AggUVLV0iCggIyVJIG7btx11xs61s1xt+R3xBdNP8U90zSzcs+KZUkLZ1Hz3m6KTFuMWbQsk4RpDFQNapo2NjbW1dW1cOHCY5aBkiRHtml0x297HwfNn3N5w0uUe6iCsGRMmtFFvkVXdl78H7Nf0+lpV/NP2fST6igiAEIB7Uy9QSUQATFkHu4+rfHE0xpPvHbRZc8H997b+9iv+x/bNbYPEJD7OGKVtnMppOUSkMbcPaHDPzjwh68se6/S9nOd7JR+SpJY3Mu0cFpePsYmKiJmcgwylE/rn4o25a8PM/2NioHj4+PHMgPVg/36vnuEGeF6IGc+UUncU0wSxthsz6zPLHnHFXMuCWg+Zb0kkAwZA2RF5gSoucKTAyIAIimBOPKT65aeXLf02oWX/W1g4+3dDz46vFXEo6j5EXDS621j4RWmIAma97auP7xvzgWLfZ1pZh47HLvnEWOxWC7uQVLsOJ/ZaXKysrDkrQU7A61I7mMHqkb1fX1P3Hfk4ZzcUw8st2srFzgySQbI6BVz3vzs6T/+xIK3+zWvIElADJEjr8iGQQjAkKkaR5KkIOnVvG+e9ep/rL5pw+rvXj7nQg9HImPSTdwOIhAIiDPXSKTnq7vvhryyxClbYrHYgQMHVGZQLrkHNsmWhvyNWyS0czL/c8zsomAvFgP37dsnRHUCdacLlAXy2/vvhfymcCw6uoUjF2Zojt70wMlf+9GKT7e5m6yN8nK98tW20opCJgn7H0FSbX+bX4gxZMpMIkhKgDVNK35xyn9vXHPbCb75JOKTuy+KFYiXtxNJAvS6Xx1+5PnxfTx3gUZH9BNCdHd3q8jp9MEkoZaCjDFXBnS9sJnLaseh/NQ0LbMjzrm9tcymFAODweDhw4ed9DIzoBZdT4y88MTw85Arjb2kNCINuTBGX9Vw6lNrbruk/VUmCSJQm0hnnkxAgkRirwhARSENuf0PR6Y0VbVcVITMRUUVPsYAJZFJ8qT6pcu8cwAmXwA6sI8SAEceiY//35FHIPfpjtZ+R44ciUQiac49S0BZs5wxFgqFQqGQ/f6JyOVy1dfXO+nIajm/NEPEkZERFVlq70hlA1oXZg06VQwcGhpyu93t7e3HhkceAeA7B34PIppv1VekwVNDbhqjb20/7+cnXe/jnjwZ38oowpHxxEbT5uHoYHe0vzc22G+MjIiwBNCRNXF/s17f7mrq8LTMdjV7uMdaLgoSAMiQZf2pODJ1SwaZVYqRc+DnkCRB8/7k4J+uWvDGTndrVhNoYfoNDg6OjY3l8jFYc1cI0djYeMcdd9x8881er1dpd5zzSCSyfv36u+++Ox6PO5/oaT70lLuS0uv1XnfddQ899FBaR1ddddX1118/MjLCObf02MwWlEuwp6fH6/XW1dU5HNJRCpXZsCvcfV/vv0Hz5qvgYq9iVAiKe+/uuPBnJ13HGJcks3LPvjXCUHz00aGtfx7a/Nz47hciB6MyDtIEMiFhg1VCUQOmcaYt1duODyx4Rd3S8xpXnVq/zK/5ICE/s+8+mxDe2eVupWH38ucmoVoB9oSO/Kr74U8tfkdWE2gB+oXD4b6+vkwtLqvhBBEVGVQVCQBQ2qBhGA7vK81dkbiNbGYe0zQzO0pb0eWXbIh48ODB5cuXq4TdmQoJkgG/s/svpjGuuRrKqQtkgSM3jbHXt776f0/6HGOMcgT4S5JKZO0KHrjt0P2/7v9Xb6wHSRDTgbkAGWpuBI9aqqmAMkVXQWJH7NCO8L4H+h79AnMt9sx5XfOayzvOWdt0EkdOQDnjuShHed/KQs0pB/Y7AgLmuvvwPz6y8C0upmcKwHwzT0rZ09OTOYnTLCUTnSXPzDSlOLkpe/t2BTKr+HLSkeXYyCq3GWOxWOzw4cPz588vanhHEQhIQz4uIr/t+Sdwt8w6ZXDibCcTlyETIry6fsXdJ12nMU1Cdu4phgzGR7667xd3HP5T2BxF7mGan4Fy0BEp+xlkEccIiOhC3YNAAmhvtPv2Q3vvOPzA6fUnfmTOG9/ccZaHu5Uxo+JbDhWB3LEvFiRJ5J7nRnc9NrTt/NbVmQIw3+gHBgai0WhWW0hWy6Q10dOskSU48fKIvqI6ymNBJSJd1wcHB0dGRkob5PSHShr4c/9Te0L7GXfn3HXdsnYWegYIKMls4nV3nXBtg14nKEt1E0py76GBTWds+tCtB34ZBZPrDYi6JGmSkFDgWROABBIkTJJExJhL0xuIuZ4a23bZC19au/nq3/c8CgAMmUwzzKAju0gF4LgLhgxE/Gfdf83+ba7LotHo0NBQVrVTrawm22Jhj5gpp6/813LOjxw5Yrn7ZxjULf2u959AssCqCB3FeSIimNGbl37wxPolqjRo2gmUDK/5zv57X/fsNXtihzW9kYAJEjmzeApBmUAlEHIf0wPbgrvfuv2GC7Zes21sF0MmiSYWtFTE8rUsOI4ylSRB8/2p7+nDsUGOLM2Km5N+fX19me7pKrBOQSmNSspNqpecMRYOh3t7e2HGCUAVq9UTH/7b0Dbg3gJ7gzn4VTkyaQbf2Lr+/XMvkUDZbS0kObIbdv3k4ztvBa4z5jErt/O7JClJMu7huv+h4adeufnqL++5S/WYiF8lp/dSLhyTnIAY00ejQ3/v3wSJ9fAEstMvGAwGg8FcFpcqwLLBZHUeFNtUfl+iisnO6tU8qqFkwl8HNo1F+znTyuQAAgoSPl731aUfAICs+qMgwZB9Zc/Pvrzvp1yvl4CF9wMsHoKkIMm1QAzphj13nL3pk7uDBzXkQEAq5qxqyqez+YKAQOLB/g2JYxuyz8vBwcGcbVWRgRURtml21EwwxgzDGBgYgJklAJVF8e8DG23lUDLgOEuAIQMzdGXnRSfWLVE0SztBkOTI7+r+y+f33sldDvYDLA+CpASmuRqeGH/mjM1X/673n4CgAa8K+RzZXSwoB+DDg88OGKMsVf/MQr9gMBgKhbKKvimZneWTMP/I1Wp2YGBgJglApXkGRfTfoy8B8+RL7aPkQW4goJBGvavlw3PfDCpZIRWSiCN7cXzvR3Z9F7hbUu4iEZUDAZkkuBYYEsF3bv/SB56/eWekG7gu82bMVgasCAYSECIfiY1uHHkZkvYwq5l0jIyMZPWYWUaX0gddJOxWzZL7deL84JzH4/Hh4WGYKQJQ/cYbRl48GDmCTC9Ir/w6G0MGInJZ29mL/XMFSZbxMBkiSfmxnd8bN4Oc6VXgngUhBANdMtedB+/fETkI6KpO4lFR4KiBGXp4YAuk1stI9/vFYrFQKJQZ42JfjE3+aFNg98VPXheMsaGhodbW1pmRDyFIcN396PCzYEa4y51ve1osEMWPAIKExr3v67wQsp2l3Ax3HfnLQ0ObuJ5ji4hJAgEgSCQQwF31Eqojd4uGBAma7y8Dm79Bpo6a5X+foJ+i1tjYmGmaWWu3VJ97VqZ8+ZQoqDkrE2gwGKyvr58BgaAaaADwyNBzkKduF9jkXu5cPIZMmOH1jatOa1xBGZ5uVbspZEZuOnAvMH1qdAcCQEgxfk4zEBEwbW/o0L7wkeX+eUSg5tcE/dQEHR8fz5POV+0RF4pccd5UQQKrQNAdO3Z0d3fPAP0TJYgA26sfApa7Cpa1eikQ7YlA4s1tZ4ESg6n+BhXJcW/PIy8Fd+eL554MUI7j6nRNzoo7JU9nyGJm+Jmx3cv981QkIKQpn+FwOC2NQKFq7r40OEzkc4KCBFYJExs2bPj4xz+u61P0Fq8UEDAmjWW+2M0rwaWRpOzUchBlhoCCTI9ef1Hr6QCQFuOi8hiA4M4jfyuQSThJSHMAVPNHw+L2lmDApYi+OL4PZp9jfZign5Iw4XBYSplL84Qqeh3sfZXPBCerR0SUUno8nlmzZll5g2kn5I+Ac9g7ZhTCwBwl8Z3L/PTLETBG8VbPoYwwi4wrAcC2g0rGz8sQhYivqT9uiW8uZEwAIonItoy9/O/xF3JmElYBokppRhMoxvGgQCCBuZ4N7odESTUAi37qsapUvWny4i85XjRPa/lhBdlUuVZ3Re405XIElCScLJgtv1+OUEkEBBF/ZeNJgJiZ0SeBGMB9/f8GEeF6Q7WNLtZefzz5z+JZUXrvxV5BBIxvHd1hJKwvqXWMDcOIxWJZF3hTRcgKap5HuyllsmAxNMdjFiCBuc+sXwEZERsqnQJIPjb8DDCt2ssv++QtdBcVRkkynoAB6gPx8d2hw5Dk1ET9v0gkIoTIOk3LDHouDfaol/IlQ8EWjs3yZwD5EuRQxXBy94l1SyBT8wQAgL2RI5tCe4G5JyO+rDCstV81O3ccKpQKCYhREe6JD0HS+zex0Ww0Gs01Ryc77jlXj5UyvTh5d0wTlXsKgMm1U8YDQEAgc5m7o9PVDBnLK/XEto/tjplhRFbVx2fvrMpywUGQUK7rdORgjO0KHoQk/SYsn6oYRJ5ZWLL1hYhM01RV0pxfAjksn1JKwzCKYovKJypoIDlGFVR109msF4gIwljinevVvJmZ2moCbQjuABnj4DOrtMtzcuoLW2XEaqKM5SUBALKuaB8kNfkJ+mV1OVgoRzdzuVzt7e35208ZZdLVroJv0gSvlNLn87lcrqLG4ISux6gAtBs8U+34KlS/zd0IACKjmovyv++P9EKR9XMrALT5KvOGy1UeZPtT5JUECMi7o4OQfMYJ+hmGkb/0pZX7U1SHijkHDx685ZZbnEu/NImXxgoi0nW9q6sr86tcY3Ciwc6MWLNSgDYGpv4+BACAi93tmReRyqgg6o72QdnZTMXBPsjiiwKXCypZACYoGxRhAAC79FNzNA89StM81VVdXV1f/OIXSxhvQTjhjEP/4TGqeUKq8z3V9UdAgHy+uw2yaKYEgEER3RPrBeQ5y1hUfKgKVTZ12oElM5ARIKC+fbwLkoWPNcW6WCyWK9QTUh1TJchAlSpR7GDzQ+0j7fBkJ9LvGNU8FaydYimVjUAArElTNVqz/OjjIjwiwpNfWsymFQub5lm6ICoDpau7mS8Px1uslJP8qkwvJVxYTVTKx3j0gWwHzOa/RiACQObXvFkuIkCEkBk2SUIVFAdMDozDhIlnSn6u0ju1ntLE26qIEpfW7FRxITNPW5t5d1QEyOY9S30Mbp7VykUAGBXxpLtvMqlgb3vye8sHyjgo4soslqLiNhhTx7liFPOg4jPboaRyaHepASAp/az4zwRQGTyz/n4GmTJPJYtKjYpS0xEtz1v1Nc9SnX626zEL/ZzYMNQ8VnJP0UmJQUfdTgUBiu30WGcpS2bQYNrHuQ1yVZj+doGRFuMyVXaXEvtV1mIWl2ZUxj3MRUAJ+hXl1lNebKsGWX5voZTylFNOuemmmzIrqSg+Z4aVFcwMcrvdN9xww6ZNm1T7eU52GEFuH8kxDWt+WzJHQp48Bg5qU4VJE4DSVn10atXOSoHIxXQPcwEAAha9vYEVQWI36OeauOrzurq6VatWZY2qSZv3Dh10Pp9PbZmUnzCI6NBAeqzLPQVpm+jqeTAAJINMyDHtXUxngJWPdklb7FnvgqlFBTRPSPNUTuT7FTUF7Yk5SiPNc7kQIhQKKfpZktNuyLHadNK1Ws452R+Tyk6TP+ZgrU0wuRQUFDGjWc5EBACv2gOMcsSMlgyLaWpqFNpLqEqwBlDKvWbXIErZ3Mea0PbITMjLH2vFaN8B0xJ9xdpynKjKitUO17T206xAUzt102icqTDnz8ywvrWflpmGax+D/dj5k0mMExGhvDKbEoABSiCikIhk6QgAAAK6T2M8ZubIpi8KlKr02j+x7LFTzsDSI6Os0aO9TKOmflq1NWxptgonqqM1m8mW3F2s3Ct2YA6bTdN+pZRKwOY/307IzE8yUawcTntczi9UV6t9mou8CgBSzIxICCAG4iOQw8pSz7zz9aaXjHFEXoGf0NLuWNK5Z08CnnLuYTmvgORLBZn9d0lIvxIKeNq5Z58ruU5WZLMm06TqhJYEc3Ky/UXg8NrME5xc4mQwmeeX8qBUub2Sn3By4YeAIMW+aH/mKQhIAC7uWuie9VJoL6I7a9n54npEGwPT3AxTjrIMPwk5joAgzRPq5kOiUECy5oTL5SpoRczeMJFdYuSRfs411fJRlMSoLQ6zAK3lFh6MD0AyQcYO5XCf620DMkvZVDbNnWB9YidhtjCAKYAaSemap2U+IgDRpNcBAFjZ7goul6uoZUbK8FKplfmtHTDJMz5NJa6hFBAk5Cfy/ugwALCMhFqljp7sWwiQWtAp/2+bZv/LauRMM7RM7etxwghcbksIDAha9Hp7qwm43e6ZkXRDyUx5JycruT3ZQzpKQUDA9JfCB8eMEKoPbFDu+LX1JwBzJ3yDZDsl7aHaRVymmzBNtliml+mgl5Q7GEuxBgQAMo/zz4Pky2ui1ovH43G+XprOKOouZsD9Th6ICEDrjg92R/sA0hd3Sr84oW7hIvcsEGaW4BjKJs3QrtkmTwPbt5kfTi0ypXTR16u7YiYJ0P0LfB2QVOYnar34fD7O+VEtCoioqEQk50Ly2ASpDZxF7JnRnQBAqRINAQXJgOY/s+FkkNGUCrx254HdbWBN5TTKMdvJ00To2UHl5FQl7hwBiaSLe2a7W8BipHWW2+12uVxO3NkzA1T1+lFHIxggSOOJsZcBIJd379K2dYCatDsa7UIvk3gyuaWEOhYAItXaOX1gX46WAkq+XRgCARltrsbjA/MBAJFBWpXrurq6UCikadrRa7coU5ohImOsymV2Kw8EZFSR0omSJHD3k8PPm9LUmJZWcEmlbJ/buuZ49/yXY90MXRNp73YBaNVEsmajpZdO/4lWljS2wsNVKIQ8IbDAlXWHIwDw+/3K/VDx5PTqoKglX6acR0TDMEZHR2fGHg/xcVUPLkf9amcgIGCu58NdL4ztXdm4PM02rnacDmj+y2e/5vO7f4S6B1Sha5Yq9DI1Kns0ma2zaYSsenLRkJahSdULP71hOdjqVqUUmff7/W63WwVnzuyys5nRJGqDsdNPP/3hhx8+urkHQAAasVE98vaRW4fEGGLppZAIQENuxkcfHHh6ZeNyVVXeDqVEvX/uxd8/eH+vCCLyxA57dltLmhchl3V0WoGK28I2NxLBMgQI3HWcf779u5T9/RhjjY2NPT09Svs6elXQ/MjFLinlkiVLGhoaZsy9z9vwq6HRIdTKEuYSCLh+X9+/r1tyuZZRU5ABCpKzvW1Xzr3kxj0/5XpD+lae1XqVVTIm1HJOOt5CLEcrZIk+QVLn3lX1S8GWQpmyvx8A1NXV9fX1Wbb7mTEL7cjlFSQit9sdCARmhvFJkHRp+vnNq54bfo6BrxwxQySRebaM7Xh0cOu5rWvUXrb2E9QK8GML3/aLIw/vjfUwdMuqyzWGjEgAQcUKz5RlcYFUEY8ISNJYEFiw3D8PbLRK1zB9Pl9dXd3Mtshn3poK+2xtbeWcM8b4jAAAnN28EphLlEcGUgQj8ycHH4Rs01u92ptdDd9c+gEQZpb4tEkGQyZFxIO6XnAXe+co9x7s7kJiyEBEL2xb42a6ScJ6Qqm7JRIBQGNjIySNE9OTh+U4DLLejpRS1/WmpiaYKQJfSaS1DSe0udtIlhSTaYMkCZrvvoEN20d3MWCZu6lwZILkpXPO++C8N8n4iFZ8GndpYIAachkfPavx1D3r7npN4ykgIrzkjT5zeSZLbMsqisgkSGB8XdNJkMrrlIGqmdfQ0ODz+ax8uelGv6JiyjIvzKSuEn3Nzc0q6rVCw5xiIKAEanHVr284EYwYK++dQgAcedQM3tL1G8gxM1UXtxx/9Tktaw1jtAoM5MiBTNMYu2r+2/665puzfW0qpaf0Fq30wnKze+0eFUIgKUXA1XxuyypIFudXSH9PKKtDa2ur/ZPp454uZzC5wjuJSNf1trY2mCmiT0HJqPNaV6t6nWW3JkAL3N3zyL8Gn1WyLu0ERXiv5vnNqV9Y23CyaYzok8ZAhowjE8Z4E/f97OT/vv2kT7pYcXt+ZAdVxIBjF50Eim8ick7zSe2uJpnmOE271BKAfr9fTdZcQqOasCSeqlVR8uWZXyGiaZrNzc1ut3vGiD4F9Za9pP0Mn94shFGm/qlWgAKM63b92JAGz7ZtNQOUJFvdTQ+u/sb5La804kMcGSsjXisTDJAjlyIqjODr2896eu0P/nPuhSZl35eyaGQNBy+9IZjIXAa4uH0dJN+JFrI/GkTs6Oiwf1Iwo2+SYM9UKkcfzuNsUPu5w8wSfQDAAAlovqf97OYTwYyWqX8CgCTJuf/fw89+a++vAbJXQGPIJFGLu/GPq7/20YWXSTMsZZQjL309BgAACMCRMWQkY8IYO8G38N6VX37gFV9d4p+rLLGVMfeoNiomaJTLgYSUPlfThe1rIVXzhDyRpIFAoKWlxb7frZSyqIDm8pGZoVtC73noqlZ9s2fPzrW5xdEO9a5966xXZ6QrlNGg5v/S3rseG9iqIU938QEAAEMkIp3p31nx0T+t+sYJvoUiPipFFJFpyNCxZwCTlhWGjICkGZRm6Hj/oh+u+MzmdT+8tPMcApJEFeOeQgUekxVZBwDEkIOIvLbttPmedkmUlheS753U0dHh8XjS/GBOLKJoA5QkVSyJZ/WV1p3Vcv6OLLGZ1dlgmmZTU1NLS0tpg5z+UO/aN846c5Z3jjTj5U9TAmLIYiT+8/mb9oeOaMizykD1iwiSF3as27T2B99f8ell/gVkhoUxTmQoQ46GnCPjyBig+qP+qSHXE5QDSaYwxqQx7kXXxW1n/Xbll7es/cGVC97k5W5BkiErX6Sn3V7ZsOw2CbWTAADh3Z2vAYBMdT3f4ljTtFmzZu3fvz9lhElBlDb10761Z7WXpivmv8pJRxaHs7agnA1z584tdmxHERDQJNGi171r9rm37vk55+7y96CVJDl37492X/rcF/+65qYWV0OmI151zREFSZ/uuXrhW94/7+KHBzb/tvdfDw8/dzDWL8wgAAFyVfg5cQ0RgASSQAJQY5qv09X2yobjz21edWHraQv8nQBAQCZJjoxPx9elmmkTZfoZalJEVzQcd2Hb6ZA0DtuRj35E1NDQ0NbW1tvbmxmFrGa2ig61Zr/f7/d6vY2NjUpmMsaCwWBTU5NDLlmf5LH02I1DKkIAADjnIyMjgUDAfmHBgmXz588vdpfcow5K23lX5zm37v2NELIiRRMESU0LbB574fVbr/vDK77a6moUJHi2PW6VhUaQ8HD3xR2vurjjVSEz/OL4vqfHdu4OdR+JDvTGhwZFUBBpiI3c36zVtbub2jwtx/s6T/EvXhKYE9D8qikJRCQZMi33MnKq1w+W6UbZTxEBQUTf2nGmj3uyPqLCJYmIaN++fcFgkOetRKgqeVozPk2X46kpFGSrOwi2QmnO5WQufVJFiuf3DSq1c9asWXPmzKGZEt6ZByq95YJN1/6959/cHRBYGduChpppjp1Sd/wDp35poX+OSSLPMoyAJEkAzGaDoYnQyAxIIEmSQT49U5IUQDryN2y57o/9j3MtkFUl5siEGTy/dd3f19ykCo1ZX5kkNORf333PdS9+V3M1ZV3TFoKV3JCQfghAJBo0zzPrf7rIO1sSZd5CYXsUIs6bN69gJq7lFVART1binIrhslsvLdgXeMWaVTjnWgacc6+xsbGzsxNm6JIvDSoH75rF7wDmkrJi26KYZHKtbtv4zvUbP/Zw/yYNuSTKtSEEAir7JwEIkmaiDqn6kZQ5BgmAgNS3JglJkoCS1pfsP5MkKUgioo48ZIT642NTsNF8ApbTMLH8Y4hgRt4795JF3tmCZNZbcGQO1nV93rx5ikV5KnmqeS+EME1TSmmapmma1j8tyll/220qxa4PKRug0HpPcc/n882fP/9YIJ6CMsCc03zqmqYVZEaYZJVioCDBNF+3MfTarZ+9YeedhjA4MklS5JYeyoWg7C4s1QqKCZYyDbkyeOaRpYKEBEJkHFlfdPCbu3+5csOVT42/hMyTZ0+YSatkYTWqCIUITBBw3ffuOedDbn3f6fZgfr9/4cKFKhm34MS1myWtFopVL0uARfJcoxJC+Hy+pUuX6ro+ecOYbkAA9fa9esEbgETCHleh30GSRNSBaV/efefpT1/9176nGDKGXDGksjuQqTYFSQRkyBngruD+T7z4/ZOevOLaXbftjXSDk8zGyk9Ae5RaonWGDMzxS2etX92wXJJkOdarjuin1maKgZjcJqUyI68QCtJbcc/r9R5r3FNQP/9lneeubztNmGEGrIKbligdkrkatgd3X7z1s6/b/Nl/Dmwmkhw5AhKQpUmW0LhaNJo21nFkERH9a9+T73jmS6/YcOX/7L9nwBzjegMyl4NbQkICAJOEkfoHEoEExU5sK6kvJchTkOHW665b+p78Fxext7ti4KJFi7q6uqYPAy2dM7+xVOmcxyb3ICkAXajduOy95ww8Q5IAUgODywMBEAnG3UDwt/4n/z7w1BmNJ79n1nmvb18319dhJemqpR0ky+wlIqQxtSEgtQgkFekCiJiQHREzunHkxfv6n/hj/9P7wgcJTOQ+TW/Ir+4mmlX1nYjcoAOAhtxuelFHfu5RJpMiwWwMlADAkZvx0SuXXn5K3ZKsXpmJfkvQBkOhUFdXlxAivy20CrAoV5B7fr9/yZIlyn0yTV4c1YfSgi7efN2fjzzO9YAgObGbdOXAkRNIaUaARMDVfFbDiWc3n3p208nLAwsa9ECxrQXN8N5Q98bRl58YeeGfI9v3Rw6TiIHmZsyFgJKcbeREABIYopTxJd5575v7OgOkfRJIIj93/31g80N9TzPNm5lRla/dlD2BEwbPes2/9cwfL/F1phWnSkOJ299Fo9EDBw5EIpGpCtdKM7dkPUdJbCFEc3Pz/Pnz+dFZP6qCUPTbPr7vtCeuipFAVRweK1NBPQ0cGQAKaYCMAQngvg5X0yr/onm+Wcd5O5d5Zre4G+v1gJd7XNylOhckYyIWMiND8dGD0b7nwge6Qoe3BncfjA+BGQaQwDzIdJVv4ZR1Ezev/ocgDTBC2c/mHuBex0q5FVetkKhLoSE348PfOOmTn138rvyiD0qmHwAIIbq7u4eGhlRhwqqR0Im2CcnFHiJ2dna2t7cfsxIvDWpCfOqlH96y6y7N1WSSOUG/yumiFhCQIQKgIAEkQMZBmoAI6ErEmU2olkBKlKmoF2kCGYAacBegpjyKkqQsagFpucFtZhEEzOW4FwnnpPOm7RlKCAAMuTTDqxuPe+yVt/u5O7/og3LopzAwMNDT06MU0XLaKQg1TisHKs+ZltDzer3z588PBALHssKZBjUhhozgmU9e/dJ414SipR7PpP2GyqmAiMoYI4ES/6lBpZyYOFNlbEiiUuLFrYYnxdNgtT6hc6oVIAOUIvanM751UdsZBUUflKn4E1Fra+uyZcv8fr9hGEraVHyiW65CJ955JfSklB0dHcuXL69xLw2Juix64KYVHwLGJyb2JOsuKprTcrhTypoNbX/UyRPWTio5V2NyE1QVra3XFQKghro0Rq9a9BaH3IPypV9iLESDg4OHDx82TdOKPqlIs4p4TpRb5RERQgQCgc7Ozvr6+oqMYUZCTY7/2n7Lj/fdq7kaJ2KsmO3voxEZqubkiD7L4jLROkMuzcjSwNwtZ/60XvMWVDsVKkY/RIzH4wMDA4ODg/F43Cq2BY4Du9Ikm8NoGNW48rZ7PJ729vaWlpaZXae0fKjJERKxdRs+vG1kB9f8E4Z7TM6ro5GEImkBsS/KKgyrdbCCPBGQwNSI/nz6t85vXe1Q9EGl6AdJBgJAPB7v7+8fGhqyqmWnhb9kJihlHjuBPcLb4/G0tbUp4mX2UkMm1BTZOLrjvA2fCMp4ojq1Aib/tjuTpznsy7zJUqTt2y/ZH43UUDPjw988+dPXLHqHit522GKFLZbWvBdCDA0NDQ0NRSIR0zQVCcvfukQ1boWM6rqusvIbGhqsr2rEcwg1Ue489NcPbL1Rc2VUpwZIeAWt/RimJyxGyMmTeFaj1oISLXOLhsw0xt7Y+Zr7V3/Foc5pYdIdBqFQaHh4eHx8PBaLWTwEgKLWh2mh1S6Xy+PxNDQ0NDY2ut1u65wa8YqF8gS+d9tNP9t3n+5pMqSZ8rW1uuGT4pYoHWQbz2SZNzP7sw4mEmo5ojDDC31zN67/SZten5bHVBCTSL80PoTD4VAoFAwGw+GwyoSwus6TRWGdoGmarut+vz8QCAQCAXuabI14JUO9rcMy9vqNn3uk7ynN3WimMRBsehZLWhymA6q3/7tdKbC7R4khSmnUce8/1v7PGQ3H5wmtzoVquMvT6CGljMfj8Xg8Go2apqn+tlRHsGmYbrdb13W3260OXC5X2rqxxrryIUEyYF2RvnM2fKwr3M00v8waP4k2hatqT51sBxImQuSUiaVKm3HYZav1BpIIgEBSRH+x+sbLZ59X1JLPQvWiVaBChKmxruJQZpid4e7XPvWp/ZEexj05gz/SjDGTZ5uxTJeUjGRWB9x2POmePbCNwK7sAgJDACljP1p57RVzLyqNe1BlTSJNdhX0oWdNI6pxr+LgyEwSy31z7lx5LUdO0sypRJFN60tEalaIBpb5RCbFmrD52CBJAZEcQDW86vbOLBnIVBUpGR/59JLLrph7kZncK7MEVFX61TCdoV7hv+994l1bvmAAINMKB0Ci7cDuKrQLrjQ/eJrwlLYDTP2kGiIuE9ZrAGwSD+23pCEzY6MfXvYf31vxYecuvqyo0a+GCSgG3tf35Du33BAnYkx3HIIMABl7SkPqijEtPSDNR2cZdaZ4PxFL4FqqJrdeCag0hdjw1cv+8/srPixJqijWkjur0a+GFBgkdOT39z359i1fNGScc2+BTNZcmEj+zlgfWpItUypO/WQUlpKZZlpFYBzQNMY+vPTd31vxEVW/o8zKxTX61ZAOJQM3j+26dPMN+0OHuB4okYFHHyi57kSbQkygqnVIKSn+/ZM/c/X8N5Yv9xRq9KshCxQDd4QOvW7TtV3B/ZoWcJrhevTBHkJtBVKnCGjOuDQNhnDHymveP+dCkwRHXhEDYI1+NWSHMioMGeNve+bLjxx5THM3CShgqT4KYTehZi5YCYBpyE1jpM3Tfu/qr726+eQKcg9q9KshD1QYR0TEPrfzf7+z5x6GGnBXccaYaQ27jShthUpqsccQRXx0XdsZd6+8frFvlkkyT4n7ElCjXw35oGq8a8h/0/P4h7Z/ezA6pOkzQxGVGcZWZiOh5MilNEgaH11y2U3HXeFmrjJ9DFlRo18NBWBto7cz1P0f2765sX8j1+sh2/7SRwmk7QAzfCCIQBw1Mz5W72n+8SnXvH3WqwVJzNgZsyKo0a8GR1Dv/pg0vrLnnq/v+rmQBtd88uhbDabFy1g+BnWMHBnJuDQjF3See/uJH13snZ1/65gyUaNfDU4hSRIAR7Z5bNf7t39729DzjLmRuySJaT+H7LbNzGAcBCCOHEgKM9Toaf/G8VdeOe9iUpsZToLQs1CjXw1FgIAEkYbMJPHDgw9+fsdPRyJ9TA9gjm1upxqKWsK2qGOp4W0MgJRoE0ZI5663z73opuM+0OluMUkwZEUl75WAGv1qKBqKaRzZgUjfjXt+eU/3Q5H4CNcC6LwA7qTDHrqJNokHdmsnRw6AwgwjiHVtp39t2fvPaj5ZadSTKvQs1OhXQymghFsCEXB3uPuzO+78ffdDIAXqPoZayRuqlD0osKcmpEZvKiTkHkdOQGSECeSyhuO+dfx/vaF9HQCoPUArvGV8btToV0PpUFssKEHx+NC2W7p+9/DAlmB0EDUfYy6AnLttVhqUKu4mikHYDhgAY6pCF5lkRgBxbevq98+98PLO87zMZYn0qgw4gRr9aigXyiSjJOGO0MFbu373u55/DYSPIGrAvRyZBCkJKhpPnSbosphSkmcigFR760oiKWMgIi5X47rmldcufuf5rautWtpVJl5icDX61VAR2KVHf3zk10ce/dWRRzcMbgMRBe5G5taQSSIJUJ5eakk5Sk1KwDQ9E4EhEENGRIIMNKPEtDn+OZd1nvuezgtWBOaz5Ep18vwKBVGjXw2VhCACmJAkjw9tf6D3iT/0P7V7vAtEGJgLmFtjLkhs8yCT8gszwp2zlHhIHqDtwFIs1baBTKUhMECTJEkDRARQb/LOuqB11Zs6zryw7bR6zQ8AEiSRMr1MJWr0q6HyUNtoWlJFkHhsaNu/hp//S//G58b3RKNDgASoA+qMcYaMkh45SaCoSBO57pi2gZ6SewgIQIgMAQAkApdEkuIgTQAJIq67Gub6Ol/buvq8llXnNq9qcdUnvBAkEHAyQlhKQI1+NUwilHanSqGoooZdkZ6HBrY+M75748jLXZHe0fiwYYwBaqAEEdMBEJEl6WFP2gW7tilkHABA7VtGBCSA6QF303xP24l1i06rP+6cllWr6pdacnjK9cysqNGvhkmHsm0QUFqqzkB8dGfo0LbxvbvD3TtCh/ZHevriw4YUY8aYaYQAWYbOmYiHZsgbPe0E1OFu7nA1HR+Yt9A7a3X98kXeWUv9c+xdi4SSOb1YZ6FGvxqqCkkkQbJs6h8BHYkNmVL0xIeH4qNqk2qGLCxiRORPbkVIQDpqS3ydEmi2u9nDXBldSFVteppomHlQo18NUwZLKiKgKmRUrL9bRXwn9wA8OihnR41+NUwjJPaOdjApVblXhKO76uv/Bzd/RhZP1ajCAAAAAElFTkSuQmCC", "path": "image.png" }
Complete the statement. Hydrogen chloride is ().
[ "an elementary substance", "a compound" ]
1
The model below represents a molecule of hydrogen chloride. Hydrogen chloride is part of the liquid in your stomach that helps digest food.
All substances are made of one or more chemical elements, or types of atoms. Substances that are made of only one chemical element are elementary substances. Substances that are made of two or more chemical elements bonded together are compounds. Every chemical element is represented by its own symbol. For some elements, the symbol is one capital letter. For other elements, the symbol is one capital letter and one lowercase letter. For example, the symbol for the chemical element boron is B, and the symbol for the chemical element chlorine is Cl. Scientists can use models to represent molecules. A ball-and-stick model of a molecule is shown below. This model represents a molecule of the compound boron trichloride. In a ball-and-stick model, the balls represent atoms, and the sticks represent chemical bonds. Notice how each ball is labeled with a symbol for a chemical element. The ball represents one atom of that element.
Count the number of chemical elements represented in the model. Then, decide if hydrogen chloride is an elementary substance or a compound. In this model, each ball is labeled with H for hydrogen or Cl for chlorine. So, the model shows you that hydrogen chloride is made of two chemical elements bonded together. Substances made of two or more chemical elements bonded together are compounds. So, hydrogen chloride is a compound.
a compound
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABtn0lEQVR4nO19eZwUxfn+W91z78zsLssCyx5kkfswoKAIGiQeKHJ4EDXxQAWjmMR4mxgvUOPPW2O+iUcwmnhEg6gxUUHjfQfxQBEEBWFhWc7dndm5u9/fH9VVXd1z7By9ywL9fPzITG93dXXXM+/z1FvV1QQRIQ/EUsq2cKwlFG2LJVpCUQBoCUfjKTWfY21YjnKPs6/fe/SQ/uUe156uS7fC5mGPQqE8JLnDzTc72r/Z3tYSim4LxyyqoQ3L4HZIcw8Zsj9EHMrDjbvDbbHknq6LDTPy52HmcBNLKcs37fiieRdvXYlIbo/X6XQ5Xa5gmZ8Q8LidHqdLJkAAJAIyAYmABCCJWwAkAhIBgkCI9lkCIADEuDMB/QP9PwBIAIQAYX8l7ED6f0DtM7CNgABsZ/oBEQgBAG03Ecj+QUBCCL0NCAjaUYRuQNT2RES6ke/JPwMBYTf9T3SLiohAFEQVQUVUAVQEBREBFAQFUUFUgajCDojaUSqwjQgqIAKhX+PJ1IZNzbF4cnS/yukj6jtt5r0UlIcfb9rO/YvNw72ah46MW99Z37J80w4AkBzOYGW11+f3ejy8FWmLygSA0BsrgACi3k7ssvWmYjdR34EQvTF4gyBrKhAO4X+lZxFLMBfL21g4iO6AoPMD6d+QIPsbAYKAhPBGJUCQ0AYjBBERgHGCACAtBFEoXDsh6v8AQUT9cthOQpwniIionZQrAALXAq1edDcAcDrkuv59161vaglHM7bgvoHX1m5Z2bwbABwuj7+8l83DvZ2HGcINlRRCpMr+jR5fmQQgswugMV4HGr+yLQja3QTCDkFAygnUtvCWo7QQS0ACEvsMxHgWYQthOwMazsK3a2dhGwlrbUKIfrcRAJBpSAZVAeR7sgPFI7XbQgytJpYNWvkq5buwEyH6joQQAkiAqILbJMDbHHk9CVU6QjxuJwDsw53clnBsZfNum4f7Eg+l9E20AyU5XU5PGT8nD8yGvhcxfmVbuI0EdpToLXkM5ldrKlO/fFEUwPBZq4lRrCCjqhBDAcD8KtELJGL0ZlVCwjYQ4UBEJOKR2qlRVDlD2QAGVRGuKKuqsK1GVeG7aeZaUVUAcMsZWnDfQDypAIDD7bV5uM/wMMNOff0etywpiVgqGePnzKAqKIRz0DcaVIUdBahv5KqiHYHmYlFsOaEcMJZpKJb5ZBQLIZoEGajI2smkKsJxOVSFO1gQL5FQUUirJYJxT15X09+pXDARMaqKoV6EMBoQ0tERA4CGSj/so+gT8ABAMtZh83Cf4WHmmDS+oRoAdjWtSyUT7JT0SkGsBZcIHXmoCkAGVRELIULLgVCO6XO6qnB+cFUBUWrY+bpNVcxfjaoi7FawqkRjiabmbQAwYN8NNx6HfHhjXwDY1bROURS60ebhXs3DrAPhi7/YsHZHu+xwVlTX+gNBmpOTCSipZCIWTSTjiXg8EY/HE/FkKpXPmWxYjtH9Ko8e0t/jkPd0RboQNg97PvLnYdZwE0spz36xYWNrBwC4PT6v35+MxWPRDkWxG7Wn4Lc/PnBPV6HLIfLQFyh3ud02D3sa8udhJ9P8vmje/do3m+OKMGuTEIfb53C6XW63y+1xu91ul4uOGsgAsgT0M5/v4GBbCN2CIElAZ0lQmQIAB/OiMpvdIAFIEhDU5kcA0edEEMLmQYDuUQmbRoGiVdQspsHHYtqIAPIRAdZBFvvMmNd8B62vywtBZqoBQJzmIM53UBFVIDnmO6gISECc76AiIBAV8fOvvyuomfd22DzcN3iYed4Nx4E1lUOqg89+seH73R2+QLBP7z5er09vRQIyABGnV9E5ESB8ZjOmtM+sPcTtJH16FQFAkCStCQlk+A/E6VVaSwipvkxtDKDl2PR8HgF9vgOb3ED7zBpTDPMdGCf4kTTvpvVk+UAm7/UbIVQJgJ0XQOwz62OOoCUgtE9EG2vNLQ/7KigPn1jxbUsoZvNw7+Vh58NXHod8RGM/QiAeCTvdbj17z/LbeoJdz86bRwQI/6NwCLBi+B3Qt6AwaiAmBQWkJfbBkJbn5RpHBDDHiIBRVfiQQ54jAsAmTWRuY/H+6LeONTgbEQCxGXXWIj8bIca7sN/A45CPGVxr83Cv5mFeo+UNlWUNFWWqqu7euUPP3jOzqCfYhVy24avoLYVDgBUDxhtjlggCANo9F5GW2DePTegnFjfnGBFg6X/tbrMhB7ZnzhEBANAGEcB8Sr6BmD9kVhXhKNOIAD0kkUwBQNDjNJ9lX4fNQ3rk3svDfCeJHdHYDwB279qeSiXSVYUYZcSkKiDunl1V0udWiKqCpgbDzKpChB20ctPI0SWqAjlVRRATrW9tVBX6f64q/AwZVSWZTAFAxX7wZGY6bB7u1TzMN9w0VJaN7lepqur2lhZdVWgVUJvjkENVIG0SBIfOGTRuMakKZJKeNFVB4w7pHUzOnu5RFRRPRgC0n4R2O9BwKwlXFX6GjKpivqT9CTYP92oeFjAF/oiBfQGgrX13KpXQu39ZVMUQzlHTmXSp4Rsyqor4HYGJlbiTUVUgTVW4Nuibi1cVKEJViHgypiqE3Y7iVMV8B/cz2Dzce3lYQLgp97hG96sEgJaWFr37l0VVQPScpHNVESKoripmTogzJolxC1OedFUxud8SVAUsVRViu5viYPNw7+VhYQ/4UWFpbdsdjcU6URXxK2pXmENVUBgC0FXFxAlxCxp1hh2on7nrVEWoeAmqgoKqaEfZ7iZP2DzcS3lYWLgp97joYyzNzZvFNjCpirkihOmMCKOGEGEpAJK2j/5VYBKBrKoiViZPVUHt9hN6J3OpilDxPFRFYGdWVdGOst1NnrB5uJfysODlC8bX93bLUkekoyPcoVfQqBgo/F/7lEkiWNQGyKQqdB/TIfzKkamKqGDpqkLrlo+qEO32I72T1qmKLiZCJYkxnagdZbub/GHzcG/kYcHhxuOQ6fPizdu26hXMpCp6dZgCGKBHbYD8VEWTEaLtT3gh7JierCpMLBh3CBFrQD/Y7iZ/2DzcG3lYzOJMVFjCkY629nYWVuk1aTukq4qmACIyqQqYDjQeQgtBLfJrX8VTa7c0bS4pCBG8K1QFWAt2oira+U2qolfNdjcFweahfqRY0x7Mw2LCjcchHz2kFgA2NW9mYRUAClMVol+x8NV0YBZVIUxVxKOAqQqigR7iWaBrVEWrqb4QbGZVQUSzqhCx/uyRGdvd5Aebh/qRYk17MA+LXHrywJrKoMeZSCZDHR2QRVXEe6CpChq2GFQFBFURYrUYQ9NVxehPjarCyyDGM3e1qhg2C6qiCQIi4xHdLlygpiqgHWG7m85h83Dv4mHxK92Kk5dNkY7XjX/XVIUYtphURT9c5IdRNDKoium8JIOqGM5sEoduUxUQVAU7VxV+LcId1FQlpagAsD+8Xiof2DwUq93DeWjNwtqmSGdSFb1/K+yRrir6H7OpCmuuHKpCeYBCORlVRReHLlYV7QqtURV6OSQaiwNAudcON2bYPOzhPOySdfwJN29azTRBEAJoLlXhX4hJr1iZRPjPrCqgq4qY8zOoClinKsIpMqoKVw8rVIVenVHBbWSHzUOhTj2Ch10SblBQAMipKryd0HS8sI9hO1cV9h8x3WvWkMAogka6UBJkVxUoTFU4lSGLqmAGVdEvryhVMd9uG1lg81Coc4/gYfe5G4MCMFXhZMigKrRFjarB/0K4hpjudZqqEGZceWVyqgpYrio0/y+qCvCfge1uuhI2D4U69wgeWhluxGuml8GjO1cAvkc2VSHpm0Dfwv+CXEP0O6dvESlCT7QHVUU37IKqaJdpu5sugM3DHstDK8ONeM30MkwiYFIVEFtXLCRdaIjhKFFV9NBrIlnJqoIWqgrvKtvuputh87DH8rBr3Q0VFv6fSVWAbxGyd+mqIm5JVxUees0kM6qKfua8VYWkqQoIb3EuWVVIp6qCtrspCjYPeywPu9bdUGHJpSpo+MruB/vC98lDVfTLN24hIEbuklQF+FuW+XcDswtSFcyhKvweZlQVcWjFRjpsHvZYHloUbow3mqe3QB/X11TF3L81fmX3Qy8TMqmKJlZso0lVTFu6TVVIZlUBYmSaripCVelfiNCwOVRFHFqxYYDNw57NQ4vCDTGkwYBP39TH9TVVMfdvO1MVrVhRZ5hY8Y2dqgoIN77bVQVMA6m6qmh/1Xe13U2psHnYs3lombsR02DAJjjkUBUKoufdtc0mVdGKFXWGsLsjqIqBZGmqAsKN3wOqInSV9fowVRH2td1NybB52LN5aJ27ES+FKYlJVfQuYprdzV9VtGLTCsmgKsKpLFQV/TS5VEXXHlNXmZ6CqwrbgW1MUxUUbxAAIqYUBQDyeQP8fgebhz2bh9a5Gy4R7CsVFlFV9C5iTlXhkRQyqYpWbFoh/P4j1xnhVIWpCuRSFf2ac6mKrj2mgQB6ClFVWJkZVAUI8GrQIgkh8XgCAPr6vZ00yn4Im4c9m4cWuxuxD5xBVUTlYUhXFVF5DKoiHgKGjaKqsGBcgqpAkarCzpq/qhCTqoila+3LbxDRSki/hzY02Dzs2TzscncDLMaysKpt4f9kUBVBNJARRYRJmoCzAYRDWCFmVREVACxWFaHqKOyl75imKnxmOauGUHo2VSGm22GDw+Zhz+Zhl7sbMMRYQ2+WhUmDqgAIoZlLhPFsnapK+j5ie5SoKigUnY+qCJUie0pV9hfYPOzZPOw+d8M1hPdmzaoiTILoVFX0jjQ/RFAVSFMesT1KVBUiFF2gqvABBaGutruxEDYPezYPrXQ3ADlVhbs2FOO0oCqCAhC9YKFY0HcwdaSzHpJ2R/aIqrDq6aoCdP/sqsLqYbubQmDzsGfz0IpwgwZBoFtyqQqIcVrYIigACmWDcDe1HcCoKtTBkkyHpN2RPFUFAKxRFVZUuqrw8mmBaFQVYD8AsEJV9gvYPOzxPLQi3JCsqkL0vxuawaQqKHyFPFQFTMME9CtmOqRYVQGAPFRFv+NZVYUVlVlVQFcVkkVVwApV2S9g87DH89B6dyMGQdT/bmgGHqeRqQqIO2STCOGMJlXR7gKP2KjXJL2y6aoCtMUKVhX9jhtVBUwn3uOqsl/A5mGP56H17kYMgp2qSkYFyCoRwhmN4RcI6DpD2A6mfjUvMF1VgLaYZaoCphPnoSrEdjelwuZhj+dhF7gbMKsKmCZfGlUF9PvKdsikKsZ4a/6KoGtIT1YVEOpoVBW03U2psHnY43lokbsRwr8ecrXgCWB6tKQzVdF2ErYhmmWkU1UByK0qBq2A7lIV8W7pqgK2u7ECNg97PA8tcjdi+GfbeA3TVYXvlEFVjE1Oy9FVhe1j0JlMqgKQW1UMWgElqwogFq0qdHMOVUGjqnREYwDQUFlmvrb9HDYPoafz0GJ3A0Izcf+Vrip8pwyqYjK0kHkfg87kUJVMlc1fVXhA53tmUxUgJE9V4RUVJzLQk5sFg9WVgHi07W2ywOYh9HQeWhBujO1SpKroCpBJVSBNeTKqir4L1xnhLLzA/FWFx32+Z+mqwustqgo9ubk7LKqKfrRhFxscNg/pQT2ZhxaEG2O7mFWFQF6qovdvTazJoir6FlYOis3JdUY4Cy8tL1UhXFWIuGdRqkLSVAXAdjdWw+YhPagn87BL3A2NrchvfW5VwUyqogdfI42EfbKpimGLKAv8UMTOVQW5qqC4Z1GqghlVRbzCTlUF9aNtd5MZNg8BejoPu8Td0NiaTVWACG3JtptVRRANA42yqwqIt5brDOp/Fc5IeoKqiFfYqaoIN8p2N5lh8xCgp/Owm9yN2LSAQluyI/NRFdM+4lcT1biqQM9QFcN3dmEo/D0fVUHb3eSEzUOAns7DUsMNAfMtzqgqhqvOpir6JiAkg6roygPsEGLeRzyJtqkrVEU7Kl9VMVyhfl36SrHZVAUFVSG2u8kOm4es3B7Nw+LDjdshA0AskchXVTjorSfsKC4RoBeEwtMo7FYIMgLaIcaDzNLFN1mvKtpRBaiK0FXmW/WVYrWTp6kKMaoKGu6UDQCbh3sVD4sPN30DXgCIJxNmA0k6UxUAQL3xcqmKHuRZiDWqivEgIabvnapilow0VSGGO2UDwObhXsXDknM37Lr0YIqZVMWETKpChILSVQVMT98KqsJZRAT50vNoXaUqsBepyr4Pm4fsY0/mYcnhhnVu9WCapirG1gGAzKqiN0x+qgKCd+WqosdsToG8VIUUrirQiaqIOgu2u+li2DxkH3syD61wN6ZgqsVCXVXSWke/CemqgoKq6I3HTmTii64qPHCnqYrpoCyqgp2rCkBhqqIfZlAVYXZoMaoSiScAoI/fAzZE2DxkH3syD61xN6auIt+STVX4Fq4qwJtKLJZ+FFXFiPRC0lXFRLLiVQWgCFVBLoWCmPAP+agKGlUFFRXsV2imw+Yh+9iTeegoaO8MSFcVom9BBCSAAJLRVSKLcwhAjGZV+2ZUFaonfAsHSStErxcTN8I/s52pAhhVJXOfGVhb81K5Dmgn4c5UVYEQBEBFRWrSERBARVQRVQQFEYGoiPRDSlUVRCBSSlUVFVMqqoAIBBFVABWBHaXSo1QERUUVMJFIFtNM+zxsHtJPPZuHpYablJKKRqMEQCZAAGWJEEQCIBGQCUgABFAiAKB/lgDoFoIoESCEkUBF/pl+QFaURNtZC9lIACRJawTChIGA1kDaJCUCgKi1MduZ/lXVnv5ARVUJITRys2QiUREBUEVkUkMAUaGtqKKKKqUMck4wo67S0gBUFYEQFVXW0qDSNgZQVBWBKKyxFdqotNVVBAAVtEMUVVXZBwCiIiIhiqrGk2naasPm4V7Cw5LDTSoVi8UkAlpLI0qENgyAirJExKYlrLGJ0NjaB0RZYoYSkADIkmZbtUZFJAQkQljbE97etEOpNzyTA0mi/VtEhe6GrI0BmDBoLQdAW5HqF1UV7UkaVdX2RNa1JgRVzcoiAmH2VZIkbTNfGUQTK+ZUVa0CwNlGq6eqrNssHKlVkQsgUVn1SmyyfRI2D/cKHlowqxhA6yoKnUlABEkiwKI+si4xnyKN/CgaziWiqojC0q3cPWreVeuCGk6sFcvOK/pNIrFNqJVGxUZid02osKHPrG/TdmB9dkLEPjP9Sng/lxBVVWnPVjulqUqMEEz/kPeZiSQBS/4bRksJaBVjPM6QNrABADYP9xIelhpueEsg63YC20KjILJuML1bfIo04UcBoa5RksRcO/Oi3C7yxhFOrBXLDtPcK72/KttE9FsMAExVUKgwkwv2hItwOj1txlVF25M1C+tFoyRJGuWY5eZVonVFra+uqQofERBURU/gsWukOkZpJHT9bRhh83Cv4GHJqWJaHwRJuwx9C3WhXBOQDbNJzNjxoyRCqKoQojlbYPGYcFVhxWpgbi5dVeg3qipaSDaqiqrl2JHZSLYnAQJAbybSltJNKrDeNXW8GjsJf76EqgodLKRkoX7UqCqqqmrShcj650AkCVQVVSAAqklVkCCq1C5LElFU1ZL22lexx3m4KiZ/FHaEFB794NiK1Cif2qN42JyStyTJ1qSjXSGNrmSZBD9wJqBbeGjByBRooR2I1pjaFh5EEYCwgEiYXZRY/NZcpUr7zJrg0CJoPxkR2MI+wHugILY3O6/mEmkLqUgk7pf5n0gWVQFCe8J8dAN5FcyqkrvPzEo195k5Z3ifuV0hn0Xd3yUczSm5JSVXy6k+sjLAmRrnjQr3limPnbvJjT3Nw8W7Hfc1u5sSZtm/e6srKOP5fZJz+yTLZdyDPAwp8NRu31sd7rVx86++r6yM8iTmVrZ7qR9E0KKUfm+t4aFl7ga0/rC+RSK5VIVuyaEqvNNMeMNnUhW98w2arGV0N7CnVUU0Nc1J6bHWsmVhr/Euuug/Pql8WlnHMd6QV1K5qqDtbvJAnjwMI/kuRr6Iyn4JhniVfrJa58aiebgqIs9f721KZu1ftCvkrmbXw9ucdw2IT6tI7REevh5yLdgaCKuZK9miyC0d3g+j7hn+jtmBUA53UyIPrQk3eaoKIUCQJcPQrCqSpGmGrirArArbyLrRudyNJGVwN5BLVYAG7652N/Trf9o9/7fTH1azZs0iqrQ4FHgpXPbrip1DXTEtEQBEsd1NZ8jNw3Vx6fGdzs8jcvqv7iCfMr0iOb0iVSgPl7U6rt7kblc6z2W0K+T87zx3/yB+Wq9kN/PwwZ1lD+30dVrDDlX6R3tga0qeU95eJgm/McHdlMhDK97EwOrEEuwAPFMlzEdApMk2tngPowTSfSRtDEBvN5aIAaOqaHddzNWJuRs+3keYVmi3K8eIAIB1IwJMDc0jAvT7fdv9t20P5og1HBGUbt1d/U6sjJ4Q7ZGpPJGJh2EFntjpnP+9972wI6PCr4jIC7d4zvzO+01Czp+Hq6JynrGG47IN7md2OaEbefjgrrxiDcebEd+fW8sN0YQAO2OpPLQu3Giqwr4R7R5pQZK7G754DzItItqIAMukg14EkxEUtmntIrgbIgkjAsw00W4Ui2yauwFtRIB1zo2qks+IAD8L/arTgI0IADBLJUQ9AEDAp1t9i9sLaHgAWNTWa03SQwhNMyMQklIRAPoEvJ0eu58ijYfrYuSXG71/3+Xq9NBvYvIFG7zLI458eNiukDO/8xYUaygu3eD+MiJ1Dw9fD7ke3FEY5QDg46j30dZy/Ttqal06D0sPN7rj4tMtKbi70f4uuBsAzd0AGt0NdKIq+vkEd8MmQDEvQ3M3hHrqjO4G6elNqoLAZn+y8tNVhW3M391o1VwRcd2/01/47YX723pvS8mISCSCqE0Gs5+ZSkNmHn4Xl3672dOSyjcohBVywQbv/zrkTnl4f4srVHisobhhk6sbeNimwA3NxVAOAF7qKNuWYhwjLDlEf60l8LD0cEP4v6KqALtHBmNCgI/+ZnM3epNmUhX978ImiaX1CD+EpLkbMLsboOFaUBWWdbPS3fCKLtpd5Esvoyi9GCmnXXoi3E8bRmTm4c1b3B1Z8qM5cEWTt50flYmHmxLksR2d26Vs+CAsv9sudTUPn9ztCxV+7RyPtTGDY3Q3pfDQancjIM3d0AiAEu9fUL9jdDd6Gfm5G0IyuBst0BBhC3SDu2HJP8Hd0JLfDLs/jToLv7ca3o+VbU9JVFWKLmRfRwYePrXLuS1vXyMipJDrm9yswAw8/LijVHf5z13OrubhC23uDCfOG8tjng6aZMzkboors/SRKUFVjHVANiJAH5PVoiMSFbWH5d4KO94NOZqTJKRCc1Ia6laDMo4rU48MJOpcNAejjV+icCaTu0EESSJ87iawKV6oIgFC+BQvw8gUUxW9nKx9ZhRURZ+ImXlEgKSPTNGS3+4oqeEB4LNE2Y+ldp4JspEGMw/DKnlqV/Eh/s2QY3OCZOPha62l/nA+DMmd8rBVIR+FHKui0qqYtCoit6tkuEepdamHlCVPKo/n5uHmhNycLNVMLI95DveEubsBAAJ0okCRPCw93IiqYrAh+o9fF30CiLJEXmqTH93hbjZOVfgkIgPAGyG4Y6trZkVyfp94vUtTFUnY0XQW6m50v8R2alelV9vkpW2OjXGyKioDQFDGkV51VJk6uzI5ykf7bzxLp6mKBCTHfAfQZtLQsYP0+Q6o21vC50kRRHVFtHjjTfFZwnuUL6Ta826ywszDj0o2IE/sdF1dExfdDedhewmdFIpNCaJNG8zCw4e3ue9rcZlS0R91OKADlux23dLsO6cq9ss+sWw83FJyrAGA7QpP3xBUtXk3RCJF87DL3A11CAQQQHQ3Har0u+/dn0U7ocK/Wp1vhBz31UcPDSi6qrA+Co+tKLobzZlgW4o8st35l21OU1O1K+SDsPxBWH64xXmYX7mxLj7Sp2ZUleLcDeuAZ3A3W1Oltn0EtT5zieXsuzDz8KNwqeFmeUQGgAzuBuHjkgsHgE1xqcGtprubryLywi2eD3OeIqSQ+7d5l+x2318fHu5NpfNwdbx4Z8ehp70scjeW5W6Iri/sOxAw9j/bFXLxxs5jDUVIIedt8D2326mNNPFyBBNDxNwNAUBsU8ipaz13N5tlwYQPwvLU1b6ndzoK6jMT1mdm42uGPjPrgJtzN+1KPpfbCZpSLjt3kxNmHnZgqaH5m5gMoOduTDwsHUFHhtzNlxHp9G99uWMNx+akNOf7wNcxRzoPw1b44B0pZkcsyt1YNjJl7kkJ7oa2fxilSzd5vo0XJgvXNnn+1yEjCI4jk7uhY0GbEtLhq8pW5RfOAODy7z0Pt9BuTl4jAtzdaE/cGEcEBHdjGJkKWjRmbbubnDDz8KuoRXPK2MgUbV/KjUP8FmhIhQymkamvotLp63wFzeUJKWTOhkBbiph4OM6bKr2GA1xsyb60kaniCuxCd6MP7xEAgMe2O76NFXO6X230hhRhjJxkcDeI0KaSn6/3FDrtasFm1z93ObvU3VhiSYY447a7yYksPLSgYD7uqbuboFTqSepcmD4yddnGggkMACGF/K65LJ2HJdYQAHw8P9Lz3Y1uERGak2RJa5Hp0pBCHtvh5I4DMLO7WdDkzt/XiFiw2d2mQNHuBjpzN4SQfo5Sra2PqLa7yQkzD30lRwRDydoIlcaNoytK9Q5Ty5OmeTf/3OX8uigCA8B/210fR5wAOg/Hl6X8cql3YJyHL06wN7gbZO5mye6SEld/2+HM4W4QcWOcPLuryLR3u0IWbPYU5G4+7JD/F3F+3OH8X8ShUSSnu5nsjxVXN44x7ojtbnLCzMNGd6n3qsbJ9A0Y69hj5YeUldqZOr5SNbmbe7aWNFvi/7Z5AQw8nOJPlFJgb1np42CX2dPm3SAKy9yDNttKYu7m/XBJJwopZFm749hgiumBdkY+NnRfS0lNtXiX84a6eJCoorvR5g0J7ubDsLyk1ftayDx7vdapjvMlL+wdqXWpGUemTgjEnm4t+NEVDi9Rx7hj2hKzCgJAuafUkfV9DmYejvYqJaZvxpWlWMl0hjqLZQj1LvxV38T9LUW2wmEBdYI/Jc67+Soipa+VUxD+F3G0KyQgqdxlz6+KvFjCTL/ZgZD+JW1kqjgeWuduiGHMSHQ33yak/B9ayYZvYrLeh9I6LWz4C/HD0sIZALwfkk3uRhtZJIQAtCnkzO/8Z20IPNfqTn9SZnNSeqHNffy3lbe3+NoVMLsbwCEe5fhg8QbnGF/YBwp7VgUBoMION2aYeTjFX2p/Z0ogpZfMelJ8pGJO70StsxiRD8i4oC5umt1uSWJ7dUwW3U1/p/KzymhnB2XGCFdiSllE/57hmalieGhd7gYNY0bMHQAhEC451gDAR2FZ70MRQ0d6VUzeXJoyAMDqmGzK3SBbof6rqDxlTfCjjs4j2uO7vPM2lYdUyZC7AQKI8yo7yorKJtQ5Ekf7QiX2mfcDmHnY14k/DhQfcYZ41KOC3N2A6G4oD8tl/HNjNFB4fmRBXXyUTzU9u9eUsCDc/C/iBLYiAu39X9W3Y7C74Jvgk9Qrq3YbOkw9LnfDOzjad83doDmHXDxEd4Os+QGgzYoXvWVzN6tijjO+K8t/vGBNzHHa+op2RRLdDRDS36Xe2q+10Fp5JXVuYJcP1BL7zPsBMvDwp72SRSeMr+wXZ0dmdjcAMNyjPPCDWEER5+4BsdN7K5D+7J5V0FcW03KIDze0FhRxfJJ6Y++dZUQxhJQeNzLFOjgaBHdj1chkZncDYInmE4B0d9OuSheuL3hNky0pad6moH7VVBARxnoSt/Rry9/jeCX1NxXbBziTpavKfoAMPOzrxEv6FJMuvbF/bLyft3pmd0PPclhAeWJgdJi388xxnQv/OTh6em+F/lbNKxNYBaO7AcAgwYfqW08IxvM5eoAz+ed+2xqdSeDjPFqxe4O7AbDM3Qz3GMKt6G4sEQcESHc3Czd7mop69uSbmONfIfa2du1pGCASOdwXu6//7oF5qM0wV/zu3lsHOJOWqMp+gMw8nBhQLu1bWMSZXpGcWZHUS+SzS8HsbuiJRvqUl4ZE7miIZQs6dS68rCaxbHhkYkDBbOsuWYHxvmS6u6GzhBb0C/2pdveg7MTrIyu/rmq7t9+OMqLSg7vC3VizVjFkzN2A5m5+6FXKJCxi2RERw7wqor4UPhBAVUvIWiIOI72Kyd1sjJNSxu/vavFPLosHJABtjVRAREmSBrlSD9fseDnse7bdtz6R4f6Pc8eO84eHOWP0LauWPKuy/yCdh0cHkmUS3t3iinTGwBonXl8TPSSgGuevs1lUwshUOg9n90r9pCq1KQYfRxybEhJ1GUEZDvOnRvlU/YHdLCsTTCh5ZB0AArLJ3YgjpHCwN/l4/a41cefyiHNtwtGclBHQT3CgOzXBG/uBM6ECUVSt30BrqAeVHvNEuAZtahufg0e01qHN/0Ov8n4eqdYcOKQsRUSfJLibCf5UQMail1ajGOFVTE+EFz0vkSKkkk8iriMDCWHKBqFvgyYSOdYfOcYfaVektXHHtwlnGElvKdVbTg1wpHySgkAUOjHQoidx9x9k5OEkf2qMT3lip3NZuyOb7M3rnbigT4IZctD/JajPw9I63Zl5iIj1bmhwp6hNpv6FrvWFBPk+3N1oEQdVBJgYVErk8FBPargnhaCFP30OKuE5J0CEIZ7UAe4kXd5cQUypiPQV4LSCNHpqB+tB1SoeWu9uCJtro7kbAAA4uTJVSrgZX6bUudmsXgCgHoS7GyDHlqeeLWFxEwA4zG92N0vbSr05b4ZdR/oTmrsBzd0oiHQtHgTwS+qBnvgoT0JRUQX6WDtRkViuKvsPsvEwIOH86sQv+iTe63Csj0vrYiSskkFuZYhH7e/EcWUKf7ku4S8FZ+tPiu4GhKQhpPGQWlkCrATdv9DQk9XdAMK86uQ9W4tXuBMrkvR6M7sbhBw81P4MhE+e1sZ5hNvaQ90N/cXq7gaAAIzxKQd6lS+KnaP92/5x4E+saLFbUBXA2ZXJUsLNscFUnUtFNLib1cXWlmNLUuaqAgCE6O4GVZ2x9H9dqir7D3LzEAAOL0tODhCCdFVJlNgqNoj8Tbg53U1OHtIt2gegM10J0sNAPwukuRtCyOzKxF+2O4szOP2d6pxeURrhcrsb2KM8tOxNDPrUO8LyrlqA13Tml30TZUU9xHFWVWKEVwX2PC4y7vAMGwFyWEA5tISHdG+ojWZ8ZqpErI07uKoAUxUEbaVBQwqdmX/65KdJVeyRqfzRKQ+p6BOaqWXKDiwDiHo3THc3nA+au8nOQ/YPDTtAn61jFkk7S+aRKYR6N97VUORc0N/3D7MkuVB9wnwZQA/hoWXhRpwUA3qN9YHDA1zKb/oVPCr540Dqt/3jKKw2QpiC8Wumd/ThxsJmQHBcXxuvd4PpmalNJc8bBICQqrUmJzRdJZ9IEmqMZWDKw1SFb7dmRGD/Qac8pNlERDHbq21HLRiJvzK6p/i1Ex7yDgz9rbNeSQZ3k/5E+HHlqVN6FTyL7Pe1HYf4UyzQ6uZMVVUeA3sIDy0KN2iYjAB6jQ2qcoQ/dV99LH+PM7Mief+AKDCdSVcV7YxAAKDcgc8MLniW5+xeqXnVCUhb76beZcEPe7A7pamKYNcRAFEVVYUmpfJUFWp+3U77xS+ZkB8PubsRR83Z7Bfe69IKIWlvE8nNQyAgsQBXkLuhF3DPgNgl/fKaIwMAfhl/37/jpIo46zoa3I0kCbPbewYPrVqCKKuqGOMljPGl7q+PjfF10vHxy3hTbez3dbq3zKAq/DYxVRnuUZ4eVEDEOa86ce8P6CkyrHdTnFcSEZDQ2GeWqEAQwlWFAL1ReauKoiIA9PV7Mp5xf0fePKTuRpwTyPpExJghNbgbyI+HKgtwurvR80GdvxHkkr6xpw+I1HYmeCdWJF4f3HpyZQL09FRmd4PYU3hoQaqY9xCJ8FXzq8TUGwRCyCCP8seG6Kcd8kvtzrfDcocxN3ZwmTIlkDqxMlkuG2YIEnFEAIFIuh/mIwISkJFe5f2RkQVN7sU516Ooc+ENdfHj9VVLMqxVPKEs9Wp7SaNddFiKaSkgqtoHVRVGBHRV6boRgf0BhfKQr1hA0zXc3QjTa4C9C6pgHtLgtbTV+WGHtCqiW4BRZerU8tTEgGoemdKg8XBCQHl5aHhpm2NZq8NEwmFeZbhbOakiNiGgqioLJajXjI9MSZKWn6Kk6gk8tCDcoJCc519Ba1faT6bXgDRG0nHGg8qUcX6FAIQVWBuXCUBAxuEeRdJS+YBofAEDXVgAaMkAQt+bjQhoKfkKGe8eEL2sRvrLNueyNqf4XH9Axol+ZWpF6rQqhT7Uym5chjcxHFtRarg52JtgqkI9s0RT+oRIiNq8Go1hgPbIVInIwcOtSXg95Hgv7Pgurtv5fk48wp+cVp4a5tXm0YIwYg2gO4YieLhou+u+rRkWzKYr89e78PL+idm9kuLIFC2S8zAo4am9kj/plUSMboyTpoRULuMwT4r+iFRtEh57wxxh3UhhZEpVkUgSEEQVaKX3OA+tczdEbwP6wawqzLCZVCXogHEOhYDYbJlVBUBUFcJ6nlxViMQsMQFS71IX1iduqk8gQrtKmhLSSK+SYb4D8HOCaWTqlIrEvVs9RT9rfrA3OcyTQiTFqQo337a7yRMZebg1SZ7a5fxvKAPPtybJP3e7/rnbNdanXFcTq3NDnu4GcvJwU0L6+XpP7oUlNyXIJRvcD7U4Fw+JBuVOeIiIDW6od6WQde5YoJG0blrn7gaKdjfW8tCC3I32+xa+0iqa+8zskvRuJusz0925dyOgDwEYzsK7zUTomut9ZjT1mXndymWksQayPqvCuarnbggh19YUuVwIANxY067VhmUTM/SZmbEX+8zafDBWL3tkKk+k8/DbuPTrTZ6MsUbEpxH57A2+F7U31ZXEw6+i8rQ1vjwXsV0VlaZ+7fsqInXKQyaidA/th68ZEEI6z91AT+GhBeFGHN0Ho7sB0K6FJ+dp1DSNCNDdRXfDhwAMZ2HdZkTtrKJvAkJMIwJi3UwjAogqbzdgdUlXleMqUuf0zneYQMSCmlCtQ9Vqw66RqgoQosmLdiW6qtA9aTVEVRFHBIqozH4CEw+/jEq/25zvC8LDCrlpi+fFVkcpPGxXpJ+uK2z9gE0Jcun37naV/wwz85BNoaF76N0oHnS0uoLemQBhZKrn8NB6dwOsiqK7QTb1gPawOnU3wKO7cBbeOeeqIvqmHO6GaOfV3Q2hKT4mCDlU5br+sZMrC5sKcUFVZFZ5QlcVjSJoUBXt/aK2u7EMIg/Xx6Vbt+YbazgWbvEs73AUzcMiXgQCAKui8mXfu9n5utLd9AAeWu9uQG+nXO5GCDpGd6P3xcyqQtJVRTud7m7oUYW5GxoGs6vKHfWRi/vmO91zYU34oupouqoQJia2u+kiiDxctNNV3AoEVzR5QooEUDAPF+9yFP3ezqWtjvdDcqc8tMTd7FkeWj8yBVp3BvjIFLDLoXdHYq0lPqsCfESAJ6+MI1PaFondUKoqwJ0LABuZkgggoiRldTeqFtfZiIBmh1E1jkwR0FXl4j6xQ8qUP7S4P87+oOnM8vj83pH+ToWOCKxJyG+EXABkecR5kDeBAAe4lEk+OmtRQlUlBFQ94OojAjTdqdHLHpnKG5yHr4ccRS/9G1bIU7ucF1bHC+Xhou0lrR+waJtzwsBUpzxEgKak/Fqb46MO+aMO/QGrYZ7UIWWpKf7E+LJUhpEpdrBWjjgy1b08tGZkirAQo20BrcaE/YEQ9qQbGwsnbICcuxuJqQaLVuwGU/AEO/0sEeAjAlpcI1SVaBBRETWzQ+2j8Ulczd2wknOoCu/sHVqWfLwxuSkO/w27X213AmvCgKz+OJAc503WuhQVsV2RntzteXyXNySo64qoNqDul/zHBWNnlofLJKKq+qIE4ogAQVCBDQrYI1N5g/Pwjc5yw7mhhZtCeNiUkFaXtrb50jZHpzxsVcij291/3Zlhcf7VMcfqmONvOz3jfakLe0fG+RIgjkzxnhbR4pA+MkW6lYfWuBskhl6Zwd2wfUR3A4JocHejIkpgcDeGa6J3QdIeyUU2EZu7G96fTHM3JIO7kSSky3VldjcECZpUhRZT58I5VbGze0VBs5pafEQAVYU1ceclTYEt2RcADKvS4lbfK+2eC3uFjvFHc6sKrZftbvIEvXERlawq6mWtHCGFrInJw31q/jxc1lbS/CyKD8LyYX4lGw83JqT53/s6fe/d/yKO/20M3tQ/PDMYS3M3pDh3YyEPrcjdGKM/jabi7x9Az90AWwM1PXcjsc4nDU2E56m4khAtIcRzMTx5hqxfquVuCFG1W6gdYs7dqCpwY5VBVbCIPvML7e5T15fniDUcYVW6c0f50rDXpCpg7DNzVbFzN/mA8mV93IJb9GbIURAPw6WtVEnRlJCy8fDrmGPmWn/+79i8bov/9pYy/ZkpZsbScjfaMxbdxkMrnpkihp4UH4oS68RHprhYoPDAGLDuDz2csEJYsk4vlufBuLvRPmvhgKWnmbvR+1qmkSlJog0JfCcQRwRIoSMCH0cc123xF3Tb7t5RvqzDCyx/lD4iQOsljggkkioANFSUFXSi/QUEEGCHFW8ZoqUVysMS0ZSUMvKwXZWu2FTwmNcTu73Pt7q0y9BqS9JGprQnSLXr63oeWrG8FpvISISvRHvGH5inAYKwNi69H5ab2VvuAjIOcatHBlJDvSqiMXejJ9hZ30zPzNECCaoqXSFJywdxd8TcjSTRlUoQaT9WzN2oKssSd+JuuEkT3I15NmdTnPy6KVDEnbtnR3ljv9QAZwLt3E3pQCAEtqUsUNDNSVIQD61plSw8XLjZU9y7w2/YGhjn21Xj4NrOZofQlI0WeugvAoAxvKfnbmhE1LP3NDsLdNKd1irvhBwPbHNtTVOet0Pwlx2uGide0Cc+PZiUCL/ZhvL5WfjCjkLuhkVonQG6u/kqIi1tdRAC74fkUWVqUMKRPjy2PFl07gaRdaNonQgC4p92+IpeZfbh3YFb+u4igKrQZ9YTlMY+M6bs3E12EECEPg4LblGtEwvlYekY7lUoeUUebkxAKevzP7CzbEG/dmbJDbkbHmIIAFsXm3Q1D610N8JXwt1NGMnCLe7Pc4bn5iS5cbPnyZ3OhwZEK4imKpCHqmRwN3Q4DMhdW1yLtjtFC/qBPi3C/ZNeyUtrEg1uVn7h7kaL+whNSfmF1uLfxLwy7voi6hzhToiqwvvMaLub/IFACPR2WPLbB+5u8uHhcI8F71God2E6D+9t8ZZS5ott7suriZ+gNpKruRvkuQsiPEWY7m4s56FFuRv2FAn7SutNwkiubPLkjjUc38TkGevKVsd50kUvX/h/ep9Zdzc0IHwZkQ77quyeTM/jcvxzl/O41b6ndzpYyQXnbrQ6EfhvaU+NA8BHMQ9PnDNV0e4nsWcV5w8CiNDotuAWHRlI8dyNWL7wfwMPjy1Plbg6Up0LR/qUdB5+GC55ff4ON2iiyXM3+jCLlvcEpITvah5aEW5Y9h71r4QQCClwdZNHfOS/U4QUctn33jZFMEu8Q8Y8hrZZv2Usu04IIWRpm+O0td6mPB7jblfI5d97bmxydTIyRfiZkZkaYKRDQHg9XNL8LgD4KOLhiXPCMkqiqtgjU3kBgRDwyzjAXVJ/yi/jMK/CR6Y0dMbDY8qLfx85AJxalUzn4ZdRqegFCTjWRGXQxm34yJTeAeQZCUr4ruahZe4G+PQE5m6e3OUsKNZQbEmSyzZ6hRyuUVXAoCrA7AZ1N19GpCs2FpbD/8s211+2u3K5G+R6xuwkqxptpvaSffQ2RbbdjQVgPJweLOmX/7NeSe1HD5A/Dy/pmyja4ARknNsnme6yQ1aMsn2TcGZxN0Srv/Ya++5wN5blbvgQGg2l3yWkF1qL7GUsj8j/C8uH0Jc0E73PLERbQmcG0xne9F6EUDq9wOdxKRZudo/0pCYE+HumiCF3w5I3grshrEIICGtiFtzDkCKVSYqduykJjIdTAqk3w0U+x+CX8WdVSe1Hz3I3+fCw3q1e0i950+ZirO7dA+LlMs3Riu7GsIxp8aAZB6LlbnjEURFDqrQ05Pk85nw/oq8B6pPUQzyxcZ74OE+0x+Zu2JNg7OuTO0vKaNy+1Q1ZVYW2Nr9mzd08ss1ZRKyhuHyTT1AVLMjdWIKArNruplQIPJxblfBJxdyru+pjAYnPAMvtbsw8PK93vIj3KFxWkziuPMnPZ+Zh6aCXwNwNABBC2hXy2G7/GZuq/rwrIMYaAIio0psR3527Kn/V0ndV3NUzczfElLv5orRHSNbE5KYE+3WLfWY2D4A/8w2AkkRaU+TeEt5A2JQgz+xyZnQ3neZuhloxKsH7zMBiGFcVsHM3eULgYaNbvSbv9xlwXN8/drAvxTrpeu4mfx7eWR87pVcBXbkbauOX1ySIPmPM4G4CVoyyDXElAfTcDQC0K3BJc+Wju8s61Fw/0u2KfPPO3n8PlVvIwy5xN19EpE5f/94plkccgncVTpamKqqKr7aX2qP5MOwozt3UOkoNN31khfeZQXPxtHTQRuJtd5MPjDwc7VPvrYvm6XHKZLyuf2xGRYo2uiHKAOTPQ0LgrobonQ2dv/KszoUPD4z9vF8Ks85ux1FetfTXgQz1KiC4m5Aqnfp91bp4vr+XpR2Bh9sqreJhl7ibbYoFxW5JSHpvWTxZJlVZ1lpquFnW5ijO3RxVXrB/NuFQbyzd3UBGd2NV522fRBoPD/Dg/Q2xozrLHI/1KQ8MiE4vTwFoc1JM7iZ/HtLmOrUq9d6IjhvqEsN9GcbIRvjUG+sSH47qmFap0Ccks7kbBDy2tAEvADjYkwDmbsIo/XJzRTinqUnHu7Gy58JBS3ho1aximjbTvm5LWvSryKAqkFFV2ks2U+0KQW02J5Kcs4oBQHA3ON6b9MsYLjZtBABH+WOEAH/Ilq18wNyNMJszlkoCQENlYQ9n7S9I4yEi9nXg5X0TZ/ZK/DfkfD8sp7+J4YSK1BC3Kmn9V0KlW0uKCiXnyUM+LbTCAXOrE3N7xzclpM1JiZcxyqdWaL+5TlcmQELI7MrEs7uKT4POKI/XulRVM1Dk4R2+tXn7GhEvdASHOKJDXYkSeWjVyBQB8WdoFTBjSwsjArRHKpGmhAV+6sOw47CAWujIVJ0bz+4V+9P2Imd/TvDGGp0JRVhFha3Aobsb4CMCtrvJgTQesv4v9nPAWb0Sc6q0159ItK8MKBGgj0VSHgEAqvTxF2RGg5WWHw/p4ZQ0kgSEkHqXOsCtrVUhTnvRVE2lx2Z1N4f5lZMrk0U/x3BhVQf/SW5JSs+0+YorBwD+Fam40r2tRB5a8xZN7afI2mOUFdlTVnT6JpOq0Bf1WICAXNTIFOJZvWL9ncVMLfNJ6tzKdrqme47cDfA+s8XhfF+DiYeIzJ7yX4c+roTiFt5N1hITCKbQkj8PtZFmAERQha4Zoa9SEVcmoO4me+6G8vD62lits5h2X9Av1N+p8uv4R2tJz0OsSbq3p+QSeWhNuNF+iqwR/Va8wFob8SHCI7kUiIQIfWYEIpE6lwUP5o3yqqbcDYD+OFi23A0QEpTxD3Vhf+FZveurW2scqrame/bcDdi5m/xg4iHRvgsvn9XHlYi4hQuJkLsxtmZ+POQnpc5H0oMXDTSahgFdd0lzN7lyN4AQlNQHf9BRaM54Rnl8VkWCCHH1k2ip098/S/hK5KFl7gZAb8RGl9Kn5DE8LcOHuuxr0F64xVSFAKpYW3K4qXNh+sgUAHTmbjRbMsybeqS+Pf+IUyapl/duP9CTQEBieHgeROmw3U1BMPGQuxudQjncDeruhgi7sqLz4iE/KT3Y5G4AMrsbbXG8LO6GEDLCqzw5sGOYN99Ow/zq6M01IVQNMpb/aFQ2fBr39hR3A2BQlaNLy6jPrGDDPfmpytSSE/iH+lNMlApyN3yVMBjuTT0zYPfBvs5r0teh3FnTeow/AtrQRmZ3A4K7Advd5IF0HtJ4rVOIuRt95gh3N4QACxAo7MqKzouHhOjuBtDsbgAyuxtJktgJkTHQzMORPuXJgR1zqjqZTDTEk1rU0H5hVQcAIZIuY2tKjjXsPuzxkSn+qxBUZWZ58vndjqJn38yv1m4r7QMbWpouP0oMqnJomRKQsehFZwDg1MqE1uWmLc1HpvRVtJjkAJhyN6waUOfGRxpaX2t3PbDLtzbTww0HuFOzg5Fj/VGFFay5G1AhbWQK2MgUHWWx3U2nSOchAkgSnZkGADwS6Y9Ec3dDB7FpgGCLEgg2Mz8e0lpopZJO3A0fmVJRlSRJH5nKwsMKGa/rHz2nOvFqm+PZ3a41MT1n4ZfxqEDix4HkUYGEqiLQtKOqr3RXyk/DdItL4aE14cagKgQIIQEJLqhO3NNSzEIwF/ZJ1Lr0TrbptRv0gvURAQQikQqCc6uTRU8snuBXJgQULTlLf/Ciu8k5MgWsv0MIUJdyVDB5VLC1NQWrY45PotqVHOBMDnQla5yqgqCIC44AUbm70QKXvlwT6hynqy/b7iYX0nlIf746hUR3I/S8eAJFVVHWFn40/KLy5CEgEjY3k+juhgDh07gyjExJxOxucvCwzqmcU6XM6RUFlnsGtp6ppo6Mh0QiAPT9RlD6dEF+i0vhYVe5GwQ4tlz5LpZ8ocBF6mdUpC6s1h1juqoQiXbFzapybnViaZtcxDKLARlvqI0TbdV0s6psjEv/bXNuSsLXUQcA9HeqdS5lvC851K0EHax+WjXYYJaKQEhQhnG+5MG+pKLS0RKiIBUuQsQ1jQCJJBG1c3fDBmhtZEXe7gbS3Q0NH/m7m2w8ZM9XW+9u8nfZJM3dDHWXmm3gt7gUHlrsbsSsKqo4v0+CEHg+70fDp1ckb6qNEbZeF2j3l/0ZtUaVMqlKhQx/aYwdt6bgdTxvrI2P9KbSVWVjnNzS7M3yTg8vAPyyOnpmr1jQYXY3oqqAwDMma8A/0Humqra7sQbZeJjmblgOHnK5m+J4KLobbY3RXO4GCYGC3E3+LtvEw0HuVInZ4rHuaInuxuKRKSGrSp+tgPnViRv6x8s683J+GS/rG7+pNgagv4kCwDgiSbkkGeYv0LhOxwjqXOrTg6IF+ca7B8R+UpXUWhe1JYYIkHtb3JNXB3K/P+iP272nfFf+MV2TlC25CIBsREDjPB8fIWwpJv6B3jOiKRu7maJ0MA7Z7iYf5OChBmLcU9yiIgCwJfShFB6ibjSQB78sI1Mkw8iUwENxhBRYsjnHCGkOHtKnGUrBUGe8RB5aPDIlqIoWuQmBw/2pJxqjc6oSB3gyDFfXOPH86sQLB3Sc2TvJ3Kl+NVp6Q7i3vFhh1JM6VkIIGelVPhgZmeDvfMiwzoVLh0VOrUoZVIUQQshlGz33bs0r67Q5KZ3zffBvOz2AvEp8REDjvDY+Apq7QcY5zhRUVaH/ZBiZAmFkynY3nSI3DwGM7gaELWzWjDYyVTIPhTK14MfXBjaOTGHGkSnQhrcM7gZ0mwx6oKFHCiOk2Xh4emW0lHs7xBlvcCZ6UO6GZegMfWYaXgMSzqlKnNs7sTVJWpJSWCURFWqcWOtS+ztUSSLaqy9ZR5pHQaoqKNxbLlYmVQGWLy934D8HR94POR7Z7lzaluEC61w4r09yXnVCRRXA3Ge+p8Vd6FMqt7X4AjLODMZMfWaCdMRDf0lhWu4GNPsLmDF3A2LuhpCUogJAX39J00P3YXTKQ3FPwy+GAKqm3E2pPNyYIB+F5aa4RNfkH+lTymU4tjw1ugxAz92Q/HM33N0UmruhPKxxKKeWR4p+jmGWr1Vz2SXw0MrcDTKzJPaZiTEO9ndBrUuhnU72xIqpz8wHFgBYn1lzb4Y+M/MI2itm9E4KPWZiIDUxoLQr5MsI+TrmCKkEEUf6cLgnNcAD2frMH4QcefoaE67dUnawN9HfqSACkSTaZ6aqx81weu4GWRBivw8AY+5GyE8SVdV0zeOwYtb2vog8eRhSyfthx2cReW2crIvJAOCXcYhbHepVTgimRvjUEnn4Ydhxz1bXh2FDM9Ggc1ezKyjjwvrE7F7JgnM3ILwAoLPcTUYent87siLmKiKDM6usfZg7QelZCg+71t0AG5nT91RRy8zR71xViKAqxj6e3lPMpCqEn08I8MDErNyBhwfx8CB/Bh+A+tgsqnL5puKNw3XN/kcGtAOgqqpZ3A1R6Ssr+AfqsfN2N0XXbT9BPjx8pd3xp21u02t2wwpZEZFXROSndroO9ikX9IkfUqYUx8MFm91/3ZFrQka7Qi7Z4H54m/PhxugATxZ3w1IwRnejnW5TgmyOywEHDtPGmzK4m4w89BP8f/3a5mzq1VHIhLhJ3siJ/natD1UaDy11N+zldlxVtD6z+PORtB4xMoNK+7cqgtndMMFHAlJGVVG1TBtXFT2xypoLEFRAKb8RgQ/DjlIWvl8ecTbFSX8nEkkCANTeUm6luym6bvsJcvMwpJAFnb3yDAA+icg/3+C7sl/8zKpEQTxsR+mC7zwmU5MNX0Wk41b7/jk4OsqHmd0NMbibdpU8u9P1arvjow7Db7bWqR4VTJxZGatzQyZ3Y+Zhf6f6TMOOi5srv83P4xzrC50RaFMt4qGVI1M8O85HBEC7f8ZdmQWh/9DsvcReVww8EmlXl6YqjFKEz47QRgTM7oYWxN521/mIwD93l/oM2xO7vYQAqiqXWdBHpkCz3OIHJsg5RqaQj0zZ7qYz5OBhSCFX5P3KMwC4Y6v7us2egni4oMncgcqNdoX8ZK33+xjJMDIFhpGpR7a7J38duLnZY4o1ALA5Kf1tp+fYdRXXbPa1K4SPTOXgYVDG+2p2n1PZUZZzqcPesnJt1Y6zgm30ai3hofXuhiXnM7gblunq3N3o/eZ0VeGL7FFVAdDepQkWuJsS78PquCNdVYDFF9Hd0Etn7oZfGkCau2FjWLa76Rw5eLhgS2GvPAOAf7U6x/uVE8uT+fDw3hb3ksLXwWpXyLz1nmXDowCZ3U1biizc7H42DyF8vtX9dUy+pSYy1JPM6G5A4GFQhjmVHbMCHUvD3s+jrg+ier7SJ6njPbFxnth4T0wFUGgf3yIeWpq7YT92etfSczeazWBZN20TIhDjyBR3sJCvu2H9L+4QBHejnxYg54hA6a8Qa07KhICpz8xzS2LuhgqFkLsBUA15P3bLCNq5m7yRjYeP73QWt1b/dU2ecb5UvQtz87BNIX/dXuQKWKui8tM75NN6KxlzN6d/68t/ovyamOPcjYFF9e3DvKn03E06D4MynhyMnBjoUAEURJVOfFcRAVQEtQt4aOW8G2Rzpgl1E6rmbHnt2MUKHQYtpYsqS+8D70mhtoPujZhDpsVqz/vzXB3dyioEoM365vMd6F9yzHcoHVuSElUVSnlRVUDr0NE4gwAI7MFfGmOAzfIwzbshhM27saaO+zIy8jCUgud2Fy+r1zd5ATrh4aM7cr0hulMs2OyhBRvdDblso6fQh3JCCrlua1lbCnomDy12N6D9cJH3cVCbww0gdEw/jcjU7g71qEFJNbkbwwikriokXVVAdDfIbxS7OwW6G0tuRRZ3o51aQSAA3yZdn0acYZV8m3RUy0qZhA2O5HBXvExSM7obtN1NfsjIwxfaXAUNxJjwv4jclCD1bszBw8UlLCcMAO0K+SoiDfcqort5PyQXt0rxmpjjjm3+m2pCnfLQ6LIZ6bK77NJ5aHHuBnifmQVR7m5CKlnW5lwacqyLGSxVjRP7O9XTeiWOLle0bDEKEUfvM5uePdFUTItriITAqpi8rFVuV8mqiBx04EivWu9SjylPVTrYPTe5G2Kxu6lxqln6zIAIKuIrYe9fd/m3pjKbysm+yGx/qNqhmHI3AIB27iYPZOTh+4WkbzPi9XbnnN6JbDzcFIfSu+FL2xzDPYrobq7YVMK6wm3uC6o66LIKGXn4TsTzadS5Lu5AgLBKygj2cSij3ImDPTGfpGTLIULJPOwyd6MNCWn9naXtjj9vc4UziUxzkjQn5U8i3oN3KTf2j9a7UY81wN2NHmgFw6y7m8W7nPc1u5uMb4BY2qp9OMyv3FgXH+VDyOluDvUrH5VGzWHuFBDATKqyJSn9Zmtl7hlWb0V8b0V8swPtJwfCwK4W2ZsYbHfTKTLycH3hL6o34fWQY051IhsPNyctmHW5MWGYd7MqJpcYwp7Y7b2yOpzOw/+EPPdtL8vw7pc4/LfD65MC08s6jvd3+Iia0d2UyENLcjf61BIA1mfW378Dt29137HVPLEqHZ9E5J+tL3t8p0uchMJ6ynqejveZ6aeNCXLCGt+VGz1N2d8280FYnrrad0OTC3Lmbix4p48vCeY+MwDA2oTjnE298pzNuTgUfGB3hfaFSSixczedIwMPW5LWZCdz87D04pviRMzdLC7tndcAsDziNPEwpJKzN1Xe0hLI8Z6piCo9Ewr8oqXPhqQzPXdTOg8taQyi33oA1B6J1dr+jq3u/F9xGVLInVvdL7Q5Te4G0lSFfvo6Ks/4pmxVfum0v2xznfetO6RKWebdkGODJT0y65fxxIo4GOc7EIAtSemipopOo62It6O+h9oqAbT5DsIgOgJAubdULu6jyMDDFiteedaudMLD0k8BoPMQEb+KleqYvok7RB5uSUpnb6zK8yVTEVVasLPqo5hHV0yLeNgl7oatA4JLdjuLeJ3u9U2e/4YcWhtmVBUEANgUh5996y1oROCVVsf1m1xZ3A02uPG83sVHnLN6xQKSanI3CHDV1sJiDcU70bLlca+oKohIJ0GUe0qdjriPIgMPLXkpSFDOxUNL3M1Ir8J5SCyKX1tSDsrDNpVcuSXYnCVjmBERVXqwteL7FGOaRTwsNdzQJL1JVVQVEbAlJT2U8+GRHLij2dNG44j23LRRVQgAwIXf+4oYffznTsdDLc6M7gYRL6mJF7fM4hBPan5VhNZNVJWndnuLXtNoUVtlB8iiqhRXzv6AbDwc6LbolWfZeTjcZ0G4qXMbeLiqqFlCJmxO0KQNuXub/5vCSRhRpXt29dK+GN1N0VUq9apo0lubAml0N4+X0P/ckiQv0DcHIkupA3vEAREQFu92ri58nVCKe5qdrUlIdzeEkHIZCl2gCwD8Mv6hNqwZGqO7eWhn8eMLEZTejfhEVSm6qH0eOXjY6C71pUCHlCnZeAgA5ZKa/ytZsmFqeVLk4QivBe9Nq3UhIWR5h+Pf7Z7iStiuyG9HfQBmd1N0laxzN8Iz/qqKIRX+Gypp2OuFVgc9AVcVRiMCBG7eXMwyERTtClm0w5XR3QDgCE/q6UFRvjZ7pxjqST06IFTnVjVDI7ibTyLOIrpRIt6L+Wx3kw+y8RABDyw5Fvw4mMrGQ3ry86qTOQ7vFBP8SoMbjTy0AP0dKUR8srSXZz4XKgfowe4GACSJrIyU2mleE5NXx+SMqrIqIpf4IotXdksZ3Q2dzTnCm3pveOjXfTt5pw8AzKqIP/aD8HBPCvgqanTeDSGAWPp7CzelXBGQbXfTKbLxkACZVV5SLBhXpgzz5HI3ADi7VzJ/fUrHZTUJAAMPLRkkpTxcHimJhDtU+fuUs0e6G7ZRVXF9woLOZzu/5+IjDoS8VppvAoBVUTntSVzN3SB7EveSfvG3hoWODibT39Dsl3FWRfzRAe231kaCklaI6G7ol+URC4aQNiYctrvpFNl4iIA1Ljg6WPyvd77wXhATD7m7AYRr+8eKK392r9SEsiQthvNwammDpAAwxZ9AVf1fh6NEfw0AK+Jeq9xNqb9bpio8dQ9AH860AssjjkPpqsOEIKp8KYlNcQvKb0qQBk8n64zUu/ChxigiIuIHYUe7QgKSEnTAUFeK1UpzNcBXwEcgkoQAoFrQ/QZqtwgQe1ZxTmTjIUFAxAurE9/FpUKfCAeAmRXJQ8V1r408pLJE/cjU8tR1tYmbNhdmJYZ71QV1sfS1iuvdcGwwtazwUV0Kv4wzy2NEkvR5eiWCRZkSeWiVuwGTqpRYrBlGVdlszdytTtwNf56N7n1YQDm2PHlomTLco+h2mqStgM/cjVW3wM7d5INsPKSxwC/hlf3iuZd3ScfBZcrNdTFDQ2ZyN2zBODivOn5dbecdcI7hPvXZobFyOXMO8bra4lcyP6tXLCgjquonUQseG9iYdPa03E2XuBudONo6NUBNh0VPU2K23I1xjVg2AQjpBqZBmhFKWwGf5W4IQECywODYI1P5IKu7YYJxgEu9qz42MNO7QDJiRkXykR9EQJudzLZm4qGK2gtiCJC51YkHG6N1eeRx5lYnXhseDRI1Gw8b3HBHQzERZ4o/cWFVB+Vhf6cFDOwtp3pQ7kaL90ZV6WPFdY7zsi43osTPQsjwkscaAKBQd0MIf0gL8nQ3Qz0W1HOoM2a7m06RjYfIBYPAILd6d13s5IpO0iI1Tryxf+ymWi0Xg0Lu2cRDk7uhVDmuPPXSsI5L+iWGZxrMDsj4k6rUh6MiNzUkUVtpMCsPT+2VOqVXYXnuIZ7UTTVhzsMahwUM9EnYg3I3SBeOEFWFkIEuC8LNoQGFrb1BVFRloolVXVrutgiM9CmCqoDgbsDkbjRXo7sb3U7nyN0QxMn+eCnzbgBgrCtqSZ95n0c2HtIV3qgfAQJBGX/VNzG7MvlqyPV2WP7WuDjBZH/qyGBqSiAVFCZeEb4iJZh5SGVJZU8tapsBKmS4rCZ+WU1iU5w0xcmquCOkwISyFBByeJC+5kFbWxJVNLobMw/vqo8eWpa6Kr8V+2dVxK/uEwnIyHloibupdyStyt2UGm4I/9VJ+vPqCDjQhY1utZSHcWdWJJlLNavK0RXJW5qLn3cDABMCKu0zsyfCgQBRUWXdI3EFfN3daBwDFmFM7oa+3weQPhGOAMPcSo1DLWjyuAkHeaOISJ/EpfUIeuwHpjIgGw8BQXvrI5tqDAD9nXhOVfy83iABhBWyNi6NL1MAUCLaYiamwrPxUHc32h/Zwv6IACARqHepAzxkEiRYuKNla7GJrUzQCQ9/0is5wqMs3OL9uCPr5JL+TvUX1dETK+IIoAo8rHXiYHcqz0elsmG4Kw7CE+Gl8NCC3A1XD95KtC1OrChpvsOsimR6n5m2Zb0TS5zHeWqvRHZVsSx3g4Dn9+4oupJVsnK4u4P3mVMpBIAK+4GpTMjBQ+0HojUZ0K4Pb9aAA8eVKcDtBH9fnB6zMuRuCJt3g/rrMVnvm/W76Qf+im6gusGcUh7uRufhCK/yj0EdLw4OX9w3dkhZqtapAoBfxvG+1KyK+B/qO14b3HpSpTZ5x8TDM0p7eebh3kgZUcXcTSk87Cp3AwjHBpXX2tWVRT39QQcgTaoCoBPluv7xM74tsp9S58LTeiuokq52NwTIjGDsxTbPp9FipOBngVZRVezcTQ7k6W4AABEkHpvoTix88EKIEGJImrsBgYeEfaBSZHI3qL1RWyuJxb7C3A3n4QivMtyTurgvQeRL67GEdXYezgjGHtxRVrTFPqmsjdbdEh4W727oO/Qi8bj2ExQS1lxVLqwuePQRAIZ4lKtq4mZVUZHZUQSAQ/3K0cEi3dON9Yk8VQXyczd0c0Z3A0Bur2kd5C54mtkZgbZx7qhVIwL7MPLhIQBLvoD2TDdh+V2eWuYjA0T48UK6uzHyMIe7oadX2YraAJxOBbsbKI2Hd9a2FXdvzwy296HJ5j0+MjW6ptItS9F4PBpPGu4HGyUkhBzgVu+sjxUUcYZ4lHvro0EZWUeXlsheISaoyh0N8SK6VDfWJY4rT6aNCEApI1N0c/rIFJW6gIy31bQVFHFODoSOKwvRs/IRgZSKYK8+kYZ8eAgAurvhwYJtpg2sjwyA3kUGPeGi7ZTOQ4k2Oo8LPCKg7m54DZAVTdj7zrqBh8PcyvX9QoXe2CN8kePL2FEW8bAkd3PEwH4AsGnHNtU4sU0I9HCAS31gQHSSP68f28FlysMDorUurVesDwoYVQUBECAgqU8dEC0o4lzeP3l+n0S3qQq9CEDo71D/r7b1cF/nc8C8knppr12zA6yZBVXpiCcAYEh1ef7Xuz8gTx5mczfIAlFmd5MHD1U2LqllfyiH2OkzuBs20NmdPJwRjF/btz3/u3p8WfiiilY9dFvEw1It+hMrvt3Y2uF2On7Qp9otyxIBiQABJAiyRAjN9gNIBN4JyX/a5m5JZe741TjxZ1WJM3olJEL7w+yt8rSxgRbLtrCNQKAtRf6w1ZX7rcwAEJDxnh8kplWkQFg/lK5VrCKfr6US+n5Lbe478MwNFZBsfWaNdioCISqqqH1AAKICKogIhD4kvjzi+Ger771IhmG1alk5sixyvK/DKykqgoqoIqgAiqoikLZoMhxL9fF75h4ypKiG2seRPw8BUaIE41s01UVJmxmIgFAoDwGFr9oHIrob3TGxH3H383BN3HlTSyD3AkzVsjKnvG28J6YCWs7DUsNNLKU8seLbbeGYJJGBffv6XQ7airSBCWgtKhEgiGEk38XkdXFpXVzaylZ1HFemHORNjfcrlASmlta2SARVVdKGHJGwvK1EIy6QTXFYuNnzYUeGJ8XrXHhqVfL8vqmgpBI2U4aqCm1/pj+sK89SjCrTDmQZY0RAVIFJFrDSVG2QAlWh+VFVVQAEQtsJCaRUFYEoKrYpZF3cuTbhCCNBIA2ORB9ZGeBMqKi9LhwBFFXVGhsgHFd2dyQA4LxDhvT1F7l2yb6NgnhICEiEEET69iGJBw76pxJ4SLPK2qtBJCL2p5hBYDNu9hwPX2xzvxN2v5umeQNcyR97o5PLIj6idhEPLUhAii1d16uyt99HqFCQUlWFtnFBqvJhWG5XpFVRiRCY4FfqXWqDm9voPaUqmuVG+pZCREWTC0036DsMFVVjkklVwvHUznACAI4e3H98fe8SG2sfRo/iYbq70dFjeLgm7gwpREFEhFGeRDfw0JrxDt7SANC/Itjb73M7ZJOqAGrTqERVAfoC79JURaIq0TWqwpu5JFUhREWtV0Xfi0pfkKogIpFSqiq0rkFVdkeSrdEkAIzuVzl9RH3pLbVvw+ZhD+ehlcOr76xveXd9C/1c5ffVVwY9DplrCO1Ic1UhjAS6qiACdKIqurBkVxWanRdVBVkev7tVRWtdTVU0L2N0N/RVfumqEkkoOzsSsZQKAIc39j2isa9VzbTPw+Zhj+WhxbM5Nu7ueGf91o2t2lTaoMfVvzzQu8yTS1WAENBVhQg2NZeq0GOzqAoBUFWDqmhX292qQqg+pKkK60BlUpVQQtnVEY8mVQBwy9LsAxsbKsssbKP9ATYPeyYPu2Ty2MbdHR9v2r52hz7wVu5xVfrcfpfT63QE3Q6JtyJA0aqif0DjV6oqWu4OoMeqCqKqaqoSTiqRuBJOpkIxOq0B3LI0vqF6fH1vOo3NRhGwedjTeNiFc1XbYokvmnd/s72N9qVFeByS1+nwOuUyp4MABN1Op0wkAJ9LLnPIJlUhVA1yqoqqvfPbqCpEm1JOJzIAdH+fmSCAgiodCG9LqEkVVcRoQo0pqgrYFkulEKmAcPTxew6s6TW6ptIONJbA5mHP4WF3TI2PpZSNuztawtGWUHRrOBqK5fXwgVMiFR79dZpUEMpccsDp4L1hwnbWPzAdIQTMYKpC24ZKA2GTo0BvaVoeomETAhA25Uorg5YZTymt8RTQA4ihlKSK7Ym8ZiEGPc6+fu+ASv+Q6qA9b7iLYPOwU3Q1D/fMkzhtsURbNNkaS7TFEgDQEorGUwoA7I7GQ/FS16Dvsejj91ChKPe4yr0uABhQ4Xc7ZXsqzZ6CzcNu5mHPffAvllK2hczulzOj58DjkPv6M69+ZIeSfQA2Dy1Ezw03NmzY2MdgySsNbNiwYaNz2OHGhg0b3QQ73NiwYaObYIcbGzZsdBPscGPDho1ugh1ubNiw0U2ww40NGza6CXa4sWHDRjfBDjc2bNjoJtjhxoYNG90EO9zYsGGjm2CHGxs2bHQT7HBjw4aNboIdbmzYsNFNsMONDRs2ugl2uLFhw0Y3wQ43NmzY6CbY4caGDRvdBDvc2LBho5tghxsbNmx0E+xwY8OGjW6CHW5s2LDRTbDDjQ0bNroJdrixYcNGN0ECgFAodN999x1zzDEjR44cNWrU1KlT//jHP6ZSnb+0dP78+WeccUbXV7Ik9KhKxmKxI444YsKECXxLJBK5/vrrx40bN2zYsNmzZ3/++eellL9q1arGxsZly5aVXNM9AJuH3YY9xUMHAJxzzjmbNm265JJLRowYkUql3nvvvfvuu2/Tpk233XZbKacsBQcffPALL7xQV1e3pyrQRbj33nubm5t79+7Nt1x11VXLly9fsGBB3759H3vssbPPPnvp0qX9+vXbg5XcU7B52G3YUzx0fPPNNytWrPjTn/50/PHH003jxo1zu91Lly6NRqNeb+a3DncpNm/evGvXru4/b1dj9erVjz766OzZs9988026ZcOGDf/5z38efvjho48+GgB++MMfTp48+W9/+9tVV121Jyu6J2DzsNuwB3koKYoCAJJkSOJceOGFzz33HG/jp59++uijjx4yZMjYsWN//etf79ixQ9w5HA4PGzbsz3/+M9+SSCQOPPDA22+/HQB27Nhx6aWXjh07dujQobNmzXr//ffpPuvWrWtsbPzoo4/mz58/cuTIcePG3Xjjjaqqfvjhh4cffjgAHHHEET//+c/FE73zzjuNjY2ffvop3/LZZ581Nja+/fbbALB8+fJTTz112LBhI0aM+OlPf5rRDY4YMeKhhx7iX6+++uoZM2bwyrz77rtnnnnmsGHDJk2a9O9///vLL7+cOXPmsGHDjj/++JUrV9JDUqnU3XffPWnSpCFDhhx55JGPPfYYL+2222474IADst1oVVWvueaaOXPmDBkyhG98//33nU7nj370I/rV6XQeccQR77zzTvrhv/zlL3/xi188/vjjhx566LBhw+bNm9fe3v7//t//Gzt27JgxY2688cZs591bYPMQ9gMeSgcccEB9ff1VV1315JNPmtqPYsmSJb/5zW9mzZr1yiuv/N///d/KlSvPO+88ROQ7+P3+I488cunSpXzLe++9FwqFZs6cqSjKnDlzVqxY8cc//vE///nPmDFjzjnnnDVr1gCAw+EAgIULF55xxhmfffbZXXfd9dhjj7388ssHH3zw/fffDwD//ve/7777brEmEydOrKqqEk/08ssvV1VVTZo06bvvvjvzzDOrq6uXLFnyzDPP+P3+M844Y+vWrbkvnoNW5s4777z66qtXrFhx4IEH/u53v7vtttv+8Ic/fPzxx36//4YbbqB73nzzzQ8//PCll166dOnS888//5ZbbnnqqafonwYNGvTjH/842ymeeOKJ7du3X3LJJeLG9evX9+vXz+Vy8S0NDQ3r16/PWMMVK1Z8//33r7/++hNPPPHGG2/Mnj27urr6/fffv+222x577DHK9b0XNg9hP+Ch5HK5/vKXvzQ2Nv7ud78bP378Mcccs3Dhwi+//JLvsWjRosMPP/xXv/rVwIEDJ06c+Lvf/W7lypUrVqwQS5k+ffrnn3/Ob+tLL700ZMiQYcOGvfPOO6tWrbr11lsnTZo0aNCgG264ob6+XozEU6dOPfzww51O5+TJkxsaGr744gun0xkIBACgvLzc7/eLZ5Fl+bjjjjM18wknnCDL8hNPPOFyue66664RI0aMGjXqjjvuSCQSzz77bI4rT8dxxx03evRon8930kkntbe3n3baaT/4wQ+CweD06dNXrVoFAKFQ6Mknnzz//PNnz57d2Nh4xhlnnHzyyQ8//DA9/JRTTuGfTdi2bdsdd9yxcOFCU6cgFArRi+Xw+/0dHR2qqqYXEolErrzyyrKysoMPPnjo0KGqqs6dO9fr9U6dOrWiooLWcO+FzUOOfZiHEgAMGTLk+eefX7Zs2bXXXtvQ0PDkk0/OmDHjpptuAoBkMvn111+PGzeOH/DDH/4QAEyFHnXUUV6vlyaiU6nUa6+9NmvWLAD4/PPPZVk+5JBDtJNJ0vjx40WKjBgxgn8OBoNtbW056goAM2bM2LBhwzfffAMAX3311aZNm+iJVq5cOXLkSI/HQ3erqKhoaGgo9Bc4ePBgXhPT13g8nkgkVq1alUwmJ06cyA+ZMGHC+vXrd+/enbvkG2+88YgjjpgyZUpB9TGhoaGB608wGOTVo1/b29tLKbwnwOYhxT7MQwf/NHjw4MGDB8+dOzccDt9www2PPPLIjBkzBg4ciIjl5eV8N/o5HA6LpXi93qOOOuqVV145++yzP/jgg9bW1pkzZ9LdFEUZOXIk3zOVSlVWVvKvvGEoRG+cEePHj6+urn7llVeGDBny0ksv1dXVHXTQQfREDQ0N4p7l5eWmSnYKt9ud4ysi0gLPPvtsQgjdSMP/zp07xYsy4Y033njvvfdeffXV9D+Vl5ebmqe9vd3v95tSGHlWL1sF9i7YPNyHeehIJBItLS319fV8k9/vv+KKK5YsWbJq1aqRI0dKkiQGe/rZZL0AYPr06b/4xS9aW1tfeeWVsWPH0rHDQCDgdrv/85//iHtmvIY8IUnSCSecsHTp0osvvviVV16hCTZ6IpMitbW11dTUmA7nzUMRi8UKOju96nvuuWfYsGHidvHupeOll15qb28/7LDD6FdERMQDDjjg2muvHThwYHNzczwe5222fv36QYMGFVSrfQM2D/PH3stDxy233LJkyZI33nhDHISnWaLq6mqn0zl8+HDRdn7yyScAcOCBB5oKOvLIIz0ez9tvv/3qq6/+4he/oBvHjBkTj8dVVeWOa/PmzVVVVfnULFuYnD59+qOPPvrBBx9899131MECwOjRo5955hl+v3bs2LFhw4ZTTz3VdGwwGBSlZtWqVSZZy43hw4e7XK5du3bxzP/OnTslSRJzbOm4/PLL582bx78+//zzixcvfvzxx/v06ROJRFRV/e9//ztt2jQAiEajb7755pw5c/Kv0j4Dm4f5VIZi7+WhY+7cuS+//PIpp5wyb968IUOGKIqycuXKhx56aOTIkZMnTwaAn//855dccsmDDz44bdq0TZs23XLLLYceemh6M7vd7mOOOebBBx/cuXPnCSecQDdOmjRpxIgRl1xyyfXXX19bW7tixYrrrrvu4osvnjt3bo46UZ/8+uuvT5gwYejQoaa/HnTQQf3797/55puHDh3K/3rWWWc9/vjjV1999S9/+ctEInH77bcHg8FTTjnFdOyBBx64dOnSOXPm+Hy+hx9+uKOjo6BmDgQCP/3pT++5557KysoxY8Y0NTUtXLiwtraWZuaWLFmybNmyBx54wHRUv379xOlS1dXVsizTmldWVs6ePfvGG29ExOrq6gcffFCW5bPOOiv/KmXEV199JVpcj8dz6KGHllhmV8PmYf73au/loaOhoWHJkiUPPfTQokWLWlpaXC5XXV3dvHnzzjrrLBosZ86cGYvFHnrooTvvvDMYDB5zzDHXXHNNxtKnT58+b968H/3oR1ygZFl+7LHHfv/731944YWRSKS+vv7Xv/71eeedl7uWo0ePnjx58q233jphwoRHH33U9FdCyLRp0/7yl7+Ic5AGDBjwxBNP3HbbbdOnT5dlefz48f/4xz/S5euaa665+uqrDz/88PLy8rPOOuukk05644038rpzDNdee20wGLz11lu3bdtWVVV17LHHXn311fRPa9euzdgxzo2bbrrptttuu/766zs6OsaOHfvEE0/06tWr0EJM+MMf/iB+ra2tfffdd0sss6th87CQu7W38pDsMylGGzZs9HDYT4TbsGGjm2CHGxs2bHQT7HBjw4aNboIdbmzYsNFNsMONDRs2ugl2uLFhw0Y3wQ43NmzY6CbY4caGDRvdBDvc2LBho5tghxsbNmx0E+xwY8OGjW6CHW5s2LDRTbDDjQ0bNroJdrixYcNGN8EONzZs2Ogm2OHGhg0b3QQ73NiwYaObYIcbGzZsdBPscGPDho1ugh1ubNiw0U2ww40NGza6CXa4sWHDRjfBDjc2bNjoJtjhxoYNG90EO9zYsGGjm7Dnw83HH388d+7cgw8++IADDhg5cuSsWbP+8Y9/5HNgU1NTY2NjY2Nje3t7oSe94oorGhsbFy5cWHh9O8d9991HK3bTTTd1Rfk2ugLPPPPMKaecMnr06AMOOGDs2LFnn332xx9/nM+BixcvbmxsnDZtWhEnPfzwwxsbG5ctW1bEsdnw2GOPNQoYOHDgoYcees4553z00UcWnqU47OFw8+GHH/7sZz97/fXXy8rKDjvssN69e3/xxRe//e1v//73v1t7oi1btjQ2Nj7yyCP064gRI6ZMmTJ48GBrz0Lx73//m354+eWX7Xci7xW4//77r7766hUrVjQ0NEyYMIEQ8s4775x99tkrV6609kRLlixpbGxctWoV/Tpx4sQpU6ZUV1dbexYAcDqdY8aMGTNmzMiRIyORyFtvvfWzn/1sj0ccx549/d///ndFUaZOnfrAAw/QLddcc81TTz312GOPnXXWWRaeiIcAivPOO6/TN9IXh7Vr165bty4YDPp8vubm5s8++2zs2LFdcSIbFuLRRx8FgBtuuOGcc84BgGg0Onv27FWrVj399NOjR4+28EQmHt5+++0WFi6iT58+zz33HP0cCoWmTZvW1NS0ePHiQw89tIvOmA/2sLuh/aDKykq+5be//e3bb78t2sslS5ZMnz592LBhI0eOPO20095+++2MRZ1++umif3nrrbcaGxvHjx8PADNmzLj11lsB4KabbmpsbOzo6DB1phKJxF133TV58uTBgwePHTv2oosu+u677+if/va3vzU2Nl5wwQUfffTRtGnThg8ffuKJJ3711VfZrug///kPAEyePPmoo46CNHrZ6Jkw8dDr9T7yyCMff/zxzTffTLfkYIgJtAvD/cttt93W2Nj4q1/9qqOjo7Gx8Y033gCAE044YcaMGZDWmdq6desVV1wxfvz4wYMHT5o0acGCBaFQiP7poosuamxs/Otf//r4449PnDhx9OjRF1544a5du/K5ukAg8MMf/hAAYrFYUbfHMuzhcDNy5EgA+Mc//nH55Ze/+uqrbW1tgUCgvr5ekrSKPfDAA5dffvnq1aunTJkyfvz4jz/+eM6cOa+++mpBZ5k1a1ZNTQ0AHHLIIeeee67T6TTtcMEFF/zxj38MhULTp0+vqal5+eWXTzrppM2bNwOAx+MBgO++++6KK64YMWJEVVXV559/ftFFF6VSqYznouHmuOOOO+6448DuT+0loDy85pprbr/99o8++iiRSPTt21fs4+RgSJ5wOp3nnnsu/Txz5sxZs2aZdti1a9fJJ5/87LPPlpeXz5w5U1GURx999KyzzqJMozx88cUXFy1aNHHiREVRli5d+vvf/z6fU4fD4c8//xwA9qy1gT0ebi688EIad5csWfLzn/987Nixs2bNevzxx+ktbm9vv++++wDg5ptv/vOf/0zvPgDccccdBZ1l3rx5jY2NADB16tTrr7/e5XKJf33nnXfefPNNQsjixYvvueeeF154YcSIEe3t7Q8++CAA0MC3bt26e+65584776Sue+PGjRnFbc2aNevWrXO73UceeeSECRMqKipof6rwG2OjW3HzzTdXVVVFIpE///nPp59++oEHHnjuuee+9dZb9K+5GZInXC7X9ddfT+l0wQUXzJs3z7TDokWLmpubBwwY8O9///uuu+56/vnnXS7X559/Tr0PPXDDhg3/+te/7rzzzmuuuQYAXn/99Wyn27Zt20knnXTSSSfNnDlz4sSJW7duPeOMM04//fTC7ovV2MPhpqKiYsmSJQ899NDpp58+YMAARPziiy+uu+66q666CgA+/fRTav9mzpxJ9z/hhBMAYO3ata2trVbV4f333weA0aNHDxw4EACcTuexxx4LAP/73//4Pv369Rs3bhwADBo0qKysDABaWlrSi3rppZcA4Mgjj/T5fA6H45hjjgG7P7U3YNSoUW+99datt956/PHHV1VVxePxN99885xzznnmmWcgP4aUDnqWqVOnUiPTr1+/gw46yHSWyZMnBwIBABgzZgwA7N69O5lMZiwtmUx+9tlnn3322cqVK0OhkCzL33///Zo1ayyscBHY8wPhkiQdc8wxt95665tvvvnuu+9Sk/ncc881NTXt3r0bANxut8/nozv36tWLfmhra7OqAvQsYv6InkWMaOJfvV4vAKiqml4U7UmtWLFi2rRp06ZNo2kmuz+1V6CsrOz000//05/+tHz58ueff552r/7whz9AfgwpHQXxkJIQsvAQAGpra9czLF++/Lzzznv33XfPPPPMImaNWIg9GW7C4fArr7xy33338QxWbW3tXXfd5XA4AOD777+vqKgAgHg8Ho1G6Q48Nya2CgV1m7yoPLNoAEDPQhtbPJaHtjyxevXqb7/9FgC2b9/+9ddff/3119QB2f2pHo4tW7Y8++yztJtM8cMf/vD6668HgM2bN6dSqYIYQgiBPcrDdFRVVV188cUA0NraumepuIfdzWWXXXbvvffedtttiUSCbnnttddo4qauru6ggw5yu90g9EdeeOEFABg1alQwGDQVRRN7NCUGAC+++KL4V0qCjo6O9DpMnDgRAL788ssNGzYAQCKRePnll/n2/EF7UgcddNB6AZMnTwa7P9WzsWHDhiuuuGLBggX/+te/6BZFUWjGpF+/fg6HoyCGiDzs6OigQ1EcnfLw1Vdfpb+FzZs3f/LJJ9nOUij4eK7f7y+9tKKxJ+fd+P3+K6+8cuHChY8++ujixYtra2vb2tq2bt0KACeeeOKAAQMA4OKLL77jjjuuvfbad999d9euXe+++64sy7/97W/TS5syZcq//vWvZcuWzZ8/PxQK0RFE3ovp168fADz66KObNm268sorxQOPOOKIH/3oR2+//fapp546efLklStXrlmzprq6+oILLijocmi4Mc0uPf744996662XX3752muvpVSz0dNw2GGHTZ06denSpb/+9a9vvvnmXr16bd26lfbWL7nkEiiQIVOmTHn66advv/321atXr1ixoqamZvv27SIPN2/efN11102aNOm6664TD5w7d+6SJUvWr18/a9YsmktKJpOTJk368Y9/XMRF0VQx/dzW1rZ+/XoAGDt2LE367CnsYXdz7rnnLlq0aPLkyWVlZd9++20oFBozZswNN9zAx54uuuii22+/fdCgQa+88sqnn346adKkp556KmO8nzlz5vz583v37v3uu+/279+fzpiIx+P0r+eff/6gQYNCodAHH3xg6u4SQh566KH58+e73e7nn39++/btJ5544nPPPde7d+/8L4T3pOj4N8exxx4ry3Jzc/Onn35ayI2x0X0ghNx///0LFiwYO3asoihr166VJGny5MmPPPLIaaedBgUy5Oqrrz7++OMdDsebb775k5/85Cc/+QkIPPzNb37Tu3fvDRs2rF692nRgVVXVkiVLTjzxxG3btj3//PNut3v+/PmLFi0qTqV4qvizzz5raWkZPHjwpZde+re//Y1PMdkj+P/6VkE6WgxlIQAAAABJRU5ErkJggg==", "path": "image.png" }
Which solution has a higher concentration of blue particles?
[ "Solution A", "neither; their concentrations are the same", "Solution B" ]
2
The diagram below is a model of two solutions. Each blue ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the blue particles represent the solute. To figure out which solution has a higher concentration of blue particles, look at both the number of blue particles and the volume of the solvent in each container. Use the concentration formula to find the number of blue particles per milliliter. Solution B has more blue particles per milliliter. So, Solution B has a higher concentration of blue particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABmSklEQVR4nO29eZwV1Zk+/r51l953GrpZumlkkx2VqIAiRkURIUYTnTEaE02imcn2HaOJSTSLGQcTJ2OSmSRmzGgSs/0MGuOGGhVBIkSRXQRkh+4GuqHpbrrvUuf9/XGWOlV36br3Vt9usJ6PH7m3uurUqXOe+z7Pec+pKiQicIHeuHm4q7e1s6ejN9ra2QMArV09kThzc6wPz1FRGBpWWnTJ+OEVheGBrkte4fNwUCFTHmL6cLP96IntRzpaO3sOd/V6VEMfnqEgaNzyofEfhIjDebjvWFdHb2yg6+LDCfc8TB5ueuPmW/uPbmxuV71roFFQWBQKhUPhcHlJKSIUFoQKQ+EAAgIYCAEEA8EAMPQtAAaCgYAEiOKzAYAAaN8ZwfrA/w8ABgAioPwrygP5/4HEZ5AbgQDkzvwDESACgNhNB8l/CAgReTMQEIijkG8gEnsSEd+o9lSfAUHbzfoT38KICNAkYgSMiAEwApOIAEwCk8gkYoBM24FIHMVAbiRgQATIv0Zi8T37m3sjsal1VYsmjeqzm09RcB6u3X9E+Refh6c0D4NJt67c3frW/qMAYARD5VW1RcWlRYWFqhd5jwYQAHnDakAgsvpJXrbVVbIRrR0Qrc5QHUKyq0A7RP2Vn0UvwVms6mPtIL4DgcUP4n8jJPk3BCQgRNWpCEjIOwyRiAhAcgIBiBdCpBUuTkjWP4BEZF2O3EmL80hEROKkSgEIlBaIevHdACAUDIwcPmzn7gOtXT1Je/D0wMs7Dm1qPgYAwXBhaUW1z8NTnYdJwg2XFESjanhTYXGJARCQF8BjvAWyf5VbCERrAspDCIhzgsQW1XOcFnoJhGDIz4D2s2hbUO4MZDuL2i7OIjei7G1EtFqbAICkhiRRFSC1pzxQP1I0C9p6TS8bRPmM813bCdHaERERCAGZ5jYRVJ+TqidypUMsLAgBwGk8yG3t6t3UfMzn4enEQyNxEx9AGaFwqLBEnVMFZtvYC+1f5RZlI0EepXtLFYPV1TrKtC5fFwWwfRY1sYsVJFUVtBUA0q+iVSDq0VtWiVBuQO1AIkL9SHFq0lXOVjaATVW0K0qpKnKrXVXUbsJcm4wBQEEgSQ+eHojETAAIFhT5PDxteJhkp2GlhQUBw4z2xmO96pxJVIW0cA7WRpuqyKOArI1KVcQR5CyW9J7TygF7mbZipU8mvRAUEmSjouwnh6pox6VRFeVgQb9E5KKQUEsC+56qro6/c7mQImJXFVu9ECUNELu7ewGgoaoUTlMMLSsEgFhvt8/D04aHyWPSrIZaAGg/sDMei8pT8isFvRZKIiy4UBWAJKqiF4Jaz4FWjuNzoqoofihVAV1q5PnypirOr3ZV0XbLWFV6eqMHmg8DQOPpG24Kg4G5TcMAoP3ATtM0+Uafh6c0D1NOhD+xcc+OoycCwVBl7YjSsnKekwsgmPFYtLcnGotEI5FoJBKJRmLxuJsz+fAcU+uqLhk/vDAYGOiK9CN8Hg5+uOdhynDTGzf/vHHPvuPdAFBQWFxUWhrrjfT2dJum36mDBV+/eNpAV6HfofOwuKwiXFDg83CwwT0P+1jmt7H52MvbD0ZMbdUmYrCgOBgqCBcUhAsKCwoKCsJhPmsQAAgYwD+r9Q5BuQX5FgLDAL5KgssUAASlFw3I1Q0GgGEAklgfAWitiUCU6yDA8qgol1GQbhWFxbT5WEqYESA1IyAHyPqYmVytdxBjXVUISVMNAPoyB329AyNigGnWOzACQtDXOzACAmREG97dlVE3n+rweXh68DD5uhuFafVV42vL/7xxz95j3cVl5UOHDC0qKrZ6ESEAgPryKr4mArTPcsWU+Cz7Q9+OicurEIDAMEQXIiT5D/TlVaIntFRfsj4GEDk2K5+HYK13kIsb+JhZMMW23kFyQh3J825iJKsmMtWo3w6tSgDyvAD6mNmacwSRgBCfUMy1ppeH0xWch4+ve7+1s9fn4anLw76nrwqDgQua6hAhcrIrVFBgZe9lfttKsFvZeeeMAKo/aoeALEa1gLWFtFkDPSmoISGxD7a0vCrXPiNAaWYE7KqiphxczgiAXDSRvI/19rGaTna4nBEAvRst1pI6G6K9FT4wKAwGLh03wufhKc1DV7PlDVUlDZUljLFjbUet7L00i1aCXctl277q3lI7BGQxYG8Yp0QgAIg215GQ2HfOTVgn1jenmRGQ6X/R2nLKQe6ZdkYAAMQkAjhPqTag80NyVdGOcswI8EOisTgAlBeGnGc53eHzkB956vLQ7SKxC5rqAOBY+5F4PJqoKmiXEYeqgL57alVJXFuhqwo5OoySqwpqO4hyE8jRL6oCaVVFExMxtrarCv+/UhV1hqSqEovFAaDyA3BnZiJ8Hp7SPHQbbhqqSqbWVTHGjrS2WqrCq0BijUMaVYGERRAKFmfIvsWhKpBMehJUhew7JA4wFXvyoyqknwwBxE9CNAfZmhKVqqgzJFUV5yV9kODz8JTmYQZL4C8YMwwAOk4ci8ej1vAvharYwjkJnUmUGrUhqaro3wmkWOk72VUFElRFaYO1OXtVgSxUBfWTSVVB2RzZqYqzBT9g8Hl46vIwg3BTURieWlcFAK2trdbwL4WqgO45sW9V0SKopSpOTugrJtG+RSpPoqo43G8OqgKeqgr67iY7+Dw8dXmY2Q1+XFiOdxzr6e3tQ1X0rySuMI2qkDYFYKmKgxP6FrLrjDzQOnP/qYpW8RxUhTRVEUf57sYlfB6eojzMLNxUFIb5bSzNzQf1PnCoirMiKHVGh11DUHsUACbsY33VmISQUlX0yrhUFRLNj7wl06mKVnEXqqKxM6WqiKN8d+MSPg9PUR5m/PiCWaOGFASM7pPd3V3dVgXtikHa/8WnZBIhozZAMlXh+zgOUVdOUlV0BUtUFV43N6qCovmJt6R3qmKJiVZJtKcTxVG+u3EPn4enIg8zDjeFwQC/X7z5cItVwWSqYlVHKoANVtQGcKcqQkZQ7I+qEHnMYFYVKRaSO4h6DfgH3924h8/DU5GH2TyciQtL18nujhMnZFjl1yR2SFQVoQA6kqkKOA60H8ILIRH5xVf91KJJE9aSghbB+0NVQPZgH6oizu9QFatqvrvJCD4PrSP1mg5iHmYTbgqDgUvGjwCA/c0HZVgFgMxUBa0r1r46DkyhKihVRT8KpKoQ2eihnwX6R1VETa0HwSZXFSJyqgrq9Ze3zPjuxh18HlpH6jUdxDzM8tGT0+qrygtD0Viss7sbUqiK3gZCVci2xaYqoKmKFqv1GJqoKnZ/alcVVQbaz9zfqmLbrKmKEAQiySO+XbtAoSogjvDdTd/weXhq8TD7J93qi5cdkU7VTX0XqoK2LQ5VsQ7X+WEXjSSq4jgvJlEV25kd4pA3VQFNVahvVVHXorWgUJW4yQDgg/B6KTfweahXe5Dz0JsHazsinUNVrPGttkeiqlh/TKUqsrvSqArnAWnlJFUVSxz6WVXEFXqjKvxysKc3AgAVRX64ccLn4SDnYb88xx+VeRM1E4KgBdB0qqK+oEOvZJmo/edUFbBURc/52VQFvFMV7RRJVUWphxeqwq/OruA+UsPnoVanQcHDfgk3pCkApFUV1U/kOF7bx7ZdqYr8Dx1tLTsSJEXIThdOgtSqApmpiqIypFAVSqIq1uVlpSrO5vaRAj4PtToPCh7mz93YFECqiiJDElXhPWpXDfUXVBriaOsEVUFpXFVl0qoKeK4qPP+vqwqon4HvbvoTPg+1Og8KHnoZbvRr5pehortSALVHKlXBxE1gbVF/IaUhVstZW3SK8BMNoKpYhl1TFXGZvrvpB/g8HLQ89DLc6NfML8MhAg5VAb139UIShQZtR+mqYoVeB8lyVhXyUFXUUNl3N/0Pn4eDlof96264sKj/HKoCaouWvUtUFX1Loqqo0OskmV1VrDO7VhVMUBXQ3uKcs6pgn6pCvrvJCj4PBy0P+9fdcGFJpypk+yrbQ35R+7hQFevy7VsQ9Midk6qAesuy+m5jdkaqQmlURbVhUlXRp1Z8JMLn4aDloUfhxt7QKr0F1ry+UBXn+Nb+VbaHVSYkUxUhVnKjQ1UcW/KmKphcVQDtTLNURasq/wtqHZtGVfSpFR82+Dwc3Dz0KNygLQ0GavmmNa8vVMU5vu1LVUSxus5IsVIb+1QV0Bo+76oCjolUS1XEX61dfXeTK3weDm4eeuZu9DQYyAUOaVSFA628u9jsUBVRrK4zKFtHUxUbyRJUBbSGHwBV0YbKVn2kqmj7+u4mZ/g8HNw87OMtmm4hjRqi9ZULi64qvNcRnaqCdlVRhYCMrLYtYFcVrRBVGTkgVQeBpUyCIrLDEPhbBIm3IAEjACDGlEcWqkAAxIiA8SKYjO4Wj4kQkcmwT0SMSFIcGX8pKgEBxBmZRARgEpkEJrNepUoo35rKmHitKmOABgMyGfE/RaJRAHDzBvgPHHweDm4e5hpuIpFoJzFDvi8VgRDUO1LJQPl+Zf5VvQ4VAPlGIsNAYITW25dJ0YJ3v4EyogMYBhJjhoFA1g4AZMhXoPL+k3EcDQMZYyLk825gZBiiX3k3MmIoexHUkYCMCBFUfzMmTLncE3iP8q7lTGLEWUEE6kBkwHtUdJhJZDJGaDAik5FJwEC8qpmzQfWueDczIxJbiL+qubs7AgDDSoty7LvTCT4PTwke5hpumGnG4+IlzUzr3QCAgcCIDD5GReAfTKKAIVqQv5jZNMUHBmTIAauBwLvfQGCaNHHJME0yEAkICQxEADIZGQYyRrzvGQNeCN8CAEyOdQ0Dla1VqgJcEwwuF1zKpEdFQAJGhAYSAzWsVVJGqo8ZQ0RCIGZ5cQIxHOdUMxkDAETDZMzh4EnyA2T1UK6wADQIGBpybO8jAT4PTwke5pq7UbFZDHdFlUWIRUNsUmNDFdHFhD9YV4qIYkSoDYl5Cxla3hwSBt5geV1Uh/BCEESnqhJUf+sjYeCyw3jFZGXsdSNGoJ6VL+ugTooAhmHwwqx2EHbeygsahgGIRMwwDHG8NRjmV281rCAZcibyCgDam8IHh8/DU4KHuYYbedFiuKtCPwIYKGtmDW+BMZIeUyz2lHl3IBJRlbQhMe8/Zg+lpHRB26ICvD0/R+q84oIRbUfLM3FVQXl2m6oozQErridXFRAjdlW8GlcjAKLBGAMi8QG0bAEIAXGoClclACSQvxnf3SSDz8NTgof5czf8L4YhB6WJqgLc1LlSFWkSrS26qoDsbNWKhuGZqlh/ylhVmFIVVMf77sYL+Dw8JXjorbuhdKqCACK6p1AVsAI22stXmsBBavmWtkVJAcotoKmKCsYDoipyMG+pilxhkVJVwHc3mcDn4SnBw5wnwmV0JxH7ZesiMKKAIZqB1xR44o2I+CCWiAsJP8yQEVPqDS+JB2zUL48bPGKqSwFRqJLimlIVUqJBBMCzhkhOVUGhG4j62flZ+J+ZNmYmIhT5M1EyVxU+I4Bo0UtkHA3DJOKqYhIRS6IqQlW169SuhBCQMZIi4yMBpyYPDx2k5kNMVBUoXIANo7Gk9LTlYc7hRlRFhl7e01JVVIBVqsL34cHZulKpKrxFiUBaTktVbFenL/GUX1Gwy1IVvbmTqoqoXNIZAVkIJMwIWH8SXaypSuKMAOcWY4goJgIAEA0SQql4KK7foSrEvaw/M9UnTikeRiOweYO5eYMZjTivY+0qKC3HGecYY8bj6cdD790NyvZOqiqINlUhucwB1PAQhERwJFUVIEDDpiqCaoSia+SkgEt3I8QhY3cjD3SqCg42VTn9cerw8L2t8TVvJAk0Cl0naNUr5taNeNECo7QM4TTiYc6pYka6qgCgGmemUhXQZgT4BzW+tYaj8lqVqtjOio7wy8sBtWYdpMN0OWYWXaWNmeVRmmAmGTMr0jrGzJbkWaoCycbMgFY9UoyZJW/93E06nCo8fHtNfOUr6WKNQvtReuYJs/2orMlpwcN+cDfgVBXA9KqCblQFQAvAXFW0r1ydYNC7GxSLQRNVhXx3kxNc8/BkGzu2nyHC8WZWWGoUl0FZNVbXGeHCfufhlg3snX+Y7q8pGoEX/2pedlWguhZPDx7mGm5QxkU1ZlYDV6EqfGgoe84xZhaqwltDjpn5VatiQY6ZUTtrUlUBNWbmrBBBTpyXf5DuRpM8QkQ5XepN7obUmLmjjVr2Ge2tGIsaPV2B0ipWOYzCJYHCClZcJUvnFSfyczdZww0PD2wwm9+Nm1H9OOvHP2KcMXZGoLgc+4mHzQfpzVXxTK8rGoE3XmOXXRUIFeTEQ0fuhiXN3UC/8zDXcCP7BoRhAWs1ASMKIAImcTeWzUl0N7ahjvgWUKoi2hjQsFciQVUA0rsb2VoeuRsuHbqqtLXgln8YJ9ptzXW81Tjeyj8Gho5ho2aaEJShMLWqkF1VYiYBQENVSU49d3ohPQ8jx2jna7FIV7pfyMEd7OAONvWCQMP4QH/wcOXfYtld2rGjtG0Tm3o2ZsdDXogbd5MHHub8AAot/Kv4CkpVZN84xszi2pKOmRVNZDn6PiAjky0CJxszA9+iokoSd6MKTJm7ES3rYswMiPqYefMa/PtyZ6xx4PAuY/1fg217DDSQpwmckiHHzAgoK+DnblIgNQ/b32fbXoymjzUKm1aaG1bGPefh9nfjXZ3Zd9y7m1g0mg0PU+VueGBy5G7ywMOcww1a/cIjpa4q4s/a6ky7uxFH8UiNurXQVEXbR1MVVAEDlPnliz5J26Kfhe8rV3M63A2hfTWnaB3DOjzZak45DgTg0sFP/c4qY9dWVyNbM4p71gT3rgnywaa6Suvilaqgv6o4LVLw8GQ72/9WzD6A6gMHtrMd7zBvebhvd04iEY1A60HKlIfaYEH8lf9JLCaW96ajtAXEp/n7k4ceuBvVL0ndDW94F+4Gk7obVbJDVQCSqIp1S4vSGe0s4oJduhsEEO4GM1KVTWtg/87MmrB9t9GyOei7m5yQjIdmFHa8FM0o1nBsX2e27BWr7xRy4WHzQZb5Jdmwf2/u7gYT3I0q51RxN5qdUarCDQJTo9f07gaSuRsrHkhVUV+sokDtoauKbYuRxN3IxJcqKpm7IQCw1p66VJVDe+F9d77GgcNbA70dmEZVwHc3fSGRh0e3xbOINRyb3xRZ5Nx5GItCNNtqKHSfyN3dUFJ3oy7AjbvJkYcehJtEVeEGIZW74RNAwtJosmRzN5poCFVRX6yiQO3BNyeqip58ERcs2rdf3M2mNdnHgoP/CKdRFfDdTV9w8DAehZaNGc8EKZzspH3bGXjBw6NHPOiyaKy/3I26ADfuJkce5sndgIyzcgJIWhpt0N2nu7GCtVIV+ZX/m+huMI/uZv9O42RX9s3YexwjHYYtXNlVhfnuJi0cPDyxP4MVLknRspc3uPiaCw89QCYuO5W7ERNS0tSQenQpP4M7d5MLD3MPN9ZgNo27UUEknbshy90gJlEVLVjLE6O1D+iqosjXT+4Gk6jKkeZcm/LYbsOhKqSpiuG7m3Rw8vDE/lzTJW0tzBMe1o/wIN6EC9zyMI27sZsaELQHMeudxt14xcPsw01BMAAAUdN06254zS13I49S7gYtd0PWAiX+2a4qoiir05WqkH1Lf7kbSqIqR1uybkuB3gR3g3ZVsamtDwBIzUMzlmtcjkU842E4nGNdoKQUXfIwvbvRUjYg3Y1cxSPdjdO6eMfD7MPNsLIiAIjFog5VAXlfbEp3I2am5FFp3I31WQZyu6poo2YA+TgPfUs+3U0uIymO3g60/UQSVIVTK9fTnF5IxcOou4U26dHWTJ7wsH5ErsOIUU35czdO6+IdD3MfTKFNVUjEQqe7sfbmL81K4m4MI527AUqpKiqaGYYlNKLx+9HdoENVcm5JYNH+UpUPAJw8DOZsKAAgGPaGhw1jcvqhhcMwrB5c8vD0dDeqLpZPIXFXrsPd6L2Txt0wlpm7ATVi0lTFkWl27W6MzN2NJLZUlZxb0roieQ2+u3EPJw+NsAc9UjkEPeHhuAlG9ZDs6zNxqriD1A0Pne5GRKHTwt1wO8Adge5uAC13o/eO5W7U4XZ3Q5q7EX9IoSoAViGkzEiCu0FtPA8p3Q3r291QH6oSyllOQ8Vko2QyVYkxAIChpYW5nuz0QiIPwyW5hptQ2Esenjc3y/sTq2pg0nTDPQ+d7kZEIae7IWXqs3I32fHQg2cV89+v5W7kljTuRm1R7YEo3I0yHWpIbFMVO1QhVghPcDek55VycTfYh6pUVOfqO4pr7c9TEbfk2FWFEfiv0ExAIg8rRuXK7bpGw0Me1o3ACy7OuNfCYZgzPxAMZcDDvtyNZWoycjee8LAf3I3c4nA3vN35tSm/o9qDSLobWW5SVXEMWVQhWgiXFdPdDVl/6j93M7wxVzktGcocqgJirYQ2ZvaRDIk8LBkWCIRyKnPUeMNbHo6bGMjI44TDcNniQNUQzIiHfbkbK2WT6G7ExSS4G6946M2bGFK6G7LcjRglgXt3Q4mq4rjQJKqSUDMe2/LgbupG5bTQI1RMlY2mQ1X4GW2q4iMZEnkYCMOwadnHm5p6HFKPnvNw8nTjkiuCbubFhw3Haz4RrK5FyJCH7t0N3665G0OlafqJh968Zyq5u2EEmM7diKNARNYEd4OKQ5CoKlYgTq4qqmY8tmXrbjIYM5dWGBNnZt+SlaNNQLQG/bJuvrtxg6Q8HDopUFSVzU8jFIYp5wV4uZ7zsHGMcf0nC2bOCvDnECeiugbmzA9cviQQKsiGh/LGqER3Aw53w7do7oapNE0/8TD3p/kBAPcy/DJkDQn4Ext5xeX1AwEZPBarozhD+JuV1e1tMlqLOKX5JuvEJIuV9XDpboTVBHkCQkRkxGxP80MAAsYY72Em8vlS62ze1lKVsZOweS90tGdM8ZJaVjspDtaQX10jf/eYAcQMA/2AkwqpeDjusoIty3rNDJ9sdea5gYoaQ7LEex6GC+Dsc4NnnQtth9ne3cIUE0FpOQyrh7IKA/iD+7LlIQ8XTLzV3Hp0ltyZOyAepwhB8AoNAxgj241i6hq94WHuT/MDkKFdvbKHb2GMAgbGo3R0l9nZwtr3WWONwjKsqjOGNuLQBsPga3MYBdSLDQGA+JIZ3kbyMx+ck3ViTgJG1qMCBdU0TyUssHyGftK3F5JcdwOIaHc3TLwAjTexnsPnvS8Fh8gwjGABfehieO1piGVyB3BRJWucHRcXYr2AI5mq+KOpFEjFw2ABjL809P6KeLTb7S9k+oWBUeON/PCwphara4WN4j908IKHYkkJygehyvOjeIgfyXJEgaJ20t30Hw9zfjQ6r08ydwNxPPRurOVdM/EhAL2d1NxpNu+AshqcMCtQO8LQ3I0qwa4qqlgOmf5JVBXnljy6G0QsLqPZl9PmtUabu3saiivZ2IsZBclkgAAMtF+FVBXw3Y07JOVhyZDAlEXGjtdina19JNeKSvHsSwPlVbY3TJ2iPCT5lyzcTf/x0IvX2vGeQODjQpFkjcH2F6M97X10cGcbvfVCfOxZgXEzDJu7AdGGQqikwjhUBQDEOVOoispKy0Fv/7obnvyprIE5V7D3N+P29RhLa+OHTzGHjmcQYibrX1U5/ZGCh1y2AwV45oJQVyu1bI23J7t1s6waR4wLjJ5ioLgF8XTgIc9dONyNMj66uxFVoFPH3QAAgVCVaBe992zE/ZONdq4ze7tg2lxDdzeg4rU6QTJVAbuGWD7arirqyLypStNkNmIsbF+PJ9rxRDvGtbhTUALVI8y6CRQsYSYRoQHYh6qQ725cwMFDEH5H5BAr6rCyPmRG4OQxOtnOzCggUFW9UVQCJeVyFjXBZZ/qPHS4G93UOD/0Pw+9CTe6qpgx2L0is6fDAsCB7WZ5NY6ZgjZVke9CVGoiJwnSqYphJFEVVUIyVQE1M+WtqoTCMPlcMBkjgK5OOtmFBFA+lBgRAzAFpZBpqqLx16YqiGj67qYvpHI34ucHgAShAqiqx+q6AGeXAXy+Qv7++Qypw92c4jyUF+FI2UDCh37noQeP11J1IiJAaN0Y63MMlRRb34x3n9AuRA6AwfoHSC15sMTHriHK5Yr9iUgvKOm6G0i97oapmUZEBDfrHUBOQtiG8VRcilXDqFIu5CPFNqEq6gdiVxWxJoLTF/1o0zckD8U3kr800ZyCQmr9l2p5ku4GSC/gdOOhttwGnB/6n4fehRsEBIx20tFt2T9FbeNKbZ2bWClgfeb/ik+6m7WUQyyLUIqBHFoJ/BU8GnEANFURAia3J6530M6Cglco+lOs5uTCpKsKyDkC8QGcH6SqKM8Oqm6CXoRyvUOcEQAMLSvKupFPcwh3I7+JCSH53lS5akat/wKSnkjO2mhWRBbh89AjHnpwR7j6l4Da3sv+6bAA0NZMPep1PMlUxTqfpipkHSEOUYqRQlXE31Q54umtYhSbTlXA0i6XqiI2yV8BSVa4UxW0VIU/I5ZPl/r3TCXAxkP9x6Lcjfi75m4AJBHI7m70X5vPQ+946MHzbtS/CJj7Exv5A2IBkquKdT69NVQV1CFyWGypijxOqYo4TFMVIDk8l9tzVxV1iPwViDxfFqrCb2nRrtuHDhsP9WZS7kb8Xbobke9M4W6sfvB56B0PPXY3MdeLqVLhaLMMWO5URabe+F7yENGEUlW09ulPVZEvzNNURQ2zES1VQUQlfZmqio8UsLsbDQnuhri7USkI4Xfs7sYqw+ehdzz00t2c7GsZlRvIh0BaqsITapY68X+0IZclOalUBWXsz01V1Lg3harIF+bZVYXXgJNPUxVJxQxVxUcK6O7GBsvdqO7R3Q2IREyf7sbnYe489NbdeAopEcSv1nk+AV1VNH3hf7NUhbwYM6usflaqAtzjI8rFHaLKlqrYLkFenu9u3CE1D5W7Ud1DQET6BAvJLEYad+PzcHC5G89+DTLegkNVZL8onpCuKgSWUGiqAvlSFSULaVUFiMTt75qqkKqOnh2Qxfruxg1S8FBQxOpT7jIca9WSuxufh1YzesPD3Jf5WWPY4mEeTavLeCv/B3x1pTWmlI3Cu5wxqQNKKDRV4UTQVYUAgBCICRtNgGjw1ZQI6VZzglifSTI/IHsfABD5sxcdqzkBkIiR5BknJRpomqRtQUDiN+ipobNsCiQmVnOqu/t8JIPFQ/Uzl9/5CjfN3QAyErcEWwcTGTwU8S6gzHjYeogiEXb8KJVVYGkpVtVgYZHPQydyDzfWGNYACJVgjtni+saA6GkULOHiQkQovWGiqiBIVSG1WhyIwBm8xWpOTKoqxP+WejWnriqQsJpTUxXQ8pVWd3JVYVJVTLG3EDrhxtHel9rz1vgLiH2kgI2HFkRUAAJryS8iGIiMyJDHIUiq8MECERgArG8eth6ibZvMA7uTZC2rh+Dk6cYZ441By8OuNmg7GCCAjlYsqiIjBAUVUDrc7D8eeuluCKB8pNH2Xk4vS61rRF1VQHphpSoieW53NwCAhtPd4GBSFXCtKrYsgO9u3CKlu7HuaUjrbvjzUlK5G0jgYTQKq5bHWw+l7JH2o7Tyb+aWDezCiwPVtcag4uHuDcaBbRiPWu3UeZj/GwAIVY42aybGg6Xe89Cz3A3vnZqJOcWvmjosLlfeRUR9PnZWkd4aXuruBp1jZkEb8TePx8woB8ZknTTtmBkQCHh3O8bMgv/amNnWlX7uxi1sPLSg39OgdY/I3ZB1MO8RngUB6V+sku08PHaULX8iXaxRaD9Kz/0lvm83DRIedrbB6icDezYaeqxx4PiewO5Xwsd3a0v4BtvMFP+9h0uxakz2C14nnx+w2gfkcJmvAQWbu1EnlY3szN0I2pBY7Mk0Vcl9RoBk2h+tk6olDMlmBICATwRwW84/WBehXZT2rBZZLIE/M9U3bDy0IFeXiL+JgAKMkWSCOJgJ7bfcTSoednfR3/4a7+p0+6uLRuDl52LNBxgMNA9b98FbLwV6u/omEoti69uhIxulexhsM1PCriIMPyeU3QNiJ50XLK/GpKrCnaf8QVohhqxG7sPdqFlP96pCRJ67G4M/PYB/EJdJ+kX16W6YSQBQUejFOyJPKzh5KCBXl/DPIFMa2bkbAzEagVUvmrFIxvX72wvxzhM0gDzsOoabVwfimTyq4fiOYMfOkCzWAx56525Q/PgDYWi6KJzpOzdGjAs0TUapIVrJCETibn1rDCVDjAr/Ce5GOOhc3A0ieqMqfA+P3A2/kEo/3Djh5KGAO3fDt+juJhUPd2xmx49mM5qIRuCdf7CB4mEsimteNDKKNRxtm0K9RwNe8dB7dwMA4VKcuKig2LXHGTszMO0CgzMF+3Q3IJI1Sh4gibuRaXvIm7uRBya6G5El9sbd+EiBPtwNoqKKcDfarA3ILZa7ScpDM4rbN2c/E7Jjm3lMhqo883DPVkyTrEmPo+vCgy93o1wGAAAUlOGEBQXDpwXT25zCUjzn8uC4swJCVfQS07obshHC6W5IuRsQ3kKfEegfVZEH9rO78ZECyXmo3I1giOZu9HG7093oJWo83L87m2GUju3vimiVTx7GorBjQ/bkiZ/Erv1BT3jo3bqbBFUxQjRiRmDoOOP4Xta+n53Q7qgKhqG2ITC0EYc1GoZsG+tBsFbJZLkbkgtqpLthzPpR8x4g6XlU8xuAJA7JeL0DV5Wk6x1ILHNQDyYhu6qAQznFLowMRFNOUalbUQFQ7SPjizrWX3fjEqndDZBhzV3a3I317EgCTsT0PDzanGst9+2h8y4AyC8PW/blypueQ8HiUfHBtO6Gd4o1KBAxOlyCdZMDwycHEChgoHrBC39oIzjWO8gSrR7g+xAZOocgibshFeBFyka+xIqyXO+AgKnWO0i3JL0tAMjyEtY7APCFfIhooMkIEdFAYgnuhomaay0BgEiMkVQVWyTyYUMfPFRbiAgM5KwD645LVzzs7sz1JuTOEwPAw9acw02kzeADhhx56NnT/GSiSn1XLZFyzMyrrFRFHSzVyeprlbuxrtKWzFNpY1kCH7eilbvJYr1DmjGzGhi7yN0AiKdziwJJuJvkuRvh/LVmRTlG93M3btCvPDze5kEXRCMA2fIwFsX2IyxTHmb01rOkYDH0hIfePBod0qsKAEhVIX4nLlpmNYmqCFNgrbUR7sbyt2BP5omjxPIc6W4QgDBXd8MlTqiKSBtZqqIyM8KeSMZa7gY1dwNoMma5G8ELp7sBIC1N6bubzNCvPMz9dwsAkQgVFKJ7HsYiuH9PfN8eOHyIojJzVFmDVTVUUUNNYyFY0AcPe1wstOkTvUeM8BCWIw89CzdqzIxyMExAekRAkfC3xsz8x5hkzIy8/aVHEG/yle5ClCaaFQHUrxpl4g15IOD/eJi7sZyr8LZchg7toeNtcLILu7uovBrDYSirpmEjRTtwd8NAFGiSuFdOioQtd5PU3fAr8nM3btCvPKytxyPNuUb8snIE1zx8dwNteNuMJuSnj7fR8TYAgB2bafq5MLwxXe4mFKae7lypEwiL1hjY3I2AUhVh65SqqGRcClURyfZM3A0PMRaHdGLJj/LcxMvvD3cTi+D6NbRnu84/lNlEDIWhaRJrnARGULob9N1Nv6NfeZg7wnKdSp887O2F1140Ww720ePdnbD6ZRg+GmbNpWBBcncT9GKRVrDcJBp8uRsxSFZjZjmo1FVFHzPLn7E2ZpaqQnInPmtIIP/joqQuWhSkex2RyZELE7LP3fCrEbkbHgsQAXDPDnj2T7Rne8oGiUVh+3rj1SeMzjax6ofkc2RF7kbvMi13A3oC08/dZIh+5eGI0bk+kb5R3uKTnoeRCLz4175jjcKhPbDieYxFrPL03E1xaY61BiPoDQ89CzcqOad0RPSfZAAfPROR05SolQOk/8r4ngKMibE3Kt6QFUF0d8O/iZ60Eviguxsei9RYFwDSrHfgV2NJHyARbVlHa1eQmyUY8SisfjZ4YKdoEP6UfDQMAsf6Gq2VwLpwEGFOmnwffaFfeVjfmGv16oaLD+l5+I83zPYM1y4fb6MVz1vlARCTS0XqGnIVqqLhzBMeehRuyOojNQWQRlVEQJdDTBne9V8Z31PW0hAjD4e7UWcHUCmefnc3e7bDlnWZNc+W1YH2FiT54HsiprsbkkNuWc907oZLS0HIf/FLMvQzD8sqjNHjs//J1AzBCZNE+iIND/ftop3vZTPj3tEG766z3I3B3+NJUF1HoQxvKnKgZFTMEx569vy9VKpi122hKvpspVowYM+Q2lSF/9Kd7sZKcPCdxH0cNncj87teuZvDh3DNimy0YsNrRm+3wQUCUbkbGQpduxuTEQAMKy3Mog6nPzLk4clOOt5CGfFw0tlGKNtUyLlzg254uHZ19qt7dm6FaK+orHI3wRCNnpy9wSkcYhbWOt1Ndjz0IFUsR4gyjyv8AP+JOrISQlXkSmKhHvybSJcBEIAhv8gyUZoAAAAgQEPzwyTikCFfjciPFh1K8rxJZ6Z4ea5npjavy7Lb4lHYvcGYOJsIgBiTM1MyFPozUznDJQ8j3dC8Nd62n/VqT5AIFkB1nVHXiCPHGel5WFoOH7oo8MaLGd85de6cYP0I7JOH779H3a4fbZGIWASa90PDOABAtbYIEcdNp5a90HksYwIZIaqeGvWKhx64G/X71r9COlWx8nmQTFVQqIpeZqK7oQR3Q8ncjfqcQlV4Ae7czeFmPJzDMvaWXdjTCTm6Gx+p0CcP4xHY+Ub8rSeiB7eavfafdDwCh/eyja+br/0p3rJXhJJUPBw52jh3fmaDiLETApOmI7jgYbPr9HAqNO8VvwflbnhTzJxvBjMfUtVMjYYryCseehBulKqoryr3BqC5G/nTIivQ8P11d8OPEJMCWpk8p6HnbjTTK3I3mCR3g9Z5+b7OMbOoKp+F7iN3s/u9XKnQdsAARC13Y3M3sp7yhdaQJHfjIxXS8/BkG1u3LHJ4Zx+u5GQnvf2yuWWNCWl52DQhcPFVwbC7UdUFFwfmXRJwycNjR3O9T+Joq6isyt3wlikqgQ9dzgpLMihq6Nmx0kaT12ywzEwlqor8+dvdjfxpJbobvnuf7gaUwUFNvCClu5GVceVuhKPpw93k+oM/sh9t7kalsTV3wxcNoayZ725cIg0PT7azrS/GTNdrgndvZutXmOl5OGw4Lr4hNPWcQJqgM3aCce0nguPODLjnYXub6wtOATlhqrkbEOOCkkp2/lVm5bC+aRwspoYP91aMNr3loXe5G9nTuqqoMTPK5b3cJjhyN3z3PnM3IOMUEH/9GLNNJiB/OLqVu5F1QwJ5T7kcMxNfWyVB8r3H6XM33V25tpUZR0AkxhDRVMuK7bkbJGB2dwN+7sYFUvEwHqFtmcQajn3bzfJqGDvVSMPDUBimzQpMPRsP7qVjR+HYUYpGqaAAq4dgSSk0jgkUFECmPMy1FSxouRttJBEMw8xL48dajf3vGm0HkvCpsIJVjGZV40zWDzz0INxQ4u1L4ufPg43SGQIQsUYGGn44yRGEyFnIaAUqjFqaYEj7Sbw0QLQOYDK5o908BQTEU8iiBD6aA8PqaQQEQ6y9S72qOJbt04l0dLXL3A1j4t0v8sFFalWxDHqCp/6qYpdIxcP3X8s41nBsftMcPhqLS7FPHo4cjQ1NCNKW8vPyBxJkysNwGKJe3JkFQIwRGvKcKBSUABCNiqGsfCiLRvFEG5w8bkSjQEQlQylQzAJFjPjrifqBh967G7B+/uncDWIKd0MqWjlVRQVpy92A091ontq1qhAQ9O1uQmGPfuq+u+kfJOVhZwvrzOHV9ZveZOddGsgnD6uGoJsXPKSBnKdP7m4AgNOPAAIhVlGHpUPjBGASmETC0fQbD73P3YCsosrdgD2Hwn9XpD9/BMDK3VhjMduYGTT5styNvR5MTmCp6EvyRirHmBnRsMbM6DZ3k3tbVQyV627I9r5UP3eTO5LysO39nN561ryHdZ+gfPKwrCzXXh5SJ87pzN2I3JOg34Dw0JuZKVRRkG8BANWypPZR7kYm/LWICyAfUm9l+LRcMFr3TJPoYqEzej3E8wMA1EpQVTfHjIBTVVTuRrqqpDNTVdW5tlUoDGJmCm1vg9dnplDOTHFq+zNTLpGUhx37cwo3AHC0hfLJwzMm5Bpu6hvFmMmamQL1M+QLfxinVP556I27IXCqCmgtK/ex3A1IiQDN3YiH1GvuRnGHi4WSL2U39OsmAflXe92cqmIY2vRmorvBpO5m6PBcqVAzkrlXFR6efXfjEok8PNnOzFiuxXYcpXzysH4EluRgcIpLoWGsGPQluBvMzt14yEMv3I1MjwnIB47o+STlbkC+aaAPd2PLAVuqAmIiUtgNy+XKyG2pimjCFKrCmDZUS3Q3lNTdNI3PqaGCIahtECumfHfjORJ5mF2G2IGOdsozD+fOz/5XOXay+ulZ7kalmhLcTb556MU9U1pOV3wVqZkk7kalZBzuhs8088NRFiJtkq4qKAu0qQpqqiL/Krd7526qhmDTuOxD+6gzKRDiqoLZqUosTgDQUJnJUq0PDhJ46Bnyy8O6ETh2QjY/zOENMHaK+ulZ7kbWNtHd5JuHXoQbSnA3KEOsyoKpHB6qZ42BHl6Ikrkbq0BLVWQxSlV48LVURf5V/A0B9NiXi7shgilng8u1pA6UVdHIiSaKO8KJh1elKuS7m9yRwEPvy88XD+dcHDgjw4hTWQ3nXAgytUQAiGndzYDw0CN3QzZVkfW25gmsyKO7G74BpLthNndjLz+NqvDgm1pVrA4AyM3dIEJJGc65NGPdDIZg0mwzVGAZbx5elaqgXVXAz91kgQQeBkIehJwh9fI3kl8ezplvTD/H7Z1Zwxth3kIIFchG4BFRczc8AOnuZkB46JG7kXczya/oxt2IZI5yN4bN3djLd60q/Fy6qlgdAJCzuwGgYSNwziXo/ikEwRDMWmCW16BGTZCqIq7doSogVYV8d+MeCTwsrgmES3KN0cVlevl55eH0WfjRGwLD6tNdQigMsy6E2ZdAqBCtRnC6GxGApLsZMB568axiBCJx24H8SgT8hskEb+twN2LlJXJ3YyAA93AJ7kYOP0X4VU3GHYktM03c+/FDgRHI12YAqNWcaJBarZRkVTESEiZ5VjHxx7WOGE0XlcIbL8PJvm5rqB5GM+czIyTsHn+aH0hViUsrhUBMW1WsorF0WPLthaYfcVIjGQ9Lhxntu3KaCx/eaHM3eeZhaTlctiTQcpBaDtHxNmo/Ku6kqaqG4jIYPU48FJ3Lo6gkk+ooVxWDyBnJx7MMHA+9CDdyFkmOEC13ow+LNHdD/MrkdsvdSGOhRRwEEGs3tdWRXFUYUxGNCAz5QGBE4C0rZwfk/kTgdlWx5W4YieeaM+lu+Pmra/HK69nu92DnFjjenqRVaobR2OlUMxxMJkIrfxw6k6lxk6uK9N5K/ZCkpEg281ZivrtJj2Q8HD4jmEu4aRhnhAoAYIB5WD/SGDZC5FgUD0maKSbfCAJyakm8VZNbc1I1F/cYDiAPPXM3ADZVSeJuVLrM2pTE3aBhxRoVdyxVAdWvJO1e36qinzd3d8NPwBgB4ugJNHo8dHVCdxccPwqxGARDVFZFlTUYCDMmJMehKrwcMtCIi8fu++7GCyTjYbgEa84IZLe2OBSGqecH4FTgoeM9U+7czQDwsB/djRyDir0cLhQgSe7G4W5kJ2qqIqItcmVAMfSyVIWSqQpmpiroxt0YhqUqJWVUXApD6sS7mrn88W5DFKois3S6qjBemO9uvEEKHjbMCva0s5PHMm69yecFeIbuVOFhSnczaHjo1cyUXCstv/Jr0VMwkgR2dyPbQ8vFyt4V8iHLt1RFRDKZdUMQTU1k3ZBlqQrI9hIX3PfMFNlmptTyUJQNDgD6ogalKokzApqqqGvUJv4NfjVpZgRUs5A/M9UnUvAwEMax80OBDB9kN+W8YON4w+ehtzz0amYKAVUy2O5urI3WP3yL1nO6KZW9q6sKaqWLVlB3wYtOlFl354wAyPbix6sZAVURcM4I2FRFSpM1M8WLtJZsIqoLJMeMAFgzAuoarYl/ripkqYpsDks95YXlOiPwgUBqHhaU4MxrCkqq3P5Opl8YGDPF8HkIXvOw/9yNGg6pjdY/fIvWc9Jk2t2N2EcfDydXFUxUFbU3pFAVvci8qIrsabuqkJietBpGBWntwnx34wJpeRgIw7TF4VEzgumf11tdj/M/Hhw1zgCfh/3AQ69yN2hFkqS5G93dqICPgAjxXjyy3+zpFDkwBBxSj7X1qPrYGjOLw7Qxs8hGExGqMbNh8B7SJECFM5lsU4/8AFHNfIyZQYiJ+MDHzAiiZNUwKB9oYKkKgBgz+/4mDVzwsGF6YMSZRvt+s30f9XZRVzsBQDAMZdVYXW/UNWJFNcq1VkAgZy1OLx4ea8XKYTAgPPRqZkqZOakq/ArV3SQovafmbtoP0e4N8faEBwC/BxAqgOGNxrTzA+GwKFCLqCnHzKDanGxlEoA6r5gRMNLMCBB6NSNADlUhqSrEVYUhE3olU8ug/TiEqmgzAhEzDgANVTm/hPW0hDseBsNQNzZYP5YQwEDgP0kDAYHEgyPkAg7USlbu5lTk4clOaN2PB3YGO+0rNiqGscoRNHQMQTBPPPTS3fDPAMndjfwHASgegU2vxo6lftJ4LAJ7t7NDe9m08wJN4w1NVSBRVQgIkqqKPPsAqgpHSncDrlQFfHfjBpnzUB4FwlgDECPpbkgdlMzdwCnBw1iE3t+Ku7Ya8WQ3x3e0Gh2tcGAzDRuPdZPNPPDQi3DDxVpWR35N4W6AutrZtjfMrra+qxyLwNsrzLZmmnVRILWqgBqFihMoVZHHaN2TJ1UBRMVnWbdk7oYYASEaCCyNqoBa7+Bnb9IiIx5aWwCIQKRiDXlTAmr7gAxN6dzNoONhtJdWLw+cSLYGVYcZxUObA93HsWEWw5DZrzz05qW9QkZkB6H4rvWNDODxKG5b5SrWKOzZzjb8XVumRcSzbCRzQCrHjmLpFKjbr2T17DMC4HZGQCTPpCi5nxFwcFWO7UXhJBY+CHcj3lgj66M601IVNSPgu5u0cM9DLQbwPUGED6ZmSO1tjTYWAQx2HsYi+PozfccahY4Dxs5XA/EI9isPPXM3INpDfFVNYw1sCQBw8ytRnp/LCNs3sdp6HNlkAADwyUWUqoLioetKVQBA3VxuqyEA2FVFSFNqVSFpS1KrCvTpbsjSOOFuuN11uBtIUBXw3U2GcM/DJO6Gj1UM8eh+2z6gBseOF5wm4eG+XeaxNmo5JIhSWoY1tUbDaCwrkzUEgP7n4RsvwMnOzFqv5zi2bAzWnx3VrthjHnoTblSL8xpKUSE9cgNAy854R0uWgXHtCnPYcCNcAECEhjZmJiCR5JP9QGAYtjEzpBgzS67JMTMkURXJ4YxzN+qVQSJ/oOVueMla7ka6G/uYGbQxM4DvbvqGSx4C/3nbZ0g5GRijgMHfQZTgbnj51kSxjYfRXnh3k7ltE4tGHJWindvYmpVQPwJnzgoOH2nkgYdb10FHezYh4dhuo2hIoKLRhP7hoTeDKdJ6jn/lUdBKqyEAwN712b+CIxaB3e+J+wJEUk6pCiCRPCkAYB/uBkCsd1C2A9VaApLpFbSMq4hiIu/Id1TrHazEmpwrJGJMnyEhUuIE0t1wCTVADP5tgy+9M1FyCHx34wIueQja+56Uu+H9aKjcjb2tbbkYscni4bGj9OTvYhvfSow1FpoP0nNPxV7/W5x/7T8eRnth17vZE+XIVmFB+oOHnuVuAJxjZmI2VeluZ5GunNR59w5x91jimFmOK/mNK2AYqP+ArRrax8woh7ukVkqKgbf7MbOM+klyN3qReu4GXOZuQBszAyJjNrb7SIQbHvJ/rCyMzN3wXzpjhGIpsK2tyZ55AbB4+P4286W/xtMEGh3b3zWfeyoWjfQjD/e/jzF3lUmKWDd2HuSrHL3nYf7cTUdLrmc5fpS6O0Wx0mFq7gZs7kb/AVs1HBTuBpzuxnDlbkQM9ZEart2N5lOku+G/dOFuEMCu4InuhhfbfoSt+3s6U5OI5oP05qp4//HwSHMGlUmKzkP8Pnjveeixu0H5NVFVers8eP9xdyefO7ByMUndDfbtbij/7obEvSrK3fCkJcrwJKvqu5ts4YaHtj3llqTuBrX8jegq2dcAQIxiUfjbM259jY7t75pvr4lD//CweV/G9XEgdpLHs0Hvbkh+TVSV7swnpJIi0d0YaLkbvoX6djfoXlXExizdDSp3g+JOXOVuEKS70adBHAsEfXfjHm54aNtT35LgbogsBomuUnOMAGjgto2Z+RodWzaa0Ui/8DB39HaIy7U2nSruRtTMO1lWxSpuMbLcDd+iuxvSa5iVuxEbs3Q35Mbd2CbR7GHSdzfu4Z6HDnfDOQN9uRt9HQ0x2r4p++cERiOw412zP3iYO1jU6W684qGX7kYptK4qqmYl1d5Isyo2jbtRH0GpwEC4G16/Pt2N6Mg+3Q1i3GQAMKy0yJOWPP3ghof6nhYw0d1AorvRZzwP7qVobq/N2/4eG5zuhr/Boj946KW7UQqdRFUACks9OFdJmdPdkOVutKG1HOuqNsubuyEC67YZAM3dQKK7IT0J16e7kTUoDLp9H8gHDW54CNafAFSQT+JudAmQ7kY75vDBXHOR7UdYpMd7Hrp/R0gqFFQK321t8oiH/etuwEqYQkVdrmeprIGSMnS4G7TcjTa05j97sNrMrbuBpKqSwcwUIqRwN7xAkO4GDDnEcu9u/NRNerjhodiTWWTh/wh3oy1Btmf/AKVW8a3HXN8fkAbt7eA5D4fk/EMrrGDQPzz01N2QU1V4PXm1S6qNgtKcfi8jRgdAz90wp7uxhq9CDTJ3N5BUVTKYmZLuxsot2d0NSHcD2bibXJrvAwA3PBR7Gqrzgf/D14KLxb66u5HJHQKbu/EkS9IfPKxvzLVmpSPEijCtot7w0FN3oz/oVFcVWe3GGdmfLhSGCVMN0Ckl72xB6W6s4atUg4FzN1ZuKUd3Q767cQ2XPJR/A3C6G0zibkTocrobT9AfPKwfBcU5PBCpuJaV1CZxN57w0Mt7pog/pkg0kWVDlHQPGxs4vJOOt2Qz6J1xvngsvmpxYoSGeP69oUZWwikgAil3o7KzYN2roi3lIlD3qsgjLVWRRE16r4pUFRIJXybdDQC/eU7sLwKiSNmArImsKRNNpFhn9bNM9wAgY7676QMueSi6BKink7qPUXe7WB1aU49llVhYJCKOIAhJm4wQUL86jyJOOMQQDW95GC6ECTPYO6uylPbaSXFRdD/w0Ms7wtWPnTeNYYjnqalgiABTLg6+9XSsN8O7GRrHG00TxGPxE90NqAShagc9d6MLHaK8ExeT3ImrXYp+Jy6A1uXanbg2JZV34grBQbUSUXkt5LEGtWAoBJM3EBPcto+sUDxx1nc3LuCehwe2mAe2mg4e7gQAgPIanDDTqB9tENher4jibS1iy9DhxuHmnN7PGQ5DzdBAf/CwcTwebYH9OzOuUs04s6SWUb/x0OvcDYofmj5mVpUjgmABTr04UJrJpHjjeOO8+UFl7izDLJ8CqxKEGqGS5G54JbPJ3Uhz5BgzC173lbvR2sfK3fBfgvJhwt3wou1jZvRzN67hhofd7WztE7Gda+OpNO9EG/3jZXP1s/GeTtLSzip3Iyg1sjHX2taPMPqPh1M+xCqqM+NL1WhWPyPerzz0OHcDIDLtMgwrnQGxA1FJtXHW5aGqOlcRZ/r5gQ9dFBCL/FO4G7XFmn5Qv3Qtd8MrmU3uBvQut8bMpBwspMvdqOoYWu6GN4ayyJzWouiEMTP5uRt36JOHrTvNd/6aMtDoONpMrz0V7ziqP2oPdB5W1RolZTl1SMMYo/94GC6A8xewkWPdVqZ2vNlwbry/eehx7gbUmFmKucPdgIEIFCqAs64IHW+h7WvinclubgiFob7ROPNso7QMCfiYmYF8l7FocSIQN0mJLXyIxGsECbkbXnIWuZtILxzYS10nqL0NAKiqBiqqsaoGi0rJ6uk+cjdAYgbNyt0QiGe+9Zm74Tv7uZs+kZ6Hx/axnW/E3ZcWi8Cq5+IXLAxWDkEtd2Px8Lz5gb89nUGBOuqG4/gzA5nlEFM+7yY5D8OFxlkXUM0w2r7e6OlOWZPiShp5llk6lJn9z0OPczcglJwIpfO0MnSy8wEIwQCorsfZV4d6T7D2FurtAhBxASpqYHijoXJ1WtDghSjDbM/dEKjOIvGc61xzN+1H2IZ1dGC3rXkP7uFFU0kZnHMh1tbZcjcERElyNwAABqKZJHcjryx17oZArEL23U16pOFhpIt2vBHLtMBYBN5+3bzwymC4MAkPhw2HpvHG7u0ZT32Ew3D+BUHINofY1UklpX3kEBUPR42DkWPN5n1Gy17o6YZjraL+FUOppIrKhlLlSGYSmXnhoSfhhtKoCmhZfOVuUMUggqJyY2QZIacFkZFsRoA7WTkwsdyNOAEjvowC5fQTSnejDsvC3Wz4B9v4djomdXfCimdp+Gg4Zy4Ew0JVwOlueKHC3QA3NZm7GwQ0fXfTB9Lx8P1VcTOrew462mjnZjbpbCMpD8+ZEzjexo61ZVbmeRcEq4YgyByiG3ezfzc7sIdaD1GXfCRoZQ2WlEFVDTaMheJSp7tx8HBYAw0ZyQCREcQZIwAGaDLGAFgeeehJ7kb+yPUxs/YEI/uvzuZ3QI6J0PGANcsRya6wuxv1CQHUwgpVgswqW6dWo9/UuRsryYOAb7zaR6xROLQHnv//oKNdXYctdyMLBeA3+Im0TZLcDWljZq0pxJiZtLs6K4oyfN/1BwUpeXiihU60Zn/Pwc4tZiyanIfhArhkcaiqJoPSLrg4MP7MgEseAkJrMzzzhLliOXv/PSvWAMDxNjq4Bza/TS89RVvfARUkBjMPPQk3mqoAIIJh2MKH7m7UCEgFBhmErPCkp3hlyNCOUMlnEpM71tSDLEFmlYWBAgCV2089MyUGw4i46hXz/fcyYGcsAq8/DyfaRd30mSlZKAC/wU+k2wismSngJ0dtRkBrCpmWQiQikwEAVBTmfFfM6YmUPDy+P6cZ61gEDu5hqXgYDtPCj4UmTu37p1RahldfFxp/ZgDc8ZCAdm5jLz1tHjuazk/EIrB1Hbz8FB5vAzUzNTh5mGu44T9rh6owRm7djRikgs3dgGZMRMiwqwqqT5a7AZUjkUcTWce5dzc7tmUWazhiEXh7FbpRFelLLVXhJ3ejKpnW6oOD9Dxs35fr7ZTNeyg9D2fNCVx9Q/CMCcmnq+qG49yLA9fdFKoegu5d9oZ/0OpX3db8eBu9/nwGLntAeJhr7oYPWuRAU4yZDZGqsnI3PKwS8SeGaLkbMUglQjJUugvs7kYuDpXaJQfR9twNL0rP3XA+kFjkLXSJd0CqMXM0gm+tzpKaHW3w7jqYMMM2ZlaqQtbjC8SKKUtVTPEjYYp1KDVaGzNruSAfTqTnYbQ716aLRomgDx6WlMKciwMIcKyNIr3Q3UWlZQYADak1CgpE77vkIQDu38M2vJWZKeMue/5iKCp15m4GCQ+9czcIKuoluhvlb126G3WZuruRhahQJE6g3I3KYSlvlOhuMK2qbN1oZv18NgDY/34KVQFNVUD1nO9uPEMaHrKYB+3W0U7ueVhZg3UjcNzEQN0IqB+B4YKMedh1gr3xajYDwFgE1q1K7W5ggHmYa7ixqYqsW2LuRvlbbfZa7KxS8PplkOpDIVbCrYCeuwHRMGoppiEHmzYi2HM3lHbMvH93Tq77ZCe07EU0DBVZZcxUY2YAa2ZKz1yJMTOlHTPnUrfTG2l4GIt48JDsWCSvPFz/FmUte0eb8cghEO5mkPHQU3cjNzrcDSRzNyqj04e70Y5PVBXRhZq7EdYvK3cTjUB7hjOaiehoB2JMRdYEVYEkqoKWqqDvbrJCGh4WlnkwHzKkXgpmXni4f09OIXLXVuFuBhsPvXI3WtMmuBtw6W7sxdouih9lVxVKoSpkVxWUZ3GoimpupSrtafP/LtHRnkRVgChRVeTzbnx34wHS8zBckmukDod5QMsHD1sOZW9tOJr3JXc3A85Dr9wNJKpKGncD4HQ3oK8p0g7RvzhUxcDkqqJTThneRFVRzW2fEcgVsahQFZK6wQeTBGSpimHI+svBte9uckN6HpbX5crz2tTuxnMeeiJ7R1twEPKw/9yNjCwy0IDmbgDEBYF0N2B3N/wQ67pQLnwkS1UY2VSFUqsKuVOVHJvCqrlhqBkIOTgmkdLnqsKYrD/67sYTpOfhkDNyfbpz/WjhbvLAw5ZDHnR0PDoYeeiBu0FMqioysliqAFYMAnFBoHI3mMTdWNfFH+8h28CpKnKARtIqqbNwSqA7VQkX5NgYAAChsO5u1OCYq4rhu5t+Qnoeltdh+bDsqd4wTq6myQsPs66njuCg5KEH7oYoQVUwibsR8T6FuyFy5W5QGzNb094y/YzSKqHFAJeqQgRUPcSDnq6o1lVF1owAARl/n5RTVdB3N7mjTx6OnJ7lErNQGGbMluYoLzwsze25FgqDkIf94m5EdLe7G0e879PdgJ6+kapCjjEzr4NSFTVmlv5WnacvVRGFNozOtafrGiiZqkCiqlhxVqoKpFUVvqm80L9hKgn65GF5PY6dk03EuXBRMKgW6+eFh6VlWVQzCQYhD/vF3Yjo3pe74Z8c7sYWjlK7G5Kqok6kpENXFRB97EpVAGBUU04NUlTat7shAq4qVpyVqgJpVSUeJwCo9G+YSgY3PBw6NtAwI4OIEwrDWfMC5TWYZx564rKH1NEg5GGe3A1AEndDYjvvLeFubIMtu7sB2Zf8r+ItlPptn0lVRd605sbdjJ2IuTyi7cyZBGhTFd7DuqogQnaq4udu0sAlDxtmBMbNCQRdCHNRKc65Mtgw3sg/DxuaMJybptQ3wODkYfbhhr9D72QkIoyJNqRLdDcgczVWvNfdDQh3g9pdU053oyXb+F9TqYoM1bZCXLobAJw7P8tZjPoGGDWWgGzuhvdwGlWBBFUBP3eTCTLlYd3YwKxrwyMnBYIpftKhMIw/K3DJdcGKGoQB4uHYCTn5gDGTBikPs79Fc2p91cpdLT2RSE8kVlwQspqWX568G1MfuxrK8aroYwUacbXqYa0oDREAv1otYEk1A/V0D40BaD8LU6qiNBD4U9SsiI4gn2UENGw4zJkfyPSOlYpqOmsuL1w8RY2rirUGjMgwDFPII68wvxlOPhqSqWbRfzHWU9TijMB/+kQCsuBhKAxnfCgw7txA217WdYwAoKuNymoQAepHY3k1YoLLzjMPp88ydr7HsnsHeX0D1A4HxqPJIONhTu7mgjF1ALD/6GEmbZuom7QsIP8nL8ByNySHWcndjcjGAcrDdFUhpSra0z1IReNUqsIL7svdIOIZE3H2/AxapqKaLrwCw4WiJilVhYSq8GSjUhXmTlW6I1EAGF9b4b5iHwTkwsPaRmPMzMDYmYGZlwTHnRUYN9Mok7FmYHkYLsA5F2fjskNhOPsCGrQ8zMmzzRo1pKGyhDHac/hwzDQdY2YRTzRV0UezKAmgcjdSIoD/masK1wKyqwqqMbNSFdQKJ7uHInEWFU4gxZhZVocQcOxE4+obAsPq+x6mNo6DeQsxVMhrYqQbM6MYM/Nko4i8ROpCZGslGTOf6ImZDIaWFo6vLc+us05jnJY8HDUa52Q4rg+F4cKF/Dm2g5SHuaaKr5k2emhpYSQW39HccjImnkqfSlWsa0vmbqREAP+z9JwAJFRC/SWNqvDDcnQ3vLiSUrhsSeD8+UbSR0OGwtA4DucthFnzMFgAsiZMqaFTVRAZ8aFyxqpyMmp29cYBYNGkhhz763TFacnDMybi/AUBl2nj4lK4cCFUVA9qHnqQgOyNm4+ve/9wV69h4MjqqiGlxQhkiEVWZCAYADy/bwAggrVFRDsyxHpzkbvhvWtYfSzisqFGyyIugxW1rcQzIMiXrorBqHpnhZxE4A0ob6hhpB52TwBCpngvqPBORMfaoP0odXdCcRkVl0JlFQQLQLIMCIAxAkRGjMQHAkAGZMrpUgI0iRiRScAAGIHJiAEwAJOIP3GaCBgQI2BEjIABdEXibV1RALhk3PBZo4bk2FmnMU5XHkZ6YcNb5rZN6X6n4ybDpJkQLBjsPPRmvkP1NAAMrywfUlpcEAzwDuM9KrpZPGCN+PN9RB8jIpHer4k9bRhIjBliQRXJoE2G7EnuYvlybDTExJ5hCEuIiDwVLRLS4s2KIpIzcauLUBXx2XotlGgf9X4f3qOGYaj3+zAha8QUWRD5y+IJ0GSMEBmRqXqaEQM0+RY04oxpvctFCEzGGMGxk7HjPTEAmFpXtWjSqNx76vTGaczDtiNs/x441kbdncRf/FBcCiWlMHI01jeKNzEMfh56Ob26cnfrqt2t/HNNafGoqvLCYEBpCAIhWaqCkgSWqhAB9KEqckCdTlX4IFtXFWkpc3I3avjKN6vuTOduRO8KVWFCTGyqYhIRYqKqnIyabd3R3jgDgLlNwy5oGuZVN5328Hk4aHno8WqOfce6V+5u2XdcvLOvvDA8vKJsSElhOlUBRLBUBTWbmk5V+LEpVAWFAbFURVxtvt0Ncn1IUBVpXJOpSmfUbO+O9MQYABQEjGunNTVUlXjYRx8E+DwcnDzsl8Vj+451r91/ZMfRE2pLRWG4qrigNBwqCgXLC4KG6kWArFXF+kD2r1xVAFA9B2NwqgqAaQpV6YqZJyNmVyze2cuXNUBBwJjVUDtr1BC+jM1HFvB5ONh42I9rVTt6oxubj20/0sHH0joKg0ZRKFgUCpSEgghQXhAKBdAAKA4HSoIBh6ogV4O0qsJnA5yqgmJaUk5Z5j93gwRgEiNARtQRZTFGjKgnynpNxoA6euNxIi4gCkNLC6fVV0+tr/IDjSfweTh4eJiPpfG9cXPfse7Wrp7Wzp6Wrp7OXlevag4ZWFkY4lN4IObxsCQcKAsFxWhZ/M/+gX8i7bMGbV4U5JIE9VX1NC+P9M4HIAAxQU7qYABAjMTN45E4CLLph0CM0Ymoq9XJ5YWhYaVFjVWl42vL/XXD/QSfh32iv3k4MHfidPRGO3pix3ujHb1RAGjt7InETQA41hPpjMTzX5/8YGhpIReKisJwRVEYABorSwtCgWGlhQNdtQ8ofB7mmYeD98a/3rh5uNPpfhUzBg8Kg4FhpUVJ/+SHktMAPg89xOANNz58+DjN4MEreHz48OHDDfxw48OHjzzBDzc+fPjIE/xw48OHjzzBDzc+fPjIE/xw48OHjzzBDzc+fPjIE/xw48OHjzzBDzc+fPjIE/xw48OHjzzBDzc+fPjIE/xw48OHjzzBDzc+fPjIE/xw48OHjzzBDzc+fPjIE/xw48OHjzzBDzc+fPjIE/xw48OHjzzBDzc+fPjIE/xw48OHjzzBDzc+fPjIE/xw48OHjzzBDzc+fPjIE/xw48OHjzzBAIDOzs6HHnro0ksvnTx58pQpUxYsWPDTn/40Hu/7paW33377DTfc0P+VzAmDoZK33HJLkx3f+MY3+J9Onjx5zz33nHPOORMnTrz22ms3bNiQy4m2bt3a1NT04osvelHrfMPnYX9jwHkYBICbb755//79X/7ylydNmhSPx994442HHnpo//79S5cuzeWUueDss8/+y1/+MnLkyIGqgLfo7u6+5JJLbrnlFrVl6NCh/MOdd9751ltvfec73xk2bNhjjz120003LV++vK6uboBqOpDwedjfGHAeBrdv375u3br/+Z//ueKKK/imc845p6CgYPny5T09PUVFyd863K84ePBge3t7/s/bf+jq6poyZcp5553n2L5nz55nn332l7/85SWXXAIA06dPnzdv3q9//es777xzIKo5kPB5mAcMOA8N0zQBwDBsSZzbbrvtySefVH38xz/+8ZJLLhk/fvzMmTO/9KUvHT161HENEydO/NnPfqa2RKPRadOmPfDAAwBw9OjRr3zlKzNnzpwwYcKSJUtWr17N99m5c2dTU9OaNWtuv/32yZMnn3POOd/+9rcZY2+++ebcuXMB4IILLvjsZz+rn2jlypVNTU3vvPOO2rJ+/fqmpqbXX38dAN56662Pf/zjEydOnDRp0j/90z8ldYOTJk16+OGH1de77rrrqquuUpVZtWrVJz7xiYkTJ86ZM+eZZ57ZvHnz4sWLJ06ceMUVV2zatIkfEo/H//M//3POnDnjx4+/6KKLHnvsMVXa0qVLzzjjjKSt3NXVVVJSkrh99erVoVDowgsv5F9DodAFF1ywcuXKxD3/9V//9V/+5V9++9vfnnvuuRMnTrz11ltPnDjxH//xHzNnzpwxY8a3v/3tpOc9heDzED4APDTOOOOMUaNG3Xnnnb/73e8c/cexbNmyr33ta0uWLHnhhRf++7//e9OmTZ/+9KeJSO1QWlp60UUXLV++XG154403Ojs7Fy9ebJrmJz/5yXXr1v30pz999tlnZ8yYcfPNN7/33nsAEAwGAeC73/3uDTfcsH79+gcffPCxxx57/vnnzz777J/85CcA8Mwzz/znf/6nXpPZs2fX1NToJ3r++edramrmzJmza9euT3ziE7W1tcuWLfvTn/5UWlp6ww03tLS0pL94BV6ZH/7wh3fddde6deumTZv2jW98Y+nSpT/+8Y/Xrl1bWlp677338j3vu+++X/7yl1/5yleWL1/+mc985vvf//7vf/97/qexY8defPHFScvv7u5Oqs+7d++uq6sLh8NqS0NDw+7du5PWcN26dXv37n3llVcef/zxV1999dprr62trV29evXSpUsfe+wxzvVTFz4P4QPAQyMcDv/v//4vTxrNmjXr0ksv/e53v7t582a1xyOPPDJ37twvfOELY8aMmT179je+8Y1NmzatW7dOL2XRokUbNmxQzfrcc8+NHz9+4sSJK1eu3Lp16/333z9nzpyxY8fee++9o0aN0iPxggUL5s6dGwqF5s2b19DQsHHjxlAoVFZWBgAVFRWlpaX6WQKBwOWXX+7o5iuvvDIQCDz++OPhcPjBBx+cNGnSlClTfvCDH0Sj0T//+c9prjwRl19++dSpU4uLi6+++uoTJ05cd911o0ePLi8vX7Ro0datWwGgs7Pzd7/73Wc+85lrr722qanphhtu+OhHP/rLX/6SH37NNdeozw50dXVt3LhxyZIlkyZNuvDCC5cuXdrT08ML5BerUFpa2t3dzRhLLOTkyZNf/epXS0pKzj777AkTJjDGbrnllqKiogULFlRWVvIanrrweahwGvPQAIDx48c/9dRTL7744je/+c2Ghobf/e53V1111fe+9z0AiMVi77777jnnnKMOmD59OgA4Cv3whz9cVFTEE9HxePzll19esmQJAGzYsCEQCHzoQx8SJzOMWbNm6RSZNGmS+lxeXt7R0ZGmrgBw1VVX7dmzZ/v27QCwZcuW/fv38xNt2rRp8uTJhYWFfLfKysqGhoZMf4Hjxo1TNXF8jUQi0Wh069atsVhs9uzZ6pDzzjtv9+7dx44dS1MsYywcDu/du/eWW275zW9+c+ONNz722GNf+9rXMqobADQ0NCj9KS8vV9XjX0+cOJFpgYMNPg85TmMeBtWncePGjRs37pZbbunq6rr33nt/9atfXXXVVWPGjCGiiooKtRv/3NXVpZdSVFT04Q9/+IUXXrjpppv+/ve/Hz9+fPHixXw30zQnT56s9ozH41VVVeqr6hgO3RsnxaxZs2pra1944YXx48c/99xzI0eOPOuss/iJGhoa9D0rKioclewTBQUFab4SES/wpptuQkS+kYf/trY2/aIcMAxDH8CfffbZjLH/+I//uPfeeysqKhzdc+LEidLSUkcKw2X10l7cKQOfh6cxD4PRaLS1tXXUqFFqU2lp6R133LFs2bKtW7dOnjzZMAw92PPPDusFAIsWLfqXf/mX48ePv/DCCzNnzuRzh2VlZQUFBc8++6zjstNUKD0Mw7jyyiuXL1/+xS9+8YUXXuAJNn4ihyJ1dHTU19c7Dlfdw9Hb25vR2flV/+hHP5o4caK+XW89NzjzzDMB4MCBA2PGjGlubo5EIqrPdu/ePXbs2IxKOz3g89A9Tl0eGt///vcXLlzoSM7xLFFtbW0oFDrzzDN12/n2228DwLRp0xwFXXTRRYWFha+//vpLL73EjSUAzJgxIxKJMMbOkCgsLExs/aRIFSb5CPbvf//7rl271ImmTp26ZcuWSCTCvx49enTPnj2JlSwvL9elJlOXe+aZZ4bD4fb2dnU5lZWV1dXVeo4tEbt27br99tu58eZ45513EHHkyJFz585ljP3tb3/j23t6el577bWLLrooo1qdHvB56B6nLg8Nnua55pprfvOb36xZs2b16tW/+MUvvvCFL0yePHnevHkA8NnPfnblypW/+MUv9u/fv3r16u9///vnnntuYgsWFBRceumlv/jFL9ra2q688kq+cc6cOZMmTfryl7+8Zs2aAwcOPP300wsXLnz88cfT14n75FdeeYXPHThw1llnDR8+/L777pswYcKECRP4xhtvvDEajd511107d+7cunXrHXfcUV5efs011ziOnTZt2vLly9va2np6en784x93d3dn1FhlZWX/9E//9KMf/eiZZ545cODAm2++eeONN6q1CcuWLbvtttsSjxo5cuSWLVtuv/3255577u233/75z3/+s5/97Lrrrquurh4xYsS111777W9/+9lnn127du2//uu/BgKBG2+8MaNaJWLLli0rNKxZsybHAvMAn4fuceryMNjQ0LBs2bKHH374kUceaW1tDYfDI0eOvPXWW2+88UYeLBcvXtzb2/vwww//8Ic/LC8vv/TSS+++++6kpS9atOjWW2+98MILhwwZwrcEAoHHHnvs3//932+77baTJ0+OGjXqS1/60qc//en0tZw6deq8efPuv//+884779FHH3X8FREXLlz4v//7v/oapMbGxscff3zp0qWLFi0KBAKzZs36wx/+UFNT4zj27rvvvuuuu+bOnVtRUXHjjTdeffXVr776aiYNCN/85jfLy8vvv//+w4cP19TUXHbZZXfddRf/044dO1566aXEQ8Lh8O9///sf/OAH9957b2dnZ2Nj45133nnTTTfxv37ve99bunTpPffc093dPXPmzMcff7y6ujqjKiXixz/+sf51xIgRq1atyrHM/obPw0xa61TlIZ42KUYfPnwMcvh3hPvw4SNP8MONDx8+8gQ/3Pjw4SNP8MONDx8+8gQ/3Pjw4SNP8MONDx8+8gQ/3Pjw4SNP8MONDx8+8gQ/3Pjw4SNP8MONDx8+8gQ/3Pjw4SNP8MONDx8+8gQ/3Pjw4SNP8MONDx8+8gQ/3Pjw4SNP8MONDx8+8gQ/3Pjw4SNP8MONDx8+8gQ/3Pjw4SNP8MONDx8+8gQ/3Pjw4SNP8MONDx8+8gQ/3Pjw4SNP8MONDx8+8gQ/3Pjw4SNPGPhws3bt2ltuueXss88+44wzJk+evGTJkj/84Q9uDjxw4EBTU1NTU9OJEycyPekdd9zR1NT03e9+N/P69o2HHnqIV+x73/tef5Tvoz/wpz/96Zprrpk6deoZZ5wxc+bMm266ae3atW4OfOKJJ5qamhYuXJjFSefOndvU1PTiiy9mcWwqPPbYY00axowZc+655958882D4VXxAxxu3nzzzX/+539+5ZVXSkpKzj///CFDhmzcuPHrX//6b37zG29PdOjQoaampl/96lf866RJk+bPnz9u3Dhvz8LxzDPP8A/PP/+8/07kUwI/+clP7rrrrnXr1jU0NJx33nmIuHLlyptuumnTpk3enmjZsmVNTU1bt27lX2fPnj1//vza2lpvzwIAoVBoxowZM2bMmDx58smTJ1esWPHP//zPAx5xggN7+t/85jemaS5YsODnP/8533L33Xf//ve/f+yxx2688UYPT6RCAMenP/3pPt9Inx127Nixc+fO8vLy4uLi5ubm9evXz5w5sz9O5MNDPProowBw77333nzzzQDQ09Nz7bXXbt269Y9//OPUqVM9PJGDhw888ICHhesYOnTok08+yT93dnYuXLjwwIEDTzzxxLnnnttPZ3SDAXY3fBxUVVWltnz9619//fXXdXu5bNmyRYsWTZw4cfLkydddd93rr7+etKjrr79e9y8rVqxoamqaNWsWAFx11VX3338/AHzve99ramrq7u52DKai0eiDDz44b968cePGzZw58/Of//yuXbv4n3796183NTV97nOfW7NmzcKFC88888yPfOQjW7ZsSXVFzz77LADMmzfvwx/+MCTQy8fghIOHRUVFv/rVr9auXXvffffxLWkY4gAfwij/snTp0qampi984Qvd3d1NTU2vvvoqAFx55ZVXXXUVJAymWlpa7rjjjlmzZo0bN27OnDnf+c53Ojs7+Z8+//nPNzU1/d///d9vf/vb2bNnT5069bbbbmtvb3dzdWVlZdOnTweA3t7erJrHMwxwuJk8eTIA/OEPf/i3f/u3l156qaOjo6ysbNSoUYYhKvbzn//83/7t37Zt2zZ//vxZs2atXbv2k5/85EsvvZTRWZYsWVJfXw8AH/rQhz71qU+FQiHHDp/73Od++tOfdnZ2Llq0qL6+/vnnn7/66qsPHjwIAIWFhQCwa9euO+64Y9KkSTU1NRs2bPj85z8fj8eTnouHm8svv/zyyy8Hfzx1ioDz8O67737ggQfWrFkTjUaHDRumj3HSMMQlQqHQpz71Kf558eLFS5YscezQ3t7+0Y9+9M9//nNFRcXixYtN03z00UdvvPFGzjTOw7/+9a+PPPLI7NmzTdNcvnz5v//7v7s5dVdX14YNGwBgYK0NDHi4ue2223jcXbZs2Wc/+9mZM2cuWbLkt7/9LW/iEydOPPTQQwBw3333/exnP+OtDwA/+MEPMjrLrbfe2tTUBAALFiy45557wuGw/teVK1e+9tpriPjEE0/86Ec/+stf/jJp0qQTJ0784he/AAAe+Hbu3PmjH/3ohz/8IXfd+/btSypu77333s6dOwsKCi666KLzzjuvsrKSj6cybxgfecV9991XU1Nz8uTJn/3sZ9dff/20adM+9alPrVixgv81PUNcIhwO33PPPZxOn/vc52699VbHDo888khzc3NjY+Mzzzzz4IMPPvXUU+FweMOGDdz78AP37Nnz9NNP//CHP7z77rsB4JVXXkl1usOHD1999dVXX3314sWLZ8+e3dLScsMNN1x//fWZtYvXGOBwU1lZuWzZsocffvj6669vbGwkoo0bN37rW9+68847AeCdd97h9m/x4sV8/yuvvBIAduzYcfz4ca/qsHr1agCYOnXqmDFjACAUCl122WUA8I9//EPtU1dXd8455wDA2LFjS0pKAKC1tTWxqOeeew4ALrroouLi4mAweOmll4I/njoVMGXKlBUrVtx///1XXHFFTU1NJBJ57bXXbr755j/96U/gjiG5g59lwYIF3MjU1dWdddZZjrPMmzevrKwMAGbMmAEAx44di8ViSUuLxWLr169fv379pk2bOjs7A4HA3r1733vvPQ8rnAUGfiLcMIxLL730/vvvf+2111atWsVN5pNPPnngwIFjx44BQEFBQXFxMd+5urqaf+jo6PCqAvwsev6In0WPaPpfi4qKAIAxllgUH0mtW7du4cKFCxcu5Gkmfzx1SqCkpOT666//n//5n7feeuupp57iw6sf//jH4I4huSMjHnISQgoeAsCIESN2S7z11luf/vSnV61a9YlPfCKLVSMeYiDDTVdX1wsvvPDQQw+pDNaIESMefPDBYDAIAHv37q2srASASCTS09PDd1C5Mb1XOLjbVEW5zKIBAD8L72z9WBXaXGLbtm3vv/8+ABw5cuTdd9999913uQPyx1ODHIcOHfrzn//Mh8kc06dPv+eeewDg4MGD8Xg8I4YgIgwoDxNRU1PzxS9+EQCOHz8+sFQcYHfz//7f//uv//qvpUuXRqNRvuXll1/miZuRI0eeddZZBQUFoI1H/vKXvwDAlClTysvLHUXxxB5PiQHAX//6V/2vnATd3d2JdZg9ezYAbN68ec+ePQAQjUaff/55td09+EjqrLPO2q1h3rx54I+nBjf27Nlzxx13fOc733n66af5FtM0ecakrq4uGAxmxBCdh93d3XwqSqFPHr700kv8t3Dw4MG333471VkyhZrPLS0tzb20rDGQ625KS0u/+tWvfve733300UefeOKJESNGdHR0tLS0AMBHPvKRxsZGAPjiF7/4gx/84Jvf/OaqVava29tXrVoVCAS+/vWvJ5Y2f/78p59++sUXX7z99ts7Ozv5DKIaxdTV1QHAo48+un///q9+9av6gRdccMGFF174+uuvf/zjH583b96mTZvee++92traz33ucxldDg83jtWlV1xxxYoVK55//vlvfvObnGo+BhvOP//8BQsWLF++/Etf+tJ9991XXV3d0tLCR+tf/vKXIUOGzJ8//49//OMDDzywbdu2devW1dfXHzlyROfhwYMHv/Wtb82ZM+db3/qWfuAtt9yybNmy3bt3L1myhOeSYrHYnDlzLr744iwuiqeK+eeOjo7du3cDwMyZM3nSZ6AwwO7mU5/61COPPDJv3rySkpL333+/s7NzxowZ9957r5p7+vznP//AAw+MHTv2hRdeeOedd+bMmfP73/8+abxfvHjx7bffPmTIkFWrVg0fPpyvmIhEIvyvn/nMZ8aOHdvZ2fn3v//dMdxFxIcffvj2228vKCh46qmnjhw58pGPfOTJJ58cMmSI+wtRIyk+/61w2WWXBQKB5ubmd955J5OG8ZE/IOJPfvKT73znOzNnzjRNc8eOHYZhzJs371e/+tV1110HGTLkrrvuuuKKK4LB4Guvvfaxj33sYx/7GGg8/NrXvjZkyJA9e/Zs27bNcWBNTc2yZcs+8pGPHD58+KmnniooKLj99tsfeeSR7FRKpYrXr1/f2to6bty4r3zlK7/+9a/VEpMBwf8PRJ7NSZmx8bIAAAAASUVORK5CYII=", "path": "image.png" }
Which solution has a higher concentration of purple particles?
[ "neither; their concentrations are the same", "Solution B", "Solution A" ]
1
The diagram below is a model of two solutions. Each purple ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the purple particles represent the solute. To figure out which solution has a higher concentration of purple particles, look at both the number of purple particles and the volume of the solvent in each container. Use the concentration formula to find the number of purple particles per milliliter. Solution B has more purple particles per milliliter. So, Solution B has a higher concentration of purple particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABnqElEQVR4nO19d5wdVfn+8565dXuy6X2BdAIEqQEMoFSBgEqxoFQpVhRBEEEQRfiKiKgIAoIdxICCkhB+KBCBAFISEiABErIJ6dm+t82c9/fHKTP37ibZcvfuLswDn5u7s3dn5s4887z1nEPMjEGIZRsalm7Y3pTONqVzJTjciIpETSK2//jhE4aUl+BwIQYLQh52CzTo5GZTa/pvS1eX5u52xLjq8lP3npSIOP1y9BADByEPe4BBJjebWtN/fPntjCuryssraoYPqUhUx2NJB3EHcYGYQIwQFYgKRAgCiBAEgaBfCSDSu1JfWzIks34leJI9hsvsSvZAOck5yTnm5nR2c3Nq/bamprbUbsOrT581sf+uQYj+R8jDnkH09wl0Dy+u3ZJx5cghQ6rH7l5ZVRWLxgCAzE1jgEAEZjBD3VAi/b+6z0pd9cet1Pq/IlY/WzoAYCRj0dFDK6dPHF2WiL27pemNrS0l+bohBihCHvYMg0xu1ja2AuDqkQB8t4xhbimgbrC62eqXrP8HA6xvn2FAwMToXzGpn4NOn/lUNOLUVJUDWLq5qc++YohBgJCHPcMgk5t4xAFALBFwR0tgVWA+73kysCHEhxQhD3uGQSY3E4ZUAPAaNqI/rErWdbc2NgMYX5Hss68YYhAg5GHPMMjk5oDxw+KO2NrcvHXtymw2rbf2vVXJeXL1xu0vvLHG87imLH7IhNq+/64hBi5CHvYMg6wyBaApnX1w6ZrNreldf7QPMLa67LS96wZdATJE0RHysAcYZN4NgOpEbMrw6n459LCK5Bc+ssegu8ch+gIhD3uASH+fQM8xZczI8qEjkwIl6HdYtbHhjXWby+Ox/vu6IQYoQh52HYPPu7Gg4Ls+j5k9AGWJaB9/pxCDDyEPu45BLDc+SlURCNz5ECE6IOThrjCI5ab0/Q6D9zaH6DuEPOw6BrPc2HehVQnRfwh52HV8IOSmVFYlRIiOCHnYdQxiufFRMqsyeM1KiBIg5OGuMIjlpvRWhQaxGxuirxDysOsYxHLjX/NSWZUQITpByMMuY1DKzciKJIDGtpT+OawIhOgPhDzsLgal3Kj2bdfz9M9hzByiPxDysLsYlHJTiL63KqlMDoZeIUJ0jpCHu8IHQm763qqksjkAteWDbHqRECVFyMNd4QMhN2HMHGIgIOThrjCI5ca/6KWKmcXgDZpD9BlCHnYdg1hufJTKqgTfhQhRiJCHu8IglpvSWxUatFYlRN8h5GHXMYjlxkfpYubBalVClAIhD3eFD4TclMyqDOIkXYi+R8jDXWEQy42v+2FFIET/IeRh1zGI5cZH6axKiBA7RsjDXeEDITelsiqDtwAZohQIebgrDGK5KX1FYBCblRB9hpCHXccglhsffW9VtremAIyvKSvNFwoxKBHycFcYlHJTnYwCaMlk9c+lsiqD8mKF6DOEPOwuBuWZVydiAJrTOf1zySoCgzZmDtEXCHnYXQxKuSlEWBEIMRAQ8nBX+EDITekqAn3/XUIMXoQ83BU+EHITWpUQAwEhD3eFD4TclMqqhAixM4Q83BU+EHJTsn6HECF2gpCHu8IHQm5CqxJiICDk4a7wgZCb0KqEGAgIebgrDG65IftPaFVC9B9CHnYRg1tudEWwj61KUzoLoDIZK8VXCjEIEfKwixjcclMaq+LmPAAxZ7Au7hOirxHysIsY5HJTEqvyAYiZQ/QpQh52EYNcbuw/Ycwcov8Q8rCL+EDITWhVQvQrQh52EYNVbqoSUQCeWg2+JFZl8N/rEMVHyMNuYbDKTU0iBiCVTgOlsiqD+j6H6BuEPOwWBqvcKOizD2PmEP2KkIddxOCWG5SwIjCYjUqIPkbIw65hcMtNWBEIMRAQ8rCLGNxyU5puzsFtUEL0PUIedhGDW240QqsSYiAg5OGu8IGQm9CqhBgICHm4KwxuuQlj5hADASEPu4gPhNyEViVEvyLkYRcxuOVGoyRWZfCblhB9jJCHu8LglpvQqoQYCAh52EUMbrkJ3l0gjJlD9BNCHnYNg1tuKHB3gdCqhOgfhDzsIga33IRWJcSAQMjDrmFwy01oVUIMBIQ87CIGudyEViXEAEDIwy5icMuNRmmsyuC/2SH6FiEPd4XBLTdk/ymBVRn8rmyIPkLIwy5icMuNr/d9b1Ua2zNPrHpfrfUTIkQeQh52DZH+PoGeYNmGhk2tKXRqVYSxKiaiJgLBNxKKBAGr4t92Y1WUbQp4rQwAridfrN/6Yv3WcdXlB04cPmVYVQm+aYiBjJCH3cVgkpu0671Uv/WF+i0ZV6otG9vbx8QchyNCCKH9VzCDRJ5VQdDwmNvKABGx5YeyRcwAogKuy1mPm1wWhEbXq66qKK8ob2lpbWttX9fUtm5pW3k8su+Y2lmjh1QnBvGqhiF6gFLzUHJTjgVx0+DnIXHQWxuoaEpnn1m9aeWWJnWDK8sS5VWVQ2sqcjk3EYuC2REERtShpBAJR8QExQVFBQSIBDMTkbrhRDqYJgkwc0ZyRrLHzIArOeVxVkqAJLN6ZYKUDCJPMghZ12tubtu2vdFzPXVus0YP2X/88JEVif68QCFKgl3yUAgiRsyhRJd5yIBUPPTYQ5CHDMDyEARv8PNwoMuNusHLNjSoHyvKErW1Q8vL4oKICAIQBIJ+T77LStB5N41gxs33T9mE2eYn9crMDO0JS/2GJev3klkCbW3pxqbmlpY2taf9xw87tG5kIjKIF1QNsRP0mIc2maNfyfdwyCcgAD9Lw4EU8geMhwNabl6s3/rM6o3KktRUVdQOr0lEYwR2iAgQRARtT/R7IgYLIjAC75mIrGUhGxWD9ddXQTZpj4b1e6neM5GUrEyQfe8xM8hjmXW9hoaWhu2NAKKOOGbK2Fmjh/TzVQtRbHTg4ZBENOrzUBAxC/Me5j0Z7hECDDSvMBZR8U39VhquWo9Ga02+r83qvc9DzrruoODhAJWbTa3pJ1auX9vYBmBoVcXQ4UPi0YgACYIgCFiTQtqMmPlidZ2RyLo2+X5NMPNGAYsChnZzOODgAJBsfySpbAsr9YFkdb+RyeU2bNiSSmUAjKoqO37auAHu04boIvJ4WF0xZNiQeCTiCDLuDIzlUwwkGL9GBPzrvCJUcO+ki96FPo5RGfatICQD2sdhaTRIKh4CktljZAc8Dwei3CxevemZ1ZsAxGORkSOGV1YklSURypLoe2zsCRH0eyYiYhVJ+X4NoOwJKOC86hvtvwb9GjZ+jVEZa1uUjwPyWDJISpYETzKDXCmbmts2b9qqyHFo3cj9xw8bsD5tiK6gAw8TBDiCiOF0jYeEgEeTz0PLQPSKh8xQDNSezgDn4cCSm02t6UdXrN3cmgZQO7SqtnZIzHEEwTG+jCCIfHti42QR9GsIyO8p8j1YDgiP8WPtx4xr4zs4MrDF+jXatrCyLewZTyfnyS1btzc1tgCojEdP3btuoJmXEF1BZzwUgsgh+C52Rx4CgdyNz8xgmZwKGFjAw4C/k89DkmA23ndnPGQJeKzdnJyUW7YMRB4OILlZuqHhn2/UA0jEIiNHjigvi0eUDREkjCXpNFpW7xGwMIX5Gl9r1A1Vv9Xv/chZmsg56MEGo+X898aqQFUT7GtbOrtxw+ZsNhdxxLwZE6YMH0ydESE65aFQfo1hoBPMGOa/R4CNzCafCOKAd9ORgUZ2WHXcEHQex3g00uRudpZJlMrjBlzJEmgfeDwcKHJjHdeRtdXVQ2tijnCIBMHGUCpaFujEqoj8ahSUVcnrnNKw74PRst0C+P4t6xfifEuSZ1Vs5CyVbWHl43gMj3nDhi2qXnD89PF7D8i8XYiO2BkPg64NQORncPJ5CCBv9EFB7ibg1Wjk5W7MJs7bwsa/zuOhRF4m0fg4A5eHA0JuHn2jXpUYJ4wZUVlVLqxH4/s1Jk72I+dAzMx5NSnTxOlXAayno+yGrUn52wPerLogSnfya1WBmFn6no5nagQS8KR9JVfKzdsaG7Y1Apg+qubkGRP68xKH6ALyeVghwDvjYcfcTaAOtXMe5mtOHhs75WGgVtVJ7mYnPPQAT/KWbY3bBwYP+1lu0q73xKr3l21oiDli1KjhlZVljoqQdZxsrIq+09qSGPOibYi1HkHbAq0sGsH6lI+AL2M2WH0xkbPanp/NsfUpLxA/e/nxszIvDU2tmzZuATBpaOUpe04YOEm7EEHskIcgR3TOQ8d03BRkDH0emqoFGTebOjo2AfiZY8tDaMWxPJTmt2y6b7xBxcP+lJu06/3x5Xc2t6ajQoybMKY8EROECJEAO0Ko12BNSoAFkTAWQ3k6O6pDCb+5wVoYtaWDX6MJoKLlzv0aqLtuOoythbHRsq0RSJAnpQS5zJLhStmecdetXS+Zh5TFz9pvj1BxBho64yFHSJhYngN1KOXpsEMiWIcK5mssD23uBlpq2ET6hQw0rMt7GKXv4+TVqiRLtZ2Rx8NAfcrwUDGQpWRymVPpXH1/87Df5Mbe42QsMmrMqPJE1CFSJiXg3fhVAAE4qt6Un/NXPo5WnPzuhqCng0J/R1mP4Hvju+6gA4L1Pc7zdDwTP8uAnTFWRRkW9hiZnLtu3cZsNledjJ+zf6g4AwgdeBhzCIaHfqbGejc6qiK2njXld3uhY6+N9nFgfqm2+05OXt+p9a/z2tx9f8c6O7ZaCqUsgSqVF+gL8wJszORy69Zt6kce9o/c2HtclYyPGjcqHnEEoPL/EZ0VJj9yNlYFfsewvbu2xwHIty06nvJjZr8ioM4hWBaXBZFzZ36Nsic2c4zAWKr8mJnsCCxbI8hJznmyfu372WxueGXyvP0nl/6ah+iInfNQeTR5PCQ4eZ51AQ81uzr42h1zNwCCRXBbqwowEB15aG1ewPJ1h4eu5Gy/8rB/5OZvS9es3NpcnYyPHDcq5jgOISLICeTklFVx/JpUIPPfWV8D+TbEOK/q6+VbGOvjFI5jCA5UQSeVqaA9CVqYvCqVzLMqNlfnSh1CZz25+p21knn34dWnzZpY+sseogCd8FD5NZqHOlHodNbzZT3rrvJQZ3NgNhTwMM+bRld4GNiykx4czUOGy5aH3up36vuFh/0wvdaiVe+v3NocE2L4mOGxiNaavGoUsUNQ6uNoC5OfJ9Z5HOPlmvFT5j0cIEIUUSpGFBWkjhIhRIVwCFGhfisc8xn1W4fIapytQRhvS9u6AuYJsPorR1gPXJ+JY+ykOkrUoXETxgqid7Y0/WfNltJf+RBBBHg4Im546GuNIKGi+8CdJXB+5ZuCDFTM1DwkCMPeiLGmhmkiQlCcjAqRx1JolkYUD5XRNfUvvy9EdYQIsmfiENRxC7TSfpfgt4s6zvh+4mGpvRvbQ1U3YUx5WVw9505Aa9RVNne3sKPBbuncx1HDqewWFWEFujo7tjqYXA3pida4sIfY2BPmDpGzbfQMdkPYWoD1dwI+DruM5pb299/fBOCoqeP2Gzu0lBc/hEU+DxNBv8Y85xQxOcQCHuZlDzX3TDxlmNnxMzCf2VHjDfu+TD4PO+RrmNXIBj93U9ARxn73jc/GoI/jMvcLD0vq3WxqTT+xaj2A8WNGlJcllNYEvQBhFZqEXwvItyTWx3HyfRzLGOtNOKAokTB+jbYwZOyMtSRCCG1PKBKwA1HrrezQr+lQGbVnIqiga0NbNqLKiuSIUcMB/L9V69e3pEp5/UModOAhIsIySvkCpLcEGBjQHd/H8fOMhieWOQEeWl9biAD3gmwUho1Ry0+7B/J5qL3pQIYh2PuTf7a6spb3lAX2WVWRHFlyHpbOu0m73q+efSPjyuHVlSNGD1PPnh9JFdSkjJ8iqNBn8UfBQXffmOq47vXsGEUjv++GAr2bnfYQW49GTyxiouKCioDxcQKjqzpEzp7J47i+bWFX8vsbtrS0tDkOXXDg1EExD9sHBt3joZl1QHTwWfLf++qzEx5q/zro1wRgqqK74KH1YoK18KAfZD6svZud8hDvb9hcSh6Wzrv548vvZFxZmYwNHz1MABEiQRzJy9do9fVzwyo6hf++QMsdlX8JRMXaYpDtj9BWy/oj1gKYUTB+hKzshp+3tv6OtjwU8T1qO+dOIIpWjFSWikhHziaPExEkiA2zxejRw8vKk57Hf1n6XsluQQgEeDhi9HABRILeqPWadf9X4Z2lgDdt30cK/BHNnIKsc6Cmbrcg6LPo41pmOiaD4/gM12wP5iuFf55sLLQfDVgfzfpu1rsRgCNQYh6WSG5erN+6uTVdHo+MHjfaMVchQvnXnfLURAio+IUo7wnXqpSvNfoJVwrie56Fvq69E3n+pylABDN/VnfyvF/LQlMTzYvnKRjbcyTQr6EVJ/DeIRo1ergg2t6aemVjY2nuQoggD/OeRv9OBdUk4F/nZRINZyyTTWRkn2elHcI81Upr8vfjzxIX0A7oz1uOCQoy3Akykwr+lsz+g/lszv9ePietMpaSh6WQm7TrPbN6I4DRo0ZEHZGv99r+B6JTcz84GJ36/k5Aa0iAI74uBC1PQQ0rmP0J1rNgPJ2CvIyfr7FWpSDDH7B4hTmm4PZARSNouyAIMccZNmIYgMffrE+bGWdD9B068NA+e4G7ExgVHKj7BF6Nj+NbIyIBslXOPAZ2qGHl+0f+zCoFMzrlZyohgllFkK8+ZH2uDgwsYDIVPnHWnyolD0shN0+sfD/jyuFV5bFkPBL4nh2+v29P7HtHwHqMjoAT8H6N6ne0EnnXOpjNFapWFYi38+sOnezBRl4FPo5DASsEFqLTPCLruniBr248nSHVFYlkXEp++M33S3AjPuTYEQ+Frzgcyech5b/XoxnUM59flxAdOONHOp2oQEc2ds7AoF0UnfLQRGdB/8h2ilgeRgKqKjrysKZEPOxzuVnb0LZsY0NMiOrhQwuiJ6vuHVWZrK/B5uroa23zLOqVCnwZfcVNvobM3gCIwCvlvw/yQBkuKvR38qNu4+/49y9wnh3zTTZP5HTYz5jRIwCs3tzw9rbWvr4XH2YEeRjU/aC36/ieqc6D5LGL9MxKTiAKM0+7ec4LFcdXCgSYhg6cLPiMzSr6GUzfNzd9XpqHMNmcAGM5yGrf9wl830BURSTAo0vCwz6Xm0Wr1gOora1ORKP5+bC8Xrgd2RP/SgV8V6XrFIiHgxETqcQ/s34lIjARAn3lee/J9pgDMEWDYHxuXmGtgR+l52llXswctEgFMxgEt8SikSFDawD86611fX0vPswI8DDSweYFs7aFT2keJwM9YpGAZgV5orKH1nMBzIhiy7Qds1HY92z5A/IVzWRnKNBTan00sSMeakUryE8HI0eHKBZxSsDDvpUblZkri0WG1A4RpkM3aDE63GPfMoDNlc3TJiHI3278CC7YA4KWhJlAMPM2mq7zwu3Wq0Infi/799LP80MEozlSx8rL3RB8xQmes80CKKs4bFiNE3Ha0tnH397Qp7fjQ4sAD2us51uQcTOeLBPyfQp/3gk/a+sYL9vnifGsO+Eh25mYDOuwg/esfajOeNiJz+UQHJVVJHLyPf3guRVkDwv9L91zJErAwz6UG5uZGzN6hNUa4T9pvgdh4lg93rKjXxMYzdDB5pC5rwhajMJXEXgNjCA3Wwpe8/2dfIsX8Fny81CGYfoz5J9nnrZarpsYGw7R6FEjALyybusgXft5ICOfh/l+TaD/raPN8zmpoo9gVbtzfzzIw52yMchAdP6ZPN8HQN7zUpgfdHwF9LucBUHlIhC0x4FuRgp8F7WfvuZhH8qNysyNqqmIJeIBL86fb9hoR75NENrLCPo1ToenmgJXH8F4WPsv5i7azvHOdMdqjf8Zv9M8MLoXZqmZfMugfBxTAc33sIxfA90JZnLh/j3mYNagrCxRUVEuJf937ba+uyMfTuTxUAS0Q3EvMD6O/DwLqzvoGN9EgGyvSic8tNk6n4dB/8VnIHWBgVqDgt53ZxFAgT3Oz2aaPlgR1Bq/6hIc2xWMsMrL+5aHfSU3addbubUJQM2woY6vHfZ7Bmo6/jMJFd8KIuJgDi/PMyp4qlWUa6Kh4D2DvdM6c8ZBHuRzQr1XWmP9W1+hYPmXH9Vb3TQKIgK6md9vCt+GgCiQRTbRWU1NFYDXN2ztozvy4YTPw9ohTl4s72f91DxKNsoOcgw6TmFbNae8HLD/JOf5IwhGQ2a+NwSYRr6OBPkZ8HSQr0Qdczo+x/JsuT1PzuOqPhY6Pn2mo83EmH3Kw76Sm5VbmjOuHF6ZdCIOFXTECcp7Djnv2mkLIAJ9loXzovvRCoKWBAWWBDCrF4KAHb+SmVGt4G87WpgAF/Oy/ULAr1WhINttv2MnLPH9W6KysngsFvU8fn7d9j66KR9C+DyMRjv0p2hGAcG7k59nhYqhhL3LTgdfI8BDnRk0qoFAbO6/z2Mg8tnY8fPIzzbm8TBoyQKxnuoqVB0kdiRQfubB1sspT0O5r3kYKfoeFV6s3wIgWVlJgeovBfKmWjvyMzVWR0Tg+4vAffVfgeBd0QNHWJppiBh2eIpdf6NwxsbAnGl2GEtgZiNLBHSY68+MmSI2s6h5+ZOn2XUaOH/VMU+yx+yBIASBHCLJ7BAksyCqGVKzedOWJWs3HzRuaB/dlw8bAjwMrNkS0IuOPEQgJvJjrnwewr5HXo7G56GeroY5n4c7YiNgxvHBZ2SHWf78OXHg8xB26uJOeahmKWB/tknFQ+kxfB4KYsmKjX3Kwz6Rm/eb2ja3piNETLKttdUBOwBJT5WQo47qvxQmeiQBgKUfE7GM6ny7qv6IYG1I6NsNE+kIMAshWOdrtHD499UoCZmrKaVUP/tsyJ9Ljcy9V69SSiIhWRL8+f3scDgpJUi4UqqRmZ5ZbcpjNvdYz17ssWSGGiCX86Sa5c9ldiW7jJyUHhMRtaeza5tTE6qSfXFrPlTweQifh5CeY3kIRBzLQxXvSEEElspL9XlIiAgB9quQwRiZFQ/BggTr3osd8ZCIICULQZIZvhwBAAemmGTJRIaHDACSNQ/tyGp/jhSGKyWIPMmSlFWzc6T7PHSlZJi1GKXlIeU8zzVzU2T7kod9EkwtXrUOQDJGbS2tba0t7W1tqfb2bDbrZrNuLpfLZj3XzWYybi6Xy+XcXNbNZaXnSc8jhr6jplvPj2B1H52+N8HoSQhilgQV97DKwrDUqiGMOMmAVTGSpZXIDBhX99jOYaxsl8kBmdU5YIahk66RC/geONS4B+ihwKbKLqhDlirg0xqvXhDiyRiAp97d1Bf35cMGn4etLYqH6VR7TvHQzbnZrOdpHqr/c7mslFJ6HjEjOAqX4IBMlUfz0NowmCyhYZfSD+NfS2k/ycbGkSDJTKYkEoSiiPpMHg+DeclAVGXPxBFC22NWPYe6B5oMXcFmCwFm5lOdS873+KjPeFh87ybteu80ZwBQLEJmbJEZiyBURso8gfp5Nk8sAeyQsL4rwfyVeUoBc4ft3YVgZkHCCA2U6CjLILRvojtr1PuCeaeVP6x+JEGsPwN1TzQ/SDBLUitVESQrGYIg8qQ+E0fZMaj4iExAx0KQJyWRrnGoT3rEDpH0TJcHETETEI04aWDd9ua064UzqPcG+Ty0dPIZJXxLoOEIAZYkBADDQ01gk7U11ku5MIFYnijAQzMROluVUbrjr9cqiWhZGy1sdF5vp2ZPKLfm4Ar34EpvTqUk6sBDqC2CIZVnREbVlCYaHkphvXhmQWAmCcaOeMgmhhKQUsUWLPqMh8WXm5fWbARQFdVRkgqAEajbEbDZdZ5sS2x2I+9mI+9k9TnMTuamJLwTq7PTE65+CP1o2XJFZVQokMFlIpIs9c2H7t3U8VEgZg5qjQUBazO0oCGyLkevtwkA1RGemZQzyvjYGldHWyYL6MfbgDVhgkjCxuRgZhUJC4JkEoBnvSpAEZEIgszdRYAZgCBOJBPpVPq5+m1H1I0o+t358KBTHlKQhwRBtLQ9KgRmJ10B9QQKYjuOAWr+c7UiiOEhC50/ZDMhup/HNTwkBufxkPN4eP+2yM3ro/VZKjjnZ1ti2IDxMf7m6Mzpw0yoD/J5qJhmV5e2KUfAaJD6FrD2jwjEJIB1WXo1ldyQo7czTosnZiWyZQLT45nxkawwGtTXPCz+9Fq3L369MSuHlkUQiUSEnsdMzxDsiAjhn62Vf24qa5M7jOM+UuZeP6ZtQlyK/NweAuoDU5MSwubeTEgEc2dUTodt8BXI0QAA/tssbn4/+lxr5+Jd5fD5I3LnjshVCimEkFL5NSpmBqADN48ZRJ4nmezKPnrdH8/kiV2p1xS3S+LlpIqZpcvsetIDZaX0GDnJTNGmxuYh5ckLDwwXbOg5DA+jiDpq9t8IQeVrFrZXvpmNrc5GN3v+ra8QfGhF9tTq1LSkp2YRJtbzASj6BXPMJm9ocjeGaX60rkHayzasa5bi7FWxZ1t2ncSYkfQenJqpFtJuYWYSQkq9zhR8HgKA50kQeSxVRUJlbTyQK/nFtsjdW5OvpDr3LUY48tNVLYck23XuxpMefB7WlCcvKh4Pi5y7kVI2ZiUAz3F0HTEQE67JRb+5adhdDRU70RoA/2uPHPd29cONMV9Z4Pf4AiafElgxQ+o6IvyaVId1Ngq05ntro59emdiR1gBo9ujmDbFj3ihbkXJYrz1m6+I6DISpc2v++T3mOoYn4+8Q+xGT78nnc5d0csoD0NAWzivacwR4KNQ1Vzx8IxP/+uZR9zVVLUklgloDoFXSgub4ufU1V7xf2SaF7XCBSatZ59qP67XP4ueDpTF6OjbXnNHcW5uhT77ZJa0BsCLlHLQs+XrKgeWa8aECnWKATh6wEDaLFKz28nUbyr9SX7kjrQGw2RO/aqi+YsuwlBTBDA7IA9BYVB4WWW5WbdwOoMwBbH+RyV+8l4tes2Xo6my0i7v67vry+Y2xgt4nk3WD6muw91I9vejMi7H6YtWnyaOz347dtblLZ1KfpVNXJZ9rcYxysclWqzyfjqHIdFvo+hrsd4cj8vp6bGyoV87Kz90QmFlGY1EAb24Nx4j3EAU8FEA7xF1NQ360fdgWbxeZiKdbY/PeqVmVjZDJ4gO2YgCTTwEZF9ryUAZ5qP4owMNGF+e8E1/e3o0nrtmj895JNHnqcLB8VooTLMMij4cAIIiaXZzxbtU/m7o0JejaXPSqrcPXulHbK8uy+Dwssty8s7URQDQiHKs1BCLa7Iprt9W279Sp6Ygr15UtaYvm9z5BNx9oddfZGWk0xYZOgSpSoXfzvbXRBY3dSFo1e3Tuuwnj4+j6gtmlX2+C8XQcE/mr1lX/M8YowubI8yJEnWIgQN3mtxvbunW5QlgU8pDwy8Zhi9PlXfzzVknnv1e5MqNJYj1Q394AAR5yV3h4dX2sW1qjUJ+lc99JwNQ0GCiokKqjoTMefmNdxcp0N7K8Wz3ntoah7XBsL1LReVhkuXm/JQ0ATkT7nCZvdkfj0O5qjcLFa8uapbDeI5SS6w4FqHWXVQ4fAUdmJ97NnZuif93W7QR5s0fnvZtslkJnfAP2reDeW33RwRTruEl7N9q1IfK7qwlmFDKpMXWA4xCAdQ0tPbhiIWB4yI6jIt/fttS+lYt3aw8tHp3zXmWrJzSHbU8w8nioe2Q0D/UzbylhefjfZvHA1h7Wd55rdZ5tcchXHGN9EeShrUVoZfzllsRLbd3m+VbP+VXDUBPvKwe8mDwsptxIKRuyHgApWAhhHiF6Jl32RraHk7y3eHTvlhiZCrSfgjPZHF17khIBR2ZH3k2zFDe/38NiXH2W7toUNR61idAZQvh5JRvqBxRE5RH9uVBVisn44X720dY+AAgBAE1h+qZHsDxkASFoZTb+XJf9miBaPLry/aROw9mMif4RNqL2eSh0B6lfNjI87GLkviNcsy5mu0+VfYWxcIpOthNH5WvWZ51fbk707Fhv5eLPZso0k4vNw2LKzXtbG12mmIBDwo4fIfD/0r1qTPzt1pgduwS/8uePPSgwJtixd/OXLU6zR50epSu4e0vUXwhP04lY6uygMFm6/NyNrlno6E97QD4z/C0MY1VIep4TcaTkdeFCVN1HAQ8faB/S4139v+bY+qwDwM/RKh6aVI7t4dq5l72gsVetKytSztqM3+/uVzx8apteZGYC3dZTrVF4pKVK2T8pi8zDosrN9hYAZY5+lpQdaGfnf5leyU2zR8+1RWCHbJu+YeRXoNCZVUG+d3P/tl7d9WaPFjRGAb8FCGASeXbPdi0S/G5OezVgqxvQzEDgWhnvhgVRPBYD8OaWMJ7qNoI8XO/F17u9Wj7pts0JMrlY05Crq0FAkId59FN/q7Y821KENrnn2yI2YrIV0kBEl8fDF1p71U+3TTrbpAOg6Dwsptxsbk0DcKKqbVhXptbmeuVGKixpi+gRCmwyJta7CSjLznM3zVKs6H6urgAr0gIAGKQlzxw9MLeA6j8mY/5Mj5/mJZmRGX7F0VwrkK3xczQeBbC2ISxOdRtBHr6W7e2QnxeVqeNA7saaG+tlB3oy0MHLfr3XrAOwLiuCvR26g94+EXr8DcD8RjqyPtdzF17h1UxZX/CwmHLTknUBSGWxha4IbpVFkHbjQ1ott1n6Qu9Gf74z72ZZMa7Ycy2OrkEa70aNEYVmG/wtbCoa1rsxOwnUF2DqbsohVskcnfkCkAkXhOk+fB4y1nu9tXbrcmJdVuRVpmwjjJ+d3ZmX3SJ7+/BDHyW/r933bmC8bBBRs1uEY2VY9AUPizmIQeXJsowEdAckAdu8IhxiebswVxX236DW7Ch340e5Ad3pLXwrRwRIliABaXmge8kJvD4j/l9L9H/tkSaXYOYQmFOenZXI1UWzQpCUdo4eQOq+G5UPYpYAvGL3fH8Y4POQ0M5FsHbrs2J8zFVjvpXi6MjYjofqwEP1h/kdxr1FvndjQjjtbRGzBAmWckW6CE9cfS5CZcXnYTHlpjEnASUyMEO3aXwk1/s9j4tJqBGXKiOW77nYe9DxDQKmhov16NrhEqyrkkGbI8GC6L0M3bAx8WRzJ1mDV1NRAHslcp+tad0zkQNMQsDmkqUURDn1zHihd9NtBHlYHChGwc+YBHnIO+Ch3TIjKXd1gK6eBfJ9HMNDDmYVqpwiHC7p6F6enGQUj4dFC6ZyuZyrhi6a3jaVZKmgInz56oh5KPXwSD02P6/Psgt9N70/kyrHzEiim4AL7z2B/tYQPWplVadaY7E0Hf3OxiF/aiy3yUcVbQUsGAPIZIog1h8qBHjIxdKbKiFNDGW9a5+H1BkPg2/Gx4rwCExPeMGj2DENpp3CzyGOK8bhhgnXjPOSKB4PiyY3es4qIwt2YpoZiSJM6X5QuWtrfjZmLrAq2FXuZk5lERR6zzKpvRsiVhUBEn7nFdFl65JXrCvr4t7+1Fh+69YqU7GyZ6vXCVFQ5iVEF+HzEASgVhQhkzGjTJrUsMndkM9DdMbD4JtZ5Twu1qubWOnwcTVunncD62Urqvg2b2y0GHIT8diPUYAi8bBocpPKuQAcMwNHIGrl6bFeKU6lwwdVuKbDrxtWpaN3c2xNbxXn6Go34N0oqyLtjEd/3R59qKF7Zdd/tyXvaajUtQb4NXLb0ZgJ5aY78HkIEGGc01trNy3pQc+ZBxX0cve97NOH9Ur1FG87927MaFDr3UyI89hobzmzdyxFCD7FxeFh0eRmU3MKQHlEu5wUGMl2WlVzb/Z87vCsep4BdMuqFHg3zHzskF7JzbgY76nIRzb161uV51qcy+t7Unb9V2v56+lowLvR9ax4PAbgvYZw5FQ3YHmoHsbZ8fZe7vBTNVlSToSZSQ9Ad73s80e6lU7PH9dLRqaRfxTfu6EAD6E7/T5d2yuRnRrLVgi2NdMi8rBocuMnYv2ZhLRDOzOWmRjrYexX6fDZw7JsRoRboQl6Ll3P3Zxe684o67mr+dMJKdPNySaY963Krb1o5fx1Qw2gvUL//MEIg6luIsABEKFWuHMSPX9OKh3+eFWOtROhn2e1e5h/uuJlVzv8gwk9fASuGZuZmPC/mu/dqC+pj2V6u5iJ6Iu1md6o28nlzfr76pGJwEALpiyCPQhsxpVcUdtQJnrynN80LlXtSAJZ0dDGpbPa085zN2rLrZN6KPzHVLsHV+j4Od+qCIBXpCNLdjx1zi6xxXNezCTI5G6sbwjADdWmR1DejSA6qawp2SPuATirNjM+JqENp3meA+0uXfeyzxjmnTei24pzaq37pZG5IL1970YfvzB3w+Aah787uofDDo4pa50ez8L62iZeKwoPiyY3gac62GGpy0kjI/JHI7Z3V3FuHNd+THXWWBW9e2tcgv5LF3M3Km/3s7puK870pHfzhFShVdHejQTowe29bSn4XyrBrDspgrkbp3j13A8DCngomUdEvPOrGnqwq6kJ92sj0wTd8aB4SMHcDWCc3S552T+YkDt/ZDeSOKfWuj+bmC7YrdmnPkLH3I2aDePTQ3NfqM109ytPiOY+X93c8RuhSDwsmtwIIWBajgLjR9h0PvJuMffHIxrKRJdEstLhX01sO3VorjBmNg/8jmLmnedudN6u1u2W4kxPeg9OTtVE4FuVgtwNuPe9VS+nE3bQlOUNgEjx+sQ+DOiUhx+Jt19Q0z3FmZpwfz+pVctMIHfTwcvuXoX0BxNyd+++60in0uFbJmV+NjHdcbc2U9Hk0XNtkYVN0Z9ujD3XKpa0RWzuRn3mqjHpbinOjHj2mmHbdTdHwMsuIg+L1uZnrgWYQYKYGULNLa27kADePe7eN3brnQ2Vi1p3lub4wtD010ZlhjimZRKCzbywfkUg4EPtxKrYW4XAvVeKMy4qv7Emvq7D9NQFOHd49vtj04G/tRUBkP52kkisSPVWuNtZgAM5qaJalQ8PgjyEADOrlRU+mmgTNbivubor8y5dPDz1xWGZKiGh1kDTw00EmxEMHSukBTws8LKDPPzEUHlIVfquzdF/NXQyiG9cjE8f5p43IldlQgE/NWHe/LUh9tdtBXNsxwFUOXxQhXvWsOyB5a7qbr9ydGpKwv3xxrLWXU2EcGJl+xdrmj1G1jML5fWBl100udFWhcFKBYSd31BFHEojuMKR3x7e/MWhbYtaEq+mY6+l9JCW0VE5Ne7OSHoHlOUOqvBE3ozALEC2jc6f475Q72lH3k2+F6rv+iFV8sW9Uvdvi9y5KdLxrlc6fGyNd8nI9IQ42zjW34MhEwOq76alF/Na5IH0CE+WLFkCKIv11UqnH0j4PASgLZ+2WoeXpfZK5H7ZUPN6ZofNCh8pcy8b2TYz6b2VjrwlnTfTkZoIj4vLsVGeqJnAev075u52tze6WJESzPxci3NwpXtwBcbFuD5DTR4BqHZ4XExOiBdyNfhmecr5/rr4jibYbvbo8abo403Ro6tzPxrbXuWQZD6lJntEZe532xL/aIxtyBXyvEzwwWWZz1S3DnM811/1E7aXhaVUUxQWhYdFo/KEIeUAGlxUMUPNoqgm52E9VJGZYe79SMc7a2g7oV2tahwVQkCvnBkRKkL2/5Yg/MpUL6xKxy0AThuaO73WXZPi9TmnPktNLs1MelUO71kmrTuTtzfkeTcwaxsW5RoqswKzVmcu6wIYU9mruUs+bPB5CECtnGGjafDIqPfDEdu2yMiS9uSSVLxV0rvZyO5xd3LcGxP19i9zx0Tdu7eVv9Qefb/Dkzkj6R1dlbtkdJbBpC1pl8ZMMfOzLc5dmyP5U9ZqQ3tsjXveCHdOpbcju2h//G+zOH9NsisTNj3eFK3PVtwwtn1awgNQKfiCYe3nD0stT4lmj15ujzJQF3XLhdwznmESnpQugyUAAiQHVukEKJfNoUg8LJrcRCJ2V/7qTgzdSc4MpTUkwGoGKWY1NaG252qFFmHXulTpEe3dkAnEdWjaTavS6V3U50oEYGICk5Iy6K8i36oAO/FuiJmnJb03U70fDUggu/6Z9qVjRRz78yFAgIcmrleOSICHIx3vlOq2T9e063XoBanFo3+7LXnRtqod7XlFylmRch7cHrt6XOa4GneXPFRb3kvjm+8ld7L6woLGyILGyJxKec8emSrRSa1DvVmeck5/p6vd6gDeSDlnrq54Ykpzuc6WkmSekpCelHsnc3YNIo8105QfYL0b5dcQEYrKw2IWwqMEADFIGF1U23XBnpny+0q0LWcG6dVz4OeY9Z8w83OtkQe3R362KXHLxvjCxsiKVMQmjAvy5x0NQnBjUIMsgn/SqVUJHAUB7wambVWrz/hed45Pi2X1dVNa7DgAItFwIc1uY0c8NG3bHHyveNgi6Sv1VXdt2/XzvC4nvrQ6edfmmPVu0BkP1ZtlbXT0GzvTGotnW8QBSxPL2gpNndpbfVacuqrbHaQtHn1xdQV0+UpHRqpw7j8FrEbhqLf6cKxeiCRLIYrJw2LmBYbEnc1pL8qUsd6Nfj7BzCyEzeBA+TJkvRsmvXIosV6/nddmnRs2Jpe0Rjp6j+NjfExN7hujsjWO2kFPcjcKBS7MTr2bwG9N3lrnbpiPqnEXNfdqapV9E2nLXSJiFgDKokWYnOzDBp+H1rtRSf3g9LOk7YXyqb9aX/1OphvPwrXr4wycPzyzE+9mecr59MpE1yerbfbo1FXJB6ekA4G8pt/NG2I9m/T2zbTzy83JC4anAJJS161AYGnywURSezcq2eUP1lA1EEYxeVhM76YqHgXAUjKgv5vuUDH3VaUnVKQQtAx6xQw/o/zDDWVHvlW1qCna6VWuz9Jdm2Nzlpffvy2689wNuuDdkEn7o4NVydsb8rwbnb0BKb/sqMpcb/o4AcyOtduzkFJKyQBqysPETbehecgSBCmN1rCx3vBZobj3o02V3dIahevWxxc0Rc3DiQIeNnnULa1RaPbokvfiTR4Fefh6u3hwe8+f9j9sjzd72kYy+7V8q7YUeO7UdjY5Y2nyxMXiYTHlpjoZgx8AkmTfk5Dmm5jqmmB/i5qhShcTGl188t3q323b9TIdzR59a23iG2vinfojQe9GfX4nuRtlkRCQmMK92YygsY3QE5iyqvpXR3D2sJ4PVPlkZcvwiKc9QTsOEKgIy1Ldh+Yhsww8RQoFPCSiV9ojj7f08Fm6bn3Cn6s4nzDXrIv3zB9Z3i7u2hwN8vCB7q9TFESLR/9uiTKZFcThP3ds6hIMSGamwPXRPBTq4hWLh8WUm9FV5QDaczZm1i5r4bra5GutzYFI1lbo7Peq3uzOWlx/3R69uj7W17kbn0/B+QRVjd/4qF8fmZmW7MkQ0AnR3DHl7eqwkvUVy2VyAMZVdSM7GEKhAw+JdejAtuqneCil/F1jRY8PVJ+l+7dHgLy5JQG8l0YP1jKz+M2miFrRTP24sKm3gcyLbVEbQwTCJcD2SZvspLlWYAaDJMtcJovi8bCYcjNuaCWANo+h7qU+acBqjf4+DCKWunfKj7yYr3q/vFvr/incvSV2/7YIAo5Mt7wba5EK9Mj8igLeDfylrkxtisyszJL5D3VtFd0MqcqEvHBIUxl5JrOgctIim8sB2K0mlJtuw/LQjjnQNQnYmF2/bnSdpalePcx3b47CejdC+wK9FIhmjx5rEJaHu+xE3SXezwn27SKAYFxpvRu1XTfOs35eiszDYsrNkLJEWYRcpriZ5Yi11wAob834b2pdLmY26SqSkl9qjz7a1L2lDi2+vy7e5BUmcYqSuyEzXSRD5x3hJwIIRCrJon6qdORDu7dMSXTVxxnuyO8Pb5gYySp7IlkLNAmHJceizpBkrxYt+XDC8jABeFKyTnxaL5tNXwm9lu7t5V2Rcpqk0AyRUs1Y+kCvB9AtbIwoHjYVo310ZcbRFU9pr4D2btR24xOwTXL1EQ+LPCJ8THkcgPA8EEnjv6qY0MSHehS/rlCy6pRjEN3ZhTLkjtDs0V2bY0XP3QABrbHzhEIXN9T3Iz/nDQaNjcp761pPrNl1HueIivRPRm+bEFFjUI1ro6bukgxgRGVP1n4MgR3wEAjyEAze7BWhvru8Teg1woVQTC7C+kIptbg5moqxrIIawSBVtzoAmzsHA1BVCe33meJUH/GwyHIzqbYKQMaV1uZzUDVN343NWhkvgdZl6ZX2XtkEHS1337uxbzrXI6M4KIxyARDIz0yx8UUrSP5gTPvfd286vjo7qkM/Tpngj1Vmfjiy4eu1zWXksfFmmVXnFTOQzboAdqut7M0F+TDD52Gg2iIRyF8wAHotVQyjbdeqVyv85POnZ6jPaqapMQ29xOwy12ZIYWpzCoHMqa/FEqwUueg8LHLhY48RNU+8uznlcZxIMkvSoxaM1ihPBxFBUrIjtJpKya+mexhGWdRnaW2Gxsf0wndB78bqTnf6bpTOGL8GtsZhOhds7pHIxr3Q62+QlDwmylePbvOY30w5LZKkhASXk6yLex6zx+xKrTJsPXzl9hNnMhkAew4P5aaH6ISHgIodhK1LFEMXANRnaQ4Rm175AnvWY9gOr0qntyPyKoXxX3Q8pfMYykZ60ngDOoNj+Y9MJo2i8rDI3o0Km1MeElLqgDlQbZEmfvYkgwLZHKIN2eKsNEgm0UV6JITPqq7nbojIBDd6wh5779UKQ3qXRASbu7GWkzxmJpKASpZPSXh7J7L7lOX2TuZ2S3jag9WVgmAVQENQhCXHopHqRJi46SF8HnpS6bj2HFkru+JeXbQoqxJpv1hy3pz2vUGlo/cJ5t5PsD27zFNVDmmfO3OaKoYyT6gfi0hmIqfoPCz+bH67D60A4LmeBEtfNX1vzXgENiohybzBLUIUXZ8140O0jvhzkSCgLAWdoOiQu1FOC2zuxvo12jKY4zFr/xyGwWTvH0vo4Nhk47SHpVPCJotp/0o9EgxkszkAdWEk1Tv4PFSmHB14yOhuGbFTqLWArOKA0Mt1FwDMTErLw4N7vYLIYRVZBrz8DINNCXvsd65oNvYZD4svN/tNHAWgIesJdYONz6bvtIT2cVSlHJBgImopxrJZTa4eXoa83jytKUIIZlavMFmbYO4GupbJ2rlhrUNaa1RHnzFez7Y4z7U6y1OO1RfWVoI8VjpLgbEn9reG975Pq71ZLc1E6XQGwJG7jSzCFfkQw+chaddGcrBqAQkcmOz2fHcFGBvTkweouylIgHFsTW8TvIdUSc1D4PRatzf6dVx1ZlTUUx66x5KhFn4zHh8A5Y8DUtXFpRoGIPqCh8VvWh1VmRwSdxoyXpmUbcJh3emnI1vWY8GFzd0A8KScHPf+2+uZ3vcsUw8xIPQK7QyocVjQY7LMuu75fVlKkFQ4q8em+0PYAD19Ci1rEw82RB5vjBa0QkxLeidXZ0+syVY48HxfXVXlyJOsKv0gsLTKa+9xwI8FVCRVkYzVhJFU75DPQ6EmJ5AMoRSHSTLvFnNHRORmt+dG95jqnGWIyd3g2Brvrs29ar05utol4Xf6/XRi5rRVPWl9Lnf4nNoUVM+RsXAIenkMz/e4fU6qSKroPCy+dwNgr9FDAbg5V6Wj8uIFbc+lqVBCdZqXUc/126LS0ZNYMytPRM3eoRO5NpNnvEnAZmjMT6R0yuzQfIabPPHN9+LHv1V2z+ZYx7arN1POjzcmj11VdfvmhLpnsCLCTETafzF21SqOlKzSWza3lU5nAewzprb3VyNEgIfB3I3va3ssP1vT2uP9m2VC/H45xa6DK+XBlT2fIeDgSjmrnJl9Hs6p8r45uidppqtGtY+OSumPxuyUh/ppsD5O3/GwT+Rm5phaABszHFfpm8C4DAnf/iMQWRxS0Vu3dpxya5GX8X0vQ7/ZFD3r7dgn34yf8kbsU2/GT3kj9puNkbUmqWzGQOkAzOqUPTcGL085x76R3OUwuRaPfr0l8a11ZS1S2IY9xWno6hWpi6CiLSmlzLsyJBwnnUoD2GtkdS+vRgh0jYdHlqfqYj2Mfc4Znhuf0FpjagVaZb45uocD6NQsxdYHh6niXzI68+mh3TvPq8a0f7Qi2wUecsl42CdyU52ITR1aDkBmXMnwmCXb/AUzqyypiTgYIBrheCMjvZoy5qBKz2ZGmLk+K85eFT1waeLqtZEFDc6zLcL+f3V99MCliU++GX895SiWwM41GRibrlyb5e3O6auSXW8kf6oldtF75c3S1PgZCFQEZMCXUXGlBNn7nc24AHYfVh3WpIqCfB6yqhia2IFttv7K4Y1dnLE/iAPKva+PytisjaokEAlmMHhOpbyl+wt+ALhuQm5C3ETfqi6hT41unpi6eWKXrHKFw78c33JcZdo8DqYmY7qKNQ85n4esY66+42GfyA2Aj00bD2BLRkYgrWpK67MR6e7yQO3m4mG9Wn7sEmNPmHH/tsiBSxP5czUW4tkWcdTy+F2boqyCLh3bm1GzBACNHp33brenEXg7E7l1U1KaWCxY85bMklnFULYypa6MEE57WwrAMVNG9+QShOgMAR7aeIFUM4Kam8KTPDIifzy6q2uEKExNer+a1O7375DNDyqTSQw+bah73oju+SPfH587vdaD7YNlhp7KTYU79OmhuWdmtH1y6M4Cq/OHpx/evXl2mavqobYcbOoz2upr/UWQh/CYyelDHvbV/AbVidiUIWUrG9pFzs1GYw7p58qTLBzypBTCsXk7QUIyH1Ke2TuZeK1HQ+bOG+mOj6kEL12yJvZgl8fjXl0ffT0lbpmYMbQhKU0nDnDtuk4yNV3Bgub4nPLcoRUZ01slFculqYlYzbWdxJmMC6AudG2KinweRh0mCRZkeMhSkCOZd4u6Px7VcMu2qtVdmPhmXk3uxvHtRMSmb5BV9UPPD2c+R7h2QnZmubxk9a5vaKXD103InTbUZVNLVTzUmUc7q6wQY2PyJxMy3x2TWdQcWZehJa0RAJVCTkl4kxPyoxUZqfswAnP9gPN5KG03nCcVD9noL7J9ycOi9VZ2xMaW1G9fXBUhrqpMEImIgANEhYgIiqgZ0R0RIXIECHBIEKGdxQVrazZ1s1JwdLV7525pQUREv9kUuW5dty/TN8fkvjUmxyazq+5xfYYOWd7zYVyjIvIPkxqkqXN7zB4j50nTUgyX2WW4UroMD9TS3M6SL54zLZSb4mLHPEREiAIe/r25/A8NZW2ycxvzkTL3ohHpgyo8QURgQaQGbi9qjryVct5IiyaXAMyplGNj8pghsiYCMNdnxU83RP+6dYedZafWetdOyFU7ygvRTaeKh00erUjR9CRXCRXlawc5OJJbMnvGhnk2TmTfi5GAlFAVDJfZY855rD7sSnYVM0vCwz6UGwB/emnle83pmihRWcIhRIkcQtQRDhBRr4IighxBYI4IQcDqXOx771d0XXEOrPB+XZceEgUBz7c4p/eoXgjggSnpgys9BHzja+tj92zpVTnz/8Y0z0pmGeRJ6VllMbojQeoe56TMZmQ6nakbVn3GXhN7c8QQnSKPh+CoEIqHAhx1HMVDhygi1Ezp4rVU9PVM7O20aJMOgMkJd3SUj6zMjY15ESJB5BCI0CbF77fG7t0a29Egg4Mr5M112QlxSSSaXCxsdNZl6dlmR42xOrhSzkjKOVWy2mEGE0iyJFCjRw9ujSxoFM/nL/AyPekdXe3NG5IdH2NfU7TQwJVSranA1rsJdHXpKFLzkD02KuNJSZTzpMtwJWcyXp/ysG/lpimd/c1zb+YYwyri7AiHEBEUIYo6JICIEBGiiCCHIIiEeW2T4uoNVa+ldu3WfnFY9nvjsqorTwg6Y2VySWsPs1EzyuTC6WkZ6Lw89o3kG71brO6U6tSXhrVJyR7IlVKNk/IYrn7DLiMnWbJobmp1BF1w0NTQtekLdORhVJCioiBEhFBy4xDUSkSCzCtBEJFiJkgQHMAR5BDeSjvnrC7vymimb47JfXOMq3il5uG2M+rD9Jrb+ZN+uiF696ZO5ucO4isjMl8YnisXUumIrsZoT8f3blT/nnWCPCk9QDNQsxGKhC6zz0OiCw7uKx72VapYoToR23fsUACtqYwXUFzXZOmUysr8rtxykj8b1/yD0a2jdlyr2q/cmz+5/YoxaTazc73eRj3WGgAr2sVjDY6KmVXmrJdaA+DtbJQZUuVoGJ7pqFYVAQlSgVVbWwrAwXWjQq3pI3TkoXpKXTY8lOzZTijoXjDNSVXBMazwAI/5oYZYF7UGwE/fj16yJmY76f1ZZtg0g4KYucmj896J3fJ+5/NzB/GLzfEz3002emS0BiorGuip8XPAWmtM5lQy1KvO3fhXw/Bwtz7kYZ9PhXvklHGvb2psy8mynOvFIoKEx0wkXCkjQkiAGK6UUZVpU72/gGQ+tCJzWGV2kysWt8bbJa1Ki4oIxsV4TFQeWZUbEgGpFmxWmT/5YBemN945FjY5R1W7qktwbaY4QiwBz5PS5OdUJBW49+R57LleRTJ22MThRTliiE7RHR5CEDzDQwGo0QSSWVU2VqYj16zv3jIsf93qALGfTsqS6TWVdkZagJmbPHHayljXJ8p5K+Uc+1bFI5NbKhxdYGIiU+fVHUZKMe0wYE/ujIduSXhYipm3T5w+4S9L12xPudWRiAcWjvCkJEeoFBcAoe66I2CqVESQgGCMdORpQ9IEqJycECQAh8hlOGpkNoElC0FvdH/W0QIsaXFYrYlBVJ8pwjQC72QcV6o7qitQUg9UIU9KSeR63N6aAnDC1PG9P1yInSPAQ8cjVqxTdk6N6hfkWB6S5SFDTXVEgGS0SXHR2p5Mb/zXrc7Hq53jhniqy1wI0wUDBnBNfScrR+8cLR59aU35rya2VQhTV6JAd5s/b6FUHpkk8jxpoy1FRU9yKXnYt8GUQt2wqlkjKgGk29IqfJBE1qOTDFdKmZfT0r6u3xEXeNXxl/IhVYQC8iS/sIOFk7uOdVnSdUHm6WW9XaYOwG4x13w7ksaPVVbFA1zPS7WlAEwbPbRuaDhxX58jwMOMjZ5cHU1YHtqoRLLpWrDj2iTwl4Z4a09nn/lBfVTFbiBoCwQw6IGtkb/1aCr1lWnnz9tj6vw7ao2K2jwdTMH1tF+jPq9yN7K0PCyF3AA4Yc+6IXEnI+GmspLhSj9i1Hddstruq7JpirNjrG3Dkq0ru+q5ZSlRBGcEAEwvTLkogtwEexq1hVEMYHjMmYznebIyGTtl+rjeHytEVxDkoRfM3TB7DNYZfbNdjexXQiOZgSYPv93a8xWX1mXpNxsd0+0idJWa+Wcbel4AvX97fF1G2EyNFxgP5RnF9MxTptbqVdlipZ4ucyZdOh6WSG4AnD579yihNSe9rKuyxV7AqjCg7Ixr4w491sOMUjV91jYP7zF72jqRK4tTXzOxD3tM+5X3dlKM/ZNZqa0Kefr7aq1xXWTSWUfQ52fvVpQzD9FFWB7KrKv1Bb6XbT1ra/mkP+aIF7f2Nof6fIvI6/AEFjQ663ux1kKrR0+3RoOd67abVFlx04xjfDf77FgeZkrHw9LJzZCyxCemjwfQ2J7NeTJgVbRe6Jy5eh/IqAezXybCCo4JoJxkjzA6WgTFUXqvVGxuVW9nLflIMuWxZCLrpUvAA1wXba3tAE6YMTGcaKLEyOOh60mQxzB5U1gvWzHBKo4a99DL6bQBPNHkSBg+MDzG811YQXzneKY1anMRgedCezHqEVMap+YQt4pTeh6WTm4ATB81ZO9R1QBaW9Jp1/NMX7/O3bDqC9B5nDxX1s+zsm2U9Ox4K5AruevLrewI+5V7Ocmerk/jEzW53sz2tl8iM8yRHpMrpcoHqa6HrCtb29oBzBgzdMaIql6ec4gewOdhazrjepLhwWiNyW64ntS64+cQsTFXhDkn16SgFYfhMd5I9Xafr7VH8marYa2V2ouRZouqTjAkkys567Hi4cwS8rCkcgPg+BkTpw4t9xjtremsp/uOmJTXR9a78ZTiSNukxDbCsuqjYmClUwB9tKq3887OrXL10Rkec4WQZ9T2fB3ez9e0WN8tJ6UyZTmP21pTLHn3YdXzpoUpm35DkIcZT/faGh6aek3AO5DG+PUe9VnKSZagHLPH3JtIyoJZZWoo6KPpETPQgxWsxrnMQR6eVEIellpuAHxyn90nViU8RrotpZQlF4gqVf7cDOXQ+Q6G33Nlxp7lbfdYHlbplvfCGalw+LBK19o3daxzh2UOq+iJil0wtLnW8YzvxhKkOolbW1MsedKwqtPCwQr9jQIeyo48ZD2uTeXdzGjJ3kJ15eV0fzneL4bcrM+SzTaYeFB/F0/CY3id87C6xDzsB7kB8Ml9dh+aiGQ9tLekrO5qDSaTx1HVO2ttdEc2pO7T9XsiVY9yueAzanvu4HymNjc6KplUDKzjKQlcOSa9ezfDtMPK0oeVpZRQKj1VGbu2tjRLrkrGT5kRdtkMCAR5qEaxuabTXz2ZpqyjeVgUwZlcxr4WcHFyjiOj0pXSDYySkYAnpWTSw6Ns3CCDPCy1f90/cpOIOF88YOrQRCTjcXtrKpOT6u56gKs8W5YmxWU8HZUJA0uwVD6IND2UpLPLnx6S6a40KOyR8E6rzUo7Ht8fgcLlQv5sfOsx1V0Vsi8Nbf7S0GY7FFNxN+dxS3PKzXlVyfi5+++RiBQhBRCi98jjYVs6k5OqI8zPIZo8q+JhXay3AXuFw+XkmVkgSIJHx4rQcmHrs54Z820VUyfCgZyUOY9bWvqTh/0jNzB3ujYZzbjc2tKedj3dEaC9GPKHMkL5tJyTrIcd+XPNahUHkSe5XPDPJ7R3N6Qqd/i7Y9LlQq0cGOwA1g5OueDLR7d/f0zbzucbnB7P3TJq66FlKddkatT55zxuaWn3PFlTFmrNgEMhD3Oe9m783I0/pHa/Xq/c8NFKT/UW2thnj16XOA4sy6oZJHQMxfCk1hclNN6A4WHfjgjfJdKu98Ar76xvSTuEisqyWFQ4gEPkmGHiDpEgqAWTHSEcAgGO0POMEJEASJAaOaWWAduYE99dX/ZO18Y0jIryDeNTkxOumoHNzgXJdtZFM15XzS+9uDW2tN15JxvZnBObXTEx5pYL3i+RnR7PjI+6Kv+v+KTS2FlXtrS0s+QJQyo+NWtiqDUDE53xUA8QNzzUbLx4fe2WXqzc8ItJqdnlniKqWjJxZUac9XbPp1UC8NXhLYeXZ8zEN7qUpkZIDTQe9rPcKDy8dPUbW1sAVJUnEskoMUeEUCojoOcEcARpoQGpkVPCzBUA/xUAiKjVo19sTixs3EWz5rE1ua+OTFc60LM0SjMLZGDmdgCelGRmsVc3T0VzuiND1bkDnTU2Mk9n3baWFICpI2o+ueeEvryEIYoAy8PK8kQiERUwPASEng0HT7cnb9/Ww5Xe9in3bpuUIiKWUq35oRTnq2vKXm3v4fNfJvhX47aXERfw0IPO13iS07mBwsMBITcA/vH6e8s3NwEoj0fiZfGoEI5Q04uQEFp3lHkhynujZyRhCL22glr/ksDYmKP7tiZebY9syuUl/8sdPrTSPa46t0+ZbuRTl6BgNj/l17BdMASwcy8qT9jU6ckLWBXVjZrzZHs6m0llAcwYWTNvZqg1gwOFPHSE0BPckENQU978YMuQN9LdHnZQ7vDPJqamJiV3WKv+5VZxydoeDla6eFjL3PK0x2AzlZ/tZWNQTsr21ADi4UCRGwBLNzQsemtdVnIiQomKspgjRGDGIycw/5aatFFN4OgIAWZHCJj5kNQSdUIvb0cAv5OOtHhqNRhZGaE94q5dqQ5mDle7CriUEmauYslgsJpPx58nTf8P67Wqfk3TJ42s67W3Z9ycGxHimKlj9xo9pL8vbYhuoJCHEeGoibUMD1NMV26s3ep1L6S6bEzquBpXrfbBLIkEs9Rr0IPu3RK7b2u3Z1D5aEX6oqEtnfMQyOYGHA8HkNwA2NSa/sfra7a2ZyMCiWQimYj6uRuCo5waQN17nbshcpS+ENmQSnk3ah42FSfblafYrPQOu14y1JoJetp6Owss6/Ey/qLDUo/lNdOjGY/GxsweI5XOpVJpljy0PH7yzIkjK3o+oi9Ef6EjD7XlMzzc5jk/21a9NtvVMQ2Xjk4dV+N2ykDr6dy4IbmoqRtO04SY+70RjUniAh6qEVIDk4cDS24ApF1v0VvrX9/UCKAs6kTLE4moQ8jL46i4yTEz4Piz4Zg8joqzmFkIoZTIWBW1TqayKoBeYUPPB6guhVEcyXZsnlrz0/YWsu1y1l4rQK6UOY/b2zO5bA7AzJE1R08dGyaGBy8642GEwNb+tUv6U1Pl4rZdPMYjIvy9sW2TEzqGIgLBejc6iIe2d/T7rbE/buuSLhxWnv78kNYE/FkyjF8zoHk44ORGYeWW5sdXrmvJuAAqk7FYWTxCpApSAtD5msBsslDqE3Bz2NSq/NlhodfosEcJeDd5q/kY70anb+xsr7b6bn9U47ZyUqZT2VR7BkBFPHrMlLFThoeDoT4I2AkP1UoM63LRh5vLVmRiqQ6LN0yMeyfVZD5WkRFCOdkEZlVFpU54qAqjWNYe+VNDYvmOJ+oe5shTqtsOK0/LQHeYytq4zAOchwNUbgCkXe+Z1Zteqt8KwBGoKE9GYpGoEMqbtYrjKK0RBPY9HZgqlSBiQOilw1GQpWOzxeZrlF+TrzhQv/XHv9lV3KEmr8+1t6fVfHCH1o3cf/ywgWNMQvQeO+JhMJNIwFuZGIC3srHhEW9ERNbFvUoHMNlDn4fggJftP3oyn4evp6JL2iJrstHVWUcJ2fSEW+u4H0nm9k2m2R8/6BcoBgUPB67cKGxqTT+xcv3axjYAjkBZMhFLxNRaMUHvxsZTBJDxd8hst36NvtMwqy9b3VGFcNYrDaoUTqAmZdwZyWaUA1zJ6XQ2lcqoGzyhpvzjU8YOkAg5RNHRCQ+TMeXp5PHQ2DzDQ2EnHtVetp9J9Heez0Ni5k54iICXPWh5ONDlRmHlluYX1m6ub2qHLzrRqOPo3A0HMzgqQiahVoPRugMARMSBOWIVdDWKJdnZpFWmhnlHuRtPykzabU9pSzK+pvyA8cMHmtcaoi+wIx7C9oXZYgXI+jUAhImhYHgY7LuBjua1Z82d85A9XSFlGB6m025qUPFwcMiNwtqGtqff3aBuNoBYRMQS8YS+3yxI6ABK313dgCMCtYC8mNlWpvQWdWvZrPgBWwvXKRtPptK5TCbrubrrfEJN+WF1oyYMCacZ/nChIw+jiXjS6I51t21VVJAIVkh9Hqr6lM4TA6ynSWfojlOpaxdgZmm6wFxPptLZTCY3GHk4mORGYW1D29IN21duacp4egRTeTxCsVg04sRjEfJvts7mWKsiiCRLvdKDtieqHBmsTJGX13fD2ZyXzeQ8T2Yyeu6buCOmDK/ea/TQQXGDQ/QRusNDFkLkeTeah37fjW/5fJXxu9s/MDwcfHJjsXRDw8otTau2Ngc3xqKRWDwai0cJFIs6nXs3pobAxqwouwFAMruu9KTMZd1sNpfL5c0fOnlY1V6jhw5wfzVEidFDHpogSq1rpvtOGVDLM3xAeTiI5UYh7XortzSvbWjd1Jra3Jou+K3jCCFENBoRQhAVVqYscq4n9X+FvxpRkZgwpGJkRXLK8KoBmOoPMUDQMx6a1I2G4aGUxmOy+GDwcNDLTRBp11vb0PZeY+vmllTa9Tre9a5gREUiEXHUrZ0wpHzw3toQ/YWQhzvCB0puOqIpnW1K5Ta1ptLuzmYVSUSckRXJ6mQ0XKU7RF8g5KHCB1xuQoQIMXDQb7P5hQgR4sOGUG5ChAhRIoRyEyJEiBIhlJsQIUKUCKHchAgRokQI5SZEiBAlQig3IUKEKBFCuQkRIkSJEMpNiBAhSoRQbkKECFEihHITIkSIEiGUmxAhQpQIodyECBGiRAjlJkSIECVCKDchQoQoEUK5CREiRIkQyk2IECFKhFBuQoQIUSKEchMiRIgSIZSbECFClAgCQEtLy6233nrUUUfNnDlzzz33POaYY37xi1+4rrvLP77ooos+97nP9f1J9goD4STb29tvvPHGww47bNq0aUceeeSvf/1rKfVCQjNnzqzLxyOPPNLjA61YsaKuru7xxx8v0omXFCEP+xr9zsMIgLPOOqu+vv4b3/jGjBkzXNf973//e+utt9bX19944409Pl4v8ZGPfOTvf//7uHHj+usEiotvf/vbS5YsueyyyyZNmvTiiy/edNNNrut+5StfYeb29vavfe1rBx98sP3wHnvs0Y+n2o8IedjX6HceRlauXPnyyy//6le/Ou6449Sm/fbbLx6PL1y4MJVKJZPJoh9yl1i/fv327dtLf9w+QmNj4zPPPHPNNdd86lOfAnDAAQcsX778scce+8pXvtLW1gZg1qxZBx10UH+fZj8j5GFfYyDwUHieB0CIvCTOhRde+NBDD9l7fP/993/84x+fMmXK7Nmzv/71r2/dujX44dbW1mnTpt1+++12Szab3WuvvW666SYAW7duveSSS2bPnj116tR58+Y9++yz6jNvv/12XV3dkiVLLrroopkzZ+63337f//73pZTPP//8oYceCuCwww770pe+FDzQM888U1dX98orr9gtr776al1d3dNPPw3gpZdeOu2006ZNmzZjxozPfOYzr732WsdvO2PGjDvvvNP+ePnll5944on2ZBYvXvz5z39+2rRphxxyyKOPPvr666+fdNJJ06ZNO+6445YtW6b+xHXdn/70p4cccsiUKVMOP/zw++67z+7txhtv3H333TsetKamZunSpeoeK8TjcXXBW1tbAZSX73pJ+a985Stf/vKX//CHPxx44IHTpk0777zzmpubf/zjH8+ePXufffb5/ve/v8s9DHCEPMSHgIdi9913Hz9+/GWXXfanP/2p4P4pzJ8//zvf+c68efMWLFjwy1/+ctmyZeecc05wMbyKiorDDz984cKFdst///vflpaWk046yfO8L37xiy+//PIvfvGLf/7zn/vss89ZZ5311ltvAYhEIgCuu+66z33uc6+++urNN9983333PfbYYx/5yEduu+02AI8++uhPf/rT4JnMmTOntrY2eKDHHnustrb2kEMOeffddz//+c8PHz58/vz5DzzwQEVFxec+97mNGzfu8vIpqJP5yU9+cvnll7/88st77bXXd7/73RtvvPHnP//5Cy+8UFFRcc0116hPXn/99b/5zW8uueSShQsXnn/++T/84Q///Oc/q1/tscceRx555E6Okk6nN23a9Oc///lf//rXeeedB0BZla6Y7kgk8vLLL7/33ntPPvnkH//4x3//+9+f/vSnhw8f/uyzz95444333Xef4vrgRchDfBh4yMxvvfXWvHnzJk2aNGnSpI9//OPXXnvtsmXL2OD444///Oc/b3984oknJk2a9NJLLzHzhRde+NnPfpaZH3nkkUmTJm3YsEF95tJLLz366KOZ+d///vekSZP++9//qu2e5x155JFXXHEFM69evXrSpEm33nqr3fNHP/rRH/3oR8z8n//8Z9KkSfX19dwB3/3udw8//HD742GHHXb11Vcz83XXXTdr1qxUKqW2NzQ0TJ48+Re/+EXwJJl5+vTpd9xxh/3zyy677IQTTrAnc/vtt6vtCxcunDRp0iOPPKJ+vPfee6dOncrMzc3NkydPvvnmm+0eLr/88iOOOKLjeXaK008/fdKkSXvttddDDz2ktrz66quTJk266qqr5s6dO23atGOOOeaBBx7o9G+//vWv77XXXplMRv143HHHfexjH7O/3WeffdTJL1++fNKkSQsXLuziKQ0ohDz8wPNQAJgyZcrDDz/8+OOPX3XVVRMmTPjTn/504okn/uAHPwCQy+XeeOON/fbbz8rT3nvvDWDFihVBzfrYxz6WTCZVItp13SeeeGLevHkAXnvtNcdxDjjgAPUxIcT+++//8ssv2z+cMWOGfV9VVdXU1LRzcT3xxBPXrFmzcuVKAMuXL6+vr1cHWrZs2cyZMxOJhPpYTU3NhAkTCk5yl5g8ebI9k4IfM5lMNptdsWJFLpebM2eO/ZODDjpo9erVDQ0NXdn/97///XvuueeMM874zne+87vf/Q5AJpOprKzcuHHjNddcc++99x5wwAGXXXaZNVMFmDBhQiwWs6dkT0/92Nzc3K0vOwAR8lDhA8zDSPBLTp48+dxzz21tbb3mmmvuueeeE088cbfddmPm6upq+zH1XgV7Fslk8mMf+9iCBQu+8IUvPPfcc42NjSeddJL6mOd5M2fOtJ90XXfIkCH2R3tjFHhXC5bvv//+w4cPX7BgwZQpU/71r3+NGzdu3333VQeaMGFC8JPV1dUFJ7lLxOPxnfzIzGqHX/jCF4hIbVR1xG3btgW/1I4wbdq0adOmHXHEEfF4/Ec/+tGnPvWpAw44YOnSpfYDBx54YH19/W9/+9vPfOYzPTi9XZ7AoEDIww8wDyPZbHbTpk3jx4+3myoqKi699NL58+evWLFi5syZQoig2Kv3lZWVBTs64YQTvvzlLzc2Ni5YsGD27NmqdlhZWRmPx//5z38GP1mQDuwWhBCf+MQnFi5c+LWvfW3BggUqwaYOVGCRmpqaRo8eXfDn9vYopNPpbh1dfetbbrll2rRpwe3Bq9cRGzduXLx48bHHHltRUaG2zJo1K5PJbNiwoWOtcfr06UuWLOnWWX0wEPKw6xi8PBQ//OEPjz/++ILk3OrVqwEMHz48Go1Onz496Hb+73//A7DXXnsV7Ojwww9PJBJPP/30okWLlGMJYJ999slkMlLK3Q0SiUTHq98pdiSTJ5xwwooVK5577rl3333XHmjWrFnLly/PZDLqx61bt65Zs6bjSVZVVQVNTXe93OnTp8dise3bt9uvU1NTM3ToUOtbdoqGhoZvf/vbTz75ZMFxx44du2jRoq9+9avZbNb+6pVXXikwjx8ShDzsOgYvD8W5556bTCY/9alP/f73v1+yZMmzzz57xx13fPWrX505c+bcuXMBfOlLX3rmmWfuuOOO+vr6Z5999oc//OGBBx7Y8QrG4/Gjjjrqjjvu2LZt2yc+8Qm18ZBDDpkxY8Y3vvGNJUuWrFu37h//+Mfxxx//xz/+cefnpPzkJ598UtUOCrDvvvuOGTPm+uuvnzp16tSpU9XGM888M5vNXn755W+//faKFSsuvfTSqqqqYM1PYa+99lq4cOG2bdtSqdTPf/5zlZDvOiorKz/zmc/ccsstjz766Lp1655//vkzzzzzsssuU7+dP3/+hRde2PGvpk+fPnfu3GuuueZPf/rTCy+8cPfdd//6178+7bTTksnkhAkTFi1adMEFFyxevPj555+/4oornn/++YsuuqhbZ9URy5cvfyqAQeEuhTzsOgYvDyMTJkyYP3/+nXfeeffdd2/atCkWi40bN+68884788wzlViedNJJ6XT6zjvv/MlPflJVVXXUUUddeeWVne79hBNOOO+88z760Y8OGzZMbXEc57777vvRj3504YUXtre3jx8//utf//o555yz87OcNWvW3Llzb7jhhoMOOujee+8t+C0RHX/88XfddZe9vgAmTpz4xz/+8cYbbzzhhBMcx9l///3/8pe/1NbWFvztlVdeefnllx966KHV1dVnnnnmKaec8u9//7s7FxBXXXVVVVXVDTfcsHnz5tra2qOPPvryyy9Xv1q1atWiRYs6/avbbrvttttuu/3227ds2TJ69Ojzzz//4osvBjB16tTf/e53P/vZz7785S8D2GOPPe65554jjjiiW6fUET//+c+DP44dO3bx4sW93GdfI+Rhd67WYOUhfWBSjCFChBjgCEeEhwgRokQI5SZEiBAlQig3IUKEKBFCuQkRIkSJEMpNiBAhSoRQbkKECFEihHITIkSIEiGUmxAhQpQIodyECBGiRAjlJkSIECVCKDchQoQoEUK5CREiRIkQyk2IECFKhFBuQoQIUSKEchMiRIgSIZSbECFClAih3IQIEaJECOUmRIgQJUIoNyFChCgRQrkJESJEiRDKTYgQIUqEUG5ChAhRIoRyEyJEiBIhlJsQIUKUCKHchAgRokTof7l54YUXzj333I985CO77777zJkz582b95e//KUrf7hu3bq6urq6urrm5ubuHvTSSy+tq6u77rrrun++u8att96qTuwHP/hBX+w/RF/ggQce+NSnPjVr1qzdd9999uzZX/jCF1544YWu/OGDDz5YV1d3/PHH9+Cghx56aF1d3eOPP96Dv90R7rvvvroAdttttwMPPPCss84aCEvF97PcPP/885/97GeffPLJ8vLygw8+eNiwYUuXLr3iiit+//vfF/dA77//fl1d3T333KN+nDFjxhFHHDF58uTiHkXh0UcfVW8ee+yxcE3kQYHbbrvt8ssvf/nllydMmHDQQQcR0TPPPPOFL3xh2bJlxT3Q/Pnz6+rqVqxYoX6cM2fOEUccMXz48OIeBUA0Gt1nn3322WefmTNntre3P/XUU5/97Gf7XXEi/Xv43//+957nHXPMMb/+9a/VliuvvPLPf/7zfffdd+aZZxbxQFYCFM4555xdrkjfM6xatertt9+uqqoqKyvbsGHDq6++Onv27L44UIgi4t577wVwzTXXnHXWWQBSqdSnP/3pFStW3H///bNmzSrigQp4eNNNNxVx50GMGDHioYceUu9bWlqOP/74devWPfjggwceeGAfHbEr6GfvRsVBQ4YMsVuuuOKKp59+Ouhezp8//4QTTpg2bdrMmTNPP/30p59+utNdnXHGGUH/5amnnqqrq9t///0BnHjiiTfccAOAH/zgB3V1dW1tbQXBVDabvfnmm+fOnTt58uTZs2dffPHF7777rvrV7373u7q6ugsuuGDJkiXHH3/89OnTTz755OXLl+/oG/3zn/8EMHfu3I997GPoQK8QAxMFPEwmk/fcc88LL7xw/fXXqy07YUgBVAhj/Zcbb7yxrq7uq1/9altbW11d3b///W8An/jEJ0488UR0CKY2btx46aWX7r///pMnTz7kkEOuvfbalpYW9auLL764rq7ut7/97R/+8Ic5c+bMmjXrwgsv3L59e1e+XWVl5d577w0gnU736PIUDf0sNzNnzgTwl7/85Vvf+taiRYuampoqKyvHjx8vhD6xX//619/61rfefPPNI444Yv/993/hhRe++MUvLlq0qFtHmTdv3ujRowEccMABZ599djQaLfjABRdc8Itf/KKlpeWEE04YPXr0Y489dsopp6xfvx5AIpEA8O6771566aUzZsyora197bXXLr74Ytd1Oz2Wkptjjz322GOPRRhPDRIoHl555ZU33XTTkiVLstnsyJEjgzHOThjSRUSj0bPPPlu9P+mkk+bNm1fwge3bt3/yk5/829/+Vl1dfdJJJ3med++995555pmKaYqHjzzyyN133z1nzhzP8xYuXPijH/2oK4dubW197bXXAPSva4N+l5sLL7xQ6e78+fO/9KUvzZ49e968eX/4wx/UJW5ubr711lsBXH/99bfffru6+gD+7//+r1tHOe+88+rq6gAcc8wxV199dSwWC/72mWee+c9//kNEDz744C233PL3v/99xowZzc3Nd9xxBwAlfG+//fYtt9zyk5/8RHnda9eu7dS4vfXWW2+//XY8Hj/88MMPOuigmpoaFU91/8KEKCmuv/762tra9vb222+//Ywzzthrr73OPvvsp556Sv125wzpImKx2NVXX63odMEFF5x33nkFH7j77rs3bNgwceLERx999Oabb3744Ydjsdhrr72mfB/1h2vWrPnHP/7xk5/85MorrwTw5JNP7uhwmzdvPuWUU0455ZSTTjppzpw5Gzdu/NznPnfGGWd077oUG/0sNzU1NfPnz7/zzjvPOOOMiRMnMvPSpUu/973vXXbZZQBeeeUV5f6ddNJJ6vOf+MQnAKxataqxsbFY5/Dss88CmDVr1m677QYgGo0effTRAF588UX7mVGjRu23334A9thjj/LycgCbNm3quKt//etfAA4//PCysrJIJHLUUUchjKcGA/bcc8+nnnrqhhtuOO6442prazOZzH/+85+zzjrrgQceQNcY0nuooxxzzDHKkRk1atS+++5bcJS5c+dWVlYC2GeffQA0NDTkcrlO95bL5V599dVXX3112bJlLS0tjuO89957b731VhFPuAfo/0K4EOKoo4664YYb/vOf/yxevFg5mQ899NC6desaGhoAxOPxsrIy9eGhQ4eqN01NTcU6AXWUYP5IHSWoaMHfJpNJAFLKjrtSkdTLL798/PHHH3/88SrNFMZTgwLl5eVnnHHGr371q5deeunhhx9W4dXPf/5zdI0hvUe3eKhIiB3wEMDYsWNXG7z00kvnnHPO4sWLP//5z/ega6SI6E+5aW1tXbBgwa233mozWGPHjr355psjkQiA9957r6amBkAmk0mlUuoDNjcWvCsKytu0u+piFg2AOoq62cG/tdLWRbz55pvvvPMOgC1btrzxxhtvvPGG8oDCeGqA4/333//b3/6mwmSFvffe++qrrwawfv1613W7xRAiQr/ysCNqa2u/9rWvAWhsbOxfKvazd/PNb37zZz/72Y033pjNZtWWJ554QiVuxo0bt++++8bjcQTikb///e8A9txzz6qqqoJdqcSeSokBeOSRR4K/VSRoa2vreA5z5swB8Prrr69ZswZANpt97LHH7PauQ0VS++677+oA5s6dizCeGthYs2bNpZdeeu211/7jH/9QWzzPUxmTUaNGRSKRbjEkyMO2tjZVirLYJQ8XLVqknoX169f/73//29FRugtbz62oqOj93nqM/uy7qaio+Pa3v33dddfde++9Dz744NixY5uamjZu3Ajg5JNPnjhxIoCvfe1r//d//3fVVVctXrx4+/btixcvdhzniiuu6Li3I4444h//+Mfjjz9+0UUXtbS0qAqijWJGjRoF4N57762vr//2t78d/MPDDjvsox/96NNPP33aaafNnTt32bJlb7311vDhwy+44IJufR0lNwXdpccdd9xTTz312GOPXXXVVYpqIQYaDj744GOOOWbhwoVf//rXr7/++qFDh27cuFFF69/4xjfQTYYcccQR999//0033fTmm2++/PLLo0eP3rJlS5CH69ev/973vnfIIYd873vfC/7hueeeO3/+/NWrV8+bN0/lknK53CGHHHLkkUf24EupVLF639TUtHr1agCzZ89WSZ/+Qj97N2efffbdd989d+7c8vLyd955p6WlZZ999rnmmmts7eniiy++6aab9thjjwULFrzyyiuHHHLIn//85071/qSTTrrooouGDRu2ePHiMWPGqI6JTCajfnv++efvscceLS0tzz33XEG4S0R33nnnRRddFI/HH3744S1btpx88skPPfTQsGHDuv5FbCSl6t8WRx99tOM4GzZseOWVV7pzYUKUDkR02223XXvttbNnz/Y8b9WqVUKIuXPn3nPPPaeffjq6yZDLL7/8uOOOi0Qi//nPf0499dRTTz0VAR5+5zvfGTZs2Jo1a958882CP6ytrZ0/f/7JJ5+8efPmhx9+OB6PX3TRRXfffXfPrJRNFb/66qubNm2aPHnyJZdc8rvf/c62mPQL/j9887vS47dShgAAAABJRU5ErkJggg==", "path": "image.png" }
Which solution has a higher concentration of blue particles?
[ "Solution A", "neither; their concentrations are the same", "Solution B" ]
2
The diagram below is a model of two solutions. Each blue ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the blue particles represent the solute. To figure out which solution has a higher concentration of blue particles, look at both the number of blue particles and the volume of the solvent in each container. Use the concentration formula to find the number of blue particles per milliliter. Solution B has more blue particles per milliliter. So, Solution B has a higher concentration of blue particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABk7UlEQVR4nO1deZwU1bn9bvU+09M9wzpsg6OCLKJiRDYNGkXEBTUimhhXMEaTuEejMQpq4sM1Jr6XqMGniSaKiCYvkUWfu6DGhwsyuEV22Znpnunptep7f9ylblVX9/Q2wwzc8/OH3dVVt27de+Y75373VhVBRCgAiYy+oy2xvTUeSaS2t8YBYHtbPJkxCjlWoeII+z39g4EThw8M+717uy5dCsXDboVieUjyh5svdkW/2BnZ3hrf0ZaoUA0VKgafW5t99PD9IeJQHm5sbosk0nu7Lgp2FM5D53CTyOgfbNr1ydY9onc1ovn8AY/H6/F6Q9VBQsDv8/g9XhcBAqARcBHQCGgAmrwFQCOgESAIhLDPGgABINadCZgf6L8AoAEQAoT/SviB9F9A9hn4RkAAvjP9gAiEAADbTQby/yEgIYQ2AwICO4rQDYhsT0SkG8We4jMQkHYzf6JbDEQEoiMaCAaiAWAg6IgIoCPoiDqiAcSQdkBkRxnANyIYgAiEfk2mM+s3bU0k02Pq604bNaTDbu6hoDx8f9NO4V8UD3s0D92OW99at/2DTbsAQHN7QnV9A1XBgN8vepH2qIsAENqwEgggmv3EL9vsKt6I5g6EmJ0hOgR5V4F0iPiVnkUuwV6s6GPpILoDgskPpL8hQf4bAYKAhIhOJUCQ0A4jBBERgHOCACAtBFEqnJ0Qzf8BQUTzcvhOUpwniIjITioUAEFoAasX3Q0APG7X4IH9v1q3eXtb3LEH9w288uU3q7c2A4Db6w+Geyke9nQeOoQbKimEaHUDG/1V1RqAi18AjfEm0PqVb0FgrQmEH4KAlBPItoieo7SQS0ACGv8MxHoWaQvhOwNaziK2s7PwjYT3NiHEbG0EAOQa4qAqgGJPfqB8JGsWYuk1uWxg5RuU79JOhJg7EkIIIAFiSG6TgOhzFPUkVOkI8fs8ALAPD3K3tyVWb21WPNyXeKhlb6IDKM3j9firxTlFYLaMvYj1K98ibCTwo2RvKWKwuFpbmebly6IAls+sJlaxAkdVIZYCgPtVYhZI5OjNq4SEbyDSgYhI5CPZqVFWOUvZABZVka4op6rwrVZVEbsxc60bBgD4XA49uG8gmdYBwO0LKB7uMzx02Kl/0O9zaXoqkUknxDkdVAWlcA7mRouq8KMAzY1CVdgRaC8W5Z6TygFrmZZiuU9GuRDCJMhCRd5PNlWRjsujKsLBgnyJhIpCVi0RrHuKutp+p3LBRcSqKpZ6EcJpQEgslgCAhrog7KPoV+MHgHQipni4z/DQOSaNa+gLAHs2f5VJp/gp6ZWCXAshESYKUBUAB1WRCyFSz4FUju1ztqoIfghVAVlq+Pm6TFXsX62qIu1WtKrEE6nNW3cAwNB9N9z43a5jGvsDwJ7NX+m6TjcqHvZoHuacCF/0yfovd0Vdbk9t30HBmhDNybkI6Jl0KhFPpZOpZDKVTCZTyXQmU8iZFCqOMfV1Jw4f6He79nZFOhGKh90fhfMwZ7hJZPTnP1m/sSUGAD5/VSAYTCeSiXhM11Wndhfc/J3D9nYVOh0yD6tqwl6fT/Gwu6FwHnawzO+Trc2vfLElqUurNglx+6rcHp/X5/P6/D6fz+f10lkDF4BLA/pZrHdw8y2EbkHQNKCrJKhMAYCbe1EXX92gAWgaEGTrI4CYayII4esgwPSohC+jQNkqMotp8bGYNSOAYkaAD5DlMTMWtN6BjXVFIchNNQDIyxzk9Q4GogEkz3oHAwEJyOsdDAQEYiB+vPbrorq5p0PxcN/gofO6G4HDBtQN7xt6/pP1G5pjVTWhfn36BQJVZi8ScAEQeXkVXRMB0me+Yop95v0hbyfZy6sIAIKmsS4k4PAfyMurWE9IqT6nPgZgOTYzn0fAXO/AFzfQMTNjimW9A+eEOJLm3dhIVkxkilG/FVKVAPh5AeQxsznnCCwBwT4RNteaXx72VVAePr3q39tbE4qHPZeHHU9f+d2uYxvrCYFke5vH5zOz9zy/bSbYzey8fUaAiB+lQ4AXI1rA3ILSrIGcFJSQldgHS1pelGudEcA8MwJWVRFTDgXOCABfNOHcx3L7mE3HO5zPCIDcjSZrUZyNEGsr7Dfwu11Thw1SPOzRPCxotryhrrqhttowjObdu8zsPTeLZoJdymVbvsreUjoEeDFgbRi7RBAAYG0uIyuxb5+bME8sb84zI8DT/6y1+ZQD3zPvjAAAsEkEsJ9SbCD2D86qIh1lmxGgh6TSGQAI+T32s+zrUDykR/ZcHha6SOzYxnoAaN6zM5NJZasKscqITVVA3j23qmSvrZBVBW0dhs6qQqQdWLlZ5OgUVYG8qiKJCRtbW1WF/itURZzBUVXS6QwA1O4Hd2ZmQ/GwR/Ow0HDTUFc9pr7OMIyd27ebqkKrgGyNQx5VgaxFEAImZ9C6xaYq4CQ9WaqC1h2yB5iCPV2jKiifjACwPwnWHGhpSiJURZzBUVXsl7Q/QfGwR/OwiCXwxx7YHwAi0eZMJmUO/3KoiiWcI9OZbKkRGxxVRf6OwMVK3smqKpClKkIbzM2lqwqUoCpEPhlXFcKbozRVsbfgfgbFw57LwyLCTdjvHVNfBwDbt283h385VAVkz0k6VhUpgpqqYueEvGKSWLdw5clWFZv7LUNVoKKqQpS7KQ2Khz2Xh8Xd4EeFpSXSHE8kOlAV+SuyK8yjKihNAZiqYuOEvAWtOsMPNM/ceaoiVbwMVUFJVdhRyt0UCMXDHsrD4sJN2O+lt7Fs3bpF7gObqtgrQrjOyLBqCJEeBUCy9jG/SkwikFNV5MoUqCrImp/QlsynKlLFC1AViZ05VYUdpdxNgVA87KE8LPrxBeOG9PG5tFh7LNYWMytoVQyU/mWfnCSCR20AJ1Wh+9gOEVeOXFVkBctWFVq3QlSFsOZH2pKVUxVTTKRKEms6kR2l3E3hUDzsiTwsOtz43S56v/jWHdvMCjqpilkdrgAWmFEboDBVYTJC2P5EFMKP6c6qwsWCc4cQuQb0g3I3hUPxsCfysJSHM1FhaWuPRaJRHlbpNbEdslWFKYAMJ1UB24HWQ2ghyCI/+yqfmjVp1lpSkCJ4Z6gK8B7sQFXY+W2qYlZNuZuioHhoHinXtBvzsJRw43e7Thw+CAA2bd3CwyoAFKcqxLxi6avtwByqQriqyEcBVxVECz3ks0DnqAqrqfkgWGdVQUS7qhC5/vyWGeVuCoPioXmkXNNuzMMSHz152IC6kN+TSqdbYzHIoSpyGzBVQcsWi6qApCpSrJZjaLaqWP2pVVVEGcR65s5WFctmSVWYICByHtHt0gUyVQF2hHI3HUPxsGfxsPQn3cqLl22RTtRNfGeqQixbbKpiHi7zwyoaDqpiOy9xUBXLmW3i0GWqApKqYMeqIq5FakGmKhndAID94fVShUDxUK52N+dhZR6sbYt0NlUxx7fSHtmqYv6YS1V4d+VRFcoDlMpxVBVTHDpZVdgVVkZV6OWQeCIJAOGACjd2KB52cx52ynP8iTBvrGZMEKQAmk9VxBdi0yteJpH+s6sKmKoi5/wsqgKVUxXpFI6qItSjEqpCr86q4Aq5oXgo1alb8LBTwg1KCgB5VUX0E9qOl/axbBeqwv8jtrbmHQmcImilCyVBblWB4lRFUBlyqAo6qIp5eSWpir25FXJA8VCqc7fgYde5G4sCcFURZHBQFdqjVtUQvxChIba2zlIVwo2rqExeVYGKqwrN/8uqAuLPQLmbzoTioVTnbsHDSoYb+ZrpZYjoLhRA7JFLVUj2JjC3iF9QaIjZcuYWmSL0RHtRVUzDLqkKu0zlbjoBiofdloeVDDfyNdPLsImATVVA7l25kGyhIZajZFUxQ6+NZGWrClZQVcRQWbmbzofiYbflYee6Gyos4j+bqoDYImXvslVF3pKtKiL02klmVRXzzAWrCslSFZDe4ly2qpAOVQWVuykJiofdloed626osORTFbR85e3Bv4h9ClAV8/KtWwjIkbssVQHxlmXx3cLsolQF86iKaENHVZGnVhSyoXjYbXlYoXBjbWiR3gJzXp+pin18a/3K28MsE5xUhYkV32hTFduWLlMV4qwqQKxMM1VFqir9hUgdm0dV5KkVBQsUD7s3DysUboglDQZi+aY5r89UxT6+7UhVWLGyznCxEhs7VBWQGr7LVQVsE6mmqrBfzV2VuykXiofdm4cVczdyGgz4Aoc8qkJBzLw722xTFVasrDOEt46kKhaSZakKSA2/F1RFGiqb9eGqIu2r3E3ZUDzs3jysnLuRL4UriU1VzCFilt0tXFVYsVmFOKiKdKoKqop5mnyqYmqPbahMTyFUhe/AN2apCsoNBICIGV0HgELeAL/fQfGwe/Owcu5GSAT/SoVFVhVziJhXVUQkBSdVYcVmFSLaH4XOSKcqTlUgn6qY15xPVUztsU0E0FPIqsLLdFAVICCqQYskhCSTKQDoHwx00Cn7IRQPuzcPK+xu5DGwg6rIysORrSqy8lhURT4ELBtlVeHBuAxVgRJVhZ+1cFUhNlWRS2f9KxqIsBKy21CBQfGwe/Ow090N8BjLwyrbIv7noCqSaCAnigybNIFgA0iH8ELsqiIrAFRYVaSqo7SXuWOWqoiV5bwaUum5VIXYmkNBQPGwe/Ow090NWGKsZTTLw6RFVQCk0Cwkwnq2DlUlex+5P8pUFZSKLkRVpEqRvaUq+wsUD7s3D7vO3QgNEaNZu6pIiyA6VBVzIC0OkVQFspRH7o8yVYVIRRepKmJCQaqrcjcVhOJh9+ZhJd0NQF5VEa4N5TgtqYqkAMQsWCoWzB1sA+mch2S1yF5RFV49U1WA7p9bVXg9lLspBoqH3ZuHlQg3aBEEuiWfqoAcp6UtkgKgVDZIrcl2AKuqUAdLnA7JapECVQUAKqMqvKhsVRHl0wLRqirA/wCgEqqyX0DxsNvzsBLhhuRUFWL+bukGm6qg9BUKUBWwTRPQr+h0SKmqAgAFqIrZ4jlVhRflrCpgqgrJoSpQCVXZL6B42O15WHl3IwdBNH+3dIOI08hVBeQdckmEdEabqrBWEBEbzZpkVzZbVYD2WNGqYra4VVXAduK9rir7BRQPuz0PK+9u5CDYoao4KkBOiZDOaA2/QMDUGcJ3sI2rRYHZqgK0xyqmKmA7cQGqQpS7KReKh92eh53gbsCuKmBbfGlVFTDble/gpCrWeGv/imBqSHdWFZDqaFUVVO6mXCgednseVsjdSOHfDLkseALYbi3pSFXYTtI2RLuMdKgqAPlVxaIV0FWqIreWqSqg3E0loHjY7XlYIXcjh3++TdQwW1XETg6qYu1yWo6pKnwfi844qQpAflWxaAWUrSqAWLKq0M15VAWtqhKLJwCgoa7afm37ORQPobvzsMLuBqRuEv4rW1XETg6qYjO04LyPRWfyqIpTZQtXFRHQxZ65VAUIKVBVREXlhQz05HbB4HUlIB+tvE0OKB5Cd+dhBcKNtV9KVBVTAZxUBbKUx1FVzF2EzkhnEQUWrioi7os9y1cVUW9ZVejJ7cNhWVXMoy27KAgoHtKDujMPKxBurP1iVxUCBamKOb61sSaHqphbeDkod6fQGeksorSCVIUIVSHyniWpCslSFQDlbioNxUN6UHfmYae4GxpbUTR9flVBJ1Uxg6+VRtI+uVTFskWWBXEoYseqgkJVUN6zJFVBR1WRr7BDVUHzaOVunKF4CNDdedgp7obG1lyqAkTqS77driqSaFholFtVQG5aoTNo/iqdkXQHVZGvsENVkRpKuRtnKB4CdHcedpG7kbsWUOpLfmQhqmLbR/5qo5pQFegeqmL5zi8Mpd8LURVU7iYvFA8BujsPyw03BOxN7KgqlqvOpSrmJiDEQVVM5QF+CLHvI5+EbeoMVWFHFaoqlis0r8t8UmwuVUFJVYhyN7mheMjL7dY8LD3c+NwuAEikUoWqigBtesKPEhIBZkEo3Y3Cm0KSEWCHWA+yS5fYVHlVYUcVoSrSUFlsNZ8Uy06epSrEqipoaSkFAMXDHsXD0sNN/5oAACTTKbuBJB2pCgCg2Xn5VMUM8jzEWlXFepAU03umqtglI0tViKWlFAAUD3sUD8vO3fDrMoMpOqmKDU6qQqSCslUFbHffSqoiWEQk+TLzaJ2lKtCDVGXfh+Ih/9ideVh2uOGDWzOYZqmKtXcAwFlVzI4pTFVA8q5CVcyYLShQkKqQ4lUFOlAVWWdBuZtOhuIh/9ideVgJd2MLpiwWmqqS1TtmI2SrCkqqYnYeP5GNL6aqiMCdpSq2g3KoCnasKgDFqYp5mEVVpNWhpahKezIFAP2CflCQoXjIP3ZnHlbG3diGimJLLlURW4SqgOgquVj6UVYVK7ILyVYVG8lKVxWAElQFhRRKYiI+FKIqaFUV1A1Qr9DMhuIh/9ideeguam8HZKsKMbcgAhJAAM3qKpHHOQQgVrPKvllVheqJ2CJAsgox68XFjYjPfGeqAFZVcR4zA+9rUarQAXYS4UwNAwhBANQNpCYdAQEMRAPRQNAREYiBSD9kDENHBKJlDEM3MGOgAYhAENEAMBD4UQY9ykDQDTQAU6l0Kd20z0PxkH7q3jwsN9xk9Ew8HicALgIE0KURgkgANAIuAhoAAdQIAJifNQC6hSBqBAjhJDBQfKYfkBel0X5mIRsJgKaxTiBcGAiwDmKLlAgAIutjvjP91WB3f6BuGIQQGrl5MpEYiABoIHKpIYCo01400ECDUgYFJ7hRN2hpAIaBQIiBBu9pMGgfA+iGgUB03tk67VTa6wYCgAHsEN0wDP4BgBiISIhuGMl0lrYqKB72EB6WHW4ymUQioRFgPY2oEdoxAAa6NCJ3LeGdTaTOZh8QXRo3lIAEwKUx28o6FZEQ0AjhfU9Ef9MBpdnxXA40jY5vEXW6G/I+BuDCwHoOgPYi1S+qKuxOGsNgeyIfWhOCBrOyiEC4fdU0jW0WTwZhYsWdqsEqAIJttHqGwYfN0pGsikIAicGrV2aX7ZNQPOwRPKzAqmIANlSUBpOACJpGgEd95ENisUQaxVE0nGvEMBClR7cK98i8KxuCWk7MiuXnlf0m0fgmZKVRsdF4q0kVtoyZzW1sBz5mJ0QeM9OvRIxzCTEMg45s2SltVeKE4PqHYsxMNA148t8yW0qAVYzz2CFtoAAAioc9hIflhhvRE8iHncC30CiIfBhMW0sskSbiKCDUNWqanGvnXlTYRdE50olZsfww5l5p+xp8EzGbGAC4qqBUYS4X/A4X6XRm2kyoCtuTdwsfRaOmaYxy3HKLKtG6IhurM1URMwKSqpgJPH6NVMcojaShv4IVioc9goeVeYtmh6riwkgwviIYX+FPrbarCt2HqYp5lXZV4cUySCeyqQqL8hoL3l2sKqaQFa8qJjvMayTsEpS7KQAd8hB4Ezq4G8XDzudhBWamAETunYgWp9cfTqzoF1vYK7bUbUTlg2KBidHqk6Ohc3RXmLW7QcfMTHBoEXScjAj8wT4gRqBg6W8+g0fbkbaWgUQTjBI/kRyqAoSOhMXsBooq2FUl/5iZl2ofMyPnjDxmZk2ITFUMpBprMgOE8qjcTX7k5SHha0YIF2bC/7A17iMUD7uAh2WHG1ZRWisUJqs6+elBe24PJ1Y47l8dX1kdX9lvz/1b+z/QWn2yRghVFUJY3o4WisKpWk/Etor+llSFcKYJVWEeWlIV0Zs8Scb3JEAAaGMikXoGWe8hArJ8HvPeJg2oqlBaUytMs228xkyx+GSE5QPRgBhoAAEwbKqCBNGgE5OaRnTDKKeb9nlk8xARNEIAUWRekI0XkI2ZCN0HEFHxsLN5WJlwY1OV2vg7o3deanM02XAZ0cFb50RCs7bVPwh0zGxTFeASwTfyYXQ+VdE0B1WBfKoCNHh3tqoAExPI+mCqisRfi6oQILpyNx2hQHdDCBDkwxaerRDupqfwUDOirniTAehKb8l4BoErlPSO6uY8rEy4oXWiqlKbeOfw7TMLPy4cXUgIbK9/kDakrCrABcOmKmxM66QqgmnM+9ElDwAkn6qAPGbuElUBywdJVexjZuVuigXnIfvm5G6oB8rlbro/D30tz3lbl/vbltsu3XCF4sGpLbU/RW9D9+RhZVLFtE4ESE3y0zE7Ly320FBkYa9d9wOxxkwaTWn/SdtYl0uqQjRpRoCLFbWvPCSzwABsRoAPzq2qAgXMCIizsLxZ1owAAJcyUQKrLx+ZswuRPqA5IyBRmjGYEOqo2Jg5YyAA9KsJFNvI+wuYu+HfCOsk1nnC3YiHSCH3RITNTHVnHroTa2rXzwptvSE71gCApkerI88P2nBc7c47NT3aDXlYfrgxHRcCDm+5rcMxlCN6737AndqA8lVyVQHLpfPzmUIDfAEUiwymqvBYQbcKVWGmGNmAiBaHSFOBXKJMmSLcPzN5Q26YLeEo54wA8PrSvwLk0Ymv8mKqYkqjeamE2ycERCQaQWSLwdQ9U1mw8FBmDO0k2Zggc0B0uAVUR5DPTDFbANIB3YOHvujS2o3nedrf7bAtQi3/Xf/N94ne0t14WH64IeL/vRIrahMrSy6o/7brRfsCOKuK+bu0SePGl4hDSJaqgF1VgIZrSVX4+KiS7gbM/9G/ArZWvQRVoYtBSxkx7xcweSi7G+CdZDEmBAjwGZkc7qa78dAbWVKz+YdEL1TLvcm1A745X9NbuhUPy8/dmKoypPWxcgoKxFe60hvRO5QX6DBmpueTx8yEgGGYEdo8hKsKEwpiHzPTBVjymBkBNSD5czfMvDjnbtAMRHzMDEB8yU9r2l4IpNay+AQk6R64J3Bi1Ds+SWo6GDMDQYONmYlGDJW7yQmLu5EJQ3juhv3OvAS6+JhJ6ImcuzH7oRvw0BX/NLj1hmJbxJtc23/bFVsGPs1LNlhr0NwNITRPbHU3ncvD8sONqSr94kvLLKuq/d2YbyjweCsyfCidyaYqiKBpRKzdFMRCAwkw9hBzKQSxqIpZTs4xszwjYI57nWemiG1GIBhb3mf3r92ZzbbLDCahd+yFjFaztfriLcELk1ADuWYEuPcmQMMZAQVnSO7GqrxiZorers1UGomB7KZNwpbLspkpovEHQ3QbHlZvn1e4r5Hhj79XE30+WnM2LZkOiKi7Mbi7KWhmqkI8rJi7qYu/U3ZR4E2tiWWpCsjTBEJVOGRVMUeoaFcVgHyq4ko0afE1JLWJEKK7B6NvcLp6Yra7AZbj79jdaEa03/Ybq9tfznOxbqN1SOvvBsSe+KTPUy2uQ+iUlxg6i8tT7qYwyO7G0oTmH7+ZWiPAbsWURhoduRvofB46uht32wp3rON8TS70av5dtOZsyd2wChICRCO6ztfvSe6G72G5vG7nbsqHP7EGCIDBslN2VUGW+TKNsawqTBF4Ao6rCuZWFU2P+L6Z644uzZYOdIVSNdPi/a7R3UMKdDdi0OsyIv2/+b4vubaQS3YbrYft+sEn4Yf3+I5mozBr4kG5m8KQw93QyEEABX8IIYT9tWsSeR3cTVfxML+78bU8V067uDObA/F32wMTrO4GDGQ3iOmmu0GWu+k0HlZsZqoyfwdEUg2uKuawmafrpDQ7UxV+rPhgURXgjhqkGQHvzkerP5vgaV7oaFOJHvW1PFf7xeSq7fOYeaYl8riTPTMlUvr133yvwFhD4TZaD4v8JJheK65aqod9RqDwYvczmDy0tBHljXWWBxEMAzXpb4am1USPdiUPO5yZ8kaXldk01e0vg1jRQ4AFX8JuEBNXyatqXrXUjJXhYcVmpiryd6CTsGXMDGweAblKAe9acVKqKiwWi/kD0YmWxDtVLyRA/Juu9m0taDwc2L0gtH4W0SOyuyFsfsEyM0Xr2WvXnd7kZ8VeuNtoPaLlp7Silq7MmhEotuT9BiYPLW0kuRuRjyMEWKJNiheaRkSPslI6n4csIOWdmSJGa5lN40uuFb4JuLtB7m6kDBVzN/R7Z/CwYu5G18JlFwWpwGibqgDYVcUMwJKqIDqoCsmhKr5NV7ubizConvZ3w5t/WIi7cac3hVqeKO3a/fqWg2IPy3MovFjlbgpBTndj/jFnuxspXlCdz+VuoBN4WIi7ccec7zosHszdQMHupjN4WDF3E/UemnAPLrOspHckmBxgEiEGwow0WJCqCOthUxX3zkc9xcQaCk/7u9Xb5jq6G5F8IwRqdz9U+sUDNLT/SbmbUpHT3Zh/zMLdQEHuplN5WKi7qRhMd4MGZrsbkZzsGe6GAOzxTSynIEOridVMB5MDTCJQ9D0BAHAn17hjKz2xlZ7YSk2PEC4PNlUR1oM2DL0thegR7/YHSqte1Z7HPckmyHI3/KQEEfyJ98poAPAYraF0k3I3JSGfu0GruwFSkLvJz8Nsd1M4D6Fgd2N4y5Vw0RDC3RCNPjCUfzAvQrqoznE3FZuZQoSvwzcMjJWeRW/pdRkggCZmFlifU1Z4Yiuqo8/5Wpdp1oRLxj8qE5yU7HUpeofKMwKAiEjYo2GBPVzWu/3+0tYvUFTvfDA16FGqEgafmeInRV+qyZXeUnLhFP1Sr7a4R5rfs2YEDB0BIOz3lnmifQ4mD83XLQBlEJ+BQnNsRd2NBuKvjLkbQKRz4bl4qKU3BlqXu4xWokfQFSJAMv6RqdDJPItnn5ly5GHhM1PoaSi/aXQtBHzdDQCggRohOpofzNaRZqYsMaVCPKzYuhtCIO5u2Fgzp6H1jyWUYmg1LeHZIrhyMwpAQEtt7L31em+78+0R7kSTO9Hka16Y7H1Zot+17GAxlSepikaIO1LWQkRf28uaHjFILfInRcvrbkim9EAm4DYiRJLN7PUOdOl9rQo3dpg8ZLNI3IPQkS8hkrvRiGFY1t1Qv+PizzB35KE/uiS0+0FPosnx9Mm6WfG+1xieBqLJ7saZh1DMuptM9YRy1t0AQKx6KgBBYC9vIBrRDSSEsA/CrQEAAbHupjN4WLmZKQQCsL72hjbvqBJK2TJggeGuFRoiSvYk1vRff3KuWGNWQo/6d9wfXHcO0SMguhhALMLQCCHtq0nKvsC3WHjb382RuwG3Xm7hABDKfKZyNyXBwkOLu2ELXszcDXU3KI2X+BYzdyPzUNMjfTec03vLZbliDQD4mhfWfjEpsPuP1tyNAw+LnZlKBU8qs2li1ScCfRIhInBTg+KDaAKQElLdPXdDAADSJPxh/8XFRpxt/R9IVE82pwB4yd7kmr4bz9EKHv64YyuD684hRkSEAXH7DCK60hUIB+7U2hy5G8i4KjHMlhKQACp3UzgsPJRkmeVukOeQRe6GSNlgvoXnbqQSvclP69ef7OtI8CgC2+ZWbblWUMKRh8Wuu0nWzUKtpuR2aam9yNDCQG/hI2Tv5m4q6W4AgBDIaOGP6xdH/AWljXWtZtPg56Lhc9G0v6xETY8WFWsoXIkm/zdzSZaqEEJIfE1RReUCDTTZ7gZKjPgW7PGNV+6mJNh5yFCMuwHhbniJmh7pt/EcV3pT4fXwNi+s2nIdLdORh8W6G0MLxQaVOL9haDXNtVeJa8x2N9J4sge6G1rFjBb+ZMDiL/v8Jpl3aryl5px1Dcvb/BPBSVXqtt9WbKyh8DQvdLe8lEtVygTRozTQZLublHdkR0d3jHYyULmbkpDP3QB05G6ArQm28bB+08wSSOhtXuhtXghQGXdDCEnWTEvWFvGETIHt9Y8YrrBoCgT7zJSkkhZ3g911Zoohe8y8PThrZ82sPu1LesWW+jKbffomlx5J+A7NaKH2wMRo9bSMt0G8wxDFjAAAAQi0r6iOLiq5MoFtd7SGpwMTCmaSdd9IT/mX6Qpxc26bmQJ0h5OB8b54WXPhzb6jpeUgDjMC5V7Avg6H3A1I7oZY3A1hszFsZgqsPKyJLPQWczOKjMC2uW3hk8EdFuvnBA+Lmpni7oy0DXwA9Kiv1eEhfrmwq989iarxwB/6BWIxMaKmabqB9H4uQ/wszUzRGlachxULNyyGW2cEAHB31fTmqukaAcLf3ExfaqpxZ2WZEQAAAEQItJV1nwhJbXK1rTSCk5BIjyBx15ZTJoXuHizcDZ1JMAfqBrSFzi4n3DR7x7Vrg8B8v4jDjED5l7BvIxcPhYGgM1NIeUiYvIETD2t3lziEAQCiR73NCxN95hAggCDzULibAmemCH/OaduQP+rb5lbtebzDsxtazbZBf0l6R7FhHA2o5tIhQt9KTsQTMwBMd2PwVuoEHlbsWcVizMy6mT1mSkrGsYS/OWZmufrsMTOB6vLCDQC4W5cCf0wEPXumemI5KTeKVNV4OXcjT0MQAm2hmRnPoJIL/6zmZla42KRyN0WiUjz0Jj91lze34G5eyP1LWbkbGqGoOYv1v7254Zl01fg85430vnrLAW+mfKPNdUD0IqWAy960yWbBeUuBmbvpJB5W3t2wP0ChKtCBqiB/sJjsbsqfRXLH1yTRbDF6Fj18clF3S9mQrhqvexogt7sBAjvq/zBw0+klFL6h6oJW98hOUpX9B5XiYXVruYLnSjSR1AbwDcUsHkJJ7oZGnExwUnP1RJLc6G9b7k6scWXYytKUb1QyMD4RmJAhIebnaBPY3A1NLOwld1P53I2YAmBjZpDiJVcVeczMM3nmmNmXqtQUkrCSTFVS9deXE27ael8DgIRoIncjLyGlhEn5Ru/qd0+fHTcWVfJO3wlfhm5h7aNyN2WgUjx0p4qYjcoFLbVF9zZww2LysITcDfBMCiIiouEZ3N57jiE9d0lkc6WoAubsG3c3yN2Njix3Izk8kHM3ncHDig2mRAWEjohmFLluYDePmBONYEZh091oeqT8+mjpzShNddI+Q29Duu+c0gpM1pyUDk4SwyjCpVNaZMFOFQ1+d2e/ewoveXvgzLW1d5utJD9qV81MFYlK8dCdqUC4YS44i4dQ5MyUcDf0cuThfB4eGoYBYvaN8JkpAMLfGkI0DWkcMpsPOpWHFQo3KC5SUhU+ZnZQFTYbxbaz5Adv8oynAuvlDM9gIk11ijFzYsA8vbroW0kz/pHRAffJHeyYu6Gn0jStLXT25sF/z7g7yONkSHBjzU/W1v5HhoQKHDNT8+vzqBe/OKGiPKwE+EP8snhYWu4GuLspkIf23A27XpYKQDSk3A0gN+nQaTysULghOVXFGi+Zqoh8HnBVAekV6JlK3JaGrjDyNCFYVSV+wAIjUMS654x/ZGTwY+CuLUpVkr5R64a8vr3f/NaqE7PLbPccsjn0k1X1r2+o+SkhpHBV0Q0EgP5Bf0mtsq+jcjzMuIdUokLc3TjxsMvcDSvfHGVplFKECHdDWEN1Mg8rkLsR+W8ifWV+ldhy3UxV+FobOsZm3c2CPQACJKsm+Ap4fVce6NUTiJQktIyZXbXtw172fnObd9eCDsvJVE2IDHnM0EKSquTL3QAQsWKVEBINzmyu+q6GUW9yrU5lDSCuDUy4hhgA9JErQlU6b8y8P6CyPMx4KxBujMChpjfJ5qGcu2EoNHdTLA+RuRtuaugHw5BzN13Awwq4G9aO1q+QT1VElGXbbe6GAMSC08qsVTp8MlrvlLGpSnLAvFjjQr16Qq4SMv6R0aHPthywEFxhKFFV2Jg5Q0LtgQntgYmtvvFtvvFpT0PJqlJms+zDqCwPYzXlMlD3jzLMRaE5ecjcDUMnuRueu6Hjykq4m9LapHLuRuSk+Ae7qvBLKsTdxMKzanc9oJX6lNZ07TmGZ0hOd8NVxaiZ3F4zGRIb3LGVJL1ZS20ieqseGIWuUKrmpIx7CBFDbRCsKEpVoGRVEeZbuZsCUVkepnyHZjyDy1l6k66bRVjupgh3Q2vYkbuBHsrDCoQbtNytD8i7nKW3WO2ZQ0REjYgOpvvzpBePpgRA18KRPtfV7ZhXSn20mkT/a2mLOKqKbb2D4W1IeRsA0EDUiEZvJ0FaIa4qyC8H0VQVBMhedwOAhoFE05j8CFUhhBCNLlggRKMv/aF9y0rm6x1o+7HQq9bdFIyK87Cl93V9tl1XWmUM7+BUn8sQ2NNtCuEhAFBCGHnX3fRoHlZgMCXGzOKrUBUApioiOU+jJu9guj/bXVCFRurWXpfFQqXclpYYOA+9Q7lv5ON564wAosFmBBiY9mSrCuEBXlIV08rmnxEgwA7msc+gyX0mL8iaQKgK3ZNWQ1YVolYVF4CK87A1PCtZlXOsnR/x+tsZoxQPJVQ+dwO8ivKYGfnSA5SeEiZUhe4u525osS3956V9xd1m3T7ogXTducjfVSjqZhszE6KZY2YCkhPPP2aG4sbM/GJoes8yZmbPl3MYM9NqcM6o3E2h6Awe7hi0IFUkAwEg0Xt2OjSdMUrxUELl3Q2Y8SKfqkidbVUVFCwB3RXe3vhye7ggj4NaTXzwA+les4pWFUq/TlYVwsVEuZtOQmfw0HCFdw4uLuIk+8xODryDjccVD62ofO4GgGW6xZgZ+OXIY2aUHz1BCACpbnvJl1zrSza59AgQSAQmGt4hieBJzQN/E689N7T9Nk8i59MAUrUzE/2u070NBIG+5ZnfceegKgaL63zMTACwM8fMIgckj5kNg7B3v/OSVe6mPFSKhyx3w5OoGXfDzoZFfbbM7nBlBmo17QPmpetmIdKnoCse2lGZmSnCu5ZtAVZjwn8gBOgt+DS6a1xVCAG3Ea1rWdB79/22Yv38cY3ttee09b1uV+PL3uSaQGShJ74GAIgRRS2ErnAmODFdM83wDiGEaPS0AIS9AZoQOs9IiO0J+ExV6Anyqoow2ZKq5JwRMBBBnhEQDpew/idiRoDIbxSzzAgQBAP4pICamSoYZfJQuBuNdyiPVmC4wzsbFvnbVwSbF/idbt1ErSZZNyvR73r6OCTFw1yojLtBYhmVWVSF7yOrCt2iEahqXzF422xX3gemVbU8V9XyXMvAB+LhWZn6Owhy8QEAAEoOIjyzg6pwOZBVRdPQQDa0dlAVggRLUBVK4ixV4eUUqSq0XsrdFIhyeAiSuxEvhGFTxHzFb7J6Ujo4WdNbvLEV3tRa9mfsqklXT8r4RyseFoJKuBuwqoo5JEYRBIWqAOF3kRAIR54dtKPQicbab67zta+MDnyQdqZGCBqGxlNcdMZR+GUaszXN9K92VTEM7l8dVQUroipMN0W+0FQVVO6m4iiZh/ncDYo/OFa0oYWToekpmE7PqGkEDUNjhSsedoBK3DNFLA5WTAHIdeLdZ4pFTeuSwmMNRaDlueCuB3iBPK7Tz6wbeFqQqwqLRlZVQUCiabQjQewE8owAKW1GgJ7KvBOXtQDN6sszAozryEt2nBGg9aIXRVUllTYAoKG2uqh2219QEg9RunER+PCHHk54IbyfzGJFPlbxsChU4nk3fCGjg6oA20q4NaU/eDIbB+0sZQFV9Y4HUoEJ6epJxHQ3rNU0jQiNEKpCAzMCf41hl6gKoe9Lc1IVN0aDsVfC7a+4MYqcIVHPiK2Bs6LuEcrdlIXieQiyu6H5VXRyN7xA2uNE/G1TR9MDeUgrINXELLm7525oRNSI/BURiGYfM/NPBPrveSB/viYPQt9cv3vYSqEqhN/jjyYDLKpCY32eMTMxIlq8CQBd8TV64FBE1NlDjvONmdmlOo2ZkY+ZuQQRRNSMyMCWh/tEn8i+onDq/SGxP8Vdgz4N/Wq3Z7yY1cweM2NG5W5yo3ge0v9Th89SFTRAEPFHbylfnEU8Cq6CPCwtd8PqVDAPRe5GhBgCYLAKEwJoSLmbivOwku5G+spbFhxUxZveUNda+iP1XOlN/paFqV7nOqsKG6hLqkINoJOqePcs9DQ/54rZ31iGrlC6Zlq816V64NBcqsLifgeqQnlpVCfeG7zjSpeRL8IG9C3jmi/eEjhrbfXPk1qIUgmVuykcRfJQuBsK091oFndjRpyi3E0xPCzH3RTFQ+5uUIwZRU34KNDibpC7m0rxsEK5G+RjPOCqgmYzUgh9CcfKfQqsN7ZCGjObqkI7gjpMc8ycpSoI6Eo2Vf17pn/zddmxBgCIHvW2PBf+enr1lmtBjziOmdmlOo2Z0RwzAyKGWxcP3faD/LFGYFD8haNbLvIYUTZsVquKC0eRPBTuhiVzpOEPPVwQSJQv/ZuduymFh+XnbkDUtSMeSrkbgtIAisUkIqIz284apKI8rES44dl7NL/ycCzVipOAhGNLyzyht2251GS0+ehJCc2LCdIwIvH2AgAD0RNZGvj3TMdAY4OvZVF4w7kkvQkkVZGuxr6ak3tV/hQ1BH967YBdNxV1daHMZ4dFb5FVhahVxYWgSB7SjYTHJ9ndEG4LzAPFgIx7DF5M6Tzk7oYns/O6G2HcSuMh4f6Lp4eFyWMjQXoikTgnPEhXlocVczeAoiNzqIq1n8qBpkeZSvAwn19VZDfoia30b5hNCn/veKKpdv25RI8IVaGXwS41r6poGBm05fwSLrA+9b8j2v9TuZviUDIPs9wN+6MHkEY5Vncj8tGl8rBod8OvqwQe5nA3LLzSxE+Pdze8BxkIb63qeFmP6aNwpTfxBrGoCjipimgvktroW39psefS0ptrN55XgqrURZ4scAyVjcb4n90YVe6mCBTJQ2kT/Senu2F/3bK7YarPMsTF8hAKcjekYu4GTHcD5gCQuy3ugHqQu8FsVeE9yCBURS/73XIAYGghfs0WVWH5MklVCDFVxb/p2sJ9jQx3oikQWVSUqmgYCUeeKPkCPdg6Iv6fyt0UgSJ5KG2i/5iDHclt8N8d3A2LZCXwEApyN1gxdwOmuxHXKLsbejU9yN2QDlSFRU0EQhK+0RU4qauWXzNqmqkqiHZVoUNrQojW+o7W1nG+Jheqdz5YlKoE2t8r2dpQ9E79iw0GlLspBEXyUGyRx0fS4KgYdwNQOA9t7oZ0S3cDwu7xyleEh53nbsTwV2xk/0uV/Yx7wzNYVhXDcFAVIQFCVTzNC8s5qZbe7G9bWriq+JOlvyycolb/3AutoNxNgSiSh2KLFEF4OLC6G7aP5U/Mwd0UyEObu8GudjeSqZHOwtagSQ0jgjStfEV42HnuhkgVtqhKW6Do1zzZkAhNy68qGm8RWVUKmYrKD0/7e4Wrij/34zIKRyi91qIqVsorWFAkD8UWYKtvCABbk2JzNyzWWP7ECnI3jjw03Q3ZK+5GMjXSWdhiwix3IypfER52nbsRv0WqTy4zfZMIz8qvKvJKJFNVUuW+d9yTWFOsqpQJm6okMhkAaKgLVqDofQ9F8lA6CsQfMJNulPYFR3cDhbgbZx4Kd4M91d2UzMNKuhvWKzlUhf+P6Fp4d+1lJZ8tEZ6Z8Y+WVYXkUhWe9CIArkQl3juutxarKmWCyY1yN4WgSB5KRzm6G2nA4OBuINvdFMLDveVuKHK6G34h+d1N+TyszFs0WRPwTsynKoAAsCs8J+Er4j2W5om0mrZ+14FFVeij7LmqgKQqBIB1MEAmUs4FUriMSIGqggi6K1T+GTOuECDnnEYqE8P2XRTLQ7HFyd1Y/6IcGt7mbgriYRe7G+5mzPZxdjfsQrT87qZ8HlYm3LAm4J0oVMW8Uquq6K7wxvoFJQypmg9YpLvpC6S4qtD7QfhJaZS3qwoBrDq07KsE3TO4QFUhBBL+8WWeLk2CLdoI5W4KR7E8FFsc3Y21aFP2+YFYAg9Lcze0hiW4G+5mzPaR3Q3KU1RAEC3hqVu7G1Yvq6qYfjRLVdLehg2DF6U9gws8haHV7Bm6MO0fDVQlhKoQu6oA2FUFAAytAl7D0MJZqkJyqUq8qtxws8tzdKVUZT9BCTw03Q2a7oZIu/Ki5cEVPbAUHjq6G/ZwvNzuhtYwr7vJyUMzrgqvxwsn8gIc7m5Ew8hk63buBiBLVdhNsQBgqopwnoCQ8B26vmF5a3XHb0dNVU3YM3RRqnoSgLOqEGKqCqBdVWiVMqFyX8OarDkpS1Uwl6okPaPi/qPLOd2//RcIVQHlbgpAaTwE+ldOZckQ9xOV4m4K4WG2u9E0jZ8Qua8p1t3k5KEZV0Umq0h3A5K7KZOHnehuaOaMgasKik0EACCjhbcMWLBp8HNtwWmG09gqVTWhecADuw94Pu3niwOdVAVRUhXirCpGsNwJ+FT1hGJUheyuu6rkc+32HCW7G1DupgCUzEPhbrQc7kbkRqRNJfKwY3fDS6mQu+Fjokq4mzJ5WInn3dhURayGNtB81pGsKhInqBrEqybFAxNdGgnE3iEEAvF3096Rhiuc8Y9Gd1iz9Twi0QgNxjRfT591RPhsHTFVhQC/5Z8QkupzmWfXH0ueDk+Ez9bdQ/hrNeil8jEzImQ9ZwQNjAcmRINnhdpeKPZcaRL8tPrnIFQFAICuT1XuJh/K5CEAGAa62CNpLH9RCNKDu9imEnlIP0juhmjE7m7EqMribrhL4u6mUB7KjSNMlsHz1uzBN0AM4W5Y4DKboFI8rEy4YbWRVYU9NZr7WH4NYlgrqwrR2GOHEtWTCJBE1SQNmHfTwPSJ7DgmVvYxM7+vNZ+qpAbO862fXcoFajVt9XOpMacb2DUI1SOWp6hR/gLitn73elNr/anPijrdJ6FfR9wjgcoUXT3B7r5R7iYfKsVD8wl8HKSiPATr0/wMNDRNAwLsaX50YosOecTT/BDERqn6hfJQtAa7FO5uzGdrARJNI4YB/EF9KCXUK8XDCrsb2e85qQp3ZZBPVeguojktA29aLFcVb/tKd6JJy2x2x9mymkz1RAyMTodPBidVyYSna3XneJqLfpZgZPBjhhYqTVU2DXi6fudNNe2vFHKiNAmuDv16m28qGAYod1Mk9hYPc7kb9ozRfO4GCYEudje8AsLdsDYzjJ7mbszHEBamKgCAhl1VkL7oR+wlro5ySSOI4Im9E/rmei29yX49sZUA4HeFkv2uT/edA1mqkmp4CACKijitA+5LV08sVVVIhoQ29ft935bf9Yr8twtb85yo2TtubfDmFvcIc5NyN8Wg63kouxt2PpHZIJZbInK4G1K4uwE+DiqNhzzwEBqPrO4GqLuBHO6mUjys8MyUpCqsj4ncLGJPsYWvVmAzAqz/zKthw0qpEJJuCW+aU7thVnasMeujR/1bb6/6Yqor/ql4JquYEUg2PJTqX9B7IFCriR7wbLJuFlhUBXg35J8RYFdIW2NH7U/XDnptZ+iilHtQ9ol2+k74uPa3/6r7U9Q90pL2l2YElLvpEF3JQ1GslJ+msYXlcnmZLPpk89B0N1kzU7TqNncDpj2BknkI5oQUiA/04tAwLBGmE3hYSXdDuADIqmJxobKqUJBsVQFEsKkK8ibxJNbUbjhHK+yZNa5EU+Drc+IHPmcEDrWpSqr+hkxomu+b212xnM/6ive7Nl53qeEKl6wqBBElVTFc4S21v9hce6srvcmT3oxADEAdsdk3QUc0uOnNqSqEZHQDAPoHA4Vc/n6ILuMhmO5Gzk/b3Q1IE8v8iel7wd3YeJjL3bABXIfupgweVjJ3g9wsyWNmQux7Us1A3oVCVfiYGQRdgI+Z6RYtEyk81rDT6dHA1+e0j3gX3LW2MbMROLT9oOdJaqOrdaU7toKk2YxVpnqS7h+ZrpqoayGgI2LgN94VMGZGBHqvCrLXo4mHjJhD5aRrUMI9WEfQudLxvw8A65hZyk/Sh1oiAPjdruK6Z79B1/DQmrvhHoGuu5Ef2ce5gUAIgkFfsFlO7qbSPDQ/8CDU2TzsXHdDP1lUxUCWmaPfhaoQSVWsYzwxUqzdPLuoWMMO16O+TdclDljgrCrehlSvIam6WUBVhT//EQHZQijkrV+YqgB9e6GzqhADqSHlH6jHLlhVir32/Q1dw0NHd0PE+SRKgDBVBDQoxt3w5TNWdyNO11N5WMncjUjjizEz8Cht7ileoUy/8/Gt+FMH0a98UE0v2t+6xNte4kOO3dGl7tjKgsbM4DhmBih4zExVhUhjej5mplQDlD/Qk6K1Z3ONmVFqRwUndAEPxTFm7saQCEQ7TxRNz0r/iovK3eyjPKzkqmJimatD6k6l0Svflfcl/R8aSHsf+WJzdgSjDOv1QMuicmro2Xa/UBXkK00dVnPSRBpYVnMKVSFmtYSq2FdzEgJIn+XPx/TC/jLrJH/ggixJJ08tsvbhtly5mwLQBTwUx5ihTazSQdZXNndDC8rO3eyHPKy0u+FLGBxVhV1rAapiXjYCArjTG/1tZb0MzxVbCZkWqLCqSGPa3KoitY+pKoI/xNQX2RmDKJ8od1MwOpuHFncjQht/GjHZa+6mx/Cw8u4GxW0jWarCrtWqKnQPm6qYfUvXFpf9ID4AcLWtgNJUhVYkS1WYIHSkKlL7mKpCD+CqwmgtnLFZaeVuikFn87BDd8OPEoHNwd3QX/ZPHnaFuxG1E+Nb81K4AuRXFV97uY8ZBgAt0QSlqQqrvF1V2HC3VFUBfuOvcjeVQmfzkIhPOdwNP0oENgd3Q3/ZP3lY0ZkpZvbYP3yWEMT96nSDJ7PRl9lCAFK+UegO05aiswcaVxKbqlQQhcwIuJNNWnyNltpMmZWunpD2jgR3Le0pesXiqk1VyTEjICRNI0QXqoIQSrwbdw9q1wazKzTYddtmBNAw6AyocjcdoigeohyDCBTCQwTwJJo0jKarJjq6G1aMOWxD9mcszUzRX4qdmXK3rfRHnnMlmtyJJlpC2jcq4x+ZcQ9pq70Y3bUl85C6G3PtXmfysKLrbhCATS6yDiXSXGP/yGPB+Lu17ZYXhOuuUFvw5GjNzHhgkljvwC6T/4sV/SvLs95BM6K+3Y97W57TUtb1yjsBAJLBae11lySrxgM3nbwfHdc7AF+3Z9p7okf6xV6oSrxflWry6ltE8S3eo3f4TtgSODNFQgBgW+/A2pbdq6KQD4XwEMwghGY8Md0NZPPQ176iOvpcoG2ZvA7DcIVSNdPSVZOStTOpQaCP3iQEaBChNUIeceR1N5CXh9zdUG8D7rYVVdvniSgj4Ek2eZJNAFDd8nhrr6vbes0ukIeGtO6Gthq7XoO7Gxa4Ks/DTnM3bLCKAFAbWzJ091xvxuGeA5ceDUcWhiML44GJu/rNTdE33mWpiuOjcIqF4RkMuVXF1/ysf9u8PO/Y9LUt87UtSwUmtAx+hK4AdHQ3CIhOqhKKLR+4+yaX4XDPVG3q/drU+42xh7+u/sm6wIWOqoLK3RSA/Dw0OSUSJIRnE6zuRlgeb2JNrx1zHcfymh71tzznb3kusOex9vq5mepJwt2AtEBcK8/deFqerd5yff6r1vRoeOed/raXW/r9MuUblZ+HUJ67KZOHFcndmAsWAfiYmT/BaOju24Ztn+0Ya2QE4isHbT6num0JgORugF00e45fmbX0DoEcY2b/jvsDW64v5H2+3vi7dRu/R1XFccwM9jEzeDKbDth2/pCdVzrGGgGP0XpI692T9pzllXdjtxEDUbmbjpGPhwBWd8NnkSy5Gzrk4n9OwZaF/Ted02He0J1oCq2f5W1ZKGalRAns7FQyi8/dVG2+psNYI+CLv9t38/e8iaZcPASeADJoKtqeu4EOczfl87Ai4YbI2Sw2IwBICDl459X1kT8WWhU9Wv/NZcHIwmx3k/aPLtPgoHewHpwMTjMCvt2P+XY8WHhRnmRT3ZbLNT3iOCMA1hkBlxEZvOPHVYlC36gZynx2dMtFbj3CvhO2ohT5yncACAc8RVz5foScPKQ/y391It1qy92I8BSMLOyz7brCV7EHt1zn33G/OC8/I/JBkZmmpefMPTNFK4Ce5me9Ra410/Ro3y3fc6U2ZfOQZRypz9KIOWAzZ6ZYkgClmSkzUlWIh53ibuhzQPq2PtO3regny/TeOdebWGOGVjYPQNp7zymnipnwyZRvNlVxR5b4t84rtjRXenPvzd8rxN0M/ub7/lRxr9MMZT47vPUX7IukKoioGwAAYb+32ArvH3DmoaO7EbNIju7Gl1zTd1tBzwyQEdjxgLd5YS53wyfIiCMPWR2AVUBLbaraVjQtAUDTo3W7fpXNQ2ZYCACCwdM2NneDBkv9CHcjLqRSPCw33BCAbFUxDPRmNgzbdW0JBWp6tN+WOeYMJbtfFWN1c0o2OKjVpPpd56gq/q1zSyvTk1wbaHkuv7vp3fxbX5HP8aOoT/3vgOQrAHZVKa2q+wNy8bBQd8PyPixA1H9TyiMfAaBq21xCbS87I5tWFxNYBbob/44HChnaO9chtjwQf69Dd8Ozv6a7IRop0N2UVjEoP9zQpDdzjJKqHNB8f8llutObgtGFFndDiOEKtQ58oLQCk0MepNPYwOYpmKr4Wp4r502+oT0P5XE3mt7Sq/m3JRc+OnYPgF1VSi5tn0cuHtrcjYhEdncjTQWFogvd6RJZQfSob/cCm7sh0q1Vwt1gbnejGdFih1E2VEcXdehuQDCqeHdTcsUq526ke/y1TEu/WNHDKBnByEKUE1aIACReMz0RnllsUak+szPh6UJViKQqrsjSDg/PA1d6syfVlMvdhNoWl1N4lbGlIfmCcjcFwpGH2e5GRKI87ibc/Fg5NfHt/qNIpqI0vrO5G5Lb3bjbVpRTAQCoan/F2d2A5G5Ey/RodwMAdcly28vX/q7LiNATcH+MhEBk0G+Kijip/tcl6udBDlXxtC4vs56B1uWO7gYIqW57uczCw/pnyt0UCEceFuJupKleAgiu9AZfsrhcmw1Ej3qSa+iJiDS+K9zduEt98oGApke9ySbKQ4u7AeFuQIw9TXeDprvBHuBu+MbqlH1JUglwJ9aYX6Sl5dFBv4kOeczwdvD6Tb16QtuIlcl+1+dSFS3+afmV9MXfdXQ3gOgtMkOcjd6pfyl3UyAceWhzN+DkbqQFwAgEvGlz+WXJcEeW0ROV5m5cWSv6SoCmRykPc7gbcHA3xHQ3pHPcTbnL/LiqiCkkAAA3RnIfUSiYu6EgBNEQN7kla6anqyf5mxf6IgvdCctfNWo1RmB0qm5Wum4WDc7MT7KoTISqQKYClRQzGmI1J3U3CKDlXWVTCGr1z3k+D4haVZwXjjzUNLrcDcUfCNsBgT7fO8vdYCBegbvzWLLGzN3wFIojDwFt624qBcpDMAzhbmhSgj9smCAaAAQFiw1BY+FueI0qxMNyw42pKpq55jmYXJPnkALhSa6N10xnX8zn7PEY7Aon+lyW6HMZAHhiK2g8zgRGgytMOcZjEzPQsqoY7C7hSpgF0R/Zq4orAmk1p3I3eeDIQ8NATVpVDMClm0gxiOdv5KhUJuhUlEagEB6iAYYhryquzPvsAYDy0MxPEaBNpGlERwCkr15AXi2uzgZzN4a5fqhiPKxU7saiKpFABRYBJwMTzOtiz3ZlDo+eyeBJLT04OROclA5OIu5aWVWAqRnta/uYWZqUKAOcRtm5m/LLTpOgyt0UiJzuBvgfDR9GgZS7ATBnp2jupiK3y9jcDXTEQ1vuxgiMzlt8QTBcIcpDej42bERk9oTmbui7zABA+K/un7thWRXbLXBlA+VyEDVxFsLOpPEpO9ajPBYR3pfAVUX0NUhjZrrIuEwkqyfmyt0YpFziRtwjVO6mQDjykL8jm6VtwXSiknBL7gYIJP2Hll8ZQ6spnIcAxJa70T0d5CULqUDKN4rykP3RAGsjpNGN5m40jZ0WEbskd1MBd4NoV5U9VSeXWayh1aSqJ2W7G9Zhwt2wH2nGncUi2rPSM9xyqopePaHMeqa9I3K5m3hgfJmFR9wjlLspEI481My/cNPdCIawnazuJuEdVX5l9OCkongouRtAwExoGpZnstqrpwoe8mwVMzmERjcHd0N6qrtp9Y7OlKftiapJ4ORuWIcJd8N+5O4GJXcjXtSaW1XSoWnlVNLQauI1J+dyN23VU8spHAA2+s6UVYU2RsivbphygLPL5jkJtgfPquRxN+iujQfKEiHDOzjjG10UDyV3AwSIoYXKZGYsNFPw0OpuINvdALCWEu4G8rqbcnjYKe6GAPkm/MNyim2tmy2yIgAO7gbNW2wld0Ps7gZAMopZqpLpdS52NKGeB219rqExBsDB3bTVnJ1xemFmgYi4D4m4RsqqkskgANSqG6ackIuHYs47j7uhnyh1ELG5d9F3S8mI972uWB7a3A0hJD5gXskGp716ajwwvkN3gwjU3QCwlhLuBvK6m3J42Dm5G8AtNXOS7hL/kttCMxPVk8ScDwBzNwAmUYj5WsKO3I3JObuq6KQmMWBuaZVM+0a01l7KZsHBwd0gwO66q0orHAA+rfo5rbvK3RSCAt0NgIO7QbadjSraqyYlSjU4hndwum5WsTy0uRtERFeovSRm6p5Bu/vdY+Mhe9KG1d0QAqW5m72Tu6Hv0GtPJhHFXBqvGxDdFV7b7/EShlRJ38g9/eaBNOcDAEAIS/vx8+RxNzQsG/wJsmJw6qgqmfD0ZO+i78cztJo9Ax+l9KFzjdnuhgBEa85uqzqx2MIBYF3VBbu9RwNUbMy8DyM/D23uBniuhvB5Bou7ofQA2DZoQQlTVKjVtDUsKI2HYO7E7pxM150bG1TcjYeGVrNrwKPoDtt4yJbR5HU3kOVuoFvlbsYMqPO5tHgyGU+mRUOyugEiQrtvzPredxRVpqHV7BrwG8MVBjBXtAAAIH9Bqs3dEAd3Q0+v8SfIitQ7G8BmqUpi4Lx0bRE3RhhazZ6GZ3TPEFYmstVi2e6GANnWb37CO6KoRtjsP2NN9c3si6QqGQNBPX0iCx3y0O5uhGjxzTZ3gwC6Ft7asKjYiBMb9IDuH10yD2V3Q8ugEafAUZXuGbRzyDMp/yhHHjq6G+BpUDZHbnU3kMPdlMPDstzNsQfWA8CmXTsMw8hWFQDcWXPup4OW64V5nKRv5MYD3016RwPwgMxuJbO7GxTuRiz841lkwk/voCqYU1XaB/8mPuD2QiqZ9o3Y3fhSyjvKLDO3u0FAQ6vdWP9US/VZhRSeIcG1wZ9/EvoPR1WJJVMAMLxvuJCi9h8UwkPg/0CWu+GZYou7IQSS3tHbGhYVOCeNWk304GXp8Cll8hAkd0MIQcBU7azmYSuSHd0n2FZ3yY6hL6V8o3Lx0OJukLkb4JO81N2IPyheF2d3Uw4Py7XoT6/698aWmM/jPqBfX5/LpRGgt5USBJdGCKBGwGNEhu6+rXdrznvEDa1mT5/rI3VzAOnhQPhDZEUI1oTplTaaUdu0xEwfhKqIZK7QPfFkI/qMWEM0empDYMeDue79NzyD2/pc005z/jTS0/OJ8GcgEGKggewDAhADUEdEIMG2ZQOaf+3J5LwlZ4fvhM9qft6uDTYADQQD0UAwAHTDQCCReLotkekX9M8+enhxPbR/oBAeagAaAUDUKMHEFqa6qLGVgSh46DIi4eYFwT2P5bklJVk7MzZgHmrhSvHQQIOwNfSELWtFdMdWetrfdcXXeJJNWnozABhaTcY/KlE9tT14ku5tKJCH9CZxHdFA1BnBGNMMAB1R588W7QwelhtuEhn96VX/3tGW0DRyYP/+Qa+b9iLtYAKsRzUCvvSGmsTK2tgytxHxJ9cYrnDaPTjtHhKrmdbun4juMCWBLeKwLRpBw9DY1DeKuzk0GnHZSIY/Cl8jso/lgZnfpUL9CF1VTAiwe0pExpAQPeKOrXAlmlCPuFKb9cBog9Skqiak/aMRAdEALlnASzPYZBkaUhhCwzAAEAjtJySQMYxQ+8uh2CtefXNN8l8AEPMc0uYZ1e4atNN3QsQ9wkB2uwoC6IbBOhugLak3x1IAcOnRw/sH/eX0176KwnlIkL78gBBE+iQGTQgY/SmLh570Rn/7u/7WZe7MJk+iCQAy/pG6Z0i6amIyPM1wD+kMHrLP/AVVfDjDTUl5PEQguoEGokFDD4ABJGMYUpTpFB5WIAEp9/TgXnV9glWECgUpXVXkXi/T3UjXWoqqmAN7QhDFy3aKcjds6FeaqrQlM7vbUgBw4rCB44b0KbOz9mEoHnZ/HlbgWcV+t+v8Iw/qF/QbBm7ctWdbSzSd0WnjiH8YxLJfkbEz79DnKxpZu4JIiACyMbD4xZa70TQzd0PLlcfMIgVY1JgZeAZagCkLm1YAs0xL7sYQOSdpzMzKMdAwj+cnzT9mjrSnaR+Pqa9TsSY/FA+7Pw8rOb361rrtb6/bTj/3DlYNqQv53S6hIXQgLVSFcItrqgoiQAeqYgpLblWhLSurCksHdr2qEEI1hJKSaYhVVXREJCRbVdpT+u5YKpExAOCYxv7HNvavVDft81A87LY8rPBqjo3NsbfWbdvYEqNfQ37vwHBNn2o/M7FZY2YApE8cI1LfC5uaL3dDjyWEjsPRsIyZCX34gDRmZldb/JhZdHNJY2ZCR7/I+pv7WIMbV0Qkmm3M3JrS98SS8bQBAD6XNvOwxoa66gr20f4AxcPuycNOWTy2sTn2/qadX+4yHyUf9nvrqnxBryfgcYd8bk30IkDJqmJ+QOtXqiosdwfQbVUF0TCYqrSl9fak3pbOtCbosgbwubRxDX3HDelDl7EplADFw+7Gw05cqxpJpD7Z2vzFzsiOtoTtJ79bC3jcAY+r2uMmACGfx+MiGkCV11XtdtlUhQ5k86uKwd61bFUVwm6yooNhgFJmBCqgKmjQCchIykgbaCDGU0ZCNwzASCKTQaQCItAv6D9sQK8xA+pUoKkIFA+7Dw+7Yml8IqNvbI5tb4tvb41va4u3JtKFHOXRSK3fwxWB6UO111XjcYvRMOE7mx+4jhACdnBVoX1DpYHwBBuYPU3LQ7RsQgAipe34B0KSGb0lmQF6ALGUkjYwmtILudiQ39M/GBhaFxzeN6TWDXcSFA87RGfzcO/ciRNJpCLxdEsiFUmkAGB7azyZ0QGgOZ5sTWa6vj5dg35BPxWKsN8bDngBYGht0OdxqaU0ewuKh13Mw+57418io+9otbtfwYzuA7/b1T8YcPxJhZJ9AIqHFUT3DTcKCgr7GCqwzE9BQUGhEKhwo6Cg0EVQ4UZBQaGLoMKNgoJCF0GFGwUFhS6CCjcKCgpdBBVuFBQUuggq3CgoKHQRVLhRUFDoIqhwo6Cg0EVQ4UZBQaGLoMKNgoJCF0GFGwUFhS6CCjcKCgpdBBVuFBQUuggq3CgoKHQRVLhRUFDoIqhwo6Cg0EVQ4UZBQaGLoMKNgoJCF0GFGwUFhS6CCjcKCgpdBBVuFBQUuggq3CgoKHQRNABobW196KGHpk6dOnr06EMPPXTatGkPP/xwJtPxS0uvuOKK888/v/MrWRa6VSUTicSxxx47YcIEsaW9vf2222476qijRowYMXPmzI8//ric8puamhobG5cvX152TfcCFA+7DHuLh24AuPjiizdt2nTNNdeMGjUqk8m88847Dz300KZNm+bPn1/OKcvBt771rb/97W+DBw/eWxXoJPzmN7/ZunVrnz59xJYbb7zxgw8+mDdvXv/+/Z988skLL7xw2bJl9fX1e7GSewuKh12GvcVD9xdffLFq1ar/+q//mj59Ot101FFH+Xy+ZcuWxePxQMD5rcOdii1btuzZs6frz9vZ+Oyzz5544omZM2e+/vrrdMv69ev/+c9/PvbYYyeeeCIAHH744VOmTPnTn/5044037s2K7g0oHnYZ9iIPNV3XAUDTLEmcH/3oRy+88ILo42efffbEE08cPnz42LFjr7766l27dsk7t7W1jRgx4ve//73YkkqlDjvssHvuuQcAdu3ade21144dO/aQQw4544wzVqxYQff56quvGhsb33vvvSuuuGL06NFHHXXU3LlzDcN49913jznmGAA49thjf/jDH8oneuuttxobGz/88EOx5aOPPmpsbHzzzTcB4IMPPpg1a9aIESNGjRr1ve99z9ENjho16tFHHxVfb7rpptNPP11U5u233/7BD34wYsSIyZMn/+Mf//j0009nzJgxYsSI6dOnr169mh6SyWQeeOCByZMnDx8+/LjjjnvyySdFafPnzz/ooINyNbRhGLfccstFF100fPhwsXHFihUej+fb3/42/erxeI499ti33nor+/Cf/OQnP/7xj5966qnx48ePGDFizpw50Wj0P/7jP8aOHXvEEUfMnTs313l7ChQPYT/goXbQQQcNGTLkxhtv/Mtf/mLrP4rFixf//Oc/P+OMM5YuXfqf//mfq1evvvTSSxFR7BAMBo877rhly5aJLe+8805ra+uMGTN0Xb/oootWrVr18MMP//Of/zziiCMuvvjizz//HADcbjcA3HHHHeeff/5HH310//33P/nkk0uWLPnWt771u9/9DgD+8Y9/PPDAA3JNJk2a1Lt3b/lES5Ys6d279+TJk7/++usf/OAHffv2Xbx48cKFC4PB4Pnnn79t27b8Fy9AK3PffffddNNNq1atOuyww37xi1/Mnz//t7/97fvvvx8MBm+//Xa651133fXYY49de+21y5Ytu+yyy371q1/99a9/pT8dfPDB3/nOd3Kd4umnn965c+c111wjb1y3bl19fb3X6xVbGhoa1q1b51jDVatWbdiw4dVXX3366adfe+21mTNn9u3bd8WKFfPnz3/yyScp13suFA9hP+Ch5vV6//jHPzY2Nv7iF78YN27c1KlT77jjjk8//VTssWDBgmOOOeanP/3pgQceOGnSpF/84herV69etWqVXMppp5328ccfi2Z96aWXhg8fPmLEiLfeequpqenuu++ePHnywQcffPvttw8ZMkSOxNOmTTvmmGM8Hs+UKVMaGho++eQTj8dTU1MDAOFwOBgMymdxuVwnn3yyrZtPPfVUl8v19NNPe73e+++/f9SoUYceeui9996bSqWef/75PFeejZNPPnnMmDFVVVVnnXVWNBo999xzDzjggFAodNpppzU1NQFAa2vrX/7yl8suu2zmzJmNjY3nn3/+d7/73ccee4wefvbZZ4vPNuzYsePee++94447bIOC1tZWerECwWAwFosZhpFdSHt7+89+9rPq6upvfetbhxxyiGEYs2fPDgQC06ZNq62tpTXsuVA8FNiHeagBwPDhw1988cXly5ffeuutDQ0Nf/nLX04//fQ777wTANLp9Nq1a4866ihxwOGHHw4AtkJPOOGEQCBAE9GZTOaVV14544wzAODjjz92uVxHH300O5mmjRs3TqbIqFGjxOdQKBSJRPLUFQBOP/309evXf/HFFwCwZs2aTZs20ROtXr169OjRfr+f7lZbW9vQ0FDsX+CwYcNETWxfk8lkKpVqampKp9OTJk0Sh0yYMGHdunXNzc35S547d+6xxx57/PHHF1UfGxoaGoT+hEIhUT36NRqNllN4d4DiIcU+zEO3+DRs2LBhw4bNnj27ra3t9ttvf/zxx08//fQDDzwQEcPhsNiNfm5ra5NLCQQCJ5xwwtKlSy+88MKVK1e2tLTMmDGD7qbr+ujRo8WemUymrq5OfBUdQyF7Y0eMGzeub9++S5cuHT58+EsvvTR48OAjjzySnqihoUHeMxwO2yrZIXw+X56viEgLvPDCCwkhdCMN/7t375YvyobXXnvtnXfeefnll7N/CofDtu6JRqPBYNCWwiiwerkq0LOgeLgP89CdSqW2b98+ZMgQsSkYDN5www2LFy9uamoaPXq0pmlysKefbdYLAE477bQf//jHLS0tS5cuHTt2LJ07rKmp8fl8//znP+U9Ha+hQGiaduqppy5btuyqq65aunQpTbDRE9kUKRKJDBgwwHa46B6KRCJR1NnpVT/44IMjRoyQt8utl42XXnopGo1OnDiRfkVERDzooINuvfXWAw88cOvWrclkUvTZunXrDj744KJqtW9A8bBw9Fweun/1q18tXrz4tddekyfhaZaob9++Ho9n5MiRsu38v//7PwA47LDDbAUdd9xxfr//zTfffPnll3/84x/TjUcccUQymTQMQziuLVu29O7du5Ca5QqTp5122hNPPLFy5cqvv/6aOlgAGDNmzMKFC0V77dq1a/369bNmzbIdGwqFZKlpamqyyVp+jBw50uv17tmzR2T+d+/erWmanGPLxvXXXz9nzhzx9cUXX1y0aNFTTz3Vr1+/9vZ2wzD+93//95RTTgGAeDz++uuvX3TRRYVXaZ+B4mEhlaHouTx0z549e8mSJWefffacOXOGDx+u6/rq1asfffTR0aNHT5kyBQB++MMfXnPNNY888sgpp5yyadOmX/3qV+PHj8/uZp/PN3Xq1EceeWT37t2nnnoq3Th58uRRo0Zdc801t91226BBg1atWvXLX/7yqquumj17dp46UZ/86quvTpgw4ZBDDrH9euSRRw4cOPCuu+465JBDxK8XXHDBU089ddNNN/3kJz9JpVL33HNPKBQ6++yzbccedthhy5Ytu+iii6qqqh577LFYLFZUN9fU1Hzve9978MEH6+rqjjjiiM2bN99xxx2DBg2imbnFixcvX778D3/4g+2o+vp6eblU3759XS4XrXldXd3MmTPnzp2LiH379n3kkUdcLtcFF1xQeJUcsWbNGtni+v3+8ePHl1lmZ0PxsPC26rk8dDc0NCxevPjRRx9dsGDB9u3bvV7v4MGD58yZc8EFF9BgOWPGjEQi8eijj953332hUGjq1Km33HKLY+mnnXbanDlzvv3tbwuBcrlcTz755K9//esf/ehH7e3tQ4YMufrqqy+99NL8tRwzZsyUKVPuvvvuCRMmPPHEE7ZfCSGnnHLKH//4R3kN0tChQ59++un58+efdtppLpdr3LhxzzzzTLZ83XLLLTfddNMxxxwTDocvuOCCs84667XXXiuo5ThuvfXWUCh0991379ixo3fv3ieddNJNN91Ef/ryyy8dB8b5ceedd86fP/+2226LxWJjx459+umne/XqVWwhNvz2t7+Vvw4aNOjtt98us8zOhuJhMa3VU3lI9pkUo4KCQjeHuiNcQUGhi6DCjYKCQhdBhRsFBYUuggo3CgoKXQQVbhQUFLoIKtwoKCh0EVS4UVBQ6CKocKOgoNBFUOFGQUGhi6DCjYKCQhdBhRsFBYUuggo3CgoKXQQVbhQUFLoIKtwoKCh0EVS4UVBQ6CKocKOgoNBFUOFGQUGhi6DCjYKCQhdBhRsFBYUuggo3CgoKXQQVbhQUFLoIKtwoKCh0EVS4UVBQ6CKocKOgoNBFUOFGQUGhi7D3w837778/e/bsb33rWwcddNDo0aPPOOOMZ555ppADN2/e3NjY2NjYGI1Giz3pDTfc0NjYeMcddxRf347x0EMP0YrdeeednVG+Qmdg4cKFZ5999pgxYw466KCxY8deeOGF77//fiEHLlq0qLGx8ZRTTinhpMccc0xjY+Py5ctLODYXnnzyyUYJBx544Pjx4y+++OL33nuvgmcpDXs53Lz77rvf//73X3311erq6okTJ/bp0+eTTz65+eab//znP1f2RN98801jY+Pjjz9Ov44aNer4448fNmxYZc9C8Y9//IN+WLJkiXonco/A7373u5tuumnVqlUNDQ0TJkwghLz11lsXXnjh6tWrK3uixYsXNzY2NjU10a+TJk06/vjj+/btW9mzAIDH4zniiCOOOOKI0aNHt7e3v/HGG9///vf3esRx793T//nPf9Z1fdq0aX/4wx/olltuueWvf/3rk08+ecEFF1TwRCIEUFx66aUdvpG+NHz55ZdfffVVKBSqqqraunXrRx99NHbs2M44kUIF8cQTTwDA7bfffvHFFwNAPB6fOXNmU1PTs88+O2bMmAqeyMbDe+65p4KFy+jXr98LL7xAP7e2tp5yyimbN29etGjR+PHjO+mMhWAvuxs6DqqrqxNbbr755jfffFO2l4sXLz7ttNNGjBgxevToc889980333Qs6rzzzpP9yxtvvNHY2Dhu3DgAOP300++++24AuPPOOxsbG2OxmG0wlUql7r///ilTpgwbNmzs2LFXXnnl119/TX/605/+1NjYePnll7/33nunnHLKyJEjzzzzzDVr1uS6on/+858AMGXKlBNOOAGy6KXQPWHjYSAQePzxx99///277rqLbsnDEBvoEEb4l/nz5zc2Nv70pz+NxWKNjY2vvfYaAJx66qmnn346ZA2mtm3bdsMNN4wbN27YsGGTJ0+eN29ea2sr/enKK69sbGz87//+76eeemrSpEljxoz50Y9+tGfPnkKurqam5vDDDweARCJRUvNUDHs53IwePRoAnnnmmeuvv/7ll1+ORCI1NTVDhgzRNFaxP/zhD9dff/1nn312/PHHjxs37v3337/oootefvnlos5yxhlnDBgwAACOPvroSy65xOPx2Ha4/PLLH3744dbW1tNOO23AgAFLliw566yztmzZAgB+vx8Avv766xtuuGHUqFG9e/f++OOPr7zyykwm43guGm5OPvnkk08+GdR4qoeA8vCWW26555573nvvvVQq1b9/f3mMk4chBcLj8VxyySX084wZM8444wzbDnv27Pnud7/7/PPPh8PhGTNm6Lr+xBNPXHDBBZRplIf/8z//s2DBgkmTJum6vmzZsl//+teFnLqtre3jjz8GgL1rbWCvh5sf/ehHNO4uXrz4hz/84dixY88444ynnnqKNnE0Gn3ooYcA4K677vr9739PWx8A7r333qLOMmfOnMbGRgCYNm3abbfd5vV65V/feuut119/nRCyaNGiBx988G9/+9uoUaOi0egjjzwCADTwffXVVw8++OB9991HXffGjRsdxe3zzz//6quvfD7fcccdN2HChNraWjqeKr5hFLoUd911V+/evdvb23//+9+fd955hx122CWXXPLGG2/QX/MzpEB4vd7bbruN0unyyy+fM2eObYcFCxZs3bp16NCh//jHP+6///4XX3zR6/V+/PHH1PvQA9evX//3v//9vvvuu+WWWwDg1VdfzXW6HTt2nHXWWWedddaMGTMmTZq0bdu2888//7zzziuuXSqNvRxuamtrFy9e/Oijj5533nlDhw5FxE8++eSXv/zljTfeCAAffvghtX8zZsyg+5966qkA8OWXX7a0tFSqDitWrACAMWPGHHjggQDg8XhOOukkAPjXv/4l9qmvrz/qqKMA4OCDD66urgaA7du3Zxf10ksvAcBxxx1XVVXldrunTp0KajzVE3DooYe+8cYbd9999/Tp03v37p1MJl9//fWLL7544cKFUBhDygc9y7Rp06iRqa+vP/LII21nmTJlSk1NDQAcccQRANDc3JxOpx1LS6fTH3300UcffbR69erW1laXy7Vhw4bPP/+8ghUuAXt/IlzTtKlTp959992vv/7622+/TU3mCy+8sHnz5ubmZgDw+XxVVVV05169etEPkUikUhWgZ5HzR/QsckSTfw0EAgBgGEZ2UXQktWrVqlNOOeWUU06haSY1nuoRqK6uPu+88/7rv/7rgw8+ePHFF+nw6re//S0UxpDyURQPKQkhBw8BYNCgQes4Pvjgg0svvfTtt9/+wQ9+UMKqkQpib4abtra2pUuXPvTQQyKDNWjQoPvvv9/tdgPAhg0bamtrASCZTMbjcbqDyI3JvUJB3aYoqsAsGgDQs9DOlo8Voa1AfPbZZ//+978BYOfOnWvXrl27di11QGo81c3xzTffPP/883SYTHH44YffdtttALBly5ZMJlMUQwghsFd5mI3evXtfddVVANDS0rJ3qbiX3c111133m9/8Zv78+alUim555ZVXaOJm8ODBRx55pM/nA2k88re//Q0ADj300FAoZCuKJvZoSgwA/ud//kf+lZIgFotl12HSpEkA8Omnn65fvx4AUqnUkiVLxPbCQUdSRx555DoJU6ZMATWe6t5Yv379DTfcMG/evL///e90i67rNGNSX1/vdruLYojMw1gsRqeiBDrk4csvv0z/FrZs2fJ///d/uc5SLMR8bjAYLL+0krE3190Eg8Gf/exnd9xxxxNPPLFo0aJBgwZFIpFt27YBwJlnnjl06FAAuOqqq+69995bb7317bff3rNnz9tvv+1yuW6++ebs0o4//vi///3vy5cvv+KKK1pbW+kMohjF1NfXA8ATTzyxadOmn/3sZ/KBxx577Le//e0333xz1qxZU6ZMWb169eeff963b9/LL7+8qMuh4ca2unT69OlvvPHGkiVLbr31Vko1he6GiRMnTps2bdmyZVdfffVdd93Vq1evbdu20dH6NddcA0Uy5Pjjj3/22Wfvueeezz77bNWqVQMGDNi5c6fMwy1btvzyl7+cPHnyL3/5S/nA2bNnL168eN26dWeccQbNJaXT6cmTJ3/nO98p4aJoqph+jkQi69atA4CxY8fSpM/ewl52N5dccsmCBQumTJlSXV3973//u7W19Ygjjrj99tvF3NOVV155zz33HHzwwUuXLv3www8nT57817/+1THez5gx44orrujTp8/bb789cOBAumIimUzSXy+77LKDDz64tbV15cqVtuEuIeTRRx+94oorfD7fiy++uHPnzjPPPPOFF17o06dP4RciRlJ0/lvgpJNOcrlcW7du/fDDD4tpGIWuAyHkd7/73bx588aOHavr+pdffqlp2pQpUx5//PFzzz0XimTITTfdNH36dLfb/frrr59zzjnnnHMOSDz8+c9/3qdPn/Xr13/22We2A3v37r148eIzzzxzx44dL774os/nu+KKKxYsWFCaSolU8UcffbR9+/Zhw4Zde+21f/rTn8QSk72C/wd79aTDVKk02wAAAABJRU5ErkJggg==", "path": "image.png" }
Which solution has a higher concentration of yellow particles?
[ "Solution B", "Solution A", "neither; their concentrations are the same" ]
1
The diagram below is a model of two solutions. Each yellow ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the yellow particles represent the solute. To figure out which solution has a higher concentration of yellow particles, look at both the number of yellow particles and the volume of the solvent in each container. Use the concentration formula to find the number of yellow particles per milliliter. Solution A has more yellow particles per milliliter. So, Solution A has a higher concentration of yellow particles.
Solution A
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAh0AAAEiCAIAAADSxvdVAABdhUlEQVR4nO3dd3wUZf448M/zzMz2Te+BhJZQQ1UEAQv207OcBRuH9b6H7eze/c7zTs/unZ6FU8/eT05Pz4ICdgVUmvQOIUAK6dt3Zp7n+f3x7A5LEiIkG5LA5/3KC3Znd3af7E7mM0/7PEQIAQDVOmwOgZ+BKQAd8lQCXgVKXJBrO+B98VA5rOChgvZT4qFChBA1Ovzo6+5Coe5wVArkHMj5Ag+VwxYeKmg/HZUCKgBsCgEA5NtgsBu8SjeXCR0EfgYbglClw8bQgZ0s8FA53OChgvZT4qFCASDAAACG4Nd/2PAqMNgNEP/q9x8eKocbPFTQfko8VCgAGAIAwINf/+FE/rUbB9jwjYfKYQgPFbSfrEOFdndJEEIIHVIwriCEEEomjCsIIYSSCeMKQgihZMK4ghBCKJkwriCEEEomjCsIIYSSCeMKQgihZMK4ghBCKJkwriCEEEomjCsIIYSSCeMKQgihZMK4ghBCKJkwriCEEEomjCsIIYSSCeMKQgihZMK4ghBCKJkwriCEEEomjCsIIYSSCeMKQgihZMK4ghBCKJkwriCEEEomjCsIIYSSCeMKQgihZMK4ghBCKJkwriCEEEomjCsIIYSSCeMKQgihZMK4ghBCKJnU7i4AQocdIYS8QQjp3pIg1BWwvoLQQZIYTqQW2xE6NGB9BaGDhBDCOY9EIrquc84ppQ6Hw+FwEEKEEFh3QYcMjCsIdS0ZM0zTrKur8/l8hmFwzjjnjHEAYbfbc3Jys7KyuruYCCUNxhWEuhYhxOfzVVdXcc5VVXU6HQDAOWeMmaYZiUQ3btxQVVU5ePAQu92OFRd0CMD+FYS6iuw4aWpq3LVrl6qqTqdL02yKolBKKaWKoiiK6nDYPR5Pc3PzsmVLIpEIBhV0CMC4glBXIYSEQqHq6mqHw66qmowllMofGVooIZQQ4nZ7IpHoihU/YR8+OgRgXEGoC1VXVyuKqigqpZRSQog1GIzG/qOUUgogXC5XQ0PDtm3bAEeIoV4O4wpCyScDg8/ni0YjmhbrxSQk9pNI3pXNXzabrby8nHOOrWGoV8O4glBX8fl8hBAA+QMAsI96SOxRVVUDAX9DQwNglQX1ZhhXEEo+WeGIRMKEEAABIACAcxACOBdCCCHi//E9t+UEl+bmpm4uPUKdg+OMEeoSQgjTZADAOQcgQgClRNZCOOdCcC5DSjzOWLd1PdrdZUeoUzCuINRVOOcAQghVCAYgGJPtXXtiCWOxAMM5l5MlZRDq5nIj1DkYVxDqEoQQRaHRaFRVVSEopUIGDKtywhhnezNNk3PmcjlBPk82nMVeDgihQLHhGvUCGFcQSj7ZWeJ0uvx+v6qqlCqUWokmBeeCMc45Z8xkjJkmM03TMEzDMAghaSmpAACEkNZRRAjBGFGUlqPKEOpJMK4g1FUyMjIqK3cZhkEpl/NXIF5fibV8xYKKYRiGabJwOFxcXJyangEArKkpvHJFZPMWFgyCQrXcXOeIEc6SUqKqe6IL6nlM0wyHw5FIhDEGIFRVczqdTqeTHk51TYwrCCWfTFHs8XhSU9MaGhrcbhfne+orchgYY5wx05RRxTCi0ahCxDv/+6CvLyDeeqNu/jxRVcUNLgA4AAcQbqdt+LCs6b/Ou+xy1ePF0NLTmKbZ1NTk8/kMQ5djMhjjnDMhwOFw5OTkpKenHyYzkzCuINQl5Blk4MABjY0NgUDA4XACWF0snHPBOTNN0zQNXTdCobDX6/ps3jfPvPLaqmeeeaShwe22mykeQqiMK0wI02D6shXlP/5u55NPDHriqaxTTsXQ0nNEIuHdu3dHo1FKqaZpAMA551wwxkzTCAYDmzY1Z2dnFRUVq+qhf9Y9jKpmCHWANQi4Y/vabPayspFyVoqu64ah63pU13Vdj0aj0WhUj0YN0zQ9Hte333739n/+W5Cauiw756/FxUKzKYwT06SmSU1TYUxVwO5xu9PTRPn2FaeetvVvDxNFEYwl/VdGByoSiVRXV+u6oWmaqmqKosqkoopCVVVRVU3TbIpCKysrN2/ezA6Dr+zQj5wIdYCVr75Fw8UB5bGXrWFer3f8+PGrV6+uqamhlCiKAkA4F4yZMtJEwqGFCxZ9Om++qqoMIN00v9BsS1Rtqh71Jb6ZAAGMm2BzOMHBNt52ByjqgJtuxlpL92KM1dbuNk2maVosB1wsXQKX82EpFZRSVVVVVauurnI6HcXF/bq50F0M6ysItUGeHQzD8Pv9zc3Nzc3N4XDYCir7X32RocXhcB5xxJHjxx+Vk5NHCDUM3TB0Ibg3xTPhqAmbd+x6/b/vuex2SikIwQE8AvI45wA0ngSGxv+lFAgXigC317n+9ttqv/yCKIrgh/4lcI/V3NwciURUVeaoJpRCq+yiIEcDyhUStm/fHggEurvUXQvrKwi1obm5ubGxIRwOMxZb21EIoWlaRkZGXl6eoij7X3GRoQUAsrOzs7OzOedyHWJVVTVFIYryuwED1nH2DVXSTYMB1FLl6qB/pGn4CFEA5DxJEQ8wseSVAhSFqpyvuf22YxZ9T1UNhMDBxwcfY8zna7ZCiNxIyF6J4GSOOCt9dTAYrKmp9ngGdU+JDwqsryC0F9M0KyoqKit36bpus9mcTpfL5XK7XQ6H3TSN7du3L1u2tKmpyYoW+0OeU2Q/jVzW3uVy2TSNKApjrPkfj/016DsmHGwmlAJcE/TdFPSFCJF/nFbSSrLXDwHG7Cme5iXLds6eDQCC8675PFB7ZC9ZYi1WiMSg0rJzTh4JtbW1/JD+vrC+gtAehmFs376dc+ZyuWQ9QQgQwhoiDIqihEKhn35aPnz4iOzs7APtbkm4JwTnRFFCCxb4V/yU4vE81NywRrPlclZiGkESm53fTuCSZzIFoOLfbxVdfAlWVrpFNBqVESKe+U1YFxAyW481YcnKLgoAoVBI13WHw9HNpe8yWF9BKEYIsXPnTiG4w+GIr+oYW9iRUrkAl0IIcTgcNptt5coVgUDggGote4u1lfi//orqzKSUAEzQo0Wm6SMU4kHF+oGEG3twrjrUxmVLonV1hNJ9ZeFHXUc2k1pTXRMSiVqZ30Tij4wupmke2vUVjCsIxS426+vrIpGIzWYjJNYBK8MJQGy14Phd0DSbEGLt2jXQasDYAZC59NesAQpECA7gJyRCCG0rnOy5K0AIkG0tQgiiaXptbaB8G2BTWDfhe7CEn/gmlphUlDHGGePQmcOmNzjM4opc/oIx+QP4d4gAAEAufNLY2GizabINHOI95AB7tTDJ9nEA4XA4amtr6+vroaNrcMl3MRsagMZihuw7kaNTrX95QlxpcVcAACFc53pDY2c/AtQhmqZxzk3TZK1YqXoYM+M3YvlF7XabtYroIelQ/t0SyeljMmFfi+sEYZryurRbCoY6Q+zdMkQ6lGFe9pEEg0HDMJxOZ8L2ljcS30qGoqqqqszMzA68aeK78/igL27NyJcPtfrhAIKDAMGB81iYITz2XNQNHA4HpdQwDABCqZAp4CCWjVpY0USmFpXZRU3TTE9PV1Wte0vepQ6DuMK5EEJOHOORSHTrVqO6ihsmsdtsffo4+vUjqgZycQw58hz1bAIEF1yAUIjSIpAwwdrcvj9CoZBV7RBiz+ldTnBLWHrLGuEjKKVNTZ2tKBCvl7FYXKGt4gokVFMYAOfABXAQfM9GDirRUlI6WQzUMXa73ePx1tXVARBFke2lALG4EiNTi8bzwOmqquTnF3R3wbvWoR5XOAcAoijBJUsaXnwh8PWXxo6dPBziXHBCwOVWB/RLOfXUvCuvdpWUyuUusOLSY8mIQglVSGx6uc/wBVkQBNipPdWWam1nglFCDyi6mKaRsGwjyBNEi5UcE9YMlgtwga7r0NG2csE5odQ+eHCTACYHqsZDS/z3BYhXYhgAF8A5cBCyAZcBMEJMw9QyMtxy/jYeut0hJyenoaFeLrRjrYZgrdsms8DFQoqum6ZRVFSUmZnV3aXuWodyXJH5LYzdNVV33O7791skYigum8NmE6leAcAFMU1mrF1fs2J15axZuddeN+Cuvygul/xr7+6yo5a44ACgECXKo9/Vfzd399zlzcsrw5VhFhZC2MCWrWUP8wybmjP15PyTM+wZAgQTzIo0P0sIkE3iAECp1WWSGFTkgJ/E9bg61z9HCAC4J0824SFmCog3drVuB+MAjMugAgw4k0EFgFOqR4zMiWXO/Hw4kBHPKIncbndBQcHWrVsZMxVFkbMgrYsPuVybrsuwEk1LSxs8eOghnzP/kI0rMqiEliyuuPACvqXckZFCPG5gDIQQjMdmLytAvS5VKLoR3fnQIw1ffTly9rvOoiIMLT2NjBCmMN/Y8cas7bPWBNaYYNqozUZshBIiSJAHd4d3L/ctf63itb62vpcUXXL90Osz7Bn7H1pUVWXMlKGiRb4WqzWDc2YYzDRNSgnnwjB0uz0j8fkHhFDKATJOONE1fEh042aby0WBy0oWSaysCJDrRjIQDDgDwQAMABPAJMQQ0PdX54I84A+DRLk9U15evmGY5eXbotGoDC3xaq61aJthmkZ6evqoUWM8Hk93l7fLHaIHopxxtmxp+amnKEG/IzudGAaR05cS5wEIuXYfV4niyUgN/LBk8cknjv/yK0d+AWbF6DlkbNgS3HL96us/b/jcY/OkO9MJIbGOFiEEF0BBUzS3zU0YaTKa7l9//9vlbz96xKOn9jl1P0OLy+WSKc2FUKzsgRBvKJcNGoZhUEo1Td21a5eqaoRAWlpai9dpMTZsX/FGCMEYU1X1g0WLvovqFyugc64J4HIQWjywxEcVAwPOgTMZTgBMAEZpJBRKGTSg/6XTQY5JQd2EENK3b1+Hw7Ft21afr1mmSrBGGpsmUxTav3//kpLBbre7uwt7MByKcUUIoNRsbNxx6SVKwKd5vdQwrJQYVi+o3CIAFAKcCBI1nele34ZNyy+bMXHuPAwqPYSMCl/Xff3rFb9u4A0FngJOZO+1ALnou4gFGC64/F5VVc315u6O7D73y3PvHX3vTWU3tR9a5Knf6/Vqmi0Sidjt9ni6QJLQvcINw9A0286dO1555ZV169Z7vd7/+7+rBw0qgfgwZZmjpXX+Y865TAzVYqOqqq+88spdd91ls9tHu9yDI+EIVTVBiCBWfUWGFQ6Cg5BtX7GgAmBQauj8qHv+qqWmYkrjbkcIycnJycjIWLFixYcffpienmqz2eX6CJzzyy+/sqCg4PBpqDwU4wrnoCjVf7nLXLfBmZ0ugwpJaLZunXCJEqCEEMN0pXvr53225amnBl53Pf6tdjsZD76r/+685ecRlWTZs0xi7vn+4qdeQojCFMaZIAIICCoMYdhtdgd13L7kdsbZraNubT+0yIas/Py8jRs3ythAKY3ncRFygrSiqNu3l99///01NbudTueOHTtefPHl00//pd1uZ4wp8UMlFAr5/X7GGKXU4/G43W75kJUczAoz995776x//jMzLS1K6TPpWX/cXZkqeJRShTNrxAEHkTgeTEYUkxBTVQON/uG/u774ootlPpgu/SLQflJVlVL64YcfGoahqqoQIhgMlpSUXH/97w6foAKHYFzhHBQlsmFD86uv2tI8xDBJW0HFuh5slcvPtNuULY//o2jGZZrXi61h3UiOGN4R3nH5ystBAbfNvVdQgYRvUQAoQIEyYNaYKs45oSTXm/unpX8alDLo7P5ntxNa5N98bm5ebW1tXV2dx+OxWrDiC8oyAPH6669XV9ekp6cbhpGWlrZ58+arr/7N66+/5nK5Kioqvv/++1WrVlVXVweDQdn/73A4srOzhw4devTRRw8ePJhSKiNQKBS68cYbP/jgg+zsbMaYjZk7bPbHsvOu3V3tDoQVr4sCAGPWL8ficYURwhUlapihRv+Q/7tq7GOPgxCE4iHa4+i6LscKMsYOq4giHWpxRXa5N779tmjy0aw0YpqJJyKpnS+ZcKG6nE2bt1bN+bho2oV4Jdjtblt7W6VRmePKMWHvoCJZFU8hZ8nLVrHYZYIgQlDhdrhvXXTrxNyJua7cn+1gHzp02E8/La+vr3e73bLlSg4AAxDNzc2bNm12OByGYQCAECIjI+O777695ZZbRo4c+fnnn0ejUU3TEhd3CoVCGzduXL169fvvvz9s2LCLLrpo1KhRu3bt+u1vf7ts2bKcnBz5UhyIB8RSw7w/r+CBvBzfd4sUhdhcdqKoidPsmRDRqB7xh22pnqOefLz0uhsE54S0/lBQj9CJ3HG93iEXVwgBgMBXX1AbsdK0iL3/8vZuRNlrb+sJ1fPnFU27sIsLi/ZJ1i3m1Mz5qPajLFeWCWZsZStIqG8mVjlBdrYQ2RRmbeTAXZpre9P2vy3/2yOTHuHAFWjvQkFRlDFjxm7YsKG8fJsQQlVVQogQYJompXTMmNFz5nySlRWbfGCaZllZWXV1dVVVldvtdrvdifNdAECGGXl31apVa9eunTRp0ieffLJly5bMzEwrPlFK65uaslNSHnzhhWMnTdr+xmvbZj3VtHw580esYSYMAAg483MGn3XOkFtv8wwYiDN5UY91SMUVZpqKqvorK4MbNjjtjtis6Pij7aTHSMzxB5wrFHwypSBWVroJJRQAnt3+LFUooaRlUIG9rw7i9qqLxKOLCWaaM+3tzW/fNOqmAk/Bz1ZZCCFDhw4tLCwoLy+vra2VS3sJIWw27eabb8rIyHz99dezsrI45/369cvKyhJCKIoST4puLRRIrC0AwDlPTU2tr69/6qmnHA5HWlpaYlCpra0dMmTISy+9NGjQIM5Y8SXTiy66pHn16rrvF/o3bTKDAaIojrz8jFGjs44+2paRKQeT4cGJeqxDJK5YozY3bNr0x5tu+j+fb6CmmkK0mL0sTyeytRoSpgjI0UWxNgcBoNJofT0LhxWnE7tYDj45qX6df933Td97bV4OPzf9cM+oXNFyOwEBwq7aqwJVH5d/fPWIq5lgKmnvsJfNFykpqSNHjhKCh8MR2Qlvt9tVVX3kkUcCgcD7778/duzYzMxM2V/SOue57Jm3QoumaaFQqKKiIjU1VY4CsJ5WXV194oknPvvss+np6fLVhGkSRUkbOTJt5MjWxROMASEYVHqsQCDQ4jjUdd3n86WkpBw+HS2HQlyRf9Wqqr733nt3/elPvkhkusstokFBqPxzbzGAKDFTLN8rl5+s38gM5PywbRvtdhw4Bfpt/bc+05fjyGkZV0RbN0R7TxAgFKp8seOLq0dcTcnPz3i1WsYJoS6Xa0/BOKeUPvbYY7qu+/1+WVNp50VkR32bd+WVUF1d3eWXX/7www+rqmoNKpPTGwXnLfNty0z9GFF6pFAotGrVqsWLFy9fvlxeN8gWUUJIXV3dww8/PGLEiKOOOmro0KF2u727C9vlen1ckX+N0Wj03nvvffnll9NTUuwpKbsCgTIBjAIVsYx+EkmoqexJu8Tl3VjOJU4IE5za7FQ7lBOO9mRylO1PzT+10fNp9am0DipCLu7YciMACC7sin1d47ooi9oVuwDxs6nDEi4tY0WIZ8iH+vp6SqmiKJRSq3iJ8/MTX8SaBONyuVJSUurq6mw2m8ztYRjG3XfffcMNN8ic6i1ClFz+ZX8+LtS9GGOrVq366KOPNmzYoOs6IaS4uDgYDMroommax+OpqqqqrKz85ptvRo0adfbZZ5eUlBzadZdeHFestq8tW7bcfPPNS5cuzcrKIpxHDaNCUQQHpgAFSJy8wuP/ioSgwjlY6TFkXNENyC0poZpmGoaK0eWgk1WKHaEdKlFjoaJ15izrRvzr5JyLxMT5ifEGhErVunBdXbiu0FN4gGlX9jxX7vjWW29VV1dnZmZazV9WyIG2QouVDKawsDASiTQ3NwNANBqdNGnSdddd1+ZsStRbhMPhjz/++NNPPw0EAqqq2mw2AEhLS0tLS4vnvQaIz73XdX3RokUbNmw4//zzTzzxRPXQzbvTWy+IZMu1qqoffPDB2WefvXr1ajkVwDBNYHyH3aYDYRysDH2JP7Lty9yTy0+mXYptNwAUgO02u18IVdPktWR3/7qHF1mZCLMwASKEaLnElWXvlUn2qqzwvZ4jhCBADGZEzEiHSyUDwM6dO5cuXZqSktJmUIF2E7eoqjpw4MC8vDyPxzN8+PDm5uYffvjhcB6N2tuFQqE333zzvffeC4fD1vhyi1y/GuKXI/JRTdMaGhpefPHF9957z+pmO/T0yrgi+1FN07z77ruvvfZazrnX6zUMgzHGhbBTsi4SqTUN4MTksSnKLHFyGYApgDFgXObyY1aGDAOAm6aR6n5g0fe/POmkb77+WmaRkyOCuvv3PswIIIIIIbjge6X2bfEjKyuyP2wfayuKWNqXTi3+KgPJ4sWLg8Fgm1ea8gjZ13Ei44eiKH379i0tLU1JSYlGo99++22Hy4O6l2EY//3vf7/44gtCSDyNcUuJ1xxWLh9VVQ3DePvttz/55JND9azSy+JKPKOGsm3btmnTpj333HOZmZnye4r1iBJSu2tXnyPHa0OGRMNBE4jJwORgioQfBowBE8CAm8DMeEQxAXQgquBfulMCaek7t2y5+NJLb7jhhqqqKkVRrEkJqKvJjnoP9XDOiSCcc8HEXgFD7BUzZCPDnqDSIroIEEJwxu3U7lJd0NFlJeVJYfXq1fJgsLZbc1agraDSYotsvJUr1zocjrVr18qZMYfq+eUQtmjRovnz50P8wNiXxEbO+PrWRC4xOXv27NWrVx+Eoh58vSmuyNOHqqpz5sw566yzVq5cmZOTwxgzDEMO1NF1vaam5orLLnv3f/8rufe+oMkN4KYQJgeTxX5kRDFjEYVbEcUE0AnRCGy3O75NSbUZht3lSktNfffdd0899dSXXnpJvgVWXA4C+Qn3d/U3TZMIAhyYYJxxwfZqExNM8Ngi4ryNqBP/kZUVk5m5rtwsZxZAR+any6YMXderqqrkVMcWjyY2prf4RRKfk/ioqqr19fW1tbUHXBrU3Wpraz/88ENd1xODitUC1uLJ1nOsR2UVp7Gxcfbs2cFgMPHJ8tJZpoExTbOXnm16blwRjAnT3DNnnnM5IeDee+/97W9/yxhLSUnRdV2e6BVFaW5u5pz/85///Ptjj1HTzDr9jLxbbg75goYCUWAGMBOYCcwAZoBpADdAGADyR5fZYYEEQpGPMrINRVVi2dFZRkZGNBr9wx/+8Ktf/WrJkiXyWtUaLdoGzoVpCibzmnP5W4h2no9akY1W49LG7QkkLHZVwRjjjMsfxtme5q/Wg8fjP5xxymlUj5ZllalUZYJ1rL4CAMFgMBgMyuNwv36RhFjS4obsrQmHw01NTdBWRQf1ZAsWLNi5c2di81diUGkdWlpskXcVRVm1atWSJUvkRtM0m5qadu7cWV6+bdu2rVu2bN60adO2bVvr6upM0+jyXympemJckSdloihEVcHq+KJ0/Y4dv7r44n89/XRWRoaqqjKoAAAhpKqqqrS0dM6cOdOmTWOMEUqZYQz729+VC88PNAdVAhEQERA6CAOEnhBOdACDEFNTQ1Fd1c3K44/7IaqLYIDabLIwstktOzt75cqV55133v/7f/+vsbFRUZTW/fmCMZmin6gqURSgFCiVvwVRFBBCsEO2my65KFAAmJI9JUvJMgyDMBLrmeci1urF4g1fssesRdcL23ODcy64IJwIECcXn9zJgsXqRvHb7T+5RQUlsaEsMcZg42qv4/P5fvjhh32NKvzZbA7WDVkD/vbbbw3DCAQCO3fu3L27JhwOy1eW3bo+n6+8fNv69esbGxtbppfowXrYQDchZKpHwXnoxx99cz8N/fSTsXs3N02b1zOnfHtdKOTKywsYhs005RWfrusNDQ2//vWv7733XrfbLbOHCiEUTfv000/vqqzJ6d/vFwHf0FBQEyJKqaCUEBI7BRHCAHRdD/vDjsz0UY8/cdYllw7+6KP77r9/8+bNmZmZMn7ImqlckOell16aP3/+7bffft5558kvnlIq06kTRRGMhX76KfD1V+E1a8zGRiGApqbYhw1LOe4479hxRFUF5wRwHfKfQQnlghd7io/POv7dqnfTXekM2J5ULi202fzFABgILjjjhJNwNNw/pf9p/U6D+CDmDhZs7zVU2hmvLMcrJg4ztSKKpfW6LKhXKC8vr6ysbP3Fta6btk9++xs2bNiwYb3L5RJCaJom89HJA4TS2BCzUCi0YcP64uJ++fn5Sf5lukZPiitCgBBEUXzz5u6+/97w999D1CQUQKUCwM/4LzT78XbbIkP/yJuy1mZXKY00NGgOx5NPPnnxxRdb15JyqNgDDzzwzNNPu5xOX0raP9zeQaHAsf7mUXoUQpGQwUhsABjhIOyZqaW/njH8D3e6iooEY6efccYxxx77xBNPPP/884ZhyOwa1nVlVlZWU1PTDTfc8N///veuu+4aOnSoPDsQSpvff2/33/8WWbpEhHVCQBAQAkwBDGCnpthHj8q/+dbcaRcCAK5zvJ9mlsz8cOeHwhSxiUiJWcISZz62iCvx8X/c5MBAYYpf9//+iN+n2lMPaMX71lwul8vlqq+vt8ZxtLmQV4taSOvWMGtGi8PhSE1Nhc4NVEMH2datW631hq2NYu+1qxO12RwqUUqbmprWrVs/fvyRAIRSAkCsI0jEUs8JTeORSHTLls2qqmRn53Tx75cEPSaucA6U8mi08pabmp55RlUVp8cNXmp9JzZCdC4o48cHguODge/d7rc0u33s2CcffHB4WZk1qEZRlB07dtxyyy0LFy6UOQG5oTPONzic650ux86dV5aVTSosCAaDqsPhKu6XNWFC3oknOwsKrFx+jDG32/3HP/7x7LPP/stf/vL111+npKQ4nU452Nw0TU3TsrKyFixY8Mtf/vLKK6644aabnKFQxTX/F5j9rmpTnB4XuF3y8OEAnAAXxDB5dPnK9RddXPX6q0P/9YKjoADzBrZPVlkm5kycXjz92a3P5npzDWbEcie0mB3ZeggyA2DAGBNcUJMGjeDY3LE3jLkBRMcrK7ISbLfb8/LyqqqqZCoOeSnTYtHi1l36VmXFqsRIhmEUFBRkZ2d3rEio8zjn4XA4FApGo1HGGACx2TS3e89qbG2qqqqyrg9ahJY2n99mULEOFdM0a2trCaGKoshjWgjCORAClArOhZwHo6qqYeibN2/xelMcDkcyfvsu1DPiihBAKQsEtp97TnjeZ86sVCKAMCYSVqTnABqASSGiqsDFseHQoN31hdddO7yszNR1qqoyqHz22We33357U1OTXNzC+stXdb2+vv7kGTMuv//+DLe75QGRkMvP6pkfPnz47NmzZ8+e/dBDD1VWVmZmZloTWUzTlDPjHvvHP7765uu/1+1Wl/7kyEqjQgBjwE15+FjnMIWA3e1WiWj++NMfj5k09qM5niFDsdbSPvkF3Tf2vh9rf1wbWJvmTDPAAGtBadi7yrInLU9snJhgAkwQQmiq5nvetyRryTEnHcNM1uFJzjLVyrBhw3788Ud5UpAvJUcTtFnhSBziYVVi5L+EkGg0OnToUE3T5CHasVKhjhFCBIPBxsaGcDjCOQcQnAu5Fj3n1Q6HIy8vNz09o/XXyhgLBoOtLyD2JTGtNbTVwUYImT9//qpVq0477bQjjhgnj+mEbhiIz7IkiqIEAv6qqqr+/ft3/hPoUj3oaN55xWWReZ85czKoyRTGKICa0PghbygAKhUKgZCgKV5n5R/+uOPfb6o2GxECAB5++OErr7wyEomkpqbKXn15LvD5fBFd/8fjjz/z+OPpTqeQNUw5cMs0ZdcI2Xu8oExSyzmfNm3a/PnzL7vsMp/P5/P55IIcIOdmCuHOzy9YudKzZo2alaaYpsKYAiB/aMKPAkCBEZO701PMreVLzjoruruGUAo4CmjfCBAuuNfmfe2Y1/KUvKZgk43b9owKt+a7WncNABO4yRljggkwADhwlad8nBJdHb38msuXLFki0zt2sDyEAMBRRx0lK69CiNra2urqasMwWsxokWS8se7K2/IsY13uTJkypaMfD+o4IURDQ0N1dVU0GlVVxW632Ww2u91ms9ntdpuqqqFQcNOmTdu3b29xtEQikW3bttXX18uDoUXMaPONEltErduJ0UUOO/rkk08ee+zRHTt2EEJbN6TJerp80+rq6g4fwwdN98cVWVeofepJ/3/edWSnU12nrcKJleMrtoWACkAJ0Rzq2htu0Ct31TQ2XnLxxY8//nhaWpqmadZQMUppdXV1v379Pvroo0unTzdNM5YUVv6oKonHidZkbkHGWHp6+oMPPvjf//63rKyspqZGJiUjACaAOxq9yoyqTgc1zRaxxCp/rNgEKAHQTWeaN7Jx06rrrwMAjCvto4QywUpSSz4+5ePBzsFVTVXUpIqpEIOANUg8IaKYpslNTk2qGApoQIB43vVoyzR7hp3pbMaMGevWrZPfaUcKQ6kQol+/fmPHjg2FQrt27dqyZUt5efnatWt9Pp8MLVbnSuJwQavWIsOJPJsEg8FBgwZNmDABfm5iHUq6hoaGxsYGRVE0zaaqmqKoiqJSShWFKooi03xRSnfsqKio2K7remVl5VdfffWPf/xj5syZV1555U8//WR1pbRTcdlXN5vYm3xUVdWdO3etXr1a9q/IKlSLnQCAEBII+MPhcFd/RJ3U3e1gQhBFMWpq6h5+yOZ1gGla5+I9T9lrCXqgsm4IhHCu2e2svv7jq69+RDcq16/Pzc1NbPsyDKOuru6iiy568MEHvV6vaZodaAOxmsWOPPLI//3vfy+//PJjjz1WV1eXnZ7eQOg1zQ0Do9EApba9s/Fbpd2r8AQoocQwXKnuqtnvVP36o/zTz8COlvYpRJGh5fMzPv/D9394eePLnPAUe4qqqDJ9C4j40CxBVK5yk/sjfqEIZ4Uz9bNUW5WNu7gwhcPp8Pl806dPf/fdd4uLi62k9AdEtlpceOGFH330UUNDg6ZpAGAYxqZNm4YMGWK321sPGraGkyTekF01V1xxhawWt4gr4sDSYqIDEwgEGhsbKFVkLJEbExumKBWEUEVRVVX98MMPV69eU15evnv37mg0CgCU0ry8vNghR0hs2E7C5BUrDrQIKi1GqCfGGCuvfiQSSYg4Vn/cnm45ADAMQ9f1g/VpdVA3XyjJCYMNb7xh7til2B1UiBardbdYOqXFdsGYw+2s/vKLhh070rIyW7Z9RSKPPvrorFmz5PjjDjesy2YxOaT4qquumjd//rnnnLMrEBgTCU0L+oOUqvEiwd43oO0tBAAUgC2zZgEOBNoPClG44B7NM+uYWfNPn//Lwl8KXdQ01dT6an1BXyAcCIaDwVCwyd9U66sN6aGx2WPfOvOt50Y9F90cFU5BRKzdUqYrnz59em1tbYvFuKxKRqKW85Pif9jvvPNOTU2NnHUvhKCURqPR6urqxHQsLWotVlCx8jVQSouLiwGAcxaJhEOhUCgUkucXEk+tf3A+3sMK57yhoQEAFEXmiAS5lLM1nzGxOYNz8d13C77++utdu3bJE4hsBo9EIoktYFbDpnXYJM5zsp7QZmVFPhSJRORwof79BzDGOGdyDx7PUZRI7LUKbg/VzfUVeanu++hDJWE5+pbP2ftu4idKAXQu+tjUHIXuNkzKGBBCKa2pqSkpKZk1a9aYMWPkxMbONzVYFZeCvLyn/vnPX5xwAr3816pCjX0EkjbDRWwjZ5rb3rDwO/+WLd6BA7ED/2dRQoUQXPCj848+Ov/oLc1bPq/4fHHN4q3NWwN6QIBwKI4+3j6jskdN7Tt1bM5YIgg9n/pD/ttvuz09PR3i6TFSUlI2btz461//evbs2V6v1/rjbydTvbyegHi//X333ffEE0/IdYgh4XrTNM0Ww73k7onnFNkroyiKrutr1669+uqr//nPfzJmhkIhIYBzTgjY7Y7s7KyMjEwZXfCyI7nC4XAkElZVlZCW37icOAIJjdOyq1zGksRvNhgMGoYhd29d42mhRVBJrLPK24ZhRKNRVVVPO+20kpJBpmlYu1iBKvYPY4wxQqDnJ9jv1vIJAYQY1TXR9es0u8P6PkWrKos16mfPrvF/OQGHaaaFwzscTg+lUcOor68///zzH3roodTU1I61fe1LrD/fMAilx6embguHIylejXOR0OTVotjWT0KxBQggqqo3BxqWLPYOHCjHWCerkIcqQggBIrOwDEwdOLBs4G/KfgMAXHDrUflMAYIJxk1+2YzLfM2+e+65Jzs72xomnpGRsXTp0iuuuOL111+32+3y3N3Q0LBly5adO3f6fD4hhKZpOTk5/fv379evn6qq8mwig8qTTz4pV2SAhKDidrvz8vIMw0gMJ5DQr2vNrCKEhMPhHTt2uN3upUuXXn/99X//+99cLpe8zDVNIxgMNDTUezyekpJSp9OJoSW5QqEg5y0GB0N8HqJ1QbCnz0N+11ZN1IorTU1N2dnZ8vvd10WJ9YIyh6E8eyQ2b0kTJ048//zz3W73mDGjrQyEsqYiwwpjch04U64F5/G4HQ7nwfm4Oqw744r8m9Erd7GmJs1hE0LIq0frFGstxiVa/Ig9J2sORBU809Cpx+tvajI5f+ihh6666ir5rXRFYJfHUOOqVVFTeOQI84TIYR1fPCH4JRRbQHwgIQD4N21MevEObXJWo2whIITIFgv5kLVRIYpKVaDAGLvhhht8Pt9jjz2Wk5MjQ4thGFlZWV9++eXMmTOff/75ZcuWzZs3b8OGDc3NzYnRQghht9sLCgomTJhw6qmnZmdn33vvvbNmzcrKyrKeBgDhcNg0zaKiIqtZzKqstLiADYVC8pxSVVUlG+UzMzMXLVr0wQcfXn75ZbLFX07AVlXN7/cvXbpk1KjRXq8XQ0sSRaPRvduigBAQAmT9QQaVxC+xtLTkiy++kL22cjS5y+Xq06fP4MGDa2trZT+H3J6YcTLxFfx+f11dneybSUlJyczMhIRKTEpKyuTJk/v1K5ZVIsMwrUetpjXT3BNUGGPZ2dm2eJapHqu76ysAPBLhzBTEbl0qWD8kYbrbXrPf4svRx5KgA2QyVlOze2T/fk889dQRRxyRrLav9oSCrWskifUSljCtQgBwEYsrib+LGQh0YQkPXYnhRIZqAnvFmNjTKGWM3XnnnT6f78UXX7RqLTK0zJ0799RTT01LS9N13el0er3exH1lRaSysvLVV1/97LPPcnJy3n777fT0dKsdg1La2Ng4YMCABx544LPPPlu0aJFhGDabTQ4lkqcVzrls5SCETJgwgRDy0ksvZWRkWCFHURSbzUapSogiT0pynqXL5Q4E/MuXL5swYWLPP4n0IvH+D0FIbExgvI2LJ3RpyNO6YIwNGjSotLR07dq1hYWFQ4YMGTNmzOjRowcNGuR2u5977rnPP/88nnlFtNkO5vf7Zd+MjCK1tbV2u93tdlsVnRNOOCErKysYDKmqPF/FepOt3hTTZKYpu+p1w9DtdlufPn0P4gfWQT2gnY5SLog1k9q6zCetw0l85WCIL0cfe5RSzec756JLZz3ycEpaWnLbvvZFUIXtvSxh4hCDFj8cIJ51VyQmHAG8Du20dpITy8t/zvnDDz/c3Nz83//+Nzs72zAMAGCMeb3etWvXFhcXDx48WG6EvcftUEodDofD4fD7/bW1tcOHD9+xY4eMTDL9Rt++fd98881+/fpNmTJl48aNX3/99YoVK6qrq2XVhBDicDj69OkzbNiwY445ZvTo0XI4yTvvvJOdnS2EaGhoGDhw4C9+cVo4HFJVlXNGYqsKUkJMh8PR2Ni4bt26UaNGYZUleYisB8iPMyEZl9X3zmNpTTljjNlstjPPPPOMM04/5ZRTc3JytIRVyc8999wtW7Zs27ZNdsAk1lcgXlttbm6W05usKdV+v9/lcgEAY+yoo46aNm1aQ0N9VVUV51pie1pCO5iMKoau65yz/v1L09LSD+bn1THdGVfkh6hlZ4PTxUxGFcqEaJ1dMHG5Ji7kcvSxygoDAEVpag4ed9rJJz73L6XL2r5aU3NzEuMKTehfEa3DoZALHnOr2HK7MzfvIBT1cGYN/XzqqacCgcC8efMyMzNlQ5YcgbNz506n09m3b1/TNK2zg9UvIk8Hmqapqso5Lyoq2r59u2maPp+vT58+//nPf/r162cYhqqqQ4YMGTJkiBCiubm5qalJNsp7vd6MjAyr218Icccdt9fW1n711Vc2m23YsGEPPHBfenp6MBiyzkrxsUkUABwOR2XlroEDB3g82BqWHJqmmSZTlFhLZotpKIxxxsyEIYGmYZjp6WmlpSWFhYUtXqqgoODKK6988skna2pq5Jj11pniZFWGMZaamlpSUjJ4cGlubp7H445GdZ+veerUE1JSUlwuVzAYqq+vU1UZWvbEOdkIJmsrjJnFxcWDBpX0isOgW+srhACArahIKeprbNxIPU4507TF5BXrBM0EcCaXo2d71qsnRAconDBRAWCMKQkXFF1abOfw4UJTTZMnfoKJQwxEvDWMC+BMLnjMrWKbnAOB1LIy6wVRF5FxQtO0Z599dsaMGT/++KPL5bJGcymKImseic+38lhDvDENADjnTqezqKho1apVhYWFMqjIqAPxsKEoSlpaWlpaWmIB5O7yjaLR6IMPPvj111+7XM5Jkya53e5QKEQpZWyvwZDyiFAUxTTNqqqqkpK92uhQh3k87poabhiGEECpTEffor7CTFP+mIZhmqZBCKSnZ7b5amVlZdddd92zzz67fft2ta0Z1i6XKxAITJhw1OmnnzFgwACHI5ZWzgoY69atzc8vKC0t3bJFqaqqFEJYqSfZnv56Q1GUkpLS0tLB2kE4vyVDN8cVwRjVNM+xx9StXqMINwWutJqzIuLNX3LFjcSzszxBU43knngSHKx5y3JMsGfUaHXQQH3LVnA5FeCiVTjk8a4gztuKhXrUVdw384gjrRdEXUfGBo/Hc+edd06bNk12v4n4vLb09PTWZwQrnMiahIwZsmFkxIgRs2bNkkHFmlyZON7UamqX+1pZXiKRiGEYDof9nHPOIYSEQqFgMBQfayTaJMeqHaSP6TDgdnvsdkcoFBRCUKrIk7j88PeOK0acnpGRkZmZsa8XHDly5O233/7WW2/98MMPuq5bSY7l15eSknL66aefeOIJcpUNSKgkyduhUGjjxg35+QUlJSUZGRk7dlQ0NTXpuh6fASOHJhYUF/fPzs7uRXkZurt/hRAAyL50evVz/zIZowK4nKkUfzzW482BC9k5wU0QexJEKUrEF8yaPCn76EkQnw1zEMosGKMOR/q551bee7/idnOTUwqU7FVfSSy2FVT2FNvPhpx1tpaaivPtDw75N/n555+XlpZu27YtFAopihKJRHJycgoKCtpMHCnDiXXDaqpyOBxWL0vrN2rRzp7IMHTZsNbY2CizBFltbvK0JoSwBibJjRAbwoTzZ5NDUZS8vNxNmzbJC4XEq4GEuBLvKNd1SunAgYM0rb2hE8XFxTfeeOMPP/wwb968jRs3yqyUAKBp2imnnDJ16vGJ02WEEJzvSUUq33f79nIheHFxv+zsrEAgGAj4o9EoALHb7V6v1+1296KIInX3vEhKBeepEyamnXdBw5tvudNThcFkjmjJGlUsr/vN+NnZygvFBAy74/cAcDBP0LKGUXjNdVUvvhhtqNdsDsEET/jDt0ZCtyi2CWASEtV1R2ba4BtuBMBGsINBDt9au3btggULMjMznU7nxo0bOed9+/YtKiqSfftWFJESz+OJtzVNq6+vf/XVV++7774DL0ZsoJHsoBWCxydPxIJLfEK1Ncg0dtHayV8fJUpPz8jNzd2xY4eqqpTGhuGJ2JQRJueayLjCOSspKc3PL/jZ13Q4HMcee+z48eO3bt26atWqrVu31tbW5uXlTZ48Sb5LPDAIIWLDSEUs/z1VVdU0zfLyco/Hm5mZmZKSkpKS0rUfQdfr7vpK/I920MMP//jN16Hd1XaXi5iMxPO5yGHEAjiLjwezKiumzRZs8JX+39UFp58hV5k8mIUWjNnz8/vd/8C6yy73OOxUcCpiY5PiE2tivfSJxTYADFWN+MPjH/qbZ8AArKwcTF999ZU8f7vd7tGjRwshNE2T/Sgtgko75ECyFStWVFRUFBUVHVB3uuwviY8329N0Ki9bGbOmVfP4bDhmmqYcZ4z99slCCOnbt4hzUVGxXdZaAABAyIHF1rheSmlJSengwUP2v67gdDqHDx8+fPhwznkgEKiurpI1FdkbTwjEgwoBoITIGjAlhFCqMBYpL9+WlpbWgbR1PVAPqF4RIhhzFPYZ8cabEc0eDIUNTdGBG8B0YAZwA3jiivQGgEmIoWn+Bl/BiceP+8cT0B2tBHKx5MIZl/W55aampoCuUJ2CHiuz/FdYZZY/BqWGqgUa/YP/7+rS664/2LHwcCXiKbxWr15trccl4in8rJ6M1nu1fil5mKmq6vf7ly5dCvuxyn0il8sVn+Im1/nYk53DNLlpMjkYSXYam/K+aWRk7LNxH3WMoij9+/cfNmyYy+WKRCLBYDAYDAWDwWAwGA6HGDMzMjLGjTti6NBhHRtcas3Pb90ompBUJMbqhGtoaPD5fJ34tXqQ7q+vgDxHM5ZxzLHjPp27/KJpzTurHCkuSilY+Tyt5egJZZREo3rEH+533jkTXnpVcThkPphuKDalwPmQvz0KNm3LAw/b7arN6bDKvKfrngAjlCk0Eo5GI6HhN1w39h9PAF5+HizySr+ysrKurk7Oit9X1o19bWlxQwaqtWvXyu73/SmDfFpKSoqMcJqmydn1crJ3QsOXNQRIt9JG7U87DDpQhJCcnNz09IzGxob6+vpgMGCajFLqdrszM7MyMjI6OR3V6mWxyDbPhLstjy7DMBobG2Q6u96uR8QVsELL5CmTfliy+vZbK2fPBoOpGqU2DRRFADAhTNPUo6bBhSs/56i/31Xy22ti31U3nqAJEYwNuf+hlPET1t52c+PmclUhql0jqioIiRWbmdFI1GDCU1w4/oGHiy+6WDBGZBpVdLBUV1dHo1GbzdYiruyr+YvvnY828SHZeFJVVQUHMgRRCCHzTVVUVHg8XkKYdTEbn+ktqyzMMHRdN0yThULBAQMGeL0p2AjWRTRNy8nJzcnJTRzC1/mXFULoehT2GuRnJYzhcm7/3mM0uHxu4FBJwNFT4grEWpaYIz//iNffbLjx5vJXXqz76qtgxXYWDnMhQFG0tLTMocP6nHV2v0um27Oze8TZmRBCqWCs4Oxzsk84Yfvrr+3891u+VSv1Zj/nMhcAqCme9FFjii6Y1v/Xl9nS03tEsQ8n8pQRCoVk5/z+tFztq2Us8ewTDof5gawfLE9Yffv2ra2t9ft9ctJ1rBNxT/9KLA2UYZihUMDj8ZSVjQIcDNb1kvsJCyHkmIv4gK/YW8TDCbcS4Ftj/3g8gXESi9GNelBcAQBCFcE5cJ5xxBEZRxzBDSNYURGt3S0YUxxOV9++jpwc+cwedHYmRFa2NI930MxrB/72mtDOnYFNG/WmRgDQUlO9g0pcRcWx+VfYUd9NrKggb7RzHtlzJgCAhM6YxN07XAxC6PDhI5YtW9rU1Ohyua3UUvFkUCZjzDDMYNBvt9uOPnqSw+HAykqvQ2JLlcvhfLEJmG0mjEkYo8E554dGpz30tLgC8SG8cr0vqmnegQO9AwfueTh+au5pZ2eiKDJVIVEUd9++7oT52wBgPdTTin04sCadQDw2yHpGmyfr+DXmnrbv1p0r8ml2u70DswqEEA6H44gjjly1alV1dZWqKqqqARAhYjMnIpGIaRo5OTlHHDEekxn3UoQQTdMCAb9pUmsGLuyZsCI4Z9YyYIyZjJmmyTjnHo+nu8ueHD0urkix86/8q5Z/2DJxEiGkx65pEy+b4Bz2rOJAZFtZzy324UEmDZTzH2WDQ4vQYgWMxL2syooVb0R8ha6cnByIh6j9L4Z8R5vNNm7cuJqa6vLy8oaGhmhU55wByA6YrH79+vftW0RwXa/ezOPx1NXVmqYpBFDKSSzTtpUsmSWM0YgljNE09ZAZ+9ezT3b7nrrck2Felh5FHkIFBQXp6enNzc1yqDGAXJ9xzwySFntZTd6Jt63mb8754MGD29xxPwkhcnPzcnPzdD0aDAZlnHO53Fa9CoNKr+b1ejXNFo1GNS228Jc19s+aqxSf2h+biFlYWJiSktrdBU+Onh1XEOo02Vfv8XgGDx789ddfy/GjVrtEm7skBhVIWLgJAGQXiNPpHDduHHSiv9eaiWmz2W02e+Jbd+ZlUQ+haVpubu7WrVuE4K0TxiSO0ZAJY+x2+8CBJb0uX8u+HCK/BkI/6/jjj1cUJdZbmhA2EsX/7FmLoGKa5u7du2tqaoQQ4XB46NChpaWlQojOnAgSxhlbLWx7spCh3i4rKys7OzsSiUQi0Wg0qut6NKoniMZFCIGhQ4fJpSQPDVhfQYeO1hf7icFj9OjRhYWF1dXVdrtdNoKR2JInpM2xXlY3TCQS2bVrVzgcZowFg8GcnJyLLroIEhbYsHbpWEjAQHJIopT269dPCLFz504hhKJQmQDf6l2R7V92u23IkKHFxf26u7zJhHEFHTpaXP7LOe1WR8WDDz64cOHC0tJSK3txO70jcjAoIcQwjJ07d8o1hjnnfr8/LS1t2LBh1tu1StSB/SIoRlHUAQMGejze7dvLm5ubZRpsHqeqSn5+/qBBJZmZmYfYMYNxBR0ihBCBgL+pqTkSCcv0joRQu92Wm5tnt9tvvvnmd955JzU1tbq6Oi8vzxoP1joqJCKENDQ0hMNhu90u77rd7vLy8htuuOHpp592Op2hUCgajchVuWw2m9vtllMQMLogiVKal5eXmZnZ1NTU0FAfDAY5Z4qiyOzFqamHSKLJFjCuoN5NnsHD4XBVVVUkEqZxAGAYZjQaqajY8fjjjy9evDg7O9s0zdraWplPpcX8R9i7+hJfWAliM9big8copXa7fd68ef/5z39OOumkuro6QsCa5kapkpqaWlhYaMWhg/thoB5K07Ts7Ozs7OzuLshBgnEF9W6EkObm5qqqSlVVXC5X4gx2Qqjd7n300cd+/PHH7OxsXdfl86urq4PBoMfjcblcckJ768mP1jyVjIyMQCDg9/tlXSQUCvXt2+eOO35fWlri9/vcbhfE83YwZuq6vnt3TU1N9aBBg7KzczC0oMMTjgdDvVsgEKiqqrTZ7Dabg1K5hpIiqyyKQuVywg6HQ049kSO4amtrMzIy7rjjjqysrNra2lAo1LqjRcYnwzB8Pl9hYeGAAQOCwWA4HC4uLv7b3/4+cmQZADgcDkWJrdqkKFRRFE3TXC63oiirVq3atWvX/i/rgtChBOsrqBdjjFVXV2mapqqqXD1JCDlhBQgRhICi0DPPPHPBgu9kROGc19TUHH/88c8//3xaWtqkSZPmzJkzf/787du3R6NRQohcOSNe3SHp6ekTJky44IILBg0adNFFFy1ZsuTOO+/Mz88LhcI2my0h6RPEY5ZCCNc0m9PpXLt2jcvlSk9Px1oLOtxgXEG9ktWpbhiGbP6SS/JZoYUQQqkSDAYnTpxwxRVX/utf/1IUJRAI/OpXv3r66ac1TTNN0+PxTJs27dxzz92wYcOaNWsqKip8Pp8QQk5qKykpGTlyZFZWlnyvJ598cv78+QMHDgiHwzabjVI5GAyEIJzL5f8EpUSGN1XVKKXr1q09+uhJGFTQ4QbjCuqV5Mna52tWVdVa0Bf2rMcXu0EpDQZDF198cW5u7gcffFBQUPDb3/6fpmmcc1VV5QwVVVXl8rFtvpHVt5+fnz916tRIJGy3O+IjjPd6x3jBZNmE3W5vaGiord2NHS3ocINxBfVWcrKy3W6XKT7l+V3+y7nM+xk75QeDwWOOmTJ+/JHhcKimpiYcDjudTogtcaBAQn7JFhnDZD+NjApNTU1NTY0ejyehkx9a3EhAZOdKVVVVdnZOV30ECPVIGFdQ7yNP9IZhyIkjsjtEji2Od3jE1uOTS/IRAn5/wDD0cDhsGIauR51OZ2IdYn/SsUQikcQsT1YliXMOsCfbcULiY0EpbW5u7pKPAKEeDOMK6q1EfIkkQgilYM1FsVbls9aN55zLZdWstZU68HaMmXtiB5c1G5JQisQ3jW0EAMMwADO1oMMMxhXU+8izNKVUZlqS/RmE8IRlfa2ssSx+Q6ZlMmWnegfeVIjYHEkAOdjMiiuJKwDyxNuHzLKyCB0QjCuoNyIAIFdsNAwDgCgKTewaiU9UtFblk0soMV3XnU6HXFv+QOsQclkw02SKItMYk4Q6UMJSTbFFZU35lk5nbD0VrLKgwwfGFdQrCSFUVXU6Xc3NTZRSubKwVV+R7VHxeBJLHWuaZjQaLSrqa3XFH9A7ut1uxrhpGkKoimLtHuvF2TusyBUATdM0MjOzuuC3R6hHw7iCerHc3Nza2lpVNWR9Ze9VxHk8qJi6bhiGEY3qikIHDBh4oO8iX9bj8djttkgkYrfbOafxlWXB6l+RNSS5WJNpmtGobrPZCgv7JPdXRqjnwzwuqFeSo3hTU1Ozs7N8vmbD2LOg6950XY/qum4YZijkHzx4cGpqWgcqK7Krv6CgMBwOx99LN03DNGMVk/iKsrE1m0zTDIUC/fsPcLvd2AiGDjdYX0G9lTxZDxpUEggEGhoaPB4PIVQIIWssezpVGNN13e/39evXb/jwMujQ6CwZxrKysnJycnbt2uX1euP99rK+EmsHk3UVwzADAV9WVtaIESM69nYI9WoYV1DvRikdNWr0mjWrd+3apaqqpmkyBnDOTZPJOSucsyFDhowaNaYzp3i5b2npYF03Kit3uVwuRVGt8WBW10o0qgeD/szMzEmTpiiKipUVdBjCuIJ6PUrpyJGjcnJyN2/e3NTUaBimELF5JKqq5ORkDx48JDc3LymphQkhZWVlHo9n06aNuq4riiJHATDGZSOYopCSktKRI0dpmoZBBR2eMK6gXk9WUPLy8vLy8vx+f2Njo65HAMBud2RkZLjdHkjqSF8hRP/+/fPz8ysqKmpqqoPBoJyn4vV6srOzi4v7yS4cDCrosIVxBR0KrHXsvV6v1+tNfKhF4q9kvZfD4SgtLS0tLZVdOIpCremWGFHQYQ7jCjpEWIOM29zeRe9FCFFVVVVjf0dJj2EI9UYYV9Ah5WCe01u/F0YUhADnryCEEEoujCsIIYSSCeMKQgihZMK4ghBCKJkwriCEEEomjCsIIYSSCeMKQgihZMK4ghBCKJkwriCEEEomjCsIIYSSCeMKQgihZMK4ghBCKJkwriCEEEomjCsIIYSSCeMKQgihZMK4ghBCKJkwriCEEEomjCsIIYSSCeMKQgihZMK4ghBCKJkwriCEEEomjCsIIYSSCeMKQgihZMK4ghBCKJkwriCEEEomjCsIIYSSCeMKQgihZMK4ghBCKJkwriCEEEomjCsIIYSSCeMKQgihZMK4ghBCKJkwriCEEEomjCsIIYSSCeMKQgihZMK4ghBCKJkwriCEEEomjCsIIYSSCeMKQgihZMK4gnqKhoaGa665pm/fvl6v98gjj/zggw8O9BX69Olz5513tvlQVlbWvffe2+kyHrB2ipRcTz31lKqqB+GN0L48//zzhBDTNLu7IN0P4wrqETjnZ5999kcfffTggw9+8MEHpaWl55xzzg8//NDd5eqInJyc8vLy7i4FOhhmzZp12WWXdXcpehy8wEE9wuLFi7/99tu5c+eefPLJADBlypQvv/xy9uzZRx11VLeUxzAMTdM6sGNFRUVtbW3Sy4N6pqVLl3Z3EXqiQ6S+8sILLwwbNsxut2dlZV1yySU1NTUAUFdXR1oJBAIAEI1Gb7vttr59+9pstuLi4j/+8Y9W7TU3N/fJJ5/8/e9/n5ubm5KScsYZZ8hXAwDTNO+6667i4mK73V5SUvLUU0911+976Bk5cuSaNWuOP/54eVdV1fz8/H2doA3DuO222woKCtxu96RJkxYuXGg9pCjKX//617y8vBbfXaIFCxYcc8wxLpfL4/FMnTp18eLFcvsTTzyRl5f30Ucf5ebm3nbbbQCwc+fOadOmZWRk2O32srKyN954w3qR3bt3T58+PSsry+FwjB8//osvvgCAr776qri4GAD69+9/9tlnt1+k2tra6dOn5+fnOxyO0tLSJ554Qm5ft24dIeSbb74577zzvF5vbm7uDTfcwDmXj7ZTJHRA5Of82WefnXTSSU6ns7i4ePbs2cuWLTvyyCNdLteoUaMSY8Zbb701cuRIu92em5t7/fXXh8NhADjuuONeeumlV155hRDy008/yWdu3Lhx8uTJTqezf//+L7/8svUKb7zxxpgxYzweT1ZW1plnnrllyxa5fdq0aRdccMEbb7xRUlLidDrHjRv3448/tv++vYAQ4oNa8UGt6L1effVVQshf//rX9evXf/7556WlpUcccQTnnDG2KW7lypX5+flHH30051wIccUVV6Smpr711lubNm167bXXPB7PzTffLF+tsLCwuLj4iSeeCAaDW7Zsyc/Pv+aaa+RD119/vcvleumllzZu3Pj000/bbLZ//etf3fZrd1oHvveDdqhUVFTYbLZnn322zUdnzpyZlZX173//e8mSJTNmzPB6vdu2bRNCFBYWDhky5Lrrrlu6dOn//vc/t9ttfXeZmZl//etfhRAbNmxwOBznn3/+8uXLly5deuaZZ3q93p07dwohnn76aY/Hc8opp8ydO3fLli3RaHTIkCEjRoz46quv1q9f/6c//QkAPvjgAyGEaZpjxowZOHDgZ599tnbt2uuuu85ms61atUrX9bfffhsAli1b5vP52i/SaaedNnjw4G+++WbDhg0vv/yyqqrvvfeeEGLTpk0AMGbMmPnz5+u6/sknnxBCZs+eLYRop0hPPvmkoihd9HX05EOlw+TnPH78+CVLlgQCgXPPPTctLe2kk07atGlTY2Pj5MmTJ06cKJ/5zjvvAMAdd9yxfv36OXPm9OnT5+KLLxZCNDU1jRs37sILL6ytrTVN87nnnlNV9fjjj3///fdXrlx5wQUXaJomD63vv/8eAP7yl7+sW7du8eLFJ5544qhRo+SLX3LJJX379r3ssstqa2ubmppOPvnkYcOGtf++PZn83g+FuDJ69OiTTjrJuvvhhx8CwIIFCxKfc+2113q93q1btwoh6urqVFW97777rEdvueUWt9sdjUaFEIWFhVOnTrUeuvLKK4888kghRFNTk81m+9Of/mQ9dNVVV5WWlnbZr9XleuzJIhKJTJ48ediwYZFIpPWj8ouYNWuWvBuNRs8999x58+YJIQoLC8ePH28987LLLrPuWnHlxhtvTE1NDYVCcnt9fb3NZpMHw3PPPQcAH3/8sXzo/fffb3EgjRs3Th5pc+bMAYDPP/9cbmeMDR48+De/+Y0Q4pNPPgEAGefaL1J1dXVNTU3ii8+cOVPEz3f33HOP9dDAgQNvu+229ouEceVAyc/5oYceknffe+89AHj77bfl3SeffNLhcMjb48ePnzx5srXj66+/TgiRAeOoo46aMWOG3C6Pnzlz5si7so9N3g2Hw1u2bGGMyYfkOUp++5dcconX6w0EAvKh1157DQCCwWD779tjye+917eDGYaxcuXKyZMnW1vGjx8PAFa1FAA+/fTTWbNmPfHEE/379weAFStWmKbZYpdgMLh582Z5d/To0dZDaWlpjY2Nci9d16dOnWo9dNxxx23cuLG+vr5rfrPDVCAQOP3008vLyz/88EO73Q4AkUikKU7X9ZUrV+q6fuSRR8rn22y2d95556STTpJ3J02aZL1URkZGQ0NDi9dfunTp2LFjnU6n9ZyBAwcmHi3WKy9dulRRlAkTJlgPjR8/Xj5z8eLFqqoec8wxcjuldMqUKYsWLWrzN9pXkerq6mbMmJGWliZbaJcuXZpY2jYPwnaKhDpm2LBh8kZaWlqLu5FIJBqNMsaWLVt2wgknWLscd9xxQoh9DSqxvu6MjAwAkN+p3W7/97//PXjwYJvNRgj55S9/aT0EACUlJW63O7EYjY2NB/q+PUqvjyvBYJBznp6ebm2Rt30+n7xbX19/xRVXnHvuudawDflQO7tYJx1JCGE9esoppzjiLr/8cgDYvXt3F/1qh6G6urqpU6fu2rXru+++GzBggNz4l7/8JT3uzTffbG5uhlbfkcXlclm3CSHyu0vk8/kSv3oASE9Pt756SDgwfD5famoqpbT1M30+n2maHo/HOhheeumlNvty9lWkSCRy5plnhkKh77//3jAMIURi+Gn9C1oH4b6KhDrG4XC0c1cIEQ6HTdO87777rO964MCBAPCzXzchBOJf3PPPP3/XXXf94Q9/qKurE0LMnz8/cZfWB3MH3rdH6fXjwdxut6Io8mpOklcBqamp8u5vfvMbQsi//vUv6wnyoXZ2aZN89PXXXy8rK0vcLutAqPNCodAvfvELIcR3332XmZlpbZ85c+YZZ5whb5eWlq5btw4AOlxNTE1NTfzqAaChoaFPnz5tPrO5uVkIIU8Q8pnyMEhNTXU4HMuXL098vqIo+1+MlStXbt269Y033hgyZIjcUl1d3WYx9rNIqIu4XC5N0373u99deeWVidtzc3P3/0Xee++9E0888YorrpB3q6urD877dpdeH1c0TRs1alTiiCB5W7ZmvPjii++9997cuXNlnVQaNWqUqqoLFy602jEWLlyYmppaUlLSzhuNGjXKbrfX1tZaJ4La2lpKqWyrQZ133XXXNTc3L1q0KPHLAoDi4mI5yEqy2Wyapn3zzTfHHnssAHDOjz/++Kuuumr69On78y5HHHHECy+8EIlE5JXp7t27N2/e3OJP13omY+yHH36w2p0WLlwoj6vx48dHIhHOudVssn379pycHGvf1vWkFvx+PwB4vV55d8GCBVu2bBk3btzPFn5fRUJdhFI6bty47du3W3/4uq7v3LnTqtf+7HcNAH6/Py8vz7r76quv/uyOP/u+PVmvbwcDgFtvvXX+/PmPPPLItm3bvvjii1tvvfXYY4894ogjysvLb7zxxvPOO69///6b46LRaEZGxhVXXPHwww+/99575eXlL7/88nPPPXfjjTe2P105JSXlN7/5zZ///OfZs2eXl5d/9dVXJ510knUBgjppxYoVr7zyyowZM1auXPlVXOKAS0taWtqMGTMefvjhV155ZenSpb/97W+XLVt29NFH7+cbXXPNNbquX3XVVevWrfvpp59kD8eMGTNaP/PUU08dPnz4zJkzv//++02bNv3+979ftWrVzTffDAAnnnjimDFjLr300m+++aa8vPytt94aM2bMM888A/FmtI8//nj16tXtFGPUqFEul+vxxx+vrKycM2fObbfddvrpp2/YsKH9Vo52ioS6zm233fbuu+8+9NBDmzZt+umnn6ZPnz5lyhQ5YyE9PX358uXLly+vq6tr5xUmTpw4f/78RYsWbd26debMmYMGDQKAJUuWhEKhjr1vTyd6w8iNn/XCCy8MGTJE07Ts7OyrrrqqsbFRCPHWW2+1/n0XL14shJDzVwoKClRV7d+///333y/HHwshCgsL//jHP1qvfMsttwwcOFDeNgzjT3/6U1FRkaZphYWF1157rd/vP9i/avL0qEE+jz32WOsva/DgwW0+ORKJ3HTTTbm5uU6nc+LEid9++63c3s53Z40HE0IsWLBgypQpDofD4/Gceuqpq1evltvleB7Z2yHt3LnzggsuSE1NtdlsY8eOff/9962Hampqpk+fnpmZabfbhwwZ8thjj8ntpmmedtppTqfz1FNPbb9Is2fP7t+/v9PpPPbYY9etW/fpp5+mpaWNGzdOjlOaP3++tde4ceOuvPLK9ouE48EOVIvP+csvvwSATZs2ybtyXFY4HJZ333zzzZEjR9pstoyMjLPOOmvjxo1y+5w5czIzMzMzM+fOndvi+JFV0tdee00I0djYeM4553g8noKCgnvvvZcxdsopp3i93rfffvuSSy6ZNGmSVSo5VGzHjh3tv2+PJb93IoT4sA4A4JdZXRW6UM/Uge8dD5XDEx4qaD/J7/1QaAdDCCHUc2BcQQghlEwYVxBCCCUTxhWEEELJhHEFIYRQMmFcQQghlEwYVxBCCCUTxhWEEELJhHEFIYRQMmFcQQghlEwYVxBCCCUTxhWEEELJhHEFIYRQMmFcQQghlEwYVxBCCCUTxhWEEELJRAFAIwAAftbNRUEHk/y65Ve///BQOQzhoYL2k3WoUADwKAAAG4IQwIPg8OBnsCEIEP/q9x8eKocbPFTQfko8VIgQokaHH33dXSjUHY5KhRztAJ6Ph8phCw8VtJ+OSgUihACAGh02hcDPwBTdXSjU9TQCHgVKXZBjO+B98VA5rOChgvZT4qESiysIIYRQUuB4MIQQQsmEcQUhhFAyYVxBCCGUTBhXEEIIJRPGFYQQQsmEcQUhhFAyYVxBCCGUTBhXEEIIJRPGFYQQQsmEcQUhhFAyYVxBCCGUTBhXEEIIJRPGFYQQQsmEcQUhhFAyYVxBCCGUTBhXEEIIJRPGFYQQQsmEcQUhhFAyYVxBCCGUTBhXEEIIJRPGFYQQQsmEcQUhhFAyYVxBCCGUTBhXEEIIJRPGFYQQQsmEcQUhhFAyYVxBCCGUTBhXEEIIJRPGFYQQQsmEcQUhhFAyYVxBCCGUTKr8z+fzrV69uqqqKhKJdG+BEDogDoejoKBgxIgRXq+3u8uCEAIAIEKIpqamr7/+euLEiV6v1+l0dneREDoA4XDY5/MtXLhw6tSpqamp3V0chBCQ5ubmL7/88qyzzurukiDUKe+///4JJ5yAtRaEuh1ds2bNxIkTu7sYCHXWhAkTVq9e3d2lQAgBraysTElJ6e5iINRZqamplZWV3V0KhBDQSCTicDi6uxgIdZbT6cRRJwj1BDjOGCGEUDJhXEEIIZRMGFcQQgglE8YVhBBCyYRxBSGEUDJhXEEIIZRMGFcQQgglE8YVhBBCyYRxBSGEUDKpSXytSCRiGEY0GjUMHQA0zWa32zVN6znz+ZctW7Zjx47169dXVFQAQFFR0ZAhQ4qKisaMGdPdRYsJf/yRsXpV9Ltv9VWrAMBWVmafPEUrG+n8xendXbQ95jbOXRtau8i3aG1oLQAMcw2bmDJxuGv4yeknd3fREELdLzlxxTCMpqZGwzASN+p6VNejAKBpWlpauqZpSXmvjqmoqHjhhRdkOLGsX79+/fr1AFBUVHTllVcWFRV1U+kAAIxVKxuunWmsXpW4Mbrgu+iC7wBAG1GWMetprWxkN5UuZk1ozS1bb5HhxPK9//vv/d8DwDDXsL8P+Ptw1/BuKh1CqEdIQjuY3++rrd3dIqgkMgyjtna33+/v/Ht1zPvvv//nP/+5RVBJVFFR8ec///l///vfwSxVIt+D99ccO7lFUElkrF5Vc+xk30MPHMxStfDorkdPW31ai6CSaG1o7WmrT3ts12OdeZfRo0c/9dRTnXkFhFD36mxc8ft9+xkw/H5fMBho5wlDhgz529/+lrjl3//+d+fb0N5///39DBjvv//+vHnz2n9OY2PjzTffPGDAALvdnp+ff8EFF3Q+N7vvwft9Dz+4X8986IHA07Paf05dXd2NN94oS5ibm3v22Wd///33nSwhADy669F/7PrH/jzzsV2PPV/9fPvP6YqPESHUQ3QqrhiGcUC1kObm5naqNV2hoqLigGohb731VjvVmubm5qOPPnrevHkPPfTQ8uXL33jjDcbYxIkTV6xY0eESGqtW7mdQkZr++Adj1cp9PVpbWzt+/Pg5c+bcc889P/7447vvvpubm3vMMcd0siq2JrRmP4OKdE/FPWtCa/b1aFd8jAihnqNT/SuNjY0HuktTU2N2dk5n3vSAPP/8z1w4t/bCCy/cfffdbT5033331dbWbty4MSMjAwCGDRs2derUq6++etWqVaNGjepYCRuu+e0B73LtzNxvFrT50J133hmNRlesWGEtmzh58mRN066++urTTjvNZrN1rJA3b735QHe5Zestn474tM2HuuJjRAj1HB2vr0QiEdM84MqHYRgHbZEMOfrrQPeqqKhYtmxZmw+98847M2fOlGdDy3PPPXfppZd2rIThjz8y1hxw+4+xelX444/afOjdd9/93e9+12It3jvvvLO2tvaLL77oWCHnNs5dF1p3oHutDa2d2zi3zYeS/jEihHqUjscVOZg4uTvecccdaoJLLrmko6UDAGinRasDO3LOt2/fPnx4Mgc7tdOi1YEdm5ub6+vrhw0b1mJ7Xl5eRkbGli1bOvZe7bRodWDHrvgYEUI9SsfbwaLRaId33Pt6eo+bbrrpsssus+5++umnd955Z8feBQDkGOJk7UgIURSFMdbh8rQW/e7bJO6oqioAtFlCzjkhpGPvtci3qOM7Frbc2BUfI0KoR+lMfaWDPfDt7JiXlzciQZ8+fTpaOoBO1FfabD0jhAwYMOCnn35qsb0zIxH0fQ8s/rkd22g9c7vdeXl5q1a1fM3q6uqmpqbS0tKOvVc7A4vb12brWVd8jAihHgXzuLRBCNHm9vPOO+/ZZ5+tqqpKfOb06dNvvfXWg1W0Pe/c5tZp06Y9+eSTPp8vceODDz5YUFBw3HHHHYxyJRD7KGRP+hgRQsnX8bjS4fnzB23ifYfnz+9rxz/84Q/9+vWbMmXKG2+8sWbNmi+//PKcc875/PPPr7766o69kW1EWXJ3vPvuu9PS0qZMmfLee+9t2rTphx9+uOGGG5555pkXX3xRtpJ1wDBXyw6bTu6Y9I8RIdSjdDyu2O32g7zjgRoyZEhyd3S73QsXLjz//PP/8pe/jBs37tJLL01PT1+8ePHgwYM79kb2yVOSu2NqauqPP/548skn33bbbWVlZWeeeeauXbsWLFhwyimndOyNAGBiysTk7pj0jxEh1KN0vN9e0zo4GWJfO7buLb/wwgsvvPDCjr0LdEF9BQA8Hs8DDzzwwAPJyafS4Xxf7eyYmpr6yCOPPPLIIx0tVEsdzvfVzo7tfIytu14QQr1Lx+srDodDVQ+4RUtVD15647Fjx/bt2/dA9+rbt+/YsWO7ojytOU8/Qxs+4kD30oaPcJ5+RleUp02npJ8y1DX0QPca6hp6SnrHK0kIod6rU/326enpB2GXzrjqqqsOwi6dkfHPZw7CLp306IBHD8IuCKFDQ6fiiqZp3n1NRWlLamrqQc6WX1RUdNZZZ+3/8y+66KKDnC1fKxuZcvvv9//5afc9cPCz5Q93Db+x8Mb9f/5dRXdhtnyEDludHWfs9absZ2hJTU11uz2dfLsOOPvss/cztFx00UUnn9wNK1Ol/P7/7WdoSbvvAc/Ma7u6PG26ufDm/QwtdxXddVXeQa3zIYR6lCTMX/F6U7Kzc9rpa1FVLTs7p1uCinT22Wfffffd7fS19O3b9+677+6WoCKl/P7/5X79XTt9LdrwEblff9ddQUW6ufDmT0Z80k5fy1DX0E9GfIJBBaHDXHLWi9Q0LScnJxKJGIYejUbl3GlN0+x2u6bZesI6xEVFRffcc8+yZcsqKipar0N80Drq26GVjcz9dmH444+MVSuj330rp+LbRsTXIT6IHfXtGO4aPnfE3LmNc9eE1rRehxg76hFCkNz17R0Oh8PhOJAOl4Nt7NixPSGEtMN5+hk9JIS045T0U05JP6V17i+EEALM44IQQii5MK4ghBBKJowrCCGEkgnjCkIIoWTCuIIQQiiZMK4ghBBKJowrCCGEkgnjCkIIoWTCuIIQQiiZqMPhiEQi3V0MhDorHA73hIxBCCGan5/v8/m6uxgIdVZzc3NBQUF3lwIhBLSsrGzhwoXdXQyEOmvhwoVlZWXdXQqEEBAhhM/n++KLLyZMmJCamup0Oru7SAgdgHA43NzcvGjRohNOOCElJaW7i4MQAiKEAAC/37969erKykrsa0G9i8PhKCgoKCsr83i6bYEfhFCi/w/V5wwPWko/BwAAAABJRU5ErkJggg==", "path": "image.png" }
Look at the models of molecules below. Select the elementary substance.
[ "ozone", "2-chloroethanol", "methane" ]
0
There are more than 100 different chemical elements, or types of atoms. Chemical elements make up all of the substances around you. A substance may be composed of one chemical element or multiple chemical elements. Substances that are composed of only one chemical element are elementary substances. Substances that are composed of multiple chemical elements bonded together are compounds. Every chemical element is represented by its own atomic symbol. An atomic symbol may consist of one capital letter, or it may consist of a capital letter followed by a lowercase letter. For example, the atomic symbol for the chemical element boron is B, and the atomic symbol for the chemical element chlorine is Cl. Scientists use different types of models to represent substances whose atoms are bonded in different ways. One type of model is a ball-and-stick model. The ball-and-stick model below represents a molecule of the compound boron trichloride. In a ball-and-stick model, the balls represent atoms, and the sticks represent bonds. Notice that the balls in the model above are not all the same color. Each color represents a different chemical element. The legend shows the color and the atomic symbol for each chemical element in the substance.
ozone
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAIAAACmkWkFAABAJUlEQVR4nO2deXwURfr/n+qe+04mIXdgOEMgQLjlMKAihxy6uoqrKAoeuK7HrooneKAsqOvX47sqLn7F9f4pHqsC6qIcoiCGIxBuCATISZI5Mpmru35/1ExnyMUcPTM9UO8XL+3p6ak+6pPP81RVdxfCGEOycaKp+Zzb5Ju0cTgSyoUM1WG4yBJ9AG1x+bhDdbaDdVaXj7O6PFaXN9FHFDZKGZOhUxvVigyduigrRSVjE31ElLChOowFSFLZTY3D9X7pYbeP73qzFJ0WAQAAQoDA/w8Q+FcCIIAzzS0e7hzlxAGljLmmyJKfQkNcMkF1GCOkZTcrtx2sdbgUKq3elKpUKFRyuUqpkCOQMcACyBiQIZAhYJB/gQ0sswgYADawhiwzgWVhAQGgwDLGwANwGGMAjsdBy/71PAYe46Dl1vX+Lf3LEFwCD+Dxcc4WT7PLY2t22h1OpYz568UDE31pKWFAdRgjmMTuvg3WFg8ApGT30BhSVGqtXKEAAGKHCAWWwB89cGC5dYOg5VYTJcsYcNAvsX97jBDCGBBCAECWgawnm6KgcIUAB9YjhHBgPUKAMYZACYBBxrI6rSrdbOiRmwEA5wySFKlBdRgjpGU3+Sk6AHA128jVJYmXv2pwYCmogsly6wZBy4FtAXBQihv4JfJvjzDG/noCIMtEDkQVZKPAMqDAeowxCqz3qyRQglA0xtDi8QJAN51K5MtEiTFUhzFCWnbTPUUHAJ5mB7m6bQJFskSVwDI0NtogoF1KEkF1GCOkZTd90w1KlmlxNLoctmSPKk6X50yjDQAGZaWKfqEoMYXqMEZIy26MKsX4npkAUF99gue45I0qHM9XVFYBwDhLRoYEklhKWFAdxghp2Q0AjMhL65NmwDx/+sQRH8dBEkYVH8cdPHba4+XyTdrxloxYXCVKrKE6jAWSsxsAmF6Yl65TedyuyuNHXG5XckUVp8tTduh4i9tjUMmvHtQjFteHEh+oDkVHWvfdCLh83PulR2odLoZhuqWlpxiNepVKyvc7uL1co7OlvsnRaHdwHO6TZphemCeF+zgp0UB1KC4StRvC1+WVZdWNiT6KsBlnyZBI7koRBapDsZC03QDAicbmA/XW7ZV1rS1maYIxBpjUNyc/RSeFPjmKuFAdioLkHtFsQ36KNj9Fu72yHgDmXDSIpKAIAIF/oc1HCFoPgawVYf96YQ1Z4DFgAB5jDIDJMmAMiMcY/OsR+ZbHEFjj/xUWvkXg5flPtx1gERqRl5aAa0SJPVSHoiDFruJOCXSwkXpFENTJf/aIgPCRbA+IdKS1fhsYEQAMmNQ66YHzjxH4g0Qg9WtdIxSL/duT/rkgGVHOf6gOIyWp7CYwBoCh9Z9QdcEjAsJHsj1gMkwIZ1W9P7Ygf81h/7ikv7cf+ZdJWYE1QrHIvz0GhBDPYwBgkYTrmSIiVIeRklR2I9Wogv1RRbrVTBETqsNISSq7kWxUAR4AkJSzWIqIUB1GSlLZjdSjSoxOmyIxqA4jJansRrJRBfMg7TYzRUyoDiMlqexGulEFgbTbzBQxoTqMlKSyG6lGFQ5jkHY1U8SE6jBSkspupBpVyDEgCVczRUyoDiMlqexGqlEl0GaO1XlTpAXVYaQkld1INapI/34HiphQHUZKUtmNVKOK9NvMFDGhOoyUpLIbqUYVkHxUoYgJ1WGkJJXdSDWqkLs5GSnfX0UREarDSEkqu5FqVJH+3ZwUMaE6jJSkshvJRhXJJ7EUMaE6jJSkshvpRhWpd9FRxITqMFKSym4kG1V4qVczRUyoDiMlqexGslEFAKTdZqaICdVhpCSV3Ug2qmAepB1VKGJCdRgpSWU3ko0qkn8SlyImVIeRklR2I/GoIuUsliIiVIeRklR2I92oAiDtqEIRE6rDSEkqu5FqVAkMQMbqvCnSguowUpLKbqQbVUg1S7ieKSJCdRgpSWU3Uo0q0r+bkyImVIeRklR2I9Wowks+qlDEhOowUpLKbqQaVaTfZqaICdVhpCSV3Ug1qpB1Uo4qFDGhOoyUpLIbqUYVTvL3O1DEhOowUpLKbiQbVSR/NydFTKgOIyWp7EaqUUX6z6pQxITqMFKSym4kG1V4AGlPuEERE6rDSEkqu5FsVCEHIuGoQhETqsNISSq7kWxUkfz9DhQxoTqMlKSyG6lGFVKClKuZIiZUh5GSVHYj7ajCSriaKWJCdRgpSWU3Uo0qgZvHY3XeFGlBdRgpSWU30o0qAABIyvVMERGqw0hJKruRblSR+v0OFDGhOoyUpLIb6UYVBNJuM1PEhOowUpLKbqQaVTjJt5kpYkJ1GClJZTdSjSrkIKScxFLEhOowUpLKbqQaVaQ/eyFFTKgOIyUJ7Kba3gIAKrlMslFFLZcJx0k5X6E6jJ4ksJvymiYA6G42Sjaq5JkNALC3pjE2F4AiCagOoydp7CbfbJJsVMlJ0ckYVGVrsbk8MboIlIRDdRg9Ureb0zan3e1VyWXd9BrJRhWGQbmpBgAoq26K0XWgJBaqQ1GQut3sIxlsmgkQkmxUQYDyUvUAsLuqITaXgZJgqA5FQep2s6e6CQC6p5paa1R6UQUDzjTp5CzT1OKpdbhicyUoiYTqUBQkbTcnrU6n16dRyNP0mtYalWRUQQB5ZiMEWviU8wmqQ7GQtN2QDDYvzQTBNSrJqIIQyjfrAWBPtXTHBSiRQXUoFtK1G4yxfywg1QjBNSrJqIIxTtOp1XKZ3e09ZXXG5IpQEgHVoYhI124qrU6n16dWyM06DSRDVEEI5aWRGx+aYnJFKImA6lBEpGs3+2qbAKC72RSIJVKPKgCQl6IHgH01jXzr7inJDdWhiEjUbjDG+2usAJBnNgViidSjCgCk6NRapdzp5U40NsfgqlDiDdWhuEjUbk40NZMMNkWrTqKogjHONxtB2jeSU0KH6lBcJGo3ZCygR1oKtMaSJIgqCKE8sx4A9tVaOV5aeSwlAqgOxUWKdsNjXF5rBYBcswlaY0lyRBWdSmnSqLwcf+SMXfQrQ4knVIeiI0W7Od7Y7PZxWqXCpFFBskUVAJwr+QdzKaFAdSg6UrQbMhaQb04hH5MrqgCg/FQ9AByqt/k4XtQLQ4krVIeiIzm74THeX2sFgLw0I1mTdFFFqZCb9RqOxwfqbCJfHUq8oDqMBZKzm4oGB8lg9SoVWZN0UQUwzk3Vg8TyWEpYUB3GAsnZTTnJYNNShLCQdFEFEMpO0QPA0TP2Fq9PzKtDiRdUh7FAWnbD8fhAYCxACAvJGFWUMjbDqMUA+yWTx1JCh+owRkjLbo412D0cb9CodCplUkcVDJCTqgeAckk+mEvpGqrDGCEtu9lHQkqqCYLCQjJGFQSQZdIzCJ1oam72SCKPpYQO1WGMkJDdcDw+WNdazckeVWQsk2HSAcBeaQQWSohQHcYOCdnNkQa7h+ONWrVGpYDkjyoYA3lPtQTfA0DpAqrD2CEhuyHPp2Sn+OfxSfaoghB0M2pZBlXbWxqdbhEvFCWmUB3GDqnYzVkZLKmw5I8qDEJZKXoA2FvbJN6losQQqsOYIhW7OXzG5uOxSaNWKxXnTVQBgNxUIwCUVSW+2UwJBarDmCIVuyGvg81KNZEgAOdFVAGAVJ1KIWMlOxEHpQ1UhzFFEnbj5fjD9TYAyE41kiAA50tUYRgmO0VyD+ZSOoTqMNZIwm4On7H7eJyi1agVivMsqmCMs1LJMGSTaNeLEhuoDmONJOxmn5DBApxnUQUhlKJVK+Uyu9t70iqtF8dS2kB1GGsSbzdejj9UbwWSwQKcf1EFAHIkc+MDpTOoDuNA4u3mUL2Nx5Cq0yrkcoDzMKoAQLb/uZUmqU3EQRGgOowDibcbMhaQmWL0X8DzMaroVUqdSuHycccbHWJcM4r4UB3GgQTbjdvHHTljA4DMVKP/Ap6PUQUQZKXQ9pR0oTqMDwm2m9YMViY/j6MKYP97APZLbCIOCoHqMD4k2G7IWEBGiqnV8s/TqKJSyI0alZfjD5+RxIuOKMFQHcaHRNqN28cdbbADQFaqsdXyz9OoAgDkuZVy2p6SGFSHcSORdnOgzsZjSNXrZKzsvI8qAJCZ4p+Iw+Pjor96FLGgOowbibSbszLYCyCqKORsql7D8fhgPW1PSQiqw7iRMLtp8fqONdgBIMNkOMvyz9+oggBlpuiAjk9JCarDeJIwuzlQZ8MAqXq9XCa7QKIKBpxhMiCAY5KZiINCdSjCRQyZhNkNmRE1I8UEABdOVJExKM2ow4GXb1MSDtVhlBcwLBJjNy1e3/EGBwJINxkA4MKJKoBQBh2fkgxUh3HWYWLsZn+tFQOkGPQyloULKaoAxukGLYNQpTQm4rjAoTqMsw4TYzdkRtRuKSby8YKKKgyDupl0ALBHAhNxXOBQHUJ8dZgAu2nx+k40NiOANKOBrLmgogoC1M1E21OJh+ow/jpMgN2U11gBINVokLMsWXNBRRUMOM2gkbGMFCbiuJChOoy/DhNgN2QsIN1kaq2ICyyqACD/xIY0wUkcVIfx12G87abZ461sakYAZqOhtSIusKiCEJA8tox23yQIqsOE6DDedrPPn8EaZQxzwUYVjMGkU8tlbFOLp8beEs31pEQG1WFCdBhvuyFjAWkmE26toAsxqgBABn3hVuKgOkyIDuNqN80e7ymrk0Eo1aBHrRV0IUYVhPzNZjo+FX+oDhOlw7jaDZnjJsVoYBnmAo8qGGO9RqVSyOxubyWdECa+UB0mSodxtRvygIbZZILW4AFwoUYVAJyRagSAcjrjXXyhOkyUDuNnNzaX57TNySCUqtdDa/AAuFCjCgDqZvTnsXRCmLhBdZhAHcbPbsprrQCQYjQyDAM0qiAEgDUqBZmIo4JOCBMvqA4TqENZTEsPhrwzzWwyCVFCsDpi+czZX5CKgaCogoSogs6OKqh1++Coglp/6Q8jjKCJs6NKIBi0RhW+bVRBfPuoglujCt8uqvCdRRWMEWotPy3F4KiqL69u6pmqF+1aUzqnvLoRALQqVbPDgQAYBCwCBMAAZhlEFhAAixBCGAEwAAwCBP7NEAIGAWDMIkTWB/6LADBZQIDJln6Vnr0BAhTQoT/7wAA8YIwxT5YDCxhjHmMMiON58hED4jHGADwGHmNArRvzGGMMgW8xBoSDtiTryQY8+MuBwJY8xmoF43BBrHUYJ7uxuTzV9hYGITmD7A4HA8AiAMAsQv7KDqpaBgAFRIACa5igyhbWC/8VFoBsj/whxF/HGBARAUKAseBipJ44ngeEeB6TWvdXJJxVkcQ7hJrGADzPA2I4nuehtSJxUP0BAMdjQIjjSdkoUOtIEAoGxHI+ANhfZ53K57KCHVJig83lqXG4GIT0GjUORCweYxYhhEi0JxEDMGAUaP4QcFCEQ4ikFP71QLZv3TCwcUCH/tTDHzP9YYp8F2heIR5jhBDmMQKEECY2hPzxyR9YST5CIhYCREIcgxiO5wFIWPVvj3FrbAMMDMNwPE/SH4RbY6RQvkElr7O59tc2TS2IoQ7j1Jgio/p6rQ4F5RwMuYj+v3+h6Yq6aDOTSghuMwclNKh1YyzkJThQoL+q/dlm2+zG3wYWGt5CpoMxbtNmJnECEPCYFw6uszYzz/PgT5Vx+zYzxljOMmq5zMvxh+iEMLGH6vAcOuRxTHUYJ7sho/oGrUaICYEGC3FrEKoVk56yTtrMQlQJ+hfcEA5sjITWLgoU6L/y/vo4u81MghAKtHCD28wIoTZtZoQQaTMziBEOrrM2M+kg8EeVdm1m8iuDRg50fCouUB0mVofxsJsGp7vW4WIQ0qk1gAUjplHF3zekU8oB4FC9lU4IE1OoDhOuw3j03ZDbHHQ6nRATaJu5tXyMZSzSKGVOt+9Ava0oMyUONXJhEmcdNtZxJ49yDhvvsPGAICuXNeiZrFyZwQji6tDlQNUVXO1xvqGq9WRVOpyaD6l5yJgpIR3GxW5qmgDAqNECkKoi/wc2EFUYBkFgfDDoMnYwMkXMOHhkigw6gX9DLEQVCGzPIFJgIK8MDBAERxXeb0StUSUwcsSTQwkemSIhqDWq4I6jCn92VOGFqHL2yBQp06CSO92+8uomajexg4xJxUGHR8o92ze5PW4cvPeqSn/KkJ3HDh+tysljo9eh1wNH9/CHfufbn6zLAafL4XQ5NmZCThHoMiShw5jbTYPTXdfsYhhGo1YDAM1u2kcVhECrlCNoOdZgb/H61PL43Z1w4dDgdNc73bHWYWMd9+t/3Y11XTVGTldyX1U2Fw2Vj5ugikaH9nq8YyNnq8dd7AsArNVgrYZeY1BqT5xwHcZc2aRzTqfVCt1foUSVFjvvbOAdZzhSwYY01mhmdEZGUtmNx8XbGrD1DPa6MQbQpoI2BZS6SLIblkFalczh8u2rtQ7NMce6Ui5AQtShy469Dh6R22cQ1qcyjDLQ3Qv+7TvLbhrrfOs/b2mT1HRGWam3oY6fMkOtUBIrCU+HTXX8lm983pBfwndkCzgaIG9YgnUYc7shL17WaXT+z+eKKlUHPaf2eB1nOogPhjS292B59wJ5wrOb+tP46B6upqIDYal0OKM3yh0MYWU3PAadUu5w+cqrm6jdxIKyqgboXIfggep9nobjPmc74enT2O5F8py+8q6zm8Y6338/b/GG5jWEU5Xczxvcl0xWhatDjwv/9j0XutcQavYjlYlP65VIHcbWbuqaXY0tHoZhNCqVf1Xn2Y3zjG/fDy6XvYOGKMFWz5X+l9v/m+eiKaqUdDYh2Y3HBdu+95453amqXA44vhPXHIZeY5A+I9TsBgFolTKEoNLabHN5DCpFdBeechZ1za4ml7czHZ4p957e6eY6cQp7PbfnR+7Idk/hGGWmRdZZdrP1B1dYXkPYv9er0zPDL1KEpcOyLZzTHva+AOD4r4yuGy/XJUyHsR0I3+fPYPVIaAF3cr9DQ4V397ctXXiNgNPGb/yy5dRRHw700ga+8Wc3pEx/Aizq/Q7Wen7D6q68RsDlgL3f4bojId3vEMi2kE4lh8BDPRQR6UKHJza5Kre6OvMagRY7//u6lmNl3jbZDfl3dJ+3sf7c0u2Qsp0ejwuHrsP6KjhxMPKB6uo9TAJ1GFu78TeYNZrWVR3d7+Bs4Pb/0HLOKhfwuvEva1qsdVwguyEgEBrYMbjfwePCm7/2hRVVjmyBmkPnvt8BB66JVknus2oMfReUUNjrb9G31WHlZlfDYU/o5ZT/7Dq62wvt7rvZuSnymQzcLrx7hzd0HR7fH9VNMWeOgs+TMB3G0G5qHK7GFg/LsGqVunVtu+zG48B7v3VGUP6PX7Q4bHzcsptN//GG21oGgGO/IGdDSNkNAGgULINQjcNFJ4QRkRqHq8nlba/D+nJPYzheQ9j7s6v6qC84u2ms47yeSJo2Agf2eUPXYVVFtPfgWU8mTIcxtBuSwWq02rPWtstuTpZ22mzuGq8b793miU92c/wAZz0ToaRO/B5qdgMAWpUMAPbQN4qKR4c69Nj5qm2uyArcs8XtcfFCdnP6WLR//3Yrb7NyoejQWs97w3bItniaUaJ0GEO78Y9JaXWtDWZom9247Xz9YW/Eu6jY73XYhMqOYXaz++fI51G216DGSggluxGazXQ+XxHZQ8akztZh3a7I/2qdNv5omU/Ibhy2CHttgnHYIBQdejzoXCWFsK8aCFGHZDhPRGJlN9X2FrvbyzCsUqHyezXh7Oym6US006GfOirYTayym9NHuShDStPJkLIbjLFSxrIMamrxVNMJYcSg2t5i9/ja69AafjMqmMoDXiG7cYYwvnFOQu+7EYfQdGh1ecXVYazshnQSa3U6hkFdZDdNxyNPbQgnjwolxCq7qQthKKprmk6Gmt0gBFoyLkDbU2LQoQ4dUQc5p41vtvM4oLfoCb3vRhwSpMPY2o1Go8OCVxPOzm7s1dG2e4MGIGOV3TSdiTZ8cR7wuUPKbjD2jwuUVTWcdd0oEUHGpNro0NUowhPPTht5NR+kpInwRxRidqNQiCAJXca5sxtBh7tF1WFM7Oa0zUlaUiqlCgleTWg3MhUlQfdWxazvBlDbvYZPS9M57ncQDlshY2QMcnq5k9ZIBuwoAqdtTofH17EOo8Z2xp/daPRs9KWlp7OhZDfGNEYe9Z13Ci0OXYctouowJnZDxgK0Wh0AdJ3diLrbmI1MiZEyh9h3Qw5Ao5IDnWAzajrTodchQoV63P7sJqdntHaTncvKVRBKdoMAsnpEuztjbsJ0GBO72VPdBABqjQ4AYp3dBCHp7EabCiFmNwBAxgX20QlhooMM8LXXoVwnQoWa0hh/dmNg0nOisoB+hfLQ+266F0S1L3NPkCnC02F5daNYOhTfbk5anU6vj2FZpVIF58puNKnRHkC31pqOVXaj0YugTkYeRnbDIlDIGJePO9ZAJ4SJkJNWp9PLdahDVi5ChcoU/kCEAAaOVEZcjt7A9BsgD31kKi0L8vtG7jiZA/lwdejmeLF0KL7d+O+q0vinj+g6u9FnRvuMaLccoYRYZTc5lmivkik3pLuKWw+bYdQKGdDxqSjoQoe6/GhVJ1eg9FyWZDcYID2HtRTIIytq3AQlhDMyhRAqGsOqI0rQuo/mVfpE6lBku8EYkyNTB5707zq7MfeJsJIEcnsK0olVdpOehaLsnzPlhtd3g3meDEMeqLP6OBFu67jQwBiX17S2pOBsHcp1jFwblfLN2axw3w35N/RiVQRDVOMmqHr0kkE4991gjOVKGHk5G64mMwpweq9Q7/9qq8PaJlF0KLLdVAZaUgqlP73sOrvRmNmUKEJNjwK5KV04hVhlN3IV6j0o8oNUaMHcK+zshkGglLNejj98xh7xri9YKgMtqc50mF4cVQApGKkQ7iom/+RKuOQPmrAcZ+wEVdFQeRh9iEEzMZjSmTHTZQZzqDlOj+EofziE+OxeBzrksSg6FNlu9tU2AYBaYxASmnOOTOWPUsoUkWSGcgUaOFIRn2em+hSxmkj7F/OH4xCfmQqOKggxKtqeipRz6tDUS6GKtN8wr5/cYGbaZDcIkEKJpl6vLRhybiPTG5gpMzWDhsrD1SES4iUGvRldNF3WY+A5ZGnIgMJJ0K0gjDcTxE6HYtoNxnh/jRUAVBqdEEjOOTKlMrDdR0XS0zbiMpXGwMTniXCZEi6aIougSZU7GKXkRRJVMOY1ShnQCWHCB2O8v6YJzqXD/Es0bPhxzmBmBo5V+isTgv/5dTj8YuVVc7U9+8sVHRVuTmeGjVb+8UZtj14shK9DIbshpyNXosLR7ITZ8oJRrD71rB0pddCtN+o/ERVNQYbMMN67BLHUoZhv8zvR1Oz0+lhWJlcoMPZnGhj7ndtPR2/z69ZPgRAc3hjGE7rDL1Hl9pSRqAKtDhbDt/kZzGjUZPnWdd7Qn59K7wnZRTwGCOVtfrhdVEGYVylYl4c7UGcrykoJ/eJc4JxoanZ6uXPqUKljek7RHF3r5EJ+fYTBzAyfoparSMWRP9zW7EbQoc7AjJukQpdDzUkOAGpOcUolMqezegMYjAxqN0c4hKPD9u/MVulw9yKUN5DFncwRDiG/MzvWOhQzuyFjAUqNXvAUCCG7QQhhDN36ygdeoQmlVSVXoPFXarr3l7eJKjHNbsiatGw0doYsxEGB3mOh19ioogpCSCWXAb3fL0xC16E6le0zRaMOrVWVms2OnqnRGhho9za/znSYlSfLzmOLRysGDlVk5TF6AyOKDoNOB4F4s2jGQYeiZTc8xmTaMJVGBwjCym7Iu4pNWeyI67RVe70n93h8HQUcuQL1HCTvM1ihVKEOo0pMsxtijgYzc+n16Nge/mgZ39LJzandeqH8IaDQAo9xNFGF53mVkoVmqKATwoQMHxgbDVGHKjNbeKWuaoe7Zq+nszRHpWN6D1fkF8hRQEZdZzdx0GFwdiPifGex1qFoCj7R2OzycYxMLpMrAAMKBAyEgmvCH1VQ4FK2mYlBpkTdhykswxRNVZy1ikMA9jOcIY1FANkW1pjGIgRMwIMD/03ATAyWIrb7AGRrgKpjPAZorMK6VGAVoEsFQyawCr8mIJyZGCBw2BgDYhie58lPVAqZy+Mrr7EOy6UzNJybE43Nbo4PV4fZxcq8ocqm4z5blbe5gUf+TSAlW5bRgyUKFLYPzm4goTokJiHifGex1qFodlNe2wQAKnJXVUTZjb9iAAHCKdmsOZtlECAAlsQQkjlGF1VOV3IIgU4PRiMTfVTRpULvVIbHGGPUps0sVlQBBCoF4/JAeU0jtZtQiEaHqT1k5h4yBjACYBFCCKOg7ga/tJInu3HZcc0RTKa1EwxQnQK6DJxiQUpTAnQojt3wGB8QWlIAEWc3iFx3TFqh/l9EGVVsVm7vDs/xo5zd2nqfklKF0tKZ1HRm+CglqwDJRhWMsVIuQ8hz0uqkE8KcEz5oTApAWjqMZ3bjdqCKnbj6cAdtw5ZGaGlk6vaDIRdnFvMKXVx1KI7dVDQ4XD6OkSsYmQIAR5/dgP/KAkQRVbwevONX194dHbzBy+3Cpyq5U5XcgXLfsFHywiFyabaZycmrFLIWt6+8xjq6e7oo9XW+UtHgcHN8jHToc+OGKs5+hiNlMADdcmXp2aLNd9ZQz7vdGAPI5GBKYyBSHTrO4B1rse9c46e2k6i5ls0Zyely46dDceyG3FWlUOtR4LQTHlW8bv7bT1saupytGQA8LvzLBk/FEW7UeEVKOiPB7AYBUsllLW7f3ppGajddEyMdNpzmTuzx1B5r+w7Afb955EqU01M2YIRCb2Q61GHX2Y3LhbdscNts/OnKtkLt1V9mKWAzcpiwdNhUhUrXhPq0AeeBE5vZ7FGc0RInHYpgNxyP99daAUCp1hKDTHh2Y7dyX33gDHG2ZgCoOsn99xvXjOvVMoW/IOlkNxhjuZxBCGodrkanO0UT+cPH5zccj/1D4KLq8MDPrhN7On3FrdeNK/Z5K/Z5i0YpB44kTYxQs5v9ez1bNrjdro5VemSf78g+X0YOM/IShVqHQ9GhvR7v/m/YTzad3soqjT65KR46FOG+m2ONDg/Hs3IFQ57Jh9a6BOj4fgdo/ZMmbg2BpBICt8mcld1Au+wm6J9QW1jYeP3Xoc4ML2C34bWrXYIEJXK/A2Dip0BuJCcvEqJ0yLFGh5fHIurQ58LbVju78Jpgyra6t/7g8rhxsA5bK/Ts+7/cLvzl/2v+cZ2rM68RqDnFr/3EZT2DQ9Fh+Sb+nG2oDjn5swziokMR7IaEFJlaLzRE/VEFAAQbFmj3zJS/3REQhj/nhdYShO2JxUK7Z1UgaEMEsPNXT0NdJE+vNtTxO3/1kkJwIPvAuO2zKhiTND0QVaDj7Aafnd1gIbsJ+VkVEr6IVSmVZN6fxgjO6wJBXB1ybtjxbYujPozb9o/u85Zucgs6hOAKDXp2z+OCrz51tm89dYbXDeu/9DTWcV3r8PRBbI90mhZvM5zZy4auw7LqCPckgt0crLMCgEKjE0J6ArMbtxvv2xn5nB77dnk9bsllNxhjOcsyDGpq8TS0RD2t2XnKAdJxI5IOD/3iCstrCEf3effv8ECX2c3a/zjra8Mr2euGn77yej1d6fDE3qheEGGrQKHr0OryRqbDaO3mYL3Nw/GMXMmwrY+3JjC7OVruC7cZFYzHDZVHfRLMbgAwixgAcHqinSrnvORgvc3LY7F02FTF1RyK8Drv3uYmrzGGjrKbslJP1clIHnT0umHnz77OdOjzQMSpjb/8ZuRqRLHWYbR2E8hgddDaCZbI7Kb6VLRTCFUe5SSY3fgDJIDbR9+21QHi6vBEaeRzY3vc+LeN7s6ym99/jbzk4wc4hx13qENbpDNKB9N8mom1DqO1m8qmZgCQq3Tg7/Igx5uw7KYmotARTGM9L83sBjEMAHjoy/06QkQdcm5srYpKRbWnuA6zm4ojUaXeAHBkN9ehDhuqRbAbiL0Oo7Ub/8n7k4/EZzeekF8m0BkOG5ZqdgMA4KLvvukIEXVYfzzaBNlh48kNX22ym4oj0ZZcV9VxdgNiuA3EXofR2o1/5wwCaWQ3oiDR7AYhAHBTu+kIEXXoEWcWKrLTs7Ibhy3azNRaz3elwyiJvQ6jtxsA8N/TJoXsRhSkmd0QCSjYWM2znNSIqEOfW4TmavWpDrKbMxHdn9EGn6cDHaZmiuE3sddhtNpliA9gDqSR3WREN8EYAKSkIWlmNxyHAcBM7yruCBF1KMrxdNh3I0rJjfU8tNOhWi9CydpsPtY6jNZuDGo5APAeN0gju9Eaoj2jlDRWmtkNmXnDrFFFeYLnJSLqkFWKkD+S2RbbZDfmdBFKJpM9tNGhWofavKs4XGQaUKXgkHTIR67DaM8/z6gFAN7nBmlkN737RztxVa/+MglmNxjzGGMWIZ2SvtOvA0TUoUqMKX3JfDNtshulMtqS5QqQKTrWYf6AqP6WjRY+VB3ykeswWrvJNWlBStlNRi6bGv7sYgKpaSgzl5FgduP2YgBI19HUpmNE1KEhK9r2uEKBUtI7yG6ycqMNFenZTGc6zO4buVHKtZDSh4+DDqO1mxyDBgA4r4vnfFLIbhDAiJLI/yaHjyczqEouu3F5PADQyyxGG/18REQdqvWMMTrHye0l67DvpnuvaI0sy8J0ocPBlyJZRO+9yhrJMQocBx1GazdKGdsnzQAAHkeTFLIbDJCZyxZGNEfikFGKrDySjEgru/FxnNfLAwB9f2hniKvD/KGR98crFGjwKEXbCkUIA9YbmL6Fkb+PUaNH3fuxXehQn4YKx4f9F509itNmkIOMuQ5F6Lsa26MbALibrcDzUshuAGDkxcpwO3F695cPGSUjO5VaduNycwDQL92oVUTbM3UeI6IOTVlsWvcIGz4FxQqdgekwuwEEw0bLFZH24AwZw55Th2n5MGQKE2KOw8ohexRnskCoOvREq0MR7CbLoLGk6gBjp61BCtkNKfPiyarxl6tCrNqBxfKLJymEI5VUdsNz2On2AsDw3LRQzuWCRVwd9itR6cKf1Te3p2zQKAVAuwoNPDOlN7ITL4+ksd+jH5vdkw1FhylZMHwmk9H7HMrXdsOWS7jUnhC6DltcPohOh+LcM3Z53xwWIXdzk7vFCZD47IbYc59C+XW3avt0mb5m5bJ/uEE96mIywzyWWnaDATc6XBhD33RDfoo2rEq5ABFRh3IlUzxDozOH8QeS21M2+jJVex1CUHYDgHv0lk+cHJ7j9OjHjrhEFroOlTrcbxwaOgOy+4M25ayiFFpI78f3uhT3vJRXp4ahw6ZmD49xlDpEZ9VBFOw43bB2/0nEMObMfBnDsgwwAAwCFgEDgACTBYasB2ARAGAWITKvCxOYZIMh26PAfC+BNWQSGIQCC4E1bT4C2R75nZpBCAA31HJn6viGOu5MHX+mjtcbkEKJcvJkffvLdEaG43lAiCTgPGAe+8MdjzGPAQcWAIQZUQETH0EMx/M8YAyAz54vlZTA8RgQ4nhSNuLJaDb5Fvm35HjeX2bg50L5GFBjs8vp8pnUivkj+8rp/cQhENAha87Mi16HnAfv3+CqrTj3s079BsuHXqzqWocIA0IIAUYIHdjj2bLB7T7XE5sKBQwcKe8ziE2sDpucnuYWT/Q6FM1uAOCzsoqDdTa5UpWank3qz+8UgIX6ZgI+0roAmGUQWUBnz+/TZp4pBgFgzCIUbDT+igR/1ZIt/YnP2RugdnMzE3/BZ9sKBsCB+iB1gAN1Q+pDqCThV7iTuZkD9eoXAQ+tChDqO1hDwXUMiLE63TanR8agW0f2pTcThw7RoUKpTknPEkWHTVXcke3uxk4eE+9RIB84UqE3suHq0O3if/7JfaC80xfH5FnYUZfK5coE69DW4rU2u0TRoZh24/Jxq3473NDilsuVaRnZMoaRSHYTHFXAnzOTRjtgAGlmNw12l8PlBYBrB1vo+HdYuHzcqu2HG5xuuUKZ1k00HXIeXFvhc9kxaSwhAFMa0y2HJVNIR6xDjwsfPeyrr+Pqa8kbyCEzl01JQ1o9MqYhSLQObU5vU7MLRNKhmHYDAC1e33ulR+qb3QzLms0ZGrWaZjfhRhUfz9fZWtxeXsag64f0JDewUcKixet7v/RoXbOLZWWp5m5Uh5HpsLHZ2+zyiKhDkbsD1HLZzcP75Bo1PMfV1Z4+c6aWJz3bAvEamWozIuDv/xV62gLlt44TYWF8KZEjUw6371RDs9vLK2XMDUN7Ua+JDLVcdtPw3rlGDcf56mpPNzbUUx1CODp086iq0dns8oirQ5GzG4FfjtduPlbj4zEA6LQ6o16vkssVLMsyiEYVODuquH28j8f2Fo+txUu+LUg3XtY3W6+kd9lES7AOjXqjQa9XsAzVYYc69HAYI+Rw+xrtLh/HQQx0GCu7AQCH27f5WPXemib6vsvQ6ZmqH5mfbknVJfpAzh+oDiMgRjqMod0I7KtpOt7oqGt21TlcblrlZ6OUMWkalVmrzDZqC7uZlDI62h0rqA67ID46jIfdUCgUCojeVUyhUCidQe2GQqHECWo3FAolTlC7oVAocYLaDYVCiRPUbigUSpygdkOhUOIEtRsKhRInqN1QKJQ4Qe2GQqHECWo3FAolTlC7oVAocYLaDYVCiRPUbigUSpygdkOhUOIEtRsKhRInqN1QKJQ4Qe2GQqHECQYA7Hb7yy+/PGnSpAEDBgwcOHDy5Mmvvfaaz3fuiUoXLFhwww03xP4go0IKB+l0OpctWzZ+/PiCgoJLLrnkjTfeIHOHk68WLVo0fPjwgoKCa665ZteuXdHsqLy83GKxfPfdd2IcdbyhOow1CdehDADmzp1bWVl53333FRYW+ny+n3/++eWXX66srFy2bFk0u4yGYcOGffnll7m5uYk6AHF58MEHt27d+tBDD/Xo0eO3335bvny5z+e7++67AeChhx7avn37U089lZGRsWrVqptuumndunWZmZmJPuQEQHUYaxKuQ9nBgwdLS0v/+c9/Tp06lawaPny4Uqlct25dS0uLWq0Wd3+hcOrUqYaGhvjvN0Y0NTVt2rRp8eLFV199NQCMHDly7969a9asufvuuysqKr755pu33nrrsssuA4DBgweXlJS8++67Dz30UKKPOt5QHcYaKeiQ4TgOApPsCdx5552ff/65UMcff/zxZZdd1rdv3+Li4nvvvbe+vj54Y4fDUVBQ8PrrrwtrPB7PoEGDli9fDgD19fX3339/cXFxv379Zs2atWXLFrLN4cOHLRbL1q1bFyxYMGDAgOHDhz/55JM8z//666/jxo0DgPHjx99+++3BO9q0aZPFYtmxY4ewZufOnRaLZePGjQCwffv2a6+9tqCgoLCw8Prrr+8wGywsLFyxYoXwceHChTNmzBAOZvPmzTfeeGNBQcHYsWO//vrrPXv2zJw5s6CgYOrUqWVlZeQnPp/vH//4x9ixY/v27TthwoRVq1YJpS1btqxXr17td2oymXbv3k3qmKBUKskF37Jli1wuv/jii8l6uVw+fvz4TZs2tS/k7rvv/vOf//zee++NGjWqoKBg/vz5Npvt73//e3Fx8ZAhQ5588sn2P0kuqA7hAtAh06tXr7y8vIceeuiDDz5oU3+E1atXP/zww7NmzVq7du3//u//lpWV3XrrrcHTxeh0ugkTJqxbt05Y8/PPP9vt9pkzZ3Icd/PNN5eWlr722mvffPPNkCFD5s6de+DAAQCQyWQA8PTTT99www07d+588cUXV61atWbNmmHDhr366qsA8PXXX//jH/8IPpIxY8aYzebgHa1Zs8ZsNo8dO/bo0aM33nhjenr66tWrP/nkE51Od8MNN1RXV3d98gLkYF544YWFCxeWlpYOGjToscceW7Zs2SuvvLJt2zadTrd48WKy5ZIlS9566637779/3bp1t91227PPPvvhhx+Sr3r37n3JJZd0sReXy1VTU/Phhx9+++238+fPB4Bjx45lZmYqFAphm/z8/GPHjnV4hKWlpcePH1+/fv3777//448/XnPNNenp6Vu2bFm2bNmqVauI1pMXqkO4AHTIKBSKf/3rXxaL5bHHHhsxYsSkSZOefvrpPXv2CFusXLly3Lhxf/nLX3r27DlmzJjHHnusrKystLQ0uJTp06fv2rVLuKzffvtt3759CwoKNm3aVF5evnTp0rFjx/bu3Xvx4sV5eXnBTjx58uRx48bJ5fKSkpL8/Pzdu3fL5XK9Xg8ARqNRpztrEj+WZadMmdKmmq+44gqWZd9//32FQvHiiy8WFhYOHDjw+eef93g8n332WRdn3p4pU6YUFRVpNJqrrrrKZrNdd911PXr0MBgM06dPLy8vBwC73f7BBx/cdttt11xzjcViueGGG/7whz+89dZb5OdXX321sNwhc+fOHT169N///vdly5bNmjWLFEhOVkCn0zU3NwsdeME4nc4HH3xQq9UOGzasX79+PM/PmzdPrVZPnjzZZDKRI0xeqA4FzmMdMgDQt2/fL7744rvvvnv88cfz8/M/+OCDGTNmPPPMMwDg9Xr37ds3fPhw4QeDBw8GgDaFXnrppWq1mnRE+3y+H374gZzGrl27WJYdOXKkf2cMM2LEiGCJFBYWCssGg8FqtXZxrAAwY8aMioqKgwcPAsDevXsrKyvJjsrKygYMGKBSqchmJpMpPz8/3L/APn36CEfS5qPb7fZ4POXl5V6vd8yYMcJPRo8efezYscbGxlDKf/LJJ99+++3Zs2c//PDD7777bljHBgD5+flC/DEYDMLhkY82my3cAqUG1SHhPNahTFjq06dPnz595s2b53A4Fi9e/Pbbb8+YMaNnz54YY6PRKGxGlh0OR3AparX60ksvXbt27U033fTLL780NTXNnDmTbMZx3IABA4QtfT5fSkqK8FGoGMI5p/QcMWJEenr62rVr+/bt++233+bm5g4dOpTsKD8/P3hLo9HY5iDPiVKp7OIjxpgUeNNNNyHkn1Oe2P+ZM2eCT6ozCgoKCgoKJk6cqFQqn3vuuauvvtpoNLapHpvNptPp2nRhhHh45zyApIDq8DzWoczj8dTU1OTl5QmrdDrdAw88sHr16vLy8gEDBjAME2z2ZLlN6gUA06dP//Of/9zU1LR27dri4mIydqjX65VK5TfffBO8ZYfnECIMw1xxxRXr1q2755571q5dSzrYyI7aRCSr1ZqVldXm50L1EFwuV1h7J2f90ksvFRQUBK8Pvnrtqa6u3rx585QpU4ScvKioyO12V1VV9ezZs6qqyu12C3V27Nix3r17h3VU5wdUh6GTvDpknn322WnTprXpnCO9ROnp6XK5vH///sFp5++//w4AgwYNalPQhAkTVCrVxo0bv//+e5JYAsCQIUPcbjfP870CqFSq9le/QzqzSdKC/eWXX44ePSrsqKioaO/evW63m3ysr6+vqKhof5AGgyE41ISb5fbv31+hUDQ0NAinYzKZUlNTg/vY2tPY2Pjggw+uX7++zX5zcnLGjRvH8/x///tfsr6lpeWnn36aMGFCWEd1fkB1GDrJq0PZvHnz1qxZc/XVV8+fP79v374cx5WVla1YsWLAgAElJSUAcPvtt993331vvvnmtGnTKisrn3322VGjRrW/gkqlctKkSW+++eaZM2euuOIKsnLs2LGFhYX33XffokWLcnJySktLn3jiiXvuuWfevHldHBPJk9evXz969Oh+/fq1+Xbo0KHZ2dlLlizp16+f8O2cOXPee++9hQsX3n333R6PZ/ny5QaDIXjMjzBo0KB169bdfPPNGo3mrbfeam5ubpNFd41er7/++utfeumllJSUIUOGnDx58umnn87JySE9c6tXr/7uu+/eeOONNr/q379/SUnJ4sWLHQ5H7969y8rK3njjjWuvvVatVufk5FxzzTVPPvkkxjg9Pf3NN99kWXbOnDmhH1KH7N27NzjFValUo0aNirLMWEN1GPq1Sl4dyvLz81evXr1ixYqVK1fW1NQoFIrc3Nz58+fPmTOHmOXMmTNdLteKFSteeOEFg8EwadKkRx99tMPSp0+fPn/+/IsvvjgtLY2sYVl21apVzz333J133ul0OvPy8u69995bb72166MsKioqKSlZunTp6NGj33nnnTbfIoSmTZv2r3/9K/gepO7du7///vvLli2bPn06y7IjRoz46KOPzGZzm98++uijCxcuHDdunNFonDNnzlVXXfXjjz+GdOUCPP744waDYenSpbW1tWaz+fLLL1+4cCH56tChQ99//32Hv3r11VdfffXV119/va6uLisr67bbbrvrrrvIV88888yyZcsWLVrU3NxcXFz8/vvvp6amhnVI7XnllVeCP+bk5GzevDnKMmMN1WE4VytZdYjOmy5GCoUicegT4RQKJU5Qu6FQKHGC2g2FQokT1G4oFEqcoHZDoVDiBLUbCoUSJ6jdUCiUOEHthkKhxAlqNxQKJU5Qu6FQKHGC2g2FQokT1G4oFEqcoHZDoVDiBLUbCoUSJ6jdUCiUOEHthkKhxAlqNxQKJU5Qu6FQKHGC2g2FQokT1G4oFEqcoHZDoVDiBLUbCoUSJ6jdUCiUOEHthkKhxAlqNxQKJU4k3m62bds2b968YcOG9erVa8CAAbNmzfroo49C+eHJkyctFovFYrHZbOHu9IEHHrBYLE8//XT4x3tuXn75ZXJgzzzzTCzKp8SCTz755Oqrry4qKurVq1dxcfFNN920bdu2UH746aefWiyWadOmRbDTcePGWSyW7777LoLfdsaqVassQfTs2XPUqFFz587dunWriHuJjATbza+//vqnP/1p/fr1Wq32oosuSktL27179yOPPPLvf/9b3B2dPn3aYrG8/fbb5GNhYeHEiRP79Okj7l4IX3/9NVlYs2YNnRM5KXj11VcXLlxYWlqan58/evRohNCmTZtuuummsrIycXe0evVqi8VSXl5OPo4ZM2bixInp6eni7gUA5HL5kCFDhgwZMmDAAKfTuWHDhj/96U8JdxxZYnf/73//m+O4yZMnv/HGG2TNo48++uGHH65atWrOnDki7kiwAMKtt956zhnpI+PQoUOHDx82GAwajaaqqmrnzp3FxcWx2BFFRN555x0AWLx48dy5cwGgpaXlmmuuKS8v//jjj4uKikTcURsdLl++XMTCg+nWrdvnn39Olu12+7Rp006ePPnpp5+OGjUqRnsMhQRnN6QdlJKSIqx55JFHNm7cGJxerl69evr06QUFBQMGDLjuuus2btzYYVGzZ88Ozl82bNhgsVhGjBgBADNmzFi6dCkAPPPMMxaLpbm5uU1jyuPxvPjiiyUlJX369CkuLr7rrruOHj1Kvnr33XctFssdd9yxdevWadOm9e/f/8orr9y7d29nZ/TNN98AQElJyaWXXgrt5EWRJm10qFar33777W3bti1ZsoSs6UIhbSBNGCF/WbZsmcVi+ctf/tLc3GyxWH788UcAuOKKK2bMmAHtGlPV1dUPPPDAiBEj+vTpM3bs2Keeesput5Ov7rrrLovF8n//93/vvffemDFjioqK7rzzzoaGhlDOTq/XDx48GABcLldEl0c0Emw3AwYMAICPPvrob3/72/fff2+1WvV6fV5eHsP4D+yNN97429/+tn///okTJ44YMWLbtm0333zz999/H9ZeZs2alZWVBQAjR4685ZZb5HJ5mw3uuOOO1157zW63T58+PSsra82aNVddddWpU6cAQKVSAcDRo0cfeOCBwsJCs9m8a9euu+66y+fzdbgvYjdTpkyZMmUK0PZUkkB0+Oijjy5fvnzr1q0ejycjIyO4jdOFQkJELpffcsstZHnmzJmzZs1qs0FDQ8Mf/vCHzz77zGg0zpw5k+O4d955Z86cOURpRIf/+c9/Vq5cOWbMGI7j1q1b99xzz4Wya4fDsWvXLgBIbGoDCbebO++8k/ju6tWrb7/99uLi4lmzZr333nvkEttstpdffhkAlixZ8vrrr5OrDwDPP/98WHuZP3++xWIBgMmTJy9atEihUAR/u2nTpp9++gkh9Omnn7700ktffvllYWGhzWZ78803AYAY3+HDh1966aUXXniBZN0nTpzoMLgdOHDg8OHDSqVywoQJo0ePNplMpD0V/oWhxJUlS5aYzWan0/n666/Pnj170KBBt9xyy4YNG8i3XSskRBQKxaJFi4ic7rjjjvnz57fZYOXKlVVVVd27d//6669ffPHFL774QqFQ7Nq1i+Q+5IcVFRVfffXVCy+88OijjwLA+vXrO9tdbW3tVVddddVVV82cOXPMmDHV1dU33HDD7Nmzw7suYpNguzGZTKtXr16xYsXs2bO7d++OMd69e/cTTzzx0EMPAcCOHTtI+jdz5kyy/RVXXAEAhw4dampqEusYtmzZAgBFRUU9e/YEALlcfvnllwPAb7/9JmyTmZk5fPhwAOjdu7dWqwWAmpqa9kV9++23ADBhwgSNRiOTySZNmgS0PZUMDBw4cMOGDUuXLp06darZbHa73T/99NPcuXM/+eQTCE0h0UP2MnnyZJLIZGZmDh06tM1eSkpK9Ho9AAwZMgQAGhsbvV5vh6V5vd6dO3fu3LmzrKzMbrezLHv8+PEDBw6IeMARkPiBcIZhJk2atHTp0p9++mnz5s0kyfz8889PnjzZ2NgIAEqlUqPRkI1TU1PJgtVqFesAyF6C+4/IXoIdLfhbtVoNADzPty+KtKRKS0unTZs2bdo00s1E21NJgVarnT179j//+c/t27d/8cUXpHn1yiuvQGgKiZ6wdEhECJ3oEABycnKOBdi+ffutt966efPmG2+8MYK7RkQkkXbjcDjWrl378ssvCz1YOTk5L774okwmA4Djx4+bTCYAcLvdLS0tZAOhbyy4Vggk2xSKCrEXDQDIXkhlB/9WsLYQ2b9//5EjRwCgrq5u3759+/btIxkQbU9JnNOnT3/22WekmUwYPHjwokWLAODUqVM+ny8shSCEIKE6bI/ZbL7nnnsAoKmpKbFSTHB289e//vV//ud/li1b5vF4yJoffviBdNzk5uYOHTpUqVRCUHvkyy+/BICBAwcaDIY2RZGOPdIlBgD/+c9/gr8lImhubm5/DGPGjAGAPXv2VFRUAIDH41mzZo2wPnRIS2ro0KHHgigpKQHanpI2FRUVDzzwwFNPPfXVV1+RNRzHkR6TzMxMmUwWlkKCddjc3EyGogTOqcPvv/+e/C2cOnXq999/72wv4SKM5+p0uuhLi5hE3nej0+kefPDBp59++p133vn0009zcnKsVmt1dTUAXHnlld27dweAe+655/nnn3/88cc3b97c0NCwefNmlmUfeeSR9qVNnDjxq6+++u677xYsWGC328kIotCKyczMBIB33nmnsrLywQcfDP7h+PHjL7744o0bN1577bUlJSVlZWUHDhxIT0+/4447wjodYjdt7i6dOnXqhg0b1qxZ8/jjjxOpUaTGRRddNHny5HXr1t17771LlixJTU2trq4mrfX77rsPwlTIxIkTP/744+XLl+/fv7+0tDQrK6uuri5Yh6dOnXriiSfGjh37xBNPBP9w3rx5q1evPnbs2KxZs0hfktfrHTt27CWXXBLBSZGuYrJstVqPHTsGAMXFxaTTJ1EkOLu55ZZbVq5cWVJSotVqjxw5YrfbhwwZsnjxYmHs6a677lq+fHnv3r3Xrl27Y8eOsWPHfvjhhx36/cyZMxcsWJCWlrZ58+bs7Gxyx4Tb7Sbf3nbbbb1797bb7b/88kub5i5CaMWKFQsWLFAqlV988UVdXd2VV175+eefp6WlhX4iQkuKjH8LXH755SzLVlVV7dixI5wLQ4kfCKFXX331qaeeKi4u5jju0KFDDMOUlJS8/fbb1113HYSpkIULF06dOlUmk/30009//OMf//jHP0KQDh9++OG0tLSKior9+/e3+aHZbF69evWVV15ZW1v7xRdfKJXKBQsWrFy5MrIoJXQV79y5s6ampk+fPvfff/+7774r3GKSEP4/Lqm/6cc2UVcAAAAASUVORK5CYII=", "path": "image.png" }
Which solution has a higher concentration of purple particles?
[ "neither; their concentrations are the same", "Solution A", "Solution B" ]
2
The diagram below is a model of two solutions. Each purple ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the purple particles represent the solute. To figure out which solution has a higher concentration of purple particles, look at both the number of purple particles and the volume of the solvent in each container. Use the concentration formula to find the number of purple particles per milliliter. Solution B has more purple particles per milliliter. So, Solution B has a higher concentration of purple particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAVYAAAHFCAIAAAAmP0Y5AAAfYUlEQVR4nO3dz2/bZpoH8JcSKVqySCeixp4oCSpv7aTuVgY2TlvEATb2YSfAYqeXCXoo0PtiZv+v3UuwhxlgsbnUPiTFTG0Pxuogm9oda9FGgVJRiURZMkVK3IO6jhPbMn+KIp/v55QfZPLaFr98+bzvy5ezLOsP5SMGAPR8UkzxFmP/9VdEAABF7ynJRNhtAIAwIQIASONP/uZ2MbVSFMNqCozZkck2/9ZnjH04m7h+iQu7OTAmL7X+f253jn+LXgAAaYgAANIQAQCkIQLoOv7ZcwkUAujiLz4EYirFs/s3kmG3AkKGXgAAaYgAANIQAQCkIQIASEM5kK5en/2lOmCMvZfjZqcxKEAUIoCugcUaXYsx9ksD1z9deBAAIA0RAEAaIgCANNQCQmboltYwGtVeSzVlhZcUIZ1NyHkh7HYBFYiA0HS0/rcbTbVqHP9J7UAf/oIXueV7M3PzeHcDBA4REI7Kbmdvp23q1pl/a+rWzqPXc/Ni6d6MIKJcDwFCLSAEu1+1nn6tnXf9H6sd6I8fqsZFhwF4gQgYt9qB/vy7rs2Du1q/vNkMtD1AHCJgrAzd2nV4SdcO9OMagb/4BHtfSbyvJGamgvjnIRr8rwV0tP7Liq6pZks1W3VDzguywksKP1sUMxL11elPn1zc/z9td7P5T/OzvjeGT7AFBYUG6nyOgL2tw/3t9sk/adWNVt1gjD19oi3enl5Yyfr7P0ZLo9pzcZapW2rVUAoYKQT/+RYBrbpR3tSGV/t59rYOa5Ve6Z5Ec9zb0K1uu+/uXK2OCIBA+FMLMHTrj394Nfr6H2rVjT/+4RXNKndLNUM5F2AEfyKgvNG0/4hr6hbNKndXc38ZdzWX3YcRzAHbV6191WodUUxkGPIhAn581q1VnJWsg6tyT7K05P6xS877X7g1B+x7dfC9OmhiW1nCfIiA/3miuTjL6dhYDHh5mJcUzOOEQHiNgI7WN3puupGmbnUC6NxOONntlez6RIDRvEZAVxuEcm5EzRbdzMJJZ5M0x1BgDLxGgLuBbu/nRtTi7WkX9/Nb92eCaAwAwwTh8SutyY6OX1jJogsAwfEaAV6eUWk+38p5wX4K5K6kFm9PB9oeIM7rRSh5GKzycm6kXbuZlhW+vNEaMeFHSHELK9nicmacDYuQjtbXVLOr9eU8n7uSCrs5Eeb1IvSy8ofyqiE5L9x9oDx9otUO9NOzhueK4gerEuXvz3ladWN/51Ct9t6Ziibnhas3poolJKZjPtyHF1ay7ywNsnmW9/866pZWpaVVydCtlmo2qj1Z4aU8jyv/PCNetTRcjfaycvTR2gy+gY74EAGLt6dfVo4cTWKXFR6PuMcEkVMKwvhXAU1FZ3NxQ7f+/OjVyfcsnkmtGo8fqkt3pGs30+NpWAz4MyLgtMrt9Hggbn+7feH1P2Tq1tOvNYKzzlzzJwLkvHDrV5eE1MXvnxBS3K1fXcIoF9inVo1KuWP/eFO3vt0gN/3cNd/mBczNi/e++MVccdR7r+eK4r0vfoF3Y4N9hm6VnV/PatWo7DpIDcr8HJYTRO7W/Uu1A71W0TXVOK4ODHfImCuKuPjBqZZqulsoXavoGFK1w/+R+bn5N5d6R+ujPDuxjky2+bc+Y+zD2cT1SxP6EkHXs8hbDVu1Awh2gjCuf/DI9btSaC5FdQFrBGCieXldEsGlqC4gAmCiedlPTcC8YRsQATDRJMX9+DHGnu1ABMBEc72cFGuHbEIEwEST8rydKWenBfHC1VhCBMBEy0hJFyvK0lk3Z9GECIBJV1zOOO3Vl9ZnvNQRSUEEQASU1mX7jwPFUgabr9mH5yW6Ukn28fUkY2x64q+XjJRcfaCUv2o1XoyaLCikuA9WsVLYGUQAXQmO5aJzsWSk5KefXa7sdva322duXZG7kiqty5iQ6hQiAKKkuJwpLmfUqtHVzOG7AyVFyBVSaSmBi98dRABEj1IQGJv4p5eIQDkQgDT0AugyB6zyymKMzU4zeQpDaEQhAugabi7OGBOTCdnNXocQB3gQACANEQBAGiIAgDREAABpiIA3Olp/9PxTgPihPiJg6Nb+dltTjZOb1ch5QVb4wo00VptA7JGOgNqBvrvZPL1N5XCPyh+fdYulzMJKFstOIcboRsDTJ9qF21RVyp1aRb/1qxm8hQ7iimgtYG/r0OY2dV2tv/OoaZy1oXXUJTiWS3O5NCci3wij2Ato1Y397bb947taf3+7vbQqBdekUKSS7OPrRO8BcIziJ6C80XJ6SqXcsbm5NUC0kIsAtfpmv1NH/rd86HtjAEJHLgLcb1PpKjgAJhy5CNBUl/15L5vbAUwscuVAL1eyWjXiNFkoEpuLQ9DI9QL4lPsvGdtUQvyQiwAv+0xhghDED7kIkLBNJcAJ5CLA9U61abyjGuKIXgTkhWIp4/QsIcXFb3YgACMYAYyxhZVsOuvsll5awzaVEE8UI0AQudL6jP3j54ri3LwYXHsAQkQxAhhjSkH45Nc5O32BhZXsrfuXgm8RQDiIRgBjTCkIdx8oI+oC6Wzy7m9yi7enx9kqgDEjNzvwJEHkllalqzemWqqpqWarbna1vpznhztVygof7+f/CG0uDsEhHQFDcl6gOecnWpuLQ0DoPggAAEMEABCHCAAgDbUAurC5ODBEAGXYXBwYHgQAiEMEAJCGCAAgDREAQBoiAIA0RAAAaYgAANIwLyBiDN3SGkaj2mupZjqblPO8lONpLnMCXyACIqOj9b/daJ65uykvcosrWafvRBxuLs4Yw+bilCECoqF2oO9uNk3dOvNvTd16+kRrvOiV7jl4xyE2FweGCIiEp0+0Srlz4WG1A12t/nT3N0oG7zsH23ATmHRq1bBz/Q+ZuvXtRjPQ9kDMoBcw0QzdKju8pNWqUdntFJcd75UA52nVDa1hDjekzRVSUk6I0xvlEAETbX+77WIr5L2d9uy8eOHjwMBir48YY2xaYCI+CKcYurW/3T7VBTtkjKWl5NIdKR6vlsdPfqK16qaLs0zd0urmhRHQ67NvfsDm4mdTq0Z5o3le/na1/s6j18VSZmElG/UeAWoBE63xoufuxJbqJjtgqLLb+dPvGxf2vyrlzuOHqnHOME1UIAImV6t+xhQAmzTV/bnEterG0681mwd3tX55M9r1V0TA5DJc9gAYYyzqt6YQlTdajo6vHeiVXbtDNhMIETC50pL7nw62Qndnb+vQxTPU3k6747xqOyHGWg5Uq8arF3rrzb49gqzwksLPFi8uXxPk5XuCCHCnUXXT9bJZf51MY4oAQ7fKm83agX7yD1t1Y/i4u7fddjHFnYLclZS7imCukPK9MRR4qb9GdIxwHA8CatV4/FB95/o/aTjF/U+/b0S3NxWQuaKbT1U6m5QVDPc65uXjF936a+AR0KobdsZXGGNq1fjT71+hjnVScTmTu+L4fl5ad7BYCI51tYHrc6P7uQ08AhzVV7taf3+7HVxjoqi0LgspB9dzsZRRClj964aX+mt0MzfYCHj6RHNaX62UO2cuiScrIyU/WJVspkDuSmphJWvzXx5uLv7x9eRsNqofX395qedJSlRjN8AIMHTL/hK3k/a30BF4y7Wb6dUHyoWP9wsr2U8/u2z/djTcXDyXxgKBN1w8dv18YmTrrwH+8F3PUXVdlY2xjJS8+0DZ2zp8WTl65xsrpLhcIbWwMo3Xh3mXK7gZghFSXHTrrwG2W/Mwv7VVN/CBPm3x9vTi7WnGmFo1tLqRlpJSno/ocPRkWrw9fTpkL1Rai3D9NcAHAS8rVbDKZTSlIBSXM3M2VgSDU6U12dHxc0UxojMChgKMALPnfogFxqDXZ9/8MPjmh8HLw6gOaAVBzgv2UyCdTZbWZgJtT9ACfBCQFKFWOXc60GjRfbKKkIHFGl2LMfZLI6qd2IBcu5lOS3z5q2a3PWo+C94XcAEvNVIUAiBcSkG4+0A5b9J6Opv85Ne5pVUp6tc/C7QX4PpOji4ATAJB5JZWpaVVqaP1tbrZUk0hxUl5QVb4GFz5xwK82ASRK5YyLqYG2J/cAjAGGSmZkZKRrvmNEOzswIWVbDrrrGQd9foqQLQEGwGCyJXWHdRLhRQX9foqQLQEvkxIKQilNVsLXWSF/+TXDua3AoB34yi8XbuZzhVS5a9aI6ZexmN8BSByxlR7z0jJTz+7/OOzrqaarbo5zAIhxUmKkCukcoUU1rcChGKsw2/XbqaPf23oFu754eIT7H0lwRibmQq7KRCe0Ebgcf2Hjk+wBQU/BerwEnEA0hABAKQhAgBIw2x8urC5ODBEAGXYXBwYHgQAiEMEAJCGCAAgDREAQBoiAIA0jAgwQ7caL3qaarRUs1U3M1IiLfGSwueuCHiFIcQe9QhQq0Z5o3ly4+Ou1mfs501Qrt1Mf3AnDq+IBDgP3QgwdGt/uz361YY/Puuq1V5pbQZrmSGu6NYCyhtNO6827Wr9P/2+gc2OIa6IRkBlt+Nom5PyRtPQ47blzhTP7t9I3r+RxNRAyihGQEfr7+0427+8q/X3t7HlOcQQxQjY3zo0nd/SK+VOy8NeyQCTiWIEaKrLKxn7HUP8UIwA11eyhgiA2CE3KOiltt+qxyoCen32l+qAMfZejpudRkWQKHIRAMewuTgwgg8CXrYtTkvO9kcEmHzkIkAQOac7nR7DrucQP+QigHm4mUtYNQSxQzECFm5nXZwlKzxWCkD8UIwApSAUSxmnZ5XW5CAaAxAuihHAGFtYyTqqCCzdkfDuAIglohEgiNyt+zM2U6BYyhSXHfcaACKBaAQwxuS8cPeBMvqJIJ1NfvLr3NKqNLZWAYwZ6VEuQeSWVqXZ4tTzZ93hi8N+/vMUJynCXFG8ejMd41cGYXNxYMQjYEgpCMel/lbd4MVEhsYUIGwuDgwR8A7U/IAaurUAAGCIAADi8CBA18BitbbFGJuZSmSEuL0ZEWxCBNDV67PdFwPG2IezLIM3iFKFBwEA0hABAKQhAgBIe6sWoLYH+y/xnmwqBhY3LTDG2OtOX++hHEhFszs4+du3IuCgbh7E6w2ZADAaHgQASEMEAJDGWZb1U3tw8YEAEDsz6QRnWagDAdCFBwEA0hABAKQhAgBIQwQAkIYIACANEQBAGiIAgDREAABpiAAA0hABAKQhAgBIQwQAkIYIACANEQBAGiIAgDREAABpiAAA0hABAKQhAgBIQwQAkIYIACANEUDal19++eWXX37zzTdhNwRCw198CMRUr9c7OjpijPX7/bDbAqFBLwCANEQAAGmIAADSEAEApCECAEhDBACQhggAIA0RAEAaIgCANEQAAGmIAADSEAEApCECAEhDBACQhggAIA0RAEAaIgCANEQAAGmIAADSEAEApCECAEhDBACQhggAIA0RAEAaIgCANEQAAGmIAADSEAEApCECAEhDBACQhggAIA0RAEAaIgCANEQAAGmIAADSEAEApCECAEhDBACQxlmWFXYbYExevnz5u9/97sLDfvvb366vr4+hPTAJ0AsgZHZ29t69e6OPyefzuP5JQQTQ8vnnn3s8AGIGEUDL6I4AugAEIQLIGXGfRxeAIEQAOed1BNAFoAkRQNGZd3t0AWhCBFB0uiOALgBZiACi3rnnowtAFiKAqJMdAXQBKEME0HV850cXgDJEAF3DjgC6AMTxYTcAwvT555//9a9/DbsVECYsEwIgDQ8CAKQhAgBIQwQAkIYIACANEQBAGiIAgDREAABpiAAA0hABAKQhAgBIQwQAkIYIACANEQBAGiIAgDREAABpiAAA0hABAKQhAgBIQwQAkIYIACANEQBAGs8Y+6k9CLsZABCCmXSCG1jWv/3H67BbAgAh+Nd/nMaDAABpiAAA0t7aUGw+z//dLLYYo2JgcS87jDE2I7I0j02lqGh2B1sHvePfvnXBK9nEwqww9iZBOI5MdtDsM8beu5y4fokLuzkwJi+1/skIwIMAAGmIAADSEAEApKH4R1cqyZavJBhjM1MJxlAOJAoRQFeCY1ekYRUQ1z9deBAAIA0RAEAaIgCANNQC6DIHrPLKYozNTjN5ClODiEIE0GUO2PfqgDEmJhPyVNitgZDgQQCANPQCGGPM0C2tYTSqva426GpmWuLTUiJXSEk5QRDRQ4Y4QwSw2oG+u9k09ZNj4wZjjLFDXuSW783MzYvhtAwgeKQjwNCt8mazdqCfd4CpWzuPXs/Ni6V7M+gOQCzRrQUYuvX4oTri+j9WO9AfP1QNHVPoIIboRsD+drur9W0e3NX6+9vtQNsDEAqiEaBWjUq54+iUSrmjVo2A2gNEqFWj8aLXsX3vGQOitYDyV003Z200177I+94YiLeO1v+fr7WuNmjV39xCeJGbUfj3PpoOvdhMMQIM3eq23cRwV+sbuhWbumCCY7k0xxgT8bK4wFR2O3s7bfNUIcnULbVqqNXwi80UI6Clml7OVQoxuWJSSfbxdaJPgmNg6NafH7268OGxdqCr1Z8+/ZfLcj6czxXFT0Cj2rv4oADOBVL2t9s2i0embu08aoY15EQxAgCC5rTe3NX65U039SnvKEZAWnL/VXs5F4gwdKu84fh6rh3odmap+I7iB1pW3FdAvJwLRLRU0/6Uk5Oef9f1vTEXoviB9lJ3CatmE4Qjk23+rc8Y+3AWW4n4yXXByEuh2jWKvQDGWLGUGdtZQI2mupxCNhx19rcxFyIaAQsr2XQ26eiUdDa5sJINqD0QJ626p1FnH1tiB9EIEESutD7j6JTSOhYLgi1pydnd5SQh5WNDbCEaAYwxpSAs3ZFsHrx0R4rNjCAImpz3UG8ee7GJYjnwWHE5kysI5Y3WiN6XrPClNTlOVUAImuR22Ch3Zex9AOIRwBiT88LdB8re1mGj2mu8eKuQm7uSyhVSi7enw2obRJTrkeNcAREQksXb04xNM8ZadcPoMSEVq8G/UKhV46htDgtjcp6Xcjydb6mcF4qljNPV6OlsMpQhJ0TAW+h8TIPz9Il23qd/8fY0kVGVhZVso9pzVN4Pq95MtxwIvmvVjccPGyPufntbh48fNk4um48rQeRKa7L944ulTFj1ZkQAXakk+/h68uPrydmsDzef2oFu5/Ju1Y0//uHiJbQxIOeFu7/JXVgXEFLc0h1padXu4JTvEAF0JTiWS7NcmomeHwcN3dq1vdDN1K3yRmhrY8dpWGwe8eyTu5JafaAUl8OcdYpaAPigvNE8/WKcEYavYw3x1jdOi7enr96c6mqDRrWnqYahW3KelxReViaiRIoIAK9+fNatVRyvcq2UO7PFKSITrjJSMiMlJ/OLxYMAeKW5ndaOVzBNAvQC6PJrc3HXq2Jcr6gDHyEC6PJrc/F3ZlXaF8ryeHgHHgTAEy+FfXev1gF/IQLAE0HkhJTLhwi8hW0SIALAK0lxWej2sq4e/IIIAK9cL493nR3gI0QAeDVbdFlLvHrTQxESfIIIAK+UguBilevCSjaDB4EJgAgAHzh9Haus8HgXy4RABIAPBJG7dX/G5tCAkHK2kBYChQiga7i5eC7N+bK5uJwX7n3xi7miOPqwuaJ474tfTMLyGBjCwCxdvm8uLojcrfuXKrud5991T8/8kxV+YSU7N39BRsCYIQLAZ8XlzHABvFo1tLrBGJPywmQukgOGCIDgKAVc+RGAWgAAaegF0DWw2OsjxhibFnx4dxhEFH7ydPX67JsfsLk4dXgQACANEQBAGiIAgDREAABpiAAA0hABAKQhAgBIQwQAkIYIACANswPpGm4uzhibxloewhABdA03Fwfi8CAAQBoiYEJ1tL6XvboAbAr8QUCtGppqyHl+KpvES6NH62j96nfdRrXXVE1TtxhjvMjNKHyukHrvo2lBxGI+8F9QEbC3dfj8u+47+0byIqcUUh/ckZAFp1V2O3s7bfPtO7+pW2rVUKvGQbmzfG/G3xfv9frsL9UBY+y9HDc7jXwhyv8IaNWN8qbWqp+xdbypW7UDXa32FleyLjafiCtDt/786JVaPeM7dszUrZ1Hr+fmxdK9Gb+6AwOLNboWY+yXBq5/unyuBfz4rPv4YePM6/+YqVtPn2g7j177+19HV3mjOfr6P1Y70Pe320G3B0jxMwJadaO80bJ5cO1A39s69PF/j6jKbqdW0R0cX+7UDhwcDzCanxFg//of2t9uj+4vxF5H6+/tOL6r7242MVgAfvEtAva2Dk/vHnGh8qbmVwOi6PmzI9P5xWzq1vNn3SDaAwT5FgEvK0cuzmrVDcodAU11+bW7SFuAM/kWAa4/lJQ/za26y6/9ndFWANf8iQCbBe0zdbWBL22IHEO3um2XV3LjRc/fxgBZ/kSA5qEz36gS/TR7Gd63uY03wIX8mRokedgrOk14pqCs8O6egyTFh/W9fIK9ryQYYzNT3v8xiCp/IkBW3P87Xs6NurSUdBcBct6HbxqfYAsKehPU+fMgIIhcOuvyZu6lBxF1uSspdydKhHMT/OXbiECu4ObTLKQ4yvtPX72ZdhGdssJfu4l3fYA/fIuApVXJRY2qtDbjVwOiSBC50rrj70BpTQ6iMUCTbxEgiJzT63muKPq7+jWKlILgaNHk0h1J9unRaWCxRpc1ukynOzMDfF0jMDcvXr1ht4MqpBxHRlwtrUoLK9kLDxNS3NIdqbjs2yLr4ebi3/zQf9nGigO6fK4qLa/LssLvb7eN3qhP1VxRLK35tu49BhZvT88VU+WN1nkDBLkrqdK6jFetgO/8LywXlzOz8+Kf//v1mZ/m4c0f/f/T5Lxw94FSO9Bbqtmo9oZTgOU8LylCrpCiXDSFQAUytpSRkncfKB2tr9XNlmpqqpGWkpLCywrv13NsXM3ND+sj02E3BKgIcHg5IyUzUhI3fIBJhpeIA5CGCAAgDREAQBoiAIA0RAAAaVhwRtcUz+7fwFwj6tALACANEQBAGiIAgDREAABpKAfShc3FgSECKMPm4sDwIABAHCIAgDREAABpiAAA0hABAKQhAgBIQwQAkIYIACANU4PowubiwBABlGFzcWB4EAAgDhEAQBoiAIA01ALoGljs9RFjjE0LTMQHgSr85Okabi7OGPtwNnH9EuqCROFBAIA0RAAAaYgAANIQAQCkIQIASMOIAMBkMXRLaxiNao8xliukpJwgiAGO1yACYLJ0tP5Ruz+VTWYkcvsdVnY7ezttU7dO/NkhYywtJYulTLGUCeI/RQTARKjsdl7+71FTNY8vAF7kZhR+tjgV0Ed/onS0/rcbTbVqnPm3Xa3/9In2snL0D7+67HuPABEAIWvVjfKm1qq/++k3dUutGmrVeP7dUemeJOeFUJo3BmrV2Hn06u2b/9mHbfz7T5/+y2V/vxUoB9I13Fz8/o1kiFMDK7udxw8bp6//k1p14/HDxo/PumNr1TgZulXeaF54/Q+ZurXzqGnYO9gmRACERq0aT7/WbB5c3mid10+OtP3tdlfr2z++q/X3t9s+NgARAOEY3v0cnVLe8PkGGDq1alTKHadnVcodH9MQEQDhcHr3YwHcAEM3HPkb54mnIQIgHC7ufq7PmliTEAEYERjleJJGSzXT2WRaSsp5PnclFXa7/HFkss2/hbNYeHT978JzYzM6oKkuvw+thm8PAoiAsxm6Vd5s1g7003/Fi9ziSpbCYHVwWqrp5dzYRIDRc1nasDmCYAci4Ay1A31389xxGlO3hvM0PlqbITiDzRddbRDKuZNGSHHuUkBI+dZrQy3gXXtbhzuPXtuZp/H4oeqlQwsgKS67M65PPA0R8JZW3bBfczZ1q7xpd1gbTsoV3NdTvJw7aVx/LT5+ExABbxi6tfPI2Uh1q27sbR0G1J4YkxX3T6Bezp00rr8WREAgKuWO05Fqxtj+drvj/CziBJFLZ92UUdLZZKArZ8dsbl68eiPt9KxiKaMU8CAQgEkYpKWjtD4ztrMm2dKq5CgN09nkwkrWxwYgAt5wPUireRjiIkspCE4HVv29+00IQeRK6zM2K/xCiiutz/jbD0IE/Kyj9V0P0rbqiAA3Flay9m+Avt/9JodSEFYfKBdOOctdSa0+UHwPQUTAz7yMNpu9SI5UDzcXf19JhLW5uCBydx8oc0XxwiPniuLdB0qcqgDvyEjJTz+7vHRHOvNvhRS3dEf69LPLQcxDiU9x1SMvdeZ0NCcITcLm4oLI3bp/qXaglzeaZ/bChBRXWpuZm784JmKguJwpLmc6Wl+rm8MJlLLCS3k+0BloiICfDWvU3bab2r6P8zRompsXpbzS1QaNak9TDUO3BJGTFCFXSMkKH+Ob/5kyUjIjJceWeoiAN9KSywiI00h1WIaf+/hV+yYfagFvuFv5I6S4OM1XA2oQAW/MzYt2SlPvKK35PEgzNuaA7avWvmq1jmL1Kh5wBBHwltKa3RHaoas30tGtVJkD9r06+F4dNI/CbgqEBxHwFkHk7KeArPBLq2eP4gBEBepY7xpWp8tftRovRk37XVjJLt6eHlurAAKCCDjDcJ5GZbfz/LvuO++3GRb/FlamY/PiGiAOEXCu4TwNxphaNbqaKaQSQU/SABg/RMDFlILAGO75EE8oBwKQhggAIA0RAEAaagF0JTiWS3OMMRGFDsIQAXSlkuzj6+gGUodPAABpiAAA0hABAKQhAgBIQzmQLr3PNr7vM8b+/pfJa3LYrYGQoBdAl/X/LwqxBnhlCF2IAADSEAEApCECAEh7qxy4VeltVbBDJjmVatgtgPCgFwBAGiIAgDSeY+yfPwppW0kACNWclPw/LlY0iiYzHxMAAAAASUVORK5CYII=", "path": "image.png" }
Complete the text to describe the diagram. Solute particles moved in both directions across the permeable membrane. But more solute particles moved across the membrane (). When there was an equal concentration on both sides, the particles reached equilibrium.
[ "to the right than to the left", "to the left than to the right" ]
0
The diagram below shows a solution with one solute. Each solute particle is represented by a purple ball. The solution fills a closed container that is divided in half by a membrane. The membrane, represented by a dotted line, is permeable to the solute particles. The diagram shows how the solution can change over time during the process of diffusion.
In a solution, solute particles move and spread throughout the solvent. The diagram below shows how a solution can change over time. Solute particles move from the area where they are at a higher concentration to the area where they are at a lower concentration. This movement happens through the process of diffusion. As a result of diffusion, the concentration of solute particles becomes equal throughout the solution. When this happens, the solute particles reach equilibrium. At equilibrium, the solute particles do not stop moving. But their concentration throughout the solution stays the same. Membranes, or thin boundaries, can divide solutions into parts. A membrane is permeable to a solute when particles of the solute can pass through gaps in the membrane. In this case, solute particles can move freely across the membrane from one side to the other. So, for the solute particles to reach equilibrium, more particles will move across a permeable membrane from the side with a higher concentration of solute particles to the side with a lower concentration. At equilibrium, the concentration on both sides of the membrane is equal.
Look at the diagram again. It shows you how the solution changed during the process of diffusion. Before the solute particles reached equilibrium, there were 6 solute particles on the left side of the membrane and 2 solute particles on the right side of the membrane. When the solute particles reached equilibrium, there were 4 solute particles on each side of the membrane. There were 2 more solute particles on the right side of the membrane than before. So, for the solute particles to reach equilibrium, more solute particles must have moved across the membrane to the right than to the left.
to the right than to the left
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABoF0lEQVR4nO29eZwdRb02/lSfZWYy+5JkJsskk0zWISuEQBIMq0CAAIJXvIiCooC+bj9RroiiiJcXlKuo7/XKvXBBxRUiIEsCyBqWRMxKQkhC9mRmksxMMlvmLF3f3x+1dJ11zjZnJkk/Hz7knD7d1dVVz3yfp75V3c2ICCmgL2wf7O5r7Tp2tC/Y2nUMQGv3sUCYp3Ksi5yjvNA3sqTo/Mmjygv9g12XvMLl4ZBCujxkycPN1sOdWw8dbe06drC7L0c1dJEzFHitz50++WSIOIKHezq6j/aFBrsuLqKROg/jh5u+sP3u3sMbmtt171rMKigs8vn8Pr+/rLiEMRQW+Ap9fg8DAywGD4PFYAGWuQWwGCwGRmBMfrYABrDInRmcD+L/ACyAMTD1K1MHiv+D5GeojSBA7Sw+EIExAHI3E6T+IRBjTDQDgSCPYmIDkdyTiMRGvaf+DAZjN+cnsYUTEZhNxAmciAOcYBMRYBNsIpuIg3FjByJ5FIfaSOAgAhNfA6Hwrr3NfYHQjNrKS6eP7bebj1MIHq7ee0j7F5eHxzUPvXG3vrGz9d29hwFYXl9Z5fCiYSVFhYW6F0WPehjARMMaYCBy+kldttNVqhGdHRhzOkN3CKmugnGI/lWcxSwhuljdx8ZBYgeCww8SvxEj9RsDIxBjulMZGDHRYYwREQGKEwwgUQiRUbg8ITn/gBGRczlqJyPOMyIikifVCkDQWiDrJXYD4PN6xowauX3nvtbuY3F78MTAS9sObGzuAOD1F5aUV7k8PN55GCfcCElhzKoc1VA4rNgCPOoCRIx3QJFf1RaCbE0wdQiBBCdIbtE9J2hhlkAMlvoMFnkWYwtTO4MizqK3y7OojUz1NmPMaW0CQEpD4qgKSO+pDjSPlM3CInrNLBuyfC74buzEmLMjY4yBGBg33CaD7nPS9WRC6RgrLPABOIEHua3dfRubO1wenkg8tGI3iQGU5fP7Cov1OXVgjhh7scivaou2kVBHmd5Sx2B9tVFlOpdvigIiPsuaRIoV4qoKiygAyq8yp0BmRm9VJWJqAzMOJCJmHilPTabKRZQNRKiKcUUJVUVtjVQVvZs01zbnAAo8cXrwxEAgZAPwFhS5PDxheBhnp5ElhQUeyw72hUN9+pxxVIWMcA5nY4SqqKNAzkatKvIIii6WzJ4zykFkmRHFKp9MZiFMSlAEFVU/RamKcVwSVdEOFuYlMiEKMbUkRO6p6xr1u5ALJSKRqhJRL8YUDRjr6ekDUF9ZghMUI0oLAYT6elwenjA8jB+T5tUPB9C+b3s4FFSnFFcKsxZaIhykoCpAHFUxC2FGz8EoJ+pzrKpofmhVgSk16nx5U5Xor5GqYuyWtqoc6wvuaz4IYNyJG24KvZ5FDSMBtO/bbtu22Ojy8LjmYcKJ8Mc37Np2uNPj9VUMH11SWiZych4GOxwK9h0LhgLBQCAYCASCgVA4nMqZXOQcM2orz588qtDrGeyKDCBcHg59pM7DhOGmL2w/sWHXniM9AAoKhxWVlIT6An3Hemzb7dShgm+fO3OwqzDgMHk4rLTcX1Dg8nCoIXUe9rPMb0Nzx0tb9wdsY9UmY96CYV5fgb+gwF9QWFBQUOD3i1kDD+CxID7r9Q5etYWJLQTLglglIWQKgFd5UY9a3WABlgVGcn0EmLMmgjG1DgKOR2VqGQWZVlFazAgfSzEzAqRnBNQA2RwzU0rrHeRYVxdCylQDMJc5mOsdOBEHS7LegROIwVzvwAkExonWv78jrW4+3uHy8MTgYfx1Nxoz6yonDy97YsOu3R09w0rLRtSMKCoa5vQigwdg5vIqsSYCxme1Ykp+Vv1hbmexy6sYQLAs2YUMcf6DubxK9oSR6ovXx4DMsTn5PAZnvYNa3CDGzJIpEesdFCf0kSLvJkeyeiJTj/ojYVQJUOcFzDGzM+cImYCQn5ica00uDycqBA8fW/Nha1efy8Pjl4f9T18Vej1nNdQyhkBvt6+gwMneq/y2k2B3svPRMwJM/2gcAlWMbgFnCxmzBmZS0EBMYh8RaXldbuSMACWZEYhUFT3lkOKMANSiifh9bLaP03Sqw9WMAMxudFhL+myMRbbCSYNCr+eCSaNdHh7XPExptry+sri+ophz3tF22MneK7PoJNiNXHbEV9NbGodAFYPIhomWCAZAtrmJmMR+9NyEc2Jzc5IZAZX+l62tphzUnklnBADISQREn1JvYNEf4quKcVTUjIA4JBgKAygr9EWf5USHy0Nx5PHLw1QXiZ3VUAugo/1QOByMVRUWKSNRqgJz98SqEru2wlQViuowiq8qzNhBlhtDjgFRFSRVFUNM5Ng6UlXE/7Wq6DPEVZVQKAyg4iS4MzMWLg+Pax6mGm7qK4tn1FZyzg+1tjqqIqpAco1DElVBzCIIDYczFLklSlUQT3piVIUid4gdYGr25EdVyDwZA+SfhGwOimhKplVFnyGuqkRf0skEl4fHNQ/TWAJ/1oSRAI52doTDQWf4l0BVIsI5SZ2JlRq9Ia6qmN8JSqzMnSJVBTGqorXB2Zy5qiADVWHmyZSqMNUcmalKdAueZHB5ePzyMI1wU17on1FbCaC1tdUZ/iVQFZiek/WvKkYEdVQlmhPmikkWuUUpT6yqRLnfLFQFOVUV5rqbzODy8PjlYXo3+AlhOXK041hfXz+qYn4leYVJVIWMKQBHVaI4YW6hSJ1RBzpnHjhVMSqehaqQoSryKNfdpAiXh8cpD9MLN+WFfnEbS3PzfrMPolQluiJM6YyJSA1hxqMAWMw+zleDSQwJVcWsTIqqQrL5mWjJZKpiVDwFVTHYmVBV5FGuu0kRLg+PUx6m/fiCeWNrCjxWT29PT3ePU8FIxSDj//JTPIlQURuIpypin6hD9JWTUhVTwWJVRdQtFVVhsvlJtGTuVMURE6OSLDKdKI9y3U3qcHl4PPIw7XBT6PWI+8WbD7Y4FYynKk51lAJEwInaQGqqImWEyf2ZLkQdM5RVRYmF4g5jZg3EB9fdpA6Xh8cjDzN5OJMQlu7enqOdnSqsimuSO8SqilQAE/FUBVEHRh4iCiEZ+eVX89SySWPWksKI4AOhKlA92I+qyPNHqYpTNdfdpAWXh86RZk2HMA8zCTeFXs/5k0cD2Nu8X4VVAOmpCnOu2PgadWACVWFKVcyjoFSFKIIe5lkwMKoia+o8CDa+qhBRtKows/7qlhnX3aQGl4fOkWZNhzAPM3z05My6yrJCXzAU6urpQQJVMdtAqgpFbIlQFRiqYsRqM4bGqkqkP41UFV0GizzzQKtKxGZDVaQgECkeie3GBUpVgTzCdTf9w+Xh8cXDzJ90ay5ejop0um76u1QVFrElSlWcw01+RIpGHFWJOi+LoyoRZ44Sh7ypCgxVof5VRV+L0YJSVcI2B3AyvF4qFbg8NKs9xHmYmwdrR0W6KFVxxrfGHrGq4vyYSFVUdyVRFcEDMsqJqyqOOAywqsgrzI2qiMthx/oCAMqL3HATDZeHQ5yHA/Icf6bNm6yZFAQjgCZTFf2FRemVKpMZ/0WrChxVMXN+EaqC3KmKcYq4qqLVIxeqIq4uUsFdJIbLQ6NOQ4KHAxJuyFAAJFUV3U8UdbyxT8R2rSrqPxbV1qojoShCkXQRJEisKkhPVTSVkUBVKI6qOJeXkapEN7eLBHB5aNR5SPAwf+4mQgGUqmgyxFEV0aORqqF/YVpDoto6RlWYMq66MklVBTlXFZH/N1UF+s/AdTcDCZeHRp2HBA9zGW7MaxaXoaO7VgC9RyJVYbGb4GzRv5DWEKflnC0mRcSJBlFVHMNuqIq8TNfdDABcHg5ZHuYy3JjXLC4jSgSiVAVm75qFxAoNizjKVBUn9EaRLGtVoRyqih4qu+5m4OHycMjycGDdjRAW/V+UqkBvMbJ3sapibolVFR16o0kWqSrOmVNWFRajKjDe4py1qrB+VYVcd5MRXB4OWR4OrLsRwpJMVSjiq2oP9UXvk4KqOJcfuYXBjNxZqQr0W5b19whmp6UqlERVdBvGVRVzasVFLFweDlke5ijcRDa0Tm/BmdeXqhI9vo38qtrDKRPxVEWKldoYpSpRW/KmKiy+qoBFMs1RFaOq4hdmdGwSVTGnVlxEwOXh0OZhjsINi0iDQS/fdOb1papEj2/7UxVZrKkzSqz0xn5VBUbD511VEDWR6qiK/NXZ1XU32cLl4dDmYc7cjZkGg1rgkERVBJiTd5ebo1RFFmvqDFOtY6hKBMliVAVGww+CqhhDZac+SlWMfV13kzVcHg5tHubO3ZiXopQkSlWcIWKM3U1dVWSxMYXEURXjVDlUFec0yVTF0Z6oobI4hVYVtYPaGKMqZDYQQERh2waQyhvgTzq4PBzaPMydu9ESob4KYTFVxRkiJlUVHUkRT1VksTGF6PYnrTPGqdJTFSRTFeeak6mKoz1REwHiFKaqqDLjqAoYdDVEkYyxQCAIYGRJUT+dchLC5eHQ5mGO3Y05Bo6jKqbyKMSqiqk8EapiHoKIjaaqqGCchaogQ1VRZ01dVViUqpily/7VDcRkCbFt6ELC5eHQ5uGAuxuoGKvCqtyi/4mjKoZokCKKiShpgmYDjENUIdGqYioAcqwqRtXJ2MvZMUZV9MpyVQ2j9ESqwqKaw4WGy8OhzcMBdzeIiLERo1kVJiNUBTBCs5aIyLP1qyqx+5j9kaWqkFF0KqpiVIoNlqqcLHB5OLR5mD93ozVEj2ajVcVYBNGvqjgDaX2IoSqIUR6zP7JUFWYUnaaq6AkFo66uu8khXB4ObR7m0t0ASVVFuzYy47ShKoYCMKdgo1g4O0QNpBMeEtMig6IqqnqOqkDsn1hVVD1cd5MOXB4ObR7mItxQhCCILclUBWacNrYYCkBG2TBaU+6ASFURDpbFOySmRVJUFQC5URVVVKyq6PJFgRSpKlB/AMiFqpwUcHk45HmYi3DDEqoKc36P6IYoVSHjK1JQFURNE4ivFO+QTFUFQAqq4rR4QlVRRcVXFTiqwhKoCnKhKicFXB4OeR7m3t2YQZCc3yO6QcdpUqoCc4dEEmGcMUpVZCvoiE1OTWIrG6sqED2Wtqo4LR6pKog68aCrykkBl4dDnoe5dzdmEOxXVeIqQEKJMM4YGX7B4OgMUztEjat1gbGqAtFjOVMVRJ04BVVhrrvJFi4PhzwPB8DdIFpVELX4MlJV4LSr2iGeqkTG2+ivBEdDhrKqwKhjpKqQ626yhcvDIc/DHLkbI/w7IVcGTyDq1pL+VEXuZGwjipaRflUFSK4qEVqBfKmK2VqOqsB1N7mAy8Mhz8McuRsz/KttuoaxqqJ3iqMqkV0uynFURe0ToTPxVAVIrioRWoGsVQVEGauK2JxEVShSVXqO9QGoryyOvraTHC4PMdR56E1914QwVAW6zuon4iBx+Qyck+hySzlVi8ClRMinG8Ji4MRUZ1gAQFyYN9lzJNrHYgwg8X+hKkwFX9Jb4GiXBlcPUhRM4ZwA4qKfdE9L4sh+lqzlJEyn0ezEuRzjc84BgDEhrZxzMEYAJ+IEAsKcOBEBNsEm4kQczCayiWwO9RMRwAmciANE8nBOJA9xrU0iuDwc8jzMNtz09vZSKMgAi8HDwEAWIL4ykIcxBrIYGGABFoPFwIgYg8WY+iD70gLT/coYLMj+YwweFYB1p1qWZIfFmOhPSw49ZWwmkMWkMxS/ip84kfisoz8n1T1czjQQYPY3OdaRRM+J/ibJLcbl/CUTNCCAVPeDMZtzMMsmsjknMA7YnDggOtXmsIk4YBMBTPQuJ9iccwIx2FyeyOZEDG64iQuXh8cFD7MeTBmDZNUS8qvuEhhjZtEcIGeMqlqQEeSiA+hSIko2xEsPidUeTAXgqC3mWeQFi86Q/SlrxgQJLGZqkTyFMpbMYnHHzPIrY5xzcaBTW1Vz8RNjlhhXi9M5Y3KLCWGKHg7rMTNBVM84u4tIuDw8HniYg9yN7hfRIHpEKlqTEDFmZkoEtGNk8jhiwqjqnlLWk/RRqhBnSKz2EP1mGcfILZbOgMmfuMyWqR4U/lk0vep/Mk+h2pU4Id6YWX4lsixLCQ/TPBWfxU9EXIyrSQ+wVcnC0kcn+0m1JpOiZ5zdRTRcHoryhjIPcxBuYlVFBOZEqsIspSpqfCsKiFAVQzRU+O9HVYA4qiJG6VGqEtGDg6cq+gJSURW47qY/uDwU5Q1lHubJ3UDFWSaHpkpKnD7qX1WcYO10lPwq/o1VFTY0VEXMCGgxkadTDZiiqnDX3SSFy0NR3lDmYfYzUzKEMnkZMg5aLEJVABxtoWAPD3STr5CVVrDCEiouZUpVZMAGAItBDKsjVUUFft2A0EoDRTXVhc4WiqcqYkaAObMAjDFwJXciT0eiZoILQhosRlwFfnVlTrJPqApjxKBTfVCqIg9ijHM5uUGcMzCZxbMY2XLmIUpViFQDE1kWsznPSFROBqTKQ7U3WRYDJzF55PIQeeFh5uGmwOsBELTtIvgAkOFatap4GDvawlu3hDv28NgSSqvZqEme8dOFwyIZMQkQRLHExKP4HKkqAFS0FRBMUV3obGEWI06kZgSQUFW03Olt8hQUoyr6MyTVpCO1LEtNUDK9SIIxBuJMzSOYHxTJSKqK2N00qfIOY2miOY9axOoCSJmHBCndprthaskvQcxAweWh3H1geJj5YGpkaRGAUCgoquVEbpmDA4XYtleDW14Ixo01ALra6IN3wq//JdTZxp3hKAOgVMX5TDC2CBA5nS5VhaekKhH+VGhDumNm7dZTGzNHDpUlM5hWGzVmhtnHqiX1mFnOubr2JhL98jDC3TiWRC1vIXWUzt24PBwwHmafu3FGkDIgExhDbzvf8kLwSIJAY+JYF735ZHjfVtuynDEzGffaynFp1N23hqpoFlmWIzSy8QdozEzqJCmPmfVQWfCASb2VGiWFN2bMzCLHzGBRN+240IjPQ4rK3Th7y4Uwsvfg5G5cHg4cD3ORu1HLKMWYGQzhAHa8Fgp2pxH/Nr5hM2DsZCtizGyoithijpmhnaqpKsw5CmmMmRknnuaYGUfacKgFwQAdacOwUub1UXEpasfC4xMtItcppD5mBhKoijFmRhqNelIhDg+jcjdMEUbsbTHHACh3w8RggTGkyMNgAPt28o42OtImC6gdZRWXoL7BKiiUR2GAeah+M9yNmbsZSjzMNtyIMCzirFxYCXz4YiCtWCPw/mq7ooaVV0snaakeTTRmBhxVEcywLGewKslnSUr1N2am/sfMRHrMvGML37QWPV1RVyDjff0kNnkWLywWJUSPmTlJLcpszByyCcCIksJ0m/fERlweiqCjczdkmHk5jjCMic7dWBaDGssk4WFPF236J9/xQbR/b9lvA3jzFbtxqmf+Qo/Pn3seBgO0fw9am9FxGEfaJF9G1KGsGuMmUnlNZO5GljAkeJhtuGFqTGep2N/+oX2sI5PQFwpg0zv2wkssUa4eVEeoSqSD09KkhrjqmIFQFcaI0N1Jb7yII23JLmTPNuzZZk2ezSfNIkNVGJPjatH1qaoKRakKJ7iv0IxBLA+htngSuxvtXbS7YXKiV01mJ+Dhrq32qlft5FXavsXes9M+faFn8jRPDnm4dSM2rKFQIPp0B5txsBnb32M1dTR1NqupowTuZjB5mG3uxlQVEZBbN4QzLq2tmZp3cVGuozzGmDkq3JjuBpFDTj1mZroEAAlVhfc/ZibqaOPL/0paT5Jj6zpr/ZuWMWZ2hsqxY2Z5MTFjZn2sM2Z2EQ+xPITaonM3pKIGAKYes+BkfCBMjczdKJMch4erX+0/1ggEA1j5sr1pPc8JDwMB/P0Z/s+3eWysMXG4ma18Hh9uYjJ34/xpDD4Psw03Tk8ARNS5zw71ZJVdaNktr1m7R2bMCESlw0nXwXQ3kTVTQdlRlYhIwgAwsc4y+YxATzf7+7NI3tNR2LedrV/JpKoYEwGiXsaMgKWHx1Gqoo+FnhFwEQ9RPNTdRyTHVtrdiCYk9ZgFTSFSWRDOifTCmRgebt3Id23tfwLExKqV4a2bw1nyMBhkLz3DWw+ketKNq7D2DaaiqOFuBpWHWbsbPbYEGGM9Len1RCxa9tiAUBWmOYRYd2NaXP3VDLqKI4JTmaqKQ5A3VthpxRqBfdvZ/u0sSlVEyYaqcD08jnhKgetuUkYUDyPcDSewZO5GHgWp8DHuxuHhwWasezslXxOFVW/a3V2UDQ9ffDrccTi9P/I927FjU8SfxqDzMGt3o9pMBOm+I9nKbyiAUCBaVWDolToxoMRqIN2NJMiOD6gjab4mCd5/1woFUleVqEtw3U1KiOKhOQ8t87uJ3Y08CjJ/kcTdbH43w0RBMIA3Xg5nzMP1/+CZ0e+91ay3R7SDjGeDy8Mc5G4QoypZ4mg7xXU3gBFVE7sbdZisWU7czZq3M7+wcBAHPvSkoipaY41rdN1NSkjEw7TcDTnuRk9wOjzcv5Mfas6cBs37qf0Qz4CHwQC2vJf5oGH9SgtpupuB42Fu3qIZqyq5KDPS3agTSRjyFeVuxD4tB6jlAK1ZHd61g7c0U6Avc3dz8ACCwayuZf8OloqqaI01rlGsH3XdTUro193omaY47kbsI92NQ2TNwwO7s2383Tt1YWnw8P2NPJj+KF6jrYX1dqfnbgaOh1kv89NtxsCQG3czrASiUOasqnJWUqiJIrW32EEEZMaa9/H337Nb9sfpoaoaNmO2Z+IUK56qJFrvwIio5UC2V9XVjt5uKigGY2rSUX0AQCRVRcyWOj2tVQUg514VN+LEQzQPzbsQ1EQMwCjC3YDJ54eS/vvn5LGkvqnxlOThoaxp0LyfM+YVf9upr7vZuzPbfGjrHquhSd6+YC63Qd55mDN3AwIR+UpyYG+GlSproaeiErsbKBEIBrDy5fCKp8N7dsRXg/bD9NpL4af+HG47xNNyNynOfCdHX7cFJSbRH1j/qkKuu0kBmocR5pclczdOyydwN5qHvemvXI1Cj3IZSMfdZJw01GjZ47ibOPTLIw9zE26kqjBWPCLbAmvHqRLEfA7TJ5D/RqRmAOGoOg7RiqdC27f0rwNth/hzT4V377DNQX7y3E0gCytrQA+VEf2BnDGzEUcdVWEMzM3dpADNQzN3IzSDZHNKCuncjZOt0CtuzdwNInmYHbo6nR6M527i8LC7MzcCo3M3NKg8zE24EXUiorJ6j8eXVTE1dapKRiLGdDcqo+OcNxTAC38Lt6c8TRgM4KXnwy37SatYvzNTuYAWE0R/MFQFrrvJEim4G6Jk7gZEUe4GyF3DJ3M3cXjYHX2jTCYIB+O6G0R/GHge5i7cMDAwjw810zLPBxWVsIZTHHej/hfpbsQnw9288HQog1zaS8+HuruQirspLs1JwMlIVShaVcKcAIwoLcpFlU5EROYQU3Q3whMJdwOVQnaKQMZyHoHqGscm6be+JHc3fn8Ozuv1Z+1ucsTD7MONk08iEBhqpnozNjhNZ1jxVcWIpvKT2u/99RkuSRC5HlNVoPo/yt2UlGZSfhTKqsS4T9/Ok5qqMEdVxDNixetB3HumYhDNQw3tbuTvhrsBVDaHIt0N4ribiqpsq1hS6vgCS/7lCzNFiXhYNTw33lpmrESMGzwe5uB5N/pfcR0ePxo/6s8g4jQ0WbXjLKef47kb53yqNTb8I/NbtJr3U/M+QSYuFCauuxkzPuMzSFSOJI9f/BUw2Wfpq4p+CJuLeIjmoYZ2N/J35W64ShrHdTexPKwbn22Ir29gulzznXZR7iaKh5XVWZ4W1bUwzPVg8jDX7gYAUFRljVvoSyvijJ7kmX6GR/+dAym5m707eZYrYrZ9wNGfu6mqYcUlWZ1l1EQuV1iBZJ8pAU5XVbKqx4mMODwUiHE3YvUJ6QeYS78T6W5ieThuclZGw+/HuAaPLjdFdwOG2lHZGpzaeudpmYPLw9y6GwcV9Z7JH/X5i1NqqWnzvTPPshKpChNXG3U+AoC9u7L982s9wNGfuyHg1AWZd3lRMcY0SsduqAoyU5XML/UER3wewnQ3qk8j3I1KCPbrbkrK2LjJmRucplmegkJn4iF1dzN1ZlZ/pNUjqawKamqJDS4Pc+tuIjCs2jPrY/7Rs7zexDanrtFz1tXe8adYSVSFxNVGnw8AerqyDTddncJkJnM3DBgzno2oy7CJp55mk36+nCC3xfTjbE1VEd8jDnbdTapIyENod6P6VM6wGH8zhP7dDRHmnGn5MsrdVtWwppkWyafGAOm4m5JSNmFy5n+nk+fIeKLczWDyMPuHhxqqYtZBJv0xepZn7CxPVyt1tXI7SD3t5PWjpIoVlaB2nMdXADkLINY7iDbm0r9BP29NLLsmqV2aJ8FADv782g9TVY16RiyLdjekmvasj7KX/0Yd7ekVPn0ejRwHAuNSVcBJ3phjq1M4L5gnOTHqHE+ktFa+3yf76z1B0Q8PCc7Sc8bk060s5yA1R5OUh75Cdval3lefCYfSGcL7/Th/ic9fqM5C4jyGu0HMDGkkD+cttDraMpkSmTCdqkfKHJU4z+DyMAfPKhb/iNpFZHRJ9hMYymtZRa0lXv8uFolb8mmwgHiuGnPWM+rRpPofGAx1gkrvAcFgZKNkhGAAjFmcuIhlkU9RI02QgkK26KPWyhd46hFn0iwaP51syR4mLkeoim2TsYWBkXghvR46q2ZkxDlBPqCf82zXs5+4SImHgFxVwxUPnYNT42FlDTv3Mu8rfwunmDQsKWXnX+wpKZU9bbobGXGIkxy2J+Shz08LzvG8+LSdVqayupZOmQ/1bhhGxAedhznL3UT0MSJUxRwzW5YMovpgy5Jv9pPxXHMgNnejxpQ6thbnYoq6djTrN3cDgIiKS+ncS1lDCilDnx+zFvLJs7kcM4uGkMvJpKroqySlKuJ7hFF1czepIn88rKhmF37cl8rgunYUW/pxb2WNxeTxmeRuxFGV1bj4ak/qs1RjG7HoYhhjyyHBwwF0N86dcklVhXPyWAlVBTLOOu5GlsoAoMCfrbsRy6hScTeCB74COn0xxk3Ctvewf3ecAotKUN9IE6bD4xeBSqoKUlYVZi7adN1NqsgrD0tK2XmXe1v309aNfN+u6E7x+1E7ypo+21M3Sj6AXaQ9MnY3goelpXTepdbGNfTBxmScH1aCqXNobKNkrbrXckjwMGe5G4pySnIllfpNjJkhVcVSx2lVAZG87dvSY2/R0lIVCDJ34wRgYHQD27srq9rXjRZ3TsYfM5u5Gzl/CjDGRtZhRB0IdPAAjrQzkUIqr6KiEpRVyatXPeJ0p3oCfsSYWQiqOWaOyMO5uZtUMQg8rB3N6kZ7AWo9QAys9QCvHcUYWO0YJoZmOulrmIhMcjeah/4CzD2TTW7Czq3Yvzv6kW+j6lE3juon6akkGKsChgQPB9bdUOSYGRbjvH9VUeWo4TIBzGGG6W6yX5JQ3yAsbqruhtTMhhjVjRhFw+tEN4FzMAZxg39cVWEWs8Xr3MUHfT3iolx3kxUGmYeWxWpHW1CP19FVIfHaX+Vu9Mt8M3A3moclpTjlVGo6VW7oaKOKaghSknpPlpwEG2I8zF3uhiKyKlCz+uIzVIOmMmZmZskEMY9A2tWqPiZCcSmbMCXzpRAlpWzSVA8SjJnlmqh47kbVUfUoVPdA/R5vzEycxKSH/KBbyriofsfM3CYA5YW5uJfmhMJg8lBvlPM5TIUpJs2Czt3o2ffUczf98lDEmuOChzlbdyMu0giHIhzLz5AdCc6lydS7cRVz5eDY4YCjKkITNId01zJg3iJPxrexzV8o75mIu95BygnT7S/rrftbJv5UbVQuX9obdY3ywU4QyxzElKrlqJyjKopNEUY1zr0qBKDCDTfRGGQeqsIBhxIqUQTlbuQbhIF01t2cSDzMXe6G5IPRJOQ6cR3vHVVxRr8AKHrMzOKNmeW7B9VRQio4Bxj8fiy+yPvi02nfOdU00xo30ZNkzCxUJW7uRmmGcjekFizA+F2rCpwxs8WYbXzo7WChEDgY58RBRTXczd1kivR42NtBhSXw+XPGQ+NxEg4lVPSCBSb+rK30czc552GoD4f3Wwf3WuGgOAOIUFTBK8eTv1yNoYZ67kaNVFUQlmNmw+URLNbbyXuPoKedd7eTHSSvn5VWobzaqh1naUmKHTNzkMkh1ZWSKrWj2YJzPG+9ksYbOSZN9cxfZCmbGn/MzKBUJXHuxqEBA3HEHzPLhzFCj5kDvdbujVZnKwv0RHSb5adhNbxykl1Yo8bGbu4mVfTDw3AQh3fYx9op0M2Ptjh/SJV1bNQka2S9x+szcjeqxLR4KLYwy3E3gimWIo75N5x67iaHPAwF2fb1bM/7Ov/g0K/roHVwK/zFNHJmqGQ0H6DcTS7dTfSYOVJVAj3YvjJ4xOhpsd/B3QB4USkbO8maPMfJxKWqKgCAxqlWzXC2/MmUFl+dscjbNMuShWWkKpqQKaiKHA8Ld8NDbMcGa/+W+GNYHmTdBzzdBzxFw3nNnIBnGLnuJmUk42F3K+16KxSI9/TPjmbqaLY/KLAb53gbmuSfkxp26JJT5aEIPeRQQg5ytLvJYGYqVzxsb2ZrX/OEk/6BBHvY3rf9FePtETNt+IyYcly4G51627vOPvB+2E58qce6aOsau2U3n7PYU16lU22yX8WcpXmNolhTVSprrKs+5du8gb+/IeHiy3EN1hlneYtLgexURSlfKqoCiPfGMmaH2doXPd0d/XfVsUPW/lcKaxf1ecvhupvUEJ+Hdgi73wod2dNPu4UD2PJO+MA2Nv9in78gvrtBajwknUbBgLub1Hm4bzs2vJnqpMqRXZ5jR6z6jwThU7FqyLgbibiqwhh4CO+tCPW2p1S/zjZ669nwwiXeihqmVQWGquhZO9GsUariL2Sz51lzT/fs2cnbDlPHYfGYYaobbZWWsXENVkEhy7+qgGAxFgxgTWqxRoCHWMvKwhEL+7zlrrtJAyYP7SC2vxg8lhr3AHS20arnQ2cs8fn90t1IRU+Th3ocIueGRMgYPHfT2Y4Nb6Y3KRQ4wva/7Rv1EaXbQ8bdSMR1N3aQtryQaqwRCAXw5nPhs6/wFpc5CX+pKuZYM1JVIAfSMs0+toGNHc/k1ANFtE66qkKSbooVUjWkquh8v6YdotwNk+5m3aue7vb0OomH2ME3C0ee38t8cN1NijB5uPPVNGKNQGcbrX89PO98sTxClEgZ81BEBgYQy9bdZMzDUIjeWZHJYpHeQ1b7Zm/F1KBo1iGy7kaCVGaeqVQ/EbW8b6cVawRCAax+yWaGkxWBQ7Su+A/mVKUas+iwIj+KAZ2IyuqndNc7MFU8kbSvsmh5kUpJnbXOkesdCCA0f2h1tGYiCDzEjr5XwIz1DhkUclJB8/DwFru7NZO/itbdfO9W8dA1EUqObx7u3GSldf+6iSMfenhQFDtUnncjIS+WtCYg2IMD6zN8sufRNtq91RblQKxWUHe9MJXidVTFCHBQH6F0Rmw0VSWt9Q5qAC9YwSBfOaiZZU5DyJPLg5TLA8P29Zm3c+9eb6hHqkrE3KSLeBA8DAfQuiGUcSHb1omHrkkKAccrD0MBtvP9zCWKB1nHFq84q5wJG+yn+UlEuBsCCK2bM3+KMIAta7iI7ohVFd1N8twAlIZIf8lkZWSMT1tVujup5QA/2IyDzdTaLImSmbs5uJv19WTTEujd4XPdTYoQnOjaZyeZl+gXvV20Z6ut3c0g8jBLd9PWgoytjcCxNo84a07cTY5zN4CTvmn7MI2FMLHo7aLONqqoZgDEbSCWE+CdFBtgtrl8nZAzP8BIZ9rEvsnHzKEA1r5r790V53ViYxpYwySMHqdVJeGYmXNilqVzN637so3px1q8JU0BN3eTCgQ3Ovdm21BtBzBukuhb5ylceeNhTnI3nNPhlmy5FzxihXuZNSw3M6Q5CjfOWgTZB8c6uJ25mZU4dECGG0u8ttkYJDMLTpRVbW45HcMgHv6sBjWpzAisXW0nef37vp20bydGjKK5Z7CyqkhViZwRECuntbs51p1tO9i9jDE5I8AJAAp87otf4kHxMNiTdbhp4crNMJ36zZKHwQCCQYj3CKU7M6WHYcrdRMxMJeLh0TQfPhkX4V7LXxSOmpnKjIc5Cjcs2t0kX02UIkLONBwBMaqihsxaVXisqoiVEP2pSihovfFyaM/O/kekBw/g78/S6Wdh9Pj+3Q1xgsVy0hThHljFjHNucwIwsqQwB4WeeFA87OvINsnV2yXZY7qbDHjY3UmbN9p7d1KX4Zf9BRg/wVM7CpOmegfU3QA5kqWYmanMeJiDcKMzFWYfZDYpEIVDzVxkl8TQNVpVSK1+SKYqkE9ESuRuAADPPxlsT/lBsKEA3nwJC8/HqPH9uBuhP10pr7VJAvuYhymFcREXUTzMHgRYTP2Ry1OkwcNAAP94k2/bEielEAxg6/v21vex9h980bneutGyyjl3N8hVe+Ro3U0OUsXmPIz+WjIyByX7/bobZPJe/scA3cfQqiLvUtV5WnNmIeGMALDyZTv1WKOx+g060oa4MwJcLWsXTVE5MlulBeCvDrszU8kRxcPswRSFDG6nysP2w/T474JxY42Jrk56/snQ2tVyUiW3M1Occ58/B+1h+fgQmpky52GA6FVP2aCs2kiyMziTAgQw5pxTtrl4lXvkjADTn2VRUTMCzftp+weZGLFQAOvfQdwZAcuyIN0NkKP44M5M9QuTh77UXnCWBOVVjBSFDG6nxMMjbbTi6XDq761f+w/+xss2APnkzv5nppDKzJRlWTW12fLP8pG/nIbQuptYd0PAsKoclKyffK7m/iJUBfFUBYa7UZVJ5m60sGSAg8041JLU3QBgGDk22y4vrLXddTf9wuRhcdbmuqzaSuRukvOw+yhf/lQasUZg2/v29i2cMUs6mn7cDVJ0N7X1mbeAQJF4OMEQdzceP1J8hWYS1I2zVJlKVchRFZjPoEUcd6Mqw3SCDcrdEHEw1nGYWg5k9Qe8bWNSdwOAMKI+2zRWYV3YdTf9wuRh9mP5uvFJ3U1iHq58xU431gisfMXuOmpLR5MjdzOslKqzG8uXTgyLsw5RdwPVLqNmZZWHrhtn+Qv0KYjUjTCmqpAK7mKnRO6GxbgbxiwQNe/P1iwcau3f3RSVoG5C5ifyFNGwsWHX3fQLk4eVEz3ZjKeKSljteEvRKtrdJOFhy35qzULA1r2rHE2O3A3A1Fs0M0FRDR82XCzuH6ruBqpdqidansSv6+0X0061olSFxaqK+NlwN0ITUnQ3WVobAKEAjrTLOiRyNwAaZ/Mkby5OjooZgexV5WRAFA9Hn5a52jWdYemiYt1NEh6+vyErJ7v9AzsQyKW7Aah6JI2ZmAnPLR/VzApp3R7q7oYx1nhOho/UnXiKVVbFTFURJ4pWlch6cDVx4CwrT+puArl4529IOOfE7gZAYTFNnpfJGuvieruwNpy9qpwMiOJheb2nakImq05GT7Jqx1m6qCh3g6Q8bD2Q7cB5706eW3cDhpmLeFlV2swZeVqosIK0bg8hdxM1A6P6icpq2ej0h1TVdWzGmR4ndkMvgkqgKmonx92o58vrusV1N+lfazwYqiJYEetuGGOjGzH1zPQiTnG9XT2nLyeqcjIglodj5vmKKtNrsZH11pzFXgCmu0mRhy0HKK2X6sZFV1cO3E0sD+dfSCNSnrLw+GjMmaHSUfJ9vyLEDiF3Y2TnAcPdABgzyzNxYRoRp3acNf98ryjWmWEk0stYRBuLPjDbjyTUr5F1i3Y3lpWrKWpTVQQrYtyNUAYa1YgpZ9gpjqrKJ4aGzw3kSlVOBsTy0PJj2qUF1RNT9TiNczwzP+LlqkM1hdLiYZboOGyuu2GZuZtYHvoKMOccPmFm/4P6YcN5/eJg8Shb3/nFkDN3k4tVxVAOQnwnlc9X744Y0ejxF7Adq8KBnmS1LCphTWdYo8Z7oBetMBld5cPxjbBhMUac67f2EGCpG1eku1FvMhPz3lFPwCfOwVh1TQ7SNxXVTFeYS1VR90wRqZkLBoA4r2tk5bXhXes9B3cm1IeiGl41PeyvDnOSqgIgy9WcJwMS8XD8Am/lWGvPP8LBxPSrrGUzP+IdVsoYyFLuRQyT0uJh9ggEIcb/TD2Lj+KsKgbkrTnqUqUd6oeHjbMxbrq9czM7vJdFPVjS46OS4VQx3i4ZbXNRDIFHuhtkzcNc3DPFQKZNUlbTcgwgKsdas0f6Dn/IW7fb3e3RvV5WxarrWOMcT0EBVGrXGDOryEWqv2Goigz5hn8xIx0DxH0QprvhRMyyiFPtKLZpQ1aXXlFFPr90McRlmHPuCFe1k+rELM55YTEmL7BHn0JHD7L2fZa4o0p0aukoXlRj+yo4wGwOEajMe1UCQRtAfUVxVpU+UZGYh5X1VnW9/8he3r6H97bzng4CUFjCSqtYSRUrq2Yjx1nSjDLnZb4Z8DB7FPilWeHiJhhG8e6ZIqJkTyZIwkOPDxNmYdwM+1g3O9bDbE4EcKB4OOeATWSLlYZEKujlkoe5CDfqNo047gZyK2Pw+TF6umdMk8cOUE879XSQ10fl1ay8Wj5FJI6q6AINVRHbmKMqMnsXDrGONqqqhr/AcTdqJAXLiuNu6sZ4/P6Ez1FPBcPrWKyqMEvNkcS4G8FmIiosha+EVzdwm2AT2QQCCVXhxHKuKicF+uNhVb1VM85iRCLHx4gsBv3mXnmDHWXFw+xRWcNy5W6S87CghHzFJEIMEWySJTM1HBvC7oag75qFfOAQM/vAGesReQtQWceq6pgl82HEwBhjnJPFHFWJLD++qgQC2LmVPvzA7jgc0dlVNaxxqjV5qqegAFy/pBlApLvx+alplmftPzJ8Lo/Pj+lzjTGzUhUyVIWIwkHWsgcH91rhkCUeRlFQTP5ilI3gZaOI+UQikLihKkigKhR2n3eTGGnyEGrsLQxRNjwUyZzaUfD7kWW2uLqGpeVuZLo6nruJ4mGUy9bzOWIEAJEVGmAe5tLdGF9ZrLtx5opEEkxn+7WqWBGqgv5UZcPq8AfvxX88TfthWr3SXvcPu2mWZ85pViJ3w8CaZnk2rc/Q4Ew6RbyGMaGqhALYtcXauRnhYIQa9HUzAId2WB4/jZjMqxtt+CJUhZSqkOtuUscg8dB0N2MarB0Z3YKnMbYhPXejd0vqbkTNuXI34oE1zuBRpppj3E3OeZiLh4eq8a05xJXpcaNWjr7ojC6J7eqyuWFqY1RF5+UBBAN47i+hjf9M+CgsgWAAa1fbzz8VDgXjz0wRkb8AF12RScwdXY+mufFnBIhzgHV24M1nPNvWsahYY8IOsub3PB++5gsckcZYqYpsT+bOTKWOvPMQhrsRuzZOyeoPavrMqHum+p+ZIj1PloCHokUcd6MeKmi6GzFbrqKz3D4QPMxFuFHZe3K+qnBs1EqRQD2NQ/HCVBWmwrFzIJMFQsX2UAAvPxOOGj0lQfN+evbJUEj9zRvuRk7VV1WzReek1w4VVTh9saqrnBBz1jswyzraRm8v9/Sm9hy/Yx3sw9d8gaMM0tAyRKoKc9fdpIL88lAVo/90CcDIUWzilAyfaOX3Y/ZpljgpqTyDdjfGmaW7UedPxkPH3ajcjUprapMnR4IwcjcYMB7mzN0gMoEfR1Ui+wmIoyo6UkN3IEWqCtjLfwulHmsE2g/Ta3+XjzKNcjeiwpOmeZd+3ONPbQn0+EnsnEvg9SdUlZ5O/tby9N62wYNs52t+O8hcd5M58stDVRqp8oVaYN5Cq6o6k+ovOtdTUJjY3Ti+Sg1r5PkzdjcyvMq1Ise7u1E9KMEiXSjQv6rIVjVU5b137Y70H4UFYPcOvvV9G/HcDQhEvLKGXXWtd/qMZA1SXIJzL2Hzz4avIJmqrHvTk8Hj73mQ7Xvb57qbzJFHHqr+gcjj6l2JUFDIFp3nTVG6NM4611PfYBFxw92wnLkbOO4GzgBQhle1Nicf7iZXM1PkdKCaEWBOXg4QwdfIsQFKMdSMAMncVYSqqLUPxBhCAXzwXuZvd1j3Lm+YCH+BMzNFkNLEYIG4vxCnL/LMPM3au4taDlB3l8rBARXVmDCFVVTrHKK64pgZgd1bqa0lw87oPWR17WfDRnHt8Rlj3J2ZShH54qEsXR6q//bE3zOIqLKaLf0X78vP2+1t/bsAvx+nL/JMmubhRIKHJGemiCWdmUJSHhIZM1PkuBsoUun0MINsH5GejjszlSse5mpmikHZsGhVYXojdOwVW0xfSmK9g/atpptVMwL7dvFQRk8SEejqpF077MaplnA3TI/aCQSlKgwFhWziVEycwrgSAeEhSVJUqwrizgjs2JyVATn8vm+cca+KGgzAnZnqH/nioaH6TNx/Jy2GGGpYjAHFpbj4St+m9fbmpPOetaPYR87zlpTF4WGUu4Ea+se4m/g8hDkzJffjakwUPTMFo2TdMCII5ZaHA+duEKEqTDwgnjmqwnRPi31Vys2cEVD7iJ/278o2c9G8nyZPS+husleVY93saJovAo9C4Aizg2B+efWMMbjuJkXki4dqExDtbvRABozB58fs06zpM6y9u/iendR2mLq7CIDfj+rhVnUNa5zCqkd4xHMMcsvDpO7GMDWGu5HDJeVuYATpHPJwkN0NY+g6THYYTIXw4XVMqwrU/4WqHMz67v72NpK9mNjdZKMqh5odrcwYxw5bw0ZxxFWVrAs/kZEdD8V93cRJvcAAiXgoC0rqbojIssAY8xfQpGmeSdMAipgYGlAeJnc30KbGcDcMjMdzN8gpD/PnbkDyN7HhWDftXMc7WvixrgjP4itATZ01sckaPopFqUqWrx8F0HaIm6uKc+9uenKQeu87IsNNrKr0hUMA6itLsj/LCYh0eNjXxcWdNGLn6jqrrBL+QiamXRx3Yx4V4W6gHFFCd0N66lOB4OSMBpSHA+1uMuZhLt2NatH4qqL+YeEg7V4f3rspvlUJBdC8izfv4sNHsbkf8ZSUsUhVyRYDqiqqO7OCPl6rClx3kwpS4+GedfbBD3lfdwSddqy1AZRVs2mne4aPtmTbG0OmGHeDWHdDEEssItwN587Zxd+toFGe3Q3U3vHdDVJyN8iah7mYCNdNoJqVSIVjXSulOOEgrVseShRrTBw6QC//NXzksJCE3MQaqCdRMMtyxIch8gn4lN16h2yhL1WqCinOWSyCOy5ikJyHPe38n08E96y3o2KNRmcbrXo+/PazoVAfomVD/akbm6LcDfRUuvQeBL1AWVXPKWHgeUjEeZT8aTlU7sb4ABLvFtCXqMmWQx7mJtzIJmCmqqjRsAABQDhI65eHYx9AkQihAP6+LHy0TfaoL8MnkTqoG20ZqqKiAyHReoeOw/K2csRRFaYPEIUwBq8vB+HAN8yxglJV9HoH190kRRIeHtpub/hbKFGgMdHWTC//JXS0LVIRGRzCCBAxNQ4BoDyGPKnghWVJbqjqOSWkxUNxbOo8lEMsK/pOdZVjkoWTuQBHvGTaCE+abDnkYW7eEa5MmKEqyrk5A1vCppfD3e1pp3tffTZ8wce8JaVs9Hhr19asssUlpcwcM3PilmWZY+aeTtq9i3/4AbVHLlweM56NbcD4SSxmzGyoCsfwumxqJ1FQ4awtEmNm6BkB190kRSIeHtoe3vlWGi8UCwXw1nPhxVd4S0q1M5H+xkjoMJEPkcGCgZH0C1B/s1HuRv+KyNxNLA/j5G4oee4mgoc6d6N+clrDzN2IYZc6mBizGDhicjfIHQ9z5m6AGFVx1kQBhNbt9tGWDN9XufmfBGDEqGy1ffyECHdjWZaoGxEPBLD+Xf74Y+F/vMnbY26S2LeL3n6Fnv4D37nNuFkfBDWmFapSVkVF2aVxvcOosML5qlUFrrtJAXF52Ntm73k37ZcXhgJY/ZLtrPNKzd2IfYS7AUW7G6eGke7G5KFOl6TpbiJ4GNfdaK+HNN0NcsfDnOVugOgxM7P0438Ahj3rMjcmu7baBw9QwxSruCTzv7eSUjZugmWOmbnIwjN0d7EVT9vr/tFPDXu6sOpVrH4NxpjZSayJMXN9Y1YGpHycbUqHHjPDdTcpIC4P975r2xnNaXa20YcqycgiMy+AdDdO7kaGHid3A9aPu4nloczdqKrr3A2A/nI30Tw0cjdmkRG5G2bePKVyN5piA8HDAXQ3xB13076bJ39Qcb84sIsDOOW0zCv8kfO8iKcq3Ufp6b+EYh1NIuzcSq8+i0SqMnF65jkmj4+qGu1EqsJ5ZN7PRQxiedjdSl2tmevch5ukwaHIzAuQ2N0gwt3Ey54A/bkbSIuUE3djFmm6G2TmbrLhYZ7czdEsulxg/24C0DDFasjokSKTpnrqRjPEqEowgJdXpP2W1YPNWPt2fFXxFVDTvAwvtu60kOWnRKqil5+5SIRYHh7envlNdgBCARzYLddARbkbQW+iGHeDCHcTb24IGBLuRmVXtbuxUnI32fAwx+7GaJEId9Odwr1qydHTJS9//mKrMs0b/Mc1WIvPl0lxpSokVGXt6nDqvsbEtk042BxfVeonsymz0y6zdla4dLRgtutuMkQsD7uz1rnDB5SXMKaQAPFMPPkXKzbGuhvWv7uh/LsbZWq0u5FtFjVxfhy4G6NFItyNHco23ADo6SYAzGIXXe1rmJxqzRunWOcv8caoCiNC5xF7UxZvWX1/DRKpyuTZ1HR6Gpc8el6oapJMZ0YtzHLdTeqI5WGSl72kiF7BOlGsntuJ524s5rgbsYX6dzcsdXcDGXcyczdMuxtlarS7kW3GLAsGxQaCh7mZCI/nbkCcLCYvNtCVi3DTiZJSeVfLgnM9Y8ezf77NexKXXFLKzjrPWztKVkn0tKkq72/MqlYHm3HkMFXUxF/N2TCNl1SyDSutYz3JCimq4KNm20XDubxLSuiM/lmrFlx30z+ieBhM2vIpQjySUfzZWhYjtUpY8JApjwACB1lMZnhIUEI99hhqdj4uDy2m3A0MdyMNk+lumFTyCHeD5KuK9WSXClvS3XAVK/WzUjnnspYDxsNcrrthatQsGkT0jWiHYVVWZ9a2dsRoBqUqAMZOsOonWPt28b07qbuLWg8QAL8fVTWsqobVjmLjJ3j0egRTVbhQFU7N+7Ot0oE9rKJaS1nUegdWU0tnX833bKNDe62DeyN6yOuj0hEoH2NXjrc5mE2Iu94Bar0DiCzGwjYHMLKkKMtqn6iI4qEdyMEN9KGA4244N56yrnjouBvIlTgqFMi/BJ2/RgIeRq+7UfuxyHU32t2o3Avp/ZKuuxERjqnAw/RyG+Y8Fx0yUIEGlIe5dDekxmax7sab9YJgAHFVZcx4a8x4oSqyYS3V+rrrE6lKe0YPBjRx6ABhboSqEEE8RY3ky19pTCNGN3JO6O6kvl5mE3xFvKAU4g1TBAZ9W01/qiIuodCb4dNwT3hE8XBYtQcIZVlmebUskzH1LtZ4PBTDKJOHcvEM+ufhQLibWB7qQVmsuyEVhAaah7nM3eghnc7dQMXc8tpsTzR6nBU5ZpbcYs6Y2Rhai+aG46tjx8ydR3ORBzFVhXSclaZO1FcTpKgU5SOociQVlcqJBmYm4fodM5uzsC7iIZaHntTeyJ4EPr9sdgbo14cjdzyMn7tB3NwNkHLuJgkPRXBk5od88TCXM1ORc3VMeDcRpavqsz3RqPEsckZAu04hFJB9DqlETLaioQIADFXpSe01CcnR0+WclEntARPLLVTeUs0ICDGRdJQftP6ZvjUytejMCFAu4uMJjVgeVtRn6wTrxsn+JfkeauSWh/FnphBnZkrP7qcyMzU0eZhTd6OfWBTlbhgKS9iIiZl3/LAS1jBFuRtNKXn3LJSVdYyGDPqUTFWKc/HQmOLSRO5G3x6eraqQ625SRiwPS0Zm22ijxluAJFKEu8kRDwfY3QwtHuY0d0MQyRqZnFfhXzR3/Wyrfa8dzmg5+dwFHkDlbkg9mJ6L9dSyCaSqGGNmrSpxx8xl5bn46004ZgbJFexOB5tjZgAknhXHmHwVc8xzRgDAWRmhXrfmIjFieVjT6D30vt3bkWHTTZ3rkWvECcTgMXM3OeJh/NyNkZQxcjfCx8TmbpT7SMrDrnYc3Gcd62a93QSwYZXkH0aVo7mvBHnjYU5nplQji1gsXn6qXV5hCZtwumfryrRXeY6bbNWNd5L7saoClSB01vmYY2bTcDFmzghUVWebLR413lAVLhN8nHNzRkCc/Fg3a93r6WhlPR2sz3lTOJWN5mWjyTOMwKW0RM0IkDEjkFVdTwLE5eHY030frMhE5Xx+TGyy1MBMuhttLHLIwzgzU+pSImamoM9L5sxUhKOLx8N927BtvXw/vbwY4EgrA7BrjWdYJY2dYw8bbss/1IHkYT7cja7dyIkeC2zLyjRuzx03yZp3tsdijIiDWCJVYaaqIL6qiAJNVRk3wdPeltUi9+G1/atKOIjdW6wP10ePWwM9LNDDug5a+9eicjyvnh7yDiO47iYLxOVh6QjUn+ZN96Zwnx8LL/H6CqEna5S7yT0PU3U3TsCC6W6gh0IxPAwF8OZy1tme7Ep7O9gHL3urG6y6WTZ8NKDuJse5GwBETgiXX9VujKG20TrlXG+K8+KNp1inneNRY2aWZMwMObh1VAWIHjOLSppj5mkzWLqvHzMxvBZyjR8Sjpk729nbz3pjY00UOnZZO17y9x6yEG/MTG7uJjUk4mHtdE/ttDRShz4/5nzEU17jPDrHyN3knoep5m4gzxuVu3FiDSJ4ePQwf+3pfmKNRttO68PXvHZIhkcMDA9zPDMFyGGEvlPWdDdEAGPDx1mnL/XVNSbr/po6tugS78wzPcaMgPbHilIqyDsn0p0FNfgyZgREJU1VKSyymmZlnsCefaYaMwNxZwSOtmPVCtPEJgMPsj2v+Y/u8kTNCMiKuzNTKSAJD8ef7m1c6PWmMC9eVMLOXOKtHW+Zi1AGlIepzkxBnjfS3ajRYyQPgwH849VU31IvcKyD7XzVB3Vz1kDwMMe5G6jGJ6b6BoZCyAw4CktZ01meqfM9h/bYh3ZTKCgvgAF146268ay4RLlOZlpRUYhSFRXkWw7AYlRZxQoKZTkk3+LR/5h5zume3TvsDDI4s+ejvCrOmJlAxDkYC4XYqhVWuqnxgxu9/grbX6G+M0bqCfiuu+kXyXk4vNFTXe/ZuTqcaMqiqIQ1NHkaTlENzUzu9s9D6GDH0+ZhznM3q19Gb1faDdh3hLWs9Y6cHY6bu8mehzkJN864CXrMLJrEyfBC7mAxBtlU3gKMnuQZM1m8ZEr8QpZcuRAxZhZOVpQkemvHVr5vFz9yGN3GPVP+AtQ3WOMarPoGCyDzsCRj5osu9y1/KpRWxBk/iU2eoXo7cswMlbt59++ZvKmGB1nzOwXjLlJPxFBjUgZmu7mbftA/D71+TF7kYfB07KXuds6A7nYqrWYMqB3HyqoYU7c8AQ4Dk/Aw4gScmLppSloScWRqPMxh7mb/LmT85uj27d7KSbZ3GMXmbpA1D3MSbljq7obUyiI5imOOQJC6OTVWVYzvONKGVa+FO+I9NSIYwPYtfPsWXjuaLTrHU1bG9KNl9Qg3VlX8hbj4Cv/fnw+1HEipHZvmsqa5CVVFuJvDrVZba4b9HephbZu9FVODQISqMOVjy4uyXip7YiINHlbXs+HjPAywIFgBliYPdeAQnxgAZxl9tLtJhYfK3RA5Qpahu/lgXVbteHizt/a0kAp08qw54WFOcjeGqojOs5wxMyLdjXaeukNkEDJeoGGm1tSgVx6x9i17+RPxY42Jlv309F/Cu3dyaWWdBFv8MbPPzy+83DNvoSd55nhEHc69hJ1yqiov3phZuJut67Ia+HTvURklJaFCMG0OAOWFObkD7cRD/ngI5w9d5gcI0MvodQkqq4wUeUjyfnPEy90wfd7kuZvebmT55uiuZkvU2miK3PAwW3cjmjNKVTiRlaK7UVZU0MJpJOlddVcRwFa9aqf+JoZgAH9/PnzWuZ7GqRZSU5XpM9E4xbt7J9+3E21tpB9tMaKOVVZj5Cg2erywq8nGzAQK9vG2lqzWzod6WPAI85ZTlKpkU+aJjXzyUJ5RT4JEuhvAcQXC1pBKvSIrd0POeZO6m+bd2fKEB1nvIatwuJ3I3WRccrbhRgwn1UBTjpktOahwxswyoy+fTU8RLlV2PkW8U8tUFQbG2KZ3wxm89WXVm/bIOlZeIQfZUEPuRGNmfwGbNNXTOFVsknqkJhsRqSpAgtxNZ0cO7tjuafaWl4fMMbO77iYJ8sZDyHdmQk9UR+VuRFFm7kbEJeLSMKTCw3i5G1lmv7mbULb3wAMAD+nKyoxRTniY7WDKUBVnro7r1x4DkEEY0HbVHAHLloJpeqFSOuITA44c4pv+mcmzS8SjiOF0kuy2eOsdmKpO1HoHR1WUAVfl6T4GoNY7gKG3KwePWYE6qziP626SIz88FO5GE8kxOuIf5W70VLFeuqJdUR54KB7QkyX6jlhi3ZJqiNzwMNtwE6Eqqm6xY2btb41ZQ7mzDuPmZZDuQwIBm9Zk/gfcfpia96tJhChVyemYWedujvXkICPGQ/Ks5pg5+2JPVOSHh8IdOYZCRxWxRcm+pcgWEZAiczcDx0NfQW5kKUnuJuMyc+pu1MYoVUE8VVFd1Z+qAKEA9u/Kyi9sWm/n093k5NW9lk+e1XU3qSAPPBQ7MRbH3chQYrgbOQQZDHeDHLAPw4bzoexujKaNURWkqCqRxeqLyvJFvQB27+SxqgJQxqoiM5IJ3I14/ltu4Lqb1JAHHoqddKJGuxtK4G4o0t3oDNFA81A+zTY7WD4ayu4GaakKEK0qMNcUGYcAmSyWi8WBfTxKVSCeBY1MVIXJ+xXiu5ui4qxu+xQorBF1c91NSsgDD8WXWHdjsfjuxgx9euAV625yzsPqkek2XjR8w6iwgo4vd6MaSHUwDFUBHNcnhSBSVcQhYt9DB3KQec2nuykus8qqslIYy0dFw21xVtfdpII88FB8EY/sk/QgQCSGDXdDid0N5YWH/kKMbcyqMcvH2zRkczcy3kerimog1cGQI2FDVbQpFZcRWTIZOb/skQdV0e6GOJ8wPauqlzcqf+S6m9SQJx4SWfosse5G8YOUVdJnEaGJ5YuH0+ZkTj/15mgMUXdDFKMqLI6qyHifQFWIkqpK1uhPVSiH7oZZ1thJrKg4w6paPqrU4cZ1N6khTzxU7oYZuRtn2lvxgymrxJxIlKK7yQ0Pi0ooY8EbOTts+XVEPR7cjYzukaoSFe/7VRUoLRo+KgfzysUlyVWF5dbdgOi0c21fRvc2jTwtxHxq/GioiqhHWaF7w1Qc5IGH4pN+3UKEuxF10O5G527UOEufpz93kzMenjKfasemHReqJ9nl42w4Hi2Ou8mGhwPibmR0709VxKcoVYmgAQOAijTfCB4Lvx9l5VYeVEW7GzBWXoVpp6eddaqeFi4dxeOqSjhMACrcG6biIQ88FDtFuRtS7kafSFsY091Axpq8uuw5Z2FMOkmcmkl23eywKiahu8mGh3lyN0AcVSG5XbamamanZOlu6ixfdn9ik6ZaeVMV7W4IGNuIuefwVB7pJFB3WqhmenggxswnPPLAQ7GTUC0dsJhyN/pECd2N8QA25IWHXh+fs4hPmkX9umyPj+pPD4+eayNi+U7ueZh5uBHv0OsNBKQgGEO6WFWBGiM78d5UFUhV0Y0GQ1V8BZg8I6u7kJpmeQZUVcTmKHcjOmxkPc68NFw5sh9bWzycj1scFDMCGIAx8wmMvPFQ7CTTz0amJpG7kUMziigk/zycMpsvXGqPnojCeMnEgmKMOsWecVm4eoI8uXY3A8HDzG/RnFFX+caOlmOBwLFAaFiBz2laIRjqLjhz7Gppx6t73elg+UoN/dxFpoQIwORTrJ0f8N7uTK5z+gyrtIyJPhInUnfignN9J666H07pYfI7caWqQLKMAcSin+YnhJZARaU47ULe1owDH1odrSzQ49TN46Py0VQ2mpeMtm3N44i/GOdO3DAnuE+fiEE+eQhSL+o13I20tJHuRn/QZ+Ha3eSdh8UlbOYi2ybqbGfBADpaLctHwyrJN4z8JWRz4iSqxwAirpsl9zzMPNwUej1nTah9aduBvYcPTqqr8zArUlVIhkiSPlZ0krzd1rj3nylHaClVkcZAPPQIAMFXyOYttl57Nu3lc1U1bO7pHn0WJFIVmKqCKFUhdWCUqkCRQsuCfpofAeKZ/VD2tKoWZSPDRMwm6u1COMQKKjgHOFiYc22HlaooB2/cidsTCAKYPLw8g846gZFPHsJinHPLYpbqegBEJNwscWJgxJzCmXxiQ4S7GUQellaC4PCQE3HSI03GOccA8zCr3M28sTX1FcWc066DB0O2HTVmdrpXbowYzTJlbx2vaCS8ILNxINlQVDvGmn92ekOqqhp2yRU+kffR6jAQY2axmQiMWWbuRs5+MgjRspgFBsZQWIphVepvQKQDjDGzUVlnzNx5LGRzjCgpnDy8LK1GOBmQTx6a7obp3I2RMXEKp0gPJf9shxAP4ZwtTzzMNlV81czxI0oKA6HwtuaW3pB8lY9uIqj/QTaPM2ZWYmO0ppHwgloWJfqWMcY5jZ9izT+7nwfuaUyfYS25wucrMMbMouCBHTNzKWQqdyN6WF4CcXGsoWGAeBRj0jFzb9Du7gsDuHR6fco9c3IhnzzUv5DO3RgZE1LOJGHuRhx+UvIw23BT6PVcO3fiiJJCzmlHa2t7Ty/k5SFWVWTbpawqMtYaqtIwxbrsX30Nk5NVu6qaXbTUO/8sj79AnzyvqiLU0FAVJi+BWeLYtFSlN2h39AQBnD9p1MiSwjT752RBnnkofknL3UCd5WTmYW7mO/rC9mNrPjzY3QdgVEVZTcmwAq9HjHgtwGKwmLge8YA1Ei85FCFdbBFfRSgWB0ZssRhxrnqaGFgoiJ1b+MFmCgap9QBVVaOyxiotY7V1rG6sJXrasmSjCQWQeiJ0gMtQD4DLW10cagpV4VpEVMPLsTPAOcmsAJGWBQJxLU+MEeccIDCbc2KME9lEBGYTcU4czBZbmCVyNxwyYyc00+acEzp6Q0eOhQDMqK28dPrY7HvqxEb+echkgfKDCBAid8Ms5vIwCrmcXn1jZ+vKna3ic3XJsLGVZYVej8VkTzMQIzAGS/Ufg+ppcTcdERCnj+WeYruotI7LekzqTGdCRHimVimRyqeRWiKhn0otnhHLSSX/DYMqdEGHd52KI2lvne4UAiL6Hoxx4sRV38velZabEzggtnBAzAjYRMSYTSRmpnR/9wbttp5gX5gDWNQw8qyGrO/zPWng8nDI8jDHqzn2dPS8sbNlzxE52VtW6B9VXlpTXJhMVcAYHFURfdm/qohjE6gKAziPUBV5tflWFSb0IUZVwIFEqtIVtNt7AsdCHECBx7p6ZkN9Zab3X52scHk4NHk4IIvH9nT0rN57aNvhTr2lvNBfOaygxO8r8nnLCryW7kUgY1VxPlDkV8hxLNPPHxiaqkLEuVSV7pDdG7C7Q+GuPrGsAQUea1798Hlja8QyNhcZwOXhUOPhAK5VPdoX3NDcsfXQUTGWNlHotYp83iKfp9jnZUBZgc/nYRYwzO8p9nqiVIUJNUiqKiLHF60qTCbu1JRl/sfMjACbOIFxoqNBHuLEiY4FeZ/NOehoXzhMJAREY0RJ4cy6qhl1lW6gyQlcHg4dHuZjaXxf2N7T0dPafay161hL97GuvpTeTOGzWEWhT0zhQelJsd9T6vMyRGyM+CA+kfHZgJPkVzl9pu8AJt3TojwyOx8gQE1MQpYhSgyE7SOBMCTZzEMQ4tQZTGlpYlmhb2RJ0bjKksnDy9x1wwMEl4f9YqB5ODh34hztCx49FjrSFzzaFwTQ2nUsELYBdBwLdAXC+a9PfjCipFAIRXmhv7zID2BcRUmBz+NObw8WXB7mmYdD98a/vrB9sCva/WpmDB0Uej0jS4ri/uSGkhMALg9ziKEbbly4cHGCIQcPynPhwoWLVOCGGxcuXOQJbrhx4cJFnuCGGxcuXOQJbrhx4cJFnuCGGxcuXOQJbrhx4cJFnuCGGxcuXOQJbrhx4cJFnuCGGxcuXOQJbrhx4cJFnuCGGxcuXOQJbrhx4cJFnuCGGxcuXOQJbrhx4cJFnuCGGxcuXOQJbrhx4cJFnuCGGxcuXOQJbrhx4cJFnuCGGxcuXOQJbrhx4cJFnuCGGxcuXOQJbrhx4cJFnuCGGxcuXOQJFoCurq4HHnjgggsuaGpqOuWUUy688MJf/vKX4XD/Ly295ZZbrr322oGvZFYYUpXs6+s766yzzjjjDL2lqampIRJ/+9vfMi5/8+bNDQ0NL7zwQi4qm2+4PMwbBouHXgDXX3/93r17v/a1r02fPj0cDr/55psPPPDA3r1777333ozPlyVOPfXUp556asyYMYNVgQHCz372s+bm5pqaGvGViHp7e7/yla+ceeaZep/GxsZBqt0gw+Vh3jBYPPRu3bp1zZo1//mf/3nxxReLTaeddlpBQcGKFSuOHTtWVBT/rcMDiv3797e3t+f/vAONLVu2PPLII1dfffWrr74qtvT09ACYMWOGqTMnJ1we5g2DyEPLtm0AlhWRxLn55pv/+te/6j7+05/+dP7550+ePHnOnDlf/epXDx8+bO7c3d09derUX/3qV3pLMBicOXPmfffdB+Dw4cNf//rX58yZM2XKlMsvv/ytt94S+2zfvr2hoWHVqlW33HJLU1PTaaed9v3vf59z/s477yxatAjAWWed9YUvfME80RtvvNHQ0LB27Vq9Zd26dQ0NDa+//jqAd99991/+5V+mTp06ffr0T37yk+vXr4+92unTpz/44IP662233XbZZZfpyqxcufJTn/rU1KlTFy5c+Mwzz7z33ntLly6dOnXqxRdfvHHjRnFIOBz+j//4j4ULF06ePPnss89+9NFHdWn33nvvxIkTEzU05/z222//zGc+M3nyZLPpABQXFyc6SuP//J//86Uvfel3v/vd/Pnzp06deuONN3Z2dv7f//t/58yZM3v27O9///v9ljDE4fIQJwEPrYkTJ44dO/Zb3/rW73//+6j+E1i2bNm//du/XX755cuXL/9//+//bdy48bOf/SwR6R1KSkrOPvvsFStW6C1vvvlmV1fX0qVLbdv+zGc+s2bNml/+8pfPPvvs7Nmzr7/++g8++ACA1+sFcNddd1177bXr1q27//77H3300eeff/7UU0/9xS9+AeCZZ575j//4D7MmCxYsqK6uNk/0/PPPV1dXL1y4cMeOHZ/61KeGDx++bNmyP//5zyUlJddee21LS0u/zScgKvOTn/zktttuW7NmzcyZM7/zne/ce++9P//5z1evXl1SUnLnnXeKPe++++7//u///vrXv75ixYrPf/7zP/rRj/7whz+InxobG88999xEp3jssccOHTr0ta99zdwoVCUV6fZ6vWvWrNm9e/fLL7/82GOPvfLKK1dfffXw4cPfeuute++999FHHxVcP37h8hAnAQ8tv9//P//zPw0NDd/5znfmzZt3wQUX3HXXXe+9957e46GHHlq0aNGXv/zlCRMmLFiw4Dvf+c7GjRvXrFljlnLppZeuX79eN+tzzz03efLkqVOnvvHGG5s3b77nnnsWLlzY2Nh45513jh071ozEF1544aJFi3w+3+LFi+vr6zds2ODz+UpLSwGUl5eXlJSYZ/F4PBdddFFUN19yySUej+exxx7z+/3333//9OnTTznllB//+MfBYPCJJ57ot/lMXHTRRTNmzBg2bNiVV17Z2dn5iU98Yvz48WVlZZdeeunmzZsBdHV1/f73v//85z9/9dVXNzQ0XHvttR/72Mf++7//Wxx+1VVX6c9ROHjw4I9//OO77rorqkeFqjzxxBNnn332tGnTLrroor/85S+Jqtfb2/vNb36zuLj41FNPnTJlCuf8c5/7XFFR0YUXXlhRUSFqePzC5aHGCcxDC8DkyZOffPLJF1544Y477qivr//9739/2WWX/fCHPwQQCoXef//90047TR8wa9YsAFGFnnfeeUVFRSIRHQ6HX3rppcsvvxzA+vXrPR7P6aefLk9mWfPmzTMpMn36dP25rKzs6NGjSeoK4LLLLtu1a9fWrVsBbNq0ae/eveJEGzdubGpqKiwsFLtVVFTU19en+xc4adIkXZOor4FAIBgMbt68ORQKLViwQB9yxhln7Ny5s6OjI3nJ3//+988666xzzjknansgECgtLW1pabnzzjsfeeSR008//Vvf+paWqSjU19f7/X5dJV098bWzszONSx2ScHkocALz0Gte5KRJkz73uc91d3ffeeedDz/88GWXXTZhwgQiKi8v17uJzyIcahQVFZ133nnLly//9Kc//fbbbx85cmTp0qViN9u2m5qa9J7hcLiyslJ/1R0jYHrjuJg3b97w4cOXL18+efLk5557bsyYMXPnzhUnqq+vN/csLy+PqmS/KCgoSPKViESBn/70pxljYiPnHEBbW5t5UVF45ZVX3nzzzRdffDH2p9NPP33Dhg366/z58/fu3fu///u/n/zkJzOoXqIKHF9weXgC89AbDAZbW1vHjh2rN5WUlNx6663Lli3bvHlzU1OTZVlmsBefhc80cemll37pS186cuTI8uXL58yZI+YOS0tLCwoKnn32WXPPqHRgWrAs65JLLlmxYsVXvvKV5cuXiwSbOFGUIh09erSuri7qcN09An19fWmdXVz1T3/606lTp5rbzdaLxXPPPdfZ2amnGImIiCZOnHjHHXfccMMNUTtPmzZt1apVadXqxIDLw9Rx/PLQ+tGPfrRkyZKo5NzOnTsBDB8+3OfzTZs2zbSd//znPwHMnDkzqqCzzz67sLDw9ddff/HFF4WxBDB79uxAIMA5n6hQWFgY2/pxkShMihHs22+/vWPHDn2iGTNmbNq0KRAIiK+HDx/etWtXbCXLyspMqUnX5U6bNs3v97e3t+vLqaioqKqq0t4yLr7xjW8sX778OYWbbrqppqbmueeeu+KKK1588cUvf/nLwWBQ77x27dooeTxJ4PIwdRy/PLREmueqq6767W9/u2rVqrfeeuvXv/71l7/85aampsWLFwP4whe+8MYbb/z617/eu3fvW2+99aMf/Wj+/PmxLVhQUHDBBRf8+te/bmtru+SSS8TGhQsXTp8+/Wtf+9qqVav27dv39NNPL1my5LHHHkteJ+GTX375ZTF3EIW5c+eOGjXq7rvvnjJlypQpU8TG6667LhgM3nbbbdu3b9+8efOtt95aVlZ21VVXRR07c+bMFStWtLW1HTt27Oc//7lIyKeO0tLST37ykz/96U+feeaZffv2vfPOO9ddd923vvUt8euyZctuvvnm2KNqa2unGBg+fLjH45kyZUplZWV9ff2LL7540003rVy58p133vn2t7/9zjvv3HLLLWnVKhabNm16zcBxYZdcHqaO45eH3vr6+mXLlj344IMPPfRQa2ur3+8fM2bMjTfeeN1114lguXTp0r6+vgcffPAnP/lJWVnZBRdccPvtt8ct/dJLL73xxhs/8pGP6NWKHo/n0Ucf/fd///ebb765t7d37NixX/3qVz/72c8mr+WMGTMWL158zz33nHHGGY888kjUr4yxJUuW/M///I9uXwDjxo177LHH7r333ksvvdTj8cybN++Pf/xjdXV11LG33377bbfdtmjRovLy8uuuu+7KK6985ZVX0mlA3HHHHWVlZffcc8/Bgwerq6s/+tGP3nbbbeKnbdu2xR0YJ8GUKVN+85vf/OxnP/vSl74EoLGx8eGHH47N5KWLn//85+bX0aNHr1y5MssyBxouD9NpreOVh+yESTG6cOFiiMO9I9yFCxd5ghtuXLhwkSe44caFCxd5ghtuXLhwkSe44caFCxd5ghtuXLhwkSe44caFCxd5ghtuXLhwkSe44caFCxd5ghtuXLhwkSe44caFCxd5ghtuXLhwkSe44caFCxd5ghtuXLhwkSe44caFCxd5ghtuXLhwkSe44caFCxd5ghtuXLhwkSe44caFCxd5ghtuXLhwkSe44caFCxd5ghtuXLhwkSe44caFCxd5ghtuXLhwkSe44caFCxd5wuCHm9WrV3/uc5879dRTJ06c2NTUdPnll//xj39M5cB9+/Y1NDQ0NDR0dname9Jbb721oaHhrrvuSr++/eOBBx4QFfvhD384EOW7GAj8+c9/vuqqq2bMmDFx4sQ5c+Z8+tOfXr16dSoHPv744w0NDUuWLMngpIsWLWpoaHjhhRcyODYRHn300QYDEyZMmD9//vXXXz8UXhU/yOHmnXfe+dd//deXX365uLj4zDPPrKmp2bBhw7e//e3f/va3uT3RgQMHGhoaHn74YfF1+vTp55xzzqRJk3J7FoFnnnlGfHj++efddyIfF/jFL35x2223rVmzpr6+/owzzmCMvfHGG5/+9Kc3btyY2xMtW7asoaFh8+bN4uuCBQvOOeec4cOH5/YsAHw+3+zZs2fPnt3U1NTb2/vaa6/967/+66BHHO/gnv63v/2tbdsXXnjhf/3Xf4ktt99++x/+8IdHH330uuuuy+GJdAgQ+OxnP9vvG+kzw7Zt27Zv315WVjZs2LDm5uZ169bNmTNnIE7kIod45JFHANx5553XX389gGPHjl199dWbN2/+05/+NGPGjByeKIqH9913Xw4LNzFixIi//vWv4nNXV9eSJUv27dv3+OOPz58/f4DOmAoG2d2IcVBlZaXe8u1vf/v111837eWyZcsuvfTSqVOnNjU1feITn3j99dfjFnXNNdeY/uW1115raGiYN28egMsuu+yee+4B8MMf/rChoaGnpydqMBUMBu+///7FixdPmjRpzpw5X/ziF3fs2CF++s1vftPQ0HDTTTetWrVqyZIl06ZNu+KKKzZt2pToip599lkAixcvPu+88xBDLxdDE1E8LCoqevjhh1evXn333XeLLUkYEgUxhNH+5d57721oaPjyl7/c09PT0NDwyiuvALjkkksuu+wyxAymWlpabr311nnz5k2aNGnhwoU/+MEPurq6xE9f/OIXGxoa/vd///d3v/vdggULZsyYcfPNN7e3t6dydaWlpbNmzQLQ19eXUfPkDIMcbpqamgD88Y9//MY3vvHiiy8ePXq0tLR07NixliUr9l//9V/f+MY3tmzZcs4558ybN2/16tWf+cxnXnzxxbTOcvnll9fV1QE4/fTTb7jhBp/PF7XDTTfd9Mtf/rKrq+vSSy+tq6t7/vnnr7zyyv379wMoLCwEsGPHjltvvXX69OnV1dXr16//4he/GA6H455LhJuLLrrooosugjueOk4geHj77bffd999q1atCgaDI0eONMc4SRiSInw+3w033CA+L1269PLLL4/aob29/WMf+9gTTzxRXl6+dOlS27YfeeSR6667TjBN8PBvf/vbQw89tGDBAtu2V6xY8e///u+pnLq7u3v9+vUABtfaYNDDzc033yzi7rJly77whS/MmTPn8ssv/93vfieauLOz84EHHgBw9913/+pXvxKtD+DHP/5xWme58cYbGxoaAFx44YXf+973/H6/+esbb7zx6quvMsYef/zxn/70p0899dT06dM7Ozt//etfAxCBb/v27T/96U9/8pOfCNe9Z8+euOL2wQcfbN++vaCg4Oyzzz7jjDMqKirEeCr9hnGRV9x9993V1dW9vb2/+tWvrrnmmpkzZ95www2vvfaa+DU5Q1KE3+//3ve+J+h000033XjjjVE7PPTQQ83NzePGjXvmmWfuv//+J5980u/3r1+/XngfceCuXbuefvrpn/zkJ7fffjuAl19+OdHpDh48eOWVV1555ZVLly5dsGBBS0vLtddee80116TXLrnGIIebioqKZcuWPfjgg9dcc824ceOIaMOGDd/97ne/9a1vAVi7dq2wf0uXLhX7X3LJJQC2bdt25MiRXNXhrbfeAjBjxowJEyYA8Pl8H/3oRwH84x//0PvU1taedtppABobG4uLiwG0trbGFvXcc88BOPvss4cNG+b1ei+44AK446njAaeccsprr712zz33XHzxxdXV1YFA4NVXX73++uv//Oc/IzWGZA9xlgsvvFAYmdra2rlz50adZfHixaWlpQBmz54NoKOjIxQKxS0tFAqtW7du3bp1Gzdu7Orq8ng8u3fv/uCDD3JY4Qww+BPhlmVdcMEF99xzz6uvvrpy5UphMv/617/u27evo6MDQEFBwbBhw8TOVVVV4sPRo0dzVQFxFjN/JM5iRjTz16KiIgCc89iixEhqzZo1S5YsWbJkiUgzueOp4wLFxcXXXHPNf/7nf7777rtPPvmkGF79/Oc/R2oMyR5p8VCQEAl4CGD06NE7Fd59993PfvazK1eu/NSnPpXBqpEcYjDDTXd39/Llyx944AGdwRo9evT999/v9XoB7N69u6KiAkAgEDh27JjYQefGzF4REG5TF5ViFg2AOIvobPNYHdpSxJYtWz788EMAhw4dev/9999//33hgNzx1BDHgQMHnnjiCTFMFpg1a9b3vvc9APv37w+Hw2kxhDGGQeVhLKqrq7/yla8AOHLkyOBScZDdzf/3//1/P/vZz+69995gMCi2vPTSSyJxM2bMmLlz5xYUFMAYjzz11FMATjnllLKysqiiRGJPpMQA/O1vfzN/FSTo6emJrcOCBQsAvPfee7t27QIQDAaff/55vT11iJHU3LlzdxpYvHgx3PHU0MauXbtuvfXWH/zgB08//bTYYtu2yJjU1tZ6vd60GGLysKenR0xFafTLwxdffFH8Lezfv/+f//xnorOkCz2fW1JSkn1pGWMw192UlJR885vfvOuuux555JHHH3989OjRR48ebWlpAXDFFVeMGzcOwFe+8pUf//jHd9xxx8qVK9vb21euXOnxeL797W/HlnbOOec8/fTTL7zwwi233NLV1SVmEPUopra2FsAjjzyyd+/eb37zm+aBZ5111kc+8pHXX3/9X/7lXxYvXrxx48YPPvhg+PDhN910U1qXI8JN1OrSiy+++LXXXnv++efvuOMOQTUXQw1nnnnmhRdeuGLFiq9+9at33313VVVVS0uLGK1/7WtfQ5oMOeecc/70pz/dd999W7ZsWbNmTV1d3aFDh0we7t+//7vf/e7ChQu/+93vmgd+7nOfW7Zs2c6dOy+//HKRSwqFQgsXLjz33HMzuCiRKhafjx49unPnTgBz5swRSZ/BwiC7mxtuuOGhhx5avHhxcXHxhx9+2NXVNXv27DvvvFPPPX3xi1+87777Ghsbly9fvnbt2oULF/7hD3+IG++XLl16yy231NTUrFy5ctSoUWLFRCAQEL9+/vOfb2xs7Orqevvtt6OGu4yxBx988JZbbikoKHjyyScPHTp0xRVX/PWvf62pqUn9QvRISsx/a3z0ox/1eDzNzc1r165Np2Fc5A+MsV/84hc/+MEP5syZY9v2tm3bLMtavHjxww8//IlPfAJpMuS22267+OKLvV7vq6+++vGPf/zjH/84DB7+27/9W01Nza5du7Zs2RJ1YHV19bJly6644oqDBw8++eSTBQUFt9xyy0MPPZSZSulU8bp161pbWydNmvT1r3/9N7/5jV5iMij4/wENqHlWez3ltQAAAABJRU5ErkJggg==", "path": "image.png" }
Which solution has a higher concentration of purple particles?
[ "Solution A", "neither; their concentrations are the same", "Solution B" ]
0
The diagram below is a model of two solutions. Each purple ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the purple particles represent the solute. To figure out which solution has a higher concentration of purple particles, look at both the number of purple particles and the volume of the solvent in each container. Use the concentration formula to find the number of purple particles per milliliter. Solution A has more purple particles per milliliter. So, Solution A has a higher concentration of purple particles.
Solution A
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAIAAACmkWkFAABH6ElEQVR4nO2dd5gUVbrG31Ohq9NkEAaGYQYYGMAhSRJUwIQgQRdXMWBeBXcNu4uyuq6sruHi6hrvGu4Vwayr6CoKiBdEUQFdBJEhJ4cwA0yezl117h+nu6eZ0NOhuqcGzu/h0ZrqSl319vt9J9Q5hFKKjsYvNY42t8nPtKXgSjinMlyHsSK19wU0xe1Xdx2r23ms1u1Xa93eWrevva8oZhRJ6GK3ZFhMXeyWktwssyS29xVxYobrMBkQQ2U3FQ3uNzfu9vi1yJtl2W0EAEAICAL/QBBYCRCg0uHyqm0cJwUoknBZSWF+Fg9xHQmuwyRhLLt5ZcPOow1uk9mWlpmtmExmWTYrJplAEiACkgCJQCIQSGBBDC6LBAIgBtewZSG4HFogAAkuUwoNUCmlgKrRsOXAeo1CozRsuXF9YMvAMsKPoAFev+p0eR1ub53DWd/gVCThD+ec3t63lhMDXIdJQmjf0zeh1uUFkNWtwJqeZbbYZJMJALNDQoJLCEQPGlxu3CBsudFE2TIFDduTBranhBBKQQgBwJbB1rNNSVi4IqDB9YQQGlxPCCilCB4BFJIo2m3mzjnpBXldALQZJDlGg+swSRjLbvKz7ADcjjp2d1niFXg0NLgU9oDZcuMGYcvBbQEaluIG9ySB7QmlNPCcALbM5MBUwTYKLoME11NKSXB9QCXBI4QOTSlcXh+A0+xmnW8TJ8lwHSYJY9lNzyw7AK+jgd3dJoGio0SV4DKqq+sQ1C6nA8F1mCSMZTd9O6crouBqqHY31HX0qOJ0eyur6wAMys3W/UZxkgrXYZIwlt1kmE1n9+oK4Hj5L5qqdtyoomra/rIjAM4q7NLFAEksJya4DpOEsewGwIgenYo6pVNNO/zLHr+qogNGFb+q7tx32OtT8zNtZxd2ScZd4iQbrsNkYDi7ATBlQI/OdrPX4y47sMftcXesqOJ0e7fsOuDyeNPN8oxBBcm4P5zUwHWoO8bqdxPC7Vff3LjnaINbEITTOnXOyshIM5uN3N/B41Orna7jNQ3V9Q2qSos6pU8Z0MMI/Tg5icB1qC8GtRvG0tKyLeXV7X0VMXNWYReD5K4cXeA61AtD2w2AX6odO47X/lB2rLHEbEwopcAFfbvnZ9mNUCfH0ReuQ10w3CuaTcjPsuVn2X4oOw5g1pmDWApKAILAQpM/EbYewayV0MD60Bq2oFFQQKOUApQtg1IQjVIE1hP2qUYRXBPYi4Y+JfBp2vsbdoiEjOjRqR3uESf5cB3qghGrilslWMHGnitBWCX/iS0CoT/Z9iCsIq3x02CLACgoe+qsBi7QRhAIEsHUr3FN6LA0sD2rnwuTEefkh+swXjqU3QTbACga/4UeXXiLQOhPtj0oaybECY8+EFtI4MnRQLtkoLafBJbZsYJrQoclge0pCCGaRgGIxMDPmaMjXIfx0qHsxqhRhQaiinEfM0dPuA7jpUPZjWGjCjQAxMhZLEdHuA7jpUPZjdGjSpK+NsdgcB3GS4eyG8NGFarB2GVmjp5wHcZLh7Ib40YVAmOXmTl6wnUYLx3KbowaVVRKYezHzNETrsN46VB2Y9Sowq6BGPgxc/SE6zBeOpTdGDWqBMvMyfreHGPBdRgvHcpujBpVjN/fgaMnXIfx0qHsxqhRxfhlZo6ecB3GS4eyG6NGFRg+qnD0hOswXjqU3Rg1qrDenIKR+1dxdITrMF46lN0YNaoYvzcnR0+4DuOlQ9mNYaOK4ZNYjp5wHcZLh7Ib40YVo1fRcfSE6zBeOpTdGDaqaEZ/zBw94TqMlw5lN4aNKgCMXWbm6AnXYbx0KLsxbFShGowdVTh6wnUYLx3KbgwbVQz/Ji5HT7gO46VD2Y3Bo4qRs1iOjnAdxkuHshvjRhXA2FGFoydch/HSoezGqFEl2ACZrO/NMRZch/HSoezGuFGFPWYDP2eOjnAdxkuHshujRhXj9+bk6AnXYbx0KLsxalTRDB9VOHrCdRgvHcpujBpVjF9m5ugJ12G8dCi7MWpUYeuMHFU4esJ1GC8dym6MGlVUw/d34OgJ12G8dCi7MWxUMXxvTo6ecB3GS4eyG6NGFeO/q8LRE67DeOlQdmPYqKIBxp5wg6MnXIfx0qHsxrBRhV2IgaMKR0+4DuOlQ9mNYaOK4fs7cPSE6zBeOpTdGDWqsCMY+TFz9ITrMF46lN0YO6qIBn7MHD3hOoyXDmU3Ro0qwc7jyfreHGPBdRgvHcpujBtVAIAY+TlzdITrMF46lN0YN6oYvb8DR0+4DuOlQ9mNcaMKgbHLzBw94TqMlw5lN0aNKqrhy8wcPeE6jJcOZTdGjSrsIoycxHL0hOswXjqU3Rg1qhh/9kKOnnAdxksHsJvyehcAsywZNqpYZCl0nZyTFa7DxOkAdlNaUQOgZ06GYaNKj5x0AFsrqpNzAziGgOswcTqM3eTnZBo2qnTPsksCOVLnqnN7k3QTOO0O12HiGN1uDtc56z0+syydlmY1bFQRBJKXnQ5gS3lNku4Dp33hOtQFo9vNNpbBdsoEIYaNKgSkR3YagJ+OVCXnNnDaGa5DXTC63fxcXgOgZ3Zm4xM1XlShoF0z7bIo1Li8RxvcybkTnPaE61AXDG03B2udTp/fapI7pVkbn6ghowoBeuRkIFjC55xMcB3qhaHthmWwPTplIvyJGjKqEELyc9IA/Fxu3HYBTnxwHeqFce2GUhpoC8jOQPgTNWRUoZR2slssslTv8R2qdSbljnDaA65DHTGu3ZTVOp0+v8Uk59it6AhRhRDSoxPr+FCTlDvCaQ+4DnXEuHaz7WgNgJ45mcFYYvSoAqBHVhqAbRXVWuPpOR0brkMdMajdUEq3V9QC6JGTGYwlRo8qALLsFpsiO33qL9WOJNwVTqrhOtQXg9rNLzUOlsFm2SwdKKpQSvNzMmDsjuSc6OE61BeD2g1rCyjolIXGWNIBogohpEdOGoBtR2tVzVh5LCcOuA71xYh2o1FaerQWQF5OJhpjSceIKnazkmk1+1RtT2W97neGk0q4DnXHiHZzoNrh8as2xZRpNaOjRRWA5hn+xVxONHAd6o4R7Ya1BeTnZLE/O1ZUAUh+dhqAXcfr/Kqm643hpBSuQ90xnN1olG4/WgugR6cMtqbDRRXFJOekWVWN7jhWp/Pd4aQKrsNkYDi72V/VwDLYNLOZrelwUQWU5mWnwWB5LCcmuA6TgeHsppRlsJ2yQmGhw0UVENItKw3A3sp6l8+v593hpAquw2RgLLtRNboj2BYQCgsdMaooktglw0aB7YbJYznRw3WYJIxlN/uq6r2qlm41281Kh44qFOienQag1JAv5nIiw3WYJIxlN9tYSMnORFhY6IhRhQC5mWkCIb/UOBxeQ+SxnOjhOkwSBrIbVaM7jzU+5o4eVSRR6JJpB7DVGIGFEyVch8nDQHazp6req2oZNovVbELHjyqUgo1TbcBxADgR4DpMHgayG/Z+SreswDw+HT2qEILTMmyiQMrrXdVOj443ipNUuA6Th1Hs5oQMlj2wjh9VBEJys9IAbD1ao9+t4iQRrsOkYhS72V1Z59doptViUUwnTVQBkJedAWDLkfYvNnOigeswqRjFbthwsLnZmSwI4KSIKgCy7WaTJBp2Ig5OE7gOk4oh7ManaruP1wHolp3BggBOlqgiCEK3LMO9mMtpEa7DZGMIu9ldWe/XaJbNajGZTrKoQinNzWbNkDW63S9OcuA6TDaGsJttoQwWOMmiCiEky2ZRZKne4ztYa6yBYzlN4DpMNu1vNz5V23W8FiyDBU6+qAKgu2E6PnBag+swBbS/3ew6XqdRZNttJlkGTsKoAqBb4L2VGqNNxMEJwXWYAtrfblhbQNesjMANPBmjSppZsZtNbr96oLpBj3vG0R+uwxTQznbj8at7KusAdM3OCNzAkzGqgCA3i5enjAvXYWpoZ7tpzGAl+SSOKqCBcQC2G2wiDg6D6zA1tLPdsLaALlmZjZZ/kkYVs0nOsJp9qra70hADHXHC4TpMDe1pNx6/ureqHkBudkaj5Z+kUQUAe2+llJenDAbXYcpoT7vZcaxOo8hOs0uidNJHFQBdswITcXj9auJ3j6MXXIcpoz3t5oQM9hSIKiZZzE6zqhrdeZyXpwwE12HKaDe7cfn8+6rqAXTJTD/B8k/eqEJAumbZwdunjATXYSppN7vZcayOAtlpabIknSJRhYJ2yUwnwD7DTMTB4TrU4SZGTbvZDZsRtUtWJoBTJ6pIAumUYafBwbc57Q7XYYI3MCbax25cPv+BqgYCdM5MB3DqRBUQ0oW3TxkGrsMU67B97Gb70VoKZKWnSaKIUymqgNLO6TaBkDJjTMRxisN1mGIdSik7UzhsRtScNLvX6xUJBAI/IBIQQAAEAQIhfkoFAgJIQuAJigIJbMC2JMHYEviTsDXaiesJIAgElGrBB00IBEI0jVKAEgBQ2TJAQTRKKaWhZRCiaVpomW3JpKZRUEDTKEA0qlFAo5SCUKqFdmd7UYrAuQgRBJyWaS+vrv+5vHpUfud2uf8cBtdhinXYDnbj8vl/qXYAsCkm9pgJIBAaeoQCQEjgqRPARxofLSGNT7fJw2YLYEcggScqsOBAQQghzPspDRk9e06qpiH41DVQjYI9So3SwINkzy3wFENPVwMRVE3TQClAaehTGtAEoGpMGezYgadOQcwCBVBaUcPtph3hOky9DtvBbkoragFk2KxyIIOlgsCeIPNrAhIonYYlgIG0kxVKQ+GCIJB5IrAhDWxMA9GDUioQdsBgXkkCm4WXmTUaKP2GCt5aoMyssUshwSdHKSgNlNo1qgVOTtG8zBxQhqaxL6VRysrMlNJ0sySQwEQcWVYlRfedcyJt6lDe6pW3+oQqjbgpAGImNFtAHwklMrVAXx36j6u+g37/QY1ZBskmQh+JZJ9sOmwHu2FtAVl2u0apSAghJJjoBYq3JFipxqBhtXHsCQcLuey/NLxwHdg4GFUCBdrAIw6YCvssWGlHNEoJIVSjBIQQ9jQCS6zEG1BAYE2jHQpEUDUNCHokO07gy1BWfBYEQdU0VqgmNFifB2RZ5UqHd2tFzVmFXVJ25znhRNCh5WuP9Qs3cdEmu5A9wPdefEQwTsE4hVoba3Li1qFrnbdhlcdf1kIHXyGbSKNk8SI5Vh2aSqlwRJP3BqqDVAXeXsTdE56u7azDVNuNw+srq3EAyLRZWVk4BdmNWql6f/J5N/u0Ss1fqQGQcgQpT5T7SqZBkpBDUpzdEIJ0i6nS4d1SXs3tpl1oTYfEiayX66XDEXv3uyiWu+kGL7nJRvLEuLMb/3G17jWnZ2erNbVaFfUu8wrrfeKNCroL0ejQtNJv+kYjJ862IAPm7TQd8HZF9US4CttNh6m2m20VtQAybTZREFKQ3WiV1PGZ0/2dt8ll+Cs1f6Xm3uzDv2C9WLFMUGBGyrIbjVK7IokCqXF5K+pdXdIsSb3nnOa0qEPpkJr1cr3QLKlpmSpNe74Bv7OTHiJiz278v/irnm7QnG2fS6ui2hNu8SqFjBAj6FA4TJV/+YXDkQ5oKkeXxdQxhBy/kFJLO+gw1Q3hrC0gw26ngfozBH6ZQXshCFS1tdjfIZAiIPxf8CmDNG5MKaXw7fTXPFrX3Gua4PzUU/NovXpIC+YoIME8JdA4cGJ/h2BzQTCqoOXshp6Y3dBQdhPsYZFpVcBfaGgnmuuQOLTM1xqi9RqGi2rPN6BSi6xDthAUNgWIv0yN0mtCqG95tA2+1nQoHKHml32RvSaEbRPNfQ3E1Q46TKndOLy+Q7VOQkiG1RIssDC3RsheKGiE/g6h7CbsX+gW08aNCfGu99Y/3UCjU49aReuebtAO0lCniVB/B0JIk/4OhBDWAikQIXRxrfV3EAQBgQppdumsLxYIIZkWGby/X3vQog6zXneI1VrMx3JR/yuOCDoMdXsJCptQh1bzmiMmr2FoH/noIa25DsUjML3kJa4YDmUqR+57SL0OU2o3bI6bdJtVEISkZjf+Mr/zX7HcfoC6UP9Mg3qcnSfp2Q2l1GKSZFGo9/jK+IQwqaW5DpU9fmVfnL3d6EFVW++NPrtxrG65YrhtXKAfeZvrUHonNq9hmPej8/JU6zCldsNe0Miw29FYHZuU7MbxsiPKvCYc6oL7TRdSld0ANNOmACjlM96lluY6tH+T0FS26jJ3lNkNdcC52hP3iegeDXsC1c9Mh8L3KjkSs9QZGRsg16RUh6mzmzq393CdkxCSYbEASF5241nl0Spjz4oBAP5dqn+nmprsBiAZZglAaQWfECZ1NNeh5IKl1JfIMWmVRitDTzBSduP+yUtjL0adcK4NfoTpUFyZ0BBZ2WuQSh2mzm5Kj9YCSLfZiCAgmdmNJ4HoAcC7zJOy7EaRJUUS3H51P58QJlU016F4WIeXhrSfQi0SkbIb7+aEfA0A2aMiqENyiJLqhAzCuh+p1GHq7IaNmZZht4eylWRkN9pBlVbFmdow1N0qnCnKbiil6VYTeHkqhTTXoblchzE0wwrvkbKbOGqIm56oulGHZGuiVy7VQilPnQ5TZDd1bm95vUsgJM1qCWUrychu/K13mooe9ZCamuyGEJJulgFsP8YnhEkFLeoQsVfzRSRSduM/qMfwwFU0oEOnDgcT3KnTYYrshrXqp9nsoe57Scpu4NbhZtGDaoLZjWkvlfdS0z4KRxvZjSwKFlnyqdouPiFM8mlRh6HAphORW6b0IZDdHE4okWfItanTYYp6FbNW/XSbleUmJJjdJKNXceJobkix9ypGJbV+q4l7qXRiS4GaCWcxqR9NfJmNvYobey1Tmm6VXbX+0vKa4s4Zelw+p1Va1KGrQNL1vgd0SNBCr2IpT/TtSjgBzyaBQGvRwcA0JXU6TIXdVDk9RxvcAiF2ixXBN6EoICbtnakEEcyh7CPad6ZMK/3K/7UcasQapK2jaetowxBUTiR+c/Ad9ODYa3ZFroBr1/Far181SaIe34DTAq3pUMvW4Z4LfeTgYqMOm78zJVgTVqiZHRmUUtqdkK2JHk81p06HqShMsW4Odrs9PDdJar+bBCF5YvR1N8QJ67O+1rwmHPsm5C6mSvkJdTcAJJFYFUmj2MEnhEkmrenQl0X8WYn9EMxE6Bv6fUaquzENlls+QvSUSAjqkGbpEF49XVKnw5TYDWsLsNoAVunB/p+Uuht5UMKPExCyhSjrbogL5v+J9l0VAKZydFtM5ZrGuht2TFZRx9unkkoEHTrPMCVyZGGQHGWvYlNRwuWJ4YFxTimltHeiv19PF2iW1Okw6XZT5fQcc7gFQbBaLACSnd0IeSIxJ2T5QneB5JAosxt5cQxeEzi+G13fg+huzG4IgU2RCbCvik8Ikywi67BhjDn+BMdMpF9ZouxVLHYSrRMSGMiqtygUiQjpMFvQeiX0E64ZjVTqMOl2wyrn7DYbCZaVk5rdEMB0bkLjkpkmmIK5TBvZDfneJ+6Lp2lAKUfG+hOyG1EgNrNE+YQwSSOyDjUrqZsS5/AL4gwLsZLo35myX2wR4q3iFSbKTXSoXhB/JYsvE3WDU6rDpNvNz+XVAOxWe+Dv5NfdKBMUEu/jJNlEHiUHc5mI2Y0D0ifxR4DM9USqaYwqFLArvDyVRNrUoed0U33sjkPOUYRRptbqEJtnNwAhNmT/IS0OxxGuNKGP0ESHtLegnhVnAe34hSfUIaZAh8m1m2MOd7XLKwiC1WwOrEp+dkOsxDrLGsfVEjOsv7Gyg7SZ3Qj7tDheww0hupG2vTGqEMCmSISgrNZR525jgB5OrESpQ+c55rrLY1AOucgszrC0pkO0kt0ARO4hZlxni8lxhImyMEJsMcv2TRPV2ItUxyfC2b9pHWKydZhcu9kWyGDTSChXSUnLlGmIyXpZzJHKcplF6sE6Abed3ZCfE+1hZduB8KhCCLGzijpentKb6HXoHm6qudWutlWPQ7MFcpONTDJH1mGL2Q2TujJYyv6DXcxp+wdIzJCuUqRJpgh1iL5Zsjoght9y5UTUjW7aQpoCHSa3302gwGwNixgp6XdDKVUmKMRKHK9F1c2bmIntWos0SGQduEkUYxUn+GocAOsBhEcVCtgUud7lKy2vHs0nhNGVmHTo7y3V3Jtu+Y9X/tknb236RiXtLdFRJoyQgz/3FnTo3+xVt/jUg6oafGVBLpKkHpLcVzQPlgORlBC5h9jlkfSGLzyO1R61pTEMiBnSeFkcp2hmLZhlt9z/i9rgvk6SV6ryWpVEHEvDn4mqiXD0D/RZ1ZplN0nVYRLtpqLBXe3yioJoMYclGon0KnZQYasP1ZoW2BIkWyCDZGJtLG8FNiaEgCqjTVK26PzUFbkfp9xHsl1uFroJFIh+rGJhrw79x1lvTkIC46hbTaJASEWDm08IoyPx6dAz3OQbbiIE8mGVuNhMcCB9pNA8U6H8KJSVE8C/3uv/zK01e0nYt8vv2+V3rYKzh5g2w6IUywjOxGA/X7Gep/jKVNcmLwj8x6mQQyio0FsSigQAGqWEtqrD8N7t3gtE7zBRXqvK21Shuul98HVF3Wg4hwpamHOF925PgQ6TaDcsg7XabCesjSu7IYdUYYWb/OwDTnjGAPxvQiyRpfGK0E9Gs96cUl8xs1+aZ5PXu9nn2ewLH3NLzBFMRZIyWpb7imyGsFBJO5rsRheaRBUANrNU7/L9XFFzNp+hQScS1KHaTWQWIwa3bzHLhhO+JU7/+jbqO/xlavXTDbZzzemXWxA2z5TYQ7DlKeHT1zFBRtAhDmnCVpW4KDlExWyi5kLNJf4uxD1VcE4hwhHASYUaqilEVagvE/6sYG8dNI7e32J2g6TpMIl2E2gLsNkD70kzYs9uxA9d4teRhrBRt/jULT5tgmKeYQnPbhAsMyuDZfMQE5u90P+Ln1iJ1EkgYbMXktjnmaJZJPHyVJOoworN9S7fz+XV3G70Qi8dNmbZzd/dc1Lv8w006re9HavcmkvLvM4aNC+QmOY72+ATVvgRLr+9CLWH+wYIrotFfy6lEIKzaAKEoKUZQVrMbpKnw2RVFZfXu+o9PkEQFZOZ0rD7EkvLFHFS5Z8Nkb0mhG+1x/Ff9XAyn265RYAAcr7EvCawQej9bIKYZmJIvP+4ppyQ3bCrVSSRTcRRXp9AuxcniC46RGBNYPvmLaT+N53Rew3D9Z23fqk7Zh06Qf/bjXd8aD3UyaVa2nM+8zdaULdAFOMuISU6TJbdsMo5m90uCMHaeUYsLVOmVx3Cnhj6tmgHVcezDYjYIhC4s0FZNY4+QxEctSaqlimam6jd1Bef0DIVumybmc/QoBu66BCBNYHtm7SQqqs92pZ4xuhrWOp27/BHr0N6mKqPOOmetisNiRvWT7WM51W4Atff5rhLSIkOk2s3VqudhryaEXVUMX3oEvfG3I9OO6i6/+WKkN0E7mzC2Y02MtFXZl0FLWQ3lMKmyAC2HKk64b5x4iJxHbaR3Tipujz+YdUdn7qj1aGDqv/tRiyphnSEZrypxpfdJEmHSam7OVznZBmsWTETEt5GGG2ZmVRr8to4hxz2fOlRzjNLOUw7yZojnOYSrZcQd/sU6z9O0LTMTEBNkiAJxOlTD9Y6e2Ta2joSp1Ui6FBw07RSr63UZ9nnF4JDsmkW4usleQfKvgEytSGauhu6wZvIYICenX7/QVXME9vUoW9hbF7DkPdR2yqtfgJpbTbX1upukqTDpGQ3rC3AZrOjMR0IEl1UUT5PaCIO17+cyc5uQOBP4HWV4xe2GlUAWM0y+ASbCdOaDjM2eno+V3faB07bNp8QNvyj4KLKVl/ae86sBXXKD95oshu6O9FXGZ3fetGWDv3rfXRPnKOO2lZpYnU82Q2SoMOk2M3P5TUALFY7Gis7gkRXZjb9kFAHat9PvmTX3YACfSTflHjSw7rBcPRvtcwMgHXr3MYnhEmM5joUXbTbEmfuEqdcEyktJS5qfddpfcdJnLSNupu4am3C8R1U0ZYOtTUJmZrtWxpH3Q2SoEP97eZgrdPp8wuiqChmxJXdiLFUD7eGd5MPSc5uNKr5zxF9Z8SW4zj64dglbUQVkcAkCW6/uq+KTwgTJ811KDi1wlfrMzdGW0iXf/BaX2qAI6DeFrObxGF9AiPoUDtIaWJjEps3afFlN7rrUH+7CfSqsqaxP+PIbqRDOoxWrx5SkeTsho3m571c9EyJ1nHqB6NiZttRhQiCxRSYaSzxW3Fq0lyH3Za5LEdik5Z4SFU+CVSZtJDd6DGtgr8yZAQt61BLuLwmuKFUsAuPLbvRXYc62w2llF2ZJfimfzx1Nx4dMrcU1N2EZmLwnSU6bpf8hZGinbsnyq/D8UujiipU01gz5I5jtX5Vh7clTjWa6zBroyd7UzyND9L3XvF7L1rMbvJ0GNCXvaUZQYdUj44vbOrOWLMb3XWoc8tUWTCDNSmBVy3iaJmCDm4TTF6S1jKFE2di0LoLjluIcJiKezW5lFIK037qLSAAvF3RMAS+XNLmuyqsRYBSEEEQNE2RRY9P3V1ZX3xahg535FSiuQ5zV8f/qzWtcLtHmFpsmUocMZtN5tmqDpHwTHgAzAfgKQxmN9G1TCVDhzrbzbajNQAs1vSAebB0AI31bYjmXRU9prMIZTdsBPzG8hPLHk/MbrSAETVGlbbfmTpxJga2pz8XvlzRNYZSQKPs5RdWgkNjVGn9XZXwqEKIYDZJHp9aWlHD7SZWmugw50ePKWLdcGRItSZ+78VIExAKVAErIL0lmlhVo5wnIqIO2bSZCeLLYBdOtHbVoZ6FKUrp9opaAGarPeQvcdTd+HN1yFHlvhJSUncTOErgU4JAphp/b04ARBAo1ayKBIBNxJH4DTl1aK5D+76Eqz92+1tsmSIJD8Wv9JMQUYekux7RN8sQOtTTbn6pcTh9flGUZJMpVF0TR92NWiTRxIY3ByAVSUhV3U1oT7ZXcHsgrt6cCEYVAphNokax4xifECYGmuswbX+izdXiHn+LLVOkREYCWhVzBGWwjIg6JNk6/Eh9GXHW3eirQz3thrUFKNa0UIkJcWU3oPCdnlDQMI1WwutuOmh2QwgxyxJ4f78Yaa5DJYGSFINUay1mN8gRhARmVrBPMbepQ7Ek0RoPNRM0xxA61M1uNErZ6O1mqx0kaB7xtUwReC40IwHMk5VUtkwlKbuhlJoVEcB+PiFM1LSmw8RpObsBpHEK6R5P8d8y2mQ709SmDomVCKcnVL3gGkoMokPd7OaXaofbrwqSLMmmxLMbmi34zo4zaCjjFbGTeHJkNwTEbJIoUFpRG9/dONVoTYeJ02J2QwFqJfLt9lhnN5PzxMzrrVHqUBwXf7JPFTjPFAyiQ91apkqP1gAws15VLKqwWxbWMiVXa2nbvba9fuWIKtVoANQsQc0SPKfLngEmZLO8I9DQ7JluEQ6psb4ULvaRzL+20ICRpbplKjy70U7MbuJoEdA0DQRmk+D2orSi+oy8nISe0KlBizr0ZAoJlqe0LCGU3ZzQMgUQgFiJ8mCG99l6LboeqpbRSvqvLWiWZbemQ9JHEM6Wta/jqYGqmyFqFqPoUB+70SjdEcpgAVCQYNpECAiI6NI6r/N0XtW074NYrYnVmmmvP+1jl3u4yXW+meYIoTdxvTfYTK86onccsY9kucUGBDoOIJjdEArvTlU95Fcrqf+gX8oRxBzBPFiO5k1cIKp+NyxNDewf3BIUcbyJSymIIGhsjEFKFVkixHuw1lnn9qabE5pb9qSnNR3WF8hKXH38Go/cW2IBtGndTSjrscJ0h1390uNf7aFhr302gViI/WKz7XwzwrJsGkX/L2mGybdHjfVtBteZgncggUYNokN97GZ/VYPbrwqySZBMrF4jPLsxH/EXvt0Q+aU4AOYfvMpWn+Nau1oUnAXZSry/tZs+amPwUIY83my+zBwqfAIgBJpDc37gdn93wu7s7c/6pW4xRzCfabJONhk5uwFgNkkuj7+0onZ0Tz5DQyRa02FDodQpQbvpI0XKbljEsUKebJZHK+pmr3+9Vz0x01EGy3KRZBltEmxC8yzbV+b3bPZ5d/oBaC5KsgSxhyj0FmgWITkC06F4m+J/1YuoXw13DxUcUwRqJB2SE+px4+XTbWU/Hak2p+ekZWQRSgVAFCAAAoG9XO2zsE5s3e+b47zC6h9hEoPPUiAQqjRxhVv4vuXXxMVBsvwrCxsSFGx7QgioZ53X+b6LttUpU8oT7Nda2UwMGijrnoewEaq1gOuA9dkLrNQ0EEHVNC1QJRT6lNKgNwmHqLyfKqWaVAOxBgC8XeHLgKMfGorhN1MKompa4JjB3UPHpwFxwONVqxvcp9nNN43sG/1tPAWJoMOSf9TE3dNPyxI896cLJHAoApAtPuGISg8GJmlAnijkCGKJLOYIbAOwLV1QD/rlvpLAzIUGEodQNgHAs8lX+y9XixO/ACAWSONNwkS5URtbVPq2BxEHaKFmOKYInmFicKxiCkJUTWPmolEqHaGCm/gV6skNKDY1OtTBblSNPv31Vq+qZXTJl2WTAMoejEhgrtEGvFAbk9cAoBbinG2n3RtHwCcAIRAIyE9eclgLxBMCobsoFsnEylyJEAQn6ACcrzm9bQ2LH4JYkH6XnXQn4SPgh54BDToIDfYVBjnBjJp4DaWUVMO6SjNvbFXfqpnWjCJVI6jP3Ohl4c+YeRklgeMfq3FSitmj+/EJYVojgg4Fgk4/enp+6IjvyJ6ZVo3FPycV13qENZ7WhtQSiyTTJIvUVwzpMLQgBNMZAsICo+bQal5yeHa2XVdAugvCdBPpQwI6dIKu8GGr2nxwfi0Lvv6i6zyiWQgNU6xGKXHBto6at1FT+Qm7+DJQ3w+VI6knIxRlk6VDHexmd2X9vzbvE2VT+mn5koDwqFL8an18PaxoluC8P70xuwlFFRJcCK5p8icAgcD1usu7LrbkmViQdqed5JHEsxu5lNreV4UoBghzd0XZZdSbSSNHFY3SeqfX5fGfVdDl7F58hoaWiaBDgUAkyP/AEcdbmr7hJt+VVgKIh1XTQgeq206RTBMUZYYllGUj5DVh2Q1t0KqeafCVxdBPV7jShBESwnXoBD3kFw5Dc2n+XgK1QM0l4ZEvlN3YV1Prt1pkTdYMpofPg9+sJU+HOjSEs15VkiUtVBBlZea0ff64e3OSak1aE1BGa/0dGsvMaNyQAN513li9BgB1wfGGU3MEDhTqj0BpbP1uTBtp2htReQ0Aczl6/S+UctJafwfWC4MQoigSgJ8rqmP9XqcOremQQSkOT7K4u8bWgUXtJnqnWQAIu/3yPxui8RoA3tUe18sOhD/QZv2/ql9yxOQ1ALS3vdiinqBDK6V9BN/Zgv9CSetNtNxQLUxjHSKcyF6o2Ve14TUAMjeTwjch15Dk6VAHu9l5rBaAyWqnwU4ErL9DtwTewQVgClYPB5XTrL9DsJY2uAcFoDmp+/04z6se1LxrPEig3428F/b3YxxRxU3yPoHgCnTbadLfgfXCoJTKoigIpMblrXLpP1H8yUFrOmQQAs0q7L0xrWZotKUA7xkm52w7bEQ4pJoWOUgsYxL7f/K5Xnc2PtAT+3/VL3V5I87s2hraOx7iiqH/F1zIWqia9kV75ZYK0nchMdUKSdJhonaz83idV9UEWRFEOTyqiE6afiChF1VItSawIbIARJ3d+Nd5aQJDVfvW+RBvdkOcsL0Rj4bMFSR3JUHE7AagIhEAOL2Jvv5zUtKaDsOzG0qpaiGHZ1iP/Mrqy4ykfDVLcF5hdV1ppVYCB1Vejc1rGN51Xvf/uZtnN9QB56p4m8lc0FZ4EVGHCMtu0j9QpSOxXbnoJoUfEMFJkAQdJmo3wQzWjrCuuqCwVujwErOw248Ys5voq4dbRKui/p1qfNmN6ds2ZoOPQNYW2A6QCNlNIEACHj8fbasFWtNhi73ba4cpB25Pr7jM6hgga2G9gamZeAbKdZdba+9M8ww3sYcrr/WQ6MpQzXF/5maVyuHZjWO1W0tkCJsf/HBGld0oP1LTtnhOZKkgp/2HIAk6TLTfTVmNA4BstiPYRZLVoNiO6PCOD3EHsk9E7u/Q6Eg0ym6dEVB3+8UiUxz9bpRvEjKCzt+T+nyteX+HUO9BIgiA5uWD+7VEazoM7/8VPu6SZiYNwxTHMIXVIhNAABUFwhYIIAS7c8pfxd9hh7qo5zuv+TyFhvVu92xOLD91AVv9dLjUZv8vyxfx/wZP+54cP52401V9dZhodhP4euGVYAAoRD0GAGUZbPTZjT+KNsU2UXfFk93IpTTu1IZh+yVS3U3w/HDzsW9aojUdtpjdAOwBsv9HendP+tlHYuzG0QTPei/CshvqgD/xEY6raJvZjalUY1294kP0kMxd+uswUbsJnFwItAqFysyqQiLtFh3UEjgsoq670YU46m6ExMbKByC6iW0/wrObJmVmdqs93G5aojUdNqm7adwhupEJpISHJVcPqgiru/Ed1OPN/t1am3U3cmmi8T5zp6C7DhO3GwCBHvvhUcWRq9vLnzHV3eh1xlizG6FaD7OLmN0wJZnEZM2z3KFpTYcJZjfCYR3M3bfTf2LLlA60md0IzXoAxkpaGdFdh4lqVwjUtgeakEJRxZOhw69C7c3GVQRSmN2QbCGO7Cbu2sRwLOWRWqZUlQLI4b2KW6I1HSaY3ejFif1udDlgG9lNrA1SLZ9Fbx0magrpFhmA5g11V2GXCW+24IyxS1UTqJlofSTEkt1IfXVIqYScUC4TQ3bDxoJNEFfXSNkNm3kjx5rQwGMnK63pMMHsRi9C2Y2Yo8M43LCSNrObBGsSGZJH1FeHif5IemTYAGh+D5pFlfLRCf0wfOcEp44BEHV2I/ZJ1HHkQXIc2Y2WpYc2W+93w97iEgmxKzpPnnFyEEGHjHbMbgQrCWU3YidCEp9opJfQZnajZiV6EgB+RdVXh4naTV6mDa1ElcqhiidiZ6oIUDPxB0fzi6nuRh6d0IgwYndByBPiyG60bjpkN+4urWY3Hh8F0NnOU5uWiaBDRnzZjZpw9CIWIuaJ4XU3bCz0hOgjtJndaJmJmpqqUN11mOiPpHu6FYDqc2uqv3lU2XtlWnxNVK6ZVi0YBGLKbkyjTYmMXK9MUhBXy5S/INGnW9eX+s1aa9mN2+sF0DsnLcGznKxE1iHizW78AxO1huYzgpgHJzZGWi8B3aPIbnIT/WnX5+uvw0SvSZHEok7pALwNNc2jijNXPHSxNdZjui8w+0+XQ6EopuyGArZbbfF9F6mPJA8J1BbFmt3ARrzDErqZVSW0tX43flX1+TQAfPzQ1oisQ8Sd3XQXtcRq5UxDZITV3QBEGSKZiuJPmshFJkTRMuU5I5GrBoCavpruOtShCDC24DQAHkctNK15VKkcouy/0h59juO8wuqZaAYajxBTdkMAMU+0zorZ48Tuou0WCztpHNkNpdR9Xvy1gI581PWjrb0z5faoAPp1zrCZEs7DT14i6zDuuhvvdEvclyT1kUyjTGjaMkUyrrMJcdXgkLNl9CaIqEMEsxtfAhm3J4NWllDddaiD3eSmWwuz7aDUWVfVYlSpG2Dae1Oao6ANR/f2kmpvtYfeVYk7uwGgnKnYro3BceQiKf1Om2ANxL84shtCCM2G87J4HEdVcPjCQIBtnt1oKnV6fACG53WK4+CnDm3qML6WKbVEVuOd9cx6uTXwQE98I1zsJGTGnoOTbgK5VG5Thwiq13l+/PGv/CwNSdChPn3GLuzbXSTE46jxuJxAC1HFnSseuDntlxvTqs80+07MTjUzcZ2h1F5rr5tt9/eWQlEl7uwGAKXUNMpkv9Um5LTxBYmF2C8zp99lJbZQbIgzuwHgGUY8sRepfrmMeroEglKT7IaCVje4KUXfzun5WXEWEk8d2tRh46ZRZzeUwnuFVesW80/XMssqdA8MFUybjXejFMtZs2PIcYTTRfE2JUodBlqsC+GYHM8PvKqEVpZQJEGH+oxVDODHw1XLtx8kgpDTNV8SxPBR1ASAgLIFga0HTNWa6NbU7lLgBTnC3osLjN1Hgi/OkbhG8wuNokaccK/zeNZ5m7+oIuYIpiIp7TKLZqEghCXguoxVbP4/zfp/UfX60xT88mvqKGh1NL9qh9vp9mdaTDeP7Cvz/sRREKsORQKAioRE1qHgpMoLDSTqTsbma6zKmaYIo/mBjUzuoA1L3Y7Vkd4CJWaIF5mE8XJ8Y2anva+Zf4yhD2pDPt1zjZYkHepmNwA+2LJ/57E6WTFnd+7Gnl/AKUBDz7vxBdxW3sQVCSFhj5ycOFYxKBUJCTea0BCwTcYqDi2wDbTjmlZJfbt9goVIeaIpTyRWwvyFnmgrFKAJj1Usl1Lbp2rkd+Qa+qHiQurJaHWs4lqnp87plQRy48i+vDNx9CRPh9KHLqGtSUFItmC9xSbmiS3qkOXjgUH8gzMxeHb4Has9aqXWJCiSbCKPk0mJTLNofDpkW1q+UdOWRfUzry5B2VQ1eTrU027cfnXx97urXB5ZVjp16SYJQuJRJcHsJsII+CQYH1RN0ze7CY0Ra/qPZt5G5b1UCJOoLxOOvnAUw1HQ6GjNs5uqeneD2wfg8sGFvP07JpKrwypNWOEmW3xo9qa40F2UJiim0aZEdOjZ7mc1kkKRqJcOVY2a9sG2SlP2t/pj92bg0FTa0JMmVYd62g0Al8//xsY9xx0eQRRzcrpYLRaDZDctRpXkZTehLdl6SiHvpb5M6ssiIQ2xY4ZriC37Ne1Yncvj0ySBXDmkF+vAxomJFOhQ2K0KBNjtF/JEYiFintTijCCG0qF0GObtmrIPghumCvgy4cuApwvq+9GGnqnQoc52A8Crau9u2nuw1gnAbk/Lye4kC8Kpmd00n9+n8VPS8vw+tS5fZb2LUiiSMHNIr27pMbfocxhchwbUof52w/juwNG1+yr8GgVgt9kz0tLMsmwSRVEgp2Z2o1GqoVEB4dmNx6/5NVrv8ta5fOzT4s4Z5/ftlqbwXjaJwnVoKB0my24ANHj8a/eVb62o4eNdRk+v7LSR+Z0Ls+3tfSEnD1yHcZAkHSbRbkJsq6g5UN1wzOE+1uD28Ed+IookdLKac2xKtwzbgNMyFYm3dicLrsMIpEaHqbAbDofDgV69ijkcDqdNuN1wOJwUwe2Gw+GkCG43HA4nRXC74XA4KYLbDYfDSRHcbjgcTorgdsPhcFIEtxsOh5MiuN1wOJwUwe2Gw+GkCG43HA4nRXC74XA4KYLbDYfDSRHcbjgcTorgdsPhcFIEtxsOh5MiuN1wOJwUIQCor69/5plnLrjggoEDB55++ukTJ058/vnn/X5/mzvPmTPn6quvTv5FJoQRLtLpdC5YsODss88uLi4+99xzX3zxRU0LjJU7cODAwhP55JNP4j5RaWlpYWHh559/rtOFpxSuw2TT7jqUAFx//fVlZWV33XXXgAED/H7/N99888wzz5SVlS1YsCDu8yXIGWec8e9//zsvL6+9LkBf7r777vXr199zzz0FBQXff//9448/7vf7f/e731FKnU7nHXfcceaZZ4Y27tOnTzteajvCdZhs2l2H0s6dOzdu3PjPf/5z0qRJbNXw4cMVRVmxYoXL5bJYLLqfsk0OHTpUVVWV+vMmiZqamq+//nr+/PkzZswAMHLkyK1bty5btux3v/udw+EAUFJSMnr06Pa+zHaG6zDZGEGHgqqqAAThhEqc2bNnf/jhh6Fn/O67755//vl9+/YdOnTonXfeefz48fCNGxoaiouLX3jhhdAar9c7aNCgxx9/HMDx48d///vfDx06tF+/ftOnT//222/ZNrt37y4sLFy/fv2cOXMGDhw4fPjwv/71r5qmrVu37qyzzgJw9tln33LLLeEn+vrrrwsLC3/88cfQmk2bNhUWFn711VcAfvjhh8svv7y4uHjAgAFXXnnl5s2bm3/bAQMGvPzyy6E/582bN3Xq1NDFrF279pprrikuLh47duzSpUt//vnnadOmFRcXT5o0acuWLWwXv9//j3/8Y+zYsX379h0/fvzixYtDR1uwYEHv3r2bnzQzM/Onn35iz5ihKAq74Q0NDQBstranQ/3d737329/+9o033hg1alRxcfHNN99cV1f3X//1X0OHDh0yZMhf//rXNo9gcLgOcQroUOjdu3ePHj3uueeet956q8nzYyxZsuRPf/rT9OnTly9f/t///d9btmy58cYbw6eLsdvt48ePX7FiRWjNN998U19fP23aNFVVr7vuuo0bNz7//POffvrpkCFDrr/++h07dgCQJAnAQw89dPXVV2/atOnJJ59cvHjxsmXLzjjjjOeeew7A0qVL//GPf4RfyZgxY3JycsJPtGzZspycnLFjx+7du/eaa67p3LnzkiVL3nvvPbvdfvXVV5eXl7d5+xjsYp544ol58+Zt3Lhx0KBBf/7znxcsWPDss89u2LDBbrfPnz+fbfnwww//z//8z+9///sVK1b85je/eeSRR95++232UZ8+fc4999wIZ3G73RUVFW+//fZnn3128803A2BRJZrQLUnSxo0bDxw4sGrVqjfffHP16tWXXXZZ586dv/322wULFixevJhpvePCdYhTQYeU0h07dkyfPr2goKCgoOD8889/8MEHt2zZQoNMnjz5mmuuCf35xRdfFBQU/PDDD5TS2bNnX3XVVZTSTz75pKCg4MiRI2ybuXPnXnjhhZTS1atXFxQUfPPNN2y9qqrnnnvuvffeSyndt29fQUHBM888EzryOeec8+ijj1JKv/zyy4KCgrKyMtqMP//5z+PHjw/9efbZZz/wwAOU0oceeqikpMTlcrH11dXVRUVFzz//fPhFUkr79+//0ksvhXa/5557pkyZErqYF154ga1fsWJFQUHBJ598wv5ctGhRv379KKV1dXVFRUVPPvlk6Ajz5s2bMGFC8+tskSuuuKKgoGDQoEEffvghW7Np06aCgoL7779/3LhxxcXFEydOfO+991rc98477xw0aJDH42F/Tpo06bzzzgt9OmTIEHbxW7duLSgoWLFiRZSXZCi4Dk96HQoA+vbt+9FHH33++ef3339/fn7+W2+9NXXq1L/97W8AfD7ftm3bhg8fHrKnwYMHAygtLQ33rPPOO89isbCKaL/f/8UXX0yfPh3A5s2bRVEcOXIk20wQhBEjRmzcuDG044ABA0LL6enptbW1kc116tSp+/fv37lzJ4CtW7eWlZWxE23ZsmXgwIFms5ltlpmZmZ+f3+Qi26SoqCh0JU3+9Hg8Xq+3tLTU5/ONGTMmtMvo0aP37dtXXV0dzfH/+te/Lly4cObMmX/6059ee+01AB6PJy0trby8fP78+YsWLRo5cuQ999wTClNNyM/PN5lMoUsKXR77s66uLqYva0C4DhknsQ6l8C9ZVFR00003NTQ0zJ8/f+HChVOnTu3VqxelNCMjI7QZW2aFvRAWi+W8885bvnz5tdde+91339XU1EybNo1tpqrqwIEDQ1v6/f6srKzQn6EHw6BtTek5YsSIzp07L1++vG/fvp999lleXt6wYcPYifLz88O3zMjIaHKRbaIoSoQ/KaXsgNdeey0hgTnlWTtiZWVl+JdqjeLi4uLi4gkTJiiK8uijj86YMWPkyJE//fRTaINRo0aVlZW9+uqrV155ZRyX1+YFdAi4Dk9iHUper7eioqJHjx6hVXa7fe7cuUuWLCktLR04cKAgCOFmz5bT0tKaHGjKlCm//e1va2pqli9fPnToUNZ2mJaWpijKp59+Gr5lk+rAmBAE4eKLL16xYsUdd9yxfPlyVsHGTtQkItXW1ubm5jbZPfR4GG63O6azs2/91FNPFRcXh68Pv3vNKS8vX7t27UUXXWS3ByZ4Lykp8Xg8R44cad7W2L9///Xr18d0VScHXIfR03F1KDzyyCOTJ09uUjm3b98+AJ07d5ZluX///uFp53/+8x8AgwYNanKg8ePHm83mr776auXKlSyxBDBkyBCPx6NpWu8gZrO5+d1vkdZscsqUKaWlpd99993evXtDJyopKdm6davH42F/Hj9+fP/+/c0vMj09PTzUxJrl9u/f32QyVVVVhb5OZmZmdnZ2KLdskerq6rvvvnvVqlVNztu9e/eVK1fefvvtXq839NGPP/7YJDyeInAdRk/H1aFw0003WSyWGTNmvP766+vXr//2229feuml22+/feDAgePGjQNwyy23fP311y+99FJZWdm33377yCOPjBo1qvkdVBTlggsueOmllyorKy+++GK2cuzYsQMGDLjrrrvWr19/8ODBjz/+ePLkyW+++Wbka2J58qpVq1jbQROGDRvWrVu3hx9+uF+/fv369WMrZ82a5fV6582bt3v37tLS0rlz56anp4e3+TEGDRq0YsWKyspKl8v17LPPsgr56ElLS7vyyiufeuqppUuXHjx4cN26dbNmzbrnnnvYp0uWLJk9e3bzvfr37z9u3Lj58+e/9dZbGzZseOWVV1588cXLL7/cYrHk5+evXLny1ltvXbt27bp16+69995169bNmTMnpqtqztatW9eE0SHSJa7D6Om4OpTy8/OXLFny8ssvv/LKKxUVFSaTKS8v7+abb541axYzy2nTprnd7pdffvmJJ55IT0+/4IIL7rvvvhaPPmXKlJtvvvmcc87p1KkTWyOK4uLFix999NHZs2c7nc4ePXrceeedN954Y+SrLCkpGTdu3GOPPTZ69OhFixY1+ZQQMnny5P/93/8N3V8APXv2fPPNNxcsWDBlyhRRFEeMGPHOO+/k5OQ02fe+++6bN2/eWWedlZGRMWvWrEsvvXT16tWx3EDcf//96enpjz322NGjR3Nyci688MJ58+axj3bt2rVy5coW93ruueeee+65F1544dixY7m5ub/5zW9uu+02AP369Xvttdeefvrp3/72twD69OmzcOHCCRMmxHRJzXn22WfD/+zevfvatWsTPGay4TqM5W51VB2Sk6aKkcPhGBz+RjiHw0kR3G44HE6K4HbD4XBSBLcbDoeTIrjdcDicFMHthsPhpAhuNxwOJ0Vwu+FwOCmC2w2Hw0kR3G44HE6K4HbD4XBSBLcbDoeTIrjdcDicFMHthsPhpAhuNxwOJ0Vwu+FwOCmC2w2Hw0kR3G44HE6K4HbD4XBSBLcbDoeTIrjdcDicFMHthsPhpAhuNxwOJ0Vwu+FwOCmC2w2Hw0kR7W83GzZsuOmmm84444zevXsPHDhw+vTp77zzTjQ7Hjx4sLCwsLCwsK6uLtaTzp07t7Cw8KGHHor9etvmmWeeYRf2t7/9LRnH5ySD9957b8aMGSUlJb179x46dOi11167YcOGaHZ8//33CwsLJ0+eHMdJzzrrrMLCws8//zyOfVtj8eLFhWH06tVr1KhR119/vRGmim9nu1m3bt1VV121atUqm8125plndurU6aeffrr33ntff/11fU90+PDhwsLChQsXsj8HDBgwYcKEoqIifc/CWLp0KVtYtmwZnxO5Q/Dcc8/Nmzdv48aN+fn5o0ePJoR8/fXX11577ZYtW/Q90ZIlSwoLC0tLS9mfY8aMmTBhQufOnfU9CwBZlocMGTJkyJCBAwc6nc41a9ZcddVV7e44Uvue/vXXX1dVdeLEiS+++CJbc99997399tuLFy+eNWuWjicKWQDjxhtvbHNG+vjYtWvX7t2709PTrVbrkSNHNm3aNHTo0GSciKMjixYtAjB//vzrr78egMvluuyyy0pLS999992SkhIdT9REh48//riOBw/ntNNO+/DDD9lyfX395MmTDx48+P77748aNSpJZ4yGds5uWDkoKysrtObee+/96quvwtPLJUuWTJkypbi4eODAgVdcccVXX33V4qFmzpwZnr+sWbOmsLBwxIgRAKZOnfrYY48B+Nvf/lZYWOhwOJoUprxe75NPPjlu3LiioqKhQ4fedttte/fuZR+99tprhYWFt9566/r16ydPnty/f/9LLrlk69atrX2jTz/9FMC4cePOO+88NJMXx5g00aHFYlm4cOGGDRsefvhhtiaCQprAijCh/GXBggWFhYW33367w+EoLCxcvXo1gIsvvnjq1KloVpgqLy+fO3fuiBEjioqKxo4d++CDD9bX17OPbrvttsLCwldfffWNN94YM2ZMSUnJ7Nmzq6qqovl2aWlpgwcPBuB2u+O6PbrRznYzcOBAAO+8884f//jHlStX1tbWpqWl9ejRQxACF/biiy/+8Y9/3L59+4QJE0aMGLFhw4brrrtu5cqVMZ1l+vTpubm5AEaOHHnDDTfIstxkg1tvvfX555+vr6+fMmVKbm7usmXLLr300kOHDgEwm80A9u7dO3fu3AEDBuTk5GzevPm2227z+/0tnovZzUUXXXTRRReBl6c6CEyH99133+OPP75+/Xqv19ulS5fwMk4EhUSJLMs33HADW542bdr06dObbFBVVfWrX/3qgw8+yMjImDZtmqqqixYtmjVrFlMa0+Enn3zyyiuvjBkzRlXVFStWPProo9GcuqGhYfPmzQDaN7VBu9vN7Nmzme8uWbLklltuGTp06PTp09944w12i+vq6p555hkADz/88AsvvMDuPoC///3vMZ3l5ptvLiwsBDBx4sQHHnjAZDKFf/r1119/+eWXhJD333//qaee+ve//z1gwIC6urqXXnoJADO+3bt3P/XUU0888QTLun/55ZcWg9uOHTt2796tKMr48eNHjx6dmZnJylOx3xhOSnn44YdzcnKcTucLL7wwc+bMQYMG3XDDDWvWrGGfRlZIlJhMpgceeIDJ6dZbb7355pubbPDKK68cOXKkZ8+eS5cuffLJJz/66COTybR582aW+7Ad9+/f//HHHz/xxBP33XcfgFWrVrV2uqNHj1566aWXXnrptGnTxowZU15efvXVV8+cOTO2+6I37Ww3mZmZS5Ysefnll2fOnNmzZ09K6U8//fSXv/zlnnvuAfDjjz+y9G/atGls+4svvhjArl27ampq9LqGb7/9FkBJSUmvXr0AyLJ84YUXAvj+++9D23Tt2nX48OEA+vTpY7PZAFRUVDQ/1GeffQZg/PjxVqtVkqQLLrgAvDzVETj99NPXrFnz2GOPTZo0KScnx+PxfPnll9dff/17772H6BSSOOwsEydOZIlM165dhw0b1uQs48aNS0tLAzBkyBAA1dXVPp+vxaP5fL5NmzZt2rRpy5Yt9fX1oigeOHBgx44dOl5wHLR/Q7ggCBdccMFjjz325Zdfrl27liWZH3744cGDB6urqwEoimK1WtnG2dnZbKG2tlavC2BnCa8/YmcJd7TwTy0WCwBN05ofipWkNm7cOHny5MmTJ7NqJl6e6hDYbLaZM2f+85///OGHHz766CNWvHr22WcRnUISJyYdMhGiFR0C6N69+74gP/zww4033rh27dprrrkmjl4jOtKedtPQ0LB8+fJnnnkmVIPVvXv3J598UpIkAAcOHMjMzATg8XhcLhfbIFQ3Fv5UGCzbDB0qylo0AOws7GGH7xuytijZvn37nj17ABw7dmzbtm3btm1jGRAvTxmcw4cPf/DBB6yYzBg8ePADDzwA4NChQ36/PyaFEELQrjpsTk5Ozh133AGgpqamfaXYztnNH/7wh6effnrBggVer5et+eKLL1jFTV5e3rBhwxRFQVh55N///jeA008/PT09vcmhWMUeqxID8Mknn4R/ykTgcDiaX8OYMWMA/Pzzz/v37wfg9XqXLVsWWh89rCQ1bNiwfWGMGzcOvDxlbPbv3z937twHH3zw448/ZmtUVWU1Jl27dpUkKSaFhOvQ4XCwpqgQbepw5cqV7Ldw6NCh//znP62dJVZC7bl2uz3xo8VNe/a7sdvtd99990MPPbRo0aL333+/e/futbW15eXlAC655JKePXsCuOOOO/7+97/ff//9a9euraqqWrt2rSiK9957b/OjTZgw4eOPP/7888/nzJlTX1/PWhBDpZiuXbsCWLRoUVlZ2d133x2+49lnn33OOed89dVXl19++bhx47Zs2bJjx47OnTvfeuutMX0dZjdNepdOmjRpzZo1y5Ytu//++5nUOEbjzDPPnDhx4ooVK+68886HH344Ozu7vLycldbvuusuxKiQCRMmvPvuu48//vj27ds3btyYm5t77NixcB0eOnToL3/5y9ixY//yl7+E73jTTTctWbJk375906dPZ3VJPp9v7Nix5557bhxfilUVs+Xa2tp9+/YBGDp0KKv0aS/aObu54YYbXnnllXHjxtlstj179tTX1w8ZMmT+/Pmhtqfbbrvt8ccf79Onz/Lly3/88cexY8e+/fbbLfr9tGnT5syZ06lTp7Vr13br1o31mPB4POzT3/zmN3369Kmvr//uu++aFHcJIS+//PKcOXMURfnoo4+OHTt2ySWXfPjhh506dYr+i4RKUqz9O8SFF14oiuKRI0d+/PHHWG4MJ3UQQp577rkHH3xw6NChqqru2rVLEIRx48YtXLjwiiuuQIwKmTdv3qRJkyRJ+vLLL3/961//+te/RpgO//SnP3Xq1Gn//v3bt29vsmNOTs6SJUsuueSSo0ePfvTRR4qizJkz55VXXokvSoWqijdt2lRRUVFUVPT73//+tddeC3UxaRf+H9I5tsmGkH02AAAAAElFTkSuQmCC", "path": "image.png" }
Which solution has a higher concentration of pink particles?
[ "Solution B", "neither; their concentrations are the same", "Solution A" ]
0
The diagram below is a model of two solutions. Each pink ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the pink particles represent the solute. To figure out which solution has a higher concentration of pink particles, look at both the number of pink particles and the volume of the solvent in each container. Use the concentration formula to find the number of pink particles per milliliter. Solution B has more pink particles per milliliter. So, Solution B has a higher concentration of pink particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAVUAAAHFCAIAAADNCP06AAAeCUlEQVR4nO3dzXMbx5kG8O754hAiaQKUtRKQqo1IOpeQl42VG6NcQlWtq7y6iT6kyqrKxU7txTnmb1gdrezJ2pOp5GKnyrVF+pCS6T0pNzGHdQD5kADKWiRAETAAzkf3HiDTlESCMz2YmQbe53eSaYzYFPFM9zS63+ZCyM92+wwAiLm6YFmSsf/+C/IPQM71N6aMvNsAALlB/gHosk7+x7Wrzr/881ReTYGMPW6Kv+5JxtiNH5l5twWy819fdvqBHPwZ/T8AXcg/AF3IPwBdyD9dBud5NwFyZp3/EphQPyzyHxYx80ca+n8AupB/ALqQfwC6kH8AujD/R9eTQ/n3Z5Ix9pMfGAY+CiAJ+dcar/u8L0TRYqXRT9T3A9nsyZH/ta/iVY9zKa44rIDbjF6Qf/10pfVlx6ge8Zp3/DU5zVnZDlfc8GczOTYtOl73re02r/u8FR5/URZNWbGD9VlZsXNsGxwbh/x3JZ1+g1c9e7N1MjPPv96TrOZZNc/c7XsbxTSGAyNkbrWt7farX+etkLdCZ7cf3pgN1mezbxi8RMv8d6X552+NmsdbIa/7jDFZNFnJFMtTwZsFzd/6SZwVm5N4zXPufBP822viWiGbVsXTlc7v9ga/tSHMrbax2/feLU3wb3MsaJf/UztA3gpZKzRrnvFFJ1yfHZcxcCzGo/654R/gPWlvHnhlW8NRtH2/dW74B3jddzZb3vsX024SDKHX53/WJ4fO3b1XR7/HeE9anx7aHzVZN4uJq+x0pXW/FesK+/5BOk1RZz7oGHFqSfKaZz7opNceOJdG+Te32uZOpHeDsdt37u2n3Z4s2fdbPOZUPK/75lak8UJGmqH5eez2mJ+3WfPM2z2kTZf8D6aLY7x+srqOWN3mMfNhd+QtUWY+6sW9hTHGeE9q9VNQo0v+7c2DuJdMTNfBq975Lzr1wlaoz3MQbwRqFxqNSPMFkAYt8m886vP4b4KJ6TqMumL+GWMK/27H5l2+tGAsLYymDoByjCPOF0IatMi/8pvYUO05taLcczLGjNqR8rXFAl9e4MsLoykDovxLHDLdC2nTIv/qXceTSci/TPAZeJJrR8ylskZrkmiRf+URIO/JCZgCkGX1j/GTXDtaouwoXriIkvO50SL/bDpBM1w9foQERIJlPPosARLLivnX50cgSIvwqA9iXT4JWwNKptrgWay4Sb5tqyur+7K6L0fyEYLySERUtFuESocW+RfKbx3VMadu/I2iwlUJt9Ac9GVtX9T2xUhuAGLVVRjJi8UpTTcy0KBH/pcUnwCVx5y6Eatu3M5cw120/jvz8QYyLvffmU+rNRCBFvmXy47KJJDLw7XJ2Qjk3ypGD48s2+EN/fbPlsxYA5lgfRb7//KlRf6ZQtcxGDNPwMP/sQI/+u3lKKOAcG3Ge0/TbXNi1fXfLZ3/q3S5/24pvD45t+8xpUv+WcmM9TQrVlyxmmj2S0cF7t8uBW/PnZUfWTS99y4GN+d0vvGJVXf4jUysuEe/vTyBv74xpNHU66A3sLbbrH/OfFS4NjPB1WPC6zPhtQu84Ru1I6Phs66UJVOWLVFxZNnWOfnfK3D/donXfd7weTMcLNOUFVtULKll2QKyNMo/G7z1V6ftjw+Mx6cva5VF098oykmZ9jtTgctlJ1x2xnptk6w8j3p4I++mwBn0yj9jjJVM/9cLgx1BRtUzGh7rS7E4Neg9xI+nx6MDBBgH+uWfMcaYWHXZqot+AyBV2sz/AUDmNO3/IQNXS8bVUt6NgFyh/wegC/kHoAv5B6AL+QegC/N/dH3dFF/tScbYL94wcf43Tej/AehC/gHoQv4B6MLzP8Bo8KpnNDzeFEbDE2VHVixZMpVrW2UD+QdIilc9+97+yeMPzdrzkyk037GK/AMk0JXW9rBzq3krdO7uPa9Yod/WVTz/A6hz7u5FObTe3Ok4v9vLoD1xIf8AiqxPDqOfesjrvrkV44T7bCD/ACp41YvS859kbbd1O+wYz/90XZ41XptmjDEs/lNgb7ZUrvr0mfe+RrWbkX+6pm02jUqcarpS7dhyXtPrxGqM/wFii/7Yf8q1VY1uAcg/QGxGXT3DSa4dOeQfIL7zjqhI69pRw/M/Xa2u3O8xxtjSAscMYCzqJ9YnOCg9Dcg/XQd9WduXjLHFkokbQCxJMpzk3jFyGP8DxJbkCDOtjj9D/gFUhG8WVK7S7MR65B9ARfBvr8U9sV4W4x1ynQHkH0BJgXu3F2Jd4W8UddsCiPwDKJLLTvT+PHh7TsMqAJj/B1AX3pgVS1P2ZmvIcmBZNP3bJa2m/Y4h/wCJyGXH++CStd02akcvrQuWZVssTelZ+WMA+QdIrMCDm3ODP/Kqx3tCThsajvZfhfzT5Vq8NJ13IyaOXHY0Wt97HuSfritz/MqcpuNSyAbm/wHoQv4B6EL+AehC/s/QDI3aUd6NAEgX5v9O6Erry45RPTpZpE0WTVmxwzcLYtXNsWlpwPnfgPw/x6veqau4eCvkrdDY7Wt7hAuAMuSfMcasTw7PreVu7nSM3Z62CzkBFOD5n5kPOhEPcuCt0P6oybpjtL4DYBjy+W+G5ucxTmXirdD+47P0mgOQJer5dz5qnjy2OQrjYdd41E+pPQBZIp1/XvfVDnIwv/h25I0ByB7t/Kue4sJbwWhbApAL0vk36oox5q0Qs4AwAUjnP8lhzElOgAPQBO3P/2kv5sH530C6/xdJTnEZh+ouw03brDTNUAKEMtL5Vz7FSasj3ACUkc6/UF3Jm2TgAKAP0vlnJaXzWFwe3NDrFBcANbTzz1h4YzbuYN7fKDKdjnBV1urK6r6s7kt8kkkW9fwzxvyN+egvFivuxBQCOOjL2r6o7QvcAMhC/pms2N4Hr0cZBYRrM/7tUgZNAsgG8s/Y4Bbw3sUhZzPLoum9d/H4jAeAyUB7/c9JBR7cnAuvTfOGb9QDXvd5X8iSKcq2WJqSZZv4YiGYSMj/C2TFlhVbXMu7HQCZwPgfgC7kH4Au5B+ALuQfgC7M/9GF878B+acL538Dxv8AdCH/AHQh/wB04fmfrp7PegFjDCXA6EL+6fpHG+d/U4fxPwBdyD8AXcg/AF3IPwBdyD8AXcg/AF3IPwBdyD8AXcg/AF1Y/0cXzv8G5J+uaZtN4xxT2jD+B6AL+QegC/kHoAvP/3Q9OZR/fyYZYz/5gYEpQJqQf7r6gWz2cPQ3aRj/A9CF/APQhfwD0IX8A9CF/APQhfwD0IX8A9CF/APQhfU/dM27fGmBM8Y4Fv9Rhfzng9d9o+HzemA0PMaYLFmibMmKLZamMmtDscCLhcy+G+gI+c9cV1rbbXOnc/JrvOYNnsRkxfZvzcsK9uUDY83QaPiMMVG2WclM4zsg/5niVc/ebPFWeOYL6r5z52l4YzZYn82yYaAPXvXs7UPW8PmJ3RlymrOy7a/PyWVnhN8L+c8Or/vO3b0orzS32rwZ+hvzKbcINHPa2HCA9ySrec7dvXBtJlifZYXRzNnklP+uNJ54Rs2TRVOUbRLD3a60P2pGf7nxsGv82BWrbnotwvnfemmGzod7Q8aGA+ZOx9jtee9fHMkTQdb5N7fa5sPuqz+kWHGD9dkJvhFY2+1zf7UvX3K/5S1dHtWd/lU4/1sr9scHEd8hvBU6my3v/YvJv2l2n/8PnmzPioGx2x/838zakyVe908d1J1zVU9O6j8IvMTcahuPj6K/ntc8c2sE742M8m887Dp3nvK6P/xl5lbbufOUdSetKAVvnPODn3nhef9iMAmaocKN3tpus2a8EeWrMsl/M7Q+fRbxtbzuT16nx1V/T7H6BBhT5sNuxhceyyL/zkdNHqfOlLnT4VUvvfZkz0jw42AIMPEM1eGh8oXf/w0Jrz+XudVWGP3am600GjOWUKJv0inf4pP3DannX63r461wkoYAMsFHNaNd7wEaivvBUPILj6Wff9UnWKM+QfkvK37OKouprPoEvbiqn74qX/idlPOfYH6SN4IRNiRfoqLYh0/wggg4JsqKbw/lC4+lm3/lee+E1+pGLjuyrJLkYG1m5I0B3QjVRzzlC4+lvP5vWn18kuSZWUP+xrxz52msS8K1mVQf/q+WjKul9P56iEqtb0hy4bF0+/8kw9cJy7+s2LG29MmiiS2ARIhVV6zE3ughVkawPST1+T+xqFjQIstKGNkIb8yGb0YquCGLpn+7lN7Kf9CNf6sYbzLP5f6tYvLvm3r+FYcALk8+ttFQ8M68/25p+G86XJvxPriEmT9aCtzfiJFnf6M4ku4h9f1/wfqssduL+0HlqH48DYlV92jpsrXd5nX/5IejsmjKih2k/MwP2hKrrvfexeHlYdhgbLhRHNWbJP39vwXubxQj1r0YGMmDjdYKPLg5N/gjr/usJ2XZzv5+h/O/dSOXHe+DS2eVAGGMjbb4B8tm/79cdsK1magbYEf0YDMuchzn4/xvHRV4cHMuWJ/lDd+oHR3X/xNLU2l0EhnV/whuzoklx95ssf6wN5xYcf1bEzvyB4iqwOWyEy47aa+Bya7+z+C5177fMnb7p/xvl/sbxQkf9gNoJtv6XwXu3y6xruQN36h7vBHIkinLtqikVd4YAIbIo/7nd2ObHL41AJyA8/8A6EL+AehC/gHoQv4B6ML5X3Th/G9A/unC+d+A8T8AXcg/AF3IPwBdeP6n61uPHR5JxtiVWUwAEoX80/V/HfHXvUH+sfmCKIz/AehC/gHoQv4B6Hrh+X+/I6rf4LRpKro+v2Azxhh+6aSE8vsaXC/k//HT4PHTyTl1DyL6S94NgLxg/A9AF/IPQBeXUj7tiLybAQBZm7Y5lxIV4AGIwvgfgC7kH4Au5B+ALuQfgC7kH4Au5B+ALuQfgC7kH4Au5B+ALuQfgC7kH4Au5B+ALuQfgC7kH4Au5B+ALuQfgC7kH4Au5B+ALuQfgC7kH4Au5B+ALuSfrj/96U+//OUvf/WrX+XdEMiNdf5LYEKFYdjv91EAnjL0/wB0If8AdCH/AHQh/wB0If8AdCH/AHQh/wB0If8AdCH/AHQh/wB0If8AdCH/AHQh/wB0If8AdCH/AHQh/wB0If8AdCH/AHQh/wB0If8AdCH/AHQh/wB0If8AdCH/AHQh/wB0If8AdCH/AHQh/wB0If8AdCH/AHQh/wB0If8AdCH/AHQh/wB0If8AdCH/AHQh/wB0If8AdHEpZd5tgIz8/ve//8Mf/jD8NYVC4cMPP7xw4UI2TYJ8of8n5K233ioUCue+BuGnA/kn5MKFC2+99daQFxQKheEvgAmD/NMyfAiAzp8a5J+WIUMAdP4EIf/knDUEQOdPEPJPzqlDAHT+NCH/FL06BEDnTxPyT9FLQwB0/mQh/0SdHAKg8ycL+SfqeAiAzp8y5J+uwRAAnT9lWP9P2mefffbzn/8c+ScL+QegC+N/ALqQfwC6kH8AupB/ALqQfwC6kH8AupB/ALqQfwC6kH8AupB/ALqQfwC6kH8AupB/ALqQfwC6kH8AupB/ALqQfwC6kH8AupB/ALqQfwC6kH8AuizG2NOOyLsZAJC1aZvzUMh/v3+Qd0sAIGvX35jC+B+ALuQfgC7r5H8svm5dfd0666UwYbo+P/QYY+zyBZwBRcgX/9v3w+d/fiHtCzPG8iU7hxZBHh43xZNvJWNs+RJu+oT8z1dHPnt+x8f4H4Au5B+ALuQfgC48+NH1TzPGtI2ZP9KQf7ouOOyCw/NuBeQJ438AupB/ALqQfwC68PxPV6sr93uMMba0wDENQBPyT9dBX9b2JWNssWTiBkATxv8AdCH/AHQh/wB0If8AdCH/AHQh/wB0If8AdCH/AHRh/Q9drsVL03k3AnKF/NN1ZY5fmcO6P9KQ/1x1pfHEM2oeb4bSNWTJkBVbLE3l3SygAvnPSVfaf3xmPOye+j/DG7PB+mzGLQKCkP8c8Kpnb7Z4KzzrBeZW26geeRtFVjKzbBhQg/n/rBkPu87dvSHhH+A1z7nzDa/72bQKaEL+s9UMrU+fRXwt70k7zaNZv26Kra/Cra9CgSKgVCH/mbI/PuC9GGnjdd/65DC99gBxyH92zAcd4/FR7Kt2OngKgJQg/9kxHnuKF1Zj3zUAokD+s8Ob58z5nXlhIxhtSwAGkP/s8IbiMF75xgEwHPKfkSTP8EZD8cEBYDjkPyOyYitfK8rOCFsCcAzr/7IjFqcU5v9ZsnvHeGuGE78Cklc9o+EZjYA3A7E8Jcq2KNuZ/dTIf3ZkyWSPVS4UFUK/JuNh16x5vBnw2vOnHrnkiLITrrhyeaLGQeaDjvl5++R6ELPmDXIvl5xsVn8TemPlTqy45p9P3/AzjMtT2hF4edZ4bZoxxgxNNgF3pX2/Zez2X/oyr3lmzTN3OuHaTLA+ywqaNDeBZuhsto5vcK8arP4O12fDn82k2hDkPzti1Q3XZsydTqyr/JuvpdQPTNtsWpsHC+NR37rfGr440tzpGLs9/3ZpvB+ImqFz55tzl4HynrQ+PeRNEdycS68tmP/LVLA+K4sxwixWXHGtkF57NMHrvn2vGWVlNG+F9t091h3jHQux1oCbOx1eTfHTH+Q/WwXu3y4xN9IIVpZt/1Yx7RbpwN48iP5i3pPOvf3U2pIuhTXg9mYrvfsd8p81WbGPfntZrLjDXxauzXi/eX0SnnXPY31yGHdlFK955oN4j1FaaIbWH2Pv5uKtMO4zY3TIfx4K3L9dCt6ek+VTnmPF4pT33sVUn/oGWl1Z3ZfVfZnvYFrtzW3ufDvylqTNUF0DZqT2CID5v9yE12fC6zNs8Alw3ZMFQ5btLGe2dDj/W3lZ5LkFVDSkvABcbdlIFMh//uSyE07WJ9vRKUeCMcar3nitCDCS/LB1P42+AeN/yJNRV9/aaNTHbVtEkmm8OGVjokP+IU9yWv3BQxbG7N0rE6zjOHWqKLkx+xeECZMoEsUxe3qVZdUGuzylT4KQf8hTkm5tvB7+GWOiotjg9DaAIv+QJ1mxI66GevnCdMbDqZLLTqzVn8fCn6Z1TiPyDzlTO+loTM9H8jdiL+hMdQ048g85C6/PiMV4GxzDtRmxes4CSj3JZSdci7Olz+WprgFH/ulyLV6a5qUEM/Cj4r8zH/0pQBbNMe38B4L12aj3O5f7G8VU14CP2QwqjJBG53+XTO/9i/ZHzXNX9YnFKf+d+fHeFlHg/q8XzAcda7vN+md+qv/8J025BAjyD1qQFdv74JK13R6yHSB4e26wYnoChNdnwtVp+9NnRvXopbuAWJwSK1PZ/KTIP2ijwIObc+G1aWO3bzR83gx5w5dlW5RtWbbC1elJqwVYMv3bJcYY60re8HkryHgDCEP+QTeyYocVe/w29yRR4HLZkSyH5QzIP109n/UCxhgrpfXpMugO+afrH23x1Z5kjP3iDVOXEqCQLXz+B0AX8g9AF/IPQBfyD0AX8g9AF/IPQBfyD0AX8g9AF/IPQBfW/9Gl3fnfkDnkny6tzv+GXGSe/660vuwMtnYOzn6SS44sWaJshW9eGO+6DgDjJtP8G4/61v3WS4ef85rHa57BmPnnnn9rPuP9zwCUZTX/15X2R037XpOffYwRr/vOnafWdjujJgGQl1H/b99vGbv9KK80t9pSsvDGGBd4HBdPDuXfn0nG2E9+YGAKkKYs+n/jUT9i+Aes7bbysdAQXT+QzZ5spnOwJIyF9PPfldb9VtyL7PsHKTQFAF6Qev7Nnc6QZ/6z8LpvPIoxZAAABann32gojuS56oUAEFHq+Vd+kjeq3mhbAgAvSTn/XXnuiS5n4U+Qf4B06bv/h2NaGiBlKee/wNUOPGeMiXIOxyEAkJJ6/6+8nlcsI/8A6Up9/Z8o27EW/xyTZWwESNe8y5cWOGOMY/EfVannP1ybsb7oDDnn+FSybItVN6UmwUCxwIuFvBsBuUp//q/A/Y1i3Iv8jfkUmgIAL8hi/l+sumIlRmcerM9iFzBABjL6/M+/VQzXZqK8MlifxeY/gGxkVf+jwIObc2LJsTdbZ80FyLLtb6D+R3Zw/jdkWv9HrLpHS5fNh9/yRmA0/MEKf7E4JSu2qFjiGiajXtQMzdoRrwdGw+M1T1ZsWbZF2RJLUyO5S+L8b8i8/l+Bh9cjPQgQZz7omJ+3T26d5HWf1/3BA1u4NhOsz6JcIiSE+r/66cpzyyWZOx3j8RHKJUJC+q7/J8u5uxdlxRSv+/bdPdZU3F4FwJB/3Zhb7eiFD3hPOveaqbYHJhvyrxFe9eKWP+Z139xCxWRQhPxrxFJKMiqmgzLkXyPG4yO1CzlqJYES5F8XSUqeG3XkH1Qg/7rgCWbyeUuMsCVABz7/10Y/QYZ7KtdeLRlXS+rfEyYA+n9dJKl3Isu4j4MK5F8XSVbyiQpqpYEK5F8jykMA1EoDNci/RoJ1lcIH4doMNgKBGuRfI3ELJTHGZNFUu2swxp4cyod/Ew//JgSOWqAK+deLf6vI3Bidub9RVO78cf43IP+aKXDv/YuRDk1xub8xL3FKAiSA/GtHVmzvg0vDyyWKxamj31xCxSRICJ8ba6nAg5tz4YprPuzyZni8L0CWbVkywxUXyddFMzQavtHwjeoRY0yWLFkyxZIjrjhjMSmL/OtLLjvBd8N7XvdR6kc35lb7pc2XvOYxxkzGZNH0N4r6P50h/+MB4ddLM3Q2W4O0n4q3Qufunv5lGvH8DxBTM3TufDMk/MfMnY5zbz+DFilD/gHisT8+4JE/NOU1z3zQSbU9SSD/ADGYDzpxy7SYn7e1LdOK/NM17/KlBWNpwcD539EpVFvjPWl/+iyNxiSH+T+6cP53XLzqxT3J/vmFNcXKbmlD/w8QlXKdNd6TrKvjOmvkHyAq3ggSXKte3zE9yD9AVDxBjTbeUr93pAf5p6vns2aPNXt5t2N8iEQ12nRcwYX5P7pw/ndciWo0armCE/0/QFRCNcNicWq0LRkV5B8gspKplmSxgvwDjD//nflYBZoYY2JxKrw+rJpDjpB/gDhKpn/ztRivd7n/znxajUkM+QeIR1wrDK/O9D2X+xtFVopQzS0nmP8HiG1QncnebPHWmRt7xIrr31KvzpoN5B9AhVx2vA8umTsdo+q9sCPQ5aLshD+dHosabcg/gKoCD2/MhjcYGxzf3pOyZOo82n8V8g8wAnou7zkXsfx3pfHE43XfaASsJ2TFFkuOKFrjdc8elfTO/+Z132j4vB4YDU+UHVmxRNke04RMNkL5f7VaK9vtD3I/FlM1Y4FXvZdmxczv6uSNS0lcUkjkn9d9+/4Br5+5AdPY7Tu1fwS3imI13vF7cJL1yaG5c2atu3EpiUvK5H/+z6uec+fpkPA/f1lP2veaOpdq1JzzH0+HhP+YudNxfreXQXsgiknPf1fam63oLzc/b597p4BXmVvt6PUteN03t2JX0YM0THj+re32kBUar+I9ad8/SK05evm6Kba+Cre+ChOe/83rftyqmNZ2m1cVa2nBCE1y/nndjzIiPeUqPAXEYX1yqHBVrHEZpGSS8z84klHlwsfommKIWw9/gLdCPUtikjLJ+Veu1hjrkYG4JMN4PUtikjLJ+TdU316YAowuSVlLQ9eq+HRMcv55M0G1ZtwCouG6nmwFUUxy/kVZfakZFqtGlKgkJsll11qZ5PwrZ1jbao0aUi6JyRiTRRLLT3U2yfkXFcW3Fzr/GBL04dgLkLuJzv+Pp+OWahwIV7ALIIaoxbBeJPCPrIFJzj8rcH+jGPeicG2GSL80qvO/g/VZWYw5CnC5fyv2rwZGbqLzz5hYdWP1M7JoBuuz6bVHK8UCX17gywsJ469yn/U3sNtaCxOef8aYf6sYdY7a5f7tEt6XCuSyE/2+Ga7NYJ+1JghMwBa495vXTyn+8SKUAEkovDErlqaGl8RFCRDdEMg/Y2zw7lxxre22UT1i/ReWnYvFqfBnF9AjJTcoiWttt43d3kt3AVk0xco0Kn/ohkr+GWOyYvu3S4wx1gyNus/6QtIuStfqyv0eY4wtJZ8COFbgwc05dnOOMcarHm8Fsmihw9cWofx/r2QKrDxj7KAva/uSMbZYMkd3A/ieXHYkQ/K1NvnzfwBwFuQfgC7kH4Au5B+ALuQfgC7kH4Au5B+ALuQfgC6S63+AMcaYa/HSdN6NgFwh/3RdmeNX5rAanzSM/wHoQv4B6EL+AehC/gHowvwfXV835Vd7gjF240fYDU0U+n+6JMPxu9Qh/wB0If8AdCH/AHS9MP/38Gvv4ddeXk2BvPxnI+8WQE7Q/wPQhfwD0GVxxv4VJ7EC0PPDBev/AUVPx8YTr6kRAAAAAElFTkSuQmCC", "path": "image.png" }
Complete the text to describe the diagram. Solute particles moved in both directions across the permeable membrane. But more solute particles moved across the membrane (). When there was an equal concentration on both sides, the particles reached equilibrium.
[ "to the left than to the right", "to the right than to the left" ]
1
The diagram below shows a solution with one solute. Each solute particle is represented by a pink ball. The solution fills a closed container that is divided in half by a membrane. The membrane, represented by a dotted line, is permeable to the solute particles. The diagram shows how the solution can change over time during the process of diffusion.
In a solution, solute particles move and spread throughout the solvent. The diagram below shows how a solution can change over time. Solute particles move from the area where they are at a higher concentration to the area where they are at a lower concentration. This movement happens through the process of diffusion. As a result of diffusion, the concentration of solute particles becomes equal throughout the solution. When this happens, the solute particles reach equilibrium. At equilibrium, the solute particles do not stop moving. But their concentration throughout the solution stays the same. Membranes, or thin boundaries, can divide solutions into parts. A membrane is permeable to a solute when particles of the solute can pass through gaps in the membrane. In this case, solute particles can move freely across the membrane from one side to the other. So, for the solute particles to reach equilibrium, more particles will move across a permeable membrane from the side with a higher concentration of solute particles to the side with a lower concentration. At equilibrium, the concentration on both sides of the membrane is equal.
Look at the diagram again. It shows you how the solution changed during the process of diffusion. Before the solute particles reached equilibrium, there were 5 solute particles on the left side of the membrane and 3 solute particles on the right side of the membrane. When the solute particles reached equilibrium, there were 4 solute particles on each side of the membrane. There was 1 more solute particle on the right side of the membrane than before. So, for the solute particles to reach equilibrium, more solute particles must have moved across the membrane to the right than to the left.
to the right than to the left
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAIAAACmkWkFAABSDUlEQVR4nO2deZwUxfn/n6o+pufYe1e5dbkFFgG55AigQeQQNOAt3hE1X40mRqMxMTEm/vCIVxKPRONtNApoUECMoBAVgsi53JcssFx7zd1H1e+PmpmdnZ3dnenpme3Ver948erp6emp6f7s53nq6CpEKYWOxrd1/jaP6VHozkFJON9nuA7TRWzvAiQS0o1dxxt2Hq8P6UZ9SK0Pae1dorRxiPhUj7PAKZ/qcVZ0LlJEob1LxEkbrsNsgGyV3Rz1hd5Yvzusk9YPK/K4EQAAIAQIIv8AQWQnAAI46Q+qRhvnyQEOEc+pKO9RxENcR4LrMEvYy25eXLvzmC8kK+68wmKHLCuSpDhkCYGIQQAQMYgIRAQYRTaE6LaAAAMI0T1sG0e3YxsIAEW3KQUCYFBKAQxC47Yj+wkFQmncduP+yJGRbYg/AwFQdSMQVP0htcEf8PoCDhH/7AeD2vvSctKA6zBL4Pb9+gTqgyoAFHU53ZVfpDjdkiwDALNDhKJbEIkeNLrdeEDcdqOJsm0KNO6TNHI8RQhRCgghAGDbwPazQ1FcuEJAo/sRQjS6HyGglEL0DEBBFASPWykryT+926kA0GaQ5NgNrsMsYS+76VHkAYCQv4FdXZZ4RW4NjW7F3WC23XhA3Hb0WAAal+JGP4kixyNKaeQ+AbBtJgemCnZQdBtQdD+lFEX3R1QSPUPs1JRCUNUA4BSPYvFl4mQZrsMsYS+7Oa3IAwCq38eubkKg6ChRJboNtbUNENUupwPBdZgl7GU3fcvyHQIO+mpDvoaOHlUCIfVkbQMADO5cbPmF4mQVrsMsYS+7KVDk8T07AcCJ6m+JYXTcqGIQsv/gEQAYV37qqTZIYjlpwXWYJexlNwAwontpn9J8Ssjhb/fohgEdMKrohrFz32FVM3oUuseXn5qNq8TJNlyH2cB2dgMAMwZ0L/Moajh08MCeUDjUsaJKIKRu3nUgGFbzFWn24NOzcX04uYHr0HLsNe4mRkg33li/55gvhDE+pbSsqKAgT1HsPN4hrBm1geCJOl+t12cYtE9p/owB3e0wjpOTCVyH1mJTu2Esrjy4ubq2vUuRNuPKT7VJ7sqxBK5Dq7C13QDAt7X+HSfq1x083lhjtieUUoDJfbv2KPLYoU2OYy1ch5Zgu0c0E+hR5O5R5F538AQAzD17MEtBEQCCyEbCS4jbD9GsFdHI/tgetkEoUABCKQWgbBsoBUQohch+xN4lFKJ7Ip+isXcRaIS8u3aHgNCI7qXtcI042Yfr0BLs2FTcItEGNnZfEcQ18jftEYi9ZMcDYg1pje9GewSAAmV3nbXARfoIIkEimvo17omdlkaOZ+1zcTLifPfhOjRLh7KbaB8AhcZ/sVsX3yMQe8mOB8q6CaHJrY/EFhS5czTSLxlp7UeRbXau6J7YaVHkeAoIIUIoAAjIxveZYyFch2bpUHZj16hCI1HFvreZYyVch2bpUHZj26gCBACQnbNYjoVwHZqlQ9mN3aNKln42x2ZwHZqlQ9mNbaMKJWDvOjPHSrgOzdKh7Ma+UQWBvevMHCvhOjRLh7Ibu0YVg1Kw923mWAnXoVk6lN3YNaqwMiAb32aOlXAdmqVD2Y1do0q0zpyt382xF1yHZulQdmPXqGL/8Q4cK+E6NEuHshu7RhX715k5VsJ1aJYOZTd2jSpg+6jCsRKuQ7N0KLuxa1RhozmxncdXcSyE69AsHcpu7BpV7D+ak2MlXIdm6VB2Y9uoYvsklmMlXIdm6VB2Y9+oYvcmOo6VcB2apUPZjW2jCrH7beZYCdehWTqU3dg2qgCAvevMHCvhOjRLh7Ib20YVSsDeUYVjJVyHZulQdmPbqGL7J3E5VsJ1aJYOZTc2jyp2zmI5FsJ1aJYOZTf2jSoA9o4qHCvhOjRLh7Ibu0aVaAdktn43x15wHZqlQ9mNfaMKu802vs8cC+E6NEuHshu7RhX7j+bkWAnXoVk6lN3YNaoQ20cVjpVwHZqlQ9mNXaOK/evMHCvhOjRLh7Ibu0YVts/OUYVjJVyHZulQdmPXqGLYfrwDx0q4Ds3SoezGtlHF9qM5OVbCdWiWDmU3do0q9n9WhWMlXIdm6VB2Y9uoQgDsveAGx0q4Ds3SoezGtlGFFcTGUYVjJVyHZulQdmPbqGL78Q4cK+E6NEuHshu7RhV2BjvfZo6VcB2apUPZjb2jimDj28yxEq5Ds3Qou7FrVIkOHs/W7+bYC65Ds3Qou7FvVAEAQHa+zxwL4To0S4eyG/tGFbuPd+BYCdehWTqU3dg3qiCwd52ZYyVch2bpUHZj16hi2L7OzLESrkOzdCi7sWtUYYWwcxLLsRKuQ7N0KLuxa1Sx/+qFHCvhOjRLB7Cbam8QABRJtG1UcUpirJyc7ypch5nTAeym8mgdAJxWUmDbqNK9JB8Ath6tzc4F4NgCrsPM6TB206Ok0LZRpWuRR8ToSEOwIaRm6SJw2h2uw8yxu90cbgh4w5oiiafkuWwbVTBG3YrzAWBzdV2WrgOnfeE6tAS72802lsGWFgJCto0qCFD34jwA2HSkJjuXgdPOcB1agt3tZkt1HQCcVlzYeEftF1Uo0E6FHknAdUH1mC+UnSvBaU+4Di3B1nZTVR8IaLpLlkrzXI131JZRBQF0LymAaA2f812C69AqbG03LIPtXloI8XfUllEFIdSjJA8AtlTbt1+AYw6uQ6uwr91QSiN9AcUFEH9HbRlVKKWlHqdTEr1h7VB9ICtXhNMecB1aiH3t5mB9IKDpTlkq8bigI0QVhFD3UjbwoS4rV4TTHnAdWoh97WbbsToAOK2kMBpL7B5VAKB7UR4AbDtaSxq/ntOx4Tq0EJvaDaV0+9F6AOheUhiNJXaPKgBQ5HG6HVJAM76t9WfhqnByDdehtdjUbr6t87MMtsjt7EBRhVLao6QA7D2QnJM6XIfWYlO7YX0Bp5cWQWMs6QBRBSHUvSQPALYdqzeIvfJYjgm4Dq3FjnZDKK08Vg8A3UoKoTGWdIyo4lEchS5FM8iek17Lrwwnl3AdWo4d7eZArT+sG26HXOhSoKNFFQDazfYP5nJSgevQcuxoN6wvoEdJEXvZsaIKAOpRnAcAu0406Aax9MJwcgrXoeXYzm4IpduP1QNA99ICtqfDRRWHLJXkuQxCdxxvsPjqcHIF12E2sJ3d7K/xsQw2T1HYng4XVYDSbsV5YLM8lpMWXIfZQGzvAiRSeawOAE7Nc/l8XnYjMQIMgBEgAISiG9E9CS+BHY8iIQSz4EABIYSY91MajSdAKFAAgxBAiBBKAQhQQoENjiKUsgPYBttDo58ihADCBiEEKAWgNPYupYCcYADA3pPeoKazKR05HQuuw2xgr+zGIHTHsXoA6FTgiYWF+KhCKU2IKqhJqIgeTGPxgKLIIZG8NZJtNo0qlEaiRCw0xaIKpTQhqlBKWVQhlMQKlxBVZAEXuWQKsN02eSwndbgOs4S97GZfjVc1iFuRXbIUq/TG15nRbgPWqmRpiCwNGZs1UmXQJhXh6MEoVttFlCWn0TsbuR9N68wsCKGIBiC+zowQSqgzI4RYyosRjhUuvs7Mji9zOwCg0pYP5nJapw0dVhl4jwF7dLpbp7t1GmB/91yHbdP++VU821hIyXMDRBrVgN3gGoIXBdEeHYKxBjUAAAPAKMbCaFmc4AA3BqCxqALA6skUIwSINt5Zdv+aRhVCI7XfWFQhkahCWLBAEFnvPRJVEDRGFZokqiCAUpdjF/J+W+f3q7pbttd15rROch3WEOHzMN6iQQ2BWAsxgAGAe4viaFkYJQMAMxSuw6TY6M/AIHTn8XoA6JTvgbgmfWFhUFgVbulTpIaQj0L6irA82ymPlinLbKN15khzfeQWR24mey/aaIcIpQghSigChBBLkyNbLFbQiObYHmCqAUoxwgYhACyTjhxPKQWEKKWCgIpd8km/urW6dmSPsmxfPY5VJNWhuCwkrgqjIE36EbJbV3fr+KOQ/GM37i5ApF04uzrEWwjsIcIhAkcIKIgWgd4LG52RdipCxTbVoY3sZk+NVzWIR3EosggAlAIOUsdzPnzIaPOzNEjDrwfoIUOZ7YTsRxV0mAqHDVpjYACiUKMz0k9F4GoSVQiFMpdy0q9uPVrX7reZkzoJOgQ/dbwTELZobX6Q1JDQfK/jKpc8Ws5udvOZjpZrKH45qSBFtSDvNQBAUSB4Lg6NFWyoQxvZDXs+JTLTPUrDa2KoK8LgRM7pShajyue6uEqH2iRRjhRBcLoQHgAQjT+FLgkjqPYGawPhIpfDmsvEyTIJOnQ+58OH0xBh+PUAApBGy1nJbvwA/wjDntaG7aEQuD4k8nrqnyOoncBWOrRLU3FcBpvHmtml94NpeQ1D/SikbdSy0iNQZcBDIfSBltRrAADXgvt1I/9vBq6JRC2MUInbAQBbj9WZuSicnJOgQ+WfgbS8hhF+L0iqDLC8Z8pPybMh2qrXxBCP0IJndGU9sZUO7WI3u0826ITmKQ6HJAAFYbcurTO5NFfo3SAEo817FvUIkM0GfTbcktHEI+6jhX/W5fWEneoUjwIAm4/Yol+A0ybxOhR26bIpEdIgDb8XBGt7poLIeDYMh9J7HCHvPSJVU7CNDu1iN2w62LI8NwsCjo/NL1tBakj4y7CFUYXuMug/wpDyyssoBPnvEcfXBAA8siBiZNuFODgJxOtQWW7+lum7dPUr1cLsRl+i0jS9hlHwuoGDdtGhLexGM8juEw0AUJbnpkDRSSLu1TM5obpGtTKq/KPFfrFW8HxEhFoQBCGSx9pmIDmnJeJ1iGqMDEWob9Ssym6gBsiqttuqk4LrwPUlsYkObWE3u096dULzFYciiQiQvNXklY1hVBn6CQJWRBVtYRp5TTw4BAULCSEkcpvtuo4qJ0a8DuUUuqJaR9tkWRuivjSjNb9dX1Kb6NAWdsP6AkrzPcBGZ7YwuiEtaA0BK6IK/Z/5ECfvo46jKM8hSgLyhrWqentNHMtJIF6HJlqIm6PvMizJbsjmjPIsHALXdlvosP3tRjPIrhP1AHBKnhsAECBxT0YXl2FJVDHWZhrilK8JAJS6FbDlQhycGAk6FGqtmCPGiuyGVFHIuL1FOGILHba/3ew60UAo5DsVSWTDMS1IbQAAQo3jHcxHld2Zak6qBgAodksAUFldZ7eFODgxmunQCqxou6FBC4xPrENgAx22v93E9QUAACBARhfBgvMqCDJvu0l/4E8C8n4KAG5JUkQhpBsHan0ZnpCTJZrp0AosarvJvCC41hY6bGe7CevGnpMNAFCS52Z+S4FSpwXXVyjFkHnbjUWdhhRotF+gzpozciyluQ61XhYMuMelgjU9UxkTeaiivXXYznbDMtgCpyKLYiy70QdJGZ4WF2NcjMEGUYWBAJW4ZADYbrOFODiM5jokXTK1G6GrgIuRTbIbvZCdsJ112M52w/oCSvI80csOFKjRRSBFGRVMPlu2JqoUW5RTA3VIglsWNYPsPmmLiY448TTXoTpIpEpGd1/sI1oy7kboY8EfqdaTWV0767A97SasG3trvABQlu+OXnY2lwOEz1NMnxYpyDHRYUlUQZm5HgBonSI/ilJa5JIg2kbAsQ8t6TD8A/NPMyIFOaYrzcfdqDs0bafhXxzSdhnqTj1FHeJBmbZmhk6L/Kj21WF7PhG+43gDoVDgcgpYYJcdsetOQRshO1aFzY19kM9xYDeOPYmrnzC0jZq6SdOqDBqIJJCOvqLcV3QMloTuQitP4goVgr4no9ZirRxDREyo2OWoqgvuOtGg6oYsWtEczrGClnSojnU4Pg+jkJlKh3SOA7lQ7IlwfacRXBFSNyYZV6GcKbkmOaR+Yis6xINFssW8DoNDEC3BQEi767A9s5tIButxx+b/gGh2AwDBmz0msllplKxEowoNUN87gdpfN/jeDao79ZjXAEB4p+5dHDrxR2/dc35SQ1vMbjKOKt7RkR9FKRUFlOeQDEJ3nuD1KRvRkg6pGwVuMSNCcbCkTFMAgFKqnyDeJ3z1T3qTeg0AhDZqNU/6ap/wQbDl7GaEgHqZl6LvHEwIARvosN3sJqjp+2q8wPoCKMS33URa4t0ofGt6N1scLDlmOwEAIUQOGQ1/9IZWtPG4U3ijVvtHr7ZJT9p2g0sxHmE+AVRPR7SkMbtBgApdEvD+KTvRug6NroJ6oTMtEeKugnKVi52EHCLeh73arraHrao79do/eo1DpKVn98QfyWCqgcE3DRtFgLEtdNhudrPjeAMFyHe5BIyTZjeUAukqhH+VT1MbhiNNVJw3ubELAYB+UG94wmfUpDQ+igah4flAeI2W9Jkp4UKTt5k6oP5HTaIKBcomN9p30hvULBg5zcmcNnWoDZdTD3vCSNl1bz5yIQRgVBneJ7w05SdyjBpa/4TPOESS6hC6IHxR2j22oaE4MAYDWx/GBjpsN7thK6KW5LkRQkmzm4jBu5B6V55+uYsWt1hU3FtUfpvvmBNZyJmcJL4nfanfZob/tSCpokmeCHcj4f/M+I13jtA8qggI8hWJRiff5rQ7qeiQhT19igItmw7uKsi3eRxzXWyYDAnQwPP+dEVIg+B7LQCB5PMu4ZESus6RevALDcPeOcxD7aLD9mkqDmr6gRofAij2uCmlGCOASKNa3NTjsT5CoCNkY6SMDxtol4ZCALt0VIJxCUbFWBwsIxfEDkQA/lcD6d5mhvcpn+e3eeAC1HSOWNQFoctlulBNfdSfdzYOnYGA0lhUIaztD6Eit6MhpFUerRvWtcREITkWkroOqQuRKYo2RcFbNLxbh0NGJAlyIdxbFPqIQncxOh4PAdDwe0GSWnKdgFFFQitD8lQHO1HCXMW4QiA9nfRjDVa1lpVQBfwzhPBQhAAiK+HZQ4ftYzfbj9VTgHyXk2WwlE0aH9czBSia1DKPZ0OdugjQVUAI0FRAseUKG+MNBQBtp27sNpkf0iCon4XlqY5Yj0Bsjlg0QoReAl2kQlsdBEYR+GaLanmk8x1jbER7BBAFSmmBIiGAg/ZYiON7jgkdQoVEKySEAKGILHEkE6GxA8lJoq0xP2VEeIUqjZKhGDXXIaWA3IheKNFBAv2fgWoI2tvE1EhnFBqLtTOw4YzUwtgAMpvosH3kzlZELWEzTqSQ3UB02Eykwyh6pxE7Pi6qaCvNTIUVQ12hylMdzaMKAkSLAK6T6WYD3tdQbZLsiRRBeBgOjRGIQluJKghooVOuDapbqmtHtffM+N9zsqRDvYVOqBShQdA2atIkOakOIyuC9MKkJwK2eMMhSoOUKGB0RrEVewEaVwQB2+iwHewmqOnf1voBoMDlgoh/N0YVcYsqHTEgGjSgCJNBEmt7i1wlBNHaNfu/MarQANU3ZXqnSRWBrihJVGFjISoEMkigAaCHdHwYSJBQAFKEjM5I7wzR0aKtRRUEqMAl1wbVyqN13G7akdZ12FqW3ZYOMxQhABi7DWlS47ib5jpE8XbYVSCEkKhL0qbrndlKh+1gN5VH6wGgwO2SBAGiUQXX0LxPgo4WZqKmvUQyRYG+YutRxaiyoJld26TJXeU2Vi90Ae2NtV5AARNKaXT1eJpCVKGU5isiRsgOC3F8n0mqQ0uyG9PV+RhGlQHJ2m4SdYgA2lpF01Y6bAe7YX0BRR4PoVRACCHk/jjo+aS1Zli0Rxf+6qODJLjCBe4Wo4ol0wACpBpVmq+iKdQisdJAIcR6NQiF8BkodCpNiCoUoMglsZXGxpWfakmZOenSXIdWZTeZl43UUMhAhylmN7nXYa7txq9qB+v8AFDodrE+uoK3/a71KbWroS0a/YsPfuJBbpQ8qmQ8PQ0AkEPERFQR1xmO/xi4NvFsnk/BKAT/UNQwklJnowLynfJJv7q5upbbTbvQXIeWtiFaQ7azm9zrMNfjbrYdrQeAQrdbwJhQWvROIEWvYaBDBv2LjwYojVze2BhkAKC45bE5qYO74oTxDoBQdA+gyJBPBBQwwkABH6bu+arz3SRewxDqIH8F7fw8VfahSKszBY9DFDCqC6pHvaYmXudkRoIOIdp209L4L4j3krjsJqkOrSpkWjpkhYu+i1gpabT8CeNu2kuHubYb1hdQ4PFQgIL/ht3r0+9IOmTQNwNNowoDISvsBqDJaE5Ko6toxkcVoCyqCFuJ8oKGWjCaeIQ66PQK9WxktxwAoNDFJ9xqN+J1GMtuWhrdDpE9ABDJfCIpAkCWdCj0FiAdHcYK1zy7oU2zGxrLbtpDhzm1G7+qHaoPIIQKXE4hQPNbba9pBbpZI7v05lFF6GbB461CbzHFqCIcAfnVpivDt0XZIsjbEKmBFzr5fBTtQ7wOoxUWK7MbaXCm88OJ3SLzJWc7u8mxDnNqN2yNm3y3C2Oc90UIm3q0n0GXhpJEFRcSemfUGoUUEPsKKUWVIIjPmRnjU7oMlKNAKXXKoiRgb1g7yBeEyS3xOsxGdiNkbjejJMhJdpNjHea0qZg9oFHg8QCAJ50mm+bQ3To5SXAJTugRkEbLmXRDyufIkFqPgPBBenlNDByCkqVw6FpEKS10O443BCur67oXuE2XmZMu8Tpk2Y21PVNiX1HoLZrWodhbFLtjQlPSYfOeKXyIKOuJcJjGyqYXglqOAv1AV5r0TJFoH1bOdJi77KYhpB5uCCCECpxO+YghZryOD92kJUQVAJBHy6YTHKSAPCHyrEobUaWGCF+b7wVzHgBlHwVABYoIAJVH+YIwuSNehwCQjewGABzTzE9H6ZwTmYsy3exG2E0981XPM7rjv0TcR8V9VNpHpX3U+Q0tWEA6P0wKVgIKJGY3udRh7uym8lg9AOS73QhjbMk6mSHavEeAAjgvdiJTazk45zixO3Ki1uvMeEumXunZjgCoQxIdIg7pxn6+IEyuiNchNHY2W9wzJfQVnXNdJornvsopdhOSPhHeStsN8oPjX7rzb230WuSvoF2eoo7qJm03udRh7uyGzZlW4PEgAMcRK2bZOEmaRxUEIHQTXOnfaec0hzxaTDGqoD0Z280OYOfPd8kAUMlXEM8V8TqErGU3CEAeLTsmpjdU1z1bcZwtJZ3vppXshvqJ/DdVXJeSJnEIOj/X2EMaO39udJgju2kIqdXeIEYoz+W0Kl1LGlXYC3mInHeHJ/Ucx3O10znNkXQWteRRpTbTHyHWAzt/viIBwPbjfEGYXNBchwnZDQoQxzrVtTykLA8qH4fkVWEhOmF2WtkNe+G6xOW+OqXIh5zIM9fpPNcBLczm10p2I72q4cPpiadsETiqG7ObnOkwR03FrFc/z+1hTW/hzlasGVaCo1ElpoRIcx2lVOwj5t+XF/owFP6qtTZpqY/omu4Q+wgUgIUQaJRgi6M50WErFpAGRCmVBOyUxKCm7zrZ0L+swIrTclokQYcAQAFY1UXarRV8GJSSzcZPncj4gYOMd4Ar0rXc1qjiRh3Ko2Sxj9i6Dp2jZdd0By5BhFKWOqWoQ0AgLNfxXjNq7PIKPXA76ArNpQ5zZDesVz/f7WIxgVixTiYUY9q0RwBi3QcIIaBCCc67xu08xxH+Ug1v0sjJxrsilGC5j+gcLUv9RIMQaGEG/JZ6BCwoPACLKkBpvksK1uuV1XXcbrJNgg4jPU1+UvaG37G3xQo+ClJxWYh+HjYudKKRcps9U5BMh545TnWTZhwkWpXOjpT7iUIJdg6WmIsZhKA0dUgDgFeb7LLAIShYAzUTo+fPiQ5zYTc1gfAxXwgj5HG6gAJCoHYW9CKcYecU7i22ElUgGoWk7qLUXci7xIkAQYCSIBVLERuPQAEIUMQmDUknqtAuCKWZviYDse/zOKSjENx1op4vCJNVmusQAKTDxqmv+4QUpIiCVHwrQGoJnK+knt1AVIfYjZWzZXQ2IECRyVWAxnRITekQf6ybG43BKFwDJyfQXOowF203bJiDx+OJjwm+YXJGJ+0lQgluqc7MqrpsI9rFgAAociOhJBIoos/dtbaKZot15syXuyuESHYDIArI5RAJhR18QZhs0lyHOEg7/c2bitfEwEtDaGU4xbablnRIYy2+mekQbc3omWQcAs8OlEsd5sRuWF+AK9LJzJy9YYxCMlgUVZiqtNQjAHGtMDSzVTRb6hGgvTKtT/n7QiyqUAqsoY73T2WV5jrs8neviaHtaFEQNqlt9kxBtnV4kiSdVTIt5GqaSx1m3W5qAuHj/hDG2OV0AkBjjdeF6s81ORQKVUjQR2zHqEIGZVoJ9feHWFRBCNwOCQHsq+ELwmSL5jr0rA/LR0xmB2hRKBvZDamhxgmaqg5rTV+MRlz7US51mPW2G9Y453G7Y5cwdil94xX5CEn7ofAuAr7ClUadGbHR3tE7i1Cszgxm68xQDMY4QTDbShc8DQKnN4kqAkZuRfSF9G3H6vkKDdmguQ7LFmfQ7FFD6BoVj5Iz16F2nIQ2aeGNmrqz8S9c7CPgrgLuivBIsSUdNo4IygCm95zpMOvZzZbqWgDwuDyR16jxnhBKay9xBc5KZyhUFwHd5qEu1L51ZgBk/FA0t9wdccCJKY3nZ+ekAB4Hr09lkQQdOvfpmTwhDACwWcswuyF+Wv9O8PivG7z/CsZ7DQDouwx1pRp6Ixx+JkROkqQ6bBzvnAFM7znTYXazm+P+UG1QxRi7lOifZlx2w8Y71F3sJMXIs7ztyShohUQvcwpOFAspdJeur9VojWHs0gEAOZHQTRD7irgYO0bLFmQ3fkJqCXRBSWZRc4N6syw9p6I0Z9E4cT6onRvr5OycCMDtEBGCg/X+hpCar2TWjs5pSnMderZmOns5bNaatd2kkd1oVaTmCS8JtGF5xm7DeDAgnC/hKVI2shutEHKpw+zazbZIBpuHYk4cN94h9iSu74fO0FmyZ3nIsVVDyWIOGSTRHzhQHzE6kBLoLt1YFKRVTaozNEj1Xbq+SweA8Ich19UuRz8p+mgvilxPSpmLI7auUOy52Oh4B+IHbZOmr9GN3XEn74pRFwxdEBouImfjDPjaJZL0jpa64xyfBb4hjbPJsvEOCAGhgBDyKJI3qFUeqx/NV2iwlOY6dFRb0DZBqwzoJkTaIlsedwPR7CamQ+0gOfmEl7blNTGMpRrUUHS5HD/uhvYRQIHUl1pMitoJAHKnw+zaTaTC7Iobx90su6GUYoxIseC71OUHULbqwhG9MX8pxsAWfkGNoznpgiD9vI0WH6OGeJ/0aaNlzxwXuCHF7Cb8qRpeEqbNK/WHCD1EAAB9rsMlEvTBgIBQQgdho0hyvKrjtvoI9EI4MQuC5RGtkGbZDQVwOyRvUKusruV2Yy1JdWgBQWoiu6F+qHvOl7rXMIy1OnYAukhuMv6rl5BhX7i3X051mEW7OeoL1QZVAQtOxdm4N1l2Q+PmGVEHiXiQiBAI0TFUOLrBRnPSNwOwNtW5ckJfqfoho/CnHuTGrWc3xEe9T/uNqraGYNRS4XmVDhTIxSJ2Y4MQ0gUFfikJ64jjEz3pdMV6IfiHgG801hUay4ebZzcA4JIFjNBRX4gvCGMhLekwc2INN5BOdtPwrl8/aWaAK1ml45Ei6opjo4rJCEHIwG6Cp4FRxBSYIx1m0W5YButyN52wp4XsJtpQBXHTBsVacyPHIwSwMpS61zD0g0bdU77i+/JayW4MP2142te210RBWw2plqg3yeCKKE4bhtRhEtRQqZJAMFJgSmmwP1I7A6WQMAN+0uwGANyK6A1qW47WjecrNFhESzrMHBTXjJhidmOcMEKtPsTXOnSRCrc6INaGOAiTntjcM1MAUDMhSRtiVnWYxZ6pSF+A29PYcAOJPVPAjD/a+AWshZ+118YHC2Y6VQZaZKaqqh80/ItDrfRM+V4Ppu41kd9xmMovqLHCRZ5qKUahsTj4Q8F/Lg6ci33nYKNri3PEJvQIsEvhUSSIXjqOJSTVYbiLFYG2m5Buz5T/w4wWlaZ7CNSyE0Z7SGea7CH1nomCp+dah9mym2pv0BvWMBYcskLjm9BpY7aS7jwjaKH5gRKBFWHjBEWxfsS47Ca8RlNNLeqMDlORDb0xNUdsQlRhH3eIAluIo5ovCGMFLekwWJ6x3VRIzXqmGBGBASQZVazuyrhHbJMOsewGKO2KtEvSnhpZPRWOXdgOOsyW3bDGObfHgzGyJLvBhwy0x3xvAg3Q8EY1aXbjX2w+4Iif6CjQmN2wWBEdHwHQ6gz4SaMKQuBW+AoNltGSDn0DpUyeoQEAqJDiUpuUshvjBCGmWm3ioUciFTQU7aalFaJ6sUhTznEC/eHINdAuOsyu3bhcnqgNRzGb3cDmTMNCcI3aPLsJfBkmNeYVgIIgVBILsxtKwe2QAGDzkZom141jilZ0WGP2GRoAoMUYjYwfUpxSdmNk7DUAACcJxGU3rIfUGCGE5klGeRt/zsQB9RPh2GVAXO2jw6zYzeGGAMtgFYcSteEopttuMl6QVz9oNM9utJ2ZnlbcSqzNbmQRixgFNKOqPpBh2b7ntK7DurGK2tnsNAsXOsHEM1OWENVMLLth60yRLih4sxi8WNQGJPmjNgrBNxoduRM1TMLtqMOs9EyxvgC32wPMhqPr9QGY75kCK2ZTN04QsRTH90ypuzId7oWPJM9uWl+bOWnPVCwYuhSpIaBuPVrXvZAvCGOeNnVYfZWn2zMN6T7NQM9XaIXIzpBez5QlJIxub7pGuDYMqcMEQrGwN/LthIJeCFphZBwybVcdZiW72VJdBwBOlwcabTiK2ezGEoyTJCG7ybwujWotbrsBANYvsI0vCJMZbepQL8JHf5yXViMOGSHTKUrkZqaZ3ch9LYjuyJU8u2E/KqZDvSfovbDaE+m9kFFkFx1abzdV9YGApmNBcDgUaKxkRjHddmNFdgPN2m6swdK2GwAQEMgiDunGvhq+IIxJUtRhuItw5O6CcCodVQrSL3eRK1yQ2koMkKxnCpdk/BfXE8f9HAtW0cylDq23m8ioKlcee2lZdmPF9MZyPzEhu7EGq7MbhLFTjqw0Zl0pv1+krkPdCcfn5dVd7NJbaMqhCtKHy+H78+kIGQG7wyZn83OOzvihx8Fi3M+xYI3wXOrQ4rYbSikrmTP6pL9VbTe0t5hJRzgAiN2EaBbV6PpSH1HLrPmGFKGkUSWTthtKiFuR6gPqjuP1U42uopDTpdy/A5jQYeAsOTzCIdQQ51YVhShb8g4B0C4CqZAQgBA9PpYUpN12g6gyWvZ/aP6pSjRChKLoz0nWdmNzHVqs44PRDFZ2RB61sCy7qch0mXeZTQDYNLsRMk5ujZ44G1EFI3BIgmaQ3Se9GZbwe4hpHZJiFBjvCE5Wgucp4clK+DzFiAovdnwm2Y1QKrinm+2AVwCmSDHN5Ca7sVaHFmc3247VAYDTlc/sFazLbkhXAfXKKMFxnaM0z24cZ4qZPMMCAKRnVrIbhLAii2HNqDxa1/+UgkxK+D0kezpsJbuhAUI2a+omLb6dUegmKGfLqJsQeyLcPUlRN2paVdojMPBFEipuNu9SlrMba3Vopd1QSrcfrQcAxeWJ3VeE4vPMSFRB0ajS/Inw6IOzTbIbdjydoqC/mmyyck1ShNKIfFDcE+HKENlbHDI90o8UIX14JO+m0ee8Y/cSKGCMDUIiUYVGmgxbeiIcoYiSEcaEEJdDrPeH+YIw6ZJtHcZnN2w/BKi6MGCsSRK39F16eEVYKMHuOU7HmRIghNy0+M68mie8aTkOHiHikRJJWGcKACjFCBuEsB/Vug7FI9S1A+R9kVJTCnoR8veg3n6IOHKhQyvt5ts6f0DTBUGUZDkrUaWvSMc70Kq0nzkQuwnu6Y5IXtk0u6FAPRcrDc+bHMikXyBGzpKFqIIoUWQhpBo7jjdUdC4yV8LvIVnXYdPshu7Stb/7W+85NU6Shuf9ytly3mwncmPshuI78+pf9YdSe1hPuFDCE6RYrIL0sxtxDylbSIS6Zqc+AHkbUCeA4z9AJ4YDddKs6tDKthvWF+Bw5cXuJTStMwtB6tqnuyq1ov+EnHt1eY8GKbfdsKgCs50wMr22feREeVe7ovPdJLbdIEDyYNFhqr/AOEs0BuLIWayuM1NKEEKKJEJ0qVlOirSpQwDzbYgJ2Y2xRtWf8aU4SiP0pVr7lI/6CQVALii6xV18p6f11kPcFTt+4RQnygihqK7Sa7vBIShYQEr/kcxr4ij7HPX9KziORj6eJR1alt0QStmyYYrLAwgSokrRhnDJN6prX1zLy38AAIgTqeViYLyi9xJTjCr4ChcUY7o0peZ9sZuQP88jlKJGh2mW3SAEnrkKpaAmS4ZbgnZG+gVCVuvMhBDFIYAf9td4g5rulHK0wnKHpnUdxmc3SrUhBClCYHQWqMtMdgO7dfpmenmxftCoe8Ff8rM8pkOlnyjdmxfapOknDXWnoR80aIgCgNBbELoK4igRuiIKyCAtrhHeenaDg1DwoiEeSckNhRDq83c4OAOdrCBZ0qFlCv621h/SDSxKoiQDBRS1bFe10W2J370veRMvDlKlUlMqtdBw2TfDCS6USp0ZTVVQhUQXBunu1lqOndMV1yQFuWNWQ1uZzc8zVwmUoNBHKdXUyHBRv0RACENqdWZzbTfsI4oshlS98mj9Wd34gjBt05IOmXCEICneEC78RlWarjBlFGG1lxQcJuu9hVTbboKUvOg3UUJ1p+5dHPRMV5gOBQ9yni1TALZWPSGUAhCghELUWVpeIxzaaLvxvKen6DUxui/GwVPBfwrJhg4ts5vKY3UAoLBRVdGoUrhNPX2hX0jhmRRlnSoeNvyXuGhXMaU6czcB3+4ha1SoIuSQTuJ8R+gtymdK0pmSWBodPJHaSgzKNFkcKQVfDzaZFL0ptAiRmSKtEIDSTHoEpCMUhxCEqOEAQiF0CtIU2jy7AQSKjEMqVB6t5XaTCkl1CACUwikrAmVfhpOqUaglznVh57pwaLjDP0MBF2ozu6GfhU2PdA98GnZPUpAbkuowJoNoRa/l9c5azW6cnxiObWZK2OsNtGUeIk5quQ6tsRtC6Y5YBgvAokrePr3XW2l0JImHjfznffW/zAcXSrFHAI+S8ejouzUEAeASjBFgFE2Jm86A3+ZKDEIpuH7q0jZqxiFCqohxyIAaCgDQS4BiBAMxVAjRr0+jRyCW3Qg1tPBz5NpOhRD7eSgqY6jvixv60hMVTaIKpdQhiQipVfUBviBMmyTVIQAIQdpjaaD4m7ZTV2VdWN6qeud5SFehtewmCJBadT55OQPUtziYf6mzJR0yHVGAxiw4zewGAtT5hcn+ViGETvkaHR5HLdehNXazv8YX0g0syViUASggkGtI73+mPS4IBWne8z7fz/IghR6B6L9I7yYuEZBFq2iKg0VcQWN1ZkopjaQn5sc7QIAWfUbzv4Jom2MiBTtRwU5UtAkdPJf4yoxYVAEARRaDYb3yaP3o0/gKDa3RXIfshvT9R4OrOtVeZxyk+c/7fDfnka6Rp5Oa6xB2Zzr7krpbZ+dsPbvRTxBymBhVRqQkvTDpjMHVtg6d/6HproAWzyn/Q4fHNcmywQodWmM3bFSV7MxD0Z99+rKAaGqVQuGw4fgsrE5wpDTeAYACJRs1slmjNYQGKQQoLsHIiRxnStKZEnbjtLKbzKNK0uwGBWnZK1Subvvne75Ffd7E+6dDTW8j8o2AFEkMhvWtR2u53bROcx0iDOUL/al7DQMFqec5r/eX+RBd4xcSdNhydTtFtIMG8VPsRi3pUNugqyvV5PV6J6DzJDRebEWH0r6MSiiEUeFOVNu3MbuxRIcW2I1B6PZj9QDgcLqZ4ebv14u2mx+q6/gkpI2QqQu1md2QNaq6IJhQhWZj9rRNGrwGrumKa5KS+jpTiXVmPzH2GrSK0EOEAkBXDD0xLQQoQalnNzgIJS+n5DUMMYx6LxC2XwZ13Q1WKknCCMExviBMqzTXISDI26uXbjAzOSwKUuXfwdBlruRZ9iEDtfrxVNCqDKWf2FyHxgkSeD2o72rZL4KA3tfw/3RyqQxdkugQ1VAhzRbi5jiPoZrejVm2JTq0wG721fpUgwiSjEWZRZWSbRk9FoCCVNir07hnVZJkNwGq/cVH2xqXGfgwFFwRLrzDI3UX08puaA2oC4LG5qbn32IgdsmKkHaJiHuLqWQ3RW8ZqXtNjN4L8bbLqa+MIEAUKMtjt1TXje/JF4RJTnMdAoXTl5npPGLI61RtuAx9In8j8Tq0iuY61L81vE/5kiys2Ax0mApPhGGyAOfJCToUai0oW94BhMY1yW4y16EFw/zYqCrRmRdLGYp2ZmQ3ACBu0Wj0psaiCkTnGYGThDzqbdNrGDRA6570hTeoLLGJjINqmt2wanBsRhRtiRr8nT/Ra+KppdLzmvC2ioKRwjXPbtipHF8bjv1m5CmG0Wn/waxUCCGHQwSALUet0NF3lOY6dB810q1GJSCtU5Pq0CoSdKifIA2peU0MYbmB/qfFChcdxWqNI7K2m9hfR+Y6tMBudh6vBwDZ5YlWV0Cpy3SKPFxDWhzNGaTkRT9N5yknGqANrwX0gzqF2P1oHFUcGeNLgY3JDL4WUpekZJfCOsMxP4wPRz8JSUYV568wf+PzD+L8A5jFK0kQMEZ1QbUmmKmVf1dprsPizLJsAJD26Ml16LLAcrALJejQ90IgLa+JFPIdHe+OZjeRaGqNI8ZGFbO/jsx1mKnd7DzRoBoESw4sSMyqHbUWTDcv1JKWshu6IAjpT5NOA7TueX+b2U3g1ZC+No1OBxQE5QUNH6JJsxt5L2195HiblG3FNPKsAxUQBoCAmvFCRd9FmusQAPL3ZzoRNWpJh70yfWIWO5HUXYjXYeCjsJ7+Y+IM+V965CzWZTfhgiTZTYY6zNRuohmsB6Ipgxi2IpEL0uRR5TCB/5kMWcZJ4v9PqJXsRt9oaOl4DQMFwfmaljS7UbaZK2kjxbsQijzrgBCiABDWrVg85DtHcx1ahRCd8yReh1CR6QAox5kSNNVh6EvzgQTVUnFd44ogRi+c+rJTLRE8lTTPbjLUYaZ2c7DODwCS4oFoyuDvZMFUCUYXIXmdeUkGYwkAfB+GWspuaBD8r5t8LhzVgrycrW3YJLsRqzN1XjGMYlEFYQwAqsHtJgnNdWgZSbObYgS9MupmcZ7tgLiihjaomax3BmwBorg2RK1npn/adX2SZzeZ6DDTMkWThYjpM6vWHRkHFydKnt20+pBUm5AA1b7VIVl2o27UTFSbY8hfEEjWdpM5Bd8Kse5/AAjpmY74+E6SVIfWEG2mSWxDnGo+f5D7iHJfAeKKmvl6Z0Jlk/XO1GEZXQJvd6oW0hayGwCzOszUbiJfjpukDA3lmU70qfcSk2Q3u3UwNXQwntAmDZJlN6EVGXbeg7SVNO+ZypzGqIIQAIS53SQjqQ4NK6bTN7pEsvWENkTUW0RpzoUSOY8T5V/iSsiyTUzul+TMJxuzG3UA1k43//OPjCOQrGcqQx1mbjcAEBnTFrPqk/0ytRttkJQ0u7GAiMskZjdGxqt04iM0G9mNWhCpozElyXya9GRkSYdGF6HFHlIE6EqXiSpVwdUusbuQ0IZoCbiOxrchBi4QqKkxoTUV1H86hWQ9UxnqMPOp1REAUGpAnFUfH+oIF5o/szpcpsW4eXaD9mba0QAA6s4kz6qoOyw4s3Akse2GOjM/K4QKCFOPYVAAKOGjipORVIcNp2cc9obLrYz/QgDijW6cco6DnKhgntsxRG7eQ2oNTcd/6Z3AOyfthtTgKfTbGUbkryNZdpOJDjO1m3ynBABEDUO8VVM4cL7L3AmpgkKTFYhz/cao0sWCRmipW5M6czS7yfzEgIKJ2U3ojEzPW9+NxqKKbhAAKHFl3OXwXSSpDsOF+PgQ8+5MFaQNl1vJbigAdSHhKpcwVUFtLcUp9REL7/Q4hsjMYbKR3VBX4viv8ADUMBunnuM09IW9V9Lms/nFZzeZ6DBTu+le4AYAooch3qoR1PSXD000E9z913hoSeRJXIicDACAAlArquLInbRnKvMTAzTrmQr3z7TAtX0NFlUoJZRSASGPg8/pl4SWdFg1wWmY7bgI/8BBXaj17Ib9E6cqjt8ViFMV3DUxIiIFyWdK+Xd4Cn+WJ3YXYg6TkN2wluMMIZ1RfHbDdBgaimtuEMJtteMYDjg2nn57MTGcifMuxWc3GeowU+12K3RDQlShwJ7EPTzJ6agjaT0g57vEpfUWMGXjIyM7afSmWpPddG3MbmLPqmC3NSEm4ZkpwwmBs7HrS5MdnOECenxgZEalsEYBoMzDU5vktKRDtRgfmOrquSjtJ6e0nmJ4soIgmQ6TzUyAXCBNU9A0BQUpqTIAACMQ3FjshgEAtzXvktRNBDDzKGkMoxy39Oye1hlqbxQcXxvKNurc3uyXFoKvLxwbT3Vn9BHlZrNKUmqNDjO1m675LgAwtBAxdEEQY0/iMns98CN3qJPQbWnb41moghquceu9RAFankXNjaCLAIczatOV+0rQLLsRulrQ/qr3RM2fCG+YCMp6wKaEVDXG0J2UqSekqgDQqyQv83J+J2lFhyeHOjCC0xem4Th6ZyFwjYcpL/kT4U1nJkAAsXmXkAuLfVn+EpEZSmHeJXmIiJyImp0eEAD04Tjps3uxmQkCQ5F/CCKUyvsojc4KqBZSrRARlrS0PGd2pDMuYx1m+mfmEIU+pfkAoPrq4ttuYjHhxFhl288KG85ordHO90PlxC/z1V4iALQ+Az6dmFFDqXO0A7ki50zomZIHZ9x5X46T9Ey58ckrzFzk44PIiQqWsSPdMDSNAACfP7QlWtfhyaGOb3/kTrFWFTpLbpjnIS5oRYeNbTeN/2JOQRsPjjWCRFfRjEW65qPbnZPMj1SOrHeW2oog4XIUOp2Gy1HwdDCKGvu2UcsrglilQwsaAsaefsquEw1hf70rr5giHJ/dAACloBaiA1d45BDN36YqR4hSHekbCvcS9c5ieKAoYIQAcORutDpH7AgJLcVgdvylZ4aCmkaV2Dwj0pmiusn8KHJSBEavJNkNIcQoh5oLUfGiNAJXbR+yfzqhJDILTyhsAEC/sgK3nKknfodpXYcnhzh8p4mdV4SKWq7dG0XYP1lRh8uIdXWluYpmnCOZmVXSPcMR+kozN7ZYuySL653FspvMdWiB3XTOd5UXe/bV+AINNfnFpbG2GwYboABADSeqH+bwYsAAOLLAOxUQElgbSsqrF6Ib3PRRM8sV581xCqWYtjDfjWOUFPwwbHogefiHIjRru4HobH7+oaAX4tK3SCq1qmNn0W8nExqtMxODBsIaAAzvVmqubN8T2tShXixUzXadOFcpqFQ92zUE4Nynq50FoiC9s6j1FsMDJYwoSk2HCW03NGoxsewGRRtBIJrdtDmrZP7Nrvo/+WmaY1mNySLpiYFlINlZEcQqHUaMLUNqAuG/r9lpUJpf2kVRnBhFDIVtYKAYgcC2EQgIUPwG0Fh2gwAEhBCiCCIHI4gchhBgBECpgBCsVdNd30cZLRdc48YRRUTHxQAQoJRSQoECqDt039NmHpvSB+DAXIECEEopIBYb2MIdsRmOCaUQpHlroGhli+fxdaeHxxHvaZQQAggbhBCgJ+qDukH7luXPrjjdRNm+V+RYhzh6BgSAo9kKm5Y/1nYT24gdgAC1okO9ijQ84aMpPxpojBO0mWJEe5QpsA0dEmhsu2FHsgMieVB0m7KcyFIdWmM3APDN4Zql26sQxiWdeohYEHDjTcUACGjkNifLbhAAjru1GABFRYCie3DczUYAdE0ajuOc5Mi7xIWg0cUBgOWZtOn6PqGv1ODr6T0FSopQ8HaJOJvcaXYvDUIBIYOwc0duKgoix37q3A/yUYBIZRNCp9C6vlQtbHKnKaBafygQ0gud8o0j+0p8PHEK5FiHcXbT5CWw46PZTcRraCRxaF2HJADBj0LhlW09VaOAMUsyzsIxR4gZSio6jLyLIkeyVQAIhahJZUWHltkNALy3ef/O4w2SQyku68LuX1ajCjpk6AvaWNkOl2DPHJdjiNhmVIldYnWNFkrZcUhnFLop0Wusiir1gXBDQBUxun5kXz6YOHVyrENrs5uYDrWdRnhBiBxKVrtXgA4SjQtEcMf5QtayGwt1aKXdhHTjlf/trgmGJclRemoXEeMcRBW6ViWbNLJTT6jxin1E+UzJOdqB3JBiVKHR1Qv1g0Z4QZi0Ndu+cZaozRAMV1aiSo035AtpAHDJmeW8/zst2kWHFmY3MR0yFWk7dVJFaIhSClQB6CrQXohGPxVf37G/Dq20GwAIavrr6/ec8IexIJSUnOpyOnMWVeAQoQHCjpT6iqajCmuZJ5RqKzV9jU4PJwkvdKCgj8NGL5yNqKITcrwhGNaIiNHlQ3qyAWyctGhHHVqV3cR0SJOtdxYxI5TF7CYbOrTYbgBANcjbG/ZW1QcAwOPJKykulTDuiFEldiONnQapJVBDqQNoV0w6Y+rKVlSpD2onvUFKwSHiy4b07JJv8tEzzndPh/GOkO3sJks6tN5uGF8eOLZ631GdUADwuD0FeXmKJMmCIGDEowo0jSphneiEeoNqQ1Bj7/YvK/hh3y55Dj7KJlO4Dm2lw2zZDQD4wvrqfdVbj9bx+S5Tp2dx3sgeZeXFnvYuyHcHrkMTZEmHWbSbGNuO1h2o9R33h477QmF+y5viEHGpSylxO7oUuAecUugQeW93tuA6bIXc6DAXdsPhcDgAVixrx+FwOKnA7YbD4eQIbjccDidHcLvhcDg5gtsNh8PJEdxuOBxOjuB2w+FwcgS3Gw6HkyO43XA4nBzB7YbD4eQIbjccDidHcLvhcDg5gtsNh8PJEdxuOBxOjuB2w+FwcgS3Gw6HkyO43XA4nBzB7YbD4eQIDABer/epp56aPHnywIEDBw0aNGXKlD//+c+63trqlIxbbrnlyiuvzH4hM8JWhQyFQuPHjx89enRsz8CBA8ub8u9//9v0+SsrK8vLyz/++GMrCptruA5zRnvpUASAa6+99uDBg3fccceAAQN0Xf/vf//71FNPHTx4cP78+aa/L0POOuus999/v1u3bu1VgCzx5JNPHjlypLS0lL2klAYCgdtvv/3ss8+OHdO7d+92Kl07w3WYM9pLh+LOnTvXr1//17/+derUqWzX8OHDHQ7HsmXLgsGg0+m0/Cvb5NChQzU1Nbn/3myzffv2l19+ec6cOStXrmR7/H4/AFRUVMTHme8nXIc5ox11iA3DAACMmzTi3HzzzQsXLozd47fffvuHP/xh3759hw4d+tOf/vTEiRPxB/t8vv79+z/77LOxPaqqDh48+JFHHgGAEydO3HnnnUOHDu3Xr9+sWbO++OILdszu3bvLy8vXrFlzyy23DBw4cPjw4b/97W8JIV999dW4ceMAYPz48TfddFP8F61ataq8vPybb76J7dmwYUN5efnnn38OAOvWrbvkkkv69+8/YMCAyy+/fOPGjc1/7YABA1544YXYy3vuueeCCy6IFWb16tVXXXVV//79x44du3jx4i1btsycObN///5Tp07dvHkz+4iu63/605/Gjh3bt2/fiRMnvvLKK7GzzZ8/v1evXi1daELIfffdd8011/Tt2zf+0gGA2932cqj/93//95Of/OT1118fNWpU//79b7zxxoaGhv/3//7f0KFDhwwZ8tvf/rbNM9gcrkP4HugQ9+rVq3v37nffffebb76ZcP8YCxYs+OUvfzlr1qylS5f+5S9/2bx58/XXXx+/XIzH45k4ceKyZctie/773/96vd6ZM2cahnHNNdesX7/+z3/+84cffjhkyJBrr712x44dACCKIgA8+OCDV1555YYNGx5//PFXXnllyZIlZ5111jPPPAMAixcv/tOf/hRfkjFjxpSUlMR/0ZIlS0pKSsaOHbt3796rrrqqrKxswYIF77zzjsfjufLKK6urq9u8fAxWmMcee+yee+5Zv3794MGDf/WrX82fP//pp59eu3atx+N54IEH2JEPPfTQ3/72tzvvvHPZsmU//vGP//CHP7z11lvsrd69e59zzjktfcUbb7xx/PjxO+64I34niyqphG5RFNevX3/gwIFPP/30jTfeWLFixZw5c8rKyr744ov58+e/8sorTOsdF65D+B7oEMuy/Pe//728vPxXv/rViBEjJk+e/OCDD27ZsiV2xIsvvjhu3LjbbrutZ8+eY8aM+dWvfrV58+b169fHn2XGjBkbN26MXdaPPvqob9++/fv3X7VqVWVl5cMPPzx27NjevXs/8MAD3bt3j3fiKVOmjBs3TpKkCRMm9OjRY9OmTZIk5eXlAUBBQYHH02QRP0EQzj///ITbPH36dEEQ3njjDVmWH3/88QEDBgwaNOjRRx9VVfW9995r8/LFc/7551dUVLhcrosuuqihoeHSSy89/fTT8/PzZ8yYUVlZCQBer/fNN9/88Y9/PGfOnPLy8iuvvPJHP/rR3/72N/bx2bNnx7YTOHbs2KOPPvrggw8m3FEWVd57772JEyeeccYZ559//r/+9a+WihcIBH7xi1+43e6zzjqrX79+hJAbbrjB6XROmTKlsLCQlbDjwnUY4zusQwwAffv2XbRo0ccff3z//ff36NHjzTffvOCCC37/+98DgKZp27ZtGz58eOwDZ555JgAknPTcc891Op2sIVrX9U8++WTWrFkAsHHjRkEQRo4cGfkyjEeMGBEvkQEDBsS28/Pz6+vrWykrAFxwwQX79+/fuXMnAGzduvXgwYPsizZv3jxw4EBFUdhhhYWFPXr0SPcvsE+fPrGSJLwMh8OqqlZWVmqaNmbMmNhHRo8evW/fvtra2tbP/Nvf/nb8+PGTJk1K2B8Oh/Py8qqrqx944IGXX3555MiRd999dyxMJdCjRw9ZlmNFihWPvWxoaEjjp9oSrkPGd1iHYvyP7NOnzw033ODz+R544IGXXnrpggsu6NmzJ6W0oKAgdhjbZnYYw+l0nnvuuUuXLr366qu//PLLurq6mTNnssMMwxg4cGDsSF3Xi4qKYi9jN4bR5pKeI0aMKCsrW7p0ad++fT/66KNu3boNGzaMfVGPHj3ijywoKEgoZJs4HI5WXlJK2QmvvvpqhCJryhNCAODkyZPxPyqBFStW/Pe//12+fHnzt0aOHLlp06bYy1GjRh08ePAf//jH5ZdfbqJ4LRWgY8F1+B3Woaiq6tGjR7t37x7b5fF47rrrrgULFlRWVg4cOBBjHG/2bJvlmfHMmDHjJz/5SV1d3dKlS4cOHcr6DvPy8hwOx4cffhh/ZEJzYFpgjKdPn75s2bLbb7996dKlrIGNfVFCRKqvr+/cuXPCx2O3hxEKhdL6dvarn3jiif79+8fvj796zfnoo48aGhpiXYyUUkppr1697r///uuuuy7h4DPOOGPNmjVpleq7Addh6nRcHeI//OEP06ZNS2ic27dvHwCUlZVJknTGGWfEp51ff/01AAwePDjhRBMnTlQU5fPPP1++fDlLLAFgyJAh4XCYENIriqIoza9+UlqySVaD/fLLL/fu3Rv7ooqKiq1bt4bDYfbyxIkT+/fvb17I/Pz8+FCTbpZ7xhlnyLJcU1MT+zmFhYXFxcWx3DIpP//5z5cuXfpRlHnz5pWWln700UcXXnjh8uXLb7vtNlVVYwd/8803CeHxewLXYep0XB1i1swze/bs1157bc2aNV988cXzzz9/2223DRw4cMKECQBw0003rVq16vnnnz948OAXX3zxhz/8YdSoUc2voMPhmDx58vPPP3/y5Mnp06eznWPHjh0wYMAdd9yxZs2aqqqqDz74YNq0aW+88UbrZWJ58qeffsr6DhIYNmxYly5dHnrooX79+vXr14/tnDt3rqqq99xzz+7duysrK++66678/PzZs2cnfHbw4MHLli07efJkMBh8+umnWYN86uTl5V1++eVPPPHE4sWLq6qqvvrqq7lz5959993s3QULFtx8883NP9WpU6d+cZSVlQmC0K9fv6Kioh49eixfvnzevHmrV6/+6quv7r333q+++uqWW25Jq1TN2bp162dxdIh0ieswdTquDsUePXosWLDghRdeePHFF48ePSrLcrdu3W688ca5c+cys5w5c2YoFHrhhRcee+yx/Pz8yZMn33fffUnPPmPGjBtvvPEHP/hBbLSiIAivvPLKH//4x5tvvjkQCHTv3v2nP/3p9ddf33opKyoqJkyY8PDDD48ePfrll19OeBchNG3atL///e+x6wsAp5122htvvDF//vwZM2YIgjBixIh//vOfJSUlCZ+977777rnnnnHjxhUUFMydO/eiiy5asWJFOhcQ7r///vz8/IcffvjYsWMlJSXnnXfePffcw97atWtX0opxK/Tr1+/VV1998sknf/KTnwBA7969X3rppeYteeny9NNPx7/s2rXr6tWrMzxntuE6TOdqdVQdou9MEyOHw7E5/IlwDoeTI7jdcDicHMHthsPh5AhuNxwOJ0dwu+FwODmC2w2Hw8kR3G44HE6O4HbD4XByBLcbDoeTI7jdcDicHMHthsPh5AhuNxwOJ0dwu+FwODmC2w2Hw8kR3G44HE6O4HbD4XByBLcbDoeTI7jdcDicHMHthsPh5AhuNxwOJ0dwu+FwODmC2w2Hw8kR3G44HE6O4HbD4XByBLcbDoeTI9rfbtauXXvDDTecddZZvXr1Gjhw4KxZs/75z3+m8sGqqqry8vLy8vKGhoZ0v/Suu+4qLy9/8MEH0y9v2zz11FOsYL///e+zcX5ONnjnnXdmz55dUVHRq1evoUOHXn311WvXrk3lg++++255efm0adNMfOm4cePKy8s//vhjE59tiVdeeaU8jp49e44aNeraa6+1w1Lx7Ww3X3311RVXXPHpp5+63e6zzz67tLR006ZN995772uvvWbtFx0+fLi8vPyll15iLwcMGDBp0qQ+ffpY+y2MxYsXs40lS5bwNZE7BM8888w999yzfv36Hj16jB49GiG0atWqq6++evPmzdZ+0YIFC8rLyysrK9nLMWPGTJo0qayszNpvAQBJkoYMGTJkyJCBAwcGAoHPPvvsiiuuaHfHEdv361977TXDMKZMmfLcc8+xPffdd99bb731yiuvzJ0718IvilkA4/rrr29zRXpz7Nq1a/fu3fn5+S6X68iRIxs2bBg6dGg2vohjIS+//DIAPPDAA9deey0ABIPBOXPmVFZWvv322xUVFRZ+UYIOH3nkEQtPHs8pp5yycOFCtu31eqdNm1ZVVfXuu++OGjUqS9+YCu2c3bB6UFFRUWzPvffe+/nnn8enlwsWLJgxY0b//v0HDhx46aWXfv7550lPddlll8XnL5999ll5efmIESMA4IILLnj44YcB4Pe//315ebnf70+oTKmq+vjjj0+YMKFPnz5Dhw699dZb9+7dy9569dVXy8vL582bt2bNmmnTpp1xxhkXXnjh1q1bW/pFH374IQBMmDDh3HPPhWby4tiTBB06nc6XXnpp7dq1Dz30ENvTikISYFWYWP4yf/788vLy2267ze/3l5eXr1ixAgCmT59+wQUXQLPKVHV19V133TVixIg+ffqMHTv2d7/7ndfrZW/deuut5eXl//jHP15//fUxY8ZUVFTcfPPNNTU1qfy6vLy8M888EwBCoZCpy2MZ7Ww3AwcOBIB//vOfP//5z5cvX15fX5+Xl9e9e3eMIwV77rnnfv7zn2/fvn3SpEkjRoxYu3btNddcs3z58rS+ZdasWZ07dwaAkSNHXnfddZIkJRwwb968P//5z16vd8aMGZ07d16yZMlFF1106NAhAFAUBQD27t171113DRgwoKSkZOPGjbfeequu60m/i9nN+eeff/755wOvT3UQmA7vu+++Rx55ZM2aNaqqnnrqqfF1nFYUkiKSJF133XVse+bMmbNmzUo4oKam5kc/+tF7771XUFAwc+ZMwzBefvnluXPnMqUxHf773/9+8cUXx4wZYxjGsmXL/vjHP6by1T6fb+PGjQDQvqkNtLvd3Hzzzcx3FyxYcNNNNw0dOnTWrFmvv/46u8QNDQ1PPfUUADz00EPPPvssu/oA8Oijj6b1LTfeeGN5eTkATJky5Te/+Y0sy/Hvrlq1auXKlQihd99994knnnj//fcHDBjQ0NDw/PPPAwAzvt27dz/xxBOPPfYYy7q//fbbpMFtx44du3fvdjgcEydOHD16dGFhIatPpX9hODnloYceKikpCQQCzz777GWXXTZ48ODrrrvus88+Y++2rpAUkWX5N7/5DZPTvHnzbrzxxoQDXnzxxSNHjpx22mmLFy9+/PHHFy1aJMvyxo0bWe7DPrh///4PPvjgscceu++++wDg008/benrjh07dtFFF1100UUzZ84cM2ZMdXX1lVdeedlll6V3Xaymne2msLBwwYIFL7zwwmWXXXbaaadRSjdt2vTrX//67rvvBoBvvvmGpX8zZ85kx0+fPh0Adu3aVVdXZ1UZvvjiCwCoqKjo2bMnAEiSdN555wHA//73v9gxnTp1Gj58OAD07t3b7XYDwNGjR5uf6qOPPgKAiRMnulwuURQnT54MvD7VERg0aNBnn3328MMPT506taSkJBwOr1y58tprr33nnXcgNYVkDvuWKVOmsESmU6dOw4YNS/iWCRMm5OXlAcCQIUMAoLa2VtO0pGfTNG3Dhg0bNmzYvHmz1+sVBOHAgQM7duywsMAmaP+OcIzx5MmTH3744ZUrV65evZolmQsXLqyqqqqtrQUAh8PhcrnYwcXFxWyjvr7eqgKwb4lvP2LfEu9o8e86nU4AIIQ0PxWrSa1fv37atGnTpk1jzUy8PtUhcLvdl1122V//+td169YtWrSIVa+efvppSE0hmZOWDpkIoQUdAkDXrl33RVm3bt3111+/evXqq666ysSoEQtpT7vx+XxLly596qmnYi1YXbt2ffzxx0VRBIADBw4UFhYCQDgcDgaD7IBY21j8XWGwbDN2qhRb0QCAfQu72fGfjVlbimzfvn3Pnj0AcPz48W3btm3bto1lQLw+ZXMOHz783nvvsWoy48wzz/zNb34DAIcOHdJ1PS2FIISgXXXYnJKSkttvvx0A6urq2leK7Zzd/OxnP3vyySfnz5+vqirb88knn7CGm27dug0bNszhcEBcfeT9998HgEGDBuXn5yecijXssSYxAPj3v/8d/y4Tgd/vb16GMWPGAMCWLVv2798PAKqqLlmyJLY/dVhNatiwYfvimDBhAvD6lL3Zv3//XXfd9bvf/e6DDz5gewzDYC0mnTp1EkUxLYXE69Dv97OuqBht6nD58uXsb+HQoUNff/11S9+SLrH+XI/Hk/nZTNOe4248Hs8vfvGLBx988OWXX3733Xe7du1aX19fXV0NABdeeOFpp50GALfffvujjz56//33r169uqamZvXq1YIg3Hvvvc3PNmnSpA8++ODjjz++5ZZbvF4v60GM1WI6deoEAC+//PLBgwd/8YtfxH9w/PjxP/jBDz7//PNLLrlkwoQJmzdv3rFjR1lZ2bx589L6OcxuEkaXTp069bPPPluyZMn999/PpMaxG2efffaUKVOWLVv205/+9KGHHiouLq6urma19TvuuAPSVMikSZPefvvtRx55ZPv27evXr+/cufPx48fjdXjo0KFf//rXY8eO/fWvfx3/wRtuuGHBggX79u2bNWsWa0vSNG3s2LHnnHOOiR/FmorZdn19/b59+wBg6NChrNGnvWjn7Oa666578cUXJ0yY4Ha79+zZ4/V6hwwZ8sADD8T6nm699dZHHnmkd+/eS5cu/eabb8aOHfvWW28l9fuZM2fecsstpaWlq1ev7tKlCxsxEQ6H2bs//vGPe/fu7fV6v/zyy4TqLkLohRdeuOWWWxwOx6JFi44fP37hhRcuXLiwtLQ09R8Sq0mx/u8Y5513niAIR44c+eabb9K5MJzcgRB65plnfve73w0dOtQwjF27dmGMJ0yY8NJLL1166aWQpkLuueeeqVOniqK4cuXKiy+++OKLL4Y4Hf7yl78sLS3dv3//9u3bEz5YUlKyYMGCCy+88NixY4sWLXI4HLfccsuLL75oLkrFmoo3bNhw9OjRPn363Hnnna+++mpsiEm78P8B3at4ABvAqvYAAAAASUVORK5CYII=", "path": "image.png" }
Which solution has a higher concentration of pink particles?
[ "neither; their concentrations are the same", "Solution B", "Solution A" ]
2
The diagram below is a model of two solutions. Each pink ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the pink particles represent the solute. To figure out which solution has a higher concentration of pink particles, look at both the number of pink particles and the volume of the solvent in each container. Use the concentration formula to find the number of pink particles per milliliter. Solution A has more pink particles per milliliter. So, Solution A has a higher concentration of pink particles.
Solution A
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAANkAAAA4CAIAAAD/xMoGAAAVzklEQVR4nO1dS3MUx7LOqu6ehwZpJLCEBAKDBA6DxYnwkq2J8L1n5yUR3vgveOWN454/4B/ilcNLb+wIb8wfAAf4BMLC1ggzes17ph+Vd5Fd2Vk9o2EkhKSwlUEITU919dfKr7+srFcrRIS3M2NMkiRRFEVRZEwCAMagUgoAfd8PgsD3A9/3lVJveaFjMYk2SRIAQESlABECa57nnRG0/yjzj3xmHMfdbrfTafd6vTAM4zg2xhCzEZF+IILWyvf9YrFYqVyYmZkul6c8zzs+/MeDFjF9JLVWnueXSqVKpXKKaP+Zpg6ri4jY7XabzUa73R4MBiyBUkisbxERjUFjDKJJEvQ8XS6X5+bmLl68WCyWTkB7jDH9fq/RSNEiIoACAHllRmsMATaEmdHOzV0slU4C7T/cDsFFRGy327u7u91uJ0mM1gpAjfQQZmYQjTEAgMaYJDHGJMaYIChcvDi3uLg0NTV1nHfjYuh02js7KVqlFAEeixYRk2G0hUJhbu7dop3cms3m48ePt7a2+v3+aWN5WyuVSleuXFlbW5uenobJudjv93d2dprNhjGotVZKaQ1SY7gaUhkb9SgSpoxEJAebJImTJCkWi4uLi4uLS0EQHO9NDgaD7e16s9kyxhBaZZ8afna4NcEBmrAiGlJH+pkkGdqlpaXLlxePHe3ktr+///PPP9+/f396erpcLp8WjOOyXq/XbDZ/+eWXTz75pFqtvpmLiLi/v1+v16Mo8jxtXQusMUop8iuXF+3FNPCxgyn8GZMkiTEmThIzPT198+ZKtVo9lttDxP39vXp9+2C0gKgs2hQk/WKhZlSk3+I4QSRGmpmZmZs3b87MHA/aQ1mz2fzpp58+++yzk7/0u7bvv//+wYMHb+BiHMf1en1/fx8AyLUAAJB6V2gMExGUylICSg+sb0kdiYvGGEySxJg4iuIgCG7cuLm4uGjrP6LFcVyvv97fbxBaJfUwRYtDoWA8WtLyxBg0JqEEnNAuLS2dcAvyl19+WV1dvXz58kle9GTs1atXL168GJdHh2G4tVXrdLrkVzfYOdGZ0hdEGQGVUkZrQARjQGttDACA1swDA+ABgO9DHEf//e+zXq9748bNI+etYTio1ba63fFoNSIyWjZCrrUyBgEctMYorTWjBYAoIrS9GzdunGSWvbW19fHHH5/Y5U7SqtVqrVY7kIthGG5ubvZ6Pd/3tFYA5OBMZrgk6w39YiMgImqlEACJkYgKQAOg1pTMalIj8nEcRy9fbhiDKysrR3BwGA42N2u9Xs/3KS7niJhDCwJtehxRKUVQ0Rg6k9HqtAiC1uj7XhzHGxu/G2OOhvZo1u/3/wZtxJFWLpf7/f5oLoZhWKsxEbNgp5SyGiN7cADSViOCSA6UIqemH7XWmCbVSimtFCqVaK0QtdboeR4ivny5gYirq6uHcnAYhrVabXK0UhfpdxetVsoItFopoxQdJLSe5wFi9PLl7wC4snI4tOd2kI1onyVJ8urVq263azVG2ZCX6g216tjfWssjWrhe8WGwHCV+EE+0U71Hox0bG7//8ccfk/c0WbRERI8hCWlULlotMGghmUrclhZowaJVWgPXYdFu/PnnH0f945+bY3kuIuL29na73fY8T2tPa6aayknOSONqhcuBmaA1pxGKCSH5SJxeX3++vb09CXqBlq4ItpI0UhOUMWiVAn7GZE4mCmhJaFsbXcdDxOfP1ydEe27jLc/FVqu1u7urhWRZqRuhLtJJ8luqSn7KHcz+d6lC8hhF0W+//dbtdt+IfhRaJdHartDRGqmyID4CLR2Ut0KNZjbPU57nRVH47NmzSdCe23hzuBhFUb3+GgA9Tws9yJNPtAjpZ75NJn3M36ih8+lX+meZo0mGG43Gixfr4yP1MFoaWRlqMjLODK20g9FKdZT/lG3yelorz9PNZuPFixeHHU09t5w5XNzb2+v3B9QSEn/0TE5A+HXoF6cYmfCO4pLDhWXay5Tc3Nzc3d0dA31vb3ckWrf+HBHzz4+LFnOankFPk3F+eKRNhPbc3mgZF3u93t7enmi9pf8PCwzZcEev7boTRVyfgoiGMmlwo2GqcFEUPX/+PI7jkbj7/f7e3n4O7RCH8j/Hm5t4gYs2f1N8Cl0/isL19fWD0J7bJJZxsdFoxHGkRUs91yHCThWOB/5K8CkfBxFHE8GVxlxLTmvtbW9v7+3tjTx3f38viggtMFrXJOY8Wve+0sfAxTUMlv8s+StRu6Jerx+E9twmsZSLYRg2mw1OJ4fkQUEWcGn0OZtSMGy5L2R0zpnLmHzCG8fxn3+O6N8Jw7DRaHKqzjWMvAIVGNOYs18hD1IPI6TjonXL98WPpT4I7blNaGlfd7vdCsOIZ19LkeKi9leUH8W4BYiS7H6erJp+QzMdhfvzxqpG2vj69eutra1isShh9Hr9KGK0/PDkgikhRIFotLlPGubuxf1dDTNVoFX1er3T6Vy4cOHAi50N6/f7URQNBoMoCgEgCArFYjEIglKpdIqofABAxFarBU4ieaDr7KAzFZC5iTMAI+QB+ash8jEpcz5OFUhr3Wq1vv76683NTWYTIv773//76af/wypluy1FvS4n3WvlSkq0OPx4iCdHARhIWY+2zqwBo7Xu9fo7O9tnmYtRFFHzRh4Mw0EYDgAgCILZ2bnTmhTnA0AYht1uTygiWd7BxEI378y+AjEpVZzkkCybzTNEC66WxhH5e63V7u7O+vo6T+FBxMEg5BlDFliuhTpcbTo+SSsfDkYLYvLb0H0KhLmIQX88RPP69V/Xr1+nbvazZq1Wk0TnIKNusunpGZrcesKmAaDX68VxnDXO09CGwiuZezB/zNE8lxMco2UxhzpiQmt2GqdB3BQbNlEGwNUzidZ+zOO31MyjzZGTppCNQptdxLIwlcb9/cbZnHH9RiLKkp1Oe0yBDz/88JtvvpFHvv3227eP78TFLqLhQ+QmsJ6wBzMXGQOuUvBZAI6D00mBw8UsP7g/TzYfc7MWRuStiIYjr1u5g5ZVcLJ0IieTI8g9Cq2yaNMi/X6v0+lMcr2TtCiKJiQiWaPRyMXxEzCNiIPBYHzHIYCjZJy15GQGhbGrwMoJ+9QWUIjKjZjDAqxoMririCqOY27hiScHhyN1Di2Ic5h5I9G634I9nqs8S73pXgAgSeJ2e5yonIodobNpf//Qp7ylaWNMGIaQNtLZZ44q5ByTUxqpRjIPyNXDQRCGmgGShVySlSY3pkdj1kopccZIACAqZ6jOhcRjM4w2d4NoZR4QgZaTye/5KTAGz9rYdL/fj+NDi1wURSfc2NBJksRxLJ5yRyokC3M6MfJb8Q3kcpRREpirUEbYTF+l4+lgHCdSgoXu5mz0czJEWVm5g9a9aw7NaNsPfI+yNtXr9YYrP0WjjpvjPfGrr77yhX3++edHRZeZ79IOwAY7RFAKuStEdqnkqnAlU4atLJDxUhJWTXAUK/0IgIhGKhkt00K7spV6WGhllEuIrFNTLpoZg1YgIcHLPg6jFdSU4oriCB00dAtH8MS7s8FgcOQTD8qnv/zyyy+++II//vDDD19//fXRrsJG/YvZZyYiAAdTZQ+iW8ZJFFzXZp6TMRxEWHRFKquJRVDS2tCsf9sXiGggXUUFKkUHiIYGlKl9mYNHxnwdRst/h5Foc3dBX9kcznm6clc8C3bkLGTMiYuLi2tra/zx8ePHR7uENF+GGPFTSS5yoOR+nzyDAMDmvKworp+k0tBmEihUUEY65NOl5CixvlBel9C621dkaEHwz4XNaHO37jCP0brAuBiI+8oDO7fDms8qiGgAtA3NKR0RAcBw9wq5QXoXANyWU67taHXM5MtbjVO0DNlVU67HUNTLgWYYObSUd0u0XF6e7aKVzUSO1/nmRO4GAaiMRJ49S2+5svbYLQgCSk+PcOKxgxlj6RigdYkxhubl0x9d8RJS0TiTwoncwycIxJErrZZdK2WGi7lmZMkx+sIFjOF1rkxE2TeJQ2gzmsqGBD8MB6BNyzF4y9pU4IWmqjEjqKdixWLxaFyU0wBOwHzP8zzPpx47tLu/oZ1VagyPvabGCY0dZTYAfIoaIqKRrpUkY0eyosgiTE0AGF5lR4sGAQyiBw5ns2yG1u9ZVIyWSJQdPwxaEGiN+CW9Fy5/1jaCCoLC8Z749OnT3JGHDx8+fPjwaFdh8z3P832/26X2vqGl6SQPNMwq4lcaE2XvsVJZjONUlBWFL2P9ZKSoCGezsY/RbkmXTwjkicaA1h5TUU4dUirtCxIPGMgMQ6LlWzgMWmN3zZPfglLqLGwBJa1UKvl+cNguRt8/6Wk7WilVKpXs3jEooyT/fbklZ8NiJgPGpOmkEBi0vS7Au8iN5BxfYfgg78IDAACYWKPdT0iYxZYj6NYGrGFubWhDcB6tLGbRykpHos0+SlH0PO/ChVOYWDDe5ubmTuCUtzQfAMrlMvGGohYtUOf2NyLQxg+jBn9zE1syObROMuK4QzW7L6OkghFsMDaSguJuG5G1GENqZ3iDFAJssxmGqo6E1uSoPAZtkjBag4jFYqlSqRy/o97OgiCYnp6efEi6Wq2e/MwxHwAqlYrnaWNoFwejFHXy0XJjAEBjaL5MGuxkZgAiawGbu4DQQAAgjbHZA7mTy/AuSnJ3PLT6R+lC2t1NiJms1JXoeZCjI5sdaZRoJdiRaLMsRIgixwRCadzHJmUqoZ2ZmTmbO41MT88AwCR0rFarlcopTMH0AaBUKk1NTTWbLa0NbSKjFDkg9a1SJDZAU0ctLZwuDxv4nBAG2TBGSgLiGCIak3DDIPOts/FcmrcWi6W5uTk5fxERkyRRSnueNgapaUh0tE9LhhayjlKUTcY3oWVRBKnTKJmY7dSYtm2VUgsLl89anw7b9PRMqVTe29s7qO3o+8Hc3KnOpdVaz87ONhoNY4xNVrQxRik0RtuU0NlkkbMETm6ELrK05HNSTlSN63AOgmKDRpIZrFQq//nP/3mes++PMUmn0/V9ppQCSNUR02ieRytkdRgtUMP0ILQM0kXL/QDGdutAsVh67735d+SqY7EgCBYWFvr9fhSFg8GARlaCICgWi0FQOP01BgAwOztXq9XiOKZeOq25wWh4Jr07jJGebwc8pF/TcEbFeHzFJg1Oc5D2BeWclHcK5aoWFhbW1u7llKbX6z558sS+hYD2LUkbeUodiJalC0Y8OcbKNnD6bImYR2t1kY9QgwERcX5+/lRmRB/WSqVSqVQ6a0hTLpZKpWq1+tdff9HmMnLET4z7ZRPrWWYAgAaLbYwDdrH9afiICG2We8ZQ2x/AsHFVnucvL18bDnmlUrlana3XX6t07dVotJBu1zQeLYhxyAytzcRNDq3V7Ay5QOtdvbp8ZgP02beUi0qp+fmFnZ3tJIkBPK09GvqjvywFPspbuRFpTWohgOhWHAp5LDMoXetGvYRkkmq7dOnS/PyIkKeUWlhY2N3dTpIE0q0cafIEbaXHhDQ0jDSM1rITbV7CfVHIB+ldNazWbsoyEu17I9Ge24SWtcNmZmYuXZp/9apGjS1E2rCLth6UAS6RYwoiu5UfSS14fpcMdkIArbQY+9IAITMYBMHq6q2Duv4J7dbWlh0lp0nfxu48Ox4t8y+H1vAzQ+JntXw0WqLmJGjPbRLLuKiUunJlaXd3JwwHAL6VB6U12oVOubUdqTEdwW2HuSYTzyzaycBHG8pznru0dHVh4cC9qZVSS0tLOzs7YTjwfd9eRWvNKw2UTK2G0AJ38XB0HgLMKphDmx1htFeujEN7bpOYE8KmpirLy8tECtrY3aQvlUAa8qB4lGs92ba/ZFWecBwBObQJ7/JBZEJPT0/fvv3B+P1eK5XKtWvLiMjjMRatYbRWmDMkAPQxsfLmcMueJduIKVpxj+kRJuKFC29Ge25vtPweyZcvLzYazVevtoKApBHtjrROZuoad3o72TQnp5aIxtUY61gb7zCdIQtBEHz44d1J3rKxuMhoEdFDRLEjLdhGJM/PlZN3wCJjhDm0iJjIvk/B2hxa/86du6fylo2/meW56HnezZs3u91Oo9Hwfd/ziI4I6Ybb2XRaYZwKUJZKh9IAp1SakNqVAplfEdESEa1rFQCsrNy6enV5EvRap2ibzYbnIYCmMM1r6Xk2+NAKFUKbDiTalItDtkmSrBObsFoRddAqBaurk6I9t/E2Yu/4Uql0+/YHv/76pN3uFAo+rTBRinKCtK9ErjEAAHf0hS1LnGUPotAYjtRcFV6/fuP27Q8m7xlhtJ1OB9GnLd959zqVrvbnLkYHsOj+RB7o45hu0cpWxNuiPbcxNvo9BjMzM3fu3CUH0xpQygnYu7YguTmblIWYtfkA5JQCtN11WbCzLs9mbl+//v69e/cKhcNlo4T2yZMn3S5vM45KKKPFCu7MSxAtVEMf5QNDneciTI9Au7Z27zx3Pi478P0u1Wr1zp27v/76a6vVMgbzW2LDyEidcZH1D2zbUfTMOZkEnayUunbt/Xv3/nVYIjLajz66++TJk3a7rXWGVu5Wn8cKebSi0zuPltqOYNfsKqWvX39/bW2tUDi5mc+lUqnX653NiRdvab1er1QqveEdbO12+9mzZ/X6a+tdSmK0XZNFP7NZ03JozeYx7FTWQvI656FYKBRu3bq9unr7LUflO53O06dPLVpthVzbpwfADdPcocMpC9iWrtBI847QHtYePXq0srLyN34H25vfTRlF0YsX6xsbG1EUe56278ACHtrleYG0PaEI02CHoUf7lcpUqzN37ny0tHTlWOblR1G0vr7+8uVGFEWe54kXC2d0lGg5lbHd2iBE0SAmfDsWbfXOnbvHhfZQ1mq1fvzxx7/luym/++67Tz/9dKJ39iLi9vb2+vrznZ0dRNTaU85G1rmJjNmQoA3TWauRwxwiFoul5eVrt27dOt7ZcoT2+fPnu7uMVvZHjUMrZHsE2mvXrq2s3DrF7RUbjcZPP/10//79arX6NwjWvV6v0Wg8evTowYMHMzMzh3iXeRRFtdrmxsZL+xZpxe+H4vEYN+SB61RgAhQKhfn5hdXVWxcvXnpHSWgURbVabWPj92azaew7ryEfqZ1RIgCeJ2EEWigWC++9N7+6euvSpUunvrFiq9V6/PhxrVY7mzvrHcroXeb37t2jx/sQXCQLw/D1679qtc3d3b1+fwB2A0KwG4yAkxmAjIOe501NVS5fvnz16tXZ2YsnMFBBLzXf3PyT0CKi1unYoHL3z2W0/OR4nlepVObnLy8vL8/Ozp0Pq7xrOzQXyYwx7XZ7e7u+vV1vtVq9Xi9JaNIKcOsKAGgbz0LBL5crs7Oz8/MLFy9eOvklm0mSdDqdidEG5fLU3Nzc/Pz83NwpoP3H2hG5yGaMCcOw3+91u71ut2Pnt6YTFAqFwtTUVLk8VS6XfD84dadatP1ut9PtdofQFqempsrlcrlc5m30z+3E7P8BxDwMUpQG3joAAAAASUVORK5CYII=", "path": "image.png" }
Complete the statement. Hydrogen is ().
[ "an elementary substance", "a compound" ]
0
The model below represents a molecule of hydrogen. ydrogen gas was once used to make large airships, such as blimps, float. It is no longer used in airships because it catches fire easily.
There are more than 100 different chemical elements, or types of atoms. Chemical elements make up all of the substances around you. A substance may be composed of one chemical element or multiple chemical elements. Substances that are composed of only one chemical element are elementary substances. Substances that are composed of multiple chemical elements bonded together are compounds. Every chemical element is represented by its own atomic symbol. An atomic symbol may consist of one capital letter, or it may consist of a capital letter followed by a lowercase letter. For example, the atomic symbol for the chemical element boron is B, and the atomic symbol for the chemical element chlorine is Cl. Scientists use different types of models to represent substances whose atoms are bonded in different ways. One type of model is a ball-and-stick model. The ball-and-stick model below represents a molecule of the compound boron trichloride. In a ball-and-stick model, the balls represent atoms, and the sticks represent bonds. Notice that the balls in the model above are not all the same color. Each color represents a different chemical element. The legend shows the color and the atomic symbol for each chemical element in the substance.
Use the model to determine whether hydrogen is an elementary substance or a compound. Step 1: Interpret the model. In the ball-and-stick model shown above, both of the balls are the same color: . The legend shows that light gray represents the chemical element with the atomic symbol H. So, the model shows you that a molecule of hydrogen is composed of one chemical element. Step 2: Determine whether the substance is an elementary substance or a compound. You know from Step 1 that hydrogen is composed of only one chemical element. So, hydrogen is an elementary substance.
an elementary substance
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAIAAACmkWkFAAA6mElEQVR4nO2dd3wU1drHnzPbkmxNI6EksKGFhAChNw1VpIOioghXBQXsXlEUERRRLghyUd+rwIULKopeRVQ6XqVJE2mB0BMglCRAym42Zcuc94+zu1kCJFtmd2fD8/340dnZ2Tkzc37+nueUzCGUUgg1Lhabaj0mUacMwJUgdzOoQ0+RBvsCqlNhtZ25Zjh9raTCaiupMJdUWIJ9RR6jkHJxqnBtuDxOFZ5WPzJMKgn2FSEegzr0B0RU2U1+acWqg2crrXzNh0WqlAQAAAgBAvZ/gIB9JwABuGEqN9tqOU8AUEi5UWn6xEgMcaEE6tBPiMtulu0/XVBaIQ9TqnVRCrk8TCYLU8hlBKQcSACkHEgJSAlwxL4hcWxLCHAAEscets05tp0bBIA4tikFHsBGKQWw8dRl276fp8BT6rJdtd9+pH0bXM/AA5ittrJys6nCbDCVGUvLFFLu7/e2DvajRTwAdegnuOAWX42ScjMARDZoEqGJDAtXyuRyAGB2SIhjC+zRgzq2qw5w2a4yUbZNgbr8ktqPp4QQSoEQAgBsG9h+dihxCVcEqGM/IYQ69hMClFJwnAEoSCUSlTIsNlrTpFEcANQaJBGxgTr0E+Kym8RIFQBUmAzs6bLEy1411LHlUsFsu+oAl23HsQDUJcV1/JLYjyeUUns9AbBtJgemCnaQYxuIYz+llDj221XiOIPz1JRCudkCAPVUYQI/JsTPoA79hLjspnGkCgDMplL2dKsFilCJKo5tKCoygEO7SAiBOvQT4rKbFrEahYQrLy2qKDWEelQpqzDfKDIAQJv6UYI/KMSvoA79hLjsRhsmvycpHgCu513kbbbQjSo2nj+fexUAeurj4kSQxCIegTr0E+KyGwDolBDTPEZDef7KxXNWmw1CMKpYbbbTOVfMFluiTnmPPs4fTwnxN6hDfyA6uwGAISkJsaowc2VF7oVzFZUVoRVVyirMmWculFeaNWGyB9s08cfzQQID6lBwxDXvxkmF1bbq4LmC0gqO4+rFxEZqteqwMDHPd6i02IrKyq8XlxYZS2022jxGMyQlQQzzOBFfQB0Ki0jthrEuKzczryjYV+ExPfVxIsldEUFAHQqFqO0GAC4WmU5dLzmQe62qxSxOKKUA/Vs0TIxUiaFPDhEW1KEgiO5PNKuRGKlMjFQeyL0OAGO7tWEpKAEgYN+o9hFc9oMjayXUvt+5h23wFCgATykFoGwbKAXCUwr2/YR9y1Nw7LH/ijq/JWDh+e/3n5IQ0ikhJgjPCPE/qENBEGNX8R1xdLCxeiXg0sl/84iA8yM7HgjrSKv61jEiABQoq3XWA2cfI7AHCUfqV7XHeVpqP571z7nICKn7oA69JaTsxjEGQKHqH2fVuY4IOD+y44GyYUK4qertsYXYa47axyXtvf3Evs3O5djjPC2xH0+BEMLzFAAkRMT1jAgI6tBbQspuxBpVqD2qiLeaESFBHXpLSNmNaKMK8ABAxJzFIgKCOvSWkLIbsUcVP902IjJQh94SUnYj2qhCeRB3mxkREtSht4SU3Yg3qhAQd5sZERLUobeElN2INarYKAVxVzMiJKhDbwkpuxFrVGHXQERczYiQoA69JaTsRqxRxdFm9td9I+ICdegtIWU3Yo0q4p/vgAgJ6tBbQspuxBpVxN9mRoQEdegtIWU3Yo0qIPqogggJ6tBbQspuxBpV2GxOTszzqxABQR16S0jZjVijivhncyJCgjr0lpCyG9FGFdEnsYiQoA69JaTsRrxRRexddIiQoA69JaTsRrRRhRd7NSNCgjr0lpCyG9FGFQAQd5sZERLUobeElN2INqpQHsQdVRAhQR16S0jZjWijiuj/EhcREtSht4SU3Yg8qog5i0UEBHXoLSFlN+KNKgDijiqIkKAOvSWk7EasUcUxAOmv+0bEBerQW0LKbsQbVVg1i7ieEQFBHXpLSNmNWKOK+GdzIkKCOvSWkLIbsUYVXvRRBRES1KG3hJTdiDWqiL/NjAgJ6tBbQspuxBpV2D4xRxVESFCH3hJSdiPWqGIT/XwHREhQh94SUnYj2qgi+tmciJCgDr0lpOxGrFFF/H+rgggJ6tBbQspuRBtVeABxL7iBCAnq0FtCym5EG1XYhYg4qiBCgjr0lpCyG9FGFdHPd0CEBHXoLSFlN2KNKuwMYq5mREhQh94SUnYj7qgiEXE1I0KCOvSWkLIbsUYVx+Rxf903Ii5Qh94SUnYj3qgCAEDEXM+IgKAOvSWk7Ea8UUXs8x0QIUEdektI2Y14owoBcbeZESFBHXpLSNmNWKOKTfRtZkRIUIfeElJ2I9aowi5CzEksIiSoQ28JKbsRa1QR/+qFiJCgDr0lBOwmz1gOAGEyqWijSrhM6rxOpK6COvSdELCbrPxiAGgcrRVtVEmI1gDA8fwi/zwARBSgDn0nZOwmMVon2qjSMFIl5chVQ7mhwuynh4AEHdSh74jdbq4YyoyVljCZtJ46QrRRheNIoygNAGTmFfvpOSDBBXUoCGK3mxMsg43RASGijSoESEKUGgCOXi30z2NAggzqUBDEbjfH8ooBoHGUrqpGxRdVKNB4nUom4YrLzQWlFf55EkgwQR0Kgqjt5lJJWZnFGiGXxagjqmpUlFGFACREa8HRwkfqEqhDoRC13bAMNiFGB641KsqoQghJjFYDwLE88Y4LIN6BOhQK8doNpdQ+FhClBdcaFWVUoZTGqMLDZVJjpeVySZlfnggSDFCHAiJeu8ktKSuzWMPlsmhVBIRCVCGEJMSwiQ/FfnkiSDBAHQqIeO3mREExADSO1jliidijCgAkRKoB4ER+EV9VPBLaoA4FRKR2Qyk9mV8CAAnROkcsEXtUAYBIVbhSISuz2C4WmfzwVJBAgzoUFpHazcViE8tgI5XhIRRVKKWJ0VoQ90RyxH1Qh8IiUrthYwFNYiKhKpaEQFQhhCREqwHgREGJjRdXHot4AepQWMRoNzylWQUlANAoWgdVsSQ0oooqTKGLCLPY+HM3jII/GSSQoA4FR4x2c6HIVGm1KRVyXUQYhFpUAaCNRP+HuYg7oA4FR4x2w8YCEqMj2cfQiioAJDFKDQBnrhusNl7QB4MEFNSh4IjObnhKTxaUAEBCjJbtCbmoopDLotURNp6eumYQ+OkggQJ16A9EZzfnC0tZBqsOC2N7Qi6qAKWNotQgsjwW8QjUoT8Qnd1ksQw2JtIZFkIuqgAhDSLVAJB9w1husQr5dJBAgTr0B+KyGxtPTznGApxhIRSjikIqidMqKcBJ0eSxiPugDv2EuOwmp9BotvGaiDBVmCKkowoFaBilBoAsUf5hLlIzqEM/IS67OcFCSpQOXMJCKEYVAlBfp+YIuVhsMplFkcci7oM69BMishsbT09fq6rmUI8qUgkXp1MBwHFxBBbETVCH/kNEdnOu0Gi28VpleESYHEI/qlAK7D3VInwPAFIDqEP/ISK7YX+f0iDSvo5PqEcVQqCeVinhSJ6xvKisUsAHhfgV1KH/EIvd3JTBsgoL/ajCEVI/Ug0AxwuKhXtUiB9BHfoVsdjN2RsGK091EeHhCnmdiSoA0ChKCwCZV4PfbEbcAXXoV8RiN+x1sPWjdCwIQJ2IKgAQpQqTSyWiXYgDqQbq0K+Iwm4sNv7sdQMANIjSsiAAdSWqcBzXIFJ0f5iL3BbUob8Rhd2cvWG08jRSGREul9exqEIprR/FhiGLBXteiH9AHfobUdjNCWcGC1DHogohJFIZrpBJjZWWSyXienEsUg3Uob8Jvt1YbPyZ6yXAMliAuhdVAKChaCY+IHcCdRgAgm83Z64beApRKqVcJgOog1EFABrY/26lWGwLcSBOUIcBIPh2w8YC4iO19gdYF6OKOkyhCpNXWG0XikqFeGaI8KAOA0CQ7abSajt3wwAA8VFa+wOsi1EFCNSPxPaUeEEdBoYg201VBiuV1eGoAtT+HoCTIluIA2GgDgNDkO2GjQXEReqqLL+ORpUwuUwbEWax8WdviOJFR4grqMPAEEy7qbTasguNAFA/Sltl+XU0qgAA+7uVLGxPiQzUYcAIpt2cumbgKUSpVVKJtM5HFQCIj7QvxGG22nx/eohQoA4DRjDt5qYM9i6IKnKZJEodYePp6evYnhIRqMOAETS7KbdYcwqNABCn09xk+XU3qhAg8ZEqwPEpMYE6DCRBs5tT1wwUIEqtlkmld0lUoUDjdBoCkCOahTgQ1KEAD9FtgmY3bEXUuEgdANw9UUXKkRitijpevo0EHdShjw/QI4JjN+UW64XCUgIQq9MAwN0TVYCQOByfEg2owwDrMDh2c7KghAJEatRSiQTupqgClMZqlBwhueJYiOMuB3UYYB0Gx27Yiqj1InXs410VVTiO1NOpAOCYCBbiuMtBHUJgdRgEuym3WC8WmQhAjFbD9txVUYUAqafD9lTwQR0GXodBsJus/BIAiNJqZBIJ23NXRRUKNEYTIZVwYliI424GdRh4HQbBbthYQKxOV1URd1lUASD2hQ0xwQkeqMPA6zDQdmMyW3KLTQQgWqupqoi7LKoQAiyPzcTumyCBOgyKDgNtNyfsGaxWynF3bVShFHSqcJlUUlxuzjeW+/I8Ee9AHQZFh4G2GzYWEKPT0aoKuhujCgDE4Qu3ggfqMCg6DKjdmMyWyyVlHCFRGjWpqqC7MaoQYm824/hU4EEdBkuHAbUbtsZNpFYj4bi7PKpQStURYWFyqbHSkosLwgQW1GGwdBhQu2F/oBGt00FV8AC4W6MKAI2L0gJAFq54F1hQh8HSYeDsxlBhvmIo4wiJUquhKngA3K1RBYDU09rzWFwQJmCgDoOow8DZTVZBCQBEarUcxwFGFUIAaESYnC3EcR4XhAkUqMMg6jBwdsPemRat0zmjBEYVSmlMpAawPRVAUIdB1GGA7MZQYc4zlnMcp9OonVECowoh9jz25DVcECYQoA4hqDoMkN2wUf0ojZZzPCiMKuz8CrlUExFusfFncEEY/4M6hKDqMEB2w0b1o7RacFg7RhXn+WMjVYDtqYCAOoSg6jAQdlNYVllQWsFxnEatBoe1Y1Rxnj9GqwKAM9dLcEEYv4I6DLoOA2E3J5xjAYRgVLk1qsikEp06gqdwCheE8Seow6DrMCB2Y89gdQCAUeXWqEIpxGqxPeV3UIdB16Hf7aawrPKaqULCSTQqFQBgVLk1qhACURoVISSnEBeE8ReoQ8fVB1OHfrcb1jmn02qJox4wqtwaVaQSLkoTQXFBGL+BOnRcfTB16He7YS9e1rEMFjCq3D6qUIAYrRqwPeU3UIeOqw+mDv1rN9dMFUXlZgknUSuV9l0YVW4XVQiATh3BcSS3xGSoMHvzrJE7gzoUiQ79azesc06n0xGnyWNUuUNUkXBcFOuow/aU0KAORaJD/9qNvcGs0Vbtwqhyh6hCKXXksUWePWWkNlCHItGhH+0mv7SiqNwslUiVEcqqvRhV7hBVCCFaZZhUIskvrcAFYQQEdQii0aEf7YZlsBrnWAADo8qdowohJFqrBIBj+EZR4UAdgmh06Ee7sY8FaHQ37cWocueoAgDROjXger6CgjoE0ejQX3aTZyw3VlokEml4eMRNX2BUuXNUAQBVeBhbiCMPF4QRAtShqHToL7thnXNanY7jyE1fYFSpMaoQAjE6DeAKDQKBOhSVDv1rNxq1rsrdGRhVaowqlAIbhsy8WkirPzvEY1CHotKhX+zmiqGMZbARERGu3XMAGFVqjyoRYXKFTFpmsV0qKfPkqSPVQR2KTYd+sRs2FqDV6sDV3Rl3WVTheZ5Sytt4nudtvI2n1MbbKOWtVqvNxv5ts1isNqvVYrFYrVaz2WKxWHRqJeACmz6DOhSbDqVCnciVY3nFAKDW6MBehbQqDhDgKXAAlFKeI4RS5qkSDqw85QAoAcoDIfboQQB4oBwAR8BGKSHAEXsFsw32b6CUI8ARQil17mcVRggQuwLsUiGOr3gKFMDG80AIz1MKwAPlKbDlL3hq36YA7AWuPKVsJwXgeR4IZ7XZKGHHExvPs7NRIOwMNp4CITaenZuwn9u/JezM9l/x1P6U2PklwAPAifzi+1o04KrHZcRdUIdi06HwdnOppKzMYuUkEp6nJpOJA+CAcgQkBFhtSRzVYN8AKuEI2yAAEkIIoQTsBxOwH8YqGCiVEOJawRzLBgE4Qgg46tVRna4HECCO7kK767N6pc6ac2xQR32wOqCOumH14awkntUQTykFnrLaqooqvCOqAACx/5wCIZRS4lDGTW1mVhAFAJAQkEu5Cqstp7C0abRa8Dq6G0AdilCHwjemWAYbEWG/OEIc7Ub756o2MLNeQohrekhZLnmHNjMhpFqbmd7UEHYcTJytXeI4oT2vtD/Zm9vMhNjbwM6Gt7NNSwip1mYmjpDHEc55cXdqM7PFjFijuuY2802XzXHhcing+JQPoA5FqEOB7YZSyq4sPELl2OPoFbd/rmoDs/SMuayzWgnrKbtDm9luzeD6j2tD2HGww55Zg9bRtibEWVs3t5kptbeBnQ1vZ5uZUlqtzWxPyQnwlHdeXA1tZrCLyRFV7jAicNNl87wyTAYAp66VWG28r7Vy94E6FKcOBbabXEcGK1co2B6MKuBVVOEIKGQSi40/e8MoQMXcZaAOxalDge3mREExAIRHaJwxAaMKeBVVCOHCsD3lLahDcepQyK5iSunJ/BIACItQOWMCsT/mqkqjjhriKZUQwqIKCy2EPXfKfNpxWsfxrlEFwPlv6hp+7AcTu1PbJyPYq5hSIBcNVzdc3ltSWborP5MCpEUmqWURAxO7pWqTCItw1B5VKLW7PmW/dPSu2UcYKOUIZ+N5dlOsIu2/dxwJFDiOs/G8PapQu+x4x5GEELD32LFn5ZAcx/E8H6GQlpgq2UIccqlEwJqq24SEDsExFkbsQ+MOVfC0DutQSLu5WGwqs1glEqlMLrdXGrNh55wCYFXF/gsSR1ThOOJM5VweozPPtB/vNGPi7PMHVw0RcFQ5tafHQCnlCDsh3ZV3dN7RVTvzjrpe8668owAw7+jXicp6r7YZ85C+L1Ql2IRSnl0KcYwp2qMKgaqoQm8fVXwZEWBRhVA+TC6pMNtOXTOk1Y8UsKbqNiLXIbOcdbl7/sg7mlmUXWIuvVBakBaVBJQOTOg6oFG3Rsp6zuymjunQMYNICDadvHToSmGEOlKjjZJwVcONHAABah+AZPsBJAQAqIQQx3hk1aAjB0Acw5PEsYdzGYZ07nf+27kB7HhHVGGjj4ZK4/QDS78+t7XWW2gdqf+u7xy1TAku45G8vbbBOQZJHfMdbDzP25vizm+p7/Md2PkpEFOFpdhUqY9Sj26nF6qa6jyi1SGhQAj55uyWuUdXXSzNv9P1j07q+/e0xxoq41zn3Xinw1Ml2WcNF66YCgCAUpoWlRIXFlsvPDZYOhQsu+EpZW9vD4tQAQHxRBWjuXT41jcyC7PduYtjRTndfhr/Xd8PWun0gkQVQ6XhrOFCm6hUL6IKz/NhCgmY4HyhsdxiDZf5ZU5mHUO0OuQIKTEbph9Y8vW5X2u+hdXZ/9uYu/edDk8/pO/rdXazPnfb8lPfXS2/duv5VVLlmGYPDkscGHgdCqbgi0WmCquNk8qkMjlQII4+6FrbzCZL6R95e49cP3K2JPtMSTYAqGWqFrqkltqkoU36Jeua+thmHrttlptewyixmCbsfH/j/YvUMqV3bWaj1bQj78+NudsO3TjuPG1TdeO48Ni0yJS+De6NkCrdaTOzZnaYXFphtmbll3RoFO1NxdxleK3Dc4bsP67uOXL9KDCxEegQk9Yhtk2nem3YL3zUYXGlYcSWNzKL3JJiicX0yt5/8pQ+nNTP076bU8XZ7x3+v9Ml5+908lKrafHJL7Ze3v5y6qQkTZNA6lCwxtSGk5eOXCmM0ESpNJEs7ZQQR/5559mcWy5u+fLUqryyOyaWHWPbTE59rHNsW+LVbM7pBz5fcuInL26nW7201X0+qGU2pyPFdc1gV2evX37qv0ar6U5njguLfTp5bJfYjtTRvHJmyNVmptt4nhIor7QUl5obaSPGdmjmxY3cbXihw19zt3x1ZxGqZaop7SYOa9zPx1nFf9v27obcvZ7ezoLOL41K6ue+Dk8WZ0/+450a5FeNl1In9m3QK2A6FMZueEoX7cyqsNqi4hOlUhkHUGubudxiXHDko91X97hz/qntJo5rMcLTNvPF0ryOPz7p9U0t6flm/4bd3G8zl1Qan93zTg1RxZWu9Tq+mPKMUqauuc3M6r6guIxSeK57siZM7vXt3A14qsMyi/HNPVPPldSecbTUJf074x86udq7vpv5R7+ad2SVF3eklSnXD/hnQ2WcOzo8WZIzaddMo8Vdr2G8lDqxT4NegdGhMPNuzheWVlhtnEzOSeUAYG8zA4CzkemEAgEotRhf3zPVTa8BgLmHF7+1fwF4ON/hw6PeVLCT9w4to+xEbsx3MHjiNQCwt+DA9L/eLzUbwdFmdl42ONrMzsa5Y+JDiS+3czfgkQ5zDOde2P68O14DAKeKswdteOpk8TlqP60HOiwxGxdneZNiA0CJxfTP46vd0aHRXPravrmeeg0ALDq+ONuQAwHRoTB2w2ZVycPVxPG/303zHao66Oxt5vf+nOVmNTtZe/7XL06t9Wg258Zcd+3stuSaCi6bCtyczTmrxtbybck2Xph+8H1wdk46LhsACMdRyjvnmIbJpABwPL/Il9u5G3Bfh6VW48JDC/LL79iKvxWjpfTlP94zmo2ufTfu6HD1uf+VWEq9vqnvc/7njg6/zl5/pew2HcPu8HHWYgiIDgWwGxtPTxaUAIAiXEkd//vVEFW+Pv1l5o1MLwr6x+HFWUVn3Ywqu/KOGMweO301Nl/e6052s+3Kvu15f3px/hzjhW9zfqg5qlCgMhlHCBTggjA14pEOFx1akG3wLOABwOWy/Bd3z/Y0u1mdXfsMjJrZU5BZsw6NltJvzq33+vw5xgv7rh0IgA4FsJucolKzjZfI5JxU7k5U+emcl4klAMw9vNT9qOI7RqvJnexmwbH/eF3EuoubyqymmqMKgD2PPYYriN8Z93V47MaRffke99oy/iw4uj//iEfZzXFPBkZvy9Yr+2rW4e9X9nvRjHJl/7W/as1uwGcdCmA37C/9peFqAlBrVPnt4q8mq/eJ5f6CoyeKzrkTVf7I8yaBqsal0oJas5tfLvx+1dskFgBM1rJ91/6qOaoQQhQKKQAcw/bUnXFfh7/k/OhLQf84vMT97Caz8JwvZTEMZlPNOjzgMuXCO/a7kd34rkMB7Ob0tRIAkEeoKECt2c3e/N0+Fre/INOdqKKVq3wsCAA0cmWt2Y3vNb3t6o6aowqlVCaRcBwpLjcXlgu/UHzdwE0dmixGr1Mbxsni7CumfDezG4MPvTau1KxDNm/YF0zWslqzG9916KvdnL5uMNt4TqbgJDJ3sptjXvXauPLrpd3uRJXUSL2PBQGARqasNbv56/oxH0s5X3qh1qgCQCWEA4Ays8XH4uok7uswx/Mum1vZV3DU/b4bQail78btiTY1cKwwy9869NVuHBmsCthMyhqzG5NFmFe3uBNVElVxvhfUSBlXa3bjS0uKYbKW1RpVAAghFAAqrfi2rdvgvg5zPBwSvS1XygvczG56xrf1vTioNbsp8zW7AQClTOlvHfpqN7nFJgCQhakAoNbsRpDAcrI4x52okqCMT1DV87Gs/g06uzXvxmfciSqE4wDAjC/3ux3u67DMJkTrxpORKd912LVe65p12FIrQC7fRNXY3zr01W7sNw8E3Mhu6oULkHEk6/RujgiMbtrfl4Lua9hFq1DXmt2oZBG1nqpW3IsqAAAVVpvvxdU9PNKhAHgyMtU9ro2Ppd3XqGvNOmwQ4aujxYbFuNN346MOfbUbe+Gc3dFrzm7qRcT7WJy9UPeiyjPJwzVypdelzEh/2p3ZnC01vgaWCGmEW1GFEACoRLu5He7rMDZMgJjnUXYzumk/X4pKidS30upr1mHHmFSfbgegdWSKOyNTPurQd7sBAPvbFtyJKnptko8lJkcmuRlVtHL1+x0nelfK+JbDElT1CDtRjdlNfaWvgaW1rpU7UYVJQC7x1zrLIY37OtRrm/peXOd6bdzPbnrEtfUl0Z6RPr5WHfaO7+xjlt27/j1uZje+6NBX7XIsfaU2cCO7AYDWUb4mlg/o+7s/IjC6af+JrUZ4WkS3eq1npk8A994R+1jTwT7eUafYju5EFZuNAkB0hMLH4uok7utQr2laL9ynCKGWKTvFtvFoZGp2x6e9S7RH6ft0q9e2Vh2qFarHmg7x+o5a61q5n934okNf7UYTLgMA3lwJ7mU3w5JG+FJcsi6pVWRTN6MK23i/08SJrYa7X8SARl2W3vOWM2+sNbtpqdXXj4j1+o5iw2L6NLjXnajCVt6Ijgjzuqw6jEc67JPgU6de34bdiCd9NwCgU2h+um+up46TEqlf2PUVN3X4WNJg73SolEaMTx7HzulvHfpqNwlaJQDw1kpwL7uJC48f7oPjvNHuaY+iCqWUAPmg06RPu//dncp+Ne3R5fe+rZOrnHmjOyNT76Q/7/UdPdVirDtRhb13VEKISoHv9LsNHulwaJMRSqmXnXpqmfK51DHUk74bttEmqtnPnjjOQ/q+/+3zgfs6VMtV8ztP9aJJNaHlOL2qMTunv3Xoq9000inBk+wGCDzaYkySVz04I5r06xLXzqOoQhzr+zzW7L6jI//zRrsxibcbldTIlY8k9ftz+PIpbcY4bsTd7AYAOsS2Hp3kTZOqS2yHLrEd3YkqlRYKALEqTG1uj0c6VMrUE1p72an3bOrjDZXxnmY3TIdpkU2PjFwxKKFrzUVoZMpX2zz6z26vaOQqj3TYUqf/vMcsjxzn5dRJfRvc6zynv3Xo6+u1Kq22j3YcBwB1fBOZRMoR+zvTan6LWkFZ3vM7njN58kdlnWLTVvaZB0KszXzBeDXXlH/0Rk6JpbR7XGuNXJWqS6JerM1889v83j306frcbe7fkV7deHb7t8KlyprfosbeJltoLLdY+B5N6t2bJMzoXh3DCx0uy/r8p+y1HpUyvEm/9zu/6vsa4X/kH/n67K+78o9cLL1pel7ryKRHkvo9nNRHLVN5rUODuXTp6e++zd5Q873UC495puU4998qKYgOBXib3/dHz5+5blCodBHaGCkHhFJ33uZ3rSzv3QOzst2b4jm8Sb8POr/Kas7rN+ATqHonKwAQx/vQbDwPhLDVEnig9or06g34S099uzp7famlrNY76tvg3vEtHnfnbX4UwGKz3SipAIAXe7ZSymVe1lNdxwsdLj3ugeMMa9Lv/U6v+r4Sg6sOiyuNx4qyKQWNXJWi0wulQwpw4HrmslP/PXQj69YbiQuP6dcgY3jiwAipEtxbiUEoHQpgN1cNZSsOnAVCIuP1EgnnTnbDaqXcYvzy1Ko1Nda3Sqac2m7iiCb9ibfviL01u2EfKXuaQOnN1el1VGHbV8quzT706aHC21QzQymNeKX1JI+iSmmZxVRhaRmrfSCtsY+VVYfxTod783YvPv55fo1/BKCSKV9rO3EkGxINER1S+4KZ8Nf1Y1fLrl0tL6AAcYrYJE1jvboxdazo4FwBJjA6FOZdxasPZ+cUliqUOk1UjJvZjXN9n2tleZtzt+66uufszZlOrwZdO8S0Hd6kr1ahFmR9nwBkN86aPlWSvTPvzzMlOXnl188azgNAm8iUuPDYrvU6dKvX2f31fXhKrTb+uqGcUhiT3jQx0vtZi3cD3umw1Gz49dL/tuRuvfUNk811Sb0bdBvTbLhGrhZqnalA6pCdwff1zoTSoTB2U1hW+e99p22UamIahIWFu78SAwHggEo4wjZKzcZsQ06Hem0IVFWtj2/AD1ZUYUey/ewAHqinUYUHer2k3GqjLWI1D6Y18b2m6jY+6rCgPD+/PJ/1u0qA1FfWa6iMRx0KqEPBFn45dKVw08lLhOOi4xOlnESEqxeGYlQpMlWUVVh14fIJnVvIcD6xG6AOxaxDwRSc3iCqRayG8nzJjTzXqTb05nk34Bzbt9cBUPtzt49SErBXl/NHzuPBw3fEgmPeDRBwDo/ax/wc56dAiX0JL3BeKbHPbnB33o3zl+xXjuMBoGptZmq/dFJV4s2rF9502TxPCGcsN5dVWKUcebitHr3GTVCHIGIdCiniwa0SosIVlsqKwvzLlNr/Pv3WeTfU/l+7eRNCHDcLwOYvUPsPwb7HfjxQ8G6+g10jdvu3H+aILYSy01JwXikFz+bdOH/JfuU4HgCA4ziwi4ldOq0q0fHXbred71BUWmEoMwPAA2lN8A8XPAJ1KFodCmk3YVLJuI5NY5QKi6Uy/+rFiopywKjieVSx8Xx+sam0wiLlyNj2TZtGq4WqoLsE1KFodShwih4uk/6tY/NG2gjeZrtWcOXGjQKezUp0glGlxqhSWmm9XGiqtPAKKTemfVM2WRbxFNShOHUoWFdxNfZcKNiVk2/lKQColCqtWh0mk8klEglHahiZIgASQohLdx25C0YEKq28lafGcrOh3MK+TY7V9mvRQK3AGX2+gjoUlQ79ZTcAUFpp3ZWTdzy/GN936T5JUerOibH6KAGWkUAYqEMv8JMO/Wg3Tk7kF18oKr1mqrhWWlGJVX4zCikXExEWrVQ00CpT6ukUUhyB8heowxoIjA4DYTcIgiAgeFcxgiDInUC7QRAkQKDdIAgSINBuEAQJEGg3CIIECLQbBEECBNoNgiABAu0GQZAAgXaDIEiAQLtBECRAoN0gCBIg0G4QBAkQaDcIggQItBsEQQIE2g2CIAEC7QZBkACBdoMgSIBAu0EQJEBwAGA0GhctWtS/f//U1NTWrVsPGDDg008/tVqttf548uTJY8aM8f9F+oQYLtJmsy1durRPnz7Jycl9+vT5/PPPbTYb+6qsrGzGjBkdO3ZMTk4eNWrUkSNHfCkoKytLr9dv2bJFiKsONKhDfxN0HUoB4IknnsjNzX355ZdTUlKsVusff/yxaNGi3NzcuXPn+lKkL3To0OGnn35q1KhRsC5AWBYuXLh06dJXX321bdu2f/7557x58ziOe+aZZwDg9ddfP3DgwLvvvhsXF7dy5cpx48Zt3rw5Pj4+2JccBFCH/iboOpSePn364MGD//rXvwYOHMh2dezYUaFQbN68uby8PDw8XNjy3OHy5cuFhYWBL9dPWK3WlStXjh8/ntVrly5dTpw48fPPPz/zzDPnz59fv3790qVL+/XrBwBt27bNyMj44osvXn/99WBfdaBBHfobMeiQY9kUW2TPyaRJk3788UdnHX/77bf9+vVr0aJFenr6Sy+9dP36ddeDS0tLk5OTP/vsM+ces9ncpk2befPmAcD169dfeeWV9PT0li1bDh8+fPfu3eyYs2fP6vX6ffv2TZ48OTU1tWPHju+88w7P83v37u3ZsycA3HPPPey5ONm5c6derz906JBzz+HDh/V6/Y4dOwDgwIEDDz/8cHJyckpKyqOPPnrbbDAlJWXJkiXOj1OnTh06dKjzYnbt2vX4448nJyf36NFj3bp1x44dGzZsWHJy8sCBAzMzM9lPrFbrRx991KNHjxYtWvTq1WvlypXOs82dO7dp06a3ecQc98svv0ycONG5p379+kzHu3fvlslk9957L9svk8nuueeenTt33nqS559//rnnnvvqq6+6dOmSnJw8YcIEg8Hwj3/8Iz09vV27du+8886tPwktUIdwF+iQa9q0aUJCwuuvv/71119Xqz/GmjVr3njjjeHDh2/atOn//u//MjMzn3rqKdflYlQqVa9evTZv3uzc88cffxiNxmHDhtlstr/97W8HDx789NNP169f365duyeeeOLUqVMAIJVKAWDWrFljxow5fPjwggULVq5cuXHjxg4dOnzyyScAsG7duo8++sj1Srp37x4dHe1a0MaNG6Ojo3v06JGdnf3444/HxsauWbPmu+++U6lUY8aMycvLq/nmnbCLmT9//tSpUw8ePNimTZu33npr7ty5H3/88f79+1Uq1cyZM9mRs2fPXrp06SuvvLJ58+ann376/fff/+abb9hXzZo169Onz20eMcc1adJEq9Wyj1arddeuXR07dgSAnJyc+Ph4uVzuPDgxMTEnJ+e2V3jw4MELFy789ttvq1at+v3330eNGhUbG7t79+65c+euXLmSaT10QR3CXaBDTi6X//vf/9br9W+99VanTp369+8/a9asY8eOOY9YtmxZz549X3jhhaSkpO7du7/11luZmZkHDx50PcuQIUOOHDnifKwbNmxo0aJFcnLyzp07s7Ky5syZ06NHj2bNms2cOTMhIcHViQcMGNCzZ0+ZTJaRkZGYmHj06FGZTKZWqwFAq9WqVDct4ieRSO6///5q1Tx48GCJRLJq1Sq5XL5gwYKUlJTWrVt/+OGHZrP5hx9+qOHOb+X+++9PS0uLiIgYOXKkwWB45JFHmjRpotFohgwZkpWVBQBGo/Hrr79++umnR40apdfrx4wZ88ADDyxdupT9/MEHH3Ru18C8efMuXLjw8ssvsxOym3WiUqlMJhNbQL4aZWVlr732mlKp7NChQ8uWLXmeHz9+fHh4+IABA3Q6HbvC0AV16KQO65ADgBYtWqxdu3bLli3Tp09PTEz8+uuvhw4d+t577wGAxWI5ceIEs0BG27ZtAaDaSfv27RseHs46oq1W66+//jp8+HAAOHLkiEQi6dy5s70wjuvUqZOrRFJSUpzbGo2mpKSk5mc0dOjQ8+fPnz59GgCOHz+em5vLCsrMzExNTQ0LC2OH6XS6xMRET/8PbN68ufNKqn2srKw0m81ZWVkWi6V79+7On3Tt2jUnJ6eoqMjNIubOnbtixYpPPvkkKSnJo2sDgMTERGf80Wg0zstjHw0Gg6cnFBuoQ0Yd1qHUudW8efPmzZuPHz++tLR05syZy5cvHzp0aFJSEqXUmYABANsuLS11PUt4eHjfvn03bdo0bty4PXv2FBcXDxs2jB1ms9lSU1OdR1qt1sjISOdHZ8Uwal3Ss1OnTrGxsZs2bWrRosWGDRsaNWrUvn17VlBiYqLrkVqtttpF1opCoajhI6WUnXDcuHGE2NeUZ/Z/48YN15u6LTzPT5s2bd26dcuXL2edAuwiq1WPwWBQqVTVujDcvLyaLyBUQB3WYR1KzWZzfn5+QkKCc5dKpZoyZcqaNWuysrJSU1M5jnM1e7ZdLfUCgCFDhjz33HPFxcWbNm1KT09nY4dqtVqhUKxfv971yNveg5twHDd48ODNmze/+OKLmzZtYh1srKBqEamkpKR+/frVfu6sHkZFRYVHpbO7XrhwYXJysut+16d3J2bOnLl58+bVq1e3bt3auTMpKenq1auVlZXOOsvJyWnWrJlHV1U3QB26T+jqkHv//fcHDRpUrXOO9RLFxsbKZLJWrVq5pp1//fUXALRp06baiXr16hUWFrZjx46tW7eyxBIA2rVrV1lZyfN8UwdhYWG3Pv3bciebZC3YPXv2ZGdnOwtKS0s7fvx4ZWUl+3j9+vXz58/fepEajcY11Hia5bZq1UoulxcWFjpvR6fTRUVFufax3ZYffvjhv//978qVK13rGAB69uzJ8/z//vc/9rG8vHzbtm29evXy6KrqBqhD9wldHXKsm+fBBx/88ssv9+3bt3v37sWLF7/wwgupqakZGRkA8Mwzz+zcuXPx4sW5ubm7d+9+//33u3TpcusTVCgU/fv3X7x48Y0bNwYPHsx29ujRIyUl5eWXX963b9+lS5d+/vnnQYMGrVq1quZrYnnyb7/9xsYOqtG+ffsGDRrMnj27ZcuWLVu2ZDvHjh1rNpunTp169uzZrKysKVOmaDSaBx98sNpv27Rps3nz5hs3bpSXl3/88ccmk8mjh6VWqx999NGFCxeuW7fu0qVLe/fuHTt2rHNuwpo1ayZNmnTrryoqKubPn9+3b9+ysrK9LpjN5oYNG44aNeqdd95Zv379/v37n3/+eYlEMnbsWI+u6laOHz++3YV9+/b5eMIAgDp0n9DVoTQxMXHNmjVLlixZtmxZfn6+XC5v1KjRhAkTxo4dy8xy2LBhFRUVS5YsmT9/vkaj6d+//7Rp02579iFDhkyYMOHee++NiYlheyQSycqVKz/44INJkyaVlZUlJCS89NJLTz31VM1XmZaWlpGRMWfOnK5du65YsaLat4SQQYMG/fvf/3adg9S4ceNVq1bNnTt3yJAhEomkU6dOq1evjo6OrvbbadOmTZ06tWfPnlqtduzYsSNHjvz99989eYAwffp0jUYzZ86cgoKC6Ojo++67b+rUqeyrM2fObN269dafZGdn5+XlbdiwYcOGDa779+/fHxsb+957782dO3fGjBkmkyk9PX3VqlVRUVEeXdKtfPzxx64fGzZsuGvXLh/P6W9Qh548rVDVIakzXYwIgogc/ItwBEECBNoNgiABAu0GQZAAgXaDIEiAQLtBECRAoN0gCBIg0G4QBAkQaDcIggQItBsEQQIE2g2CIAEC7QZBkACBdoMgSIBAu0EQJECg3SAIEiDQbhAECRBoNwiCBAi0GwRBAgTaDYIgAQLtBkGQAIF2gyBIgEC7QRAkQKDdIAgSINBuEAQJEGg3CIIECLQbBEECRPDtZv/+/ePHj+/QoUPTpk1TU1OHDx++evVqd3546dIlvV6v1+sNBoOnhU6ZMkWv18+aNcvz662dRYsWsQt77733/HF+xB989913Dz74YFpaWtOmTdPT08eNG7d//353fvj999/r9fpBgwZ5UWjPnj31ev2WLVu8+O2dWLlypd6FpKSkLl26PPHEE2JYKj7IdrN3797HHnvst99+UyqV3bp1i4mJOXr06Jtvvvnll18KW9CVK1f0ev3y5cvZx5SUlN69ezdv3lzYUhjr1q1jGxs3bsQ1kUOCTz75ZOrUqQcPHkxMTOzatSshZOfOnePGjcvMzBS2oDVr1uj1+qysLPaxe/fuvXv3jo2NFbYUAJDJZO3atWvXrl1qampZWdn27dsfe+yxoDuONLjFf/nllzabbcCAAZ9//jnbM23atG+++WblypVjx44VsCCnBTCeeuqpWlek944zZ86cPXtWo9FERERcvXr18OHD6enp/igIEZAVK1YAwMyZM5944gkAKC8vHzVqVFZW1rfffpuWliZgQdV0OG/ePAFP7kq9evV+/PFHtm00GgcNGnTp0qXvv/++S5cufirRHYKc3bB2UGRkpHPPm2++uWPHDtf0cs2aNUOGDElOTk5NTX3kkUd27Nhx21ONHj3aNX/Zvn27Xq/v1KkTAAwdOnTOnDkA8N577+n1epPJVK0xZTabFyxYkJGR0bx58/T09GeffTY7O5t99cUXX+j1+okTJ+7bt2/QoEGtWrUaMWLE8ePH73RH69evB4CMjIy+ffvCLfJCxEk1HYaHhy9fvnz//v2zZ89me2pQSDVYE8aZv8ydO1ev17/wwgsmk0mv1//+++8AMHjw4KFDh8Itjam8vLwpU6Z06tSpefPmPXr0ePfdd41GI/vq2Wef1ev1//nPf7766qvu3bunpaVNmjSpsLDQnbtTq9Vt27YFgIqKCq8ej2AE2W5SU1MBYPXq1a+++urWrVtLSkrUanVCQgLH2S/s888/f/XVV0+ePNm7d+9OnTrt37//b3/729atWz0qZfjw4fXr1weAzp07P/nkkzKZrNoBEydO/PTTT41G45AhQ+rXr79x48aRI0devnwZAMLCwgAgOzt7ypQpKSkp0dHRR44cefbZZ61W623LYnZz//3333///YDtqRCB6XDatGnz5s3bt2+f2WyOi4tzbePUoBA3kclkTz75JNseNmzY8OHDqx1QWFj4wAMP/PDDD1qtdtiwYTabbcWKFWPHjmVKYzr85Zdfli1b1r17d5vNtnnz5g8++MCdoktLS48cOQIAwU1tIOh2M2nSJOa7a9aseeaZZ9LT04cPH/7VV1+xR2wwGBYtWgQAs2fP/uyzz9jTB4APP/zQo1ImTJig1+sBYMCAATNmzJDL5a7f7ty5c9u2bYSQ77//fuHChT/99FNKSorBYFi8eDEAMOM7e/bswoUL58+fz7Luixcv3ja4nTp16uzZswqFolevXl27dtXpdKw95fmDQQLK7Nmzo6Ojy8rKPvvss9GjR7dp0+bJJ5/cvn07+7ZmhbiJXC6fMWMGk9PEiRMnTJhQ7YBly5ZdvXq1cePG69atW7Bgwdq1a+Vy+ZEjR1juw354/vz5n3/+ef78+dOmTQOA33777U7FFRQUjBw5cuTIkcOGDevevXteXt6YMWNGjx7t2XMRmiDbjU6nW7NmzZIlS0aPHt24cWNK6dGjR99+++3XX38dAA4dOsTSv2HDhrHjBw8eDABnzpwpLi4W6hp2794NAGlpaUlJSQAgk8nuu+8+APjzzz+dx8THx3fs2BEAmjVrplQqASA/P//WU23YsAEAevXqFRERIZVK+/fvD9ieCgVat269ffv2OXPmDBw4MDo6urKyctu2bU888cR3330H7inEd1gpAwYMYIlMfHx8+/btq5WSkZGhVqsBoF27dgBQVFRksVhuezaLxXL48OHDhw9nZmYajUaJRHLhwoVTp04JeMFeEPyBcI7j+vfvP2fOnG3btu3atYslmT/++OOlS5eKiooAQKFQREREsIOjoqLYRklJiVAXwEpx7T9ipbg6muu34eHhAMDz/K2nYi2pgwcPDho0aNCgQaybCdtTIYFSqRw9evS//vWvAwcOrF27ljWvPv74Y3BPIb7jkQ6ZCOEOOgSAhg0b5jg4cODAU089tWvXrscff9yLWSMCEky7KS0t3bRp06JFi5w9WA0bNlywYIFUKgWACxcu6HQ6AKisrCwvL2cHOPvGXGuFwbJN56nc7EUDAFYKq2zX3zqtzU1Onjx57tw5ALh27dqJEydOnDjBMiBsT4mcK1eu/PDDD6yZzGjbtu2MGTMA4PLly1ar1SOFEEIgqDq8lejo6BdffBEAiouLgyvFIGc3f//73//5z3/OnTvXbDazPb/++ivruGnUqFH79u0VCgW4tEd++uknAGjdurVGo6l2Ktaxx7rEAOCXX35x/ZaJwGQy3XoN3bt3B4Bjx46dP38eAMxm88aNG5373Ye1pNq3b5/jQkZGBmB7StycP39+ypQp77777s8//8z22Gw21mMSHx8vlUo9UoirDk0mExuKclKrDrdu3cr+X7h8+fJff/11p1I8xTmeq1KpfD+b1wRz3o1KpXrttddmzZq1YsWK77//vmHDhiUlJXl5eQAwYsSIxo0bA8CLL7744YcfTp8+fdeuXYWFhbt27ZJIJG+++eatZ+vdu/fPP/+8ZcuWyZMnG41GNoLobMXEx8cDwIoVK3Jzc1977TXXH95zzz333nvvjh07Hn744YyMjMzMzFOnTsXGxk6cONGj22F2U2126cCBA7dv375x48bp06czqSFio1u3bgMGDNi8efNLL700e/bsqKiovLw81lp/+eWXwUOF9O7d+9tvv503b97JkycPHjxYv379a9euuerw8uXLb7/9do8ePd5++23XH44fP37NmjU5OTnDhw9nfUkWi6VHjx59+vTx4qZYVzHbLikpycnJAYD09HTW6RMsgpzdPPnkk8uWLcvIyFAqlefOnTMaje3atZs5c6Zz7OnZZ5+dN29es2bNNm3adOjQoR49enzzzTe39fthw4ZNnjw5JiZm165dDRo0YDMmKisr2bdPP/10s2bNjEbjnj17qjV3CSFLliyZPHmyQqFYu3bttWvXRowY8eOPP8bExLh/I86WFBv/dnLfffdJJJKrV68eOnTIkweDBA5CyCeffPLuu++mp6fbbLYzZ85wHJeRkbF8+fJHHnkEPFTI1KlTBw4cKJVKt23b9tBDDz300EPgosM33ngjJibm/PnzJ0+erPbD6OjoNWvWjBgxoqCgYO3atQqFYvLkycuWLfMuSjm7ig8fPpyfn9+8efNXXnnliy++cE4xCQr/DxxQnqVMfAttAAAAAElFTkSuQmCC", "path": "image.png" }
Which solution has a higher concentration of green particles?
[ "neither; their concentrations are the same", "Solution B", "Solution A" ]
0
The diagram below is a model of two solutions. Each green ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the green particles represent the solute. To figure out which solution has a higher concentration of green particles, look at both the number of green particles and the volume of the solvent in each container. Use the concentration formula to find the number of green particles per milliliter. Solution A and Solution B have the same number of green particles per milliliter. So, their concentrations are the same.
neither; their concentrations are the same
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAIAAACmkWkFAABNpUlEQVR4nO2dd5gUVbrGv1Ohc5oEA0xgSOIMIKisCCjqikgQUFyBdTGhAq5xRdgVFQOuC6Y17Kq4uqKroFcxrCTd6xoAhauoTAAECTMDTJ7OuercP0530/Sk7qrqnho8v8fHp7qmuupU18v3vSfUOQhjDD2Naruny2OKbMYMlITyS4bqMFW47i5AIv6wsL/R+VOjwx8WHP6gwx/q7hKljJZjepv0Vr2mt0k/vE+WjmO7u0SUlKE6TAdIVe6m3u1/c9eBQFjs/LAskxEBAABCgCDyHyCI7ARAAM0eX1Do4jwZQMsxVw4vKcqiKa4nQXWYJtQVbl7Z+VOD26/RGc22bK1Go+N5nVbDI+AYYAE4BjgEHAIGRTbY6DaLgAFgo3vINhPdjm0gABTdxhhEAAFjDCCIOG47sl/EIGIct31if+TIyDbEn0EECIYFry/o8QedHq/L7dVyzB/OH9bdPy0lBagO0wTTvZdPwOELAkBW3/4GS5ZOb+Q1GgAg4RCh6BZEsgeObp84IG77RBAl2xhw3Ddx5HiMEMIYEEIAQLaB7CeHorh0hQBH9yOEcHQ/QoAxhugZAAPHsiajLi/H0r+gNwB0mSQpaoPqME2oK9wUZZkAwO9xkl+XGK/Io8HRrbgHTLZPHBC3HT0WAMdZ3Og3UeR4hDGOPCcAsk3kQFRBDopuA4ruxxij6P6ISqJniJ0aY/AFQwDQy6RT+GeipBmqwzShrnBTnGUCgKDHTX7dhETRU7JKdBtaW50Q1S6lB0F1mCbUFW6G5Fm0LONzt/rdzp6eVbz+YHOrEwBG9MlW/IeipBWqwzShrnBj1WnOG5APAE111aIg9NysIoji4ZrjADC+pHdvFZhYSkpQHaYJdYUbABhdmDs414JF8Vj1z2FBgB6YVcKC8NOhY8GQUGQznlfSOx2/EiXdUB2mA9WFGwCYVlqYZ9IFA/6aIz/7A/6elVW8/mD5/iO+QNCi42eN6J+O34eSGagOFUdd425i+MPCm7t+bnD7GYbplZuXZbWadTo1j3cIhIRWr6/J7m51uQUBD861TCstVMM4ToocqA6VRaXhhvBxVU15XWt3lyJlxpf0Vol3pSgC1aFSqDrcAEB1q2dfk+PbmsYTNWZ1gjEGmDikX1GWSQ1tchRloTpUBNW9oplAUZaxKMv4bU0TAMw7dwSxoAgAQWQj4SPE7Yeoa0U4sj+2h2yIGDCAiDEGwGQbMAYkYgyR/Yj8VcQQ3RP5Fo79FUFIFN/duY9FaHRhbjf8RpT0Q3WoCGpsKu6QaAMbea4I4hr5T+4RiH0kxwMiDWkn/hrtEQAMmDx10gIX6SOIJImo9TuxJ3ZaHDmetM/FyYhy6kN1KJUeFW6ifQAYTvwXe3TxPQKxj+R4wKSbEE569JHcgiJPDkf6JSOt/SiyTc4V3RM7LYocjwEhJIoYAFik4udMURCqQ6n0qHCj1qyCI1lFvY+ZoiRUh1LpUeFGtVkFRABAanaxFAWhOpRKjwo3as8qabptisqgOpRKjwo3qs0qWAR115kpSkJ1KJUeFW7Um1UQqLvOTFESqkOp9Khwo9asImAM6n7MFCWhOpRKjwo3as0qpAxIxY+ZoiRUh1LpUeFGrVklWmdO131T1AXVoVR6VLhRa1ZR/3gHipJQHUqlR4UbtWYV9deZKUpCdSiVHhVu1JpVQPVZhaIkVIdS6VHhRq1ZhYzmZNQ8voqiIFSHUulR4UatWUX9ozkpSkJ1KJUeFW5Um1VUb2IpSkJ1KJUeFW7Um1XU3kRHURKqQ6n0qHCj2qwiqv0xU5SE6lAqPSrcqDarAIC668wUJaE6lEqPCjeqzSpYBHVnFYqSUB1KpUeFG9VmFdW/iUtREqpDqfSocKPyrKJmF0tREKpDqfSocKPerAKg7qxCURKqQ6n0qHCj1qwS7YBM131T1AXVoVR6VLhRb1Yhj1nFz5miIFSHUulR4UatWUX9ozkpSkJ1KJUeFW7UmlVE1WcVipJQHUqlR4UbtWYV9deZKUpCdSiVHhVu1JpVyD41ZxWKklAdSqVHhRu1ZhVB9eMdKEpCdSiVHhVuVJtVVD+ak6IkVIdS6VHhRq1ZRf3vqlCUhOpQKj0q3Kg2q4gA6l5wg6IkVIdS6VHhRrVZhRRExVmFoiRUh1LpUeFGtVlF9eMdKEpCdSiVHhVu1JpVyBnU/JgpSkJ1KJUeFW7UnVVYFT9mipJQHUqlR4UbtWaV6ODxdN03RV1QHUqlR4Ub9WYVAACk5udMURCqQ6n0qHCj3qyi9vEOFCWhOpRKjwo36s0qCNRdZ6YoCdWhVHpUuFFrVhFUX2emKAnVoVR6VLhRa1YhhVCziaUoCdWhVHpUuFFrVlH/6oUUJaE6lEoPCDd1Lh8A6HhOtVlFz3OxclJOVagO5cN1dwG6pqreDgB9LAaX04UQMCjygMlGwkcAYBAwKJJCGJIcMCCEEMkSGEfzCYgYMIAgioCQKGIMIAIWMZDxCyLG5ACyQfbg6LdEUQTECKIoAs7WMTUAlfWtowtzu+lHoqQdqkP59AB3Qx5zX4sxUkE9Oaugk1JFNPHgWD7AKHJIxLdGvOjJWQXjSJaIpaZYVsEYJ2SVSCUZgYhFcr1cg5ZF6LjT5/QHM/jDUDIK1aF81O5ujjm9rkBIy7E5Bi2poEK06hv9P44+ZwwRxxrJIQCAEMKAUeQRYwyI8exmmtcx3grkq4CwAwBEfZmoKQ5bLw3ZJmPWgomXRQjjSJ0Zk29G9gACRB44gxhBFAGAZVEvk+64y1deZx/Xv1fGfyRK2lFch8TdkB0YAwIkYowQwiJGEa2dgjpUu7vZQ1KK1QjkAcvIKoy3QrN3Ol91IVv/EnJtI7EGABhfJefYqKu+3VR5lvb4E5B6VgEMvU1aANh9vCVjvwwlkyiow/S5G/XrUO3hpqLODgD9LCbypGJZJe6/+La4aKcBirXlIwwYMLBNazVVFyDXtk6uhQSnvu5xy76LQHDEegQQQgk9Aggh0qDHICbWSZFr1HAMsvuCDW5/en4JSneilA5jESYSNU7umSJmKCKxyF9PKR2qOtzUOrzeUFjPc1kGLXlS0rIKf3yV5vBtSV6U81Vm/XQxhO0pZRUA6G3WQbSGTzmVUEqHGXA3oG4dqjrcEAebbzVCtK9RQlZhm97ij61K6bpMsMZ2cBYS7MlnFYRQvkkLABV1rfJvnKIqFNFhZtyNynWo3nCDMY72BRgAQFpWgcBhbdK+Jh7OV2msfzL5rIIxtup4Lcu4AqGjDq+cG6eoCkV0mDF3o3Idqjfc1Di83lBYx3M2vQ6kZhXtscclF8DQ9DIXqkk+qyCEiI+tVKWPpUhDER1m0t2oWYfqDTd7GuwA0NdiPFEtTTGrIMHONa+TUwZD08vJZxUA6GXSAMCe+lbxxGBSSs9Gvg4hs+4GVKxDlYYbjPHeegcA5FuM0cCdclbh7JtkFkPn2pJ8VgEAi06j4xhvSKhu9ci8NEUNKKJDyKy7ARXrUKXhptruIQ7WqtdKziqsa6vMYrDBGhS2J59VMMb5Zj0AVNarsaGOkiqK6BAy7m5Uq0OVhpvIqCqLCWKJAlLOKkywRn5JeH9l8lkFIdTbrAWAPQ0OQVSXj6VIQBEdQsbdjWp1qMZwI2Jc1eCA+K5HyT1TsiHSSD6r6HnOrOVCgvhzs0uZElC6CQV1mHl3o04dqjHcHGn1BMKCQcNZdBqQl1XkQ6SRfFYBwHkm0i+gLh9LSRUFdRjvblDgMLJvZI6uZI+uAtc2FDwCaXA36tShGl/RJH0BfSxm8jGWVSLhP/Ks47NKTAk4llUAALNW+YUJ8wWAMXmDDmJZBcGJrIJPyioAqLdJe7DZvb/JGRZEjlVjQKckg1I6JMdzvgru2CrOvjH+EuwxAADRMEzImSP2ulnEJ6+pAGQOChSZeaLn61AVhYhHxHhvxMEayB7JWUUwj5NZGEFTIGqLU80qGo616HhBxPsanTILQOkuFNQhEuza2vt0VRckxJoYjLeCr7lPV3Uh669Q0N2oUIeqCzeHW9yBsKDXcEaNhuyRXGcO2SbLLEzQcG6qdWZSSvJirqp8LCUllNIh4y03Vl3E17/Y5RUZX6W+6iK+ZZ0ibTfq1KHqwk1VxMGaYo0vkrMK1hSL5rFyCuPLmi0hqwBCOUYtABxsdvlCYTkFoHQXiuiQ81cYfpqJgtXJX1d35HaNfZMi7kaFOlRXuBFEvC/iYE2xriU5PQL+wkclF8afdVXAOFZaVtGwTJZBgwH2qsbHUpJHER0iwa4/cA0SHKleXVd9OwpUgxLuRm06VFe4OdTiCgqiSacxaHj57gYAsGFEqO8SCSURNQWuvg+3zSraQEV209N9j/ym6NCk0/YVDjw4tn/NVflND1m9n0BcVsEAeUYtAFSp8sVcSucookNtw2omFV8TAwlOY/UdoIS7UZsO1dUztafBAQC9zUYAwDg2AgpARo9AqO9SFDjCNb+dfDEwY3YU/xOzNiye6BHg3dusjU/pvF/HH8mHavhQjcH3TU7rK/l8wdGc++3GS0kWyjVo9yNXtd3jCYaNGnX9zpTOka9DRrDrjqc27Uk8nHs7E6zGfKGcnikV6lBF7kYQ8U+NDgDIt5gAQBF3Q8Y7BPv/Ldx7QZLFEDUFjkHvC4bh8VnF1Ly695HfJMSaBDSh2pK6BcUNd5OswrIo26ABgEp1JBZKkiiiQ17++3qNqxVxN6rSoYrCzc8trqAgmnVanYYDAEXabmKjOUOFj4YGvg7aws7LEMy6ynHaZ4J+WHydOav2Dlvdg0neRbbr3aE1kznRgTHkGVQ6DwClExTRIe9ov887eTj3dvltNwhAVTpUUbgh76fkmQ0kVCvobohGhKwpgRE/hPs/J9omA2uJv7RoKAv2utlV9q23/3OYtcZnFVPzywb7/6R0I4ZgVUHzIwiBzcAzCOpcvlZvQMIPQukWFNEhk3oLcQKcr1IRd6MqHaqlTSHOwZpJqFaq7YZBCBCOngDEvN+KeXNJ1EfeckFTILLW2LJhCaM5eddWy/HlEm4n1/WuS3tOg+nKHKO20R2obLCP799b7m9EST9K6ZBzb5dfGCRvVDFxNyIGBiGV6FAt4eZAszMsYrNOq+VZwCROR/6Eo080llWQYNc7NuudG/XOkyxr0DolbBoXyp2NuKxk1vcRDcMBAIsi6mB9H3Pjk5LvqLDlkRbDxF4mQ6M7UH68lYabHkFKOsTR/QCAT15nShFiOiSeBUdiX4frTAHZSdarwhiiRwKGXiadGnSolspUVcTBGqMvznZYZza2rO2z96zs2lsTYg0AaBwbDUeXWSrO0hxbKf9NXM5XqfF01jbcOZzozHO/a9Kwal6Ig5JA8jrsvO0GMxaQjVJtNwCgEh2qItyEBPFAkxMA8szGaFNLO3VmJmzvXX1tTu1tnVeMkeDQHV9l/GkGWUpB8jwjWqfczgWzfwfLsmRkp3oGklM6IkkdJtN2E5L9vp6oKVCq7QYAVKJDVYSbA82usIgtOp2O5zrKKkiw5x+aaWjjaDqCdW/T75sJ4VbJ7kYju/qd5f1UFMXIY66zyzwbJd0ko8Mk3Y1gkhtuQsaxCroblehQFeGG9AXkWoxAskR7WSX3+DKtvyKl07K+Ct3P10p2N0iU27kAAAzDmLUczyJXIFTrUNfEsZQEktFhku4mIPv14ED2HAXdjUp02P3hJiSI+5scANDLTOZMayermO1rzfYUhgXHYF3bNPUvSm27qZJ/d3p/BQDkGtUy8IHSEcnoEJJvu9EUB7NnSy6MoC8Nm8cp625ABTrs/nCzv8kpYrDqdTzHQgdZJadRxnjw44+jsF2CuxE1BbJuDAAAfLphAJBt5AGgqs6utoU4KDGS0SEk7W4wgK/wUcxKbDD2Fj8HUR0q5W5ABTrs/nBD+gJyzZF1fNpmFbNzAydjknMUdrD2TRLcjcB3MQQ5GUhWMfK8jmP9YeFIq1v+OSnpoEsdpuRuEABmbd4Br0soia/ombBuGCjaM6USHXZzuAmEhZ+bnQCQYzbGxi8kZBWjS+54cNa+UYK7CenLZF7XqxlKsgoGHO0XsMs8JyUdJKPDVN0NAAiW8/z9n0utJP0eCeXMjdehgu6m23XYzeEm5mA1HNdRVkm1hbgtjHu7BHcTMsqamgsAWg2TSFZBgHIMGgDYq7KFOCiEZHSYqrsBAIxxMHuud8gHuKuX9QBANJT5Br8f7L1Awdn8EtxNt+uwm8MN6QvIMZtij7VtVtH6K2VeBYUdEtxNwDpZkNd802iaFcsqWp41ariQIB5oVsVER5R4ktGhBHdDTIlgHu87/fNQ3yUdBh3WEu67xDf0v6JlfFsdduRudIFKnfcbvedro2+HgcxVkIS76V4ddudLDIGwcLDFBQB5FiMAirx2ALHB2SeetBJEf3ny/E52Nx3NgO/Ku9t29C5p1zuWdWeAK4xlFRHjLAPvCYar6u2n5VmVuiuKfJLUYczdSHh3T2Stob5LQ32XsM6trHs7EhyMt1y0jAdNoagfJhqGi4ARxsmsxICCR7Ian9Z5vuZCJzVoCqzFozu3yXq9m0ywHXU34snupnt12J3hZl+jU8RgNehZhiX//BH5949JnFb2aiTCnPTOFMaRB9DRO1P+7Dk+z3Z9im+EA4BXc3q99XoAYBhGEEUMGCGUbdDW2n37m5zBsKDhWGVvjyKZJHVI9rOCXeuvRAgQAoEvEDXFMTcUb4PIwQhFg1f03T3Rch62jEcookOI2aVOdRjxLILD1PCUufnldu+CFZwWzxaLZ4tHP6a61xN+riD+nSmV6LA7w03EwZqMUdfRflbxGcfqPbIG+GLWIs3dYCw6+jzM+St5fwpjcARk/jl/dRhZAeP4rMKxyKzlXYHQT03OYflZcu6IoiDJ6JAV7LlNjxs82xJaEkXWGrBO9mXNCZvP68TdtJ2ZIFUdIsGRc2hWMjo0+r4ZUjNlf791Xr60XXfTjTrstrYbXyh8qMUFpC8g8lgB2qszh2R3SIvmcRLabkidGXO2ppL3AsZzk70v7en7C94OcIUJdWZS+bYZeKD9U2oiGR3mNa4acOCsrOaX2vZaMIJD37Iu++eZtgPTmeCRyFdPbruBqLuJxLHUdciKzryfL0k+57Gic/DROYZQVdu2m+7VYbeFm32NTgxgMRhYholFe2ivR8BjniLzWoJtioSeqViPgMhYGvu/58j7g8iYO79Qi3nW/r5vk6yS0CNAuhayDFoAOKSahTgoneuQFezFh2fkNq5iu5ouS+Pelr3vIs5XntAzFZGZvDXCsw5ewaY49IxEHDKrJKhGh90WbsiKqDlmI0Koc3fjskwNa6QbHKwtFGyTJbubWI+As9fio4N3tPR+MKArTbhEiC9ost2wp3hrTe+nBMbSbo8AORGLwKLjcXTybUq304kO2bC9pHqm0bstyVMxgsN2YCbn2w2Kuhtdy7qU6vIxWNFZ2PSwqnTYPW03vlD4SIsbAWSbjBhjhkGd9wg09V6RX3OttGuF+izBnA3FnmyKdeZYj4CIMWatjuybWrNuBARM8AgXrBVYq1dTijGIOKahDnsEMGBAKMuodfpDVfX2M/vlyP4hKbLoXId9G5bpUxzzhQSHZf9Me9l3wNpAobYb87H7Jd9gjvu92qw7BbZAJTrsHnezt8GBAcwGPcswXbobDOC2THXZpLzwFs6ZE8qdK7nO3MlozjBX5DeO92vKImfparwDigzVwFYdjwBq7B5PkNanuplOdGhxfZzlkPJWMBIchtplSrkbnXMTEl1y7jHf+SqoRofdE27Iiqg5FhOQam2nbTdkf0PB34K61N4qEAxlgcIVcurMCo7mxNGsghDY9BoAqFDBQhy/cDrRYUHDfZJPq215m3dtBSXabniH3Dnesjyfgmp02A3hxhcKV7d6EIDVYIDIyALo3N0AAAI4OugLd9IeJ5Qz2zfkQ+Cy2s0q4NzKuLch1zbWtR0C1RLcDaT4rkosqyBAVoMGou8EUrqLTnRoCJTzIelvBQMA79wISrgbNlQr6yYBNOFaUI0Ou6HtpqreAQAWo4FnWQBIpu0Gog+mseD5gGm8rWFVJw31oqYw0GdJ5D23k+vMbNNbTOsmxn7SO58aAKwpDNkm+/MXY8YKHbfdQMzdIICTZ8DX+SvMnk+N0XXvMIBTN8ajOb1ZPxFOrjNjjC06jkGILMRB+ggomacTHWY71so8uca+2V/wZ/ltN6l2SLULJzqCyAIq0GE3hBvSF5BlMokYswiRrEJSC4IOR3MSH4oQ8mTP9WbPNTg26J0btZ7tsechagpDprFh0/hQ7lymzWhOxlfB1yxjXO33MqBgjaZhNd+8LpC3wJu/GMNJozlxJPa1PwO+zfE/eS1P822ykNn/DQCEGUut9Y5a83WIFAVj8vUsA9/sCVbW28eX0BUauodOdGgIyH4rOFgN0M6oYhJlkh/dzgTluhsA0IaPhrW22KjibtRhpsONJxiqsXsAwGY0kHEOKbmb2LsqfuvUoG0qAmCiWYKEGHSi5eVEVuGa3+Jr70PhLvr8kODU1T3OeCvcRX8VGEuX7gaFW4uO3mTwdbZaAyc6+7c+kut+tyr3BV/cuHKLXtPsCZbXtdJw0y10qUP5sL5yUT8c5LmbkPFcXsZyIASPprRtz1S36DDT4WZPvQMAbEYjyzAJWYUPHTEFKg2BChJffKZxQW2ZyNoS3A10ur5P5OC4rMI2vaU5fFvyJdQ4N1l+rrYP+d/O3Q0XPNL36E3aQFIDIkyhPWfWT9/d600ndzp55CYtxzLI7gvWu3y9zfrki0dRhE50iJVYAxMAUNgh390A6uoyXSEgM5z87l7M3WReh5kON6QvwGoyYQAWIQBgw62FrU/kt76YeGgTAIDLPMWRc7PfOD7B3SCI/YfiWpMT31VB3t2a2pS7GDhfpanmdmfBsx25G0Z0JB9rIucUnSMarv6mz+dBZCEKsxm0zW5/Zb2dhpvM01aH8e5GZK3yLyFqC+W33QQtl/JuWe7GqR8D7Y3/IrkzwzrMaM+UJxg66vAihKwGPWmOzXFvGHXkrHZiTRSza2PB4Zm9jt7KCvZ4dxP3X8z6RtwNxPUI6GqWdVmHahddyzu8e2tHPVO59Q+mFGsInOgc1rQo1gdh0/NA+6e6g7Y6hJN7psKMEuFGUyy/Zypglbuig914CXTQM5V5HWY03JA1bixGA8MwGGBo/a1Dj1/DJWFcLfZ1fQ7NZER7JDRDgrshRAYyQHS8A2ffwLikv0puqn+q3XE3Ovc2syPlKSkItsCOfM+7JN3pNRzPMq5AqIYuCJNZEnQYa7uJuQ6HSe5remHTWFBi3I3AF/qzrpJcjCDXr8n0G2hv3E3sipnUYUbDDXlBw2oyAcDQ+t/3cq1L/rtaf0X+wZms6Eje3fDNKZy/LbxnOxeqaeturK2vyDltgfu1SB4DbDNqAaCKrniXWeJ12K67cRnkzhsbtE4BJcbdIITcve/u8t3gjqjJeaCT8V+Z12Hmwo3THzzm9CKErHp9SevK3qnEGoLWX2GtX5WKu5E7IlPr3NTW3RjdW+Sc0xzaoxdqSCOUVccBQFU9XRAmc8TrEADadTdBvrjVMkfyJTBjCebMASXcDcZY1BQ7+zwsoRjNpll246SORrefuGIGdZi5cFPVQEZVGfViTYH9JWknsTav1nq2JuNuOPdW+WXmfZUJ7kbvlbuSLwDk+f5DsoqW57Qc4w8Lh+mCMJkipkPEMNCBuwGA43n3CIzEVaJ8fZaIrA0UcjcA2J89x17w15TK0GKedaT3U7Hzd+5uMqbDzIUbMmea1WQqcrzEyVgP11b/eJLuRj5sqDbB3SgzyhO7Yu9kWchAclqfyhQxHcbGc7V1NwAQ4vsf6/2ohPMHsuf4ey1M0KEcd0N04rVd1drvqSRrVXXZdx7p9VTn7+7Fu5uM6TBD4cbpD9a5fAxCZoO+j1PWCHGtZxsTPJJkz5R8EtwNH1ZglCdEsxZCyKLjAWBvI10QJhPE6zA2eqJdd4MBt1rn1vZJbZWosL7MU7AC2uhQprshPaTerDl1gz712H7TSQE8+jE/911Xn30XJPHuXszdZEyHGRp3Q6YpNBtN2b5tnCh3xQmtr8KvKe583I1SldCou0HKVmtjWYVnGT3P+ULh/c3OoXSFhjQT02HsJZl2x91AdHR7q20uAsivX8YmIVp/1mxX8d9io9uhzeh2OXMVk0go8kXNff/a0vshnXOzzrOdD9cSUYYZi1c/xmGcFOAKorGsi3mXiJsTM6vDDIUb0qtvMRp4rMB4Td5f6bNOjWWhqI+JpguSTHQKLLkbNI1FCOG4UcV+Q7KTFnfOiXeyMLYYeJ8jXFVnp+Em3cR0SPo3UfSfdCfv7jmy5vpMY/MaVlk7nv5G0BQ6C58LmcdHTUk7o9uljSo+oZO40e0ia/VkzXbZZmMSRxAjiKIIJHKQWiHC+ERMAdzhqOIM6zAT4abFG2hw+xmETHqD2SH35TfCyW037bgbkS/G2kIUkNXUEtKWJribEC9roTuCmx8aczcAYNLy9eDb3+SgC8KklXgdQvSNvM7dDQBgDCG++Hi/v7X0XmJ2btJ7trGigwvVkCXkQ/ph/uy5Yf1w8u4eALQ7ul0pd9PlzATR/tOU3Q1kRIeZCDdkmIPJZIq8faAEOPpsO3lnKmSbrKlfLf0SjDlgnYLisgrGWNAUhfkCTt4sJA26S4gESVbhWGTQct5AeF+TczhdECZtJOgwSXcTawQM8cX2nIXO3IUkJjHRN2kYFD0+cmDa3U38u3sQnZkAIBojpbqbDOgwE03Fkb4AgxEAwkhi52ICyfRMBfsswaz0y3nzFrQ7qthllT7KEwCOGy6P7xEg5yQNdbR/Kq3E65CM3oKOe6Y6mlWSOJ+URreDEj1TbXWIMSa3IW1WyYSeKciIDtMeblq8gUaPn2EYg14PAC2G8fLPGdSVJdMzhVlbuPdCaZfAjNmbe2O770w5sm+UPMoTAA5b7ojvESDnNGp5BHCohS4Iky4SdAjReQU66ZkiR8TcTex4SP3dPUV6ptq+u0duQ/KskpnXYdrDDWmcMxmN5JZc/PCw1NFTMUL6YUlmlUCfJaJZyoB0+8D1mLW1m1UExtLQ9ylpJT9gW+bjCtpmFZZBRh2H6YIwaSNBh9TdtOtu0q3DtIcbMvGyyWCKfEZwzDJXzgm9lslhTXHyWcU/8HXRkNqc6q7CvwqG4Z1kFY95SkvuXamWvN5wRa3p+nazCgYwaWl9Ko201SF1N5nXYXqbihs9/lZfkGEYg04X2YWh1rqgSOpLDADgylnQJqvElNBOjwDisgJDPtTULGObu17HAzNm1+APQrqyaNTvsEegOfcPGCCn6ekki11vuGJvziqAdnoESA+DUcshBDUOj9MftOg0Un4aSge0q8Pke6aiESFyfMwUoKTnXWq3Zwp5d7Ou7ah1IwZAwRrMF2CAsG1yyDRW0A2DE6EwQz1TGdBhet3NnoiDNaNYjkDg44oP5K6QdkK3bXbAPD7VrIJZW7Dk78EhH4C2s8E4gT73OId9F9YPSzKrtOQuPtr35S67xsPIfChr2f7cJzrPKgghE2moo/UppWlXh93obpBzK7d3Ol95IVO9DLm2Ma5tKFDNuLez7u3a2vtNe39tPnA556voFneTVh2m191EKswGw4ldGBCCGusim29brie1N7aDurLmPisQBmlZRbScFxzxA/KWM/aNjHNrtDggagrDpnFh22SBsYjROnOSWcVlvtRhmpTd+g+r83/0gT0JBfZqhrYYJh0zXxdCVtxVVsEARi3v8oWq6lrHFOWl+lNTOqEjHUJ3uBvu2Cru2KrOC8y5t1v2/drb92FP7k0Zdjdp1WEaw02929/qC7IMq9fFTUoYHe/wU6/nhaZ7e7uSXagwoCurK/kQczbU3lzFTPCIxl/JeStYXwUjOBCAYBiGNUVC7hzMWePHO2D9MGwYJvRdQp4EBhBEESLjHUDaeIfmrBubbDeywWpNqFYEzIrOELIE+AIfUwAICaJITtXReAeEIpowaFgGoXq3ny4IoyCd6xAlPe4mdny8u4GTdRjbETkYRYNXdNyN5vCtbNLTMBmOPcD6Kx0Ff01ShyBv3E0GdJjGcEMcrMFoPGlvNFeEWNv+/L8HNcWFzV1EepGx2HMXtvZawkRa2U7KKozgMNatMjQmNgax7m0AALXLwrlzQ30Wg7Y4VmeG9IzmDPGFAa4ARxr/QcQAGKeUVQDAqONcvlBFvf08ukKDQnSuw0y6G772T8nHGoK25W2DrtSVfVMm3Q2kTYdpbLuJ9AUYTScqzJBYZ67OXlpe/HlTx1MZucyTDw/6b0veknbrzFrHhpyqM9vGmni4prW6qovYprXK9ghwwWqjb4fB+zUfqlGkzgxx1Wa6nq+CJKNDSH/bDeP8ipc0xt10bLnWsz1jbTeQTh2my93UuXyuQIhhWK1GFx3RAADtZBW3ZtjBPn+r7vWoKVBu9m0nUx6FuMKAblhQPxwBsNHEkZBVsqp/r29Nqi6GBIfm8G1hwSnmL5Tpboytbxtcnxjdm+PPL7AWt+5cp/GSZvMsOVkFY6zlWLIQR53Ll09XaJBN8jpMt7vRHklh9aEETA1P+o1jM+Zu0qfDdIUb0jhnNJkYJvZYAaDDOrPAWp2G8W7DeAYBA4BQJMpAB3Xm7JpkY00MrmZZmLMIOXOjLfDk9032XRWDa7Ot7kGuvaWjWcFp9WyxerZkuf6nNvd+r2aYtDozqeobdbzTG6yqt9NwI59UdZimthvevlHO28Iaz9eaQGVAW5aZtpv06TBdlSnymA0GE46NkSQoMZpT595qSDHWELia+xhfBTlnvLvpcjSnpXl1bs38dmNNPCbfN0NrpuY434mdP8nRnLFkiDEYtTwAlB9vOel3o0girTqMszbRo6MHxj9QAGDtG2TeiK7l7ego4Th3AwqPKk63DtMSbo45vcTB6rS6aCUzihJ15uxaqb407GCrl0GKbTfWuuXWugeTv0hx4z3Zrv+RVmdGCDQcwzHIGxJqHV6Jt0kBgPTrMPm2G9Ytd4prjb8yk203adJhWsIN6QswGk1wIgxHkZ1VDPYNciYMZlzbIHAkeXejb1lnav5HqlcpabzH5P0aJGUVADDoeIhOPUeRTFp1mJK7kTnvEgBoPF9n2N1AGnSYlnBTUWcHAL3BBCfCcBTZWUXv2iizeGzz20m6G1Z0WuqWS7vKgKZ7QFJWAQDSL7CHLggjj7TqMCV3owyZdTeQBh0qH25qHV5vKMywrFargzRkFZ1Hri9lnFuTdDfG+icYQeLMyppwbYH9r9KyCotAwzH+sHCohS4II5F06zAld6MMGXc3iutQ+XATGVVliMwIo3hWkb/0CnJtT9LdpNr5lUCu+z1pWQUxjF4TWWlMTgF+yaRbhxl2N4KmIPPuRnEdKhxuMMakZProm/7KZxUlSMbd8O7tjOiScxVtuJYPHoHUswoWRaOOB4B9jY6wIMopwy+TTOgwFXcTtk2WeUchbVnm3Y3iOlQ43NREHaxGG3nVQvmsogTJuBuN7FobAOiFYyApqzAItDwbEsQDzbJC3i+TTOgwFXcjmsfJvCO/dXK3uBtldahwuNnTYAcAvcESywkqdDfYPDbJthv51zL7vwFJWQUhRkfrU1LJhA5TcTehnDlyps0WGbPfPKlb3I2yOlQy3GCM99Y7AEBnMMVyguJZJWCUMhnoSeVkrUm23ci8EERzkYSsgrFo0HIAQBbikF+SXw6Z0WFqbTdcluRpswHAm3cz5mzd4m6U1aGS4aba7vGGwizL8RpN+rJKQD9MZjnFrCkZczchMIHUrIIAdBpWxLCvUe66o78oMqPDlNwNxjjca0Gqk9gSwvpSV97dGOPucjcK6lDJcEP6ArQGM2BIX1Zx5S6QVUrWIubOTcbdYFb6cgsxfNoykJpVEEI6ngM63i9FMqPDlNwNQkjkrIGBr6dapcKMuXXAekRO1E3uRkEdKhZuRIzJ7O06gwkQpC+rCHyxN2u25HIK+Qsh4l/IaTt0N36L3N4EAHDzQ0FqVsEY67QsABymC8IkTcZ0mKq7QYCwtjh42ofJe5ywvrRlyH86WhEkY+5GQR0qFm6qWz3+sMBwPMdrks8qVu9Wi3+7ybvN7N2qD5RDclmlte+jgkbKEuDYUBbuswQi/oWctkN3I2oKBY2sJXpbDRNFLgtkZBUESKfhMEBVvUNOSX45SNMhpN/dkBOKhhGhIR+KOR1O8BQjkHWVY+D7WFsMmZ2rGNKpQ8UmoKhqsAOAjoyqIlklmhxIHI2AASHI82zId63L9SS+jhDkixzmKU3ZN4X5YtzxPCOYtTUXv5778wxGTKEyibWFodM+ivy+J7ubjua7ceXdbTt6l9SfBOrM17c7z4heqMn1/YcVXZhkEgAnP/S45uKErCKKIiDQaRh/EKrqW88qyJFckl8OKekQAHDG5yrGXFZ4wN+g3xK2/kXWvglOfp0KawqDtkv9uTcLmqKoIjM9V3H6dKhMuBEx3hdzsACAAUVtE0LxTwLMofLTGpdl+be1ex5NqDqv5cW8lhfrc5c091pCduLoE43PKkH98OZBH+YcSDbiiIaycP/nMWeDVNZm9mfPCTW/zPurJPwmLt05Tv25DJmrODrPSI53S7HzOXMocRJ1AAgx5jrtxXsMv3czBYhhRFEkZdDyHELBWoeXLgjTJcnrkKgIRVNLxuYqBoQi/641RULRn4WiP6PAEfDXYAARY9E4TEBWHPVWMR1G+zdJ7MvQfDcYg+I6RCdVaKVysNn19o+HGF6T3buIAUymyGIRkA2yh0XQx7OhrOk2XkzKj/l1w6qLPxBZG5lnCyEgcxWzCJFF4BkEXPCI5dh9WkdnKzpg1hLuuyTceyECxEQUEXE3GEAEjDEmc6SL0Q2MsYgxBiSIIuevyDk4K9XhxQIy/1i0NYQsIqlhY2AE++lNi2yBHZ1/MYTMu01/OqSZCYgRRBEjEDF2eoK+QPjCgX3GFNMVGjojSR0yAEx0/rYTG4BZBpENBMAihBBGEDkYRWeVjNchHzpicG5mBAcXqsasDbMWUVMUsk0G1ooiAQ5iG0zUVkvTYdQIE3sCIo5YcjHuWxhD9K8Yx82ZLUbOA+QAESLngeiR5ICID4puY+KJFNWhMuFmw56a3cdbdZYcszULYcwAsMyJh8oAIMB5/q3n1M1I6bR+3bCa4g8wZ4s9cvKwyVOMBR2Na6u+Za3WsQmd7HQEQxnWDw/2vQc0xSRgx6I4RNIa4OhKDKKIyVOPPMi4p876ynNTiTgCY97Xd51XUyaIGBASRFEfqBzecDWXdNXviO7yncZHY9oKBIVWt7+XSTf/V0NS+Pl+eSSjw0i4IfsBWAQAmEUoGn1OhJj4WSVRdA9Rnd6zNfv4fRp/RbvFCFqneAseAW0xE3U3kViDQY4O4yMCjn4rFhFEOBFQcFwcAYCYDknVKRp9UCxgxSKaiCEapE5EHAV1qEBlShDx3gYHAGj1xkjjdps6szVUfmbDNameWeev6FV/X0O/56HTOnPIPD5sHu9BiPftRmEHQgCcVdQPj88qJ1qHU2m7Ic83pC1rLHkvt/oGNlTbZZl92tN/7r06wBXGegQ40ZFSrAGAYv/7QWTepf8jKRXPMwhBA10QplOS0aH8thsk2PtUX6vztN8aQNA4NmocG/29FgQKHoU2bTeSddi9bTeK6FCBcHOo1R0URJbXMJwm9k87oc5c1nJvknWoBKz2dR7zZK9lajJ15rB+OJAs1EmdmbTdBI5w9s1ioJr3VmCMMWsT9GVh89iQaSxur84c1A2rG/ipqflla+NTHRVVYMxNtvn11uvDjC2+zlx2fG5KsYYw2Pd6A3d2DX8xAoQB6zScLxCuqLOfN4AuCNM+yehQZtuNzl/e6+ht2g5MTQK6hpfYQE2g5FnM2jrUYXJtiGpou1FEhwqEGzKqitOboz9kYlbJ9n+V45f+umOvuvsPW6bK7xEgjxq5tnHHViHXNjh5FADn2KitA8xa/HkLvL3vbptVBMZiz7vbnnWj3rXZ6NrCiA6tv1JgrSGuIMgVuPVjHMZLQowFn5xVcpzvGIN7pd34SM/KmqyLiRq0Ws4XCFfUt9Jw0xFd6lCmu2EFe5/qa7lQdfJF4h0bocbi7//8qeFu5OtQgXDzU6MDADQGUzR2J2aVIvdaOefnQtVaf3lIP1x+jwB38Fam03XFkODU1z2ubVnn7P/PoK6sbVbBnNVtm+2yzW63zozIk47LKkWOZyTfuFE8eppvzV7dtSLGPMsyDLL7gi2+YLae9k+1Q5c6lOlu+tZck1KsIfDN67C2KNR36SngbuTrUO4wv5+anEFBZHgtw/KxUA0nj+bM98qd7tNsX4sjp5UymhMQoHCrZt+MzmNNDCZYY/35Cs5XicmJpI7mtPi+1oSPyrnxfqHPcGQUFmYRAwDeYEjOCU9VktHhSb0iKY4qNjs36KVOSMLXvwTh1ugJoy4bReQa726IYWn77p5MHYLsUcWkVPJ1KDfcRB2sCU7YxBNOFQA02M5juW92af0VCW03cf/FNBRxNwDtjObkD9/GuDpr3ksACU7bwSs0gUo5ozktXXV7d0mv0P9psStahcQAEAjT2bbaoUsdRh9clBRHFfeqv09y2ZDg0Bx/PHrCSASI/AuPnr+T0e2gglHFpFTydSg33NTYPQDA68h7z+1kFUsgqXa1LpHjbvjjq1h7Z2Nz2oURnJaaO2W5G/838m/cGt4T0QTDAECQTu7XHl3qUI674UNH+K6WGOscrnXTKeNu5OhQbriJBum4HxJOzioyLxBFsruBcCtX39ki4p3A+ytNzS/LySryicsqAAB+OvdNe3StQxnuxuxMOVclgILVyLv7VHE3AFJ1KDfcRC7OnBSq47NKkLHKvARBsrvhjz+OBIfk65oanpSTVeRzIqsgBAABGm7ao0sdynE3bOrjGNopYdh5irgbGTqUH24AINLb1m5WcWqHy7wEAIT5QsnuhrPLaqhmBKfW87W0rBJmpM8XGSOWVYgENGy61lnu0XSpQznuRusvV6CEwepTw93I0aFc7TIkYmMBOs4qDo2USczi8RrHS3M3EDgsfwFDrXe7tKzi1ZTKvDQA1POjiSYEAQNADh1V3B7J6FBOz5R8ours8e5Gjg7lhhuLngcAMRiAjrNKrem3Mq/iMU+W5m7YQNevHXQJG6yRllVaDZfIvHQDNzqWVcjKGzkGncxznpIko0PJ7iagU8Chi5rCU8PdyNGh3HBTaDUCgBgOQMdZpdo4J4SkVytac24WWZvEtpsTwUg6XKhGWlbxaEoDXD85lz6km0kkQt6qYxEyaRWbouhUIhkdSnY3QV7KXG4JYG3RKeBuZOpQbrgpsBmhq6wSZrP2Zy2Rdn6BsTTnLYGoD0257eZEMJKD9Kxy1Han5Kt62b6HNJcTiQRCGADyTNTatE8yOpTsbrzyF//QForaolPA3cjUodxw089iAAAh5BeFcCdZ5aBl0VFT1xMmtuVo4euYtQFAN7qboK5UclapN87yaIZKu+735I1wwAghfzAIAANzFJit/ZQkSR2e+EIq7ibEF3sNsiJOKGfuqTHuRqYO5YYbLccOzrUAQNBt7zyr7Ml5tFWX2jM71ve5SCOxVHeDDQrUugVNoZysUtl7rYQqVZXh90e1E0lWCQtCKCQCAJ0/tCOS12H0cwruBgCa8iTacwDArCXca8EpMKpYvg4V6FUd178XAAQ8DiDT90D7WSXE2Hb2+fex5DyOwFgOF33gsM0FOJGFJLgbkbWKZrlO2GeeJCerhBnrntyXUoo4+/Xzqgy3xbKKPyAAwGl5VqOGl3kvpzBJ6jD6OQV3AwBe43inTeL6H4HCR0XWegq4G/k6VCDc9LEYSrJNgLHX2dJlVqns/bddfT+06zsLAY3ZN+8btMtrGg+RkwFIbrtBKJQzV87dBY3nCppimVnFrTn9+/yPHdpfdXm5EDJ9Z/7zbtOyWFYRBez1hwDg7IJcOTdyypOSDlN1NwDQkP9oQJfykI5QzuxQzlwUfXev57obRXSozOShLd7Ayzt+EjG25PbV6fTJzBFrCZZn+7fmuDdC9BcJcoVuw3iXeYrIWVGnc8TGpg1FcVPAkim1yJER4xM9QF8+UvLom6b+7waM52KF5oi1+nf0dz5jC+xse6EQMlXrr9ijvzXIWOJnt2hy+MICHpJnmTW8v/Qn9MtAgg5TmquYFez9Ds/Q+iuTLE8oe7av/9/QyUJFPXCuYqV0qEy4AYDvj7Vs3luLGCYnv4hj2DTNEYvam6s4/iOcPJsfecasc6vup5kSbspn+4298FnF54hlBHue/z86oTamiePaix3s0HipkTliWz1+rz9s02tu/NUQno4nToJ065AT7VkNq6zNqzsvBmYsvsJHw7m/jddhz52rWCkdKhZuAOC98sM/NTp5rS47ry95fmmaAT9VdwOAuaa1msO3pXQ7YX1p48D/dGNWcXgDTm+QY9ANvxpCBxMnTwZ0qPHtzmp43NDeq5uYsQRtk30FjwJna6vDnuhuFNShkuHGHxbW/N+BFl+A57W5vftyDKMSd0OyCtf0Fp90xAmZzrUX/1NgrN2VVVpcfrc/BABXnVFC+79TIpM61Lm36rzbyQGYtYRM40TD8M512LPcjbI6VDLcAIAvFP7Xrp+bPAGGZXNyehv0epW4G5JVWNdW/vCt0FU7ji/vJnefh7srq4RFsdHpC4REjkFzRw4gA9goKaFyHfYId5MOHSocbgAgKIhv/3Cw1uEFAJPJnJOdyzOMGtxNLKuwzWvZ+heRN7HBDzOWkO1Sb/49Yb4QuimrOHyhZpcPY9ByzJyRA/paDMo+nV8O6tehmt1NmnSofLghfH2k4atD9YKIAcBkNFnNZh3Pa1iWZZBasor/CArUYMGOgjVh3TDMWUO6sm7JKoGwGBaxyxd0+kLkr0PzrBcP6WvW0lE2cukBOlSNu8mADtMVbgDAHQhvPVRXUW8P0fkuk2ZAtvlXRXkl2abuLsipA9WhBNKkwzSGmxh76u1HWt2NHn+j2x+gj/xktByTa9DlGLV9rcbSXjYtR3u70wXVYSdkRoeZCDcUCoUCoMRLDBQKhZIMNNxQKJQMQcMNhULJEDTcUCiUDEHDDYVCyRA03FAolAxBww2FQskQNNxQKJQMQcMNhULJEDTcUCiUDEHDDYVCyRA03FAolAxBww2FQskQNNxQKJQMQcMNhULJEDTcUCiUDEHDDYVCyRA03FAolAzBAIDL5XrmmWcmTpxYVlY2bNiwSZMmPf/88+FwuMsvL1q06Oqrr05/IWWhhkLOnz+/5GSWLVtG/uT1eh944IGzzz576NChV1555Y8//ijnQlVVVSUlJZ988okSpc40VIfpptt1yAHAddddV1NTc+edd5aWlobD4W3btj3zzDM1NTUrV66Uc0k5nHXWWR9++GFBQUF3FUBZPB7PxRdfPH/+/NieXr16kY0lS5Z8++23Dz30UO/evdesWXPNNdds2bIlPz+/m0ranVAdpptu1yH3008/7dq16+9///vkyZPJrrPPPlur1W7ZssXn8+n1emWvlwxHjx5taWnJ/HXTh9vtHjZs2JgxYxL2Hz58eMOGDS+//PLFF18MAGecccaECRNef/31JUuWdEcxuxOqwwzQ7TpkBEEAAIY5qRFn4cKF77//fuwZv/322xdffPGQIUNGjRp1xx13NDU1JdzD0KFDX3jhhdieYDA4YsSIVatWAUBTU9Ndd901atSo0047bcaMGdu3byfHHDhwoKSkZMeOHYsWLSorKzv77LMffPBBURS/+eab8ePHA8B555138803x1/oq6++Kikp+f7772N7fvjhh5KSki+//BIAvv3226uuumro0KGlpaVz585t1w2WlpauXr069nHp0qWXXXZZrDBbt2793e9+N3To0HHjxn388ccVFRXTp08fOnTo5MmTy8vLyVfC4fBTTz01bty4IUOGXHDBBWvWrImdbeXKlQMHDmz3V3a73UZjO2uebt++nef5888/n3zkef6888776quv2h556623/v73v//Xv/51zjnnDB069MYbb3Q6nX/5y19GjRo1cuTIBx98sN3r9iCoDuEXoENm4MCBhYWFS5YseeuttxKeH2H9+vV//OMfZ8yYsXnz5r/97W/l5eU33HBD/HIxJpPpggsu2LJlS2zPtm3bXC7X9OnTBUG49tprd+3a9fzzz2/YsGHkyJHXXXfdvn37AIDjOAB4+OGHr7766h9++OHJJ59cs2bNpk2bzjrrrOeeew4APv7446eeeiq+JGPHjs3JyYm/0KZNm3JycsaNG3fw4MHf/e53eXl569evf+edd0wm09VXX11XV9f5zccghXniiSeWLl26a9euESNGLFu2bOXKlc8+++zOnTtNJtPy5cvJkStWrHj55ZfvuuuuLVu23HTTTY8++ujatWvJnwYNGnTRRRe1e36Px9Nufj506FB+fr5Go4ntKSoqOnToULsl3LVr15EjRz777LM333zzv//975VXXpmXl7d9+/aVK1euWbOGaL3nQnUIvwAdMhqN5h//+AdpNBo9evTEiRMffvjhioqK2BGvvPLK+PHjb7vttgEDBowdO3bZsmXl5eW7du2KP8u0adN+/PHH2M+6cePGIUOGDB069KuvvqqqqnrsscfGjRs3aNCg5cuXFxYWxkfiSZMmjR8/nuf5CRMmFBUV7d69m+d5s9kMAFar1WQ6aRE/lmUvvfTShMc8depUlmXffPNNjUbz5JNPlpaWDhs27PHHHw8Gg++9914nd96WSy+9dPjw4QaD4fLLL3c6nbNnz+7fv7/FYpk2bVpVVRUAuFyut95666abbrryyitLSkquvvrqK6644uWXXyZfnzVrVmw7AbfbvXv37hkzZpSWlp5//vkrV670+XzkhORmY5hMJo/HI4rtLLrm9Xrvueceo9F41llnnXbaaaIozp8/X6/XT5o0yWazkRL2XKgOY5zCOmQAYMiQIR988MEnn3xy3333FRUVvfXWW5dddtkjjzwCAKFQaM+ePWeffXbsC2eccQYAJJz017/+tV6vJw3R4XD4P//5z4wZMwDgxx9/ZFn2V7/6VeRiDDN69Oh4iZSWlsa2LRaLw+HopKwAcNlllx0+fPinn34CgMrKypqaGnKh8vLysrIynU5HDrPZbEVFRan+Cxw8eHCsJAkfA4FAMBisqqoKhUJjx46NfWXMmDGHDh1qbW3t5LSiKGo0miNHjsyfP/+NN96YN2/emjVr/vjHP6ZUNgAoKiqK5R+LxRIrHvnodDpTPaHaoDoknMI65GJbgwcPHjx48Pz5891u9/Lly1999dXLLrtswIABGGOr1Ro7jGy73e74s+j1+l//+tebN2++5pprvv76a7vdPn36dHKYIAhlZWWxI8PhcFZWVuxj7MEQulzSc/To0Xl5eZs3bx4yZMjGjRsLCgrOPPNMcqGioqL4I61Wa0Ihu0Sr1XbyEWNMTnjNNdcgFFlTnoT/5ubm+JtKgGGY+Ar8WWedJYriX/7yl+XLl1ut1oTH43Q6TSZTQhNGksXr9OZ6DFSHp7AOuWAwWF9fX1hYGNtlMpkWL168fv36qqqqsrIyhmHigz3ZTrBeADBt2rTf//73drt98+bNo0aNIn2HZrNZq9Vu2LAh4bY7KVDnMAwzderULVu23H777Zs3byYNbORCCRnJ4XD06dMn4euxx0Pw+/0pXZ3c9dNPPz106ND4/fG/XjKcfvrpAFBbWztgwIDjx48HAoHYMzt06NCgQYNSOtupAdVh8vRcHTKPPvrolClTEhrnSCtRXl4ez/Onn356vO387rvvAGDEiBEJJ7rgggt0Ot2XX3756aefEmMJACNHjgwEAqIoDoyi0+na/vrt0lGYJDXYr7/++uDBg7ELDR8+vLKyMhAIkI9NTU2HDx9uW0iLxRKfalJ1uaeffrpGo2lpaYndjs1my87Ojm9ja8vBgwcXLVpEjDfh+++/RwgVFBSMHz9eFMX//d//Jft9Pt/nn39+wQUXpFSqUwOqw+TpuTpkSDPPrFmz3njjjR07dmzfvv2ll1667bbbysrKJkyYAAA333zzV1999dJLL9XU1Gzfvv3RRx8955xz2v6CWq124sSJL730UnNz89SpU8nOcePGlZaW3nnnnTt27Kitrf3oo4+mTJny5ptvdl4m4pM/++wz0neQwJlnntm3b98VK1acdtppp512Gtk5b968YDC4dOnSAwcOVFVVLV682GKxzJo1K+G7I0aM2LJlS3Nzs8/ne/bZZz0eT0o/ltlsnjt37tNPP/3xxx/X1tZ+88038+bNi41NWL9+/cKFC9t+q6CgoLKyctGiRRs3bvzuu+9efPHFF154Yfbs2dnZ2f369bvyyisffPDBDRs27Ny589Zbb2VZdt68eSmVqi2VlZVfxLFjxw6ZJ8wAVIfJ03N1yBUVFa1fv3716tWvvPJKfX29RqMpKCi48cYb582bR4Ll9OnT/X7/6tWrn3jiCYvFMnHixHvvvbfds0+bNu3GG288//zzc3NzyR6WZdesWfPnP/954cKFXq+3sLDwjjvuuOGGGzov5fDhwydMmPDYY4+NGTPmtddeS/grQmjKlCn/+Mc/4scgFRcXv/nmmytXrpw2bRrLsqNHj163bl1OTk7Cd++9996lS5eOHz/earXOmzfv8ssv/+9//5vKDwj33XefxWJ57LHHGhoacnJyLrnkkqVLl5I/7d+//9NPP237FY1Gs3bt2scff3z58uUul6u4uHjJkiXXXHMN+esjjzyycuXKBx54wOPxjBo16s0338zOzk6pSG159tln4z/269dv69atMs+ZbqgOU/m1eqoO0SnTxEihUFQOfSOcQqFkCBpuKBRKhqDhhkKhZAgabigUSoag4YZCoWQIGm4oFEqGoOGGQqFkCBpuKBRKhqDhhkKhZAgabigUSoag4YZCoWQIGm4oFEqGoOGGQqFkCBpuKBRKhqDhhkKhZAgabigUSoag4YZCoWQIGm4oFEqGoOGGQqFkCBpuKBRKhqDhhkKhZAgabigUSoag4YZCoWQIGm4oFEqGoOGGQqFkiO4PNzt37pw/f/5ZZ501cODAsrKyGTNmrFu3Lpkv1tbWlpSUlJSUOJ3OVC+6ePHikpKShx9+OPXyds0zzzxDCvbII4+k4/yUdPDOO+/MmjVr+PDhAwcOHDVq1DXXXLNz585kvvjuu++WlJRMmTJFwkXHjx9fUlLyySefSPhuR6xZs6YkjgEDBpxzzjnXXXedGpaK7+Zw88033/z2t7/97LPPjEbjueeem5ubu3v37j/96U9vvPGGshc6duxYSUnJq6++Sj6WlpZeeOGFgwcPVvYqhI8//phsbNq0ia6J3CN47rnnli5dumvXrqKiojFjxiCEvvrqq2uuuaa8vFzZC61fv76kpKSqqop8HDt27IUXXpiXl6fsVQCA5/mRI0eOHDmyrKzM6/V+8cUXv/3tb7s94nDde/k33nhDEIRJkya9+OKLZM+99967du3aNWvWzJs3T8ELxUIA4YYbbuhyRXpp7N+//8CBAxaLxWAwHD9+/Icffhg1alQ6LkRRkNdeew0Ali9fft111wGAz+e78sorq6qq3n777eHDhyt4oQQdrlq1SsGTx9OrV6/333+fbLtcrilTptTW1r777rvnnHNOmq6YDN3sbkg9KCsrK7bnT3/605dffhlvL9evXz9t2rShQ4eWlZXNnj37yy+/bPdUc+bMifcvX3zxRUlJyejRowHgsssue+yxxwDgkUceKSkp8Xg8CZWpYDD45JNPTpgwYfDgwaNGjbrlllsOHjxI/vT666+XlJQsWLBgx44dU6ZMOf3002fOnFlZWdnRHW3YsAEAJkyY8Otf/xrayIuiThJ0qNfrX3311Z07d65YsYLs6UQhCZAqTMy/rFy5sqSk5LbbbvN4PCUlJf/9738BYOrUqZdddhm0qUzV1dUtXrx49OjRgwcPHjdu3EMPPeRyucifbrnllpKSkn/+85//+te/xo4dO3z48IULF7a0tCRzd2az+YwzzgAAv98v6edRjG4ON2VlZQCwbt26u++++9NPP3U4HGazubCwkGEiBXvxxRfvvvvuvXv3XnjhhaNHj965c+e111776aefpnSVGTNm9OnTBwB+9atfXX/99TzPJxywYMGC559/3uVyTZs2rU+fPps2bbr88suPHj0KADqdDgAOHjy4ePHi0tLSnJycH3/88ZZbbgmHw+1ei4SbSy+99NJLLwVan+ohEB3ee++9q1at2rFjRzAY7N27d3wdpxOFJAnP89dffz3Znj59+owZMxIOaGlpueKKK9577z2r1Tp9+nRBEF577bV58+YRpREd/vvf/37llVfGjh0rCMKWLVv+/Oc/J3Npt9v9448/AkD3Whvo9nCzcOFCEnfXr19/8803jxo1asaMGf/617/IT+x0Op955hkAWLFixQsvvEB+fQB4/PHHU7rKjTfeWFJSAgCTJk164IEHNBpN/F+/+uqrzz//HCH07rvvPv300x9++GFpaanT6XzppZcAgAS+AwcOPP3000888QRx3dXV1e0mt3379h04cECr1V5wwQVjxoyx2WykPpX6D0PJKCtWrMjJyfF6vS+88MKcOXNGjBhx/fXXf/HFF+SvnSskSTQazQMPPEDktGDBghtvvDHhgFdeeeX48ePFxcUff/zxk08++cEHH2g0mh9//JF4H/LFw4cPf/TRR0888cS9994LAJ999llHl2toaLj88ssvv/zy6dOnjx07tq6u7uqrr54zZ05qv4vSdHO4sdls69evX7169Zw5c4qLizHGu3fvvv/++5csWQIA33//PbF/06dPJ8dPnToVAPbv32+325Uqw/bt2wFg+PDhAwYMAACe5y+55BIA+L//+7/YMfn5+WeffTYADBo0yGg0AkB9fX3bU23cuBEALrjgAoPBwHHcxIkTgdanegLDhg374osvHnvsscmTJ+fk5AQCgc8///y666575513IDmFyIdcZdKkScTI5Ofnn3nmmQlXmTBhgtlsBoCRI0cCQGtraygUavdsoVDohx9++OGHH8rLy10uF8uyR44c2bdvn4IFlkD3d4QzDDNx4sTHHnvs888/37p1KzGZ77//fm1tbWtrKwBotVqDwUAOzs7OJhsOh0OpApCrxLcfkavER7T4v+r1egAQRbHtqUhNateuXVOmTJkyZQppZqL1qR6B0WicM2fO3//+92+//faDDz4g1atnn30WklOIfFLSIREhdKBDAOjXr9+hKN9+++0NN9ywdevW3/3udxJGjShId4Ybt9u9efPmZ555JtaC1a9fvyeffJLjOAA4cuSIzWYDgEAg4PP5yAGxtrH4p0IgbjN2qiRb0QCAXIU87PjvxkJbkuzdu/fnn38GgMbGxj179uzZs4c4IFqfUjnHjh177733SDWZcMYZZzzwwAMAcPTo0XA4nJJCEELQrTpsS05Ozu233w4Adru9e6XYze7mD3/4w1//+teVK1cGg0Gy5z//+Q9puCkoKDjzzDO1Wi3E1Uc+/PBDABg2bJjFYkk4FWnYI01iAPDvf/87/q9EBB6Pp20Zxo4dCwAVFRWHDx8GgGAwuGnTptj+5CE1qTPPPPNQHBMmTABan1I3hw8fXrx48UMPPfTRRx+RPYIgkBaT/Px8juNSUki8Dj0eD+mKitGlDj/99FPyb+Ho0aPfffddR1dJlVh/rslkkn82yXTnuBuTyXTPPfc8/PDDr7322rvvvtuvXz+Hw1FXVwcAM2fOLC4uBoDbb7/98ccfv++++7Zu3drS0rJ161aWZf/0pz+1PduFF1740UcfffLJJ4sWLXK5XKQHMVaLyc/PB4DXXnutpqbmnnvuif/ieeedd/7553/55ZdXXXXVhAkTysvL9+3bl5eXt2DBgpRuh4SbhNGlkydP/uKLLzZt2nTfffcRqVHUxrnnnjtp0qQtW7bccccdK1asyM7OrqurI7X1O++8E1JUyIUXXvj222+vWrVq7969u3bt6tOnT2NjY7wOjx49ev/9948bN+7++++P/+L8+fPXr19/6NChGTNmkLakUCg0bty4iy66SMJNkaZisu1wOA4dOgQAo0aNIo0+3UU3u5vrr7/+lVdemTBhgtFo/Pnnn10u18iRI5cvXx7re7rllltWrVo1aNCgzZs3f//99+PGjVu7dm278X769OmLFi3Kzc3dunVr3759yYiJQCBA/nrTTTcNGjTI5XJ9/fXXCdVdhNDq1asXLVqk1Wo/+OCDxsbGmTNnvv/++7m5ucnfSKwmRfq/Y1xyySUsyx4/fvz7779P5YehZA6E0HPPPffQQw+NGjVKEIT9+/czDDNhwoRXX3119uzZkKJCli5dOnnyZI7jPv/889/85je/+c1vIE6Hf/zjH3Nzcw8fPrx3796EL+bk5Kxfv37mzJkNDQ0ffPCBVqtdtGjRK6+8Ii1LxZqKf/jhh/r6+sGDB991112vv/56bIhJt/D/dGZ+msPMxzYAAAAASUVORK5CYII=", "path": "image.png" }
Which solution has a higher concentration of yellow particles?
[ "Solution A", "neither; their concentrations are the same", "Solution B" ]
0
The diagram below is a model of two solutions. Each yellow ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the yellow particles represent the solute. To figure out which solution has a higher concentration of yellow particles, look at both the number of yellow particles and the volume of the solvent in each container. Use the concentration formula to find the number of yellow particles per milliliter. Solution A has more yellow particles per milliliter. So, Solution A has a higher concentration of yellow particles.
Solution A
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGxCAIAAAA/DiEzAAEAAElEQVR4nOy9ebxlSVEn/o3Ic+99e7169V5VN9A0i0ILiBvLCCg/3BU3VERkxhl1htEf6gij4jCuqPhBREZ/4wI/dVAYEPw5IzqIOiwiAiIg+y5NNw3dXV3Vtbz93nsy4/dHLicy89xX1U1VdeO87PepPu+8c/JkRkbGNyIyMpJEBIflshWBOHEHP0MgJr4y7Tksh+WwHJYrX+gQaS5HceIEwsQEupjnPSD9nwM5AhERQT/vEYiILpJ0h+WwHJa7fzlEmktcrFgiYgTAuG1820e2PvLhrQ/ftHvTzXs3GzYTOxny0Dq7Ply/ZuGaByw/4PNWPu+eC/f0gtVDzsVD1GdX8QCs6XNA+T8NfXEhC/gQgA/LZ285RJpLVqzYhBAf2/7Ya06+5rWnXvvBrQ+enp4e23EQEALyNJeg2A8wODY4dv+F+z/uxOO+8R7f+NCjDyUiL3EMmbu4S5eoBMxQALPdbn9066Of3v/0J3c+uef2RMSKHdDAwFy7cO095u/xgOUHHB0d1a//c0XfhC4X2cGA1v/HAPDB5i8umm6H5a4th0hzCYqDExFDxop9zcnX/PdP//c33v7Gs9OzAx7MmbkBDYgpzJREbAlvikjbtuN2PG7HS7T0iKOPeMp9n/It9/6WxWYxCaC7pFOXqtQA/Le3/+2Htz582+S27XY7I0tE30VeXBusPWDpAY9ef/TX3ePrHrr6UA+6uqp/BsWzTeqRQG7bv+2j2x+9Zf+Wm3ZvItDETQwZCFaalWsWrrnP4n3uu3jf+WY+vC5OIP9s1JGieOJcJKDeUbQ+LFe+HCLNZ1qS+HvT7W/6hY/8wpvPvZmZF5vFhhsREYrqmBKmXXGAgIQIRI6cdTvjnamdPnjpwT/5kJ/8tmu/jYis2M9SaZIm/47dec3J17z0ppe+7dzbzrXnGmpGZjTkYRAiBdgAzjmPvpN2ssALX3zki7/z3t/5bdd+27HRsX8e4lXbrGM3fvvZt//Fyb94+9m3X797/ZnJmX23TxIs4KSREGilWTkxPPHQlYc+7sTjvvrqr77Xwr2Kqv55FCtWA8ye3fvEzidu2L3hpt2bNqeb/oEhDUXkmoVrrp67+gErDzg+Ok7UOZ//zzH4PovKPxOk8SZ2cdMz32XVcTwMnB6f/qkP/9TLbn4ZES0PlwE4it52AgASEuSQ4xTkuPirAwuTo93J7v5k/2uv+trnPfx5n7PyOZ91unwSfwJ5+ade/oKPv+ADOx9ouFlsFr1MdOTCeBWmHgIdAvoKudbtTnb3p/v3mb/P0x7wtH/3gH8318x91hFEl9T4m/ZuesWnX/EnN//Jh7Y/NJbxkIcjMxrwIDlaw7/xwlo7tdP96b5zbn2w/hUbX/Hk+zz5K6/+yoabf37m76d2P/W/T/3vN5x+w3s333tyfHJzutlNcOnM3zmaWxus3W/xfg8/+vBvuMc3PPzYw0dmhH925u8/g/JZjDQXaTJ7LfiCj925rxsyb7r9TT/w3h+4fu/6tbk1InLk/Ff84q2QQAAKc8PBBbjxuOO66hLYeLxhx2d3z67y6q8+/Fe/6/7fdedmziwAvqwzMFHmvZvv/ckP/uQbz7xxZEYLgwUQHDoAJqHuV6kEq4vXFgxmx/vT/Z3xzucvf/5zvuQ5X3mPr3TiQLiYyIK7T0le1jOTM8//p+e/9NMvPTk9uWAW5pt5QtBFSgtYvQwBOWJiOLRtuz3ehsMj1x75nx/yn7/iHl/xWW3c+HnBxK20rzv1upd/6uWvP/3609PTTDxn5gY8CP2qzF9xMrXTyXQybscjGn3e0ud9+zXf/qT7POmaxWs+qwnyz6989iFNr4G8Z/dOjU+dnZxl4qmbDnjgnDs+d3xtuOZ1HF+sWACfOfMlJn7hDS/8iQ/9RNM0C4MFC+ubROwNmfIdeIBxapFTlHEjgAUAtL6tMGKm0+nm3ubTH/T0X3jYLzDYR04f3LaErAd305PikvsZPHgw+Ldv+O2f++jP7bm9I6MjDiHkzH8RFKEXgHQDKpBg3sW6wr8CWJCQEbOzv9NO2x++7od/7ot/bsADHylwh1roiXPlAdjBEYhAL/vUy37ho79ww/4NK4OVoRk6cmm5O+GNb2ht1oQfB3LEwnDYGm+hxbfc81ue87Dn3GvxXp+Nunxq8+tPvf6XPvZLbzv3NhCWmqXGNJDK/C0ulPkrTvYme7uT3RPDE//yPv/yPz74P66N1opY0MNyV5XPJqQpYpBOjU+95cxb/uHsP7x/8/3X71y/Od0c2zERWWcNDARzPLfarH7u4uc+ZPUhjzr2qEeuP3J5sAyFE3e6GX4h96c//NPP+/jz1ubXmFkgxEpY9cFM9r4T+JWMXrCx0bhxTJZObZ964rVP/G+P/W+NaTDDH1jv4Gml3Zpu3bx/sxPXSstgAo14dPX81cmLVVP1Mym+nj2798Pv++GX3vzSo6OjDTfeyMvQV3/HAfDAq9A3WXu5qeetPVic3j79uBOPe/GXv/iqhasuZh0rmb8HC53Lt7DsG3lmcubHPvhjf3TzHy0OFueaOQcnJMkC7tAXwfz1S+Kl+es6vPEGHyzO7Z47MTzxgke84Fuu/ZbPRvP3U3ufetaHnvWqk68CYXmwDMr9zwFopJsmyAFYOZ9ZeDKdbO5v3mf+Pj/90J/+7vt/t+erz3bX4md7+axBGiuWwUQ0cZM3nH7DKz79ir+7/e9uHt/s4Bpuhjw0ZFgY6MKInXOttJN20rbtAINr56993PHHPeW+T3nYsYcZMnfate2lxk9/+Kd/5fpf2ZjbEBI2HPR0KDHKaib4m9pXJhAn3rDIwMZ1WjxsuBjI4NatW7/j2u/4g8f9wYAHPsg1tUd3xIp93/n3vfnMm9957p0f3f7orfu37ra7AnEuKNRGzKJZvOfcPT9v5fO+5OiXPHrj0Q9ceWDq12di4jg4Bp+anHryO5/85rNvXp9fd+RAYFLEQRQcFOmQE8QLBW/5lXLEduK1kebc7rl7z9/7j7/ijx+09qADwKa2Ysd2fGZy5rbxbZ35K+7o4OjG3Ma8mddUvUN7bw8orbQNNe/ffP/3vOt7Prz34WOjYw4ODJIZABxlqDjpdtgUGklOk8Y148l4e3/7mZ//zJ/94p/1NqI3Ig8od635m2Dmz279s6d/4Om3Tm5dHa1m/ufa/I3hzsH8Lay93Pzdn+zv7O886donPf+Rz/fGzaEn7S4snwVIkzhybMcv//TLX3jjC9+/9X5HbtEsDs3QP5D0Hd8dDzYEClqwQETG0/HuZHeI4cOPPvw/XPcfvvGab8QdXzn0/Prbn/jtp3/o6evz68GUMVFe1HhTmPw69szBORcmj/YaWSVEbJCtAxl8evPTP/qgH33+o56f5ow2R27cvfGPb/7jP7/1zz+4/cHtdpuJR2bUcOPNu4S+ArHOtrYdT8fiZLVZ/aLVL3rCvZ7whGuesD63fqftGw8zpyenv/3t3/6OrXccGx2zZJmj/ZBwJUkqifclI5E4cc71WDYKZjytGmk29zePD46/6mte9aCjD6rdaHpkt6Zbbzv7trececv7N9//se2PnZuc23f7ALz5KyIjGq00K/dbvN9DVh7yiGOPeNT6ozbmNgoK3yGCpOJh5rWnXvuv3/2vd2V3ebhsYclvwUztpZwgiqwAnHWIKxml+autPcewOL1z+knXPul3v/x3h2ZYaCSp1J2yYnfanVv2bxnbsZA45xpuGHyP+XssD5YbavSLlwRy/Jxl8LM/8uznfvy5C8OFuWbOImiTPfMoUiOZvoEgUk2cSBmyxMJnds5ct3TdHz72Dx+y9hA/Fp9hyw/LnSt3d6RJS4VvOP2Gn//Iz7/t3Nvmm/mwvOw1Mopi1JdccmleJEfsWJxsj7dd677mqq/5mS/8mS9Y+4KL9+R6Ef83p//mCe94wvxg3mNMUEu1SK1n92yr3wVNXmYKkQg2jWtObp/8zUf95r970L/z9odfEv/w1od/7eO/9urbXn2mPTNn5ubNvBcEHQALvNAJMCzkfyCw1u5OdifTyT3n7vnEa574tOuedq/Fe91Ra8+DfOvab3/Ht//v2//3xvxGK60xpqNJLVK1WVOAjQ1afEYTV/6IlaEMz+6eve/CfV/7ja89Pn88gU0KFrBi33HuHf/9U//9DaffcOPujVOZNtwMzbChJpi/PmBD4MRZsZPppLUtO77H3D0es/6YJ137pMedeJwX2XfO3eoZ5rWnXvuUdz3FsZszc8LSSXht58Xuh19ddsfTpFzY0+ZvJMtABrduzjZ/Y0iC//UjWx/x5u+Htj706b1P77Q71tngHAaT0IJZuGp01QOWHvAlR7/k0euP/vyjnx9CBz+zUDffqombPPU9T335zS/fWNgQktL8Tewxy/yNPtds4khJk0aa7b3tecz/wWP/4Kvv9dWHYHNXlbs10viJumt3f/4jP/87N/4OMS0Plv0KKhEFLiR4X3fn6PfFlTI96TssTELnds8t0dIzH/LMH33IjwLwSy8HNMZPj5Pjk1/51q+8ZXrLfDMPRrBmWFkzB1bRyQh0cyYIEafErl6ciEhDjtppK6389eP/+os2vgjAuem5X/2nX/39m37/XHtuZbjSmEZEQkBXAcC55NIEYcckNJlOtsZb9xjd4+nXPf2pD3zq0Awv3tvgRfyPvv9Hf+eTv3N84bhFtGYoJ8ssAEYZ8x1MPS9EoGhSkMVi4Aand05/xVVf8aqvf1WCGd/s/3Xr//r163/97effPpHJQrMw4pH3JqXwP3SGMAgEv7HJEQSTdrIz2WHHD1l5yL//nH//5Ps9eWRGd9T89WR53+b7vu5tXzem8VwzJ4iOVkSeiTycAfBnZv4OMfzU+U/939f93//PY/6fXvP39Pj0/7zlf/7PW/7nuzbfdW56johGPGq4MWT8Pp4EwNbZ1rXj6dg5t8RLD1p+0Dfd85ueeO0Tr1289k5be34eTWX6fe/6vlfe+srj88cdOWbOuCWZv4kClfnrtbSw0qnN38QkEWyMM+PJWFp5+Ve8/Kvv9dWHbrS7pNx9kcZrHx/d/uhT3/vUvz//98dGx4gp6K3eWcU5iwuCTe2iOu/K6dr9CIwztrVnd89+8z2/+bcf/dvH5o4dzIL+009991NfevNLjy0cc3BBnl4kzKhGaggMSCN96qr+sYCDsebs3tlHHnvk67/59X939u9+5H0/8sHtD67OrQ54YH0sAYHBYZ1Zuv8EEsSHlum2+5Z3bY+n4829zceuP/bX/8WvX7d6XSutIXOwKPFE+6NP/9H3v/f7j46OOnJsuFt+4AtRRirB6jVWJ6W/SKvwSbC2aKS5ZeuWn/rCn/q5h//cxE2GPHzP+fc8+6PP/utTf83MS4MlIvLBb1B7m7IvQn1CAOkiu3Ynu3uTvUeuPfJnv+BnH3f14y5el/fy9PTk9Ne+9WuvH1+/NFwSSKBlr5e1oAlyPgFgZ5i/NZ9YDNzg1u1bf/WRv/ojn/8j3mSHgIk/tfep3/zEb/7xLX/86f1PD81wwSwYDjh0QfPXObc32duf7q81a4+/+vHPeNAzrlu97k4YN55hfvT9P/pbn/ytqxauKs3fWjVxuVmjdCbva0Vh/mqYiXxinNmf7Deu+etv+OuHHnvonQhZPCyfYbmbIk3yU33/e77/VHtqdbTaomXKfbi9Rbuk4uTp0Xe8eHXUuOb0zukHrzz4JY99yXVHr5sFNv7+60+9/gnveMLSaElYZk4PKPGqxXrewnABJUG0utorVR1gIVb29va+9vO+9i37b9lqt44Mj1iyEBCH7TvlOnAMqgbQKYC1tWcj3jhzfu/8Cq88/xHPf9L9nnSwIu+XZz65+8mveOtXbMrmwAyYGI3ymF0MANdNEmXWFMNXCVayZFu7O979i2/4iy+7+sue//HnP++fnrfttldHqyA4uBRdLSReZw8eMzidg64kiF/8EGbhrf0taeUHPvcHfvaLf3ahWbgYpdjLsu999/e+4pZXrM+tW7Jd2EjNMLNoAiVYXYiY8LpU1+bCzhOgBTlyrRtPxq/+ulc/6upH+eDDF93wohdc/4KbJzcvD5aHZigU6OtxqEPfogEK7NkyCdnWnt8/f9Qc/d77f++Pff6PrQ5XL97a86T7r5/4rz/2oR/bmN9w5ELEJufQe4D5WyhqtqIJZmhpzmzvbV+7cO3rvul163PrItVMOSyXs9wdkSZ5t7/7H7/bsl0YLDhynQ+38DnksaHh3+jE7cKI019tzoKCgQzO7Z67anjVn37Nnz7oaE8gU/Juf81bv+Ztm29bHiwHvc8qD4/+ugE1RA3RgILYzb1Doc0RVMSK/0Spl+WeooQ0tEy7w9354XzDjUCYGThQeCWCuLg30GUirABgI2Yymezu7z7roc961hc9yyfHnBVa3dl588eEc7UduX6a/CFaVUd+82JMvQp9/S7XR2488tp7X/uyT79sbW5tYAZ+eTlEADK6jffRD5NWg0qNRNPEAhIW22/fvf2RRx/5oi970QOPPPBgd79noZfe9NJ//75/vza/5uDYRHfiRQKwZgNFImddGZuXW+qJT4wz5/bOPWjlQW/+1jd/Yv8TP/TeH/rbM3+7MlwZmZElG8ckRCUkd5kUu3k0QZRSYmDatj23e+7Byw9+wSNe8OVXf/nFmL+eW95y5i3f+vZvNY1hZmaGiQS5oPkLNZEVfXwISQ9N9PRxIazm5PbJJ93nSX/4lX94aNZc4XK3Qxo/S//+7N9/89u/GYxhMyy92wiyIxSJv2r+Q9B3etZRC/5zIWp2c3/zxODEax//2nsv31tzoRUrkIaaV93yqqe88ymro1XrbGfRI/tiqWkCNCCaI55jDHJhqmaF9xSFqVLr77lUxSIwDybuUQY1ABdti3V69C1di/pDNujyZOnk1skf//wff84jntOrxU9lOqDBG0+/8QnveMLccA4AE3vHV6iNVHdIAfAwhl3lYhQUHXpRgpS6qg4u0oM4hbBMl6fTwXRluCIQcBVdXRfJzd9EB6hBVPRvpDm/e35jsPG7j/ndx93zcbMsG6+FnBqf+vI3f/lpe3o4GPasWqVWpeE7AICVuO9ZrSlMPduNIzna3Nl8/AMf/z553417Nx6bO2YRzF/fhpnmr3QXhVhP6EuOjDM74x3Xup/5gp95xuc/4+DQak+WXbv71W/96g/sfGBptAQgYNPF+58rjQRQ8Yo1TQpWsWDHp7ZP/e5jf/d7Hvg9hws2V7LcvZAmeGP2Pvn1f//1t7S3LA4WfRjxzInqSxJqhfWgweZg49qikebs7tmHrz381d/w6oVmIXmumXjX7v7JzX/ygo+/4Kb9mwY8EIofqKNikINNVKZAoBHxMtMcdXMg18uCVK0lnRYf88BckBHGmB5XTLpwefOURWWt9bTpsWyUd9uLkls2b/nZL/rZn/6Sn9bTUq8GP/EfnviXp//yyOCIrzYblHShDDg/WDQknmeao6AiaAERP5CZpAfqqgCwAh4G52pw5Ojl5Zph1HX5rfRAX2j13ngPLQ5YW/ZrRc/60LP+yw3/5djcsZD+IAFw0QAGGaKGMAA10STQg6IvXB4/oolW08RBpkKLtDu3OxqOhmbo4AyZkmGKIoBUG2m1llaEVgtLK2d2zvyb+/+bX3/Ur4/MaFZotafV8z72vJ/66E+dWDhhOQ8bQc7DSWGahb5q+lzUSmckCzveneyuN+tv+ba3bMxvzGrtYbnk5e6FNACs2G97+7e99sxr1+bWHBw3yjV0kd7tQogfHEacFPkWAwxu2brlB6/7wd94zG9M3bThhkB/fuuf/9JHf+k9W+9ZHCz6gNfQnvRFqMlQaH9QjN4CDrzIdISooZByBlHSOcmQBvk8EaAFBsA8wAhuh3qW1mYWVDMUiXqcMJUQ8Usg5Ojsztnf+/Lfe/LnPtkLixQUftPeTb/5id/8b5/8b4ZNWm8vKYNyOPTMJ0M0T7zEGERZoAaxlCBQ1ChwcRneS8nMpfkL1SpfM3ef6KjV9oVWS4/A8q5FO7X/62v/15de9aUabNIu0U/sfOJxb37cnuz5zTrQpVBHFAxTQzQimicaUuhsGjslVTtQVPZfT1OnwDywBCYGg0jtEp1l/ubN61BtFtj4QXRknLl169bvvPY7X/y4F9eh1Ygwc8PuDf/XW/6vPew1pvErZGJzaiM2zIAM0YBoQDC5BilKs4zUCw40F42wxCpQ0KvA5rbt257xkGc899HPPTRrrli5G3kq/UT9tY//2l+d/iuvDLK5IzBTF4KfY1klUNMsCUcCGFNMNxY2XvjBF/5/H///Bjz45O4n/9U//qvv+sfv+uj+R9fn10eDkd8Mwcz+X39BTDAIQWjJC28QZoi/aYABMIDbcfZm68678NeLLA5oOmsm2xE5y84riKZ3tEBlGakVSfUjLCAsjhaf8ffPeP+Z9xsyUzc1ZHbanV/+6C8/+u8e/Rs3/IZpjBgJFEh00C4Rym9GUmAAceI2XXtL6866MCgSGiOlCMz7KKrNC0ADMAybLliWq0+TGiDk1wAZ8std5bbB4odhxQ6bobB879987ye3PumTTegNN6++9dXf/+7v33JbDTfCEjihARp14X8GwDBSw0CsuE1nT1p7m5UdCQ2WrOOZBNeNLIoAi8ASAPggkc5PxdWI1FzkJw5TN3c0/+T0FJIW7dXLV7/ihlc89Y1PBbKccoKYCAN40Q0vOrl/cihDN3F2bN3E+ZXOsliRsbhtZ8/Y9rbWnrayJbDK01ixuj88sF+3SL/GHwe3Mlp56cdeev3561OukMNyucvdxabx3pgPbH3gq976VcLCDRs2pfhGfgGlqqfSZ1zP9MMUPy3Y8fZ4+z5z9/nPj/nPP/dPP3fD3g1rozVhERFi8sHD6SQMH0mMmKLK3ywVQG05SVQ2p6B54nUmJrSAhF2onYOlVlTngAYB59ImHlwcANem3h1cWz6ze+ZL17/0Nd/4miEPX3fqdc/84DPfv/3+I6MjQzNs0abMXYkmHidSQFNnlEDVn2higQloQLzGNEcp9rqzaWojI704BEbRziuCu3AgZfrM37CIVQS8pUx0iSYtGmlO75z+yqu/8lVf9yrffb/W/Usf/aU33P6GUTNaaBZ04uruo/W/hcXmOcSBRsSrTKMe8/fCA2eAecDE9TymklsK81cbNy67zvY2zTb14NC45uTWyZ/+wp/+6YcFX2uKgT47Oft7N/7ef73hv+67fSYO/ucLmr+ibBEGzzEtEw0r/7PrM3/rRsY57ofy1NapX3z4L/7kw36ydW3Dh3s5L3u5uyCNZ82n/ONTXnXbq47OHfWKWLDdnXQzQQACNeSXl4Oao+cGcicMZmxE0NNSMhNbrLSjdrw4nhvOjZqRQ9yeNitqyLsaCtd2wfE1348hjTQbDRpIG2XHrLdMUHuNMUFqFIuoVLanp5E5/sW5OXtyqrVlFj65efI5D3/O/Nr8f/rgfxo2w8XBYsiqEvVsfykSwUZipxCPSOiVI+liCjjwKvMRDgMhEvbB2GrUfPMYmAvytAvuukjzt0AaRH+R35/hVIPr4bMBgG/duvUXH/aLP/nFP3l2evY5H33Oiz75IjCWB8tCkjI3p5ZkugjQTxBNlhaw4BXmI5ye799plF5JLqN5wFR6yQXJkusinuA9odV6IHQAgiU4nN89/8qveuXjr328X68au/HLPvWy5/3T867fu351uOpz0QIz0BcVQaSr3yMuLzKvMihqALGRF6UiqDm+M965bum6t37nW30A5+FqzeUudz3SCKR17YAHbzz9xm95+7csDhadcyRxowN6uD9oYcm1PUc0oPAn5I8BcDOWJbTMSlzYAgugJWJiYQmClKj2Y6TWdxeipmUhCOpvOWACEeETTEMS2xdQlGbLEGjC8kzAMhuna/wEGYW+Op4Y+XVUn0VmROyIokb8V1pxzrllN52fzjfzjWn8PoyDtjf1AnCB9CiDzmUitETN0cbboT3Ody30R8FL2XATHHe1QVOIsKJo6TnL/JWshemCLE3aydAOf+2xv/aiW1/0d2f+bmN+I2wuZg4qUQzECrLM4QLmb2ISiWAzBQYw64aG5Jf6gvkrokVt9jMCBgDDkKEmd39dEGl0S+J1T8qGGejLwrv7uxuDjb/91r+9auGq95x/z0988CfeeOaNy8PlOTOXRVcfAMAuH52CJ6cgJj7KtFiZv1opqXU7ZdbY1pKjnf2dv/imv/jye3754WrNFSh3sdno93wNeHByfPL5//R8EfHpQIRyr2sNORIEk+wLzoOGxAtMCwRGx22xEFMwjCj/k3SgFf5dAuYhJI5ccN8hf0BnaNZryxQliwM5Cu337O7nebqID6MBWrS3ts2JJiyJ94pFv6JjIVNppe2aXRPEo49fSp0jGlHXQuR9J8Cn3UwKZmqV9MhrYjJHTTPXjGjkadKtiEglv9LnfKIgATkSEUcujA4iKtg8Wp1BA5JNmU6m5rjxWwt7hsz/24RlIcMGBHFRyhRN0ravJl3HHPF+lH8dWerHFFmEpKGmnW+f+sGnNsPmxOIJHythyNRiPa2KMTjEjokTEpgo/lQzOm7xQz9Be0trNgzPcTC5vFymHBV88WRB8Jt1yyq6CzU9dR/r++lPevhc/icCGK51i8PF67eu/8W3/+JjH/DYp733afvY31jYcHCWbNo50EVCR4dEMF591xLTpsmiv0WQqdhTlvbIrJkMreveFZ1Cx5zENLbjV3/i1V9+zy/HYbn85S6zaYrzB1/y6Zdsu+15M+/IQfqYXrKXM+3YRvu9IT4SlR2nXrdwUoURF3qZ924vhiCCzu1QeGNm+dwVSPQ4YdCvW0HgJk5IzFUmPJNqS001laSg8otdM5IhIiBDNEe0GF3blZ4+06mofTj+ZwkYAkVwl6aJdm/qwOXYQmddT/Z7/S3l5XBjhxGa441zeeSxqOeHgAEkgJk4KQmYRodAHNF3mKNvaoZ07Uw22EGmngOmwAi0QmEhBCq6WrOKqAvFOR3eoC+VWfGtFjIV3mBaIJ/aOeNkzcZDoAEZCgCcDJEEwH6AGnSbB1zVvESWxCqz9jbV1l4La60syGRxMmpGw2Z4J/3PhU0pFWXGkDkZrA+ExLsESk7uneMWsHDOwWJnb+fh6w9/w3e8oWrQYbn05a5Bmt7zBxvTpNwhiKpl0C61aCgU+UJ2W9CIeI1pEI1rb/67C2UnJGAhhNyU3m1cxNoyMqt/ZjIV/cWICm7iZCRmw5Rxq5R7hKTCueKiEARt0EB5gXmFMQjYFh63IUncQctXfnLOhbC3bDkEM8KIdas0HF7MrkMls+y+pSXiY9y1WT9MuTVOfQ3Q4xKRjJhonmiBaETd0OTiqcvb2BtG7Cnjg86XAoz5KMSSVbQPs8+iEjvjiIQC6eOyjZ1as2F4gV3ruqr08wwMOlMyW21CfuENCwMaEY2IBtRjIdmunQeloXN5U1tgBbRA5I+/S9ubClbpqJANmaQjeWqwKZhEgH1II+aEEY5eVv2KnUFMC2stHNpJu2yW3/Zdb7tq4So5TE5zmctd4D2rzx9cn1/35w/66N10/mDKIOJPeO2yVLkoXFy+1OmjRcdib7F8lHmJPXt12a5SSZdJGR8pmNEHAeBC3u26eDea9wHWOJ4wIzoHaEBu17lzjo9wp4HqWNJu2T1qxKk3+l+jphYHZz0c3LZzO45XmJe5e5hmNA/55B8BowgzzYWCu7Q673LpT2DikP0UUhIh96HBwQyN3bJu4HiJuwUJX1UzIyBC1GgWkp0CcaQV2RJsgUbER5jmSKNvMAIK3tAWW+raIOollMMMV63SpEi/+ksmBnf7eIrPkaKPAAbs2J6yuApolFqjtZzo1Ap94HwIEkGiTMcUMhYAZIgWiBc41CyKmBLmo08bVw53YlfEBq8A8xB/blOxhRY5MWWG/9nGJzlXuVIXKPrxRsAY01unzYkmeMglf0zPDt1sgkAGZnD73u0fvv3DVy1c5eAMDpdqLmO50khTnj84f8zBOXYk1OXvgmJNAQQGpsvZlTBGlKNGL4oMAAt3ysm+mDUDxAB/zXDF9TA4qbpV7lmxOrUjGMqxruVRmpysoFH9tXsMRA25TUcjoiGFfnF0+4CQsEZNnkSNYCUgl93IJjBauDNOdoWPMTUEC3IXWo1wgAkwQ0R3LEFkTahEEEgnQZBLhFSzZ4SG3BkXtu+l4SYlQOO/nkSdde6qOpP0NGGwZF/snuUl5lWGUYFMusiMXzkGdxVe1lmqSbHiyJ2AJqKgBiUhnrg6idoojskQOWpPtc1V+bRVDNOjBBQUTshE3ayRVuSsuPOOF5lXGAZdaLUex6Iqp1Zu/K/a/D1g11eCUk2uWC0xsfMbCyT7XKoqaScWNCAaU3uqNcdNL6B22kb6RLzJxGM3vnXv1q5rh+WylSuKNMX5g+tz6935g0mfKGZF5NEQM2oBIKwta33HVvN5CLfpZCJmI64t60KKC7lvh7nWhiifzAX79k1scgQo5R15PVbdobAdxLYWE2AUdHa/D/+A8wfDLmsREnKsTunQgGQiZQxAkH2xt1jeYB5yRxDJqs1INIzNI7UjEn1z8gAA1mQkQCLiJGroNqueeo3Y3e7MicgcJkiiUA9lYcRIodUmmr+JQ0zu9gEwBCzcppMd4WMxS5DkZwr09lHiGFFcdU9d66XMwcWbeuJmcl2qnAACN+zGzt5uzTHT9aiAmUjJEG6eMMypLhiFvohxBC3cppNt4VWmRUrM0Dmxa4JojWGgNhebCDOzt1tmVI1f6mjizV8NNmmauxD1EABjwHbP2jPWHDVo85kIdV3pDQIhoZs2b+rp2mG51OXKIY0V62HGnz+41Cx1JyChT99PMJM8AwJuWKxktkKt/UWth4YkezK9bWo2oqiq7Wio/fwWzjq/gFHHWAe/tiEaqiTN2rGjhQUrL3/xOZQSwT9j1g0thKBqYrrA+YNe6xciIXHC4M7gSw2QOCcTDA+BKezNVjaEFsjv4ykJknqtgruC2i6VuQC1tVYqoKqoHZR46YsDrIjj3S9iBVNgGNDXo0sn34svhFT4sV9anrL6XCLREDKV9taWj7JZMeWgp4f1r02nl2TBXb09qvmNZpi/oMyBVgNwvMkNux0nIwlgEBsQohIS+uYA7ODIUGb+FnGJNox4iOzaIbNmPPN0zmfKh1h30+9t8v7nAmbuOPoimb9aGqAyiSKVeMB208pQaIHC8kxuvnQ1SFRIYl8Ol2euTLlCSONzdbxv833/+t3/2rKda+bCSWJJWukZVRsB0slZYuoioQvBig5mEti4PWdPW7NuxOab5qAmcxsaGWrQzUgMmvza24DPETnHNE9hdUTPh9T4okjVuyhBaIkwH+RXz/mDRVWaIF54u3jYl/Yipjbo0GoDErK3WV5nXuCwL6cWr4imlZC0IlPx1AshXgl9ETLx0CACcB14pn1lpKyc2ijUUokABx4wjgTTimL+6h7hpcCPQD6oOtg3fqegzT9hVAsbEMjd7jABr3FYoq9LujeIFudFmr+opLNWuikoMSEKH31PavpwlPt7QguR+EyUUBg5cXz9jrpzAVgFICRKJo0E0fzdlen+tNloaBiImREBFbcMQ6/DGOGO+J/1M2oWd9M8t4nLdxkkRIbsWduMmtAdVHiTLvKbYzuumnhYLn25EkgjECY+PTn9b971b3Zld2mwJOkgAC1fCjd3r6QGwGCZYVw79S8CM5mBsTvWNpaPMKZKfCd9UHuEKP+W/rRkMUgyFrtrw1LqMvvNMaGG+C4Lp6MwM5gpptYCPMzMzGkGJRFyWRwuOEgTEDrLJil98ZkgBD3YnLI4EZxIJYWTddiisw8ol54SlGW/mU72BAJ/IgAtEA0p038VMfv3Num+pGYPQcvBdjTGhP2zyClQwFXkBJ/rK2zoo3yLhu4ggu+UQO68c86ZNZOiFrJCURyboHG7ifPZg7qF6ATARGCEA4oGcUOPy5lKM4P3hUJKJpFoHCuGISGzbGiFtGTviIPqE1G98Oav97d2q2VQbKbnzgA0pfaW1pvaPeavHlZT2XmKGt3ocDYxZ1JDgOh/dnA9AFMDMIEMubFz5xwfjYSoFQYPl3lXDjhn6LBcwnJFkEaEiH78gz/+od0P+bWZO7C8XLBgvNmtoxbGBFUzh8AN23PW76joBCvnMEP5V2o1X1sYHCawWJHz4rZUZJfrnvc7ww+aohKDu6BmKVVzKZU0UbWxIlHlF7WOmh6jSrwyyBBbtrdZc7UpwAMSl82prwG1VqvR14psC7ZBQ+IlpgUCoqBUXe48RbpQbvEwsNQnv3SrdMvzT6THgl7MKpJb15AUeQaNyG5agZg1kwWkaU7guCEjraxAgVakoQdgmYhnPxoQjWJkl1SthTL7NOLqrkEB8AJoOUQP90dXa7WmMn/9h7rgNP8V7WJNHO7B5ra2M38LeEhdbuLXWzhxnfmrBxTwuWiDOjKIzoDa/E29iIuR5exGHwCDyJDbdoHONh846X6yjRN1dw7L5SmXHWnS+YOvvPmVx+aPWdjMO3QwzKRSKTXeg09qBbfUfdL6od/cR3BnnDlhAverRdR0+m+qIcnBbq8Dco24kD4t3O1OtoWPcQiUwoWYmKJMT95titYMLkSWZN8Ut4lCLHiNblT+0IAwhvcrdq2lanlZKkmqH05/TS8awEEmYm+zNEd8lGlIZQSEFqm6iPrufLAewiqRFjFQxCkuckWBmNKvnfmr++Uy8WqGxp63dmB5kbNB9P82M8xf5GOtwdKL9YnInrhNx/NMyyqUTuvvKWVDrb87dTEAlqP7jvLo6oLCBX1iH4kJDpSlQo01JH9aGtMGDLanLI4Doz4jNdHTh+okAKYYc2+UiHeCNpq/fr1znmgumr+15sE5pxXU1sqWt+mZpBW37XiVMzVIgYpexfP/roxWcFguf7m8SCMQQ+bU+NQvfeyXfHbb7JjbwpJIk6S2rH3hXOMr3kIuTPM73LDdt7RFfIS9TAzebQ61pzz6IsLESOcPAiF0LTUsTYB0pwF8koybLa8xLzOm+TPou+Y8uOuOLqIW0w8Ag1D5prRw1yQCqCG352RLaDmio+mGJkRX67V3QXC86K6l+pM3EkEoy1jszZaPZDkiewC4UMYl5tJnhBjiC+ollL+uKOM3NgEoQ2YLakTZyg3b260/G7TrJik7r/gcyi920JWeoWA0uG2HLfAyByaMMSOBqr0l1eNihmYCEYVUSbMo0wvAsSpv/oZU03FkM1LkwTXMbE9Zc5WprTePRtnXST1Q9CKZvwKxIruCHVBDvMS0RAmuuk4IZXEBvQpl0VmG7IjP9JFhTPpumsgR7O+1dK+sksNyecrlRRqfOvMF17/gxv0bj80fc+SCXuOPIKSMccPhg01I1VwKpmRApI1vvY4p9OMNCZkVw0vsp31QCanyPCDGoiTXtvdse0NBb1vRejEFbwNa2FNWJmJWTciQMWvzJjqnf/CBaADWj+FCAJyaVEg3faGvI4mYWVjspm0WmmTKpOXlQDdQ9654x7mDn7M+fDZJHI4CUTfPwp11sie8zmSoRylGbtx4LThGmnUBeAfATFG4pJJfGepkVq0mKyFLhryFGkKrpTTyAgDHzcW+7wIFwL2h1RTbZmMkcQqtRtx3VfCJxkL/p7kuQ3MI803Y0FsKoZ8DsAeb7Lv6i9ox2xAmsKdtGcNZZDUt1D6pPs2KkSKkSSv2tKUt4lXOnNvIdxZrxO3rEeLuUrHi9lywSqX8SUhDQtbZI8Mj9ztyv/D2Ybmc5XIhjYNz4gY8+MTOJ15208uWm2U7tSFyCRUvaibw03gInmMaKcihUG8ocdr3ePyhnkGY3rRAtKK820UIU11DnDYkxI4BCMRFRTBMG5TuFxjQkNw551pnjpksBrqoHDG4iynEd7kYXa3maufabqjzhhd+J7XaTIg7AeskQzoCDWGWUkO8zMHrRSFbJaFaXtb4JJymawhkcmqAqKLMELIv7S1ts95gCNd22zS6ypXG7fOpgMAmytPaziNFil705YpKmlBapCZqR4jiAdt9S5vEK5wW8zzjaLABhQVIP2p+4LpoN1GyFcpK8F1vxd5q6Qj5LSDSa9IUADzsNlplm3guKCFrI4NyUpD6q+INDfBs2O5bt+n4CIfIl9r/zJ1SkqgRai7GOvFGVLlkKvYWy8vMR7nEqro7Wq/K/hKCzmVPMF/BDOIwRQSauum9lu9135X7Aoexzpe9XHqkkXjIfEPNR7Y+8uyPPvt8ez4cDJUUscKy1pBjIU6wB7tjQ5aqRaJRPP5IzYrMpqlVqnTfAXMhRVVwyOiF93qypbeSPWTIL3cDmVjvRGqud9OQ3JZrpTXH8rVl3WU/Sy2kjYcSFrPLAciiikPGzLmYpSo5EnUhEJETlTUZVe/Qebd5hUOyGeYgwi4OfUMgE8Qh30Xbu7Y8BE1oeuvUHDc0JJ9+tCwUk5ya6E70e9eT+atI5DNmhjzNahNf104oc1Nnra4/WuENWeJF5jn2jQ8BgUmS6rcr8zdINMoBmBRlKES7geDOOplIc6wJljOkZN30q4kJzdJuFcqFdbpIsF1XVbFBmTOpd/ow4EBMZMiddzzPQeOJSlKCvUxYR90xhLoVBDHKNPE/A4Dgtpzbc2bD0JAwQVabqnZmiRSQiYQtnKJmqyAkbAUgYPBeu/cF61+wMFjw8mp2vYflEpRLjDQpQ/NNezc972PPe9nNL5tiujRcctT5vDKmLwS9iya5CZa1bAu2wIvMR/IkGYCfmTOFCGK1jUpRRdFPlR4oLBvJ/5REIoPBQXvtTZKR6hTA71vesraxvMKYZn8K4s+ovieRkQhS2HwuHN8km/GIhEUO2yls3uaEwUW+/fqakG1V0RmaawBO6rkaMp+iKvgVCwCu0BcD0ITak21zoqFBlaIKCpYkhDCVREDXABHBbmgtNcRzTHOURXYh7y+q6wqhU8dpROaICX4qUnpJ74tQBJkFwFGrKACYRiTbMm2nZiOPANSNT4KYAxOKFR/VVpq/fmexBmANOcW8i5ZZ/9xh9XDsMjGFoHPv8iUOi4vUPVPQmYR80iPnVKx5b2g1qSMSbm7NhuF5lmmFvuj5Ss9NB5lIUE8j2GQGjVfjII+75nFAFwF0WC5fuZRI48T5LcovuuFFv/ixXzw9PX1keGTEoy5Dc9R+pPf4oyR/k4O1ia7tbed2nFk1tESdRAuv5pyoOcbPFp+iCipFFfJYnQNeZzVXoSanmrHZCqoSx9ywPWv9lsbME2KQOdklRynk67Hp1/SihUzE7ls6r45IOGA2alJAzfB5dRBAigZMlNEaXoFSqZ0EMsSOnXOgSjWmvBIHaogm1J5qu+wyUNIwSeReANb0Sc+7SI09CwaPmJaI5ggSAThBL1Hiug7Re8swBHd5YZrFIyQc1Y2hfDHGe3Rd/JC29vSSXgKnEbk9N71tOjg+KH1otdJjEcxfqC7Ef7u1bo8KI3VGkfYZqmo7glDWhQwMImPwKnebi3UAi1a5isZTMPgYjHQITXpFm7+ILRyAWmpvbc2GCRv+tcJX1J+Po84pIFMJpyMisIp1Ns0vcjSV6frc+lde85XAoevsSpRLhjQ+mvnU+NQPve+H/vTkn66OVo8tHLNiQWCw/1coJKQKZnvMp9Sztqxnkb8zhT1taZd4jVOkZrdhpRBGqaTUmUzZeTOYoRAdUDgkOyGiflVLS0kCGaKW3GkXzp7xvVOLqPo8KE+WQAft3JecGkn180uppyxtd1lDysa4Gb86YBg38aRMiEqm9JREsYrO1JtgJoGWZP/ygO3Y2ttjaLUuF8zQLEpGF6q6j+zaddgBzRGvxjMjcsFdulu1mo/Y4MXgF8pgBgfSh8omMUfzV7dAC+7Uewcest2z7ZmW1/Ks1anCRtGhRl+oJyXf2LQFGhAtEC9yaf767hJ30HVwWVE5zYrNxZoCKPUt/9cu0XIiYIJtbf5yGE0Wbm9rzYahedJujP5Jp0KE0gMylUSNAMMO6YeJz0/Pf/19v/6+R+576Dq7MuXSII2HmXedf9f3/OP3XD++/vji8XQKgHY+hLidoHXAuxoAOHFlkgxU//pI4h1px22z0VBDKQgqkz5a0mnvNge3e1ntLIgqxAcUikg+tWoJm9TAAduxdWcdr3EQiNHzEOhASLiVTm6OUQdqvyEpb1tqzwBgyK60ey2vMS9ylvGp6F2642JwV0JfLTXuKPomLb5OZVZcR+nDA7Y7VoZCy9RZHkYhtAp7S4Hm3QBJTvbK/JU9sXuWV5hXOL01c5EG+cClDM1URVejIo7+VVsMvvnpXOekRWl5ajMANgPTbrYYgBc40w/ysLfwfE2N1EIXn9f+57Mi54VXmJapYA9x1c7iAjn8r3NIi3mlx4xUkzQ99QAhzkFwSBFUHJGQ6nEKbBzb05ZPhNTjXa8l3yWjB0EUqdVjIhIMGvUWgZ78wCdjFm8clktdLgHSpAzN/+pd/2qM8drcmoPzOTK62ZjPw8Rk3rhhFxJEdnGoifP04mFcW25vac1xgyHC+YOoBJz/dRDiVsP5g62UDZCwPBsEbpJcuqQJ48GDOJyTWMzG+le/m8xEj3lc6A50Ucu5iUz+AKtsQUi7Ewtx4wJBMIW9zcqqmCOm06MLjNQlpahKMXjpWE9Nw953tfjQVgXFUF09fDb+q94lImrInrVmaIJ/g2NIVdxC61vlDVbvjMrMX02QZOW4jsiYwp11bteZY4YGhGm+l7XoWpLRwy6n2UVt4tE0qQiVrPaMAopcWfsFZMidcTyIJ8RgpvkLBFJ3Aw1l/iJq7v7ab2yyYs9Y2iZeyzbS9uQ4Ty1MSNZ01ky3xjkLfaHuS2xSvS1BU4xVy9GhLxkiS+60yuTdiwg5fnT/xrPvnHPduWoOsDAwW9Otf3HVv3j8fR8PwNDhsTRXonymSOMzNL/+9Ou/+13fLSwLZkFIejI0cz7BlLITJlJa4UzLhglsijk/AE1peuu0Od7wkLt4El8Sq3GsagrrbLb1EqVOFIKJ0/mDyMOpRVc/QzuWfPrFjpujBgtRp6PZpwBAoS9CaFmWXSZNS6q82w2IyJ1xMhU+xv0Zmn13nAru8jF4AmklpIPTMGxitq56Y1OqM7aZQAzuSVFVUIO64ZYmor4JIixEMSnSdQBMXWRXlsfMZc3oFiQ8cI7R3tKaDcMjdlMHxJUMQskJiOYvovmbLAOtKtVsVlBDj6MmZgKbgp/Tuz6M2Fp7uzXHTXiSA9ukHTyUEJODUpKZvxJHOelMucUgE7G3WF5lXjnwhMAEwL6G3hMCL4i+dYm6F6Rvo4x+LDaYB9zut+6M4zVl6ukXc7Ys04AKfJ63ztb3njQSAM98+DMRnTF3sCeH5c6UzwhpfIbmD2x+4Pve/X2WbcgCUGRo9kXLoEIxRxTEiOZCgUmR84B4s0FYW75KBe1A6XfojKHA1Kxmvv5XAIFYwRiyJyDQgHghJmmuTBy6yPMH/cUKMB/e8nZVhjGaJqKiISJBSMifiKyV31kATCNym06cmGOmO9Y3kSV9KB524KOrpTh/Gtns9XtpPQB3kIOcksh7URet5BIg4IZ5lb1jM0RXFwcU6ZIAWCrzV4ctueqtAWhK9hYr60KL5FpXooX+tQnmr+def3JE0WyPu8H85ZxodZ0pFC1p8cWnkYcGeLgdUOCEtHEVWZqGzkvgmVpCMgsgJkHQ1l46zYUDQWBhb7du7Jq1BhSOUj4IQQcK8Hwzkp+zLvXopwHSrJKmD89QKNHVzwN2Wy4kralTmaXv+lms7TOBOLHOdq42Bzg03JwZn/m2+3/b19/n632UbF9PDsulL3ceaQTCxFvt1r99z789a8+ujFYcHDcM9DNNd1+U3GQlWxHUt861ratK0hZBWrmJs6eiDhjbhGTNKPdU14ZC3U7IRFHQx1gmaoiWiJe5U+4knzP6V4rz2arK50PukPL8wSKsqygaUby54GUrVTkiKa/Ngkdst6wY4SNcz8MO3cPuHclez6HXk0WcyJ5gB/CRXQsxS1W1ihw07l6okXwUfOau+ug5jdC6SUZJz8L8RcY/HYck4jQgUFhbXqAyR2TqMoUlemnFTV2H0wX0SugpGtAwmr+sHigwNWJDz0JIekxRiY8wLRGAkJ1Z+5970TfqPV6MEqh/b1OTBVjTkGRL2mnLx/kCJwSaAMBsYnSiQKZSdCHYvkkR1M4AfSFRXUi8V4M01NhRNN0Y7pzrprnrH5rMlwgIiXMuRQSkQIB9t3/1wtXP/bLn+pfKHVKH5bKVzwhpCPTjH/jxd2+/e2N+I2RoRs4rvUVPSF0K45q6GdVBlKqcB9zute6s41XWwkgvoqYN3UAeNa+tHx0q41U/A2lFzohsCa8yzd/x8wd1cFd9/iCqi5pWSa7FiVouYkn+r9c4B6Y924as1cX5g1wppBpuizuamKIiu4bEK5Egeoy0BNcALNW/i8AABOrCNJBDphJMPe1M5q8PrUbfypCmoQEL21PWnDAY9sEMOiUjkJkryij2ECeYQPbFC1laiEmaC/PXD199REKhr6TeLcGnviYmYyrzF5maVfoDQOFDiZJFaHV6lwPYuD3nbnXN8QZKSmddRlwoAmQajIMsN6XS0oLzeaDQV2tFuuaLR9/4JDHJvsi2hID+akT8K+FwKahAABeVMxtuEtHuZPf3v+r3771870O/2RUudxJp/Dj9j1v+x0s//dJj88datIZMJuUvplTGNSV/g57qvas1DDjQgNyW81sHOtOEoo8L5OvsvugiVPjNBLrmXHUNeDMVe9LSMpnVkAT6Ys8fTN5tk4eEHkyZPkWvW1vWf62ROMoUNmxP2+ZEk/m78hjiEoBTnVASIX0i4bE3+E5aWiCzaoKyHF5S7U41FP4lAeYDx/WkzkROnIJQujYKnqUQ/qCRSQ9oWmxnYub2dNucaHpoOJht/haQiXxDTIzscucdLzKvxJ3FWqQ6yiiAaoh9v+bU5uLeA4q0cpb622v+1gt7qT2mi3kLodW3tyFnkh56UV/x6CuzzV8TZbp3PgPUEM0RLzAG1ZzyDUmbBPS8KzBG65cEMNy2M/MqNOCAn/S5BDMCCAY8OLl38j8/4j8/4XOecAgzV77cGaQRiCGz3W4/56PPGTZD+A0ESc8q5Glc2wx/rSRpqtRzWwg3KlZBkNcZ+Y+FrVjZE5rrO3+w1pUoHgAMAVR+X91spwSWD63elHa/NccN8R0+f7CTelDT/oCiu1lYCYW6CjVXqaufDGECe8aaDdO9xRkAa6Tx8zCs5wPdyg1FOZhWmBEEluxIu9vyUealYE12CxK1VE3SZBgoc7EZmnU9fe7+UiMpaKg1EkMYI+zjSSKJFfqqCmPcW6zUqS7o46IRD8BuY9LMVQ4nLkd51+VLPmDcVXCXMaZjFd2RomvS130C04wTAosFGwYEZmiyNBapqpoyRSkMoMRjCX3PxyMSVqg7REMRwatrWacKA0hdE5EYkbHIvtCIkoHStVbi1iWpojTjwwMenNw9+d3Xffezv/TZfnV59ngclstS7jDSCGTqpkMevvCGF35g5wPrc+vWWrLkrPOe/fSc54Zw/uCA/AlIaUU6KzmrdZsxKecb5SYK7wmFxAEUJHtP2JsvKviNUJ0/qBug1TdfhsAE7afb5niDIUJwVyE70q/Ju53kaRLcOt6317XdWxiwKkWVFt+6m1Eu+F0ysi+Y5KcSCDr3ZkF2BwPj/Q+ZlSCdBNEKpj+p0562MhazZiBV2A86Buh6MQzytATgg2EmvZ5TyZu/WWg1clbJjRtu2O04GUlIM6GCu3xtAX0VAIuIgyNDfpdT6FSxMGMD3shU7ClLO2ojrd4regDSzHXRgJmX9QCyVPpZup+l2UfOJFT+dGksRiqNhemDmbRrypciXIJyBchvpN1x2AEvM6/ExU7fIhK54AmBqZtKJ5IdoaE6ykFddI4yXYmFz5bUcHPL7i1Pvu7Jv/81vw8cZgS4a8odQxorlkBDHp4an/rdG393iZfs1HZODIoub3T/ighadf7gkHguRnbVhjNyra0OKNJzBsASPMwEfVBPDw1RyK8ROJiEwvqvlqfcORmQbIUYWu1zRGZHHmgVT6I3RoAWYXnZXej8wSbm7NL9Vc7usAkfaoIhJ0UOHmwYR1Xu/Tp3NdS7EkaNhQVinOk20moNMQFD3KtBIHfeyUTMhunfmaFLjGLqEkTWhRT6FkAF9Uocly7qV1kkiQhFN9mwY+f2nVk0PeYv8iZ5jcRFZ66g3FlMkRQpO4MBCLIr0/1ps9F47fvCADyMZPER8Lgj/mfN57rv+iYUcRQ1PKl9WLk7E9fbJd/EA7/vK6T2QFxAFYiYeM5BEX2QyOI70sKddbIjvMYpC1n/3qYLdpMhYwnOyTQQyaApTp1BuDBsrLMnd0/+8Bf+8K9+2a8OeBASlByWK14uFmlS6sxdu/vHn/7j37nxd061p0ZmlJ2nhIp19PA7wEHGYnctGaIF4mV1DmucDGFxZdb5g1qszwOLUU2elSGDcg1Uz0Dva7LKWUdq2mhXQ/Sk0ZTaW9vm6qYMgE4Xvg0tgDt+/uAC0YgyfM373r8PX0dexTlJy4Q5AHlOsySDWFWeo7IP9WHH3bYVp15xCoC9qBqS7Mr0ZJ4jsigSqBdEl+0AuFBKwOqMogF1H9WFO9OQKCRw7GGSQiMhwMEsG1qm5NgMGFPYr8jYoEuamczfItoNyjGFeCLyLa1ZN7RA/XubNAfGkyO69by66AgFKbmio7BE/QkE5A40/bCmDIMNu4mTfaGFoIukvU0hGlm5oQmEdEJgWulMrTI5U3kYHkGmYm+1fJR5hTP01ZPxAK0CoakyERlHB1oSLIiHXWnFSEAgY8zWZGtAg9943G887Que5sQdwsxdWC4KaaxYn7r1r277q2d/5Nn/uPmP8838fDOfnPslx8yaDBwmsFiR8+K2HK9wF0kcHuyL7ar0WQzCVhWfOKRTSymfUVB3tMSMHEyG2LKIOHJZU5MQSd/1kOCova0Nqcx0SRBVWBjpr8ivE/rK7PMHlaTwaQpdKXdV19KvywgwU0RX1wDsct054Q2oCwLUYhFKpMbnaUiyJ/Y2a47HJZCCLIjI7SAiNjvrqqMtAEyj7Yu+HJEofWidLsKVP7YYRAcsgJb9unnchFjzSZJ9xWI7BX2825uV+lUfkeDB5raW15kXuPMnp4alXg9iAIs/oMiGM4pK4pgIwIMYUqzprFsLgNChb2HHJFKoQScic8x4mPHg649ISJyAoqgjElg4nAhQxN8LMtT0JwSetjIRs2b8AUX9JwSm1tah0r6vU6FRzKkT545fmko/fu/axE1u37394ccf/huP+41HXPWI1rWGzCHM3IXlwkjj4zTOTM4860PPesmnXjJshuvz646cxGQhib1SGHHG6LV8T5Krhbs9nj8YVw4J5MhdgAsJmIsOEFYHQx3s90+qVi2dBZSb9Vk9UQGEAzdsx9adcXyUs+5cwvMHNymEVud5XGbqfekBxAzNyZopHO7FKwUIuW5oQhix9B2KTIogAvhUZrvWnrW8Wq0tS768XLS8Jo5ETHIiOypH5BJ3fqqkvxOFgZPZ5q9nmGE4oCg7CABKIBYUrgA4JXVFjAQMpY52I6ABg+0pixPAqCe1ZXiRYsYUyRUIDcCCYAf42eE30s4TDSkMWcHMyOlcqDgF9hDoCJUZmrXuWDNeQl8J6bGDrxVquJGHVpM6IdA6s2b6wx0vWAgyVRv+xXtaovblwqYi6+zZydkTCyd+8jE/+bQveNpCs2DFGjaHW2fu2nIBpPE5zf7h7D/8wPt+4EM7Hzo2fwwMJ04nyQjoIhJOr4pZEbsgr8SCxRRqAvfYmy2vMS+z98P2HHVbcORIpRHTx5pdDC9VIjtk2aqzEWt9OYkSxNDqIXUB/kqY0iU5f/BWy8vMq6xbO1MJTPUMYibE3gzNNXG0xJeSMmUMAlQ9Bd74hMTnLQ2oA8gocw+CmSTOoEw9jtVG9JWzIpsSNjbKDIIUMlTT2SAlBDJsMrIUPFM0UtfjUUo4cxdLSYcObBjMbG+z5ur87Jn0k3LNcfV1/TAiWTwA+zOKNkGjeEYRlXnVOqcisvslewNYyjM0FzTRF73mrwG5eEYRi9ZUQpuVOgICjchuWoGYNYN2diBM3f100Waxy8WRMwSysPOD+ac+9Kk/+NAfvPfyvZ24w0izu0k5CGl8TrNX3vzKH37/D08wWZ9ft7Cz4ruoOn9QRIKhoHZCdOI7MaI3rk9ZmYg5avyBjDN9aA5ootM/ZULMW5I9j/jp+mZqEoAUWpNaqGdmLqyZ2BnnzjozMn6+4TKdP7jvzHo8f7A+863QNHWGZqZSnh5ctNxMgrVeb0dFHIoSR4iY7BnbnGiywY1SuNjb1I++SSO2qs0pR6Q/bf5YPBEAIFC5TFh0ylcbzV/meFy00htmUgN5l/0lBbDJdCEtl7VgbQhj2NPWbOQ5IntjiHsBuCBLAjMH2Re7a2lEfDRLmolejaTQrhhogZHK0Kz1EuT/pld0UX03xvhEtz1KSWHf+NDq89Y2lpe5G2WpfuoPJYKkLVw+Q7ONapbAkDmzf+YnHvYTz3zYM1vXWmeZq3NSD8tdVGYijXea/d4nf+9H3v8jy6PlpWZJRLLkXeib4cq4ZscABOLS+kJhXKfnC+PazjCuk5ocve2lCpaK1klRXetnxF9SwMXeWVopekwczsu63OcP3tKaY4YXQo7IWVYN0Dn9u0yIvRhTAG19P0eU/jDigjgAfMjsvnXnHB+LBzQYZMFd6MzHYP6K+LiJILgTQYq15Xgh42j+LrFXb8NG2jzhVcYwg7jqTlEPuMjgrlpNIRUQmGoorL0chrlhu2vdecdHeKb5i04YdgBc6PUU1Sxt/jrIROzNlleYj2Tm7wWKyzbx9CzmoaJPwTY6LEL6Nhfn86WDYQcesD1jaRC32vS2WVuuanDTOpY4sbY72cwbNPt2//6r9/++B38fACI6NGXuVqUfabzT7CU3veRH3v8jR+aO+G295fmDxWRDnAxJKTbk7X0gi9nNjGv1Q0Oym1acNMeakOE/lWK2cxBh4Q6qGXLAPNG/aj8M5QKrfkvd4aNX8PzBky1vMC9wOCJBqsqdOvmGZ7gT9ZAVAFNUqFbd+6E3vajrZ5AlGhEtktcGKGyc4fJJRMuGQSAjpovsKnJEUq6aePRN5u+qcSFV7+y15fqAojuKvsnqVfc7v6KWqsWLDDj4pJnunOO5kFHUW1cAmDlgebLzIP7AiMAbuNARCbE77rxzu9H8jUckZGMnVfNUhuZLYP4yiY0nBGqw0dM2go1f4Ok5DqA2a4LFW+qdXl0LlIk/hs2ZyZnnPua5G/MbhykA7oalB2m80+xNt7/pP37wPy6Pln0sSnc0BWZIMf2n5IFlZKetaC5EnDy+eON6YOyWbZs27FtOf4oPhI2fyN1TNZCI+gTyaZaKanPQLgv9XfKupd4th9SZB0VXa7+Hnjx0Z84ftLdZbIDm44tV+4Om7J1UtcjQDUN1vyaduqZ0nqamgFT9dcAA5ogJu1apO4gn+5ZUF2lh3xt8UBmXZ5m/6I5I6BpTA7CoTTz6+GpUFwcwCZVtDjHEvU8zsmGl+PxCZ/6SP2Uc2QFF8fGgOTHYD3SINY+Rexnpes3fDUNzJNN42tiskshCF2f+znYGZH1XVk5XJ/XcoYbc2LnNaOrpCaKL9PxJnDioKPm4b+b85Pxj7/XY733w9wI4PEPzbljKIfGZZm4b3/YD7/2BltoBDzxnBPbiGfFdhU7E5RRKsyjDGP1v/OGG3Vkne5I1TbK3un2IWlIU3ZJ8/tTP1LKpuFkglm/PXHA7MHPP8rKpeoT8dQSw8cZQaZZpmEn/mpDKzE2UFC68K0bRubarCmtGk6Xob34n7W3qkUTFiw1wJGZoJmZTmVaJJolQamjC2lICmMQ/+hVFahqR23Lt6dajVKYFFwBM8djXGm5rlige6L2TlpeKqmZIWF5ks24wCP4cY4zftFtOmfzCJ3pgZuM9CXremZzB/IsDEJG9xbptBzPbypM4WInmNKMleZd7yEWZKOgmeC89c1oxMRq4TYex4rq+nyz5kwCAcwpmbPCbTdxkvpn/lcf8yoAHTtzh2szdsFRIIwLgGR94xg37NywNlxw5Mgokai68iC8Ei4FmMEDO32SIQPa07QlNUQ3oD41PE17rucnh0PvduhnFzVRJ7t0O8gK5EOxtj5ab3V8oewbxgUKIcKSJkDvtshAgqd7S3yr6oh0as6St5DeDi4iyPxWUSURb6HLwZAcBcE93sr9qAWSiHVSIufRjuqp4wLIp7flWu/u6jvSav3XH6w/1lrz7F6Uy+6rmgZXQ05CdqFBNtEaiCRLnQtbg9NlaS6NweF17W+t2XIDt2vxFR0P/Xz+ooGKkXt7OrzOW1m8VMIYINg5uKzqEC0UhXmQw47HHSRcF4JMOgCbt5L98+X/5khNfMrGTQ4Pm7lmyUfE7NF9600v/9NY/PTo62qLttnFxxW29wFM/WXta0Het7vCA0cKdi4dtJDOZ0+OVWyZ9q77QMvGAx3qnpf4EH3j+4B1CX4pr1IVUrd0UUR7xgGUs7qzL/I1Q5CX0Gx+pHg02vZ0tMEwAUokmi8f07VFYDglHJGgZioo4BdvkF93W/VpOpcWw+GOGxp2J5m8hqoo2zBI+hbNrVsmp5INHemii2+yhbiEwjGGTbeIpLJIaflLFTN1hcb0fysGGDdtTVsZVtqREGT+hSZm/NUEoJ2OvuZ8XUv/NpF7RWQO362Sahz9Eh1iyaTKbNfmibeesc87NLc69Y+sdt+3dNjTDtlzjPSx3i9IxtfebnZuee8EnXjBqRtAZmmsF8IKFMkHTbZartJvyVw5HzbttJ/uRY2q3j2p39lHtOyqM8eItJW07v3ZhNOi30o7ug6OYZgFP7XXU8FBotbUaCPCA3bbzudm73WoIrjNIedr8zDJrGtaY4vrs0EIGDQIAZzDTq4XUpSLdBbqgmCSwCpM9bctjadTD5YoIlQ8cpGHMaGdIS9P7TBKaDCyEs6uz3NVGtURXW6gs2tdKRHqLNOXP55YNGWLi9lSb2XmpVdGgCWl4eltSd6omXZpT8U+d+dtbieS9k9gAC9mOYSB6Z3dynSFznYVrq563oHkarg5f+LEXPvYvHvtXN/1VQ43L1jMPy92idBPUb1T+f2/4fz+w9YGFwYJPeRQe0byo+VvfqQWuKv0D3ws2/pIIDu58blxjtsFR/PWAV2oFzXN1PLemVMEQp2hxTGTR5gMuUNEKAWMO8m5DETZKVRDcOZWSRg6iYU+vKf+1JmYunjoAlux+1s4Y3JVlapgFwPWdgnnqRTjMMI8YALhhtLDnbCetoLZ/Iirv6Yu6FzKbXHVJvXYheqr8a0HhUbdqVa66XxCAi0LRX0fVCNZz0K+qTmHP2H5LrmbF4q+9vixU414ga6/5q5uKfGYh4LHsSZdDIf9i2JXp1H2ozZsAHGiRzDEjLBuLG6faU0/8myc+593PMWS6BZ7DcvcogRm9QXN+ev4PPvUHS4MlBxfMmULv84UUox+ge+obySdSixs9Z9JsIUID2RMZS/awnmkFd6b7mP1ruqN9UFIdmKE/QUoZLORg3RfOfy2eqaQqUFFkNlBROn9wJ48GhupCbb1pIri+ad/7K4LskPqM0cQSojbx6BQv6KNM7/2+0hM/0lsJdeavbIvsVuav78KsrTapF7o7tflb3InoW4ZWF9dNp5cEsvBsAEbVzVnmb+FAK8wg6t7lhgNNKJfUyf98gO2oKXOw+aveDWe+9VZVkDr9kQgMmYpMlOESW5si2LMhEKUMOfAqm+Nhh19L7WgwWp5bfva7n/39b/z+qZuGqOvDcvcogfW8QfOXt/3lJ/Y+MdfMCWJQcvaUKgfLDqXplM9I/q5kjoLsSQZEGdcX1L/0J2qRob8umczNsjC5qkKnVqFpxpbjXkRJddZtSA/qg+J7J2QhRwhguO080yYpjbLXqqtLDTNJdugpXau0hbDW7kQl6bLG82zipKI9OQBkBgBrjI/N8Pq+O++ydvbW0zsuBxOq4nM/NQ5CX4p2Hqnjq4te6Mb0ziAqHwhRdgdjVSS435PgzjqfVhzI9wgf8F3ELnB+pyZRrrVku031M7o7WaspES04ydOc9Y4MiRmaJZ/+FFJI8FXMGx5XA/84csJyfPH4Sz7+ku/9m++duulBG8IOy5UtgaH8dH3lp1+ZTqkKJn9RakbvHcdqPveoxunJgo8psqFE47rNJWBia62QHqB/FU3tg5nOI1w8LxELKZ+lyK91Y9KfKr2va4OWfvX5gyifSddEBAN//mCoLVFAP9kLbwcAMBQAIyNy5yiva4uhuv6Yta4SqqpFTr1iuFndFMV7vSI1FR1/VdBEP59zTo9GUvRLl9xq9D8k1AGY5C9SJEtMUJRhbQ23FwRgzQz6owWTVDYQgdiwTMRtO5CCGcQu9PZX06FWuQ4oFzR/+z4XnNWEsISvAwGcOIkZmtN93xELWiRzjeEjEWYSkRlCMsX06uWrX/GJVzztTU8Dquylh+UuKgzAR6DfsHPDO869Y6FZcJK7zuoJULMOVXNYvyjKtd0LCX1zLMCNFRn3qEudZY0LqaX6gWKZ1IFA4vKjYYuG9f4c3P7aRNC1qY6k8wf721y1JD0pOxUAFJL04sVEokxF3v712NQ1VrYIz+aWGnR7yaX19+QJnKV3KxRJa/6yrWgSP5ptO+0F2lkAnNQXrZfEqzJbue6F39tExKImUd34dF2pZeV9XzjrdVaPpp4eFwPZli7haay5y/2DquO9OkpRih2a9cQpeE83WHF+99cpsv2bEldoEtL4V1qhIZl7GnNvQ3Mx1VsxMRlgTGRyz+V7vvhjL/6Vd/+KIWOlOFLisNwFhRHnz9vOvu3U9NSAB+XKXu8M1FzuKu9WJfWyHVizai7ux6+EaKtcDnb+I8l/MOO6BhuJebeUBMk6lV6JnoSQWwV9gqBG0PpO9Wtm0Fyc8ujbEc4fRNa1LlqnkICzSnrXqSej1Ah1zcpMFee2Xz0qW5gupI9WvS1R5aC8mTkmdQBMcPsuePzzCnvs1QuSepYGI/kOj/p5moG+s+wzrbv0zqD4J5+4tj+EpI/TCOTzgofVmjQQBUrp9utPz+h+qOcA19ksyJH8pno4bJFBCCoTF5PNKJiBwfCa4fB+w2a1KSgT/s3xpkV7bOHYL7zzF17/6dcfgs3doXTu2LeeeWu4Knii16Yp9C9Ud/JfO+N61pwvFD397lQyUZgUHx3KmPbcuMrwr+FH/yo+0VT111QtOnE2M5EUcpFaTBL9TIFoxfmDxdcLaigAllato6bGiuuk6gUB2FV34jPSnZc7o/2qsxdIC4Q8U/WsQsVvM6BJy8qCOTlkOO7+FJ66I7avfqYIuk0r1TNcreHJ6Mw5aJ9y0fJZTdLTSmaEVusaCtCKF263Ou2pngiz6jzgc6lh0fztUddmsZ+u32uTNqbOFLH+tLw0lwGx0qw2zfGGTDxYXYN3H9gIiw8uf/qbn35ufM6QOVywuWsLA/DZ6D6y9ZEBDcp8dsh5rmbQmlNr41or7/UEq9kxFc80VrITONKEh4it8oBJ/LQWEAWQxCzCDi64g3vb46LsKIpUIrXuiKZA8Ux3KT6X4szw0KKSfGqV+ns+88Mdl/elakMPzCRpqj0YRW0FWWYJzVoCSvVYLY8KEV+0s1bGk1ORIHtVm72FNKsXvaKwjxsllqzZvvQGdyXjo2YVUs8XKlT9ZKqu18laGEM5q3i/okwkYxXx/5cyh97BcriYFHpqI55DJZWSp1/XNwuui9phyNCcQtXjt2hAZt1IKwCgk/ulzta/Ag5uZbTygXMf+OV3/jIOF2zu6sKe3Tanmzfs3jA0wy5v+cGiAbO5k6o/aZ9Dr8g7wKgnwEKmQWaUS9boYf1+dFGNTycYlrku9HVf1/q3VeuO6J0uBdFcKW3LbRmzxE1v8aZeIYslSNXsRGHdHW359UkNL0xTLuG6/qyPswSf7k7RhpqwFR4LycxDrBFZQosViU5/AlpkyxLxi5mU6YWZPqO5eD5QRnKyu/yi0K8PkOCzQKJoZ6y835AqxkLV1oVEW2A/f3iW+VtjMKprlK3qtknOQhfp+bX0pYtymmn1iCBWmo2G50PUyUE5zSrIsWKPzh198Ydf/P7b32/IHILNXVjYD/mp8antdjuk2u5VQIoy62bfLC2Pvarr6WXKdIfiruBKLDpx4lQ05AUrj3H6/jC+/vYUHaf0m5rrNSqkps4SLlTti0z1OdSitfxQPRxJquZrp5l2qV+vlP2i8clnVgpT9H296xYd8Nes8bOEKWW/hmjA4ulZwk4y4S5WguarXvRVleZvQRzMNH8hcM55SdjL3t1PnbEJfXe0O7GXb1PleT96/M+zfc6p451SUtRc3HF97dFPFmDscLHmL6p/E4+lyeWkTJ1pw5ThBW6ON2IloUi2rwj9PsP0M+DBmcmZX3v3r9UEPixXsgRrf7vdnspU6wuZDpVY54DSJ9Z9PWHhvRZes+R1fAuIstuizC7uokoFJxLZtJi96ceFRR3/WGfsS76u43KpXTesV/jWROi9WWvNUXyUD8+SQYV4lQqAAQg8iHaTtg9Uypa4bpiCrwn5M7k1qTXHnvbX3zqgVM3rYnmL15MQkfLdgHb+T1M1guj4pOtI3vEesZgqV4bvQeYvyiZlaUnraql6pTbldU9rGtYflbI9YT8c5eavlvXegWarmgv61Aik5zX6DBo9SWtm02ipiFzCDAIRBvcadCfjRZumP8VfwS0EEBzckbkjr77x1R87+zEmPjRr7qqi3O3eVSpKT6mnyqzJ49SFVPdRvVWLv1kad2Jxz/RW1SlITQ1871xYWpRwPJ/XtpwLhkw3N6SvtfVHc94VfeyHVB2sS98UjRMzuh1mtaGPbt3XESN2CkHgwkz2eJPpifWPDVQKpqEWpq6kM9DnkCx07F7JWFMSPW1OtXXoW0jSXqUbkWkRRHbobx4YEkDU5i6joj1V2xJThZGq5XsR7BBlX8/CW68gnsXw9TP1K3W1yCRvl2oBEKsiFWPLA6lFMjzoG5Ry5krnzTso1jFdVAPX6ZGJsa06b8ZFSrZojjfmqOn2n15kfnG9LkgYmMGZ/TN/8k9/AuTseliuYAlIY8VqGdoz1QvnPvoM5D556oV7/yyVSnhRx4vdKwQRySLQcmDzqNhp5V44eN+alQAzItY7UKRqeWp8sRRZdbCDqPRDfRRA/qvkUrvX1NBvAeVXFD3LxxIA53c0BAcAlk4KS+d5lI5WkJmUQdUeNZql+YvZvaufqZin9OBfsJKinjanRnwmKBkuU0d6GDiav52hrP7Ug77oB+CZ/Z31TN0p0bcl/VsOjajmaVbRyiKi8zDvgouu5P6R7eVnzVjoG/fajqlmevhiukPRt2zV2FnQIpEje8p2bkkvDS6YXzxdMAA4caNm9Oc3/LkTdxiEdleVgDQDHvid3sl3EVxeBxjXyBko182TCAvsXmjuNU+gY2VUSwUCsa3NzqXQK7FJekKSOp98QZ3u1jstVQ3ZVKwnDMpWdc/rCgthrWWT/z91Uv4C3u2a8vmfnHVdivTCwaWU1kCKiChe1AYvonaAFB3vHd+qGSVtq/6WQ1ysUuQf6uRX8ddaBCexVacB1QOavxh8reIE4okQPm3jAp5L63hOoEIAagYuhrsYrhh1khHhYBFX8Vviuk5d66XqwZV4Id5WBHGBIMn2Le0b3VMXzd/gmnXduNcAPIuT49TuIMqpFlpFZAtaILNqBOLOufbWVtpwNsRF5RfP4ywEsjBY+MDtH3jnbe/09Jw1Aofl8pXoPavwQ5J7uraja+9tMQnjKzPdDrXIUHc6ZSze9J4iN3XZp13W4IxZFVZ1XSicKkVjoC5mqa5AtwRS0y0nYG83ffxCFq5Tyw7p/8l8DpG8JU10A2wJwEnI9gBwIhHyGopmHGzI+mLz5wsi1wwQ7knHLbo21/etuipdkXbFFBwSDVMvXNNFgH4rpfl7AIfXbdM8XCs3B5RZhNLaA3p62kOW+EDBKtkQFy4BRIh1ceUmup3TKz4qzCX1BBdt/hYDgWhYF1ykYcaBlsisGzBggCEwRntL6/Yc+CL2gOf2jV/RMWx22p233vxW4DDc+a4pjQ/kuGruqgVa2HJbjWsQz5UKaWncjDxU9eRRArFHZPhSC44atCT/K4ULGQuG6FriVRjOeUvKENgDmhrqR/7RNBVtPPrFIaxJOggLABHp9jfo74r6aP25RJ+aOHXHq4tMdkjQBMWJtNJlmHY5QSRzW2snTKYBFA0umlGjZv6khy5yKkO/m0GH+nOxayXbzJDgtVQtPIoCca0zraGGOuZJqdVcdL8QAPit435PbrkzVz3fNVibBVrjSY9FBhDPIppJXM4hdUxaJbh9e7IgyYPJogclX5HySzXhmBzVzkAQFh9V4eAIRI68IuL3yviWSB17WRhttfnbN7lK5SYRNnIOrzKvcYg987JoAJqSvcXKhtACubaCCu3Ersjr+YqJ//HUPwL5XuPDcqVK4/+3PFheG6yd2z/XmHDHyyxHjoTYxbSboG7SKs9px7KKvzufjJo8F5Bi0aLv/qrQQsYiI6E5Cm8lGCji6KW6KMqsZiC/Kbl6HltixQYAJur5bi2LEUVPrY71flS3UNEn05HRkV3G0klVRjgWLD8WITxfN+ziKaPFh8mlKsSfJ5SletSNTJUX8CPRy6c15Zo+BWWQ0aQAYBGBhUyEBuoo5cQkqdk6NlrHVR/wRd2kpI646oF47Q2FcIgyLkSHqgbdtR63bc0wQEm9VAhOHE+ZhoQEAKya4SAUdhD7iZvQNzWnq7YeoxpU0D+1vWcyeyUNhAUamBOGVgjTiDFpajcgUHuyNeuGF9nZHH0Ts7n4VgQjr1WIyLAZfuTMR6ZuOuCBzEo2eFguW2ECOXFzZu6Byw8ct2MWzozrtJ1eGdeddztONh/V4/1CycSe6apCx3nd/fhv4EXNpmq1MJybVCzY9LrFipK4Xx/YN0uwKr9BBzbqgbSUmnkXUV0kV170Osz0bhdQV7llSo9ietGqs6RSeKjL3RE18WtCHUAN9DUv/9NBa8tFnfn9DGaKZ2r/jKt6Eb1hxUdlImgrJtFfdx1TZZ3q5SWJ5C18QQXDILuvbYKZQyBVH3Pydlsspa9JdSXpLc0tnlBTCas1vb2wPc7njGMTEWr+uSDDxFlgxfZ02QIOtEzm3oZWKFgziApTPBoKBtywPW3dvtNYMpO2AHwMnpCIDGhw6+6t25NtHJa7onQZNh965KHWWRIquSQ+IGF/VdBCw9qgdWnlv3Pj9m7902pgbWgrduznRQEYbt/JvkDUxChq0PcLwVHsyKmFS/G8VBfIpqIPnA0RSloMudDmBM82rgCUtSHvZi1JEYdAI3d6vg0SRMaS9VqLzl6hUFwnsauJqbucCKg/oZHSL7YjagmovltwQmQmxS4HSk9RX1SPZSRFZ07JJKYAlwpLaoLUhK3/WqsFuj2aPqr9XrCGuK9ixKXvo2kWJD2mLjUKaoLXKlR8WFqRcb6CpfcMFJ2V/FerPqSfLza6iaq2IKxeMVVViRVaoOaaxlxjaKhMc31URzq7mok5nl2tfQkFz6ibCSyZeWe68+mdT/ubPYQ9LJezNOnqS4996RzNBaewU8a1yyILBZLO10vamqTdy0XUb/xzOVFRyW4LIAa8FYIsFR/4uEgYq4Ynt2ztuqlLLcR7xZmWAmm1hpS/jhFcDCAvXkNKY+9K8h5/8c+GbmROHt2eWaimLmTW+YMS+uu2nWlMRxN9IIqbvTCAvMJegiAnCCpJxN2F9/JDQELhoCMoF01cwPAfSguz4U6BT7pVhbmQi+NMuKNrm9tzZmQ6jbjwxvSefNxLmYKZC3RJX68drZEBiAhWHfh0wEAA4gLuZj7kqncH/3R2s6I8HNy+MyPTNSCNXa8TWM9lVBcFcVKQamEqITCM1007tomawfDaoVk2QYWF4hZNqzRkDmQIY9jT1qybcjb1UjX+6y2bw3CAu6o0iMegPWL9EZ+7+Ln/tPdP88P5IO69YE2TJy0szzrITjN37019AXUn3gy8CMXHCe0YvM58lMNSRAs08QGT10l9k1lm/HvA1HWw1jIzDSjcsVFsxcl5QQDOiABFnF7YqNvjpU3h3U6zkUPSDjpGIGAKDGJt9dG/B8zJog3510upKkrDTZ+IY5SO/vQZssNSlkQSeW+SF4aKPD16ei2tJG8DcgBONo0LXCETkV2hRerq1ACjpXAvNTRZivHS9FHCtKOSis7o4i8smLgnx7MHYBdy+3fHWBQcgvxXl/+qrsucZr74iDIrMpFwfGfqfmKSIpvOxczx4iuuYhXxgy3OuexPPqHZ0aZZa2QSV4ZIOkZNfMWKpAwIuGG342ROaImCj3TWACEzX5y41qVdoIflipYGAIFaaUdm9LVXfe37PvK+xcGicw4MtGptuWBNXaS6SL8WErZ3fsY72bJH3MDl8x3xCvM60xwFR/MScBZoow/XKiGiRWodI6AbBsWRhcIOiI1hwVNnrAm1Jb04vauEVwDgZEDUcqpoQwG3+kLP0vr8QXQileaJjzPNE6bAOaVaarCRKmiilxT6zqyfeHyIGRptzWiw8aTwM9yfUOm/S0LewxbwZpb5W4jySmxpUy/jMd1TC5ojrACTnB/yITsIgIuBO5AmoTEWITQjsaL3B3AIdfNmGDkVVgMIhITielO+XlWwTfq1Vz2KD/SEEaObhsH8TescWiNJr8zSTqT6N81u3bCcn8VnaNZz31svhpqNxnMCRRpkHFu3gQACMzvj7DnbzDUloapJ50HXsxwRea36sFz5EhwuPj7mO+79HS/82AuttWEmsJrDtVf04FmquVxyjizmcMQbl3L4Rq0HAnPENGsNLZDf8B8qNJAlwXmQUOcekbydvc3T0yO1odLcw4KT31NhRaZCHD3IoiwbxF97SST5R3UbCkTxDdDLCUqC9Hu3W6ERmWOGjhAQLbxFYBMQwMRKOG8VZiuts8YFWdvCyooVaYVMRJECbBQ1kokDRAmq1/ALT0YvzMy443dWZveTJQHwKvMxxgDYBPZyjCkE2YG+rExSHyDovTk+hRmajkNMXhUFe4VAiUpevnZGsHYk6q8XPDNbvotT21F1PXE60AqBgWnufyalsenvpgcKZtasMmuMEsw4qydXMPWmMjg+4CWWqYBAFEKrs0/3jpTXWgzJWNx5x6ucEQdZwzKnggSS47DcFSUiDbFAvmDtCx678di/PPmXR+aPWGeB3HSl2XJK36z1i0Kq1uwYM8dkM8SBRjS8dkhEbuqC3Iwv0ohkUdyWY3AnRFApaL1mjVTtVAiX9vSFv7aQfaEBhcqRy9aiTlwcABff1c3LBb30nj/IGBwfmFWDBuE8D9+kOchYaI8wzC2wfJaWzesdr6KRca0o+EB8aLUPI3aKSTivSn+6EFX1iKASprXkUn/K1vP8WxYC4UXmdaYFCovVi5Cp0JTQ5CHgqYWzyFITR/LPJfM35iGmqTpyWDoLLxAH0eBDdyRHLQq7C92GXqtXq2VxjLLzlrSpZ0FD4g2mZcIYOK+OVyDAKJgp1DVUmhmqf3t1AgfNML4NgRQWPMfmKhMyNEukicQxKrpPedsY5EhY3LbjRe5aWzQDZaR4Q82oGdWDfFiuQOkiArx1+UMP/KHX3fq6wAGIw8yRCaCmjdY4akHZK7YKqZGsGec6bS6yozhp1htikjauvUtMT+vVkwUSJ27bURNW40uRCtXO1KTCaaNEWMpEUjRP9gXzkVQSdVV7KQA4l1n1aerh/EHJnjHHzOAeA5lI2FWgkJWWyVmHCXjAYciKWaolbDFwdavURRij5LnaF4yAoXLCSLwoel2MQl0Ke7cQWPoiEqGDGYkMKaBFGqwPaJGE1NkBBCxBziqw0QbQwUOGSshWbdM8IyIyifu9KDcrIxaW0lyzRN2YvoEogadS2jJuAaQVaog3mNcYBLTAAJgHduN46SbVHFLTJFFDj53C+8AhKW1Nghll/TfXNDSgkDrTH1EafVwlq/RxDhHBABO4HcfLXDJJnNQ6MsI6e2T+yNULV4fXD8uVLR3S+JTaj736sd9xzXe89MaXHps/1tq2myeczzpSrFazglMXvRJE/VhnezbQWPASN8cav1Lq40ayXdwABLzIDs5uW2ZmE7UbHYRWlBmyvpMX6U8u/hDEitt2vKKEaDKhRAlZKPFRAHCvVlgDsPq1825DCRQAAzTrTXf+oCvXUXmF7TnrJo4b7myvgwGYqlapdgYjL3fuiZWwYzT1kaNAqdFXk6K4mX+rpw1ScpFzztnKoAGG9xryPLuJEycduwqoIVkRd84xGCbXD3q9Z4WsL0RqbJKXYt3hXQh7m2gYzd+kmdU+TC3NeymTvqhFeU0cpRKVcZux2ma9MccMhnDWBZNOgEXIRGgSzV9fNKtoltYAo9s2a7yUlzXcsarLFmbNmCNG2y7FvO4+rfVCNV7p1ADZESyoJqkaOkciQEJTN73n4j2Xh8szyH1YLm9p6ls/9QU/9fpbXr853Rw0AydupnGd5KkGG6f+VM+NwvZ3sGI7+e46w1lIhvcYBoPGMyJVUfAekBaYiOyWddaxYSIKScWL1Xv0XHhXQ7ejo9ag0+uj3BfMarVGs7j+3CwAngW6rnugCwnNNXdpZXBiwPPsDyEtoTdS3hwx9ry1Y8sNl8cMa8fIgYIjbY3Kdji5Tmq4XWcGpjNrJHfZafr3GjSiSKfBplCTk5PHRphJ7kTljTFHDc9zMn8hKkJSQEPCMuymZcfURPbQZCloItWv+Y/EXJyZseXgxo6n3EUA6qjIS2L+auaU7E+d/1kNFi/y8F5DceJaRyDhbrcTLZM752hCIbQyuSgO4BN9oVuVD1lQTVIL0/YaCqkzyZD9lOU1plFYsiKQi1c9pbZyABISFmlFJlHj0WRBtteKQBM7efCxBzOxFRuOfDwsV7BkkRh+GO69dO9f/OJf3BnvdLs4i5yJaXekvnA592ufj+a2+HC/ce35yWJwfMArnA7aI1+iIhNKxDMaUrPSEJObONtaX6QVsWHt2n8u5G+04qzzzzjrnHVi1bZHq7LeUhBzfBXzVYwRMM17na7rnJLIp5/NKVBICk06C78ftqQMARd5/iAAglkxNEd2au3ESitZm4uW22wc/dcz4tQ9ZQ/+IiQhS/+sfaOu+mu6WSCKpoO+QIfBZQLsdGHQXBWjmFDFEXvf2hzxMltr3cT1s27Bxr1UchArnjiBbUS9BcDBbbuSPVzVTY0cvQqH5A/XOlB+x1or/oCDpAoQAJiNGGamw+18MeAj7OBkIlnfaz6ZNY7FQDs456yzzrmyNgUz5qiBgbRib7XunEsRjOGwc40oiUpFEQXb3pFbv+KyPeA+8uJLTnwJcLht864ppU3jT9v+rvt911tPvvWFH3nh8aXjUzvtWVuWGdqZnj/oRr27cEDhw4WSO95MWeTmXk3PwiByzqOo0jrAwKwYt+dCEgEDyza1MKi50u3nKBvpcraWUDMfYVonGhAsMA9MYtCOVD46O0MdQ1Vt+rRUlEGlLCfvNgDC4JoBDNLBUF1qSMq92wIIeInJkN221lpqKEhh5aEm6kwiL6dEJ/BG3raEoACmoAXiE0wN4az6qAY8bQHXU7sQtfpbMyRv2NyXNJiIeTKVwdWDEOftPSp+iItVBweaI0PGblo3ieavo7KpLm9k/Dez8KDGTg8iAIE00mlayGNqnDIdeks+gh1BkH8rp5J1VkQ6yrjg8jXLxhwxnf8ZFZMwzKqx5yzGMI3paDXL1KsHLv70pCNyOWUsaJnM0bjdcgBY2LPWTV2z1gipTN4Hl4p6MhYsxskiHbdom6aVdnW0+qVXfyni9sHDcoVLj/fMC6BffeSvfvz8x19762tPLJ2Y2EnHf5QLFF9qpEE1W6KcDUnSRMFM0sIcMADPszvleJWD1y59S/rsaKUa8wLzKrsd5zYdxl3SpIQu/TAjSr44iAgx8TKbY4YWKUg3/61ltbYsOfpqoZbKAQBcy9Paux2lBgC0aO7VmFXTaXDx/MH++elVyBE13Lg958YODtJI0m3D9r0agBMpagB2cYD8Flp/fwHYjhTQe5u02JKKVXSDC5r0oW+IqkpyVvvNlkxzVaOR3pvmFUUAB2qoOdK4bef2HQzIELToCVYz0qYfgXQYLPkIFpLUqybrzMcYu8B2DJeQSBANab1gI2VtPXySeDUOTXesqqIYAGJqrm40vHW+Vj2VDMyqsZu2HbdkiJm7vLG6tU5xuBqyhL5lDguXvyXgNeajHMYuRhjRgGRTppOpOW76J3giC6nv6sLK2IoP+/MPU0sYvD3dftQ9HvXgYw/GIdLcRaUPaUBO3IAHL/6/XvyEv37CO8+8c31hfSrTkv/UC5n40DMEmbSKEqNP8UmmyVEDhttybtfxGvMCd74pqK/UhYEhMIBZN4O1gdtx9rx1e07GAoDigkU5gREmDARkiEbUrDS8ymbOiBPb2k6ACsDAErq1Zam24ieCFO3U9CnMGgUzB3m3F4ksuXOOlqgjCPXla6D8iwReYxKS8+J2XdgbZLIXUyRo1zAoMSqBRNSQWTO8xhgihCQIMA+ZxtDqRJCEwZolNDUo/1wvAOcWcOY4SjQ0GNx3EHYZx+775EAZXdLQezxYYjIUzF+GNVYPX//xAQXciuqFAwBaorC5WJu/g8q8g7o+AIBnAYx0X88cA8lVJdHOu8fALBu/WwXd5kgqGUYAwCwbZ5zbcZasP1kg+avFJ+pGBxsBVVx3mY2gBmACLDCAOW7Cfn6UK3k0IrfvpienzfGm652mubY1+2xBaUWmQoY6hkEGe0w8kcm3fs63AjhcpLmrilJm8+LEMfGpvVPf+drvfMttbzm+eNySDQa4Ftk40LKJPz26j8uZUoAGZt2E2EcHTCFWeJXNipFWtIKZaXCpKn9okgETc8PUkJDIWNyucztO9kQm0p1QmcSEATXEc0wLxIvM80yGvC9C5QuN8QL+1V1xm84YUwYyIRclmhrpVw0z8bo/ulqp9rRA5ojBNECOWTNBtroocHRKaU0WCxhgBDRgZmrJblq7aWUswamiFzUk/1dCihQyxPPMR9gcMTxg1zpn1VHQABzknKAFDaI6zH3iNZGlkHS9AKy9rHrh3WbtNCvGHDF8RJm/Uc0PLVTWave6V6tHcLtONsVNHCFuAdYNK1pYKCg+/IxgFgyvMS+zg+uSozjIWSGhDmxmsUrNJFKNhZ4mNkyoYM1ovSTaeXyEh587xLTrhV9vC0eI1qziSTeG3bUBnExn4RVNFZ3qpqCMy9tMoFUyx0y3ldhVPxZwsPuWloiPcZZdxuXMXLzSWnFhmdAsR7lRhCZakKVW2iOjI2950luuXrza7+XAYbniZSbSIILNXrv3tDc97Q//6Q/X5tcGZuDEZUsUhf5egU0CmMz779TEAGBB82SORwGaZIo/aGSJ+BhLGxN1uD5eRIQZw8wclC8IOFgzKS4A3r4RABAnNCAy5JcxupTMCK2SeEhlpkcLZE/cpmNmMoQiiqn2jUguYRURPHaG3XZ6RqmHaSl6t72XYBKVREMyDedTdRIHKjzBVzUCGhATE9OQiEkgsitux7kdJ2ORSf66b7kBD5nmiBeYF5nmiIg8fUSU9E+0amHPWhb2lLywVE3fqjXiODSh2Dw00XWV8BHmecY+YBDMXxdGTfxxyC6jdsdXDpgDBqCGSEh2xZ13Qch6vyLPaF5Um3wGe15ms2p4gUFwUxeyN6b4yYngLMgQmj6C9HrPCm4peCZ2pzN/XRxxrZc0ZFYNH2Fe4lSDj4jppqFGGo03A4gVd97JWISEmDojtWik/tVlVBInRMRLzMeYFqk7AhUdUmrM8DqTHVtaI16MZ6BpjNEzPcZxtLYN1xOYJUMjQqsi8uPDDTWn9k49/Yuf/rwve96hQXMXloOQBgj5M5j4N9//mz/z9p/ZtbsrcyteKejJFYg4FSkYH523tMAGZLOXV5nXuePCPLjLjR0tkTlmssBf5LKjCZ6KkGjLVo51AAI/c8gQDYhGFKJRdZOUPwTSZT/rbiKIEpmIO+cgoCbmLa4Fay8AawsPqmY9tWIzuvMHdZjTBAJpTjQylHD+YA5O3Y8ni4ExJuCrQCABDwTeyBMr4KDAhgiuARGTDx7tADi2yp9C1I2F/+4U9pwlR9xwD/rqop0hkv8g1F8uL9uSbXiNeZFL8/eIkTYQNhu11E7NLcr8BUGm4nac3bGyLzIOIYsdVwBgUEM0Ip5nWiQzb2hwIfN3T9x5ZxrTeVl7o6sVb3Sq22wA7rJVFkqbAwzMmiEijEHzxMeYmpAuwRs0GdJoue/l+zzQgMHYhz1v7Y71btIMfVENWVSbAPCQeYVD0LkT17qSybU6pcL/3NS51pkThgbUPaY7KJ1Y8BGAYV5MYRYNDUlasc52T1oQqHXtynDljU9847Ur13rVuaL7YbkS5QJIg6CjOEPm3afe/ay3PettJ9/GzDBqn60ya0IWfX0+TaH1SHaHRsQbTIs0k6ssYGHHlo4Qr3KZujU93KhmUCXrC3HWhplJDXm1HQOUkyH1PCGNVVVFuW83rUwFBmkpNbkcSiKmY51F0UdjgwZFCzQwG4aWqTu9SseYTuGcM8cNhupgOuTzU4KdBx/961TuRajPUdhxTU0E4Eb1MZE0vWhDzrFSOxbAwZ6zIUMBoVxbhqpND01sjMS9kBl9dHdixIHZMLSYUyaav+aY8SEn3euJLEmlSOavSflhovmLiKwC7WkRJ9QQGlBD/oDRTlWnO2j+1gHHBXH6mLbf/6yXMCX6n5tImQnA4A3mIV+U+TuET6Ng2PCAwZBW7LZ129H5bINRq1tLDYHBI6YF4iU2CxGA27gtDChZRf+o8Ho7tjQgc8J0ioWWBtI970Pww69TmAWDQczMpKptuDm1d+p5X/a8p3/x062zhg8NmrusXBhp4HVf1w548M5z73z86x9vNy2mEJIweZKKCjVVRN1RShkAL/JoSM1aQ0dJWLR3O4OcZNy0sBNL68QLjFZZHk6tChzgkYCajYV62wIEnmdaIRpSGcTiBA4WNuuCnicCt+vcXkzLxhkA69DSbtVdiwbJm0RBktIS8QaH6GrJvxhnkUzFiTNXGR33nD2skzxC0acYmoSd8S0aEC8wzce0ZkkqJbL4RQJIhkaxqW7HuV0Hho8kBuLRLMXXEYYvmL86LFV3JAdgmiM+wTSM6eJnmL9i4zpNoej4hStt/uYbLzQbkyEyhAF4yBjEeGXbPaCR7CDzdyz2vCVQ2EhLfeyqMUaza/Q/d7n4NDa4WEkbs3obBcDe2muFN5gWKPifNUm1HDe5+es75ee4R98xxIrPv0AStg0AoAHRkLwR7AFDd98lbEwAXBkonUJprUzEHDW0GDnfVjPOL9LYmFikDVyBRmF/CzgYNmfHZx999aP/6tv+6vBE57u8XCzSEGin3fnGf/jGd+2+a5EX3Y5z553bd4HXi5mjpwQ6YerjWHwsslkx1JBrVcCVerLQd2DhWueca443QeNO6mQNMylJmi8aBfUnknC0QVLzMoeUM0l8iHiZdZBSJoCB23Nu24kNkV09UlXyO7oZ/oYVALzAZt1gKfcX9QKwhZs6aSTogKmzSf0/2FGjLzT6xvrJEC0RL3EX2aW6708R1aJWGw2yJ3bHJrTzM9xHzwdR62FXov/wAABOlXPM0EwV/XPzl1eZj3AW/aGprUen1/zVoxOXQMgQzRMtEA2p67Vq4UHmL4A2mL9kyBtSnfN5xkqn9wFmAIOcExQj9fif01C2cK3jdeYFdlblzpG8m8Ogl/SbvwhNLczf4F/VuQm0+evPfS+mT6KJcp15zBAndmoBNCearrMoOxW2NtsOaTAX9YDYa38Sysbcxqu+5VXXrV136De7y0tPlHNdvPfsuf/03LecfcvxheOO3GBtIGsiY7FbNuxOmAblNJSCOxvwHPMi83KM72pDoCRRTJJRQ16CEO/ZaGHPxrP2oA4Yjz4rBktQt5CO/BATQzsTOOnkOp6VGWjhzjrZET7G4ZRZ9DWpaJ6XXPPgJTZHjWyJ3bQyka7xKaazkKQI8zwohoaa1YZX2SwZf2h0V3+Fo6FaB264HbfurONV7kQPRWFaBW50Ia6pDakLLv8WQ6zIWZEt4VWmeerqB7rEIb308VkbBo2zzm062RcxQhy2lwYmKfR36d7NfgWkDdubeJ0xHwNGKKODDpw1A2PPWjHSmb9QQtD00TP9FapJnFFGWpFNwRZoRLwSo5nzjrCw9XdJDTqFFpoV43ac23e2tZ51fSxx56M7GIA1tmn9YAizbmiZOk7WW5o80gvZUxYngGEXsBC6iUhARAvM39UZr9G1REQwhuyJVzFpSDzPNE+BULpaTx4mH8GYjbheqNNzXAgc82YucdZN/ePUKqxTIygdGxNof7r/Rff8ouvWrvOdOrRp7tpyYZvGqwPvOf+er/r7r2qahgwZNoE5GhAHn6wbO5mIPz5PT10aEQ2JRxwedp2vLGht/lTXPj9MadZY5ybObBiaC147YiIhYgrbBYr4xRTyD5TOB1R6a/Q2wIGPMq8wpmpneO/Kgb+IwV3GGBqQWHF7zp63situ7Ly3OnxOCzXf+AHxAvMS8yLzHAOQNuQImGkx5A4H1zo3jTTxQiQK07AjIrrxfDo4L8L8MczlcpGoWZ3CmaZAC15iPsrJX9TtinJ5CzUx54ARYIEtuC3n9l1ngCJfjUAlUiN70IDMsjGrhhZIIF30KqqBqM3fE03Y85TkUa/5q9EXqjH6E1BqdQs48CLzEdZ5PC9s/sbRtPtWtkUgfudK+HG5LC6aoWRoYGwr1BAfZV7jzH1aM4kLi1gOzlxtup46VWc6v/wzN39tNpQxtiPO8WLgEptFM93aYPmZddP9CdnDzjrnXLBmPP19aE+bfbpZafYGe5+38Hm/8S9+4+EbD2+lNYHih+UuKBcVEUCg73zHd77m9GtWR6vCKvYxSQ2KSxS11wjV2YiKG/qN60JmpdliBUugBfLxCETEzF0DZrQeKdIaM/ZYFHK8hUzEx8+EdAbIU01rcdwADXxEQIiuNvDNEycyFdkXmYpMpJMmALgD4OAH90m0EFqbefy1XKh9IxbtpKWGzAnja/YDweBuJzaC2z1BXThCWOvONU30GuwEMDAbhobkAbhnZ4YeuLS3idkMjIi4XWc3rdt2YWG5YBKJjCQhLJjn2SwbXmYesVdl/IFJ3Uelb+z8ClYrdmJpRN1R80mYRmp4ExjJzpOg9nb8qQkiOU0sMAEZ4rVo7UkMI56FNEliLgANMIZsidtyPiVoN5sKsV4BsJ+tPGIfx0xDck4l1qxZWnmo7NhihI4mEtjjYs1f5GMtOdlbUEOd+Rvb78nSH3FuVVM10ljBFOaY6VbjVHfE5ziPUzXU2ahWEWDBK8wrbFqzPd5uXPMLX/QLP/igH3TiioRMh+WKlQtHOTPxm06/6Zvf/s0LwwUwfODZzDDWwhdR1J0rrUjrqKi040Lr8ReLwDxAYGYmLhXkYq4inyExrfpBi6JKtsq+YBlmzZR7ALWAkyBPiSmcmEs5TTg6DzU1osTvfPqi/AkCODgfx6rbmVTFAoBbOHK0QjQijzF+68xB6Ju+0kUyIeug5GTx1xOIiFk3NE8+tLpHP0hvjUJMcDB/GWhARP6sATd2si8yieAaR5CGREOi+WgBI27FwJ01f9cNLRAQvK/e/PWfm2n+qijBjvgF0kTZKm3QSFAHOtdYKCq4qzHcsJs6t+3cpnN7TqYqo1rBwL7JhmhIvMC8wmbRUEPiRNoDp0+ukQSarBpaps7DdvnNXyn2NqEaNenGzu8LxhS+p93uukh855xrY23JlZqmlQMAXmVeYV+nEWNbe2bnzA884Aee98jnDc3w0I12l5SLWqf5w0/94QSTRVoMmRx9KWBGj7e+7gWbVIfPeFEfB1B4dQEsAXNhVgTroRDr6cLlQjaqtOTILxVmy0L6eDfuYJJGZDctAF5TodVFR+JEDYuNNe5KnK+6JRpvoBYbupdiJsSCCEnu6K804BXGEAAMm5B0pxiCotkIBGHhzrmR+5RC75wi8gA0pfZky+txO15RbepXE0yrAHgc1EzPPLRAzVLTtV/yRioADnTzcpZIrPSzSnFNwU3Pq5y8rExKNekVMgYk5I9B8p8NOr2LzUvnRCRWaUBE7pyTiTTrjZCISE9yoNQwExybzOxBlAbUbDTYgEwj+o4lLPKpcacR0YhoLlrAftHI2zHFpBM1XnomUviusLgtZxZNWIbpM39DQuUUm5eYl/KlEROhIsU3DgCG23ZuzwXzN3G1poli9dA2zeqx/TLurPzwUQBORR/oeqQbIF5nXuIwWAIrlphOLJ34rQ//1um90y9+3IsP49DuknIQ0jg4Jr5x98bXnn7t0mDJkZu5WzPJJl8036BPTHevVjOTch7ygU8jYBStGc5FRiHcUZyEkE1aY4xfbC9OD+vech3emKGx5600wsuMqaotTb8m6oP68wV9Eoro+V/0V7KL7vxB5Ml368LAchjDsGND9wWKShIHSLef4INiQ65rVvGpWqSmjjdgsD1lDRmao273vu5IhBYmFdGrW+LQs0SMPgBGNnZ+8bz/xeortEy0RJ6YzNyFWWsR3AcJAW/8QhTFE9WishLkF7qe0pBkR6Z2ajbUEkivdtUE06pjYCB4zxrwkGklNhKR+EoEewsyPB8f860Nfy0KV5TxVuMRShgz0/xVn2BheJNE0CmaiaU5mzLwuQcnaG9pzbrhBXbTyFKFzlSTKFcapBVpYzazCC1FhubsrRTnPUchEiTqjkIylek9lu/xyhtfSX9DL/2Kl8phTporXg6K/PPs+9rbXnty/2SnCNSaO5Dxn2ajmqUupuiaHdDk1ox23NUt0X+qxS4UMFDf86R4lMADdmec7Ev5CSgHd/oX6qOpfjmwqahkE9XYm7+oVb8FtdUu2Xl6O3pxnVquht1n8PWUKUV2RRDvPrWnYnas1KQ0+WvPKlBWW2ThnKUx1OZvLR0KKemrXQCWAASxHgCY1WDpUasb4F1tKR5M808fbWlEsiftbW2JjrrEOElO1SXmpOAa0icqiRO/ecUL3C5hQWGWUTz6Qc/juhn+rw34aLDzDBtjTJhNBfdS+YmU5Cmz3XOuyG4OQETtybbdbsn0Wnl5C3utQFEnRUkwdru4Hr0S1gIMPs7m3jEuRjfGhMGayOTqpatfcf0rfubtPzMz2/dhuWzlIKTxk+2vb/trYwwCV89QBCRnzYPRRXFYOB+z+GuhKY8qZZD7pkRPByr5RWEXYSZVkVeiZpGPanOnXYcHWvUOsohmNoNmTKeig/mTmYVUP5nuj+CP5mXibgvtAZCWRENVG4FKB2B6oAJUnyvMnrblKEtGun6aVNTrQaMZpd/8LeSpAEO1mMecuROLthWyklUDGOrlqpH6XY8fQ5Y9sWdsOeLpx6j+zuI6bS1R/nwvAFP6P2UTsK4ZgAGOhBitLmFBjZ2JCAVB/D5WUBACWmz01tCAG7a3WbfrfEqFgyZCb8sFPg1dwBWXB4Ok/jYwG2Z432GwKbW/N5E09nQq0xOLJ37lPb/yP67/H4bMIdhcyTITaQTC4LOTs+/deu+cmXOle7WCkzTGWijXwiixSFJS6qp0GShvjPaBFGUW6vTerKVtjVvxV2pIJuI2HSjTsDrdtMjKUzcg9R19U6uwabS+VjymnWwNMAxrIeWq1YVEdk8Lo0yZdYJn+FeBjeyLOx8PTNQDnarCXWH+GmC+cw11YcTavKtfjwxZPBAWLXrlPpfVmoFxm052pGdKJV6iKmiz6AXP/lMqF0MlqeqZv0vNX+2DPeBH945URIM/By/FuKeQB8bovqPhPYc0VLt2NNn1vwwwhGVxuPj0tzz9k1uf9Kc+XgQ1D8slKDORxo/BR7Y/ctv4tgENsmRH1ZwEogTsXQPUbyFjJiHpwTD9vF8LYepRTtEnWGvRBqXdJCFYP4OqcgSEQ4NwtJqWkulDB8hK3WtUk0o/pq6FVDxY0bx0MQzt7IGZ3o7XN6uHgx+G+h7LAZiIqCG36WQco7dR2nl3jfk7DN6SYOchG/cLlIp0caUp38wPZL8q8UpM9nbbZUsqDDiCqqvv65IDcPIOHdxO/Xrvr3dD81eXXNtIERlAl13GOdfl6rVRqXXweWt8cEoAP42RfdPZwc0P5k/un3zmW58JzB6Ow3Kpy0HeMwAf2vzQrt3tyUwnpXyc+acDnkmHhyOfGIjMEX2sITymF1RQmvn9Mye/7jhMywvkrBn/ZWI4uC0H5DAzq9nFn6y6LtomuVQCQCHGNhP6ukKJwV0eZmYtEaVfa/UW+WOBHME3Uj3UX7+3L91ZlwnHWR+6MuZvE4Mjkvk7y47pVVB6oTr9ieOnC2ZDJ5S5YTjYszb0sTZ/Z0m2gnmo+lc/VlzMYi1ECt8dzN9zDtqsKf5F33V8QJzKXa33PwzQbDSelwjUKSL1cCMDHgu7Orf6Zzf+2WtufA0RHfrQrky5ANJ8au9TIeanKLV06JUX6U++qO0XPo4oiNTequIEDmv4dc1JW0wTlfo4uJpLhFxX7W2qmi0gwMAfWNnPx0XL6470/lX3Il27/OG6O4inVOnAoYsB4KIUbzE6ZfJATEqChphkX2RPmTUJ23QXemX9JTd/0Zm/XdhIX8t7ulYUFdHAxEGEFcNUqCMAfIhwQ7IjsitZ+y8o0KlzB3U96p1Q+YJHuds0NU/XfPcxf9EFK5cNliATtE3jrRnrbFJMU1iEOGlONDzHndaCaj7PZn5vlj33H58L4PDEmitTLoA0N+3epIVdBjm9QrAuWm8t/jJrqxrirOPgc+/X3ItygCaYa9wC6XHFpEoknzMSG2AhO2qrf1K3U6N7p7puQO/NSnaE//dSRroopg596y7XANzb07w9TFwGSvS+RdmguO0Lebpr9J31pwOeuaD5q7lFq7FFuRjzVz3Qj74FK6oL/3V33pWDXnezYFH/66yV8/QMFffEwZWREmnonYp5uzuYvzV85rpUBzPxgWDN6FycBLQwK6bZaELMtwBAzyKuVB2hwCQObnlu+e9P/v2rP/FqAIdmzRUoF0AaXYLOoeHhYLARxfEab1LalZQeZpYkuqBQkLzm3ibpiYTAf0IzGl3P8/QuQ3bVtvZajlB+8+JLbFjU6sr5lk3RFFzLlGnuxQX6/lQDsHosC+7qxXUthiIA+/2GocJeiKqBthd60598uUPmL6JBAwrmzCxw1eg7S/pL1keK5w7NrCrdoZDqWMYSIuMLrQXVmNYdOWBOVc+TU+ira04jdbcyf3elCyHRPVX8r++IxGMpRBk0FjSkwX0GxRc707PuXfFrONachOTlH305amPosFyGcgGkaV2r1f8uWSRy8VdoK7PuhMsoT1GJJ21WX0xwlxYNBwBe/i65A9WxulWIUnWqpGpXfX465MWgb5o86UmVTaQnHKDWQHuRABUpemXZxRQ58Fdk81Z2c5okMVG8fsGvV6zS/eVg85c6ABbOvTq9za5lbm87e80ORArXDjpfGABkuw8U9XUvTWYRqphW6AC4rLxQSu5u5q/eB+Oy1nZbMqG66dST8Vu8xCGjqOp+l1/8gKJG34pdGiy9/lOv/8T5TzDxYRDa5S4XQBpDplM0/IpsoXSrHby986H0DqVzJ/X5u4mr4mNAJVJ7S5Iy+k49UWsPVT2l09er+dOptIIOadSEL7d65FOoFCsFceJ9j1j9frMLBnfVMjHR8AD5nr/VqRQH4Ep2L8ga2VeJQxD7ciXN38gq2e7OWfJUf65oUiW4u4WQqvM9nJZkOkPGkh3qE4c4vEXlnw4qBRehm0ch6dksZLobmr8TyUiXi45MIPgKXUxIGOcUH2EakL3Vhl1usbbOLjmAnhpugYEZnB6fft1NrwufPiyXs1wAaQpFI0ts3D1U4UqBPb44QLrznbKaod4SlbjsYPGX7mvxdMFCIYy4x7uNvD3ZR0K0vkyl7HsEiWzySG6f5aBSdzzLzjjrRb0rrSZC0YvCY1MIi3qAJDdY9WOzSmyMTKXbZJdevWLmr+TBXZoOdYN1kepmdadbHOrF7D7ZGuDGiux33ehaXZ9eMascQCUHAnUqTrG6o5nhbmv+VtjZxTHrXttMAQ3HeTAwhNt27c2tTIJH7g5wrwBAOov9DTe9AdpxclguT7kA0hxpjmTCLk19Jz38XUuN/K9eye3xq/ReIKBCrwwqn5x1J8VEacFdV6Inp+QXUIs6BExR6O9+97JAsjxgusFpqljVAPVAwpge/bTAmwIO6y7rBmhZXJRCsRUIiSM3M7ireKuoSpBtIomtvXLmb7Fpptfg0CjSy06INRcj2yvCekv6BAGA7JcONKkNJJdTRlMDfXcAiJ9JfTHf+uG7s/mbBjH2PdBZTw2KfrPYMHPc8BGGi17BIWDR3tK6HSdmhu4424DzNJxv5t9z+j27010m7jdeD8slKhdAmnsv3LuWjA4uHIXVK8uK62TKBISK9r4WwS6Xv6jcx8jr1NezpIbEiXSA62wW5PTinxc4/iCZyj/m5VG3YIPygcymUXUmcdwZeb011CV1sL5/wK/Fi+oTXUBR8QpVzQ7/l/BXIJyAp5650uYv8gdQiVTkH5IcdVC9gtnmr36rNmvSu/p46djsfvO3mA69PJBqiBwT1IIcGrMv3p3N3xxincs3ZukuWNCQzL0MLROQn5oaE6zZbRs26hY9Laazbg8gkIEZnNw9+YnNTwCHDrTLWy6ANPdfuj8LZ4LSAc7LAb911/WvhwvgguQNh0T5YypiDeW88sVVQqcWMXU5gEPyqR79DZXsmCXii/o9g7bS9SI+LOkgeU2NWS2M0yz5zAJlijbUJKrlWu90OmCO1ZVHzOi8MVI9XL1S9CukgJScJlfS/D3gsd5S81JaHih4gGY8r28WfyWAIa2EFOAaJzDb/EWlwVT7Tjrzt0Bf5Hob1NYc3Vr0/Sr5d4tyyc3fiib+kNmsy2mRxoFX2VxjaJ66+3WCtVPW7ap8Ub3fRf5dAALD5vzk/PXnr0ecBYflMpWZpwZ49fa6letWm9W2bbnhEOsSp4Sw+At/k/y5L1oyiAjEH95XWhK9E6DQ+pMUg8AhZTvskblFKSa/+pVAnVE1a3WnuFlVEpYo08nBFJ1FkSD+nGkC9eC40gcz2KvFrpbvfS0UnflcDtReL4IyM31Ekj9fvAhFARt3byR5LXDkSIgdZ2kZaytEVZ4svCDLkgDyxVV8opYiyhO+pfrWAT6iwucmytlVjEvR8YJiijJiJZzy4iJlBP4wDjiVPaygQ91IydrTb/4W7axe7+XGHssP1R3tF43zyPevfGUGQQrztzu6RoK+laRKuO8gIrzIZt1gMSZ15nypkiJJY4I1c5XpUjnIjB9k//qOfGr7Uz3UOCyXtMy0afyMvc/ife6zcJ+xHZNkh7YmFpFwgLoNGn1UY6U7Fjk6C3qFqT7h1fXrVp3/RFdSx3dhJj8BobVOVGN0mS2CgUoKS95mdVPiscfhW1aSVddZMOpwxsyXWIszyfur2tCBZfH8rDILLWINPQYNqmuqXtd1tlVTr5j5m/oyq5u9PSqIU9A/dvkCDNNLilRV29cqQWKD/oHTvzr1iogT163Q1NTQ9+/O5q/Eue/lg0g30H5taUTDew+H1w7DmWZFRy4+wdosx3ua2hAINsebVXMPyyUus5EGZMU23HzZ+peN23HnQ6tmlBfEfvHG/0jcupwZxYVnbJZcqDwG3b+onpn1pMvvOETzoVp4LGpD9W/SJVMMj6jZItUMj560QAoR66yXteHEESiMSXQoKKOXvuuehr9UKFVJtB7K9PWuZ7dKbyV5haVfW1TLdTP8wcmIEOsENopaG5QSj0LhX7iZAVqaRMWdOECdUlJ0ti66/r5BlHQgiqtenPFv55iliiBRW0e02Dr0ddVA+za4wK7ORjUOyhzvpUYfG/c7Iese9faxdzoUr9RcN2s2ebLE/ZghQ7NV7wrEyeCqQbPegCBWutS6vlD+rwKbnvzivVKicCQclitSLpwj4Bvu8Q1DGWZJ7rSMdjmKRF7J5oPL52oho10lbSuWDeuoRc6ISqL1yOU404K1gb5JkmRNNamgHQSxhVasndruhHOtTuaAKnFB2386oW+mxFWGUUYfqW6mhhWLTQURahKhAmDtwSv062KUiwoTZqviWheWH1w1lJfJ/K1UhH7ztxrTnjuSjUIPXOkBKmheNxWqbTZvqiKpxF1HaYWvI4jrKONcxzz9n5slVWNvit7VzxQvZMTRPfK/fYbmb6SGc85ZdbJZDOk0i4ZX2AcOEF+KBGtVC4u500o7mxyH5dKUg5DG56F79PFHf+GRL9yd7LLjMHK2YlyX8VCPOEgl1VDL0MIlpVgzKMWi1palelHfzNsmRXAX8n/1RYVVnUjVz7SQqZT9LeZSHqJWtkEqykjVKZc3qWqwd9CVCn5vPdJTTxBhhQevbgyq+r38QletQJxzYbPRrEG5MuavliN194saUNUQbwYPnstqLnuniZM+nQpBRNy0T0VTBPHuIytWe1ad68C4w5ja/NW/1j3t6He3M3+TuVYTpznRwHj63akEa2f6zi3UA6fb4wBgZEY9nzgsl7QchDTegcbE33qvb92f7PsTxbu5Z/vYa/YkzKYKqocLqVop+2Hm1ZFdtbxQjZFUomzMXqntmEool/YZhXZ2OwN6MbUWmhp+aoypn0ziQ8sRZL8mp3nPKOg218RxXXBXR5lKZPfPVX+jSM7m65xI1sEafStb5NKYv+r5ZCr10KQe6Io4wZVXePBQDYH+qLqZaTMeU1vX+Vp17xQdfFsT+pYArLnC5d+tFZ2iX7pVBVV7ORaqHk2uS2r+igsu5awlDFiYNcOrHLZn3bkEa+M8v3jeCySez1tY1X5YLnG5gPfMmzVPud9Trp2/dn+yT446iSk5rxfTD/kA276HEzcX8l1bA+qBoAtHda8HJ2K13vftXHRM6K1/mv9qiYzsr5kgzl90Y9eZNUUeQF1V8YmiaAlSSArkN2s8EwDoNjb1Kvj1iHj6JLcN+pC7UOQriZbJGv/j10h8XjhNh8tt/hZEc0FqhIivehRqQVwMhP/tYPO34Dc9FkmEpRZayOSOmb89nKmPOEL+J12h3lOcc8LdyPwVsc52I+4jOQlwoCE19wxHzvhX7kyCNcBtu64xdga5HCDwkbHXrFwzu/bDcmnKBZDGmzUbcxv/4br/sD3eNmI6zNB8WfzY/MIeyNNFJfVNKDaF8i24oEEXZrhPa9F5H9C3w7SWF7X8Asrdqf5+G6aH7EmYJ709Qj73kH+66DKqrxTElH4Alri23HXXzfxctyoA5RKUss6shehpXqel+oejnYcWMo400WN3+cxfV9EEcOKs2HIfT0GQij4SI7tKC6B4K/2pEl4dvPln0gYUnwNNzwtXUeOAOVW0tn4MFX00TRxwtzJ/kXOy7d4aXDvgkQo2u3MJ1ozKL15TL+XiBODg4EbN6KqFq7pKDsvlKReOCPBmzfd97vc9bPVhW/tbJdjYPtYv+L6eS/VPmhX6LIpaCMY5AwnehhS85BEoXEQXRGaR6FnR2zyU0y9bPNAiFQDB7TlM4mypMVWrbPqi7rV+uECXSpx1F6q1IWuD9QsmEYBtB8ASDy7slp11VMIBgrUPpEsA9s9PAYHbd5hWfSnEX40uujt3zvx1WYMlhv+FQPO6tWmIVXQ1EohKTpne9kj50xMy5z8xkZBDQXNIgQfoq7x3UHples3PBZ/g7mT++r+20ZoBIOBFlj1x+27mHr9entFF7Z0KDrSKhwUdPxBoaqfHRseuW7sO/mjfw3LZyoWJ63c7jszolx/2y2TJWdf50JySs7UUqBW0+q+15HWwzrqpKytBxv0pmssvpSZttIsdKL6CWIOrbCz0y5FsWchlFPEP8DpjEZj04USegLZfEPTKyl7MtoDkiXAqIkuMJA6+fucSoiSLx8cQC3I/dS9l9IAi+2i3EaQAbwmudrfjSoLUnOD6iFYPzSyCuIoCFWx3IjKavyWEOCQqhehqHHhaF1D+VV13EJW4hTo2cHsumDW9ZKk/mj6nh6bXyYa+yVXv47lbmb/VROAl5mWWXbG3WLcZj4K+JAnWikmtFnpJaGIn91u9n7dpDpNsXtZyUTDOxFbsY0485j99/n+6fef2xjXZhNET3kY5ZfvmUq/cUQI3LRW6qZqZWqj1zTqJYV3lcmXhtEGsAXmdBZJJ4EgrVt8Bus3wNCJzL8NrjAWgQSZErGpkrzSpBWvRzT76iBNrbZcIpwYJDcBpK49YHWZdAnAhQJ2qDXl71EedqIgsUROegClonug4dcLu8pu/XXoxh6xh0Z5NigjiHhYRcTaC8QH7Zws+KQR9PrJZKuJUXJhkIWH+BblCc1FxrVm0lya9tmPF23cL8zcBIQECXmE+yiBgCDDcaWdP2253FPKP1jNalxgALdP8hILokeva48DgsR0/4sQjAFhnZ1d6WC5BmZmNpiiGjBP3Ew/9iffe/t4/ufFPNpY2pjINvEIznKdQvAXFHy6/k7ZxRQUzyM2xkKEg3BmwMdlRqllKL23HWL35PGpEUV/PJJ3EtR8tggFphYZkjhlaJVBMYLwEOSfUUsjFkqaQzp2DGXlQiplZzEkFM2Hy+0weyOW77rVOzeKTfkK5EVK1dRsKdNF31E+ZosrFEbEAg48xr7E//hKbeYplijo+8ow1BZVqhsnHpZDO1llMYYYmUF4TBICDUNiNITExEoGS77+z7VJPdWM0os/SSxwAdHwruTiOEVC8wbRA2Apng0IUEahiY8y+KBhYsmYkkSpOyMYz0dMYSQzo8rnJHTw1dK/jWkyVV1SqZuRfLOkTQesg89cBAj7GvMJoVSOHcJtOJmKOG0dOdBIs3Z5E4bpQxDOTNcw62424g3fVPP5+j59Zz2G5dOVikQYxR9BvPea3btq56R23v2N9YX3iJoE/irTtyKeNxoBqliaO7DaHAnBw+86MTFcnx1c0qtX16/vIP5euk/pSmEpQxoHL3XcACIOrB2bVoIG1NrREgAZYhJwXEgqJZosD22dJEFQEQSnx9W4+CNzU8ZQxzAlo1CdEEV8DcJLC9dcrYCvxRt3sANipmgW8zLzOmAdaoAVGwDywCwy65FQdKRLU6VBU9DUMeTPU8IXFOW+NtEKGOg7R6gg65gwmTiG0NNl72yDqrzXnALBKI1bc4p+hOeLjHBJEToCxwkJNkwJvdNuQU6O3bbmS5JzjKVNDHZdqt5XPUU0CxFA9kIPrspnpT7u+lmguRdWM2Jge8zfxZwsMYE4YmqcAMxEIIaAhyZ5MT06bjSY1MisF50j6vyQaBrVMsa7mXgbv2b3PW/u8R139KMTV6MNy+codQRoiJ25lsPInX/UnT/jrJ/zD6X84sXhiaqcZK6NPOzgQaaIrPd/G5SBWZCLEKlxVC26eMSeL7xbKlH7SlRNDT9RCnoqV5mgzuMdAJuKcIx8eGTtCc+Ssky1hv6wofbpqb6mBUPlqBJ0wDT8t3L7jJs4KrbTW1DgYgGuE6zVr1EX022d/ojkaXD2geRKIsy70V4AFyFhoQhgoYXf5zN9BNPUkmr+kKknkqknUOyhahqYnXU6rxKh6+SeZv1ZoEM1fRIhaAqbABIEmmKGL9Jq/yJm5dkkl35ePg2glnGJ+9zF/k11LoCNk1g0aFRRASikR0JDcnmtPtWbDZEHeBZ/0qghxCPQsdk6lvXFg4t1299s/99sbblrXNnwHJOFhuROFevSFA4sTx8S379/+b9/4b//sk3921dJVIDhxmSKfilZkcqnqg4/DWoieNjYypYCYzKoJ05KVDki5QwAz3GXFv4XsKBa9bZio1sYmObUdhDC6/8jrX6IPTVEOFrflZEe44XCYbprYhWxFbIye+flPWo/tPhEFGRkyR03w1LEyaHrleP8Q9sFPrxhV//oVjm4dzmsJVobXDptjjRs75xygjB4AFvasZcfUUDdkl9b8FcCBQN7W7GiC3GJA/rlZLD/7uyVBIhH8kk8X0xVjds26aY41MHDWdTQhYAI5K8QU3GiF+VvQRJMFecNqCHQhGjPJ5WapwTAm2PYVmoogl9z8jYxqne2Wf6KIFxFeYF5nWqJucmmcTs9bwMJOLB0hPsKYKsZwikvzZVFnYyK1FmTILBlEF0XXGAdyZJ2dG8y96Ylvut+R+3mZNoMnDsulKXeYvkzsxB2bO/bKr37lT3z+T5zePr073iVHwW2SpHO60IFYFrBw1llrXeusteWKsVXg4YAFgBGiZl3FYZqzdXjCDFmZ8ajNJ0mCGWfLhxlipVlreCmc90egEBKTpiIBDrzItES2tW4aeL0/3Ei3vC0jkcSJny1BrBdv+aXObcnu1zE2B/wUy8s1xfQEVvppJ9yTgLAwS8YcMf0pqgAYmCPGwbmJy/jBKZYorg/8EStdS9S7MhXZz1PJiaq5VwVBdbN4VyqqVuRS8VkKlix4jodXD4PzCrnVMgBWYK3tJksxX4q5o1tVNzI+EFIb6GyVU7h9RfZCn9AdL9CioFJBDVTt6bvoN39HNLx2OLzP0CybjjKp1B4LAjfszjnZlXBIRzF8Wi9B9W/8boh0R0c9Q2Zzsvkvr/uX9ztyP58GpY8nDsulLHfYpvHFJ2syZP78hj9/xpufcXLv5PxoXhBOBwnxgl4a+2NUYu4y6E0qqGYy4nVaXp4A5wGjztrzGmutCRYuiAvxXyGaUzRwKU8daEjDBw6Jgh8vRQxnzXbhedkXu2UhIEPlDue6hfEixchmwbLSVethBhZoYI6ZsN6b1NU67WBRqPpuIXp6VVRXwYyLpwMQYDG8/zAs5wqczbOnpMot7HmLKXjAgTEuh/kLMkcNhooamibawdtr09TcUsjWYiwc4GCtDYNlVWMsBvcZNKuNtNE0rVbFZVfceceGQ8xLETpRtw3K2tBNigwTlhVdRpm7nfl7n2Gz1rixk5jRvKxKKzoRhttJS0zmhAkU0Pypw+1sHBFvu0xBTGbJhDTYrhsmBk/sZH1+/S3f9ZaN+Q0ROYxvvgLlTnonGSwkVuw33eebvuyqL3v8ax//vlveN8/zzrgee7xXxhUAg8hhDDpCfIxpRH7ZMKwto2+lXdS3ilJDTpqo6aPJqE9paxKj2+5DzTUNNYSY79VDTghhKsSWz6hxpLFb1k2csPhDZ4mo4OYQBBVjfVDscYOaQqlY0CLxBtMcYQvYVQJU+gK99AdT3+uxqHEXGcxkUQA2fEum0mw0nVsDIKIQJqTHRQCGOWLcprNjS0zExMJhNKH4pG/UkpiWFAlV2BzJ/F0BBsA0cnSvSNXcUnAmcsr3kiW/sM5mlHEAQayYFWNWjTjPIsH8zfQ5B5ojBttNy5Z5wAGieqX/AQAc9B3lSBQlrwnSimxLOBQZse/1YtWsUnCLZksoUlj1wMHm74qRqYQjE1OX06DUkzqaNXZsaZN4lXumcEEQRWe/cJgpSQ4QMPNOu/Prj/z1jfkNK9aQOZAKh+XSlDu/DpZyrL5j+x03zt+4cM8FbAK7CJEkpnsucBWU3CwEn4M4oYZ4lc1RQ4sUdCLPdouQidCEgsbqC1cSBH2opr8FNSElmxsi8cBdUf4WAizMmjFHTBd0RH2RMFCizQIEs2R4wnbfyljAECPdYwfIOChJiu6OOKERmWOGjlBo4QIwiYI1hVbX0cN16ZNZ3XdzYRqkhlYho9rOC9zcQ6Wo8mham8ixp7zMZMjuWmedGH/66Wds/gKwgAEfZz7KsMBZoM0jiSnnGajB1Z6igixQ34L6YpRWvTADARka3HOgu+/jaEKYfqKJBQ2pWWnspm3HLRlivljzNwFwppoUcMiBD2VByFL3+ixFpG/ISoLMMn8VWTKYSQ8QADRXNWRIbBj6MgIwfbrCG0I4DoDnOYtarlqoI5gToTJryaIxzen9009+wJO/50Hf48QdwswVK3fSewbAa+Unxycf++bHnmxPLo4WwUALe966Lef2nbTiZxqQ62Xxwv9HDdGIzIoxRwzNEQRuGndrK+PDnXNkiQaUsWPhcOhFGj0VUWpkfs904XYI08OCFsgsGmLiNaY5SlsHsng5respnsY8YCDbIlvixg5Qhx+nhlEu5vIWeucyj9isGl5lGYi0am25hZwRIgpgU5Olpgl6RiEjTuxFcshIyrXsMlkz/JyhWTUhu1RsbadiJyFebCecwo1dWD9oKql68eavizt4lpk2iIYU9jaNgU10BOl1KuprUV/vJYvmFu8FcrmXNdl53m92zcAcN5h27exYpa5NAAu37ey+JaYe8zcnSEph0APAmuYCONCI+DjTImEL2IvRbqQ2pc1CnYIUqGhSECc3f7szivxUiubv4N6D4BUo/M/JJNKwnSaR94m1VibCi8xHOaxvIX/S5a6zNsYfDlWdFobNzmTnfqv3e923v259fv3Qb3Yly523afw4/fxHfv7G/RvX59edOBbGCIN7DERE9sXtOtkVnwjL+6yDtuXRZUA0Il5gWiAeMTGJSJq0QTtOM82Aj7A9Y3nCIZ51VtBOaFwuRGottYiU1dNVw8xR4xec7a2WV5mPcLa+StUX0/UAaAADc8zQMZJdseet23GyL75flM7dyEVqohINqFlo+AibZUOGQvJ5bcYZYAXunGNwt48HM4K7LhKAXWhDiJhKZMnDTM2KkU1x4miZOlW9t+hPO6ABrzBNSTbF7bpLY/6KCzAjwAgyJ7RL3T4eUgTp9aFp+hdWjsuvay9rzjB8hM0Jk7ysBxXpOsuLTA25iZP9GeYvqlFL1y6/44kzoLDGibuH+bvIIUNzLHrzbNeGQiVCN2REJEbcruOlmJzMIZu2hfNZVO/ihDVkxu14cbj4kq97SZBXh4EAV7Dc2YgAcUz85jNv/uZ/+ObRcERMzAyKKjBUpGkbLsIprRxZkOCVuC7sPYmSeM5gp6n5v7aw5ywsTGMy8XGRKnz86TnqJlfY4UDLZI6ajlMtZCK0RM3RJmylhKoBKEXPMEQxNNzAgBqCgUzE7Tm362RPZCL+0IEwQzx6DpkGRPNEC8TzzANO9AkLv0UYAiC7IueFG+4J7b14AI4VBrtEcte/zcjIq8wLjHEAY15jYgpBAeIym6ZWVIcBgw0btLCbn7H520Y/kho+d87RhGh4IfNXs4fmlgJg4uAG81d3KqGsT1C0YmhIZi1uE4GyaSAZGbWN6Bcj5yC7Ipvi9lxQI4warOidy2AbGZ0FwgPmI8xHmUbk2jiId7n5e7+hWesxfy8QFJDgqoVYsc5iDF5hXlLaXjJ90gmeyaCR6EKwgIMhM7ZjZv6jr/+jr772qw+XZ658uTM2TTqH4wUff8EEk3mZd5OQ6bJUKxLjEoJ/YAieC2JRYm6IUtlM6+3x1/CvgVk1/a5t6t7tpiVUtXHBsMuQUehlajLzGvNRTi4aSDAyZFOmk6k5boQkM7nyD3lr5v9n78/jbW2uukD8u1Y9e+8zn3Pn930zM0lIMJD8fmiIKGOAbvklEH4/hVZoBfXjBxow0A0N3aCidDMIqIjYjUiLoHwa7dD9EQzKEEQSIIEomRgyMOR98453OPeeaT+11u+PmlZVPfvcm+G990ZP3f0599nPruepVavWXKuq4ODYgaGieqwQwIEW5NZcac7Vzg2nYzZCambeA5FBvt1JBQAEQeCON0YWZsfQFZqmQcgdKuA8o4tkgF9g3uQoHBl6S8fjcbg00EAySkHCZBlixIzBBMIaZlvvv/u7xjH1wE6nIckUAATeZX/V8zFXsVa7orYpyfQpqkWr66B7oyuDWiBSUjPnHRR6qOPDI59n3uSScNwPQb4jgEOYgHS7jvdYjiS6v8ca0wpOUcDBP54Rb7HbdbzDPLB69aMvPdJ77P7KvkAQ5/MNBtqpmlURAhNc1UPF5pR40dUbrAEDDzdPbm7MN/7Z5/yzz3r2Z52t07wn5f3zaQLTEYiJf+axn/niN33xnOeVIzwVESpiK/nUNBBvMq1TmeKzTC5mzrM3eRRyIHJLoldEMbQdpHBky6ScotCSctkbZYVePTCDu+xoi8omgHlNRlgadixYYLg8lLxSGPizQ8MBuYR0vEdVM4vIoIBnRAuiBUWHz8QZbPcn0og1Tfweq1wXVWUXMqtTgBG1B9Prm4SXVgGL+ctx4t1dcrRB7aqpEyjUXXY6V/Wpp9ansWgZQI4cuwn3l5Kq4OjsFveX48G9cUfIegTjHLSVMgoI/HWPE8SFtKcEWqdwUkR5Wj9boPX1GAlondwFF1wHKIKy5D12uy5ozenk70xd8xRoZRdWdIaZcz1UORA5kHjogEdMUwy4mTFm4HWmdeIN5jln/GTft2oU9879PYkbFLkLjmaRfsou0dkvlBUfD/UaVyB5uAuOHBWVFvyq4PTYRUihW0TM/OTBkx93/uN+9HN/9IUXX3imZu5VeT80jagAYOJ33nrnt//Ot//fj/7fIDBzcT5CsbYGau7K5DgCHjQQbRJvc+TS/IQPs58yoWk0yaNj+AOvSw2eAeJ24S3PlOxYrXjA8ky8JtAeuQuuKL8poofAH3naIr4Q15GUN0gyUW34t9G+FgCrgBVg8BrTJtGCig4z3Z8OKubrEf6G1xOFAzsGonS2CrhK7mqW7/SYMV2jTeLLTDMKh9BUmkagSxWR4fKAOUoKnx304BqmbWlIqfKcGvs0aN+BMAOvcfS6pUZgEiVhUV6bP5LalRsih7LS/cXt3N+MHKkxI+lxD9ohd8EF/GdzBB56rLRNfIF1TInsjX2Q0TJHGDJmLiot74iRO+vKmZJRBwQFrCb+jAiV5g2qxRASoIfq9z0Ts+PpoCI+0Phz7/6eT+5vtkhI3UXHayyjILJ4R3ViLjIyg6bxwAncjjF3Us2YC5C5CSAlx+7QHx6cHHzRx37R9/yp7zm/dv4saHYPy51qmjBIh/7wu373u37g937g6nh1d74bloVnIQ/UGcCZ7dHJ1kBJIzCCZsR7TOtlbjmGcVf5NFnfzKBe5brosSpp2QOmExwtPLXRSkS8xXyBaZMqptXKbspRYwj8safzFEPGtibXpiJWzAeg5q7wGaO6pQXxLtNanPywwKycCElw6pH6Qx9ckOhX9Qo4TXsUMNABkxE+B59n3uMCcKd6IZATUVL3gCuuCcxgabcPygfp/prPxERIBg+QQ5GbAoBc8HtjNnaEISEibGkc42Snr23KTRD4osmGsggJMwdHQlvkLriyqUFGS5ak8zgfE87rbFPUMgABXkdhpormFGdxck2qjZJVCW+4W+7v5bR1pkXLEuqVLzJtUNwiT+rONgze+DQeOAFvMG+z1TRlQw2NJiwzjzLeOLnx3J3nfstLv+XPfeyfCxCfpQDcw3J7TRPYz5F78/U3f8VvfsWbrr9pb7E3czMPnz2JKlkwr4dAzTmoSTML8SUwgrbJ7aVlwB7BoZmIFGUWJWAdGMBgHCGGtn2yB62st4IJSSJDAfCceYfdOcfrrKIypnNKrD/RkH6IoS1FRnFXHM2oQEjd6veEn4LkbET38t0iRMGbzHscEQIgJMuJVoYqjHWsScTPIQei+yqjRO1r15E0etcOSr4pUFUaiHfZXXA60+jKwCCkwYmHnIjO1V1Oa49y1zCVWWubNqRW0J5xkt3frdr9PV2qegPAEv6W16VC40RRq30VoCn3F50oTE3QFvElpnlJfJ/Uwf7I0x7xbuf+ZlBtIKchWtsoCp4DhfOCaYNojYpqr126uAdapoqakv2+1+Onwf31oC3j/qLimmCo+aUPYdh4sFCPFotDNZpGgBOQI7fnyvh2G6wx+Gg82pxvfunHfenXveTrLqxd8OpDwB9n5d6V22iarGZ+9A9/9NVve/UxjnfmOx4eSIn/1ng3VJjD01F2W30zyZYnwBzukiNHukxHZ9rkLm+IW0x0mxzPGAxZitwUuSl6qHIigUDb3g6UuZS32G04mpGqYkwpNKij25MmfCD9pSdH7oqLULkY9okBomg/Gzxq7FRM4M5NoOMxjQghR3yBaS1GpWNCA1Ynd/mYxUSOSEhvqb/u5SitgbXREq0GK8MQBA2tk9tzbtfRQNFgtCLPT0kEDwjGo5F3uMz9ZjWTmv4QuL/nkvurAGr3V2u0GFGFGRQq10UPVTUdMbBq9tvCY4ykuLxpg90FR9sUJ43yU43KT5/xZHSXXfRQycCWor536v42RskIKGhOvMO0nuYtqNSM01f2qZrG9ED90YfI/dXonxX3VzpSSUSio/rRD1cGzGr3tyEqLfqp+DRhj5ndlBRqU86CmlG+tbz1kgde8i8+9188uPlg4JeziNn9UE6bHAvi0ZH71t/+1v/1d//XrcXWttv28CGhGegmEk2SftiGMkoBUoXJ1Mq5QLbMgROMD4/D5UFnqr4+iAm1JhsilzIxOQoigOY0XBpwCeo1nLino8b66Q00pzCVSkzwUEmT2AzyNLGfSm46X+RpfCb1imWc/89ZCcE87KdYKeSrZbPQxoKa5ZyI4Xtd6vi+kc+x23HIormRQfbaAbN4zQPTRQq7LPt9r7dUjkSXGnptnwpil+ZEaxRCE7zGcTm31N3PsEmtuijepBnJvtCConbMU2hUlMy0+xtcCvtmK8UAzAAXFzZZ9zfu9RKoS9CWcJOBOWigYWugY4ru70maXee6g40OTu4vDTTsDu6c4w3W5nwEFLIvfMGxaXbsn/DDlSHGu0L9ofK8pxWw7T6ZJiSNgoeeqH/U00bayjrHn1ENcUGFeS2t0bA9yKGElcXEpKyRFBttZy+0fk9yf905xxdYZ1q2xWtIJb2ZmBy78YlxuDI05mlVet2vAKEo+H5HPgWBlrL8qhd91YObD574k5mbOZypmfuinKppVJn4f3r7//Sd7/7Oi2sXiUlJo5rJ9peVy42MpqhvYhidE0FQiudyTZQz0JKW71vyZeY5Rx3Qm3iIVlhexJPbjaqFEYRdFPqW6ZKTFD33BnhrU6culH5ZfSPgGWM35qcSd5tpwlRO7ycQSdE3ymkO0zbhjMQcQETypOAEfJ7jc/3LM/zzCi3qFQzaoNnWDBrP+9GlyRDjpGlm4DmHOeeYvzRqFoLlMJ6maXtNYS889ur1UGmN8hiZ3MApnChl7RvPx1QjnjKc4c4AEPSGjkdjdH8zTlYp4IQWEBjMW+x2nHr1N73cFD1QOU7ub4NaR3ApuWuLeZN5xgqNMwRWkmpNJ5akA3pP4J/y7pIruo0rBdy4vwiz5YF4s69GRnFmWiXAQW/peDDyOY7bjYecC3RoseoqmGsL8CbTOcIB/DUvx4KT98f9ZaJ1GvYGt+toRjJK2Gxm2lCzFokjHMM/6d1FV6nS3ErdYuv+BvrtNlhzcPvL/U971qe96qNfJSpzN8dZuW/KSk0TUgC+63e/6zve/R1X1q8E0o/pp1RTTyPv1NBNYDZvpFWu4Iqws6KEljS+bxweHOCMcw1DfMkITcuFDTC2srbGe1Vo4j4xhRUMjb4sXJ1t1TloOx4x4pwrSUG9MIXhWAAMUgoCXVSUjBWZFz+zwR5AM5LrIiLuvJuQquH9Pq31C95VXiRLcSYjNr1OtElxU+qMADO7mz28MppBHUDLsGb8WEMhVFdye462YutM/HS7v5gjJnc1Jd9wE+4vHIbzAy5ARbGEnEg1ZxB6PRDNiWaU87tKVpgmXyqrRqqeLZCnZWR6pCE+nDEDjXMkEzQjcHAh1TNiA4ZIrOKhlL3m4Z/weqxxWc+k9rVfORlJSm7mPhD3d5N5y7i/IeOLaGL4LIMn54YHlluia0qb6aAa7QBOF9X8EAAp0UFkN0uhrAT6hv/3N0S8nZX7qUxrmqBmfvKRn/wbv/M3Lq1dEpKSpmLtnYavUEvMbLc6Ys+qKiSlWn4kyxGN1MzC/jEfE5kaS0fTgcG0AhJ0X6mi2qpo+2vZBad5m/V4GNhKixB5armG1VVdE7kaCQX2sLgqb8iKlkEL8je8Qt05V6xvi5MkjomI0ckvmNGRbofQRgA1DG/HqwlPNbY8gC0ENUNEzrnWNLZo6dT5B+L+PrJ0VxzNqUqtbiCcRe+hcn9hdOocvEj+aKOAJWnf7EkgIrmI8saesF1G7CM7xrkSZW0307SoDjA4QMHKCnXiRCW6v2LQSLVpAhBIroueqLuUVhafUhITFfeXOvf3RKOPcifub1hcTHWoIOOkoSgCM4sTf80Pi8ESZ7xAoe0yUZR+qrYcTLNxgxsevfXoV33CV33qMz/1bOvM+7BMZASEnWZ+99bvftYbPuum3FzMFrDeTL+uuC9NGEpP3X9Cq6WRJY14i+JCfWO2QONSc2IKaZrAijVoDYTWJsp37LR8AvL0NGIIsBYZ1bGL54tYldm32+vL8M2bRRs9TvLUaFop6Y89XSTeNOcP5pqIMxkhCF7WgVtgbAZavt+gJcOAgnbNh6xMApmTi+bAZhHrrfsLI4AyDNK2rj6lLNvRydjw1UVYx+MedFEr28pZUQ2AAzOz45ICxwakfKH1YDVFq+nrcPBYQQXqIVODFgG2gTUAYOZG4RXLLONE6+GwadwWJ920eWhOj1XX1F1ygNkexqIlJA7MAQYz88DTpEJpuwozQG1ycwDY5La1q2gn4Uxs7sXrsfI2817KWtaa13x6ZzjhLa2VCci0b2Piw/HwEy59wv/ziv9nd7Ebl16clfupTGT+BfL6urd+3ePLx9dmayEgG8mxSSBeVboKZYfaXvTAyOjUSphb1gNtM3SpgBwPvmwUTGM73xZO+2D/SKO3NO3cxYjC1BqYk5hpXApTIWYQgCZwYj/pzTywPCnhGIK2cF1/sqfWmbjtIGbhgqk4RINtpGOEgLAqsKRFNL1AGeIINld9D8fHMbp1hWTq53kORwTyj/lpb0bbGZGWVCz8WqF6wlxoxk6JJxGd35a/ZjUTYok8hRauWYAqXIVwQksnXD+bXktzwiH8Y76A3XQEpS17ZEPlLSFKfPWqo6rXcFHCXBkA6wUiBQN6xGjdqdAvEBhyU3BS47m+mM5RtEodAODV/+UX/eXdxe5Slne4RvCs3M3SEkXIPf+h3/uhf/P4vzm3OOfh43JirJBNk5zZMwzVlE3ds7UgYGI4+Ku+rF7MViqM7JiER2vK1hUsZ8157e6EIvUjroqB3EbH9KVBdsqKbrNLqapTONMRFPJkgsnCnKrFRQOrdF5tLE/0txvo6XSA5p0ErCWZyGmW6BTBbbumXYWIjG58O1EFAg+ME8hTUlWucVLUzKTKbIQg6otVvZ5Eb19hHZgDME4VdUrCKmB095HMml7ZUP1JT/GM9UD9VR9nRzJO8oin+bz2bX13bquAUeAvlpOueFtzj+JqXDmQwrZiQLW+tdbNZd9IAUBEts5vfdNvftN3/qfvDAk6Xv1Ek2fl3pVK+CnUkXvy5Mnvfff3bs23BNI6+5NC0N5piqkQSHBaP0xpprBDsNxIVCh1c7187O9r9xUrf1VSobS5lbVJYUg8HfLRTnSfrmibm5M+B1d9bx/PSRAz1mPV/cBephf2ndR1vIGtR0UujVZWIM1+t9XsSxZReIUUvEpW3lYBdxU+KPdXjWw1aJyYYrR1GjsaU/iZwMEKJGZROAMWUf233szUC6tfO2E9rWnqbmatwHOW66K3tKRWZ2DNuFQZ581rrYtziodg3jyRWo26R3Ufc3f0oNvOLl2XNbl2ZMUESwEoeI/dpjvSo//5P/7Pr/rZV/3BzT9w5M6UzX1VKrEX0l1+6Pd+6Ldv/fb6sA7U/vWkMQVzE/XXukJcNtGQ7Wp+CyEUuSn5/OCVZVKwniJtbQyhvjktPggQk8WUswCaPlrOPwVUGHGJFaoXU0jmaAb6676aqrGjYzm86Uo3ebYSb9VDEpe8rHII0g7NRBTDiViBgZ5m+m5O6gZM1UmtFPfXSqtslzTGTWOgWPd3lYbWDleCkIm5Em/Z/U1Lr9qg2en03Gsj68TfVtm4mH/on/IlmaJxf2F8mslBgaGT5m9fM8EYqWTV6HdfSQmMsPotvr/+lNlBi//RjDLAF5h3WKFucJc3L//soz/78n/z8l957FfOlM19VYq4DQ7NrfHWP3/4n2/ONgUybfLkr73Z0hdTp6yqsPUnHe1snTnAQ25JeVXDY7aJ2hKvrifFRxdYiMZ7b9tqsRbDApGVira/OXmneaq5Xq2z48pQD9lPrl6uH+BvxsX2t1FFq3RMh1g1V+0bKKkZbpO7bo+HppgKH6D7ez3F0OocrZVR+0n3d5JgapJQaFDApxn7s9ouQYeBye709/NXBLysCKDZrwBCXNFDrqW0BSSaz9OcmbtPcX+p/rWhqIZTBKQpetZU60ut4PVwQtPETTwz5A0Bhw3WrjjeZQBgKOkSy3Pr5x47eexP/5s//W//8N86cl7OlM19UYqmCQ7Nzzz2M79z63fWh/U4vzcpOPKjOsUPtvQci4521TRhxFwM/DL0ltn2I/1arRh4v3yaKRstbxVTgWfpnuPm9jESPflay5n2uudVo19LsAgdLzWFkm3L0AMtu18nvFUTKr3EXIWQvrPNp3/WKjOOs7v3i/uLeiwUleyjKSRo3aPmJ0wFPDN4PYWf7v5a/EwqmKaw/XGK8PKDNScSCA5hc6bi1lgATicGe9EQQ18NgEJJBWkLnNNLZ1/qSXeMqaJZ/19ZSx60Se5ZjrYpsmcixRHj+nydBvqin/uin/3Dn3V85tncF6UQcqDj1zzymrg+meowrqmXebgSptStt8AKRupvWols6yhA0DE513WZSEq5ExLXurI1oKATXchAkiFoe7PpBa34awHooKqESK/dG3vfQUfVg07SnaJZGwBWiYzOeJ8QqRZvaYfm+9H9tRX63k319/YmS6pDSmH35RYtKCIvpletUrR3oma6pyp1jppU7EVQwMRQyI2EE61RMYkQrCCGSQXcaItce9LitHqiKWw2Dw1F4uHrle4Jz46AAz/A7pmOZib7gArmPfx8NheSL//FL3/H1Xc4istgz8o9LFFqKpSJHz9+/A1X37A5bIbjziqCzqVnraxyblutv9kX+xNFz0kPtHk8qIbTjjlpRHBjnufrwIZ2Id6k7E7ce0dzyzDv73tU89vKmSF0b7PPEuIxwPXTatfL3wm2y5NtzRS9mGilwNPkEE9aErhH7m+yh6qluKsU7SlKun4kkIpCWw/Svse6v71Q1ppaGl1o+1vfCQzZKuDJB/PHQY9Uj6cWIzeP9/xir1cpJNNxEmrra93HKf0UXzamXQpTRlk7QxOeYriLbva8GV/g8vI8B2Y8Gw+/Od98/PjxL3/dlx+Oh0x8aqzzrDztJWqaoPN/49pvPHz88NzN21HpGR6GE3opD/NTuo5uA0zItanT8U8W6+HMwaYJ1Xp91in5kavgDFDlJaUNs0l6LaKsTJmcU2iZFJR96apVmV29aumfTSynx6pLoyBThyrte7olpzXScus+zXg38qIpRqLdR+7vcYsTNAoY5g2nlCk1k1VXnKSZJACupd4p5lrWnaebdKmbCi1TiU2xr0oIiZskCfRWwon5tdrnpmnRdHYCLQ3BaOIj6uLP+ZGezOzfAL/Zk0ZUyr4PaeEnrdHioxezZ8xooJjpYOFv/DzCiPHc+rlfefxXvulXvglJxJ2Ve1WqCPQbr71x1HEiHLzKWTmFRrubYSKk2hYJnXbpHgkw5o2VGnrNq6crkOzK84Yx6iyAuA9/XoBt2aCxpxKc7Va7Ta+t7dYIqVxH7LdwOm4ShVZ55yZ6X4GSsD5uGypC0DbX/NWulU4ExJXp6AS03R0gzy3jfnJ/j3ozKbm/FiGT7aJGhRhQtSyGb5fr25cYapl2PtAZ+Ks62xg0ChBWbnXavyEveWboYX3AQSZhSVSnHU5OLzVtJ07S5v4E/dc9ipgkk7gs8N6XgyrSECh0uDTwGucN1krfybg11uVljDpe3Lj4v739f3vt77/2LBXt3pYoLYKoeNuNtzlyVa5RI5Xyfaz+mu+w+Tq5LCO/2Zil5XErvATtEQASqXsiXN7olT5L0qiZlSm8k+D1N5su14pkWsrUjxTtO1mtC6FUbS61qpYigW0MrVEkjbSVqmtalwnJm+GZFKONrLRDqR0w9ikLwwfj/h53izOQBtjiRKbQ0lzXN2M4EdKrssr9dfFmm+ixqpxCe3UhmcpGsWOhNbqQ8kesq5d/t4M7qRIals8fK67NBP6En4fuDea1bU4j4jY/MW4GE0nz6rad23Nxf7Z+uRUSEuxfiotewfhbb/xbJ/6kEm5n5e4WBhAmaVT1kaNHBh6qmfZV9s7pBEqtCKtcgd6o7JUBgJw1FD55swATGdO8KZTUj2tXub4fjNxKKNtuylTXInlTedXppetO5VGFV4aJZXTdbwDumyOAoEuTsZOa0ISX9m3a9bG3yjNWIa2aQfeSSSTcD+6vTHiWpTu2F72TZ/FjgI++oj3z1FJvrmnFHFbrGK1/nRxi1FaLVcDNiORS2yXF11Toceu1l2TL/B6pNEcLmE7fV3vgYQP85BIuVCi19duDADShlDA8MMQ9yClJBhiE5753ew+Kyu589w2PveH/eMf/gbMY2r0rJXp2c7z5yOEjM5ol60TLSMPoj9NLI6zDtzCJOhEsXyHIUD0IxBB8IT5Dr4Jw6LGW/QRXAZmEckhrqaLtjeBoGMOEtlvmnJTCvZaalEpappcnZHGvY3qONTGHCidaH7bYwNajKEmZqH17qdGgBQktvcPR42QSD82dD637mzMVs1QNeJZu+GBwghX4SSMVQ539oOQHDVQTa7N6JEj3nr5OLoQwEdKOTYMHreSsppP94uHW9fsj1zQGkKWchopk6g3Z/V0Vm10Rza6sT0qbltpcZ0FY1zlcHsKpQkWdZEXeEICanyhmBwhkbbb2v7/tf1/K8sytuVfFrKeBxDim1RCrJEhfVpGjgECRySfF3KRlNylkfdEW+eWBZINnEzMjxexim+t7iEg+c754M7KC4Sd1RnOnAfK2pa5fYnerak6+PL8knz/YcXJASJnEOmXsEjKzjqn2/7Bjar/W4iyW+8f9tdsbp0dKWKbeyGRapBoAVFVEAmbKffs46gfJTKj0NSdLr2as5phEhU7V1MocjMfnhF+XZtPlhMlAe22stYeqYbrUbqaZYppMYgbtg0B6wOC/RCYkjSABI9yemz0001GzvxIiAe1ugagxZnqh0M355m8++Zs/83s/gzO35h6Vomm8+pjcDAAIIen4m9YfrLi2gik9GKQeMm2h/FRJje6FE8b15LS2j8SUpxjiAerhnALRcIZVUEJRzUxGIRqQLHflQgWuCbbvSyPIYPCjEckxGjP5hl4gWjRaqWolUdK+ARVBv7b9Stdx1t8XBRzr9LG1vkd5pPDh4/6KcX9Pkf557qGYJRrvN+5vQ8PNvNqqabae5puSFXCqbOIMU3Rby/H0jrToB8YoqQEO7m+hkPwS61s0LWb2tJg5HZ6e08UYsmL6myGk6NO4cy46MemdJcmtL5qw12QHAKLy47/947AB8LNyF0s5CY3BDC4iOBFoyevNBJH/Wpur+QtDVUA8taL5Fem1PeegPWhPVWUpNBC5dEa9TXOUaMEF+DODNSUGE7Tjn44NKikgJZNHoXe0jYfBYWXsp/tF2zXF+mGowUDk8JbtszjIOIljqPnMLlUlSQeD5spa+VXR1uvFn3UOMlR1oEZzagZ1j/fFDn0dfyNQcCDKKNhyCr01Q5mNYooHi8VQDEW7J8yul+NHrY6UIM0oukFJzvdjUbU4Kf21frPB2G2QU5s4yeiqeLO61u4aRmGHSN6YxkiQd94MIcGwj1E5DX1yE9jUnZSTWMefbetTeqUBsvTFSpXszYRCcOec3lJ/5Pki0ywyPkk5vbqUZmJMq/uisjnf/KVHfunRg0evbFxR1em8/LPytBWzRwCZU9GyNIRWR6xnYqKajCx5hZJO0ArzKNPiwEqThmE6vlJV8VLNgdtnrTWUBWgSo9njqR5s5HWvZqZUoCKmEpQHG75CF47ro9vGIqyAaexKtH/7GRQRkaW0AGuFhzgKiPZ5vEjBtQzMtDCVWkzADHeudd+6v70ENBkTkaICVsIRLJFkYynu7yrMaAebQdT75/5a5HwA7u/k21CDJN2sXnJ/A5N68Tn+3PYrzeElx1AKzqUj+IaGpb0fkFzdp7RNgKErd9HRetwRwz/sZV/i8qBJl8bop/IXQEoCnLv5e2+99/UPvx6A2GbOyl0pRdMMNKzxWnN4cPwiHQFNaheYB1OqYuUk9eIG3Z3MV5meDEvricbj+RrvHuZrA5sYW0lrrkBd034m9U3GibRHrFe9o6m4Sn48B2Sg7a+n/82tG6hE4pHvVWctNtK0RGRwlShZUNRM9WwzKNabaRDSAGaz3ezo9PUbjNUE0B7aCLSvtSVRS/NyGSVOSzQAaBRValKWw0x0meqDAqhWWU2aNZN0YiRYmfGqOziBgYYIayxpxQx13ydfbpiorT85iJauQnNeKwUsKf4cNERmz344pOuRTHyd9hEl+TcCMNwVR+sEBVzcrtQ/7v2THoxsO1at0+rrUJWg0F9+5JcLes/KXSwDUuByc9h8YPHA7x/9/kIX0TlN9g4rAyvWB0wJEWOxa7lvH2mESG09NXIhthgo5lh1oWVz3HzqH5kwBcxNXU1VDa33+gaR6ONFCsKo0xgskq7dcDE5S2GkRmHsSbRIfcfAU01magr1iOrS4ERRVlDbF1pbTw1yeiw1YDSjg65yDp17lIMD8pupRg465EhCjJ2gsY/0hFEjp3d/dVRaEg1UDq1x9bMUw60lZggzJI0OsGVKphdMdh2PpEJdHXSUg4kOmkBVZ5esUk75WYtMinTCM47SnGoaSBIcaYJHVcP0u+YQIlL8GXXT+avVK+h4Kt2s1v+jQBhSAGiD+DLHjQBcOo7ageYk10RGcRdctRB1kloMWmJmhGLg4a1PvRUA82R88Kw8jSXO03j1jtwz1p6xvLosAffAg6QSIqOq1cbDTQlMRRTW91ZGh7V9GqNbO3IEELZxnaQhDz1SmlN5iTNsk+U+6mc7UFsZMXmRQw1B30iZrRESlriDcZXCPylJExKKCkZn0/VSo/eKei6iCKceKc0oD1k2DFuorOjXFdCK+du0mOHxwJDQnvYJjgJVzJoGXdF6jZlikHyI3N/odJ4ozY1F0mjfDImlmUz2djIPK5ru5WlXWUicOhUl183t2Yaan9LjmVoaVVpd9z66JiSgAk8gWIJHro6My1sJSEGImpQZq32nOdpiJr9qFeVId7hZHggBAD7PfJGDyqmYmgACzUn2ZdRxuDDoqC0MtpC9JAKJytzN33XtXfsn+9vzbYWepQbczVLp9hede5GIkFDhMUvxIY4tEhfHaUxZydHbEObOQYmKmPLbUL25lXemuUrU5tlCQA4FRyYyY8Nik6qrJ/r+EfurDTopYrCuY6QQb4kha5vcVYvInALn1VerVSxmOgxUuMqv6g1bRFD1KAUVbdKzrJAIqyVjGwKqZcRK8ZrAiznkqzK7+m7m+RIV61u0UNnH78T9DRWPJS4iyXjwNUKaEddUR1fjrSEw1DebX22kqENXe6frdbFJ7GQP6vqWDGqGio83qPNptW8G1RsYJE2W+LoXkyiywPSD0hOMIZJ2+DzUK22Se7bjKxwrN2dd27Or93W8PsYYgx2gScJAwaQjd2N546mjp8JNnJW7WAb75cV7L15gUdb95WMtGCHQGUcumAPpOlrrUACS2KtiKpjrLKcmDR9E6dM+Hi6Sha6q5M0mNDYuZLfybUrPq7ri04uMbABma5egrABUlJhyhbzqUClihkDFMq3FQYUZ1Pjp5JGoTHDvCADqVW4Jb3N7osGkqzcZ3OtFsMVYA08IaAxmXCR2+X5xfz0wJlcvVzb0HPEA8+Ck5OkpWaduWvzkjasDeBACsXB1aKZ9fw9Dcn9b7WuJRKfuGENBbf4Lit8gh+Lmca/pEhme9Mv7PK4GRavYRzuCSbqqzO5kylHwOruLjrZJSKIrowm8jE9zcigP7K96mlGMbaxSGTWKFMrEx+Px1eOrz8FzVjxzVp6uEjUNEwP4hPOf8Oz1Zz+8fHg+pO2cMy1SCW0DKZk4necaLxpRZSmgdx1gGMYYTZHBLOdkivfADO6yow3CtSTvvCHNLFJXucWTgqMHzwCpXjGChpQeWs9/BGWTNQrEYCGZtG1eFtAiysrTFUBGX8HeRCXRqsXeqLdSz09NokW76waSRmTY+ymGnp+1EQ1Vzbtfh2ulmD0cq2odF2q6ZqFq5Hu6udL9DcNyJDxnLAzkSJE0qv35Zoolt2tR2gMQzBqbjuFLAjEQCSakVseDRNPJOxMlUVFc43IKZhqibYAEimdpMRlk/VL1RGmNItgu/ZRB6hVMX1ZBpfV1zVaiIr7eBQAAY/7cOc3Jn/gW/7nUDE6OaCT/hB8eGErrmAIgfMvCSjUcD7u6Y2fl6Splh02vfme28ycv/cmDkwNWrmgFhjiMZ539+mKqWEc7l54KYdijNmOLiWrJ1AMK2qPh2QNtEQjYNG6+1FyX4bS/ylTlRoY2H4V69eJjEEbrrplng1We98XJ+V2tH5PfjPoNMGBoLbmMAm4lS57R9aAdcs90WAAnXWdzPERXfDDV/RUIyeDFIAwmupDn9nNYrCyb9Zq3AvJhXriRRz1m+vEyLU64vzAXY9oF/BRSWUUkNg7ZYyOjtEesdCEpO0WX48/ZOJDkvwSyybhCF5K13eyluZRf24mQUBLnyoGUBM6mU5O0gakONmi0fC0GM+lr3NMsk5BEM9Gdc1hAx7DNw9TZ1fna3OEZY4Rci3nPEwAbdJUgJODVn/gTnJW7Xobm+xc88wv+2bv/WUnhzXbxKs+apgYY6Y5VKg2xZjli7kybqAreZr7AtEnl+IA5dF3pFmFmPGsy8rdP7LFfxXztJYVGKSYi8FBVjAlVdrI9d9DErGKKDhRkMqG1hqQRjo28gLmA4VIY1FG8oDXii0xbBAHWgWNEUAN4rhusyTDa5N9mgAyQYXpqGIfI5zBIkPvG/WXwFaZtwjVAzPBhSoT11NsP0wrNGkUnoJLc31yZy7PR/Y1/NJwb1s64w3wX8zfD0+uVXgnl3Zh6+RtGZKkxSIUEZGZzqdmn9zC0vtAVn5rlywKaRjPNMVwaoACDhaN+pQ6G5iuDlGgguSm0QTHe0PRUamiTT+PYzd0cZ+WuF7NHADGAT33gU1+0+6L/uP8fNxeb4qVyrpssneaiKT2hN96AvZnUTCFHLcGx2TNm7qLTUb0PZ1PECrRBulQcg+YpizSHmxuR2oPag1czsBcfjUrE46XJmQCaT1OUSPiBaRo10d8hZvoLKZipbE8CFDSQO+/oHClrmK0BAdvAVWCZlE2PjVNEqu1ILzKkiAxVhYcshQcuIyJGKDRiwgjQIlsnUdQPioVKKlAn3N9UmbaILzHNCQpsAjfqjLjmgLLbal8LWK//gvIQ9eJpSW7uWjxoubYKOChd+7cdiKb13mLLW5mZRIY2uQumgyNoTvwAg4D9xP2a1EyjYCYDWblTFhiLCouiBE913kzSwbrU2eUZr3E4/EInGqvjZqhGiohUVK6Ju+gmGDndKQdYZZ13tu/ZvShmjwCQV8/EX/IRX3JycsLCVthZW3JlyTQ3tcPSpHbJP+WgU8PJtEbunAs1idujpWibZJB4IqdMhYykC4/03dEqIBBERnSeEj/Hs6TyU7YjDQaaYEJTpH5wEku1vqk2ykw/0RrNP3o+XBliMkIWbQN0U3U0qWirkKBT11l++fonDwhy7Csi6linX5tRoatbbFCUf/JTSJCJOxPubzgXdYOGZw3DswdapOniBXRNcdJFxmQKSN+1uAp75lnx4sUjzIKM2r6h6WN63KaWVfFn3yGnYZ8Ge0bohzGqcIiiivgcu2c7WicsgDmmY2h3wjI2Q6/h6Hocozve0CEBI9yOGy4PIW4GxBms6lS9yOSpF7XlREQY6rOrrTKGAU8LMOuz9csbl4G+mbPy9JYqehbcmv/mI/6bf/I7/+StN9+6Md8QlXJObS5hOFfMagIdd/UXzVdB2QjSkKN6nV2aYQYsQURxtyOqLB236/w1jxO4wRU/o7OASrHGmlaQlCTd/FMK1sux0AlFGxnp5Vnt8Yq2bHONvMi/9grY8LAXX+1xqwhBueH8wAuO2+Nbf0VA6yRe9KayckSIGlBPx4kFEmZ/gTBrkNUMAIGOqgultSTQ7wP3d3hoGC4OUdrCuL+bpCdKJynWai3lJkxEHcA6BaQRsnGz+yR89VhpMFvzNe6vmoYaJLxfmJmU8orp/EYFb7O76HQjmSAAtqBXE04aV++2EcVmaJpPgq06byYDCcCD5jR77qziJvtmOxyS0IjOAQ2nrN5UOkcTYATVm3PwFF793mJvb743gf+z8jSXKg0juDVrbu3rX/j1y5NlXFiTpX+2Sizd9PZOYwlq/ZOtkyqMOvbyFB5u28X1wIn0y+H2prg9hwX8iZdRojnvp6Bq+pI+Yb9n7734tFSoeZYAgdwyZzRNTi+vsgStmYzV9Q2LRpmVV+rATFALeJ2H84NKnESt5lEJUPAGYwP+JHlmzfD14E06MWkhUYiYee9bUyC7en4FPaxSLTDi8kPq/g4XhngzTzwktNAuefZx557mY8Fo0NUMVrhOrkDeJG3C/c10gvpxi4FGm6L79XQ101UTmUrucpg/bz5/7pw2KLJSMo9om1QUy47Hm/5afldToRl0g6jIUCJVNS3DwZuMk0pz5JUSbaEORcGnCaIgnF09dvhUANWGQAw+8kcfvffRG7MNu2n9Wbk7pU34c+RE5fOe/Xlf/NwvfvLgyRlmVeZSQ4W9LbNK6/Q/pUe89y0RJ9CGZwyVsRPm2/scRYXbcrRJMopf+pDbE7eOXy1Wwp5O3nsvPobLLLdkMUHACMzAFxlAxZaNsD6lp/miF6wreDXseNhyOwDF8MBQrOYcB9DKTOMtph3yo5elTKOiGcrup7jg1HvvfaWAc2cZciR6pK32tSTRaGXbU2+qYbXt0qAxuL++c39Vh0tDnvZvFTAAhttxApETmRi7hjwaMqiHxmrfaLNL0s0KXWobV2wkdU26E9eTXGbVTEagIY+QplG1RVCvw+7g9lL8mQxOFJgBO/CjnzDOLAwWMznghm5wx0Q2GjdJqxSt6Q7vMM3JP+r9Yx6Swp72yJle4/R6IeWqqVc90tijWt/YJdWk5MW/8OILgbMjau5BaXPPgLi/2bf9v77tjU+88d0H795cbHr4aA01G41g9VRzb2I0rIJ0LIqdhPBJYnoMzxx4i7E0dpByzKG1znUyeXidmdnf8nIscAAjpPcQxRnXII/CRGIJMiCxTQ9n+ol2yV10mAFHwPU63sKVXdZ69xYz1i6bVNIoTBvXzDf6iYEl3AXnzjldJiRkqZEnadP8PK8xEfkbHicgR8xp+xyqYaMKyJAqFtdU2o2zrNAMxYM2iTYJx4aOMlT9YsC+NJjp0WKNFQUUo46VVk7U4raK+1t2JW9w7uD2nL/u/YnnIS2lbFZxNmIu00ZCgiJmJJdRszqSAEBuihtcwYklEkE1cD1CTqcTtAiJms/XyV0p7EkzcpfiaZVhNVNsOscVF8Tb7G94dhz3rOsDrZbG+sEy1zlduwLPVz3ic8ybjBFYQA90ebQcLg00p7KpwaT27RGFAmrcoaqmlrKoSOLADTx8ykOfAmDlmuKz8rSVKU0D8uovrl38By/9B6/8t68cl6MbnJBU0e1UdYIUrPhGLUkNKcSNx+1ee1lQCmid3J5rXh7F3qSeCy0OcNtOReWm6LEKCzkKpx9G1ZIOsClwWklq73golDc45hAHa24OrAOHAOqgdhPrh5EmDdtYHTaJmTwdYhk1mZC0QcMzhyzRkByamLnUSUma0bA7yL7IiXj2YKQ516iDM1bDwTCA0S69As5SUgAGX2Q+xzGGPqYtA8hM2GRUnKJ9m7+NS1SrHC++kia5ieD+wkhwSntBNhMwwbO5Kf7IExMxBfMl7k+KTmEHmhEFzKFhVrxagNOaULpAIGAJzFLNrGx6UunLKgXcMVEUqapefTVMAexRZw/MeJ2DXUJEJHWGW+C1NWJif92zMDmq/J7JaZtm1JJFUk41bWhGE1YpLbteJgU/Ay1pfGR0Fx02oGO3Q7Nt11JRfV1WvBk1Yw8rIaUjf/S83ef9sQf/GNKE9Fm5m2VC0wBw5EYdX3rlpd/70u/9i7/4F8+tn2NmIWnTiBMrxtJLVcst2WxvPH2to9gCWpDbcv5hz7vMu1yeRdeQbZEAD8yTlroFuSFyKC2fT8o48wn7IfIuuz3HW6xQ8VLUxiZ0qXRCmNeaphGm9v1NQz1ykuDIu0Kp13jfSj1gOD/QjGJQIr5pKridAfMAg7eYPMmh6GGlfSfU4aT2NaweDtnlHeaLTGsUYylbwFVgRHAl74H7+6za/QVIicHTx5AQeIvJkb/ldVQZhIggyKGbcBHd37QKdYKee0mqoHXiy0zrhCXiNha5j2wocJJmGlTYO6s/YUu9NqTGwAi3ZZK7AqFkR9xXjdKcht3B73s5keD+Rqu/3lmnYZ8J99eOWv5KgActiK8wzesdmjkpm8dGvsi8wWH2cSUSLIrSaILiRh7VuNhcAIGDO1gefPozP31nvhN2E54gjLPydJZpTQNgoMGr/6KP/KJby1tf+R++cnd9d+ZmXv2Ec41OgvdedjLHyvG6dbwoSw1akLsQ6UCuih4qX2RyhCUQYgB2a7xGtzlgDijIkTvvcB5yKHJT5IbIibSbv9bQEhMG8DrzFrttx+sMhY6qojHrLdWnbZKrQicUJ0t6c7VvIl833JIYcjK5q3gzABRu1+mx+vd6vpDOHwy+CEnbLzsuHgBoh9yewwHkhsiBRFz1ymCVfRAU8IyGc4M752iDwoL/+JSDbimug5Tia++y+7vtKjlIU81R1QotaHCDLEVuiYrCpZWV/YO91BMDZECO10C3tEtA8vDCOh5N242r8YNhQG0asqiwF9aHS1NchWDsB9G/H55lltaGwGnmoN7bHuB2nNwSORRPHg69Ak7aisLsfVH8PZxSCQHeY77IcPUOzVmNDWCwf9zjMrDWRtvK8OVB70fHQ8eU8pctNhNJE8hiWHzx878YZ+UelVpwdyXo/x/57R/5ql/+KjC2FlujjkAX3bZF67+J2qoj3FHzRorJ0Aa5Cw4UJ1fhgROo0+HigHl0rouHjjpm7YE5MAAOzrmw+CacUKKieqJ6pHIkODEeA6JBhzl4jWlBNCNiKtkBWTVCrXzRUeWakKd42of9VNg1eKApngz6S6p1KkWWGXblc8wbjGWcd+XzzNsc52DTMZqtK2DRMitokUORffH7Xo81a4vqyOqoVWO8kQbiNeYddjuO1xgCGaVsl5LEn95S3VeecZUWb9GinZy1LfbqrXF/rc2eukkLcrsOI3iLeY8zujSfadYL6HAnKIMNYAm9qbIvcerL1UBSB1seOI0BOl5jt+t4j2mgkt4CgKDXlQ6T+8sdnUxqxKatSeRomXgvNONNNY/hgWF45hDss/hi0ay2Cw4zQhJy1Kscix4oUK//PUUBawGsVAvx503mixzT3nrGz+aUhy5VVNwDrmhHNWQ89ZT3Pme7uC0X3f2wNmBMDo0HK99c3vykBz7p57/w53FW7lG5jaYBMMo48PBLj/zSl/3Cl73n1nsurF8oCWCNc42JixgOUi3OrKVLSY978C7zBS7SJH9OICruisMsRckn+SSdzcfMcbPLvDgG5SCZ4LvQQBjKwenF988xmSTsStTGWrIKjPDXPca0jger3RrUMiu/QdO6EAuAVRLpQb6QJlGTlNQT5V1255yMgv6cSqtmGJgDDHLknAsXcFBRPVI9VDkUPdGywX7EF2hOtCDaIF5jmlPIpAj4yXuaNWMhNwU3QQMRUzUN/nS7v2PcFsFdcjQnnKRjrSHVqGWSC7GjBTBEtIS5Pbkh/pbHWHbQaeNFWfsS0YJ4g3mX3bYL1omMIuhwck1wgmiR8Ao10yvgzlBrrCsvfuViTwFvM68xDRTd35QDVswmb5poJPgGMABH0H31N1NumI02WSB7dZjjz5vszjnaIiWNcj9X9mY4TIKfP/aYw11ypadSD5wU4RASR+PXJdxm1DQFMylJ0pG7fnL9Rz/nR7/go77gLHR2r8rtNQ2SZ/PowaNf80tf8y/f8y93F7vsWKFxYi1En8hsbCXJ+YCRoY1FU94ODOCLzLtcMmhrZaMnKirDlQEzVEEwS4KD2QAtlMbsElSQEGhOwZWp9t/NlQFomiFAyuXNMAPw8De8HmsJbfdyZEoBqykVl1q+CoGvsHd12HnXsBk89FixDXfeqW9drsoYnCHoVOdcrqaiQeoRp1PvKFarzh1Io1nSVRNygsfQOlKA3BK5KczMjiMqng7314M2k/ubcXIChboLjjfYL32hvUlNM0NYxRndXxdPC9WlypFEBZyPzU72EA2EOXidaZ14jcMGRTmsF1f+onWk/DVPS+JhStnkcor7a4k2O3m+G+hEM7zDvMNYAksgnC22Vdzf4O9Vo2bRMgALgMGOeWA9Vr/v5YbIkehojDYY8KwCdkRr5LYc77Jbd1CIl+Jc9nSelUdYeDCqP/a8l0RBr2O0/A0p+PHZpGniqq9c02Pg4erx1c95zue85v/zmjD3NkWIZ+VpL3ekaQB49WHD7R/5rR/5a2/4a7Q0EfnwIpjN4W1+Vy/oYQiOQDvEFyvLq/2MgEBORJ26Ky7WQc1mlMwuy8YN69qmjeAO7EGbFPcvkRbImHPc6KpUUw/U3/IIYoiivWuRovaImv5sq0ZeoHSNtshddhhSLLHWNMEGpC0aLgzBs2lRHbA0N61oh4csbuxk1YJpjdoUMpTuazq+rLSFhFWCHqrf91CwYyKKjuOH1v3dYz7P4bpCywhZCl9i3uCYx9G7v+E98+j+MnPQl9H9pTSlgRjyikdEG/gjhedZtITDuI5kSuv76x7H4IHj4Zu9sqEOLfUwFdvE7p6Z5W/ywnmPeYctQnSpIb1FvFGEdugbamHQQI5dcGVooBh8PlQ5ED1RPTH+d0DXjGhOtEG8zjQnYsoLWVSMUdWotyk296NXr8OVIWYNNMrGcIH4tEx1BEbwBmNAWbjqAQ8ChayQ177ytS+58hJRuX+yzm7cuPGWt7zlkUceOTo6utewPC1lbW3toYceeuELX7i9vY1TMgKa4sgtZcnEB+sH4+Vx/WDd3/ByLMEeBJfs4Wk1k0kZkSeJibfZXXC0SXEtcSjZENbqL8/YH3v/pM/5AqW+q01FJL7Nck3r2QJJj7hoSelNxT54k3k3zVvakmZBq5cjsjet08CDP/J6rAB00CKPEA9laWUHDMtZiY/ocPAa03niXY4V+iNVFFC4mfP7fhzGaMOie7+ZEG4f78coHPB+BH/oQaAF8SbTGhU4U/eDII7rMxqNLqA5DTsxkSn6CgDLB+3+UnJ/H0g2b5J0yNPLDqzsH/O4BFqn4hU1XQ4U5CHLZENYvNlPAHggmhOtUThCuySCWx86d021p0O342Rf/KEnT8xcdvCzFvYUqGHivTVQrPzN5BHyzrc4hkw1sgaB5CnRpfIFzvCUJmzrsxhlDeJYl4oTiMSMU5qTm7nIaGFYOWm4OLbR/S1oz4l8E+3VxgeS0mLSpfprhs3to2ZoKnONUAKtxgFix08cPPFtn/xtL7nykvsqbnbt2rXXve51L33pSz/xEz9xfX39XoPztJTDw8MbN278u3/37z790z99d3f3Tn2aYA780pO/9F/96n+1Md8YZgMEckv8NS+HoqO2saPOgg6UQUy0ILfjeJdDfpcffWsGZqtEDd14qFd/7N05R9tmgtHsdVZM0Wx4Rm41b8aKVnxMjHF7Lm7Cn+33LA0b+z2TtQIb0BPV6yqHEjWZ6+YkUEt2tBa3QnnO7pzjcyxOqj02pAY4Rbd1VD96d9nF8wdhpHPGTMPSvUSz70cyMH1UG7zLtE7FhEdUh2WrjzxwKagYbsqhyJGU7Oe74P6GIMxSRYSvMA1UznBUgxlnCBVdqLMZoOwzBZWzTrzJGGpZn8AW7SZCjL7UQ/U3fXhP6/6iKGAgOlhFAUsHkqVkD9ogvsy0FlM0K7CDB3As2MJwYSiunkV1+DvvOLfRvijtRvc3B5/NT/E61Z/Mqal4J8MZeHz0GOEuOlpQYYF6oMPBUZELwvzlItlV6ePI3Ti58aqPetWPfO6PLGU58HCf7EBz48aNn/u5n3vlK195rwG5S+U1r3nNZ3zGZ9yRTxOmZI798f/49v+RmQc3QEADDeeH4cIgxyK3RG6JHmrc6qNRXsEfX3OBS3mDycX4Q9y8y1rHZPYltI5O4MuB/DXv5i5YlzG+kQ8SJjBYKYqwkNapaT+lkqmcW7EyheIifP+EpwPi8xy2STYuSSejs5MUYg5bNGwPwSILS0cjDDaZuJFl4USAYEhusdtzbtvRQH7pIUZR2ZKxRCkybs8ftNqXTDWUye1K9WaEZPs0XA+Rb3Wp/lHPG8znOAY0GjC0hs2IEt5kPsdhph3HyYn8wNzfHXbnO/c3u7z5JWFfE0fkSZ4Qd9lV+lVXuL89bptR5igQ1ateU7khvMm8w4WEABAUaRX+5Kh50IIGHuRQ5Fgg0KFsrRRodUIB97ZRfnkQqbO0hBbJvciuXj4LNYQEbnTub4OZzBofKvc3jBKxV4/blszjTArVW1o2tLWu/6QitOEKiXdEZD6fP0KP/Orjv/pJlz7Jqycic/75PStvectbXvrSl95rKO5e+eN//I+/5S1vuSNNIyqO3A/9/g+98cYbL65fFAg7BqBewaA1GjYGXIonQYU1KEChAB44BHwR1lhJyjMmENIKO6rFljU2UUvMGQjRcyciZkZ9oEBeNh9gIKW8xlu5DjGj+zsABL2l4/E4XB7IxaOIo/FONYmHMiDshktKxEQb5LacepUDkVuiByrHaW7ZFkKcEVkQbzFvMM854CcgJ4bdbKTOXhvk8MD+xPunvDuflpW4xLTJZLbeXnhJWIUTxWJizhIOytJ2BjDCMgs+z7yRpmobpdt0DSnnbQZ30c3Oz+Qgub/Hd+z+OqIFDTsD77Fbc6rqRx/f7KeaNpE0nvF4NMpV4fMJYErq09JSQvTKE7hdLeaSGSQ3RG8p7zFtUkFIOH6mhwrmnQQ+z6Sk11UORJca4s+VPWM3ZbHOhLmjquGAIj7PYQFARSfWXEvAu7kbnxrDnEoMxuZOzVa7v1RfwMRjh+j+6qH6W75yf60ClnT6ToOTTNJNFJEAhhwKb6UdKCyFCBCSLWEYOf8k6Y5AnW6c3/i167/28te+/L9/wX//9S/6+rCp4z2fqnnkkUc+8RM/8d7CcDfL7u7uww8/fHtNo1BH7vHjx//uu/7u1mxLIEVSJNkU1yETMAMtKG6zal5RtIsaCsNUfMkWK4wIUPAaYxdwIKZg/lQbeTVckdoKBiMLxxVnqP0nSQIFyS6eg05ofHh0lx3mEC8FThiQMpeGZAnH0Q9QBSNMwwIIKf8yCmCCD45oSClPCvUac2YIIDC9f+cPxl4km52YwhaTUQGj5uRg5IZdWJSEJNqzWYLkV2XlOgeW8I953VO34+IELwyfp9eWMos2dTgeMbq/RxIV8G3d3w3iTeb16P4G/GQntVju1oSve8ozln2hBdF60rIBnqSAo64hQOHgwpsDeZdpc5gmYIiWoUv1j3naJHfehTX55RhNW6wCkJQKOJDbdDSSv+FlX+RI2l6g5ougXUIAwKXs6l3HM5ZRJujTUmnGEoOY/BN+uGJWdH7I3d9N5r3K/VVS7UP0ZAjG2pcZZg85Et7gFgCYKRlrATTh3wHuotNBt8Ytdfqtv/mtv/r4r/7gp/zgpfVL93zC5ujo6D/XuZnJsr6+fnR0dHtNExyaH/3DH/29o98LDk02BoHaJKFidJTSuyk11QVdMT1nqPVTC2ArGuxlWhWGObNFpoa3YfSNpO2w2BhEjbTKKnNJy/cth8sDzakk/PSd4jqCl/nWJ5nICBHtSrmmT0werS27aWxQh+04QnBbjnZiihQTTyjgXvuCgrcX9y2F8Z84wh8VcDABBxCRPCV6onyB4xZVVHRnERNBSw1xmEK6c3R/12nYTO6vhy5NnndA3oxjuhehml5O5kIFp8UM6uEL+6u6JA0BMJg5+J3VI7lIwkmYfufUkNSWfqaW4P7e1PF4dJcdOYrp5lhB/yjeQ2iI1mi2OdMHkvt7a4X7C8CB50xrxBsc4lRxo9hgvVmyR+qvrygqgF3c3wtPm/u7L3KQ3F9BiD+jIenMSlRDruFe9Ob1ULFWOzRZ49o7qPs7gtaJLzE5goewALi0eenfPfrvPuunP+vHPu3HPu7cx91zZfNfYLmNpgkOjai85n2vWRvW4j6bHH8r07zUkQ7VhGhldE9kVnD3v1JyO7aivAvCtHC+FanNGwKoSd8QE4PL+hgLbZJQEUgCBtAJjY+P7gFXSTdr3w1RanPKvymPW6iaSZdG+nQ34z6YmnbBsZXFPBWk3iZoKwCRklMbMWrRUqdLEUd94+FL32tDuOCTQTOSG6Ki7oLLq2IL/BmlKU5Vub+UNCsl9M6N+5spoXF/YQAIYqjClLmoqYiY3CVHi4iZoH5barFNhAHUiBBVVZpyf+3kkAJz4ATje8fhyqBzjZ5rM2RZJs5qO0mjAuZtdjvJ/RXIMrm/iYaLAtakgH1EY9hsv3J/G4RkYuAY4H163d+FcX93XUzPbmynKTuqAjX8PUm71+TEAXQ7zTR4FvA55otps8TEhiONF9YvvPvWu1/5M698zctfc6Zs7n65TcgyzFL8h6f+w5uvv3lj2FBoJTty0Y6yUf/aF83/a3uztnHinY0ovJg52LyR+a09myvnoHOWyOmnyFeg9hGrbFJIgQcmT/7xzsi04pgAcz581VwuhtunsYfagbM/NZKR668zYCuKDGauutx/bB8tSMETQieIcx1XXsJzln0Zr45FBNiREoO9Ir1qVGThbvP38hEpqFHUKeD2JTT1cgfsIagZZnbsYlauxQ8ZZNYIIWdcH5Pc2NJVaG4GAi0fWephjO9VY2ppODsQbAgYQEi19woGZuAt5k3mbeYt5m2OqW4EHdPR0RYkAOFIvAbJFo2GoXiT3SUXciPDciJ2HNcMkXltjQ12XLS1pV5OeQfO4GoADSRPyfj4CEZU2D14ulrlAAibSI3GfUHMZCu4FSN5PDDAPeT4itkgisvfE5zsru0+evzoq37mVY8cPBIM6NXNn5UPcbmjybGfet9PnehJjG7bRbaNGLEm1Sk0ZItG57p9xMpcTRuapdBQ/Ml++tJL7VAY1XHlzd+ORXnGeqhyVYp1b5tIn7LtfF+h7u9KUM2vOV9uoqblTwdsROFVwoncicL8LE/jjWzErUcC188y3MzpNZWbNU6yROCJJqprre80WrBHl6U4rWtQdxGuN4FF1HZRAWcMcJ2BRlOtZzcoEYuVvOWpDPkAIhofG6PH1kgwTYY/RZBax91iQ9uM3jKbZdWesU6qeGCPGSQkA1gH7VKwSwYegv5oSaLXvhkhGZUNjVkKSXeC+zs+PoZz2QvMqLlAuzsZG2qOAwjJzWIWG+R5oFFB4Is8PHegXaqMFZRhIqYllrtru79/8Ptf+nNfeuyPmXiay87K01BO0zQhdDbK+O+f/PeLYTExKtZeQx01UvOx9RvCyn71ZLVQXIpuMzFx4YdeME2qHG5/mjCNMSWFE9fRjGRf9ChNRNu5Ygr/m9BZD0PPYDTFbEYQ39H5gwqspekQMiIDBv7JMglh0b11zR4hQY4MJE8JTkx4bbL+JBi9Oml8Wfs2GAVMGhbDTnTK4nARd0aIs0RZDlp3EHWPUF8jytYJu8qiwigbckRK/nE/TclUS+c+wmm7rB1gPbrMT0WOnzLi98799dd8ZJzG27M9Qs31uXLeHSOknGlKEpTS3+HSsPjIxeyBGblyEO0EYAQwlrq8sH7h5x75uW/+tW8Gzg7fvHvlVE2jCuA9B+95z+F7FrwomYXoxJ+llV6d5GIVEgCFkgrkNpbFPDoiTMY4xRSXYrVoo5o5+wCafYl9isHMAORavePLZLCr77XWIGW2obqOZbO8IwumGDKXeZccwbU4O6VQh5NkGreTGZNPMUK43z+VDEu71CPRFINXDkqvQfs73dfKoZmkLkk7d+UglQ0HnaKALWVaZZP9PKulOtQhxVr1OLm//fspqvPK/aX6QldDWKPClsiYk09lKnXAZuKju+v+ylXxN33r/mLKEoUxPQGkRRGBI7z6uMVcXgEqoDnNHprFjQHR2gpFlaKAtKTlpY1L3/eW73vt77/WkbujtT5n5YMut/FpALxj/x3XltcGGpDDwZPWk9Efq17X16mM98lHXJq6zNFt7riCOvG6St+Yi7Yvli7rxwlEjvRI9WaaH268N5iLScw0pjq6O/XXYLxPrAG03sOsCI7TtMsq8dqJ/rBGMs4t5zqNpE4PEhHPOOIkA2Yz/VCveD1FAefwCLo69VNF+1oKtPjnZJcwOY4nR+Sw1W3KVB17ROmECJtSNnJD9DC5v1mkUsFb1WIDAEy2/SnWFzXfVvSNDGmtJbvkXrm/y9XCprFNGz0kcXomZqBImc9TUXfRxRwHNllzfdfqIWNm59w3/so3HiwPHLmzGNpdKLefp3nnrXeKSjkJ2EqHpjQmf1+sQNFoqhQhNSlVQ1yK6uSuXE5hksk4TH+HptptKDVJG7kxfYpj1dykF3IKZrJ0NhWK8d7L03CdkruYVxyQk7m96XKDB6OiyslXvbdRK+mCE4a/5sveMDpFUKuiOo1J2w9E3euw2EWhbT6eBWyWYll5a4bJ0qNr8j6lV03dr5RNuhm0vlyVdr1hMxBd78pX+/I+NtCHDWSKtKyGQ5fzRvfC/X2yc397vYIkE2q0eE07NOdnCfDgLR4uDHGZEQh9ZsSKLghka771m0/95j966z/CWQztrpTba5rfv/X7oKkdRLBa3/RlymbJ+5K1UzVq6Kn37qnjVar9jEYEoGO8IECwwp2a+kpEcNCl6lEC1YiYSgE3GLit9qXuJzXGu9RoQYWWKDYmJaa97lGxoqetVWif6uRs9DJHyK3plYMTSquBoTY7qgrNYkk7d4XqfnkVFfc3nllAxiczkN9mxFGxRVj7UrWVr/tMLYAc6YnqvsZ4kV1v1JRV46L1p3mkkcOkE+aPZRC6X91f7QYxLP6vey3p1L34lFkQOntoFo+9SEbwdJLbVB8VujHb+P63fP9jB4+duTV3odx+5eb15fWeICopgNW021v69avKIWO9+Y9uZrIv1AlBdMw5Bc/KzalytRU2rN402zHZyhYnPTZO175138Pa0ol5mlzZdTIOHRIaYKY0Qf/+uIq2MSqpfpzqj4PeVGyYX+OLzex9g6Lc7iqowk9Wfjbu76QNmqilHJtExp+wiEJ93WjfuulqSY1Fgpr6+VUMElJW2Re3PrFcI2rfOyGVVTYcVZRTtpFtauY6d+L+outdD4OJBxKRep0mleY6GCUgMPx1PyzS7nyW+Cc1a4iP2e0A8uFVBHjMHpjxDseTUnHq/uL9+BKUdH22/u79d/+fv/N/fsWLviKsT+8wfr+X11597dsO3vb6G69/28HbAHzcxse9dOelL9h4wcvPvfxeg9aW22saa0gqVFQY3IZ3Gh6ordFq4BENvUrWTxp0KGRRyY4OvlbzNXrR1tF8g8LK51V9rog+v5yhJxpXk9WQq4aNPU0XJqFF/WD3Nx5B0ll2LTy0IvsOpqd2Ersfl2mgprbt6tfH5W9hTf1S9VBpYRRwIzVgxqgBdQoIwExXoLxqIvnbNhRW0VLt+jTWA9dLXycVXn0zLJEpqyNPoZks8hz0RPVAaZPiQBgF3HpmvfY9pXSWRwSsRziZLt+5+2ub0BXVEPEct9vosdeZaHHfzBOVW8LbaYvPTsdU4Y38sYuuENUMr/Pw0DCRTd6DLTUwqU5YGL02rP3E7/7EV7zoKz7s1MxbD976te/62qBgcnnD/hvesP8GAB+38XF/5yP+zgs2XnCPoJsot4+eefWkVKihYXYxjnAfMu6lRrxUqDnSHFMPahfdbngJ9a9Y/WvDhwpotzKjh8GIgLhdR1g9d6yxU6l+ObwLXUPowFaDkMaZq634lTyfJFeb/2PrYGpu+RQEnlImZV8ts/Swey9FxFRNnx4P13qkrAKGTru/+cJmPa3Kp4KRgz3S7DuNUl+5sMnWN2/LgyK36iO30WnyXjKixkB/s+Yyzfv4NdjINe/Q/Z10aJpSg2Q3sDF3Ozq0n+D+5lSvRlxoHObyNQNmsgAgwAy8yf4Rr8daHTs9OaaNmWvqiMjGsPHrT/z6rz36a/iwmq357vd+9+e+5XMbNWPL2w7e9rlv+dzvee/33E2oTi+31zQDDZW8gHFp881enFkNVOuPfGLjhC3WpOugUyG9UdnI00lGRXsnzi1PipHTfRGCHrVba0yweu5+7lE/ETolT4tD078Q1QYbhClWz/WtWDldu5hWprXv5ONBWyNOL+uRlqUPRg5WBKC1udAr4HzfkpashsECb9CycgSpRmn/Ehiq03yDTqvZABNgUArury47vYLaVptUNv1r+78ZyZNR1gzMbd1fWxM12ZzqXU27v6vxEw21peqhTgxEEixV78J1TgSgqDvdeYcZ9Fj9+7xcTznlumJwJ7ucIHTOHYwHP/3un8aHj6Z59bte/b3v/d47qfk97/2eH3zfD55e5+1vf/uf/bN/9sqVK4vF4nnPe97XfM3XPPXUUx8CKLtye00DtFJAYHbc66ySSvR30iTuKGWlfE8fZllWFH+rbC5TrX0J6jvUVqhycJs3NPwczHOKsYJ8brx9JG7H1KTm9+qk9//y4yLFN5qcuFLT39tGorJOOkUB2xfmLvSvOqUkWRYOAG6QXJ2KmLt/ugKW6g0AlLScutZMI9tnEyEX7btK2dj3a1ezJwZZUa2/mQNWCfPF1TNU1x6dWVdo+KXlphqqsqVY82u+vj/dXzVkIKUvkYNsd7T2Zga4y3Evu7CezD/px8fHIIyq/cX7XnS6k4hEZeZmr3/k9QAcfxgE0N568NafeOIn7rz+3/z9v/nWg7eu+vVNb3rTJ33SJx0cHPzYj/3Yr//6r3/Xd33XL/zCL7zsZS87ODj4UABbldtrmmetP6sXvoH3++BAKy9gfsq8oTWz2QqYoIwqq3VKe53GErr60z/bvMdGz2Ci/0uUkxwT5NXxiI1w7927BmPpkeLnoauT7/SaVSe4qIQdJrtW65j8yHQiU4+ofNs4u2WLqlAk9ahxfxvg0ekMg71w4GnJPdLu2dRQ74tMwGx7ja5FW81cl227GsSs9mlyBT3WvlNtE1a2rtIrHZwlnNjAP7mI5z50f9H2sdBJR0XBm6E1Gh4a4nlreY+ZOem+jo+OSvWOqLlHvRlh2lTo2rD229d++8mjJycSHO6/8up3vfr9feRr3/W1q376q3/1r37SJ33ST/7kT37GZ3zGC17wgle96lWve93rnve8573jHe8A8Gu/9mt/4k/8ia2trcuXL//lv/yXj4+PPxjIb69pnrn+TBUlpcJpkiauNZ1mO5mMm5gnhstCumJjhTWVJ5l/Ffk2X08RGQ1NwyREToKNmmNhZmKCf5OWLlvtKCksOM1yKwRfQGI5Kbmp09j+p8TQV2HsFP5v6ojJJG7QQtPPVjvMnxhQkYYeCnTxoqxa7N9etvZmewOwduCdAnb+qT6nq+0X1ZAQigs+iYRGUttCKV2qBltr7QlM4cF+Ogc3m2utQ9M8eH+6vz4FFetelylbMSAlg4nPsXumwwzQdlMfmpMcyvi+caLRGuzKtIpkrgMPTx49+dtXfxshXnMfl9defe3bD97+/j71toO3vfbqa/v7f/AHf/Brv/Zr3/iN32itkN3d3Z/6qZ968YtfrKqvetWrPvmTP/mxxx77lV/5lZ//+Z//+3//738wwN8+9+z5O8/f4A3vfTksNv6v4S9JWBFuhE4ayyB741kajdCZFI6TVI4us6u5OKUYbZHBjnxyumZa8TgASNp42JmfBGAICSmxxHTSuD1UD7NGXrLYKIZzI3C1BmOyy73oPEUENAIOic/pVLGO6aHJN+PaOpd2QkuSy6tnMMQsgbRgTA6B9X1RI6SH5xRZP6mHTkeR1jJ3cjJyBczt/bT7Ms2owKnQsCG61OnXGTbb2cbJ0Ki8i5ppwgCTiraRsP16mka5TvauV8CT55tN4iHcNpV1qeEEBCRV6sWX2JedlVFgAXfJ0abZOjP8deVQUZ6zP/T+Cc8XuVgSDZ13VB2cGEfu1vLWw7cejkDeVqTcu3JKHOy2D372uc9ubr7zne8E8IIXTOenEdGb3vSmnZ2dMH/zOZ/zOW984xs/sNZDOU3ThNziP7LzRy4vLj8xPjGjmVJaj6YAw/qqIfsZHA9CRxKeOX5aTSE2lN3MXthPMj3ikYuhyKnOmOHqirY8ABQfeQVLTAqONqiVoQ2ik8vXGIDSKsG/rGEkQCAi4U6e/J8IJ1oY1LCfATJo8XKH6jqrkLOi7+VM7qZyU9/AWTRltt/zCBqFKhAGB5qJFsOk0ZDEerBLpt3fjA0LjHlhMUm0a6Xp1G3Rkka9dX9t/f6ppk5O0uXUR07MImYL8CaS2YCaGqrUzJ3I01VQWUK6rXXS1NHo/qJgaOrN9Ttb93eRxlFQtKalcw/MMJwf6Bwpp4Bb4DWfstU5CiIo3Nz5m15mwttc1iGsYqjwLcklIvq9G7+HYBzex+X1N17/gT/4jPbmMAwAvF+57dvrX//67/zO7/yDP/gDAFevXv20T/u0D6z1UE6LnhFIVM7Nz/3R7T96NB4F3rAxNDuVp1CBhGltQQmUZd7IhFUFpmRKzTQ7eQAVa8FUbsIO6C7sV6CKbttiZ6qBqqFGE+T69S6zVeUknkQlHKcRJ/xFxUue+Y8osrNWMO1mVIuBylSLiLXqoRE9TcnPNgD79DoYhrdPNW8wyGmzKqTDiYmNiErsvt1ZJPfOx9XgKurVV2iZzI/A6vtZ5N1W7K5CVEZIBgNdW/3LtXQ2iksFxpq0UrWY/SidX9IDI4WYKoAa8rafU2KtPeSn6Kce1dn9xQfn/hpoRUwigES8ufNu8TGL4fIQ1bP1hmn6wwPLVdEjrYINkz5081fh5cNgn81T0ppPL5Mxt4/8yI8E8OY3v7m5v1wuAfzWb/3WF37hF/6lv/SX3vWud73nPe/5si/7sg+s6VxuM08TaPrlD77cj56EKtGAWqykkHoQf1nHtNQ/ya5WxFvGC1QSAsKW55vHUTeB+hpZKlfx7WnJC3PR8DCK06CqfvQVzLZdKSIqaN+ogFXs/eJaSdeX5oWoVXIG0waXdMWn/wnVe4o8RSeeesBKOU6eTgAA83RJREFU2x1yQn1vqMK8JA+eQjNCovRMChiKMGVVda1pdLU5UrrTn/47KUYbzFjCM9q9RDVzsfMfXROt9rUw1wQTOuvFi5fKCDMXkWSsmgmI9HXHm1Fo+pjx2QB2eulIpfzyQbq/iU6iVSHJDE1GDxjDlYEGCnuaTagZ1F8pbbBGkKfqkwVWEH9jvC5leTt0fBiXzrIGgAcffPBlL3vZt37rt1q3Zn9//4/+0T/6mte85ld/9VcvX778JV/yJWEn+ze96U0fJAy30TTBnfzMBz7zyvzKyXhSlI2vCdGbKEFmKkFluvb013xOoYycVi21ssFEzQmrXKPIiPK9E0+rGm2ZxOrUZToAsbdYpUJFp+YMADbchLpdK68ne9Qr4ObZVfgxbUV2U2MWWHcEU2/I+AxNl+id+tGXo6vUEElCSKuA1SjgvIEmbuf+wsDTKOBOgthRmxhidMhJ94PGmo6bNYMyScz2vp+CXxJtpIlD8dGlixl35mtwxItBMGm09bBp/j2qq6rXTb9ssei1fflQub+alKhoWTNgvFt3wdFa3O/1Ngd85L8EMHhgORHZNxvxSdfNhqkVAD4s9gj4uI2P+9A++A//4T98xzve8fKXv/y1r33t2972tn/5L//ly172su3t7c/5nM951rOe9dhjj73tbW87Pj7+pm/6pps3bz7yyCMfBOy30zRMLCrP2XrOZ175zJvHN1l5Qg7mYtmpifnYOn21xqHJv9b6LE7j15KlfCZJSoxh2AggpLYaruuERXk2fMJMvoeeaIFfU5zENt1oX6273DOqdKZ6g6uGe3UFw9fibBo/QdKJxohiv/alkZswr02yuKmpqrKUttf1WJTKaSam1XNT3lsFf39hqwVARCtoe7KxHkzX8cooWPVg84b0t1oASBAVv/TFWu+UDaIFJSHmLCICCRN44abmlSLakU2D1d55yhXvN/dXQ6hdCsASYwa0oNmVWfxK5py3/KzxYxoNFA74kOuCpckpmOp4Q70rs8Dvp/LSnZd+aB/8+I//+De+8Y3PeMYz/sJf+AsvfvGLv+EbvuEVr3jFL/zCL6ytrX3qp37ql3/5l3/yJ3/yR37kR+7s7Pzjf/yP3/nOd37BF3zBBwz87XPPQvmSj/iSn/j9n4hHnQMlpUrNwOeiE29oFU9Dx9IRq6TkLirEIRACkdBtFuglwIIdFzi53LdNNOzRKMhkeLZ8El56qJgDs/SI3VOrmUFFl0fUQ9uID0zBlqfZnZGJ0GD9VTPtzfv7r2rWAPU1ta3cgmT9SwOkLlWXGo8MCdB6k++kyS7uUdQ3bbFhG0qW7/RTAmVVUniQq/MV1VyHN/TJXWZyZsI06YRvc6cK+qW3YYQulVzaW1MSQrQlmLh0LP7J/2nV8Rra8plUM5nOOVrxkU7U4CGzcNOvhtojPmqzIOG8BalDgnV/AXjvg7kW65itM4fnDJghqgrUcbNusMpPQS0Rhd0/ZV94l3tI8jA1Ps3asIb7vnzA+5id8uBHfdRH/dN/+k8nf/r+7//+7//+789fn3jiiQ+s9VBuv54mnLb9KVc+5bMuf9aNoxtOXTRaG+tbOm1hf+pja9rdQe3NWEMeSeiHMEAKvUxYcxqdGCjUl6mRFsKmWPaAeRXS2sNGGnrAQ5eqx1r1Dqtb6RtFh4SeURtE9apREfMvLDYahmya0+TkNXsCWcExOY697MggZVE1Qo+Mq9cMYt/xnmwmkYP6PTpVpwYPMDPP6LrQWf1Nv6og5wqBNYElqZUNJa/6pM6t6g2ayeBzg8Ma1JXeTN+7+8z9jUjO/DImXHm4y86dc9EIQFIe/SrRycmb/HHQg5SuhhVds18Jz9l+TtvE/Vc++9xnP3/j+e/vU8/feH6f4nz3yx3tRhOY55te9E1rWIsz4Tb0PPnx9UVP0JaFwtv8VAVpiSNb4kHl6KhRbnpVb8LcEueWK95o+KeX46gvJiVOfhaQW4JlAl46Bam1BDldjvRd7uWInwJVoCnPrRzm0YvIrIAlYizmWEvpTqmcuzkpatEZ7+F6BDQtAhezzbvWOdAVbU0SXC1GbUMNwTSYzKOGtKy4txL6RhNKc8ys7KXdyGL7eE0nkyI1Cj6BHmmkk4bq+l77mrkm6XaSj6wY7Uk6+2rSrbPuP2h/jbGBD6H7K4blEbFEcxquDI3vMhHynpywyd/yBmtHWgJo9VCG9JNw7dVvDVvP3Hom8GEQQ/vuj/juu/DI01HuSNMwsVf/ovMv+qsf/VevHlydYdbqEl+7OB2pnaaTrOxI1+KlzC03Zkgy0GJoG5KlQ7LSJfv403rC8nlD+lr9Womqhj+DBGEFUASrmL5IrTsza/UadFID+Q5FvWRBuRm7nFKV4ONEc9a+QQvFvzAh8lVSuNE9Nceqdi6UxsiYepWbUnXE1y+Ruhd9931Xs69vsddsliUVQlr3tybLmFAtZcOLKlg6KUZ7/KOI8hYnAZhxyv3VFdoXU3fQ9b1mivJpLDZT7f5yf7PcCO9xcDvOP+rlmsQDuT/gQgCnDdY6JBSPSkCgpV9e3rz8Mec+Bh8OmuYFGy/4wotfeOf1v/nZ33yfnB1wp/M0YRXnN7zoG37x0V/8jWu/sb3Y9hRXQhaa8DV9WNvEXtQisuJJBRCnCmkk510Vzs6LRil9rbemr8wfK3dssazSaBdUFyoadhOtiJVKNdoid8UBwFXzckqrl21WDAzYYjAj5qdJ9VwLLK+ePZNLsyBcvSqfARVXStY2eEBO2W+jEZT1EExLEDNAlQK2fQ8Xi1qA5tV2VA+HnVXq57F6hDTANBUkIT/1JeyFldcYkiekg1XC8SRhlOMcSZ5LmFQzUzKruVlEWEYLFbNdDsTNHOb1oHN3MYkKmHeiBsPSrZpE4TGddS1pVk8AgrKKSsBJux+amcqKKNLIXBNOHurrKcWW0dLcAepjzYKaueDggBPIk6IHyheZmODjOMVjePp2u5KXiOqxlsmemq8zkKx87I+ff/752/NtUYnnYN3f5bs/4rufuXjmnWzn/M3P/uYvf+DLn36I7qjcKWbDKs6NYeP7Xvp927S9PFmy8ESIzEqoxipX83WFVasakzvjLMhS2xdaOrYWon2P1EZ0Lo34PlXNRFPUZvpngT4qzYgfZPdMBwc4YCPtTyMGTguk7y4aUd4ETHzdF0nBoLBnVCf6rRTIoiEs18iLastErtb4R40N1BeNvpE6yJ6VBCWpSuAHmB9gLIBl3WsxZmyDedSY9zUGGjBqklCvspT2hRYhwf1Nm8t58dHR8WnhVzbYUTeXAWtopidpTSJMTF8y1XEEQ0kjnZzCGs2vlr+aEZEOnsZ+su839H+/uL/h2oPm5K64uHXmDFhAD3V8ZNQTDXrRWpN3WpoN1tInjHVGF4FGGT/lGZ8CfNicGgDg1c949U+/8KdPmbN5/sbzf/qFP33/qBncuU+DFEN74bkX/sNP/odf9PNftE3b7FhEqlxDMnZrkwel5m8j2RMhhuVpWdrqkdKMqhdKnciEZBblv1o3lIsVAVp/rCZD4U/J+xobBqMZDecGPsfiJM5kAtiALpWOqOwAqPWkpa7Izesle8aGgSTHdhDmlhcJG2wQoqaVOmmnmOqom5uEoVHbqAWWQnxac5olIMW/tEt8kWlG8MA6cAIsgSHhxIDUur+2WDib8WpAQtqfYqk8ckkCRO3+pk8WWNlGrrYmmsTM6R+LlsbPsyO+BG0QX2EaqHV/kdBi2acXqtpB2AyWBSlRL3m6f91fRNOENsldcmBgTPRMwBx0QuPDI19hmtNEluAq/ISdc3MuX950DhHUMkMjgGKUcW+x9/LnvBwpbPPhUl6w8YLXvvC1r7362rcevLU/3fl+SAFoyvuhaQA4cl795z3n877nj3/PV//yV++u77Jj8VJJ1cmsRK0IPd7RIi+KhWUknR4r1s2DJghQRe0mVUvzU88nMCxhdZ4ACq8+rikzjEQLWnzEgmbkl76AEX7aIlkKLSlSdpMMkxFioWogn5T1iJI9uxF6onqstJ42HMyBKa5flZFGXfdtOV0BY0qg5JuSVIiCt9ldcLRJcWeR0O429CmlJUVl06Alg9cMVo+QFSI+Lpv3CklpxLm/9ei0kcwkTEsec4+fFaKzJRgFkikQ71vP2wMz8EXmcynjdgO4mSDhpHHZYIMMwBYV6O70gBluEhFectncU2plk5FAKCfvASVI1TNLLrnjzRh1ZsG0+5tfQuCLzOc5mix2L1oCBmDE+L5xuDJgZrCKqQuDrrLHIKY2WNMSJnFwN/yNT3/Wp7/wwgsV+uGlaUL57HOf/dnnPrvf0+w+LO+fpgHgyI06/qWP/Uus/FWv/6r1+fr6bH3UEaiVja4WIlbwSVyPGW0NLWSBkKZ8KMxcgnzUfWB+6oWpdE1bYBr7PX2Nyf4wNwkqOlwcaEF6ogg8ScZXYPAu+6ueTzj6YZPa18I5qQlMuMPkNxg4R+iR0sKwEyeh1u8NjCmcTA5EIz37OIwCgBffHASnXofzw/zZcx01bmvBRgltQ64Jg6OVwCsGroHT4qfXgknNlDCIQg+V5rX7Syvc334ITseMTF3XYauJABEAhjvn+DxjDh0TOa1Dl0qHhLlBSBavliQsPBZg7a4brglqz9/H7i9AW8QXmdao6NrseyG+igaiExofG90DrqUK7S4yjMZJjZZrjpuJmXb1IKZRxi/+2C8GICofFtsEfPiW91vTABhoGGX8sud/2bO3n/0Xfv4vPHnryfPr5736CdnaC/f0NWe0lDT/hocZAPRIsTBgshEi+f2TcZhJDlkhtqyELRE8qWYLeIOH80NYu8rCUQNYw5nhdp2/5umE2HGcmqZOup3i2aRPQU4/swLIsfAxY173N68btZZZo+x7t3ISObXeRdqiKmJGDWYAYnIXXYCXKAQvirSiBWEH/rp36so63A/C/UV2ZeykiEC80AnRgmJ9l37qCdJivimNjsGUmmmqBcz4EvrPqm7xvAVvsiwlOv3pWdokXSpOUNxfNkBaVFANDGpgLCRGxxT3d3lfur8bzBeYt1kgZclLZmo1fyXuLuOf8O6SUQO9jukHDjE6l02BarWDgIlvLW+98OILX/ERr8CHW+jsw7F8gPgdePDqP+uZn/XvX/HvX3bpZY/ceORkeaKiMkqZ9R3N3KYCkhZ9ePHei48bPRVatPPABIygGfFDHCP+VvTnyv3eLZbgrIA2YEzc1PhmibuB1K8igDB7cBaXeQMrc/wd3J5Tp+PJKEvR0cwAN5P8K3IEgtiKyPHadhYRM3IiLUJO6WCTuNEjrXm2eQmS8rODlexTd965TQcNaUxUUIH4IC2ItzluiTbZ68k58Ayn+UnzZthSJvPyS/RQC0n0PcIKAdogYVKdoENmkp4i4tVXbyCoqNtxtEnRlWk2TWHQDglJSXjx3RhNUnuDGXM/T+Or1/LrCD3W6lkU02FCTEt936IodxldZatmtCBw0v11e27x0Ythb4g1e/GTNW5CGs1ID1SuybSs6hSMNntvS+TripsERHTsj7/6E756c7bp1d/n5wX8Z1A+EJ8mlDBn87yd5/3r//pf/73/+Pf+wVv+wY3jG845r75UCmek5SzkyeV+jWWUSJDPMV9gOECAY2AEhmR2Zes4tXJaeKr52zCG4ZlKzUhauszQpQ6XBt5jPYnWehCq4eyZCikKENyOk1siBwIGO44ZpTRFzAoolOLuh1UIMUMr5c3RHDvPfJ5xHZA0gNZst5FGK036i34IevGqgCLka1XyNLQw0HB5iMMatQxVapgAAa0RE8t1gQcNxMStZ9NoghrIyv21I5hHigBAjoTXOSJEjWkM05cGM6tQtOpTy9PodDa6DSBHw5UhoYMiTqz764z7O6Tg8GSsNeGwQNuNUVwHZKOsSR3KkfAaY1a/8N66v2FXuiwZctysZ2eKAoQGkhtC6xSTTRoesWCjip6FaqOOFbUoHLkbJzc+9Zmf+qUf96X4MNle88O9fOCaBoAjJyoznr36E1/9uoPX/cK7f2HjeMOLJ0c5IFBFfvu/tRmlXomItslddFhPJhsDW8C1lMhk4wx9JMqWfFPMnV6rZd6wwjTPQI5wW272rFnMjdFOPPVhMYA3mJjkQOREQIBDu1FbFM5UJR/3aKmFPi2ILzFtEhTYBG7UczOUIgaoQZ2cuellx5RsrTI1shsRJPgSw3MGWqO8aoGIojKwUpUAD5qR23P+hpcTESfMHLU1phVwRkucxW1QYckmdNnBXXFwwC1Ewaq10u1jaPbCYh7mQir8W0Wrol58JWqDQzPq8MDAG6xLzc1VCjhoDgd3zvlr3h97njHInEnaC/1+vDQa70Wmaw1J6P4IuSW807kDZBRYvpObm9S+qd320wxHdn/trwSMcJec23TqzUmJfaiQEwFnIAnM7EcvV8VddC0kNVRtMjTBe1+hRUAgD78xbHzby74NwIfLMpoP9/JBaRoACmXw33jH3/jZGz97/lnn5Uh4n/2+1xNVaDgxosi73hiRQh80o2FvcHuO11k1TS+Hp2bQTcUNEKg4NI0lCJT6Br6mrfjVsGUT3a4ieAoweItxAswLD4QVCRPoMH0MslW86L7KsShpUcCJw6ulghlgNaAixkZoTtX5gwosgHXgIC3Q0zpKIwYkK1AsZhpetfjxAKYUcMbMEu6Sc5ccliZ1Cmi3qMpDLwDD7Tg5EDkUGSVMGFgFHNdSkhEZkwIlyzWKuVu0TXyJaUYT7q92mV3oRPmqv7k5tMpYRb36Es6SZBKN4A2ePThTr7nvxOmcFYsWARDdX3/go/sbzmllE4S0VJZCc0C9xxLq0cmdXYI2iC4RDhNOUGPgrrm/CprTcHkIwBd1YnvX+DTGgCMicqSHqgdK61RWF3RgVEq3ydRI5qNj9/jh49/9J7/7JVde4tWfOTR3p3xQmiYkbPzSk7/0997z93bnuyLiNhy2MYyDP/ByQ+RAyjkuTQnc5IgW5NYdbzNvMi84LiUTjQZykhe0RuJFbyorx1lNXR1wCKVRb5msk78SWKKkAKCOaAMA3DkHxfjwyLvMuwwA9mjbSTmeG10DLxi7GA4Gf93LkSCct2RVQs+0WQVCiYg3mPfY7TgaSEaJvBqqbUCPlU4IMyPTe7u48fzsX9QKBiWIX028W0EWMDAjt+ViqD0rTtJ2OXczHApeY95kORS5KbpUMPLWI5VB2gCptRhFFLi8we6iw5ZJbdqCXlMaCc5kwVEnuBuLxEDYYqYTpkEB915OCGbOnjuLq0NSK2Xf+96EB3iTicnf8nIiARskhOQglq2X0Z1eMamAM64YfIH5PEele8/d32cOtE44Wc2wPX66j+yLW3Olfg+DNVAs5aQxmvHs8cPH//zz//xXfeJXneWb3c3yQWkaJlbVv/5bf33EuOE2ijU9w3BuwPm4TFeOBCN01GyEQkADYQ5eMC0oGHE6apxBhcl6NMTHmywi/qbnGZPSbaLb2nFOLThUO4NdTdAMAMFdcLSgIDXkmsihuEuOuOzSUUmrRnLNESaZ2DGfZ3fe6bH6fS83JaicsiuGLSGKMkSJzNvM60yOgrYOukdZswClXfJXPS+ZBopcjW6ZJGo8NAo44yqZnzHs3whTbx504HMs+6KHyueZFhSDe1pvGdJ1LTyLdfAWu3NO99XfSO5viB1xDR7qi7RTMjka9gbeY7flwhli5f0DsAm9rqQUdViT2XV6AK1ptIuyxhmjvHlE7X26HZfTRlBuG/D6EnaWnA3iRW6IHqk6JY459NGwaHyOXhfmH0clJt5mvshYB0ZgvE/dX1aO5/bYmAemjSQiUqd6rHqkcS2ntDhpNXF+c6o849mTR0++7KGXff+nfz+AsyyAu1k+cE2zlOWMZz/8Bz/8y9d++cL6hbCZkowpx0MrBUAzojWigWggzOI5rMF3gUJ9YqdMWFLHtRPb8xYLid/3zEyOSmgb9V/LiqiYJEa3VSrP2uqYoA4HuMuOFhTZA8AcOMb48DhcGsIKibLuLxdrkc0ABjli5qgVNmi2NVNVjJAjidvtWMYAaEE0J14whhR1GeNqjBCNFJGKQcLc8lVPJ8QzLhxrYxFNOVXTVLHExpuhaLa7C44cBcD8+zyfY97hsKlJeRuZl+d2GZgHFic3d3gAw+VBDsVf93qgciw4RnHaLLQEYqI5uQ3HW8ybzGsMQEeFpvmh1HR0f/eVwRP7NZwiXiw2rHUCwENRC9MGMwreZpqTf68v7m+k6xVOnvU118AL5l3GPmRf5EgAk5HcIHMKQhWlGQ3nB7fnaIMUWinge+j+zsmtu7IFQGpopftrmSj9jVpBoQdKM6oqp49dX1VeMiY142aPHzz+xx76Yz/xp39ifVg/m565y+UD0TRh1+QZz4780Q+8+wfWeE2WItKZQ4YISiIKAAIvmNaIFlRlkVmSs1H79FS45nUmIr/vcZLkOHWZXc07k1sdkruqPEjpDEOf9g5xhDFtlwmAgRloScv3Ld1lR/MUfG+4Ecmy5tSLMe4oVWpStLV5nWkgDKAZ0RAXHmZZFj08a9Z5s4FKGgww3J7z1+Pccpz54CnB2iuAPEBQCGLCbqOAs3M5gtaILxnMEDDCP+H1RN15J6MA0Em5GsCYxafiatwQ5Nlht+tUNOz0rqPGufQcyndFAYeNAMIJEQUtjVGi4A0WL/6W54GJqZjw2snWjEYqjzcfTWtoC3Is2RDgwTtR3cK6v47a2cE8EHk4MloUPDBfZlyEHIq/4fWmyonEntpHskmkIEeYgdfZbTveZl5wNGVE7iP390D0UPkCl8U9U5q3LVblUIRWjxRbE6PQxhUNgxMREz928NjnPPdz/snL/8nF9Yv3Vs2sra0dHh6ur6/fKwDucjk8PFxbW3u/NY1Xz8RM/Pb9t3/773z7uw7ftc7rAikLFTHFUTCU4SEHgpugGdEG8RZHaW64KKUQm6maXEK0YXeQfZET8ezjxHJKYwqiNkgfAgUVWLRLJnRrlmZ24rR3CKU5XkkRmHAxgJa0fHQ5uzLD0LnwSL3g1NNm2z5rh4pRwAQaiNao5On2yEz7EBeZiHTBcLtObog/9sRETKwM3G7XgGQJ5iyvBrwiSQF40Ha9RVUIhDrQnOSaiBd33hUt2JvDFCfqCQRBcX9zfUp4WEy5v5rc31pbkFLaltngzYM3WUj8Tc/EPHC833s2vTA15JHXz5aZPBtlpYgoPp/UzJT7GxRwVaimlll02qL768C77PacetVjlSPR47TbLAq50pxoTrSePGBQVsD3l/s7RPd3fHTkHXbn3Ert26gf6r5yWo46p0KfQRH7OuENEVcDD0f+6GB58JUv+spv/5RvX7jFPfdmHnrooRs3bvyXo2muX7/+0EMP1QbyqSVMhTpy7z167/f87vf88B/+8JEe7cx2ypqSSdc7X1jKCBQ5AiPIEe8ybZGdIwkyKDhP1hMvfA7AI0wC6ZEqaznKtwn7NvBYGZo7NioR8Q7TRcoTM6XF/EmL4ORE1Km74hrrKb7ZdabiKgVszUBJmVQL4m2mNWr9LQ3uZNqFxarMVFMP1B94VWWXXD2UfdQBxJX8aUPfou16kGy/ggLe4yJkvRkLDwj8kacdcuddlQCiphqbLf1rwqqatgBw7f42UCESZXA5KrATfvRI/b6Hghwx8US4dUoB59TqNsc6o11SlNXBXXa0STFKk4dSgCVExV12mJtNwXtKHmKglYmjthCNWhzF0yJHwX2JOphj3yuotLxffNoC2TaqgIe/7rHE0+j+onZ/zfpTPVbaoOHiEJUUVuwPIuaF4UGv3nt44AQhe8ieLBdniUIMYIzywbFT1aeOn3po86Hv+JTv+DMf82e8eiIye1vdm7K/v/+zP/uzr3zlK+8tGHet/Kt/9a9e/vKX36mmCdvwMfGP/eGPffNvffN7T957bn6OmT289SSAdCZmtDQ6a9HH11XiewlaEF9gGpJznXaFqVjFEl+4XgcG6IHqDZUjgdRSvjNRJ+VUSKNye442SSAh9F+1aMWlj5Fff+KxAXfeVaYuUkyptxMntW8vfdL7eZNpl4I9mB+Jm7rDaBp0q+KXkBORQwlGZStVT1HAFhgkYBi0Q3yBiwLWusWsgD38sacLxNtcUozkdpg5xRowqn3C/TWfYlznkc2wARjh972cCDGF4Fs4bR6maNrXOQdh2kU8VqCnr7RJfClhxloM6UKXKiLDg4MOWnJzM7WEmnni5BQFLOaCYsZmXMlonzWcEo82hxawjSiXGyLHEt1f/tC5v6Fk95faLTCCssEa3CVXtHgH3mmaZgleMO9wwbmkjQp9sl8VAPZP9mdu9mf+yJ/5lj/2Lc/afpYXH02N+6Bcv379537u51760pfu7u7+5+rcHB4eXr9+/fWvf/1nfMZn7Ozs3JGmCVnn++P+//C2/+GH//CHt2fbi9kiGAh55OKhqtlkDiIx2UCFnlAL7nAxIqT/8nnmLQ6iVtMxmhOWoERzEmsAgwdmZjkU2RfZFzkWG8SPLaa/ER4CDcRrzNvsdh2vsYrqaJiz5/DGrRlFjsVdcMUbI7OFRnAmQgwQBKuAG22HjseSRQyAd5l3OIMxrWkate3iNo56XeVAYqQrJ3OSMTztG1AJLBWlgUKGWLVDc6jQaxoBRqhXP3p3xcWZAJgpLnp/FHBj50rn/pruh4noVtNkdZhA1RP1Rx4nHTYa7WvxADMuZqRUlBbkLjjapdgE1aNg6SS4vw+4VqSGN9+J+2uBEYMQgBbEm0wbVAbFUNfddn8RyY8vMO8xAKsMCk4UciRYg7vsShIBzKtkApkq6seoaYjJ7bn8q6p68UWleYAgKn/qmX/qa1/8tS976GUhlcPx/ZXQvL+//5a3vOXhhx8+Ojq617A8LWVtbe2hhx76+I//+K2tLQC31zRBzbzn4D3/7W/8t2+4/oaL6xdD/iWDW/GRSzas0nG5UcJO6gzDPLrUGKEe04NiiNvXxL0oyV3EhAHkKIa2D0UPVE/SUUi5iwSaEy2INojXmOYUptkj7+nqOIy0oELgl15FhweGmCNEQOBZpqBf8oxR3Mk8iESrcqTm26yANSmbJWid4vmDY7QrK03T8+cCIcbi2Omo/rqXmyKHErKniiix7WaANE6TuB3ndh2tERSylLix/CROFJbJ/YmPy/WRIDSboj5N7m81YWDFln1wHXDQmxoW0gJJyluZThVCSmcTMQPgBbs9x3uss7RQLNefdH8V/thjA+6CK9q6wczpCrihEIuTJSCgBfE5pvkH5P4eSwwGfCjcX95mukQFkl5tJFLxx562ic9xG6m2j2TSkmjEBNYjkNuNmjsu8fYF5wOGJ46eePVLXv3tf+Lb8yzpWZrZPS+3yQgIaubt+2///Dd+/nuP33t547KHJy67KQI1adqLIGo1piwLzI62YdzFbCsb5pZB8pToqHyeY44mKj1RhNEQc0CjmqFIdmDQBg2bQ7TLfMpeS9ZrXIAdbOGUZh0dEd+dIwvTNGqJEJYub1K0kUOcPeCltlILphSsXOYASKOkk/r9JvsAHM8fHC4NYeVmhZC+5OQuZShoTrMHZ6qqRyoHIgeiRxrX0po5LXJEM6IF8QbTBvGCw5qh7KvFhLc8fGQ+9R2akT/ydJ14j4v2TSUiJLm/TIzs/lJKWsvy1JmXm1HQY/UP++j+2nUVzTSDlZIzYIhHCPMFlgPxN7zcFD1W1bQ60joTWfsGK55BMxo2Bt5lt+3IkYwScUimuWaakOJQ0kCyLzrX4v7yhPtbyEQVaVPsqi+UnCdLYMFde9jzTppIO4U8rPIQYADvMC1Jb3zQ7u9ecn9VMNZIoHqTZgUIbubGG2PIaCgvb4odQTMucR4LaUMg46sR6ERPLm9c/isf/1cAiMrAH+w2KGflQ1JOG4Yw//9bN3/r89/4+Y8uH91b2/PwwdcGWrFbyIIr5o92fQhnZb2iRtlkQqQ4Hy43RETcBRcTjWCeyi0GeWrneKm8Mz5GqEANk6h5cSgZ1s2c3BM9mcd9JWF5h7EZ4+Zh10giqvY+sSV3MORKhXlsklhTi2CqtC+V8wfdFadzLducNC/XpJzC0hOOCi/Uz9o3c2l5JAm+uH42HCyWFXBYrSJTjU7pG1IKc/hFxzBNur95OppATl10f0njqT9iMGCpJadWP+71RN2eU0qraKUDL5s1swhdWM7Ju+zOOV2qHIociB6oLlWWUgRreG7ONCNaJ9ogXmeeccBPIOaojG0rUqMoDSgz66D+qh8Wyf1N2C5rrbKfBw2HYIYDuYGkgMUQiaJFEUGuixyIu+hoTljWq2gtkVjwwtqmDRq2BowI2vf9c3/XadgZivs7CmlKrbZWiJq/iVWJyT/phweGNtdDq7aidsmgGxhidrX5OHZPHT71NX/8az5i9yO8+jM1c/+UlSOhUCa+enL1L775Lz588vDeolMzdtMk1MomC4hEauw4LtK09G9FVc5KUvCM/Q3vnefduEAh/pQq5P1Lih1YS7EKgEnDc0UpW1Q1grUxWgFsAetRmDp27VYfMJEZa81lfUMEAQm1ng1PaN9w/uDyfcvhykBzijkLFi2hRZf8PCR/wmjTkh49mAdN7yodbN9sN4i08sIKjlxzILfrgghj4rvh/l7gmMXUD1n4OySnM7i/SNiYgRccdhtSe9qNGcHoLivUm0Rn/kDcX6yVMSIQM/fuLzJJExiRZURFSaM4lhp1mVoCR5xgfGR0lxyvsSxv5/4O0S5hMClhgdkDyf09vGP3d41j5r2vSTHvbFav1ox/gwIe2B97f9W7iynvWVeMoM1BCPckTeLmp8KRM+OtF1584X/3if8dziJm91m5jc7/a2/9a2+68aYQNItqphEuttivnTRh4mKjoZZTnLJgE924uRuvjoGmC6Vat4lSCOIUcrLcrvVFLlLVJ6GV4iPLVgHmRc2UI0Ebs91qOAtPNv+ZGBwWPRTrmGq0JCCr8wepBluN3EE6J6bXqWSkNplnUcsItCgqa5t6xDRGwwzYijTFxHfN/R0uDOUoFAtVUkuYdH81rvyPzVkFTFF45dSSFnjqXCiYEW/cXwFvMnbSoFOK995OAUe/RzjqG06uG6UFxZlCNOKfluQf8XpJaYNK/LkZstCF5P5mAo6b+W/SsJXc3zzHIyYClt3fJv4MMLGI5KSbMhyWfdLQkxANpLdUN9IZspMOTc41z/AjJYDkaacRRCSQpV9++5/49r3F3tnWmfdbmZbT4WigH3jPD/z4Iz9+af2S107NWD6ZLJ2Ya7fNn6xPZmqdyT/pq5SnXDMImmT/3UacNY+fCqdQtxlZL5QdsBF7FDbFAarIe4scMv2y+oNMum2vorj9ywOTJ/+EL2+2IjWHZagc2TA9TD3SGhOhduAU2u7QbF9lXb2NOLfEzK37ywZFbADLX9MLw5bGdt6idISSkE2v4hnrDfXXfWU7W8zcifubfcr8lBjnZgWplx2Xm19793cDQc1Ev8pRSyrWZrIICXTuaqcw009DIeFiAA00PjbKLSGmIrUzTrIuzNRiSYWifo3JDi5Ncc3Lup/g/sYKNd0W3mkwbBFlLkLrcr0+lglovpackTx1640PGiPQdHBy8G2f/G2f/dzPPpGTMzVzv5UJTROmZ3735u/+7d/52zvzHSEpTMU1bYWy6g61hDhxAodlMHsT4IExwl/zRRAAFXFbadTISnTK5pRi6DucWzX9a769iIqwRGP6JKI7LIQJqWp+jX/z7HE4f/C6VKG5pj5WK5jGWsSKl1D9E6Eszm2Kvb0Wl4YUb4ZWjC8MuqbEUAy6NassrZ42qsvNnX/K66FWBn7u4J27v43S7RHYuL89qfSvCrG7jUgwjl30ZuoulK5R19PwpkBs1i7pkFZe5cCO/eNej6ciitahQVrGOEktzcyTxWrH2qEC5WHrBULjN1MSCA5h38xCdTbpQIC8QLVxd6TsaQaCii7WF7pQL37O8+o8xrNyH5SVzPe3fudvPTU+NR/mYVJ3JQeewpldIZgDgHurB4ZzwmTyQHpT9cBQoYkvVYa2NYiorqldBfuIYaRqPzRbzV7Po5lcROGk9l2FkC4uH/uC9CrUbFxfUDh/8LroiRZBoObNONV3zGg8RQ03EgFxE/vpVwXwJJm9XKuZ3tqYLB1FfSDu7xO+WldvK99D95eAjXgOXvRmKCqDdnxDaUyWxv1FEuK2AlWoCBdh89nx8XEi8qyVVlPWChuTXW4IssFVb4rlVvJ9rad1my4DetNkPXRhtCoPPr9QUAX3ZlicW3zTm7/pc3/mc99x7R2O3FjNZ56Ve1xaTRM2BfqFJ37hNe97TQh3lpiyrWvpu7nZt2BpVDuDp6Fmw/lhTk+uS+vQaCcdbNOWqaS707RrX0MqEKlsVyOdNUXzc3R7lQxtdMaqniLqy6J9m5o9wilmK8lVKfZmb2aukuxqYMt3emasLdkq3dbWycWlLCame+z+kpE+WtHevXF/19KsO3EbbbutAm4KpSnuntQbxRnoZGAs4Z/ylatXV6v2SugZufFmmpegAyNYa5Oo7HkWaVAUYOixxoU11qFRACgJZvYNaRFoGHFakLvkMODixsU3PPWGz/w3n/nj7/rxgYa08/ZZufel1TSB8v7Re/6Rh48ZqpYbG3LsZVxDiGxuahRG8SfUNRugsqjKzvVkZQvb6ZbppENTv4qEeuapGs3JXdSZ7bnabcVroxd7QYDVL6Tq/MESV8xaPPt5p7gsjYo6vVA83+w0+92ZWff7wf1VgxaK6ry84a65vzm5Ky/54tUKGF03V7m/TQCtcYOoPMsDF5xYdyG7v5Pat4Gq6d0k9+UnrNnUU1c/jsndVG943OoVqbcFyjjPs2gjaIPcFRcSOkYed9Z3Tujky/79l33bb3ybI6e6QvmdlbtbKk0jKgR62/7bXvfU67ZmW9G65ylOQLrTW1W2WIEeKNCePzhZcuXg/WTnGnVbYfKgUW+TbD9ptqOVucVDR03TanoRGDiIjdvKi972tNWaO9TV723M+iP70nbNLn7sO35b7QvDwJal+5dY3FLy83KUlaa8sbvm/mrqSMZzA//kuOiH2v2ltEMzJfe37wUMMKtkfV0h5ILfhvYSwsOaKrkm7VKBRodRh6Vc09LqJB/VaRQlSex0wmuaCCLhqNYo4TWq1SRN87iAL7B70MU1EgwAXv1smO2t733Lr3/LN/7qNzJxu5/6WbkXpdI0Qdr+Xw//X1eXV51zQFlRD3TqZJLi+1LTRzl/cLJmxzDhnxyJnmiphpYip9ng9Jsd4barw5rmeErp3lY9oK6P6Ztxk39Mvb97cGIe1YrdSVM0X59uttOpobNJ8ZH2zbxf3N/DFYLNwvZ+KWDtunNb91eTn5dX5NCUN0Mr7jSlVgmxYa3vY8IHIhA71mOV/bQ+qU9wxxTZ9HaGrhi1Gs5p99c+NckI4dmx1jRpk6H8tTKDPGgg95DjS1y6H5DsICTC8sD2A9/xn77jW9/0rY7cWYLAPS9F0yjUkROVn3n8Z9bcWtxfL5dJhm+2ppgsrVW6QjVZWdmQPgOC6FzXDVWecTZmVxU1daz0TK56dQzJKgi5M89thUmxjhX3DfvFvdEmYc4vT3+zrNEDbZHfNDo5LqcMllZ/09bGneywEsEZhNxv7m8SvvfA/XUAQJQOCjpFf6CzVybvI/XI9Lp6j8WeJVQHvWlWVvZd69udrNZUyDsUNN2nFfXR4cp2k6GjxoMA0qc6siHnN48KAl9i9zxH22mxnc1IDG8j9fBXtq78L2/+X/757/zzM2Vzz4vRNKoAfvP6b7795tvX3FrrfPSGHqZM1F7qWfKSKVJrjCb7eJ7IJeiR2WIZkeHjAq78wj4A0lz3ygaRoKulYf1TKD2t5g96Bazdnb40D57O5E2d/Gw4f9AGRiImtJoHPd0OgOljjd4gvstG+pOzO0mUE+jM/a0oeVL7rvLPLC01hFEr4LCV0UQKCaZoLyhgB12aGSzTUFHAk305BV25OUNmExMqzXt6U8xeaDrmzsdAXDmt2ewyMLs8m3/EfLgyxNxLi9v6E9LqNhebr37Dq9/y1FuCGT3Vk7NyN0rl0wB48/U33xxvTuywfTpF6hRFdqQfotsr39zIIwI0reQgYIlqFeckJ1ihuUqrTbFB3De6sd375K4cu1hluNkudCqtalTqr5NwTmIpfyXoqHqssZUMdd4/v0FIP1LNNUyjidUr+912oe7smftblbz+acWSm2mPZLLUZlwIT62EGZ3SShdyIBPd72lvcqD7hno+QqSH2xBM/9e+yhf0evHx0IH0Ua9ux82eNeM1hkf2YitE5WsCCEKyGBbXl9e/+pe+einLvE3JWbn7pc09+41rv5GvYw5iKKfQ3OSvmiSR+VrtEr/qJbZFwzDh/JjmwRDYmdiIs/kqtag1P+Xz1qKd2kthrbKYKrB7K7UX5ZNFiwSJXYCuXB2JKXM13dRljc6+3V7N9DWlvhO2KLXyVKtfy6smWX1SyvyX4/4atEynz2V02SYm0ZJr5tdNBlkbZ0ir+0EilxM0ch2KPZomib7oFMBZDaA+caN5cMXfEpgN2EjejBdfFjakuB85cpdc3B3Ars7JFw2TEkDw8OfXzr/ufa/7vv/0fUB32vpZuVuliIqQvfPOW+/MG6BOqAR7fVvjoJM4ZTKzeTyzSqfYorajtCQYRkxIkYkTi5lXrAIrdSRpPk2nzGICgCIoC7ArFHCWgPVi8qpCFkOTb+i/nl4oHphWyejAwGICa5io02pfIwLiOT2YcmgaWYMVMnSyO6vGAv95ub+NS0FT/W16dIpnY58VtO3m1le8raREe+CoBXXa/QVuf8eqE51SV/la6q89AWRyylDZBTQpEUC9DucHt+kChqfjh5jWNwLZWez83f/0d3/vxu+dxdDuVYmaJsxIH/mjR48fnfEsTwWXipP2zqTUaMixtl9a4TWpFcyrih1KabOjOh4VZGI5W3BStHV3wu6/gdMmVib28JB9h5a3oXs/jHCZRI6vvpImvdXH2ZrX5mKBWWorVdMhicUdQQ1Pf9MiJ4mzEnbve9rBeX+5vz6drWAevHvuL26nfUPp3IKVeKv7odCGNdvAkb3OVQl6MuX+ol4bZEW87R26r/VPgQ2nPUXL4E3n6mMYw3kzZV9tn8IJCl6we8CFw+iKr2a73Cv49JOSrrv1Pzz4w+/7ze9DT1Rn5a6UKnp2LMfXTq7ZaOb74Vz3dTpKnci1P/0lzXt8ieRaRo02uEiQBdOmelIw4W/O059eF7aKQ1oWXy037xgzpyngScDsRY45aLH+QoWoRPu1CL28sPgp4aGpcW90obEc7y/3V4GTmk7usvsb5GHOneuRoHUg0d5pcNLMSPUVVtEMAE1z/kEBL7U3xeJw9ykkDaGusAVVVESiqdf8KrU2hbmfblbWDEEg+QDccsYdAYLhGUPc7znWLf+m0YJEnxxjaDuLnZ/43Z945NYjYTln99hZeXpLpWnijntp7EuUwDItpngMrfSv6oh5V/+rdk81AMDctwaXFjmbYxrqU+AoT94maRuOGIm8oVJ6J1PSp7/O995f7dv3Lt2JfhXuwMyaxBjSyWbdGfJQBP4PfW39GwuSxP3hQ80JzKCtPyGwKvEzhZNegtubVgF8SNxfuafubzKl0ZT+/c1Fj8NmsJr7/WvRRnqzMFaf3N8Mc9Kg0bHuUT2ZSALza/h2uvs7yeAhdSUPsdQtitlsZgl32Q0XhxgoBnCH+4vbeUHCYlj84a0//Fe/+6+Q0xrPyl0slaZZytKLL7ZYzwDeUMwqvdIxbSVP7dsmPfT+VfZF+eR2KymMJgttefVZp0AgXsRLst4iJNMOVuYf6Tpo5XujgE/hfIsoS963nZGebDqCrKUmKsFRtRV7qVHZJAUctU5Co4gg+0DZZp8c1h4k04Uz97cFuAF+EieTHexFc8JK/jvNcVrzFMySlHBvrBVwkvheU8yqh6en7YRJUalmeiafqpnUAlnUW6iTtYJPEWYCPGiNiChu4GZmX26/v7iWygEVczd/zbteA+DsTIG7XypNM+OZI1dIOdFT5Vz3XsUkoZs33D663YubKZGqUD/6spbYWtxiZGvSN0GaePXxDoy1ruWR0m6vXaSWIIkzK/Zr+j4pkTsRXBDTo6UX9DVyGt5W0bJ9etedPJpRLkjUwFbgxp/sBEAzjtL1sdavZ+5v1et8r8mEbohhsuj036gj0dHeHb6EkqPQGGqJayINBJz0tJSGtShgKUTcYqZ3hqbERRVwyw35isZoQeFQVHlS/KNefdzr7zb7i4dX1VUEsjHbePMTb37rk28FzpLQ7nZpd6OpxGg2Lbvpip4EJySjIBvKt4luN4yR5GmRHVnCeuiJVqQsNZn6Iq3s38IPWnOChcF6M1rLFNsvtKZiy0X9nVo8ZXYtgmMVWroXFrSkyiIiy3rTDvuIxKhR0LXF20vhoAnta/WE1I6sEU8tbBZ43Hv3t2jfe+L+xidqBdyTky2rENWbO01Pe7RkArEcBIMNqe+kLcuyLQIPbVSIpJwIUVGJ2771XTtliC1mtKY6pAS5HDTTtEPzDHDAAnqk/hEvR+mM2p7kMt12aeVhRsc5d+342usfeT3ONM1dL5Wm2XAbl+aXvE8BNAFOn1tuyKi+35rttk5vtk85BJOGrZ5oXNIl5mNbl9oyyjXzzHnDqFKxU/WU5bQsZCX+a+dRYR5E/TbUd4JInVQzq1g3y470fOYrFZWlRME6KUd8hZCifRs56Ot2m37VVnBb58z9bQx5pB6hJhLp/t6OrTKQLR+tQkuN0uonQTm0petC+CEbIkG1RK/XS069q0wB7RrNwzrJg+lriNm2j2eVM4I2yT0Qd2iO28zMAYV/2PtbXgczk5dLn2RRgaYAiOhNj70pXOCs3MUSNQ2BFDrj2eXF5aVfVpvPKyLjSeeXNCXRWY7PFMv/FMGRCbGuNmHyAFDosRa3Rmo67oHpZURfYRIwC08vvoO60VMf79g+8rNodCfsrzDvsXc6MKbPHxyhx/UMlq8R0mMjf/WmIVvfd96MduGXWqoGvLQdaZDTVEiwfcjdX/V6D9zfpl+Aqord9HkVwfdkhtI1C+FK3ObWVzEpQVRklCpZ0b5BjLcX0klUsmopH8uYlgbsC6W+WeMtWq59fynW50vsHnTV9qnh40CO/GNebqazq1H3HSZbzyQohkkdhc7d/K1PvjUcK9wqqrPydJbi0wR38mO2PsaLrzgheTai4sWLT6k7DStKmT4taiYQZWMs2+sVkrqiRRiqHQGBHEqRFFaONOJ1VWnEbm90N+LY13Ai8mQObbcM0zenUUnksEOrR7ECkuYDVJobZa2oHElBSONUNZBMSt6mQiOUs2DV+s21ZDlzf9tuChQato+boP8pym/bUgBmiaV2IE2+JD9lqSVgeaklrabvheEpq3pbBdxzhG067+aZl45ZTHp48eV+tiMF8KAFuWc5vhDO5zBTL2arZnLkH49htNacav7WF6o649l7b753f7mPs3J3y9B8/8Rzn0hCZfgpkSCnZA9FiB3FPZ2S+IvsFAYUhq8mhR2MkO2JHsg5paUapQoMPVKdKW1S0WFklKYlvm7xeQXDJDxW4uQXZlGSPXSOnVRo2EOelCxOMsyqcXPDoMuL9d0wySrZamXHqvMHBcGEj4aemuELADf7T/c4ySA1LGqhsvI0SCUXaSPDKSQMjuTBaWgm2wpoSO7I0+L+LlWPlVyCgFNHqA4b6xRCThHoOBUeSThJC3g9vINTnyA5NchjX1VFBZoyqQXz2yZNllRNj5VmCZKgGCx5ZLJsUDQJKqaQkOHJwBirtGgsw2LqlWbkLjjaI8DknpEZNY58R47Ys3/Muwddtd5oBddY+B25W8tbj9x6ZHe+q8129Wfl6SxF04S8+xefe/HesDfqyMoqWhgmCRSlKBpikmKgWKUQYYv6huohR7po+FM7lkhfi13c+CgMjKAFYRMY497sAfr4t5kMbLg6FwubZQkYkJAoXmo4kxsRlA0RqWoIP8Zfzd+wGoOUKgWspg5Mc7b1xmVUw6UNF2UDcV+cc5iljtiwQwN8r4C1+9vIjt6JsaByuRBIWERJSvFwUtsiRRkaXp4nZkvwzY5XgxnUGMviuHd/NSpgORK3cOUlRim2+may9PKruT/pHNjxjd0SIoI3Bz6droAlKpgYd7sTRdJ9Ki8EaYwUeqTx2OnwQmc0tIUq3+zZp0FC/toZAQ3BlFhijaXh8jBcGOAQ0jHaRqn90IxwDP+EdxddNS4ZkmawACiCgBplPB6PV3TprDxdpWiasO/Zx+x8zMfvfPzrr71+a76llDazI0NGzcK0+Cf/t0JDNGzQs4q5IyLVe6xwV9BOyki5BpwAs1qAmoz7Nt+xF+ud2CrKBgUk8UJLohkVn8bYWQqNyTB5mbp9c6wopcVJmW7F9yRgSCK1Z+/UBrYABpZmVLNV6FcoXZrCRj9ek1I1h5isPrt/3F8BCHqsenC33F+t57EoQWLcX3gw8cQez0EBS+3+Ysqw6OW4BSxdt3uaGfBUVI+UNozOI4O6O3R/m3Z7/DR/tc4ZyTj04A2ePzhXUfVa4FFU150pSQPJoei+0g6VeN0KkDJ7loE4K3e3VNEzr96R+9wHP/cXH/9FnrOIlEMguB5C6z30Uq+RFzBCpBdYlm8lsVlnQasqrzFfYtqiOEmzBVwFxtQJb6x4C2dfJkXqFJBx3kGEluS8K9Yf6lAMYtPFHGt4tWGD5qdT9E3Cj646fzB1nC8xn2ecANfN/pIEOKNmGk0M052eRZvBsvpGYsSf52y9mfvI/Q3j4oEBWLuL7q+mRhMSohBPx6UgilwloeJgAdnxDf9a97dhqF7NdPpmYlkMCtnITXEzh/mUgpFOuE/iZJKJLGCWjAWQ5K+ECnlPM8BddlWLWiuY5jqNHTProP66H9aG7K5N03CecwpqJuw5fVbubqk0DYMBvPJZr/zed3zvwXjgnFNo0TGrQtun+NeNxJySFA1dFjVjZActaHZhRjukbM4OYGALek1JKRxlX5Fmr2+sIENNlw2ZGk8/cKyK6lLLzrhqFFsWNGTaQgLGknQvL3qpMRmesjlRVqR6gEC7xBeYFoQRmAHrwEHCTyNVLTaa0kh51GIi9zFJsfCPRiJnNtu+f9xfAB60SXyJaY3upvuLJXjOhUJc/SqK/gqhzIaW4GqoawOJzdA0xlAzXqlCXllZxL0tAuwAM+P+NnQyyTsNm0+yzyruVnjxqibfLGhfr27HuT0XnLlwzlvBgC15zs9wGRGpV7kufJ5b5BjAMmJJSUWZOG9Xf1buWqn3PSMSledsPeflD7x8/2jfqSt5R2oiA02ZVDNakf5KoqzliIjE3Dat2po/ez5cGoipclwUmANbiKtJbDaavZbV12outHpWRaMJlnz8eOpJ82zPe1K31WiUUKRut08mzgJi8vzBJBB5l2fPmc2eOaMFRVWnwCZ0UJxMdbmBsIHWVvZTyMljFDLufJdabc1YPbVpC8AkAlcIrNZMnnR/R8UA96Bzz3IRM1sAoZysNZm16OsLS5kyhTet3lY2FFhW+w6UDtYkkfOJNa2rjeZE1hAN2dR9bO2AWs1E99dWyO4vwJfZPeiwBSjKMqyGR+xePrU2bStPIsrCKfB+Qs1AQY5mz5gZAQQiitatuVkJGaMOiQgOciB6bLburkUKUCXBhyyAMFNwVu5mmdbtX/mxX/mTf/CTox9j9ExNAM1eYLVzLeZa65uZFm3AQeMysUoWEODhzjne4ODKEJuQS2h/g9Sr3BQeGC4BVts+LWyKyt3OXBGoMUXMGtbSI8W66fKQ4CQTJ7Gt9EVrbPR3euUHaD5/0CBTR3Xn3eK5C/UqSwHicZOhDm2TXBM6IZqZ7Y17nNixsxcNWgxsQZgWXB0rFihBmPvB/Z3TsDfwHutMyyrFu+b+Bn/iRGktzepJordJ97dxoVC3a6+lvugFurlZ5XehNMo7TJeI5oQx4gQ36tCZRUhOALOQTPp8Wo+CadoGBoqW0oiZ2bNmtEFx68yEnyqsiuqn8jUGFyikCOktpV0qTWvNQUZ5i8j22vYzNp8BnC3evKul1e1M7NV//LmP//PP+/PXDq4NMrROgJqvvrNusr2DTkZId4FKahSrxz7oMDwwBMoLs6jtXKqANxmbGMcx7ovuOxPVd7bqlNOjXr33YT+SijE8AOioepDer8kY7Ls5KSst0nTqbydGowiTlecPDpeGuG0XmQOvQnHgXRZIXLroq262IzU5jg3MAhHx4kXEPhXSiKtXIaE3y0FbVingTjqcpm806bwp93f27NnswRkNhLEOG94d91cBgR5qRWzaYSPfnFwJa2tmctX6osFMJpje/Q18vcOz58yGZw2V+7uArilOOn/Odz3tyXiSnGo6V9+pGUlqxoN32V1xOXPytKJGEeaS3RqGHmhxWGsk20VapLTU5QMbD2zNt+6g1bPyoSwTPk1wLb/uhV/3r//gXz928thivhAvE0Ft6myNUBphgc4W05aI465TmVLDBUOXOntoRuuEZWpOuuYC1W4yEfl9T0LERJyWtlgCzaBq9dcuTKvSiK1GBKAQL86nmeU8nUu1RAPQm0q9lDlFIaXr4lpZRiWo19mlmdt04bwvAuWcpdIEw+05f83jGG5wBTDq2FVrwDoIJ9ZjSpFiclDPLes9dn/dprvH7q9AjoVHLlTn0lOTQ9DjBHVzOnVnhX4qS4nNhzZo/rw5KfmlJ5By2YWBNkmWQidEcyo0POn+ooYHBhsw3U/4ie6vBTU7SR60IJ6zf8S78w4DWn3TcDqZVuxNRGjjwqkF9SrWZkaQ0sl48kfO/ZEZz0L20xTqz8rTUibilQTy6q+sX/nbL/7bxyfHcSGn1vbXKhtwMsyt9YNGnWjaUbi6nwXHlhseGEq0AWk5Qi8uBbRGbteBIEuRUcSLjBKPXxwLbJEPkynqvQ9+TKyZO5Lj14h9px1yz3BYAMtTbbrTtcgp1XJzWQFLNVEU0XKH5w8CcHB7DjOMJ6Nf+ng8STNAuReNPZsmHjJyJkY84CafR9A4B1qTyn857q8CArlVOX8Tvku+wGpi6NlnkpvSHe99pIpMZgQohotDmDwvei7zPYF3WQbRY227v8rzsx6P9WPStYp6bd3f7I4HNePOOzjooY4Pj3JT2uQxTCn+5o6mmyHR8bDL1gvAmDwaAgnkxZdfDEwlHZyVp7NMz9M4cl795z/387/y8a/8O2/9Ow9sPbD0yxJrbux3O2Rq7jRW2BQjxdnLRoEhCo7Z82ZNuJaEclJ8VYKh5MjtODkQORJdKlykwpDdE+ROyK+FGlLLQEoHZ4BqDe6ioy2CABvAcUqtzmKdDTZQX2DKErRmoP2aAMg7+lScrABDvc6eMaMF5YOhYu9SlmzTrtt24kRuiSdPjkLAIXh8Ydlp7DhFxa9QSLmsRjCDkRCOGdxlF5O7crUz9zf/msVrXi1ABdsTwtQ2atEiNaIaxaNATu6yBBOSu7adO+fCKmwWLtl6VN7vdp2/7nECHpiYCpCT4n6SqWHYOaeeo7VL4EHr5C44EDACc2AJ/5jXPXW7rt0nosEGJjzCmEEQzq62Npyk8TJJ8B5+c7750odeihS5OSt3razM9gtnPP/Nl/zN37r2Wz/13p+6vHV56ZdRqk6KD6rpAzWfoCOCuEH51FRhoP4tp/tKuxRXhIQ3kbTGSGfp8CbzHsu+yE3RpRKTssbVc4GM6133K0ma3y1QUV4wn2M+x8oa5+QJ2IZeVQKVCIzWOEGHh0b7wmBGJ9hDxMRADGZ0qbMHZ8PFQY9TA+n8wenFaAQIeJ2Z2R94PVEQ1BWrv8FetdavkSZSI4pBe+QuuoiEDeCmsZd9p4Ab2dpoX6xuLskpTQv/Wm9stfsbg4oNlQb3l53siyyFHAVHOf5FvciUKOvdKtG80b6o7tAOucsOJ8B+SpfQhBCr0iaVjWUiMWzVq15DP2U6BJVkJ6bhwcTjhEIkjaVIcLtObog/9OSImYv2tQpYamR2CrjalcBqxPB4CAxccEBa4eSBAUQkT4kulS+wjlM7NDcYNr9HXiaEmARROV0tuFb5K4NvLW+96NKLXnL5JcBZOsDdLis1TcgAmfHsB//kD77iZ17x60/++oWNC0tdRvZYFd3WmoIbngwMnLff9ImobCAFgIJ3mdZJbojcEj7PvMGBf2K6fUVrBeJ4PQdmcFfccGGQfZEbIseiopF58szBlNCPef1MvMnunHPbDgNkKXFjniDxB2ALekNJCW4qtD3p5qNurlHDOTTkwzEpqUJGS9AZa0yO5FBi+lDq+CpFU9oa4C46HVWuiR6rksad2KcER/W1DvIENPI28wWmTSoHBq9Dl0qHFLZ2/y/W/aU14osc3d814BhYArMV5HFbBbxKwRhpntc2FZzUfp7bcXoSNWdggej+NnQi4C2Gg9wU7z256Ooljy95vdCAJcQ8u6iHT1PAyUPiy8znOMalrZNHoAXJDVFRd8EVL2SSTpqhzFiVhOqMmTrEyuBjf/x5H/F5TOzFOz6bpLmrhU6PV4oKEz9++PgX/tsvfMMTb7iycWWkMbir05qGjGRsmASATE0v22A9AAWfZ95MFLmEeuU9drsOI0QkQFW4zhpQHhgQjk5iYp4xOVJVORTZFzkQPdIQoI/h7Ay1IzBoRrxg2iK35XjBIVQVj1+09lpo9qbgJnjgYqhab29SfEx6NsldU6+CejpXTPhFQXNye3GFE+8y73KuEzaHLqyV3xwqBPtxHXBgMI7gr3u5JTIKgi3f2K0NhOngTp4z77A753iNVVVGCaG2PLh6TTGCZjSBEEsnHyr3N9V0u86dc7zD1v6NZ1ojieBQvMFMcIAGyE2RW6JeiSkqYDtq6L5mQY/UcVFesDvn6BxF9zfj5KqSUlE29oOOfVYRSdNo6oLNri6slP28PTf7qFmMsmZ4MjKt3vLm/Uv4W16XCo0h4tb9VYCm3F/UCsaoRtoivsQ0p0jt0n08IPBHnvaId7kgMEOVa2qpDw/v0wTkEm7L0RphGTHjvc8vJyFRcex+6f/3Sx+999FBrOGs3MVyG02DpGxuLm/+lV/8K//inf/i8uZlZhZIxTChZPHacEiyeuLcQy1H4t8UcnGXHG1StaDMQ0+UtshddDJ2++1bKgQwBxzYMTuzt2PyPOKZJWMxtYKVRgPRjGgeV7wXC5EMc1qZpYBCbore1Bja5hobk1GR3oRPyIkpTA1faYGTFia6HRCyQcPFAUAIOCi0MgZ9jeQ5MICYmJlmREQySgwwHqqeaEyIaIhjIDB4wbRBvMVuw9GMVBVjPDA0Sv8sx0f4q56VaaA7kqqa7vcWsQK4U/eX1xlHoIH4AseFLD5hFVKNmkWvB2bAGsgRjSQ3P1D3d8O4v6NJigsS+VhxFeTSOp4GIZN0grrdRg1n9zevbZI04kbrk6PhwsDnE0IyPu25UQ0HZQU8g0LluuihqmqwwybcX3RoMeMSjDneYHfB0TbFtJH8VKPy02c8GePM35halHrUav3kvY+HICzB68zrHJN9cvzZA4JBhyePn/xzH/vnfujlP3SmZu5Jub2mASAqwYn+rjd/119/419X1u35djR0cjIYaitVAIrUVp2ugU6ShuJBa8RXOMaFMv0lkpJjoS1yF1wlkfPbQn0XIxUcpmXEuC+poZCAT45oIMxAi6RdvLYgJT5U35mBiL6IHIrcECLigaPxx7W+ydrCMmdqpcw95DdbpgrvGUHb5C66hjP1RGlG7rJT0mK8a832GS1zgOEGV/YS5pJ9qyeqo+qoxHGLlJjBNSOeM2aI0xVp+U6AMJ7MqPVQLuGveRKK3h5Wa5oP3v0F+Fzn/p5jt3Nn7i8BC8CBmJxzNCMVlSORGyKHd+z+bjpei+4vxKT2GlLRQ5Xr4gZXub9YrWmsxbZaAffZ1dk2goM770gpEs+ei/fTghtFmj9H/XiKhQa7hI4pur9LgaaTIKgG1RpPyf2lgUImAm+wol5v1BB5HtZw9NRSRGW4MsQ9BhvjINfXmD7qRx/BPgGvM69xSAu06pOEBOLI/ewX/uwLL7zwTNPck3JHmgbRRhFH7vXve/3X//LXv/XqW93glGNEO2SAVLOpmhZM9eTY6wkG7zFf4MwPLRV6wMMfe95j3uWy9tvKIDX5YOHXPn5lAZDIkzQjXmdao0LcqCCsAg7egK2AQo/V7/tgRTJzwEarbAwYCTG1grFoycpMAIAvMJ/jNsc0SI1jVafusoNLUenmbdmhcSAiVs7+QUmHDaYCUThjKvp2M8rSsyCNDFp83HNsUoL4ax4n4BmHQP/T5f5edrRBMYXdKGDeZj7PUbpZoW9xIgktjthxPNeHjfs7akxnkjipELY2DwYKz/k27q8lFUAPVG4IM0f/AFWecc9sp7u/2mxfnf1XRC5wFx0NFNPxT4A53CVHjnSM7sxKuS/R/QXDseNZVKL+lpd90UPV4+T+1mKDHMGB50zrxFvMm8wzVtTurzVKbItS2Fy9+mNP6+Qupa2wGp1kVIiKeu+jSboErzGtUdQ9Ukhi4OHxw8e/9sVf++2f8u1ny2juVblTTYPAfTLOePbLT/7yK37+FdgHPJQ1BvobEzU9U64bj0ERjGjeYr7IWIeNblcU5ovV4088XSLe4JjMammXO3/CgF5dNBJnRJAgtElhUrQKEydp4uFLczBMooCH3JJ4CKCLaS05vh2C2iErJkoIqw9gLG6pBDqtEV9i2qCKJ2t9I8eig8Z1JDY6kXtHZpPHjJY8WBmM2mykgWhBtE60oBD0j8WXR+IkAWrr2CwokQMBgx1HhDzd7m8aTT1WbMOdX+3+jsnPo7irbNCpJTc3Iilp34EwgOZEA+XKBSQqaAmzelVOR0KaHqu/7gnG/V2lgHty1dr97Ycsu7/rxJeYHFWmyQmUdLg8YI44u9ZTcqYWG38Oxbq/S9Wlqo8mJqLVhGygBJ1dUEQoM50wxlBjShpO997ribqLjtbSvE5WpTa7XVDWM3lgBM0Jc9N0mNEkvrm8+ZG7H/mL/99f3FvsRYP4rNz18v5pGgLdHG++4ldf8esHv76BDb/vdV+jhG3mw9EZZSjEraI0I7ft3J6jDQr+9YREqO0d+BgHj861NVed4Vs1F6j/Wni0Jt8RGEGOeI9pkwpLaDqUvrcEpeJSVZUD0UNVaDFdsVp82J6ivFZFad6dP6hdi2NEixyLrqu75Eo2mlVaTWatGc72utfuAM3p/9/em8f7llT1od+1av9+Zz73njt2N9A0jUAziAMogohIRBRFUfA5gEaNQ3wmGg1BHCKP5xNFiaImJC9RY8QBo+Q5REQMCioGAcURZBIQ6fmOZ/79dtV6f9SwVw373NMNfbvBU/f3OXf/9q927VWr1lyrqniVaZkCopB134ptR/wdAMiu2G0LFw/lvYfc3zSCKtxq9yytk9kwDffXP3UY97cYZQJNo/vboew1glHiNcKALj0cc9hNK3PxjhS0+1so4Hjh46KZgtENanPBgY8znxryRMJfCSa/c86cNTQlZ132rEbjNKSjXiH+HBUwTQkTkInTMDIMk+aUdNx7NppJiyjLyYc93cyRIXPGDONVjIXPIHD5euQJMMmIgUCOXIfulz//lz/z/p955NDci+Uu7J7to2c//J4f/qMLf3Rm+YwjNz0zldPidpy9bN2W8xPLQEuKESAgQ5iAl9isGV5jXmA/veycI4qbZNSKL6kQBjGhhz1vw7yFKFeGB1mmdZ6QWg6GSLW+gqd1P/HbAQzpxd5uaZn4BJOhQZQcUCgEc2iFzDGDPchlsVs2eF2cqz20hGk0WglEy9Qd68wxgw4heUbrzjRNjWG+mqfc7/TukuM1HqQbKcwkADgHIx+dbAsZDkcxykzs7ZaWiI9zlloNhOPdaAQ/DjSlznTOOrflsAdnHDEJSfJgDuv+Irq/a8ynOZw3I3m/XLY/kJkae8naieWV6P5CieYu3xS1UDNQX3OjR2biV5zQMvEah21UlCWR9iYI+ZkFIxiYdePdX2utx7NPJBbJz6QYU8BJ5uo7AkxhThlaU+eys8IMAR1oTv2tvbk2P2ZJ49/jpAcAJ25AjskoVkQwR9hTQAADXuDg/hYDkUo6uknjREdBNI87AkNmIttCK5R1U6FiyGvQv2rLAyCi3dnuFzzkCz7z/p+Jo3KvlsP6NH4a7S8u/cVnv+mzu64jQ4ZNIOguHBQh++L2nezFAHd4AyCgKdGUaIl4gdGBQMHJTVabc0CevZrHZAe3xjo3c+aUCYcGEsgQCaXgTPKOw8IIi+COeOFYmMnazk3vmgMAn2IfphNVSls7PbUATMKsOxt2+85tOXvZul3nQ9UZNjWzAWSIFohX2KwbXmFikl6cHZ0FKSw7WPjNZswZMySSRu2bEJItVRNIcdxWbh2X75oDOrVagu/VSMnTrO4XgS8BFrIlV3B/a2ciKeBJmF6mZRKRzCSvByJauNKLtdacNdTRMGSIehS5q6f1bqGMtYxTLgIYvM68xhoY7wQMWXkFMatkYrtvZSu6v0nOulwW15hJrioAB7FCHfEG84kY9UWEuWAfzztzJ0bMNab0FD38RuEE6qKAR5OiDKFL6ohXmVajI66GMrh6aOUB6uhZBNVaK3OhjswpA5ejLnbN2bhbRIqdTqLZl7BkYZZNv9x/0von/btP/XePPvFoK5aHvP6jcvXKXcgIIND/8db/47fv/O3jC8fD9EyxYIKrWLxk9FpOqkdCbEjVmhDTnGEvsiS8xn61nT8rN9tQpAU9YmQjSFhN8U2in0OsmBOG19inVmfJXekRUTlvBszMzN4MpI689ef2YybxXDKcGNCUaJF4gX2CtQ5BhLC8xhgyTtMBB3FiZ9anogFRwTCFhXeI+ia5R+K1rhtUjjaTC+2bpMksrkxkQg8vO9q6MMG8BJ/p53f5dDvObh7a/e3a7m+Wzz0GqgMs+v2epmTORGmlXMxsLo0icUY6zRpHq2tej85AC8QnOZz87bEqB65t8hfLQAfMIJviNp30cij3N4LhQeUFNscNH2MfEMty3F0OqkrusvuWVok3OHOPqHJ/Dx9/dgMd+skSPs60lJ247LOrM02DSvu6Ac6wSmYOc8rQhAbloeg/bPKWNA0whDSjmqFlMhuGHW/tbi3R0g8+5ge/9qFf68QNfHFUrlY5bJYzE//hnX/4hW/5wuXpMhjMnJZVlyK+4BYoStXBaMWHIY0YlXWcyEtJVSwBqwBAhoYj2WtDTL86Xg/rM/S7UMkpiRJ8X+gE8Tr7eZqGReb/TmOybGeyUEBSwHpX/wozYTLfqXiCl1k+j1UUrvTUaI4W6yyvMy0H9e89znCAR7NEfTYgRLJBKX0FF+eWjXSnwtxyAL42kP3FBOgAA8Mm2JEdiKP7u+dk/xDuL6mdCGJOWptUCjXcwzln92x3oguGNkftG1O9U6A1BK/Uhm/pIhP3hX1to7d3gnktJFu3FbAmsKlyfzt2c+e2nbvs3I6TuRSTIsN1cn+nxMvM62xWDHXkM8EOYp/cVnO9CgmkDZYKBUzZLJpnnUQzDYRotMyBHrzGfJxDIxIXuBRMV7kpSdOEqf45eHVArB7oIesscUGhGh1ojcxGWBtgxPR9f3H74r98+L988ae8uOMOcrQhzVUtd2Ge5uf+4edmmK3Qig+1h6JDEFDCVLvelN9BzkgIO16UOq+O6npjcDmwRLk7k6+p5+GRz0z6OJslK3ao6apepNA2g6Zkz1kR4XW1brkoOZdm8CPwj0DK12k7kXLIwy9VoF8/qDWZhDMCsAAQPFqyCEHNUNFo9efphgAm3IAuittS6cMRGJiCZjS/dW7OGExbUcEkW02IxjCzzk708Xpapm512I8rs5eTh+FRJ2pDCn8EcHMYCoQAYJAls2ZoKaz894ctlpPw/tKPnYkIEfHTZj6zWWPMYztRCCZAD3uHlZmYDeODwENYsoDQAV1ceM/kY8g0oe5Uh5OQXgb3d5a3QKAFogWiReIpU0dwGLKN/RYzeiKk9k5if5nYGefOOzON0W+vgHX8OQ+0DhYJSdj3SBOJjg1ICGG5Tef2nDllaEqYtQauSdgF8ATZFSwr5ylyTcgq1CQnqgW/z4j32yzAsNYy8+nV0y/7m5fdvHXzz37Wz3bcHeWhXc1yZU3j4Jj4Azsf+F93/q/Vyaojl60XSUUUH/qixSJGxHT4peJMUrYPAFZBf1ZqRjtVY8Y75a0xDJlgGpMMxK33hcRwkyfszjt0COuWU2fTJ+7YEVYqkuJtDYBUjRdAalbxsu8AwaqLPzxxGuRXtjlCIWskDpCo13nJYhEEq9bN+eZU4TMBzai/re/OdjShcmmF7mmUp2ULCGbpAKEoCDV+amsD1XWNyfgULROtU0ALX8n9hUKIEDuGN8fZDcI0mQt6HA1oSu6ic9aZE2bYakEbE6lyVDPMcR8jIETPOvCUaZ0G2FwughHc31A/VvOqcXSTN412AghMjLVh8RATMw3ANPAJkBA58vOpgUikstIStfj5nhn6W3pz0vAyh2Nhr0TIJV8QhgXFStlkwckEgy827i++Grk15rkIS2/7a9eu/ZUP/Ir8vrzis17BzEfK5qqVK6+V9a7G/7r9f922d9uEJ0OKak2XiT2gbI3i+vBFt+zizl1JzaR5VK54Iz1OORuoZgfyypkwW8UdZSUbtnfYIYVJF84fqaVYcdFkZlRSqcXtjcf9e5fj0hDmkKah4TFVp4qOe3T4HXzVhooZDll9AOqIhPo7+nDkSepCEgcUVmAQmlZJRF2ultodRCaAwpxc8WtdBFgE1kPjwa9iNV6cj101fGGP56Rx00/FU/FDU3KXXX9nH/ZZkByYBLDKNxu6kFDhpyH9bnvpwoUdHMK2K1AAhOYFep9mjZzWHd5gXmc/rdhxx4aT1ml80rMmKEhDZtith5RqKVA6ARH1t/X9Vk+GhvhbMUxaStQAS8wzTAziYJ0dXGcXf7WAA21Q98Au7HCqWTsO+hzza1av+ZX3/cp3v/m7G3GUo3KPlStrGs8Sr739tcYYQDFJXSQnzYMHUVGY36G5/LWwlBdUNMZQgL1miUYHGheZrV3AkyonuWAIDvacHWpWpncpoIummuxUdDCvGSbqm93R3s8UWAAAJh7MZLqSh8cNvGXir+iLymTzf3nCmCuc6E5RVV+/usBJrWA09po2ij/0oOhR8eAEWA5xIUOmzF6p7QP9UyoMNjH2V+OkUMAEMzGyKf2lfkgLRh7bMeHZjIM02AW6iowb3U2lvdKBQyU913RIwBqwFJ4Ks62UY0MjhBUMCIzTAAkVM0Yrhzu2t1u37Yb9/DVa9HWThQUhkBjnciTtheGysAevcffArruuC3kBGoG5hTGX+dmVsz/2Vz/2C+/6BX+YfevFR+UjXK6gaQTC4AuzC3+5+ZeLZtFlIa1QIyv11FwtLPJoSVjpVjelyyTYyCEGgkO4Mrpw62bKhy4Mn0KmUBCssiuyKSBlRqlQYUNGF1ClvqPFWlWkhRwFBVwoqvSs9/MWouI0VHL7wQq4hpBGelGLwqhsZFtkM8ZSCgVcN1i0UyvgAgkaEqWA28DrBylsXE0g5rjdJ5RL1xTBWrwWChg5WmpVGj/csbvgZFcyxsoFX/voF11Y4RAjdWqeQoU6yQEGsAgsAsn9LQjGVD1C/jgCsbF3ErVbVquZpGwM2zutm7lMLEDRTPHRJWc3EQkOTU5vk/tNFm5cMKsmZI401a0CT1iOLR173pue986L7zRkgvw5KvdkuYKm8WPwzq133r5/+4Qmg7MpFTP4Qip4iivomPSIkDR0mK5vgn2qo9slrzaBQetOYJADhSBlzfp10fayTSddZkHqpjJAVVNXaCpgdT0sOC0QozlnGjinTI5oStIaFYUCjv0to6OeRjh/1pvSHfktzgY4k08jKGNxY/5c/XW8Wub+Fooq0dW0cn/vnvZFiNYCuc+qSy5nyRCB7J22Qc4KgHZUIBFSclgRr5utNcEobqqgE7qgZkLCiIl1mnZYgiexG+tfKKuDWEFrqaRZDZGQu9MFMxQRpLGS8kH8tz6k/jvngppJ6WoABLzE5kQ81UYrciBTpQpLDm6hW7g4u/hv/vjfZN05KvdYuXL0DMA7Lr9jx+40zg6ScfHRjHs06ziQpGzTvFoilzh1eZBSqRUGWnXUdflS5BSZ3SZmxhxu0w2cX7NN01lJ2lcb3TVsObp89CxkoOU/hGIGtJQxjWZfxrhJ8WGZ11DUybUvfCxFYC+puKLLamamSVGSpXKw++v0t2CRBElE6sFUupD+5E9uDtDWHnBT8dQ1peo1WtfqDk8YPdzFmMiXJq6T+6slW/Gu+oJyw3ysWn1TdwoAAwuDuRYw0wqiXrlQUMBZR+pXp5YZPGHZF3fBDfKm6dwUjaibYVNRvbAm/tRd00WabYV/NRIUVFbsxtLGaz74mle+65VEdBRDu6fLoTTNP+z+g98wo/yhlg5NeZF+8kVRiU/NHNar101RnFvWZ/8dUDSR1Soku6GCKkUdUXxCykbrINsSTs44oINX8lcaTk9hxuq/Y0zYBcFxZW+mKR+bdw42OSs17NemyLbIXowrpgoFNpr6MlckbQWcP9LWvumNNKiZ4P62wL5yIRVn87o80V5uHZdfObh6bsvJXq5lmwK9INHCOTvA/VXoTVtglE6DfmoS7JLg0GA0pNyGs446UmQhjat66jQ+whP2hyEFOJHbXgrgbJsZBCKxzg5LU13sqYVfuxqyRgurJcFZ9yteLHaLP/y2H96ebxsyV07yPCofRjmUpvngzge1sMtUTi0Em6WmgPTL2FI1RNmh/ffaukS8k+pXVD68WrIWgi81Zgbmj/ukaunF7ThAGe/hdxlgOKDvTZFB+ZJJoOS0uqmIimwWoahcyYVGqRXwARsu5Njzes5DIptVtyN4jV40S21nVDFYv9hlqFyjKJoFQ4paHSGk3HEZ09AZLC3om8rGXxLBwV2Ks49XdDiKXw94pMVumfurUZFIwoTsauZ4QmAB8wEXqHCFoGNGLb9CuCdSIbiLKmW8aUuFVbNZN62zmXcYk7+po+5+ncbG4MUW8GtlH0ESkpXpyl9f+Otfec+vIM4UHJV7qBxK0+gS0tm1ejhY2SQycjltxTBrthuKfsqXSBmj4q9miSaXUv5reu/BMLd4UrYlE4LF62hEqRxQCsEx7Aha6eD0xiJ3GUrL5tAOUEHdbPYUFQILuTOugN2eS4fVp0ZKDNe65ACb3Zccz8N69RrtCS1FDBBV44XcqcuI9i2DRajQq2m1gz/NJaucHi/kbN3x5td0R8egmqmbqWXKqOUK7m81FdcwVnKSKDEyrqiC+7snsh01YiE9YmeLiGuQNmkbgrRNhqC7vgsniqpeB9ux7l2LF4RkYia/9M5fAnC0zfM9Wg6laXrXa2oOpFCYJLXgGLsTLuM2KEBJGU7VLJK7MKJsarlTlIrISFrp2oWhKsWPBA5HdFTNK36QcTASMFoBpztR3YbtCKWaCq5Ms4POGat1jG5k5GZjITe1ulPoHgvZqdottMjBOBkDSQmgUeMgSdWofbNtLGoabwrE+r0tzVpq8WYON0JOhGzFoOIY0dY4GdO+UMPqMrQMv7qqQadyBcd2lmxqlNRmDUOqqHdbSPzSbEp5Em5LZf+4vL+Cckc7/zq9Q5p/hQOvslkx5Yik1x1CAgAQkZXJyptvf/Nbb3srjtyae7IcStMMQcwo+7JYqiiKKRyXogLC17C1lMRDX3SFImZCOQE1i6ahMSlfSb1Bz+lSuPZaMyHKdIcQgs8nnBr2+5gCLiroSW+N2UIAOfV4shPHVmagpYCvWLSBPKZX8ptB2DBkr3JM1dlvZd9H3l7iJJFEVMAN91fDkxQwt2ilNuTH2sl/vfLapvwVwaxmyG6c1VODPvhkWjpfcYBarBScPGmBlzDZXHZWO1jFTy253GCKwp0a92mAkMAp+xLYZ4RBhjknUcBYFTezoCXiJe4/1LsLLtNzNRqb/VIYMGS25luvfv+rh1cflXugHErTFMKizfC1Xil0jy8uWC5+272sZeQ05xQBFX9L+HIAmtUqZnbkhkwEXQ0tkQSAIiES/FZOBQDlTGZhryXMjAGsGgnoRetBV0mNAg9QeCuYUCqwC6wmdDSrNV8XgRlcvXwBRNlOS7hkv7au22YBVHIXhtmXLHR2AJY0uqrR1IJ4yI1sqoQWqQR1Y0X2y1kHVAx1BTWTKuRhIjgQwp51DUZDrmBqZTMGvygMFKyh+REhEb/tJ7UgSTVlW9FYjoewoVlBGClo5tXMCpmTxudeugvO3mrDXhXNxRXNRQJKlTpyC93C733w9wA00muPykeoHErTHOuOZcIuRb5crm8OkCPqVz/H00graF4ASIZzkzOlZIAG36acKMXzjZUZldzXXBdmXL1U7dUJg+oVASdN6VlEDFz5lrTfbeYsFuAlkVrAXHS5kNfNOqgiHhIWNl0hCacpuz2fz3Px5B1Xp5SEtBRwQUKFPFXkNux2VTwoqhcHey1SmfNO2TTpZi7psjDvWMvF/fiWkG2Vq5khflQzS/O6piK15Lkcr4K6IoszDlwkUOuGJlGpr+21TQcUCnDIvgx7zCh2EORDnLps47M9eJ3NqbjlUgdMIXvS39LLnoiJe1preArhkKAdXHdZMAvvvfTeD25+EEcBtHusHErTXL98fS0ZHVw4CqugDMQ6+jq5MkFDxcPMJRfBLm8nsSvy/bXq9ptKqKify472I00dVr00aBqojicV0RQcrroogI+VB2v3AHEzoCcq4DHpj/KR8r15ncx4bz5SAKwVMBAO4Mlf4f2zbNfnoneUD33e8eygh+JX5I00DY4mZjSQNZYqW94b76X7q59qBYvCs/PKPY39Gh7XWVVupIM5AadPOPRFqo4jW1xMev/Nmk0KBEqu70eeGrRvzSk1NtJw+H0zff5ISncGIEinIw5IiMrJ3+fTzKfj2u30dwqyNL917vYc8fiOtDV+Yi86053bO/eO8+/wULQfPyofXjmUpnnw6oNZsrMFPUtEQ9w558qpPAwkG9SKk+HoPc1XUJV90fxW/5q7JlmduhTMmVcrzR9pfVD9TW5NEhDx2aBEnQyCtehFAZt6ajiNpoC2ttyVOZZJh7rvMv4rFPAK/lCzDsXU0rnADKJUzemkMRWn+l7qmBx4pWJaUr5JBgW0TfwfgJna/dXGey1Pa4JPxdOJVQfwpH75vGS9DbamLo0cQalIXCQYOCeuRELxbM3f0tK+RUdQqdui14AguL9C46K5mBdRF0OmYpIS3kXTwCfa7kFTMvczfJIH3aPjgRMQqL+tl5nctQ3WfLiVeG7n77zwzrL+UfnIlSucGuAt3JvWbzreHe/7njsWUWn7DsLiL/xNAgnnU+MiAiGhzCpsShaENrOv8dqbxkO+/BjD1A3WssBrSLhRikT+bA2wU4fIJgXgA2gsTlzYyJ2qGXv1Ol8hnbTR8IfqXlRwSjp/Pv10cPhI38z/phziKyjgMaPb984CXaSHGOVz5NiFHYyzNYBNVZFICy1vJv5aQqVywAQRJ1KRSkLRmEAh9Zb4yGC8F8oyPZL0U9ERAnrIXGhKA048Bfqjx51a9tjEZxHWg0qC1y5FQaWt3rXTf6HeUsyM6gqSYybOXWV+Uv3gWCFllMQHhyNnkgHqIE5oQnyS+QQD6lwPlytRB+qIZtTf0Zuzaq5FDvxgQCkR+ejZFaTKUbm75Qo+jefYG1ZuuGH5hn27T0IoTGw3pJBZscGijzEyGQ5IVPHTWpgWp7fWgRSosBJw0AXyry17cDSMULepvpZMhVa4L0dIQIKNkzc2/urEWScS/8INaq9orZDvNbRo1R8rI5yWHhmObiza1CWXOAV6w1Dqlh0QY63e922ng3v56wLZWLHpNO4MA6j+jg1igRxUdQ5AjrojcRuLxoMtOilRR7lRopod3N/mwLW6GaIC4tqb0krVceX+HqQVEqhj9KPn2xHRklhsbGqj5s10kR+jGQRFuuPtSUPd6W7yoEl3tsv0rnZr1N9hf/EDtEUOjBYGd+zcUaLlqHzkypU0DciK7bj7jFOfsd/vDzG0gs+j3RcEioRoWvCvRQmLIjJWcWC4qCR4xipQrY3AExpH2QgAH3loy4WmCE4d1FTool3mGgAkZROEgsBLWScunDiCEEgMQBUdQd7syDSPFPl7tXqombwW0BL0X1s6j7Ucq5Xyy1WjnKQJRBCzHrwC9sIlKeCoklOUVfQW8ahgaNFJ+L/azuQKEmQEOWlasRTBtV5B+RSg/DybNRsQEvvYCD7rT4w/Bz1daF+XtZnRSQFYcWcMCc2b9VQTKpZEC/i6cVFocYFZrLPDYc+xC9013fT6qVkw4eS38cmwYc2Q31/8ctxfHK2/dWcFkKPEs3u2HHaPgKdf9/SpTP1UQkbKkgsXZasG5tHUX8sLUbOCdcv5X8+TQyMF9egGC1pP0l+UaK7FOvJH1NfaDbJiXa+wUbQgg2wVRG9PBu0yxBKLx1F1odY36lPrv4a4KTpVxSfDtL1EyV51fximXIIMIjW93zrpW16IRkjyfJ0MdokNTqAVG8a4luZSdRA5QjAMdNmFulO6TeQA6/uonioksh4vVI3rIbb5KA+erwR9Y4Nd790+PxzhfFg3EE+J3rGX6ptpbZOuM+aLNNvRnAhpu79jjfhLRSrJrxWnDgJww9YhtEhmw8hcRASMu7O/ePLDanNEId/fJ9DMzkI7R+UeKFfWNEwM4NPPfPonHvvEndkOOw4jV7FNJnYLGVoYWamFWje46g5CZU8UjTBaegTqqYLuoygvH4eqWTSbC3TRYXEEn6Z0a4qO26zvibIzU91WYkIDkDSQbfUrNeuqDXKKTuVGgH7LIPOTCEvPNrW++qmIiAaXZd6yuNVIBecGwUQPf6MCLvte0xhyVNuyv415ptqOqQmsJU8lJbDUDWoYfIlzLZmeI4hIloGWdyG5v8kD9qrFa9+gZkSszx+oWaPATE2KEZJyuktagVDkbWqA0epyUZrso/BZVAu2Y7VDszjpznR+Evnu7y9ei4ICniygKFMzHWA7Kh/pcmVN4wNoTPzM+z9zb7bHwpn9XvG5limNYdNciqqytkFqFeXtbheTdmoB7ao3xnYGb6YutZSp7fdCPMUZ1GFhfFOh6vu6j3akciE6069aPhYA+yxXLUd0U3Vf8jemaEySz9lQFm+vGhl4VUlPmUuIwhfCveh7lLOIoddh/qZQwLXYKgimGtAQ8rLl/cZASw5kejyK+PrXBopyIDNrBhCI7VV0SKvP+DWNQvDwYnZZ8AKL3HcNT2HoaA5C9reAaqivGyz0k9Yx/n8aXNKMx6V6tsZ8/lNYQKZ3aBaAIVbMujEnzbBDc43tVPTMTbjM9xevBz1eDBaJA4CjgwPu0XKo6Jl3a55z43MeuPTAvdkeOcrs8aa9nIoeYNuqXFipLq9cycrAfmliuWKGxCQpup3mjYK/70ZYq/5Aia2a9wSyJ5jn4sMpyDUSmqoIWWuZCh+TAi6vJgBQLmxC9mtDHMdmU+imHDuNdowsedE87D8ECGQeF8Yn4G0Ow8Hat6mAi8rNC63t4jYtDTXZ7EjxroRVtBRws+/xzhCRiTfFCSzc3DV6ocdaJQ6kERm6cAByChmak+iAc00nqULRNUUbdeOe6bLVkcWzNUJk6FERFfBOW6kjBWRocv+J6uSHt794wokr4Sl6d93qdVXrR+UjVg6labxbc3rx9Lfd9G1b+1tGTCYXCk5wOeekC1vRX/GstBqsRa0gBRm84VmmrgGwIWkyW/enqc2XMZGR/zQEuzST94CFWHF7Luts0bWxokVAUwHnXR6wpxdXxxZS7CXL4dEvUjgP4bI0vwwZ7bseqQpp2YwXVIKshexJRiGoGoG6WQyKLjUB1Fgq0B67nKaC2o3XN6MwTV5Fo06ht9CCpxi+5P7uS8k1NVYP4KmCbhNn6QHS2LAKhvhIFn8u3lv8rdkkmSaoMFN3vLrI1Iy/tMocSR2xmDxgwivxyBlUidf5upzap0Fzf3ENjFMgCeA39YFcv3Y9jso9Vg6bEeDdmq97yNc99vhjN/c2S2VjWxxSMEDNS/Un8UahnCpZIzHvJemblEHr7HAnuDJj88M1fxavi9KnIXCjeHU7LmyD5mKWkc2breVLkgVj2rdApq1+1VJVoggolE0r/B0UcJx+z2IghexADhjKlw5elK4/BwRu38lMQgeLHhXzUkXRLzpAAdfCsd4cSG1jMXjA+i36dTbgMN0JV5osx2DIyWZIZ3BZ5Ef2RWZSQltbJAUR1rjSFZA3UohUW90ErB/7Yh8pZHXqd6U5pDb2mhc5fkq/mfJRjnd4mYlI5gIzvEg0WPrxAuBC9zjIjgqg5byvN1hzzi2YhYcdf9jw+FH5SJfDahoCOXELZuEHH/uDZMlZN8TQCrlZ65jCQKt/bYlX62wIOBQMqb6mXOo0iZrs9BQZKlkRIw0i3kx3bJCnZQZqxIhvgU8yloD5iEaxB3ZTo6tAVH0zwtNQNi4wc+q1P6OwUMDDnRT9R2xBi48CttYnU96FLObI5Jow6l430VUoGIzXP4DG1BBL3H8hjKNVKZFx0P2qJu3NtL3YWsek+/FvJsT9hyLwFrIrGZvU9DBWJNLnIbVvUwHHCsnba7u/+nUSWSDyUsZQBcHowcpVThlRTA/q7vgdmtfZXXT2Ziu7klb+3s39xSnfX1zRjLaxSGju5qeWTt104iak7VmPyke63AW0MrEV+8SzT/yuj/+uc9vnOtc1SF+L16aIkYq79K9+aYULgtL1Ki+loNH8QWWiVzOo9eNQX93IReQxKzZrCsNqAFogc3/DJxjLYTV4KTGTZzYmsl1e4QCFJBEzvQ1bJhcMHytLTCQbFDAOVMBaLtQqsBboDoBSwIWIJKAHLRKdIQDDJFbhAR8gbfUba8E6Qjwh4l+rKCCEjOLOSUgT/sr9lZgwMiCnoBalmRpwKoIpFQBiZ308Z09K1tD1m15gFMRZs2PUcsAIKtoOCthGt38k/ixpFa1GS6Gc0rXLwUsXyOPPqX5avEmAizs0M7AAcdLf2ttLNhzzkyJvNf8WRSIR+q2AZvn+4hGAYbGEgEB7du8RJx9xzco1AmmcWXVUPhLlCrvRFMWQceKe/+jn/+W5v3zVB151evX0XOaBVnTGoS9F0oj+i1wiYGCktHrAk6bMhIw6Vk/iqmD9bJ2gIvnX4ietZlzrIgmOQmP5BnqhKZkzho5TgJyAVcgloZ78sY8BTkRGSnAWd5r4SZDkQHqjGy7ubhJZFFDvUl8FKnRQ7/5SC9NCBaYGizsCZ/NNDVwcAgsw+ATzCUYHMHBJ2Z5p7HSovTnHW4AnI+DFwfKp1WZqwno9p4jEAf5gtNCSkKN0nS5CtKxOVdJYHRsdCatAvPgehFpRLGiFaIWwr9guLX2vN+mpSy3Em5jRo2YBE1s2EWAOtOHnJ8SJz9eCQCBhj5kgn0M3slkWDc/BdolnIicZH2ngfX978HHmDQ6ExEAHArlzDjPwCQ567oAylikgwAxYzF4aJncjkAye2/lnP+CzATjnjtZv3kPlrmkaRM/05U98+Qe3P/jWc289tXxq5mbZQqpa2aRhpha1RRGWYjuajd2uM1M19qzkmtYuSZQfwKXFqyvjt9A3g+DQPxEm107McYMO1toAjABTYBmyKTRRyqbI9z9A/yk5nn2NgiNY3H5NxUywAEyiSHVKiPvHbXwjVW+pZdkBYmtEikla4OkwYMCB15hPMxZDugSmwBKwGwdO5wgVCEnoqpUf4otGVOCwcr6XYVs8FwVrkmjxvTK2268mieZNfVFABcCpnbtEvTdqPj7FvMFgwAI90MUKJm/zYO1b/K2cKj1Y1lpmpknccdLGUYgcdEUFnCEBCjlNtVHD4y0kUfFnp0aZg5XGZ5mPMfq4KZxVyuaSc86ZE+YgvkYOTLG/eC8hzh87MgR+HUhoLvONhY2n3fA0AEcOzT1X7nJQkoicuPXJ+qs++1WfvPHJt27eOpFJFibSEYCxaED18YvUgprxnz74NDKT0QdruVAXKT2VtsrJbTFJa8okS+PhFZ5cO6GOxEp2sLwDLZMsiZu5IS/ggL7bKoQyUkFiml3K1ZG5hCCMy8F24x1Pv0qOJWlV09Ic+a+SZ1THt9MCTW+cTh444aVomfoWViCdYNYauJYOy+DRqNCAJZqJUdYwATPLA2i9Qojk7RSvbpJTeqQG1TUusmmPSDA+7ETrZG4wfIaDlF9V4EmLDArKaYYQa3SpPooV66yIuLkrHx9hihBWVX8z5NRkk9BVXyh0BUdccoApMDgtkrm/4Q0ONymqXk8/DFogd9n1F/q0M+kov49ENYZ1xBbwayTUumkm3p5vP+kBT3rkyUeKiM97Oir3RLk7mGViJ+7U4qlf+5xfe/r9nv6hyx9ix+w4WLJNqaqlp7r2YqK3vXU27K+u2Q+AwG27stmC38YUSfFrzZlFI6p+cLGhfiKA0J3u/P1wKLuOewh4lbEIt+/KLhcf10JIJcLSbPawjjoi0+25UkJpYXoYBXyA3Ne9ztP/Bmsg/USAQ3eqM8eN34A1GIaR82mNHMdUtH4cFWMIKTATJWnIcbDDMt5wlLJWq2P6w1VkMFYHIzUrRGXur4Tum2Nm4YaF6QOmvMiBngEYyKpILxm/jJFBoWDqmmmA4n1nXVqqErax0MSvc/9qPTfGNcgfcRVmbHUhgYYz+vTP9YIJ+Fo21xtaphB/jtol8JQJN83UyEWxmzadUjPgv1C9qP5ShiI/NVVYDyLynJueA0Dtc3VUPvKFrhAAHS9OHBPP3fz73vx9P/pXP7o8XV7qloLf2gw66wu1GkM7sxlL+GJB62QWDQT+PNfB9mFlyBSvq8NoWjQ0FVLkhJSmlek8AnqYE2ZywyTNZg8nyuRtuk0nO8Idk4kyt5kno9Gi5ZfCTzbDnPifAAezYmiVBrZEfmhHgZYaFflwhIvEazb+VfjxlrIWav4nWqCFj1vwwZBhjY4b5JH04i46ssQTzqb0Ctj09BvlOMEgTcLa8kKEOcDBrBlapmAXs6LD5uuaYyGjI5LRiXpvSC3v8wxmj5aHLhCRm8el8G7AsGyLbApP1LleyOEUBbC0gCxGLZkC4oabc/Ai8xoHIuER3qmH4ADkFO8tMONvqtSeTEEKwOhOdXycYeCsCpUXjSgrTXqx1pqzhjpqvE5U+w6wcNaFlnsQkVkz8JOLPrwZQy8GZnO++WnXftrrnvW6K1HGUflwy12ep0mFiR0cE//gp/3gE655wre/8dtv271tZWHFwrJjILNtxR+jEvdYhFOT7RixTRzA4NPMJxj7+dwyD0HecKdgzlqSFuJDG2VJkKVNa3RY2QX2oyl113Wp2WG+PZU4C8Wr7MjZbQsLNswpc1Lrm6YCBryYaEyiJo6KL5WpUE+DU9qcwUILM6nU+B+XqsM8qssx49Cd7TABeoBArWkQMmSOGXvJ2pk1ncmkKloiTwZkavBCSFNnaiSp5Mdw25mJwWRwiAO1SBTlLp8lqsdiTM0gVzBQ3ox2f214hTjpTnXE5PchJm/S0TB8tEzixG056sJsfBshlINUoyVScpZKo8CTPcFSZHSJRolVpKJf11QzByhgKPxXvoKVfA8eABbmpJlcO5GZOOeIKMwV6d6ljkelSIbQw51z4ewZ/XZU154301fCwFB6BAXCIiLf/SnfDcCKNXSUC3APlrvv0/jiI7GGzOb+5pf+/pf+0Qf/aIVXnHGlVKWSGkpuSb+6MCVI68QnmRbIizBsAnvARFlk2i47wDpOL621GjI2GIzlxB4pQGQxeeDEnDKYD42kdZKFugqtzcRtOumFOkI4BixFlFCcIuVTgCBVkk8uST1UNCU+w7RKuATsA5MKISkQkVDRjGI3NQ3UGyVGt7UUExU/sTDHzeRBkyTZxUZFLVHcY/CQ7GUr+0KGmDnbX4RyGZoPnKgyqgsp5CB0613m0xzg/qKiTMTup4sDdLAADiHqqy1rhDSzhY9bSNXCGqaCVAC37dyWY2Y2XI5aXUZk/TA6Bc1EU4AXmdc5IKQglWI75IQTPQRFzCp/e+b4xq/ixFo74CRRFGPh4xZoSmLDrt6F+5sBn2ZJezjn3L4zG4bWKPBg7j8lyhQrIVXHAXMQEy/z4FpJ8JM60925e+c/ffg//amn/pQPz7QwflQ+YuXu+zS+EMLJ8++fvf/vFv9u6X5LdJmwHRNIzFBvMCc1JyMTcOKEOuJjbE4YWqEwP+HrrELmQjPCBJBoqJISUhhRbMgZo5AaiAaOk2GuG4p2fdxsw5jTBr3qjm6/AICBHtSRWTNu17l9hxmkk4GrvZNEJKKSSgs54kqwxQp18fxB79KtAHOgj4IVuYlqK/HakuNtla+ui7zzQZ4CNKHufhkJ+Q2qRJ/OInH0AbNmxIjdthaWOp9R0VDAvoU0L91wf50CNXaWVinYvBdU77zWOcD9VW7iQJCUE2cTOQ7+uLbh2YgWIZleNw0OjTckCKVJR4ANS+LtpnXWsWEiCqsUWUHYHLXk/urVUYUCTo9Pc3RxnoemQUpvGVPATdWbRgTBMghxKg0SQXqZnJnwMst8iHCgLtrZkgAwCcHAXrLdYhfA1vySIEwJ2hEwgYrgRepl5p1+58HHHvwDn/4D8HR3VO7h8uFqGoEw8a7d/cY//8ab927eWNmQNen6zl6ybtO5PReiBymSpuUFImUIqCNaom6tM8cNLRIEbu4AlcUL0Bq5C47mFMK1hRWf2KZpHTfVTGSGLLotykwjwIEWiSZkb7HmhIGJLkt9DBTi293wRj7GbNhdcm7byUyIKWiFyBKNlQraQkSI6ZGhbqPjk0xLFM7F8chZhVwUEgpZswVCtP7TMkW/aAwzEvJTy10SFGDd9R0vs+xL0WzmsWkwHGiJOu7snvVPSScIpBF1THq0/ltoXwTrhBeZThAf4wDbMrAd8ZOkKlQ7Y4JFKxKoF1l1X4JdUjp52v29ZsLrLPPYNSIA5I841yxAwUPt1ju7ad3MwcDP7fn482CRQAKK4hl6QLW/S+H+eievA1/DfJyxBWznuj9VQ46fQgFLCXD4NeFHD4obVsVmmPGu1TJ3Zzux0ohAFBfpa7QMwg7NM3Gbjo9xm279jXp/cR3WswGN1tqXP+XlZ5fPHsXNrk75cDWND5295N0vedvlt51ePm3FGjFYwOS6iYjInrgdJzvi9hzmkD7aX4ygXSZEC8TLTMvEC0xMQ/AqSZ3EnB1ondxFx3P2FnGgfh0yQrzW7FFQnhIlnnX1JkhZ+paApuTT+WVX+pt7PsF++z+//iCAV4cX/E0DTIAO3TUdLGRT7GXr9pxYAVT2WsE2ETAQiImWqFvvzHHDCyxWbG+zpybACtymY3DQgpzjRCtgjChgHbvAIDuyiXctyLw9vsbYhbvgaG0483tU++p3dTBnjMxELonbdR5RYpThXyhd/axSBgLhKXcbHW+wMy4kngFYhsyF9kbc30QVUG8pcNJ8aXSkSvfX5mhZ4u66rtTrusGEEzfQiVkP7q/sCQwsD0cUe9cvuL/1BkJa1kPdIdAx4lNME4IFloEZMMdgkUAhwVZSvomcwq0pMIPhtIVMzcRuTO4/gUEKDLTd32Yhr2pIWGRbsBLvO9X3QuWka4qgRqnC4Dv37vzxJ//4Ux7wlCM1c9XKhzVP4+Ob79p611P+91N67o0xzAyKe3Pp5B9PcBxMtiFhMd4Zgt2Rdoep+dxukpm4i45A3HEZMiqseLSEiPLxk82OZLrmMNAimVPGB9Ag8MqSj7M5ZrzWTPMrmVRKQnkKv1TesKGOqCOByJ64Led2nOyJzGKSLpT4M6AJ8SLTEvEq8yITU1gyEs8vyCL+gNt02EZACOVSVRuMGhvjCjigRdvsorgagIBXmdfYx+5omfgEE1PIwJY4J5GkTB4ixzRgxpCRmbhLzm5Z2Rc/Zz6sviwkfjSZPc3wMpvjxqwZ6sjObeaSAnBwFxxZogllCKEcIWNEApRjGpETNkkTpWZUtjc6dMc6mhBvMC1QwECy9HHgnMQUmMBddrIpbu60+9uAUwNZuL9MvMLmpIo/SwgCywUhEDoVDxjDSRMthRDPVU6IshY7NPvSo7t/N7luMri/AoxNXyVS0TRjY+rjPsxxQys0LEhKlX06aMw6C02ZGD51ICEmvmPvjhc89gU/8Ok/cKRmrma5+z6Ng3NwDP7h9/zw+fn5kwsn7dwOkevaygCCkW4IU/ACYwIAg6gtwsTJp1GPw4EmZDaMvWj7Wc9dzOzS3KICbkODicLjJGSWDKo1BAXVSGtkThkgToRYoAMRufNOZsIn2c9qZhJcvSiQOMMYE7b6mIlAaELmpDEnTFjx4GJ0UQBARGhCZIi6QQF7HwgMssRgB5cFxxx4hZ04u2VDarV2aBBrjgkRPUYRLZmTV4RlBHwsLuruAIJsS7/fd2c6MuS3+w2eK1UEAKALT5EQMdEKmXXT2c5tu+D+7jvM1ZbyaUw78ALTAvEq8zLzlEEI62kSsajIPh9je8HyjEtlgxwVlFMIlQhJ12Veota+yTU5YcCQfbG3Wj7OvM66hQzzGgAo9/dMR6fIbTl7ybpd50VzcH8L8CLYHtvERAvUrXd8jHmJIbC9zR4xwBrcxej+yoFp8TVJ13ZJrmaGnXi0nqCQH0GW3CVHK5TUz5XdXz0oyhl1u84smQEqBdJgG2mwe8CBwUJy596dL/iUF/zAE37gKAvgKpe749P4+AERMfiP7vyjL33rl5aUqsmlsIPSSjECTYiXmZYoyHHkdOMwbFRuFaFHS8dtObfnwPB5O2FuuQ4CxKmgMn8JilXUzIqHjU8yb3C2Si6m4UPg9hxW0Z3snHUFrQ+G2DQkRBDCptdl6pSPwjP56DxNiaYx4KNBosxUHxLeclwBkF2xly0RkSEmLmVr7SWo0Rk8PORbEScdzGGM+BTzelylm2TKDAIxZwymcNYFNBbyyN+ZAAbUkTHGgxRcGRNGzi9MERu3lkGs4BWwIf/rYBZE67ixtqmHvWjJERsetv86vPsbPwNy6uzqVLmDOW2oi7a2hcyEVqk70YW5Lu/+Qhk32luaAB1gYEi5vzNx285tO9kVmUlYspOoAgCDuuj+rjAvM5kQf06L8wv3V3bEXXbGmGxp2t11fzGWXa0olpbJHDN+s3NaJbNhQpDjiu5vznohdGwBC3PaECijK5uvhEs7RBAAdNztzHessy990kv/+aP/uT9E+CgR4GqWu6xpvOhn4vduv/cl737Jb97+m0LCxIEJNN/WZpGWAnHFOHVEq8SrHIJUiqzFyrB7RKFpHCCQXbE7Vpz4g/YaacQCf95BhF5BVYjCeIeWiU8zLVG2FMCVdG/3LB9nOhZzLpHLZaiNrSQ3GytBNqgxAnVR+3YZu+qLoIClNVM9E3fZiZUklJnj3HJRovJFNIqHqVTNwAldFjQlPsu0RP4QmgFs/5nDOtud6TCtTMskOwiYhlSiML9tc8UfSxjQjmiBaEphCqowV6Ow86I80zQYXmovWZkJdxyObjz02iaICiSmcJkmCYqYWSJzxoRJCC0c94UWic/woKUKtKR2poCJ7q//3ccJmbzr5iVpwIyECtRF95eU9o3jJXFX7+F+tEjcZcfMZKgdfy7cX22jKCR43ZnFLQuycVG1SDQxZ8AE5owhJtc7IIYWassmXUQLL6QvW2AGc8zQEg3YFkDgehcsPzvYpkxMROd2zz34+IP/8z/5z0+6/5OO1My9Uu6apvGRzV27+9L3vPQ/feA/XegvHJseC5EuDGOXtVlbQ0nTeErqgR40IT4e5Tsik9uYaVNoGk2IDDd37rILGyymyaGmUVbIPqV1xAkvsTlh6BgJZEhoFmW8JyK2gEU/781pE8LxpOqkIHixWOGK2tfF/VoYvMy8zsHbkwzytv2uvb1t5/adz1hLksvDoGeVs7S3pv5LuGLwMeaTPEj8SvXCwc2ckJhrotEK1UFf0+RpTkVKWE0hLrydpsQrTAs0hEYlI6ohsFW7vw4+NOfd35AJNuL+QiAUnI8shAjVC2To4uPMp7ikkAi/23dYgDljSk2jJek0bH7Bwp7asxhdhC1oXxPyaMLaMqtAOrz7uy/ukoOAupb7Ww+Kxo92f1PLmiWjo8nHmU9wgZC74P5qUybXNLzMvMZh9tSHGaxz4oY7PYiJiTdnmwJ5zk3PefGnv/j00mnr7NFuzfdKOaymkbhC888v/fm3/NW3/OmlPz2+cHxiJtanDSJybyppOwAgo3XkxkvSN35ueY3McRMYJq3Yl9xA1ssqASwBE5Al2RZ3ybk9ByhZr99YXHiWEwnTyxvGrBkh8VO+DYngFLf0gIPfZaQ724Wot4vSU9uJAr9ss8waKgLuhQK2YdEZHSNeZS0pMvtdL43UmBGgg920si2+gwM2mnoXeWcTpFaIiFeZTzGWVUQiIUTjxAIWbuZkKuaMacRD9FLKVA5WwKn9HkEsrjGtUOiyqtyWqgohIQ3Sp9iazP1N7YRd9KVyswpRmO4swJw2tEIltBonDnbP0grxKR6y47RIhZotlSu5vxJHgUCGaIl4mYeIawIsXrTdXxfasVtWZgKDtJA22zRWjYh2f7MgsB7fNIg2xhLXqHDywueK7m9hx4jSNA6YgToyx7Njf/1eq6F+DyKa2/lOv/PE+z3xhY974ZPu/yQRcXBHKQD3VjmUpklq5hf+4Re+4+3fsY/99em6hQUQIhJ1hDeZP3F32IG7fGmaxjNgCnPa+FVvgsqnKSJa07BC3hjDExYRt+vcZeeNevQh4JCJV4TEBEzAi8wrbNYMLzIY0ku2xL32GDTPeNKf2ZCfVgnTQftSODRwmDBChMpl6Cq12hyYg5aITzB1wwmnTpxD3PS6RqYFJsAiYED7JFtiL1m/hHAQ9IWqQyaePEnQhMy6MccNL3HYmlDXr0OLcQau3+t5nfk4D91BpWbGFLC+1tLTRQXfgxaIj6vMLgTtOwjBQh0mUBnOOnfJ+ZUugwLWNhC1IHHqjl9fPKXuREcbJCyZ/rD5eyNa7L6lDQpmOKk6NDItn96uLzRNuuj+EniJaZ1oSgESVfkg99erom3n9lwi3Sz+rNYYHOT+ppYpwEOrxKdjdnVBJBEtMhcnzlxj0vxfIr/MglE6W5zY3npFRUzmmEl1hpQzAXqw8L7dv379+h964g897YFPM2SsWAIdpQDci+XKuWde1hsy3/+u7/+h9/zQ6sLqmlmzsD6hGag4JC1f8ElVQkEKUJ6pRVV8CcAUmKG/ue/OdDIJ0bOB35DHkWMWEzMTk1gBg9fYHDPiBPNwmr3MBIhcjRCK8WnE/gyMMFvQKw0hGBKZ6qnjKBd8Hp3sileQw02Qn7jKIlcACWGwC0VIkE7uSrLGqsRWn9m1J/Zmy6eYlxkWg5ZSI5R99VlMAAmZZUPr1J3p7LZ1l53bcUNedWFgEACQIVogs2R4jXmFeYF9dvWA8/TqYpu1NJoONCG36WiBaJG8fB+0r7dLJNwhITAGbPjiFEgUNMQw4gYyE3ur5TXm4+zrD4pcq42CZgAsgKds1o3sRPd3Xs2KFw4EBmEqECLiZebjbNYNdRQEn57sSRyRf7hje8GGqFfSW6alZvIIZ+iOnu1zajhMCJZiG7zGvMbaoso4J4Hn1FcBLzGvsNtzbsvJXJA2UUYrBq41X+H+OgHAy2xOGawO844DNnSkVECGaE72Dhu2dShehIo+NQykPKHW/uIM3ul3/uUn/sun3/D03vUWR9nM9365sk/j0wG/9x3f+yPv+5FTi6f8XNqw6hCKBzSzaVlWOPLa6vTmjErr8oEjJ47PsN8fKVRIbWqHxoCYwqaNRayZECZUEZ9VRfRh8tqMjecFNEJ2Gs5oYosI1kGLIR+BiIICru3T4d1AnE2VdNpjHWvKESJWeIPNurFzC6BhvEuOFr+3GIeNjX3qs1iRWVxFO49yOa6ixSSkEYecbK9jKFjx5W5m6aU6KpJcvT3LS8yneNC+MToDoFDAQV7AQW3AWtKPMsOHueUF5f5K5f4WcZguJCMws5kYgci+2E0bMhjn4+4vETrwIvMq8yrzEpMh6aWM10kFqvZsevTzngyZM3GPyML9pZCGGwyd+E8gwbfQfpXN3yVAD8xAU+ITHJTZId1fAywBBtSTX1kcLLOkHiRnkFwBB/fXkFkzfJzNqmm4v00fpQcc+v2eV+Npm3VNjUAXd2iOodRuvQMa+4uz8G6/+7CNh73+S1+/3C2n6MJRuXfLFXwanwLw0ve89Iff98Nnl876lRyNzfApJ8fCG/CyzFLwyHWFtKxdlJncgeZkb7Xdtd2QAO1LYjZlJoc7tYMVV6tAcnhEVU5TLKlQSKstJM5gXaaOG9AaYQEAmHlw8jjreFZir8P2VgJ4/4kjkHrL4bRfdQcisndascLrPHQKVeNxEQ8RBTXDAOKKHAItUrfUlUkT8fEwHW3jDwqlw/5s2r6WfIcuX12IV4YtHYnI5/+MKmACABYG4l5enMdatVHs4sUU2Ed/c9+d7jCFj7U2sI04EF3QecwsTsCgZZqsTcQJeuX+iqIWgk895wVGh7B+tkfantmLsGwdT4W3BDwbdjMnexLONfAK2C8q8lvVqDC0z4wPupNCHtoAm8mtOgcYYAEyF3ur5Q3mdfa5Z+UoS/6Vgy9OILNgaJW6M53bdfaSDQub9lUjlGOGiaZklg2vMq8wLzIQMtTT9jkDkFogKB3GHbtNR4s0JJJp+0lDq3Mj451S0zvAgZj27f53fcp3rUxWrFiDI2/mPlEO0jRezfz6Lb/+one/6PTiaUfOG6dA5UAAw03kEjNSGxliyyLiyA3V0iO1c+2ov7031yhCEfXpYgSm2BJYV+aMN9qlUEJeUPrVkUXRQRL/dRWYAknN1AmjSdO4XOtIQMggDjjD1fBsUgkMnrI9bwUSlrM0papPaSYK0OihQejmkLDbxAMU3uq+E8pntdr2FwvgYxx0jN6zuVBRVCIEHJKv/ORtBn/aJVMTzAQ0p/mtc3PG0JQyBaxblmG7aya1zleCzkAHnvIg53PEpjSwUFmhlFy+Oypy8JyqDBCRORmOz/F8NCSgN+1uAxIiIRFhYSERkpJIRDEO4M9usHdamQlvBEyWzeqimcjrCQNeD/Fnf7SrzEVm0f2NXfOp57zAaYOPZJ0Magb5iLdkBTM7du6CM1O1ElOPYPxbmxHl/uIOcOi4O7d37lkf96wveciX+Knlg7p/VK5iGdU0fpzes/2ef/X2f7XYLQ5BMygDc0x8J1Orls5++8XiEJNCVzHgwB3bfevOu3D4a1E/OTRachUwSN6y5BdjkNcVqKqAkPPmuSWomdyGzZ7Vv6q+EJOBCaeH6ZmhQohEd4c7ducdOtAiZXnYSU8UYOgL5KoL+f1CSaeb0Rfyf7OZttRBLdYnwFqIW/p/pSXB+VNctkZCPp8xuHoufzD1Qrm/89vmk7OTbAUScqqLaqYU6Olbc1/hA8iguFPgpNY9BDpGWIoEQ1ySRE14yXuQsD+YEycsQ/vayUsDakBTcheds87v19cuErAXDAKjQr4eFQQ/01Yq4EgVIcvHygC8B8FrR5T+B6B8dKV1yJDsi2wKraoZrOKvKGUT60g6ciYG2Yho1+4+aP1BP/TEHxrp9lG518poMoY3c573N8+7Y37H4mQxzG/TSK5qu4lGm5lLlKppYZQkNYe5ZdmRTD5qkZqiZ1SBpFlXWgJoHM6G0NE1HTCJQX9SakYjp/lguq/1UNOepfwTm/XrY+w5G/IXiq5x/kgTfqnaP6BI+r+FklpRGWC5UjNqsMojUxOu8oVHfo+DgJhCZaYHE046YuH+jn7UUasXwyNvFq23oIWfQimmTf4LtBQvArAKr2aCK6MJRqOC8xYSGCYYeX4+JyOkmvYItEDusuvP9w33FEruU1DADQwgOApiRfr4sZK+IiUmlDP6MrSjcdJEO4ceuU1XBsn1BxgWX2PQNMN8XnCAadbPvudx3/PA9QfO3TxbdHFU7u3S1jQ+KfBnPvAzr7njNRsLGxZ2OKmpOXxNsVUzTK0b0KoT38LEMLAX4sl9iaoiJ2Qyuja0tede8xtKagZiqLfoSWGdGWBBzYVw1dODS42lQr40H4nShDvGHPacTUgY4I/VStlRNFVElopwE7IhiDdoyA07oEeLYUqJif35bxlmmsAg7376JaXP1wKr0DeIODk/7H+c4aRQwAUkuvtFx6lFM9mj1c9FH72gXwAWAAIzG2O0miyhKq7zvhtjwuRQrcm4VFpmauSS2Ms28wv1iHdRWeYjXcKf7jeplHLUITQYcz/GcRcbISIYSC+yE93llBcw9knvdTE9BABBnKwcW/nx9/z4r3/g1yc88V7gOARH5aqWhqYRiCFzbnbuZe972ep01cEN+VRNa6ViibKoCj61pp0N0tJMxIQe7pKa2lE1R8PQzVBGoVSKXxFMdwfXNuETkCno75O7mkiou1Pc1IgXDFI19Z2rx+MFT1l2RLZVUq8Op6TKTeWqmzogtFJ4gYKG8V6EOCYBM2ET1TEMHKZQUORZI8hNByhMMqgj2RTZijPnRWsh9MvZzbxC6fU21cxd7YjPeVsMMr2czKu5CRXS8jDsoBioVT9XVzxhd97JXp5NgNgs5X+hXprarxFelMJMoRHOoby+ai2RvdtWG3SmyhIideVyUai0tGiA0ipNjk3et/O+r/yDr/yON33Hvt1n4iNlcx8pDU3jx+ZnPvAz79p+11K3BCiexwiJQ91E/jWv4J3rkhzHlBOBwSC4LTccq5zkggS9NTwy5rU035JiCNWrG2tWEG0ozhbxNJBQM239dv1qaomP4qlciPjNu9wFNywDFFUTOAgnWjMBJfcWEA4PuSEhuwkhh+SIbKK7diDGdM/I/Yzw0IpMRp3NzNSRvWjD9FXKmh3Tc1JdU469ZsQpl3Re+5aOdeEdLsRwYgqaHdIJruV7nCgtE/maGOawtMudc4E89KDHx0sPqQCg0L71NZU1DwozFCUSbVhWlZa+Rc2RAM52iU6Kww5zNvD7i59ggSxNlzaWN17+rpd/wWu/4INbH2RiK7Z691G52qUUtN6h2e63f+nmX1qZrDi4LNxZ87kWamNso+pkURFt6YyJHlbL01C9TrdwoLMyKk+rOn5Ks/wpvdQEhs9SqorSFK8HVyhYFKpCqyYxyVzclis1jXc+inHR/S1U0ZiOobKCqKuyBYlZTIxyOdEBF0UpNHQMnI26v0WbBDIkVtzFKIoOUMB1uaICrvAsFNzfg/K7VM5b5v7W3TkMIflSJJvox6s71JHfdBWktK9yf8tFAjUACP0d/hYUhZwY3Ei1+iblPpNA9pSmiS2HE6SQj0gy+wQQ8Cnmk8G+cews2dMrp99y7i2f8+rPefv5t/s9AlrdOypXr5Saxjs0r739te/efvdStxTm92rzSjcgFZUXZcw8TIUUD+f6I1j8DNlWW4tHtg8LX1KzB+ubJgyqghcZAsnmJHTNaEEPkeiiKLYZvjZtZGT6dYiWp+5LxZa6AgEGspXjhACgBL7AwBhCivr1p362UsDZupmaJAqPpOmg1JIIrTo0eITpKa+A3bbDPgC1FgeBkDKY62abtoVGS6WuxmOssX5cxFO6v8VQajDQQotK9TzI/a3QzsTo4C477OfKMr2osBjGeo2KGHQ1jRGKy16KqFVTLOR9l321jirO1gyrcSUfUwo785r7m7D2UyGqR39s6dgt+7d80e9+0dsvvN2QOQqj3bul1DSejn/tll9Lx221UzgoJ9wkiaiiMLQ4p3mztpuUzJU+d65jKddzoeKEujTt1qi6yhUSukE9l5vnj5WlFiVFnQrIciKkqbm1ZmLIXGQ34mS85cbNg0VGjpYs4FnIYokGshaCaOFECzXKv46XUT+gEIKJUBkQ5f6qp0ISOUY6foCa0XX0tcuRUD9rop+H6rA+qGsuO1KW6qkMz8hprKA3r2wc3Gbl/qICW78o/WTzgUNep9DQFLc6hDQqoxq1ops2f13aaQZK/SioeIPN9YaWh/2NAmNyUDbri+u37N3yVb/3Vef3zzPxIXcTPir3RMk0jUCY+I79O9504U0r3YoTlyX/NAlRX1BlpzSrHczS9U8UPCfZLZVKmCxMznWRj1+0owWKU6DKsMNKkbNfNhI5uZGr3YRcv7HoUW4ge0uw7ScVWPIARJEjOw0kZtr3MNgu3pWb7RKPlB7VTEZx+Gja/LiI0SXfrMEvJWk31bztFfBOPPShNskx8vXgmyiHMjnTmQIuFA8HkLLZRN2s1rj6uiCVoo/qXxvU1JpKLnc7Tua1dXNg92u1NNaLdN1McmuSTd2atyY9kHFrmWzFTEo6deA17h7Y8XXxGIvUZcpIcY75icUTb7/09m94/TdUoB+Vq1oyweAdzLddfNvN+zdPzbSW60PRHAJFWGMGY7we4tpuhIgrIZLEuuznO2JJbBLZK7IUSYxcF4IDYV16o8spuo1hidxBiaGHsdZrlnc0+mtTLkeLVfZlyJVIessf75j6eHDYoMBYeruNCd9joiFBQoP807BlFZqae6xfsTiqRqS2x6vXSS8h4p+/MctoaArBuoxLTOdaOYqpZnRogqdVOB91aaJOA5BGHNLIA0yNyDAi/vEAgEVIVpTs13L6rermQUwtuU0WW2sk1DQ1cVH8TUWK2Vna8UU0pemN0+kDp37D2RJplXs3x/zU8qlf//tf/5G3/QgRHU3Y3FulYYK+9eJbe+nbywlT0XR5AI1WN71nXS41p5HG4yMeUn/yYGb6iW9RxbsKHmgqm9zyCgGzdLCxZh5dU4nUITjQZELtsjT5qpD+ieG1TKkFHFVfGWLFHzWv3zXEAPXrir9SvaWSqgK1saYuTjWleLuM6mBo6lAKWNcHIC2fRne/Uskp0yS4v4X2LZJlD1A20kKRv7b5U268X4WurX9tjkIBUuH+CkAYXdtUc2J61rt6hc+hKxdxsMOXCFiG4QKYA9VV9kjc/cw6O+zQHCMQ4qQ71YXzAhRLhlKv3yKAYcWeWDzxkj9/yZ/e/qdHEzb3Vsk0jefqt19+uyGTGTtNY6SpV+o7rL42l2WklhNXaNbS7OowRAASfftpfJdP12iAXX5ddCHOzYRjPHRHChHcDFbU8QdUL2rJxKwLcRFPKUGabkEFhswl+8mHtTXP614UmGkCnGSGVNIZ1fxEUsB6ZKXqvuS9GJc7GoaG5G1KYeTIYchMBdASyRRheqmcuULcFxUUboK0KuprFX6Y5C5N8GMivhr0zP0tmio4KP2YZvXSlPvQfO7+1ggvgBGFmVTTDV8b6QAFbPkrGlGElG/mG0mHijrwEpsNk+1wWmtxyq8JwjLtplt26/vf+v0oAhJH5WqVQdP4SRoRuWXvlo67jC1phArHrBUo/lEibGizEHO+VFztfw0BHP9JR/iplM3hXM58OjHjiqpZHwX2MZDBzCkeR7t37ch7s7Te65sYWkuWe1PVNS8iHCBkOxCnriE4auWzVc2m9kXSf/WKOd0I5bSRfq11gO57szu1BiVxcOVWp2OuZC5fwplDGqR0UoPLFVhBHk2HLzai3d/shALdl2LaoNW14REq1/A26KqOUNWcmJBUSd7B1RRk7m/sUemzNtfno8JJPpoST8EoAZOMVYcWmu17JeWcdbbpf3fXdNRRwFvSGaLwHE2NAg9W7Mbixu988Hf+x3v/x1EM7V4pZfRsq9+6ZfeWCU0iSUdBcxj7K5WCh/0373w0csVGBBmyBwGAYgCtIlB/umDIDqgloy6RdtMpjcO8URE3KzRfJNzM+RiTwnWnUqGS6yKzx2SE1A5yeGrkJOGoT3dOOJH8sEUNrVQKBoPiCZhBY6Aa9sFYoEyq+xi/o2ks3iFHDXVVl1rleAzPKlwJwtau+c3hIonOWgG7SDPJ/a0HvSAV7cGPwS8tlB5QKCSPtKevCsIYvoW1CoP7q6oNbo3uSEE22kSosaqd37EHixbi3yyWRfmxZhIdGgZ6mBMmOTShy+miJqd8tsZ/Zeaf/MufBHC0x/PVL9V6Grig8LWGuKL0TCVVyOch/NxysHqaYq6QKfXf2E529Fa6GWxN58Q5FycStbZwgXC9KRoqSQ5PzaiFBIFqDVVlHO5mbtenRTyj9Zs4T1BRPLKskgU+yJNNqx4s7zDomOHkD/1gnWqBgaWzNOIaCbVwb8IQW86s44L8mk0VNyluM+yyY/SCQHSVQCwkbAsw7/428vqaYCScjPFOc0yLktwjLbjrRtIdHWJNBJasIgLmlVvpYl6yHelXInWrAMjJbMhsrlGHFn7iHSkOjfZWV3pRH99uQcvU3b+DSiPy0bP26qLWV4GsLqy+9fa3/vHNfwzgyK25yqXUNFZsSG4GAEg6KQQ5Q9acX/+qzPAU2m6EZQ/w1g/j3adGVMhIRJwNqiRsQBvkbiiBN2phWoBUh90AEIIZqHtxsBzXggy54AaCKjhgblm3EzHqIQn39SlSqvEgV13UvnW/JDgxEIiViDKlp5tQFcgv+ogRbBx8sxJS2Uyhrl8AgAoS/39yf/OnHIL2baw8L0rsfjpec6BGyci7pMkD5tWKvoyhK7VzQOisiRZUaFGVA04qjkuTnSVITbpVbQ4oaaZa1AKhajZTNqTIOA8yd8c76jJUtn1ubbAWAUwCE++7/V985y9Wjx2Ve7yU59MwmMHZ8APiZFjE7iIXkRrOmtALKvciFa4k2XTRtCVRTguLiOsd25hHTzEmG0k5nfIiEMZwPKU+EseJWsUmLVALcewiD8R3CaQxVaPRgnLav4wpSWinnKZOvx6sgAt5VzCnwolAiCiFLslRsC6UvTzYpCmaUWAG+dxYemkOu0g4nnjoshtfYaOHXs++xG4OOu+AksOQIdMpM5zU4aoMIXHi/CFjw0kWCeYIuR9lr2MI6tCzmmaQD1kTPE0VTTyMoUghJNBMifcREV+07wNovdCUMpzIgBA0UxgKCN2An1L7FtgoeqHJJhJndscLE6uyAAAIzHEjvdi/t3yKaZH8TwRy5ErYUinYjQDAiVueLP/eh37v8uzy+nRdxlawHZV7oFR7BESpBChpOOZca3ldz+Ah2Cz+MPMwbYCcB/SzumUZ3q7vCMRZJ/Nqgwqor9FQ8r5CCAfFPSIz46uORYxI9qJOFttB3lruVQzVqoBbFt9uRreRv7pAfhgwAHDOhRB8gUwZFEkYBQTbPFzE4JqKgrREVa1dqiEbYm4aITWWalQjG4gBJ1d8qhKsGbVA+WRFrNUhRXuC+2tDskD6eC8wub/D2tUaMxXRahiyWZCiO81SEKdqjUBlvBdVazWL6b9OrcPPsRRoIHa8bej442oS2ej5vBozCtsNbtKWhP41qZlofPAG0wrBQCD2Vmsv2CC0Dt5f3F8oZekPA13oFt536X1/csufAPkU0VG5h0upaTrqFnlx0CtasNYU09QuUA/Gg4TLgKy+bsoRCU8NVm2SFBYyk2G2RsqZ8HC/iBLompIbTch7oaVkHalDuAgiutBztRBsxvoQObZgVN1U/fb4qVnUiXO9G3pXCdaEIomzWV7ZNBRwETErsNGMv6F1oXGi22xWyDuexTZTqWU6smeHLsQ7rs8VsFaWLkSGvQIOwjMqy5BdVmffFdBqq2KEF4YZrwIhdZtN+ol9TxBm95FXlsbXgfUQJW+hfWNfBvvDv8sGHenpXOIPqQxrrZrj2OyaZIANNlbysLXrDPAp5nW/WTfQARO4C66/rRcRv6p3NIY24qsQUS/9H978hwNmjspVKUP0zDuSK93KNQvX/P3e3y/IQprP9CTIwmg612ixR2axj7CH5I/XigHqq3qj23e0QMTBj/ZLoLPUxvSszk6pY83Fq5HXyYk+XMQgjLASYcV79aubvVbydBQtrroTL7KcbP+ThViRuQwbhYnCiW5Q592K8krHEsZ03/XooFE/7K5oQYbK7hfjgvwituY3uWooYKneXtxEFWiFiBOeMy3EYJHuaeo+AQSfTuafH4ZE1y/MX61RClqlvIPU6GbGOzVmXH4nBkvbTkCt8otn/SOJd6yjOfE0npjuhp0vAoAUHEo/3x7CjLFGgmXAA3Lk1JgpKCd+HQy1woP3AbQJzBlDS4RebePLoAWSLeltb06ZAa6arnKWCXOrJBAYNn997q8BZOcVHZV7uGTzNFasIXO/xfvNL8zDzvkU6EBIHLVC20UR+ArOBdYdyFJbyoXRXZBjpBLfSKgW24cFesie0ETt7Z/OelK73g4PFtI8/SSti+KmNgATxQsAWFgWbiTANF8ab2bRoarLpVE8hh/9lO+yjTghpVSc2sBRi1dRkrcJrRYBxRsTJDab/Ah0YoSERt+L1rtiN4Ogl5gsixwPxUWubzKDRgYIRQQ90EWDwMV5rAIqysGjsv0M1BohaPltEcNCIk5IKDsIOUnVGv95Z5O51rDYCipFDoBWCXHgBCK9cM+YqD6ygjl+JE4i+vmM8Fd7SFfEzBjl+ES+YqeZRC0WtErmjMEEmEd41J7xtEBux81vn0/OTErHtyAtHT2LinPRLL77wrt35jvLk+WjqZqrVhpa/RM2PsE5R44azJwcZ+fEBs83OddwSItaJG0jpokptYas5VLeqddlERuKgSDA7blhwYQOENWpNShbDo/o+Fsh4qVqLV3kCjLEq1NouxlTShA6pOTqcsZIY6N4MEdUw7BFaFz2JSSh2RxOjXy0+tv8KQ+tlE8VaEl1Y0hq9L2tO2Gdis47R967YkBtBU9xHTWHzGTYLk8bDQXOHbLhs9Ub0aqmXWGXX8jwyBCfLFRR0UiTGFxMBCgWGyCvOYKozKZJdXqEmc66I5qbVGslDDI+uBqfyF8Rq3mmyVANwEF6oQnxtWzub9DlgQoatpIDwFPGLvrzfelBYuh7oX0TKgybi7OLF2cXM7QclXu4lLlnAD75+CcvYGFY96fcBcGwX5mo/CtvhCazK2SYSTX2yMnOVbyhKLJcTZYuPNn1kLmQyY8sg4pEI5M4JVfoC83hY5JLC1/OrOPk6nlnnIh8ApbERCwvRr1V6DPIB+Z3OVQFPDWXouJ2XywgECtu1w1HCCMzUcvgdRHVgep+DY/+tTl8ik4CDYiDP5qlsBrVe31OYxZhPXg+r+noJDmC9vSy7Akt0FCf49gVOCk6q0uiDV2t0BDFT8l5AiBwcAyGi+cgYCScmEMyyPdmr13rjiYbRCbSthoAC9kVmubuL427oU3HS0Pb5CDk5CEDwQxKVzEvddSd6HiDxYj0MqAowWYjjTEgMBPTX+4xAS9ziYomuvz/Iky8O9+9fef261auO/JprlrJNI2XlZ944hOvX7r+5vnN0y5u55zyYr1bHdfopXiurzZkgvqSU1JooRYchWEYaXE40lU71xEMPsO0RrgEuNiJOgzSnCmBuqlZArks0+at59geQbE5Nf/hQtasd8yBeFRtWo8ZdO7g5LfVzJiGQ4axzBgs8MwAIHuCBTWq+tCOVLPJWVJda2wUsKX7Oo3YP2Vzi8T6CcBhfyqRwNtpGa8PowQFXNNM3dNCnsqI8Ipwun1He0SLNDSiozFXjNU3sV1gSXKp6iowokVCLh45KxEnUk7teBT5gR7iz2NgVCI7/Zo5iInYvG+972geY+CCENZzin0OUIQ1ZlKFWs0U1TwNW8XaUdVNb5jyCruZc85lCEGOJRpsGjbszjuecIiOasBQ4kQCVZJH79EkzVUu5Q6bVuz6ZP1Jp5+0M9thUdOGmm1y5zoJiCyT5ODgSSHikVd2aoamEMEWtETmAYY3GAZYybcM0Nf1pwBeB8S0gCgaAcSJdbaRxaQQkiLpaV+cFAtKwRMpVkTmLWSoljxAlCARye6rkfPnD/J1jCVgViHEVumtxQf5uwqMFTcjeK7PrQE1lANCxFmxEhfOwsFZ56zKcULLck9NufyiFl4IMduG1EOYXh6CRZpUZKSDY10u6h/8rOQwO8Rehlhr2tkhCxFHys8Wita6RFp4qAaiTFb2JRoHsiMDSRQwH6BgmnioRqRkyQiYc86KzVogiBOzbmiFwtaZft4zSaZih+ZE8BQsP3s+7mmSXoQGrrSDaMXO7KzVvaNyT5VG9AzAl9z/S37+fT8/LIM/2LnGgf51oVRqpkUuZ2M+ZcbkDFjQIpkTho6RIO7UuwBZFNqldGB7qIwDHRrk7FFApcWuhH1rwtxyOg9DApNkHVecECa39esLhq9vaibRCji1aONOoIpLgeBG8AbzybigdR9hGtyDZ6rBaoazmn+LAVK60G89QD0Nrh5y95eHrVDS+keHsANFNr8t+Xuh3oX81RqeCMkwNFrhxWHiE8wnGZeBOTCJFJIM5NoVLoomYJ1GUSAkvj24vxO1LawiGOEQc/Z4IEdeHyeXLpkmw9s1GSDreHaBEqpB+xbKgwDA7Tte4iAARAWmMIJJfVGPVPOTwxlMr0K3AWSoO9v59kloSHWrPRvkqQFE1JHsiWwJLVMJlf4bB9FHaw2bqZmOjPdRuUdKtUcAMYAnX/PkTzj2CX+x+RcrCyvOutK5LkLbyAlClxHxPfykb0Y1U26xR4BDd03XneoE4qwbuFdAKyQzoVmubCgXImN8UqsZZOwRjHA/C9KLzCQtUQ4N6jTi9JY69F9Piuh3FTAUciSah1k40Q1t8hrzKcYy0MdY9hpwAZhHZYPxgatBQqbeSkEWRUZwIyxkJjShAb1aAdvhvVr1lmJUWshJLy2wUTzlYK0N/lCyozleLMCcNrRCEGAFuBTxk8auOWoYqGu4QA7MiEj1mEEP4wzSLEi1jYVXwEM8R80WZPHnpnleKJUaKj9Gonab1RQLoAdNia9hCLANTGKD9YHlhbmmhym9WoPqKpCiceADA5mJ4FVvL901HS+zzCW9NwXkM7DR4CMGW1h32ZlFkyEBGc0ME4EueDZHyzavcqn2CABZsUz81Td+9Ww2Y8da2JUuc7MkUiuSu5pEkFdIQadC1tACdWe6gXW1g0WgY2TZylyGGFH6uDyC5NT99Art4MdTCdImaUOYpYfsqhWjdbQBqmuu6m+BIi06dSNNQSZqoahuc4Ly/EFv8XWQFZFepaIVqKi7UA+HzUcwPi52UDOQmPAmVbMaG/UqWpfv2FhjL/dasuucYAIC030K6dfmrOke1NEahfsTYBmYV0gooHI5wFX3S9JV7QxZiDN1vEWhIysKTFGdNLEy4F9y5CBvR8v0nHLEyRCk0o1YQMAbbK43tERYBDoFqg6m2RaKJMdPHXkrvqY+2qhmNIYZsOBlnlw7ETukGg1rwrRhVHicFPPQCOggM5EdyepLhpY0ZUUg59yCWdhY2MBRuYqlET3zbs1zbnzOf333f/2brb9Zni47cWFQtWJKQr8u/qdC3NQXxdeYBJxRM0GcTE5PQvKJn1yWYX8zAGCYdWMvWpoRd5wt4awN1cJcRSnTUxp3zTxu33HPZZvFJ5WmMtaqAjkAiC9CjhwHv6o/AwYQJ5MTE3PMhOOtNJs50BI562RLWDjwpIygRQNcRId8SfsL+I1AXTwNCICE87XIxBbz6FnWeI0QqSpoxVwIuNg1LeWzZRlRzfBxnl43FRY/GzR0ahEyE9ojTIOj3CaVpiFfg6ThETjrwrZ+/tgFj5P0Fjtk6A7tFH5DTZkaObVGgdJGtQLWijk2wmtsThlZjiYIAauQi0I9hRzipK0LJNQgFZCgsq6SmnF5lEITeYfJDZPMgkQ86k2/rg6jRVT4EJqQuK3o1jhFLREtQ1aFgxW7Pl0/sXgCwOi6wKPykS6NBAzv1iyaxe981HfOZ/OwsEZbPU6RuGt9tERomoe6TqzQSz+Y7co+NavGnDSeMbLNELUsMDDHjRixMxtseb2ypGmuVh6Pz4qx1jrrSrCT0N9yWTsuI+jy/tirUQlNfaE314lQDfMQsTIvcneya58/SICAlxnLsDM77OB7gHOjvUDdl7hLtJcX1trMFLCAg9tz5bMaFVcsGlG5xCxlqKqQtt4qn2JMzkyGZYm5BUBrZCd22M1ozPct/OBiKP2L+szJC+5vrBxwoolHawtNw0XvkBO2JoxIEoOk1rQUyWOwk7TYJUwfOJ3eMKVlyqYbO2AFMpfQnRoJNZBNZrd5NTvQTHaKh1W9czCrJtgoyk4KayQOVgHF7BpDZiIzGbCndJ4+OIPBMzu78diNa9O1oxTnq1naqX7+tO1nXP+Mr7zhK8/tnJtgkmUuFUxYy4UxrVP/lAwNa7P6bgCwu18HZOZVSKItjFCGWTe0QHZubR+0RVheWshTdeHPFLDWWhef0hI/9dGbewysAw5ZvChhpimVCi3S5Nta+0aeFBErtmyWIU7MGUML4+cPepSsMq2T7a2bO+lHoot6KKuffJaUtdZamyEz9ZoheyK7Uj7epIcx00QLTRnBWE5+QQGLwjwAC3PchFhisktyOjHrRoy4mcuIQeOhUMM6ppTf8TLdOhsg0XTlBV+BZ6c6okvxNd1scpkvmkoV5WTTnC7Qg0/uMhthJiMkd0WvhRZJVsXN3dD9Qt/UBHPAgMZGgpqx+V4AibUFvMY0Jfsh6y5E1eLBg7Imx4ooxkfwUGU3ahoZ3gKVHOs/vesfeeqRQNj66KhcndLOPUP0K1/82Be/9c63vm/nfSsLKxbWM/Awp6qkfyg1C9USxN+JNBeORdHkaKPEtOju1/Eqo1dmqRCDy0N/Ixi8ymTIblvpxXWOiOAi7cZzbkXigsEiMq5BdQOj+gtaIj7NtEzYATZVLI6RInsBFRSfotjTGhv674jCLpMjos6TXsy66U4Fh2bQLgnaNDoOvMhEZC9bzECGmBkpkVQPE2Ug+fmPsKWQ3k9MKwBfLGiFaI2wp6ipQAXy+7UE0QjRFIL8dTZUCwmBqUJ6pEN3thMRMMiGlRNSvI/Ax9letv1ezx2Ho7VdDqqmbcnzAjzRpgVfSnQOkpQAgdtypqvyAigPUVL1uhohGhuSY8llX71NUIt1MtSd7nwqqd/SOOumgJfZWWe3LXdMTAOoUo0g4uuKjqhPzF5vxJ8TX/M683qYXHQXndt15rQhQ7CtfHep8KOw5KNnIMi+YLmUM+LKzAgiesI1TwjdPypXq4xrGpAVe2rx1H94/H945u8+s5/3pjOOXIP+xmK4qISs5kkBXFw3YKulKp4cV7g73Q3sBEXfOaz6LbRAnenc3Llt55wjQ8LShlNzMnIAksy1QgtkThpaJxDQA4vADNgHJrmIL2CrRXkhPgqp4W9Gy304rFpbiwAEPOHJAyY5Asj/HZZMpuJAE+qOdW7TuZmzbMFB04SniHxHfQtpj8uGgJNMksIBDD7FvMFB185iGnER3NDXlVbL8K/flQgmVznDAcBQ48WQuUzuP+EllcWkaVUiGAIAZtU4dm7bgcCGiQkC4pYCjvJxmLqvt2YpSNeT2zqBYwagRoK2S2pKrrFR4ES/UV2E5K5CuHu0nJnwakDLkEasCdWCV9iRs1uWibnjAdo0lDVONKhKxwyrFNKoWfWgzzv3asbbrFNgH/3NfXe6wxTSS20cZCOYl9AXivFMDEQ7WANeMgjN3Ox+q/d7/HWPB8AjEZ2jck+UUU0DwJDppX/82ce/7PEv+7o/+LqNpQ1mduQGn4YyVgylNkYSUUomNYJlmiroaQwHWiBe5v5DvdkwtBKDy6GZpoUTgbHAFHyM6ThhE27Tyb6AAHMgw2ih7+UIgRe5O9bxMcYkrlL0T61C5jG1WvKJZc5fgbz9sTcm5Ojt2fVct1LA5hpDy4R5jpAaJTQ8AgavMvXk9pzsimNHhsJiF1LY0COoodJixZ+mxUTrxKeYFijM5awA87iOB3EOnHIkNK3IwyjgKEwzP88qzdejO951Z7qQxeTfRtRGjQAALzERuW3nZs7TRljAn54F0kqXYb19MYJJpitJSlPi00xrhP2YWo1YwVTurx6su+H+RpoJaNGY8Spkkc21JiV3DbZIYRW5gBC7ad3MkSEmzuJshWpUF1r7ZgpY222eDg3MGUMrFKIUqeUJaE7zW+bmrMFU4aGJDV0UJsWK9GqHKo8ZNUXE4O359hc86AvOLp914o62Cbia5SBNA6Cjzor9igd/xfZ8+1+88V8cWzo2MRMrtmHsoDLbKScRGcguM9iRh30JsPBuBASYw95haZfMCRNYKBnvqRS6zQBTAOAF5hXGabgt5zad3bLohx10CmiTZUREtEBm2fAxNmuGiPxETmGV0xq5C47mRB0FZZO63MQJcuTU2jfKEWfVYc8S54R8seA1xhz2Q5ZPMnWHPn/QV1sjs2GwDbfp3I4LuKpjoWP2gUCc0IS6jY6PM6+wP8UkPGtiIhMoKHVR5kitb2q0yPjbozAtNwBOdQy667rgLtSYbyLEgaZk2LjeuW0HC2ERE7UvcnFcQ+uUQCTAQaxQR3ya+QQHE3sCLAE7ALK8/ION9PJ1Se9CdRyD+1smR9iIBAII3QM66iisdI7ad9T9nVJ3rPPKRjikFNZ7tw8KOGrfco+GAj8IUVY+HU2TtJgpXXSgOc1vm3dnO0xas1kYKDkbCMSRcsBcZdAJhhBrBIyJv+xhX+a70ML7Ubmnijphc7z40wRe8a5XfOsffysYqwurvfRAtUW/LrVUFQBKxyT+yaPbcKBlMidN4FXPOfuQRZmcmgiL61V4pwrHwYUTk8AwxhATDPwJ5DKXYNHvurD4RgZqpo4wBS8xLREvsNcfPqynT38aXgrIvriLjonJUBaFb+JEIl8VDJkrYL8fwVBHT0I48BrzMcYc3qHhExwmsdQxVlnsXhu5E2AKMExniMntOrfl7GUr+yI2YMGLIW0iDAq4I15kXmNzzPAiw8H1UfAroSA7IpeFJzHXvBCvqRwgwQv1ptUM1F4ANmvBHDdkiNeY14ctlBqzKQktNmpxAx/cl01puL+kKFNymNVMAABeYLNu+DhjAUOuoAAEuSA0i6nVnmW4QojGiUZLHsvNPjEwkMWfU/ICAT3MKTO5cRJ2PUeE1qnz2VL7NntcZmL3LGYAYzjsoHaG9JBBsWH6yUFcjD8fo/AKUsSZhsPnMc6cGDFnTdZ3p1ounvJLd312ZQ9eZl5kLzess9Irh0Z4p995+ImHv/HL3jjhyVHi2VUuV/BpfDFketd/1UO/6kFrD/pnr/9n7998/8mlk8MxRGmtBlqs4hWMDMeOD4pBa4gYPeBjzCc5UGTadncBtBuca+Iwl1AaJUmUdwCDmYnIbw3idlxgbANeZV4JS0yoizssSeD8sCmIT1rzhVQQJpcFNCE+xvaS5Tlzx1fQNL5o+ajM1XTU43BfxxIBCPg48zH2IQgvR+wdVmZijpswudI01DxXm7BfAHGYojFrxhw3net85pjbdTKTsLebMtVpSrRAtEy8yDQlAomLci2NOA+g0hKJFbfluONhF5y7pIArOd7IjNBhGYbZMLRA2Ic772RX+FSYdymDMFDtU3zvAgBQR+a0odNkt6zbdG7LyUzSbkxjCpiYMEG33PE6m3VDHYkV1zsCCQ9LjmiN3EVHMwpb1GhvT+OkqWlqtCBTM8NCK00zFDM1mOw/lO7vQCWaWrQWEdA6dRudbIlsitt3QHR/NWB10EJBmBRwd7zj4ywTCXJf95qi9o0jyxO2+9aet+aEPsynpd6KAUWGgWHniIgrJt6ze9/wqG+Y8MSbzjgqV7EcyqfxxQ/PbTu3/as3/qtX/d2r1hbXOtMJwm75nhRSZksQSekwpcK51sIitA4Y8OkoTHXecLRAZV8cu+6aDqQO7ENu75ioPV3FA4VJSABAhoIwnVLGOZSJM38Yc2kde7t1DnvJihU2HOIMyXSF4sZajiTl6/KNFPVFnD3mU8xrXGflyp7QGvFJFhsb0eGChOcJMAExDQrYh7B5UKUB5g7BRUvwx9HMvEAJCjJLMUJ4u9tybssZY7w3mSkbXZqhxfhJ7ki2Z4SOsjrAwJw0tEiYxwr7kE66Ux1NyPVO6oNhErXY6P4aGDZkCCb0Xfqgfd2uwxyDaexlogFNiZaIF5kXOXjMMXjl1Dk7A6n0sOctC4ede8ZcPSgkkLrWA4qgY4b4s0ZOUjPLZI4b2Nz9tfDJXeHsKKtGTaPFAIuAARsmkOyIvWTdtpOZ+PnLIXdRsr+h1wyaqPizIdc7Z53QCJEXbk3v3L4zJw2t0uCiFaOvcqmtteHrHLzIvMDOumHWygIOBmZrvvVJZz7pdc963dRMjxyaq1/ugqYBYMUymIh+6V2/9K/f9K9n+zPuWFjNwYJAYdvzoWWp+LxgHkKYXp7EmX/tyyvx6vadLIg5Y9oilXJPHyognrMEkItsAXVES8QrcQdyKdsvpaooCAVu07k9532pxIrDWZwCgQTfSGVXB6u5UMDaTLOgBeKzTEtKmLoSJ1hFd7JzvUONat+LSTQFRG3OD9URDGEiYkIHXmRaiMdEaptAexu2dcaXBQiyK3bTEoiYiOnKc8tKWrXzu4rIjMfMGaYJDfup+M8MIsJnmaY0rLkpQjH+6xTowMzMHHbEskPeWpic4BA8bLi/iIvtFVENgb6CRHvYixYWpjNlTk0qTcs9t5Aa7q9Dhn8HWlXzmi4c5sTH2Bw3YoNlM7QAhVt/MQUMYNBxF4LPBjITt+vcjpNdCe5vMgI8nqZME6IlomXiJeYJA2FBW8xxqYyS+tMDDnZuRcTblJlAkLyyDfuCB17owQuMKbJTCSzgwMzbs+1XfcGrnnbD044cmnulHCp6loohM5f5BJO142v9mb7b6nxo20+HIJ7LAqCtZrSkcBARYuI1NicNVhCsZl/SBh4uKg8BBDxhu2vtBWs2TJYqKtG716xb83C6I+qmwIfL5KK4y45XmNc5CxT4upIbQbpBB15l6sjtODdzKbQ9aBr1Uon/tRVwummBDnwqTi87FUukCieXbW/6MIWjOygRmdFMFpIsO64eIwexgj3YXQsCLRCvcDjcxWWPEMivIR3UOZRNPSWzbtymc3NHhvxmVuEvhnSMoICH2GqevJSQo6W5F6brZM7EyTxWryagA/XU39p3Zzua0DApWIx7F0CVufTSFwov+7TcX0m5uKygpYCZ8JsOSRmY48Zetv1+7xc2DdqXFFROIVPBM2Qk1tnV+ikBn2DeiIGBSC0Ecued9MInOfjQY1qtC2rGsPHjGw4tNaAFGnZ88c1q58ZHpClMcA6Jzn5tE1prm9AKIRLIkNt37qLjDS7pU3e8kDOIKQAJJz0gmJjJ7Tu3f+snfuuRmrkXy13zaXxq4Du33vlZf/xZM54tThfh4LacvWTdrpNeStNVSirxfOKZ1s+g8iJDYOe2zCItXGYX8uXFip1Zc8qEfTUSh6s5+WGpptCwxrOgVyj5npx0C/QgJj7OQ2q15/Pafi/MMQEmcDMnl0VmcWJZbxhciA/kPY13xImf3DanDBYgfR4ndApgtXi7n/Vh1wCnakJtt6Wn05rA6PYxIBw+bfcY0xIFGzlWlhgqGmwIKSF0u87tuWAxcBqWeB5aPLm1YZoU2jfhahHmlKFVGirUdrHAzZyQmGvyuWWtt5rrTCUfrATJFd1fpQXT6TINUhG4nbCOx2+MRjHkGpQuBuUUtIobLhsKOA2fBSYwZwyt5k5e0/1NmxoUaJGQNgJvWrnoduuaieP8tN+EaIFogYYttDU5xe77jMqDIpkJWs/jcwuH7kwX9gCV2EcZKofQWWRbv7whDEpss+Pu0v6lTz7zyb/7rN9d6paO4mb3VrlrmsaP0xe/+Yt/9/zvbixuODg27AMLbt+5bee2nezGrT6KhjnkL9Ey8QrzEpOJ0+9xRfFBclzxjFdL3ZluiEJ4HyKmYw6bgCWTMJ2sDMn4IcllrW/mQA9aJbNhgv/uI+OeVax6VrMKA0tABxYOoe0dJ1a87T8I+kLbRX7zgoYWyBwzPr8rnBiGCie1AnawMysk3dlOz89nGXEpnicJJRGAFjzZW/qwuI+Pc2gfQDq2CyNL5V10xSYI0+xWwhL0AxRwAUZEtTjhBeYN5g0WlkH6VLot0YmbOVkQc9oMmWAujsKY+1uAVCAktd8DjMH97VV1GzDSIGaJsaB92B0bVpiazDbSZXCbCiOp0m1g0DqZUyYcUKRHIbdI7L7lE0zrlLm/qXKyjRJa6lCnVNgQgMGLTCsUdkjSbOWHrxlULIBUyqbve8wjyaUc1Jy6whbRMUIICUmnKS/AkNmd724sbrzmS15z08ZNR2to7sVyF6Jn3vH85Q/98u/c+Tsnl046OGYGQvyEFqlb7nA6RmbnMkxC+DBuxyHmSyFQFvK7CATy50xk6sEXyv9GS0p6kXk8/shnmgkN+40jZ1oHAqUpijCxFFk0QTiEpzqAIJvS7/XmjCGmAKoobVEwP8GnsZIQM9MGdRudmzk/N+72nMziJHzeOzKEKXjKvMK8yrzMZGJ+Fyr95NnE5lKSAQfu2M6sPW/DOqQkwtRiiGwfMG+qUjhCuJTCotCCwMB+FQ6f4HByu9+D3YuNA8yVKTCBOWu6k53bdO6yc/tOnBDF1HCNUgyyyVsHfrh5hc2GMWsGHdzchVwGm7+IcvgJNCG349wlx8eitCK12/wh3V9gEN+iGrFwl51sCW/wsG0lYoiyiZDUZgdzykgv7qKTfQkhTVYDjRyAHC2D/eSEiHiN+STTCoVkXyjzIkWhI/BmavrzvZkYmqqTlnyD3YgC1hSo49UukpkAPdyWwxZogfgY0yJp7Qu/KnYselawvL9NJCyyI1jNRwTD12G8CkfKAQ6GzKyfddz99FN/+qaNm6yzho/iZvdaOaxP472ZHbvz5Dc++T1771maLIXguzKZA0UmEseIbYhYU5s8tloOkurnEYCw+vIYvMNOXC1mRj6JkptjIbAx5sjb/I0zCMScMZhiSO7SNl2ysLoQ4A6LeFJ83FB46UxkLtJ7AT/oNpoQTxkdUkpYUCQS4jBXmEdVhrydWy/CQsSciUB+Tr6hfT02JEVoXIaH9CJEgz2m94gVPs7mmMF8fBFPMnhjchcze/dXnLhd55WW7ImPDaZ84jB6hgJmFphWyawaXmBw2A41m85puqSJWixsb6UXc8bQNObX+dDQPeT+el8KVfRMP+IX8SwBBgzGHkJmVx9tC03JyfxXhOrlNU+Z19lsGF5kEfGJdo2BOKT7m/w8DH/TPoEDMFQCM4x1QohEX4QG+MOZ1gVKi8QfGXg8rJKZwWwYWqJhT9s4xCJi+7gtr41mR7QJOu52+h3D5pef/stPvf6pR2rmXi+H9WmcOEPmVz/0q3+z+TcbSxsCKWfIkfvaOvQBda2ncPSDrCi+fjD5HAJ0oBXCIoCQNZQtIJVq0bu20H1CkYvz2KxMM52DkPoyCeuWzRlDExrYvu6UCdOhmfYVJPFBi0TLFNZ5KCMxpQAlD69Yn1Ragrl7p5mZVzjstcWI+lcFpQvtGy16EhInLCzIJ4q93LGRe1MONJE772QmfJLbW1Ql5PCwiCe4v1bA8Ms/vV/rZg5zNRnAgJ8ImRBNadDTTvz+Je21TRRfpxwLj0lmtmzDbnW4591fk6dcqmaHYqL76xPzjpE5btw8uL8h+NyrFV2pTx3BgJeZlolX2SwbmpBIzH+7q+7vBeX+chgm/zjF1MnUkWCcmZhTmtxfozjd93EKWLhNJzvCJzmcUetCQk1GLXr4NH4QkBP2zdwVWlRHZUfZ0t6ryYFAHXfn9s7dsH7Dz33uzz3umscdqZn7QjmspvEJG6+8+ZWd6cIpZHWmpv6b/BvJBRziRSGg0sZ/2sAsrv3FSpAaTLmaKZawpOtUYjvExMJOHNIBBInfXN6UAB14zvY2a64xgx5KrfmOmAAqEw8dr99uK/GhvyUvMLXs44ROsnaKDiKCvQRa84FI8llDJQwamXm6FHHQNxY2AyPhRNsBDJqQu+xExJwwhTuSDVaHpPaS6B8UMAEd/G4CPikgPZj8lbBEFC2UFpaK7mMaUAExmVOGFgJmgvvL+SOaPuNkuEeIiAhJg0hY2TQCTIEZ+g/13dlOJiF5pD1kEjK7QGBmYoKDkNCUutMh+CxzkVlcHlu4vxPGZLCWAhopHgdWsI9+b8Iewyta2ZOwSR0PWQmZAtbgi9r8DXk4sVjO6alrCplLf2vPG2zWDZJj1LQ+kRNnblzKTIJXnZwn/00fTRRLR91c5rft3vb0G57+8qe8/AFrD7BypGbuE+VQmsbPpP3pxT99y4W3rExXxK/WrMhxMKmoQawF65U/asM9kVrtQyzFPc2SN0P56w7QeSpQQEzklPmpwS40jc+Um5O9w4ZNMuoepQRrVCGIVMYUcMF7GocSU6vrmrpZB0yA1SAyBrRoYDQAoiCUbLzYsYiE9e2Fsie1VknAU7aXLQh0XGUA6pGKaGRvKhckoZEQw0FZCxpm5DbvAYSnG6ewFZtPSr467u/slll3tvN2/dCdAi1d1A1j7u8C0dKB7q+TAcNKTd4F93fCOB7VTDP+nFpILIPAMsG/YRnkvkZ4Ginv/p5zmIFPcHiubrwyOgs6CftmdqSdJ+uiDSIhMMiGITi/d35tuvaSJ77k2z7p2472ArhPlUNpGj+ov33bb2+5rVN0qkefpcoUEgQtJ+YQ72gUJXMhceeuxKVjy9+ajRQgpTiMn4zVIqMwkGPAod/v3XnHG1x6+hGMwSTUqIB672HSXnI8DOcP1vhJPfI7d0U1E+SXFqm1iG+91Hs2zgt+Ula8wsMg2hhmYuxFSx3xsjpAKMqCYYobFUrTS4s0J1Quo+67QgILWy/kNIUUPRVgJWw2czXd3/62vnR/dXc+Iu6v1tMIIB3W/RVgAlonr/CMMcHJQz5MBVqiJiYhP6HoxAXeETWU2v313uGE3CXnnDMnTMOtKUqtcihMl4a8A2+X6DkwBwiYeWt/C4RnPeRZ3/e477vpxE1WrA/4j7/sqFzVcth9zwC8/s7XL5gFB5fFcKFEXromRayFWaev00WTJ6VikmkwwYboUMEhY6Wl9ny8YYg51CZ86gsDAu7YbTpapGF+MvEYhQbLN+qvySI+WPvmFdrpOlBMiLBxiBdeg5mc6hzuRUAUWHXiVNFgMqUZ1JE777iLK0v0I2mAeAQMqigHI9cFCXkLoYkZrW/uO+6vqM+96/76X9eAScBMli2iL5QOy1gyViNH8PNYhfvrL0x0dxi0QPayFYjZMEM4tPBmiuv8pljxr/PvCgdpR8XDxLv97pOvf/L3fOr3POHaJ8BvZVKeNXRU7uVyZTPbm9X/sPsP791+7wIvjORvZg9krCUV3VdOhg+FDys8miWmYA4mWLOQ+hxwn2JTrfsl/3sjlBkMd0FROUYMc7SEeNF4UwFL3rLOXCr4MGFvkgf9k3Afk+9XxIlfxl9MZjSfYvhpBnteuReSdxYY3N/moNS0MfbGVK6oqn0q4AHu75gOLkR8vDnMkGtnqCYbBgjcseyLuxCPcSqsJd/gFd3fg62EFh4G97dZM91fCVFQw4aN2haW1V9UuMoz4ijs8BfRUuiq1FR04MzUyCWxWza4Jhr+WuUUf2k4o11ErNjhyBkHAvWuX1tY+8kn/+QTrn1C73rvyhypmftaubKm8dbcOy6/49zsXMedSFjUPcrwWpI2mst0TLqZ7d5RP0LD1OXAHkWAaEyWFYX1jzRYgvp1QCabYjtkSGYil1U+0thbxiTjFRWwrkviUITqcmVGYaVLOT1TlzHxWqHLbxEU/LxUZyT7g4h4wrInsiWAygOO3cmirHWXtUiV+GxdR/KoWlP76uvc/Q0K2IxgoEZIVafcxa6o2VI27rKTXcmUjXYIDnZ/USU3j4GafRvpm8bwQiAYZg7SuKVIyldo/Zd+oZBDX2jlMRXFHbtzTvZlVOTknc0mdaLx6jdtC3cc4GDIXJ5dfu5Nz73x2I0zO+u4O1qbed8shx2Vd229ay5zP4qDGBpzeOv7utQyIt1phtGg6DXtG02K9AuTMF0XspvyPBndkeJB3UK641OkGG7LDdm02XN02I43tanmZM9XfhvsUv+oRqKf57f1bKhbrZL1nUKmKBXlp8GzvugH03W843FiL9mQIOSirC/e0rTTazeuWbT7i+D+hgNDi+KrTe5L7q928e9F91didnWySw7WMXUpMBmzohsKWPcxvsUnrLtzkcObQ6/uDBP+8SfrbJieiTM0DN7r925Yv+F5j3kegAlnR54flftUOaym+eDOB4mGaHWWLHRFdaJvoqSwss1CCXnKTOk6mVmVN5snDg0cWwOgpGqwy+qaumhT1EB6kZ18wlzDX7xL9+XgUkmcAFjtACXpxkH7NpK70OL55ruqp4atBGrsVXI2hKfm8Ht51d0cVcBJf4zllWnpPKbC6680rG26993fzThnfu+6v/56qhShVpAHK9riZlNgjMXc8l95wrIvshmdEuS9U0M8bPIW7zjrhvPOo7Jh4u1++98+7t+eXjptxRYHgx6V+1Q5rKa5c//OjCBcxfyHkaS1CeMbCzu2jwgUHUEuaBrxGkoONvmnhpMq3aBbSzW1+IgC3W2r46di5caqtFoO1lJDSxNlmSbjPWtH1zSVjEPVfa10mzjR0KZa1Wm+5VuQCxQCDGRLmvK0zGCuJTWNi1TJt5zx8941Ber69yn3d/O+4f66ahFPrQ9qtmpChUxtXyFkl+sbb6jZSxbziPAiKBoBzjZ88z1IR+HFDdw67u7cu/PLH/rlX/2Irz5KM7vvl8NqGj2QgrgHSSEgxkxXXUHXKZbLVDbZwFS5oG8UGn+7rpPXzPjkADMfA2+TEBgyE5nJUDPJUr1i7zAKuNa7ClejWaFap45FPySviVymHGj8NVIzakGsvxGBIHOR3VIvHuTnpTtjorb+e0UFjPue+7t9H3J/04mrDbsBrZvNO8VTxXWBHNVIyIOwcJsOVG3zE+Ef1ofKcGfY7UYAB2PM1mzrESce8aOf+aM4QOEdlftMOaymmbnZsP1MzQxOxaObfrHkAWtEqRF3cc60juQWa4RxMLTHlE0CL/3VNWt16Eaq1Te1sCBAIHuSVdY8ovFQvFG/pUaUgiq0Vf+q0VIr4Jr567nlw8iyuozhXCvr3Ua7d1n7omW+RDUzuL/Ncl92f1XjV9v9peHApLZQrpUutQDT2PM3tPtLVX1dKFgAYMiODAuwbN6j+joBE3fpNmT2+/2V6corPvcVp5ZOOXFHcbP7fjmsppnSVItRryTKM6YKEqk/qmY82CluxY+WRE5ZTKi8liYT5iGFdjV1HTYaQeVOjfs0qUI4HqrQpsUrrAJjTK9UcGbyVLemZ321nTjGZhpmqlBRV44XjR3txpSTABKlKkP2JVtpFJstFXDR2pgC1oNS7xZRX+doGXXdrr77O1fkHZ+9qu5voYAT5DV50Mjf1FrrFaX7OO5DE9RMJ6qBiNTSsLFSshnMvt1n5lc87RWPPvVov3Smgumo3OfKYQfJii2kavgnlbLRF4Ufg+HrEFlONfMKSLv4pfv6onZWgGFbFFQiQCI7qQphXw1UK6u15Gq2Rvm7MHTKRTURilrJ3Pi4EjPZTsWFyNafg43xVFxln9bCQjcYu9Bo6oAS/QOx8Qg4JTiCz1or11pP5/ppuBCFmBotreSu+5b7m1y94f+r6P4qYLJcjzos1tR8UlXLO4K6FM5NQpFyidyu2qE8545h/b8WIz0g6Ljbnm9Pu+krn/7Kpz7wqb3rj6ZnPlrKYTXNdYvXFeztTe8sbob4q+af+r6EE7TKDBOg/KpLrQzqB2nk13RTV6h1G6qntBzMgfEH5GS/JtOyiRD9oqZd7+KJBnEf/wyemm9RvaK24mlEkBVP6Z9oJJGpiQd/W+1eLH0js0PvzZjhoalppFTAwcHz1FbLU1/u4+5v3dniFfeo+8uAoJy9KshvrO8H3C/c3yaJonWTIfs5+0T4ncsngBFGk0CGzZ27d9547MbXfcnrnnr9U3vXd3zXDqc/KvdiOaymuf/y/cXJkPkDILL/YMUfoCeibHXhnApxUBzSTEEppKeObteCpni8ebOQX5Dwf9GO5H+bPfI31Ym/qY/hZN8aIbVsze+XZruuU7uGzSKtjjR/OqCOAwkNM8y6WlN2QFnKAGZ5B51fvO5QnAKn0avDZQXGIm59EsoVUHpfdn/zDDpcNfc3ObV+PJsnGuheX9H9dfpbsEiCbiD1YHrFWDDNAfvxQvVa0pm2MaRBoI66mZud3zn/lTd95e9/6e8/6tSjrNgjNfPRVQ47Wg9bfdgCLTjngLjbnQM4ymsRFAs7NBs7+Fm7cBQSVFi5KTjQyqJO17r9uzoRGHkg8emY3G/wWOKEJIl6xSc8VHPkGAwXVw7KCJzxLWmb2zrrpgRJcuO92Tu0ZO4BlfXcskiSqg29JflFsy96L3c1Ug6OhQdEUdV4DZuWp7pGDUbx+AHW9NjXujta5n747m8vNMn2ZhaIXySbrfVJsOmu1bhyyOySu+r+orIwa+WK6r01YAjsX9akvCMjRCjz/OAZB2vtEBVwgAMz966/MLtww/oNL/ysFz73pud6DX0UNPuoK1fWNH7C7ab1m05NT13uL3ddN+zhaqOyiTszikjw0LVkUGI0M9gLYaGz11oS36chlDt5HCDH04VmVzd8bcRDtP1VyZTSqSpg5uEi7EMqIKHhhIWcA5O6DfMiUMG3Gn5g+CnvY8B5unMATgrktKTAcCZ3Ubmor0ZnUATefo+nngxguBCRIxDZuB9+HevL3+LtkpJmtNDXUSYX8pv9HSEZ3DI1PdDo1BXR8pF1fzka8gwn0SJJe6AVWqEANb7o7ri/we3M6eSAUsMgJXjDmVI1L+un6tb8rN5cdMwwizw7QMDM2/Pt9YX15z36ec97zPNOLp60Yv3+2geCflTui+XKmsZvmnt26ezDVx/+hgtvWOvWgjDS+4QD/qgkIK6t85StNgYePHeXGzuFUlE2zvA1ima/+/LAJK7FMFTRd07xXmO1BYeLzdawNYFMaf5qBjh4exQVCVzwb2gAgOK52pkk1a+uIU+wKUUu8Zhqv9vHoGbGREmttER1QSI8LZWW1Ve4zRQwqYiiU7Ipub8Q8ruBC5VGCQEu+FWICnhwfzVIhfatZVwC5sj9VcFnT3hZB++q+6vgSQTcUDO1jpHqJ00nLhz/nIA3ZC7PL3/Rg7/oZZ/5srPLZ0Xk6LCZj+pyKOvA8/xTzj5l3s/ZcclgThFNzITxxU/GpOwYiKKtJsfWIh6qWlQSZZ0ii0n7BFK+KItujz1YtBD/JucDCLF7N4+LwAvgEzb8VBacE+ecc3B+vsHfFJ3h7Sq06GwLfQFVTcviApmFKBy7g4hYUcBoeeeqp/JBKX911SOxkSQlw/tc/MTrMI0XZzCyKGsxh1/DpnGCfKqshlyXWjprUYgkTT9y7q+642c6rbPOuoyV1EVCkZ8wHzSfzTteYKYerKLyAThpYkl3MIUoxmo2G0+NEPzx3oFD/IC7DC0LZuG7PuW7zi6fnds5CEdq5qO6HErTeDvoadc+bYM3etsHHtDznBLvuEo+pvuFgkHOTvqj9yVExjyBvq00GEaUINArilWFxKOZG1G307pTzi15GdE7mUvoY61stAJGqYCRzF6Xg5q/pS2k8i6XRnehn3SDyO8DCYxkImQVxqYo4ie8Ws33OutkrvqVWojKRmIiSdC+6q/vQ8BP0ReNDS2LkQOG4S3ZENft5I9kyIn37xH3t7JIEm04cWmDr6B61dekfbNAU0EzBWy60ICYsu/NUuA81YzwZ+Za8/GiHaghUUPpuzlgyaGj7uLs4pc/7MsfferRvesnZnK0C8BHezmUpmFiEXnE8Ud8xunP2JptGTED5bWWlbS1Ts2oTrFELRzrx6NoA4aTboeXNrlCQTVEtpv76BR3WgKuNLH9zVlmi5Xiz+UparrjWmLWCGx6M3XvZIThC7kjeSOpeEnngvTPxFATLVDNatmhRsc5F1y9YpTTmEaaGdxfqI/IUK0Wppo8NJ1UEB65vxlZKt5pD249yjV35JhBXVxFpXmbgz2UnnAuLJaIvSDQzM1OL55+/mOejzhPfFQ+2sthR9GnM37FDV8hvRIEUMK0JrwWKZZcgYqa/ddCTinCTd52O7W6eGmk4CQ0smTZQnCguqOqlWHxFP7eE8zzfmnZqnttK8O2AL4QDQco4BzC2Ldc3xwgR9SvftatlEHNixotglKaA3CQuQRXL8FvkVWzLQUsuXYpoHXZK0qpqmkJccSP3N8c7OCi6VznwqICShIqzCCFGxFpDIrGTP63xqSzLmydiYFrOu4u7l/8nsd9z4OOPehoC4CPmXLXdth85vXPfMLJJ2ztb4WMVVvxfMsLydigECWFbLW5VKolsgNcZEUftnbSfqOD2BjdDvZ6vvKgKUYrieMvhvCU5PUtZC7YBzseRCdyoVmU+g5aqECrU4VYVNW8LVxio/nS2EJaKJqt/iv8j7GhVOJ4ACmlk/WQvTyAJhU20uvSx+btI4ekIJKatCpoj9zf2vLw/llI6kHeI0Roa2Smx/Xi4uLXg/+mtytKCGrGDZZHR92de3d+8YO/+P/8hP9TIEdzMx8z5S7YC1YsgBc86gXSS2aTJvFXOyJaiNjcddA/6XZsxS2aJ+OzwdxLgtJKWkkON9j4gyujhakWZLXgqKUYoujR3B5X5Bkys+3Zzt4OS1Q2te9ysP64os5O9r7/qhOZFDJD+CXMeoyISDcsuQ9rTOGG17kcLb60FFtCS3EHCH2RPWHL5Cj0DrELxSR2el1dNFE1UacR5fIuRLl233J/9+8N9xcZnTSm4jSoY6/z+BxUTMvPSy8t2ow/ZRHFVFnVMWy259sft/5xL3/KyxsDdFQ+mstd0DSGjBP3lOue8mXXf9mFnQsdukF/1FqnKcFdxUW11JBBJIkTN3dZHWTN6rllEbHOBkfHhoncQcegZVm7nC1rjo3XwVdAJhcI1Jnu4vzise7Ypx3/tJ3ZTubZ1JapVs+FokXefVfB4xSQBZwYbiZvLwTTbEzxsllyV/gLN2xKNiaFC8GRj2wWP0mQWBCILW9e2rTOkiNI1I51N2Xk4/K+1xRSSGqtw5Scva+4vxLcX9mXq+r+akzGxx2i9nUjvSteJ1dSwDUNuAMH11eLa630Ds0LZuEVn/eKM8tnjk42+xgrdy0G6sf++x/z/Tcu37g72w0xtEIspmstVZvyVz9SWXnOOeusm7uwPXBhsepHgi4YNrlJM6iSppcrfmvoOWnfyVwEf5+C3r195/ZHn3r0bzzzN37xKb94TXfN/nw/eDbauSnEygFStYnM6o6zLkw/aE2pJQJERKzYQW7KkE8cZE1EXEOY2hYMBWZQocUXB0NGIOf2zz3xxBPXab3ve7LUIIOxOy6XvBpFtvVUeruuqUb5vuL+OjCx3bG7e7tXz/3Vdowi+5R3UKqc/L0p7c2KLRWwHiDkD6avuqlaASMLmu31e8z8i5/3i48585ijpTMfe+UuahqQFXt26exPftpP9rNe5kKOMrdGquumqKpFTF45iAMbJ0JqXkLVlKLp9Ld8BPHBWtAjf0WsJukEncjAfvH/+d3zHXXf97jve8OXvuERJx6xsbDx4se8eH+2H+JFY/K60L71xHhTgrjwavGZXSmNuEaIRgKiQJGgE4YUpkLDJeTUYg7qFeqNgzxFrEZg4o67zdnm3nzvex/3va9+5qu/8SHfeHn3soFpjHhzuqUel7FqetT8ipMCJwVC7lX3Fw4ddzv9Djt++PLD9+Z7V8n9LVhMcY339nxmefB6RdJbvKkyBFqjth5aK7hJQ1WwqsdoSjDTo2MBhwlPLs8ur0xX/vvn//enPvCp1h2pmY/BElaq36XiLY6Xv/3l3/4n335m5YwlG/anwciGetqKqS2g9GvkhyLxkTvmdQ6HGacjJhllhn2x40uzW/Ubq7cXfOsle2J1cuTgGPyMBz/juz/1ux987MFhKTvEkPmut3zXv/ubf3fN6jVzzAdQKcdGAU9zT8OmVE2YsSBDZs2EI3u5QghVf4t3Qb1Lj4urMDMi0cIWVV729YADEe3Zvd1+94n3e+KLP/3Fj7/28U6cFfuM333GG8+98fji8R5944iUGi3F8NU4qaRt0BmQbqXDJNIJV2exVPvf+P0v0n4NpYrVABTDoTGjQsHORmoRhCmZ6P6e3zv/oPUH/ad/8p8+6ewnffr//PQ7+jsWpgsODhSOKct458CdArILPVgtgqEFokUCK1KBYqK4Wo5A9SiIXpupOUXfaSo/TTAW4sRamylRAAAzE+jc7rlPPP2JP/e5P/fwEw8/2qH5Y7XcHU2DqGy+5y3f8yN/9SNnV84GZUM5txRFWoIVykTycaqUmarYuDve0ZSEJbBlITgOE84tdAwqNdOSpwOHiOIQwqu+4FVPut+TvHXsucUzZO/6L3vdl736Q68+s3pmLvNMARTio1DAqDg5l2tpAiGBZ1YMLVEmUrnyUQt9jxEFrG3wQmbZHD/RUbPOipUkOIhoZmcPPv7gb/3Eb33uTc81bHz+iCHznkvv+ezXfPaO25lMJo7cQThJeKiJpClSPWYkuCYQmGVTStVazY+9FNWI1NhImrjOW/HU4mwWFgMIdHl2eWqmX/Xwr3rhp73wzPIZAP/f+/+/r/7Drz62fMzCZsZTgrPYT6geu1r75tyUpuW4Y17lTPtqPOTYGFRv/FvyS4GZWs3o7I+IHOec62PiSQ8IiMiQ2e639/v9r3nk1/zIZ/zI+nT9KGj2MVzupqbx0QYm/t43f+9L/vIlp5dPs2ELewXpL7mEVTyc5mMH8o2USo54ibEGZhYjmV2cWFTGxYd+kb5fMGdllDkbHIhki3XUnds799ybnvszn/MzveuZWCf7iwgRnd8//0Wv/aI/O/dnJ5dPzjG/glJMUFEOpJIdwxRCWhrigB68yGbdCEspQbj1orEi1Xtr8VGpYWvtMFFkYcRcnF38sod+2X972n8DQoqRx4yXHa/9h9c++3XPXllYYcNB2RxgvxfDVNslGOSps85vK+c/3DGvcdjf877h/lqxT77/k1/wKS943DWPS9G5q+r+Mpk1E3BiWgipXUzEXGeNimKAagVcXzjAqUUzXgH3YOaZnW3ONx918lEvevyLvujBX6Rp5qh8TJa7qWkAeDvbkPmPb/+P/+Z//5vpZLo8WbaibLS8dsnYUcEAKHWMItPOdLvzXSJaO7G23+0bjrKVcqM1dSJdF5EiDC9tf3ImSUH8ZJ2RIyeuM90bvvQND9t4mBNXM4a/ecfuHc/+3We/6c43nV0+21MvkEywZuiPXaYKHgCuddpNVMBMzMeZpiQkwYRHpW/SW5oDkTSK/jumZqxCS4qb+YkrobnM3/Clb3j0qUfP7XxiJrqLXtn8l7/9L9/2v7/t+OJxMhRCRpxL/Np+b3o2MfAiVhxc5v56gjnWYSE2fm+7vwL5hc/7hac98GkSV/gz8b3g/i4bWr6S+6vfe3gFfCU1A6fcXwdYMHjf7p9aOvXNj/7mb/6Eb17ulq2zTHyUafaxXe6+EeG377Ziv/kR3/zqz3v16cnp2zZv8xJ5WHCjkwXUX7EiVqwvfb63YHyQhTvuLuxdmJrpzz/t51/y2Jds7eYrRlXlUXLXH5tLT9e6iPLUzxjryh13F2cXv/FR3/iwjYeNLV1mYifu9NLp3/q833r2A5/9ocsfkj5mtTYnePVSJFXBz9Baa0OamcvrAJ3ptmfbs62Zs25IynBVp4rX6Yt6pr2JkPRBsAyGVCUv2am7sH/hqx/+1f5Q90LNADBkeum/4aZv+InH/8TF3Yvz2TzsZpTGrq+Gsvmxw+j4DSkzzPSxwt5IQpc7nAB1VeVc92c4jOThnBuOP3eBWi7NLn3hjV/4tAc+rXe9N0E8zfiMkglPfupJP/UpJz/l3Na5iUxKGmjmbdrqfk48KYtdrAy/9pA9GdL/CkuiQELqexNLLn9QVx6x2OJubeEOg3ft7kM3HvonX/En//ox/3rRLFpnDZsjNfMxXz4sd5VAhowV+6TrnvTGZ77xax7yNZd2Ll3aveSp3/XOWWfn1rvPfrLUOWdjCdllBRd5HUPdbr97bu/c0x74tD/+sj/+/Bs//yse/BXPvP8zL+xc6KRriGnXovtasLqcW2pJJBAr1tmhQQdYGDaXZpcee/axL/jUF+BAN98rm5XJyi/8k194yae+ZHN38/LuZa9syhWvutc94CC9UsDWahZNT/lA9m3btz3m7GNe94Wve/jKw7f3t42Ytmyqu1mLgwM+uXj1A6kfJKJ9u3//1ft/xyd/B+Lccl066qzYr7/p63/ln/wKO764c9E4gz5fguqq0dQTHkmSWucVcK2TDBkh2dzcdDNXUFSDJGx+Ufe6oJ9Ku2gfIjh5CS1Cczs/sXjiBZ8SqKWYfiAiJ+7Ewon/8dn/47EnHnvb1m0TNwkWw9hnzHqIPyUuG/y8PkyKYAY3c6PmTlOpICIB1bgUqgUKJ/loBoJRPzHxbr/7DY/6hpOLJ2d2RkSGjyZm/lGUux8908WKZTAR/cHNf/CiN7/ojbe+EYTV6WrHnT+3RuKhI6FI/jeeKEwgB7e9vz1380edetR3f+p3P+shzyKQz0i5fff2z3r1Z906u3VpupRNpTajDUXRjIGcYTAIo2GJn3KDCGSdJaLXfPFrHnv2sc24WfW2EFp8061v+vY3fvtb73zr6sLqUrcUUkWrifr2UkElH/2JaiJyaXZpqVv61k/81uc/9vkrk5U/uvWPnvG6ZywtLIUTcYrQpT7gUgdG6iHAIA5qKzXE8FK0XYII60x35+6dP/3Un/7qh3/1FadzfYV3XHjHN77+G//49j8+uXxyYiZhgV6duYABM4g5ygFCDIAF5IAMmc35pnPuxz7zx5aXl//5m/75xvKGJRuiUmOJka2RA+Jb0oVWulpjIWYB5LJ7wpPbd2//7k/57v/7Cf/3AWjxhLQ13/qmP/imV773lWdWzjBzCC0WJC2tuJanWL9AyqndUbXEBzruNvc2l5aXeJ1NZwKRaN7h/BU1NoqLWtPUCtgpzEgwKRi8M9955KlH/v6zf3+pWxJ9WM5R+VgvHxlNA8DLUO/ivPr9r37F377i9R96/YXZhYmZLHaLE54QUSboMVCqiPS233N7s362Ol193DWPe+7Dn/vFD/7ilclKmir0HPsHt/zBs/7Xs8zEmM44uEYijS6SX0t+kWBQlumwc0kUqSTE4Av7F/7zZ//nf/qIf+qd/cMgJCmbvX7vZ//2Z1/6tpe+f+v9i93iynTFn1Aajsqmio0TiuLbQZjb+db+1tRMn3bD0174aS/8+FMf73OIJzz54b/84X/7tn97duXsnFS4vxCpTe2LXF5oIYWoaNHWvnCY8OS2ndu+7pFf91+e+l8Oo30Rlc1uv/tDf/pDP/HXP7Hrdo8tHGPmsE9JhNnnViCt/cmpRUt/FmbivX5va7712LOP/dHP/NHHX/t4AM95/XN+7R9+7cTyiR59pmwwom+aelfjJ6eWpICtNNzfzdnmx5/6+N979u8td8sHy1Mnzp8H99I/f+n/9db/i5jWF9b9sqdwEGdhH/iOU9i4rNx+W9EtBJ4Zz+2de+K1T/x//8n/+/y3Pf/1t7/+2NKxQQEfcgarZlvkaCkUsN9R1CpvxgIOhs3F/Yv//en//Qsf/IVHaWb/2MpHTNP44icwPGu9+8K7f+v9v/W7H/jdt59/+x17d+zb/XTg7pBASRCRiZmcXDz5cRsf95T7P+UZNz7jE059AhH5ZDQt1nvpO+p+7t0/901/9E0nlk6A0UhkGiuF4IASqRZhCVs18U5Chs3tO7d/7+O+90WPf9Hh1UwqSVOe2zv383/787/6nl99251vm7nZQrewYBaypQOVLnTOze181+1aa69dufZzbvicr33E1376dZ8OwDrrs6u9iH/u7z/3VR941enV02W2W+HqFahALkT0nejkhaO38rkZuLDh7mPPPvbVz3z12nTt8PZpQshfnfurF735Rb/zwd+ZyWx1ujrhCSiKzgPcXwnWsSeh7fn2Xr93w/oNz3vM877mEV+z2C0eub9j7u+f3vmnn/+7n08dkaGwJqHwgGtbrcB8gZ9CDUfa8Mtjh6BlDzhMzOT2ndu/5hFf81NP/alD2iVH5WOpfIQ1jS/Fcd+37dz2zgvvfMf5d3zw8gc/tP0hQ2ZmZ1MztWJPL52+fu36h2489BEnH3G/1ft5aeV1jJekdcuGzE/97U/9izf+i2NLxyZmEgy0FCCqWcWp/LTqU2ZXK2Hq4b9j944XfOoLXvyEF99tK8yLEq+A527+plve9D/f9z//8EN/+HeX/u7i7GIw5wVAqYCXJ8tnl88++vSjP++Bn/e5D/rc+63cD8hyiD2uiOjy/PIzfucZbz331lPLp2YyG/KL0FI2SXZQS1pFuzWLmKWfLCDouNucb167fO3vfMnv3HjsxrsqOJJsBfDGW974X9/+X1/796+9ZfeWznSLZnHCE2ZuyzUAgt72+25/3+5PefpJZz7p2Q999nNveu7JxZNH7u8V3d9///Z//7y3PO/0yume+lLT1AqYRtACZCShMAOBs27YPyJ5M2S2++0bj934ume97tTSqeCzHpV/TOUe0TS+eHsvuThXLN6xIKKDxZaXI698zyu/5Y3f0qNfX1jvpW97NppbKsmld7vKggBRmO71e7v97v/z6f/P8x7zvBTluOtoUL2L+sb34n2X3ve3F/723Rfe/YHLH7g0u+R3+pnwRCDXr13/gLUHPPLEIx924mHHF477Fjw+a23nm71z784vfu0Xv/nON59dOZt5NshxogA6QNNkmbL5NO+EJxf3L163dt1vfOFvPOLEI+62AtYq80NbH3rNB17z2+/77b8895e37dy20+803V9f//jC8RuP3fgZ9/uML3jQF3zatZ/mMeZcZpocub9j7u8/+4N/9ot/94vB/R1z9Q5AiMaMRo4LBiIcxEq474IDap0F4Te/8Dcff93jj+Jm/zjLPahpUhmmc4fXoviqfaArFh8h+ZPb/uQb3/CNb7/09tPLp0FoLFspIjCICiYdZlxMonrDUciwOb97/szymX//Wf/+ix78RYlX72b/85IWzx+yvpf4BytgL0TO7Z37+jd8/W/8/W9cs3qNj0RlhnwqtQJO2hcCh5Cwq6NGXpgSGTJ37Nzx2Gse+3Of+3MPPf7QD19qFO7vxb2L77z4zr859zcf3Pzg32/+vfcCDRsROTY99sD1Bz5k4yE3bdz0oGMP8u+tdYxu+cj9hXZ/IQTa7Xef/pqn/8m5Pzm9fDq4vwco4Cu6ehKARspKSEabDZgRyKX9Sz/7tJ/9iod9xdFmM/9oy9XQNPdE8cx8fu/8d/7v7/xv7/pvC5OFtelamErNHfO0sVWKbmcKBoPIYLDPwtyab33eDZ/340/+8RuP3di73rC5J5Jkhj2DRwr5cuj5Dyaeu/n3vfn7fvSvfnR5urwyWbF+Tl+H0VraFzLMLUva6SpPKOqom7nZpf1LX/mwr3zZk192YvHER9A49ai4S9aGN5MPk+125P6mcgX3twBZI4RG1AzUYt4iL8CFpVSb883/8Fn/4esf9fV3w887Kh8z5aNV00ClVr/m71/zwje/8M/u+LOFycLKZIWI0pm4V441u+hOCXbnu1vzrZtO3PT8xz7/uQ9/riHz0cUbKf3vN9//m//6jf/6vVvvPbl0suMuU8A+KOUD5XFDXx/6aIRHHCAwZETkwv6FEwsnXvSEF33Tx3+TV9v3xKRudDUPoskrxld1OXJ/6zp+G4uvef3XvPZDrz2zcgaEIbUaVwq0IlPAfn3VgJyUgyfouNuebxs2P/FZP/FVN33VUdDsH3n5KNY0ULJ1p9955Ttf+TN/+zN/fsefz2S2PF1eMAshvyBuBKLVDAmRhDzauZtvz7eZ+KEbD33Ow5/zDY/6ho2FjSKq89FS0tzybTu3vfTPX/oz7/iZzX5zbbo2MROvVBoKuA6j+QRiMBFZazdnmx13X/KQL3nhp73wwcce/FGHmSP3t26Nifft/ne+6Tv/49v/o091KzctpIxfagVcal8VUWQwMZ3fPf+g9Qf99Of89BOve+JR0OyofHRrGl+Sc9O7/g8+9Ae/+p5ffcOH3vCByx/Yd/v+xJQJT/wWIGl/+Lmb9663zk7M5LqV6x5/7eOf/ZBnf84DP2epW6qzqz/qSlIGf3Pub172Fy/7nb//nVt2bpmYyfJ0uaMOgJB4hwYYBAoJhb8CJ26n39nv9zcWN57ygKd8yyd8y2fc7zMOmBS5j5cj97coyUT75ff88vP/9/Nv3r355PJJj41hcAn6VIW0uqnh/qbsO4Qdmvf6vWd/3LN/7Mk/dnb57EcXZo7KPVQ+FjQNqtD25f3Lb7vjbX92+5+97Y633bx1883bN+/bfQAiwsQMvm7tumuXr/34Ux//mLOPeczZx5xaPOXb+chGP+7FohFy89bNv/qeX/2t9//WX9zxFxf2LwjEsOm466jT2teK7V3fux7A6nT1kSce+bk3fO6zH/Lsh208DNX08kddOXJ/i5Lc3w9ufvBFb33RL7/nl+cyX1tY67hz4nPb4XOsS683/Y0TMyHBGtjr9zZnm4869ajvfOx3fuVNXykiDu4oaHZU8DGjaVJphra35lv+qGMnruOOQGvTNa1O9EkzVxvie7Jo9SCQ915871tufcvb7njbOy+887bt227fvT2tPnHObSxunF05+3HHP+6TT3/yY84+5uEnHu4jHmPTyx+N5cj9LUpaav1HN//Rj/35j/3+h35/c765NF1a6pbCNg0IYTKPFiBzgr0f7BWwQG5cv/FrH/W13/Tx33RseuyjVAEflXuofKxpGl+GvOrx9KSQbRUP/ru6AF7V0lzY5KUDEfl9/kVkqVtaMAupwiGXN33UlSP3tyjaHPnrc3/9S+/8pdf8/WvedeFde3bPsJmaaUedYeODhxKVjxW7b/d724NxZunMp5791C9/2Jd/3g2ftzZdO3JljkpdPjY1TVHqudSPAQFxN8qgXEeOA/HaBXcxv+ujtBy5v7poF2Tf7r/l1rf88S1//Od3/Pk7z7/zzr07d+Y7QNilDYJpN12drN6wfsNNJ256/LWPf+J1T3zA2gNCOx8rCviofGTLPwpNc1Sa5UgB48j9zUsdKZ3Z2cX9i7fu3OoXk3pfcGWycs3yNT6lYnjwY1EBH5WPVDnSNEflqAzlSPtCad+DXdt/VB7wUfkwy5GmOSpH5aiMFq96aynxYe6DcFT+sZX/H+Ff0es0dpmeAAAAAElFTkSuQmCC", "path": "image.png" }
Complete the statement. Calcium is ().
[ "a compound", "an elementary substance" ]
1
The model below represents calcium. lcium is a metal found in substances that make up your teeth and bones.
There are more than 100 different chemical elements, or types of atoms. Chemical elements make up all of the substances around you. A substance may be composed of one chemical element or multiple chemical elements. Substances that are composed of only one chemical element are elementary substances. Substances that are composed of multiple chemical elements bonded together are compounds. Every chemical element is represented by its own atomic symbol. An atomic symbol may consist of one capital letter, or it may consist of a capital letter followed by a lowercase letter. For example, the atomic symbol for the chemical element fluorine is F, and the atomic symbol for the chemical element beryllium is Be. Scientists use different types of models to represent substances whose atoms are bonded in different ways. One type of model is a space-filling model. The space-filling model below represents the elementary substance zirconium. In a space-filling model, the balls represent atoms that are bonded together. The color of a ball represents a specific chemical element. The atomic symbol for that chemical element is shown in the legend.
Use the model to determine whether calcium is an elementary substance or a compound. Step 1: Interpret the model. In the space-filling model shown above, all of the balls are the same color: . The legend shows that green represents the chemical element with the atomic symbol Ca. So, the model shows you that calcium is composed of one chemical element. Step 2: Determine whether the substance is an elementary substance or a compound. You know from Step 1 that calcium is composed of only one chemical element. So, calcium is an elementary substance.
an elementary substance
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAIAAACmkWkFAABJVElEQVR4nO2dd5wU5f3Hv88zZevVvZN2Bx69FxFBioBGqYLYDWI3iEZjEpVINCbGhGCJNTGaYMCuUTSKFMlPUFBEFKlHOap3wB1wdW/7zPP8/nh2l729tjs7uzuLz/vFS+dmZ2eenfns5/t9yj4PopRCpvFDnavdY7rm2lJQEs6PGa7DeBHTXYBovIpadrJh38l6r6LWe/313kC6SxQ3JhF3sFtyLHIHu2VQpzyzKKS7RJy44TpMBshQ2U1Vo/eNLft9Cmn7sDy7DQEAAEKAIPgPEAR3AiCAapfHr7ZznhRgEvGVg0q65vEQl0lwHSYJY9nN4m/2nWj0ymZbVm6+SZbNkmQ2yRICEYMAIGIQEYgIMApuCKFtAQEGEEJ72DYObYc3EAAKbVMKBECllAKohEZsB/cTCoTSiO3T+4NHBrch8gwEwK+obo/f5fU3uNzORrdJxL+6YGC6by0nDrgOkwRO7+WjqPf4ASCv89nW7DyzxSbJMgAwO0QotAXB6EFD26cPiNg+baJsmwKNeCcNHk8RQpQCQggA2Daw/exQFBGuENDQfoQQDe1HCCilEDoDUBAFwW4zFzqyzy7qAADtBkmO0eA6TBLGspuueXYA8Loa2N1liVfw0dDQVsQDZtunD4jYDh0LQCNS3NA7UfB4RCkNPicAts3kwFTBDgptAwrtp5Si0P6gSkJnCJ+aUvD4AwBwlt2s823iJBmuwyRhLLvplmcHAL+rkd3dqECRKVEltA21tQ0Q0i4ng+A6TBLGspvehdkmAXsaa72NDZkeVdxef3VtAwAM7pSv+43iJBWuwyRhLLvJMcvjuncEgFOVPxBVzdyoohJyuPw4AIwt6dDBAEksJy64DpOEsewGAEYUF/QqyKaEHPvhgKKqkIFRRVHVfYeO+QNq11zbuJIOybhLnGTDdZgMDGc3ADC9f3Gh3ez3ecuPHPD6vJkVVdxe/46yIx6fP9ssXTH47GTcH05q4DrUHWONuwnjVdQ3thw40ejFGJ9VUJiXk5NlNht5vIMvoNa6PafqGmudjapKexVkT+9fbIRxnJxE4DrUF4PaDWN5afmOytp0lyJuxpZ0MEjuytEFrkO9MLTdAMAPta69p+q/LT95usZsTCilABf37tI1z26ENjmOvnAd6oLhfqIZRdc8W9c827flpwBgzvmDWQqKABAEN6L+hIj9EMpaEQ3uD+9hG4QCBSCUUgDKtoFSQIRSCO5H7FVCIbQn+C4afhVBgJD3vtkrIDSiuCAN94iTfLgOdcGITcWtEmpgY88VQUQjf9MegfCf7HhArCHt9KuhHgGgQNlTZy1wwT6CYJAIpX6n94RPS4PHs/a5CBlxzny4DrWSUXYT6gOgcPpf+NFF9giE/2THA2XdhNDk0QdjCwo+ORrslwy29qPgNjtXaE/4tCh4PAWEECEUAARk4OfM0RGuQ61klN0YNarQYFQx7mPm6AnXoVYyym4MG1WAAAAychbL0RGuQ61klN0YPaok6WNzDAbXoVYyym4MG1UoAWPXmTl6wnWolYyyG+NGFQTGrjNz9ITrUCsZZTdGjSoqpWDsx8zRE65DrWSU3Rg1qrAyIAM/Zo6ecB1qJaPsxqhRJVRnTtbn5hgLrkOtZJTdGDWqGH+8A0dPuA61klF2Y9SoYvw6M0dPuA61klF2Y9SoAoaPKhw94TrUSkbZjVGjChvNiY08voqjI1yHWskouzFqVDH+aE6OnnAdaiWj7MawUcXwSSxHT7gOtZJRdmPcqGL0JjqOnnAdaiWj7MawUYUY/TFz9ITrUCsZZTeGjSoAYOw6M0dPuA61klF2Y9ioQgkYO6pw9ITrUCsZZTeGjSqG/yUuR0+4DrWSUXZj8Khi5CyWoyNch1rJKLsxblQBMHZU4egJ16FWMspujBpVQh2QyfrcHGPBdaiVjLIb40YV9pgN/Jw5OsJ1qJWMshujRhXjj+bk6AnXoVYyym6MGlWI4aMKR0+4DrWSUXZj1Khi/DozR0+4DrWSUXZj1KjC9hk5qnD0hOtQKxllN0aNKqrhxztw9ITrUCsZZTeGjSqGH83J0ROuQ61klN0YNaoY/7cqHD3hOtRKRtmNYaMKATD2ghscPeE61EpG2Y1howoriIGjCkdPuA61klF2Y9ioYvjxDhw94TrUSkbZjVGjCjuDkR8zR0+4DrWSUXZj7KgiGPgxc/SE61ArGWU3Ro0qocHjyfrcHGPBdaiVjLIb40YVAABk5OfM0RGuQ61klN0YN6oYfbwDR0+4DrWSUXZj3KiCwNh1Zo6ecB1qJaPsxqhRRTV8nZmjJ1yHWskouzFqVGGFMHISy9ETrkOtZJTdGDWqGH/1Qo6ecB1qJQPsptLpAQCzJBo2qlgkMVxOzpkK12HiZIDdlFbVAUA3R45ho0qxIxsAdlXVJucGcAwB12HiZIzddHXkGjaqdMmzixgdb/A0eP1JugmctMN1mDhGt5tjDW6nL2CWxLOyrIaNKhijovxsANhRWZek+8BJL1yHumB0u9nNMtiCXEDIsFEFASrOzwKA7cdrknMbOGmG61AXjG43OyvrAKBbfu7pJ2q8qEKBdsy1SwKu8/hPNHqTcyc46YTrUBcMbTcV9W53QLHKUkGW9fQTNWRUQQDFjhwI1fA5ZxJch3phaLthGWxxQS5EPlFDRhWEUFdHFgDsrDRuvwBHG1yHemFcu6GUBvsC8nMg8okaMqpQSgvsFoskOn2Bo/XupNwRTjrgOtQR49pNeb3bHVAssuSwWyETogpCqLiADXyoS8od4aQDrkMdMa7d7D5RBwDdHLmhWGL0qAIAxXlZALC7qpacvjwns+E61BGD2g2ldE9VPQAUO3JDscToUQUA8uwWm0lyB9Qfal1JuCucVMN1qC8GtZsf6lwsg82zWTIoqlBKuzpywNgDyTmxw3WoLwa1G9YXcHZBHpyOJRkQVRBCxY4sANh9ol4lxspjORrgOtQXI9oNobT0RD0AFDly4XQsyYyoYjebcq3mgEoOVDt1vzOcVMJ1qDtGtJsjtS6fotpMcq7VDJkWVQBokeF/mMuJBa5D3TGi3bC+gK6OPPZnZkUVANQ1PwsAyk41KCrR9cZwUgrXoe4Yzm4IpXtO1ANAcUEO25NxUcUkS44sq0ro3pMNOt8dTqrgOkwGhrObwzWNLIPNMpvZnoyLKkBpUX4WGCyP5cQF12EyENNdgGhKT9QBQIcsa2Ojkz1IjAADYAQIAKHQRmhP1J/AjkfBEIJZcKCAEELM+ykNxRMgFCiASgggRAilAAQoocAGRxFK2QFsg+2hoXcRQgBhlRAClAJQGn6VUkAWUAHgYLXTE1DYlI6czILrMBkYK7tRCd17oh4AOubYw2EhMqpQSqOiCmoSKkIH03A8oCh4SDBvDWabTaMKpcEoEQ5N4ahCKY2KKpRSFlUIJeHCRUUVWcB5VpkC7DFMHsuJHa7DJGEsuzlU4/SrxGaWrbIUrvRG1pkRQlF1ZtqkIhw6GIVru4gGDwk+2eDzaFpnZkEIBTUAkXVmhFBUnRkhxFJejHC4cJF1ZnZ8oc0EAKWG/GEup224DpOEsexmNwspWTaIqPRmYlRBAAVWE0LwQ53L5VeSfd84+sJ1mCQMZDcqoftO1gNAx2w7RDTpZ2hUEQSUb5UBYJcxAgsnRrgOk4eB7OZAjdOvErvZZJZFyPyoQikUWs1gyHkAOG3AdZg80t9YHYb9PiU40z1qElVQs6gCEP4vjQw/wYNDPQLBwQjBR8weJmWvhbokEaEUIUQJRYAQYkIKbjFNUACyXYUDBI6quIZiANoZo84Id8FKB4B8prXg8ZRSCL4Xcq0SRlDp9NS6fXlWUypvJkczRtMhcVE4SshRQj2UUoAuGHIBdcEIELMWjLBKCEAG6NAodhORwWYxq6Y0nGcCQPjBBNPJplElnOfScFSB0PEYsecSyltR8LDIqEKCAjgdVUgwqhD1G4WsCtBaGllaVKsKuwAABAsEfiL4xwjNowqhgBFy2EwnG327TtSNPbtD0m8iJ2EMpUNSpvrX+dUdavNyojyERgh0rAiWUHZDW85uDKVDo1Sm9lc3KIRmmU0mSWBPLe11Zuqmyt986lv+KK+JBHlA/li1PhcQjgcvF64zs1OdZTcDwI7j6a82c2LBIDoED3he9nie97ToNQAAtRR/qogLvXiz2nbbjaF0aBS7YdPBFmbZQlXcNNeZiYv6X/CQ/a087KbgY9T2XED6jkTVmQHALgsiRoZdiIMThRF0qFYT13MuZUcMHUkeEN9V8KeBtttuwDA6NITdBFSy/1QDABRm2UJBoP2oQipUUqaoZQFSTcIH6pXd+F7wkKPx/bDN+p4qHoeoqCIIgsNmAiMNJOe0hjYd6pvdUBe4nnWpFXFoT1yjiF+owbO0kt0YRIeGaLvZX+1UCM02m8ySyFq7oI068zo/PaCQHYHIMyALEnqJ0mBJGiVDwnVm//v+eL2GYXtNqb9bouZgnRkACCEOm6nK6d1VWTexRyetd4iTCuLTYbO2G+omyIoSbLtpeNal1rRaeW8Nabmi5otKf9xi2w0YRoeGsBvWF1CQbQd232nLPQJoewB96KE1LRgB9VBle0DZHghs8puvtEjFouYeAfUUDXyucUV3XAfmr1T3RQLrEQAKGOMskygJyOkLVNS7inJs2s7MSQEx6rBJdlOmkJ0Buj0QKUucj8UhkjxKjleHvk0B9WhM9ffmmD5WlAFyiz1TxtFh+itTAZWUnaoHgLOybBDsywNoVmdGq7zoFRe05DWRKGWK65lG30af5rYb3wpfIh/H/CWJrDMTQgCgwGaUgQ+c1ohRh6fbbipU+nwjeaGRrPNFhUBSQ/xrfY0Lnc6nncopAjHr0L1cu/ZQLYjfktbabgyiw/TbTdmpBkIh22KWRAFYHbhZnVl4y41Xx9rERT3U/Zrbv8kPmtpu1P0JjfVGXpB30/D5McYAkG+TAKC0ss5oC3FwwsSiQwhnN5sD9IVG2p5UlDLFudDp3xaIRYeBckLai6ZtI+4irbXdGESH6bebiL4AgJaiirDZjzfHXbtxvepWK9R4sxv1FKXx15yjEI5FRxWbJJlFwauoR2obEzw5J0m0q8PT2c1mP3rTDZ6YdEI9tPEll2ejr10d+rcH2j5Vu4il7WQ3addhmu3Gp6gHqhsAwJFlY08vKqqgGiJ86NF28sZ/uOLNblpsGIoXsRKiogoFGuoXqEv8/BzdaVeHEM5uyhT8ZtyL4brf8wTKlXaym70aW20iEQ+yMrec3aRdh2m2G5bB5ljMsii2GFXE1V4UWxhpjlpDYokqzcfdJAhyR0cVBMhhlQFgj8EW4uAw2tUhsOzGTYW3tSy8Td3U+ZKrbR2eHriTAG1nN2nXYZrthvUFOLLs4ccaFVXEbzV2EjF8a30axt0kCmohuzFJgk0WAyrZX22IiY44kbSrQwCgAHi9r93OitZQq4l3o78NHYIuoa7Ntpu06zCdduNT1IM1TgAozLaFH2tkVBF2JFqbVcpVcEHs2Q1YdPAbNRc1jyqU0jyrBKE2Ao5xaFeHENwDGtoQI/Gs9aU9u0mvDtNpN3tPNhAKOVaLgIUWowo+pkNtNlDRTp05MrsRi3W4IUqPFqIKQijfagKAslMNfkWHz8XRi3Z1GOSoihJr2lPKVfUUbU2HUi8hkZMzSE8MbWY36dVhOu0mmMHabeFRltBSVEkQUkPiarsRByc69DFwdsvZjSigLJOkErrvFK9PGYgYdSgkNkKCoVQorelQLE7Ubkin6JUYjKbDtNmNJ6AcqnEC6wtgtwgAkpDdqNUkrrabBO3G3x+R/JajCgKUa5WA908ZiVh0yKBeHQKgUqG2pkN5sIgSq8sHhuN2227Sq8O02c3ekw0UINtqFTBuLaqQzjqkl2KRGFd2I42UhJ7ar+sdLbQWVShQNrnRoWqnJ5D+iWM5EJsOIbhHL1rVoXWq9rmvSB5Szmlh3iVD6TBtdsNWRHVk2RBCbUeVBEEWiLdnSr7chMxaruW9CCvdoY2oIiDINks0NPk2J+3ErkP9+o1b1aHlIpPQRWOo818qUFv7PVPp1WF67MYTUI7UNCKAfLst+CuylqKKOlBK/FpyHynecTdCEZYujzvO+M/Bnotw21EFEMpjC3Hw+pQBiFGHDGTWIQBKvcS2dWifa9UQ6pThgjoAhxXcbnaTLh2mx272nKinAFlWi4BxG1GFdBFIXkIllIdI2ua7kUZJ8q0miPnBB84RPFcJ7UYVoDTHLCGAcmMsxPEjJ0YdMtSeOkyfIDiEtnUo5KOse+1xOY46XAxcLQbPElt2ky4dpsdu2IqoDvZL/zajijouoZmczRNN2mbzo5QKgyX5YSse106GRc3gmy54rsIQW1RBCHItMgDsNMBCHD9yYtchAEAXgeYn9H0RiwShALWrQ1yEbL+x4y4xXUu9VAxcI4R/0BV7dpMWHabBbjwB5YdaFwDkWK0A0HZUUcabND9jeYgk99GY3bD4gGxIvEIW7jTDCBE6RxeDdsKB6aJnvhwYJ8QeVRCgHKsMvD6VbuLSIQBQAJJY8LNcaIpRh0IBsv3GJs82ofxWa3DkXFFZYFbHCbHMVWwQHaZheq3SqnoAyLFZJUEAAEopxszymStEz6Km3GyT/tYIcXZDCl0E2xxr4isxUADUEwk95eBK7xWEuikgUHsgtiY8ixZtzKLGPhQJRRVKabZZxAgZYSGOHzPx6hABkPEmvN6nbbCfWCSYz5fj0qE8UhLPE9UKqpQFqAfoUQJ5mFoodMaku0AsFBAAbX8lBjCMDtOQ3bC+gDy7nU260W5UIV0E9TorxNNQhyzIfqMVWVEiKzFAi6sXFmHoJdCeArS3emEbUQUA5fEBOOkmXh0G999ii0uKDGRB9hus2nSIi5A4QRanyMKtJjRLwpNlGCSgYCdU+6toGkqHqbYblz9QXucCgFyblY1zaL9HAIAMktSf22N8zEIXIfvRbNwlGLI0t91AwqsXQkt1ZnbFbIsMADt4802a0KZDACBdBHK5Jd7L2W+wSsXxjf+CM1GHqbab3VX1AJBrswkYxxVVoItAHs6mk9tqskdmZLrcYl+QhW04GDTStzZzG1GFUrCbRAGjOo+/yqlxNh9OImjWIQKAETK9K9bghywoZ0GWaajMdQipb7thfQE5djsFEEJRpd06M7Bbb0N0kglfYIKdAdgRAA+lFSqyIpSPUT6WhshiLwFbg+cEdkY92m7YsyGRUQXB6agSf50ZIaAUcq2m6kbvrqq6DllxR0tOgiSkQwS0p4Duz0KrvfSbtn4jLo+UzdPMQgHmOmSk1G5c/sDRejdCKMdqYbdSQIhFFRZaELvvlPl08F1sP8tDEUJgAzRSRiNljAABsP+GN4IHo5BodFojnEUe9oTCMmx3bWaggDFWCQlGFRqs3LEr5lqk6kZvaVXdhT35gjApRRcdogKEZlvRZDNs9tMyJXLeYqGnKA6W5KGSWCCkRoekkYilqnCIoppg0qR0REonpOaBvwQZR4cptZtdlXUAkG2zYow1RhUaTCcRhP+hiDxX/zXCkxRVCKUWWZQE7PQFyutdxXxBmBSipw4dGE8xoymAQ7rCCCGg6PRhSdahB/Aav7wh+sfM4sFgI0SgBDVMwb6OhtBhSttu2A80cux2OH0r46kzp3aN8KTWmdmRuWwgeWVdMu42pzXOGB2inUT6i09s5jWRSIeo4+9q9jrAnvTrMHV20+D1H2twI4RyLBYAoABx9QiwJxW0Zoj8F26xQ6cPDsUHw/ZMsSNzzCIAlFbxBWFSxxmjQ9isCEv8KLYWXvtnpGAJETxp1mHqKlOlJ+oBINtmQxhDKKpoabsJTeoajkKR4SeD2m4opSZJNInYq6iHaxu752el7Fn8mDGCDn17VX9ZQClXqYcCAHZgsUgQB4lCAY5Vh8cIfie+qXWl41CwhFTNw2nUYershs2ZlmO3h6OEYdtuwA3qUYUCUk+pkI+oGVAXQfe2Gxa1sq3yyQZvaWUdt5vUkF4duv/P61rhpe6Wkoj/gFCErVdYhF64nbYbN6B/a5k1Wa6E7LWkdgKkS4cpspsGr7/S6cEIZVkt4SjRPKpIBxQBgdpDTFd2E9jkD2wKKGXRlWGUh6CnAJeIKB/pmN0ghLLN0skG756T9VNIkYARcJJJ2zrE1USqUxEA9lJkQSQPgwPrpUPllOp8yaVUtNXOolYQ57Mu0yjJdLkZLK1nN+v9UKux1pP1NTiHoEBuenSYIrtho6SzbPawjYSjivlbn+WQKu/y44j1pKgFqQMldYBEBkmpyW7Uo8T5kou0soQmraWwWYHNCowT6QxRx+xGErBFEj0Bpay6oW9hju53nhNJazq0b/DatvilZpPV0jwcGCGr40xgRYnoMFCuNDzT2HJS0wzf1wGlQrXcbUOWlrIbF4X12qeMwF6wb6O1E9KjwxQ1FbNfnWbbrOGYgACk/YHCl515/3Gbv/XhpmvXIQ8VN/tNS1ymvzfCURWaRZWIf+E3BqMKQNw9Ar5NgYZnGlvzmiYFW68Iz/jArU/PFHtXtjW4crPWu8uJleY6tO0KdFpUn7vc09xrAADVEvlTr/nPDdKn3rBu49WhWk1i9xqGWkG8/3JTOK2TcM8UHCSQ2ABg+1ZIlw5TYTc1bt+JRi9GyG6xQmg5Hdt3vo7/ajQdbMen8QFFfsqJNvuZYySjR8C3KdD4qofG/AjRUSq85AWPDj1T7F12kwQAZafq+YIwSaW5DnO+9Ba+3ijWtvMLb+Sh4mqv9JYb3FSDDhtfcsXlNQylTPW/72+hZ2p/oiIR6wB706PDVNgNG+Zgt9vDMSHnS2/Be3Esfiq+5cbf+JOR3ajlpPE/cQcLdJSKHyt6ZTeigKwmkVDYyxeESSZROsz50uv4JI5Hjzf7hbfd8WY3/k1+tc32mjYIfO6nNRCd3RzT2GoTiXw8PTpMid2wvgCrDQCAgr00ENdjZuC33LBf0T27afhPHHlNk/J8q8J+RZfshlLINvP6VNKJ1KF9V6BAgwh3BtAyT1zZjWe5N5Ey+1f6orKb0wOBEiFNOky63dS4fSddXoyx1WIBAOylhe+5tJ0Kv+XWN7vxbQ0EyrS3usnvKrpkNwiBzSQhgEM1fEGYZBGpQ8FDCz+JI7mOBK/3wSkSow7JUUISW3iT7lejs5twV1lC502PDpNuN6xxzm6zsY+U96VX0Lw8WA2BlR4dsxvP1wkt+Qy1FB8PtQAllt0IGNnMIuULwiSNSB3mbfRKddpdAK32xpjd+LcmJjAAUkNJBW2S3XTWwW6INT06TLrdsImX7VY7+zP7+4QeANoc0DG78e9L1MLxThVAh+yGhhrqeH0qSUTqMKs0vvG4UaDNfuSBWHQIOjgDUA+JzG7amL04dvwd0qPD5NrNSZe31uPHGFvNZgAwH1el9noB2qGG0FNEl+wmcJKQpr3vGsAH9cluEIDNJCIE5fWuBm+iIZETRaQOpVpiqky054Xu8MeS3Sh7daiS0Jom2Q0dmOjSsu6+rbbdJFuHybWb3cEMNot9ye27dfgA6JiqS3aTYKU64pr6ZDcIITtrqOP1Kb2J1GGiAQ8AAFAtjSnLtumQiSALRGY32IGhe0Jf24aRadNhcu0mWGG2WnU8Jz2q6tgzlSg69Uyx09iCeWytHiXjnCZSh+bjejSCumJqu9G8Am8TLLhJdkMpTNK+uqy3G3hL0qbDJNpNVaO31uMXsGAx6zwpoV5tN/oUBfTJbgDAKgsYoapGb63bp0fhOADNdCj4dIgzqI7Ekt3gAh2+XygfNWm7QQh6Yhin5edHxAQ1s3AadZhEu2EZrNWm//xgumQ3cm8dfi9GWTeBTtkNANjMIgDs5AvC6EeUDl1n67DwPO2MY8lupEGJXgt3wdjRLLsBIDMlOiDu1KluClJy06nDJNpNsC/AZkehRIKY9Mgoeop6ZTdSUaK5LumBAXTLbsLVZr6er44016EOWHBM2Y0Ni70SimrieWLUuJuwZsg1Mjk31pNTE9TOQq5hkF4dJstuKp0epy+AsWCSzTTUTOLsLyd+ZtRZ0KvtxjIqsfKYgbBGO52yG0qpSRTYQhyVfEEYPWiuQ3d3MfGwx9Y1jEWH5qltLVXUNigfiRMkaG1WSQsl14qBuRLNa+fj+M9Gp27B7mEo7TpMlt2wxjmb3Y4xCkeVQB4O5CV2xc4C2JBe2Y1llIws2pWnjhMpa5XSL7tBCGysX4DXp/SgRR0mGPZoPkZFYozjv+Q+onmixvVwTZebwjppnt0ghAAQ7YEDC8yBnwhqCabNnM3XDzXMFmpuxWoXQ+gwWfPdsFJarXZK2YcM7q++0NzxfY3jxwGATjYhCkin+W6QDdmmmRrf0/SrFjMoY4TgxROY7wZCUYWGkjKbSWpw+3ccr5nYo6Oe+f+PkhZ1eOpCc8732htB6WQz0OAXPxYdWq+yKBWqEufPZUyXm8TBYowrgtBLRMLylmqKaikFSixI6QiU6ZBSg+gwKdnNsQY3y2DNJnPIhoM0DDf5OmlsMaE9RBgsxxhVYuyZsl1kNo2MP9aZIXCHjGz6/CI8KqrIIhYxcgfUinrtvsyB1nUYyMO1ozXWcWhnAUbIwYcZsw5z5trlIXE0G5svN8kT5VAuE8eKIOBAag+k9sBqJzCgDpNiN6wvwGazQ9iGw1A4eaWNxL+oO5gR/ak1xt+qxD7uhgLNusos9ownyzODOlOiXZBe891E1pnZu6zmlC4Uf6bShg5PTrNoCXtmpN5ig/jnXQIr5Nxht04zt1t5x/nYdrtFnihDUKW01bYbSgH0WREkZTpMit3srKwDAIvVDqdtOAQCbyeh8np7fI5jRuTndsjH8UaVdrMbBAgskPsrmxxjjmMGMs9ER4ig32x+UVEFAFi/wG6+IExitK3Do7dl+eNyHDNS7rIjBwat8y7ZppnzF2SbR8mCo4XvndhFsF1pzn3ULg+R2Ls0ZDcG16H+bTcV9W53QMGCYDKZgdlwRNsNUEAIvN3FytuzOv7TiWP4dTjNx+rNNugi4GTOVWy/wewfKXpW+NTWZkszA1wgkrESsTSNKnq33QCAgEAWsVdRD9U09nDwFRq00K4OqQUduy3rrPdd1hh+sUk6C8otNpSPIaQrbToUClDOjTaMIFCuEjdRK1Scj5EFIQfCDkRoExmglKzmmkod6m83wVFV1mDhEIp8EsyOAQEEOgtH78/O+z+f/au2WmoDl5jJBSZsRcycw1EFIPxf3VZikHqLQm9BOUUD2/zkKCXVJCifnph2xmiQQChFAIjquRIDBJ86u1dBJSOMLbLoV/ylVXXcbrQRiw6JBZ2cY7fu8ud94mltClFqRoFLzOp4U3g1el10KBZhhDD0EZkjUACVEJSm9c5SpkOd7YZSyvoCLKEZJ1rMboA9Exuum2FxjZWtuwPyQUWoIeJxFQCU7iJYkDJQoj1FyMfC6cQyidkNhNaZwg4kT5QJpRSQSkjQ7FMbVSghNrNU7/bvPVk/Re0iCildW/kMIC4degfKlQNl0zHFsjsgHVPZLP0IQOkpqt1F2lM8bTQp1CEYILvRXYc62015KIOVTcGxBq1lNyi0vg9xCK6xgmccRQAYACPAAAiBEHqW4eOTnd0YKqpgQkyS4Auo+6udfc/K0fcxnfFo0KHSRWzsImLUgg4Z7eqQbAuQHQFaQ6iHgptiB0YWZBoiCb1FqUDgOgTd7Wb3iToAsFizmb1Cm1FFx9UL1W0B5RghFQp4KAAIRYJYJIi9ReTAxokqQi01V4FcGTyPuxvynEVVc8tRBSFslkVfQC2tquN2Ey8p1iHZ5Pcv80DT6ZPYDCeB7QEAME802adZwAZG0CEFKlch5KHYB4pMAVKnQz3thlK6p6oeAMxWe/i5thtVUCJrM7tp4AuvstYX9aSVMoWN4pJ6i/Y5VtGB0xhVqIvYvqa276lQ1+R25QMAIGdvOHUeNHYL5mLhqEIIsZrEepePLcQhi3pMZfDjIKU6dNPA3xppe2steNf6fJv8uffapWIxjdkNrqV568CyByK6aNjHQ87e0NCH1gxm9ypZOtSzUeCHOpc7oAiCKMkyDX0c2mzcTThK4FBUCbs9BO9Y8I0Q3BM8HpqOd4AK1f+HBmWFF1qflC+wT6l9uMG9whuOKs3H3YRubTg2sFeDdVpKExrvIB4gZ71IstdGe02YrH2o5HXU/XUkeFBUVEEAZlkgFPae5AvCxEHKdAjVhDzhbNdrghd009o/Oz0bfWnRIbhIzkra+Rlq20pxS30zWftQl49x99eRpSqJOtTTblhfgMmaFc5UAVoY70CD/2eJInNrCN+W0DCZJlEFmkUVdZM/8LizDaOJxLXc63zVwy4RfB6h858efUAhXNJgopzweAfL97Tg36Q1o4nEdgT1egVZTwRXpEYYU0oQQmZJBD7eL05SpEMPJYtdNM45IRvf8yjlSop1iD3gWELtG9v/stiOoO5voNx9ydKhbnZDKGWzt5utdkCQ3KhSptA34xtY7dnoc77rTWVUMX1HcpbFoUW5HvV4A2G2bhohCGFKqdkkAMBhviBMzMSoQ9Mx1XpQsRxUNOuQLvOw5aTjgrpp3Usu6qIp0yG4Ie/fqnQ8psAMAIIXnf0+th1Oig51a7v5odblVVQsSqIkAwUU8jH968weShZrWanKvdZr6iOahogpqDMLx0h2PF7DELyo19t4980qqzOzTgSzLHr9SmlV/fAih4ZP/WOjDR3KtbRwo9d+OGA+3sQmlDzs6S97xppIPopVh8cIbNY48bZaTVxrvfZp5tS03WQvU6XjcReyxwd433XE1UFnHeqW3ZSeqAMAMxtVlczshjbrAogd53/cqYkq9uUa59+2VqGzNqNwVAEEZhkDQGlVrbYT/thoTYcdPvP0/nt9wUZvlNcAgFhLsr70nrWoPvtjD3JDLDqEdQnNqun+zJcaHZq3ENNuLV8WwYuK/g/rrkN97IZQujecwQIksc7sAc1RBQCUauL+ygdJrjObvqfSYY2GCACdNuBwnRkomCQRIaiod/MFYdqlRR0KHtrvxfpOaz3trqdo3eDNe9mJagi0q8MdCa1URdw08IMCyW+7sf6f9mUnsn5A2eWCvjrUx24O1zR6FRVLMhZlgGRmNzsS/cr5tgUghqiilqtkP1FW+UmZAq74oop4QLvXAIDoQ7l7IRxVAIFZFgGgtKo+oU/+I6C5DgU37bukwdoso2kN8Zia/6wTuWlbOtyvgOaVYEN4t7evQ3W74l/pD7zpD7zgUZb5yecBtF+NR4cxdVO0gWMH0leH+rTdsFFVsiWLuWry2m7wzkRbTL3bAhCKKs3rzLSGeFf4lO0BGjVlogVQZwyXSKgnbrfObNqd6EpGuWVCTa9AsJYOyCyJHp+yq6p2VLfCBM98ZtNch73fbrTGuYgd8tDslxsb59rBilrTYeJQ1+meqSgdghv51/l8a31NRLg/QlTjRHSJhCzt6jDRQuaWIZbd6KVDHexGJXTPiXoAMFlszAeD2U0oOOg5mtMd/smCdoiLCjYUGVUIpdQD7hVe39pWsicP0AMEXvShESKdLoINoJXRnMiDkKbZASOR6wEhTAhhzVWShBGCE43eWrcvz6pxJsoznuY67PS1N/uIllqPeEw1b/D5JgV/Sh6lQ3ws0UU4ASBQoUKz7IZQqh4lzpdcpKZNS1uvoJ0qzBBhkNCaDgGQkHA5RR/SV4c6VKYO1Tb6VSJIMhZlFHomSWq7AT2WQAxUqFF1ZvBAw7ONrXpNJJsV8S9etJO0VmcWjuuxSCNAuM7McnqWx+7kK4i3TpQORQ8t/lz7tN6mDT7kYvoM7gnrkHbWYYQ3m/ImSoe+TYH6hY3teA2jlgpLA8I7SpttN4kXE+xHQEcd6mA3bFSVaMkKW3Xy2m4gwZnVAQAAW1FkVAEP1D3TqFbEbBMeEJb48Xdqqz0CCSP4TrfdsJ/VmUxs3R/eP9UqUTrM3+sXE2hhQR4qf+eH1nSYMEIBhqbZTaBMbXw1Pn9EmxXxXaX1nikdyslqZ3rpUIdv776T9QAgW+1hq05idqMHUrEQGVUaXvXE4TUhhI8UXIuaRxW1kw4lVE1NshtKqSQIGKM6j7/Gw/unWiZKhzmHE23mEw4o0KIOdclu8ptkN+CCxle1TAmMv1WFA5C87Mabo6cOE7Wbfaca/CrBkgkLUiqym4SfNEtiw0V1b/T5t2up3iMPiO/4m0cVmsBKMmF8OTQquwGgAsIA4PYn1AV7ptJch/bKRO1G2hWAFnVoQ7RHoo2e5iHh2YgBABre86ix1KFaQny3BR0CoObrwGggkIt01GGidhPKYO0QadXJy24SW5MQAOReYmRRXZ9oH6+FDxJhZ6hHICKq+Psneled3WhUdsPuEwD4FB3ahs48muvQVqVDgy60pkMNq3dEYBllQtbgOREC6qI+TTEvWMJaKmxWWeGa6HBAwjos1lmHiRaovM4FAJLZDhFWncRxN4NEyE+ozJbzTeGi+vcqpDqhby/eRVjhIqOKv18ipwTVRGt7kObZDcIYAPwqt5sWaFmHetCyDkdIiSTa9unmyFHF3u0B6k6oxEJpSzrsm2iiXdtL1VeHidpN8OOFTD/Z2Q1CCCZrzxHlXqLcWwgX1R/nSmPNEUpbiCq+4YKaq/2cVSMosaKWogoAgFfRJ2ifYbSsQz1oTYdothU0rF8EkHWlRSjAoQIDQuDfl7AOd7WQZVMr8pyv/Quummj1IJ11mKjdBC+OT1s1QDKzG0rReTLqoiWwIAvKvtoaGVUSf8zIA8jdvEeAuqZpDH2+HHpiOI38rcrpqIIQAPi43bREcx3Wd4tjGbkWoWamz9Al2E4I6hC6COhyS7znNI+SrReZUajArKhqYil2sHgt6dB9EaZax2mV/4QoppaymwR0mLjdAEBwhsIUZTcI0M/tGqpUOTdYxWIhMqroAjpOIbpHAPn6I9eFcZdQNdFDVxDVQiN/MxWOKqzkMp8mvSWa69DVIdFehcAACdrW4UgZ/TSOHMc0Ss6+0caknhodEgvUX6/lPlQPotWD9NdhotrF7P7TJkMkk5rdAAVkRcLP7bHnOMiCsm6wmobKUVFFN1qaZ8R1IXaPiuP2qia6fzZxn0UBoMXsRlUpADj4qOKWaK7D+pJEexWUQRK0rUMAYaQs3WNH7a3Cih04e649+0Zr2GEidUi1znAQTUs69Jeg+svj+5rX96JHpqmQBB0majfZFgkAiL/Jz6yTnd1QAHBg8W47Pq/9DgKxSMj9pd1yvilJUYUVLiqqsPM3TEP1l2MSw3PxngUHr6fejqHRQC1FFUUlAOCw6tG9ecbRXIfVfeVE6lNqHm43u6FsZ5Eg3WOXb7MJ58moWaYj9hKtV1ryHsyWh4qh0RzROmx3Jd9YoJ1Qazr0DEPVdwmx6BAATp1LD19FkqTDRCNAcY7th1oXUXwQupHMtJP1m6lQYxUCQFYkXW+FiWZlrZdsD9BmQ0jFXqLpfNl6vgmCwghnUcE5XKUiIfHWYtIDtRhV2Az4rqHg6Yaz1lLb1pYjmD8HTlxA6wZTQoOzmkAoqoR/q4IQIoRQSgWE7Cb9VyI8A2hRh+UTLDlLNXYwe2dYwwJuR4cACAAPkYUhEgKAGkqrVQSAbUgsEhCE345aWxEkcR2SPEStLWc3TIe+DrTqV9i2kWavazWTcnWFE+OosxtJng4T1W5Rrg2ishsKkNTZ/EL5EfsvLsLyHCsCoGUKAKj7FbFIwFYsFWFkRbjNdabE4kSr92oJZh+q+Sxq7FZgjNU8UjMLamZhcykVKyn2ILGe+joCBersg9xnsZXz2L1CkTPgh3+JSyj1BSgAFNp5atMyLeqw4WyxYoKlaF3cv5zyDpf9A0Ucjw5paL0z7EDIIQIARsEHCiyFb12Hcm/RtTah+bpI9xh0aCH1E8E5CsuHqOkQlaqC7/Xngq8D1Pem/lxKaKjfLTk6TNRuumRbAUANeImqCIKY0uwm+C/oZUJvCQGVeoso2PgDwZOjVqOKebDUYEGJ1JzJQMwK11pUiVzfx9WP0n7BdYLYKp2E3R0a/AxtRBWv3w8AfAHf1mhNhxUTLOY6UrA1ji+zd7jsusYqaNUhC5rBg4PNBe3o0DRUQonpUD03Vh2qZurqRxub6ZBQmgIdJtp2YxKFXgXZAOBvrEtl203Ev/BDoqcPRsFrsqjSap3ZhiyjEhgeagb1HIEVrsU6MwBgzH4aQ1Gw6PT0vG2hPkWEmhW7aZ1ZUdVAgAAAn664NdrQ4aFZtmMTY+2xdo8xOa+xQmp1CAD2adrzVtIdn85ujK1DHXpVx5x9FgD4XPVASIp6piAqqpw+MBxVgvZMw9OyBe98VM+UbZpJc0NdYIZIbcHCNY8qtGlUocGio9PztjVdm7lJsZv2CHh9KgD0KcyxyYmOJTmDaUOHxydaym7Objy7rVzeVyLWzM1qnGlNiw4tF8likaaqvRkCV4vhwhlchzrYTadsa0m+HSh1N9RkVnYDANiGc+61afjU6nCBjpDChUteVCEqdfsCAHBuUYGGcv54aFuHru7iwVuzy+7Mrjnf7D5b9HUSAMDfSfCWiA2jTVX3ZNfckeXvLqZLhwhQzi9s2BH391G5WkIOIVN0iJqkHlqpcfv+tWmfSml2QWez2cKWcxdQcF13DBQjEFBwpXcBAYrcACpgxDYQgIAQilgWHkHwMIQAIwBKBYRw6AwomCJRtoGAsiODAafpAQgQDkon6PoUgACllLo3BlyvxdGgSM4VlGtEws5AKaWsDhysCdPgNgSrxADsAAKh9pqmdeZg7Tq0TVksQlglhAA9Ve9RVNq7MPuKQWcn/qTObDJdh/5y0viqR415+Sr1Gkk9F2eQDvUZoppvNV3cpwsAOGsqCVEzKLthHm85X875jV1sb7BW8DJjRXKtDDGsXggJR5UGt19Raa5FntG/ayxl+5GT6TqUioWcB23mqSbUbktOZ6zeYaIjxMzSoW4j4od1zu9dmE0Jqa+ujGyuMXjbTbgGKxRj+70W8+VtPunumNxhUmeK7GPEsjZzInVmp8fv9ioiRlcPKZH4bxdiI9N1CAjMU2Xbb+ziYLFlKXbGcK1EfmWiPVDG6VCfyhTDq6hLN++v8fgkyVTQobOIcTh3RUCDSSxmaS0ICACogFAopz2duGIAFEpxUWgPjkhlw/vD/w1vADs+NN4hmMGGhhKw8QSheAIsY1QJAYRY8yIBSigE9imkQiXVVD1KAAB1xjQfYJBI81jWGp1nhtNUGtnDDaASCgiphJ071N3IXkXBI1VCgucMvZ2dv8bpbfQGAODqISW8/zsuzhgdEkqpG5QKRd2vghlBZ0zyEcpHIaVlng71tBsA8ASU17ccOOXyYUFwODpYLZaMqDOHa79sg4aeB3sGNPRswjVh9pCSVGdWCDnZ4PEFiIjRdUO7swFsnLjgOjSmDnVO0S2SeOO5vYpyrERVT544Vl19grCW7TCGrDOHRxawnTRU+0XsRPGvXqi5ztzoU47WuHwBYhLx7HN6cK/RBtehMXWoc3YTZuORExsOVSmEAoDdZs/JyjJLkiwIAkY8qkDTqOJTiEKo0+Nv8ATYq30Lc37Su3OWiY+ySRSuQ0PpMFl2AwCNPmXDocpdVXV8vsvY6Z6fdV7XwpJ8e7oLcubAdaiBJOkwiXYTZndV3ZHaxpMu78lGr48/8qaYRFxgNTtsps45tv5n5ZpE3gOVLLgO2yA1OkyF3XA4HA7o3lTM4XA4rcHthsPhpAhuNxwOJ0Vwu+FwOCmC2w2Hw0kR3G44HE6K4HbD4XBSBLcbDoeTIrjdcDicFMHthsPhpAhuNxwOJ0Vwu+FwOCmC2w2Hw0kR3G44HE6K4HbD4XBSBLcbDoeTIrjdcDicFMHthsPhpAgMAE6n89lnn7344osHDBgwcODASZMmvfDCC4qitPvmefPmzZ49O/mFTAhDFdLr9Y4bN27UqFHhPQMGDChpyscff6z5/KWlpSUlJZ9++qkehU01XIcpI106FAHgpptuKi8vv/fee/v3768oypdffvnss8+Wl5cvWrRI8/USZPjw4f/973+LiorSVYAk8cwzzxw/frygoID9SSl1u9333HPP+eefHz6mZ8+eaSpdmuE6TBnp0qG4b9++LVu2/P3vf58yZQrbde6555pMptWrV3s8HovFovsl2+Xo0aM1NTWpv26y2bNnz5IlS6688sp169axPS6XCwAGDRoUGWd+nHAdpow06hCrqgqhRfbC3HHHHR988EH4Gb/zzjs/+clPevfuPWzYsF/84henTp2KPLixsbFv374vvvhieI/f7x88ePDjjz8OAKdOnfrlL385bNiwPn36zJw586uvvmLH7N+/v6SkZNOmTfPmzRswYMC55577+9//nhDy9ddfjx07FgDGjRv3s5/9LPJC69evLykp+f7778N7tm7dWlJS8sUXXwDAt99+e/XVV/ft27d///7XXXfdtm3bmn/a/v37v/zyy+E/58+ff+mll4YLs2HDhuuvv75v375jxoxZvnz5zp07Z8yY0bdv3ylTpuzYsYO9RVGUv/71r2PGjOndu/eECROWLl0aPtuiRYt69OjR2o0mhCxYsODGG2/s3bt35K0DAJut/SUKf/7zn991112vv/76yJEj+/bte9tttzU0NPzlL38ZNmzY0KFDf//737d7BoPDdQg/Ah3iHj16FBcXP/DAA2+++WbU82MsW7bsN7/5zcyZM1etWvW3v/1tx44dt9xyS+RyMXa7fcKECatXrw7v+fLLL51O54wZM1RVvfHGG7ds2fLCCy988sknQ4cOvemmm/bu3QsAoigCwKOPPjp79uytW7c+9dRTS5cuXbly5fDhw59//nkAWL58+V//+tfIkowePdrhcEReaOXKlQ6HY8yYMQcPHrz++usLCwuXLVv27rvv2u322bNnV1ZWtnv7GKwwTz755Pz587ds2TJ48ODf/va3ixYteu6557755hu73f7II4+wIx977LF//vOfv/zlL1evXn377bf/6U9/euutt9hLPXv2vPDCC1u7xBtvvHHy5Ml77703cieLKrGEblEUt2zZcuTIkc8+++yNN95Yu3btlVdeWVhY+NVXXy1atGjp0qVM65kL1yH8CHSIZVn+17/+VVJS8tvf/nbEiBEXX3zxo48+unPnzvARixcvHjt27N133929e/fRo0f/9re/3bFjx5YtWyLPMn369G3btoVv64oVK3r37t23b9/169eXlpYuXLhwzJgxPXv2fOSRR4qLiyOdeNKkSWPHjpUkafz48V27dt2+fbskSVlZWQCQk5NjtzdZxE8QhMmTJ0c95mnTpgmC8MYbb8iy/NRTT/Xv33/gwIFPPPGE3+9///332719kUyePHnQoEFWq3XWrFkNDQ3XXHPN2WefnZ2dPX369NLSUgBwOp1vvvnm7bfffuWVV5aUlMyePfvyyy//5z//yd5+xRVXhLejOHHixBNPPPHoo49GPVEWVd5///0JEyb069dv8uTJ//nPf1orntvtvv/++2022/Dhw/v06UMIufXWWy0Wy6RJk3Jzc1kJMxeuwzBnsA4xAPTu3fvDDz/89NNPH3rooa5du7755puXXnrpH//4RwAIBAK7d+8+99xzw28YMmQIAESd9KKLLrJYLKwhWlGU//3vfzNnzgSAbdu2CYJw3nnnBS+G8YgRIyIl0r9///B2dnZ2fX19G2UFgEsvvfTw4cP79u0DgF27dpWXl7ML7dixY8CAAWazmR2Wm5vbtWvXeL+BvXr1Cpck6k+fz+f3+0tLSwOBwOjRo8NvGTVq1KFDh2pra9s+8+9///tx48ZNnDgxar/P58vKyqqsrHzkkUeWLFly3nnnPfDAA+EwFUXXrl1lWQ4XKVw89mdDQ0McH9WQcB0yzmAdipEfslevXrfeemtjY+MjjzzyyiuvXHrppd27d6eU5uTkhA9j28wOw1gslosuumjVqlU33HDDxo0b6+rqZsyYwQ5TVXXAgAHhIxVFycvLC/8ZfjCMdpf0HDFiRGFh4apVq3r37r1ixYqioqJzzjmHXahr166RR+bk5EQVsl1MJlMbf1JK2QlvuOEGhIJryhNCAKC6ujryQ0Wxdu3aL7/8cs2aNc1fOu+887Zv3x7+c+TIkeXl5f/+97+vu+46DcVrrQCZBdfhGaxD0e/3V1VVFRcXh3fZ7fb77rtv2bJlpaWlAwYMwBhHmj3bZnlmJNOnT7/rrrvq6upWrVo1bNgw1neYlZVlMpk++eSTyCOjmgPjAmM8bdq01atX33PPPatWrWINbOxCURGpvr6+U6dOUW8PPx6G1+uN6+rsUz/99NN9+/aN3B9595qzYsWKhoaGcBcjpZRS2qNHj4ceeujmm2+OOrhfv36bNm2Kq1RnBlyHsZO5OsR/+tOfpk6dGtU4d+jQIQAoLCyUJKlfv36Raed3330HAIMHD4460YQJE8xm8xdffLFmzRqWWALA0KFDfT4fIaRHCLPZ3Pzut0hrNslqsBs3bjx48GD4QoMGDdq1a5fP52N/njp16vDhw80LmZ2dHRlq4s1y+/XrJ8tyTU1N+OPk5ubm5+eHc8sW+fWvf71q1aoVIebOnVtQULBixYrLLrtszZo1d999t9/vDx/8/fffR4XHHwlch7GTuTrErJnniiuueO211zZt2vTVV1+99NJLd99994ABA8aPHw8AP/vZz9avX//SSy+Vl5d/9dVXf/rTn0aOHNn8DppMposvvvill16qrq6eNm0a2zlmzJj+/fvfe++9mzZtqqio+Oijj6ZOnfrGG2+0XSaWJ3/22Wes7yCKc845p3Pnzo899lifPn369OnDds6ZM8fv98+fP3///v2lpaX33Xdfdnb2FVdcEfXewYMHr169urq62uPxPPfcc6xBPnaysrKuu+66p59+evny5RUVFV9//fWcOXMeeOAB9uqyZcvuuOOO5u/q2LFjnwgKCwsFQejTp09eXl7Xrl3XrFkzd+7cDRs2fP311w8++ODXX389b968uErVnF27dn0eQUakS1yHsZO5OhS7du26bNmyl19+efHixVVVVbIsFxUV3XbbbXPmzGFmOWPGDK/X+/LLLz/55JPZ2dkXX3zxggULWjz79OnTb7vttgsuuCA8WlEQhKVLl/75z3++44473G53cXHxL37xi1tuuaXtUg4aNGj8+PELFy4cNWrUkiVLol5FCE2dOvVf//pX+P4CQLdu3d54441FixZNnz5dEIQRI0a8/fbbDocj6r0LFiyYP3/+2LFjc3Jy5syZM2vWrLVr18ZzA+Ghhx7Kzs5euHDhiRMnHA7HJZdcMn/+fPZSWVlZixXjNujTp8+rr776zDPP3HXXXQDQs2fPV155pXlLXrw899xzkX926dJlw4YNCZ4z2XAdxnO3MlWH6IxpYuRwOAaH/yKcw+GkCG43HA4nRXC74XA4KYLbDYfDSRHcbjgcTorgdsPhcFIEtxsOh5MiuN1wOJwUwe2Gw+GkCG43HA4nRXC74XA4KYLbDYfDSRHcbjgcTorgdsPhcFIEtxsOh5MiuN1wOJwUwe2Gw+GkCG43HA4nRXC74XA4KYLbDYfDSRHcbjgcTorgdsPhcFIEtxsOh5MiuN1wOJwUwe2Gw+GkiPTbzTfffHPrrbcOHz68R48eAwYMmDlz5ttvvx3LGysqKkpKSkpKShoaGuK96H333VdSUvLoo4/GX972efbZZ1nB/vjHPybj/Jxk8O67715xxRWDBg3q0aPHsGHDbrjhhm+++SaWN7733nslJSVTp07VcNGxY8eWlJR8+umnGt7bGkuXLi2JoHv37iNHjrzpppuMsFR8mu3m66+//ulPf/rZZ5/ZbLbzzz+/oKBg+/btDz744GuvvabvhY4dO1ZSUvLKK6+wP/v37z9x4sRevXrpexXG8uXL2cbKlSv5msgZwfPPPz9//vwtW7Z07dp11KhRCKH169ffcMMNO3bs0PdCy5YtKykpKS0tZX+OHj164sSJhYWF+l4FACRJGjp06NChQwcMGOB2uz///POf/vSnaXccMb2Xf+2111RVnTRp0j/+8Q+2Z8GCBW+99dbSpUvnzJmj44XCFsC45ZZb2l2RXhtlZWX79+/Pzs62Wq3Hjx/funXrsGHDknEhjo4sWbIEAB555JGbbroJADwez5VXXllaWvrOO+8MGjRIxwtF6fDxxx/X8eSRnHXWWR988AHbdjqdU6dOraioeO+990aOHJmkK8ZCmrMbVg/Ky8sL73nwwQe/+OKLyPRy2bJl06dP79u374ABA6655povvviixVNde+21kfnL559/XlJSMmLECAC49NJLFy5cCAB//OMfS0pKXC5XVGXK7/c/9dRT48eP79Wr17Bhw+68886DBw+yl1599dWSkpK5c+du2rRp6tSp/fr1u+yyy3bt2tXaJ/rkk08AYPz48RdddBE0kxfHmETp0GKxvPLKK998881jjz3G9rShkChYFSacvyxatKikpOTuu+92uVwlJSVr164FgGnTpl166aXQrDJVWVl53333jRgxolevXmPGjPnDH/7gdDrZS3feeWdJScm///3v119/ffTo0YMGDbrjjjtqampi+XRZWVlDhgwBAK/Xq+n26Eaa7WbAgAEA8Pbbb//6179es2ZNfX19VlZWcXExxsGC/eMf//j1r3+9Z8+eiRMnjhgx4ptvvrnxxhvXrFkT11VmzpzZqVMnADjvvPNuvvlmSZKiDpg7d+4LL7zgdDqnT5/eqVOnlStXzpo16+jRowBgNpsB4ODBg/fdd1///v0dDse2bdvuvPNORVFavBazm8mTJ0+ePBl4fSpDYDpcsGDB448/vmnTJr/f36FDh8g6ThsKiRFJkm6++Wa2PWPGjJkzZ0YdUFNTc/nll7///vs5OTkzZsxQVXXJkiVz5sxhSmM6/PjjjxcvXjx69GhVVVevXv3nP/85lks3NjZu27YNANKb2kDa7eaOO+5gvrts2bKf/exnw4YNmzlz5uuvv85ucUNDw7PPPgsAjz322IsvvsjuPgA88cQTcV3ltttuKykpAYBJkyb97ne/k2U58tX169evW7cOIfTee+89/fTT//3vf/v379/Q0PDSSy8BADO+/fv3P/30008++STLun/44YcWg9vevXv3799vMpkmTJgwatSo3NxcVp+K/8ZwUspjjz3mcDjcbveLL7547bXXDh48+Oabb/7888/Zq20rJEZkWf7d737H5DR37tzbbrst6oDFixcfP368W7duy5cvf+qppz788ENZlrdt28ZyH/bGw4cPf/TRR08++eSCBQsA4LPPPmvtcidOnJg1a9asWbNmzJgxevToysrK2bNnX3vttfHdF71Js93k5uYuW7bs5Zdfvvbaa7t160Yp3b59+8MPP/zAAw8AwPfff8/SvxkzZrDjp02bBgBlZWV1dXV6leGrr74CgEGDBnXv3h0AJEm65JJLAGDz5s3hYzp27HjuuecCQM+ePW02GwBUVVU1P9WKFSsAYMKECVarVRTFiy++GHh9KhMYOHDg559/vnDhwilTpjgcDp/Pt27duptuuundd9+F2BSSOOwqkyZNYolMx44dzznnnKirjB8/PisrCwCGDh0KALW1tYFAoMWzBQKBrVu3bt26dceOHU6nUxCEI0eO7N27V8cCayD9HeEY44svvnjhwoXr1q3bsGEDSzI/+OCDioqK2tpaADCZTFarlR2cn5/PNurr6/UqALtKZPsRu0qko0W+arFYAIAQ0vxUrCa1ZcuWqVOnTp06lTUz8fpURmCz2a699tq///3v33777YcffsiqV8899xzEppDEiUuHTITQig4BoEuXLodCfPvtt7fccsuGDRuuv/56DaNGdCSddtPY2Lhq1apnn3023ILVpUuXp556ShRFADhy5Ehubi4A+Hw+j8fDDgi3jUU+FQbLNsOnirEVDQDYVdjDjnxv2NpiZM+ePQcOHACAkydP7t69e/fu3SwD4vUpg3Ps2LH333+fVZMZQ4YM+d3vfgcAR48eVRQlLoUghCCtOmyOw+G45557AKCuri69UkxzdvOrX/3qmWeeWbRokd/vZ3v+97//sYaboqKic845x2QyQUR95L///S8ADBw4MDs7O+pUrGGPNYkBwMcffxz5KhOBy+VqXobRo0cDwM6dOw8fPgwAfr9/5cqV4f2xw2pS55xzzqEIxo8fD7w+ZWwOHz583333/eEPf/joo4/YHlVVWYtJx44dRVGMSyGROnS5XKwrKky7OlyzZg37Lhw9evS7775r7SrxEu7PtdvtiZ9NM+kcd2O32++///5HH310yZIl7733XpcuXerr6ysrKwHgsssu69atGwDcc889TzzxxEMPPbRhw4aampoNGzYIgvDggw82P9vEiRM/+uijTz/9dN68eU6nk/UghmsxHTt2BIAlS5aUl5fff//9kW8cN27cBRdc8MUXX1x99dXjx4/fsWPH3r17CwsL586dG9fHYXYTNbp0ypQpn3/++cqVKx966CEmNY7ROP/88ydNmrR69epf/OIXjz32WH5+fmVlJaut33vvvRCnQiZOnPjOO+88/vjje/bs2bJlS6dOnU6ePBmpw6NHjz788MNjxox5+OGHI9946623Llu27NChQzNnzmRtSYFAYMyYMRdeeKGGD8Waitl2fX39oUOHAGDYsGGs0SddpDm7ufnmmxcvXjx+/HibzXbgwAGn0zl06NBHHnkk3Pd05513Pv744z179ly1atX3338/ZsyYt956q0W/nzFjxrx58woKCjZs2NC5c2c2YsLn87FXb7/99p49ezqdzo0bN0ZVdxFCL7/88rx580wm04cffnjy5MnLLrvsgw8+KCgoiP2DhGtSrP87zCWXXCIIwvHjx7///vt4bgwndSCEnn/++T/84Q/Dhg1TVbWsrAxjPH78+FdeeeWaa66BOBUyf/78KVOmiKK4bt26q6666qqrroIIHf7mN78pKCg4fPjwnj17ot7ocDiWLVt22WWXnThx4sMPPzSZTPPmzVu8eLG2KBVuKt66dWtVVVWvXr1++ctfvvrqq+EhJmnh/wH3c9eAHwjEYAAAAABJRU5ErkJggg==", "path": "image.png" }
Which solution has a higher concentration of pink particles?
[ "Solution A", "Solution B", "neither; their concentrations are the same" ]
1
The diagram below is a model of two solutions. Each pink ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the pink particles represent the solute. To figure out which solution has a higher concentration of pink particles, look at both the number of pink particles and the volume of the solvent in each container. Use the concentration formula to find the number of pink particles per milliliter. Solution B has more pink particles per milliliter. So, Solution B has a higher concentration of pink particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAVYAAAHFCAIAAAAmP0Y5AAAhqklEQVR4nO3db0xbZ54v8B8GOwnG4PyBgH2j5N7amLCrAKq90jTJtERITSrd9A0poyXVEhXpkhmiaVZLlGizRMOdmaLk6jZVI4WRgsJKRFpKpFV7V01WQmSiMJMXdoTpVcHGzkyylQ3FTWN8MM3YAe8LdwkBAvbxOT62f9/PqwTOg38hPl+f8zzPeZ68WCz2b///GQEAP3+zR1MQI7r1NSIAgKPd2/NVStcAAEpCBACwVrD8L9Y9mtf3bFKqFEizZ8/p7p8WiKi6TLVLn6d0OZAmM8LCvz6YX/orrgIAWEMEALCGCABgDRHA19L/fZ4KHQF8FWx8COQoTQG9XZmvdBWgMFwFALCGCABgDREAwBoiAIA1dAfyFVmgMf8iEe3ellemxaAAU4gAvhZj9P0PMSIqj+L85ws3AgCsIQIAWEMEALCGvgCFhSLC5KzXEXC6Z72WEpOlxFyh3VmlNytdF3CBCFCMLzx1wdFtDziXvjLsG4n/Qacu6rKePWQ8qExlwAluBJTRPznYNNS6/PxfTojOnb5//vT9fwxFhPTWBewgAhTwT/aPLn11RYjOrX/YsG+kaagVKQCyQgSk27Dv3hePbyd4sH9++sKDblnrAeYQAWkVigidjuRO6WHfyLDvnhzFFKjote2q17arSjbL8eMhO0jfHegLT/3eP+IOet2zXlfQW6U3WUpMFr3pLcMBo7ZC8pfLLpfGNr7+X63T0S1H12CBikzbMS+QO4kj4Or49Z7xvuVfcQW9rqCXHtPFsSsnq1vaqk9I+4rZxREYFdFKiM7ZA6O20jrJ6wGQ7EbAFfQ0DX2w4vxf4ep4X9PQB66gR6oXzS6hiOCf/1ZcW/dTr7TFAMRJEwGhiNB690NXcOO3qSvobb37Ic9ebves+NM4lbYA65AmAjodHyV+iytE53j2cvvD04q0fZXni+R9EvM+iYWexST/4ZAtJIiAzx/duuP/Q1JN5OvlzmQGbbnotpatJgkriXu+SA+fLD58sjiLbWUZkyACLo19KqJVsmNjOSCV/jxLifQRAECpR4AvPCVEwyIaCtE5X3gqxVfPOha9yDNZdEOA9aUaAf75FO5vU2ibpeoNB0S0MhTi2UGQS6oR4HjFgy5yt81SJ6tPiPg8//iN38hRDABhgnD6dVnPJnV8W3ULLgFAPqlGQCrdVDy7uKr05sRTwLqj9iTv+ZQgt1QnCKfSTcW2i+vdPUcselOno9v96slUOrW2be+J45XH0llYFvGFpyaDD/3zUxa9yYqp0ylINQJSefKH81NDVXrzZw29F8c+veO7t3rWcL1hf0fNKc6/n1dxBT2/m+izzzhXTEWr0puO7j7cbEZiJk2Cx4TaqlvWfzTgVa1Sf+lsd6bm1JmaU6GI4J71OgLO+COVOPNfpX9ysGeib815qK6g1xW8csc/8ivrWfwCk5K3GIu1/0sw/hfrHs3rezaJ+CnvDX2wzjXtaha96bOGXhEvBDyFIsLf3z//qnXWltOpizpq2t/dc0T+orLVjLDwrw/m439u+6lWmhGBZHu5kz0emOuZ6Evk/CciITp3aewKw1lnokkTAVV688c/+bVOrd3wSJ1a+/FPfo1RLkicPTB6w3Mz8eOF6NwFftPPRZNsXsAh48EvjwzUG/avc0y9Yf+XRwawNjYkLhQROu1Jn8/2gLN/clCOenKPlKsGFWt0l9/47bDv3h3/iHvWu9Q7YNGbLCWmesMBnPyQLPesV9xE8jv+EQypJkL6tQMPGQ8uneq+8BS6ZzPWs+d0908LRFRdptqlz9BFBEXPIsciKwmSd4Iwzn9Ikei1Ung+iioCnhGAjJbSUkv8HkUVAREAGU2n2XiY6ZVt1UUSVpKrEAGQ0SwpjB9j7DkRiADIaKIfJ7XuqJW0kJyFCICMZtGbEplytkZDGRZczUmIAMhoRm1F296kV0wwFO5s29siQzk5CBEAme545bFkr+q7bOeKNTp5ysk1iADIAl22s4nfDjSbG7H/YuIQAXxp8sm2K9+2K7+sKEOnBi4xaisGGno3vBbQqbVd1rNnak6lpagcgQjgS5VH27bQti20Sfpp4tIzait63/qkY1/7qy4HrDtqBxp6sVJAsrLhPx/gvxyvPHa88pg9MOoPT7tnvf7wlEVvtpbWGgrLMRtdHEQAZB9baR2VKl1ErsCNAABruArg6/kiPXoaI6IyLRVvzvQeQZAJIoCv+ObiRLQpX1W8WelqQCG4EQBgDREAwBoiAIA1RAAAa4iAF3zhKUdgVOkqANKK+4hAKCL8bvyf3bOe5ZvVVOlNlhLT/9xzGE+bQM5jHQHDvnudju7V21S6gl5X0Pv549vHTcf+V/Xf4bFTyGF8bwQujn16+v75NbepXdLvHWwaanUFPWmrCiDNmEbA1fHrCW5T55+fPv3H86GIIHdJ6afKo21b8rZtydukVroUUA7HCHAFPT3jfYkf75+f7plI4vhsockn2y6VbZeqTIvZwXxxjIDO5LedveG5acdgAeQidhFgD4wu7XealBse7FQLOYhdBIjfpjL4UNJCADICuwhwi+3exwZ1kJPYRYB//lvRbXOsO+DZc/r3yYV/n1z4JhhTuhZQDLsI0BWI32oS21RC7mEXAansM4VtKiH38IsAbFMJsAy/CNCLjACDtlzaSgAyAbsIqNKbm82NybbSqbUdNe1y1AOgLHYRQERte1sMhTuTatJlxTaVkJs4RkCxRtdlO5f48fWG/YeMB+WrB0BBHCOAiGylddfevJzItUBbdcvlN36bhpIAFME0AojIVlo30NC7Tr+AoXDnQMO1k9Un0lkVQJqxXjWoWKM7U3Pq6O7D7qDXPet1P/X656cselN8p0pLiSm37//jm4sTkRbrBTDGOgLiqvRmnnN+4puLA3N8bwQAgBABAMwhAgBYQ18AX9hcHAgRwBk2FwfCjQAAc4gAANYQAQCsIQIAWEMEALCGCABgDREAwBrmBWSZUESYnPU6Ak73rNewpcKy1VRZ8hrPx5xAEoiArOELT11wdNvX2hBNpy46Wd3SbD6W1A+Mby5ORNhcnDNEQHYY9t3rdHQL0bk1vytE5y6OXXF85/zV62cTX+Mgvrm4dDVCVsI7IAtcHPv09P3zrzr/lwz7Rt659TNfeCo9VUFuQARkOntg9IbnZoIHC9G5C45uWeuBHIMbgYwWigid9uROaXvA2T85eLwyuX4BWIcr6JmcfegPTxGRtbS2MrdWlEMEZLSeiT4Rm5r3TPTVGw8YtRXrH7YYo+AzIiKtmjbhjbBKKCL8bvyf+72Dq79lKCzvqGnPjaXlcSOQ0dxPvSJaCdE5d3DjhpEFsn+zYP9mYWYOm4uvZA+MNg21rnn+E5F/fvr0/fOXnFdCESHNhUkOEZDRHN85xTV0z4rJDojrnxxsvfvhhtdf/d7BpqHWbE8BREDmcgU9otu6U2jLnCvoufTVlQQP9s9PX3iQ3f2viIDMteEo4HptI2EJK2GlM8khlWHfSP/k2vcLWQERkLkMheK3M8dW6OJcHb+eSDfKCj0Tfdk7HSOtHcH2wOiDgNM963U99frnp6v0JkuJyaI3vWXYuPuaoVR+J4gAcRwzThGt4v2vWfoeTlMEhCLChQfdw76R5V90Bb2uoJce09XxPhFT3Dmw7qgV1yNoLa2VuBQeUul/zdIxwnTcCMTHV1ac/8vFp7i33v1l9l5NyaTecEBEK0PhTkuJSfJicl4qb7/s7X+VPQJcQU8i4ytEZA84W+9+mO1DLNI6XnnMuqM22VZdtnO5NH0tbUTMwlqSvf2vskdAUv2r/vnpnok+2WrJSl22szq1NvHjm82NttI6+erJYan0v+o0SfwfZRR5I+Di2KfJ9q/e8Ny0B0ZlqicbGbUVHTWnEkwB647atr0tCf7k+Obitl35ZUXYSogotf5XS9au2iJjBIQiQuKPuC3X83Wf1LVkt3f3HBlo6LXoN7i9b6tu6X3rk8RvAeKbi2/bggcEXhBx2/Vjw6ztf5UxAkTPURXdK5vDjNqKzxp626pbVgeBTq2tN+wfaLh2svqEIrXlEmtZrYhWOrU2e/tfZcx/cY+4xLmCHqyHt9rJ6hPx89weGHU/9Rq05Ra9KUuHozPTyeoTd/wjyd69dlmzuP81E68CiEjEDC1WbKV1xyuPHTIexPkvuS7r2aSOrzfsz9IZAXEyRoAQxfBeRosskP2bRfs3izNhPCz8QpXenHgKGAp3dlnPyVqP3GSMgFT6SDfs+oLULcbo+x9i3/8Q+0tU6VIyzLt7jlx787KhcOf6hzWbGwcaerP3FiBOxghIpY8UHQGgLFtp3UBDb7O5cc3vGgp3Xnvz8pmaU9l+/pOs3YGi+0hxCQCZoFijO1Nz6kzNKV94yh30ume9uoIiy1aTBWsHJqhYo2s2N4qYGpD45BaANDBqK4zaiqzu81uHvLMD2/a2bHhDtUK2968CZBd5I6BYo+uyJdFfqlNrs71/FSC7yP6YkK20rsua0IMuFr3p2ptJzG8FgNSlY72A+BT39WdfN5sbr/30MgYCANIsTQ+IGLUVvW998vmjW+5Zr/upN/4UgE6ttZSYrWW11tJaPN8KoIi0PiP27p4jS38ORQRc8yurQEWvbVcRUclmpUsB5Sj2mCjOf8UVqMi0HSsFcIdFxAFYQwQAsIYIAGANS0bxhc3FgRABnMU3Fyei6jLVLj36BZnCjQAAa4gAANYQAQCsIQIAWEMEALCGEQEKRYQHgTH3rMc963U99Rq15YbCcove9HppLZ5chJzHPQLsgdFOe/fyLWV//PNjIqJ3dx/+h5p2PM4AOYzvjUAoIlxyXll/4/PPH99uGmrFNqeQw/hGQKfjo37v4IaH+eenW+9+iBSAXMU0AvonB+/4/5D48Z327lAk1zZH2lxAb1fmv12Zj6mBnHGMAF94qmeiL6km/vnpZJsAZAWOEdAz3idE55JtdcNz0xX0yFEPgII4RoDoLY+x3zHkHpYRIPZMTmW7dIDMxG5eQCp9++6nORUBkQUa8y8S0e5teWVa9AgyxS4CYEl8c3EiKo/i/OeL3Y2A6P2OicigLZewEoBMwC4CijW6ZHc6XZJKfABkJnYRQESGwgpxDS1bEQGQazhGQNtftYhoZdGbsOsZ5B6OEWArrWs2Nybbqst6Vo5iAJTFMQKIqG1vS1I9Ah372rF2AOQkphFQrNF9/MZvEkyBZnPj8cpjcpcEoAimEUBEVXrzQEPv+ncEhsKd1968fKbmVNqqAkgz1lODijW6MzWn6g0Hvnh02z3rXZo4rFNrLSXmesOBo3sO5/CSQdhcHIh5BMTZSuuWuvpdQY9OXWTUihw1zC7YXBwIEbAC+vyAG759AQBAiAAA5nAjwNdijL6dixFRyWZVoTqmdDmgDEQAX5EF+mpqkYiqy6gQK4hyhRsBANYQAQCsIQIAWHupL+DJ3KJ3JqpUKZBmi7E8rZqIKDi/8JcIugO5mP1hcflfX4qAP3/3/M/fPU9vPQCgJNwIALCGCABgLS8WiwXmFjc+EAByTskWVV4shn4gAL5wIwDAGiIAgDVEAABriAAA1hABAKwhAgBYQwQAsIYIAGANEQDAGiIAgDVEAABriAAA1hABAKwhAgBYQwQAsIYIAGANEQDAGiIAgDVEAABriAAA1hABAKwhAlh7//3333//fbvdrnQhoJiCjQ+BHBWJRJ49e0ZECwsLStcCisFVAABriAAA1hABAKwhAgBYQwQAsIYIAGANEQDAGiIAgDVEAABriAAA1hABAKwhAgBYQwQAsIYIAGANEQDAGiIAgDVEAABriAAA1hABAKwhAgBYQwQAsIYIAGANEQDAGiIAgDVEAABriAAA1hABAKwhAgBYQwQAsIYIAGANEQDAGiIAgDVEAABriAAA1hABAKwhAgBYQwQAsIYIAGAtLxaLKV0DpMnMzMwvfvGLDQ/7+c9/Xl9fn4Z6IBPgKoCRsrKyN998c/1jduzYgfOfFUQAL++9916KB0COQQTwsv6FAC4BGEIEsLPO5zwuARhCBLDzqgsBXALwhAjgaM1Pe1wC8IQI4Gj1hQAuAdhCBDC14jMflwBsIQKYWn4hgEsAzhABfC198uMSgDNEAF/xCwFcAjBXoHQBoKT33nvv66+/VroKUBIeEwJgDTcCAKwhAgBYQwQAsIYIAGANEQDAGiIAgDVEAABriAAA1hABAKwhAgBYQwQAsIYIAGANEQDAGiIAgDVEAABriAAA1hABAKwhAgBYQwQAsIYIAGANEQDAWgERBeYWlS4DABRQskWVtxiLtf9LUOlKAEABbT/V4kYAgDVEAABrL20o9t93FPyPMmwxxsViLG9mnoioZBNtKcCmUlzM/rDo+HNk6a8vnfDbi1SmMnXaSwJlPHtOf55dIKLdW1W79HlKlwNpMiMsLI8A3AgAsIYIAGANEQDAGjr/+NLk074KFRGVbFYRoTuQKUQAX6o8qtDFewFx/vOFGwEA1hABAKwhAgBYQ18AX88X6dHTGBGVaal4M6YGMYUI4Ov5Ij18skhEm/JVxZuVrgYUghsBANZwFUBEFIoIk7NeR8DpD0/756cNheUGbbm1tLayxFSs0SldHYCMEAE07LvX6egWonOrv6VTF3VZzx4yHkx/VQDpwToCQhHhwoPuYd/Iqw4QonOn758/ZDzwq9fP4nIAchLfvoBQRGgaal3n/F8y7BtpGmoNRYQ0VAWQZnwjoGeizz8/neDB/vnpnok+OcsBUAbTCLAHRm94bibV5Ibnpj0wKlM9wIQ9MOoIjPrCU0oX8gLTvoBO+0eiWnXfemdA8mIgt/nCU//nqyv+8LQr6F36ok5dVKU3/a2pUfHOZo4REIoI/vlvRTT0z0+HIkLO9Auq8mjbljwi2oTF4mTTPznYM9G3erxJiM7ZA057wKl4ZzPHGwH3rHfjg2Rom2k0+WTbpbLtUpVpMTtYeqGI0Hr3l5e+urLmePOSYd/IO7d+5gp60lbYChwjwBFwKtIWWOmZ6LMn9m4RonOn/3heqSEnjhEAILdk+5v989MXHnTLV886OEaAobBckbbARCgidNqTPp+HfSPDvnty1LM+jhFg0ZsUaQtMuGe9iU85We6Lx7ckL2ZDHEcEqvRmRdpmmmfP6e6fFoiougxbiUhJdIeRO/hQ0kISwvEqgIiazY1pawXcuMV278dHnaUtZkNMI6Btb4uhcGdSTQyFO9v2tshTDuQUdzCbRp2ZRkCxRtdlO5dUky7buZyZFASyMhRWiG6rUxdJWEkimEYAEdlK6zr2tSd4cMe+dltpnaz1QM6wbBXfZ5z+zia+EUBExyuPDTRcW7+T36I3DTRcO155LG1VQbazlIiMAOuOWkkLSQjHEYHlqvTmzxp6r45fd8w4Hd85l3/LuqPWWlZ7svqEQqVBthI9cmwtq5W0kIRwj4C4k9UnqJqIyBX0CNE5nboolwb/FGEPjE7Nf+t+6iUiy1ZTZclrfH6lVXpzs7kx2afRDYU7m00KDDkhAl7C520qn4tjn77q3X+yuqWNx1VV294WR8CZ1NCAUv3NrPsCQFquoKdp6IN1Pv2ujvc1DX2g4FNxaVOs0XVZzyZ+fLO5Uan+ZkQAX5p8su3Kt+3KLyuSYGrgsO9e01Cra6PPPVfQ23r3Qw7rL1XpzRt2NhORTq3t2Nd+puZUeqpaDRHAlyqPtm2hbVtoU8q3g6GI0OlI9MEYITrXae/msBxrvLO5rbrlVQdYd9QONPQqO96EvgCQQKfjo/UXxlghvhyrgh996XSy+sTR3Yf989OOgNMd9AiRsGWryVJisuhNmdD3hAiAVH3+6NYd/x+SbXXDc7PecIDJhCujtsKorcjMfyxuBCBVoqe1YwmmTICrAL6k2lw8PvgvpiGDoYHMhwjgS6rNxVfMqkycIo/Hwwq4EYCUpNKxL25pHZAWIgBSUqzR6dRacW2xClsmQARAqiwlIke2kl21BeSACIBUiX483pIBo+KACIBU1RsOiGt4dPdhaSsBERABkCpbaZ2IhVXbqluMWvELbIFUEAEggWSXY7XoTViLJUMgAkACxRrdx2/8JsGhAZ1am9SDtCArRABf8c3Ft23Jk2Rz8Sq9+csjA/WG/esfVm/Y/+WRgUx4PAbiMDuQr/jm4hL+wGKN7vIbv+2fHPziP26vXjDHoje17W05ZDwo4StC6hABILHjlcfiD8DbA6NLawdm5kNyQIgAkI+ttA5nfuZDXwAAa7gK4GsxRsFnRERatQRrh0GWwv88X5EFsn+DzcW5w40AAGuIAADWEAEArCECAFhDBACwhggAYA0RAMAaIgCANUQAAGuYHchXfHNxItJKsV4AZClEAF/xzcWBOdwIALCGCMhQvvBUKnt1ASRI9hsBe2B0Mui16E0VheVYNHp9vvDU/3t82xFwuoJeITpHRDp1UZXeZC2t/VtTY7FGp3SBkIPkioCr49e/eHR7xb6ROnWRraz2H/a1IwtW658c7Jnoi5/5S4TonD3gtAec/Z6bXdaz0i68F1mgMf8iEe3ellemxcPCTEkfAa6g54Kj27Vq9UgiEqJzw74R+4zzZHVLs/mY5C+dpUIR4e/vn7cHnOscI0TnTt8/f8h44Fevn5XqcmAxRt//ECOi8ijOf74k7gv4/NGtpqHWNc//JUJ07uLYldP3/1Hal85enY6P1j//lwz7Rnom+uStBpiRMgJcQU+nozvBg4d9I1fHr0v46lmqf3Lwjv8PiR9/w3Nz2HdPvnqAGykjIPHzP65nvM8V9EhYQNbxhadEfKp3OroxWABSkSwCro5fX717xIYuJJkaOeaLx7dX9P8lQojOffHothz1AEOSRcAd/4iIVq6gl/OFgFvsv909m3TaAqxJsggQcQmQYsMcIPrf7g9Pb3wQQAKkiQB7YFR02xVzB/gIRQT//Lfi2jq+c0paC/AlTQTEt44TxzHjlKSGrJPK8H6C23gDbEiaCLBsNYlua9CWS1JDNrLoRf7eLCUSbM5doKLXtqte264q2Zz6D4NsJVEElIiPgFTaZjtD4U5xDVPJ3CUFKjJtzzNtzyvejNmBfEkTAcUanbLv5ixl3SFy413OuQnSkmxEwCpqG2mdWst5/+mjew6LiE6L3vTuniNy1AMMSRYBHTXtIvqouqznpCogGxVrdF22pH8DXdazchQDPEkWAcUaXbLnc71hv7RPv2YjW2lds7kx8eM79rVX6SXoC6QfnxSk73+gvzyX5OdBVpLyGYFDxoNHdx9O8GCdWsv8EmDJmZpTbdUtGx6mU2s79rUfr5TsIev45uL2bxZm5mJS/UzIOhI/LPy/bec69m18R1Bv2P/lkQEsg7PkZPWJgYZr64wRWnfUDjT0Snj+A8RJv2TI8cpj9cYDp++fX3P2a/zDH9f/q1XpzZ819A777rlnvY4Zp39+iogsepNFb7aW1nLuNAVZybJwmFFb8VlDry885Q563bNed9Bj0FZYSkwWvUmq+9hcdch48JDxIFUrXQewIePyoUZthVFbgQ98gEyGRcQBWEMEALCGCABgDREAwBoiAIA17CzM1+YCersyX+kqQGG4CgBgDREAwBoiAIA1RAAAa+gO5AubiwMhAjjD5uJAuBEAYA4RAMAaIgCANUQAAGuIAADWEAEArCECAFhDBACwhqlBfMU3FycibC7OGSKAr/jm4kpXAQrDjQAAa4gAANYQAQCsoS+Ar8UYBZ8REWnVtAlvBK7wP89XfHNxIqouU+3So1+QKdwIALCGCABgDREAwBoiAIA1RAAAaxgRAMgsoYgwOet1BJxEZC2trSwxFWt08r0cIgAyiy88NTU/XVFYbtRWKF1LuvVPDvZM9AnRuRVfNxSWHzc3NpuPyfGiiADICP2Tg7+fGnEFvUsngE5dVKU31RsOyPTWzyi+8NQFR7c94Fzzu/756YtjV+74R/7vT34t+RUB+gJAYa6gp2nog0tfXbEHnMs/AIXonD3gvDh2pWnoA1fQo2CFcrMHRpuGWl91/i87zPnOrZ9J/qtABPAV31z87cp8BacG9k8ONg21uoLedY5xBb1NQ62fP7qVtqrSKRQROu3dqy/+1yRE507/8XwoIkhYACIAFGMPjF766kqCB3c6uu2BUVnrUUTPRJ9/fjrx4/3z0z0TfRIWgAgAZcQ//ZJq0mnvlvYDUHH2wOgNz81kW93w3JQwDREBoIxkP/1Ihg9AxTk2uv+XvOFqiABQhohPP9GtMpZjxpnmhqthUHA9S5M03LNew5YKg3anRW+yltYpXZc0nj2nu39S5mHhVLq1XUFPld4sYTEKcs+K/D24Z9frQE0KImBtoYhw4UH3sG9k9bd06qKT1S0cBqvl4153CGDDtjkTAUI0LLZhQiMIicCNwBqGfffeufWzNc9/IhKicxfHrrTe/aUvPJXmwnJGsr0AUrXNNDq1Ns0NV0MErHR1/Prp++c3TFl7wNk01JrbU1ZAbpYSkZczohuuhgh4iSvo6RnvS/BgITp3wZHcsBbEWUtrFWmbaaxltWluuBoi4IVQRDj9x/NJNXEFvVfHr8tUTw6zlJgUaZtpRP9bJMxBRMALN7w3Rdxn9oz3oVMgWcUanaFwp4iGhsKdsj45m2aHjAeP7j6cbKtmc6NNumEpRMAL4gdppZunwUeX7VzaWmWyjpr2pNLQULizbW+LhAUgAl7IhEFaPmyldc3mxqSaSPvplyGKNbou27kEe/h1am2X7Zy010GIgB/5wlOiB2ndTxEBYrTtbUn8A1DyT7/MYSutG2jote6oXf8w647agYZeyUMQEfCjVEabheeSzdNIp/jm4q9tVym1uXixRjfQ0Ftv2L/hkfWG/QMNvbnUC7CCUVvR+9YnHfva1/yuTq3t2Nfe+9YncqykhNmBP0qln1lcz5biMmFz8WKN7vIbvx323et0fLTmVZhOre2ynjtkPJj+2tLveOWx45XHfOEpd9Abv7u0lJgsepOsa6ghAn4U76P2z38roq0lV+arKuWQ8aBFb/LPTzsCTnfQI0TCOo3WojdbS2stMi+emYGM2gqjtiJtqYcIeMFQWCEyAnJopFop8fd97vX2ZT70BbyQbAd1nE6tzaX5asANIuCFQ8aDiXRNrdBllXiQJm2eL5L3Scz7JBZ6FlO6FlAMIuAlXdZER2jjju4+nL09Vc8X6eGTxYdPFmefKV0KKAcR8JJijS7xFLDoTR01a4/iAGQLRMBKh4wHE5mn0Vbd8llOj1QDExgRWEN8nkb/5OAX/3F7xfo28c6/tuoTObNwDTCHCHil+DwNIrIHRv3haZ26SO5JGgDphwjYmK20jkqVLgJAHugLAGANEQDAGiIAgDX0BfClyqNtW/KIaJNa6VJAOYgAvjT5ZNuFy0Du8A4AYA0RAMAaIgCANUQAAGvoDuTrLwv0+4cLRPRX5fn/rVjpakAhuArgK/ZfC4XEFrFkCF+IAADWEAEArCECAFh7qTvQ8SjieBRRqhRQyiO/0hWAcnAVAMAaIgCAtYI8onf+WqFtJQFAUTt1+f8JmSJH/lAI61sAAAAASUVORK5CYII=", "path": "image.png" }
Complete the text to describe the diagram. Solute particles moved in both directions across the permeable membrane. But more solute particles moved across the membrane (). When there was an equal concentration on both sides, the particles reached equilibrium.
[ "to the right than to the left", "to the left than to the right" ]
0
The diagram below shows a solution with one solute. Each solute particle is represented by a green ball. The solution fills a closed container that is divided in half by a membrane. The membrane, represented by a dotted line, is permeable to the solute particles. The diagram shows how the solution can change over time during the process of diffusion.
In a solution, solute particles move and spread throughout the solvent. The diagram below shows how a solution can change over time. Solute particles move from the area where they are at a higher concentration to the area where they are at a lower concentration. This movement happens through the process of diffusion. As a result of diffusion, the concentration of solute particles becomes equal throughout the solution. When this happens, the solute particles reach equilibrium. At equilibrium, the solute particles do not stop moving. But their concentration throughout the solution stays the same. Membranes, or thin boundaries, can divide solutions into parts. A membrane is permeable to a solute when particles of the solute can pass through gaps in the membrane. In this case, solute particles can move freely across the membrane from one side to the other. So, for the solute particles to reach equilibrium, more particles will move across a permeable membrane from the side with a higher concentration of solute particles to the side with a lower concentration. At equilibrium, the concentration on both sides of the membrane is equal.
Look at the diagram again. It shows you how the solution changed during the process of diffusion. Before the solute particles reached equilibrium, there were 6 solute particles on the left side of the membrane and 2 solute particles on the right side of the membrane. When the solute particles reached equilibrium, there were 4 solute particles on each side of the membrane. There were 2 more solute particles on the right side of the membrane than before. So, for the solute particles to reach equilibrium, more solute particles must have moved across the membrane to the right than to the left.
to the right than to the left
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABjtUlEQVR4nO19d4BcVdn+c86dme0lZdPbppNNIAFCIAFCEYEAAUQERZDeFMRPFEUQBfwQhA8pPxUQBBUBhYj0JjWUBAyQBiSYDqkk2V5m7nl/f5xyz53Z3WyZmd0J5/n8lsnMnbnlPPd9n7eccxkRIQexZOOOxRu3Vze1VDfFs7C7AcX55fmx6cMrRvQpysLuHHIFjoedAss5c7O5rumxxauzM7qpGFZWdPJeo/IjXo/s3aH3wPGwC8gxc7O5runBRZ82J0RpUVFxeUWf4vyyvFiBhzwPeRwxjhhDlCPKEWHgQISBMzCovwxgTP2UPG1BEETqL4MvyCckiBKCfLC4oLigOFFNU8uWmsbPvqiurm8cXVF2ypSRPXcNHHoejoddA+/pA+gc3l23tTkhBvbpUzZ0TElpaSwaAwCmB40ABsZABCLIAWVM/U+Os7SuanNjaoOPGMl/GzoAIBTEooP7luwxcnBhfmzV1uqPttVm5XQdeikcD7uGHDM363bWAaCygQACWUbQQwrIAZaDLT8k9T8QQGr4NAMsF6M+Iib/bYs+vVU04pWXFgFYvKU6Y6fokANwPOwacszc5EU8AIwELDmaBa8Cvb3vC+sNhy8pHA+7hhwzNyP6FAPwd2xCT3iVlkRi284aAMOLCzJ2ig45AMfDriHHzM1+w/vneXxbTc22dStaWprUu5n3KnFfrN60feFHa3yfygvzZo3ol/lzdei9cDzsGnKsMgWguqnl0cVrttQ17XrTDGBoWeE39qrMuQKkQ9rheNgF5Ji6AVCWHxtfUdYju+5fXHDGPmNzbowdMgHHwy4g0tMH0HWMHzKwqO/AAo4s9Dus3LTjow1bivJiPXe6Dr0UjocdR+6pGwNmv8p4zOwDKMyPZvicHHIPjocdRw6bmwDZqghYI+/gkALHw10hh81N9vsdcneYHTIHx8OOI5fNjXnlvIpDz8HxsOPYLcxNtryKg0MqHA87jhw2NwGy5lVy1604ZAGOh7tCDpub7HsVlsMy1iFTcDzsOHLY3ATXPFtexcGhFTgedhg5aW4GFhcA2FnfqP7tKgIOPQHHw84iJ82NbN9O+L76t4uZHXoCjoedRU6am2Rk3qs0Nseh6eXg0DocD3eF3cLcZN6rNLbEAfQryrHlRRyyCsfDXWG3MDcuZnboDXA83BVy2NwEFz1bMTPP3aDZIWNwPOw4ctjcBMiWV7FfOTgkw/FwV8hhc5N9r8Jy1qs4ZA6Ohx1HDpubANmLmXPVqzhkA46Hu8JuYW6y5lVyOEnnkHk4Hu4KOWxuArvvKgIOPQfHw44jh81NgOx5FQeHtuF4uCvsFuYmW14ldwuQDtmA4+GukMPmJvsVgRx2Kw4Zg+Nhx5HD5iZA5r3K9rpGAMPLC7NzQg45CcfDXSEnzU1ZQRRAbXOL+ne2vEpOXiyHjMHxsLPIySMvy48BqGmKq39nrSKQszGzQybgeNhZ5KS5SYarCDj0Bjge7gq7hbnJXkUg8+fikLtwPNwVdgtz47yKQ2+A4+GusFuYm2x5FQeH9uB4uCvsFuYma/0ODg7twPFwV9gtzI3zKg69AY6Hu8JuYW6cV3HoDXA83BVy29ww8x/nVRx6Do6HHURumxtVEcywV6luagFQUhDLxik55CAcDzuI3DY32fEqibgPIObl6sN9HDINx8MOIsfNTVa8ym4QMztkFI6HHUSOmxvzHxczO/QcHA87iN3C3Div4tCjcDzsIHLV3JTmRwH48mnwWfEquT/WDumH42GnkKvmpjw/BqCxqQnIllfJ6XF2yAwcDzuFXDU3EuroXczs0KNwPOwgctvcIIsVgVx2Kg4ZhuNhx5Db5sZVBBx6AxwPO4jcNjfZ6ebMbYfikHk4HnYQuW1uFJxXcegNcDzcFXYLc+O8ikNvgOPhrpDb5sbFzA69AY6HHcRuYW6cV3HoUTgedhC5bW4UsuJVct+1OGQYjoe7Qm6bG+dVHHoDHA87iNw2N/boAi5mdughOB52DLltbpg1uoDzKg49A8fDDiK3zY3zKg69Ao6HHUNumxvnVRx6AxwPO4gcNzfOqzj0AjgedhC5bW4UsuNVcn+wHTILx8NdIbfNDTP/yYJXyX0p65AhOB52ELltbgJ7n3mvsrOh+aWVn8tn/Tg4hOB42DFEevoAuoIlG3dsrmtEq16Fa6+iI2rGwBA4CUkCy6sEw669ivRNlmolAEj44t31295dv21YWdGMkRXj+5dm4UwdejMcDzuLXDI3TQn/vfXbFq7f2pwQ8p1NDQ1DYp5HEc45V/oVRGA85FVgOx49rAQwxsjwQ/oiIgBRjkSCWnyqThBn2Jnwy0qLi4qLamvr6usaNlTXb1hcX5QX2XtIvymD+5Tl5/BTDR26gGzzUFB1nDij6tznISNbrfVWVDe1vLF684qt1XKASwrzi0pL+pYXx+OJ/FgURB5nIEQ9VsB5vsdjnOVxFuXgYIwTEWNMDjhjKphmAiCiZkHNgnwiAhKCGn1qEQJggkj+JQYhCIz5gsDQkvBrauq/2L7TT/jy2KYM7jN9eMXA4vyevEAOWcEuecg5Y4SYx/I7zEMChOShTz5sHhIAw0Mw+LnPw95ubuQAL9m4Q/6zuDC/X7++RYV5nDHGwAHOwKBes0CyMqi8m4KdcQv0KekwW/9L/iUiglLCQr0gQeq1IBJAfX3Tzuqa2tp6+UvTh/c/sHJgfiSHH6jq0A66zEOTzFF/WaBwWEBAAEGWhqwU8m7Gw15tbt5dv+2N1ZukJykvLe5XUZ4fjTGQxxgDOGMMyp+o14wRiDMGgvWaGGPGszATFYPU6csgmylFQ+q1kK+JMSFIuiDz2iciMJ9ES8LfsaN2x/adAKIeP3L80CmD+/TwVXNIN1J42Cc/Gg14yBkj4vo19GumucdgMVD/hfaIkm/yU6G5ahSNsjVhrU3ydcBDakkkcoKHvdTcbK5remnFZ+t21gPoW1rct6JPXjTCwTgDZ+AwLoUpN6LXi1V1RsaMtAnrGjvzxiyPAoKSOWQJHACCzD+ZkL6FpPWBIDneaI7HN27c2tjYDGBQaeGcicN6uaZ16CBCPCwr7tO/T14k4nGm5Qy055MMZNC6hlv6OlSEsn+dqaJ3ssbRVoYCLwhBgNI4JLQNEpKHgCDyCS29noe90dzMX735jdWbAeTFIgMHVJQUF0hPwqUnUWOs/QljUK+JMcZIRlKBrgGkPwGzxKsa6OCvrWtI6xptZYxvkRoHzCdBYEKQYPAFEVhCiOqa+i2bt0lyHFg5cPrw/r1W0zp0BCk8zGeAxxkjeB3jIYOlaMI8NAxEt3hIBMlApXR6OQ97l7nZXNf01PJ1W+qaAPTrW9qvX5+Y53EGT2sZzsDD/sTEydzWNQwI9xQFCpYsw6N1rNlMS5tA4AjrHaNrlG8h6VvI10on7out27ZX76wFUJIXPXmvyt7mXhw6gtZ4yDljHkMgsVN5CFi5m4CZdpmcJTEwiYeW3gnzkAkQafXdGg9JAD4pmRMXYuvW3sjDXmRuFm/c8fRH6wHkxyIDBw4oKsyLSB/CGdeepNVoWb6G5WGS8zWBrZEDKj9Vr4PIWejI2VawdrQcfq29CmQ1wfytb2rZtHFLS0s84vHjJ40YX5FLnREOrfKQS12jGejZGcPwa1hsJNL5RDCy1E0qA7XZIdlxw6DyOFrRCJ27aS+TKKTiBhKCBNDQ+3jYW8yNEa4D+5WV9S2PedxjjDOYGEpGyxyteBUerkZBepVQ55SCeW1Hy+YdINC3pP4wCnuSkFcxkbOQvoWkxvEJPtHGjVtlvWDOHsP36pV5O4dUtMdDW9oAjAUZnDAPAYRmHyTlbixVoxDK3ei3KPQOaX0d4qFAKJOoNU7v5WGvMDdPfbRelhhHDBlQUlrEjaIJdI2Ok4PI2YqZKVST0k2cQRXAKB3pN0xNKnjfUrPygki7E65VWTGzCJSOr2sEAvCF+csSQmz5YueOL3YC2GNQ+QmTRvTkJXboAMI8LOag9niYmrux6lDt8zBsc0JsbJWHVq2qldxNOzz0AV/Q1i92bu8dPOxhc9OU8F9a+fmSjTtiHh80qKKkpNCTEbKKk7VXUSOtPIl2L8qHGO9h+xYoy6Jg16cCWFpGv2Hsi46c5fvhbI6pT/lW/OyH42fpXnZU123etBXAqL4lJ04e0XuSdg422uQhmMdb56GnO26SMoYBD3XVgmmZzVKFjYUgc2x4CGVxDA+F/pR0942fUzzsSXPTlPAfXPTfLXVNUc6HjRhSlB/jDBHGOMjjXP61a1IcxBnj2mNIpdNWHYoHzQ3Gw8h3UnSNIoCMllvXNZCjrjuMjYcx0bKpEQgwXwgBliAShIQQDc2JDes+E0R9CvPO3Hesszi9Da3xkCKM61ierDqUVDrkMW7Xoex8jeGhyd1AmRrSkX4yAzXrQjejCDROqFYlSMj3CSEeWvUpzUPJQBKCWIKosSm+vqd52GPmxoxxQSwyaMigovyox5h0KZa6CaoAHPBkvSmc85caR1mccHeDrXSQrHek97Bfa+3aRgcEqTEOKR1fx8/C8jPaq0jHQj6hOZ7YsGFTS0u8rCDv7OnO4vQipPAw5jFoHgaZGqNuVFTFyChrFu72QmqvjdI40B/K9wORE+o7Nfo61OYe6B0jdky1FNKyWFUq3+oL8y02NsfjGzZs7kEe9oy5MWNcWpA3aNigvIjHAZn/j6isMAsiZ+1VEHQMm9E1PQ5A2LeoeCqImYOKgDwGuywukiLn1nSN9CcmcwxrLlU4ZmZmBpapEcQFxX2xft3nLS3xipKCc6ePy/41d0hF+zyUiibEQwYvpKyTeKjYlaK1U3M3AOwiuKlVWQxEKg+Nz7M8X2d4mBDU0qM87Blz89jiNSu21ZQV5A0cNijmeR5DhDPPyslJr+IFNSkr899aXwMLfIgWr/L0wh7GaJzkeQz2RBW0Upmy/YntYUJVKhHyKiZXlxAqhG7xxer/rhNEYyrKvjFlZPYvu0MSWuGh1DWKhypR6LXW82WUdUd5qLI50G8k8TCkptERHlrvtNODo3hISJDhob/6v+t7hIc9sLzWiys/X7GtJsZ5xZCKWETZmlA1ipHHIK2PpzxMOE+s8jha5er5U/o1PCDCWERaMcainMm9RBiinHsMUS4/5Z7eRn7qMWZsnKlBaLWlfF0S8zhIfsvjRoGrI/G0n5R7iXps2IihnLH/bq1+dc3W7F95BxsWDwfkaR4GtoYzLqN7a2QZKFz5ZjYDJTMVDxm4Zm9Ee1PNNB5hkJyMch5iKRRLI5KH0unq+lfQFyI7QjgzR+IxyP0m2UpzLvbZRT1veA/xMNvqxvRQVY4YUlSYJ+9zz7I18irr0U3uaDDvtK5x5HQq846MsKyuztRWB52rYWqhNUruIdb+hCglcjaNnnY3hKkFGL1jaRxKEGpqGz7/fDOAIyYM23do32xefAeDMA/zbV2j73MW0TnEJB6GsoeKezqe0sxM3QZ6m7YabyjQMmEepuRriOTMhiB3k9QRRkH3TcBGW+MkiHqEh1lVN5vrml5a+RmA4UMGFBXmS1tjqwBuLDTjQS0g7EmMxvHCGscwxqgJDyzKGNe6RnkYpv2M8SScc+VPWMTyA1GjVtrUNSmVUXMknCV1bSjPxlhJccGAQRUA/r3ys89qG7N5/R0kUniICDeMklqAqXcsBlp2J9A4QZ5R88Qwx+Kh0dqcW9yz2cg1G6OGn+YXWMBDpaatDIPd+xM+WlVZC91l1m+WFhcMzDoPs6dumhL+7976qDkhKspKBgzuL++9IJJKqklpncJZsmYJZsFBdd/o6rjq9UyNohHuu2FW72arPcRG0aiFRXRUnFQR0BrHml2VEjn7Oo+TCHwLJQR9vnFrbW2957ELZkzIiXXYdht0jod61QGeolnCrwPr0w4Plb62dY0FXRXdBQ+NirFr4bYO0hsrddMuD/H5xi3Z5GH21M2Di/7bnBAlBbGKwf05EGGMM4qE8jXK+ga5YRmdInidZMs9mX+xomLlMZjpj1Bey+gR4wH0LJggQpZ+I8hbG72jPA+LBIrarLljRdGSkdJTMaYiZ53HiXDGGWlm88GDKwqLCnyfHl68NmtD4ACLhwMGV3AgYqtRo5pV/1fyyDJLTZvXkSQ9opiTlHW2aurmHdiaRe3XMNPTGRwvYLhiu52v5MFxkvbQQTRgNJrRbkbdcMDjyDIPs2Ru3l2/bUtdU1FeZPCwwZ6+ChEWvu4sZE04h4xfGAvd4coqhW2NusOlBQmUZ7LWNSMR0p+6AGFn/ozdCalfw0JdEw3F88yO7Sli9Wsoi2O99hgbNLiCM7a9rvH9TTuzMwoONg9Dd2MwUrY1sfR1KJOoOWOYrCMjcz9L28H1XS1tTfh3glXiLNsBtb3hGGc2wz2bmSzpu0z/vp3PpvB5BZw0ljGbPMyGuWlK+G+s3gRg8KABUY+H7b3y/1Z0qseD7Og00DuWrWEcFAnsgu15kmpYdvbHrmdBK52kvEyQrzFeJSnDb3m85ByT/b5V0bB9FzhDzPP6D+gP4IWP1zfpFWcdMocUHpp7zxoda1awVfex/mqNE3gjxjiYqXKGGJhSwwrro2BllaQVncKZSnA7qwgWWB9mNFcKA5OYzJLvOKOnssnDbJibl1Z83pwQFaVFsYK8iHWeKecf+BPz2uMwitHj8Cz1q61+qpcIXWs7m8tlrcqKt8N1h1Z+wUReSRrHY5YXAnHeah6RVF08SatrpdOnrDi/IE8Ievzjz7MwEF9ytMVDHlgcioR5yMKv1WwGec+H6xI8hTNBpNOKFUhlY+sMtP0ib5WHOjqz9ZHpFDE8jFhWlafysDxLPMy4uVm3o37Jph0xzssq+iZFT8a6p1plZrQG6aujrrXJs8i/LEnLqCuu8zVM/xoAbv1l4dc2D6TjYsl6Jxx1a70TjJ91nKn5JpMn8lJ+Z8jgAQBWb9nx6Rd1mR6LLzNsHtp231a7XqBMVR4kxC6mVlbyrChM3+36Pk+2OIGlgMU0pHAyaRuTVQwymIE2131eiofQ2RyLsWSzOtA+1vlaURVjHDQ4KzzMuLl5ceVnAPr1K8uPRsP5sFAvXFv+JLhSlnaVdp1Z8bAdMTGZ+CdSfxljIMZg9ZWHXjPTYw5AFw3s+Fz/hfEGQZQespWhmNn2SEkrGNjvxKKRPn3LATzzyYZMj8WXGRYPIyk+z87aJt+lIU5aPWIRy2bZPJHZQ6NcAD2j2DCtbTZy85oMf8ACi6azM8zqKTUajbfFQ2XRkvLTduToMRaLeFngYWbNjczMFcYiffr14bpD1/YYKWMceAaQvrIh28Q5C97XOoKSfgG2JyFiYNDrNuqu8+T3japCK7qXgrEM8vzgdjTH5L5CuRuGwOLYx2yyANIr9u9f7kW8+qaWFz7dmNHh+NLC4mG5Ub5JGTetZIkhrCmCdSeCrK2nVXbAE62sW+EhmZWYNOvQxmtSGqo1HraiuTwGT2YVGfPCSt8+tqTsYbL+Uj1HPAs8zKC5MZm5IYMHGFvDgzstUBA6jlXzLVN1jTWbIcXnMD2usD1G8l9u/bVmkOt3kv6G9U7Y41maJZyH0gxT27DgOEO21XBdx9jwGBs8aACA9zdsy9FnP/dmhHkY1jVW/1uqzws4KaMPu6rduh63edguG20GovVtQtoHQOh+Sc4PeoEFDLqcOYPMRcD2x1Y3I7PORf5OpnmYQXMjM3ODyotj+XmWigvWG9a2I+wTuFIZtq7xUu5qZl192PGw0i96FE3neGt2x9iaYJug09ya3Qv9qJmwZ5AaR1dAwwpL6xqoTjCdCw/GmOysQWFhfnFxkRD05rovMjciX06EeMgt2yG5Z82PY0GeheQIelqbcDDTq9IKD022LuChrV8CBrIOMFDZIFt9txYBJPnjcDZT98Fy29YEVRd7bpcdYRUVZZaHmTI3TQl/xbZqAOX9+3qB7TDnadV0gnsSMr7ljDGyc3ghZZR0V8soV0dD9pjBjLTKnJHNgzAn5Gtpa4y+DSwUDP/CUb2xm9qCcMtuhvtNEfgQMGZlkXV0Vl5eCmDpxm0ZGpEvJwIe9uvjhWL5IOsn11EyUbbNMag4hUzVnIVywMGdHNIjsKMhvd4bLKaxwI7Y/LSUDsKWKDWnE3As5MvNcVKIq2pfSL37dEebjjEzysNMmZsVW2uaE6KipMCLeCypI46z0H1IoWunPAC3+iyT10UPohXYngRJngTQTy8EA9r+y/SKaknfTfUwFhdD2X7OEdSqkJTtNufYCksCfctYYWFeLBb1fXpnw/YMDcqXEAEPo9GU/hTFKMAenXCeFTKG4maUvRStYfFQZQa11YAVmwevQwxEmI2p2yOcbQzx0PZkVqwnuwplB4mZCRTOPJh6OQvZUMo0DzNlbt5dvxVAQUkJs6q/zMqbKtsRztQYO8Kt8+fWuAZjDKSOCqSiSfEegJ401cbfVlQPQh7GjqL1GCd1D+qjZanqN4iiQ+dudQPIK1DepxzAgnVbMjQoX0JYPLSe2WKNTioPYcVEQcwVrmkgmYdsFzykXTAQ1jYpPEyOyGwetnIu2gu2wkO0wUN7xZVM8jAj5mZzXZNc+bW4pChF11jrDeto2bYO3HTihCNkoyqTdU1oPKDtAox1AFl18VCNPPw68DkIfsfmUGsax7aAoZgx8FR27w+xYIyJh8+RA+VlxZyxhqaWdTVupngaYHhYVFJk2XfdNap5qGNwuy8mqfc3yeel6utWlXWYUbtkI0t5nexNJQ9DR8sYbB6mHDNMtlt/S20fWBwenJH8buZ4mBFz8+66rQAq+paErW84gkjWLKEMf9IYh7ZH0kgEORrLk4AAMGY5FfPgKf2ahV7L7c1s3VY8TGsaZ1fHrHQNC7akMO+t7B1jDCguKwbw2qrNmRiXLxsMD5NyhVbEZO5VlTFkViwceuoLT2Zp67omrKyhXkvh0hU2BhYtNauYrHHAwkdr6bjQltYdp//CbKm0doZ4mH5z05Twl2zaAaCorDQ5q6rOGbauMdeCMauHOKx40Wq+JhwhU5CLCXkSs9o5Q7AsY/Jr5XNsD2P9Wrsax/TsBNFiuLPT9j/MOhcePkd5D/TtUwZgw/YaN4uqmwjzMOy3tO1AoBEYC3EyeXtQEEOhfV1jmAPFKCJiu2Sg/TpJccO2a0jVONDnYmdC7TuIafto6Ti5PdRdyZLPN0M8TL+5kQ8GG1xeHI1GQp4E4VGk4PyNrWHKC0FbWeiqEENb+ZqUTE2KJwGMJ2nrr72l/gX1VrsaB7Y1JKiqE9OPwaIwm3XknMxmK4sci0YLCwsAvL3eVcS7hRQeJmXr2+UhNA+ZqfLA8FDWQ9vSNYZGtmbBLhlo/03SOGiHhwxE8h7WvTx2DKEfgxXmIW+Ph5RRHqbf3CzeuB1ASWmJPW+IMzBGJncTxEGWb1c3qp7JYvxPKx0NrfuTwDPYHqPjaMfDtKVxUvprgphZkjWsa1RWSOftmJVvhvZIVFpWCuCTLdXpGY8vKyQPS0tNRK/rUEQWo5Kzh4qHdg5RaYog24o2dY2ljjWLunbwAQO1lw1nFQ0PQxV35ZVVbdvM1bR4GM4kWtotmNuplQGVlpcC+DitPEy/udlS1wTAK8i3IykEOTYVfcCKlk02KykbAutODndqwr7WsPRhqifpONrzMK35Fpida19hzpGx0DtG1yB0XkkWR71fUJgHYEe9yxZ3C5KHvCDfWPNgdHQvlcmGGN/O9B2oRzBgZnImxfxCqxlDQG/ZRRgmWxpHv580+4El2Z2QFw/6ZqVtNVYVzMzksu7QQONIHu5MKw/TbG7W7agHUF6YxyyLywLVGigUHoxZ8I6t7mBlOsw2oZFmzCRmmJWjSQs6onGY0Tj6ffv4UzgKQM+dAdBKFlx1EkY9LxaLAvh4m5sj3kWEeJiSJTUeK9A4APTd20p1IsxDoqSsbZsZw+6DyPKCSXkcwGQtO8BDexXdJMVtbWllPKI8/TxMs7lZu7MOQElRgT1OLNxfywK1ov180AVnxSaAjry0LtX3eVKcbL3stKJpCx3ROFCjCFj5/6SuRa60j/o162qo66D/hvRdfmE+gE931qfpbL50sHhornYSD9WVNxrHzrO2w0Prbg/xsNWMYfdhWN1KPtHqx6FUHqZkBhGcUepdGVwNO4+Tdh6mXd3UAYjkFyRZWXP+WiMYHYigUhNcl6BWhZAmCvprKCVfkyEEv6+ezpHUIWqODbr7EwhmPFgZqCQPo7vRLX1rFB/Lz8sHsGFHbcZOazeH5mE+QrG8unu5dhYIa5xwbRjmvrWzdcbnUYquMVXOtMPOSIa64UMdgKHjNFYy7Pl0rirgoW1V7agCPAM8TLO52VzXCMCLhWpS1plY3TEpEZbxQoEySsqNMUa6jcF8Glj9jIElVRm04AlHzgifha3DoeNkixnmCtj3gD73oqI8ANUufdNVaB5GjR2BHB0K3VEMCKIhBCOin/xhLFE4e4jg3pa6JpyvSf/pmKO1usOUh7MsjjmXlEyibXMDOwujkrQmCHSN3D7tPEynudlc19ScEEV5kbxoBOF6jbEXoVjXvG/0KtkWOqyDjBW3OmKM1c8ownmc5BkuJnK2VI+djQp3JDITfwWrYYQUEMAZi0QiXsQTgja4B1F1HhYPowiuarC6VbKCtrMw9v0Z6nYJZQ/1zZqRfE1bSOoOQ8CrpI4wmDslJT8VcJXZW+peRxbiIdLOw3SaG6lg+xYVwqph2xbU9iE6Y2pl/nWXrboK0sO0nbUhy+pnFNprMVMjsDM4JnJmWsUwu2OImYyyqk+1pXdUT4f8FlhBQT6Aj7e6eKrTsHhIth1P5aHy9gB0nTilgtEuD2F4KF9m9rzMXtrKJIZ4aCwIADti0BnG1nkY1E8BIO08TKu6qW0EUFhUoK8CjO20q7/6/IEghjSfWlfB9jxkR8ta2WZe19gIImdobaV1D0upfWqLY9kmZk7Y1NGtCp3Rw5o9hYWF0HeOQ6cQ8BDMYkvg54zPIF34CeJiO3qy70+9jR5x3VOjs4dZOzu7WhpkEhEcf6B3Uu+s4DrAzi6DkrYJ4qz08jCd5kauAMa8SBAfBt7AGjM7U6U1LUcoaxUeUXM/t97dkB2ofRm+GnWj/oarY1YfIGwrGSgg40WDOFFfN2KMRaMRAM1uKkPnoVai8yLWVbU1C6yIPskfGDVkjZdStUDYT2Qze2iDWdXSsNJXERaFY0BTGw3Uje3XjflNmoeor1t6eZiBOVN+UOtNOjdA3YfyuevhaDOwPggrAhbU+bIdLdug4PjDuRvbk5guCetcrFyjVL06v2MyjmEe2J0gfjbPcPdCs08pkZEeHTs/CHOn2TG+Hi8GY1mMks1+9tBGq5lE7e1sO9jauQQaDQh4aF2fIBbR1w0M6eNhelPFjQBi+VGY6FHnMmDn7Snl/rQjyeDMg5gluBttW575aNmGOf7UyDlUE02NB1PPsc1rYmaHMeZxAC2+Uzedhs3DlNl27fIwVX2HOzzRWvawR1R2kEm0enDCtXlLTe+ah+Z8rZUuZBrIY0gfD9NpbpoTAoAn10dtw+dT65EzgsiCBVcBjFE4EwajEXrI7Sf14CiNA2adl9ZfSV4iiJZldjnJ8ygGkNY1+XkxAM3N8ayfYs7D5mFSFiNscYyKtC1RULcyd2yYh6bnK7O9Nm3BXuHARE8wFifEQzuKNPcUQlFhalQhvV1meJj+YMqKeO1o2dIsduQcsrU6U2XuRqNuQl4l29Fy+OxMJG/n3oJeLx0t2p9a7yRfGZbkP627QlE4Llw81RVYSlNHTDC3KWB5RMDSyzqzFmRGYLI8ysnorH9me212cV5IVtlQ6kbFShTqCwvpNessQhN/jDmisCWSn6aFh5Hu/4SEXBcjwtiO7Ts8CA+IedwDOIiDIgycyOOMM+Zxxgmexzip1YCiHuck5FOWPc4ZCemaGMAYOOPQ9XI1rMpCwep5MZ9IahHn3Hxqv69UlYZ8RwhhtjSfJm1MmoXyH+pHOQeBe570MIJIEAQRAT6RT+pvXJAAfAI4IzBiTBAISAj5qRBgPgDuxQk+QTDOmPIEzYKivGdsay4izEPyQDGPewycNA/VirTM8/TqWaRWxY7yVniop4B3jofmNbM6s7ArHpKyFK0Rr2M8FJLPRETw2+EhY8QUDwXgh3jIwHlckA+Wdh6mzdys2bwdQKFHDY0NUcainAnGIhxRziOckVyBQklPMM5IEDiHGg/B5FiCkbzzZSFKjZLKAYHJHyGmByBpRM0L29a0NYoSQR6eMSKyt0na2Py40q4EIiLfJyDh+6TsFPNJAMwn8kkNbUKQD5YQQo6rAATBl4YJlBCUEBQXlBCUICSI4oIShLgQsbxoS3N87Y76qoqSdA3Tbg/Dw8bGhojiISKchXiIJB7qSNaaD0UkpKYmvZx4iIdSSrTLQ4RtTUd4iNbs0S54CIuHwidSsZUvBIGJDvGQBGCRkBIk/ykSxOKC0sjDDCweSuaKKAmnuxUCdSrVh8mQc8bl6BLAOYcpMoNkb4vOFpu0SCveAG0IE/Nmkp8xW5oXrboRe8vgUyKdFNC/aeawMCbIxFvBt0zkyEx+R9pf2Kt5IXRGBLhgqqugoDNFDYXiYdCTARLEjMc2I6VGhAM6nUMEzUOYX9P/aZWH8oVUzR3noSQhwiamdR6ak1Sf6nnqFt9MblS6Ru3XU1UYN9ZMfcucr86WIk08zEjuxpytKnjrKJF00pgxJkgYSUrmXgUECZWekYG0zpObwSK1l1b8hu0iUvVtW17FfDdV97bqVdQZqXI+SV2GwKYQD8aSWWOvrAkp82vGnqQaR7gzQptoJJy16RJkEoOzgDkmfWpchlQ3TJOShOCMSx6SEEHigoUrreqn5CdolYfyRZLKll9pK5JK3UafSGs81P/SN0ugd0gzSq55qk9d8pBLDZ6yd30u2ola+oDSyMO0BVPWlQLjICLGuUk8ARwmM8dAgrhn7kl5FQRjnADOOEgg8BIAeKBudMKcrPu/Va9iRjrVq6SOtBDC3sb+KPmf5iSl/AZUJEhiQ8OWt7YuW1+/ZdnONaWRwonloyaUjhpbMqI4VqIiRGGNnwBjnIQIzkUEpijwS0BwnRw6gCQeCqIIZ5bKVvkXEMBBRB7nOiohzrkg4TFOgMf521sXe8xbsHVZaaywqrxyRNGA4UUDuLyfjW6g1nmoj4FSWdfOO/ZZ7IKHgboClMoWklGMMQFijPkiRWUrHpLFQ2KMk9AxBFRPXJJeQ5p4mDZzI3NqMghWfkPdM1yrm9ZzNwATJCLKqwS5m9ZjZm3aU72KLU8ym7sBVO5GFQfYm1sW/3Hl0899tjB0Rdap/07vX/WLvS4eUNBf2lkAusQhGKCLqqSyjqaaIIS8SSLZLHvkPlrlobq4Ng+54qEQwlPxlOQh21C/+XcrHn1p43s18eR1XiaXjzpqyIzzxh9THiuRIsKO15J4iLAd6QgPzWYd4iEBlnWT8YFR2SaOM9GAUJZFhHko7RRgjk1dKgYS0gumkYdpVjfMtjVcrsGscqgq7tAxhczdkMp3cCIBqW64Ujda2kGqG27nbhhLi1eBZbOSxhjteBXGjLrZ2VL38/fvfWTtq+1cmXe3LTvm3989f/zJ54z7ur5AIGE0HSOhNLCMsdWJpNWrfHlg8xCBypbjC4ATmeXOQIK4zt3ILX+99E9/XfVsWz++dOeapTvXPLL2leumnnX00Bky65xGlZ20TasfhX2esUdKZUtGCSIGJohe+HzBO1uXf1S9RiZjiGhcaeW0vnscNGi6ypxSoLLVT0FoHqZfZadb3RBI2ntuoj6mdQ0zIy11HbRXCS6o1nvq1pfNNyAOpm/A9FcEzFeStmnbq6hD2dlce9KrP1+6c01Hrs/dK/7x6qaFd8y4uihaLHPGPgl5vlLTmt0YGyRIACiMpW2MvgwIeAito3UWTDGNM92cp4eYcQC1ifoL37j2k5q1u9zF+votZ75543VTzzp//HHt8LDjKtvexn6nQzwkJOduiBjwyJqXr118f6pAe++L5Q+tfrokUnT2+JO+NnIOGIQ6KrVfmIyHjr/kBmnhYdpSxSP6FAHYkVD+WRj/LLPcuhdTnpUQQfwpz1Bo7cBYqA4FE0/qgVDqJmX8EPYq9qfymzYzDMzIpQ5t0sbJXoXoax22NRIratZ+b8F1tfE6/Wsc5powpspw+moAiLckAAwpye/4LhwCHgLmXpKgVB7q0a+J113wdodsjcHVH/zp4TWvtMVDtUfLarTDw/aVzi54qNM35lvV8fojX/rh5f/5f6m2xqA2UX/b8j+f++YVG+s3s6AqCuge6eAuBou3xJEmHqbN3EQixvgFtoDItGWaCEhlRoXRaUxnuYg0P3QmTDc4mIshDY0MqVL9hnnRwYqA+VR6JISHtnWvApUevOqD+5Z1xtZIrKxZe/vyv5A+a31lZMzMZNCs+aR2HXM9fp2BxUOdx0UrPESYh7cu/8uKztgaie8vvOOtLUta5aHcIEn76KPaRe4myR61z0PjqOT7y6vXzHzmog4yc2XN2vPf/tnKmlUwPNRt19YxpJOH6SyERxkAxCCg7aJ8X+ihZil9JdKQgnEhhDRFoYurRIcSvkoeg7Wjbsz3Oq5urF2171VgvMq62s33rHiqa1fp2c9ee3/7ssBHWVUAaFUoiDzPAxCJel3by5cZbfHQ9HzZrxlji75Y9vSG17q2r+8vvDNdKhuahAibmF2pbPmKCUHV8bpz3vx1dduiJhV1ifpfvH+rVtzq92UHKxgTJDhPJw/TaW765HkAomSpG5gpGkQqegoiTPU1k0snIhMxmiSYUowsSATBaL70eBUKdtW+V9F5e6Kblz/SnQv16OpnJD8A5U90PBUcp3yAWmE02p0dfTkR8NCoG5koNe1cUOpGcu+2j/7S5X2tq9/y0Kp/d1Nlt7WNfN22upF2BpBFFc7OfvPG9Q1bO3sKmxq3/vLD3yp7p8UMqeiMSxORLh6m09yU5kUBkBAECFVtkVkOGPuia3XCvrugOnGtjDKCapH57rq6zW9tXvrWlmVvbVn65palNfF6opBl6ZpX6Ujuhhk9BYCxR9a80p0LNX/Lf2rjtapGq/P/goKjEEJIY1Re5BI3nYbiIQkwCEEEi4fKvgdqYmPj1pWdD6NsPGJlcNKSu0FHeWiZB7A3Ny95e+uyrp3C4u3Ll+z8KLA4ujIldJ44XTxMZ9WjrCCG6iYVMHEmiLiexiCIPGVfZH1K9VbJayVIcJWtYILIAyNzkRnb2Vx736fPPP/5gtS87KwBk0+tPOzUysOoSxUBhHM3SfFUaMgDPcXnb1nc/Wv1ae26KX0mERiRIN1naJSgsbDFrizVeSgeEgmCx4NKIlJ4yDh/Y/N73dzdW1uX1bTUleWVGPolUajjPDSbtclDCngovRSp8Ad/XNnF6F7ink/+cvN+v9KK2/BQzW9IFw/TqW4GlxYBaIibmFlJVqGyEkCgbtRfHW0xQcoLMcaEzlcR8McVT8589uJblj/Sag3ozS1LL1lw+z5Pnv/W1qXIZO6GQff+gt7qqg+x8eH25Uzng8nKjsuZ4oIo3hwHMKy0sPv7+rIhhYeMVEsTmaqf5KEQYmVtt6SNxJKdq+3ovmsqGx3I3ZhKC6nVddX9U9NS//zn73bnFFbVratrqdfXSiaFmCARb25B+niYTuc5rG8JsLHep2IQGBfyoJW6gWcqvlLdCFIPagaEIK66P5kQxJmqUF7+3p2PtttBJ7GufssJL199+36XfGvMV7rgVcxXkrbRL5hO26tscXouFlPrVAjSDkoX34jAGG+JNwMYXe7MTadheFgkO0jVXcnkDGlPeTulrzd1PtmRCuWNOCdBLJig1MW+m+qWumc2LHhry9J19VuW7lg9vKhiRPHAqrJRswZMrupTWRYtkrqMSFsc0NKdq7p/Fgu3/eeggQfJRcNIa6j08jCd5qZPYX5hhDUkkAe0CAGPa6XHAAiS2WKC7GLkXN9jjHEmBHGPW+oXl79352PrXu343i9deAeAb435CtI6ZwpawQrobul0QFleoX0aQARhpsBzjwTFol6fglhadvelguFhPtAihOdxAiPZLQtZkeCBxUkHlDfSrEtV2e3z0LxT3VJ31ydP3vXJk3Z1qXpn/dKda57ZsOA3yx4ZUTTg2qlnzRl+gLZcKvn99tbl3T+LzU1bTZIrQzxM84zwIUV5ALjvQ64gJW+kwJMTMTWzQ1UoSVkik63wiYjhto//3ilbI3Hpwjvmb16M9PXdIEjUw6yHMrxwQNcuThJkFk6pfbMjWdwUBGBASVFadvQlRKs8BGweqniqKJoGv63WrOBcMjkpEdNBHi7ZserQ535w09KH26lkr6vfcuabN35n/g3r67eobDFAxux0+zxIZ58zxMM0m5tR/UoBNCeEyTmRHmPS8xtgujlNuUDlbiAAMLahbssdH/2jawdw6YI7kKbcjfoWDFPUp8OLKrp2bDam9NlDXxmmr49c8YgIaGlJABjdz62q1UUEPLSqLUL7OVI9JkwQjSsd1f3dDSuskLkbrlvLOpu7Wbz9v8e/9LN19Vs6srtnNyw4/Pn/WbZzdfCTSEOML29GQSRA0iKnnYdpNjdjB5QDaPRVH40IeodM/gmCwJjsOlHWVFbNVZZU0J2fdNHWwOqD6LhXMZmaMA/0t6BrpzqVc0DFlNJuu8TRJSONlTF2R6UYGJqbmwFMdov4dRWt8BDQeeLAvoOxPcsndnNfVeWjRpYMIoCrHuWgFbeDKntt7aYT/n1Vp9rzquP1X3v56vV1mwkg0LDCNLhAqHqO6o8DWNp5mGZzI8PmRh/5QuiAOai2yHV8AfiCTK5UjrqJLKrj9Y+v72KLp8TdK57UIxrKxbSlbkzpMbyN/hZgVieCrgh8Y9Rh3TnCrw45uDBSZCysrgIocBYhQbFopCzfJW66iICHvpB2XClHCitKQVP7TS6KdMt5HD1sBuk+VfWUTu2s2s/dmF84Y/4NnbI1EtXx+sveu1P+ZFX56O6cgsTeffchK95kzEs7D9O/mt+YvsUA/IQvoNSNfQ6kK8rWPFSmczcgsH9v7FY9D8CSHatr4vUqb9+aV7G9Tau5G6mGYeduZIZFKjLCeeOO7Y7AOW30SQT4sh+SKMhtAQS0tMQBVLpIqnsIeEikxHUSD0lG8eLMMSd1eS+l0cLzxh5rd8ZLByVpE9gaxbRQ9VNS7qFV/166Y3XX9v7WlqXPffYOiPYoH9VNgVMYKRhVPFKxMWM8TL+52XfkIAA7WnwuBxgkbIsjoDQOY0JvwBgTJORd93ljGgqTS3asUmNsVa+lspV/YXU6yK8odaPrizB2UcdWsk9cxlXDiweeO/64rh3b6WNPGlg4QMWSRAT4QtsaAjHW1NQM4LDRA7t9Gb7UCHjIlLQRZFct1Jtg7KRRR48tHdm1vZw34bjy/BLljYi4XNFJrbxl2RplZYAUHv7hkye6c5qPrH5ZMvjrow7pzu/MHniQqtwJaYh5JniYfnMzqKSgT56XIFYohAi8CoyCFTp6gtYOvhCq2xjss4YOZcvaR3W8gfSizmr9JKl1TSyt7YiyJuqfjAQxznXoCpi6oBoJMo7rh1Wnnjzq0M4e2F599jh9zNelnvctRaMsMiAjqeKCWLmLpLqHMA/J5A3JiqrkmBJwxeQLizsfUn1j1KGXV31Ts8JSN4wZb0WkV2LnPHiHc1ktWV+/pcvSRuL5z99dV79ZEM4ee2xJVxV3YaTgayNOtDkpI6m08zADT2IA9hzcF0AinpCltFC8oPy50BVKCAq6igXRxnS0Xa2r3cy48ipCJ6tlJk96G1MaDWkbqV+EWXda5bm1PA6q9YJIEN2y7yVfH9kJizNrwD6/mPY/ltZjQpBMb5ncVlNTC4CpQ/p1/yI4WDy0czeB1pYrnAnCmJJRv93v6k5ZnAMqqn459WyT0QMCdhGpyTtEyspAqhsrkpJrts/fvKT7pymL4kWRoqv3PLtrv/CdMd8ujBZpW5NBHmbE3FQN6QdgUzPlyfSNpWuE7KwJesntyhQRw979JnX/AKb0G23HzDIJLHR0rbM1APScLi11iGTEBHNserUUpZb1PC+VffzNvt978OBfDu1A2PydsSddu/ePiqLFQj/6RwghQleGcc9ramwCsOfAsu5fBIdO8XBM6ajf7nd1B6Oqs8cd8/dDriuNFZt6pe4mU/2iqpjJWXs8ZFiXDi3/9tZlMmI4ceShZ4w5prNfP2TQQQcPOjg7PMyIuSnLj03oWwRANCf0o7MC/UIE88wtPfVUrRpPhHQ0EKAkUmRXBBhjUM8AIc4CawLdc6inCZscNiM9gVgfUGiel0CQfdyvX9W/Drv5uxNPHlLYP/VIiiOFRw2d/dDBt39n3MmqNmdylqpGy4QgaXdamhMAxvQvczWptCDMQ/KJiDE/qE9Z2XoQEY0rq7xv5q8v3eM77cicGf2r/nbwL6/Z6xzd20GBxVHrT8MsUmVWrdRRFQOSedh9SP8nM4A/mXLWxRNP7vh3jxl25MV7XKB4KDMeIoM8zNSE48MnDv/krY+3Nov+eYLABZHQlUKfiHPuCyHXkZVxFmdMEBjDgQOm3/PJo93ZdWm0cM++Y/RIm/GGpW70My6COhQARmralppFoWwQdAlNV9NMFUlnH1lRtPiiiaecP+GU6pa6j6pXf1K9tiZeN7BgwKCC/lP7Vvl2pkY+tFAQEXwSxp8IIs69hvo6AEeOH9z96+8gYfFQjQJjzCdwNVOP+zpbJ+80j7OTRx196ug5K2vWvLH53U2NWzc2bGXAfhVVwwoHzOhfNaJ4gMeY0EUmzriOjFTFQz3sEDKZw4SgQOOQWrHc8DBdpynVjU8QwAUTThlbOuo3S/+0sWFbO18ZkN//rHHf3rf/PglheAifiHleQ02meJgpc1OWHxvfp3DFjgYeT7REYx5T95UviHvMF4JzTz4uVRBxxs0YjC+rHFTQf1Nje1eqfRw9bH9B5vlkXNkXQvA0K7lqJ8zKtYyEkS/M2CktgnQWUAjdIaZ7ZAACEkL5TAFWFC3au9/kqX2riElvQ75QM48Jig3qqczS0wphOombmxMAKp20SSvCPIx6xASIM81DEpx5gojL9zn3BXlc8XB86Sj5DHvOmAdEPMYIAgwETybyoDzokh2rXvx8IRGWV6+uKq9kYJP7VB49fH8iNfeYsdZ5WBZJw/yAIQUDRJiHswftd9Cg/f726VNPbXhtZc2apO1Hl4w8fPDBhww6KD9SGPeF5qqaVdOSSR5mcDmVWWOHrnh35fYmvzRKPjHG4CvLAs5YQgim5mTCJ+ExLgC5xt25406+fvHvu7zfyyd/E9p+mTVcledR0bWawSs1cKB9tfoVVnVcZXCUNjEWB/oRyzBjrN83nfJK+/iCTNbAFyQFDoH5KoYSAhBQ9e+jnbRJNyweRn2CxUPijKfwkAnppQTJh4nINQAF4At4RiPLPjHgto8eeWz1K+utFMyzGxbIF2XRolNHf+XyyaeU55W0xcPJfSu7f4ITy0e1wkOiU8Yce/LoY6pbalfUrCWCTwRgVPGIgkhR3CefyCeQjsJUPjHDPMxI7kZiUEnByNL8BDHR2CIfii7VrHwiurwPfZKtc8wntToJMXb0sNnjutwHMf64EcUDrTyLrl4HykXO2dV9Nwgy1sHcUV3IhKyO6xoq7FwjwVcsNGOsol85fvpb6jcFQWkZQKjYSuVufKKWpgQJctImE0jmoSDNQ5YQwvDQFwjNcrA7dIjkWCfkOBIE0dKdqw965sLfLntkfRvp3up4/V2f/GvfJ857aNVLYR5yo6BnDtizm1PwhhZWTCirFEAiqDzoLAwRAUWR4ql9q/bsO2lqv8lT+kwqjBT7QhnQQGXr3E2meZhBcwPgmMmjogw74+T5QtpXbWv0vUcQBDkSenQFgf1sr4u70AdR1afyh5NPJVNZD6/jJaPo4NnkQY3JlLtNf7NK16hUi9IjspYBNTZK3aiclKmtBvYlqLsJoe2ssjsqThZyvAGvqanZ48xJmwwhxEMrjwYwyweoe09otpClZAnwSfoJCOCxta+c/vo1GzpQV6qO11/6zm03LX7Qyv0JNWeQMTAcPfyA7pzaCSMP9ck+cqu7DXqWDAC5EigM90gQKV0jTJ2ONzU1eyyDPMysuSnLj+09tC+AusZmc7+pfAeUV0lQsjoQRONKK+884BedsjiTyiv/ccj1JbFiYtZMXGN3AN1baNYrkzZFRVUyHcOs2VuyAUFbDXWEinOCfNL8U5m2UDeHmi8mG4tkjobg645qZcjAfCKfqL6+EcABlYOctMkQUnkoZXVCR7WSigQz+lYvmHQ8mhU+sGznqp/+5852nuKUit8seehv/31RdtLbXo0IP5r8zS5PiCmJFn579DGGk7bPM3U3Mn5Rxu8kI3rFWNv6KB6OziAPM2tuABw2flhRlDf54PGEr+8xAksYr0JIBHXx4HqNKx1558xfDG6tupyK/SuqHjnkupJYse4qNFYg1JtnPIwehpA9UnGQzmoTIVmPaP/gAz7BV/P09Vx2ZSsBFSUpx+j7gbqRAbM19sz34Sf84oLYQSPTM6nXoVV0hocwStauCUhmVjfXnjP/F104gO+/c9v8TR8ihYdlseLb9/9+107q9v2vKIoVS2PRCg91FC9De1+0x8NEVniYcXMD4Lg9RgDY3pgQQmU6fCGk9pPuPRh1SwEKYFzJqPsPvOncCScXt23+hxZV3LTvJQ8d+quSaLFcSEna7+Dqa6uvuntkvVBNTQh8glCKNFDRvt7GZIUF4wlSr321hErw+5a6ISOIEvp8ha41qtyNIMFYQqChrhHAsROGZ2EgvuSweEhB7kb6BiKpSRNBrTC4e01oLAg3L3ugtvOztyVuXvqwzUNJQp/oyGEH/HDKqZ39tev3/t7e/Sb7Zp6QCKIHi4eM9F1mVHZQ65CRVBZ5mLbVMNvHU0tXL9lSm8dRUJwf9XiEMw+IMOZx5jHmMUQ48xiLcMYZ4wBj4Ey95gz1ifpFXyx/fdO7Gxu2QLYCM0wsG3XEkP32H7AnZ4yBuJrWTczMglMzM1XfjVymNChw63Mn65+CgsoUkWrn06KaTJaRTGYHakTNKAY5YCKfkBAkc3i+ED4hLoQP5hPFBSWEqK9r9n0xcXDfE/cYloVRcEjmIWOcIapJ6DEW4VyykTNwMM4YY+CSjWCbGrec+O/vducA7jvoZ0cN298swiXflDy8Zenf/vjJEzXxho78znX7fO+44Ydafi40F4xUTlBF6yLgIRKC5N8EUULAJ4pnkYdZMjcA/vDmsh3NfnGU5xXlqzGGHFcW5ZyBopxzhqjHGRHnnDMwgAMe5wAp08MZAzgzf8njnIE8praR7wPE1Tsc+onj9owVc1Qqv2PneoQgHVcHHcAqRxPqgpc5IDn/S3ZF+9bYJ2RmSo6uL3zAF5Qg+EQJQlyIpqZEc1NLSUHsewd0d4Unh47D8DBWlO8xRDn3QNLtSR5GOPc4opyDyAvz8On1r/zqw991Z+8nVx7+2/0vI7m2uV4hG5qHa2s2Xv7uHe9sXdrOL0woG/XjPc/ap9/kJFtj81AQ1Ip8YAEPCQkhfMVMi4eNiebmLPEwe+ZmR0PTvQtWxAnlhbFIXoQDEc4iLFA3nLEIV05GSRsGDuVeGMCZGnupfQCpgOAxxgicg6smcd0nzhkDM69btzXqhapO6doBye6+kPIk+1O9krlab1E7FisXrsJjrW7skU4QtcSpvq7B4+z8/Se4yd/ZRJiHUQ5qg4fMMxKbgQOMsSvfu6mbz6UqixYtOemhVnmo/p/huQ3vPLb63xsatn60c7X93cMGTz90yIzjRhwWYqnKzgQ8tKsWrfCQhBTdPcLD7D01rU9h/jF7DH98+fqdDS1lER7zPF8Q4wDAGE8IinDmC2IeJ0ERjzFltsljTHYGyswOY+BgpiMZ4ILI40wIcK4a+GRvqC+Ic6VcVKeDkLMlpFdhxtomZZSNiiHdK4Qgr2TVGuUYm/mlKkOMhBCCmM7GCWIs4QuTwfGBRAL1dQ0Ajp000tmaLCPEQ49HI55PMGtRSx4mBDGPEVHUzKEDPIbajkU67aA6Xi/ASIhwXB+s9QVihw+ZcfiQ/aXKXrBlMQGDCwYMKRqoOSY71HS1VCc6Qyvw6lykb/3VPAyqUdnnYVYf0rjHoD6rt9d8uKm6rrapsDg/L+IxAmNICBHhzCcBxiGEJzUhlwEzRJB5YQCpbhlpO7jqIk8INaNfLjTB5ZNk5FOrtK6BEEypTabH2ORu1Lo2xu7ofL5OM8sp4DrDDd0xRAQy/YTK1siqh/CFbOVg0uL4gqS6afFVxXHSkL6TBpRm8/o7SAQ8rGsqLM7Pj3g+IwZla3wiMJbwhcdZQpDHGBgkDz/Ynobnq6yp2TS8ZCAJwWA9V5aBBBkqCrUyBu1TMUUWQBKk2Cr/CWb5PBX1hyL9hM7g+AJyXc2EEIKxhKxDCWF4WJVFHmajMmVjzqSRE/oW+YSGuqYWX8UXxGSEqfr6E4JkpkO2/JsrKFRGVscsjOkOJTW3QJltIO5L3Ug+WNwnn1hCQIDFRVAFTBD5UH/jVgeQiWxNIYl0Dt/0gJkDM/2KvrE1hIRv1I2qgMSFkH06cZ/q6xpJ0Jj+ZcdPdOnhHoPNw2ZfxReah6ZeY9SBIkM3VzWWkHwTYHFSrFNRtsn3aR7KFG9QF4MkpOkDVt1DMo0oK2s2D+O+8Il8qJKFjOhlt5HNw7lZ5GG2zQ2Ar00dM7I03yc01TfKqxy3OgKk3pOZc93hYuIXJhDUnq25SEx26CpjJHWjEMqmMGZsirQ4CSBBUBGsGmmWIPjEEkGHJTP5Gl8Xp0KdVLI6LmtVQnZtyHEVpCNk2YGqRpooIaiurpEEjepf+o09R2b/yjvYSOKhSOUhIUGUIEhlKojGpuMpMYMKB0ge+tQeDymFhzpFaM2opKC7XddDtc/T5+IL1bfRGg/LsszDHjA3AL42dUzf/EiLj4baRmN3lQ1Weg++GQnS3TpG3TDmCxALNIXskpC23/Td+NZMJdNnIcwcGT2jwtJNcnaFqnbrCdzql/UcbghSnTsyd+PryqLum0Jc9hDL8NjyWvX1TSSotCDvxEmuy6ZXwOahUsQ6oy/vTJMBkePbfXUzpLBCMBbYgqCDVPlRoXv2EkmcJ7miG5PdYXpGRdD4nhBCmhLpZVVXKjEloEzcIGweZltf94y5yY9439lvQt/8SLNPDXWNzXET+yAhlS0JHYxopSNI60mSHU1aa0CPjVIi2i7Y2kfyRgRrPsDMf1E+QSrVwE4FLoXM6u72ehEEBBGZED70SCum6hQdkBAU96m2pjER90sL8s6ZPjY/4vXIZXdIQoiH9U3Nce2N1IxHmIhYjuz+A/bt5h4PHbq/r1YjEQJMsc7wLei+E8HsLYIP7SDJZr6+I+w8gMwP6P7ShLojZAQn4j7V1vYkD3vG3ECPdL+CaHOC6mobmhK+0HrSJ5IKImHUAVGCKC5ITTsyvTDaisuOAz0ThNn5FF8ErXqBDgrmSdo+JLQGjYAROFrd6Hywki1EqnNPWRn4yjeqSEoef9yn2toG3xflhc7W9Dok8zDuK3UT5G40D4mmV+zTTYEze9B+BJawYp9Ap5hcjMVDmXwh098cdIHpLKRQyktq6oSenSfti2+p7N7Awx4zNwDyI94Z08cPLcn3CfW1jc3x4F5NaJei68pWb5Ig21IIleETOp+iZkVIK+MTtPJEQgSxj92bYFSS8ipyNU+lYAMGpM43SQjoPL+KmX0wO0KWueHa2gYSNKJP8Vn7OlvTG9EqD+M+hXlICaLCSPHckUd3eUd796/au2KKmZ/cGg9Zqzz0DQ9FazxUXXzM6Gtfr4vS23iYvTa/dvD44tUfbasFUFqUn18QZUQRzmX/HgfkimoeZ0y9ZpyrDmOOoN8PgH7ECwOBcwYixrmuoIMxkCDOubC7OYM1z0HCdN8EM+gQ6v3T1srK+PjCxGhM53FUZN7UkqivbQQwYUD51yaPyPJVdegsDA9LivLz82UHIOcMHiB7/xjQmKi/etH1q2vXdvbHi6OFvz/o+vFloxljJFfOFaRbMiBXszWsM08QIdLr8+vngqhZxAEPtUkK89AH6fmJ1BTvLTzsFeYGwBNL1y7bUg2gKC+SV5gX5dzjjDN4YJwru8MZ89QcFuYxBqgec666ivUD6JiyOIyBgTG5KBtjaKerWP1TzXLQo25ErO4Y1lG3msMpyMR0JmknNVTcFw1NLc2NLQAmDSw/vsrZmtxAMg89Ll2dajIG4wzr6tde/d519YnOtfz9esZPDh48w6xqnDqTxqaj3Xeq+r90aULOL5XzoUinHX0C6RKqiQkILC5EQ2Mv4mFvMTcAFm/c8eInG1oE5UdYfnFhzONcTpyT6kb2kgd/mZkzJee2QM9pYIxBr3Qv50/JNajlio1crVWsng2k1jwPz5kKVuQiEEj2a5o5U/p/Vvylojm1Dk5Lwm9oaE7EExHOj5wwdM/BfXr60jp0Ask8jHAPjId5uLZu7c//c11Dhy3OldMumTPiUO0FGQVrZlvr2DLz5IZkHkpbI/MGwsRZaJeHQEu81/GwF5kbAJvrmp5YumZbQ0uEI78gvyA/6plZUQyeVDeAHHsZMRmlIw0QAG1xIKfzMkvXWM+BCXkPqL5hsmYqwMxGCRrDBYEFuR6jaIRWNz6hsSne2NhEgvoW5Z1QNXJgcX4PX1OHziOVh1xPGTc83Nq45XfL/7Bs50ft/9TAgopf7feTcWWVvA0GshQeCtXNnspDUgtKtMtD2aXRO3nYu8wNgKaE/+Inny3dvBNAYdSLFuXnRz2GUB5Hxk3K9ITniEP/9bicmalmimuvIp+TKczcf0HEmJpvEsyfAhMkdNisK46m80ovgKKjJwGwhBBxnxoamuMtcQBVA8u/OmGoSwznLlrjYYSBAv8HeIy9t/Xdv69+bE1rqZyBBf1PHHXsSWOOY/rZUnKFFAajblLmTGlFA0DaFKJwUA/mCzlnKtQLYqInv3fzsNeZG4kVW2teWLGhtjkBoKQgFivMk4vjmBVwjH3hena4p57zrWQOkVoBhzP9VCmo5wGZvVheRSfkQl5FjbRpfxB6Hor5p1zcKC5EU2NLY0MzgOK86JHjh46vcJOhdge0w0O5xJK0O42J+rX1a5fv/Eg+KHpMyajRJaMGFQ1UcT1XD6UHkcwktpZDZHq1/mBlWzM7j/RUKZuHgc/TWZsEUS/nYS81NwCaEv4bqze/t34bAI+juKggEotEOWcsyONIDwMEsZXSOESc6ycWAlwtyJW83g3pdyyvwuynuxivAms1SdUzrhPDzc3xhoYmEgTgwMqB04f37z3OxKH7aIuHdiaxXR4qfa14aJ4AIytTGqJ9Hurl3BDmobAKFDnBw95rbiQ21zW9tOKzdTvrAXgchQX5sfxYhDOPq2qUrXQYQqvhMP2+0TXmSYa6FKXtDinhqioCgoIwylQE5PrYOmZOCGpqamlsbJYDPKK86Cvjh/aSCNkh7WiFhwUxqXRCPNS2RvNQre5meGhlEoMfD/NQrSqZzENrMa3c5WFvNzcSK7bWLFy3ZX11AwKjE416nsrdkJ3B0aPLVbYY8mlR9poVlldRVQASTK+PLz2MNDSkV4HVaxjLPk7R3JRoaFSeZHh50X7DK3qbanXIBNriIUxfmClWgOlVJdUKtlb/FyNBqX03RtFQ6zw0M2mUxvGFaGpKNOYUD3PD3Eis21H/+qqNcrABxCI8lp+Xr8ab5Fp/ALi2NTJi5lYtIBQzB8+Tku+oR/GalUSSQmXfF41N8ebmFj/hyx8YUV50UOWgEX3S8NxVhxxCKg+j+XkF2u4Yuc2CngxuV0gDHsr6lMoTAwShl/STHadB7kauii0XpfVFY1NLc3M8F3mYS+ZGYt2O+sUbt6/YWt3sq+bgorwIi8WiES8vFlGRFGl1Y3kVrvtuBBFT/kQ1AFqVKeaH+m6oJe63tMT9hGhubpG7y/P4+IqyPQf3zYkBdsgQOsND4qHudkaKh+G+m0Br2xVS9Xr34GHumRuDxRt3rNhavXJbjf1mLBqJ5UVjeVEGFot6rasbVQQ3q+ErvwFAECUSwhci3pJoaYnH4wn7x8f1L91zcN9erlcdsowu8jB4AkhQmZLvCYB2Ux7msLmRaEr4K7bWrNtRt7mucUtdU9Knnsc559FohHNZKEiuQUrEE75Q/5f80YDi/BF9igcWF4yvKO2FqX6HXoKu8VCnbhQ0D4XQislg9+BhzpsbG00Jf92O+rU767bUNjYl/NRR7wgGFOfnRzw5tCP6FOXu0Dr0FBwP28JuZW5SUd3UUt0Y31zX2KTzaq0iP+INLC4oK4i6p3Q7ZAKOhxK7ublxcHDoPejJ5bUcHBy+VHDmxsHBIUtw5sbBwSFLcObGwcEhS3DmxsHBIUtw5sbBwSFLcObGwcEhS3DmxsHBIUtw5sbBwSFLcObGwcEhS3DmxsHBIUtw5sbBwSFLcObGwcEhS3DmxsHBIUtw5sbBwSFLcObGwcEhS3DmxsHBIUtw5sbBwSFLcObGwcEhS3DmxsHBIUvgAGpra2+77bYjjjiiqqpq8uTJRx555J133plIJHb55Ysuuui0007L/EF2C73hIH3fv+eeew477LCJEycedthhf/jDH3xfrchfVVVVGcaTTz7Z5R0tX768srLyhRdeSNOBZxWOh5lGj/MwAuDMM89cv379ZZddNmnSpEQi8eabb952223r16+/8cYbu7y/bmKfffb517/+NWzYsJ46gPTi1ltvveeee374wx/utdde77777k033cQ5P//884mooaHh0ksvPeCAA8zGY8eO7cFD7UE4HmYaPc7DyIoVKxYtWvS73/3u6KOPlm/tu+++eXl5zz//fGNjY0FBQdp3uUt89tln27dvz/5+M4REIvHAAw+cc845559/PoAZM2Z89NFHTzzxxPnnn19fXw9gypQp+++/f08fZg/D8TDT6A085FJNcR5K4lx44YX//Oc/zRg/8sgjX/nKV8aPHz9t2rTvf//727Ztszeuq6ubOHHi73//e/NOS0vLnnvuedNNNwHYtm3bD37wg2nTpk2YMOH4449/66235DaffvppZWXlggULLrrooqqqqn333fcXv/iFEOKdd9458MADARx00EHyuhi88cYblZWV77//vnnngw8+qKysfP311wG899573/jGNyZOnDhp0qRvfvObH374YerZTpo06e677zb/vOKKK4477jhzMPPnz//2t789ceLEWbNmPfXUU0uXLp07d+7EiROPPvroJUuWyK8kEon/+7//mzVr1vjx4w855JAHHnjA/NqNN944ZsyYVi4x508++eQFF1xg3hk8eLDkcV1dHYCiol0/Uv573/ved7/73b/+9a8zZsyYOHHiueeeW1NT8+tf/3ratGlTp079xS9+sctf6OVwPMSXgId8zJgxw4cP//GPf/y3v/0tafwk5s2b95Of/OT4449/7rnn/t//+39Lliw5++yz7YfhFRcXH3LIIc8//7x5580336ytrZ07d67v+9/5zncWLVp05513Pv3001OnTj3zzDM/+eQTAJFIBMC111572mmnffDBB7fccssDDzzw7LPP7rPPPnfccQeAp5566v/+7//sI5k5c2a/fv3sHT377LP9+vWbNWvWqlWrvv3tb1dUVMybN+/vf/97cXHxaaedtmnTpl1ePgl5MDfffPMVV1yxaNGiPffc82c/+9mNN954++23L1y4sLi4+JprrpFbXn/99ffcc88PfvCD559//rzzzvvVr3710EMPyY/Gjh172GGHtXKJOR81alRZWZn8ZyKRmD9//r777gtAepWOuO5IJLJo0aK1a9e+/PLLDz744CuvvPL1r3+9oqLirbfeuvHGGx944AHJ9dyF4yG+BDzksVjsj3/8Y2Vl5c9+9rPp06cfccQR11577dKlS80W995774EHHnjJJZeMHj165syZP/vZz5YsWbJo0SL7V4499tgPP/zQXNZnnnlm/PjxEydOfOONN5YvX37DDTfMmjVr7Nix11xzzfDhw21LfOSRRx544IHRaHT27NkjRoxYvHhxNBotKSkBUFZWVlxcbO/F87yjjjoqaZiPOeYYz/MefPDBWCx2yy23TJo0afLkyb/5zW9aWloee+yxXV4+G0cdddSUKVMKCwtPPPHEmpqaU045ZdSoUaWlpccee+zy5csB1NbW/u1vfzvvvPO+/vWvV1ZWnnbaaV/72tfuuece+fWTTjrJvG4HN91009q1ay+77DJor/LYY48dcsghe+yxx1FHHfWPf/yjrS82NDT86Ec/Kioq2meffSZMmCCEOOeccwoKCo488sjy8nJ5hLkLx0OD3ZiHHMD48eMff/zxF1544aqrrhoxYsTf/va344477rrrrgMQj8c/+ugjaQIl9tprLwBJP3r44YcXFBTIRHQikXjppZeOP/54AB9++KHnefvtt5/aGefTp0+3KTJp0iTzurS0tLq6uv1rdNxxx61Zs2bFihUAli1btn79ermjJUuWVFVV5efny83Ky8tHjBjR2Ttw3Lhx5kiS/tnc3NzS0rJ8+fJ4PD5z5kzzlf3333/16tU7duzo4C5uvPHG+++//4477hg9ejSA5ubmkpKSTZs2XXPNNffff/9+++334x//2LipJIwYMSIWi5lDMocn/1lTU9Opk+2FcDyU2I15GLFPcty4ceecc05dXd0111xz3333HXfccaNHjyYiI8AAyNfSHBoUFBQcfvjhzz333BlnnPH222/v3Llz7ty5cjPf96uqqsyWiUSiT58+5p9mYCR2+cDy6dOnV1RUPPfcc+PHj3/mmWeGDRu29957yx2NGDHC3rKsrCzpIHeJvLy8dv5JRPIHzzjjDMaYfFMIAeCLL76wT6pVCCGuvPLKp5566r777pNJAQD77bff4sWLzTYzZsxYv379n/70p29+85tdOLz2DyBX4Hi4G/Mw0tLSsnnz5uHDh5u3iouLL7/88nnz5i1fvryqqopzbht7+VrqTBvHHnvsd7/73Z07dz733HPTpk2TtcOSkpK8vLynn37a3jIpHdgpcM6POeaY559//tJLL33uuedkgk3uKMkjVVdXDx48OOnrZngkmpqaOrV3eda33nrrxIkT7fftq9cWrrnmmueff/7hhx+ePHlyO5vtscceCxYs6NRR7R5wPOw4cpeH/Fe/+tWcOXOSknOrV68GUFFREY1G99hjD1t2/uc//wGw5557Jv3QIYcckp+f//rrr7/44otSWAKYOnVqc3OzEGKMRn5+furVbxVtmUkZwb799turVq0yO5oyZcqyZcuam5vlP7dt27ZmzZrUgywtLbVdTWdV7h577BGLxbZv325Op7y8vG/fvkZbtoXHHnvsH//4xwMPPJA0xi+++OIll1zS0tJi3nn//feT3OOXBI6HHUfu8pDLNM9JJ530l7/8ZcGCBW+99dZdd911ySWXVFVVzZ49G8D555//xhtv3HXXXevXr3/rrbd+9atfzZgxI/UK5uXlHXHEEXfdddcXX3xxzDHHyDdnzZo1adKkyy67bMGCBRs2bHjiiSfmzJnz4IMPtn9MUie//PLLsnaQhL333nvIkCHXX3/9hAkTJkyYIN88/fTTW1parrjiik8//XT58uWXX355aWnpSSedlPTdPffc8/nnn//iiy8aGxtvv/12mZDvOEpKSr75zW/eeuutTz311IYNG955553TTz/9xz/+sfx03rx5F154Yeq3mpqabr755sMPP7yhoeEdCy0tLSNGjHjxxRcvuOCC+fPnv/POOz/96U/feeediy66qFNHlYply5a9ZiEn5JLjYceRuzyMjBgxYt68eXffffe99967efPmWCw2bNiwc8899/TTT5fGcu7cuU1NTXfffffNN99cWlp6xBFHXHnlla3++rHHHnvuuecefPDB/fv3l+94nvfAAw/87//+74UXXtjQ0DB8+PDvf//7Z599dvtHOWXKlNmzZ99www3777///fffn/QpY2zOnDl//OMfzfUFMHLkyAcffPDGG2889thjPc+bPn36ww8/3K9fv6TvXnnllVdcccWBBx5YVlZ2+umnn3jiia+88kpnLiCuuuqq0tLSG264YcuWLf369fvqV796xRVXyI9Wrlz54osvpn5l1apVmzZteuaZZ5555hn7/YULF06YMOHPf/7zb3/72+9+97sAxo4de9999x166KGdOqRU3H777fY/hw4dOn/+/G7+ZqbheNiZq5WrPGS7TYrRwcGhl8PNCHdwcMgSnLlxcHDIEpy5cXBwyBKcuXFwcMgSnLlxcHDIEpy5cXBwyBKcuXFwcMgSnLlxcHDIEpy5cXBwyBKcuXFwcMgSnLlxcHDIEpy5cXBwyBKcuXFwcMgSnLlxcHDIEpy5cXBwyBKcuXFwcMgSnLlxcHDIEpy5cXBwyBKcuXFwcMgSnLlxcHDIEpy5cXBwyBKcuXFwcMgSnLlxcHDIEpy5cXBwyBKcuXFwcMgSet7cLFy48Jxzztlnn33GjBlTVVV1/PHHP/zwwx354oYNGyorKysrK2tqajq708svv7yysvLaa6/t/PHuGrfddps8sOuuuy4Tv++QCfz9738/6aSTpkyZMmbMmGnTpp1xxhkLFy7syBcfffTRysrKOXPmdGGnBx54YGVl5QsvvNCF77aFBx54oNLC6NGjZ8yYceaZZ/aGR8X3sLl55513vvWtb7388stFRUUHHHBA//79Fy9e/NOf/vQvf/lLenf0+eefV1ZW3nffffKfkyZNOvTQQ8eNG5fevUg89dRT8sWzzz7rnomcE7jjjjuuuOKKRYsWjRgxYv/992eMvfHGG2ecccaSJUvSu6N58+ZVVlYuX75c/nPmzJmHHnpoRUVFevcCIBqNTp06derUqVVVVQ0NDa+99tq3vvWtHrc4kZ7d/V/+8hff94888sg//OEP8p0rr7zyoYceeuCBB04//fQ07siYAImzzz57l0+k7xpWrlz56aeflpaWFhYWbty48YMPPpg2bVomduSQRtx///0ArrnmmjPPPBNAY2Pj17/+9eXLlz/yyCNTpkxJ446SeHjTTTel8cdtDBgw4J///Kd8XVtbO2fOnA0bNjz66KMzZszI0B47gh5WNzIO6tOnj3nnpz/96euvv27Ly3nz5h177LETJ06sqqo65ZRTXn/99VZ/6tRTT7X1y2uvvVZZWTl9+nQAxx133A033ADguuuuq6ysrK+vTwqmWlpabrnlltmzZ48bN27atGkXX3zxqlWr5Ed//vOfKysrL7jgggULFsyZM2ePPfY44YQTli1b1tYZPf300wBmz559+OGHI4VeDr0TSTwsKCi47777Fi5ceP3118t32mFIEmQIY/TLjTfeWFlZeckll9TX11dWVr7yyisAjjnmmOOOOw4pwdSmTZsuv/zy6dOnjxs3btasWb/85S9ra2vlRxdffHFlZeWf/vSnv/71rzNnzpwyZcqFF164ffv2jpxdSUnJXnvtBaCpqalLlydt6GFzU1VVBeDhhx/+4Q9/+OKLL1ZXV5eUlAwfPpxzdWB/+MMffvjDH3788ceHHnro9OnTFy5c+J3vfOfFF1/s1F6OP/74wYMHA9hvv/3OOuusaDSatMEFF1xw55131tbWHnvssYMHD3722WdPPPHEzz77DEB+fj6AVatWXX755ZMmTerXr9+HH3548cUXJxKJVvclzc1RRx111FFHwcVTOQLJwyuvvPKmm25asGBBS0vLwIED7RinHYZ0ENFo9KyzzpKv586de/zxxydtsH379q997WuPPfZYWVnZ3Llzfd+///77Tz/9dMk0ycMnn3zy3nvvnTlzpu/7zz///P/+7/92ZNd1dXUffvghgJ6VNuhxc3PhhRdKuztv3rzzzz9/2rRpxx9//F//+ld5iWtqam677TYA119//e9//3t59QH85je/6dRezj333MrKSgBHHnnkz3/+81gsZn/6xhtvvPrqq4yxRx999NZbb/3Xv/41adKkmpqau+66C4A0fJ9++umtt9568803S9W9bt26Vp3bJ5988umnn+bl5R1yyCH7779/eXm5jKc6f2Ecsorrr7++X79+DQ0Nv//970899dQ999zzrLPOeu211+Sn7TOkg4jFYj//+c8lnS644IJzzz03aYN7771348aNI0eOfOqpp2655ZbHH388Fot9+OGHUvvIL65Zs+aJJ564+eabr7zySgAvv/xyW7vbsmXLiSeeeOKJJ86dO3fmzJmbNm067bTTTj311M5dl3Sjh81NeXn5vHnz7r777lNPPXXkyJFEtHjx4quvvvrHP/4xgPfff1/Kv7lz58rtjznmGAArV67cuXNnuo7hrbfeAjBlypTRo0cDiEajX/3qVwG8++67ZptBgwbtu+++AMaOHVtUVARg8+bNqT/1zDPPADjkkEMKCwsjkcgRRxwBF0/lAiZPnvzaa6/dcMMNRx99dL9+/Zqbm1999dUzzzzz73//OzrGkO5D7uXII4+UQmbQoEF777130l5mz55dUlICYOrUqQB27NgRj8db/bV4PP7BBx988MEHS5Ysqa2t9Txv7dq1n3zySRoPuAvo+UI45/yII4644YYbXn311fnz50uR+c9//nPDhg07duwAkJeXV1hYKDfu27evfFFdXZ2uA5B7sfNHci+2RbM/LSgoACCESP0pGUktWrRozpw5c+bMkWkmF0/lBIqKik499dTf/e5377333uOPPy7Dq9tvvx0dY0j30SkeShKiDR4CGDp06GqN99577+yzz54/f/63v/3tLnSNpBE9aW7q6uqee+652267zWSwhg4desstt0QiEQBr164tLy8H0Nzc3NjYKDcwuTF7VCSk2jQ/1cEsGgC5FznY9neNaesgPv744//+978Atm7d+tFHH3300UdSAbl4qpfj888/f+yxx2SYLLHXXnv9/Oc/B/DZZ58lEolOMYQxhh7lYSr69et36aWXAti5c2fPUrGH1c3//M///Pa3v73xxhtbWlrkOy+99JJM3AwbNmzvvffOy8uDFY/861//AjB58uTS0tKkn5KJPZkSA/Dkk0/an0oS1NfXpx7DzJkzASxdunTNmjUAWlpann32WfN+xyEjqb333nu1hdmzZ8PFU70ba9asufzyy3/5y18+8cQT8h3f92XGZNCgQZFIpFMMsXlYX18vS1EGu+Thiy++KO+Fzz777D//+U9be+ksTD23uLi4+7/WZfRk301xcfGPfvSja6+99v7773/00UeHDh1aXV29adMmACeccMLIkSMBXHrppb/5zW+uuuqq+fPnb9++ff78+Z7n/fSnP039tUMPPfSJJ5544YUXLrrootraWllBNFHMoEGDANx///3r16//0Y9+ZH/xoIMOOvjgg19//fVvfOMbs2fPXrJkySeffFJRUXHBBRd06nSkuUnqLj366KNfe+21Z5999qqrrpJUc+htOOCAA4488sjnn3/++9///vXXX9+3b99NmzbJaP2yyy5DJxly6KGHPvLIIzfddNPHH3+8aNGiwYMHb9261ebhZ599dvXVV8+aNevqq6+2v3jOOefMmzdv9erVxx9/vMwlxePxWbNmHXbYYV04KZkqlq+rq6tXr14NYNq0aTLp01PoYXVz1lln3XvvvbNnzy4qKvrvf/9bW1s7derUa665xtSeLr744ptuumns2LHPPffc+++/P2vWrIceeqhVez937tyLLrqof//+8+fPHzJkiOyYaG5ulp+ed955Y8eOra2tffvtt5PCXcbY3XfffdFFF+Xl5T3++ONbt2494YQT/vnPf/bv37/jJ2IiKVn/NvjqV7/qed7GjRvff//9zlwYh+yBMXbHHXf88pe/nDZtmu/7K1eu5JzPnj37vvvuO+WUU9BJhlxxxRVHH310JBJ59dVXTz755JNPPhkWD3/yk5/0799/zZo1H3/8cdIX+/XrN2/evBNOOGHLli2PP/54Xl7eRRdddO+993bNS5lU8QcffLB58+Zx48b94Ac/+POf/2xaTHoE/x/HZ8w0OGun9AAAAABJRU5ErkJggg==", "path": "image.png" }
Which solution has a higher concentration of green particles?
[ "Solution A", "Solution B", "neither; their concentrations are the same" ]
1
The diagram below is a model of two solutions. Each green ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the green particles represent the solute. To figure out which solution has a higher concentration of green particles, look at both the number of green particles and the volume of the solvent in each container. Use the concentration formula to find the number of green particles per milliliter. Solution B has more green particles per milliliter. So, Solution B has a higher concentration of green particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABYsElEQVR4nO19eZxcRbn2857unu6ZTHZCNghONkJCkAABTICwGtYEBBVFkFUWuS6fLIoCiig3CHIRryxeuIBs8kFEBULAD1kiCsawBAIKJEEISViyTSazdJ96vz9qOXVOd8/0cqanE+r58SPd59SpqlP1zPu871t1ThMzowR05PwPNnesbW3f2NG1trUdwNrN7Z05Ucq1DrFjYCY1vLnx0ImjBmYa+rovNYXjYV2hXB5S9+bmXx9t+teHG9e2tn+wuSOmHjrEhnTSO2PviZ8EiyN5+O/1mzd2ZPu6Lw5RlM7DwuamI+cvfvejV1avM7PrkZfONKZSDamGhgH9momQSacyqYYEgQCPkCB4BA/w7COAR/AIxCBSnz2AAAoXJgQf5P8BeAARSJ8lfaH8P1h9hj4IBnRh+YEZRABUMRus/2EwEclhYDDUVSQPMKuSzCwPmpLmMwhWseCUPCKYGeQzC4ZgFoBg+MwM+Ayf2WcWIGEVYFZXCeiDDAFmkPzamc2tfHd1R2d26ojBR0/escdp3kohefjCux8a/8XxcKvmYbLg0WdXrF387kcAvGRqwOBhjU3NjZmMmUU5owkCSA6sBQJzME/6toOp0oMYFCAKJsNMCOupgnWJOStbsWuIVmvm2LpIFmAE/GB5jon1OQIxmMhMKoGY5IQRMTMDmhMEsKyE2apcNcjBPyBmDm5HF7LsPDEzs2rUKADDaIHqlywGIJVM7DBq+Fsr3lu7ub3gDG4b+NOb7y9dvR5AsiHTPHCI4+HWzsMC5kZKCpE3eFRLpqmfByT0DUgbH4DDX/URhhpNkL6EwZITrI6YmZO0sGtggqc/g8KtWEdIFwaHWjHHVSv6IOnZJqJgtBkAaw0poCpgU1JfaF+phoVCs2bXDVW/kHy3ChEFBYmIwAQSlrdJMHPOpp8klY4ok04B2IaD3LWbO5auXu94uC3x0Ms/JAMoL9WQyvQzbRrDHIq9KPxVHzFuJPRVtm9pbLC520idwe3booDQZ9WTsFihoKpQqAJof5WCCsm23rpLTPoAWRcyM9lXqqbZVrlQ3UBIVaw7Kqoq+mhYVUwx5Vz7QgBIJwrM4LaBzqwPIJludDzcZnhYoNDw5kw64fldHblsh2mzgKqwZc4RHAypir4KHBw0qqKu4Gi1bM+cVQ/CdYaq1X4y25WQkqAQFfU8RVTFuq4bVTEeLOxbJCkKeb1khEuavkbOS7nQIhJWlVC/iDQNiNraOgCMGdyMbRTb988AyHa0OR5uMzwsbJOmjxkGYN17b+WyXbpJeaewe2EkIkAJqgIUUBW7ErJmDlY9kc/5qmL4YVQFttTo9mqmKtGvYVWxipWtKu0dXe+t/gDATtuuuckkE/u1DAew7r23fN+XBx0Pt2oeFl0If+CVlW9+tCmRTA0aNrq5/wCZk0sQ/Fy2q6O9K9vZ1dnZ1dnZ2dWZzeVKackhdkwdMfjQiaMyyURfd6QX4XhY/yidh0XNTUfOf/CVlf/e0AYgnWlqbG7OdnR2tLf5vpvUesH3Dt6tr7vQ67B52NR/YEM67XhYbyidhz1s83tl9fo//WtVp2/t2iRKppuSqXRDOt2QzqTT6XRDg1w1SAAJD/Kz2e+Q1EdIHmF4HuQuCSlTAJLaF03o3Q0e4HkgVvsjQMGeCCK9DwKBj0p6GwXbrqJyMUN+LOetCLBZEdABsh0zc0n7HVSsayph7VQDsLc52PsdBLMAdbPfQTCYYO93EAwGCeaXX19e1jRv7XA83DZ4WHjfjcFuIwdPHDbgwVdWvrO+ran/gO23276xsSmYRUICIHt7ldwTAeuz3jGlPuv5sI9T/vYqAhiep6aQUOA/2Nur1ExYqb5CcwyoHFuQzyME+x305gYZMyumhPY7aE6YK2XeTUWyZiHTRP1hWF0CdLuAHTMHa45QCQj1idRaa/fysK1C8vDuJW+vbe1wPNx6edjz8lUmmdi/ZQQROrdsTqXTQfZe57eDBHuQnY+uCJA5aV0CXY0ZgeAIW6sGdlLQQl5iH6G0vKk3vCLA3awIhFXFLDmUuCIAvWmi8Bzb4xMMnZ5wvSIAexoD1rJpjSg8Cp8YZJKJwyaMdjzcqnlY0mr5mMH9xgzqJ4RY//FHQfZeO4tBgt3KZYe+2r6ldQl0NQgPTFQiCIAacxt5if3o2kTQsH24mxUBnf5Xo62XHHTJblcEAKhFBESbNAco+qGwqlhXRVYE5CVd2RyAAZlUtJVtHY6H8sqtl4elbhLbv2UEgPXrPszluvJVhcIyElEV2MWLq0r+3gpbVTgyYVxYVcgqoOrNI0evqAq6VRVLTFRsHVYV+X+jKqaFgqqSzeYADPoEPJmZD8fDrZqHpZqbMYP7TR0xWAjx4dq1garILrDa49CNqiBvE4RBwBkOH4moCgpJT56qcLhAfoBp2FMbVWG7MQLUn4QaDg4NJRlVMS0UVJXoLX2S4Hi4VfOwjC3w+48dDmDjpvW5XFcQ/hVRlZA5Z6Uz+VJjDhRUFfs7Q4uVXSisKshTFaMNweHKVQUVqArZjWlVIT0clalKdAQ/YXA83Hp5WIa5GZhpmDpiMIC1a9cG4V8RVYHtc1LPqmJZ0EBVopywd0xS+IhWnnxViXi/VagKYlUVct5NZXA83Hp5WN4DflJYNmxc397R0YOq2F9Z3WE3qsLWEkCgKhFO2Ec4rDP6wqDl3lMVq+NVqApbqqKuct5NiXA83Ep5WJ65GZhpkI+xrF69yp6DiKpEO0JaZ2yENYSsVwFQXpngq8UkQlFVsTtToqqwGn6SI9mdqlgdL0FVLHYWVRV1lfNuSoTj4VbKw7JfXzB9x+3SCa9tS1vb5ragg2HFYOv/6lMhidBWGyikKrJM5BJz56xVxVawfFWRfStFVUgNP8uRjE9VAjGxOknhdKK6ynk3pcPxcGvkYdnmJpNMyOfFV3+wJuhgIVUJuqMVIITAagOlqYqSEVLlyVSir6lnVdFioblDZPdAfnDeTelwPNwaeVjJy5mksGze0rZx0yZtVuU9qQL5qqIUwEYhVUHkwvAlshJWll99tZtWQ5q3lxSWBe8NVYGewR5URbUfUZWga867KQuOh8GVdk/rmIeVmJtMMnHoxNEA3l29SptVAOWpCgV3bH2NXFhEVUirin0VtKowh+hht4LeURXV0+BFsIVVhZmjqkJ2//UjM867KQ2Oh8GVdk/rmIcVvnpyt5GDB2RSXdlsa1sbiqiKPQZKVTh0JKQqsFTFstW2Dc1XlbB/GlYVUweFW+5tVQkdtlRFCQKz5pE8bt2gUhWoK5x30zMcD7cuHlb+plt783LE0pm+me9KVSh0JKIqweU2P8KiUUBVIu1SAVUJtRwRh5qpCixV4Z5VxdyLNYJKVXK+APBJ+HmpUuB4aHe7znkYz4u1I5YuoipBfGuVyFeV4GQxVdHT1Y2qSB6wVU9BVQnEoZdVRd1hPKoib4faOzoBDGx05iYKx8M652GvvMefjPOmeqYEwTKg3amK+UIRvdJ1kvVfVFUQqIqd8wupCuJTFauJgqpi1CMOVZF3F1Zwh+JwPLT6VBc87BVzw5YCoFtVMfPEkeutMqHjRlX0fxQZaz2R0BThMF0kCYqrCspTFUNlFFEVLqAqwe1VpCrR4XYoAsdDq891wcPaeTchBdCqYshQQFXkjIZVw5whoyGRsc5TFdKOq+lMt6qC2FVF5v9tVYH5M3DeTW/C8dDqc13wME5zY9+zvA1j3Y0CmBLFVIXyDyE4Ys6w0ZBg5IIjNkVkQ32oKoHDbqmKuk3n3fQCHA/rlodxmhv7nuVtREQgoiqwZ9euJF9oKHSVrSqB6Y2QrGpV4RhVxYTKzrvpfTge1i0Pe9e7kcJi/ouoCswRK3uXryr2kXxVMaY3SrKwqgQtl6wqlKcqsH7FuWpVoR5VhZ13UxEcD+uWh73r3Uhh6U5VOPRVj4f+YsqUoCrB7YePEGzLXZWqwPzKsvkeYnZZqsLdqIoZw4KqYi+tOOTD8bBueRiTuQkPtElvIVjXV6oSjW/DX/V4BHWikKoosdIHI6oSOVIzVaHCqgIKMy1QFaur8gxZE9uNqthLKw4hOB7WNw9jMjcUSoPBbN8M1vWVqkTj255URVVr64wWK3OwR1WBNfA1VxVEFlIDVVFng6LOu6kWjof1zcPYvBs7DQa9waEbVZGgIO+uDkdURVVr6wzp0bFUJUSyPFWBNfB9oCpWqBz0R6uKVdZ5N1XD8bC+eRifd2PfilaSiKoEIWKeu1u6qqhq8yopoCpWUzGqStBMd6oSaE8kVJZNGFXRBfTBPFVhe4AAZs75PoBSfgH+EwfHw/rmYXzejZEI/VUKi60qQYjYraoYS4pCqqKqzavEjD8bnbGaKk9V0J2qBPfcnaoE2hNZCJBN2Kqi6yygKiCYbsgqiaizswvA8ObGHiblEwjHw/rmYczejR0DF1AVW3k08lXFVp6QqtiXIHTQVhVtjKtQFVSoKrrV0lWFIqpi167m1wwQqRryx9BBwfGwvnnY694NtI3VZlUdMf8UUBVLNFgTxUZEmmDYAOsSXUlUVWwFQMyqYnWdrVJBwTxVMTvLdTes2oupCkWGw8HA8bC+edjr3g1CNjYUzWozGVIVwDLNRiLCrfWoKvll7PmoUlXYqroUVbE6RX2lKp8UOB7WNw9r590YDTHRbFRVrE0QPapKEEibSyxVQZ7y2PNRpaqQVXWZqmIWFKy+Ou8mRjge1jcP4/RugG5VxXhtbNtpS1UsBaCgYqtaBAUigXTRS/JGpE9URXcvUBXI8sVVRffDeTflwPGwvnkYh7nhkCDII92pCmw7bR2xFICtumGNpiqAsKpID5YKXZI3IiWqCoB4VEVXla8qpn5ZIYdVBfoPAHGoyicCjod1z8M4zA0VVRUKzoemIaIqbH1FCaqCyDKB/MqFLqlUVQCUoCrBiBdVFV1VYVVBoCpURFUQh6p8IuB4WPc8jN+7sY0gB+dD02DsNGtVgV2gmERYLUZURY2Csdgc9CS/s/mqAjljZatKMOJhVUGk4T5XlU8EHA/rnofxeze2EexRVQoqQFGJsFoMm18QAp0hXSASV5sK81UFcsZiUxVEGi5BVch5N9XC8bDuedgL3g2iqoLI5suwqiAYV12gkKqE7W30KyPQkHpWFVh9DKsKO++mWjge1j0PY/JuLPMfmFxlPIHIoyU9qYoqZB1jjspIj6oCdK8qIa1ArVTFHq1AVeC8mzjgeFj3PIzJu7HNvz5mepivKqZQAVUJT7msJ1AVXSakM4VUBeheVUJagapVBcwVq4o83I2qcFhV2to7AIwZ3C96b59wOB6i3nkYs3cDa5qM/5WvKqZQAVWJOLQoXCakM92oSqHOlq4qxqCbksVUBUQlqorpqL2RQTYeFQzdV4J9tfNtisDxEPXOwxjMTXheKlSVQAEKqQrylKegqgRFjM5YrZgKS1cVY/dNyepVxfTbVhXZeDQctlUluDpUxMHA8VBeVM88jMHchOclqiqEklQliG8jrCmiKsERXQ/b02l0xmrF1FaSqpBRFbJLVqQqlKcqgPNu4objobyonnnYK96NtK1shr57VeFCqhIY3zCNrDLFVCV0xJYFcylzz6rCRlXYLlmRqnBBVbHvsEdV4eBq590UhuMhUO887BXvRtrWYqoCsuZSH4+qiiUaIRoVVxXYQ2t0hoOzVotUD6pi32GPqmINlPNuCsPxEKh3HtbIu7GnFmzNpb6yFFWJlLG/RqhmVAX1oSqh7/rG2Dpfiqqw8266heMhUO88rNbcEKJDXFBVQnddTFWCQyAqoCqB8kBfQtEydiPqUG+oirqqVFUJ3WFwX8GbYoupCluqQs67KQ7HQ11vXfOwcnOTTiYAdHR1laoqBnLoSV9lJAJBRWw9jaKHwpIRqEvCF0WlyxyKX1XUVWWoihUqm6PBm2JV43mqQmFV4dBIOQCOh1sVDys3N8P7NwLozHZFHUjqSVUAcDB53alKYOS1iQ2rSvgiy6ZvnaoSlYw8VaHQSDkAjodbFQ+rzt3o+wqMKRdSlQgKqQpZFeWrCiJP31qqYlhElnwFebTeUhVsRaqy7cPxUH+sZx5WbW50cBsY0zxVCc8OgMKqEkxMaaoCy3c1qhLYbEOBklSFylcV9KAqts7CeTe9DMdD/bGeeRiHdxMxpsoWBqqSNzvBIOSrCluqEkyebijCl0BVjOHOU5XIRUVUhXtWFaA8VQkuC6mKtTu0ElXZ0tkFYPvmDBxsOB7qj/XMw3i8m0ioaI4UUxVzxKgKzFTZ1cqPtqqEkV9JvqpESFa5qgAVqAobKbTExHwoRVU4rCrsC7if0MyH46H+WM887AXvBsERW1VCIbElCJGJYbta+ZFDDdnIryTol60qti6gpqpCRgoNmwupijqev99B7QRlezAdCsDxUH+sZx7G4N0AxVVF/8fWuKM0VYEpY6lKRFgKqEq4Y2qOKXy4r1VFssNSFYJpMnoLFFGV/Bt1ABwPzZm65mEM3o3sZwFV0VawmKqQ2TcAHR8iXI/8GHmkJVwgVElexxjRSLtMVYkMfc+qwqbeQFUQ3IwlJpaqBHcYyic676Z0OB7qj/XMw17xbtQRbQWLqQqbfQNQohFUEFYVshpCuECokryOVa0qEceyZ1UhU2+gKghupmdVsebReTelw/FQf6xnHvaKd6OOlKwqtmh0oyowlVgF8lUl2tDWoyps2GH1zXk3JcHxUH+sZx7WyLsxolFAVawCQT2yEnnW3iQeVpWgaXtwOFqglqpiel2BqpBhh9U3Fbg776Z7OB7qj/XMw9i8Gy0BuofGydSGu6iqWAUCe22XsTeJh1UFALpVFYRZotvqRVUJBiKsKvkLAWzfa7eqAufd9AjHQ/2xnnkYz2+E28Y0OKIlpaCqgHpQFXlzoUC6kKogrCpEBVTFHpq+UpV8MdGbM83kdqcqcN5NCXA8rHMexmNuSlQVE76aI7aqIF9VKKjHVBsRjYiqMBdWFbvaPFVBbVRFiwnMB10gUJXQPFqqAufdlADHwzrnYTzmRvepB1Ux4WtBVZEyYqsK8m7d6EwxVQnkK9y1ULVRVUFtVQXmgy4QqEpoHp13UwEcD+uYh/GZG4Jt9EpUFVDwlXUdEhyux1RL9mloHlmX5SlGvqrklylVVSDntmaqwlFV2dLRBWD7/o1wKAjHwzrmYazeTZ7Rsw/YqiLPGRMcqErE/Be4dT3ClqpEZCRPMfJVRae8gjLyDWbco6pAzm0ZqmKuJAYrR710VaFAVeT/cr4P98xUN3A8rGMe9pZ3I2EfMKpizHlBVbHnBgVuPU9VdJnQVwqVIWu4LUGzq5bvZ6XYVSVoAEwgm5TlqkpkbB0Kw/GwjnkYt3cTRkRmAgOqvwZ3ZhJp1tygBFWhvCDZtuzmiKFCb6oK8lUFJlSmQFVgWilfVRx6gONhHfMwTu8mvxscmTlbVRAEwN2rijTiwVX26fAUBkIUUZWwpa5YVbgHVQm3bdWs+hlSFZ1qdN5NvHA8rGMexundcPSAVhXLuiN0H5b1L64q0ohT+BIDW1WCmvNUJSiPylUl2KFQiaqAFXdUB/JVJdpXOO+mfDge1jEPe8270euCEVUJLLK6CMhXFcuGhlRFz4stI4Gq2FGqpSpcK1Ux9UZ6E1YVNgUtVbFvLzyZzrspF46HdczD2MwNRbqhE/4RVQkssjyir4U9x5YNDamKHhBbRgJVCex4qN6ILY5FVTg8R/oiKqoq1I2q2DfvvJtq4XhYzzyMzdxwpBvawhZWlcg86RpULeWrSiga59CIRWxxLKpigv1SVUUxvqCq2DevneGgu867KQ+Oh/XMw170boCwatiqEpknUypPVYCoqoAKqEoQeFpdoXpSFZSsKiE31nk3ZcLxsJ552IveDRCebFtDulWV0P2znkhzFZekKsa57W1V0RX0rCqyuxFVsRTDeTcxwPGwnnnYu96NZTLVh1JUJeTdkaUYRVRFNRRWFZO6CzMtflXRFfSsKiCwKRiMgS7gvJs44HhYzzyMz7vhYNCBkBsZjLGxpmWqCmlCmCOyQDBZPalKqF+lqQrkNMaqKmQKBmOgC5SmKl1dWQADMw2FJsHB8bCueRifd0PWTKBUVbGjR2Pv81WFEeKQmVrLFodUhSJiVZGqQE5j9apiqBqHqmRzOQCDnLkpAsfDeuZhr3s3xibKg8rs5uuMZe97UBVdrR1IR1SFjViZCbH71SuqYt8e7N6QoWocquLQPRwP65mHcXo3KKQqxibKg8rsFlMVAMYsd6sqbBECeaoCoyp5W9p7TVXs27MbjllVHLqH42E98zBO7waVqop1BWDMcomqYo4ECqGO2KoS9DPoRuWqEvSxZ1XRXQ+rilWt827ihONhPfOwd70baHtvDkZVxZ48c8SqEHouQh4yCqhKuNbeVZWgjz2ritKQiKpY1YZUhQupSjT14FAcjof1zMNk5ZcCAASLXC7nEQSQIMgPHsGT/5dHWH8GPIIgeCBWH+Apk8qeRx5ABPl/eRUBnkcE+HqmPTPfQvuGykMkAYCZAPK0KRaAFxo3Y/3ZMAgwpj1fVbiQquhDhVSF7bLqIwWqS0IohQmpilD8ICJhtShVhWxqORSC4+FWwcNqzU1XZ2dra6tHSBCImazZ9QACE9RcEjjhETHLKdAHAeaEpwJJOakQLN3UBBHA0gSryj2SUaV0WrV1ZjnNDPaUz6d+8S9k3PV0C53cYzPuAIOZWfqxZK1uCGaPSLDytoVgqFEnNVlq1pR+KhGQvwHGEIAvryHKCSEYIPKZc0Kl6nKCBSAAwRDMgiETAr4QgsGkPsirBHM2m61yyrZJOB5uFTys1twYMMMjImgfjMFgiowyg4gYTKw9Ojlz0nnz1BYFOcekfidUT1VekMxCnVLxsrmEdAStwmDFBnlKMKuCct7CqiJ7KcvoqiA4BPI8IZhZ2F0SkjtEzCqHZ8JkXwgGmCgnBMjzmX1fCJAABLPPLEC+YAE5xySYBSCEUBMvO2DKCBHXlG2TcDysZx7Guu9G3Z/8rqx44MqxssekTT2Z42p4jWsoh49NSKo8RAT/wV6q1Bks5tDvkDIHrqI55Wl7r7objpnlFMkykhlCUk3dI6kQVz3Ob24F5JG5IQBEnj6hY2YAgBBC+thaivQwmM1gzMwi8Lr1ioDVVYfu4HhYzzyMdd+NtOcyWmU9fzrEtVVFz4s+rpNhUEeUqmhvU6sKQu5iUIMeKVKzZeQl8GFJjRekYpDyjIMQV2kRyQA2UBWPKMRUPcEqitU8YhGaNmahTwDWBHmexwALJhhaqGJmlIi8SMwciJ5DT3A8rGcexuzdwJoDoyrGXgaqIi+BOq6dR/vuwCq6Nl8tVaFQvipQFTVbfawqzNyTqniWqqhizruJBY6H9czDmMwNK1WBNQfdqIo8Im+MVOpMswPyoMqNW18LqIo6q1XFo7pQFSKKqoruLRExwCxsVWEVbuuLu1UVwQCQTrkffikEx8P65mFMqWJSqiK1IZhXSCXRmkMktULNAembJJVL895n6mS5vsdAYkLCDqQ9PTDGT9auLEv9EtaKgEe6Gt2KUZXIioAMcqWqyFhWljGqYmaadAZOjru8Tl5CHrHQPWUmz2MI1ouompfmfbEeq9J6CqEOKFUhLQNELESgKgxfMIDhzZl4Jm4bQ0w8NDZEUijhkeNhLDyMwdyocVUbC1jNgZ51hGZdqYqnVUWqB63jxF9yidd8rA/FhT5AUxLerh72TpK9IsAgyy0zKwKeGg6y8/lKZYqtCCgUWBGQM+1ZvqaeYE9Ntr5xBKpC2h8XSkKVqqh9okpVhCC9cxSWqqi8A7wg6a/ZJsWu+snahhEDDwHIZ4ugBE+ukQtmz2rF8bDiOYrB3LDZ312qqpgJBoDk77PJ53JFK3/N91/zebHvzUklRpOlKpynKiz3UoVVBT2rCtBrqgK160MNSgyq4lAMVfIw37shHWd16904HpaBGHI3RlVMzCxHjlXSSc86jKpoe96GzC86urE1BuJtkbupU7zqWzFzsJVCx8xUIGbWQ1M0ZlZgVU8PMTNQTsxsnG3dkFxSJStmDqkKrJjZsDsSMzsUQ8U8jORuDLFYJ2tM7ka1YtI3jodlole8G7W8FlEVsBwdKRVeOxpv7fDeL7nv7cjenqXTKLGrdJa1pS6uKtAeLEpQFQKLnlUFzMTM4m0hXgPeZwawnjGYOAOMBSYDgy1VUV5tcVWRNYZVRbAg8hQFnHdTMirjoe3dqD/gnrwbgvmb7GMelurd1A0P48vdUBAzG1UxMTMRiLWqMHuE9CPZMmyNRtd9Xelz095oIo/MzlEdM5Nnu8QyZta003lBFTMzhJlh1VmjKt3FzBCvitwfBa8Pd0umnJYBDzPtSXQw8WAhk4McukUrZlab1gvEzB48EVYVl7spBZXxEMZOGeXvKXcDM62MvuIhysrd1A0PYwim9Ahpr9Vy5gBpU2WEq26JCMnX/NSSnmOoAmhH7vdZoyraTZb/sDBpOehtnVbfjKqwSSEqNxqBJ87MRfY78Bbk7vezd+bZmgj+wd4N7C0jqKUGM0pKVMGSKExaJYn0qoFRFXOd23dTMirgoQ6j5OWquEkEa2sVeriSOXCj+oSHusNl7LupHx7Gn7uBdbuApSomZmZkHqn8OUP/bZF7U8jgVju9QcxsZla7i0Hf7JhZBbLaCQ6pSqGYmbeg6+Zc7u+lPSfSAbqL6R8gBJIUhL4yZlaLBQViZs/lbipCBTwktXAuL7e9m8BfyM/dkF6cUlFQDXkIdUdAWbkb1AsPa+HdyDJGVZKrhbe+qj8df7GvVEV1IFAVIznxqkrXb32xqrw+Jx4ELetBVYKBct5N1SiXh6T9ncLeTRCLRV4dUci7gVVDb/IQ6o4Qr3dTMx7G493IYLeYqugySlWSy/wqW/Rf9UOqog1yoCp6Jyhp9lWjKp0Lff+1Sp5/TT4IbFGfC6pKMFCFVEX2y3k3JaJcHhbzbjzNCuPdsD30OrtRwLvpZR6W7t3opkr1bmrGw3i8G0ZxVQnKaO9medWvUGiHaGPTEGtXkC1VsVYEQjqjVEWSqKiqeEZV/DbOPVupfexA4lHVQAWqIvvlvJsSUS4PtVMT9W6EZoXxbsgeejImIWirBjwsy7vRTUW8m77nYRzeDcKqolcKzazDUhVQPH80/H7gIZLaQ6FHWaqK0FNYUFUkiYqqijCqIhYLbq+8n4klTO1S32xVYefdxI5yeaidmm69m2Dt3BiVwFUxbdWAh9V4N+oO0fc8jOMRTQqrShASF1AVcBWdtaDJIKtkslRFHpFvS1J+cxWqkl1crS/mvZ6vKlSZqmRzDGDMoH5VdmnbRDk8pC2cXCGSy0XibZFcIWidSqCY8EcHXZZ3QzDVGtWMeDe9x8NqvBvd277nYRyPaKpBU/sdEITEbCw/EYItSnHAazJ1q1HzjCqBpKp4HinvFuR54f0OLGCC7oiqQA602u8gyt8cFEHidWSnqYplB6yeAIqgSmbJ2u9gVIXdvptSUBoPM//INS7xkyuiKsKDSUxJ+IckvX5kzBKxVYMyZtC+i6yQoOaxd3lY1r4baTmh993oiFF7N33HwzjMjdwlbJ6Fk7l267XQsH0aZjHYQ95kl93mKEMAbaG1OiGsKqwoEd7NqVxkVnPNFN7N6QkWRJR7M443dbYDlqqYqSVAPa8iKWDt5jQLDBzZzenQDXriYXK1GHxXp7eh8F8LrefEolziHzl/ZpIPS0IKpI4sYMZfftT7jJVH08s85OK7ilWfwruKVTf0rmLtCpGJs/qKh3EEU1pVdM5N5dplKCihDThAlBtb7d+NN4qsmFnHn7pVoiBm1o5hhTFzjH/hqsP2U3baYTeqAh0zQ6uKZqfL3ZSAbnnYuCQ39JcdxWxNgHYk/pRL3JFFG0IE0p8LeDe9z8NucjeqT4VyNwhyNyqSQ1/zMKbcjVpsMzGzGln7z9X4OdldqnWpEnslrJg5UBXZqvQwg5g5T1VKj5lj/AtnSwzNB4Zim0lYKlXRMTOFY2aH7lCch00v5gbN7yqjpmW+95vOEIH0Z5MWliVrw8NucjeqT4VyNwhyN7DTSeg7Hsbm3QQZqULeDfQ0gYgb0TWjcotDGSSmJ8tSFQTjVZ6qJEbH+HLVIqrCzruJCUV4mHzfH1yOrVF4W9D9WcstCbwbeUiWqg0PiUglgILGtaGRV1bv3dSEh7HlbgAAbExpJHcDPZCyaOchqdSSHHVU0lrigCQ12fm/aMzMDIRjZpPrQrkxcyNTBlxRPw3EWHn7RlVUCE0guQdLJjQLxsxEJFzupkQU4eHQCmyNxGIfeyYw3tPpU9WK/sdyE3qBh/46zi0WXUtD29m9wfB29RJ7eRipDY3sTA+5G+PdcN/ysBe9GyDs3VheKDeh4+R0BU0l9kokZyego03oINaoChdSFcsbLEVVyFaVxNRq3wosdglGgdTWdf2B4byb2FCIh/1ezKXWVJHvfyIHAPnejV6x6Q0eYgu135fbfGVXx2O5yKMzYj1yz4rO63LZm3x+n0v1bhB4NxJ9xcO4cjdmU3cQM5u5kOCwF+qP8zpPSJXXzlgvNbdBhaDBTYdiZs+LxszSXSwnZmY7Zk7sWZVTwSMgRgY1aFXRHwgudxMbCvGw6fXqnphZLnidTkFHvZte4aFYxa0/6ex6oYdui+XcdZPvL9bv4us+dxN4Nwp9xcO4vBvqwbtRVlMbTwCM3F7JjrPSXNrLlb29Eg1fb0BTWFUAQE2tVBUhoqoi3d18VaHSvJvURM8bW/ko5Y4uT1UARFQFzrspEXk8THRQ4+sVvefEAr3q9+zdALHw0F8lNv93V6m72Nvh3y/EYu4N7wa9w8Pe8244NBfKagbhtZw/Mc7rvCiTO7S7FBKN9ZLnppMnpvRlUVWRUxtRFZPDK6YqXJp3IwRnvpSkin74wJ8G0RLIouxhRFVkQ2QNjNCvY5Odh/NuSkQeD1Orq30YGACvl7tsEB7/+Hko1nEZtkbD/79CvBr8qZXg3fQlD+PaVay3fIOj3g2ZMvof5a5B5aaayD8sJWYkE2/49Lag9dIsAY1EY4nGJ7xR5AVvb5TWViXW5BHPU3s3CVAflLwEyTkiyr7rp3ZMqLcxCkEq0M/zboDQbk4CD0H63GTHdeXpJI+Af4KcJzltimf6EWH17kjZEFsD45F6A36gKmY3p3NwukEeD+PB+4IFK+fACkcq5iGbvbxhHm65J1vZ03n+//WTLQluAlBkVzHqhYdxrUyxzr5r70beoVm8I+17Wt4NK3PEAFEziT0TtGfC0+4aETyPIPKtqbJk+nCgKgBsVeEtyC7Ndb7g51YFj1mmxnveUC8xmjIHJEvfzemNpvS3k1035kpcpeLJ5B8vOaZHBsQstMun5YVYdtWsCECqCnkwqmKtCHT6PoAxg5vLn6RPAPJ4GFvF1fFQnabCK1PMYHDuLc69XWlKux3iOeEd6jGKrExxvfAwTu9GWT4U9m70P1oN9CMt6n3SQibVWDsakAfzVAX5qkIecZ6qbHk02/lMLl8usm8JvCUAdD6fazquITWBevZupLEfTQ3fTnX9NsfLu7XtGYiZ4EPyFaCQqqAkVWH3zFQpyONhPGikangohI5WuvVuOp+u/P2WAMQipkOB4t6N3e0+5GE8v6Ip+ykz8/prEe8G1hHIHBwDRJ5+jsPKaYVCyQARVZFDrFWFSLRh8393+D29fM9fxa2/7MzMSqZnJ6mxB+9G1uUNRcM5CfE2+4uFeI0R8XRGAnsSTwNnpO2KWJxCqgJmMJFHEN2oiqSCy930iAgPc4PiGLJRVBkPA++GAOidOCjg3Ygt3LW0ujRTO/A2YxxFvBtQffEwHnMj3Rll+SjwbkKhrvon8G5QxLsJLpJ5+0hjzORZqsLSgZSuIPw2bvtVZ4+2xqDj6Vz2Lb/5vAY0FfBuoL1i3TIA9sYTjUswM68Hr9MppeHgJpMqR6HcQaAqRt+gVEX/NIfzbqpDhIf+EC83iJIbqho3GkUV8FBwGd6NX/VbBwCI5eyNo4h3U288jGeTvrw/1vGtWZkKJIHMP1HvRi1ZGe/GmlZSuxLCjelw19RjVIWZt9zWVbqtkfBXcfvvcwVXpgAIEX1WRd4xABpCNN7zxhGNI2oOrQgESwV6cOwVAcU5I4/hDdhmRUCPgHqDpPNuekQ+D9snVSeoGWDXRAU89Ax5LO8GCK9MBd5NDC8eUMtOXl3zMB5zI0dQrRcqkVF7ChS0d2MyZ7qk+iMOEvhh70Z5QDaU1AT1kKc0rXNhrrJ8W9cLftdSoWqx9t1AejdBy6Z72ujoOYzsd7BVRd+yFjcoVVEbH6Rza+UFPOt3pxUjYR52dugO+TxsnZkSlWxf19g/ifJ5aJZ75NttlPejcyVs9t3ov5Hq36kEQLwN1D0Pe9G7Ia+Ad+O97yeXC9oS9W68It4NoSRVYYZo486nK9/T1fFQToa7pXs30MEXCqsK2YNTparAeTclIJ+HuUHYPLO8zetBbYMJM5Mok4eBd0OlejfeqBim1hsH1D0PY8vdwFovVM6NUL9SmFouGl/308tykbeN5CYneJzn75cEIAQn1IvOot6Nl68qeTEzmLv+7lfzUmGxjnOvcmqq12PuBmqVlVX4JU8Vj5m1oJmYWXNuC9JryNtAuTR3DaT24RyJmfUIaF663E1PKMjDTQel0stFemWZudgM+KsNJDezlMNDnTtiT7+7D9xD7sZriuMXCiQpy+dhj7kbxMfD2FamZD/slSnPI+9jMfCpbGORH8xMLvOxzE8uyuWOSWHXBKsfUQ2tTJHeYWSgnSYdqemYOfdWtQFwdqlI7epxZGVKRN+iJu9Yta2DrkIrAto+BaoiGPDaqeENyvyNUmsi/E1sGcNbduIP98ihSXuDekWA7cjUoQiK8XDdl9Pb3dZRxrOaGYg5KYwKZqF0HsqVoFK8G7My5Y2M4d69scrUlshDaY3N788wmDyPhEDeyhTi42HMuRvSX4koucrf/lftxWxNcO16Tt3ZlfhtFwUrhdpl0GZaQaqIfhrFHJQxs/9WtTvWxTqONXcTGE3T+9RKGngT9X/Iy7M1AND0b9ruWW/87al+71gOsLXb3aF7FOQhC+YmrDsj0z6tNHHNwD87jb0SlfHQ/Bkrfwfd525AhESz11DliwcywDhCyTwk64kKo5wsSsrdVMPDmHM3ZnpS7/vDf9XhlfymGO8fvnd/l2SLCQ9JKYIuJFVC79cMDjIzV/tWGgD+26Jg7saaMASGRrbdc+6GjKo0vEjN/0vehh66kdpILfckPzU/pZq0nuVz6B75PDQ5RNGITSc0bDgz43ezGScD/7Bk9uIMRlPlPNQpWO3vdJ+7ATOEEOlZVcUZ3v5e6TxU3dC2zygneZ69dGznbuLiYcy5G2n6khuw/W1l//V7i30xiPDZJOmElFkRkEdkeGo2biqwfPV+TNJPVDh3o9xRlJ+7UY96Jl/kzENlTNTAN72dHk2uOCLrcjelI8JDO4coGZNt8dZfmEmtEellIrnch1GPwR7v6omWBBqDHGJlPCSVV2WC3pPOBJnNKZC7YSJ45HkTkBznVfgcQwbeDCqRh8a7sXI3kKWFEPbGODt3gzrM3UD5cNhufmfpfo0N7085sVeChyg3TrIl8ActVQGM1TbObhyQ0X44d2OvTJWVu5Hzwyy85cjML1sUhryayKXxzkFdpF+dn/MZwPDmxpjudltDhIcmdxP8ajcAwB/ptY/06JCkR/AAkmlgwZ6nnA5PpX5QCQ9VzGGSJqpV/XOakdwNmCFYeJ7X9OVU6886K3DSE19IoB+VwkO7o+HcDdQiN7hg7gZ27qYKHsaZu5H/ZFb4mXJXAewO3Z81Dh3bZhqRmFmVlzwiAg2pNthIjCq878ZaSkRgaGSH8nI3mtfmFBNR5p4K+7b9PxJNHyZUzKxlK5Os9gWD2ypsHsLK3diEQXAKMKGDyrPo/V9K8CvioUnQaCZI1phnlPJzN57nAfCGUPP5DeW+6iTxec/bFSXy0L59O3cj+w62HnIM525g526q4GGcuRv5T/OL1b3QaLngdWzogtBKFRDEzKo4aVVJjKr2XhLjPFlXXu7Gaqun3I0mmDlF3hKmzsp7NeovCRUzV17HJwU2D2HlboCAMKqkYGNT5D8yRvD0ez+B4E+vLB6aP2Pj3ciL870bO3cjq02M9sqyOIkveN5eVCIP7RBABonSsJJ2ePQylipTNHdTau8KIM7cjexUv+rfn7Zc8JCEfMsYAUxQPyEYiZnlV7kiAE5N9XKvVrU4lZzgQW2ayM/dAKXlbgKvXXM/9VxVhmLwWwmvIysyIbo4FITNQ1i5G9KrNEa6Sef71DG9iiQYOnej5rhcHhIAs31OpX8IDIHucjeAqtobTf0vTbc/lMv+vTsy01hKzfUwUqdjSuChcawApFYisVJlbQSQHYAtO5NIl5a7qYKHseZuwA3vC68KJVdYxbSXscscVRWlEmowlWFmJHdNUCZb8fqUN4SSu6rK8nI3WgJLyN0AzEK9XIOYuZ28NdWaiSFvJT6YknPeTY8wPDQ5HJm7kZ9C8ZSONmzvhjyZ29W5G+n8l8lDSYlQ7oYBgmeWhIrkbkCQm0C4kZu+nPRnJ7J/F9mlvv2IAw1GYkrC25VorLRxJfMQxCyoHekFSLxO1EHBnQAADQE6dqKP9xdtY1RzkdwNW7mbihGzd+N1xqHAq4U0sYVVRe3O1F/1b0JTEzKfS7XfU+F7QzLHyt+uKsu7yY+Zo6pCq2MYkIZNqFJVPiGwkjbqgaaC3o3yfErwbirhIaryblQaBZQYSjQb6dkJoaM+ZmVAmcEsyuIhwIkX0fAoqAOWlQkh8w6NfifRvpP33ud8keGId0PBvsS68W7iWyEqT1VkmYbpidxSkS3/1SHp/ZMNUz3Bau0z6t1oWYx4N/Kue1SVIBquFP0+SICdd9MzbB4agcj3bpSbEfZuJKUi3g31xEPRBvGaL95nXiX89wW3wxtC3hBKjk80TE8khiLfu5F1dOPd9AYPEw9Q4sWSxrDxHdrxnsTqo/y27f16924orr+JAqoSefYkrCr61VyNJ6bEx+y/X8b+hYbpicbPJYyqFPZuAOR5N3KKu1cVb0UMBjjR4bybktC9d2O4yZo0mlMwq0gleDcBD/3FIvtQ9AXDYh2LdZx7S3Q8lk1NTTQem0xu50W8G+iVqW68mxh56D2MxItlkCezlnZ4MLH8NGQbgyZj8W5iXZkCi0wc9macF3g3QbI8sjtTi4xuXXqZXj/qf346fUCpZrRh72TTSSmzsICCK1MakZUppSryVHRFQHVUtMQwIJvGCLcyVQoMDwEdeuhcifZ3ADPZbDilvRu1QzB4DKoYD3kdZ2/Mdt3bw8vMs0v91ms6O5/P2StT8lTBlane4CG9Tom/lj2SqY005l7LOGjnqUoexrrvBtQ10ovhjY0j1dxKnziIuK0o1YiVVgMQ6Xd0NaHpc6kBF6a7/4Vvbwg1n9HQfFIqT1Xy9t1oaFWBpgYhqipsqwoDaGRUDb9B7Xdw6B4U2AkVRph5jHo3eo+MGtXAuwn23ZhlmggP+T3u/HmnX9oOYG5H2z3ZzudzZt+NPJ6/76aXeOg9XCFxGtd6g17Rf0HKalfLw5hzNwC2TEoO+FtV73nGuERe7kbPddi7ITt3w4CObxmc3MEbeGG6a6nvrxLZN4VYz2IdA0iO9rzRXsNUr2FqQu0siDVmZjCsmFmMJE5Xte8GwKYxXGXM/AmBzUPl8iq3wsoK2y4Eab0N524slyfKQ16H7E2dKPNVJ233ZJOjPW+HIBLp7dyN5CE9B9pQ+XgOX+R9vKtqkvUvMfR57oYtVeFNM1LVmBuemURjNGYmECBMjo/C0mQmyqT99ZPylN4tIaZ6TUeUsSJQZcysdTLwm/1dkHyp4vFA5wDesr1v+uNQHCEeqtyNIow6qsrp3A0ZG8Tqj1iZJ7WYU4CHufu6yrU1Eptv7Rp4YcbrV6PcjXL7l1TFmdRGalxLbdszlNMXvB+nMsQSTBmbzQCyg2jTvhW+Pw0Z8GHJ/JgZed4N7PG2YnXj3ZCy8MYbUjUUj5kplphZZwE0a4DswVVN+aoZWTPCcqYHNlY6vNs4QjxUuRtr876du2HrTxYIvBuyd9/m8VAszfHyCl+r5K/j9qezNeXhFqbVlXU2wIA3Pdmk7HmVPIzF3NiqAiJsOqQhO6KSmv0vpNCk5xhBzKxnHtAHzSGT7zPeDQD9VBpI2XvopaxuYmYuEjPbb/1AjzFzxLthgAcju28FgwEAW4aJj6cKM8K+AICBmYYKq9vGEeWh54XMh+3dkP6TDeVuwuYpn4dicVWvcOt6wa8pDwu9U6lcNH4g+6ZyN1XysFpzI73UiKrk0rz29Ey5OePc51M8RT/0ZRwTtU4Z9m4sh8d4N0DUu5HLgfqRmYpVxX5jq77jcrwbANmDIUaUNRgA4Kf57c/lbFVxKIaCPBSiZO9GzSYoMtQ2D7dAVPeUjL+Ou/7l15qH1SHRoZqMhYfVmhsZ40o7basKN9IH5zWW6uNkkPt8CtOtRFLEu1GWFSju3QBR74bkrs6wd8M1924AcCO3nw6/HIvjp/nNL2W7BghbVRyKoRgPI96Nnpk870bNJjgy1BYPRTmbuYrBXyVqzcNYEPZuKkZ83o1KuAFQqsJN9OH5mdYjU9ztL2/4kxOd30zzXknbcFqhdODdBE6DIQ0Ay7sRkdwNCng31BfeDYi4CW2ncftBJYlD10B++0vZ9u05LlXZ5tEND23vRs9Mqd6NzUOsj2EKRHvNeVgd/IxqMhYeVrsyFVIV7UF4nvoZGyK0zUx17JHKvJFLvS0S60VyjaAOiJEeZ+BPSfBYj0er19UHKwIAA2ZJUr8fTZikrzRCpEMps0illzzJrEyRfD21R2SNV5krAp4Z4tJXBDQLYF1JIsMdB1LXzty4AA3vFFYJP83rpou1+wtfqHcZmBWBWNizraJHHsJ4NwxmuY2Fgz9b4yNQcR7GYW60l10THo6yvbcK0b69kE3GwsNqzU2gKp5+1aL8PXZ7v0MjOqYlO6exRyBA/V+6u+pOdPhjVas4Ie9Nb74iKuzdyA9C/3qhMl5FvJsi+x0gWFCB/Q7CyCOVvt+ByNoupvWIwEBuJG88Dd5q0HpOrkXDCmJAZNA+XHRuz5smss8iGAlrv0OVM7VtoxQeQnNGGRZpmrSHw6XwsGqIthryMMM8ElUuTm2aID2veHgYl3eDblQFJapKuNrwhitiFsELiqB3+BXybjjs3ajJyPNuAC6ym7NnVTHRUoneDQsB8kwOgVlkR8AfzmISeBbnBAuGAMu3sKsncUN21nk3PaAGPKSxMSzjev2i3k3v8nAPpkcq723XQFY/fxYTD+PK3WghAJAXMyMvZgYCL0/H29HN0VZAGng3sHI3Jki3czeGUSZ3A22kIjEz5LugUUnMHOSCi8TMZDm7IJAnK1SdJs/T/dd1aEmW4haMksvdlIYa8JCqfl0kgOQ4r5Y85D2IB1Xe27X76ZW4OluZMqoCSFWBnlE9wYhYEDKn1ItHIskMMuYEgNoNLKVJPzwFzTJtebR3EyT8TD/yV6byVKWMFYHA8BVZEWB9f/IK/fC+6jQLofuv61AvRZF34UXsLNzKVE+oBQ+bqrU4lEHDxERNedgIcVSFve3YnjfuFhjjelmZUn5HVFX0jOoJBhDMPbT6a1WhvEe/2JgTAMyebqWAd6OLmtU/5pB3Y2wOau3dUNi7Iefd9BJqw0Nv/6peSp/eO1l7HorJEJ8p20b4aV7xpWzsPIzBu2HOU5XgLzxQFZWZK6Iqdn5OnS/k3ahqg4p1DfrP21gYvd2mRO8GvePdsPZuWFVYwLsh591Uj9rwMLF3kkZVOBGUQeMRqT7hYe5o9qeV0e3sQH7nJJ+bKHYe9op3w7bB1aoiTXnpqgJzMQLvRhGF7HOWd2NyN/r9+0CJ3g162buhfO/GjJTxbtCtdyNThgMy7oGpAqgZD1MnNqDM32aR6HdSg9fUZzz0T0Dn57j7HXASW8bwytP9zuHcGzzsFe+GbINbXFXUAIVVJZzCK+rdsD5HZHk3JndD1m/9mYCl5qoiZCfC3g0z2FDHPOelX23ZjXfj+wAwyD0wVQg14yGPQurYsv/S+n051TDV61se+tOw5TzO7o5iRqdrOK86yX/v5JzfyL3Ewxj23ag/GA9KOABpD+RaoyUMsohelWT13kY5waTeJg2LBgg83WBDjSIKacWRQ28sEWlfxnodkZkOpSpCCRwJYfY7gECl73cg/Z5qffMF9t0I9dMZSjPVCwfUiHkQmlyKXmzeveOzCEbN7bspDbXkIU1PUAbZ+0r62Q8ZQ2X2SbL+cYg+5CGGUsfxLBiJ1+GtljYaApwdiPadkB3EPvcuDys3N/I39LZ0djKz3K0Hbbm1Zhu1UTfA+r3C0lpYqsKyEnVS6zzZ3o0QnkeaKMrjlbQwKRu1oYuIQEKw55GWJiLLG9S+TzFVKXu/A6PAvhs5YSBP3h0RybfnM0O/Rl8Rj4VQuRulSZ5pDPZ+BziLUwB9wsPE1ASNoux9OdHt+yhSUxNNJ6YSzXXHw+wk8ndmwSxAPrMABIgF9zYPKw+mpo4cnE547Z2d7Z1Zhp4iqCGLxMzQ063jVaMXOvNC8sdA81VFFfKCJxQs78ZYd1M5lEssvRtTCeuqeyNmpiIxszSPkdwNaRupBiUvd8NFYuasEHBvn8hDX/HQG+plvt7Q+J10av+k/YPRlEFinJc+INn89XS/01OJZsfDAFV5N/uPHfGnN99/96MPJowcmSAvoipB2FtIVVibusKqolxcrUteyLsJgnPW3g1b72Hzins31KeqAgGWu2+sQZFsK0FVtnRmAUwcNrDiKdsm0bc8pNHUcFwyfVySCGIVUwbeUFI/DeIRGI6HNqpKFU/fcbsxg/oJwSs/+CDr+xFViQpDT6oCy4PVLq5aa+Cwd0P53o0Jv72+9W687lQFhVXFK0FVNrVnfYHtmzMThw2oZsq2SdQJD71R5A0lx8NuUO3K1PG7fWr75kxnNvfm6jXtOfXr4NZiURDokTkREhtdlIO4UZ5mSJsKmY0RIjijDDnkKVWnZIBMb8nydg9IV829sCJgqYqAXjUj9aPuBLkyRcTmWtbPXRAgU4Z2piBvRWBLl7+5Iwfg6MljqpyvbRWOh1sFD6s1N5lk4qQ9xm3fnBGC316zdl3bFug5ylcVHUyrwz2qCnlRVZFnyvJuAhrVSlUo8Ng9RVL5izTm2nJUZUuXv76tC8ChE0YNb65oy8cnAI6HWwUPY3jqzJ7pf3+0bs2GTdmcr28iUBWggKpYz1IWUBX5NpAeVcXzulOVgEYVqUpg4CtXFRlZa6VEoCrynrtRlY1bsh9v7gIwdcTg6TtuV/1kbcNwPKx/Hsa5oePZFWsXrVgrPw9tbtpx8IBMMuERPPWOG5aZXXlEGlY5zJ56VwBDvw2H5FWeev8QmeOy08YuSxJYZlr9PkYoZtYOsx48RRj9nhGhB13vcYCcaeg9lCYVB/lCfD1xkgVmpoWQcyZY6MkjEsw+gwHB7AtmfUQAvmDB8JmZyJdnAWa132FLl/9xW1dHTgDYr2X4/i3D45qmbR6Oh3XLw5j3j/17fduzK9b8e0Ob/Dog0zBqYP/t+mU8kt4aPCJi9khNJMAeSGb+zdwTgpmWquJ5xEJoP5btPBcRPC0mZkWAoFYEABV2qrs16wKCoS251p/A8bZXBIynrUJdFtCShfCKAOtwWE4wmH0GiHwh5PtpfWaW2xwEBOAz+8xMXk4I1u+7EYzWLn9dW2d7VgBIJ7wTdmsZM7hfjHP0SYDjYX3ysFe2q/57fdsL73745kebzJGBmYbBTenmhlRjKjkgnTSv8pPzUJmqBB84+BqoCqn9f6hbVWEWQqnK5qy/pdPfnM21duQkhdIJb/qYYdN33E5uY3OoAI6H9cbDXtwdv7Gj65XV6//14cYPNkc3e2eSXmMq2ZhK9EslCRiQTqUS5AFNDYl+yUREVUgFw92pilDvfA2rCunNTiqPxn2jKizke4c3domsYMHc3iU6fCHAGztyOWYpIAbbN2d2Gzlk6sjBztDEAsfD+uFhLR7G6cj5/17ftnZz+9rW9jWb21s7SvpJ35RHgzIprQhKH/o1JPqnkiYaNtmz4IPWESuzFpxTJ/Uts3kewiTMdFErh8YqT68uQagOos6cv6Ezp05RqJas4E1dJf0y0YBManhz406DmycOG+D2DfcSHA97RG/zsG+e/dvY0bWxPbuho2tjRxeAta3tnTkfwPr2ztbOXO37Uxts35yRQjEw0zCwsQHAToOa06mEW97uKzge1piH9fuocUfO/6A16v0aZtQPMsnE8ObGgqecKdkG4HgYI+rX3Dg4OGxjiGGbn4ODg0MpcObGwcGhRnDmxsHBoUZw5sbBwaFGcObGwcGhRnDmxsHBoUZw5sbBwaFGcObGwcGhRnDmxsHBoUZw5sbBwaFGcObGwcGhRnDmxsHBoUZw5sbBwaFGcObGwcGhRnDmxsHBoUZw5sbBwaFGcObGwcGhRnDmxsHBoUZw5sbBwaFGcObGwcGhRnDmxsHBoUZw5sbBwaFGcObGwcGhRnDmxsHBoUbwALS2tl5//fWHHXbYlClTdt1119mzZ//yl7/M5Xr+0dJzzz33pJNO6v1OVoV66OSWLVvmzZu3//77T5o06eCDD77pppuEEObUZZddttdee02aNOmEE054+eWXq2lo2bJlLS0tjz/+eBy9rjUcD3sbfc7DJIBTTz313Xff/da3vjV58uRcLveXv/zl+uuvf/fdd+fNm1dNk9Vgzz33/P3vf7/DDjv0VQfixYUXXvj8889fdNFFn/rUp/7+979fffXVuVzu/PPPB3DRRRctXrz4Rz/60fDhw++4445TTjll4cKFI0aM6Osu9wEcD3sbfc7D5L/+9a8lS5b86le/OuKII+ShvfbaK51OL1y4sL29vbGx8K8O9ypWrVq1bt262rfbS9iwYcOzzz57+eWXH3/88QD23nvv1157bcGCBeeff/7KlSsfeeSRX//614ceeiiAT3/607Nmzbrzzjsvuuiivu51reF42NuoBx56vu8D8LxQEuecc8753e9+Z+b4t7/97aGHHjpx4sRp06Z985vf/Oijj+zCmzdvnjRp0o033miOdHV17bbbbldffTWAjz766Nvf/va0adN23nnnuXPnPvfcc7LMW2+91dLS8vzzz5977rlTpkzZa6+9fvjDHwoh/va3v+23334A9t9//6997Wt2Q88++2xLS8uLL75ojrz00kstLS3PPPMMgMWLF3/hC1+YNGnS5MmTv/SlLxX0BidPnnzLLbeYrxdffPExxxxjOrNo0aKvfOUrkyZNmjlz5sMPP/zqq6/OmTNn0qRJRxxxxNKlS+UluVzu5z//+cyZMydOnHjggQfecccdprZ58+aNGzcuv9FBgwa98sorco4l0um0HPDnnnsulUodcMAB8ngqldp///2fffbZ/ErOP//8r3/963fdddc+++wzadKkM888c9OmTf/5n/85bdq03Xff/Yc//GH+JVsXHA/xCeChN27cuB133PGiiy665557IvMnMX/+/O9+97tz58597LHH/vu//3vp0qWnn346M5sCzc3NBx544MKFC82Rv/zlL62trXPmzPF9/6tf/eqSJUt++ctfPvLII7vvvvupp576z3/+E0AymQRwxRVXnHTSSS+99NK11157xx13LFiwYM8997zhhhsAPPzwwz//+c/tnsyYMWPo0KF2QwsWLBg6dOjMmTOXL1/+la98ZdiwYfPnz7///vubm5tPOumkNWvWdH/zBrIz11xzzcUXX7xkyZLddtvt+9///rx5837xi1+88MILzc3Nl19+uSx55ZVX/vrXv/72t7+9cOHCs8466yc/+cm9994rT40fP/7ggw/uppWOjo61a9fee++9jz766JlnnglgxYoVI0aMaGhoMGXGjBmzYsWKgj1csmTJO++88+STT959991//vOfTzjhhGHDhj333HPz5s274447JNe3Xjge4hPAQ6+hoeF//ud/Wlpavv/970+fPv2www674oorXn31VVPi1ltv3W+//f7jP/5j7NixM2bM+P73v7906dIlS5bYtRx99NEvv/yyGdZHH3104sSJkyZNevbZZ5ctW3bVVVfNnDlz/Pjxl19++Y477mhb4tmzZ++3336pVGrWrFljxox55ZVXUqlU//79AQwcOLC5udluJZFIHH744ZFpPuqooxKJxN13393Q0HDttddOnjx51113/dnPftbV1fXggw92c+f5OPzww6dOndrU1HTcccdt2rTpi1/84qc+9akBAwYcffTRy5YtA9Da2nrPPfecddZZJ5xwQktLy0knnfS5z33u17/+tbz8+OOPN58L4tRTT913333/8z//c968eXPnzpUVyps1aG5ubmtrMwk8G1u2bLnwwgv79eu355577rzzzkKIM844o7Gxcfbs2YMGDZI93HrheGiwDfPQAzBx4sSHHnro8ccf/8EPfjBmzJh77rnnmGOO+fGPfwwgm82+/vrre+21l7ng05/+NIBIpYccckhjY6NMROdyuT/96U/yNl5++eVEIrH33nurxjxv+vTpNkUmT55sPg8YMGDjxo3d9BXAMcccs3Llyn/9618AXnvttXfffVc2tHTp0ilTpmQyGVls0KBBY8aMKfcvcMKECaYnka+dnZ1dXV3Lli3LZrMzZswwl+y7774rVqxYv359KfX/8Ic/vO2220488cTvfve7d955Z1l9AzBmzBijPwMGDDDdk183bdpUboX1BsdDiW2Yh0nzacKECRMmTDjjjDM2b958+eWX33bbbcccc8zYsWOZeeDAgaaY/Lx582a7lsbGxkMOOeSxxx475ZRT/vrXv27YsGHOnDmymO/7U6ZMMSVzudzgwYPNVzMxErZvXBDTp08fNmzYY489NnHixEcffXSHHXbYY489ZENjxoyxSw4cODDSyR6RTqe7+crMssJTTjmFiORBaf4//vhj+6aKYdKkSZMmTTrooIPS6fRPf/rT448/fuDAgZHp2bRpU3NzcySFUWL3euzAVgHHw22Yh8murq61a9fuuOOO5lBzc/MFF1wwf/78ZcuWTZkyxfM829jLzxHXC8DRRx/99a9/fcOGDY899ti0adPk2mH//v3T6fQjjzxilyx4DyXC87yjjjpq4cKF3/jGNx577DGZYJMNRRRp48aNI0eOjFxupkeio6OjrNblXV933XWTJk2yj9ujl481a9YsWrTo8MMPNz751KlTOzs7V69ePXbs2NWrV3d2dpo5W7Fixfjx48vq1bYBx8PSsfXy0PvJT35y5JFHRpJzMks0bNiwVCq1yy672G7nP/7xDwC77bZbpKIDDzwwk8k888wzTzzxhHQsAey+++6dnZ1CiHEamUwmf/QLopiZlBHsX//61+XLl5uGpk6d+tprr3V2dsqvH3300cqVK/M7OWDAAFtqyvVyd9lll4aGhnXr1pnbGTRo0JAhQ+wcWz7Wr19/4YUXPvnkk5F2R48evd9++wkh/t//+3/yeHt7+1NPPXXggQeW1attA46HpWPr5WHyjDPOWLBgwfHHH3/mmWdOnDjR9/2lS5fecsstU6ZMmTVrFoCvfe1r3/rWt26++eYjjzzy3Xff/clPfrLPPvvkj2A6nT7ssMNuvvnmjz/++KijjpIHZ86cOXny5G9961uXXXbZ6NGjlyxZcumll37jG98444wzuumT9JOffPLJfffdd+edd46c3WOPPUaNGnXllVfuvPPO5uzJJ5981113XXzxxeeff35XV9fVV189YMAAe81PYrfddlu4cOFXv/rVpqamX//6121tbREvunv079//S1/60nXXXTd48ODdd9/9vffeu+KKK0aPHi0zc/Pnz3/88cdvuummyFW77LLLrFmzLr/88s2bN48fP37p0qU33XTTF77whcbGxtGjR59wwgk//OEPmXnYsGE333xzIpE4+eSTS+9SQbz22mu2i5vJZPbZZ58q6+xtOB6WPlZbLw+TY8aMmT9//i233HLrrbeuXbu2oaFhhx12OPPMM08++WRpLOfMmdPR0XHLLbdcc801AwYMOOywwy655JKCtR999NFnnnnmAQccsN1228kjiUTijjvu+OlPf3rOOeds2bJlxx13/OY3v3n66ad338upU6fOmjXrqquu2nfffW+//fbIWSI68sgj/+d//sfeg7TTTjvdfffd8+bNO/rooxOJxPTp0++7776hQ4dGrr3kkksuvvji/fbbb+DAgSeffPJxxx335z//uaSR0/jBD34wYMCAq6666oMPPhg6dOhnP/vZiy++WJ568803n3jiiYJX3XDDDTfccMONN9744Ycfjhw58qyzzjrvvPPkqR//+Mfz5s277LLL2trapk2bdvfddw8ZMqSsLuXjF7/4hf119OjRixYtqrLO3objYTmjtbXykLaZFKODg0Odwz0R7uDgUCM4c+Pg4FAjOHPj4OBQIzhz4+DgUCM4c+Pg4FAjOHPj4OBQIzhz4+DgUCM4c+Pg4FAjOHPj4OBQIzhz4+DgUCM4c+Pg4FAjOHPj4OBQIzhz4+DgUCM4c+Pg4FAjOHPj4OBQIzhz4+DgUCM4c+Pg4FAjOHPj4OBQIzhz4+DgUCM4c+Pg4FAjOHPj4OBQIzhz4+DgUCM4c+Pg4FAjOHPj4OBQIzhz4+DgUCP0vbl54YUXzjjjjD333HPcuHFTpkyZO3fufffdV8qF7733XktLS0tLy6ZNm8pt9IILLmhpabniiivK72/PuP7662XHfvzjH/dG/Q69gfvvv//444+fOnXquHHjpk2bdsopp7zwwgulXPjAAw+0tLQceeSRFTS63377tbS0PP744xVcWwx33HFHi4WxY8fus88+p5566vPPPx9jK5Whj83N3/72ty9/+ctPPvlkv379PvOZz2y33XavvPLK9773vd/85jfxNvT++++3tLTcdttt8uvkyZMPOuigCRMmxNuKxMMPPyw/LFiwwP0m8laBG2644eKLL16yZMmYMWP23XdfInr22WdPOeWUpUuXxtvQ/PnzW1pali1bJr/OmDHjoIMOGjZsWLytAEilUrvvvvvuu+8+ZcqULVu2PP3001/+8pf73OIk+7b53/zmN77vz549+6abbpJHLrnkknvvvfeOO+44+eSTY2zImACJ008/vcdfpK8Mb7755ltvvTVgwICmpqbVq1e/9NJL06ZN642GHGLE7bffDuDyyy8/9dRTAbS3t59wwgnLli377W9/O3Xq1BgbivDw6quvjrFyG9tvv/3vfvc7+bm1tfXII4987733HnjggX322aeXWiwFfezdyDho8ODB5sj3vve9Z555xnYv58+ff/TRR0+aNGnKlClf/OIXn3nmmYJVnXjiibb/8vTTT7e0tEyfPh3AMcccc9VVVwH48Y9/3NLS0tbWFgmmurq6rr322lmzZk2YMGHatGnnnXfe8uXL5ak777yzpaXl7LPPfv7554888shddtnl2GOPfe2114rd0SOPPAJg1qxZhxxyCPLo5VCfiPCwsbHxtttue+GFF6688kp5pBuGRCBDGOO/zJs3r6Wl5T/+4z/a2tpaWlr+/Oc/AzjqqKOOOeYY5AVTa9asueCCC6ZPnz5hwoSZM2f+6Ec/am1tlafOO++8lpaW//3f/73rrrtmzJgxderUc845Z926daXcXf/+/T/96U8D6OjoqGh4YkMfm5spU6YAuO+++77zne888cQTGzdu7N+//4477uh5qmM33XTTd77znTfeeOOggw6aPn36Cy+88NWvfvWJJ54oq5W5c+eOHDkSwN57733aaaelUqlIgbPPPvuXv/xla2vr0UcfPXLkyAULFhx33HGrVq0CkMlkACxfvvyCCy6YPHny0KFDX3755fPOOy+XyxVsS5qbww8//PDDD4eLp7YSSB5ecsklV1999fPPP9/V1TV8+HA7xumGISUilUqddtpp8vOcOXPmzp0bKbBu3brPfe5zDz744MCBA+fMmeP7/u23337yySdLpkke/vGPf7z11ltnzJjh+/7ChQt/+tOfltL05s2bX375ZQB969qgz83NOeecI+3u/Pnzv/a1r02bNm3u3Ll33XWXHOJNmzZdf/31AK688sobb7xRjj6An/3sZ2W1cuaZZ7a0tACYPXv2ZZdd1tDQYJ999tlnn3rqKSJ64IEHrrvuut///veTJ0/etGnTzTffDEAavrfeeuu666675pprpNf973//u6C4/fOf/3zrrbfS6fSBBx647777Dho0SMZT5Q+MQ01x5ZVXDh06dMuWLTfeeOOJJ5642267nXbaaU8//bQ82z1DSkRDQ8Nll10m6XT22WefeeaZkQK33nrr6tWrd9ppp4cffvjaa6996KGHGhoaXn75Zen7yAtXrlz5hz/84ZprrrnkkksAPPnkk8Wa++CDD4477rjjjjtuzpw5M2bMWLNmzUknnXTiiSeWNy5xo4/NzaBBg+bPn3/LLbeceOKJO+20EzO/8sorl1566UUXXQTgxRdflO7fnDlzZPmjjjoKwJtvvrlhw4a4+vDcc88BmDp16tixYwGkUqnPfvazAP7+97+bMiNGjNhrr70AjB8/vl+/fgDWrl2bX9Wjjz4K4MADD2xqakomk4cddhhcPLU1YNddd3366aevuuqqI444YujQoZ2dnU899dSpp556//33ozSGVA/ZyuzZs6UjM2LEiD322CPSyqxZs/r37w9g9913B7B+/fpsNluwtmw2+9JLL7300ktLly5tbW1NJBLvvPPOP//5zxg7XAH6fiHc87zDDjvsqquueuqppxYtWiSdzN/97nfvvffe+vXrAaTT6aamJll4yJAh8sPGjRvj6oBsxc4fyVZsi2afbWxsBCCEyK9KRlJLliw58sgjjzzySJlmcvHUVoF+/fqdeOKJv/rVrxYvXvzQQw/J8OoXv/gFSmNI9SiLh5KEKMJDAKNHj16hsXjx4tNPP33RokVf+cpXKtg1EiP60txs3rz5scceu/76600Ga/To0ddee20ymQTwzjvvDBo0CEBnZ2d7e7ssYHJj9qxISG/TVFViFg2AbEVOtn2tMW0l4o033nj77bcBfPjhh6+//vrrr78uPSAXT9U53n///QcffFCGyRKf/vSnL7vsMgCrVq3K5XJlMYSI0Kc8zMfQoUO/8Y1vANiwYUPfUrGPvZv/83/+z3/913/Nmzevq6tLHvnTn/4kEzc77LDDHnvskU6nYcUjv//97wHsuuuuAwYMiFQlE3syJQbgj3/8o31WkqCtrS2/DzNmzADw6quvrly5EkBXV9eCBQvM8dIhI6k99thjhYVZs2bBxVP1jZUrV15wwQU/+tGP/vCHP8gjvu/LjMmIESOSyWRZDLF52NbWJpeiDHrk4RNPPCH/FlatWvWPf/yjWCvlwqznNjc3V19bxejLfTfNzc0XXnjhFVdccfvttz/wwAOjR4/euHHjmjVrABx77LE77bQTgG984xs/+9nPfvCDHyxatGjdunWLFi1KJBLf+9738ms76KCD/vCHPzz++OPnnntua2urXEE0UcyIESMA3H777e++++6FF15oX7j//vsfcMABzzzzzBe+8IVZs2YtXbr0n//857Bhw84+++yybkeam8ju0iOOOOLpp59esGDBD37wA0k1h3rDZz7zmdmzZy9cuPCb3/zmlVdeOWTIkDVr1sho/Vvf+hbKZMhBBx3029/+9uqrr37jjTeWLFkycuTIDz/80ObhqlWrLr300pkzZ1566aX2hWecccb8+fNXrFgxd+5cmUvKZrMzZ848+OCDK7gpmSqWnzdu3LhixQoA06ZNk0mfvkIfezennXbarbfeOmvWrH79+r399tutra2777775ZdfbtaezjvvvKuvvnr8+PGPPfbYiy++OHPmzHvvvbegvZ8zZ86555673XbbLVq0aNSoUXLHRGdnpzx71llnjR8/vrW19a9//Wsk3CWiW2655dxzz02n0w899NCHH3547LHH/u53v9tuu+1KvxETScn1b4PPfvaziURi9erVL774YjkD41A7ENENN9zwox/9aNq0ab7vv/nmm57nzZo167bbbvviF7+IMhly8cUXH3HEEclk8qmnnvr85z//+c9/HhYPv/vd72633XYrV6584403IhcOHTp0/vz5xx577AcffPDQQw+l0+lzzz331ltvrUylTKr4pZdeWrt27YQJE7797W/feeedZotJn+D/A4kdbi8M8KWxAAAAAElFTkSuQmCC", "path": "image.png" }
Which solution has a higher concentration of pink particles?
[ "Solution B", "Solution A", "neither; their concentrations are the same" ]
1
The diagram below is a model of two solutions. Each pink ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the pink particles represent the solute. To figure out which solution has a higher concentration of pink particles, look at both the number of pink particles and the volume of the solvent in each container. Use the concentration formula to find the number of pink particles per milliliter. Solution A has more pink particles per milliliter. So, Solution A has a higher concentration of pink particles.
Solution A
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAh0AAAEiCAIAAADSxvdVAABXiUlEQVR4nO3deXxU1dk48Oecu8yeSSYJCSRhCXtI2AVRsCguqK3WWhWLvlq1/VXbUl63amvdfZXaqq36WgWXWtdWX6kL7ktRAUUWWWTfwpY9mUxmu/eec35/nJmbIQkhhElC4Pl+8oHkztyZc+feOc89OxFCAECFAVsjEGJgCUDHPJWAT4GhbsjTD3tfvFSOK3ipoA5KvVSIEKLSgK8bezpRqCdMzoA+h5Nf4KVy3MJLBXXQ5AxQAWBLBACgrw7DPeBTejhNqBuEGGwKw34DNkcOL7PAS+V4g5cK6qDUS4UCQBMDABiBp/+44VNguAcgeeo7Di+V4w1eKqiDUi8VCgCmAADw4uk/nshvu3mYFd94qRyH8FJBHWRfKrSnU4IQQuiYgnEFIYRQOmFcQQghlE4YVxBCCKUTxhWEEELphHEFIYRQOmFcQQghlE4YVxBCCKUTxhWEEELphHEFIYRQOmFcQQghlE4YVxBCCKUTxhWEEELphHEFIYRQOmFcQQghlE4YVxBCCKUTxhWEEELphHEFIYRQOmFcQQghlE4YVxBCCKUTxhWEEELphHEFIYRQOmFcQQghlE4YVxBCCKUTxhWEEELphHEFIYRQOmFcQQghlE4YVxBCCKUTxhWEEELphHEFIYRQOmFcQQghlE4YVxBCCKUTxhWEEELphHEFIYRQOmFcQQghlE4YVxBCCKUTxhWEEELphHEFIYRQOmFcQQghlE5qTycAoZ4hhEj9kxDSUylB6BiDcQUdX4QQMoS0DiT2QwihI4FxBR1H7MgRj8cjkYhpmkIIRVHcbrfL5SKEYGhB6MhhXEHHD0EIaWpqqqmpiUYjjDEhBOecMSYE13VHfn7f3Nzcnk4kQr0exhV0vBACKiv319fXK4ricDgIASFAxhXTtOLx2MaNGysrK0aMGKmq+L1AqPOOrv5gAoT86emEdIAQzT+oN9i7d29DQ4PL5XI6nYqiUqpQSimliqKoquJwOHw+b21t7apVKy3L6unEItSL9Xxc4cAtYTHBAIAAkT8CBBPMEtbRFmMEY8KyQIhkSgkQ0rwRHa2qqqpCoUaXy02pQqmiKAqlCiEKpZQQIuMLIcTr9QaDwfXr10GrDmMIoQ7qyfI+F1yAUIhCCQUAASLO4hy4QhQHdShEkU9jghEg8jk9SDBGCCFKMlXhsIjHgVLF57M3CsYIpYANv0eZeDxeV1fndDplCJHnR7bPc05SUADweDx79+7Nz++bl5eHzfgIdULPxBUBggtOCaVA90b3flT90dK6pVvCW+qNei64IpRcLXeEd8S0nGmn5p0acARk8cWOND2QYMaIooAQTV9+2fDG/0WWLzf27uGGIQglWVmOUSMzZ54T+MF5Wmam4JwIAbTnC4IIkh3A6urqAIQsmiSDil28JISA3J78hSqKsnPnjry8vJ5MOkK9Vg/EFRlUFKJsatr08PaHF1UtqjaqCSUa0VSiggAhxNbY1v/U/eepHU8V6UUXFl746+G/7uvuywSjhBLo3vtHIQTnRFHCy5ZV/OF30cWLwWBUp4qmUUK4AKtif+OatbUvvbqzf79+N95ceO0vQVUE5wRDy1FAdh1uampSlANuSpJNYxLAAdWtQtPUurq6WCzmdDq7N70IHQu6O++T7SUEyINbH5y2ZNrz+583FbOPt0+uOzfDmeHSXU7d6dScXoc3x5MT8Abqof6hzQ+d/O7JL259USGKrDrr3hQLoiiV8+7fMX2a+dl/nD6PKyfT4fVquq5pmqZrDq/bFfB7sjJJVe22OXNXzjwjtn8/oVRw3q3pRAdhmqZpGjLAyCiSGlQgGVw4FzZCaDweb2pqAmxlQejwdWtcESAIkCar6dKVl/5+y+81Xcvz5GmaxinnlIMCRCGEEqDAKbeIxQhTVbWPt08Tbbpq6VU3fnWjLKx0X2jhHCjde/3c6lt+5/S4db9PYZxaFuWcCpH44VxhFuWWpju8Wf7Gjz/7+tTpkfJdGFqOEpxzxngyeBxAbhBCyKEsMrrYj1qW2dNpR6hX6r64IoNKlEUvWXnJv2v+XegrVFTFopagAhQACkAAKBCFKIpCCZVbhCJMaqqqmufLe2TDI9d9cR0B0j23kIIxoLTq4T/XP/wXV26WIgRljEIiscn0Jn5RCFDgxLQ8WRnGpi0rZ13CYjFCKXYSOxrI0JLEkv8y3jYmQw622CPUOd0YV4QAgDnr5nxc/3E/bz+TmIKKNnJoAKCQaEZJPiSoMInZL6Pfgi0L7l95PyVU9kvuQpwTRYmsXl19x+3OTC+1LCqEAqBAarqApP5JgAIB03Rl+YJLv9p4910AgEWWHqdpKiFgWRZjjHMm/02JLpwxzppZcpgkpdTlcvd02hHqlboprsgm9xf2vPDC/hf6uvuaYCYCSaqU6EIooYQ2t9ATAAoWsfK8efevvv/L/V/KtpauTnbV/9xLwxGqqkQIkox6JPnTIu2yQxEFQizT5XHsfOLxpq1biaJgaOlZiqLqusMw4pbFLCsZPSzOGJNbLMvk3GKMWQnMMOIej8fn8wHOc4zQ4euOuCIHqTSYDQ9sfcCrewUR0DqTbvXlTfT7SnmCIIJQwim/a/ldANCFI1o4B0qj333X9P57aoYXLKtFAkVK2qFl2gkRoGia1RDa+fzfE6+GeogsJWdnB+LxuGWZpmmapmWalmUl/rUskzFmmsw0LfsJ8XissLBINvX39BEg1Pt0R1yRBYuX9768NbrVo3k44e0FlZSHkmMNmjcyYH6n//OKzz8s/xAAuqg2TJYwGj/4QDSGycGnihLJACNadFMFAM5VBSrffw8A2nkF1NXkJZSb28fpdIXDEcYsyzItyzBNw7JkJLGSEcUwDNM0rWg04vV6hwwZAlhYQahTuiOuyPGMr+9/3ak6E125Wnxb27opbDlOJRlaCCEc+KtbXu2KpCbfiwBAZPnXhAAIQZJpbPEDrf4Vyb5qQgjFoTdt2xrZswewlaVHyTLH0KFDTDMeDkdM04zHTdM0DcM0DBlO4oYRNwzDMMxYLMqYOX78BF13YGEFoc7p8rgiCytbmrasD613K24OHEjbgaSZzJ6TI9Zav6Bbdy/Zv6TJaFKI0hV9juWQRmPvHlCJzJba/OEttiSnoJRjIkBRzFBjdP9+AMBeYT1IVmd5vb7S0tHxeCwYbDCMeDQajcWi8Xg0FovFYtFIJBqPx8PhkGUZkydP6du3H87gglCndXlckfn+2uDaRqtRoYrcZD/Wxv2/OGDHlk8DECB0qu8L79sa3ApdNGxNzhxlmIIQDsCTIcT+t+2NQv4iEvGGEM44N430Jw8dJhlaAoHA5Mkner0ZwWBQCMEYMwzTNE3GOKUkEglnZmaedtrp/fsPwKCC0JHo8qp/GR62R7YzwQ4IIcmHD/jdDh5cDow+MAgln0MJjVrRXY27xuaO7ZIxkkIAIUJVuQBOgCSDh53TtC64cAGCgwAu44oFwIQASqiqpT956PDJ0OJ2uydPnrxr165nnnk6Pz/f4/EAiEgksm/fvtmzLxs+fERyvD0GFYQ6r5ualENmyA4YhBLgyZJSm1k1h0RUkSGjZX0TgADOecgIgSyvpDsTkBOCqf36RU2uAYGUoSrNz0kpqTAAzuUvwgIgIJwCYpxTr8+Vnw8AOMPx0YAQwhhTFMXv97/xxsJIJOJ2uxlj0WgUAK677lcAwBjDRb0QOkLdNS7SjgeCt1epJBLTUgohDggnqY82zxTYZY0WQgCAe+JEC4AB4QcmUwYSlvzFAuAMmAAOzAKhc15PlW883kjcyC4udhQWQrLBpkWV3cEakFBXkJO40OSJcLlclFLDMAzDAACn0ynPhaIocmaXI30/zgVjiR/OsYENHVe66dbMq3iTnaUE5zwx9MQeBpJSxyW/1YILkF2oeEpo4QAcBBNEEArUq3mhi3qCUgoAmWeeufv2P1hxSyhyLP0B5ZVEKBTAuQwq3AChc/6Nx7sgO7dW0/sZ1p2nna5QykxTUVWwp2hPkn9irUs34JzLlVfKy8s///zzr7/+OnWGY0ppPB6/9957Tz755FNOOaWwsDA1CB3uOwnOiaoCpS37PDIGAETpsbUejjvyHlRmI6n1InJBhJbnp5cRPNmhKPXQAAiVCz/0XMoAoBviijzEgZ6BlFPBBRDgwAFkNktSg4ospnD5eGpQsUszDIQQnHBiEqfiHJAxAFp3R05LmikFzr2jx3hOn9H01iKn308Zo3L4PwEAe0JckMUqBswCoQix3eF8Iq+fQYifs4q8/Js/+w9btOjsc84RQkQjkWAwGI1GLMsSQlBK3W53VlbA7XYDRpeuJCNEVVXVSy+9tGTJklgsJhdigZQSJCFkx44dO3bseO2110455ZTLL788Ozv78EJLcj0FQqmwrPjOncaePSIeB1XR+vZ1Fg+mTidAYnU4XJ6nSwkOQgiq2Eu1tfUcAYIJovSyr51MNlUIoe0lnDPRzrF3g26KK2UZZRkkgzEGCgAHDlwGFTsqJKq2RKJPFUAbdU9CFyIkiEkM1ehD+wz2D4YuG7kmhCAABbf8bv0H75vcVAShjLRoX5FN9RwEA2EAOIR4KyOziVI/YxahXo3GgsGfXHbZvAceuPDCH+3fX6EoieyMMW5ZsWAwuGfPnszMrEGDBum6jqHlkFp/RIf80GRs+OKLL5566qlgMOjz+dxut2macoJJGWAYY0IIj8ej67ppmu++++5XX301Z86cKVOmyPaYQ6eMcwAgihLbsqXumQWh9983duxgTU1CcCYIuJxKYaH31Ol5V/8sY+IJiTJNu6GlxXHJbwdeHockBAguqEIIEGbwyu8i+1aHa7ZGI3Um55yoxNtHzR3mKhjn6zPUQ1UCAjgTtNsXdeoMAVwemkoEF9WbovtWh6s3RZqqDWYJQoUrW80Z4uw3xte3xKvoFGR0oT1z1XR5XJFVXiP8I0Z6R65qWuVxejjhIEBQAQCCtOpMbP9uN2VwAAuEJvR1uuttFxFk98m7T7/wdL/Db1qm1jUdrjiAAvDw4s8bvL5rYtEQIXpiAjA7vULWmsu2FgEQpHSrpmuMyTkAqKJYjJ09c2ZZWVl9fb3b7aaUAshp2IWmqZqmm6ZRU1NdV1dbWlrm8/kwtByM/GSSKwdzAEEItbcc7HOTkePNN99csGCB1+vNysqS4UTTtIEDB+7evdswDPlnv379HA6HZVkAEAgEotHo7bffPnfu3HPPPffQoYVzoJRHIhX33l3/v4+LYJPqVB1Oh/B7BQAHwixm7thVu2l+xdPPBC6dNeSPf3bk5SVWIG33SG2ppSu8Qg5GcAEAVCENu+Mr/1G1aVFD7daYGREAABSE7K8pGCdM85E+Jc6yC3InzurnDuhyUaejuWZMcAAQVCGROuvbV6rXL6yr+i4aD3EQACRxR84F48AVt8geoo88N2fS5QVZRS5ZXdb9h9Yd7StyCeELCi5YumapT/dxwoEmCyUABwyTtDuAJSu+moPKZj3zhUzZSSz7tWzVqVonWDIbt6s10sWyLFVVH3/ssQWPPJLRt7BfVcXpoWBEUVQCcgJK0Sr2mQAKwCAzvpOxgK5rDkc4HC4rK7v77rtcLpecHzd5qIQQDiAoFYqieDzepqbQypUrTjhhkqwTQ60RQmKxWENDQzgcNk2Dcy4E6LqWkZGRnZ2jqmrr0CKDynvvvTd//vysrCxCCE/OesA5z8vLCwQCkUhECOF0OlVVlRcSADDGHA6HoigPP/ywrutnnHFGexVinAOlRnl5+ayL40u/cmR6SU4mcA6cC8Zl7TehQLwORbg1xmqef7Fu8edl//xX5gmT2gwt8kiDwYZIJGKalpyu3+VyZWUFvF4vYJXpQXAmqEKMJvbFI/u/eaY6UsscHtXhdrp8AImOOJzLhlvBLcYqVsV3Ld26+PFd038z4KSrBlCVJLqqHn1kwrgFXy+oXPLXiuBuU3OpusvhyLXXDBFccMEFAGeM128xPv6fXUvml0++umDG3MEOryo/nO5MMxFCvFUDAPCDnK56D7nySk2sZur7U2tFraZpgoiWXXdbl1TsPrwMgEPmk5nafk04heCCCNJQ11BSVvLgHx8cPXo0Y0y2yqYltTKovPLKKzfeeGNWZibj3AD4UX3t95sauWVxXaeUJhYXtGvpKLUIMeJxM2p+c9KU/6tvEOGwPyvrL3/5y5Ahg+NxQ9d1mRVwDkIkFv+wLJac6dAKBht8Pt+kSZPTcggd1Inz3tWXSpsYY5WVlcFgEEDI8CwEZ4zJ3lyU0v79++fl5admuDISbNq06bbbbtN1XQae1NeUTVx2IJFVYXK7LHAKIUzTZIw98sgjgwcPbju0CAGEmPv3bz/9VLFxk54TIIZhX9EtOjxaAiwGTFMioZDh80388KPMCRNbVIiZpllZWREKhSBZLuGcm6ZlmgZjls+XMWhQscvl6v7QcpRfKjLf3P9teOEvd1SuibsDuqZRkWymTXQjBZFoeeFMcCEoB8pjsXhTY3joGVmzHhuTVejq/vz3kGSSgnuNN3+1Y9vHIVemrjuUVocGiRF0nAvOgXJBuWmajfVN+WPcs54YXTQms9sOTZ737mjZIUCYYDnOnBtH3tgYblSZClayi678Ya1+7IhigVAELadkL2EaAwZEEAAI5AQ2b9p8wQUXPP744zKoJOufDkGkaP2oDCoffvjhrbfempGRwTgHITQh/hnIudvl3ZMViMaMhoamcDgaNc2YZcUsKxKPNzZGGhuaiM9Xds9df1q8+B9PP+10uU499dSRI0dEozFN02QNWko9Gkl2XEjUeLhcrurq6v3790Or7sjHOdM0d+7cEQo1Op1Ot9vtcDh0XdN1Tdd1l8vt8XgIoRs2bNi8eXPq9MOUUs75M888I6u5UtvnbTKEyLovO5tOrVvTNC0Wiz3xxBPyBdtIHCEAsPuqK/mGTY7sLGoY9ppvbfwQoBSIYTm8btoYXDX7J0Z9XWLlNyEAIBqN7NixIxyOOJ1Ol8vtdDodDt3hcLhcLrfb43K5g8HgihXf1NfX40TLqWSOufn9hud+sLl+K8vMd2lUAUshXCGgEFAoUAUUBRQClAKlVCGUEk6FRXRNy8zzbvu04a9nfblnTQNVCGdH0Qcrm+gr1oafPXvjzsURf75bVzWwaMqhKQooClAqry9KCaXAqbAIpWpmnrd2c+zxc5aue29/Nx9aN/UYkBN5XTPsmosKLqpqrNKFDmZKFLHa+jf5w03OBOMmJ2ZzLTPnPCMjw+l03nPPPbNmzdq+fbuiKIwxfpAZHjnn8p40NWdJ3Q7JMXErVqyYM2eOw+FIrIgOQCk1amtjY8aetfa7SW+/U3DNVfqYMpYVMD0ey+fTBg7M//7Zkx5/9Jw134267XZG6MlTpryzaNGPfnRBJBJR1eaKDpkVtFl5TimhlO7evburTkDvxBgrLy/nnLtcLkVRKE39kdWfVNc1r9e3a9fOLVu2yFMmr4H//Oc/GzZs8Hq99iXROnjYG9vcwhjLyMhYuXLl559/Dol2nWay33D1449F3vvAkZMFptligTq7QC5fV4YWQgixmCPDF9m0ZcPttwOA4BwIicdju3fvVhTqcjkVRaWUEkIJSRymolDZgVBRlFWrVgaDQQwtksx5t30S/OcV2xVQ3V5NmBSECqAkfw4I63KNJEplb1wKgoJJfdnucJX1twuXVmxqpAqR7TQ9TnAgCqneFH3xoq3RauHLdoBJQdCDHBq1D41QSoESQYRJXV4nFeqzl32z4ePK7gwt3d0T7X9P+t8TM0+sDFbqXE8NHm0GFWEJxpmICpbPwj8K17CahvoGIM2hhVKan5+/bNmy73//+y+//LKiKDI7SH1HOSCGUiofjcVidXV1tbW1DQ0NlmXZ2y3LUhRl27ZtP//5z2WpReYjhJBgMNivsPDV557Lzc7OmXH6CfOfPuPrlWetWX/m6rUzV687+9v133vznaHX/cqZlycYUwgRQhQVFeXl5VmWZedWdiaQLCqJ5MZE1a+qqvX19am7oMrKSssyHQ4HIVRREl+ZZJ5LKKWyix2lxOPxbNmyuba2xs5wP/744zZHznfw47UjDaV00aJFkBxZmVyqmIGiWI2h6r/+RfE4BGPKgdW6LRbmsYupcv0HYVoOr7P8+eeCmzbJld/27dtPCNE0XR6polBFHnDiiCmlCgDRdZ1SunbtGjkip/Of7DFB5ry122Jv/GKHpqmargqmQKJcQuQPaQ70hIDs+EUIEEopAUKBElCESdxeR7SWP3vl17GQSSjp+ZAtgFCIh9jr12yL1QuXVxemPBCFJo+ONA+rS7TiJepEKAFZMgMKjGq6qmn689d8U7U11G1Rs/umrCBAuOAZesbrp79++aeXf7Dvgz7ePgpVGDCRnFEy8S8HwWVdoQAOKlfNmLln6J5r/3yt8o7yyhuvZAeyZeWGjCKBQCAej19//fWffvrpPffck5eXZzfm29XiO3bsWLZs2YYNG6qqqmRrLSHE6/UWFBSMGTNm0qRJffr0qaqquvrqq+vq6rxer109EolEvF7v888/X1BQwBijcgiCojhymmuOBefAOVEoURT5ypFIJBaLeTweGUU4T8xPJfMmuSUxAlTYjTUQj8fj8ZiqerFtFgBisVhjY9DhcAAQe5QhSY4hktl+akUiY2zXrl3Z2TmKouzevXvr1q2yKSL1Ne06rtY3+23e/sui0vr16ysrK/Py8uzzIhgjAJF3F2mbt3oCGcCYeeBoAZHyb/O7y/QL4hRMUxUzGK545WX/HXc21NXFYlG3293iSO1ClDxM+ZDT6aytrd21a9egQYOO8+tEHvo7N+6K1YE3SxMWSZQJWy21lzwRhAIRsllMfr6CyOhiWeDNdO79tnHhbd/O+stEwQXp0YYWeWY/vGN35VrD38cpTHlotNWhgUh0gpIPMQGEAAFKCE+EUmDE4VSDdfFX56789dvf654LplunQqKEcsGzndkLz1x49zd3/3XdXw0w/E6/RjXR3KUB5CQuVFDCiWEaNbGagDPwvyf+77VjroXzYNLUSffee28wGMzMzJR3bYwxTdP69OnzzjvvrFix4r777ps5c6ZdTNmwYcO//vWvtWvXxmIxTdNUVbUn8wiHw7t37/7888/9fv+MGTM++OCDbdu2ZWVlmaYpExyPxznnCxYsKCkpkYWYxJHYBY3ErQJtPdJNCEjWyTTXsSQjCxeJNjaW/F3GGIaVG5D8UslZh0myBz5pHpEqkk8DAOBcOJ3OlStXvv76/xECgUC2oijytqDNV4a2QkjqlpTXT/TrtSzr5ptvdjhSVmQRguh6dO1aq6CfcOiXNoWmxGNRQlJ7d7U+kbLbsVOwFU7nvzMyhc/U3norY+++WT/+8fDhwxgX8vqyj7Q1+VFomrpnz+5BgwYdz0FFNqusfql6x6ehjFyXsEAGFQpgz8cnAEjyayoroWVoYckWTiHk6HtKgDKT+XJcS5/fdcKsAYOn5PZg9zD51uXLQqtfqvVmO5JB5YBDk08UiT6miT61yQZcQgnhzU26lFnMG3Bu+Lhq6Yvbp8wu7oY2/O6eYo8SKoRQqHLv5Ht/VPyjB1c++NGejyqMCpWqmqKpRJWzL1iWZVom5zzPnTerbNYNE24o9hczzkDA5ZdfftJJJ910001ffvlldna2oih2ZpGbmxsKha6++urZs2fffvvtLpfr2Weffeutt+SoN7fbbRcXZM6lqqrT6eScW5b18MMPx+PxzMxMO6gwxpqamp566qmpU6ceEFQg5bb5YIdJiezxlcwpUuOK4JwzxmVrkGzgkWutE0I6NArvWCc/rnA4LEf8yNMlHxLJCeLsoKIoNBwOP/XU/B07djidTtnFbuDAgcXFxaZppvZBbydmtxNphBCqqq5Zs6aysvKAfmVCUJeL+rNiALtU/bnq/R4hePKqSJ3cDuzfBVAhGil9Kjd/t6a7gBihJvfnn1995RWiVThJHmlzYuz+JoqiNjY2RqMRl8t9nBZZBFCFMJMv+1ul7taAN5dUIFHdKD/RRMYrDtgVks9qvvuX+a9CKbfIR49uHDwlt1sPpyUCAEsfrxAWpSRRj0cgNc8hAMKercQOmQAkZdZEYlf6ESCCE4db//TxzZMuHqho9IAJYLpAD0zdSgihQJlg43PHv3zWy1sbti7auWjp/qXbgtsa4g2cc4Uq2b7s4YHh0wqmzRw4s5+nnwDBBJPLtzDGBg8e/K9//evxxx9/+OGHhRAZGRl2wcXpdDqdzueee+67776bMGHCihUrsrKyKKV2ViQLKzJDt9MjW+xT73M557W1tX/84x/PP//8lkHlUEcHALruAADLsghpHukmm1U4F6kBxbJkWGGmabhcTqfTBSlx6LglhJAB3o7EB1ZhJe4QGGMOh/7tt2sqKytzcnJktadsb+94C0TqRJP2ddLi34yMjFgsZt/E2HsCs7wA+xVlne44JRZpIlRJKamkzrAqh2M5OV/pcdXojhzOBQGFkOLBgzMzs0zTVBSFcyHLvSnh064s5XZkASCmaUajUZfrOB3wJEeeb/skWLU+5slyAmvuIZEcOp/4VzTf1EvN10Qi+CT3IgCMgytD3/hJ5b6NDf1GZHLGu7/IIjhQhVRvimz/T8jp04DJpLZsqkuNlylH1+adEwEggoPTo+9Z07D+432jZxbKD7DrjqJnpgQnQBSiMMEIkCGZQ+aMnTNn7ByLW2EzzIErRPFqXpqsr5ZPU5J1DHLGWQCYM2fOtGnTbrrppnXr1mVnZ9v5DgD069ePMfbdd99lZ2e3WZlut77Ih1wul9/vr6ys1HVdbqyrq7vpppuuvvrqwwoqNofD4XA4o9EIIc5kOzNAIjuUzb+WZXHLYoxZpmlaFovHYwMG9JfhB+MKAHDOINkLi1IqiywpWS1P3hyIpqYm0zTl7CzyLsEeg8I5b78I2OLyaFEJZv8ph8u0jCsAAKAAmFyEZJrbKq80RxdOAEQTAZMxUw6oNM1kexunlArBOKcpCbN7CdgVp8KuOD1Y18fjx4Z36gU/oHtl8rcDQwkc0H4rmjc239onumoKUFSlsdZc98G+fiMyQbTsu9kN5AW2+YOGeJA5+jjAsuNlczkskXxoXhoqea0RklLibfHKhIDg5Nu394yeWdjVR9GTS03IUCG/LJRQlap+h99+lAkmhFCIopCW+YIsfzDGxo0b99Zbb82bN2/BggUOh0O2k3POCwsL8/Ly2p/wPKUMAUKIfv36xePx+vp6RVHq6urOP//8W265pXOrccjAkJubu3nzZlVVSWLMpswWuZ1bWBazLNM0DdO0DCOuKMrAgcWH+17HKkIIAGHMkrmnHWvtu3jGErmtYZg5OYnqUPt2wQ7PdlmnzQzCrhdN/TPlXZpr3GQVZcu4IoSQYQ9ELmMGEFkogQP6oCQnjuAghDCJyLFMIqcIE0IhxDRNyzIVJTEAixA7T0xEEcYSA2nlL7KMCyCO33ViZCWYJfasaNJcFHiLBxNzw8IB4aTFU8AOK3K8ZHMUEkLVlE2L90+7tn+8yeqR8orupdu/aEjUVsk0gVxmSjRPqJjYnvIXEAHt9SMWAnSnumN5DbO4onZtVVjPX5qUyDrE1NsHABl1Dn7Y8nvOOXc4HHfeeef06dNvueWW8vLyjIyMQCCQk5MjKxZSnw+tqtFTQ4uiKMXFxVVVVZWVlfn5+YZhVFdX5+bmdqL0IJ+fm5tbUbG/oaHB4/ECWDJnEwKSmUWipGIYpmWZ4XCopGRUZmYmFlYgGUV0XQ8GI7JJI3VYohCcMdnlgXHOw+FIYWHh6NFlixd/4XQ6ZMHF4/HIoqodZlpM9tMibEh2CSC1sCJLPLW1tVVVValDLEEI6nAobndEiDOM+EjLjKS+/oFBhcmVREGECQyKx8c2hb5wuV0Ahml+t379nj17hgwZandBtK9Ju7DCGGOMM2bJH9M0dF13uz1wXFaZCgGEQHBPvHGvoWgaF0J+zxMdvRJZsP3cxKD0ZAtXssXqwC57djbNOHd5XKu/Wv+9qbeQbh+GkUwMn151ax/PSMYs9cBMsEXBSzRnmyI5NVaiDhVSjhqSoxpUndbvjdTtCecO7NrZCHs+rtg6MaeoXXCZPn36u+++e/vtt7/55pt9+/ZtkRPZ39UWo8lafKxCiPz8/EAgoCjKrl27Xn755Tlz5hzJpz98+PAVK1YEg8HkxF8ysxDJu07LsphhGE1NjYWFRaWlo1sn6Xjm9/traqoty7SHByamQkpUJCbu3C3L5Jz/9Kc/LSsr03V99OgxDodj+/bt7777rsvlki8lL5IWJdQWb5c6lYtdNyXPfjwe/+///u8BAwYYhmH3M1b9/upXX6555llnZuYJRlQO8G3Oz1JCC+P2cqKMAQhCrm6onRCLhEOhvDPOGnH9DRm6Fo3KCCpraCGZjESVKWPcsizLskzTklWmBQUFx+8c2EIAkFClYYSZ26eBkDNFNbdgk5RoIQAOXCLQjiuQmvk239QmJgDkwWCwB+MK55wkIqXs0iY4AE0UWVIPLSVsJA8NEnElcVD2v0JwSkk0bAYrorkDfSL9C+02O4riSufIggtjzO/3P/roo6WlpYsWLWodVCDRrbCdYiJAoqWdWJaVkZHx2Wef/eQnP8nJyenct1cIoeuOcePGr169uq6u1ul0KIoKyTyOMWaaViwWNc14cXHxhAknpGt+s2OA/LQDgUB5uRaJxBwOPXXFFLsiMRmbrXg8rqrq+PHjSkvLiosHA0Btbe3ixYsNw5D1kPJl22xpg1a1YXbbjPzTsqysrKxZs2YdMOE050BpNNO/5dlnHeGwQUmMQovq2sQsdxwYBw6CAZfzExkAihCT4rGmmHnif/1X3+nTG+rqvtu4we12U8pTqkyb21eSVaamLOAKweVhHp9k/Y0ZYZyJlrfkzfVgBA6oAknks9wutXDZY13YU4fJKbbsAoGqaVTQLlyUNqlVvkQEYSQmJ/sQyZApQwslybE4LYopIpF4ASB4ojO+HWySBygAiOBMGJG2e+Gn0TGSl9kV3+3MEnbIoAIpxQVN02pra7/66itoNYFHB8nLxel0Tpo0afjw4ZyLhoaGurq6urr6+vr6hob6aLQpI8N38snTJk06EYNKC7LEOWDAgGg0YhiGzE/lHJ3JH5nJGoZhWBYLhRodDkf//gM456ZpZmdnl5aWRiIRaPeSgAMn8oGUoGJHmmg0OnHiRJ/PJ/sFsOQslZZpusaMFd//fmVT2KCKZYHJweJgCbAEmHKWSQsYBwaCAWMgLAATwAIwFaUmEnGMH9vn/B8yxjIDgezs7MbGRsuyDMO0LEM2uqQcqSGP1TStpqZQ//4DW8yzeRwSyRvz5IoVzYWSlCX3xIEru8qx5jx5h5HMiIE358sikStzxhhnvOvZ4w3sDZzxROeU5qhg13HJpKb2NAR5aDzxBCG4/SE0H1ey17qwi3VdqteXVyQhhKIo0Wh09erVcvxai8r0Fr+0+WeLhyilq1atOvfcczv97bXLScXFgwcMGFhbW1tfX2cYcQBwOl3Z2dlZWQHsANYm+bFkZ+cMGDBwy5bNbrdHzrSWUl5JVCSaphUOh1wu50knTZWNMbJd7dxzz/3iiy/k8+WEPS2KrfzAbh12LBHJKY3l/YTT6TzvvPMAQE6s0vx8QgBg8J13rfjgfcOMqYpK+QF1ufI7zIFzEPb8RGZyliJhwZi77lY0Tc4zNmTI0FAo1NDQ4PF47A4/QiSqTGX1l2WZoVBjbm7O+PET4DiuMpWHrbkUoEJwAZQLIHLdctI8JZt9O2/nvCIRVEDwRGFFVk8mIpAA2a2GyRZyy7J6sh4MhBBcTt7OgVOgpLmzYWpXNxlWk/ESePLQBE+WYxLlMCGEYJxwQkF3d3m2f+zEFUJIdXV1MBhs0U+m/WJK65BjV7KrqlpeXg4Hm8u2w2RGpihKnz59+vTp02bKj+T1j1Xycxs4cKCi0A0bNggh5OxYAIJzblncssxYLGYYsZyc3MmTT/R6E/VUcsfRo0efcsopn3zySSAQONiEpHaTm0jpCSaDilzOq76+/oILLhg+fDhvNU8+oVQw5h1VWvynhzb8/P95/KpCBeE8pfpbiJSJuRPz3hFiqWpTfajs5hsLvv8DewkWRVHGjBm7du2ayspKh0NXVQ2SoY4xZppmLBaTzSqTJp1oT2LU5efg6EQIAPjyNNUDnDEKRFDOgRLgNDkYEADggIogux1F5rxcAGeJwgoTdu4sa8eIEAI0TeupuMKB8RgTwAUXQuEAlAO3p0Q/sNKPpxya4DxRWEnGS8YT5ZXEoTHGHR7Vn+dKfopd5RiJK1JDQ4NhGLK3cUe+dQer4JIZjaIojY2N4XC44y94MG32RoOUth/UJpKYxLN/VlZg8+bNVVWVsVjcbnWglPh83tLS0uLiwUpyZrbU3X/+85+vW7dOLtbZ+lHZSSw1qMiXBQA5v1xTU1NxcfHPf/5zOEjhgCiKYKzoZz+P11Rv/t1tLrdDc2jCYiRZ2ZCyiDZYAFxV44xF6kPDr7lq7LwHQYjUdb00TRs3bsLu3eXbt28LBoOMMVmpwRgjBHw+39ixYwYOLLZLXen/uHsJeej+AqevnxbcxhwuygUoBARQBkASLdvEbilJ/iIXP5Jdw+2cV1aOMRlUgHOgEAlFxpxW8tDfF8fDPdTP2EPfuGp3+adhd4aDc04pAFDR7qGlBBV5RAJAMFmCkVsEF0SYcavPYG9WYZf3JDym4oplWXYGccgsmx984IL9nHYm3u+E4zkv6DQZWrxe7/jx4+PxWF1dfSTSxDnXNC0jIzMzM9OODQeMjyOEc56VlfW73/3u1ltvjUajTqczOUAkkS/LuUE553KNE9nKIpJDKSORSEZGxu233y5n2j9YmVWGliG3/t45YMC6OXPCtfVOt051HZKdcjgAA8IJGKYZbWhSnPrEB/5n5G9vFW1PByD69+9fWFhYX19XW1sXj0cBwOFwBALZgUC2PNIu+ZR7FwKcCVWnBePdVd/V6m4FGDA5zS8QASAOrClKNDYIkCWVZIOKzIKZbIHgsp8mMKDcNK2R0woC/lzuEVTt7u8stwRVyeCp4a0flLuIBgw4yEMDAeTAQwO7rwGXEUQeCHAAzsASif7tcjAtA4WZcXPghGxVp109RdgxFVdSv/y83YHW9p2p/af8xa4Ek9K+wjHqBLtFxOFw9u3bt8WjBytKyqW9Ro4cee+99955550NDQ1+v19Wc1FKKyoq6uvrAcCyLCFERkZGv3797JMeDAb79Olz3333HXSlyNTkKYpgrPAnlwWmnrLp/nv3/uufRm3QHvls14NpXlf/H19Q+oc7MkePEYwRuRpIW0dKKc3OzsnObrnU4nFd99WWkWfnrHixUgYGyoEJIed8Tn5K8rsMAMATbRB2a4QA4FZzzsu4YIIzDpxZlitDL5tZAABw6A6kXYAIADLizJxP/7SLWYyAoFwwIQiVMzCD3ZtdLsrORSKipByaYMCSIVPOzpAIMEDI2HOLuuEgjqm44vf77XVT7Byk9SCV1g22djix9wUAxpjX65VDT/D73LNS+wq32N7OqZGhpbS09K9//evDDz/89ddfu1wut9ttWVZdXV3qOsT19fW5ubmqqkajUcMwpk6dev311+fm5h4yqCSSoSiCMXdR0bgnnhrxhzsrPvqgdtmy8K6dLB6nquYqKAhMnNj3jLO8Q4YAyHUW6MHGOmOVaUfIJQOGn56TO9LRsC3ucOmcAxVUMCHsyScTks0rIHiynzEAY8CagwpwwRkHBgqPBo3RMwsLRmUJLqjSA+0rRCFCQN9RvoHTMra8H/T6XZwBFSAYOcihQbJCL9FzjIHFEzVgjAHjnAlggrJ4xCgoyRx1RgEkP8Cuc4zEFXuIe0ZGRigUkl3CRMpoOPm0FtVckNJOC8lSix11TNMsKCiQeRP2Az5KHG7eKk9fv3795s2b9+GHH7722mvbt283TTN1NIx8WjAYdLlcQ4cOveSSS6ZPnw7JheM6mjBFkYvquPr1G/RfVw76rytbP0d2/SIdmLIaQ8ghEOBMaE7lpP9X9NqvN+geRY7aIJBYUiX1uc0dbRN1YjKopOS8jHHBODAhGKXkjF+VANjjYHqCEEDItOsGbPpwBRMqAbXDh8ZT4qVc44lzYTFgQHk8Yp32ixGaUzkG58nvInYt/KBBg5YvX67rutwu70llp5rW39UWTSyp5KOjR4+Gjg18QUcteQEAwFlnnXXaaaetX7/+008/feaZZ+zOY/JpF1544VlnnTVixAhZ5CWJWd0OA0mu6wPyTsXeXX7xKe1IREEdJHPGE/+raMWre3d/FfL4XcJS7JnhD3yuPUgwUTqRXXLZATmvBRoPVcWmXTF0+PfyBRddfUffDkKJ4GLoKdljL8n75h/7/bkeblKamC0f4MC+7PL/ZAeExA+TnRE4E9ziwEDlkWB8+Cn5064cCsmPrksdO7fhMu+YMmWKrDGXlWChUGjfvn2hUKh1W4tsYrFrwOwhC3ZBJyMj48QTT4Qj7meMepy8vZBdh8eOHXvVVVd5vV7TNOViLZZlOZ3Oyy67rLS0VD7tSNrVCCFEVYmqEkoTP4oi/0zvQSG5/tWFfx6l+EQ8HufUZMnBqTxx28548oeBfJTJ8goDxgXjzOLcZGCByqON8X4jMy+6fyJAF3fC7QhCAOC8e0fmDHeEQxGh2uNuWeqhCWACLAYmSxy1xYHJ3xmzOLcYWIIyM245ffrsR06UEasbkn+MXOsiOSHYSSedlJ+fH4vFVFWtqanZuHFjeXn5xo0bd+7caT/THuNqb2kRVAghjY2NkydPLiwsbLOfGOqN7HsLIYTsIZabm9OnTx+32y0XBoXkANseTSbqKEIJZ6JvScasx0dHo1GDGUKRmazJwLTAtJK/sJRMWbZpM8EYM7mQQYXFw4bTp//suVM8AYfg4mgIK4ILT0C//JnxiptHI1FQLQYGA5OBYR+aPDo7osigwmS8FBYDUyiWxSwzxn765MkFJZmcddMimMdOPRgAcM49Hs/FF1/80EMPMcb27NlDkisw7tu3DwCKiorkDGD2jnbHMLv4IqNOfn7+T3/6U2irvRS75fRS9s1HNBq96aabioqKPB6PEDwcDu/cuTMcDgvB2xwHg45aVCGcidHf73vZgnEv/L+VJlVdXp2ZAM3z2Cam/BKp49g5F4JxYJwwovKm+rgvx3ndK6f2HxPohraHDpJRs3C0/2f/nLTgJ1+F6sLeLBezOAggqV3CEq0sPLHuuZB9EDgHCzQRazIJkGuenTb2+0XdeWi9OK7Y3/9oNNrY2BiLReW6FKWlpdOmTXv99dcbGxvlXIGyz3F1dXVeXp6c6qNFU0rq2AW5xTAMh8MJAPF43LJMxjghoOsOh8NhN/li7tOLyPMViUT2799nmub3vneKXFSNc56RkdG3b9+6utq6utpBg4o7tzgC6ilUIdwS4y8s9Pd1vvCLb6q2NPqyXYpKWWJyluTgwcTXXQ6MZIJyoMIyzHCNMWxq3k+fOjlvSMbRE1QkGTUHTc7+zfvT/vHz5du+rPdmuzSHwjkILjsWyDnNILnYHRPAOeGgcGZZ4cp4/nD/T588eciUPnJYTLelnAgh3qoBAPhBy+7yRzX5zY/FYpWVlZFIWIjEpywnU9I0tby8/I03Fn7yySeapgGAYRi6rpeVlcGBlVp2LJG1YUIIVVWbmpo2bNgwbty4Rx/9qxAQjUYgWUumaVogkJ2Xl3cM3Nh24rz3xkvFFgwG9+/fp6qq3TIPiWWhmZxTMhaLNTU1DRo0aODAQb395KbX0X+pyJAQrou/8z/rl/1jR6yROb265lAJTcaU5DxgnHDGmBEz4xHTn+8+/Vcjz/h1iebojl5SnSMTZsbZx3/d9Onjmxsr4k6PrjtVohD70GTTvSCccWbEzXjYdGXoJ//XkB/cOsYTcHTnocnz3lvjCgA0NDRUVOynlGqaljrLk2Uxw4jLTOH9999/8smnZB3XkCFDMjMzZT1Y665f8jVly8revXtVVa2vr584ceLDDz+kqqqcctSyLMOIR6MxXdeGDRuekZHRq3Ofoz+zSKNwOLx7d7nD4VAU9cAp91lyDi7LskzDMOrr60tKSgoLi3r1yU2vXnGpyBZpQknF5uDip7eue29vzc4wi3MghMg5S0FwxgUIzaX0HeYff/6AqVcOyezrtnfsvrQeJjuFDfsjXzy3bfW/yys2h8wISx4aCOCccSGE6qA5A72jZxaecvWw/GH+7j80ed57az2YvPdMLmpiZxMcABRFaJpuGPF4PH7mmWcCwJ///NCQIUMCgUA8Hoe2JrIFgHA4DACmaVZUVBBCGGPZ2dlff/31xx9/cvHFF9XX16uqIid+UxQlHA6vWrWirGxMIBDA3OfoxzmvqNivqqqiqCkLZxHOBSHyJ7GgJKXU7XZv2LAhEMhOrsaGegdCiRDAmcgf5r943oTzbx+za1XtrpU1lVtDTXVxzoWikIxcV/4I/6AJ2YVlAVWnIEsDtBNrCnYrQgkI4Exk9nV//9aymTeM2rO2bseKmopNwcaqGGOCUvBmOfOGZgwYnz1gXLbDowKAbKXvkcypV8YVwzAqKvbLe09KFTljhhCCcyBEyCEriqJqGm9qCk+bNm3v3n3ffPNNdXW1ruuqqtozSskKkHg8TimdPn16KBR6/vnnc3Jy7EU4VFX1+XyEUEoVOZ+9zH3kZFPffrt68uQTMfc5msmoLyckdbvdqZ0wEtPDEpL6LwBRVc2yGrdv31ZaWoY3Db0LIUAUIrgQAhweddjUvGFT8w72ZG4JQrtjMEd6EKDy0DioOh04IWfghIMWBjkThPTkofXKuFJVVQUAqqqSxKQ5cjNJAkIS956apkaj0XPPPWfmzJnLly/fuHFjfX29XO6JEOJyuQoKCkaPHj19+vTRo0cLIRoaGt566y3ZcltTU3PCCROnT/9eJBJRFIVzLu9tZWhxOBzRaHTDhg0TJkzA3OeoJc9LMNiQ2ns4eSMi/xKpSx3JGjJN0ysqKkaOLME+x70RkSXSxESTAM1ZRHJKFwKUku6fU/LIEUpki9EhDq2ng2XviyumaTY1Nem6Jocwt/UUYgcb2c84FouNGTP2rLPOisViNTU1jY2NsiySlZWVnZ0t8w7ZxPL73/8uGAwuXrzY4XBMnXryPffc43A4otGYfZ+bnAyXAIDT6aysrAgGg3JCQwwtRyfLsmKxuKapyTXzZK0pAIDssQFghxnZvCsURQmFQk1NIb8/E89sb9XWDfsxciKP+kPrTXFFfsPD4TBjFiG6vSXZQd3OI5o7fAmRqOsoL99VVFTkcDgKCwtbvKys9VIUpb6+zrKsefPmLVmyJDMzc/LkSZSSWCwmx2C3Tg+l1LJYRcV+v9/ftUeOjgBjFmOWqipCcCFIsicYJHudikS3/+T4JbuONBaL4YlFqBN6U1yR4vH4geNPmvv2pHYaTtkiCKGxWAySy3LYLyVrzWSPYQCIxeKmaTocjnPPPRcAotGoEJwQObuUaBOlRE63jo5acuENkZysmlIqBLFPaOrC4vLy4clVzVM7dyCEOq73xRXOWTJ2JJceaHnvyRlLzSm4SI5NaX8yQdM0AQhjrKGhgVKqKIqMQ4mxVInR+KnBiwsBcr16rCo5alFKheCWxVoMaLXvQxiT8/ow+QtjzLIYANizlyKEDkvviyuEEJkFJP9MrfviyaDChEiMS5AZhcOhdyDrT0QMOetgsmTT8pU558lBD5zzRP0Y1sIftWQnQNM0CCGK0jyHcUr1lwwqTI7AtyxmmobDoXu9PsA7BoQOX++LK7rukKECIHXEe6LKy77lZIzLbEJ2JvZ6PXCo3F9RVMuyGEvUeqW8cmL2sMTrcs4Yl69sWZac7gUdneR59Pky9u/fpygK5zQ5V3HzaRWCWZb8MU3TtCwWi8X69y/SdR1vFxDqhN4UV+Q33OfzARDDMFRVUxQqbz9TWl8T956maTFmJZl5efmHfH2Pxy13EYJS2pyhyLqvlEqS5ldmzMrOzu7aw0ZHQJ7EvLy8ffv2xuNxOXrJftRuWbGDimmahhEnBIYMGdpzqUaod+tNcQUAhBCapvn9GdXVNR4Pkcsvyfw/2fLBGeOWZTFmmqZhmlYsFvN4PAUFhXDwOg25PSPDr6pqPB7TdV2Ov4ZED1QZV1gyA0os2xGPx3Vd79u3X/cdPzp8QgiHw1FUVLR582Y5ytW+Cux6MMuOKqbV1BQqKRmVnZ2DhRWEOqeXxRX5PS8qKqqqqopGo7JltUV1OWOMMdMw5L2nEYtFTjhh8iHrNIQQlNI+ffK2b9+WnNQjdfViLldsYMwyTcMwTMuyotHw8OEjPR4PZkBHM1mcLSgoDIfDu3bt9Hi8sgegEJC8EZFlUGYYRlNT48CBA0ePHgPYsoJQZ/WyuAKJ20/n0KHD1q5dY1mWpulysHSyujxRVWVZlmEYoVDj0KFDBw8ecsisXz5aUFBQU1Pd0NDg8XghuWqc3RvVshIRy7JYU1MoKytQWloKmAEd9WRoGTZsuKpqW7ZsFkLoukYpldeMZVmGYcZiUQA+cmRJWdkYPKEIHYneF1dkHpGbm1taWrpmzZpwOOx0OuWUX8k6DW6aZiwWNU1jxIgRY8eOh8PJ+ktKRq1evaqurtbj8dgzidntKzIPCodDGRkZJ588VVU1LKz0CvKyKS4uzs3N3bp1a1VVZSwWY4zJzuK6rhUWFgwbNlxWf/V0YhHq3XpfXIFkHtGnT96UKSdt3LihsrLSNE25Ud5+EiL8/sySklEFBYWHm01omjZ+/IQNGzbs3r1LCDkLGRFCMMZN04jH40Lw/v0HjBs33ul0YlDpReR59Pl848aNM00jGGyMxaIA4HA4MjL8DocDsL84QunQK+MKJPMIj8czYcLEpqYmOU+XaZqUEo/Hk5ubl52dLUsbncgmKKWlpaWFhYU7d+6sqamOxaKy87Gu6/n5eYMGFefm9gHMg3ohedkAgKbpOTkHTAcrt+MJRejI9da4Ail5hNfr9XqHtH5Cp/N9+cqZmZljx47lnMu4Qil1Op1ykkrMg3qv1O4YKRvxbCKUNr04rkBKT7A2HzqSnMIOWpRSt9tjb8eIcszAk4hQF+ndcUXqogwi5WUTkesIYxVCCB0PjoW40vUwmiCEUEcddHJfhBBCqBMwriCEEEonjCsIIYTSCeMKQgihdMK4ghBCKJ0wriCEEEonjCsIIYTSCeMKQgihdMK4ghBCKJ0wriCEEEonjCsIIYTSCeMKQgihdMK4ghBCKJ0wriCEEEonjCsIIYTSCeMKQgihdMK4ghBCKJ0wriCEEEonjCsIIYTSCeMKQgihdMK4ghBCKJ0wriCEEEonjCsIIYTSCeMKQgihdMK4ghBCKJ0wriCEEEonjCsIIYTSCeMKQgihdMK4ghBCKJ0wriCEEEonjCsIIYTSCeMKQgihdMK4ghBCKJ0wriCEEEonjCsIIYTSCeMKQgihdMK4ghBCKJ0wriCEEEonjCsIIYTSCeMKQgihdMK4ghBCKJ0wriCEEEonjCsIIYTSCeMKQgihdMK4ghBCKJ0wriCEEEonjCsIIYTSCeMKQgihdMK4ghBCKJ0wriCEEEonjCsIIYTSCeMKQgihdMK4ghBCKJ0wriCEEEonjCsIIYTSqcfiymWXXTZ16tQ2H/rxj398+umnd3N6Om7BggWEEMuyuuG9jvKP4ti2detWQshHH33UDe+FJ/pos27dOkLIF198cVh7/epXvyotLZW/5+Tk3HvvvV2QtF4Ayysd8vjjj1955ZU9nQrU5davXz9w4MCeTgXqeQUFBU888cSQIUM6/Qp//vOfzznnnDQmqRdRezoBaWCapqZpXfoWK1as6NLXR0cJPNFIysrK+sUvfnEkr3DFFVekKzG9TneUV5599tnhw4c7nc4RI0Y8++yz9nZVVRcuXDh8+HC32z1hwoSvv/669b579uy55JJLAoGAw+EoKyt78cUX5fY1a9YQQt59991Ro0ZNnjwZAOLx+E033VRUVKTr+oABA37/+9/bVVV5eXl/+ctfrrvuOr/fHwgEbr311tra2gsuuMDj8fTv3//555+33+7ll18ePXq0w+HIy8v79a9/HY1GAWD69OnPPvvs3//+d0LI6tWr5TM3b948depUl8s1aNCg5557zn6FF198cdy4cV6vNycn57zzztu2bZvcfskll1x88cUvvvji0KFDXS5Xi+N9+umnS0pKHA5HTk7O7NmzKysrj/xjPw51/ESvWLFixowZHo8nIyPj/PPP37FjBwDceeedV1xxxa5duwghjzzyiHxmNBqdPXu2z+fLy8ubM2cO51xuX758+RlnnBEIBLxe76RJk+zqsieeeKJPnz4rV66cPHmy2+0eNGhQ6jX/5ZdfnnLKKW632+v1nnbaacuXL++eTwYdrhb1YAf7hu7bt++cc85xuVz5+fl33nln6ivY9WDtXxJtXoq9nhDizWrxZrXoIq+++qqiKA888MA333zz0EMPEUJee+01IcTs2bOLi4vPPPPML774YunSpSUlJSUlJXKXCy+8cMaMGUKIeDw+YsSI0tLSzz77bOPGjX/4wx8A4M033xRCbNiwAQAmT57897///dtvvxVCXHXVVX6//+WXX96yZcs//vEPr9d7/fXXyxcsKCgYMGDAyy+/HI1G//SnP8kdP/roo0gkcsMNN7hcrvr6eiHEa6+9BgC//e1vN27cuGjRosLCwp/85CdCiIaGhgkTJsyaNau6utqyrPnz56uqeuqppy5cuHDNmjUXX3yxpml79uwRQixbtgwA7rzzzg0bNixfvvz0008fM2aMTMPs2bOLioquvPLK6urqhoaGM8880z7e559/nhByzz33bNy48eOPPx42bNjEiRM556kfRVfoxHnv0kvlyHXwRO/cudPn882cOXPVqlXLly8/5ZRTiouLo9FoOByeM2dOUVFRdXV1NBrdsmULAIwdO/bRRx9du3bt/fffDwD//Oc/hRDRaDQQCFxwwQUrV65cv3799ddf7/F45DUwf/58h8Nx9tlnb9y40TCM2267zb48Nm3a5HQ6L7roolWrVq1YseK8887z+XzyoS490Ufu2LtUDmnt2rUA8Pnnn4t2v6EzZswoKCj46KOP1q9ff9111/Xt23fUqFHyFbKzs++55x7R7iVxsEux5477SMnz3uVxZdKkSRdddJH958033/zII48IIWbPnu1yuWpqauR2ecsfDodFynds4cKFAPDll1/au0+YMOGMM84QQsjv/E033SS319TUqKp633332c+84YYbPB5PPB4XQhQUFJx99tlye319PQBce+218k959SxbtkwmderUqfYrvPDCC4QQefonT558xRVXyO3z588HgEWLFsk/d+7caf8ZjUa3bdvGGJMPvfXWWwBQWVkpj9fn8zU1NcmH/vGPf9jHO3bsWHlQqXvJo8a4clg6eKJvvvlmn88nY4wQory8nFL60ksvCSF++9vfDhgwQG6X19jNN99sv/7AgQPln5ZllZeXh0IhuT0UCgHAq6++KpKXx+LFi+VDu3fvBoB33nlHCDF37ly/3x+JRORDtbW1uq7LixbjytEmNa4c7Bu6Z88eAHj00UfldsbYwIED24wrB7sk2rkUeyl53ru2HoxzvnLlyhNOOMHeMm/evN/85jfy9xEjRmRnZ8vfA4EAAMi8wLZixQpFUU488UR7y6RJk+yaKACwX/nbb7+1LCu1g9mkSZPC4fDWrVvlnyUlJfKXzMzM1n82NDQwxlauXDljxgz7FaZPny6E+Oqrr9o8tJNPPjk15XV1dQDgcDheeeWV4cOH67pOCPnBD35gPwQAQ4cO9Xg8qe9bX19vmuaaNWtapBwAUg8TddwhTzQALF++fPz48XILABQVFRUXFy9durTNF7RPNAAEAgF5NhVFWbFixamnnup2uwkhPp8PUk40AIwdOzb1feWFvWLFivHjx7tcLvvVBg8ejCf6KNfON1TWmowbN05up5TKh9rU5iVxWJdiL9K1cSUSiViWZX+RWnC73fbvhBAAEEKkPqGxsdHv91PanMisrKzGxsbUP+1npv5p/24/2el0pr5yiz+FENFo1LKs++67z5k0ePBgADhYU4ed+NSUL1iw4Pbbb7/11ltlOezDDz9M3aX15yCECIfDnPN2Uo4OyyFPNAA0NjZ+/vnnzhTbtm075IkGAEKIfIX169dffPHFU6ZM2bZtG+fcNM0We7U41/b7pp5oaHU9o6NQO99QWU71+/32Q6m/t3CwS6Ljl2Iv0rX9wVwul6qqtbW1ndvd7/cHg0EhhMy7AaCurq7NMyc3phZ35M1jO6e5BbfbrWnab37zm6uvvjp1e15eXscT/MYbb5x++ulXXXWV/LOiouKQu3g8HkVRjiTl6HD5/f6pU6c++eSTqRtlmaOD3nnnHYfD8dBDD6mqCh070fJ9W5TI6+rqCgsLO/6+qPu18w2V1Q/BYNB+6HDzuiO/FI9OXVteURRl7NixixcvtrfMnTt37ty5Hdx94sSJjLHUmqglS5ak1qrZxowZo6rqkiVLUp/p9/uHDh3awfeilE6YMGHXrl0jkoqLi3Vdt+9TWpSl2hQKhVKvCdkBqf0dNU0bM2ZMi5RDShUfSrtJkyZt27Zt8ODB9rmmlPbt21c+2sET7XQ6ZVABgL///e8d2XHixIkrV66MxWLyz6qqqq1bt+KJPsq18w0dPnw4AKxatUputyzryy+/PKwXb/9S7L26vJ/x3LlzP/nkkz/84Q8rVqx49NFHH3vssSlTpnRw35kzZ44aNeraa69dtmzZli1bbrnllrVr115//fWtnxkIBK666qo//vGPb7zxxs6dO5977rn58+fPnTvX/uZ3xE033fT666/Pmzdvy5Ytq1evvvzyy6dNm9bU1AQAWVlZq1atWrVqVU1NTTuvMGXKlA8//HDp0qXbt2+/9tpr5aCqb775JhKJtLPXjTfe+OGHHz744IM7duz45JNPbrzxxu9973sTJ07seMrRYfnFL37R2Nh45ZVXrlmzZsuWLffee29JScnKlSsBICsrq6KiYvHixe1395wyZUpNTc3TTz+9b9++xx9/fO3atfn5+d9++23qrWtr1113nWEY11xzzYYNG1avXn3FFVdkZmYez6MceouDfUMHDBgwZcqU+++//7333luxYsVVV13Vot71kNq5FHu1Lo8rs2fPfvLJJ1999dWTTjrpscce+9vf/nbJJZd0cF9N095///1hw4bNnDmztLT0ww8/fOONN0477bQ2n/zoo49ec801v/rVr4YOHXr33Xf/4Q9/uOOOOw4rqT/60Y9eeOGFl156qbS0dMaMGfF4/LPPPvN6vQAwZ86cffv2nXHGGe2f8t/97nennXbamWeeOW3atMLCwscee+yss8765S9/+fbbb7ez16WXXjp//vxnnnlm+PDhs2bNOu2002RHONRFBgwY8Omnn1ZWVk6ZMmXcuHGLFi16++23ZSC/9NJLi4uLzz33XNlh72DOOeecW2655dZbby0pKfnqq6/mz59/7bXXvvDCC+1fcoMHD/7oo4/Ky8vHjx8/bdo0APjss89yc3PTe3Qo7dr5hr700ksjR4784Q9/eM455wwaNOiyyy5r3djWjnYuxV6NCCHeqgEA+EFOT6cFda9OnHe8VI5PeKmgDpLnHecHQwghlE4YVxBCCKUTxhWEEELphHEFIYRQOmFcQQghlE4YVxBCCKUTxhWEEELphHEFIYRQOmFcQQghlE4YVxBCCKUTxhWEEELphHEFIYRQOmFcQQghlE4YVxBCCKUTxhWEEELphHEFIYRQOlEA0AgAQIj1cFJQd5KnW576jsNL5TiElwrqIPtSoQDgVQAANoWhCS+C40OIwaYwQPLUdxxeKscbvFRQB6VeKkQIUWnA1409nSjUEyb7oY92GM/HS+W4hZcK6qDJfiBCCACoNGBLBEIMLNHTiUJdTyPgVWCYG/roh70vXirHFbxUUAelXiqJuIIQQgilBfYHQwghlE4YVxBCCKUTxhWEEELphHEFIYRQOmFcQQghlE4YVxBCCKUTxhWEEELphHEFIYRQOmFcQQghlE4YVxBCCKUTxhWEEELphHEFIYRQOmFcQQghlE4YVxBCCKUTxhWEEELphHEFIYRQOmFcQQghlE4YVxBCCKUTxhWEEELphHEFIYRQOmFcQQghlE4YVxBCCKUTxhWEEELphHEFIYRQOmFcQQghlE4YVxBCCKUTxhWEEELphHEFIYRQOmFcQQghlE4YVxBCCKUTxhWEEELppMr/Ghsb161bt3///lgs1rMJQqhXczqd/fr1Ky0t9fl8PZ0WhHoGEUI0NDT85z//mTJlis/nc7lcPZ0khHqxaDTa2Ni4ZMmS0047ze/393RyEOoBJBgMfvrpp+eff35PpwShY8rChQtnzJiBpRZ0HKLr16+fMmVKTycDoWPNiSeeuG7dup5OBUI9gO7bty8jI6Onk4HQscbv9+/bt6+nU4FQD6CxWMzpdPZ0MhA61rhcLuwFg45P2M8YIYRQOmFcQQghlE4YVxBCCKUTxhWEEELphHEFIYRQOmFcQQghlE4YVxBCCKUTxhWEEELphHEFIYRQOqlpfK1YLGaaZjweN00DADRNdzgcmqYdPeP5V65cuXv37o0bN5aXlwNA//79R4wY0b9//3HjxvV00hKi77xtrlsb/+JzY+1aANDLyhxTp2llo13nnNvTSWv2fv3730W+W9q49LvIdwBQ4i6ZkjFllHvUmVln9nTSWtr+Qbhmo7FnWbT6OwMAckv0whNdOSMdxWe4ezppCB2z0hNXTNNsaKg3TTN1o2HEDSMOAJqmZWZmaZqWlvfqnPLy8qefflqGE9vGjRs3btwIAP3797/66qv79+/fQ6kDADDXrqn75bXmurWpG+NffhH/8gsA0ErLAo8/oZWN7qHUJayPrL9h+w0ynNiWhZYtCy0DgBJ3yZ+L/zzKPaqHUneA6u+Mj26uqtlgpG7c+1Vs71cxAMgZqZ/+xz65JXoPpQ6hY1ka6sFCocbq6qoWQSWVaZrV1VWhUOjI36tzFi5ceMcdd7QIKqnKy8vvuOOOf//7392ZqlSND/xP5femtggqqcx1ayu/N7Vx3v3dmaoWHtr70Nnrzm4RVFJ9F/nu7HVnP7z34SN5l7Fjxz722GNH8goA8NVf6l/5wZ4WQSVVzQbjlR/s+ejm6iN8I4RQa0caV0Khxg4GjFCoMRxuaucJI0aM+NOf/pS65ZVXXjnyOrSFCxd2MGAsXLjwgw8+aP859fX1119/fXFxscPh6Nu378UXX3zkc6E3PvA/jX98oEPPnHd/0xOPt/+cmpqauXPnyhTm5eX98Ic/XLZs2RGmEAAe2vvQI3sf6cgzH9778IKKBe0/pys+RttXf6n/+q/1HXnmhtdDq58NtvOEb775hhBSUVGRpqQhdFw4orhimuZhlUKCwWA7xZquUF5eflilkJdffrmdYk0wGDzppJM++OCDefPmrVq16sUXX2SMTZky5dtvv+10Cs21azoYVKSG399qrl1zsEerq6snTZq0aNGiu+++++uvv3799dfz8vJOOeWUIyyKrY+s72BQke4uv3t9ZP3BHu2Kj9FW/Z3RwaAifX5vrWx6QQilyxG1r9TXH8YXWGpoqM/N7XMkb3pYFiw4xI1za08//fRdd93V5kP33XdfdXX15s2bA4EAAJSUlJx22mk/+9nP1q5dO2bMmM6lsO66Xxz2Lr+8Nm/xl20+dNttt8Xj8W+//dZepnDq1Kmapv3sZz87++yzdb2TzQnXb7/+cHe5YfsN75W+1+ZDXfEx2j66qeqwd7m56tK3C4/wfRFCts6XV2KxmGUdduHDNM1uW5RC9v463L3Ky8tXrlzZ5kOvvfbatddeK3ND2/z58y+77LLOpTD6ztvm+sOu/zHXrY2+83abD73++uu/+c1vWqx9e9ttt1VXV3/yySedS+T79e9viGw43L2+i3z3fv37bT6U9o/RJnt/He5eNRuM7R+Ej/CtEUK2zscV2Zk4vTv+9re/VVPMnj27s6kDAGinRqsTO3LOd+3aNWpUOjs7tVOj1Ykdg8FgbW1tSUlJi+35+fmBQGDbtm2de692arQ6sWNXfIy26oM31HfRjgih1jofV+LxeNp3/O///u/VKebNm9fZ1AEAyD7E6dqREKIoCmPsSJLUQvyLz9O4o6qqANBmCjnnhJDOvdfSxqVp3LErPkbb3mXRbt4RIdTakZRXOtkC386O+fn5pSkKC4+o1rvT5ZU2a88IIcXFxatXr26x/Uh6IhgH71h8qB3bqD3zeDz5+flr17Z8zYqKioaGhmHDhnXuvdrpWNy+NmvPuuJjtGF5BaGjAc7j0gYhRJvbf/zjHz/55JP79+9Pfebll19+4403dlfSmt+5za2XXHLJo48+2tjYmLrxgQce6Nev3/Tp07sjXSnEQRJ5NH2MCKH063xc6fT4+W4beN/p8fMH2/HWW28dOHDgtGnTXnzxxfXr13/66acXXHDBxx9//LOf/axzb6SXlqV3x7vuuiszM3PatGlvvPHGli1bvvrqqzlz5vztb3975plnZC1ZJ5S4WzbYHOGOaf8YbbkjO9nhrdM7IoRa63xccTgc3bzj4RoxYkR6d/R4PEuWLLnooovuvPPOCRMmXHbZZVlZWcuXLx8+fHjn3sgxdVp6d/T7/V9//fWZZ5550003lZWVnXfeeXv37v3yyy/POuuszr0RAEzJmJLeHdP+MdoKTnR1844IodY6P35F0zp5i3ewHVu3ls+aNWvWrFmdexfogvIKAHi93vvvv//++9Mzn0qn5/tqZ0e/3//ggw8++OCDnU1US52e76udHdv5GFs3vXRc2ssrEydOPFilKELoYDpfXnE6nap62DVaqtp90xuPHz++qKjocPcqKioaP358V6SnNde539dGlR7uXtqoUte53++K9LTprKyzRrpHHu5eI90jz8rqfCGpc4rP9OSMOOzQkjNCLz7T0xXpQej4dETt9llZWd2wy5G45pprumGXIxH43791wy5H6KHih7phl7Q4/cHDns2hE7sghNpxRHFF07QWQ7vb5/f7u3m2/P79+59//vkdf/6ll17azbPla2WjM26+pePPz7zv/u6fLX+Ue9Tcgrkdf/7t/W/vqdnyc0v0SXMO495l2m3ZOFs+Qul1pP2Mfb6MDoYWv9/v8XiP8O064Yc//GEHQ8ull1565pk9sDJVxi2/62Boybzvfu+1v+zq9LTp+oLrOxhabu9/+zX53Vrma2Hyb7I6GFpG/Mg79qf+rk4PQsebNIxf8fkycnP7tNPWoqpabm6fHgkq0g9/+MO77rqrnbaWoqKiu+66q0eCipRxy+/y/vNFO20t2qjSvP980VNBRbq+4Pp3S99tp61lpHvku6Xv9mxQkSb/JmvWW4XttLXkjNBnvVV4BtaAIdQFyAsvvHCE03DZYrGYaRrxeFyOndY0zeFwaJp+VK1DXF5e3nod4m5rqD+k6Dtvm2vXxL/4XA7F10uT6xB3Y0P9Ib1f//76yPrW6xB3f0P9IW3/IFy9wdi7LCpH1OeO1AtOdOWO7KaG+hdffDFdXy6EepF0xhWEUCqMK+j4hPO4IIQQSieMKwghhNIJ4wpCCKF0wriCEEIonTCuIIQQSieMKwghhNIJ4wpCCKF0wriCEEIonTCuIIQQSifqdDpjsVhPJwOhY000Gj16ZjBCqDvRvn37NjY29nQyEDrWBIPBfv369XQqEOoBtKysbMmSJT2dDISONUuWLCkrK+vpVCDUA4gQorGx8ZNPPjnxxBP9fr/L5erpJCHUi0Wj0WAwuHTp0hkzZmRkZPR0chDqAUQIAQChUGjdunX79u3DthaEjoTT6ezXr19ZWZnX22MLDiHUs/4/o15LX8pIN+QAAAAASUVORK5CYII=", "path": "image.png" }
Look at the models of molecules below. Select the elementary substance.
[ "methanol", "chloromethanol", "iodine" ]
2
There are more than 100 different chemical elements, or types of atoms. Chemical elements make up all of the substances around you. A substance may be composed of one chemical element or multiple chemical elements. Substances that are composed of only one chemical element are elementary substances. Substances that are composed of multiple chemical elements bonded together are compounds. Every chemical element is represented by its own atomic symbol. An atomic symbol may consist of one capital letter, or it may consist of a capital letter followed by a lowercase letter. For example, the atomic symbol for the chemical element boron is B, and the atomic symbol for the chemical element chlorine is Cl. Scientists use different types of models to represent substances whose atoms are bonded in different ways. One type of model is a ball-and-stick model. The ball-and-stick model below represents a molecule of the compound boron trichloride. In a ball-and-stick model, the balls represent atoms, and the sticks represent bonds. Notice that the balls in the model above are not all the same color. Each color represents a different chemical element. The legend shows the color and the atomic symbol for each chemical element in the substance.
iodine
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAIAAACmkWkFAABLPUlEQVR4nO2dd3wUxfvHn72aXE1vpHAJJSQkASEQCL338gUVpQuK2EWUoqACSlFQ1J8Kil9QUGwIfqUjvUgRCYEklBQIkAZJrqVcm98fc7ccySW5snfZw3m/ePHa29udnZv55HmeKTtDIYTA27hZqW3ymmg/sQdyQvg3Q3ToKLzmzkBdagzGa2Wqq2XKGoNRWaNT1uibO0cOI+RxQiW+cl9BqMQ3Kdzfh8dt7hwRHIbo0B1QrIpuSjQ1W85frzWYGr/MXyKmAACAooAC8z+gwHwSgAK4p63WGZtIxwMIeZzxSYpof+LivAmiQzfBLnOz4czVUk2NwEcs9QsQCgQ+fL6PUMCngMcBLgCPAzwKeBRwKPMB13LMpYADwLWcwcccyzF9QAFQlmOEwARgRAgBGE3I6th83oTAhJDV8f3z5ivNx2CdgglAZzBWVeu0NTqVtkqtqRLyOHN6tW/uoiU4ANGhm+A07+ProKzWAYB/REuRzN/HV8wXCAAAm0OKshyB2Xsgy/H9C6yO7xtRfIwAWd2JzNcjiqIQAoqiAAAfAz6PL6Ws3BUFyHKeoihkOU9RgBACSwqAgMflSsQ+wYGylpGhANCkkySwDaJDN8EucxPtLwGAGq0Kly4OvMxVgyxHVhWMj+9fYHVsuRYAWYW4ljsp8/UUQshcTwD4GMsBqwJfZDkGynIeIURZzptVYkmBThohqNbpASBE4sNwMRHcDNGhm2CXuYnxlwCATqvBpVvHUXiLV7EcQ0WFCizaJXgRRIdugl3mpk2wTMjlVGsqajQqb/cqVTW6exUqAEgOD2C8oAhuhejQTbDL3Mh9BD1jwwDgbvFNk9HovV7FaDIVFBYBQA9FaCgLgliCQxAdugl2mRsASI0Kah0kQybTnZu5BqMRvNCrGIzGq/l3dHpjtJ+4pyLUHaVEcDdEh+6AdeYGAEYkRAVLfHS1NYU3cmtqa7zLq1TV6DKv3aiu1cl8+OOSW7qjfAiegeiQcdg174amxmDccj63VFPD4XBCgoL95XKpjw+b5zvU6o0VVdV3KzUVao3RiFoHyUYkRLFhHifBFYgOmYWl5gbzR1ZhZnFFc+fCYXooQlkSuxIYgeiQKVhtbgDgZoX2yl3lucKy+y1mdoIQAhjYpkW0v4QNfXIEZiE6ZATWvaJZh2h/cbS/+FzhXQCY3C0Zh6AUAAXmgzofweo8WKJWCpnP02fwgQkBAjAhhAAQPgaEgDIhBObzFP7WhMByxnwXor+lQG8y/XLmCpeiUqOCmqGMCO6H6JAR2NhV3CCWDjZcrxRYdfI/OCJAf8TXA4U70u5/axkRAAQI1zrugTOPEZidhCX0u3+GThaZr8f9c1YyIjz8EB06i1eZG8sYAIL7/+iqsx4RoD/i6wHhYUJ4oOrNvoUy1xwyj0uae/sp8zFOy3KGTpYyX4+AoiiTCQEAl2JxPRMYhOjQWbzK3LDVqyCzV2FvNROYhOjQWbzK3LDWq4AJACg2R7EEBiE6dBavMjds9ypu+tkElkF06CxeZW5Y61WQCdjdZiYwCdGhs3iVuWGvV6GA3W1mApMQHTqLV5kbtnoVI0LA7momMAnRobN4lblhq1fBeaBYXM0EJiE6dBavMjds9SqWNrO7fjeBXRAdOotXmRu2ehX2z3cgMAnRobN4lblhq1dhf5uZwCREh87iVeaGrV4FWO9VCExCdOgsXmVu2OpV8GxODpvnVxEYhOjQWbzK3LDVq7B/NieBSYgOncWrzA1rvQrrg1gCkxAdOotXmRv2ehW2d9ERmITo0Fm8ytyw1quY2F7NBCYhOnQWrzI3rPUqAMDuNjOBSYgOncWrzA1rvQoyAbu9CoFJiA6dxavMDWu9CuvfxCUwCdGhs3iVuWG5V2FzFEtgEKJDZ/Eqc8NerwLAbq9CYBKiQ2fxKnPDVq9iGYB01+8msAuiQ2fxKnPDXq+Cq5nF9UxgEKJDZ/Eqc8NWr8L+2ZwEJiE6dBavMjds9Som1nsVApMQHTqLV5kbtnoV9reZCUxCdOgsXmVu2OpV8Dk2exUCkxAdOotXmRu2ehUj6+c7EJiE6NBZvMrcsNarsH42J4FJiA6dxavMDVu9CvvfVSEwCdGhs3iVuWGtVzEBsHvDDQKTEB06i1eZG9Z6FZwRFnsVApMQHTqLV5kb1noV1s93IDAJ0aGzeJW5YatXwSmwuZoJTEJ06CxeZW7Y7VW4LK5mApMQHTqLV5kbtnoVy+Rxd/1uArsgOnQWrzI37PUqAAAUm+uZwCBEh87iVeaGvV6F7fMdCExCdOgsXmVu2OtVKGB3m5nAJESHzuJV5oatXsXI+jYzgUmIDp3Fq8wNW70KzgSbg1gCkxAdOotXmRu2ehX2715IYBKiQ2fxAnNTrK4GAB8+j7VexZfPo/NJeFghOnQdLzA3WSWVABATKGetV4kKlAHA5ZIK9xQAgRUQHbqO15ib6EA/1nqVFv4SHocqUlWranRuKgRCs0N06DpsNzd3VFXqWr0PnxciFbHWq3A4VGSADAAyiyvdVA6E5oXokBHYbm6ycQQb5AcUxVqvQgEVFSAFgItF5e4pBkIzQ3TICGw3N5eKKwEgJsDvfo2yz6sgQGF+Ej6XU1mtK9XUuKckCM0J0SEjsNrc3FJWVekNIgE/SCq6X6Os9CoUQFSgHCwtfMLDBNEhU7Da3OAINirID6xrlJVehaKo6EApAFwqZu+4AME5iA6Zgr3mBiFkHgsIkIN1jbLSqyCEgiS+vnyeulZ/W1nllhIhNAdEhwzCXnNTqKyq0ht8BfxAiQi8watQFBUVhCc+VLqlRAjNAdEhg7DX3GSXVgJATKCfxZew3asAQJS/FACySypM9x9P8G6IDhmEpeYGIZRTogSAqEA/iy9hu1cBAH+Jr1jIr9Ibb1Zo3VAqBE9DdMgsLDU3Nyu1OIL1F/t6kVdBCEUHyoHdE8kJ9kN0yCwsNTd4LKBlkD/c9yVe4FUoiooKlAJAdqnSaGJXHEtwAqJDZmGjuTEhlFWqBIDIQD+470u8w6tIfIR+Ih+90ZR7T814yRA8CdEh47DR3Nyo0NYajGKhwE/kA97mVQBQJOtfzCXYA9Eh47DR3OCxgOhAf/zRu7wKABUdIAWAa3dVBqOJ0YIheBSiQ8ZhnbkxIZRTqgSAqCA5PuN1XkUo4AdKRUYTulKmYrh0CJ6C6NAdsM7cFJRrcAQr9fHBZ7zOqwBCkQFSYFkcS3AIokN3wDpzk4Uj2CB/2i14nVcBiorwlwJA3j11td7AZOkQPAXRoTtgl7kxmtAVy1gA7Ra80asIedxQuRgB5LAmjiXYD9Ghm2CXuckvV+uMJpnIR+Ij9GqvggBaBEgBIIuVL+YSGofo0E2wy9xkY5cS4AdWbsEbvQoFEO4n5VDUzUqtVseKOJZgP0SHboJF5sZoQlfL7lezt3sVHpcT6icBgMvscCwEOyE6dB8sMje55Wqd0SQX+4p8BOD9XgUhwOtUs3AdAEIjEB26DxaZG/x+SoS/eR8fb/cqFAUhcjGXQxWrqyuqahksKIJbITp0H2wxNw9EsLjCvN+rcCgq3F8KAJdLK5krKoIbITp0K2wxN9fvqQwm5Cfy9RUKHhqvAgCRAXIAyCxq/mYzwR6IDt0KW8wNXg42PMAPOwF4KLwKAARIfAQ8Lms34iDUgejQrbDC3OiNput3VQAQESDHTgAeFq/C4XAi/Fn3Yi7BJkSH7oYV5ub6PbXBhPzFIl+B4CHzKgih8AA8DFnJWHkR3APRobthhbnJpiNYgIfMq1AU5S/2FfJ56lr9LSW7Fo4l1IHo0N3wmuvBNHqj6dpdJQCEyCRGo9GEEIcDFIAJgEMBBcABRAFQFP3RfEDh8wAUhUWAzOfxZbieHrgAK8T80WRCCMAECCGEgDIhZELIhAABIIRMVifxBUaTCQGYEJgQQoAQgBGngBAynwSjyYSAQlZJ4bsCfPlFesPlkspIubh5S5vQEESHHqD5zc21uyoTApmvj9GgrzLoORRwACgKuOa6BHyGrkKO1XkK6n4EfD1ldiHmykZAURSFbT9CFn8CdE0ARdG1jisSAOiqwgf4DLLcZTKZgOKYTCYTIASALHchZEJg9iomE+JwOEaTKUDML1JVZxVXDmwdwbnv7wgsgujQAzR/YwqPBQRLxZamK9VImxkhVKfNbKlc84XmixHd2kWWBM1xpTnafLDNjJC5DUw3vOk2M3Yh1m1mhBD2UCZkojPXUJvZZDIBgJjP9+FxawzGGxUad5UjwTWIDj1AM5ubWoMx954KAAKlYkvTFTXSZqYoqk6bGT3QELZcTNGtXcqSoLnkzfUBQFGQWZ6L28zYCVFmDYB1m5miqDptZorCETRwKA6duUZGBPCPChQLgR0TyQn1aV4dgqXv5qHXYTM3pnAEK/f1EfB45gYtUECZ7TcdbR68ffKKMs8cowLIhZIBEWnR0jCLV6GVgGivAoBHARCHwgkiAEpZq/4h78DOm6eOFV+0zkZ6aNLQqLRHFf2lfAmY41vsVUw4KxRQJmuvQsF9r4JsexWTlVehgAoUCW4rq3JKlUPbRnI5pD3FLuzUIVgMBK5oytKAclSHZoMBViNHgCgKTMg8xkRHNw+ZDpvZ3OCxgECpBBc7hcsdYTsNd7TF67O2HLrzl1pfN/Zbdn5dgn/sS+0nDonqbu1+kLlPjrL0xlGWBKkVGd99mb1DqbMRRp4oyTxRkvlBxvdPx49+NelJLCWEzP38yKw5fOa+DDkUx2gyAVi0iRC+BixXAgLcZkaAhHyuWMDT6gzX76naBsvdVaAEp2hchxhksSzW0Q0A/T+yU4dYTbjvxmK8ANsRiqKQCVFmrcHDp8PmNDe1BmNeuRoAgmVisIwP0sX4e/7+NRfX1zc0NFkVec8eW9otNHldz7f8BNJGvIpSp5pyZNnxByOa+ij12g8zvz9ZmvlVj4VSvphZr2JCyF/E1+oMWSWVxNywisZ12FzRzcmSi1kVeZU6LQBEiELi/Vq2kyu8XYfNaW6ulKlMCOQiXy6HW8ervPv36p03DtiTyKmSi8N3v7i+16KkgDiw5VUqa1Vj9s3PrMizM1cnSzIfO7jwx37vS/liBr0KRVEBIuGtyuprd1U6g1HA4zpVZgTmaUSHno9ujhdlrL+yY3fhX/XzKeOL/9Oy/wsJj0v4Yi/VYXN2FZsjWInYeuISBdSai1/aaWswhdqSCQfm41ZS/RGBF0+usd/WYC5X5D997H0GRwSwCHhcSirkG03o6l1WLBxLwDSkQw+PTKn0mjfPrht7YIFNWwMAKr1247Xf++165reCP71Uh81mbqr1hvxyNeCxAPMfMgDA4Tsnfry+w9HUlHrNYwfmQb0Rga25+3c1UHmNc6o0c8OVHQyOCOCE/ER8IONTbKIhHXp4ZEpVqxm9b/66nKaVr9JrF5z79M1zn3ijDpvN3FwpUyEAmUjE5XBor6LWqddeXO9cgpcr8n7K3W/tVZQ69QcZW5zO4ceXflDWqhmMbhAgf5EQAPJZsxEHwaYOwbPRjbJWPXL//MyKfPuz/duNg8szvvY6HTabucE7ogZKxRRF0V5l180/i6pKnE5zTeYWa6+yu/Cvm1rnU1PptfvvnLEnurlTVfrPvcs7Cw/vunXkn7uXiqrLGvIqXApkPnxkWXyb0OzY1CF4Nrp57uSazHLH2vsAsPn6H3/eOe1cdNNcOmyeruJqveFGuYYCCJCIEUIcDoW7zHbd3O9KsoXakssVuUkBcbguT5Q0MRTVJPtunfpPy34NjUwpa1Vbcnf+fvPgnaqyOjeG+wYPiewzruVQEU8MlhEBBAgoyl8sVNXos0oqH2kR6GL2CC7SkA7BgyNTR4sydjrV3geARec+3TX4Cwlf4tDIVDPqsHmim5xSJQKQiny5HA7tVVQ69XWlwza+DntunQKLVznpsrk5XXa5oehmR8HBYftmf5nzY31bAwBF1WX/vfbzhEMv7rt9BKy8CiAk9+FTAIXs2IjjX45NHXo4ulnhQntfpdduyf3DieimuXTYPOYG74gaKJMAbtZSAEDlqly1NQBwuTwXLG3mQk2pi6mp9FqbfTdvnlu76Pxnan0TL/JrDNoVFz9fdfFzus2Mh0b9fAUAcIkFG3H8y7GpQ0/23dxUFx8vyXTlJxy6c8aJvpvm0mEzmJtqveFmhRYA5CIRYMNv5VVcRKXTgpVXcZ360c2bf3+648Yh+1PYe/vIqouf016FAkouEoDlnUBCc9G4Dj0T3fzhbDOKJkdZUFRV5kR00yw6bAZzk1WiBAC5WMTncqGeV2EE2qswkpR1dLMt/88dNw46msi+O0f23jqEzApAMh8eh2LFRhz/ZhrXoWeiG1XDk+bt53ZVsRPRTbPosBnMDR4L8JdITOaONCajG5lADBavkhgQ62JqLcTB1tGNSqdZefEb55L6Muc7rV6LvQoA5U8m4DQ3jevQM9HNsSJXuxcBQKOvdi668bwOPW1utDp9YaUWAPzEIjzPgfYqrWWuWgcAaI9fZUAIIWjv72qCacFJ1tHN8oxvVE311zSExqD9MudbMK/wCDJfAQBkku6bZqIRHXoyumEElU7jXHTjeR162txklygBwE8s5nI4dbyKRCDtGJTkYvqDI7uBxasMjermYmppIUnW0c2BOy61tE+V/g3m9atBIuRxOVRlta5EXe1iJglO0IgOPRnd9AhPdv23tBCHOhfdeF6HnjY3eCxALpEg84qKD3iVnuHdXUk8UhzS3v9+dDMsqnuUJMSF1ILHtexHRzd/lV5U66tcyZ7GoL1YkYUsa+77iciCW81G4zoET0U3fnyJ678l3DfI6egGPKtDj5obrU5/W1lFUZRc5EuZlw56wKs83mpMmMh5A/Fa0qQ6XuW9zs86ndoriU9avzOVU1ngdFI0uaoblGXdNj9fPpDxqeagSR2Cp6Kb9DBXw/kIUXCkJNzp6MbDOvSoucF73MjEIg6H05BXeTXZSQOR4B/7WNzAOl5laFS3CXEDnUhtvKLfo7EDrN8IZ2QQQWvUIsuqtL4CHp/LUdfqC8mGMJ7FHh16JrpJCYiLdiEAB4DRMX2dm3fTLDr0qLnBL2jIJdYLdNb1Kr0ius1sN9HRlCPFIT8PWAG2vMpn6XPSQx3zIQn+io/SXgVba8S6CgLaqwAgP7EQALLIjneexR4demxW8YKUSU7/EClfNDF2hHOziptFh54zN6oa3R1VFUVRcl9fAGjEqzydMGlCq9H2p5zgH/tVr8VygQwa8Cq/D171RNwAO1N7VNF/35BPsH+wjm6YmclDAe1VACi5Dw8AskoqTUxNEyI0hf069EB0QwE8GTewh4PukGZy65EyocTF6MaTOvScuckqVQKATCymOBxoyqvMSXn2nc5zJPymN99KC0na2n9Fon9c417l/9Ln/l/3OY0HrlHikI/TXvm426uWWOaB6KadHwPj9LGSGGuvIuTzhDxOjcFYQDaE8RQO6RDcH91QFGzps8iJMY3RMf2ea/cEOPVGeJ3oxmM69Nwb4XjNNLlEQnsJrsWr2HwTd0TMwL4Raeuyt/yv4IDNt5O6hiS9kjSxe2gHKyU09ibuk60GTWo96I+bJ3fePJlZkUe/8t8+ILa9X+yQqLQhkWl4qzDK1gr4XYISXS+E5ICE+6vSAoUQkokEZaqarOLK2ACp6+kTmsRRHSLLG+FqnfrvskuH7py8U1UKlvglwS92UGS3tNBkp98IRwjkQunmPosmHV5q/1t+/cK7zEuajhvnjq5VbI5uUDPokGKmjdAUqhrd/53M4VBUO0VLLkVxALgUACAuReFdCjkUoiwbodbfvfDvsoxzZZk4+qQAIkWhAyPT/IRSyrO7F84+8d6fd844XQjdQjot7jAX78EKFN4LkarRG3JL1Xwu59WeiWRDGHfjnA41OvUP13dsubajoYX6I8WhryRPelQxwBUdlteophxZdsKONzantB6xIGWm9S6axgd30UTmnTbNq6YYTQgoymjCGrdsAdwcOvRQdINH9aViCWUJTu33KhRAanBKl5AUDgWAEJeiaBNjaTM76VXAHF7au7/P1NYjXTE3Y2OG1vcqfC7Hl8+r1huu3VPFkx0a3IwTOsypyF3y95orlY0tV3BLWzL31Or/5vy2tf8Kf6HMOR36CSXbB67YWXhq0bl1hVobq5oAwICILgtSZrQQh5qs1l1iJLrxjA49ZG7wqL5MLMItXsryJ82lKNxmxg1nCv/9I9wKNd9LX2/dZgag/6+7Av6pkozb2rJCTTEAUBSVHpqU5K/wE8qwBQMX9vfpEpyUGpR49u5lJ0og2T8hJaC9yWK57qePkEzEr1YasooriblxN47q8Koyd/bR+Y3sPmTN5Yq8Ybtf/GnAimhJmDlxS3RD2b0Tw7DIbkMju93QFO8q/Eup19zSlEr5IqlA3EIUOiCii4QvAQCTazuCUMjcde15HXrC3JRX1ZZqajgUJfEVgSVmqeNV/rl7kYOAAmghDo2QhMKD0Q0AXTHmbtz60U2hpuS1v9bYXFJLLpAMj0qblzyppSzMlegGAD7ttmDq0beuKAscKoE4Wcw7HefY9CoAIBHyS6D62l0l2RDGrdijQ+vo5k5Vkf22BlOoLZl5dOnPA1b4CaTgQpQdKQ59On40srR6jCYT7l1Glo5txHR0Ax7RoSf6bk4UlB7NK5ZJpZFBwRwOcABwm1mjU/15+899N/fXWcRPypf0jkgb2XJAanAKZWlFmxtQVN3OGvz/x5mbP8pselW0+SmT5qdMdLrvBreKsyryXjy13OYifjYJ9Q16p+PcVjKFzTYzVlJhubaq1jAiISopzN/B0iXYS0M6bKjvZsqfz19zannJR2MHfNztNff1IVp6Z5jsu/GMDj0xEG4eCxCJAXBXOgDAd1e+m/rnU59nrqu/YKhar/njxoFZR+Y/c2TeHW0xHd3YnO9wS1PSY8c0e2wNAKzI2Pz8iTVAj0ZavAp2FBbfgL81W/06824QgrZyxS/917SVt7TniXGymPXpK1vLFDbnO9Bpynz4QOb7uRmbOkQNzLvZdWO/c7YGAH7OO3CqJAPsm3fjtA4RQg+MTIHt6MaeeTce06HbzU15VW2ZtobD4Yh8fQEAKFDr1UvPvrv5yhZNU2HqubKLEw68mF2ZCw3Md1Dq1M8cW1LoyHYLW3L3P3d8tSWihfuzDxA9a8HcdwO2ZhVTFFAUJRNIf+63ZmmnF8NFwQ09KMw3aH7ycxt6fijhSxqa70CnKRbyKYD8crIhjLuor0N6fMHmvJuvsje78rivcraD3fNuwFkd4p/h+rwbj+nQ7X03uHNOIhbTRbjg1Lx8u/2GWq95fP8LPw/8rJ1/XP2+m1nHlmY5uEMmAGzJPdAjLPnJuIHQaN/NqdJMZDIHqBKBOF6ugAfbzCOj+46I7ptdmXe46MyVyny1XosAJHxxa1nLnmGpcVKFCSF72swIAZdDiX14mhpDdqmS7NDgDurrsJG+myJtcXGVSwtd/1VyCdw2Qgru6bvxgA7dbm7wwssSkflF+48zVttva2hmHJ6/d/g3coHUemRq762Tp0udXFZ6wdn1w6PSZAJp/ZGpE8UXv77y+95bdZe2iRSFpAa3fz7h8XBRqPWIQFu5oo1cYbPNbOeIAEWBCYFEyNfUGLKKyYYwbqGODhsfmTpa5OoSwkq95mRJRo+wDo6OTNkzQorcMzLlAR26tzFVpq2pqNZxOByRjw8AXLqXcbDQmZ2kVHrNW2c/qtN388kl53fMqNRpPs/eAQ+2mTMrcscdWPDonwvr2xoAuFVV+tuNgwN2z1qRsUGlUzvRZs4ov7T95u6L5ZfzNQV12swUgFjIoygoVGpVNTqnfxfBJnV0CNBE343GwMBcfqVO63V9N+7WoXujm2xzBCvFhftJxmqnk/rz9qkzJRldQ1OwX8qqyM12vBllzQ+5B+anTKJt/PGijGlHlintWBv0u+v/O3s38+v0JTKhrEmvUlpz99OsjbmqguLquiNZ/cN79W3RK0HeDnsViqIkPnx1tT6rVJkW3WCXEMEJ6ugQoInopsiFzVdpLlfkDY9O97roxq06dG90Y24wi0QAkK/KLa12qT28veAAHd38efuUi3m7oSm5qS7GNv5iee7YAwvssTWYnMqCmccXK2tVjXuVjdd+mnDo+RMlZ+vbGgD4s+joW+eWrby4pqSqDCcjFuJxgQoXfxqhDtY6NNNodBMuDnX9oTK+xBujG3CnDt1obko0NRXVOi6H6+vjCwBnSk66mODZsky670apYyDcvaktoYC6oS4Zu2+Bo/fmKAvmnFnV0IjAVVX+4wef23jtlybTOV329+tnF+ZpbgCASMDlUFSJpoZsCMMgdXRopqmRKddpH6DwupEpnIz7dOhGc4MjWJHYvIjEpbuu7nFxW1tCRzc5rrWkaBCgVZnfK51aqe9s2aXfbx40p2LlVa4p814++W6RrYjGJlpD1bvnlxVobgCA2IcHAJfIiqLMUUeHZhqNbhjZFCRKHOql0Q24TYduNDfmsQCx5H6D2WXOll2k590wwonii1tzDzh9+7qcnwAe8CpqvXrB2Q/UBsfWYdQaqj7PXldlqJL48IHs58sotnXYaHTTK8KlJfoBIME/NkoS5qXRDe6+ATfo0F3mplhdra7VczhcocAHMRaf3h+ZwtvXuc7OQpf6gO5UlR4qOm3tVX7K32V/XGNNgebmzwXbhDwu3oijmGwIwwQN6rCpWcXDo51Z4poGbzrkpdENQshNOnSXucGdc2KJhMOhGIxuZEIp9ktdQ1JcTy3JP9ZFcwMAf9+9THsVjV674crPTie1+9beKoNW7EN2aGCMBnXYVN/NjHZPOv3QSHHInKRJ4IWziunohqLAHTp0r7kRiSQWMwxiO1YCbZJ4eSz2S11DXN0xIykgVi6U2r9+WkNcrSygvcqRYudXw8EcKT6GxwUyi8oZjAr/tdTXoZmmopsIcfirybOce+i7nWbRYYKXRjcIgTt06BZzc0dVhSNYH6GPxQxDl1BX28PxfrH0yFQ7/zgXLc7EuIE31cUuZgkANAYt7VV2FR52MbVzd/8W8Dg8DlWlN95SurSLHsGmDs00Fd0gQBNajRkeY++K+jTvPDJrSFR36zABvDO6cYcO3WJu8FiAWCyB+2YY2ge6uj/pmJYD6b4bCmCcwvnWtVwgfiK2/00mZnPdriqlvcod1yYWAUC2MgcARD4e3Sj+YcWmDs00Fd3gYOTtzq+NcMTirE6bM7PdWIAHwgTwzugG3KBDt5ibS8WVAOArksB9MwwhorB+kc4bCClfPKZlfzq6QQDjYgcObJHmXGrLU2f5+0h7hDHQAdRWpqC9SnHVXdcTBAA8LpBNNoRxDZs6NGNHdIOveDf1tdXdFjW5KUikOGRr/xWPxg7Eo6YPQXQDbtAh8+bmlrKqSm/gcLlCoQ886FUmtJ4o5jnZgzO5zRiZUGod3VAAH6bNSfB3eIrEk3EDJrUayNQfspQvgjqe02W4FAh4nBqDMb+cbAjjJI3oEMDe6Abf2LdF911D//tGyqy2tjb/6RqS9EHXOSdGf9stNMV868MS3TCuQ+bfmTLPqhKZt4+gzMWMACBEFDaz/ay1F9Y4mmbfiLTnEyeB1Xo3AIAApALp1v4rJvw53/5lKJ6MG/BFj9dwnSMEw6LSdhW69Ppvp6D2YHlXxZV0rKE4HF8BT2fQZZVUxgWSDWGcoREdApijG8oS3TS5ZrZUIJ3YZszkNmOKtMV3qkooCicICX6xeEcQVG/NbGxTvO6dKbBkGyHmdchwdIMQwmMBvpY3/et4lf6Rg17tMMehNNv6xS5LnYPj0DrRDQUgF8i29l8xKLLpVlWUJOSPwSu/6DEXrLzKsKhuDmWmPn3Cu9BepbV9S/w1Qjt5PAAgkwkPQ14pUxqMJhfT/BfSpA4dim7AfAYAIEIS1iU0JTU4uWtwSlpIilwgtUiRbqk9PNEN4zpk2NwUWiJYgVCIz9RvM/ePGvRqhzl2jouPjBnwde8VMoEU15R1343lH5ILpF/3evvnASsGN2B0ZALxvJSJx4Z/1iMspU6beWKrQVFi5/eEHxndN0IcQreZHwl0deu7YN9gAKA4HA4FQj5XbzRdv6d2Mc1/Ifbo0M6+G/om+vqGdAhWFz4cfTeM65DhxlR2aSUA+Ipk5pAUm2FA9ysaAUXBwKhBHQKTt1zdsq/h5W/CRSFzU2b1a9Gde7/ozcYYx7FWXgUBQLfQDt1DU1Q6dVZl3qmSTACgKEgPTYoRh0VLQyk6Lsbla+VV3kt9ZsrhZU78WClf9Gz8Y+ZUEAKAXmGdf8zb6URSNENaDAYAZDJRFMdHwKvVG7NKKuND5K6k+S/ETh0CAHJkvzOwQ4fYoNBhAliu94rV/MzJWEU3zOqQSXODEMopUQKAj0hC12tDbeYwcdhrHedMaTvxVPGpjLsZGoP2ujKvtTwWANr4xfaJ6NYlJOV+BdfzKgD0/w+0mWUCaffQFHoVNbwCvqWKbbeZh0V2mxA3wIk3p5Z2eilCFGrC/ggohFCnoKSOgQn/3MtyrgBjJNEKaYwJAcXhmEwmkZCn1NaSDWEcxSEd2tl3Aw7q8KHpu2FWh0yam5uV2iq9gcvl8QUCO71KmDhsXNyYx1qPpQA4gCgALkVRlNnqe8yrfNrtVYTgxzwHLM7STi/0Ce9iVpaVV3m5/fRpR153rgBnxz9j7VUoZPIRcGt0xitlqqRwf+fS/BfihA6BRDcNRzcM6pDJvhs8FiAUSem6BO9pM3/a7dWn40fb8zOlfNHabvNHR/ez2WZuI2v5UuI0u8vsPlNbTVJIW9JtZoRMFEX58HlA5vs5iFfrkG19N8zqkLHoxoRQdqk5ggUKvNGrLO309OAWXVdnfn+q9FJDP3NMTL83kqbLhBITQg15lccVwzV67TdXHXhXs09Yr+FRQ0wPehWTyeQj5IIWCsrV1XqDL99DOyx7NQ+BDt0X3ZRUlV2oyCquKtUYqhFCEr4o2Cc40b9dsE8wNBzdMKhDxhR8s0JbYzByeHweXwAIKEvYRLeZS6uKz5acKlDllVaXUABAQUpgUit5q14R3djTZk4PS+4WmnxDXbz31l+nSjOVOvOyNRHikK7B7fuFd5EKJHj3wsbbzNPbPBbqG/zp5Y0aQxPvmwT7BE1vMzk1qDO+3brNjJvZPgJejc6QVaLsFEl2aGiaJnVo+fzv6ru5WJH136s/Z5Tb7lVs75/wmGJson+Czb4bBnXI2OS0XTm3Mu6Ui2QBEpk/3maXS5n3280uv/Dr9S2X79lezU/ClzwaN2Z6u0l1+m7ojXrxbqoUBRwKACEuRVlv18uxeAm8QSplFhbQB/QFFFAcsyLMXgUBmAChBzdFxda93t7MFL1TKr3VKX0XenDXF2S58o625L/Xft57+0hDhTYh9j/DI4f48sRgfjqqsxMroqC6Vl+p0UXKRZM7tWKkph5uGtEhBxCHAq5lD2jLLr2WA0BcDkXV60P0dh0qdZpPL2/c07AIafqG9ZzWerIvT+Q+HTJjbkwIrT2WVWMwBoRF83h8DgCXY66n9Rc/PHK76c1ewkWh76UtaiuPw8qgLCKg7NsjnD4AfL3Fq7Bhb2ZlrepY8dlc9Y1cVQECCPUNCfENSvJvFyOJFvOlWEkmBBYjdb+mkWU759LKKoTg+e7xMh+B65X1ENOIDrGVoQCZzY0de4Q7rUOVTq3SaWOkYc2uQ6VO/fKpd6+pCuwswJaS6Lc7vCnii92kQ2bMTd499Y8Z+Ry+ICA0GvsQDkCNQb387Bs3VPa+XiDlS95Peys1uIM9XuVMacaB239lV+RRFFwuz0sMiJULxN1CkodEpkVLw5zzKhW16kvl+QjgZMnFtJD2CKjUoERXohvL3u9mEZjgviWirZK1hmx6FRNCKq2uutbQNy48LYZsCNMYNnXomejmtrZk/+1T+26dOlVyP4rvHprc3j82KSBuQtyAZoluph59/brdtgbTUhK9ovN7btIhM+ZmZ3bhxaIKH1mgVO5PIYS9ytrz75wvdWytPClf8lmvFfHyuEa8ysHbJ5f/s/5Ww2tHPB47YG7KpBhJKNjtVU6UXlyXvaP+y1MyvjgttP3UViNTg5PA2ejGaDIdKz6Tp75xXVWAu3IUkphYWcvUoI72RDcIoFZnrNDUhEh8ZnRp41jF/MuwqUN3RzcavXrjlR1rG91kMT0seVnnZ5L94zwZ3Xx8eeNPTk06HRo5eEqrSe7QIQPmxmhCHx+7rDOa5KHRfL4A+5Dfc7/bft2ZTd3byGO/G/B/Nr2KRq9e+c/63wqanh0j50uWdH7miVYDm4xuCtRFL5z86HhJE5v/DmzR9f1OL+J+YvujG5VO/XP+rl8LdmsaWCm9a0jn6a0mBfkEQ6PRDUJQVlmFEDyb1tZfJHSwRP8t2NShu6Ob25ri507Yu1H9vJSJ81ImeSa6uaIqcHr+FwC832lZjCSGcR0yMO8mv0KjM5q4fAGHJ8AG+662eF/BdudSu6rM23p1O9Sb76DWqacdmm+PrQEApV7z8qk1W3P3Nz7fIbM8t/fOl5q0NQCw//bpsQfmZFfm2T/f4bo6f8KhFzdd/6UhWwMAp0vPPXvylZ23dpuTqTffAc/CAAAfAQ8sC7gQbFJfh+6ed5NVkTtq74v2r0awMmPLCyfWeGbezYYrPzpagNZsK9gGbtAhA+YGz6ri+UopS13tL/ytyoVdlr/O2QJ0tVvmO7x5Zk1OpWN7S710cs331/eZB0AtNWuuD4CMe7kj9s23f3u8W1WlU48suqUpwb0x0OibuLsLDz119I1GDI01/726+fOsL6HefAc8sQJPzRIK8b4/FQ6VwL+K+joE6r6KEENvhCNzskhVq55/eo3KwR3Kvs/dv+DsOmsdmmuc6TfCjxWfcyhjdTh377xWr2VchwyYm6tlSgAQiCS0qT5f6tKGmWq95u+yDGuv8nnW5oN3nFmVZtG59TfURfWjm4pa9UhHbA1Gpde+9NdytV7beHRzvvzy+xmfO5TyoeJjG69911B0gxDic7kcDlVZrSuvZn6j+IeD+jp0a3Tz6eUt2Q76P8yX2duPFWe4Nbr5595lJzJWhxvaG4zr0FVzc/WuSmc0cfhCDpeP/6DvVhXfc3nJ3vN3M2mvotapt1zd4Vw6Sp1m1cXv60c3C86ur3Rq29/syoLvrv+vEa+i1msXnvnAiZR33dp7puxsQ9ENAOJSHACo0umdSPyhp74OAdwY3dxSF33rrCYBYGXGFrdGN38zYW6ylTmM69BVc2OJYCVg+YO+V8PAeuN3tCW0V9lR8KejIas1W3P331QXW0c3N9TF37uwc+bm63+odNqGopu1lzc6uoUmzbfXtzQU3ZgnpgLUGshqWzaor0MAN0Y331133tYAwLHiizdURdZZZbjvxpXMWcG4Dl01N4WVWgDg+0jAylS7TpG2hE7q9xtNzxJsnBMlmdbRzfeOvPldH5Vee/DOaZte5Y62xJW9X8pq7h4uOgoNRDcUhwMAOrK4ny1s69Bt0c2Z0qaHFxrn+/wD1llluO/GxcxZYFyHrpoby8+zaq4wBJ3UFadayNbsKjxpHd3svOnqzpkH75xuoM3s5Eo3NH/f/Rsa9CoAADUGo4uPeCixrUP3RDeqWrWjoxb1ybyXa51Vr4puAJzVoavmxvxwzgMNUddp4xeLk7pSmet6akqd1jq6ySx3VSt3qkttepUjxaddTDm7Mgca8ioUBQC1xNzYwrYO3RPd5Chd1Q+YNemu6KZjYILrOWwnj2dch66bGwAwv+WO/6CjpA7vxFKfcFEYTlntQq/NgzwwMuUiOZUFNr2KRu/qfoNaYxU04FVwzgVcd+2z7NXU1yGAG/tumMJN0U2noCQJX+RKxkQ83wS/BMZ16Kp2Obj8kREsf9AivrStv6sbZvaOSGMqULLwwMgUA9jsu3F5SA4AsiqzbHoVoxEBQCCZVWyL+joEcFd0IxVKmMq2u/puEOoV1sWVjHUO7AwNRNmu6NBVcyPz5QOASVcLVqY6PcL53TIB4JGgpAixObrpHJziYg4tMBndRIiCbXoVKZ8BIYp5YpteBe+8ESjycf0RDx82deim6KadPM71DMsFYuusMj6reEabR13J3viWY6GBKNsVHbpqbqLkYgAwGWrBylT3iBwU5Ov8biozEyaClVeJcGFjFkx6WLJ1dBMtcTXBFqIQm15FwnMpgsXESGLqexX89gyXoiRCsqafDWzq0H0jU65rEm8Y7b7oJlwU+phimHN5Gxo5GL/Hx7gOXTU3kX5isOVVZibNdS7BYdEDOgWlgJVX6RzsatNsWFQ36+imR6irCaaGtLfpVSJErqowyCcQbHmVWj0CgGAJCW1s05AO3dR3M6X1WBczPDwyzTqrjEc3AOjl9k/1CO3saMZSgx6Z1npyQ/O/XNShq+amhUwEAEZ9jclosPYq8f4pT7d/zdHUWsljF3eeW8erjG45wJUctg+ITQqIs45uhke7unNmv/CuNr1Kz7BUF1NuqM1co9MBANnAtyEa0qGbopv+EV1dyW2P0KQYWTi4M7rBP/7NDs87ZHFSgzo9Fz8LPw3coENXzY2Qx20dJAMAnaayjlfpFTloVpIDFqdDUNJnPVbU9yqdg1P6RjS9J29DvNf5GbNGLNHNiOjuPUKTnE6wX3iXeL9Ym16lT3hXF0cEUoMfgXpexWA06vUmACDLFTdEIzrEMBvdRErDX2g/0encLu/yrFvfmcJ3AUVJ+JLlqfPGt7SrVTU8asgbyXPEfDF+GrhBhwyMqqa3DAGAWq0S8NJAcN+r9IoctKjrqmA7+nGmt5v4Wc9VUoHUpldZljpHat8mv3WYEDegR1gHy+jl/ZGpBR2c1IqUL5qX/FQjXuXlxOnOpQwACfL4dvIEqOdVamqNANA2WC4W8J1O/KGnER0C09ENQujFxEnt/J2Z8/F+51nJAXFufWeKjm5w+i8kTPu+96eDWvQW2+pbFPNE/cJ7fdn94+mtJ5uTaSC6cV2HzKzmt/VCXn65Rij2kwUE2VxF7fCtvbsKthfUW0g0VBTSIShletuJEZJQqtFV1K4qc8fte8GhXCUGxB4Z8Tk0sJrfF1nb559d5+gvfb/zi6Nj+qNGV1GbcvT168oCR1MW8XxXdn4/yCeozipqBqPprqoaIZjYMS7a3xmb+++hSR0yu5qfWqeefGh+tt3r3QDAE3EDP0+fY61DylNrZhtNJhNCGeVZ15UF+LU+EVccK4tO9E+gV/BqZFVJRnTIjLkpr6r9+vRVI0KyoAgfH9+GVlGr1qsL1HnVBq1WrwkXhUoFktbyOPtXUbuizJ12cJ5ab9cLkEMi0z5Nn+MnkDaymt/sE6sdeldzeecXR8f0b3I1P5VOPe3o68XVdx0qw7c7Lmwnb1dfQ3eV1QYjahMsG5fU0qEE/4XYqUMGV/NT69TzTq/Zf9uu1VFmtRu9PPVZT65VTF/p4prZTOmQsY1f/rlTvifnFsXhBIZF8zhcN3mVO9ri5RfW/dlo7cr44mcSxryRPAnsWKt4y/X9z59c0+Svk/JFK1Jf7h/R1U6vckWZ9/6Fz+1clVrEEz3fblZqUKf6XqVCW1NVY/DzFczs0oZP5hPbgWd0SD24E8Pp0ow3/lpzS9vgJM/2AbHvdX6mR2hKQzr0WHQDFuNi/pYCa4vWUHTDlA4ZMzcA8GtmwdUyFV/oExAcgevPTV7lbFnGtvwD+2+dqhPpJPjHPq4Y+Hir/n4CKb6FsmMnhhvq4pUZ329t+DXx/7Ts92bKDAlf7JBXsXN/n5bSmOfbzVJIYup7FWVVrapKx+NQT3VpQyYT24/HdFhnn6mf8/bd1pb8VXLxckWeSq8FgO4hSVGS0AmtBvQITWnG/c5cjG4Y1CGT5qbGYNx09np5dS2fLwwKjeBxOO72Kmqd+d1cCiA9LAVXonP7TFXUqHcV/nWpMvdSeR4ukbSQ9u3kiq4hSRK+2GmvcqH88s95Oy+UZ2nrbafZ3r9dv4jefcJ62vQq5eoaTY0eAB5LUZDxb4fwvA7p/+kDcFaHbItumNUhk+YGAKr1hs3nc+9qazlcbmBgqMjX91+7e2Edr/LPvUsIUEZFtkISI+aJWkqixXypTa9iMJnKVNW1ehOPQz3RIRZPYCM4BNGh69GNO3TIsLkBAJ3R9OOFvFvKKgCQSKSBAUF8Dod4FTu9irJaf09djRAIeZwJHWIjZAy8FfHvhOiQhTpk3txgTt0oPZ5fYjAhAJCIJXKp1IfPF3C5XA5FvAo86FVqDSaDCamrdapqPf42Plg+oE2EVEhm2bgK0SGrdOgucwMAmlrD8fziyyWVZL1L+4kNkHaJDlYEMLbEAYHo0AncpEM3mhua7JLKGxWaMm1NmaamllT5gwh5nCCRT6BYGCEXJ4T4CXlktNtdEB02gmd06AlzQyAQCABMvDNFIBAI9kDMDYFA8BDE3BAIBA9BzA2BQPAQxNwQCAQPQcwNgUDwEMTcEAgED0HMDYFA8BDE3BAIBA9BzA2BQPAQxNwQCAQPQcwNgUDwEMTcEAgED0HMDYFA8BDE3BAIBA9BzA2BQPAQxNwQCAQPQcwNgUDwEBwAUKvVa9euHThwYGJiYvv27QcPHvzZZ58ZDIYmb549e/bEiRPdn0mXYFUma2pqevbsmZaWRp+pqqpavHhx586d4+Pjx48fn5GR4Ur6WVlZCoVi3759Lue0GSA69BjNpUMeAEybNq2wsPCVV15JSEgwGAwnTpxYu3ZtYWHhypUrXXmkK3Tq1GnHjh2RkZHNlQE38fHHHxcVFQUFBdFn3njjjXPnzr377ruhoaGbNm2aMmXK3r17w8LCmjGTzQXRocdoLh3yrl69ev78+c8//3zo0KH4VOfOnYVC4d69e6urq319fZl9nj3cvn27vLzc8891Nzk5ORs3bhw/fvzhw4fxmYKCgp07d3711VcDBgwAgJSUlN69e3/77bdvvPFGc2a0OSA69BjNqEOO0WgEAA7ngU6cZ5999rfffqPr+McffxwwYECbNm06duz48ssv37171/pijUYTHx//xRdf0Gd0Ol1ycvKqVasA4O7du6+++mrHjh3btm07evTokydP4muuX7+uUChOnz49e/bsxMTEzp07v/POOyaT6a+//urRowcA9OzZ85lnnrF+0LFjxxQKxT///EOfuXDhgkKhOHr0KACcO3fusccei4+PT0hIeOKJJ2xGgwkJCevXr6c/zps3b+TIkXRmjh8/PmnSpPj4+PT09D/++OPSpUujRo2Kj48fOnRoZmYmvsVgMKxZsyY9Pb1NmzZ9+vTZtGkTndrKlSvj4uIaKmiTybRw4cKpU6e2adOGPnny5Ek+n9+rVy/8kc/n9+zZ89ixY/Vvf+GFF55//vnNmzd37do1Pj5+5syZKpVqxYoVHTt27NChwzvvvNPQc70FokP4F+iQExcXFxUV9cYbb3z//fd16g+zbdu2+fPnjx49es+ePf/3f/+XmZn51FNPWW8XI5FI+vTps3fvXvrMiRMn1Gr1qFGjjEbj1KlTz58//9lnn+3cubNDhw7Tpk27cuUKAPB4PABYsmTJxIkTL1y4sHr16k2bNu3evbtTp06ffvopAPzxxx9r1qyxzkn37t0DAwOtH7R79+7AwMD09PS8vLxJkyYFBwdv27btp59+kkgkEydOLC4ubvzH0+DMfPjhh/PmzTt//nxycvKbb765cuXKTz755MyZMxKJ5O2338ZXLlu27Kuvvnr11Vf37t379NNPv/feez/88AP+qlWrVv369WvoEVu2bCkrK3vllVesT+bn54eFhQkEAvpMdHR0fn6+zRyeP3/+xo0bBw8e3LJly6FDh8aPHx8cHHzy5MmVK1du2rQJa917ITqEf4EOOQKB4Ouvv1YoFG+++WZqaurAgQOXLFly6dIl+ooNGzb06NHjxRdfjI2N7d69+5tvvpmZmXn+/HnrVEaMGJGRkUEX665du9q0aRMfH3/s2LGsrKzly5enp6e3atXq7bffjoqKsrbEgwcP7tGjB5/P7927d3R09MWLF/l8vlQqBQC5XC6RPLCJH5fLHTJkSJ1qHj58OJfL3bJli0AgWL16dUJCQvv27T/44AOdTvfrr7828svrM2TIkKSkJJFINHbsWJVK9fjjj7ds2VImk40YMSIrKwsA1Gr1999///TTT48fP16hUEycOPE///nPV199hW8fN24cfVyH0tLSDz74YMmSJXUaBWq1Gv9YGolEotVqTSYbm65VVVW9/vrrYrG4U6dObdu2NZlMM2bM8PX1HTx4sJ+fH86h90J0SPMQ65ADAG3atNm+ffu+ffveeuut6Ojo77//fuTIkUuXLgUAvV6fnZ3duXNn+oaUlBQAqJNo//79fX19cUe0wWA4cODA6NGjASAjI4PL5Xbp0sX8MA4nNTXVWiIJCQn0sUwmUyqVjeQVAEaOHFlQUHD16lUAuHz5cmFhIX5QZmZmYmKij48PvszPzy86OtrRv8DWrVvTOanzsba2VqfTZWVl6fX67t2707ekpaXl5+dXVFQ0nvI777zTs2fPvn37OpSfOkRHR9P+RyaT0dnDH1UqlSuJswGiQ8xDrEMefdS6devWrVvPmDFDo9G8/fbb33zzzciRI2NjYxFCcrmcvgwfazQa61R8fX379++/Z8+eKVOmnDp1qrKyctSoUfgyo9GYmJhIX2kwGPz9/emPdMVgmtzSMzU1NTg4eM+ePW3atNm1a1dkZOQjjzyCHxQdHW19pVwur5PJJhEKhY18RAjhBKdMmUJR5j3lsfm/d++e9Y+qw6FDh06cOLF///76X8nl8jrVo1KpJBJJnS4MO7PXUAa8C6LDh1iHPJ1OV1JSEhUVRZ+SSCRz587dtm1bVlZWYmIih8OxNvb4uE7oBQAjRox4/vnnKysr9+zZ07FjRzx2KJVKhULhzp07ra+0+RvshMPhDB8+fO/evS+99NKePXtwBxt+UB2PpFQqw8PD69xOVw+mpqbGoafjX/3RRx/Fx8dbn7cuvfrs2rVLpVJ169YNf0QIIYTi4uLeeuut2NjYoqKi2tpaus7y8/NbtWrlUK4eDogO7cd7dch77733tm3bdujQIetBeNxLFBwczOfz27VrZx12/v333wCQnJxcJ6E+ffr4+PgcPXp0//79zz//PD7ZoUOH2tpak8lER1y3b98ODAy0J2cNmckRI0Zs3Ljx1KlTeXl5OIIFgKSkpJ9++okur7t37xYUFDz22GN17pXJZNauJisrq45ba5x27doJBILy8nK65//evXscDse6j60+r7322syZM+mP27dv/+WXXzZv3hwSElJVVWUymf78889hw4YBQHV19eHDh6dOnWp/lh4aiA7tyQzGe3XImzFjxu7du8eNGzdz5sw2bdoYjcbMzMz169cnJib27t0bAJ555plXXnll3bp1w4YNKywsfO+997p27Vq/moVC4cCBA9etW3fv3r3hw4fjk+np6QkJCa+88srixYtbtGhx/vz5RYsWvfTSSzNmzGgkTzhOPnjwYFpaWtu2bet8+8gjj0RERCxbtqxt27b0t5MnT968efO8efNeeOEFnU63atUqmUw2bty4OvcmJyfv3bt36tSpIpHoq6++0mq1DlWzVCp94oknPvroI39//w4dOty6dWvJkiUtWrTAPXPbtm3bt2/fl19+WeeusLAw6+lSwcHBXC4X59zf33/8+PHvvPMOQig4OHjdunVcLnfy5Mn2Z8kmly9ftg5xfXx8unbt6mKa7obo0P6y8l4d8qKjo7dt27Z+/foNGzaUlJQIBILIyMiZM2dOnjwZG8tRo0bV1NSsX7/+ww8/lMlkAwcOXLhwoc3UR4wYMXPmzF69etEOisvlbtq06f3333/22WerqqqioqJefvnlp556qvFcJiUl9e7de/ny5WlpaRs3bqzzLUVRw4YN+/rrr63nIMXExGzZsmXlypUjRozgcrmpqalbt26t774WLlw4b968Hj16yOXyyZMnjx079tChQ3aVnIW33npLJpMtX768tLQ0MDBw0KBB8+bNw19du3bNZsO4cZYuXbpy5crFixdrtdqOHTtu2bIlICDA0UTq8Mknn1h/bNGixfHjx11M090QHTpSWt6qQ+qh6WIkEAgsh7wRTiAQPAQxNwQCwUMQc0MgEDwEMTcEAsFDEHNDIBA8BDE3BALBQxBzQyAQPAQxNwQCwUMQc0MgEDwEMTcEAsFDEHNDIBA8BDE3BALBQxBzQyAQPAQxNwQCwUMQc0MgEDwEMTcEAsFDEHNDIBA8BDE3BALBQxBzQyAQPAQxNwQCwUMQc0MgEDwEMTcEAsFDEHNDIBA8BDE3BALBQxBzQyAQPETzm5szZ87MmDGjU6dOcXFxiYmJo0eP3rp1qz033rp1S6FQKBQKlUrl6EPnzp2rUCiWLFnieH6bZu3atThjS5cudUf6BHfw008/jRs3LikpKS4urmPHjlOmTDlz5ow9N/7yyy8KhWLYsGFOPLRHjx4KhWLfvn1O3NsQmzZtUlgRGxvbtWvXadOmnT59msGnOEczm5u//vrrySefPHjwoFgs7tatW1BQ0MWLFxcsWPDdd98x+6A7d+4oFIpvvvkGf0xISOjbt2/r1q2ZfQrmjz/+wAe7d+8meyJ7BZ9++um8efPOnz8fHR2dlpZGUdSxY8emTJmSmZnJ7IO2bdumUCiysrLwx+7du/ft2zc4OJjZpwAAn8/v0KFDhw4dEhMTq6qqjhw58uSTTza7xeE17+O/++47o9E4ePDgL7/8Ep9ZuHDhDz/8sGnTpsmTJzP4INoEYJ566qkmd6R3jmvXrl2/fl0mk4lEoqKiogsXLnTs2NEdDyIwyMaNGwHg7bffnjZtGgBUV1ePHz8+Kyvrxx9/TEpKYvBBdXS4atUqBhO3JiQk5LfffsPHarV62LBht27d+uWXX7p27eqmJ9pDM0c3uB3k7+9Pn1mwYMHRo0etw8tt27aNGDEiPj4+MTHx8ccfP3r0qM2kJkyYYB2/HDlyRKFQpKamAsDIkSOXL18OAEuXLlUoFFqttk5jSqfTrV69unfv3q1bt+7YseNzzz2Xl5eHv/r2228VCsWsWbNOnz49bNiwdu3ajRkz5vLlyw39op07dwJA7969+/fvD/XkRWAndXTo6+v7zTffnDlzZtmyZfhMIwqpA27C0PHLypUrFQrFiy++qNVqFQrFoUOHAGD48OEjR46Eeo2p4uLiuXPnpqamtm7dOj09/d1331Wr1fir5557TqFQ/Pe//928eXP37t2TkpKeffbZ8vJye36dVCpNSUkBgJqaGqeKhzGa2dwkJiYCwNatW1977bX9+/crlUqpVBoVFcXhmDP25Zdfvvbaazk5OX379k1NTT1z5szUqVP379/v0FNGjx4dHh4OAF26dJk+fTqfz69zwaxZsz777DO1Wj1ixIjw8PDdu3ePHTv29u3bAODj4wMAeXl5c+fOTUhICAwMzMjIeO655wwGg81nYXMzZMiQIUOGAGlPeQlYhwsXLly1atXp06d1Ol1oaKh1G6cRhdgJn8+fPn06Ph41atTo0aPrXFBeXv6f//zn119/lcvlo0aNMhqNGzdunDx5MlYa1uH//ve/DRs2dO/e3Wg07t279/3337fn0RqNJiMjAwCaN7SBZjc3zz77LLa727Zte+aZZzp27Dh69OjNmzfjIlapVGvXrgWAZcuWffHFF7j0AeCDDz5w6CkzZ85UKBQAMHjw4MWLFwsEAutvjx07dvjwYYqifvnll48++mjHjh0JCQkqlWrdunUAgA3f9evXP/roow8//BBH3Tdv3rTp3K5cuXL9+nWhUNinT5+0tDQ/Pz/cnnK8YAgeZdmyZYGBgVVVVV988cWECROSk5OnT59+5MgR/G3jCrETgUCwePFiLKdZs2bNnDmzzgUbNmwoKiqKiYn5448/Vq9evX37doFAkJGRgWMffGNBQcHvv//+4YcfLly4EAAOHjzY0ONKS0vHjh07duzYUaNGde/evbi4eOLEiRMmTHCsXJimmc2Nn5/ftm3b1q9fP2HChJiYGITQxYsXFy1a9MYbbwDAP//8g8O/UaNG4euHDx8OANeuXausrGQqDydPngSApKSk2NhYAODz+YMGDQKAs2fP0teEhYV17twZAFq1aiUWiwGgpKSkflK7du0CgD59+ohEIh6PN3DgQCDtKW+gffv2R44cWb58+dChQwMDA2traw8fPjxt2rSffvoJ7FOI6+CnDB48GAcyYWFhjzzySJ2n9O7dWyqVAkCHDh0AoKKiQq/X20xNr9dfuHDhwoULmZmZarWay+XeuHHjypUrDGbYCZp/IJzD4QwcOHD58uWHDx8+fvw4DjJ/++23W7duVVRUAIBQKBSJRPjigIAAfKBUKpnKAH6Kdf8Rfoq1RbP+1tfXFwBMJlP9pHBL6vz588OGDRs2bBjuZiLtKa9ALBZPmDDh888/P3fu3Pbt23Hz6pNPPgH7FOI6DukQixAa0CEAtGjRIt/CuXPnnnrqqePHj0+aNMmJWSMM0pzmRqPR7NmzZ+3atXQPVosWLVavXs3j8QDgxo0bfn5+AFBbW1tdXY0voPvGrGsFg6NNOik7e9EAAD8FV7b1vbRps5OcnJzc3FwAKCsry87Ozs7OxhEQaU+xnDt37vz666+4mYxJSUlZvHgxANy+fdtgMDikEIqioFl1WJ/AwMCXXnoJACorK5tXis0c3cyZM+fjjz9euXKlTqfDZw4cOIA7biIjIx955BGhUAhW7ZEdO3YAQPv27WUyWZ2kcMce7hIDgP/973/W32IRaLXa+nno3r07AFy6dKmgoAAAdDrd7t276fP2g1tSjzzySL4VvXv3BtKeYjcFBQVz58599913f//9d3zGaDTiHpOwsDAej+eQQqx1qNVq8VAUTZM63L9/P/5buH379t9//93QUxyFHs+VSCSup+Y0zTnvRiKRvP7660uWLNm4ceMvv/zSokULpVJZXFwMAGPGjImJiQGAl1566YMPPnjrrbeOHz9eXl5+/PhxLpe7YMGC+qn17dv3999/37dv3+zZs9VqNR5BpFsxYWFhALBx48bCwsLXX3/d+saePXv26tXr6NGjjz32WO/evTMzM69cuRIcHDxr1iyHfg42N3Vmlw4dOvTIkSO7d+9+6623sNQIbKNbt26DBw/eu3fvyy+/vGzZsoCAgOLiYtxaf+WVV8BBhfTt2/fHH39ctWpVTk7O+fPnw8PDy8rKrHV4+/btRYsWpaenL1q0yPrGGTNmbNu2LT8/f/To0bgvSa/Xp6en9+vXz4kfhbuK8bFSqczPzweAjh074k6f5qKZo5vp06dv2LChd+/eYrE4NzdXrVZ36NDh7bffpseennvuuVWrVrVq1WrPnj3//PNPenr6Dz/8YNPejxo1avbs2UFBQcePH4+IiMAzJmpra/G3Tz/9dKtWrdRq9alTp+o0dymKWr9+/ezZs4VC4fbt28vKysaMGfPbb78FBQXZ/0PolhQe/6YZNGgQl8stKir6559/HCkYguegKOrTTz999913O3bsaDQar127xuFwevfu/c033zz++OPgoELmzZs3dOhQHo93+PDhRx999NFHHwUrHc6fPz8oKKigoCAnJ6fOjYGBgdu2bRszZkxpaen27duFQuHs2bM3bNjgnJeiu4ovXLhQUlLSunXrV1999dtvv6WnmDQL/w/T1FCu51hCpgAAAABJRU5ErkJggg==", "path": "image.png" }
Which solution has a higher concentration of green particles?
[ "Solution B", "neither; their concentrations are the same", "Solution A" ]
2
The diagram below is a model of two solutions. Each green ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the green particles represent the solute. To figure out which solution has a higher concentration of green particles, look at both the number of green particles and the volume of the solvent in each container. Use the concentration formula to find the number of green particles per milliliter. Solution A has more green particles per milliliter. So, Solution A has a higher concentration of green particles.
Solution A
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAASoAAAB0CAIAAAC9q+hLAAAxJklEQVR4nO19eZQkxXnn90Vk3VV9Tc/03MMwMMPAMMKDQIgBIQECWUa39CTreLItafVsyX72rtYrvd21/Patdm2v12t7LT3Lj2d77bWllSzrMJKFxHAYC4S4YcQAA4I5YHp6+qzuOrIyM779IzKjIrMys7KOPqa7f68ZqiojIzK//O74IhKJCFYYCACACAgAMFFjQEBs33YdqwQEkmspOXuof1cUcIWIH4EAIACUf13QiVxSExEhshVI63V0DQIiEoiSPboUJAIC9w8RWL+vsRssr/iRAIEttDBFperMzVsTDlmTjRNVMceAA6Ag26FGmuWlpBGI4dTWAh/J8lLJGM3zIY4pvR8BAgDYyiD0OrpA6BN0yK46Mwv2VM0pV525aeuU5B8EbIgaR4NjioAIRIYVN6V3MzQGjE05PpDlJb0f2QZhOTX1sogfCSDdXSQQ043T4/XnJ8wXxuvHK85MXSxU7TmbGgx5u66cDCvm2ECWFwdTY2OZPVuyl2zKXFQyRpuNQICrMtdN4sqHijuk1BEALjjTE/UXztSfPWu+OGeN18VCzS7XxTxDHv9MBTgGpvJ8KMMKBT48lr1oLHPR5uzekfROJdUEREBsOdhjScWPQBABQ+bS1J5+pXb0ZO2JV81nZxvjNTEHgIwzBM6AczAQ/ZeH4Lqo2g+AKEAIsoVwBAgBNgNeNDYMp7ftyB3cmb9ic+aiDCvI9gKc5dV264iBNEcMmHywpqhOmC+eqj55sv7ktHl6wZlywGbMYMgYcAYGAwbg8QcBsCB7AAACEpJDNpEQZAsQBCLPBweNsS3ZS3bkX7Mjd6BkbJQMSSQAYSn90iUSPwIBnrkzReVk7Ymn5+48Yz5XETOCHM5SHFMcjSY1PRXY2lHzXwkBoFk2RCAAhyyHbIesFGaLxoY9hdddUrphW/ZSaUs9Y7julK4U6E+ESJwxn3t2/t4XKj+ed841qM6ZwSHFWQqbT15GH7EcQp6+9rOHjGJsshyyEFiBD2/KXnxw4JZd+UM5XoKmMVwK9lh08dMFb6Lxs2fmjzw7f19ZnCNwUphlzABAICETWZ127dJXAGDgbJm8QQByyLaobmBmNHPhvtIbXjNwa54PBi5sHcsFmQ6RglcXC0fLP3h24b6zjRcsqBuQMVgKEMHl0a7Yg6CZ1Gt2INmDIZJDtiVMRCzw0b2l6w8M3LwlczEslRAuovhplKUT1ScemfvH0+bTVWcuzfMcDdfW9zyGS1bdKgZvCBkwAcImsyHMwfTWvYXXHxp6+2h6p3eRKzElveqhC96M9erjc/90vPqv09ZpztIpzDDgBCLcvnUyhvtghfcVQqQYgQGSI2xTVDO8tD134LVD77ywcBUCLjZ7LJL4EQEhMAI6VX3yobmvvVR7lECkWY4hF9TiofdnTK/XCKFGYIhoi4ZJtSwfvLT0pquG3rUhvUPng3UsDZTrMWudeXTumz9dOFIRM2mWMzBNRBT1CHsb0ueXhgAZMkGOKWoC4IL8Fa8bfv+FhUMIjEAsUt6u/+KnKDvZOPHg7N8/s3A3IGSw4B1aZCgSRw6FDJgDdk1UM6x41dC7rh5+d44PeFMg62ZwcaGUXd1ZeHz+Oz+Z/YeamEuzPAdDtGZO+j1280M0J3qecNUB55LSG64f+cimzIWL5Iv2U/wUZW1qPDTz1YfmvmaRKbOOSyF4/ktp/kWAAbPBqTqVkfT2N43+yqWlNwKAnAhasstca1Bm5IXKA/dO3X7OfinLigic4h/VYkBE+qISCIwAaqLK0bhq+F3XbfhIGrN919F9Ez8ley9XHz0y/eeTjZdTLCs9+L703w1EnJIDAFn9YJJpk7WvePjGjf9mJLWVSACum8G+w41HyvbEfVO3H6vcy5CnMLvoFi8G7dkDEJgNwhS1DentN45+Ym/x2v6mzfsjftJo2KJx/8z/eXju64gshTlaRsp6lxXMyoQDBWBNLORY6dZNnz4wcNP6zER/oej5fOVf75z8k4oznWWlyLmlJbwsAH9WJrwVAjCT6kJYrx1655s2fizNcv3ykvogfoIchnyqceq75/7gjHkswwoAuJxGL4AEjigBEHJbWA41DpZuvWXs1/pI4jUOVzVT456pLz8xfwcDw8C0AGe5r8tDAvYAAAFIgHVnYSyz5+1bfnsss0eQ03tpca/iJ8BhwF+oPPD9yT+uitkMFlYQZRXImxuM1glC6jnEmlPekTnwji2fG05vkXe3hBe62iAJOG9Nfvfc771UfyzHB4CW2+iFwmnDHh4HcZOqWSy+ZeOnLx18kyCHIeslI9qL+Lne/I9nv3r/9F8z5D1oteCsef+RwNF3p2fRMJ2FAh952+bPXFh4rbTti3ttqxRS9k7Vnv7uuT+Yc8azrNjtnNPisweFFKyFNkFkNtmO0zg88qEbNn7UO6dLCexa/NxR/2X6Lx+Y/b9Z5lbrxI/l/StafpEQAKy9H9A1qL2j78jiQeSWqHNKvWPLZ/eWrhUkGC7KtM8qhvQ5X649+p2zXzCpksZ8O9WsmEExANMmzkFj9EWLa9qlQ8k1kwgIVat8zfD73jz2q3J2vjsvtBvxk4M5ZH/n7BeOVe4p8OEElFUlsaqMnXkeofxzPEIrKqNfFPskkyJOwIX3LwIT5DTs2o0bP37t6AcIHFz3QhND2r1H5751ZOpLBkt7c3oxQP9n0v5FrdYe/ewBmij2gz3axYH6cYa80pjZW3j9e7Z/PsWy3WUKOhY/T/as70x84dmF+/J8KIHDyTR9Bn6VBn5RVLfOWyjRD/qKlg8t0IoEEQDqjYUbN33i2tEPrGdiEkKAYMAenfvWXVNfTLOcKt2KhmKGGPYIVBXylhqW/okftLGvKo7hwCvW3EX5q9+743dTLNuFDexM/HyyV7kvz5LLnqSssm8Bj8J3SRpBVc0s6w+V1dmxjr70MUBKoIC6Xblx08evHf2AIMFwXQLj4Mpe+Vt3TX4xzXIJwjZFT935bHU4yd9M5xBHk1voiUN09ojtyVH2hHjVmruocPV7d3w+xXKdSmBnzCTV2JGpLz2zcE+exfucCO7CLf0DacRtehFeQR1qzwC0Z6C+YqcXHHJRoZ/DLh0ACIgQsrxwz8TtP527R9YE9nQBqxoCHAbsheqPj0x9KYHsMU0p685kK3uQv40Cev3onfQQoic+W3GhQCefGnp+4cHvnfkT7bKTogNulksh/3Xmbx4v31HkwwLsiIbYotJAp6Z3QH0IvWX0S13gUA+I6jVqDCRgkGK575354xcXHma4rHU8KxgEQuY5v3fuf3BIY5zs6cn6gLAx71efpgzoY03SArFJP/J2SqiTcYhAu2iMHJ27666zX5b12R0MldD5lJHP0fkffvfc72VYMdabRy1n5fM2mwQjImpmOQMGMThyM9ml50gjmicBek832gUNJKJRMNsxM6zw0d1/MpLeth4HBiCdrnn73N+++hsVZ9qreYqCHolgCHsI0lkilj2gpRX0yh4AyNDtMuImgjkaAnRYzSm/detvXjn89uRBSiLxk9x2xnzuq2d+m0gwZBHipzsD0Ko9VABnpDkq9eipMBXntSgdXbHpLkr39LUbDjltdKVPAgUw4qZT3Zzd85EL/ijFsi0ZgrUOAc5Xz/z70/WjGVaIdtF1qxVkUCVjqRRD5lo8QiAKSXR6bQOfVRoPemIPS5BNreMFxm6KJwEKJCJBzgd2/rddhdckVNDtxU8qtqoz85Uz/27aOpPCTIRiY9oHKVZI/qBYqjhEmB2vWXV3GwCObvGfTJBhM+0RZQz7kAsd2pIzUkjt5uJVDgbAlcCaXb586OZ3bPtc11M9qw+S1e6c/OPHy/+UYwMRGQEldXL+RsglBXpKwHX3GM6dqzUqtgz6GAMEEP7HFKt9o21WwtshGNqcTWWYq0MSKmgCJGY7jZIx8uEL/udgaiwJhxhJrgcA75m+faLxcp4NRqdbVILYlTWfey5lEQAIWIrd/skHTj1RRobuLhNLC2T42bveuOWSAavioAzso1rqj5mBcJwcLz01+8PdhSsPDt2yXpIGnuw9X7n/ifIdWVaKZQ+dnAw0H5S8HItwKFcyvvKxR4/dNcE4Cmep2QMRiODX/+Hwvus3mWULY3ec9bEHApFIYWamceau8S+/Z8fvJNHNbeyjAIHAnix/7+n578fKni/GA+8LqKSVV/Tej9C4T1DObCwNfERkQEgZnj9y9suT5gnmLlRbu5BVh3PW+F1TXzQwE/1sA5kuBE1P+0I79PPQ8qKpKCKB/i8CnRwfeKZ870NT3wDAdsUGsX3L5b1z9vj9038VHUyjl0FWswvIpOlDQAJEIARAMLi7xd9KSVmg3zOObqVlQYGQOBg1p/yD8S8Jd/HoWsfdU38+b08amI7OCCj2YMotYgAMQRXzMdbcHmulgCXKMDT5GQEYCBAZXrh/8m8nzRMMorIkLedG4cHZryyIGQNT0R01HU7QM1kybpbDIBCBIFc0VwqJu5glQhAo0qzwUuWxn87dDQCi9w2jzk9I7XO88qPj1QczrBgd8kF4MCZdIQIZ4Kn0G2JX7xhYDGB7DgkeRAAkDkbdWbh/8u/ajhApfnJfgOcW/uWp8j9nI4mrd+JzO5viSK7gAXkb3K4U8wcAnbvC7l2Sgem7z94+b09G54FXM6RnVHPKd0992ds3OaKh5haBn0uksAGADPGQ3MzcykK7Zxs8jiDAybLiM3N3Pzl7J8aufY0SBUJgRM4j5W/E0sM3eao7lsrEIXOTV+6FklZcHdojLu4feI/cd/mxd+hrRZI6ZLB02T738NQ/AgAsym5xKxwEAI+XvzNjvyLLHcPaqNxEc44J1NySN+2H3gZGQh2OSYYtMnt0Ifwh8/PSnUbj4elv2sJEiFRP4eInHarHyv90qn40g/noqA/1VSHurJ23GU2T3uiFg4pRY5K5tLh/4Dk87mUkWC3pa+LdsSAnywqPztxxpv48rjEDKDMuU9bJR+b+Mc3yse63bxJY0ogjQKAohgEyz1eKH3qR2SPInwlyFUEFLfkcRJrlztSOPzT9DYiOUEInHoghb4jao+VvGZiONp3KwWS+i/BceRnvITYbIgGxNvdTGs1wAxfPnBAB48gMLcXm6t7oU1p/QnmDvOaUfzL1jXds+9wam4UnAHx09ptVMZvjgxGT7Hoy3LV2rjZG3zH3kyQqQny5SGEkncqwxQu3EcEyhZFGn0fD29foh/xIIs2yj83c8XPDv5Dng6HTgCHiJ0Aw4E/Nf3+qcTJvxBBXn8nBpr7QXDsMkJm18TwB4FN/d3jrpUONqo0cpUjoRbjeKAEd1c6ktoAbzG6I+Ek/hajrFeRkWOG5+QderT+3NbtvjVSiSdM32ThxrHJvOq7ARcLvuXsMKMjv6ZG/bRjF5SzxL//ZVfvftLk6Z0kdrcdVGhP0gT0aNcctPUuA0PwoARksPds489j0Hddt/BCRwJZtE1rFjxjwhqg+Xv5Oimdj94FXTpkWUnuLFwS4UtdMhoLfpkd1anAjw0kQMATRrJJAn/jpNMcuqhya0/3+fiOvKkL9MeQ1u/zw1Dffse2za8b6EQA+NvetmpiLNX0ReUM1FwWuKIek7KLBOTfSPJUVrnYmYN75Gh+Qxhg9swdA20V1qJW6NW+apAHMPz7z3UPDv5A3hloNYFD8BBADPF59cNo6lWHF6Kgv5DsBMAQgEOClkkmLDZN5Z0QERMIh9EaWkqw8RNe1bvbV1fYhrVfC2jympobTzhUk0jz/4sLDM40zw+ktq74STZq+BXv6ePXBFMu1m3QJlmHI1Dd54QkFk6HtAy0BJIhIe/uDDNhQf0A+Zd9V/Se2fG03OUyB70KOSgZLz9lnn52//9Dw21oNYPB2ZRbqqbl/jt1bwWfFlOxxKX7oTjYE2zKtacydyKl5BqTm69HtltQsrZveIe/Py/Yk/wsQKyZzHopmNoY4GlV79ujckfb3thpAAPDs/D1ynj12vgEUe6iJKQZuaCe8YM9tS9pziSchepP1zM3tMQCOwNDdgBqaHAIah7Du2QMifgxr1dqeSHBMPTl7pwDRumeXT/ykrTtdO/qqeUxuX9FuIHcqQRk5Ei7JSfVN/i0e2vrh5E3FemQUAXHXhtaWbPbA99Te7QkhvkZfg6WPle9riFpMinl1AIE5ZD9TuYczHl2s7+NW0rb0IXK3LiA9b6BHEu1cJHfjCk/ryk4EtnKq6ot153/6eoIk+2GHfyegFGbGay+8tPAoeCKmEGLsX6g+2KBa9IIlDHxWxEYEQS6tGWh8qGTeFy1Gdt9MlgIIz7Xwy4gS4p430k58dqh3AdLBwMw58+VT1afBXaq2OiFZ50z92FnzeApjtDMEcimKPUCGUQRcN3SqtiuJ9QM3y6csp/CzhRebQCK1mhztrF/MSIjMpsbz8w+0HtJlzH3vzPHKA2kWk3RRlGXK+oH+SV1NIJ2lvsZ60q1n6eepO/IHlD2EW9jyoV1DFzxwjKT/ueKKNvqNn84fEei0u8/wckmZ8ARwV/EFocxVNAjc8JrIN4KfywI7FC5FOjrIhdqYgkSa5V5c+MmCPY3+KtBm6kWmDU7Vn5q2TmV4VNJFH8jnKEhSqMJZH/EDH9rpI/JMqKrBlQbQ34v8gbefymgL0V4pQHwTIgMzJypPzluTJWPUIWf1JWAIiAOvUflE7TGO6dhCn6BKU7EJYwAqGa5cGvCzUrvUgORUYM3tNYlAE0bFHuTNdPVsAJOt7vY18WkHMlh61hp/ufL4gcGb9ARMMPN5ovIYEWGocmqi6ShIYqogGL38oSBvMl45GLoPHcOcBKAW6lJzPlFbBa+eG0sqOvFI5vOENGk+cDJYumydGzePl1KjCLj6NkST6vhc7aUZ60wmVYidkdIFANXTUvpUeozuVyUmusMYex2qGWHTEdWWaMsxFL/0xhvQPhwFbxgR+N4iji9VHjsweBNqvGFo7ZlD9qn6Uc5TsUvglb/X7B69mJgcQALgwMj1G/WqF5fQ8ZzppcnQk2rSff3mzUGYee0K7aYcIsfQnW0izvlTE/fi6c0W1Fbf/DuBSEH+WPYI4/GT0SHBvTKCjnCVMkOQk7qg9LeKJNo5n7I71wz6fSHtugI5sB6EUPbUzgAGj5CPqYjIwPQr1WcaopZmOSXThtdYILBJ86VZ61WDRy3cUnfSDLoCqkHmeOUSB5kgljEhOmGJ0Ij7UBZP9zkj7r1/sXWbi2q5Bn/sIYSTLxbue+j7H/uVP8wWDeEQYnMjj5hF00RuS9VG132BQ4GzQk+PbxMYSDXQTww9i3Gszdkf/ov9l71lY23OZjzqjkgLvZqS5QoluSxBAsCreiEAFJrgtc0xes/cZa24mIaCz6kXxPYRclAbloA4puass+P14zvzB9X8sM/5PGu+WBcL0YVmgbGCVlm+H114lJWmD3XyJ7gTGRiouVTm+RWk30vTwaCkxisGybKnCQSdUixVyBfSObcoUfEueIKkmgb4Pn5Tg1Y5CRW2QOetJwYkPH7QAJAhWFaKpYDappdI43u9Cy1OQ9+P8kPoSZEDyLmHENlTqlIk7a7tYCpiSi6BLVLPkNWd2nj9hZ35g+TR0Cd+p2pPMmTtNl+iwAI/pe6I3GKi5h0H9i1TlImliao6V0a2ZX8rXab7pNhiL0lXBM2fWkYmBERU78aV/K24vJXdEwpATA/xXUWd2JHgSTCGDJO/2zwwmQAAnkME2s+a79ipoKDG363PQefKJTB94N/mCCCEPYiIoXGy8tTVI+9W9Hc9Qhn4nTNfTvYyrRCDjjIVT15eyx0SSGgFftLroLi8jiwnUjV3fg2mbjDC4e8OwSg5MZbC7V0NkM+JgRdW6PygVDa5jEGxkY+Ma8grRVT+j9tj0Bb2Sfa6sKAtRgOAOBqT5smGqKnMhpweJwCYs86U7QnO4gO/Zl/qgxpIgFspRgJINCsb0NtWQK76o9j7kVWjso62xadUgpIsSkiOdgYZQh/jGtzlrANV5UoCAqmyS4GumXDZAzyPFEEQgLfaKOZRuDGkf7kgNQ82sxL9ZA9oP3cYFHQKsocM/xbsyenGafCErtnrgj1ddWZZ890x8Wg670rhyFAYwNvQhVwH3VVWXoyGsZNiAnzk93sPSnmSRtzenPte3JM1aP2ShmdNfUaev0kqa6ItrgWPPVCF88muQqVtwtgDtGfTJ/boh3PEkNec+XlrErwIqxn7TTZeRmTJrpb88youXJ1DAFLHeSrKLQSViWYR53kCADnkOCQcQtbqaJJ/6A6oglFCn6yP8CZrcI+lRNaPvLcOof6TEkeSS7G9NIEMT2RWpu2zEMJlD9CcNPKxRzeeZyR7JIMcxpcDxJBlSgSEyM+ZJy4uvT6Yeinb5xLvmBCuYJppKALBPFWHclj3+oi1Eb90wcgVU5whY1JmQQs15T3pRj3RBSNCo+4ImyJJ3IWrsgZNn0R766ezBwZ+VY6oNIbkyaFr0LBN7JfO81wpBQIYRwxhj0AWOyl7WKawLRGekKL27BHwxyJHJgCAsjWhfjAAZHoaZhqvABF6ohIL0l5/qX5ycy4u7YVGfo84jlqXFU2WU0/OmAu2ZTpaeo400ZboRFYQhE2jF+SLGzI+CdS1R7vHFKJI16Dpk0hk/VrXGTTTLpIBSM0Jo/uvTKvE9//KsXKmkDIrNrJWNlWndfBsEMGxaHh7bnBzNlxBJ2CPkPEiTkGA6cYr6qsBALIKxiELERPInoTjUVJdnWusmDcOeqktRShSWztG468/9ZOEV5AQzEBh04f+16HrP3rBwnSjOV+MnlR1N3HYXbJ0FSBR7Cd0VaxPQrj+kdruRZM9KbNR7CFXoH/tc4/34x6a4AY6Nt322Uvf9tn98+dMZvjvTSS52ZZJqWjIKQZwU05gyAl4UyzMWeMcU4l5Cv1kbVLWnaLUqmCFZ/SQoO07HcK0Wk9AmUuNqZRKIHtBWWunpNfhoZkg0GMy9cXVgZ4NpHYlED0GaSEdMgSgOLczQQgZcjw8SCaOxrx9rmJPF4wRAjK8xgxVriMR1KWp4rpmBKguiNSu4oEFzjH99vulKyrtHRyaOpCiYMO1LHsd3LsylLpX1DwG4FauoMYe8dtfUXxo2Dm8+qTeOgmXtaiWqEqCVc1nB2kiANAzy56X75bCBHpx/U/tevps3bpDJ2FCOGnWpviRJlNtgH4Np8QtpD+uf41OkC0pki0yUkgie61HmpEaquRt0uGERz3hV2pBNw0Ck3QrhHGTcVK4jex5kf0agGj5AFFcKnQBXezrSoIE2U69LbQyffS5CM0tFl3rZ1PDEiZCp7V3alB9PR8L5Wt1lfE3tRSxn3rOyaI+CKkf6tfVrW6oZ67MW9NLCjRFTZfHYJHYIyT2C0yudYTosxDQJtMWpiSJK34cDR73DqN4qPmWwI7t1IW1W4rYr5NZPl0xez3269LOQ3Rz76oaWaUjfNlyvdflSg2E73yR5PQEKiNwBscUR1fu/KkX0AiVuDtN8Bwvi8/8DTDQOgajuwqpDOvjfkWMY3W2kSsZzVeliqQJZYmgHlwR7tHyobMsgeInxRiSVwMrBHxyGNP9yPZ8pmD0UQgZx8p0ozicFg41n3TCaQQPyYPEqNRLL1Cj61vqqi71D6ytsvjEX71u+4HhRtVGRr15AD6QoPqCt0gUO9idEFsDvTUe+HV574FURisPCE0mQ8aQm8x/8I8OXXbT5tq8xZiyn/1hj1rZchfy6+zRRd/trKHepSo6o+Yyv461exQhUFNnyuFr07twQDhCOAIJFoXNO8l5hreKvYNOHfiY5eq9o7Xb+HXxbX8E6M74t3IIafkCpWfb+yQkhHBrPttayq6AGre265uitEW0TpDpTcUk7iQ/R8NgXuwXLJdNCD2hoSZbdQumG8kYLGY1l55oS9Y8JE6MOZeIhHAcJOHbbEJC38RBNZcfGGNCCL2bwCnyc+jeEPopjLmrpQML7VtbqqN6m9Brcw8BCiGow0DHD90Ats5nJ5vhjjaP/UEXwVyin9QRGful5FcDAAUIAzMDxtiZ+nNpyhLr5d50edOVmdAsetub6zgATYqEj1i7jvZ1tL7eQchXEFCIkKhfWg85Tni0obdstwtBsJ+Y4WIGirpshiiEkLNyPTwb3fqpbpjmGYm2uc9FZA8IVbdxaCFWm94dskvGaJYX5e5KBgBImqpsTHOf6i5vkMI+K4u3rImLtg9XQ7icrtlKawn0MhPdswe0GD19BVlP/fYK6mDXWAr1otrvCkNNQZNSIb2LTZkLsaUooWeQ/y8kjb/USEzc8Ktcy+VmOvpABBXvKWKHs/SSIrHsKx/ah/iUHgIBjGX3BJoDABSNUV/f/cgnhX1dDuIq8e+EuOEh9TqgX/GX3oVy85dJO5MmTwnGj0y6xF6+zLuUpKARgL7cdkN6B6K200SfHezlNhlK9nu5kH5sWL6OlQihGeNeOomfciAAwA2ZHeDJVrMCqGCMlPgGh+zV934Cn5uTAOFCutxe88rCIicglxqsg7xA5K23y7sIsIvGcCk1Cl7EJ/f8RgAaMDYNpMYcslaPj6WIlGjG0XcerCLWWizg+c8pij2os/cgdcEbCOiQVTJGR9LbwRU6bcERAm7NXnK69nRzBLVk+bymcofpnvCJkUSWkwDRMAzDYG1eunwegnE0DEBEULtcq/znecoeuux1Ik8hvJAsZyTI2ZLbi4By1gECu1zvyB98aOZrweAzPMVz/qBD2aOo8LtdJ4hoW9bExESm2M+ixBUCxrFathqNHciQ9M2Uz1/26CqJHc4eCXgMEQWJnfnXALi7K4EmfggAo+ldRT7SoBrKnZRkj8s6E9MrOs9jdxfRIGKjYW3ZsuUzn/kMpkU3XaxwIJFpDO56wTTLjGnscf7yhp5tTXxGOHu0JwI6ZOeNwbHsbtDqkNSKBySgodTWjdk9JyqPpVnepa4y0OfdC7O6Fbxwu9fOmWSMV+uVmy790LVv+EXlWqwmyJt6dPbbP5z40xwrCcUewcVD5wl6kL2QM9qxBwLYwhrL7dmY2Q0AwRUPXv+4I3vgZwsPIWKz9sjxF2+ufOhk7dGnh6QJMSJhsNS23KUgwBb2qhS/FKa3Zi5JsazPuIfst7yyoWfjOmGPyIm+BIpevt59R/4y8BSZ/D34dttdhUPp6a+Ev2DsvFByohvBgy5TyS4Q0KbGhvSObfn9gJBiqRVPpi6xOXfxxvSFZ83nU5hrvn78fLGBSvA6X8dG2nm+XxNOZZEwWHp38crA700lLSVyW/bSLblLLDJ9+ps0I7Ayoxp1hV1Z6biJviQbUiCzhLm3dK2BaQp7TKsDUm3vLV5nCyu4FmmFswe0PM3OtXP4SUlMH6BF5ubsnl35g6B5nhAI6aTR21u83qYW+q5851NfXNE5cXuqdiAny4v7Bg730Md5AQSAi4rX5Iwhh+wVzxAaAvzQ4cPuLt5TQGS2aOwtHWZoBPxKFmgHABcVrsnz4ZD5d/KqrpwVU/ivlJJI6oW3Ijy4o6RRHwKzRH1bbv+W7F5w3/C7OiHzc6PpXdtzl1vuS+o0KMYQHW/WsFggzeipfzvPtYSzFSW9TUF2lpf2lQ6DJ2IKfvEDJBBDqc17Ctc0RJ21GkDQHP3ldTPUBQjtQ+d9RIpYB7oNCMTBwTcDgOjjHjUrFAQAlw/cQm21zAphD/A4tnP2UMUFPZq+hqhfWLxyNLOLmpvruwgn4hWDb+GYCV+m2aOj1heQJjqiS6MXp0AC+5JEAwEtYW5I79w/eAMAMFy1pk9C2vZ9xcObshdZVAsx9YGE/nIJIWl2uJNFnjoiT+qoNyIG/Iqhn/cuy4cg+SRBd+Qu354/WBNh9AWvH3lvS7wIQHcFesh3t3EqEqsY6dZfPnQzxxQtv1paCggQAHBw4BaT7MhGAf24ZFD+IvbKHiKKCwI+VywQWEPUt+X37y5cCf6ki0SIdEk2umroXYDJtp0QMRfbJwRSxvqPPdi98OqhxEBAWzSGM1s93Xb+pCJ6gHwD6+UDb96Y3t0gM3J9DGkPqAcnJRECnEBhP3beX+TZnc1Y0FUj72TIRFgdcIj4SRm9qHD1BfkraqISZwBJ+6AblD5SWe8ctFG6Hag1ZgweS8wliKwhalcM/XzBGBYkVuFCrXCgAJFhhSuHbmsIE2L87Vb2oMVhD2hhQqf7geKW/XaiRBBYQ1S35/fvK10HAMFMCgBExX7SAF499B6OqTb1i7qi0MUvEAN0ioAkqD579nXj7HQnzOFGfZkdh4ZvAwjuJra6IQ3gwYFbx7IXmaIeV5FI/s+BnSW6hvBzms5svblgcRn0zi8bgV098h6GPGo2OJxwCIxA7Clctb90Q0XMA/I2gwb8OfL6DmiSJJfe6qt04m3HIzJR3LndRmSWqB8e/cUcHxDkrBnTJ4ECRJrlrtvwYYsa7Z9MgD2EF0e0OqVtM166sAn/7z1zSGQHcbFgOBjyujN/cema/QNviKkBjsnUIQBct+HDJWPUEonX4Oq+ndBoHfglhkyyB6Z97YfgUYsqCPbfkewBM53KhcUrDw7dAgAMedtTVhkYMALaX3zD3uLhuqgkLcnXFXGr+XISKEHZkvn76UfSIZILAgY2EVCQnTMGrt/4Efk1ql0k1RBQgBhJbTs8/EFTVAlZB1IQ6ojqYhl/LnQjEjH9RUb+5KXIOpRwAmGw9I1jH5duQq+XeD7jxtGPZVnBAcfpaJu8UPZIwuWtkV7PoJhQUR8uMRiyurNwzYb3jWX3CIhLCsQpLeniXzn0tp35g3VnAaGH/Xd1tdfWjvaJrJDkGXU+FkNec+avHnn3luw+olW4tighpIIeTe96/cgHak6FdaSgW0GJ17/2jz1AMwdtmCQxEJjpVLfk9l098m7whCgK8ayDBIIhv3XjpzIs74ADgD2p+t5j7g7HifMowNN7ndwSA2Y61Z35yw+PfhDWWMalFZK3rhl+357ClTWngsB7lcAlgf7wIxU0eS06LKAjEByNWzd/KsWybevv22huBCZAbM5efOPoJ+qiImcCeyGxu6s4RwDgBgb+WD9iqIC3G3mpnccMCCjASbHMW7f+VhLirgEgATHkb930WzlesqEhFXQvOpoAJBu0sgdA3+hNbdmjs2DPhcy43LDpozvyl4sEq67bO04yyD40dNvB0ptrdhmR9zyDSmbVAQDHpsCfcPrwkvvWeDOkRbc8YorajZs+vimzW6xht1OHdEGH01tvHv2k41jyzUM9JssaVQFh7AHQ6+s11bVF8rAyep3fA0Nes8uXDLzh6pH3AABLwB7B5bYxeMumX5+uvzpuPZ/meUGOo20S2oFKQhAO3PrpfeVxk6cwKGwEAxuzjiU6derIX1XbRqV1tccOA15zyldteNeVI28nEKu+vDM5GDAC5+DgLVPmqR9N/30uNdA1eyCibYobfmnPZTdsNtK+t6wigm3Rxt1Fu9Exe0joDz/8+feQzmHAGqI2lt3z1i2/yZC3VleHIvgSrCjIuYtJ8+Tfnvy3JlQMzMiMn74RYXKS5EoplsLQ+6yVLWFTpz6Gni6NPCzhdCN+DHnNKV9Q+LkP7vp91uSrdTQhGe7/nfpPz1d/lDeG5MK2LtiDCHKllJFuUc0AgFAv27YlOpW+NuwB2oGuDDcCs6lhYOpDF/zhluzFAkQS0wfJxQ88CTxVPfr105+3wWTM0CWQOtkSTTiRb6FkvIMZbD32ivPVdU+/K7tniurW3L737fgvBWMooWJba5BkqTuVb5z+/In6UxmjoJaWqpceJ3QY+sUepCXa2xi2uEqzNpDL9ADYe7f/zu7ilR1ttNWBB4XABDk78gduGfvVhl0Dx+XC0MmbNqNyZEb4XxLi6vNDKjsVLntCO9yVYmPILKoVjKHbtn6mYAxR7DTOWobkwiwv3Lb1MwNsU6NRZeBm0sQysYccyIkJ5Uib7u/S7iEA1EXlprGP7y5eKcjpKCPQWQDDkBM4BwZvfsuW3zCdKhEoCQQtoo274Z4hNarwC2E4RLJpxmgw5A1hZnnp/Tv/62hmp4DOiLvWIIsQBlObP7DzC0Vjg+lUA/VA+mr4PhWr+EB+xmjDHtRTZTY0ZW/h5rFPHhp+G5HotP6pA+dTQZBgyB6Z/vb3x/93hueQcQLRyuW6059wp0Ly2lPLKR14B+T/0O1DZsBNUckbg+/f8YUtub2rcvfOxYAk1Dnz5a+e/I9leyJrFAU4oewBWnCYUE9SGHvoXJHoaetzDt2yh9Q1dWfh5s2ffP2G90uh6LiTLsQPAAQ5DPkTM//8g/EvyQoswUJIDJrfT95XBZ3iqvAr0ED/kFTweshfKTA0TFEZTm99x9bPbs3tI3AQ1lxhZ9eQEjhhvvTt0//9nPlyhhcF2qG6S2cA/emTdpQ8LhJeABngh87YA/rgmCEwATYR3Tj2iatG3inFoZt+uhM/8CTwZPXpr5/8z6aoZY2CA+EkBk389ExJQOcp6lNLmzbQT+h2XkEHQ6Niz+zIH3j/zv+a54Prdq8LSKKZovL1k5//2cIjhdSIQDvJLETMcZ1VIDl7gNaoq7x3AAx5Q9Q58vdu/90Li6/tWvagF/EDTwLH68e//crvT9RfyhuDguzmW296i7sSQT0B0dHTiAQCArCqM3Nw6JZbN386xwfWZa9rKAn84fifPzZzR54PAoIbpywNRUNd0p5Vc80pj6S3vX3rf9iev7QX2YMexQ88Elfs2TvH//TpuSN5PojACIVvImIxhJD8//YjycOQ28K0ROONY798ePQX5b5667LXC2RdHgI+NPUPR87+BUOewqwbCqIWmSzCwL5/+8EeCAyAKs7sJaXr3rrlt0qp0eTze5F99ih+4EmgIOeBqa88MPlVm6wM5n3Rtu5ydE1r3bjpBO0PZREA62JhKLX5zZt/bV/pWsU3feh9bYOAAAiBvbjwyA/GvzjZOJljJQAitT4JW/7tapjFYw9wHc4aAr5uw/uu3/gRA1Pd5VoC6IP4AQARybURJytP3Xn2z87Ujud5SZZrA7Q4orprqoJr0Min05FpiWS9cf8gjZ5Njb2la9+y+TdKqVFBDsPz+r1qKw7SSavYsz8Y/+Iz5Xs5Gq4ZhLDEgMoBBFIxrVDnOovFHtLo1ZzyxuzuW8Z+7cLia+W+Pn1Z7NIf8QMAApLzHjWn/OOprz8y/a2GqGVYCUCElDAwT5x0yRRamWAgg7IYE4gADJkAqtvzQ+ktb9z0S5cPvpmACKhHj2IdoVAOxbHyffdM/OWUeTLLS+FbgAUS5eQXUT1LnjTp2Q0QEJCZzoLB0oeGbnv96PuLxoggB5H1yy3qm/hJeGVo7NXac3dP3H6i8iRDlmY5QbG53la7t8iQEZ0pKhxTrxm69fqNHykaI+sO52JDOaJVe+5Hk3//+Ox3LVHPsAK4dVsJsEQcggyZJeoO2dvzl9246eM78gcUb/dzmP6KH0gSE8m97J8p33f/ub85Z77MMZ1mWemj9ne4TsGAEUBDVBHZBYUr3rjxl7fk9hEJWgN7VK8QCBIIgMgm6i/ee+6vfrbwqEN2muUZMLHcb4dAYIhoibolzNHMjus2fvjA4E0IjEgA9l8191/8JJSqsIR5tHzk4alvnq2/yNFIsxwiCupTNioxpLMuSJiiyoHvLh563ch7Lyj+3OJRdh0x0HQ0nag89dD0N3628LBNjTTLc+REFFlzvVhAhkhEDVF3qDGaueCqkXceHLolzXKLYfSaoy6S+Ekod84S9WfK9x2dO3KqetQm08BMimVkymZRCS2ljogsMh2ysqy4r3T48qFbdhUOIjDlCy3eBawjBoo9COhU9ejR2R8em7+/5pRlYgaRERFAbwtsYyEz3ohoi4ZFdQNT23KXHRi88bLBN3nvV19c9lhc8ZNQM9eCxJnas0/Ofv/l6pNT5imGnGPKYGkEuci9P6KoaCpI2MJ0wGJgbMpeeEnpuv0D12/I7AQ3CBHrdWQrAXrIPdN45Vj5/mfL9581X7TJMiBlsAxz5bC/7AEAYAnLoYZD9kh6+678wdcM3bo9f5mcRl+aRMBSiB8AAJA3R4kAYIrKc+UHXlj48Xj9+ExjnMhBZAamOaYAQJJGXlg7irvZX+1l9GST6ZAjyEmz3IbMjq25fZcOvHFn/nKGBgAQCKL1MG/FQZBAdH08AeJ09egzc/e+Ujs2ZZ6uiwWOBkfOMSPlAdHlDwKIj2K89giuigdBlk2WXLwylBrbnL1oT+l1+0qHc3xAdqUz6mJjycTPheZJEwDWnPKZ2vFXas+cqv50unGqbE14e9oTxxQCcjRirL8AW5AQ4Ahyi/kMTA2ltm7MXrArf3Bbbv+m7IVSpAFgPcZb+dDzdgAgyJ4wX3qleuxk9akJ8+XZxqsWmfJBM+QMOCLj0RumEJBDlvwXAKQ1GzBGRzI7tucu3Z6/bHP24oIxJFlxWSKRpRY/DyRIBOZP5u2p2carE+bPJs1Ts43xBXvKJmveOtcQ1VCiEFDRGM7wYpYXi8aGkfTW0fSu0czO4fTWLC9pzRYxdF7HIqH1qdVFZbbx6qR5YrJxcsp8pWJP15w5U9QWrKlQlUpAKZYdSG3kmCoaGwZTYxuzOzdldg+ltg6kNurNqIUVlwzLJX4uCIiI0HUofPdvibpDTsWetqgu/XVBtk1WhuWkR0pAOT6YYXmOqRTL6L26DdadzPMfclIe0Y3Z1O+2aNjUaIha1Zl1PUzAhqhxTHE0ZPlECjMFY4SjkWJZvU9p6Ihk6cpyekPLLH46JFFUtJdcclwZBvV01j3MVQiCZqxHXk474bmuDHv/rRz2WEHiF4Anhm1SL97/VgpB17FUUIzbnkNWLHv8fwfQi3fojqNsAAAAAElFTkSuQmCC", "path": "image.png" }
Complete the statement. Fluorine is ().
[ "a compound", "an elementary substance" ]
1
The model below represents a molecule of fluorine. Fluorine is found in chemicals that are used to make some types of waterproof clothes.
All substances are made of one or more chemical elements, or types of atoms. Substances that are made of only one chemical element are elementary substances. Substances that are made of two or more chemical elements bonded together are compounds. Every chemical element is represented by its own symbol. For some elements, the symbol is one capital letter. For other elements, the symbol is one capital letter and one lowercase letter. For example, the symbol for the chemical element boron is B, and the symbol for the chemical element chlorine is Cl. Scientists can use models to represent molecules. A ball-and-stick model of a molecule is shown below. This model represents a molecule of the compound boron trichloride. In a ball-and-stick model, the balls represent atoms, and the sticks represent chemical bonds. Notice how each ball is labeled with a symbol for a chemical element. The ball represents one atom of that element.
Count the number of chemical elements represented in the model. Then, decide if fluorine is an elementary substance or a compound. In this model, both balls are labeled with F. So, the model shows you that fluorine is made of one chemical element. Substances made of only one chemical element are elementary substances. So, fluorine is an elementary substance.
an elementary substance
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABpjklEQVR4nO19d5xdVbX/d+1z2/SZTCY9EyeEEBICBAiEBAyoIRCaSPUhHUQsCAKiiDTx8UCq+iwg/EBBgRci+hBCUZDeXiiBBEJJmfQ2feaWc/b6/bHLOffOJNPvzMD5fsLlzi2n7e9d67vK3oeYGUMQSzfUvbthe0My3ZDM5GF3I4oT5YnYzPFV1RVFedhdiKGCkIfdAg05c7OpOfnIuyvzM7rtMa6s6MS9vpCIOAOy9xCDByEPe4AhZm42NScfWPJxypVV5RWJ0mHDS4sKBAocxB3EBWICMUJUICoQIQggQhAEgn4kgEhvSp22ZEhm/UjwJHsMl9mV7IEykjOSM8zbWlLr6xrXbK7zJE+sKjt5+oSBuwYhBh4hD3sGMdAH0D28sWZLypWTxo5JjBhfWGT0JJlBY4BABGYwQw0okf6nxllZV/1xa2r9t4jV35YOABilBbGJoyr33GW8I+jTLQ3Ltzb1/7mGGLwIedgzDDFzs6a+GUBjtBSAL8sYZkgBNcBqsNWbrP+BAdbDZxgQcDH6LSb1d1D0mU8VF8RHDi8H8O7mhv46wxBDASEPe4YhZm7iEQcAsURAjubBq8B83vNk4IUQn1OEPOwZhpi5qa4oBuDVbcRAeJW0626tbwQwvrig304xxBBAyMOeYYiZm/3HD487Ymtj49Y1K9LppH61/71KxpMrN25/ffkqz+Pywvic6sr+P9cQgxchD3uGIVaZAtCQTC98d9Xm5mTnH+0HjC0rPGmvmiFXgAzR5wh52AMMMXUDoCwRm1xVNiC7Hl5ccPq+k4bcGIfoD4Q87AEiA30APcfkMSOLho3MT7/DRxvrlq/dXBSPDdzphhikCHnYdQw9dWNBwWf9HjN7AAoT0X4+pxBDDyEPu44hbG585KsiEBj5ECHaIeRhZxjC5ib//Q5Dd5hD9B9CHnYdQ9nc2GehVwkxcAh52HV8JsxNvrxKiBDtEfKw6xjC5sZH3rzK0HUrIfKAkIedYQibm/x7FRrCMjZEfyHkYdcxhM2Nf83z5VVChOgAIQ+7jCFpbkYWFwCob2nTf4cVgRADgZCH3cWQNDeqfdv1PP13GDOHGAiEPOwuhqS5yUX/e5W2VAaGXiFCdIyQh53hM2Fu+t+rtKUzACqLhtjyIiHyipCHneEzYW7CmDnEYEDIw84whM2Nf9HzFTOLoRs0h+g3hDzsOoawufGRL68SfBYiRC5CHnaGIWxu8u9VaMh6lRD9h5CHXccQNjc+8hczD1WvEiIfCHnYGT4T5iZvXmUIJ+lC9D9CHnaGIWxufLsfVgRCDBxCHnYdQ9jc+MifVwkRYscIedgZPhPmJl9eZegWIEPkAyEPO8MQNjf5rwgMYbcSot8Q8rDrGMLmxkf/e5XtzW0AxpcX5ueEQgxJhDzsDEPS3JQVRAE0pdL673x5lSF5sUL0G0IedhdD8sjLEjEAjcmM/jtvFYEhGzOH6A+EPOwuhqS5yUVYEQgxGBDysDN8JsxN/ioC/X8uIYYuQh52hs+EuQm9SojBgJCHneEzYW7y5VVChNgZQh52hs+Euclbv0OIEDtByMPO8JkwN6FXCTEYEPKwM3wmzE3oVUIMBoQ87AxD29yQ/V/oVUIMHEIedhFD29zoimA/e5WGZBpASUEsH6cUYggi5GEXMbTNTX68ipvxAMScoXpznxD9jZCHXcQQNzd58SqfgZg5RL8i5GEXMcTNjf1fGDOHGDiEPOwiPhPmJvQqIQYUIQ+7iKFqbkoTUQCeuht8XrzK0B/rEH2PkIfdwlA1N+WJGIC2ZBLIl1cZ0uMcon8Q8rBbGKrmRkEffRgzhxhQhDzsIoa2uUEeKwJD2amE6GeEPOwahra5CSsCIQYDQh52EUPb3OSnm3NoO5QQ/Y+Qh13E0DY3GqFXCTEYEPKwM3wmzE3oVUIMBoQ87AxD29yEMXOIwYCQh13EZ8LchF4lxIAi5GEXMbTNjUZevMrQdy0h+hkhDzvD0DY3oVcJMRgQ8rCLGNrmJji6QBgzhxgghDzsGoa2uaHA6AKhVwkxMAh52EUMbXMTepUQgwIhD7uGoW1uQq8SYjAg5GEXMcTNTehVQgwChDzsIoa2udHIj1cZ+oMdon8R8rAzDG1zQ/Z/efAqQ1/KhugnhDzsIoa2ufHtff97lfrW1DMfrVf3+gkRIgshD7uGyEAfQE+wdEPdpuY2dOhVhPEqJqImAsF3EooEAa/iD7vxKso3BVQrA4DryTdqt75Ru3VcWdEBE6omDy/Nw5mGGMwIedhdDCVzk3S9N2u3vl67JeVK9crG1tYxMcfhiBBCaP0KZpDI8ioIOh4zrAwQEVt+KF/EDCAq4Lqc9rjBZUGod72y0uKi4qKmpuaW5ta1DS1r320pikf2GVM5fXRFWWII39UwRA/QIQ9H9x8PJTdkWBA3DH0eEgfV2mBFQzL9wspNK7Y0qAEuKUwUlZYMKy/OZNxELApmRxAYUYcKhEg4IiYoLigqIEAkmJmI1IAT6WCaJMDMKckpyR4zA67kNo/TUgIkmdUjE6RkEHmSQUi7XmNjy7bt9Z7rqWObPrpi5viqkcWJgbxAIfKCTnkoBBEj5lCiyzxkQCoeeuwhyEMGYHkIgjf0eTjYzY0a4KUb6tSfxYWJysphRYVxQUQEAQgCQT8nX7ISdN5NI5hx8/UpmzDb/KUemZmhlbDUT1iyfi6ZJdDSkqxvaGxqalFbmjl++EE1IxORIXxD1RA7QY95aJM5+pF8hUM+AQH4WRoOpJA/Yzwc1ObmjdqtL6zcqDxJeWlxZVV5IhojsENEgCAiaH+inxMxWBCBEXjORGQ9C9moGKxPXwXZpBUN6+dSPWciKVm5IPvcY2aQxzLtenV1TXXb6wFEHTF/8tjpoysG+KqF6Gu042FFIhr1eSiImIV5DvOcDPcIAQaaRxiPqPim3pWGq1bRaFuTrbVZPfd5yGnXHRI8HKTmZlNz8pkV69bUtwAYVlo8rKoiHo0IkCAIgoB1KaTdiFkvVtcZiay0ydY1wcwbBTwKGFrmcEDgAJBs/ySpfAsr6wPJaryRymQ2bNjS1pYCMKq0cMGUcYNc04boIrJ4WFZcMbwiHok4goycgfF8ioEEo2tEQF9nFaGCWydd9M7VOMbKsO8FIRnQGoelsUFS8RCQzB4jPeh5OBjNzYsrN72wchOAeCwyckRVSXGB8iRCeRI9xsafEEE/ZyIiVpGUr2sA5U9AAfGqB9p/DOoaNrrGWBnrW5TGAXksGSQlS4InmUGulA2NLZs3bVXkOKhm5Mzxwwetpg3RFbTjYYIARxAxnK7xkBBQNNk8tAxEr3jIDMVArXQGOQ8Hl7nZ1Jx8bNmazc1JAJXDSisrK2KOIwiO0TKCILL9iY2TRVDXEJDdU+QrWA4YHqNj7ceMtPEFjgy8YnWN9i2sfAt7RulkPLll6/aG+iYAJfHoiXvVDDb3EqIr6IiHQhA5BF9it+chEMjd+MwMlskph4E5PAzonWwekgSzUd8d8ZAl4LGWORkpt2wZjDwcRObm3Q11/1heCyARi4wcOaKoMB5RPkSQMJ6kw2hZPUfAw+Tma3xbowZUvauf+5GzNJFzUMEGo+Xs58arQFUT7GNLMr1xw+Z0OhNxxLFTqydXDaXOiBAd8lAoXWMY6AQzhtnPEWAjs8kngjigbtoz0JgdVh03BJ3HMYpGmtzNzjKJUiluwJUsgdbBx8PBYm6scB1ZWVY2rDzmCIdIEGwMpaJlgQ68isiuRkF5lazOKQ37PBgt21cAX9+yfiDO9iRZXsVGzlL5FlYax2N4zBs2bFH1ggW7j99rUObtQrTHzngYlDYAkZ/ByeYhgKzZBzm5m4Cq0cjK3ZiXOOsVNvo6i4cSWZlEo3EGLw8Hhbl5bHmtKjFWjxlRUlokrKLxdY2Jk/3IORAzc1ZNyjRx+lUAq3SU37A1Kf/1gJpVF0TZnexaVSBmlr7S8UyNQAKetI/kSrllW/32bfUAdh9V/tWp1QN5iUN0Adk8LBbgnfGwfe4mUIfaOQ+zbU4WGzvkYaBW1UHuZic89ABP8uDh4QCbm6TrPfPR+qUb6mKOGDWqqqSk0FERso6TjVfRI609iXEv2odY7xH0LdCWRSNYn/IR0DLmBWtfTOSsXs/O5tj6lBeIn73s+Fm5l7qG5k0btwD4wrCS4/aoHjxJuxBB7JCHIEd0zEPHdNzkZAx9HpqqBRmZTe2FTQB+5tjyENriWB5K8y6b7htvSPFwIM1N0vUeWPLJ5uZkVIhx1WOKEjFBiBAJsCOEegzWpARYEAnjMZTS2VEdSvjNDdbDqFfa6RpNABUtd6xroEbddBhbD2OjZVsjkCBPSglymSXDlbI15a5ds04yVxTGz9xvUmhxBhs64iFHSJhYngN1KKV02CERrEMF8zWWhzZ3A21q2ET6uQw0rMv6MUpf42TVqiRL9Toji4eB+pThoWIgS8nkMrclM7UDzcMBMzd2jAtikVFjRhUlog6RcikBdeNXAQTgqHpTds5faRxtcbK7G4JKB7l6R3mP4HOjXXfQAcF6jLOUjmfiZxnwM8arKMfCHiOVcdeu3ZhOZ8oK4mfPDC3OIEI7HsYcguGhn6mx6kZHVcRWWVN2txfa99pojQPzpnrdFzlZfadWX2e1uft6x4odWy2FsiyBKpUX6AvzAmxMZTJr124aQB4OjLmxY1xaEB81blQ84ghA5f8jOitMfuRsvAr8jmE7urbHAcj2LTqe8mNmvyKgjiFYFpc5kXNHukb5E5s5RmAuVXbMTHYGlgw8pj1Zu2Z9Op2pKik4d+au+b/mIdpj5zxUiiaLhwQnS1nn8FCzq53Wbp+7ARAsgttaVYCBaM9D6/MCnm9I8XBgzM0j765asbWxrCA+ctyomOM4hIggJ5CTU17F8WtSgcx/R30N5PsQI17V6WV7GKtxcucxBCeqoIPKVNCfBD1MVpVKZnkVm6tzpQ6h055c+ckaybxLVdlJ0yfk/7KHyEEHPFS6RvNQJwqdjnq+rLLuKg91NgfmhRweZqlpdIWHgVd20oOjechw2fLQW/lJ7YDwcACW13r6o/UrtjbGhKgaUxWLaFuTVY0idgjK+jjaw2TniXUex6hcM3/KPIcDRIgiyooRRQWpvUQIUSEcQlSod4VjPqPedYisjbM1CKO2tK/LYZ4Aq285wipwfSSO8ZNqL1GHxlWPFUSfbGl4btWW/F/5EEEEeDgibnjo2xpBQkX3gZElcHblm4IMVMzUPCQIw96I8aaGaSJCUJyMCpHFUmiWRhQPldM19S+/L0R1hAiyR+IQ1H5zbKU9l+DZRR1n/ADxMN/qxvZQ1VSPKSqMq9+5E7A16iqb0c3taLCvdKxx1HQq+4qKsAJdne1bHUyuhvRCa5zbQ2z8CXO7yNk2ega7IWwtwOqdgMZhl9HY1Lp+/SYA83Ybt9/YYfm8+CEssnmYCOoa8zuniMkh5vAwK3uouWfiKcPM9p+B+cyOGm/Y1zLZPGyXr2FWMxv83E1ORxj73Tc+G4Max2UeEB7mVd1sak4+89E6AOPHjCgqTChbE1QBwlpoEn4tINuTWI3jZGscyxirJhxQlEgYXaM9DBk/Yz2JEEL7E4oE/EDUqpUd6pp2lVF7JIJyuja0ZyMqKS4YMaoKwD8/WreuqS2f1z+EQjseIiIso5QWIP1KgIEBu+NrHD/PaHhimRPgodXaQgS4F2SjMGyMWn7aLZDPQ62mAxmGYO9P9tHqylrWryywzdLigpF552H+1E3S9X7z8vKUK6vKSkaMHq5+e34klVOTMjpFUK5m8WfBQXffmOq47vVsH0Uju++GAr2bHfYQW0WjFxYxUXFORcBonMDsqnaRs2fyOK7vW9iVvH7DlqamFseh8w/YbUisw/aZQfd4aFYdEO00S/Zz3/rshIdaXwd1TQCmKtoJD62KCdbCgzrIfFirm53yEOs3bM4nD/Onbh5Y8knKlSUFsarRwwUQIRLEkax8jba+fm5YRafwn+fYckflXwJRsfYYZPsjtNeyesR6ADMLxo+Qld/w89ZW72jPQxFfUds1dwJRtGKk8lREOnI2eZyIIEFsmC1Gj64qLCrwPH7w3dV5G4IQCPBwxOgqAUSCatSqZt3/lTuyFFDT9nkkR49o5uRknQM1dfsKgppF79cy0zEZHMdnuGZ7MF8p/ONk46H9aMBqNKvdrLoRgCOQZx7maa3iN2q3bm5OFsUjo8eNdgBi6WZcweyx9FNcRBFBacBR3oB1OoWYhRBWzRKRunykjSUTs/EkSvWQmilHRKYcQKbWKPzeKh33AkGXYiqROSpGzfxWzsST2TPlAhUBVnsTgk3zsctscjfSY3iSXYbLLEElpYVtrW3bm9ve2lg/Y1R5fgbic44gDwUAlm7GlcwuS2K2KeEIUdrkaMEMZgKDIYSKmoVOFOqonwWgPmMqoSyIiMh2+pHuuYAIMtCfqcBaZVv67YiHesqCzsX4PARL1kvh2FwPOY4SOzqDo3WNVGLHlZx/HubD3CRd74WVGwHEY5FtWzZHKRDTOsLGllFHZKBnvhndoTsdpOs6QrCOm5hMTyf7mRT9CEAIMLMjiBkCulbJDEcIZhaCWLLqOXbI3G3V5OoghJRSCJJSZ+OIIBlCwJM6BCNBrmRBkKwe1dxf6QjhSQmw9DwJSJaS9ewV15Oq29gzy1ZkpJSgREG8rTX11Ae1uw8vCXv/+hs74KEQ4Gg7HgrT7ZXFQ48dEkye5qEQHrvOjnhIgOGhdoSkmQlmBHgIxUOVRFZdNh3wkBTfPIKaYkNCr1ssmVWQwoqHJDyWAKTr2QXhLA85h4eelJQ/HuYjmHpmxfqUK4uiAiJHVQqrJFVXFekeYhsPs6rw2Tq3o6UQ+/VyvTVWq/lZloDZMZuyr6j+KxtDmZwf25gIzI4Q6pP2SMzsLf1PgKO+RjU6iwj+bD0QmGDiKWhOq7ydAAQ4QkTMiVjEcYSU/OgH6/MwEJ9zdMRDEuBIgIeO4SF1xEOzCgocw8aIiZd9HgqgHQ8dk8pxrO5mFkJbpSAPCZalhoeAEKrfwq+KKB6qyEjk8JCDPNQvWh5SDg8FEXMinice9ru5WVPXsnRjXQRwEhFb33GI9Oohwj7X6eFgTk6QXklEBHIxaqQF65yICqnsZ7RtUqOlzpDMHCvDANvZSQGPRPpbBDNXi2C7HszxQI23IHDE3zsZq5RdszDhnjlTIcyhqk+quLqwKA5g5ea6j7c19/dYfJ7Rjof+TIUgD02liSiHh+aXHKxU2kfNFsNYm2FUVkPlhcnyUFs0f6ZVLg+hFZDmIcGsp2PyNYCTZTtsJhtGkWXVznJ5aJy6z0NwfnjY78HU0x+tAxCPO1HH8SvKUL9836v4eX5dh+LskfY7+hyTGwMQcWsLGp+OtLwiZIMaVBkf7xbN8coPZy4VphxFNloWZsWjQOSs6lRq2JnZ0aqVVIQlzeoWNvKSLEnFTQIwhQATW9nvSnXYavMRIVwphSCWEGAGHCFYSocQdUQsEU0nM49/uPbC2VP6ezg+t/B5KByTB2S16HUkl4dM2bnYnPyr39cHFiT05wNSgs23SMXvQR4qbwfScb2enxkoVhlmCstVALA8hNkaSeYIkcd6iUAAXuCOANLnudIUBOaIEBkpHb0dsH6FBVFEIA887N9C+Bu1W5/5aH1MoLikQICDPZS6t8URjvH2yvqQibNMJ2VACwTmT8WS75duvDba+sqOdp0ZdnJqzLWIlAMw46eydPBX7TPw108DAquoAaa2DYLNDYPIk5LNjFs1ccGV0s5bsXMaTOWSXCklKONJNWXOZbie9Ei9Ape5obGNJe9bXXXYpNH9NxyfW3TOQyGUwOmIh1p3OwIE5PDQaAryFYqZE6ziayKBgJo2dgREJKXcAQ9l9mp+QEc8dNzaSNMrTmadyg0nE1PbYlOTztiu89BjZPLLw35UNzYzV1gQJ92bpLyB0XJqXAGb9QjGJgFdkzNfASVbbi3ectvO9x7d/lCk4Yl09e2ZsgWAGmMZ9Bu2PqV6itX0Fqt9hO3NAQuC9gYgqJEm4TGrCprqAnWIPLb5Y9+rqNl0jtJNgljqxJ4jSEqlmFiACgrirS3Jt9ZuPWBcZdiG07fogIfUjoe0Ex6qKriJ2QM89KMbsu3FRrnobLGuQ6liheGh4p4UAa2NQDuO3cKOeBire7hg2x8iyWUdnGx86rays+tLT8jmIak+HUcQS81D1ZuTZx72Y+5GZeZKo0QOHJMbM90NpF8xGTuoIqIZNpsNaT/G5et/0KmtUSCvMb7y7Oj2B8nWIwGhvI2O13T/OZm1HjUDBPkb0bzRLCRTpzdqPNizI0zsreP/0rZXS9teLUu9FnfXqBV8hGn0JNZ6Tf2LRUUk4kjJL63Z1j+j8flFgIfkCCJmARK62pAbMUEn+7J6+URuvibwyYCFIssWkwNmlorbMPM5wSxIgDUPjQLSmWnzMc1DyuYhAdHk+xUrDixZ94MObQ2ARGrZ2M2XTl59UEF6mZ8P0olIP/dk0zcqbtBM7n8e9pe6Sbreiq0NAJxEVOhoSOh+JJPzjwgBO8fEJucCXZtCV4XY5t5KN11T0LCwW0cSX3NRyimTFQusVzG6JrCyEQCbfzERtZnJoqqVuo8ZWt3o2JgA1U/hkGnscevLmh4pb/yfgvTy4GG4onRbwVc2FBy3NTZLgh1d6YSQJMDEiMejruu9t2HrgslhPNVnsDwUiaggqBqCsTK6NBExEZNNtwXyxEpZs6oPBLpMTV+7yd3Y1IuvbtioG2WcGKAgA/1IStculHg2K6Kojg2fh5JjjYsL1l5MXmOnZx3NrK1Z9/X1I35RV3SYAElAgCUgSHgstbohFgyHhFE3EIBg7lce9pe6WbGlMeXK4giBhIqB/dqQ8RXw8+e2mmMcBWXNh1JjXNC0uGj7PT04mNia7yO12jDAxlBsZ87pR/OuCI49CPZ+HVrdCATm4wlTF3AEVW2/bdfVB4/eel2OrQEQkY0jWxbtvfW0fbd+o8xdrutfbKtdFIkIIcjz+NW123t37UP4sDwkw0MK8pBsZdrwkP2gCSZnHKxAZVWIiMBSuxxtpHQMBbOKjRDGoZHJ3Ri9rHgIo4nQnofC52Gk5ZXC1ed0xdYoOLJx/MbzC9PLfKUGQK1DyKzPUddhtQJQVeN+5WF/mZs3arcAoGgkUJmmQO+/OkP9i4W9B5g/B8p0HNgxZi7ddF3PDoa8xtiGm3WmTa+RDs0StpNV2GgZo250hOWvk2TUMvt+z9iaqGwYsfEHldtud2QnhKhIv7bftm9UeB+SXanAZKliiRiA19Zs7tlphmiPHB6iPQ/RnofYGQ+z69ZCKXRf3ig9IoOxuX6PtYox9xTK4SHvhIcis6Zw9dk9OP2adV+PubXC+FTj47N638iPsDSr+4+H/WJuNjUnNzcnHcCJiKC9UGM8KvX0xOZfT6n/0fTNp07Z8u1xjb8alnw6IuvJZPXJdDQo9avGtahxocis7fEhOdsfdjK1SmGxlORn4ABTBc9Zb833PGzWBgRMj5busICZVDGi9uTiLkd5Udk0e+uxFd4HxvNoHRePOQBak+naxnCmeB/A8lAYHtpuTzJzlLSKAZEW18F1JAI8NBwWeq4MjIViHSmx7ayB1kYAB2tPgVoErDUxzs6fQ2x5KH0exjfe0nVdE4QjG0fV3W5jQ5vBJL0yr+5Qs9OAlN3pPx72i7l5Y80WAIUxEfQMcTRPbvnvIzbvvlf992qafjWyZVFZ+vVhyafHNfxy0uYL9q7dt3rrZRHZQKbyndXvAMQbn+zlUYm6x7U1ESLY52D+Y0CPsa1N+pGUmlluOrVUNE6m26J8/cWxVG701Cn2335akVyrRt0K+EgsAuC5Tzf18mRDIMBDf+0INv2Wgkx8YXptAL8yRaDsDk8HVtsG1BCMfTHxkImhJMy7yrcpw8TmNw+T+4O1M1bamNlSqkMHAKXXROv+p8cXoaJpUcyrVTnpQOSoXbsjhKqXCQqusNFfPOx7c5N0vaUb6wBQPGK7G8dl/jmvbt7k1v/eyReHNT2y25q5FU0LLTP0bAACgNiOW2y6CNH8is7MKXXTQcMRkyDlkUyQxcF4Spkl65cUR2MtL3c3e60QlU17N1xhylvawibiEQBrtzcmXa93p/t5RzYPc1ar0dGrUjR2Nq9fJzK1Czu3AGb6pchSvr66sSEYdA0IMDlgNmQjQGp2sXqOHB7qsIu1nSICI7r94V5eivKWp2BiSd3TnFVjNRbWXB+n33jY9+ZG3RisNEparQE16UcPaPp+lJs6/a4jG8dsvmz49juy4mq1Frrs/Os7B3kNsAzIsTW2mUqpX8mWO6qGpWvn5PdEQMfw1MWqfIeozLxelXk98BtgR5BwBIBX1oYV8V4hwEM/O+arFV+hcEDdQICIAxUARs6qDso9wOR0TfRkMjcmLwPy+4MJsPqGiKyV6SIPI42Le3kpSlueFlBZG9UFYsv2gWyO/rX2Lw/73ty8u2E7gEhUJbwxMf23mS1XdmsLw7bfXtrwP74nIYok3+/9gVHb+zCdnR1+gM27ymupRLJSNYFsjn9vIICjyfeira/25qiqk39FduQYi0cBfLi5oTebDWF4qBZrNHVrP3fj531hs78A4E/OtOrGj5ssE4hEek2k9RVy68lPwGijonQEAurGpgqD8/V20tAf5KFo67jFpuuIp5YDECBmKUjltv2+RN0vBlB2Lrw/eNj3fTebm5MAXEdEwCW8bu+2G3uwkcpNl3FsXLrwQCV2ESnrgyNzStGRVwlkatq9SzCOim2g7VcNQJFeh3gj0/8URB5LQXrOi+MAQF1zmC3uFRQPPUdEdK5N+3YzP0Zo/6JWU/LvHWQbwcxzXxlxLLUsXr8wmloWackad7f0cLd0fmbYSXoFCak79IKVBwX7Ss56Nzn6yH838N0ew5GNygAKITypZ1RpNSeE50nTFW0yGGoWVT/wsI/VzZq6FgCFjo4M92m7KdaFGKpDlGy9Q9WAiEhGxvX+2Dg2Hh15lQ7ZYL5jZjloHrDO77Du2Yn1OoEdlU2F3lrdiwHV5anWb8KKreEc8R7C8jBbObLNjAImXWp0BJm+XhFo0bAWR7gNxZuuK//0iILtd+fYGgCRxsWJtRcXfzAr0vwyAr02Hfq29uomh4EI8rCPpjSScZVqzQN1+sJ/xZyyzT2BnX7gYR+bm9X1zQCiESFAFe7ycZlne7ypeNur8ZaXlcUBkYz21uKoLeR4mxx0wA9la0wHF+X0AfYFiuQ68sebAHYiDoCP6lv6aA+fOwR5COWxTa+mo6tLgM3XZP3a/TDKdhgXNC2uXLWgcPvdO98ppWsLPj0xtv5qlZ3BjtUNus/DXsKclFbldse29zU7W2xmPPQ1D/tc3TQDYOEQuNrrua1RSLQ8DdNWmS49rJdbk+VHYOe5m+y+G1tN8LuQg5FUXxkbm7czdwQVRI4jANTW9TY7/rlFgIfQvbnB1aeQ9RszPZxEILuyDAAwBKiw4X/K153f9Z6v2NY/FKz7gXrewZzv7uVuCICX2L0nlyCAtoIDCH6Vg8wsLT2HK1CrIlKrtUBdtz7nYR+bm03NbQDYARGNdN/o5dbiTU+ZuiOly0/szaZYlLhlR6AjrxLUtEGvYowOYLs/7ZiJvjM2as9K2+ueVI5FBYCGljB900MEeKhyt4Dps7OZY5W9NR2brHofdF3cTL6Npt4r33hZd/ce2f5wZPtDAMyaJ52om/aZxCAPveLZPb4OCm2FB6r4KNDlrEvuZDtxSFeBydbsmKN9zcO+NDebmpMpV8aE9g/l7ge93KCTWQud02IvsUe6/IQebyoz7mc78io7yt2Yj7HN4IBZValYah3e+xAPQF38ANI+R1dPlOORkteGN6LqPnJ4qPNiphoFtrNSdIHGzL9Vl1+vsqQ2Vb7h0p4dQ3zDNZRe07PcTY7KditO6tkxWLQWzYO5W7m+awCMQ7V9xtCV+yAPFRP7kId9aW6Ugi101Mghhr7IMBl1A3ByxMUsSnqwDVkw1as8pbsxc/BjOjVMpOeRC5VQglvUW8/TFJ2i/YzysaQ7xxzHAfDh1jCe6jZyeKg1S/D3ZjJxCupdmJkKyrMIQlHDwmj3m8UVyGuMbbylZ7mbHJUtC/ZwS+f37DAAtJQen05MU+wKWFuy9kVnc4iMFQ7wEIaHW/qGh32qbpraADhRh2D7DHoNvfIQE0hGq1smdrt/l2PjUpMWdSVm7jB3o6Cld466YWR6wQOFuvgBCHQY2ZxCJOoAWL09LE51GwEesl1ZRs/VVtEN4PcBw8+emvVotBkoauxJs7iF0/gkZ+p6n7th5tSYa3roaEVJfeVFhMD6udp/672Y3E2gZ9p8JouHdX3Dw740Nw3JNACp64uodyb3fpvm6mg14SWmtnzhoa5felkwNTnpEXbKduJVdp67sZ8x9gAspemqAJyy3oR4LpWsKv6eINg6lz0GVUBJhVMZug+fh/oHpWMEoWda6znc5uNK7+jAmUzuxvEaYm2v9eYwyGuMtLzS+9wNEXGsOjnu1h4cQ/3om73oeNLdQ4EOVbLRkwhaQPPIQq8GpePKvuJh33cVp82laxG9zWu4id2DvggAgdyi2a27LPSKZnX+9YoTU5MWcawa2V4Fbr3T8ER04y2Jj48vWLZ/0TtjClbMS3x8fHTLXSJT26G60X8yM0BCsO5DB4C20df2zPMAWFdypitKYRJ3ZPW8WStb7tgBhtg50ia9n6McYfLxpGcq6nm5Jsuj8zjRVG97eQGI5LIe5G7QTt0AcMuO6K7FaRh9c7LkcGvTbKYGbFbLJYJebxBZvzKTw7Kq0OsjHvZlV7EqB5i6Gm2J7Dc286/ebDBdMt+MhPI/Qk0r8OJTWycuFE0vxbffE2nXaMeixCs7PD3qEsQn2Bft+Im6f8Rqc5dEE23vA4g1vxxbf7U77KTU6GvglOWIIBPxMktJJBisIix2SlvH3lpUe153z64xvv+a0guJmdj8BiTIzs0TEkDKC9VNt5HNw+AvHFDrATAgiE37phCmf9d21hE5mXV9cjBd6Sre0bdyVHam4iQZHVew+pxO5w/K6Lj6cXdmEnsguO4XsxDClVILab18ipAsSZfAd8jDdB/xsC/NTcqVMI4a4PWxL01r+020FwnjZNkJsH3cyvMoTSFIMnPx7Nbi2UTkNL8MQMhGdsrYKeXC6WjXYcXMIlMbW32RaH555zuNbH/YaVicGndrpvTw3HiK7Lwq1U+h3qFM2RHN3i3F6y/p+qm1RKd8UPVbu22VCSICSxaCPMkRRwBIpTJd32YIBcNDLW9MbhgAyK4BzCCzODAz21WyoO/Riojb88WVLETTSzTq0hwedit3w8zBr3vFs5t3eyW+/Z7olrs6NDosSpLDz2utOMsTZTDdNOodImJPCiIprQ1Sx6NWFtWfgVqxVLIQwpNS3a+tr3jY93OmSPdlUguN/aTw9Cmtv+nZdpJlx8vo+IBfAsjcESpwryiYxgRpXqGOujmd5Puxj77WxTWKyGtMrD4X4251h50cOC/T8a4iXjN9EwCD0xUnNYmS4vWXdGXm+tair62quDJDJaqvTElmM9JqhRS/e93c8iFE96Czv3btmICHB4MEYBWN0Gt9QlkiMIB0wQG9PwZZuEdX1E37PM6OcogAEClPjfhBasQPRNt70aanmCHSa2S8mpnTJfPdxDS2S+dA36OKdEcfSJCUTAQ7bVT5NugeP4KUAXWjIindId0nPOwzc6PWxXBU8y1B9VN9Ev/GmPQ/S90Pu7s1FiXNI65WT2EYA2OPIUSHeV/7XEoZ7LCi9Jqu2xqLxNoftBZM8xLT9CHZ+VNEzNIUqwBd3ZCZ8gV1BdMKN9+W2PHyN+nI2PXlF24pOkHNlHOlBIz7UitOSlbrV1uvlPK4MBKam67C56GCtSZCzewXQXVj7JEkIUwuw7zRJzA1ip2rmxwO217k9urGboEBWbBHMjFN8dB0iAFSkhBmCwh+Ta+jQgL+HAtIT6o7Yaktm4gSLFnNHLa77hMe9pm52dyUBFAU0Q0N6kplROnbxT+f3XBmhLsXUtVNeIgjZSbm1H5J6WMbY3dYY9I1vOxuzti6q3u29mLB6nNbJi1mpwx+jcx6HqNTmXXnsZSIVjeOuaW56uJY4+Jo66tCNjqZtZnIOAZaY7s3FB7WlJjlqXUtjJ/RKTwpydQCWCohJ4VD0uNVdS1Tq3qYiv4cwvKQAjyEsS/Mei1HkP51sc3dgPSaRmAwpYoO7P3BeGWH9yB3k/NuRzlEPw6yK/yz+bTKuUgpgfb7FaxyN8Y+GdukeQjFQ93tIdVl6kMe9sONX1iPpfIqTdGpb1TcN7PujC5aHClK6sb+3ktMUxdVddxwYBU19TtXM+h3pG6CIyqaXnIaerhAEaVrY9vuTo34Qc42jR8AlEEkXR1X9+f0ouNbhp0rK87xAFeyBGUkSyLPk9CqFexJIsFS616TD4JeoTbgVdIyLE71BGx4GIyeSDjt676Kq1m5DAIYyeJ5ieane34AsXFufKrogrppj66oG19lA+ZOVmCWKufie0SGXpUdimM2U2O3piqtarllUveb1jmsgMruEx72fSE8y6sQmLkxOvWlqn82xGZ2+t1UwQFbqx9MF86297uA7ubVqQzzQqC6GUBQndpBim79Q29Oxy4Ta5JCAfaQSSepiE/arg0LIrK+wnghnTQQbG2K6exEgEOWim5obXqEdjw019lc28CcW8F6XNQvWQcnrRU9ufmBhTvs5D6ZM7VTdWN8HkHrG1L3/NWVDa1iVNYRmnUdqR6YQEJZJUDfztvPIfYJD/ve3JhElb4WyuR6TvlblX9aOvyP2xNf6fBbbQX7bxv5i83jH8zEpqqmNxt8G90L6KSQiTPbtcYEczd2tHosbfQ207Wq8sXM2mVav8SAPS5zD3Id8dmL4XsV/5S0+iOVgTJexSxvq2NpQwknzNv0CO14GIzBoSN0Apnfp60EkJnhkCqclSru4ToEHBuXGX5u+4ipK7kbIMtf5pDcMN+3pFDrqetWPhVhwVpVG/Er7UNCWAuiVbn1bYqrqsND7923iX3Cwz4OprThVRkvdU9i3eMgSYj62AFNw2fFZGNxZnnCW5eQ6zORsV5knFuwOznlDsFhswmbGekwd9NR7Qkd5W5E00u9Pykn+b5XPLvD3A3pm70DKsNn7h9ks3c6Y9dBzKw/bxLNeqQRyN2ovUfCslT30REPVYVBmr4b3bPJZp40g5jMKLC6Iww1jr65ctURovs9OG0T7uZ2eWJ0LXeDrqgb67E6y90EeLjz3I35bnbuxh5hn/Cw782NjZlV7gY2P2de8ZyypsisViK1uppDiBIJZqiYGdAtKLCXq13uRlAXcze9uTWVv1nZFNhmkDH+slvMfu7GtgI7mdp4clkkuTyWXCa4sTW6uytKtxYfl4yMVxUBdYcQk7OU/hkFKl+huukBgjwUyr5oTjo6c9wud6O+x2Bzv0mAmCNlDePuKl99crdW5k+Ou1UW7EHtKqTIZ+4GAZVtcjdSqexAFoaln7vR3JaWh4IDuZtBqm5M6oJYMhxdWZTMjoo1rCeBXWOR1HwktoLB1GiUxYXJ3dAO+m4scsaSiChd2wdn5TWobWpFnt13Y8MhlbtRXiWSeq9y/aWx7Eb4orZXAYyuv6M1tvva0gu3FHzFJKWUltEZaGm8iiJFYay/7uP+GYb137DqBgBMzdtYHzY9frbDGIJMHEYAMcNNTGuY8FDxhksiyc5nh3uJ3dNjrnOLDlS87DB3g9Rqp/lVy0yOjXeLDrAd8N3N3egjJ79CqlW28dP6VKA9pZTBfjGQ6btRPzWVYWSptqPzAOpy9AkP+4zK1RVFAOpclKpRhOkWJ6gst77LOgOBbk6oqiRMT4TJo2u5o9RNbt+NVkzYsbqxXkUth95LkNsAG/0GvYofApNk0+/gNRZtvW3n9zIvTC+fvPWCyoJ5KypucKnUZJqlis181SMZwJiSRO9P4fMDn4d+9lcYX8Ug6/OCPJSahzobIgDfi0BZnImLC7fcntj2hx3JHBYlmarzUiN+QAFGBuMmAJHtD0W23KVmzAQRAzg2PjPq0kzFidTlvhuTuyHfshKk6btRSs0kbkzkaOIpk0GGJ7P7bmAy6/r+jlLrhj7iYX94TnWOJKX1KmDJ5OiAycQOWumYMTbXDlCWWJAJVZSk8XM36HrfjZeYFu31+XC8GjCVqRx1A1sQIJZSZGrLVp3sdC2Cq2x7erq79q3hf3JRqlSr9iqe4orO3cT6eOXAzx0ks2Py91Ky4wRyN53x0LKOQK1VFyeHnR1vfira+KSQjU7LqyxKZME0t+hAjo13i2apycDoSGWLtvfiK8/eidamdG1szfejG29O1dzDiWmdqBtjh7K7230eArrGJANpYWVJpcndsPadQvp1cWJoHpLhIfqUh31pbuKOSHkyBinhWLUCQPoZHMoaCclQMbNROmo7ZtQhAhlykGB1rxzoe552JXfDhXv0/rzcwlnQtQA21URTWwVg+m6EbCypPa+LtkahOLN8763feKPiTxkqUUpQSlM1Z8CsNhKiW/B5yA6TrfqZTj/pd/0B0D5fKGVNbJgGAEYNCSJWazI4penykzIVJ6kxIhEgwY5VtlP/ePtZwR2C0rXxj49Pj7nWHXbyztSNjoNU3pcCPGSWHFQ35jRMvO+1y92wziGyqf8HKnqCpRZCfcXDviyEjywpABA1yRvJZpUGUvcV1PV8+CqXGH55WZpsheaHnQ8J6MhT22ygy3037JTJgqm9OSkWJWpOlm67MVlhwMg4dZKEwnU/iCS7vWpBSeaDXVp+ZcYY0PdgJM9jAIXR3ouzzx3a8ZABksxseAiY3A0Y8HUEw0QTJn2jGKvUjX7FfsaobOyYh0IIal0aX3VO15vayWuM114sml7qRN2YLC9gk8XZ6kZHRmBtdUidu7rDJ/tf0OrGnJ3ZFEiyBJHsUx72pbkpS8QAsJSs4wvBZujI3qvUluCgFIpvfSKZtfG2V4vr7inafnes9bVI8j3YzBlMNsteEfYtsUXQq9jRcqu+2ZuTUus2aqunxlDYbmA/ao42vxJveqpnu5jQ8sdSb7k5L127VW6lvChM3HQbmocsTcqC7G+PiKStBgIqyyol2wyAqWMQcrhnnpOtacBuGdk0DBiI1OrEJz1ZfS2x+hykVlO7vptsHtoMpv5p2GwOB7tyAPjWx2SXjSVjlqavTy+uZOystsJ9y8O+DKbKCmIw8S7I5GuVZZHsONY/aHWnNarXOLzpvoqmR6LtpvzL6LhM0azWqos5Ol5XJv0fuOrKzfp8+9wNAHfYyZEtd/bszqcsSlJjrtWZORjdxUyCzH2gtZNIdHYTop3jCy33biv5L7VNNcCelACKw7JU96F5aH5tLCUcy0PpOCLAQ5Uy1qPKpKscHPBqNi8L7e1MdA/A8hAwRUb/WwBiG2/p2WQ98hrjm25Njr8dQeNFWuNrHsoOeBjM9ar6g/652cqptimmlEUkJbM5H/Wu5SGD+paHfRpMFRcAaM1IVkUVEzMHf0W2/U29XtH8yJS1h4you6O9rQEgMmvj9QvLPz0iseU2q2zVW7rTP/vz7XM36s909R09W3AvNeZadspstAxmtisw+tqKRKY21lNpozA++Tc99ka9S08CGFda2JvNfj6RxUNA9WFA5wSFF+Sh79VJ527sc4bx/36gq3VNFg9NBSNbgwCg9JqImQHTA0Tq/kdkas1O9c4ouGa26vMK7plMjkZHFdpuMusChz3TQLToZ4jU78vPeyh143noOx72be4mAaDFMzdFMTEzACn93I0+eebx9ddP2Hq5Izsx/+Q1Fm65rXDdxUI22OUtSK93bSJXAB3lbtSfsmCPzLifdfd00sPPcYedrFSqr27sCPkf5Ei70mYPUJl+nY1vYUDFnhPLQ3PTbVgeqj9V9CQZbPrc/LwGIE30qn6erLI8rB0+MzMFbIqfVbSuRvdn+MUsw8NI72bPAIhsfxgBJ5qlsgO9pjp3oyWKbzFVNKATVLarKxD92aqLUUB+zMWAlMxGJfQVD/s4d1OaiLpMcbAMnhsDRJ7SdSaerK6/fmTjfV3feLx+YcHaS8zVzPUqORm79ncvdIednK6+vYv7YlGSHnNNavS1UCyy6kZF72Y9NOiokJy+WNd2uPsG22vlMRixqFNREOv9lj9vsDxM+DwEjP/zJLMfaSGguymYu7ECx/f5gfyrn1U1PXKGh4DhYftlbbsLtQWbMOYgD61+J1+IGWuocw5SnQspq6pzGsq2+vljqX9HWgSYPHE/8bCPp2hOKC8GIDxpMnAIVgSkVnSoalk0qqkbtkYh1vRkYsNVumJl7xakewFhLRF20M3pDjs5Oe11WdzJOiZu6fzWyU+lh59HZHSN6bxQ25GBWcVAu3x1L8AM5U88VwIYUVLUV1v+vKEjHgJqiW/yOWntu/mZcdYTCqgA8wtUdslmiDvgoa0otb7Xy7NQDYFd5yGbSELZC6VWTE+F8ZTMRoJZ32nyO8Z9Kk3XHzzsY3NTXVEMIJWR2r4AVq1Jo0sjsvELDT/v2fYT2+4R6TWE7EyQtit6xVm0y934r8SqU7v+NbnLQrfixJxsjiw+0K04MfWFu5NfuMdfU932OAA2e0OBaqJuPO0LqMFWW85kXAATK8NVtXoIn4cwPASkUaZWsyh+6C59Dv7ejMkJ/ALtRCzWdR+gQx6aGVjdmmbVCQI8tN0xQR7qT1nraSypkmmSg+wiDnhIqwOs5LG/VhD1OQ/7uPAxoaIIQFJylOAxCzVjRT8KZXHHNN8b6cVIJDbf1jbudpWbF7blgIy9t5n7Hc/ERelB6ZI56nXR9BI7pbJgj2BLlc4ImqwbGa+lzE72PEwyTqW3qHd2kwCDPJYqcbNHuIhfT+HzEKR5CHYgPCmFEDrKUNUo6DlTTEZdMhNB6N+n7jXlQOexrkATmKHvgWtrFB1xr1fQMwd1dx+sbzXzDGwuxkZ/OluqemfAkiEDlkhV/ZU5VXUJL6BupL+FfuFhH6sbFTa3eiiQrCJeBtmzkgzJPKrtr73ZRax+IckG21UMGH1p7iIEX93437IMyFE9smSOunODQoAryrUF50lpnxccY+Vr0oWd3/SqU6RQygAzSxdgxKIR1T8SogcI8FAGeMjm16VfAcBEkqUfN1khYEVBUCmwX7VRularG8Mon4fMPb77WBbYaOhApMYmdyn9WpUulylPKQGApFE3MBG/n7sxOSCPpf4k+9GlqmH1Bw/7fnmtyVVlAFzXlWzHVcXMJJmLM8vjbm/v4OM0v2ysie9VEOgZNVbDr1v5naM76ATV2/Fn2RJszBzs7EKW71LD0/t1bVudMZui+6trlUpnANSEkVTvYHloflFZPAzYEfZrMWZAJVuloH+x9pO+n9MTqmxOB8jmYe8n0MiCqYaH8HlIWTz0Iz5lL5T1DMRE0hSnpM4D6F5/Ey2SZ7qK7a+1/3jY9+Zmz9HDANRn9BoRbLN0khkQPep6yoGTWm6iVhPSqO4+s2YF21q14gIRm3sJ2SxyVghkrZLwV+q38bjOFFovErBcZgoctZYe35szWhv7slWCnucB+NLEkb3ZYAjLQ4fIszwkzUObzrBKx//dqlIOWAKBjLKpeKg5i/Z3ru1OgIdaZcMrO7yXp6Bmz6jDMjN7dPBuVLbukDZJbmLmeOur0ZZXY22vxdteFV4jswqsGETa8upNQurbY5LHLPVKE9bi9AsP+75pdWRxYkRxYnNzskB6rSIiGazyOEJI5mGZN/pgH4xghKx++/p+gErlCsHSqBtlcYSQdpWcDi0OAKh5d8IIbQS6GNjvZTAxvE0eSubGqosLGx/p2dlkqHhp4juK9xlXglFcECsPI6neIZuHjjRVP6HuicgkmVWCRq/BZPKMJoMDM5mRKJgb1os4ZUXZZMtS+ltMRJmyw6Prru7NKWQqTtLPAh0xOnfAKpISug4FTtQ/HGt8KtGcW31vi+1eX3LC1pLjM1TqV/Rt5hjwTJJYqT/Znzzse3UD41i8jBfMcvt9N72H18BW3egoR426ml+u74tg4mndeWVX5OJgT3CgQxxgNWM42J0MwKobNtPgpDkX6yQzkfH1I67q2dm8X/jdFJUqD5xOZQDsPaayp5cmhI8AD23NhYy60TlU262vfImfv9CRiJIGvsaBfQ7An2fk81o5NwAcq3YrTuzxwbul821WUfu5jngIgtP23rAVs0vXX9Le1gAoSC8fve1nU9d8sbLpkWAdSl0TzzQ4Svbjr/7jYb+Ym8lVpQA2pjhBbMdYnWdDZLfeb5+dMtujbNqclKaVACi9xkkt8zMsrL2QvdZmFozalt1odt3BxOEMpnRtpPGJxKbbEptujTU96bS9Z3qIECRuXfk5Td0PqVbHj/0wcYbOLEip5i7sObKs91cpRAc8tL83QLL+ZyIUthnlnDjLM9lT/aizsEbdAFk8hOYhgMyYy3qWMGZRkh53nc/DgM9DcHYoiVjdQxWfHu5kOlm10pGNE7ZeNnHbDz1dmYJk9tQZSZYgGcjdeJL7iYf9MgOwLBGbPqpi6cY6mXJlPOYxCxKeZOGIFPpgeT0vOk71DcOk6ZzmV2L1D0eaXwmuYMROqVd+hFd2uCxfoNUNIEy9PNAyY5YmNXl7fR/l9JrE+muijR20osvo+GTp/ObhF7EoNboUTLRh5K2SUdbU1ajq44LTlhReYRVssi0DYJfhZWFNqk8Q4GFG8dARwjPxlNR+ngj6rr5av5AwKzKwnitD2k6B9bqUjvVbkoWJdJQZsPljIniR8amJ9yY+7rYTSlff7kXGq+3DqhvtEaXJHlJs+4Ml3bkz/fDmRySwouJGXR1neFIykTRVYzXPI9maRv/wsF/UDYCDJ44EsCUlIywZ8Fgqz7A1tn+Ginu58VTRAbYe6STfK/r0hKJPT4hufzhntTTyGiPbHop/elZ8xXFO88vSKGGVdTPrBJpuLr/ngiRzfPMtxR8d1qGtASAytYXb/jD849nxpsWS4TGkvoMd1o68ZfOwizzqxKc1RnZ7sezed4qusFG0x+xmPADzJ4/u5fUJYWF4yBGjH5nI44AsNWpFBmIoXbSCskfwjOqRIAkbTxm9DBOwm3q0DNSt3KLZqS7PnlFIVd+eLjtC2xq/Qm9qFGZJXdH8YrdsjcKI5keqG38prbrx+25YZY49huv2Fw/7y9woxwJAuK7HsH03nuRt0V7d7D2T2N2LTvAkMyHS8HjxpydGWl7Z+VdE88vxj74W2f4wM8xafP4KXv6j8kuZ+sIV87qydIDwGoet/WbJ1tvUOLGZjbKx4qIV1Y9vLjsrHRnb/ltN0SkfFX/32YpHt8RnecxqgBlQLqUmlDZ9imwe+r8uT6oQmKVZ68NmiE0kZXIZgAR5UitQCd9a6a1xMJuj7x4nrfcSlBl2ctuUZzg2rtOjZVGSnPRIuuJkHfsLP2pDIBugrGRp922NQnXDL2PuGpO70fZXec3+5mH76kyfoSGZ/s3LH0QFSorjIIoKcoCoECVy7by6Ht4tDMDW6ofc4tmCKFH/UOm67l3x9IQ7MsNODswJ1ufOql2KAbe+8NMTnG7O8N5eedHmYRf7nR1+ZREF6WXkNZQmX2t1xjZGd693dnel9JhdhivZZbjMHiPtyeamNjC+PXtKaG76FjvioUOICHKIoo5wCA6RIAgiQXBAIvAnQb/rEKlPEmDeVXc0VE9ABFuRUIB+DrgNsa13RbY9SOkO1lphUZIZcX6m6lx2ypW6CnSuA4G1r1S5Olb3UOm6H/T4mqwvOO6dsv/yGC6zK1k/YaQ9r7kp2X887EdzA2Dhu6s+2tpYHiUqTDhgO8Z7tdwwse1PPdhgqnDWluqHHUHRtveGrTm5B108qYn3ZkoPz51RBX0XnqJPjneaO9FKHWLVmL+0Fs32pMpBMgNSanWqfKAEZTzPZa1XM56UoIyUyuI0NyU9T9YMLztlzwk92HuInaNDHkYFCUJUCPXoEDmCBNgRQlsTwBGCwIKIiBwiwRwRJIgcgrpLGgBBpD8DErr/CypLaLq9subWRFLLnPrHAbDbQJEyZrhlh8uCPWC6TFUnoQxYHPVg+4YAVHwyL9qFG9HsBE+NeCNJpRlPSqKMZ3jYnPTcfuRh/y4WN2/ymDV1zfUZWel6HHE8cwXfLfrx8Mzrpe6H3dqaGx23acxdAMAYsfa8nnUMxlZf6E17U4pS+BZHV9OjDU/0zNYAGLvlsg8KXrTOR+qbvNt6KrlS2mqIirw89QqQyUjPk46gI8KsTf+gPQ+Fyv6CPGYi4TETQGbeo1CdxLZuwBCmx89jPZ1O6RqHTD+XStwwVF5ZveJ3ewEw3RhuYqo3alpWDdSq7ECtHdnzoaTNMALCa+ilrQEwIvn0yvjXmMj6yIwrPVc61I887K/cjUJZIjazugpASzJtfm+66vZS2R8bu1MUz0THrh9zp+uUecwF9Q9364YHQZDXGNl8J7LUjc7zJdZf3bNtAohm1lY0LQx0LhCbXniVHWCQJ1V6klVFQII8ZlfKttYkgANrRoVhVD8hi4cspe1nU+2zKquYm6/x88GsV3WAx/D0d/UWXJO7sWOd1Zur7p9rMzvB9fTsbEmVOLQw+WApbaaGLa/U9qkvlnMr8Nbr3gudIea2liSAAyf2Iw/719wAOLhm5IjiRNKD43qezrSxZE5Sycvlf9oU/3JXNpKM7/7puMdb49NcZgkq2f6H3hxSdMudwY4mNYrUurTDoLrrqKy/x3ZkSDO/QaqspFU3irLqOkiWTMmky4zigtjBE6p6s/cQO4fPw4wXuP4c5KSr/TzMnICszjczE0JnOtS3mMjT3YCwnXK2s4EpMN/a9uYFel9NrMTaZhl/7Emrf4OM0u+S19D7C5Jw1wZ52JYXHva7uQEwb9exALa3uVKaioDKgaP4jfL/fq3ij0mngwqOQjoytnbEL1aMfdx1yqWEBFF6TSzVKyVJXqNoe4/Z72tixo5q3l1HQXpZkJ1q42qiqp2FbKhJnmRJlPZkJpUBcNRu43u59xCdIsBDNgrFak94quZtLI7fd8t6epHt+lMjqEbWlbpW5XHwM9o6KKuh+wl1FYz9GpO0tkl/11biTRc+ZftF7b1ET6V9EIVynfaFeeRhPhb6r64o2m/88DdrtyZbkgXFCWK9/C8ReZK3xvZ/rupfRXLd6NQzCbmuNL0cQCoyLh0d31A4LxmfphYfkXb1nN5pEIVIwxOZxB6Brk2m1Jreb7a47ZX6xCzTr8Gmvqh8iDSJG3jMkuB6XltLG4Apo4fVDAsX7ut3BHiYKihOkACBPIYQuuvdEzp5o6b8BmdOqdyNADzb4we4DEcQMzs6HmeVIYbqJJQQRJ5UqzLpWTeq35XU3XVVT4a5sxVMElFFYdDZJQT9opSQQFtsakWvr8bm6P6uhCTKJw/zdF+RebuOWVPXvLk5GW1Li6K4p+NXGSXhMYjQIsauLjpLECKChLofGFgQCZOrU9MhBVFh26u9Px6z+ontoYLoCysWmJujzYr2ojpTIz02alxya0uaJUoKYsft3nlHRog+QYc8dKVUd3AlAOremMR2tQcyHedCmJyx1He7J4LrSfXcgV56RprZeYJIsnR0Hlr3HLtSCm3QRHBFbc1D9ch2PpSQLNmsj2VmVHCf/GiVZHOlzCcP8xFMKZyw5xfijmjOSC/tmd8huUoFKF2qe944O0tnZ7iYaLkvDoZtti8wXa0PNmssjit1/57R5+RK6QVyN6mU57qeI+gbMyb2xZ5DdBUBHrpedu5G8dBj9iSCvXzZmVodCzNshREe4KqR1WPNHiuukspMm83qWligv87noWf69zwVqRG5UnpMno6+4TG5zB6opXC21+u1u1ZHv5x/HubP3JQlYkdNrQbQ0JpWEbLOazDMFdexhut3ryge+HaHmdy+WCSNddyuo26v91sEYCoaqm/KdAxL5UNUxdFj9oCMK5NtKQBHTZ0QLjSRZwR4mPE8y0MK8tBjdiW7gTqjx1l5GdZr6KicLsxcB2hLAfKYPVBGsqctBeuZLjY7qz9pczckQV6gkuB6LIk8o4V1RYx1nN5UNL83F6HFGbNVTMlk8s3D/JkbAJOrSvcbPxxAc1My5UoJcs3QegyPZSD6CPTLBTSOx9wa69U9vxVcUaJHkaGOoa1odudf6wz1iVmGGdKTynqSK5mJzOtIu7K5uQ3A1DHDpo7ogwmrIboLn4fNyZQrlVfzTGVKk5BNJjhQb/LrU0bdqIxvMCvnARkpPT2Hzow7YOpZ2naoSqWrNIvU3b2qtddjZKT0SFkruAxP2yl/+YFNlRf35gq8nfhu2uPmljYA0/LIw7yaGwDzdh0zfVSFx2htTqZcz68OsNKf8KQdDxWMBLL3zAy09IW5aSua47LhAeAyWgt6uwBoS2yKqUMpb+nHhhnd3YC0K5ubWsHYZXjZsVPClM2AIcjDpOt5hoeGdQh4I/b0vE0dYRk26qjZRPrqn9Y+isMZKZXFcaWyOL4FkbDPtR8y0kYrIGutbN+N0UEsGcnIuC3lZ/fs3FvEmOXOsZaHx+SRh/k2NwCOmjp+1+GlHiPVmsx40lr94O9T5T7MSGRpnIwoa070apKnGxvXGpvm6VlLyqugufBAN9qr676h8HiP4UopGS5LWxxV7MlIdiU3NbWC8YXhpSeFkxUGGp3z0Mxo82SQhwjmE0H2FVM+12tWkbE7Urs0qfisMjvI+FmeLB66zFoRm+7Q3J5D1p0468u/3xrfvbtnnUbxM0W/MjwsyzMPB8DcADhq6vgRxYm0h7bmpMssmUw8ZXI3WiP4eRCdzwNJ5k09tesK9RXn2pjZY3/N/S2VPZ/z5lLJ+qLjta1UkTz8OFE9Nja2glFaED9uathlMyiQxUPlJ0zMq7ydZLhSZmVPAl18kvUMAM9UGyRISl8BGbtjFwaEJ6UkMvrF9jfrnppgbsiVNncJKaGzNvpXwB7DdcpXjLizNdYNi5NG8T+Lf72qZYLhYb719cCYm0TEOXWfXUYUJ1Ietza1pVypVaWZweiytPGUa7JltjqwrWB+U08Fjhsdt73ym8Z+2YYu9pjryk5Kdt9dKHxYfmUbl+bkg7RClpzxuLGhhSWXFsTPmTkpEXF6tpcQfYssHjYnUy6r8XJNZtdobemPrOWhf+cDY0qYA/NyoeyOybnoupXuM2a9ApTn6yl/Pp0M1K387j6zR+sdPcmpaPX7o//S2LXfQosz5vHi+1a07iEHjof9OyN850i63gNLPtncnHQIRSUFiagjoOf4R4QgsCNIwJ+nK9SsXEAIirtr9lx7pMPduz2eJ0pqJzzSFp+mVrexMN1WMurWTlo13+nmXfc2FH7tnfIbmcjzpGe5ZbKPGY8bG1vAKC+Mn7VfaGsGHbrDQzh6RrjmIfRccJi54PaRBQn1qO+6qG9O5a9QoTv/cnhIxFKqvhu12r9qy/HnPZg7Z9nOY0/KEc0Lv9B4R2IHt1RKU/HyxBnvRk/b2uQMLA8H0twASLreI++uWlPf4ggUFxfGInrlEUeQY1YAEGZtEUcIsywACaLi9PtT15/SLYuzbvSt9aUnB0Zad23CX3SaC1LLdll7YtctzvrCr71bfpO0lU4pGeSqJg4g5cqmxhYwqiuKj58+IbQ1gxMd8ZAcQoCHJECGh/q54iGgl8Wx692YNW7I9vvp9YWhF7y1/0MuDwG90Drbu1+pl83sKkjzp/TXNoFk9iTKk69UJZ8uzSyHmocFahZjamNf3hA9oMkrHgw8HGBzo/DYstqlG+sAlBYlYvGI8ipa0QAOERFHhCDAEURmFRKHqCSzbLdN3+zKffI8UbJywsK22B6k/UZgbS39oPo4iZkL08vGbrmmpLP25WRk7AelV24omGdnRQUqqfCY25Jua0sbgN1GlH9tj+peXqUQ/Q3Lw5KiRDzIQyJlZYiVyjYMVJxU6kZYjcNqqS0hzHo3wTspqjuIKysjc+8+JLPXuwGRuvmTnjLKgJ6Hpe8eYW1NIEstmcj12APbCK4tlWltSWIQ8HBQmBsERrooHokXxqNCaO2qF1VTT+wCa+QQAewIEeOGMY3/b3zd7TvZ+PbSEzYOvySt1poO3GEq2+LoObt2TaPKpodHNdxduIPpoKuLz/y45MIUlUo7WcFUUhnIeLK5JZlJuwCmjiw/dlpoa4YGcnnoKIfnq2wlvckoGofMbBsiJW2UTVF/mtX89KwpGL3TAQ+JgnTUtsYIbwaU3ZFgqZNHfgeQsThsp8hYlZ2Rsrl5EPFwsJgbAO9uqHtmxbqUJxMRShQXRh1ySJi1GjmiIikiq3Gs9SGgQK4d3vJUWfK1ovT7Suyko+NSkXH1xfPriw7LRCdwIIoOrmWvwyjjbUzM7N9LsDD9XlnrKw43l7W9UpeY1eqMbYpNrXemMPx1iezoelKtBOo1N7VJT0aEmL/b2D1H934+XYj8oR0PRcSsHNopD4WOs4K5G32XITKr+eXwEHpapomngjwUwtzRzBgafY8zkpKZ7DpKHfEQSLuDjoeDyNwA2NScfGzZms3NyYhAoiCRSEQjRt3o/BzBhs1Kr5pEHayCFeTfO1VPjAvc7VA9Itt72CGXzIF7m5mqZKBIycx6VQEzxsalaO3a2pZua0uCMawo/tVpE0YWJwb2koboAdrzUKVyfB5adSMIDMeoGr16ccAG8Q546N/XrB0PpcnddMhD++eOeKiKXIOTh4PL3ABIut4zK9YrQVsYc6KFiXjE8fM4wngV9temJutbfK+iVwZQWToR9CpErHM3gLlTh3quYiib/2ezCL6Z+2972ElKKQMjrbozMpJbmtrUTTOmjSw/bLexYWJ46CKLh1EnWhTgoVE6Dolg1sZqHDJKB8xCCDKr9ZHhp1E3bEMoBuyPUfHQM3c907fNtLO3pIR57po1cfzZXlJmJJqbWr1BycNBZ24UVmxpfPqjdY3JDIDigmisQGdzyM/m+GOsBlhlc0ineLStIfOiuo+d6Ch3YwuNnOtVgOCKf2bIPWbY/iuwZGSkbG1JptTRxqPzJ49V928MMdSxEx5apRPkoSBf5tg7MQhdmmICkdB1q3Y8JHvnXw6uWBxY1QTZPPTnMBux4zIPch4OUnMDIOl6L6zc9GbtVgCOQHFRQSQWiQbqUyLb7lh/4gihxhjan0BYW6OXzdEjbc/cWBnV0SCJhLmjuT/SwbkU1qu4kpPJdGtrUrmng2pGzhw/fPA4kxC9R695aO7EQNk8NDka+OomsNJNDg9V+qYdD83qokOGh4PX3Chsak4+s2LdmvoWAI5AYUE8lohHBOl4SvheRQQqAsLUHY2Izeqt8iMpWwowDVfZ1UfYGEqpmGDM7Hoy2ZZua0uqbVSXF31l8thBEiGH6HN0wMOCeITa8RCkYyjNQ2HEtbrzi61VEfumJoeHxMwd8FDnbrJ4CKKMJ5Nt6dY2bWgGOQ8Hu7lRWLGl8Y3aLYHBTsTi0UhEqCoAAUKA/IqA9TCqIqCG2O+AkJL9kfYrU7rvRnVzehzI3fidDnqRpLa2VLItpbYwvrxo//FVg021hugPdMDDRDTiOAQ4BBXIqzgLgGMqU9CeT2WIoe73QkQc4CFsDEWQMsBGZsNDs3ay1BpnKPJwaJgbhTV1LS+s3KgGG0AsImKJeCIR1d3GJNSIiqCtUYONoFex/eM53TdqaP218tUfKlcnGZ4nk6lMW1tKeqqxE9XlRQfXjKquCJcZ/nyhPQ+jiXhBIhoRgkx7sSP8vhvde2wJ2UHuRrdkSJhGG7uCurkzhIqemNkdyjwcSuZGYU1dy7sbtq/Y0pAyl7soHqFYNBqJxGMRq2v0oypA2opAoGszuF6o9DUteVKSINNMxemMl8m4mXQmnXbVh+OOmFxVtufoYUNigEP0E3bOQ8Dv1dBzGrK7iolIsiTdcaMLVMrseCYrTERKy3xmeDj0zI3Fii2N727Y/tHWrHtpxqKRWDwai0cJFIs6ujKlxWzAqwQWvocpNAKQzK4rPSkzaTeVTruZrGVFdx1euufoYYNcr4bIM7rMw2yVDbv6ul+ZUixUzTWfSR4OYXOjkHS9FVsa19Q1b2pu29yczHnXcUgIJ6p1LllHYryKRsbzpCs9T9UBsjCiOFFdUTyyuGByVekgTPWHGCTojIdCCNEBD7PnTH3meTjkzU0QSddbU9eyur55c1Nb0vXaj3pXMKI4kYg4amirK4qG7tCGGCiEPNwRPlPmpj0akumGtsym5raku7O7LSQizsjigrKCaHiX7hD9gZCHCp9xcxMiRIjBg4FZPDREiBCfQ4TmJkSIEHlCaG5ChAiRJ4TmJkSIEHlCaG5ChAiRJ4TmJkSIEHlCaG5ChAiRJ4TmJkSIEHlCaG5ChAiRJ4TmJkSIEHlCaG5ChAiRJ4TmJkSIEHlCaG5ChAiRJ4TmJkSIEHlCaG5ChAiRJ4TmJkSIEHlCaG5ChAiRJ4TmJkSIEHlCaG5ChAiRJ4TmJkSIEHmCANDU1HTHHXfMmzdv2rRpe+yxx/z583/961+7rtvply+44IJTTz21/w+yVxhUB5lMJg8++OBZs2bZV1pbW6+66qr99ttvypQpJ5xwwjvvvNOb7S9btqympuapp57q9ZEOAEIe5g0DxcMIgDPPPLO2tvaiiy6aOnWq67ovvfTSHXfcUVtbe+ONN/Zml73Bvvvu+7e//W3cuHEDdQD9hNtvv33Dhg3Dhw+3r/zwhz988803r7322pEjR953332nn376k08+OWrUqAE8yIFCyMO8YaB4GFmxYsWSJUt+85vfHHHEEeql/fbbLx6PP/nkk21tbQUFBX27v65g3bp127dvz/9++xsffPDBvffee8IJJzz33HPqlVWrVv3jH/+46667vvKVrwDYa6+95s6d+8c//vGHP/zhQB7oQCDkYd4wgDwUnucBECIrifOtb33rr3/9qx3jhx566Ctf+crkyZNnzJjx/e9/f+vWrcEPNzc3T5ky5be//a19JZ1O77nnnjfddBOArVu3XnzxxTNmzNhtt92OPfbYl19+WX3m448/rqmpee211y644IJp06btt99+11xzjZTy1VdfPeiggwAcfPDB3/zmN4M7euGFF2pqat566y37yttvv11TU/P8888DePPNN0866aQpU6ZMnTr161//eodqcOrUqXfeeaf98/LLLz/66KPtwbz44ovf+MY3pkyZMmfOnMcee+y999475phjpkyZcsQRRyxdulR9xXXdW2+9dc6cOZMnTz7kkEPuu+8+u7Ubb7xxl1122dGFllJeccUVZ5xxxuTJk+2LL7/8cjQa/eIXv6j+jEajBx988AsvvND+69/97ne/853v3H///QcccMCUKVPOPffcxsbG//qv/5oxY8bee+99zTXX7Gi/QwUhD/E54KHYZZddxo8f/8Mf/vDPf/5zzvgpLFq06Ec/+tGxxx67ePHi//7v/166dOnZZ58dvBlecXHxIYcc8uSTT9pXXnrppaampmOOOcbzvDPOOGPJkiW//vWv//GPf+y9995nnnnmhx9+CCASiQC47rrrTj311LfffvuWW2657777nnjiiX333fdXv/oVgMcee+zWW28NHsns2bMrKyuDO3riiScqKyvnzJnz6aeffuMb36iqqlq0aNHDDz9cXFx86qmnbty4cecnb6EO5uabb7788suXLFmy5557/uQnP7nxxht/+ctfvv7668XFxVdffbX65PXXX3/XXXddfPHFTz755Hnnnffzn//8L3/5i3pr0qRJX/rSl3a0iwceeGDLli0XXXRR8MWVK1eOGjUqFvNvmVhdXb1y5coOj3DJkiWrV6/+17/+9cADDzz77LMnnHBCVVXVyy+/fOONN953332K60MXIQ/xOeChiMVif/jDH2pqan7yk5/MnDlz3rx511133XvvvWc/cffddx900EHf+973Jk6cOHv27J/85CdLly5dsmRJcCtHHXXUO++8Yy/r448/Pnny5ClTprzwwgvLli274YYb5syZM2nSpKuvvnr8+PFBSzx//vyDDjooGo3OnTu3urr63XffjUajJSUlAMrKyoqLi4N7cRzn8MMPzxnmI4880nGcBx54IBaL3XLLLVOnTt1jjz1+8YtfpNPpRx55ZCdn3h6HH3749OnTCwsLjzvuuMbGxpNPPvkLX/hCaWnpUUcdtWzZMgBNTU1//vOfzzvvvBNOOKGmpubUU0/92te+dtddd6mvH3/88fZ5DjZv3vyLX/ziuuuuywkKmpqa1MlaFBcXt7S0SCnbb6S1tfWyyy4rKirad999d9ttNynlOeecU1BQMH/+/PLycnWEQxchDy0+wzwUACZPnvzoo48+9dRTV155ZXV19Z///Oejjz76Zz/7GYBMJrN8+fL99tvPfmGvvfYCkLPRL3/5ywUFBSoR7bruM888c+yxxwJ45513HMfZf//99c6EmDlzZpAiU6dOtc9LS0sbGhp2cqwAjj766FWrVq1YsQLA+++/X1tbq3a0dOnSadOmJRIJ9bHy8vLq6uru/gJ33XVXeyQ5f6ZSqXQ6vWzZskwmM3v2bPuVWbNmrVy5sq6ubudbvuaaaw4++OBDDz20W8eTg+rqaut/SktL7eGpPxsbG3uz8cGAkIcKn2EeRuyzXXfddddddz3nnHOam5uvvvrqe+655+ijj544cSIzl5WV2Y+p583NzcGtFBQUfPnLX168ePHpp5/+yiuv1NfXH3PMMepjnudNmzbNftJ13YqKCvunHRiFTm9YPnPmzKqqqsWLF0+ePPnxxx8fN27cPvvso3ZUXV0d/GRZWVnOQXaKeDy+kz+ZWW3w9NNPJyL1ojL/27ZtC55UDp599tmXXnrp6aefbv9WWVlZzvA0NjYWFxfnpDC6eHg7OoChhZCHn2EeRtLp9KZNm8aPH29fKi4uvvTSSxctWrRs2bJp06YJIYLGXj3PkV4AjjrqqO985zv19fWLFy+eMWOGqh2WlJTE4/F//OMfwU92eA5dhBDiyCOPfPLJJy+88MLFixerBJvaUY5HamhoGD16dM7X7fAoJJPJbu1dnfVtt902ZcqU4OvBq9cejz/+eGNj44EHHqj+ZGZm3mWXXa688sqJEydu2LAhlUrZMVu5cuWkSZO6dVSfDYQ87DqGLg8jP//5zxctWvTss88Gi/AqS1RVVRWNRnffffeg7Py///s/AHvuuWfOhg455JBEIvH8888//fTT3/nOd9SLe++9dyqVklJaxbVu3brKysquHNmOzORRRx117733vvLKK59++qlSsACmT5/+8MMP2+u1devWVatWnXTSSTnfLS0tDbqaZcuW5bi1nWP33XePxWLbt2+3mf9t27YJIYI5tva45JJLzj33XPvno48+unDhwvvvv3/EiBGtra1Syn/+858LFiwA0NbW9txzz51xxhldP6TPDEIeduVgFIYuDyPnnHPOE088cfzxx5977rmTJ0/2PG/p0qV33nnntGnT5s6dC+Cb3/zmRRdd9Pvf/37BggW1tbU///nPDzjggPbDHI/H582b9/vf/37btm1HHnmkenHOnDlTp0696KKLrrrqqrFjxy5ZsuSnP/3phRdeeM455+zkmJRO/te//jVr1qzddtst59199tlnzJgx119//W677WbfPe200+6///7LL7/8u9/9bjqdvummm0pLS48//vic7+65555PPvnkGWecUVhYeNddd7W0tHRrmEtKSr7+9a/fdtttFRUVe++999q1a6+77rqxY8eqzNyiRYueeuqp3/3udznfGjVqVLBdqqqqynEcdeQVFRUnnHDCNddcw8xVVVW///3vHcc57bTTun5IHeL9998PStxEInHAAQf0cpv9jZCHXb9WQ5eHkerq6kWLFt1555133333pk2bYrHYuHHjzj333NNOO00Zy2OOOSaZTN55550333xzaWnpvHnzrrjiig63ftRRR5177rlf/OIXrYNyHOe+++77z//8z29961utra3jx4///ve/f/bZZ+/8KKdPnz537twbbrhh1qxZ9957b867RLRgwYI//OEPwR6kCRMmPPDAAzfeeONRRx3lOM7MmTMffPDB9u7riiuuuPzyyw866KCysrLTTjvtuOOOe/bZZ7t05QyuvPLK0tLSG264YfPmzZWVlYcddtjll1+u3vroo486DIx3jp/97Gc33njjVVdd1dLSMmPGjAceeGDYsGHd3UgOfvnLXwb/HDt27IsvvtjLbfY3Qh5252oNVR7SZybFGCJEiEGOcEZ4iBAh8oTQ3IQIESJPCM1NiBAh8oTQ3IQIESJPCM1NiBAh8oTQ3IQIESJPCM1NiBAh8oTQ3IQIESJPCM1NiBAh8oTQ3IQIESJPCM1NiBAh8oTQ3IQIESJPCM1NiBAh8oTQ3IQIESJPCM1NiBAh8oTQ3IQIESJPCM1NiBAh8oTQ3IQIESJPCM1NiBAh8oTQ3IQIESJPCM1NiBAh8oTQ3IQIESJPCM1NiBAh8oTQ3IQIESJPCM1NiBAh8oSBNzevv/76Oeecs+++++6yyy7Tpk079thjH3zwwa58ce3atTU1NTU1NY2Njd3d6aWXXlpTU3Pdddd1/3g7xx133KEO7Gc/+1l/bD9Ef+Dhhx8+/vjjp0+fvssuu8yYMeP0009//fXXu/LFhQsX1tTULFiwoAc7Peigg2pqap566qkefHdHuO+++2oCmDhx4gEHHHDmmWe+9tprfbiXnmGAzc2rr776H//xH//617+KiooOPPDA4cOHv/vuuz/+8Y//9Kc/9e2O1q9fX1NTc88996g/p06deuihh+666659uxeFxx57TD154oknwnsiDwn86le/uvzyy5csWVJdXT1r1iwieuGFF04//fSlS5f27Y4WLVpUU1OzbNky9efs2bMPPfTQqqqqvt0LgGg0uvfee++9997Tpk1rbW3997///R//8R8DbnEiA7v7P/3pT57nzZ8//3e/+5165YorrvjLX/5y3333nXbaaX24I2sCFM4+++xO70jfM3z00Ucff/xxaWlpYWHhhg0b3n777RkzZvTHjkL0Ie69914AV1999Zlnngmgra3thBNOWLZs2UMPPTR9+vQ+3FEOD2+66aY+3HgQI0aM+Otf/6qeNzU1LViwYO3atQsXLjzggAP6aY9dwQCrGxUHVVRU2Fd+/OMfP//880F5uWjRoqOOOmrKlCnTpk07+eSTn3/++Q43dcoppwT1y7///e+ampqZM2cCOProo2+44QYAP/vZz2pqalpaWnKCqXQ6fcstt8ydO3fXXXedMWPGt7/97U8//VS99cc//rGmpub8889/7bXXFixYsPvuu3/1q199//33d3RG//jHPwDMnTv3y1/+MtrRK8TgRA4PCwoK7rnnntdff/36669Xr+yEITlQIYzVLzfeeGNNTc33vve9lpaWmpqaZ599FsCRRx559NFHo10wtXHjxksvvXTmzJm77rrrnDlzrr322qamJvXWt7/97Zqamv/3//7f/fffP3v27OnTp3/rW9/avn17V86upKRkr732ApBMJnt0efoMA2xupk2bBuDBBx+85JJLnn766YaGhpKSkvHjxwuhD+x3v/vdJZdc8sEHHxx66KEzZ858/fXXzzjjjKeffrpbezn22GNHjx4NYP/99z/rrLOi0WjOB84///xf//rXTU1NRx111OjRo5944onjjjtu3bp1ABKJBIBPP/300ksvnTp1amVl5TvvvPPtb3/bdd0O96XMzeGHH3744YcjjKeGCBQPr7jiiptuuum1115Lp9MjR44Mxjg7YUgXEY1GzzrrLPX8mGOOOfbYY3M+sH379q997WuPPPJIWVnZMccc43nevffee9pppymmKR7+7//+79133z179mzP85588sn//M//7Mqum5ub33nnHQADK20w4ObmW9/6lrK7ixYt+uY3vzljxoxjjz32/vvvV5e4sbHxjjvuAHD99df/9re/VVcfwC9+8Ytu7eXcc8+tqakBMH/+/KuuuioWiwXffeGFF5577jkiWrhw4W233fa3v/1t6tSpjY2Nv//97wEow/fxxx/fdtttN998s1Lda9as6dC5ffjhhx9//HE8Hj/kkENmzZpVXl6u4qnuX5gQecX1119fWVnZ2tr629/+9pRTTtlzzz3POuusf//73+rdnTOki4jFYldddZWi0/nnn3/uuefmfODuu+/esGHDhAkTHnvssVtuueXRRx+NxWLvvPOO0j7qi6tWrfr73/9+8803X3HFFQD+9a9/7Wh3mzdvPu6444477rhjjjlm9uzZGzduPPXUU0855ZTuXZe+xgCbm/Ly8kWLFt15552nnHLKhAkTmPndd9/96U9/+sMf/hDAW2+9peTfMcccoz5/5JFHAvjoo4/q6+v76hhefvllANOnT584cSKAaDR62GGHAXjjjTfsZ0aNGrXffvsBmDRpUlFREYBNmza139Tjjz8O4JBDDiksLIxEIvPmzUMYTw0F7LHHHv/+979vuOGGI444orKyMpVKPffcc2eeeebDDz+MrjGk91B7mT9/vhIyo0aN2meffXL2Mnfu3JKSEgB77703gLq6ukwm0+HWMpnM22+//fbbby9durSpqclxnNWrV3/44Yd9eMA9wMAXwoUQ8+bNu+GGG5577rkXX3xRicy//vWva9euraurAxCPxwsLC9WHhw0bpp40NDT01QGovQTzR2ovQYsWfLegoACAlLL9plQktWTJkgULFixYsEClmcJ4akigqKjolFNO+c1vfvPmm28++uijKrz65S9/ia4xpPfoFg8VCbEDHgIYO3bsSoM333zz7LPPfvHFF7/xjW/0oGukDzGQ5qa5uXnx4sV33HGHzWCNHTv2lltuiUQiAFavXl1eXg4glUq1tbWpD9jcWHBUFJTatJvqYhYNgNqLGuzgd61p6yI++OCDTz75BMCWLVuWL1++fPlypYDCeGqQY/369Y888ogKkxX22muvq666CsC6detc1+0WQ4gIA8rD9qisrLzwwgsB1NfXDywVB1jd/OAHP7j99ttvvPHGdDqtXnnmmWdU4mbcuHH77LNPPB5HIB7529/+BmCPPfYoLS3N2ZRK7KmUGID//d//Db6rSNDS0tL+GGbPng3gvffeW7VqFYB0Ov3EE0/Y17sOFUnts88+KwOYO3cuwnhqcGPVqlWXXnrptdde+/e//1294nmeypiMGjUqEol0iyFBHra0tKhSlEWnPHz66afVb2HdunX/93//t6O9dBe2nltcXNz7rfUYA9l3U1xcfNlll1133XX33nvvwoULx44d29DQsHHjRgBf/epXJ0yYAODCCy/8xS9+ceWVV7744ovbt29/8cUXHcf58Y9/3H5rhx566N///vennnrqggsuaGpqUhVEG8WMGjUKwL333ltbW3vZZZcFv3jwwQd/8YtffP7550866aS5c+cuXbr0ww8/rKqqOv/887t1Osrc5HSXHnHEEf/+97+feOKJK6+8UlEtxGDDgQceOH/+/CeffPL73//+9ddfP2zYsI0bN6po/aKLLkI3GXLooYc+9NBDN9100wcffLBkyZLRo0dv2bIlyMN169b99Kc/nTNnzk9/+tPgF88555xFixatXLny2GOPVbmkTCYzZ86cL33pSz04KZUqVs8bGhpWrlwJYMaMGSrpM1AYYHVz1lln3X333XPnzi0qKvrkk0+ampr23nvvq6++2taevv3tb990002TJk1avHjxW2+9NWfOnL/85S8d2vtjjjnmggsuGD58+IsvvjhmzBjVMZFKpdS755133qRJk5qaml555ZWccJeI7rzzzgsuuCAejz/66KNbtmz56le/+te//nX48OFdPxEbSan6t8Vhhx3mOM6GDRveeuut7lyYEPkDEf3qV7+69tprZ8yY4XneRx99JISYO3fuPffcc/LJJ6ObDLn88suPOOKISCTy3HPPnXjiiSeeeCICPPzRj340fPjwVatWffDBBzlfrKysXLRo0Ve/+tXNmzc/+uij8Xj8ggsuuPvuu3vmpWyq+O233960adOuu+568cUX//GPf7QtJgOC/w9HSLv1LXigswAAAABJRU5ErkJggg==", "path": "image.png" }
Which solution has a higher concentration of yellow particles?
[ "Solution A", "Solution B", "neither; their concentrations are the same" ]
0
The diagram below is a model of two solutions. Each yellow ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the yellow particles represent the solute. To figure out which solution has a higher concentration of yellow particles, look at both the number of yellow particles and the volume of the solvent in each container. Use the concentration formula to find the number of yellow particles per milliliter. Solution A has more yellow particles per milliliter. So, Solution A has a higher concentration of yellow particles.
Solution A
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAh0AAAEiCAIAAADSxvdVAABduUlEQVR4nO2dd3wcxfn/n5ndva4rqpYl9yYsdxtjYwP5YoqpgRBaQgmEQGiB0IkDoYMTICZAQkL8IyE4QALBdFMDDjbVBcu9W7bVy0l3urK7M/P7Y+5WZ0kWKmfJkp73Sy97b9vM7s7OZ59nnpkhQggAqNBhewRCDEwBSL9HJZChwBgX5Nk6fSwWlQEFFhWkg6QWFSKEqNThq8bezhTSGxzlhdzO1BdYVAYsWFSQDnKUF1QA2BYBAMi3wTg3ZCi9nCekBwgx2NIE5TpsjXSussCiMtDAooJ0kNSiQgEgzAAAivDxDxgyFBjnBkg++o6DRWWggUUF6SCpRYUCgCEAADz4+AcS8m03Oun4xqIyAMGignQQq6jQ3s4JgiAI0q9AXUEQBEHSCeoKgiAIkk5QVxAEQZB0grqCIAiCpBPUFQRBECSdoK4gCIIg6QR1BUEQBEknqCsIgiBIOkFdQRAEQdIJ6gqCIAiSTlBXEARBkHSCuoIgCIKkE9QVBEEQJJ2griAIgiDpBHUFQRAESSeoKwiCIEg6QV1BEARB0gnqCoIgCJJOUFcQBEGQdIK6giAIgqQT1BUEQRAknaCuIAiCIOkEdQVBEARJJ6grCIIgSDpBXUEQBEHSidrbGUCQXkUIECKxTAgQ0qu5QZD+AOoKMiARQjBGKAVKD9ASzgXnRFFQYBCky6CuIAMOqShEVQGANTWZ1dXCNIiiqjk5isdDKLX2QXVBkC6AuoIMJISQ5ohZXx989dXGt96MbtzAams5Y5xS6g/Yjijyn3Z69nnn2bJzBGOEEKDYBokgnQN1BRkwcA6EEEpr/vxM9SMPmbv3KgpRHJqiqgII59ysKI/s3hN8Z9meB+4ruO32IdffAIQIzglKC4J0BnxhkIEB50Apa2jY/cOzK35+tVJT7cr22/1ezWZXiaIQqlJqc9ocAa87EFCDjTt+efPqU0+O19QQSgXnvZ17BOlLoK4gAwAhpKjsOv3UyH9ed+UEVE2jpkkZo0JQEAoIKgTlgnJGuKGqWkbA2/D+R1+fNC9eXUUobY4ZQxDku0BdQQYK+668Ql/xuSM3kxiGIoQCIP9o8o8AUACFACECDObO9EbWlqy55JLezjiC9DFQV5B+jmAMCKl97v+F/vWKPSdAdD1VSwCAAMioL5pcpgQoENANVyCjZtl72/+wCAgRjPXmZSBI3wF1BenXCEEUhTVFqh/9neayEcZoipBActlak/qTAiGm6XCoOx5/PF5XRxQFvWEI0hFQV5D+jGxyb3z7LWPTZsXlIpy36JAif7aUC0tnhFAdjsievftf+w9I0wdBkO8CdQXp/zQue5cCkLasDXHggmhjg1AAyt99BwCwmySCdATUFaQ/QxRFAETXlxC7IoSAA/VDAAgA3nqlSJUVoWikceMGFo+jKwxBOgLqCtJ/EQIAWEODWV1NVFUIwVOEhCcX2vgTAAByQEohBKiqXler19f38uUgSB8B+9sj/R3GOeMUCCTlJLXdPtVkaV4WIEBwSOiQIIQzLhtXhBAEvWEI0i6oK0g/h2iqUFXGhQwvblNXLPOFA3AOXIAlKhyAC0FUlWoaAKCoIMh3gn4wpP9CCAAoGRnKoDxTNxghPFU/DvyTEsIEcA4cBAPOABgAI8QwDHtOrj0rq7evB0H6BqgrSH9GmCYAOKdONUzOgLIDtST1p9ksKsAtUQHghBgm+KdMJYoiu1j29jUhyOEO6grSryEEAPxnnGkAmEyYHEwABol/eXLZBGAcGANTAANmgmDWJkI4QMEZZ/T2lSDdRQghkuF8IknPJHQoUjmcQV1B+jNyiPvMk052zJwRDzcwQk0Gpjjgj3EwGTAODIQUFdMSG0pjTU3+CeMLzzjTOhvS55A1OyHEah4jSQ5Fvd86ISsPAwRst0f6NYQIxoiiDL37N+tPP4MIpgggjKTqgwDgIESyTUWaMgaAAaATYhhiwq/vog6HPE+vXQjSDQghnPNQKBQOh3Vd55wRQux2h8/n83g8kI4wP+sM8XissTEUiUQYM4UQiqJ6PB6/36+q6sAJJkRdQfo5sl0k57TTB914Q+WiJ+w+NzCmAJBk5LEALpI+Mcv9pQOYimI2NI254vKh51+QmPQe6ZvU19fX1FQbhiED+jjnpsnq6+v379/ndruHDRvu8Xi6U+nLY3Vdr6ysCIebhODSEmKMm6ZRXV1FCMnLG1RYWJje6zpsQV1B+j9EoSDEEY89vmfzRv7eB26PMyYEBUEOjDOWLS4GgAFEIcBDTfqsmdOffBowvLjPIoTYv39/KNRos9lcLhckpqLmnHPTtJmmEQqF16xZPWbMmEGD8rssLYSQcDi0f38ZgHA47IQQIUCmw5jNNI14PL57967a2pri4gmapqX7Kg870F+MDAQI4wwo/fTIWY8E/DscDoVzLkRUeroo1Qk1CNEJjQJwIVTOym32P3l974+foDgcHMPA+iz79u0Lh8Mul0vTbJQqlCo0iaJQShWXy2m32zdsWF9eXi6NjC6k0tQU3rdvn6apTqdTUdQDUyGUKpqmeTwZwWBw7drVbACMXor2CjJAIACgMLbKlVGRGZhaXzcvFBxiGHHd0AUHShnnBIhNU8s123Kvb7XXvz8YHCKrABSVvoa0PGpqqsPhkMvlIoTSZMwF53L+TyHrfc5BVVWHw7lhw3qv1+t2uzubFmNmWVm5pmmqqhJCKZXGiuCcEAKECEoFpZQQ5vF46upqt2zZPH58cf9ua0FdQQYShLg4IwCfZHi/cXsmBOvOCPjzVCUaiTidzkZKX62pXx/IDAK4AFyco6L0UQghhmHU1tba7XYpKoQAISCE/DcRo0UpIYQSQjRNC4fDW7dunTp1asdr/KR61TBm2mxSveRpgXNCiJDBYDIVKWwul3vPnj2FhUO8Xm8/lhb0gyEDC/kqezgnqvo2g6Zbbj9x3cYTvl4zv2STe+Fj7yoqU1U35wSA93ZWka4hfVkNDQ2cc0WhsnWszQo86fQiQoDdbq+srIjFoh2v62WYWUNDo6apkGyEa3H4gX41QqnCOd+7d2+nr6pPgbqCDCxkbwU5SphbcE0IAFBcLgBQhHBxToRARenTyJo9HA7L9nMpNAf+pcyzk5g8QVBK4/F4bW0ddLSviQCAaDRqGDoh1DpK9odJdosRyRJn/eSKotTUVEO/DgZBXUEGFqkvszXzilW7oKL0G3Q9bnV7TNb1srrnMihMLqfsIDjn4XCog+eX0hOPxzmXcsKFEJwLIYAfcFaRXJ+AEBKJRAzDOHTX3utg+woysGj7U7T/fjkOTGTfEUIgqRepm2SYcfI/kViWlX5ng7XkGSz5EIJYGZAJJUUlsZBcw/q3VYy6ggws+rHzAbEghAAI0+SqygGEbEKH5GhdUlEY40kY54wxxjlT1c71fiWEMMYYY/LclBKAZiNJpsIYSybH5E9CCKX9uZst6goysBhQwzQNTKSvSVW1WCykqqqi0Na6whhnzGRJTNM0TVMIkZHh7VRadrudc26aphCqogghZEMLAKSqV3MqjDFd1wMBn6r257q3P18bgrSmVbiOAACWnAuyd/KEHAIyMjLq6+tsNpNzGWcsn7tIesBkRS8VxTBNFo/HHQ5HZmYWdMyolfu4XC5VVXVd1zTgnFKaKEJJM4gLwRnjpskYM6R6GYaem5sH/XruUWy3RwYoqa+0oihwkDhRpM8hn2BWVhYhJB6Pm6Zh/RmGmVxOVvKGoeuGYZixWLSwsNBut3f880J2rgwEApFIlLHE2QzD0PW4EFxVVUVRTJPF47q1KR6Pa5o2dOjwQ3j9hwForyADDhkmpOu6pmmVlZXffPNNdXV1Zmbmnj17NE0zDKMff0gOEIQQmqYNHjx4+/btGRkZKQPXy3ithB8sWd2b0WjE6XQUFY2HznxYyD0LCgorKiqamiIOhx0AKKUOh6O2tra6uopSJTc3T1VpKBQxTdMwzEgkPHHipG4Oc3n4g7qCDCCkb900TbvdHggExo8fv2bNmi+++AIAOOeapk2ZMiUYDNbV1em6LkN3ejvLSFewavyGhmB5ebnHk2F1MZEtLFabimmyaDTCuXnkkUc7nc7OVvdCCEVRxo0rWrNmNWOGzWanVHn55ec//PDDpqYmIURubu6PfnThmDFj4/F4OBwqLBwyfvwE6O9mMeoKMiAQyZmdPB7PiBEj3G63zWaTyuF0OuU+Mm5n0KBBWVlZ4XDYMAz58nPOKc7o1Tc54ohiIaC0tNRutyuKktJuz0yTMcai0SabzTZnzjFdG89Y2r4+n2/y5Clr1qw2TbZnT+kLLyzxeNyUUiHE1q1bX3hhyW233RIKhUaMGHHkkTP7t6JI8G1B+j+cc1VV6+rqGhsbJ0+enJWVpWka51wO22RVNABAKZUqEggEiouLTdMsKytTVfWAHhBIn6K4eMKUKVMppbquy+8D+dxVlQphDh067MQTT8rPH9xlx5SUlkAgMHv20YMG5YfDYYfDLgfDJ4S4XC5pCs+effSsWUcryoD4lB8QF4kMZKROVFRU3HvvvdXV1S6XS3YgSJ0pFgAYY9KmURRFRoU6HI76+vpbb731wQcfHD58OFotfRFZ6Q8aNCg/P/+uu35dUVExdOhQzrlpGhs2bLzqqp/PmjVbPvrumBEyFZvNVlRUVF9fl1rATNP0er0nnniy/IIZCMYK9BtdEQKYECCAJh8bBwECKG1e02W4AM4FEKCQPLkQQEAhA6SQ9GFkxE5DQ8MDDzxQWVnp9XqlmdJ6T0VRZIcDuSx7M7hcrvr6+gULFvz+97/Pzc0dOPVCf0J6O1VV3bt335tvvun3+6WHs7q6+rLLLgeAFt8Z3UlIURSbzZ5ot2FMCCHHa5F2sGyMScMlHfb0eV2RcqJQoh5YLFI0ALgQFLrSAMuBUEIoAaq0fXLGBQAoFOuaw5pnnnmmtLQ0Kyur/VE6UmsWqyLweDyVlZWPPfbYwoULD31OkXQivyFks0owGIzFYj6fz+Vy6bquKIqu6+Xl5QCgaZocmbjL6iJtWdnVsaysLC8vLxAISPM3HA7b7fb9+/cXFBRAMnCgW4avEILzA8ZJJoRQeliNRdSHdUUI4EIolACBsnp9+ZbQql1NpbVx3eSUQJ5XmTTEdWyR74gCt0oJQFduOgUQABv3R5dvaVxXGq1s1DkXNoUMzdKmD3cfe4RvcMAOAIwLirbL4Yd825cvX75ixYpAIGCJivWoWoR7yWrFauGH5CgdgUDgyy+/fOutt04//XT0hvUV5JNijH311Vfvv//+9u3bt23bpmmatERN07TZbEuWLPn666+nTJlyxhlnSP8YdDJSy9KJysrKZcuWffnllzU1NePGjRPJsY1zcnIMw7jhhhtGjRp14oknHnvssTJgpCuliHMhBFEU0pbRIxgjhMDhUTj7qq5wAUIIhZK1pZHH3q18tyRU2yin9gMAAUIAM0FUOW1i9mj31cdnj3XsNzgFqkBHIkcJBW5qlG3VR/5peePn28PRKAdCgEo148AYgJnlIadM8t18+pApw72MCwIE7ZbDClmtLF261G63WystwZBOrdbSkqorkJxjw+VyvfLKKyeccILD4ehhb1iL5FpkD2kTxpiiKDt27Fi8ePGGDRsopW6322q0t/612WyNjY1vvvnm+++/f9ppp1188cVOp7Pjlb4lXa+++urSpUtDoZDD4dA0zWqrk8VJ9vbftGnT2rVr//Of/1x11VWTJ0+WOezo9QghOCeKQgDMYDCyZk1s0yYzWA8CaGbAWTzePXWamuGVw20eDrZLn9QVLoAS0BkseGX/ovdr4iZxOTWfz0YSb50AEERw4Nxk5iebwv9dH/RWf5y583kCQlAN2h9JlFDCDQGkrujaxkFuQsDltPvticGFEifnHASLGsYLn9X++/PKG08tuO+8MTaNyIwhhwPynf/222937dolu6FZmw4mKi2wdhBCOByOPXv2fP755//3f/8n3eiH/AJSsgGJRgI5v2GzsTUQ1KXNy2z/2uUD+uCDD5599lnGmN/vlw0bsrsiJAZZ4fKxqqrq9/s55//617/WrFmzYMGCwsLCjkiL3Ke+vv7xxx9fs2aNz+fLzMxM7fMk4wwtI9jlcrnd7r17995+++2XXnrphRde2FEBS4pKbNOm6j8sCi1719y3X5hcTuvAAIRClcIC7xlnFNxwo2v0mI5ISxfuaqfoe7oi6+6akHn+H3d/vL4pw2d3KpQL4IIACEGEtGUSexMlI8MJzDC9Z4f9hXnb/0S4LohKgMthRyH53iYmKAVCuCGUjMoJC8zc2V4zRCjlgjBZvUByYiAQIKhCVb/fxQxj4St7vt5e//Ivp2V7bVyI7kcKIOniq6++at1Q36n3J3VPqSs9WZtHIpFgMBiJNBmGKQQXAmw2m9/vz8zMlM0G/Vha5NVJe1F2UwUATdNkcwgc5DnKyvr111//61//6vP5rBhxzvmwYcM0TWtoaDAMQ9O03Nxcn89nKUFOTs7u3btvvfXWRx55ZNiwYe1X+tIKqauru/fee3fv3p2TkyM7P8GBlq70o1orGWNut5sx9pe//CUcDv/sZz/7bmmRVZkQFffdU/vo7yAUUT0OzecBQqWucADGhFFRVf3UHyv+/rfCBb8eftsdiQPbKhvWXZVDTsjsqara/l3tLH1MV4QASiAcY2cu2vn59nhmltPkRAhKgQARAMBBCIULJkAAEAAiGBcACjWbmgJTy0ZdnbtpEYE4VZutlubvC6DcjAmiVE2+O5Y9Q9EbhGIDQZpPTrhINJopQEEIYXJBqJKZk/HxuoYzH/7q/btneZzqQR4o0qPI11W61FNflVQbpbW9kvqxaRkr8l+73b5161ZZJfVAhW6aRnl5RTgcIoQQQhWFMgacs3C4sba2prRUGz58RFZWVn+VFnldsVistra2qanJMHTLyLDZ7FlZmTk5ua0jd2U1/cknnyxevDgQCEhNsk5IKR0+fLh0Usm4DNM0IekvZYx5vd5gMHj33XcvWrRINry3eW/l+ng8vnDhwj179mRmZh4sHkR2lLH0Ri4TQrKzs5csWeLz+c4777z2pEUIIIQ1NpZedGHTm+84Ahk02w+MAeMC+AFl12mjLqduxHfe8auGVd9M/PsLitPZWlpkznVdr6urC4VChqFLOZTD3vj9/tzcvLQU78OikafjyFt59d/3fr4tlhlwmJxSUAhQSPwRKkOLFTmfNQFKgVAgiqAaNSMx/8Sa0VeYeryutra+Plh/AMG62hpTj9dMvDOWPUNlIarYW5+cEEoSUQAUKAWgglCdQWam5/NNwaufWQsAokuxZ0gaEckZzmtra1VVbVM/Wq9s4cRIXZCOlLq6urq6ukObdQAAiMViu3btjkYjTqfT6XTa7TZN02w2zW63ORwuj8fDOS8pWbd79+7v9Ob1XSorK3ft2hUKNVJKHA6Hw+GUrRfxeGznzp1r1qxubGxIvXypFmVlZYsXL3a73W3eGTn4GyRdYXKlFQbGOc/IyNi7d++TTz7ZTsbkGf7xj39s3LgxNR6kTVKGUj4gYCQQCPy///f/ZNtP271uhQBCBDNLf3RB9M13XLmZCgA1TUUICqAAWP9SAAqCMFMlakamt+rf/1l7yUVtZoYQUldXu2vXzmCwHkDY7XZZwGw2m2EYe/fuXb16dXV1dfcLVV+yVxgXCiUvf1n3wsqg3+80OaGJuyqR1b0gQAgQQQgIAkBALhACVFNYJBSY7ht/yek5OwywE0ipXAjVRPTj8MxQzrE2FiLUToCmRJElTk6BM0KBMuAyHQKCAqG6yfwB9wuf7jt9Rt75xwyRWe3xO4QcQCQSicfjHXxJWihNi0NknRWPx5uamuAQt20YhrF3bykhxG53yEovNW+KIjinNpsNALZt20opHTp0aD+zWoQQ+/btbWpqcjjslCrJKbNEsrWCKooSiURWr15dXDwhJycn9fKXLFkSCoVkk4lcc7A7kxr+J00WK/zvk08+Of744+fOndvamJBrtmzZsmzZMr/fnyoq7cQZWi53a1n2l3r22WcXLVrUtr3COShK+d13Rd5+15mbSXWdWNWQtUuy+hMAlAI3BdGZJzOj8pX/bH3owbG/WiAYSw0eq6ioqK+vs9sdsoFQCCGE9BITGZAdi8XWry8ZNWp0NwtVn9EVAaBQYjD+yFuVqk0ThFCRWu+nQggQIJDYSpL/EgJUU41IbWDOjffdOr7QY7WFyDabjeX6vx/eo5pNVNXIQeOSCQEQiYebIlqEckFUu/bIq5t/MLtAU6noWmgzklas9vnvdGSn1t2pTrDWDrFDnefy8nLpdiOEUipd3rJ3BSVEUCpnE6GKorhcri1bNmVmZvaz8XHLy8uampqcTpdlScgaEBICLwihDoeDc75u3doZM47y+bwyvGrbtm1fffVVRkZGC1GxTpKaSju3S1XVV155Ze7cua2Pkj/feOMN0zSlNrROqPVRLZAC5vF41q1bt2LFijlz5jDGDiifnBNFiaxeXf/EInsgg+g6TYpK4vzJn9YfheQHtWG6PI7tCx8Z9IMfeIuO4IwBIZTS6urq+vo6l8tFSLMJxbl1eykhVNM0l8u9efMmu92Wlzeoy4Wqz/jBOBcA8M7ahrV7426HmpxH+qDXfKAwJJ6IEETTtGBd6Jm3NwNALKZLYvE4AH/mg/JgfVjT1JSH1RpxsCS5IG6Hbe2uxne+KbMyjPQiqqpaLvh2BicWQliNrpJUpzykqAulVI77dOgIh8NNTWGbzQZAaNLkJSTxqWtVXnJBVVXG+Pbt2w5plnoM+XwaGxsbGhocDodskKCUyD9ZGxIif1JCiKZphNAtWzZZZ/j000/j8XiLD4h2asaDNZ+4XK5NmzZt3rzZKj/WPVcUpbKyct26dW63u4X/qk31aicD8pwffvihtUxSUwKo/sMTJBKjitKiPjpY3USIbFMWiqqyxvCOp54EACKEHButvr4u+bFCk7c0eUeTSKvF4bBv3LjRGne1C/QZXZG8viYIglj2yMEQbTdyECDAOWgu+4ffVsUN5nLaNc2m2Wwuhz1uwIcbw5pT+84BBkUbi4kHTQgBQV7/cn/nrgo5NHi9XrfbLdtmISW6NNUusVZaR1k/5VZI1hSmaXo8Hr/fD4em+0iyTSh4oIQcNAaEECLDwyorK3Vd7wfGirwC2SSWVBHrDiS+Iy2JFQI0zaZp2q5du3bs2B6Px+vq6tatW9d6Yi6RQuv1rfJAAED6PFesWMEYCwaDDUmCwaBpml999VVdXV2bnSjbNGrb/KCRnjdN09atW7d//34Z+Gcl0xiP1+3Y0fTh+6rHCYy1frQH/2iV0UrMZlcq3n6rdv/+xlgsHArt2LEjFos5HE5IFqrkX/MVWD81zRaJREpL9xws899J3/CDSScY42L17ohqo1y0tEdS9xXNspII0UueQwAILoRdo3trY4v+8s9Cr6mbBAjYKN/X5N5bX2RXNQ5CSezfIgUBiSjjlDjmA04OXAjVpqzeUS/bV9AV1ltIA8VutxcUFFRUVMh+kVY90o6zwtISSFotlhTpup6fn+/1eg+Rx0meMxKJyG9kIUTSKJfF7gAg0TQoKKWxWCwYDPaP4ctisVg0GpUTZKU8Jmu7kG8g59xu13bu3LVw4W9DoZA0TDVNKywslCNVWyZLiyfegtQvjNQFxlhGRsaLL7745z//2bJCSLLbUywWk532PR7P2LFjZVqtT9U6FQtKaTAY3L9/PwBwzs866ywZNZ7YChBRlJkNDbc3NjJVldefWpmIlIVWtX6i9iM2G6+q/PnJJ2/PyHBwbjBGCLn77rtnz54djUYUhSbqshRtTc2mqqplZWWjRo3uWonqG7oib2pVo1EeNDRFFVyAIm8pTzG5hPUnBG+u8RPdTUTyIcg15PeL/qCGdwvFDkCIGTX9RfC9PwLIEiQfYYtHmdQVYYmWTCKZlhBCCE0h5fXRqoZYfqCNOD8kXaS+q62Lvhz3nlJaXFwsu7BAu3JiHZUqKrIGlwsyaGfOnDmQ7HaX9isCADleoTVNiPXOy4wIwUUrAIAxFo1GDkV+ehJZZUejUc5ZikNJLljfBCK5L1dVx9Klr+/atcvv98fjcdM0fT5fau3c4uTtr2yxbP0MBoOtD7RCvGpra2tqagYPHixdRh1JRSSj0WpqaqT+UUrlDGDWbgpAA6VZwaBGwASRUtEk6iOr7jvgkzn5TS3XcCFsBJx1NdWG4eaMqlpDQ8M///nPWbNmJRWl+a6mXLJUbkEpDYVC8Xg8dayKjtM3dEWWr6Y4ixmMUlWampwICtDibgsQHHiy6ueJ+5eo+gWI5AKIQCDgcDZxYgMChMXjHn9TUuqFEIJw0tzKkrjjHDgXMnBcAPBkB0yRSBYECEEJxHTWFGNWtpH0IpL+7jbXA4BUFE3T3njjjWeeeUa24spXpc2me+tVt95tS2Asmamvry8vL3c4HJC0aQ7RKGEy85aiJStWkcyUhKX+ECk2Vl9HxgEnL785gMq6IZxzxjghJBxuKi3dI+OJNU0lhFg14MG+G1Jp86alKooQQlGUNoPUIVnYZOXbfnItzgkAhBBd1w3DsL5O5ICVFooQmqL4COECBBBZuVhxX5AqJCkCw5O+FJ5YT4SADEo1TdM4FYR6PJ49e/bU1dV5PB7GGACRHyvJIiRSShMHANM0DEOXfsXOWi19Q1eaEQKEIIILDpwCECrjsSyHlwAuuAAOibvNE/c8KSc8aa8AF4IxLigHAoRzLiVHcAAqBOdEBjFb0iAECC4EJEYS5ZAQGN6sVc2ihRwSLEVhzIxEorquS7VwOBxOp9NqnFcUZf/+/ffdd9+7775rt9uHDx9us9ksyyNVk0RKs7yViiUq1rQcDQ0N1dXVlNKbbrpp+/btN954o3SOHwqrhTEm21FTs5pSsXKW1BTGEpMeCsEPdTRBjyGSLV4AcgRFkmpANld7nHOemPBRRvpa49JbJ2m/t3yLMA3rQOvfFplpfQZCiAz3aKfObXF46odLO8cKAFMIzplVc8lTWB+5bYhK0lhJ0ZXExwhjjHEuiJD3yvooOfASpaTwpLq0bHTsLH1DV+S9d9moXRVNBgOpJlxwyggkWzalkcKTlgrwpAZIMeDAGQie+ANRW1tLGypAtQMQMKM87gfBQVAgDDgIoIxYJ08Yi83WT0KxkqkAB8FkGRCM2e3UZVcAjZW0IpKdnGtqasLhkGmanAv5egrBbTZ7bm5Obm4eIeQf//jHo48+GgwGs7KyTNOsrKx0uVxymIoWEtI6Cet1siqpSCRSV1cnvygVRfnd7373+eef//a3vx05cqS0Ldrx3bdO7sB4nwNgjKmq6vX6gsF6RaHiwNHU5ZvOkpgmY8xkzJSfvV6vr0s39bBDVROTqslblwyzBktXTZNxzkzTsNsd+fn5mzZtkuM8mqYpvzMg2V/kYNKS+pStNakLqd4qXddbn8E6rRyX5WAGzcHUi3OuqqqqqtFo1GqbOSA/ACalDSLxhSyNFd6qfSVVVLgAzmU1JOSgYQyAEBIWQtcNm+BUVcPh8KRJk7xebywWpZSm3lX5jSJVR/5rmialVNNs0KUolb6hK/KO5nptg7zq5kpTVakcDAwYESTFVZVo9pD1vmiu8UVK1c+FXPPzK3822B3XOQEgNsrKop4ntpqJLimEAwcAIhJN7ynmEFhClWKsCKlhnAA3THPQIE+uzwEA2LiSRggh9fX1VVWVkBzOCJKfY6ZpxmKxnTt3rVtX8re//e2TTz6RI2gZhsE5l9IyZMgQq5WlzfYY69226h25f2Njo2malq7k5eV99dVXp59++r333nvuuefKL7sWhkuyTjyo5CS/x5trPWn9VFRUfPTRRzNmzNB1XVU1SrkMfAKw3BTNomKahmGweDzm9/u8Xi8cmii1HkNm3ul0CSEMw5AOKCFk3KywHDVJYeXxeOzUU0/ZuHFjU1OT5bCSrVOpHxCWJ02m0lpRUqt7kQIAMMZsNltrcZLlinPu9XqzsrLkzF3kwJ7/BzOCIenqzMrK2rt3r1RQm83Wot3eSWmZwxlvbOSCMBACDuikbTW3yMqOCWBMjkHJWFJUBIE4h3qny+10ODg3Off7/T/84TlSmxUl8bHMuWBMelZl0UrMSabreiDg61rjCvQVXSEAjAtVIVOHOkv21rnsKsg7DclO9c0SDol6P+EBYwkzJfEvJ8Dihjk81/WrX17psivyURICkTj7952rdwdNe6LDpQAgIGhSS6DZuOQiIVTy5MCAmwAMOCeCGbo5dWRAVQh2uU8fAoDU1NRUV1c5HA5KE5W4SBmXWtM0n8///PPPf/jhh0OGDNF1PR6PyxfVZrPt3bs3Ho8XFBRompbal605gZQPVZ7SssI5Lysrk6PeimQ/mEAgEI/Hf/GLXyxfvvy+++4LBAItqjOpKPF4fPfu3bt3766pqTEMg1Lq8/mGDBkyevRoKQM82X1c6tbmzZt//vOfV1ZWPv30U5mZWboel+eE5nqKM8alqOi6dNEbhhEfNWo0pDQv9WlcLpfdbo/F4g6H7MxnhXXJap8l7wCPRqMFBQV33XVXdXXl0UfPyc8fHIvF7r///qqqKtkMBsmHSA4+fHWqByz1uUvn54UXXnjxxRc3NjZa2eCcZ2RkvPvuu88++6zX65Wqw1OC0Q9mu6SKCiTjzcaMGROLxTIyMh599FG/32+aJkm6XojNZpaXlc07XglHqE2RX7VWt5VUJxgTIFJEJWGsEGIaBs3J+/N77yt+vwKwffv2aDRSUFDQ0NCoKArnJjTLKk8awab8WjEMU9fjgwcXQlfLVd/QFYszpmU+v7wKwASugBBAaXO/ehlbfIC3igGTJoVUFxM4U4DrkfjxE4a57EokGlcVAgAmFy6H7fgizzMfVrmyFJPJMycbbgASEV/c8l7Kc1ruNQZcaowJBM6YWdg7d6ffQhobG6urq5xOJ6WK9QXKOZHvuxCCUkUIPmPGjI8++kjWuABAKTVNs6qqaty4cY888khVVdUf//hHOSBSal0AB35gygUZTso5v+SSS957773y8nI5CrqsR2w2W05Ozquvvrp69erf/va3sr+0TFEOUfXee+998803FRUV1oBU8h1WFCUQCBQXF59yyimTJk2SNaWqqm+88cYdd9whT7JkyZJf/OIX0Whc09SUGs36WjdN09B1wzTNpqbGwYMLhg0bDn3cWJHI256XN2jLls2Kolgd9yDxUKS7hsvazzSNeFznnB1xxBETJkyUBt+kSZPeeust+ZXduhWtRVqptoslKtZ6m8127LHHejwel8uVGrVMCJk7d+6rr76azNUBPrTWpFoqqbaR9IYJISZPnjxmzJgWXjvBGMnKapg3r+HFl6nNz7lJacJkaXaCJYKUEpWRCcIEkH9cUWKh6Oj5pxSMGcNNk6qq2+0uKVkXCoU1TU2NuJOXmyIqummasVjE4/EMHz4Culqu+ky/SDngyunTsooLbJGITgkDwYCZYHJgDBhLLHDp72IgTGAMRHI3MBP2hBH3ZvquPrMYABwOm8RhtwOQq08Z7vU5DT1OwARuJk6b+OOJs0m5sk7O5QNlwBkFMxLTi4f5Tj9ysJVhpPtwzquqKm02G6VKslOwHB2WWH2wVVWJxWLTp08fOXJkKBRSFEV2EQiHw7/4xS8++OCDY4899oc//OHDDz8cCASqq6tjsZj1DdvCZQEAuq7X19cHAoG77777wQcffPXVV+fOnVtVVSUOJCcnp6Ki4sILL1y4cKGs1+Lx+PPPP3/zzTe/9tpr1dXVTqfT5/P5/X6/3x8IBLKysjIyMiKRyPLly++444577723oqJCUZSHH3742muvpZQ6nU5N0z7++L//+te/nE6HniQe13U9Lv/i8bi0VEKhBp/Pf+SRR/XWc0k7sgrLycnJzMxsaAgmv50Neb26Ln/qhhHXdV3XzVgsBsAnTJgIyWr9uOOOkw6lFgMopCISLQrNjfxWc45V78disaKiouLi4taFhDE2ePDgCRMmhMNh2XR/MEVpkQ1LYKzkZIonnHACpHzZpBbHgl/cYNgUgxuMg2mCwcHgYMp/ZbUkwARhArNExQBghMRNU3U7xl53vbytnHOXy5WbmxsKNVq31LqrScNXljUzHo/renzy5Cky2qVrj7LP2CuEAOPCYVNuO3PIpU9tcjso53LSTZoytEpKXJbVuCJFhTHgJrCYQZz50W//8fv3daGRlNgtAcQG8dyG0aWeY+1mHBQNCE062ayTJ88s/WA8+ZXAGXCTEmbE2W3njHfYFHSCpQWRDMfSdcPtlqNFNTdapZZ5+fLbbNrll1921113h0KhSCQybdq0hx56aPr06bIeIYQcddRRxcXFr7322nvvvbd//375zWi1ncqvNkVR8vPzL7jggnPOOcfn85mmOWzYsBdffPHpp59+7LHHCCEZGRnSRc45l4N5PP74419++eXtt9++dOnSdevWBQKBFlM8pS7LGUSEECtXrty2bRvnfPny5dnZ2bKVWAjhdDr/+c8Xy8rKzz//PEqJptlkeJi8CsMwYrGYYcTz8wfPnDmr5+ev7AHGjSuKRqN1dXVykkchQPbdkTFgpslM04xEmoRgs2fPCQQyhRDy27+4uHj69OlfffWVz+ezAq7aMVwsLZFPH5LDShqGcc4550DCFG5jVJizzjrriy++sHxzLRrtWn+pWKKS2pLX1NRUXFx8zDHHAECLJjqiKIIx36zZeddcu3/RHzIyvaCbhBOrO7jVBcVqqJeiYgKYmhata5z06wX+SZMEYzR55hEjRkaj0X379rndbkVRUu+qbLQzTRaLReLx2NSp0wsLh3SnXBEhxJs1AABnZHftDD2KEEAI/PDR1a9+URsIeAwGkDp3faLdXiSCvqSHSjoeOQMzwlWnK7w1e/tfwuEmQlraakJwj9tdU3xzxD+V8ihQLTHYvpU2QLKfCkucXC4wQ6OsPhg955hhr9w5V/SR3pBdeO69UlRKS/dEIhGHwyl9IwBAiIycOKAp2zSNeDyuqtrnn6989tm/nn/++TfffLOiKKlRW1ZFE41Gv/3229WrV+/evTsYDMp9/H7/sGHDpk6dOmXKFBnnI5I9IoUQiqKsWrXq5ptv3rx5c3Z24hbIs8nogJEjR2ZkZFhOtha08IfINuHy8vKdO3cGAgHDMCxPmmEYNTU1l1122YIFC3bs2FFdXaXruhUDqijE6/WNHj1m2LDhVsvBoX4EPV9UGGObN28uLd1DCLHGeWOMGYYZj8cNI+7z+WbMODI7u3kwY7mwe/fuX/7yl5TSNqPAU3dObVyxmj0URQkGg8ccc8yDDz54sHsrteeJJ5546623srOz2x8nXxwYGpAaEhKLxR599NGpU6e2HbomBBDC47Gv558c+mS5OzMDDIMIOdJIwtFv/UljhRFialqornHIqfOPfeMtoijQqhPdjh07tm/fxjnXNC15V7lpmroej8djLpdzypRpQ4Z0fTBj+dz7pK7UhfV593yxdnck0+/WGQDQ5k4mACnBxMkWe26CGeOqy960Z9DOP1NhUMUG0MrEI4SbOie2iqKb4t5xlEWBas0jxqR2gZRyxRMnt1FW1xCdMjrzowfnZXpsqCtpRAixbdtWAJB+sFSHu/xYTIaEMek1icVihJCamppp06YVFBRaoVypJ2wRwWV9Wqa+SC1iiK2jwuHw/fff//zzz2dkZFhDUamqOm7cOGk6tHMtLYKC5Dl37doVjUYh+Wks+9k9/PDDF110kUh2Qa+rq4tGI9Ig8/kCPp+PpAy93t1b3AF6vqjIa6+rq9u1a2dNTY1s6xKCK4qSkZExdOiw4cNHWMEU1lGygn777bcff/zxzMxMa6u1j/xKaP0UIPnEo9FoZmbm008/3WL4/dZ5i0QiN9100+7du6Vt1KZhZJkmqYaRLEg1NTVXXXXVpZde2raoJE7EgVC9tmbVD39Q/8n/3F4XpVQwGSAGycAk4ACMEKYoOmNNoeiQU06a89K/Na8XWtVEMuehUGjXrp2VlZXRaJQxJgSnlLrd7oKCgpEjR3fTAu6TugIAcnD7srrYD3779Zebgt6AixJqJsefbY4GlrG/nFFgVBim6naEd+Ts+H+UNQlqO+gU94QSrnPVXT322phvvMoiHGhyYOKUrvsiYbKowLgwG4Oxoybk/udXxwzOdPaheYj7hK4wxrZu3UIptdk0ShXLyky+s9LbwQ1DeuNNXY/L8bLGjx9fVHREO1WDZY60EA84cC6mVKytb7311q9+9au6ujoZDDZq1Cg5veB3DsXf4tOVUlpXV7dnzx55YG1t7bBhw5555pnp06dLjxwcfMzdnvR99UpRsa7RMIympibTNCilDofT5XJawxC0GTJOKX3hhRfklJE0OUWj3FRXVxeJROS9DQQC0o2Z+tHg9Xp/+9vfjh07tr3qPpl0eXn5HXfcUV5efkA0V3IHayH1ocuVdXV155133o033th+KvJ6gFIWi21acMfuJ58Cg9mcGrXZgBCR1BUmhK7rsaihOLQjbr55wm/uo/Jbqt2SwxhragrLCBe73SFHLjjYXe04fVVXICktTTHztr+v//N7u7mgLrdNU5KjvyW6zQvCGWNGJKozTpzBVf5dLxJuCKpBYiobSP3iazaQgcjdgqMuiWYepajU5bTJQSSTisKJ4CCYYRqRiE4VctUpY377kyluh8q5oH2nWaVP6ArnfNOmjYRQm80mB0hvHgEh6RqSxgpjTNcN2bJdX183ZcrU0aPHpL3+FckIrrKysttuu23ZsmVjxowZPXp0qg3UZv1iXY5VuVgDLVdVVe3fvz8ajR577LGLFi3Kzc1tYWa1OEnPt6b0VlE5mE3W/mOVlfUrr7zyl7/8hVIqp9ckhJSVldXV1cl+lLItbeTIkVJaOOcNDQ0jRoy45557Ro0a9d3VfTKVioqK+++/f8OGDX6/X1XV1Ia0FvaKXBmLxeLx+CWXXHLFFVd0tHAKITgnilL/zdfbHn+s6sP349X1VpwxBwACjtys/PmnFN10i3/SZMEYkeGsab2rHaQP6woAcCFAAKVkxaaa3/1ny8cl1aGwAUQ2t8heJgw412zKtDFZV504bKxjv8EEUNWyVNqMZ09AKHBTU2BrbMifP9i7eke9ofOUk8vYMJGRYTt+0qBbf3DEnCOyORdA+lgMWJ/QFQDYtGmjYZh2u11R6IGBp1ZXYTPZ49rQ9XgsFm9sbJgzZ87gwQWH6Lve8pI99dRTy5YtCwQCkHxRSSvPQ+rPNp0w0nEXDodfeumlUaNGtfbd9Tq9XlRSb2NHHqhsKSkpKXnqqae2bNlis9lcLtfevXuj0aiqqlLRY7FYQUGB1+sNhUI2m+2UU0658sor5WhyHRz8Te4Zj8f//ve/L126NBqNulyuZI/OAyKYIakoI0aMuOaaa2bPnt0ipuC7r59zOfNjrLKi9ssvGzZt1OvrAcCWmekvnpA18yh7Tg7IAOV2RaXFWa3ldL0m8rkfXsW341BCBADjYs4R2XMWZO8oD328rnLV9rq9NRHd5JSSXJ9j0nD/cRNyp4/OVCgBGNuFVOYAXDJv9KoddZ+ur1q3O1jVEONc2FQ6JMc9fVTm8ZPyRuV7AIBxQTtcQpCOI1XB6XQ1NVWrqiJEok8DJNtXrHb7ZC906Q7TbTbN7w8cuozJcABFUebPn/+///2vRYMNOXhHvNalRMaqZmdnU0pXrFgxatQoLEmt6ew9kb1fJ06c+OSTT3788cfvvPPO9u3bLQMRkkUrHo+7XK45c+b84Ac/KCoqEp0cUVS2e2uaduWVV5500kmvvfbaF198UVdX53Q6rVTkUHKmaY4ZM+bkk0+eP3++jOzo3LilhMgIMQBw5A0qOPP7BWd+v8UucivpzJh1h66k9VVdAQBCQCGEcUEARuVnjMrP+NnJbewmBJhMEOjKgK8CqELJzLFZM8dmtbkD50IAYEjxISUzM7O8vNwwDEq51fIhzRWRiD3lVk9h0zSj0UhhYaHL5eqBRojPPvssEolIe0XSfnP6wUxk6Z3/6quvLrnkkkM0CP9AQ7asaJo2f/78k046qaKi4oYbbvj222/tdrus1sPh8EUXXfTzn/9cjh0nDYjODlNttdwMHz78l7/8pWEYr7322iOPPJKRkSF3iEQieXl5f/zjH0eOHGnFi3dtMGySnJQeODsg6ogQQmmnFOVQ04d1RSLrdC6ENDet5yWbQggBhRJVIQBdv+mMC3kqq66w0upDrSl9EfnSer1en89bX1/vdrsZI8mxCEXSZGkOBpO9uiglRUVHHOq8yaphx44dsjPKwdpsWxzVwvlurRFC2O32ffv21dTUZGdn93CzfH9FPiPpbxw8eLDL5aqtrQUAOb1mXV2dHOta13WrG1MXsGLNGWOapo0cObK2tjYajUrzKBQKZWdnyxY46T7t5gwLhBBQDvd6+3DPXwehhNAWwpG+t7K1OdIyLeQQM2rU6FWrvgmHw9bQT5DScZox0zBMGQwWiYSnTJkm+8oduqpZnlzXdTlpbuu02rRLUt3urZHxSFVVVagr6cWqx8eNG5efP2jkyFFCiFgstmrVKumwUlW1+3fbSkUGm1n6IZvKpI0ycB5rP9EVpB8jv+UnTpy0Zs3qYDDodDopJULIrstyFEJmmmY0Go3Ho8XFE9oJL04vuq7L7jJSMNpP0Qpitn6mLojkfB6RSJ+f+fFwgxDS0NBQVVV1wQXnOxwOawKbU089pbExtGnTxuHDRzidzu6UGXmsjIfev39/apy6oiixWHTdum/z8vIGDcpP32Ud1qCuIIc7suLOyMiYOfOoDRvWV1RUAICqKgCyozszDN0wdI/HPX363KFDh/XkV2Fq2E877SKpnRggRWNECi1OiKQFIUR5eXlDQ1BOrCBlW4YRmqapaUpDQ8OqVd+MHTsuNze3ayVHHtXU1LRv316Hw+F2u+XEKrKBJxwOE0IVRdm6dWtNTc348eOVw96L1X36zLiTyECGEAIgHA7H9OkzZs2aXVBQoGk2OQGRqiq5uTkzZhx54onze1hU5DQwlkK0OXwLtBIVSIk9bdHEIue+POT5HkiUlZU1Nja4XC6bza6qms1ml+Oz2WyazWZTFFXO+VZSsq6qqqq9vgcHR/a937dvr6qqAGTixInXXHON1+uVT3nSpEnXXHONzWbzeDJqa2vWrl07ED4d+r9yIv2FRHN9VlZWVlaWEMI0DSGEoqiWodBjoiJTcTgcgUCgqqpKDujCW81zDG3pTeqwVJYmAYBpmi6XKycnBw5lAOgAQT6I2tpaKSqpU7nI3veECEoJpYpsbLfb7SUl644+eo4VItxxGGNlZWWKomiaTT64a665+pxzzikvL1dVpbCwgFK1sbFRUaiUli1btsiY5n78lNFeQfoSqY0Zmmaz2exyXPT2o3sPBXK0wREjRljT38IBoQSJVp/WopI6+iSkDHBrGEZ+fn5eXl4PX0i/hBBimmZNTY3dbpeiQkhyTiXSPBu0DCwmhNhsNtM0tm7dCp1xRco9a2trTdOQokIpARDhcNjn8xUXF48ePVoIiMWi1hRtLpd79+5dcoz9fmy4oK4gfYzWvZQ70W85rdkAgOnTp8uOb6n6QQhRFEVOjpt6SAtRSYZKJ9bE4/GpU6fK1vueuoj+iayvGxoaGGOKQuWzareAECHAZrNXVJTH47GOlyUZXtzQEEw+6MSAC4pCZSCJnOZHmkqEEAAi55rbu7e0e5d4uIO6giBdQdY+U6ZMKSwslHMey34SMv547969u3fvrq2ttfrNtTnFk/Uv59zpdB5//PGAxkq3kTcwHA7JuMHmUQOb/1oYCgJAKAqNxWK1tXXQGZMlFovqupF0slnDGCeyYfXhlavlDqqqVlVVQb9+0KgrCNIV5LeqpmmnnXZaOByWfSCkCbJz5859+/ZVVlZu27Zt69at0huWGjlmDcwukuODhUKh2bNnjxs3rsudsZEWxOM6SZnq0VIUIbh0WMrl1B04F+FwYwfPLxIzS8aFaA7tk89Z2qKWSZpcL/PACSHRaMQ0jUN48b0NlmAE6SKyp9upp546efLk8vLypqamWCy2a9euqqoqOb+1pmnV1dWyUVfWK5bVkjoZrWmafr//iiuukKftx273HkMIwTlrrtWTA8nJPk+c8+Tgcs3/yj1Ns3NOyMS5EhIlp4/kyZWJTfKfZD4OKAb9FYwHQ5BuoSjKZZddlpkZyMrKJgR2796zcePGbdu2hUIhp9OpKEooFJKVmtzf+pK1DJempsill15ss2l1dXWZmZnQ49Or9D+kpZK8w4KQ5mkirfWMcc6lCDAZbNF+J6SDJAQyRgMAZEKQdHxJuWIsoWfJ5JicBKx/W6WoKwjSdYLBYE1NtaapF110kRysTAgRjcZ27dr1zjtvv/fe+/G4PmTIEMsPlrogPWCMsbPPPuu4475XWlpqmszj8YwaNapnBs3sr8hbp6pqU1OTqqpCUErl8NLSFcaTmCmRe8w0TSGENV5kB7HZ7LJzLgAIIYdZT+RBWieyl1VqQrpu+P1eVdXSf+WHDf1ZMxHk0MEYKy0tragol1WYruuGoRuGEY/HheAjR464/vrrb7vt1tzcHI/Hk/xiZZbjSw6zH4/H/X7/Oef8gHPmdrvdblc4HFq16pu6urr+HYfaA3g8Gbqum6ZpGKZpymkUZOx3QkWScsJM0zRNMx7X7XZbZmYWdKxFXe7jdrsVRdX1uJmgOcQ8mYqZnMTBNAzDNJlhxHNycqFfOzxRVxCk03DOS0tL5TxOmmZTVU3TbMmO3DZN0xjjkUhk9uzZd955h6ZphmGk+mGkFMVisfLy8lWrVpWVldntdjnyh3SdrV27prGxEaWla8hbnZWVBQDxeJwxI4nUGIMxQ45VapqGaRpSfmKxSEFBgZzdvYMJyRjiQMAvRy82DEP+I+drME0zOSGQXG8YhhmPx1VVHTZs2CG8/sMA1BUE6TTl5eW6Hnc6HZQq1uC1hCiykx2lVFUVTdOi0eiIEcPnzTu+MUGosbExFouZpllVVbVv3776+nqHw5GRkSFrKHm43W4nBNavL0FXWJcRQthstvz8/FAoZBiWsOimKSt6U9flGNi6rscNw4xGo3a7rahofKdSkU9n8OACSmkkIqUlYbYmFcsSFV3XddM0IpHQ6NGjMzK8/fvhYvsKgnSOpqamxsYGp9MJQFIm4CGUQnJuWUIIJYRomhaLRceNG3fSSScFg0Gn0zF+fPHXX3+9ePFiOa26EOK6667Lzc1raAhaRwoBDoejrq5+//79hYWF/bsCOkTIOzZkyNBgMFhdXe3xeJIzZ1jt9olpe0yTxWJRw4jPmXOM2+3u7N0WQmiaNnbs2LVr1zJm2mw2ae1Y8QGMMTNpwIRCDfn5gydMmAT9uvMKoK4gSMeRlU59fR2lVCoHABCSmEGuRW842b9aURTO2emnn5abm2uaptvtOfroo10u1/r163Nyss866+yZM2eGQiHZaT/ZYRvkgfv27S0sLOzNC+77FBdPKCkpKS/fb7c75JDGyeqem6ap60Y02qQoyuzZcwoKuiLh0lcZCGROnDhp3bq1kUiT3e6glAIkwgNkK0ssFovFooWFhUcdNbt/R4JJUFcQpKMQQjhnTU0RRVEArMifxL/Jjm9CJDp5J9arqrZnzx4AcLvdum7Y7fZbbrnZMAxV1RhjoVCIELC60FmnUhQlGAwahiFrQ6RrUEonT54cCGRu3761vr5eKkfSjDAVhQ4ePHjixEler6/LdqGUluzs7Fmzjt60aVNlZYWcVVoaLKZpcs7cbldx8YzRo8f0bzPFAnUFQTqBrhumaSiKXTQLQWKkFiEEgNXFmlvLhIDsCiebTxhj9fVBSinnTUlDp/koaxkAdF2Px+Ot5zlGOoUQYujQIQUF+VVVVVVV1ZFIE+dcVRWfz5+fn+/z+aHbHYakirhcrunTp4dCoYqK8mAwaBg6AHE6nTk5OXl5g+RzTNtVHd6griBIJ7D6V3MuCOGM0WRXuOae1ZyL5B+3hvOQQcbJGowmFIlASi/J1B7gTK60rCKky8hKX1HU/PzB+fmDW2xNPojuyrYVvJeRkdFmJ5gB9XGAuoIgnSPZpZHJaTxS2mll/2pLGLgQsrt1wgoxTUYpkVWQPJUlRYyJ1F7ZjHHGTEKInFtwwFRHh4qU8R/b3tQDqQwcUQHUFQTpFLK1wzBMa1B0q8XeGh2EMZM397E2pbcdAEzTkMOEWFWMVCM51IfsQJfouceYrusejzs5zdQAqpIOHT1Tsw8o/TgYqCsI0gk0TbPZ7JFIhBAihGLFGUvLIzm8YaK7texfHY9Hc3Ky/f5AQ0OD0+nkXFgRQanRqMnu37Lrg6nr8by8kTDA/CdI/wB1BUE6iqzis7Ky6uvrNE3lnFHaPAVycjhbS1cSXax1XR82bEQgkFlVValpajJGGZJTg4hkeBKzDonF4pqmjRgxqlcvF0G6COoKgnQUaTfk5uaWle0Ph5ucTichrMVAudIPJjtYm6YZiYSzs7MLC4dQSjMzM2tqatxuj5wKFw60ciwhMgwjGg1PmTLN4/GgsYL0RVBXEKTTjBkzdvXqVU1NYbvdASAAiNUPLmmsmKZpRiJNqqrMmDFTOr7GjRvX1NQUDNZLaZH2imzeT45+yHQ9Hg6HRo8eXVR0BKCzHumboK4gSOcQQrjd7kmTJq9ZszoarXc4HHKCLyFEsnGF6boeiTQ5nY7Zs+f6/X5pdiiKOnXqtJKSdeXl5TabpqpasvdcYvj0WCwiBC8uLp44cXJvXyWCdB3UFQTpHFIMfD7frFmzN27cWFFRLvs8AoDsX20YhqKQoUOHTpo0pcVMKqqqTp06LS9v/44dOxoaGkzTsCYr1DR10KBBRUVHZGfnDJwOdEi/BHUFQTqNlBaHwzFt2rTGxob9+8vq62vj8bgcRjcQyCwsLDxYR24hxODBBfn5g0OhUDBYH4/HCQGHwxkIZLrd7jYPQZC+BeoKgnQFq3+11+vzen2tdzhYR255ICHE6/V6vd6OHIIgfQvUFQTpIi36V7f5syMHtliPIH0d1BUE6RYtxKDj2oAqgvRX+v9MAAiCIEhPgrqCIAiCpBPUFQRBECSdoK4gCIIg6QR1BUEQBEknqCsIgiBIOkFdQRAEQdIJ6gqCIAiSTlBXEARBkHSCuoIgCIKkE9QVBEEQJJ2griAIgiDpBHUFQRAESSeoKwiCIEg6QV1BEARB0gnqCoIgCJJOUFcQBEGQdIK6giAIgqQT1BUEQRAknaCuIAiCIOkEdQVBEARJJ6grCIIgSDpBXUEQBEHSCeoKgiAIkk5QVxAEQZB0grqCIAiCpBPUFQRBECSdoK4gCIIg6QR1BUEQBEknqCsIgiBIOkFdQRAEQdIJ6gqCIAiSTlBXEARBkHSCuoIgCIKkE9QVBEEQJJ2griAIgiDpBHUFQRAESSeoKwiCIEg6QV1BEARB0gnqCoIgCJJOUFcQBEGQdIK6giAIgqQT1BUEQRAknfQfXcnOzn7ggQd6OxdIf+Cpp55SVbXNTdddd92ECRO+8wyFhYW//vWvu5OHCRMmXHfddd05A3KI6P7D7SDr168nhHz22Wc9kFZ66T+68thjj5166qlyOTc3d/fu3b2aHeRwZMOGDcOHD+/tXCB9j3PPPfdvf/tbb+eiz9B/dOXSSy+dNm0aAJSWllZXV7fewTRNIUSP5ws5jFi1alVvZwHpk2DJ6RR9TFfy8vKefPLJO+64Iy8vz+v1nn766ZWVlXKT9IN98sknw4YNA4ARI0acddZZAJCZmfmHP/zh9NNPdzqdDQ0NALB48eLx48fb7fbs7Owf//jH1hkMw7j++uuzsrK8Xu/ll1/++uuvE0LKy8sBwDTNu+++e9iwYXa7fcyYMU899VRHsoSkhSVLlkydOtXj8WRnZ5955pk7duywNj333HPjxo1zOBxFRUXPPfectf7FF1+cNGmS3W7Py8u7/vrro9EoANxzzz2XXnrpnj17CCGLFi0CgK+//vrEE0/MzMz0eDwzZ8788MMPW6deVlZ26qmnOp3OQYMG3XPPPamb2ikVAKAoyv333z9o0CCrVIRCIY/H89BDD1n7MMZyc3PvvPNOAFixYsWUKVPsdvu4ceNeffVVQoi1W1VV1cUXX5ydne1wOGbOnPnxxx9364YiB+Fg95kQsmvXrssuu8zv98s1rR+uXF9dXX3xxRfn5+c7HI6xY8f+4Q9/sE7eTkWxb9++888/PzMz0263T5w4ccmSJT13zYcIIcQb1eKNatEnKCgoGDZs2B/+8IempqYdO3bk5+dfc801clNWVtb999+v6/rLL78MAKtXr25sbBRC5OXlTZw4ccGCBStXrjQM4/nnnyeE3H///Zs3b/7oo4/Gjh07Y8YMzrkQ4p577rHZbM8+++y2bdvuu+++0aNHA0B1dbUQ4vrrr3e5XM8999zWrVv/9Kc/2Wy2v/zlL9+ZpcOcLjz3ni8qX3zxBQDcc889mzZt+vrrr0844YTJkyfLTS+//LKiKI888sg333zz+OOPE0JeeeUVIcQrr7wCALfffvvmzZvfeeedwsLCH/3oR0KIpqamX/ziF0OGDKmuro5Go9FoNDMz8+yzz169evWGDRtuuukmt9u9b98+IcSTTz6pKIpMZd68eQUFBR9++OGGDRuuueaa/Pz84uJiuan9UlFUVHTdddetWrXq9ddfd7vdslRcdtllRUVF1tV99NFHALB58+ZgMJiZmfm9731v7dq1X3755bx587Kysq699lohhGmaU6dOHTVq1Icffrhx48brrrvOZrOVlJT0yO1P0CeKSjdp5z7v27cPAJ588sna2lpx8IcrhDjllFPGjRu3fPnyLVu2/O1vf1NV9bXXXpObDlZRxOPxoqKiCRMmfPLJJ5s3b77rrrsA4I033hBClJSUAMD//ve/XrkhXUM+976nK8cff7z186c//emRRx4pl6WuCCHeffddANi1a5d1iLWPEGLKlCknnnii9fPNN98EgBUrVgghRo0adcEFF1ib5s+fL3UlGAzabLa77rrL2nTFFVeMHTv2O7N0mNMnKotoNLpjxw7GmPwpn1dlZaUQYubMmeeee66152233bZo0SK5fu7cudb6F154gRAiBeP2228fNmyYXG+aZmlpaSgUkj9DoRAAvPzyyyJFV6wKRe7DGBs+fLjUle8sFTNnzrQ2/eQnP5E/V6xYAQBff/21XH/11VfPnj1bCCE/US212L59OyFE6so777wDAB999JGVh3Hjxl155ZXduaudpU8UlW7Szn2W9u5zzz0nNx3s4QohKioqZOGUTJ8+/eqrr7aOarOiWLp0qVUFWUfJOqrv6kof84MBwJQpU6xlv99fX1//nYcceeSRcsEwjHXr1s2dO9faNHPmTABYu3atrus7d+6cPn26tcmKAvj22291XT/++OOtTd/73ve2bt1aW1vb5SwhHcRut7/00kvjxo2z2WyEkDPOOAMA6urqOOerV6+2niwALFy48IYbbmCMrV69et68edb6733ve0KIL7/8ssWZFUVZtWrV//3f/7lcLkJIRkaGPHPqPps2bQKAqVOnyp+UUllgoAOlYs6cOdamzMxMeeajjz56/Pjx//jHPwCAc/7aa6/95Cc/AYCNGzdqmmZFmo0aNSonJ0cuf/3116qqHnvssVYejjnmmM8//7yzdxJpn07d5zYfLgDU1NRceumlfr+fEEIIWbVqVWqJarOiWLVqlaIos2bNsjbNnDlz7dq16bquXqHv6YrT6Uz9KTrQFB8IBORCU1MT59z6aW1qbGxsamoSQlj+UwCwXuzGxkYAOPnkkx1JLrvsMgCoqqrqcpaQDvLXv/717rvvvvPOO2tqaoQQH3zwgVwfiURM02xx5wEgGo2apvnggw9aD2vUqFEA0LrRa8OGDeedd97s2bN37NjBOTcMo3Xq0ojx+XzWGmv5O0uFy+WyjiKEWKXipz/96Ysvvmia5ooVKxoaGs4//3yZkNfrTU06NSHTND0ej5XQc889h214aadT97nNhxuLxc4888xIJPLFF18YhiGESJUfOEhF0djY6PP5KG2uigOBgCxdfZe2g/T7K263W1GUVHtCfk34fD75yGU9IrE+POUb/sILL0ycODH1bCNGjOiBPA9wXnvttRNOOOHyyy+XPysqKuSC0+lUVdV6RhYul0vTtBtuuOGnP/1p6vq8vLwWe7799tt2u/3xxx+XXVWsM6fidrsBQIZ7SLpfKi655JI777zzv//979tvv3322WfL87jd7hZVSWpCDodjzZo1qVsVRWk/FaSzdP8+r1u3bufOnUuWLCkqKpJrKioqCgsLvzPdhoYGIYQVqVFXV5f6KdMX6be60qbRoGna5MmTV65caa2Ry0ceeaTD4SgsLFy3bp21SbbTAMDkyZPtdnt1dbVVXKqrqymldrv9EF4AAgAAoVBo0KBB1s/nn38eAIQQiqJMmTJl+fLl1qYbb7wRABYtWjR9+vQ9e/ZYD0vX9X379llGqlUwQqGQw+Gw+j/+/e9/h1bFZty4cQCwZs0a+eEpjYzs7GzoRqnIzs4+66yzXn755XfffVcmKhMyDGP9+vXSFbZ+/XrLfzJz5sxYLMY5Hz9+vFyzZ8+e3Nzcjt0/pKN8533+Tj+E/CqVDlUAWLFixY4dO1Jd620yY8YMxtiXX35pucJWrlyZ6uDti/Q9P9h3ImuQt99+e/369a233nLLLR988MHvfve7Xbt2ffzxx7fccstxxx03Y8YMADj33HNffvnll156ac+ePQ899JDVs9Lr9V555ZW/+c1v/vWvf+3evfuTTz458cQTrS9o5JAye/bsDz744PPPP9+5c+fVV18tg/S++eabSCRy4403fvzxx3fdddeqVauefPLJp556avbs2QBw6623vvrqqwsXLty2bdvatWsvvvjiY445JhwOA0AgEKioqFi+fPmuXbtmz55dU1OzePHisrKyp59+uqSkZNCgQd9++22qdTJs2LDZs2c//PDDy5YtW7Vq1eWXX+5wOOSm7pSKK6644vnnn1cUxWqeOf300zMyMq677rqvvvrq008/vfLKKy0D64QTTpg6depFF120fPny3bt3v/jii1OnTn3mmWfSd48RgHbvs8PhcDqdn3766erVq9v0l0omT57scrmeeOKJsrKyd95559Zbbz3ttNO2bNnSvtNy/vz5xcXFV1999RdffLFt27Y77rijpKTkpptuSv8V9iSiT0VuFBQULFiwwPp58803jxo1Si5b8WCmaZ5yyilOp3P+/PmtDxFCLF68uKioSNO0nJycK664or6+Xq4Ph8M//vGP3W53ZmbmDTfcID+NZbCyYRh33XXX0KFDNU0rKCi49tprrTiidrJ0mNMngnzq6+vPPvtsj8czePDgBx54gDF28sknZ2RkyMCtP//5z2PGjLHZbGPHjn322Weto/75z39OmjTJZrNlZmZ+//vf37p1q1wv7RiPx3PvvfcKIe64446cnByfz3fxxRc3Njbee++9brf7hhtuSI0z3rVr17x58+x2e25u7t13371gwQIr6KvLpYIxlpGR8etf/zr1Sj/88MPi4mJN08aMGfPKK6/MnTvXCvqqrKy8+OKLs7Ky7HZ7UVHR73//+3Te4g7QJ4pK92nnPsuyUVBQUF9f387D/de//jVixAin03ncccdt2rRp2bJlfr9/+vTpot0isW/fvvPOO8/n89lstmnTpi1dulSu77vxYEQI8WYNAMAZ2b0rcL2PYRjBYNBqrn/ggQeeeOKJNrvu9w+68NyxqKSFZcuWnXHGGTt37hwyZEhv56VDYFFBOoh87v3QD9ZlHnnkkZEjR/773//esWPHa6+99sQTT8gIHwRJF3v37n377bcvv/zyq666qq+ICoJ0ln7bbt8F7rzzzmg0esstt1RWVhYWFl511VU9M2opMnC48cYbly1bdv755z/66KO9nRcEOVSgrjSjqupDDz2UOnwTgqSXV199tbezgCCHHPSDIQiCIOkEdQVBEARJJ6grCIIgSDpBXUEQBEHSCeoKgiAIkk5QVxAEQZB0grqCIAiCpBPUFQRBECSdoK4gCIIg6QR1BUEQBEknqCsIgiBIOkFdQRAEQdIJ6gqCIAiSTigAaAQAIMR6OStITyIft3z0HQeLygAEiwrSQayiQgHAowAAbGmCMBaCgUGIwZYmgOSj7zhYVAYaWFSQDpJaVIgQolKHrxp7O1NIb3CUD3K1TuyPRWXAgkUF6SBH+YAIIQCgUodtEQgxMEVvZwo59GgEPAqMdUGurdPHYlEZUGBRQTpIalFJ6AqCIAiCpAWMB0MQBEHSCeoKgiAIkk5QVxAEQZB0grqCIAiCpBPUFQRBECSdoK4gCIIg6QR1BUEQBEknqCsIgiBIOkFdQRAEQdIJ6gqCIAiSTlBXEARBkHSCuoIgCIKkE9QVBEEQJJ2griAIgiDpBHUFQRAESSeoKwiCIEg6QV1BEARB0gnqCoIgCJJOUFcQBEGQdIK6giAIgqQT1BUEQRAknaCuIAiCIOkEdQVBEARJJ6grCIIgSDpBXUEQBEHSCeoKgiAIkk5QVxAEQZB0grqCIAiCpBPUFQRBECSdoK4gCIIg6QR1BUEQBEknqvyvsbFx/fr15eXlsVisdzOEIB3B4XAMHjx4woQJGRkZvZ0XBEEOgAghgsHgp59+Onv27IyMDKfT2dtZQpDvJhqNNjY2rly58vjjj/f5fL2dHQRBmiENDQ3//e9/v//97/d2ThCkKyxdunTevHlotSDI4QPdsGHD7NmzezsbCNJFZs2atX79+t7OBYIgzdCysjKv19vb2UCQLuLz+crKyno7FwiCNENjsZjD4ejtbCBIF3E6nRhsgiCHFRhnjCAIgqQT1BUEQRAknaCuIAiCIOkEdQVBEARJJ6grCIIgSDpBXUEQBEHSCeoKgiAIkk5QVxAEQZB0grqCIAiCpBM1jeeKxWKGYcTjccPQAUDTbHa7XdO0w6c//+rVq/fu3bt58+bS0lIAGDp0aFFR0dChQ6dOndrbWUvwdklkfZnx2fZYyX4dACYW2OaOdkwssJ064XAZZzr69lvG+pL4Z//TS0oAwDZxon3uMdrESc5TT+vtrCEIcliQHl0xDCMYrDcMI3Wlrsd1PQ4Amqb5/QFN09KSVtcoLS1dvHixlBOLzZs3b968GQCGDh3605/+dOjQob2UOwCAkv36tS/WSjmx+Gx77LPtMQCYWGB7+sKsiQW2XsodAIBRsq7u2quN9SWpK+MrPouv+AwAtAkTM5/+kzZxUi/lDkGQw4U0+MFCocbq6qoWopKKYRjV1VWhUKj7aXWNpUuX/uY3v2khKqmUlpb+5je/ef3113syV6k8six47KPlLUQllZL9+rGPli98r6Enc5VK4yMPVR43t4WopGKsL6k8bm7jwod7MlcIghyGdFdXQqHGDgpGKNTY1BRuZ4eioqJHH300dc1LL73UfR/a0qVLOygYS5cuff/999vfp76+/qabbho5cqTdbs/Pzz/vvPO6P0j7I8uCHRSMR5YF//RpYzs7/PznP6eUrly5MnWlx+P54osvupPDxkceavztIx3ac+HD4T893f4+pmk+9thjkydPdrlcfr9/7ty5S5Ys6U72EAQ5rOiWrhiG0SkrpKGhoR2z5lBQWlraKSvkxRdfbMesaWhoOProo99///2FCxeuWbNmyZIljLHZs2d/++23Xc5hyX69U1bIr5bWt2PWAEBmZuY111zDGOtyllpglKzroKhIggvuNErWHWyrEOKcc8657777Lrnkko8//vjjjz8+44wzrrzyyttuuy0dmUUQpPfplq7U19d39pBgsNOHdIe//vWvnT1k8eLFB9v04IMPVldXL1++/Nxzzx0/fvzxxx//6quvXnDBBSUlB/UOfSfX/LOms4dc+2JtO1t//OMfNzU1PfXUU13OUgvqrvl5pw+59uqDbXrppZfefPPNjz766Oabb541a9a0adNuv/32v//9748++uiaNWu6l1MEQQ4Luq4rsVjMNDttfBiG0WOzZcjor84eVVpaunr16jY3vfLKK1dffXVmZmbqymefffaiiy7qWg5l9FdnjyrZr79dEjnYVkrpk08+effdd5eXl3ctV6lE337L2NBpR5+xviT69lttbnrllVfmz58/Y8aM1JU//OEPx44d+/LLL3cxlwiCHE50XVdkMHF6D7z99tvVFH784x93NXcAAO14tLpwIOd8z549xcXF3clSC9r3aHXtQCHE/Pnz582bd/PNN3c1X82049Hq2oE7d+4cP3586/XFxcU7duzoWloIghxWdF1X4vF42g/85S9/uTaFhQsXdjV3AAAyhjhdBxJCFEVJY7sFAMgY4kNx4KJFi954443//ve/XTu/Rfyz/6X3QFVV27yHnHNCSNfSQhDksKI79koXW+DbOXDQoEETUigsLOxq7gC6Ya+06T0jhIwcOXLt2rUt1ncnEqHL9sp3es+GDh26YMGCa6+91jCM7tTX+sEDi7/rwLa9Z6NHj26zOWrTpk1jx47tWloIghxW4DgubSCEaHP9D3/4wz//+c+p7RZCiIsvvviWW27pqaw1p/ud+9x8882c88cee8xm65XelG3n8Pzzz//oo48+//zz1JVLly7dtm3bBRdc0CMZQxDk0NJ1Xely//ke63jf5f7zBzvwzjvvHD58+DHHHLNkyZINGzb897//Pfvssz/66KOf/exnXUuoy/3nO3KgzWZ76qmnHnjgAV3volUEALYJE9N74FlnnXX++eefeeaZf/rTnzZt2lRSUvL4449fcsklv/71rydMmNDlfCIIcvjQdV2x2+09fGBnKSoqSu+Bbrd75cqV55577j333DN9+vSLLrooEAh8/fXX48aN61pCc0d3sddnBw884YQTTjvttHC4ve6o7WOfe0zaD/znP/959913P/vss0ceeeQxxxyzdOnSxYsX33vvvV3NI4IghxddHx9M07r4rX2wA1u3ll9wwQXd8Y2k3V4BAI/H8/DDDz/8cHpGK0m7vfLMM8+0WPPyyy93J363y+N9tXMgpfT666+//vrru5opBEEOa7purzgcDlXttEdLVXtueONp06YNGTKks0cNGTJk2rRphyI/rTltomvC4E7fwwmDtdMmug5FflrjPO10rbjT7imteILztNMPRX4QBDn86Va7fSAQ6IFDusMVV1zRA4d0hz/+KLsHDukOmX9saQMdikMQBOk3dEtXNE3LyMjo+P4+n6+HR8sfOnTo97///Y7vf+GFF/bwaPkTC2y3n+zr+P4PnRXo4dHytYmTvLfd0fH9/Q8+jKPlI8hAprtxxhkZ3g5Ki8/nc7s93UyuC5x11lkdlJYLL7zwpJNOOtT5ac0d8/0dlJaHzgpcfZz3UOenNd47ftVBafE/+LDn6msPdX4QBDmcSUP/lYwMb05ObjttLaqq5eTk9oqoSM4666x77723nbaWIUOG3Hvvvb0iKpI75vuX35LfTlvLhMHa8lvye0VUJN47fpX36WfttLVoxRPyPv0MRQVBkPTMF6lpWm5ubiwWMww9Ho/LLuiaptntdk2zHQ7zEA8dOvS+++5bvXp1aWlp63mIe6yhvh0mFtj+d+vgt0siJfv11vMQ91hDfTtoEyfl/W9l9O23jJJ18c/+J7vi2yYk5yHGhnoEQQAgvfPbOxwOh8PRmQaXnmbatGmHg4S0w2kTXYeDhLSD87TTUUIQBGkHHMcFQRAESSeoKwiCIEg6QV1BEARB0gnqCoIgCJJOUFcQBEGQdIK6giAIgqQT1BUEQRAknaCuIAiCIOkEdQVBEARJJ9ThcMRisd7OBoJ0kWg0ejgMFIQgiAXNz89vbGzs7WwgSBdpaGgYPHhwb+cCQZBm6MSJE1euXNnb2UCQLrJy5cqJEyf2di4QBGmGCCEaGxs//vjjWbNm+Xw+p9PZ21lCkO8mGo02NDR8/vnn8+bN83p7bfoABEFaQ4QQABAKhdavX19WVoZtLUifwOFwDB48eOLEiR5Pr83rgyBIm/x/h1Z3Afg4MlAAAAAASUVORK5CYII=", "path": "image.png" }
Look at the models of molecules below. Select the elementary substance.
[ "ethanol", "acetaldehyde", "nitrogen" ]
2
There are more than 100 different chemical elements, or types of atoms. Chemical elements make up all of the substances around you. A substance may be composed of one chemical element or multiple chemical elements. Substances that are composed of only one chemical element are elementary substances. Substances that are composed of multiple chemical elements bonded together are compounds. Every chemical element is represented by its own atomic symbol. An atomic symbol may consist of one capital letter, or it may consist of a capital letter followed by a lowercase letter. For example, the atomic symbol for the chemical element boron is B, and the atomic symbol for the chemical element chlorine is Cl. Scientists use different types of models to represent substances whose atoms are bonded in different ways. One type of model is a ball-and-stick model. The ball-and-stick model below represents a molecule of the compound boron trichloride. In a ball-and-stick model, the balls represent atoms, and the sticks represent bonds. Notice that the balls in the model above are not all the same color. Each color represents a different chemical element. The legend shows the color and the atomic symbol for each chemical element in the substance.
nitrogen
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAh0AAAEiCAIAAADSxvdVAABxoUlEQVR4nO2dd3wcxdnHn5nd63c69WpLcpWbXLAxptiA6R1CMTX0BIgh9PIGCIQOSegBEgJJqCF2IBQDNsUGY4x770WWrWb1k67uzsz7x9ytVsVClk862Xq+H33suy23c7t789unzDNECAEAlRHYFoAmBroA5JBHJeBRYJgTsqz7vS/eKv0KvFWQLmK+VYgQoioCS3yJbhSSCI5Igsz96S/wVum34K2CdJEjkkAFgK0BAIAcKxS5wKMkuE1IL9DEYLMfKiKwJbB/nQXeKv0NvFWQLmK+VSgANDMAgBF4+fsNHgWKXACxS9918Fbpb+CtgnQR861CAUATAABuvPz9Cflr1/bT8Y23Sj8EbxWkixi3Ck10SxAEQZBDCtQVBEEQJJ6griAIgiDxBHUFQRAEiSeoKwiCIEg8QV1BEARB4gnqCoIgCBJPUFcQBEGQeIK6giAIgsQT1BUEQRAknqCuIAiCIPEEdQVBEASJJ6grCIIgSDxBXUEQBEHiCeoKgiAIEk9QVxAEQZB4oia6AQjSd9HD3Fceqd0RbNgdDjXonAtqAVe6JaXAnjbI4c60UoUkuo0I0udAXUGQDvBVRLZ/3bj1q4aq9cFAnc7CXAgQQgBwUAR1gDtbGTDRPfLU9EFHpdg9+DtCkBbw94AgrQg16uv+W7fqnZrabWHBCKWEEFW1CBAgQAjBBRciyBu3s7qttes+rh5wuPvIawcMPzZdsaJXGUEAUFcQxEzV+sCCp8tLvveDThTFQtQWN5cgQoAAQjnhghOghFLCImznd749K9dPuDj7uJmDPRm2BDYeQfoIqCsIEmXHAt9Xv99Tv0NTFIUqlAABMHRFiNgfJcAVQhkIAQLAolh1f2Tx3/dUb28++w+j0ge7EvkdEKQPgJY7ggAA7Pze98U9pQ07dFVRFVAIKAAKADX+CFAKlACJvqAUiFxCFWJRiLr1m7rZd6+pKw0k+qsgSIJBXUEQqN4c/PqhsuZyrioqBQVAIUDNf4a6SGkBIJRQQqJiQ4FSUBRF3bGo4bNH14d8WqK/EIIkEtQVpL8T8bPv/1xRuyWiKCoBGhMVYogJATD5xAgBQuQLCkAIiZoyCgWqKMq6OVWL3tqZ0C+EIAkGdQXp72ye07D96yZFVSgQiHq6gET1g8TeGtISXRh9QUhUbWL+MeD0hzd2lm9oTPC3QpDEgbqC9GuC9frKd2t4hNBoEMVQEQCTjRLbvNUoSGKyYAy9oYrSsCf003s7hei9b4EgfQrUFaRfs+vHpqq1QaUl+4uYTJN9KgNpozCmxQQIpXTdlxW1u5p7sN0I0odBXUH6L0LA9m8a9FAr/RCt/u9YWkTszywvLUYNJQ17gtsXV8e3tQhysIC6gvRfAnVa+eoAoaT1UJVWYtJaWERbvREdbEmAMI1v/6l63wYPghzKoK4g/RdfeaSpIkIIMVkgLbIhAASI2IhI+Vquk6GTdhpjkhFCSOWWxlAzJhwjB4SIkeiG7B+oK0j/pbkqEglwIGaJkBICPDqa3lCb2OLYcuMnDyb5admcQFNNKIgDWZBuYQgJidFmeR8H67gg/ZdwM+M6V6hZEqRIxH7G0X9bBEO0/gNheh0za4QQQEALMS2kJ+7LIQcxhBDOeSgUikQinHNKqd1ut9vthBAhhCEzfRbUFaT/IoSAqAwIDoICJ0ABuGhdGcwsKhy4iO4qBG8xUzjwqLSImErF/GUI0kWkZui6XlNT4/P5NE3jnHHOGeMAwmazZWZmpaenJ7qZPw/qCtJ/UawEiKEEXAAlwAEomEwWw2gRIHhUKbgAznnUWOHARfRPRP8VQghOVaJY0M+M7AeEEJ/PV1lZwTlXVdXhsAMA55wxput6KBTesmVzRUV5UdEIm83Wlw0XvO+R/osr3UJtIAQXMYXgIARwaPUnBHAOPGaRcAGC86gFw2MbyD8etVc4F9zhtdg9lkR/ReTgQAZOGhrqy8rKVFV1OJwWi1VRFEoppVRRFEVR7Xab2+1ubGxcsWJZKBTqs6ICqCtIf8aba3OkUc4Z50wIDjH9YFGNafmLRVCkpcKlDMWW81bqIpgAzoVIL3A7UFeQrkEICQQClZWVdrtNVS1SSyiVf1JaKCGUEOJyuUOh8OrVq/pyDB91Bem/uDOtacPsjDMhOOecCbPl0UZUuLRCOBeCcykqPLoli20vVzMBjFBRMCEN/WBI16msrFQUVVFUSimlJFZ+jkg5IYRIgQEQTqezrq5u586d0FczxPC+R/ovqo0OmZYsFMaBCcEEY5xzLox4CYfoC8YFlwjOIWbNAHAOjAMTwDhwLpjgjANngjuTrcOOzkr090MOAqQw+Hy+cDhksUQD3i0VT03EymgTALBarSUlJZzzvukNQ11B+jVDj0/15Ck616MKwRnnjEmBkbk4nDPGOWcxM4UxYBwYRC0Vw1iRosI4MM75oMMz8kYnJ/rLIQcNPp+PmEuewr6SCaNrVVVtbm6qq6uDPmmyoK4g/ZqMwa7RZ6cz0BjoUjOE4CC44ExwJjgXnIGQzi+pKFFThoEuBYZLY4UzLhgHxgW3OdUjLx1idWCyJfLzSIMjFAqa6j7EEkh4NLcw+h9veS0HuDQ2NiS49fsAdQXp3xA4/LIBacNtGosY0sJiEiI1I/baCL3ocsvYxpxxnccsHs558Sl5I4/PSfQXQw4ahBC6zoTMCeGcMS6EjNXFAnotr0VMY7gQIhIJJ7rtHYO6gvR30gqdx/22UHULXWgMNA4aj8kGB8ZBF7HXDHTDson+CcZjosJAZ4xlD0s6+dbRVoeS6K+FHEzwWOKIEEwIwxPLOGdSTRiLCozJQcs7nq6hD4CmOoJA8ZnZ1dub57+wU2ecEjmnPYkFSiE6wL6ljkssE0xwEXV/6QwY5ywpw37OA+NzRyYn8ssgBxuEEEWh4XBYVVUhKKXRYbmGccIYZ63RdZ1z5nQ6QG7HeUtAhgAhFGgibQbUFQQBRaXH3jgkEtR/eH2XrhFKFWOyYaNKsaksGBdCiop0lOkcGGPcm+U496EJY04ZkNjvghxcyGCJw+FsampSVZVShVKj0KTgPJqlyJjOGNN1puu6pumaphFCkpO8AACEkPYqIoRgjChK26yyXgF1BUEAAKxO5eQ7i9wZ1m9f3OavCSuqQgghrSZliVZ8EYILzoURgBGMc5E3KvmcB8aPnJ7bJ9M+kb5OampqeXmZpmmUcjl+BWL2SizoIkVF0zRN11kwGCwoKPCmpAIAa2gIrlkd2rad+f2gUEtWlmPMGMew4URVW9Sld0FdQZAoFrsy7fohuaO9X7+4eceiWhYWVFEIJbLMsQAAYRojGQ2ycmeKdcJZ+Sf8ZmTmYE+ivwFy8CFLFLvdbq83ua6uzuVyct5ir8g0MMY4Y7ouVUXTwuGwQsSs/3080Ncs3nunZt5cUVHBNS6M0kMuh3X0qPQrfpl91dWq29P70oK6giAtEEqGHZMxYGzy+rnly2bvKl1ZH2zQCFBCiFHKBQAYZ0QRyXmOYUdnHzFj0ODJGaoVU2CQbiJVZMiQwfX1dc3NzXa7w6h8KjO/OGe6ruu6FologUDQ43F+Nfe7V//51tpXX32mrs7lsulJbkKovDuZELrGIitWlyz57Z4XXxj6wkvpp5zay9KCuoIgbXEkWSZdUDD29LyKzY07ltZ8/u6Csq21VmIHIBxYRPgnHj9q2rmTCg5LTS90KyoqCgLQejKubuxrtdqKi8euXLmisbHB4XBIO0b6wYzICmO62+38/vuF//7Pf3O93hWK8ojH81hjncK4AN5yVAWI26USEirZtfrU0wY989TgO+/uTWlBXUGQjrE61YIJafnjU+dsfX152WdWxQZAGNMjLHTWmQ9Pvqgw0Q1E+gRGvfo2crJfdeyling8nsmTJ69bt66qqopSoigKAOFcMKZHIhFNi4SCgUU//PjF3HmqqjKAFF3/xmJdplqmR8I+88EECGBcB6vdAXa25a57QFEH33Z7r0kLPmohyM/DQNNIUCMBjYY4Yeap7JF+juzPNU1rampqbGxsbGwMBoOGqHS9yIqUFrvdMWnS4ZMnH5GZmU0I1bSIpkWE4J4k95QjpmzbXfb2fz902myUUhCCA7gFZHMuZw2S+Ys09i+lQLhQBLg8jk1331X97TdEUQRnPXguYqC9giBdhACgoCBtaWxsrK+vCwaDcjCjHC1vsVhSU1Ozs7MVRem64SKlBQAyMjIyMjI453IeYlVVLYpCFOW3gwdv5Ow7qqToGgOopsr1/qaxuuYjRAHgsbz4aKExmSwvQFGoyvn6u++a9uNiqlpAiJ5OPkZ7BUEQpDvoul5aWlpeXhaJRKxWq8PhdDqdLpfTbrfpurZr164VK5Y3NDQYatEVZEl8GVmR09o7nU6rxUIUhTHW+Nyzj/h904L+RkIpwE1+321+X4AQ2Y8bRStJqz8CjNmS3I3LVuz54AMAEJz3zPloAe0VBEGQ/UbTtF27dnHOnE6ntBOEACGMFGFQFCUQCKxatXL06DEZGRn7G24xvROCc6IogR9+aFq9Ksntfqqxbr3FmsXZMF3zk+jo/E6ES/rjFIDS99/Lv/SyXhgpifYKgiDI/iGE2LNnjxDcbrfHZnWMTuxIqZyASyGE2O12q9W6Zs3q5ubm/bJaWkPk6KmmBfNphOmUEoApkXC+rvsIhZioGH9getEC56pdrV+xLFxTQyjdVxX+eIG6giAI0lWkNtTW1oRCIavVSogUEpByAhCdLTj2FiwWqxBiw4b10K384yiylv769UCBCMEBmggJEUI7kpOWt9EhV0LI5DSLJVJd3VyyE3reFdbPdEXOacCY/IOe9zMiCHIoISc+qa+vt1otMhoC0DK3o1k4ZKQEQNjt9urq6traWujuHFzyKHpdHdCoZsjYCYfoSN2WkfaxvzZvBQAQwiM8Uld/oKegC/QXXYkKCSFAKVEU+SdLfgpd74VAFoIgCcRUNlTWTejWhwgBAH6/X9M0air1KD8UOp7kkUgpqqio6N5BzUfnJhVh7f4VrXVFcBDRObOlzBAO0DsZjf0gbs+5EEKOBuKhUHjHDq2ygms6sVmtAwbYCwuJagEAwRihNCG1PxEE6QkECC64AKEQhbSeqoQJ1uHyrhAIBAyzQwhhmjlYAJin3oq+ABCU0oaGAzUUiMfDWDSZmBqVXuShY/9yQ2bkXA4geMtCDiqxJCUdYDO6wqGuK5wDAFEU/7JldW/8vXnBt9ruPTwY4FxwQsDpUgcXJp16ava11zuHDZdzGHRQcRpBkIMKqSiUUIVEh5f7NJ+f+UGAjdq8Vq+xnAlGCd0vddF1zTRtIxBCCQGTnPDWcwbLCbggEolAd0MsgnNCqa2oqEEAk8MtY9IS+74AMZOFQawwKgjp62cAjBBd0y2pqa6CQgDo6dlZDmVdkUULtL1VFffc7Xv/PRLSFKfVbrUKr0cAcEF0nWkbNlWtXlf+8stZv5k5+MGHFKdTXsJEtx3po3Q/9Ir0FlxwAFCIEubhhbULv9z75crGleXB8iALCiGsYM2wZIxyj5qeOf3knJNTbakCBBPMUJqfRQiQc6IAAKVGyMQsKnLmYPN8XAfmaScEAFzHHKPDU0wXEHN2me0Vw/0VnTQbgAFnUlQAOKWRkJZ2ZLEjJwf2J+O5exyyuiJFJbBsaenFF/HtJfbUJOJ2AWMghGA8OiRVAepxqkKJaOE9Tz1TN//bsR/MduTno7QgyEGKVAhd6O/sfuflXS+vb16vg26lViuxEkqIIH7u3xvcu9K38q3StwZaB16Wf9nNI29OtaV2XVpUVWVMl1LRpl6LVBRdZ5wzTWO6rlNKOBeaFrHZUs3b7xeEUg6QesKJztEjwlu2WZ1OCpy2nniOR9OSQAhgIBhwBoIBaAA6gE6IJmDgL84H2TeqPdvzH6K9pxxGtGJ5yamnkLI99owUhXNF1xUhqKycI/8EKJwTrqlEcad6Az8tW3ryiaGK8l7I70YOUro7BAHpDaQ2bPdvP3vJ2detu25reGuKIyXTmem1e21Wm0W1KIqiqqrT5kxxpaS70xtIw+ObHj/m82O+2POFQhQmulQ7y+l0MsZ0XdN13ZgYWFYdloWHOWcysG+xqHv3VodCYUIgOTm5zeeI1uzrcEIInTEK8OmPP74bjlgViHDOGOgMdA6aAD06ZSkwBlyADpwBYyB0qSgAjNJQIJA0dPCgy68AgF4oPXko2itCAKV6ff3uyy9Tmn0Wj4dqmlHnwAhtySUCQCHAiSBh3ZHi8W3euvKqK4/8ci4G8BHk4EKKyoKaBb9c/cs6XpfrzuVERq8FyEnfBZFxFy647AJUVc3yZO0N7T3/2/MfHf/obcW3dW61SFPD4/FYLNZQKGSz2eRoFaPyivSBaZpmsVj37Nn9z3/+c+PGTR6P59e/vn7o0GEQS1OWNVra1z/mnBNCWmeaCVkf7J///OeDDz5otdnGO11FoWCIqhZBiCCkJWgvBAgOgoOQvq+oqABolGoRfsQfHrF4vb1T0vhQtFc4B4DKhx7UN262JCVRXTcKfJJ9/FE5c5OmO1M8tXO/2v7SSwAgWG8U/kQOLjC+0jeRerCwduEFKy8I0mC6I12nOqccFAClxUdBVKJQJTrBNAFBhUY0m9WW4k65e9ndf1z9x5+1WqQjKycnOxAIaJqmaZHY3MDyT49EIpQqu3aVPPLII0uXLmOM7d69+403/tHc3AwAjDFKqaIohJBAIFBVVVVeXl5ZWSnXKopCKY3mAwDEQjj00Ucfvfe++zwuF1itr6ak1ygKAR6mQgNdA6YD04FpwDTgGggNQAOIAGgAGiGaxdLc0DzytzcXXHKprAfTC5fjkLNXOAdFCW3e3Pivf1mT3UTTDfGQGG9F67exAm26zapsf/65/Cuvsng8vVD4E0GQA0RmDO8O7r56zdWggMvq0one9mdvpOIqQIEyYEZOFeecUJLlyXpg+QNDk4aeO+jcTqwW+WCRlZVdXV1dU1PjdruNhw0Zs2eMAYi33367srIqJSVF07Tk5ORt27Zdf/2v3n77LafTWVpaunjx4rVr11ZWVvr9fikedrs9IyNj5MiRRx11VFFREaWUMSYrjN16660ff/xxRkYGY8zK9N1W27MZ2b/ZW+lqDioeJwUAxowvZwxnYYRwRQlreqC+acSvrzvs2edBCEJ7qTc71HRFhtzr//1v0eCj6clE1813l6STU0u4UJ2Ohm07KuZ8lj/j4l6Td+RgAeMrfZa7NtxVrpVnOjN1aC0qEqPSr5Cj5KVXLPpEKYgQVLjsrjt/vPPIrCOznFk/G2AfOXLUqlUra2trXS6X9FzJBDAA0djYuHXrNrvdrmkaAAghUlNTFy78/o477hg7duzXX38dDoctFovFYjG8YYFAYMuWLevWrfvoo49GjRp1ySWXjBs3rqys7IYbblixYkVmZqb8KA7EDWK5pj+enftEdqZv4Y+KQqxOG1FU8zB7JkQ4HAk1Ba1e9xEvPj985i2Cc0Lan5Se4pDTFUIAoHn+N9RKjDItovXpJLGFxr/G3sYGlfPm5s+4uIcbiyDIgSJtizlVcz6t/jTdma6DHnV5g8k1YfZOgAy2EEFEi7MCgAN3Wpy7Gnb9ceUfnzn6GQ5cgc6eKRVFmTDhsM2bN5eU7BRCqKpKCBECdF2nlE6YMH7OnM/T09PlxrquFxcXV1ZWVlRUuFwul8tlHu8CAFJm5Nu1a9du2LDh6KOP/vzzz7dv356WlmboE6W0tqEhIynpyb///dijj971zls7X36pYeVK1hQyUo0ZABBw5GQWnXPeiDvvcg8e0vuDvg8pXWG6rqhqU3m5f/Nmh80eHeoaW9s+17vNn1wFnCsUfLJOHBorCNK3oYQCwGu7XqMKJZS0FRVo/SAZo5UtElMXHfRkR/K/t/37tnG35bpzf9ZkIYSMHDkyLy+3pKSkurpaTu0lhLBaLbfffltqatrbb7+dnp7OOS8sLExPTxdCKIoi4/YQKyBmRPLlZ3LOvV5vbW3tSy+9ZLfbk5OTzaJSXV09YsSIN998c+jQoZyxgsuuyL/kssZ162oWL2raulX3NxNFsWfnpI4bn37UUdbUNBCiN6e1NzhEdEUIwRhTVXXz1q2/u+22X/t8QyyqLkSbIanyHpEuSDDlfcuUkaghKQBUGq6tZcGg4nBgiAVB+ixyUP3Gpo2LGxZ7rB4OPzf8MBZoaevPlN4wEDbVVtFc8VnJZ9ePuZ4JppLOekiZBpaU5B07dpwQPBgMybC8zWZTVfWZZ55pbm7+6KOPDjvssLS0NBkv4e1KEcoEMENaLBZLIBAoLS31er1CCF3Xjc0qKytPPPHE1157LSUlRX6a0HWiKMljxyaPHdu+ebIiYkIejg+FfDB5SVRV/fDDDy8477ylmzYFnC7BmeFtNP6MxLs2q2IF2qR9I8tKc/SkI0gfRwrJ97Xf+3SfStW2BSXbuCOg9WtoVwhFpgBQ5Zvd30DMEuocI8OYEOp0Oj0ej8vlUlVV6sezzz57+umnS6+Xsu/+vU1usXwrx8SAHL+i65WVlVddddW7775riAoAEFUFQgTnQtdb/TEGQhBFSdT47oNeV+QDgqZpDzzwwC233EKEsCUllRFKBDDSqhAbizkfW+p9xgq0CQAeK6TDCWGCg9VGLZZEfzkEQTpD1vVa1biqg1mzWnm32y4RRlHj1psJLmyKbWP9xjALU0K7Uvk4Vg8fjJGOEPOz1dbWyqziNrLR3r1mLBRCOJ3OpKQkGaeRohKJRB5++OE///nP0mnWRqIIpURVW/0pSmK9LAexrsgzrijK9u3bL7roojfffDMtLU1RlLCmlSqK4LHCOKYK0oa0MJOocA5GzQOpKxENUocNoxaLrmnoBEOQPos0KXYHdqtEjUpFJxZJrCPgnAsQHesNCJWqNcGammAN7Hf6HzHLAwC89957lZWVNpvN+Bxiov3O8gXnPC8vz+12B4PBSCQSDAaPOOKImTNnyhALPRhKTB0ETewQw/f18ccfn3vuuevWrZP53ZquA+O7bdYIEBaTljZ/hk8sVqBN1tKJLtcAFIBdVluTEKrFYlijSD/E5/OtWrWqvLzc3AsIITZt2rRt27ZQKJTAtiEQs1eCLEiACCHaTnFl0HpmklbGCm+1jRCCANGYFtK7f3GlAOzZs2f58uVJSUlGB9JGTvaVFCB7tiFDhmRnZ7vd7tGjRzc2Nv70008HMJNxb3NQxu2lezESiTzxxBOvv/56UlKSx+PRNI1zDkLYFLoxFKrWtSRi04mgtCVDBEzBeWN+AgbMKHugAXBd17yuJ35c/NpJJ/3hgQemHXusTApoX3cBOYSpqan5/vvvf/rpp/Ly8rKyMsNjDgBWq3Xx4sW7du0aNGjQscceO3nyZJfLldjW9ncEEBGNc1BBjYUd5oByGTrdx9yKIlr25YAKK0hX1dKlS/1+f0pKSnsxkEv2JRKGs2vgwIGMMYjdjUceeWS3m9TLHGS6YuR97dy58/bbb1+6dKnM3pOiQggBQqrLykZMm2YpLQmvW6c6XZQJSlq8WQKiAXoOwIFLS0WPVf2MALEK9q0rqTk5JbB9+6WXX/6L88679957c3Nzjao+CT0BSI+j6/pPP/30v//9b/fu3QBAKc3JyUlKSgoGg/LX7nA47HZ7MBiU4wy+//77GTNmFBUVJbrh/REOnAJ1UzfnnAjCOCNAiGL6tZvrZ/HYeBFuUhTR6rUQgjPupE6n6oSYPbS/yF5i3bp1iqKYxWNfrztcYtTb55zb7fYNGzbouq6qavcqIvcyB1MvKU+xqqpz5sw555xz1qxZk5mZyRiTokIpjUQiVVVV11x11ez//W/Yo4/5da4B14XQOegs+scYMAE6cB2YDtxQFB0gQoiFwC6b/fskr1XTbE5nstc7e/bsU0899c0335SHkPnpiT4TSE8RCoVmz579t7/9bffu3bL2raIoFoslOTk5JycnJycnIyPD7XbLSKzsNVasWPHMM8989913eGP0PvKcD3IO0nWdCAIcmGCcccFa+cQEE5xF++g2QmJODJXGis70LGdWuiMdoDvj02W/H4lEKioq5FDHNms7rF7cRnLabKCqam1tbXV19X63JkH0XV0RjAldbxkzz7nM8n700UdvuOEGxlhSUlIkEpEdvaIojY2NnPO//OUvf3r2Warr6WecmX3H7QGfX1MgDKx1dTbdXKAtWqONUg1IcyD0aWqGpqiKELLwdWpqajgcvu+++37xi18sW7ZMdiWsk5KUMuePMZkSIL8FlrA8KAiHw7Nmzfrkk080TVNVtb3nUy6Rv3kZQSWEWCyWmpqa1157bf78+Ylpdz9GOq0mJk9sERIWfQBljHHG5R/jrMX91U5OjD/OOOU0HAkXpxerVGWCdc9eAQC/3+/3+2WX1aUvYtKSNi+kmyQYDDY0NEBHhk4fpC/qiuyUiaIQVYVo4R1BKN20e/cvLr30r6+8kp6aqqqqFBUAIIRUVFQMHz58zpw5M2bMYIwRSpmmjfrjn5SLL2xu9KsEQiBCICIgNBARk5xEADRCdIsaCEfUiF5+/HE/hSPC30ytVtkYmXKWkZGxZs2aCy644P/+7//q6+sVRWkfz5c54yBz/hQFKAVK5bcgigJCCKb3/slEuogQYt68eV9++aV8TNmXq8GckGMk9qiq2tzc/I9//GPNmjW90lTguuC6EPwg6GJ6FAoUAKZmTE1X0jVNI7GxBYILwQXnXJopLaMNRGtRYS0vOOeCC8KJAHFywckH2LCobRR73fnGbQwUc/TFrDEHUQJRH4uvCCFLPQrOA0uW+L78IrBqlbZ3L9d1q8c9p2RXTSDgzM5u1jSrrksZj0QidXV1v/zlLx999FGXy8UYk0+UisXyxRdfPFhelTmo8PRm38iA3yJEmFJBKSEkel8RwgAikUiwKWhPSxn3/AvnXHZ50aefPvb449u2bZNZy9Ie0nVdxmbffPPNefPm3X333RdccAEhJBrPl8qnKIKxwKpVzQvmB9ev1+vrhQDqTbKNGpV03HGewyYSVRWcE+jxyaUParQgbygN1WwL1e8KBet1zji1EGeamjLInjHU4c2zq9YeOXubN2/+9NNPZfSu8y2N+TbMLxRFqaure/vtt++7776UlJS4N4/romFPuGp9YO/GQMPucKSZcSEUG7gzLenDHNljXBlDnTZ3H/s59zyUUC54gbvg+PTjZ1fMTnGmMGCtEnXMdOj+YgAMBBecccJJMBwclDTotMLToGvjIvfZsNZzqHQSFJGBW3MdF0NRDNrPy9LH6Us3ohByjKhv7pd7H380uHgxhHVCAVQqAJoYP91iO95m/VGLfOpJ2mC1qZSG6uosdvuLL7546aWXGg8IlFJd15944olXX3nF6XD4kpKfc3mGBpqPbWocFwlDIBTQGIkmgBEOwpbmHf7LK0ffd78zP18wdsaZZ0479tgXXnjh9ddf1zRNjm41HhbS09MbGhpuueWW//73vw8++ODIkSPlJSeUNn704d4//TG0fJkIRggBQUAI0AUwgD0WxTZ+XM7td2bNuBgAcJ7jDmncE94yt2HbV417NwaDDYxpArgQMt5KBbEKZzrNHusacWra8OPT3OnWOB46EonMmTOnoaHBYhoMa8gGdJq6Y2ypqurGjRu/+eab888/P45t04J816Km9f+r27OkublKY5oQHABAAAchOHBQuTWJZI60jzwtfdTpGd4cexyPfrBw47AbP9nzidBFy3SwpgLGrYZAmnUlNviA6xwYKExpijTdO+ler827XzPet8fpdDqdztraWuk5l9HZ9hN5tbFC2nvDRGx6Y7vd7vV64SCZAYgIIT6pAQA4Kz2hDeEcKOWhUPkdtzW8+qqqKqrbBZQaZ1oQEuGCM27VmZ+IxS7Xexabbdz4F598cnRxsTE2VVGU3bt333HHHYsWLZKpYnKy6TClghD7nj3XDhl0dF6u3+9X7XZnQWH6lCnZJ57syM01TCVp8VBK169f/9BDDy1YsCApKcnhcJgL9chwjtVqvfaaa2657TZHIFB606+bP5itWhXV7QSqyNuBA3ACXBBN52F/IKjr3jNOHfnXv9tzcxNSDK4N3bjuPXSrBOv1tf+pXfVeTd2OCHBCKQFqHsAsH+g444xxHawsa4zjiKsGjDkjy+qMzzlct27dn/70p0gkYh7JbGhG+ziqkb5hBNukX1TTtIKCgkceeSQ1NfXAWyUElK9sXvxqVcmC5ohfKLKuYnQNgJAPulwIzgXXuSYUll5km3LNgHHn5Fhd8by7+s6t0iGyStgti295bcdrWZ4sDTRzoWKA1rrSzlhhjAkmqEaDWrAopWjBBQucqlMQ0e3girROfv/7369cudLj8Rj3j1la2t9UUmMMIZGv5Z0WCoVyc3Nff/11mQjQl6VFXve+Ya8IAZSy5uZd558XnPuVI91LBBDGhCyPE7sTLAA6hZCqAhfHBgND99bmzfzN6OJiPRKhqipF5auvvrr77rsbGhrkjAXy8lBK1Uiktrb25CuvvPrxx1NdrjbXxlygzYjMjx49+oMPPvjggw+eeuqp8vLytLQ06fiSbjE53OnZ556b/92CP9XsVZevsqcnUyGAMeC6vF8Mk0QhYHO5VCIaP/tiybSjD/t0jnvESLRaJJVrAwueLt+10A+MqIrFPPWQACGIAEK54EIQAoRSyrhesTL4v42btn1fc+KdQ1PznQfehmXLlgUCgTbGSrQNPxcmNfvE5GPN+vXrp06deoBN0sN89fu1P75U1VzJFIVaLRRMlXkFCEGIQgQXhAuqcEYUYECrN4Q/+d2WHYvrTrpraOrAOJyZgwJ5sR477LEl1Us2NG9IdiRroIEx9zi0NllaKjhF88QEE6CDEMKiWnyv+5alL5t20jSm/7xHdF/IfPRRo0YtWbJE6of8KJlN0KEqmLOBROv5Igkh4XB45MiRFotF9mbda1Vv0oeauOeaq0Jzv3JkplKdKYxRANVk0coXCoBKhUIgIGiSx1F+3+92v/+uarUSIQDg6aefvvbaa0OhkNfrlVF9eYF9Pl8oEnnu+edfff75FIdDcC4vXbRGW7sCbbKDkJo0Y8aMefPmXXXVVT6fz+fzyVkWQNYlE8KVk5O7Zo17/Xo1PVnRdYUxOe2paebTaLMpMKJzV0qSvqNk2TnnhPdWEUrhYEjt6FF2zG/8eGZJyQI/BUVVVAUU2vJHZfIDAUqJQqlCqEKBUlBUxQIRZdWsqvdnri5b23iAbWhubt68eXOHpTU6pP1jpvmtpmmrV68+wCZFAnzhsxXfPlYR2CssqkUlqjwnBBTS7swolBISPWmqYiEaXT2r8oNb1lRu8h1gMw4WCBAuuMfqeWvaW9lKdoO/wcqtLQMI9Ji/y3irAejAdS4tFdAAOHCVJ32WFF4Xvvqmq5ctW6aqamdpn523hxAAOOKII6SfQwhRXV1dWVmpaVqbES0SqTfGW/la2ivGk/GBP6n0JonXFWkrVL/0YtN/ZtszUmgkQtvJiXlqegpACagAlBCLXd1wyy2R8rKq+vrLLr30+eefT05OtlgsRqoYpbSysrKwsPDTTz+9/IordF2XxUKjf7JG274zf2TcPiUl5cknn/zvf/9bXFxcVVUlQ7sEQAdwhcPX6WHVYae63kZLjPZHmy1dOxHdkewJbdm69uaZANDPdaXke98X9+1p2KlLRSEdKDKlICckIgQolRYLUAqKQlRVsexe5pt1x5qKjQfUgdbW1tbU1LQpkmF2c3cuJG0WEkJ27dp1ICVeWET8+HLl0r/WQISqVKHRJxPzE4sSOzNyyC8lNHpmiMxHVCwlPzXMvnttTYm/2804uKCEMsGGeYd9dspnRY6iioYKqlNFV4hGwBhPYFIUXde5zqlOFU0BCxAg7tluywqLLdXGIuzKK6/cuHGj/Pl3pzGUCiEKCwsPO+ywQCBQVla2ffv2kpKSDRs2+Hw+KS1GcMWcWWpYLYYfDAD8fv/QoUOnTJkCrdMB+jKJbqUQRFG0qqqap5+yeuyg66S1iphn6DF0hRAgQAgXFpuN1tZ+dv31v7jkksWLFmVlZXHOdV2XCq/rekVFxYwZM+bMmVNcXCxHq+6va1KmnDLGDj/88P/973+PP/64qqo1NTUqIc1UubTZNyQcDgmh7qPBrRovOwBNc3pdFR/MqvjsU6C03w5tqdka/OoPZc1lTFVUCgqAQmS3GJVgOUMTjSkyiZUPj74lMcOlfG3zJw+ta6rufj9eW1sbCoXa3xjtFcW8qs0L8/Z1dXWNjd23otZ9WLvs9RrgMpyiQPS0EENfTc9XRMYAaNTaioquPDOlSxvnPLYh5NO63ZKDC4UoUlq+PvPr64de39DUUNtUyyKMMkp1KkVF6ILrnDCiMpVqtMnf1Kg3su3M9abLts4mnILr3O6w+3y+K664YteuXd2WFnknXHzxxTU1NVVVVXI6SE3Ttm7d6vf7pX5IRTFnghkpQoYfjHNus9muueaaDudu+VknbaJIcHxFMEZUte6dd/TdZdb0ZNpuOvo2E4m2Xc6Y3eXY9u03dfmFyelpkUhEXicZVyeE/PnPf77qqqvkBeu2t1S6xWRK8XXXXXfa6ac/8eij73366VEWdYa/yU+pGmuS0bb2rW3zTgHY/vLLOWec2ZdDcD2HFuALn62o3RRRVQsBCqDIUjutU3hazigBQgF4dGJyQgQlIChQDlRV1W3f1y14bdvp/zea0p8/mbquNzU11dTUlJeXl5SU7Ny5c9euXZqmyWfMnw2KtsnYMaeExtpKKisr77333sIYeXl5aWlpHo+nK3fg3k3BH1+sYiGiUoVELTbZIAIgSLQ0CYlmhEWVhgighAhBCBEx2w6ooqrrP6/6aVLJsb8e9rPHPTRQiMIFd1vcL097+bJhlz23+rn55fOrwlWUUAu1UEJldqGu6zrTHarjsIzD7jzmTvYju/nVmy3pFjl4hTHmdrsrKiquuOKK2bNnZ2RkmKMahqlhPm6bJGBjg1mzZlVVVTmdTiNVNRwOV1ZWDho0yAi0CBNgGvhi5IZQSgsKCgCAcxaJhDkXAGC1WmMzHwvoe0liCdYVGSr3ffqJYpqOvu02rd+arycFiHAxwKpmKnSvplPGgBBKaVVV1bBhw15++eUJEybIgY0Hbj8a8fzc7OyX/vKX0084gV79S1WhWke58qSjhS3fhTOLy1a3aGHT9u2eIUP6YQB/y9yGbfOaFEWhUR+hFBXzj0NeZxKtAQhExOoIEkKilQGjekMoUZa8Wzrq5OzBk9umH3HOA4FAfX19RUVFaWnpzp07S0pKysrKampqmpqa5INIcnJyQUFBV3SlzVADs66A6eFR07TFixd///33lFKr1erxeNLT0/Py8goLCwcNGpSfn5+bm5uamup0OttMpMF1sfzNvY27dFVVSeszI89G9LAABOTk7CKmKyKmuMQQGwpUZ+SHN3aOPCE7c6inWxfq4IMSKoTggh+Vc9RROUdtb9z+denXS6uW7mjc0RxpFiDsin2AZ8C4jHHTB04/LPMwIgi9kDYFmu6+62458MhIzNmyZcsvf/nLDz74wOPxGLZCJ/Vn5aMnxOL2jz322AsvvCDnIYbY3aLrunSotJETaJ0PJqMysrruhg0brr/++r/85S+M6YFAQAjgnBMCNps9IyM9NTXNyBzphdPbRRKqK0IAIVplVXjTRovNbgQbRDuTxUjlaNk19i8nYNf15GBwt93hpjSsabW1tRdeeOFTTz3l9Xql7yte7Y3G8zWNUHq817szGAwleSyci1gj2zfb+DM1W4AAoqqRxua6ZUs9Q4bIHOt4NbLvE/KxVe9UsxBYVGrqOiH2VA6xJ3EBHVh+JCouQETMKUSpEqgJ//T2roIJqTrXGhsbq6qqdu/eLc2R3bt3V1VVNTY2hsNhI+omewdZxQ9MI9dEbAxah0MNOhQVMOmK8chJKZWPk4yx+vr62traTZs2yUPbbDav15uZmTlgwABDabKyslLTUuo28G1fNquKhUbdXNBeVEw/iLb9iGHNGJ5XRVFqdwWWzd51+j1jDvzCHSxIq1ZWYRniHTKkeMivin8FAFxwY63cUoBggnGdX3XlVb5G3x/+8IeMjAw5okDX9dTU1OXLl19zzTVvv/22nEOFEFJXV7d9+/Y9e/b4fD4hhMViyczMHDRoUGFhobydpB489thjL774opy8A0yi4nK5srOzNU1rc/OYM4whpl7BYHD37t0ul2v58uU333zzn/70R6fTyRjnnOu65vc319XVut3uYcOGOxyOPiUtidQVeSIi5WWsocFit4roeK+WmI88Sbx1By3kAMrYb4sDUQVP0yLU7WlqaNA5f+qpp6677roD9H11grx49WvXhnXhplRwblYO48Jyk/iZmh3rKwkBgKatW+LevL7PniVNFauDVJWP6vL5uoPCsW2cn6SlQyUQ217u00yrG+xlny74YfV9/91bV1FeXl5fXx8IBDRNg5iPIhqciZUFgtgPWAgRDoelUUta5pQlZmlp7/oQrYcatFEdXddlx2GMgDGXfolEInv37q2qqlq9erV8UnE4HMnJyTm52TZ/esiXkkIHZInhXsiDFgNuX/1Fxz5XEjVZ5M1K1n1RfszVQ5IyHV25OocMclQjF5wLTgiRuTpylbFQIYpKVaDAGLvlllt8Pt+zzz6bmZkppUXTtPT09G+//fbGG298/fXXV6xYMXfu3M2bNzc2NprVQghhs9lyc3OnTJly6qmnZmRkPProoy+//HJ6erqxGQAEg0Fd1/Pz8+UYFPMNI1p71QKBgLzBKioq5FNOWlrajz/++PHHn1x99VX19XWUKvKmUlVLU1PT8uXLxo0bLwfK9BFpSbS9AsBDIc50QWzyHJv/iGkMU6shTbHp6KOVrQHSGKuq2jt2UOELL700adKkePm+OiPgb2+RmO0SZsqVFwBcRHXF/F305uYebGFfZfu3jVpAWCykvZaYnsTbBiRNMiO1WQAAAbpX3bzc9m6INnKNLf+UGypCCJHjUczGRIc/40gkEgqFrFar4UZvoyJtW2ISFbONYrwNhULmA5k/yqw0hkclGAzKrCEBgloJETSTDz+Z3ecRme3urA7OTCcQAEpp9Y7m0lX1Y07uX7oiMctJ7J5ppTHRzShljN1///0+n++NN94wrBYpLV9++eWpp56anJwciUQcDofH08qpKA2R8vLyf/3rX1999VVmZua///3vlJQUI/ZOKa2vrx88ePATTzzx1Vdf/fjjj5qmWa1Wq9VqeF/loNpwOEwImTJlCiHkzTffTE1NNW4eRVGsViulKiGK1A45hN/pdDU3N61cuWLKlCOt1ngWoTgQ+sC4SEq5IDz2QMpNXUv7qXfkzMEQm44+upZSi8933iWXv/zM00nJyfH1fe0LQRXWeq45I6bS1rqSX0TESnGbvk4/nOQ41KiXrfLHnqoMd4TpTez33/KuDaZemgMvt64KWmopqAooMlzR+cOgIQPmwj+BQMDtdstWdf440kZUjEEGorVz3EgeNUTOCNKam2TIjHFc6aSpodur+dYkkS2AtTsz8vGrxQbe9+mSnkWiBXnJipoxJ+d28r36A52Mn5dKzzl/+umnGxsb//vf/2ZkZEh7lzHm8Xg2bNhQUFBQVFQkF0Ls6svXlFK73W6325uamqqrq0ePHr17926pTJTShoaGgQMHvvvuu4WFhVOnTt2yZcuCBQtWr15dWVkpTRNCiN1uHzBgwKhRo6ZNmzZ+/Hg56m7WrFkZGRlCiLq6uiFDhpx++mnBYEBVVc5Z7PmJEqLb7fb6+vqNGzeOGzeuj5gsidQV+f0tGRngcDKdUYUyIdqXjDPPwSPneWQxY4UBgKI0NPqPO+3kE//2V6XHfF/tUbMyzbpCTfGVNorCAZicnhK40Wy53JGV3QtN7VM0VUV85ZGWJ8iYaSpanT9jRfRpPdZ7Gn2osZxHICBE1HW+LyERsdxN+auzWq0pKSkZGRkDBgwYNGjQkCFD3G73f/7zH5kcLIToMDZrrlALJlEx6wrnvLi4+He/+11ZWdmOHTtKSkr27Nmzd+/epqamcDhsKI3x+fs2aHgEAqav3+rMtD51rb4nRC1443RF11RuaeS6oGrie5w+i3FFXnrppebm5rlz56alpRlFelwu1549exwOx8CBA3VdN54VjIcJGUuzWCxyatH8/Pxdu3bpuu7z+QYMGPCf//ynsLBQzr8wYsSIESNGCCEaGxsbGhpktN/j8aSmphphfyHEPffcXV1dPX/+fKvVOmrUqCeeeCwlJcXvDxjPKDJRQ8YN7HZ7eXnZkCGD3e4+4Q1LqL1CCABY8/OV/IHali3U7aDyCpk2MXfQTABnrWYOZgCMkAhA3pQjFTk/sakUR4822zF6tLCous7NZ9CcYiBi3jAugDNgIOTclNGRv5wDAW9xsfGB/YTmai3SzIAoACCixTmFPAXm527TIzk3y4kw9Z4AggC1My+nvOWJPoaRpmmxWJxOZ1paWm5ubmFh4eDBgwsLCwcMGJCenu52u40CG+Xl5Z988olRTMFsSRhdgK7rUpNk5qj5QPKtzWY766yzjj76aNkYXdebm5tra2vLyspKSkp27Nixa9cumY3W3NxsxGAM3x1ENUYowu4W6YYwQKszIxcaxoqslS99w0bk0VAgWfAFfFWhSEi3u3v+13EwI3XCYrG89tprV1555ZIlS4wUYSGEoijS8jBvb5Q8h5gzDQA45w6HIz8/f+3atXl5eVJUpOpATDYURUlOTk5OTjY3QO4uDxQOh5988skFCxY4nY6jjz7a5XIFAgFKKWOt8mZl56EoihyuN2xYn0j8S7CuCMaoxeI+dlrNuvWKcFHgSmuHEhi9M5eP/GDunWUHTS0k68SToLcGo8qcYPe48erQIZHtO8DpUICLdnLIY6EgzjvSwkjYWTAwbdLhxgf2EyJ+xnVBBAjSEpYSwFsP0TW6Tm4YKy2P4UKYbBeRpY/apnwfgYBcQ4Da7fbk5OTs7Oz8/PxBgwYNHjx44MCBWVlZXq/XZrN12CpK6emnn75mzZqSkhKLxUJalzFuaGgoKyszhKSxsbGgoMButxs2kLFq6tSpRxxxhPGxqqrKvmPIkCHTpk0DgEgk4vP5qqury8rKdu7cKZWmoqKirq4uEAgwrgMBATxXjE0ThRzkiDwjZYGYElYMPxiAKSNExLxksVmuojqkhVmsah3SGVIb3G73/fffP2PGDBmplfLPOU9JSWlvChhyIh8RpGYwxqxW65gxY15++WUpKkZOeZuhMPK13Neo8hIKhTRNs9tt5513HiEkEAj4/QEZjGnt6G1B5qr10mn6ORIdXyEEADIuv6Lyb3/VGaMCuBxbHFsvZMSbAxcyOMF1EC1VfxQl5POnH3N0xlFHQ2w0TC+0WTBG7faU888vf/RxxeXiOo+W1DD96M3NNkSlpdlNbMQ551q83r5Q2Lg3iXWBAkBwEBQ4AQoAAni7x4moePDoI7l0ObUEFeT9kM6GDA+ftJussHF3si3zvFuOHTdlZHZWdmpqqsPh6PqjRnZ29mWXXfbCCy80NTXJ3DCjB2lqajKGJgBAOBxubm6WcX5DVBhjI0aMuPTSS/clXRKr1Zqenp6enj5y5Ej5lcLhcENDQ3X13rl/W7Xow/VNSiUnbCJcYAM3AI+N4Gk5IcZrHssFEcC5ACFiqSHRBzAhJ2sXorW7DPk55IX++uuvhw8fvnPnzkAgoChKKBTKzMzMzc3tsHCkeXyiYYMCgN1uN6Is7Q/UPp3dQNMiRpK6LChl+Nykw1UIWc7ayEXkABAOh6FvjJFM9LhISgXn3ilHJl9wUd2777lSvEJjnLd4hoznUvncr8d6Z6PYDxMw6p57AaA3O2hpYeTdNLPijTfCdbUWq10wwU1X0/BHtGm2DqATEo5E7GnJRbfcCtC/nGAAoNoIUCEYF0BiD+DcNORC0hJW4dFHci6AcxE1VmJdKhPACSjD9ekFbLIQwu2xn3ny9OzhSd1r26RJk66++uo33nhDSksnW8pha2ZRGTp06MyZM3Nz9y82LgO22dnZ2dnZzaPTQ7NHUkKpQhSwcmCxMi0t9oo5Vt8SRBEiWko1JjOx9EMpKlwAt9gVRe1HZnG3kelbGzZs+OGHH9LS0hwOx5YtWzjnAwcOzM/Pl7F90rqUnLkfN7+2WCy1tbX/+te/Hnvssf1vhgzXyWkIQQgeu7pRcYnZytH0Ezmope88QCT+VpNXYujTT8OA3IC/SVdBByZnWdWF0AXXgevRGemjWhItVGq1+hv9Q399fe4ZZ8qpU3qz0YIxW05O4eNPNIc0jQqNcF1wJgQTQheCgdCBae2arQFoqhoKRIof+oN78GDBWL9yggGAK82iOkBwwbkQMTdhbNpxbiRnmFbFbD8eTdKOPYxHu04OXAhQwSoEsXtVh7f7IQRCyPHHH3/TTTdlZ2cb9bDbZAFIhKm+EwBMnDjxjjvuGDbsgMqleHIsQtVlgiMHJrM8YjrBYjYwFy1mipD9jzRUzMZKi/QKLtXFm+WwOPqRWXyAzJ8/X156l8s1fvz4CRMmDB48mOznsHaZSLZ69erS0tI2UvSzyHgJN1QjerPJG9K49RhjnLHoahn8g3Z5Kwkh0X4wiPbR9rwBY955d/npp+mBoM3lAE1v5VOK/emx+ISmqs11vtwTj5/43AuQCNNPTpacd+VVTWvXlPzpWXeym3JOeGwGBXMyWMxYYZRqVGmubxrx6+uHz7y5t7Wwb+DJtjozlLp6nXAiCCGEC6Cy2pU5DdQcneYxYx+EYalwHk2JkE/ljAMXnKflu1zJB5TCTwg56qij8vLyZs2atXjxYr/fbzyimjfjnEv/RkZGximnnHLmmWe2CcB2g9RBdquHaA0MOFCqEMIFAIsVIxBACBgurZjVIqJyK2LyLAVJao8c/ceBCyJyirxU6V+WcTcQQsgSXuvWrZP+TCMDUNO0fXUyHfbjcmNVVWtra5cvX56fny+Lu3SxJU6nU1Z8oVSRtdcBSMxEFlJjGGO6zuRmjDFd1+Iym1xc6AO6IvtoxlKnHTvxiy9XXjKjcU+FPclJKQUjj9OYjp5QRkk4HAk1BQsvOG/Km/9S7HYQIiHeJEIpcD7ij38Gq2X7E0/bbKrVYTfa3CKHBBihTKGhYDgcCoy+ZeZhz70AfSAXMCE4Uy2ZoxzVm+oVSjkHER2KbvjEDGIx59iPSVoqRu/ZYtBwHn0qJ6JgfJpqi4NUFxQU3HzzzSeccMJ33323du3aurq6Ng+qDoejqKho4sSJ06ZNKygoiMulTC1wpAy2lS8LWgjhnAhCKeUEZHoDMeeGiVhOseAcREsgL5rN3nJmmADGgVudauHEtANv4SGPvMrl5eU1NTWdzMzYXkiMJW1eSKHasGGDDL93pQ1ys6SkJKlwFotFjq6XjxUmx1fURtH1iBxQqapqTk5fGaLUJ3QFDGk5ZurRPy1bd/ed5R98ABpTLZRaLaAoAoAJoet6JKxrXDhzMo/404PDbrgp6g9IYAdNiGBsxONPJU2esuGu2+u3lagKUW0WoqqCkGizmR4OhTUm3AV5k594uuCSS6Pur36pK1QhQ49N2fBpLeNMEQACuBCEUtJSlgUAYvm2MTMFokN/pJeMcYj2mFwwLhgHxgRzJFmKpsZtPJDVah0/fvzYsWPr6uoeffTROXPmGKFXzvnpp58+c+ZMh8MRx4cDe5I6eKp3z7ImDpQKACE4EEIoIYYtF8t5aDktwiwqzDgtEJ0HkQPjjOcOTRk4rq88yfZ9Kisrw+Gw1Wptoyv78i+1GdVkXiVzwyoqKmB/slWFEKqqZmRklJaWut0eQphpXC2XoRddZ4wxTYtEIpqus0DAP3jwYI8nab88dT1HX9EViHqWmD0nZ9Lb79bdenvJP9+omT/fX7qLBYNcCFAUS3Jy2shRA845t/CyK2wZGX2idyaEUCoYyz33vIwTTtj19lt73n/Pt3ZNpLGJc+kqBzXJnTJuQv5FMwb98iprSkqfaHZCGXxMSspga92WCKFAQFBBBRPRgeaxjDABLf1mq3ACMGYYK8LUe3JeODEr7r0npTQ9Pd3r9bZZLqsRx/dYADDy1PRl75aHqnVBgIKgnAowHpuifjAAMJ8ZI9rEQI/ZcIwLzjmTPjEgYtzpAzzp9ri39tBDqkIgEJCeT7NgdLJLh+aLsZAQEgwG+f7MHyyFYeDAgdXV1U1NvtidRmKfLGMquixDp2l6INDsdruLi8dBIiICHdKHdAUACFUE58B56qRJqZMmcU3zl5aGq/cKxhS7wzlwoD0zU27Zh3pnQqSxZXF7ht74myE33BTYs6d565ZIQz0AWLxez9BhzvwCacf2t6ziDvHm2sedn/nVkzsJAAVVgKBAQQAAif7bMvDCPHRcBg9aPGCGscIFtzqUIy8dYnP1rft5f8ke7Rl1RvpPb5RbFABQhCyDHy19b4QbW52cmNeLGefHJCqMc5Y1NGnSLwoT+a0ONgxVMMaFdLKlWXvMBX5gH5LTdQiho0ePWbFieUNDvdPpIsSIr8h6xjpjTNN0v7/JZrMeddTRdru9jxgr0Nd0BWIpvHIWRWqxeIYM8QwZ0rI61jX3td6ZKAoIIXSdKIpr4ECXaVAuABir+lqzE8WEC3M3fLm3bHmzqgAFRbSkGkOLxwfAUJQ2cWkOnHNm6j356JPyR5/Ug87l3smxoZRMuWrg1u9q67aHVWqh0Ukz2xboNA0AajkzLY5BzrjQOehcMMVCj72uKL3Q3QuNPwQwBp1A7IpLO6PDztoYDCvftnlt/gSbzdaNIdtCCLvdPmnS4WvXrq2srFBVRVUtAEQILiMroVBI17XMzMxJkyb3qWLG0Ad1RRLtf1v8yLFqOISQXin/1R1ibZODCWLPl0T6yvpusxNBUpZt+u2D/3PLulBdRKEKATmLe8tTOURz6oy02pY0sJio6BwYA50xljU06dTbxtich8IZzhjqmn7boI/u3aD7IwpRiGkaZgBobcmZkrCjosIFZ0zoHHQGjAsx6ZzCyRcNSuw3OujIzMy0WCxy/KNMKG8jLYZgmPfqcN4EANB1PTMzE2IS1fVmyCNardaJEydWVVWWlJTU1dWFwxHOGYAMwKQXFg4aODB/fxOge4G+/VPc93jUvkx/G5LSPYYfl378bYO+eHyLHuKUyLGwMjPMyH0y/m1JeZJdJxcs2nVylpRhP+eB8Xmjk3u0tb15H449K6euNPD1s9t1nVPS3mRpqd0iDGNOxM4MSLllnPGiadln3Tf2YPcN9ibyKufm5qakpDQ2NhqlE8yJ5h1GU9qXuJaVXeS+RUVFHe7YRYQQWVnZWVnZkUjY7/dLnXM6XYZd1ddEBfq6riCHLoSQKVfka0H96+e2a36mKAqJzfFlIMy9Z7R8Rcz3BYwx7s1ynPfQhOJTByTsa/QAVCVTfz2IMz7/Lzu0gK4oiklxW8VXoq4wOe7aODOCCSFGHp9z4eOTUga4EvxlDipkrN7tdhcVFS1YsEAOMzTVA+0As6hArGKp3EWGQBwOx8SJE+EAHk2MMZVWq81qbakSJGKVY7r3sT0K6gqSMBQLnfrrwa5069w/bm7YHVIUlVBzjNoc/eSCm6LTgnEuBoxJOef+8SOOz+npX1Zs0DtArGdvPdQm/ljsyvE3D/Xm2ub9eUvdrpCiKjQ2A6RskYgW4OTyj8fiK4wxq1OdfGHhaXcUe7P740ReceH4449fuHChFAxjBp022xhRdGOJFBVd1+vq6hhjqampwWBw7Nixw4cPl5/T7fa0t5ZiRfL7KKgrSCJRVHr4jPzskZ5vXtyy6eu94WZGlehglujA8miELRa354xz4UqzHXZO/vQbRmQM6smq4AKCjXrNlqBj+/DDI5c7dS8IwkD383ptTeaeFU1pQxwOb0/9ghQLPfzigtwx3vmvbt0wtzLYoEe9/NE4i8kJJv1gjCtWWjg+/bjrh487faDFjhkindH+Yd9skYwfPz4vL6+ystJms0knGInNm9BhrpcRhgmFQmVlZcFgkDHm9/szMzMvueQSiI24NO/SPVXoy1piBnUFSTwDx6Zc8sKkrQurlv1n146fapuqw0zjALGUfeBCCEGEaqWpA11FU7MnXzSo8LA0xdJTcSzBoWZbcOMn9du/aazbESaB0ePEGOAQSyPhtR/qb81blzbUNvzElDFnZqYNdvXQ7z1vTPKMP03cuaxm5UelW3+obigLREIsOoeZzGwgglqoO9U6sDh1/JkDx5ych0NVuoLh3ZLIMe1GoOLJJ59ctGjR8OHDjerFnURHZOIvIUTTtD179sg5hjnnTU1NycnJo0aNMg7XRhX6YFwkXqCuIH0Cq0MZfVJu0bHZNSXNu1bW7llbX7OrOdgYEVxQlbhSbBmDPQPHphSMT0sZ4OrRUlfNVdqKt6rXzqprKtMJIYRShUZTCYj0fAiiCJU1sYrlwbIVTcvfrzjs4uzDLxvgTu+R2cVVGx12dOaQKRm+qmD5xoaKTY21u/2hJg2EUG1KUpYje1hS7qjkjEEetFG6iBCiubmpoaExFArK8o6EUJvNmpWVbbPZbr/99lmzZnm93srKyuzsbCMfrL0qmJHTnwSDQZvNJt+6XK6SkpJbbrnllVdecTgcgUAgHA7JWbmsVqvL5TKmzT701AV1BelDqFaaPTwpe3jSETMGMY0zjcsyPapV6Z05dHcvbZ7/RHn58iABoqpq21KYslSmIFwIwglRCAfqK9W++ePO7YtqT7lv2MDxyT3UMKqQ5Fxncq5z1Am5EMsJO+S6o55F9uDBYLCioiIUCtIYAKBpejgcKi3d/fzzzy9dujQjI0PX9erqallPpU0cBVqbL8YE1bLIsJE8Rim12Wxz5879z3/+c9JJJ9XU1BACsZr2jFLF6/Xm5eUZOtS7J6NnQV1B+iiKhfacp6sDBGz+suHrh8uaypiqqKa5T1q2EHK6X0Io4RyidZhVCgxgx/eN7+9ZfdYjI0dMz+yFxh5avVAvQQhpbGysqChXVcXpdJpHsBNCbTbPn//87JIlSzIyMiKRiNy+srLS7/e73W6n0ykHtLcf/GiMU0lNTW1ubm5qapK2SCAQGDhwwD333Dt8+LCmJp/L5YRoJIYzpkcikb17q6qqKocOHZqRkXmISQuOtEAQAIBt3zbOu39PcxmzKCoFhYACoAJQAAWAyj8C0XlBCVBKKCFy0CKloFoUtX5n+MN7121bWJ3or4J0THNzc0VFudVqs1rtlKqUKpQq0mRRFCqnE7bb7XLoiczgqq6uTk1Nveeee9LT06urqwOBQPtAi9QnTdN8Pl9eXt7gwYP9fn8wGCwoKPjjH/80dmwxANjtdkWRR6SKQhVFsVgsTqdLUZS1a9eWlZXt7wQtfRy0VxAE9m4MfvtIWWAvVxWVRCUkaq9Ih1PM80QJcAqEA0RrDTNCgQoQFFRF4Y17Ih8/tP6K1yZlDMHSKX0LxlhlZYXFYlFVlVIqq3gSIkfkCkJAUejZZ5/9ww8LpaJwzquqqo4//vjXX389OTn56KOPnjNnzrx583bt2hUOhwkhcrb5mLlDUlJSpkyZctFFFw0dOvSSSy5ZtmzZ/fffn5OTHQgErVYrIaRleoOoZimEcIvF6nA4NmxY73Q6U1JSDhmrBXUF6e9E/GzhcxV12zSLaiFAARQSm00LjCqYLfPMRweSCCCEECCUCCFFiAJVFKViXfNXz2264JkJGEXvIxhBdU3TpPtLXkJDWmRyht/vP/LIKddcc+1f//pXRVGam5t/8YtfvPLKKxaLRdd1t9s9Y8aM888/f/PmzevXry8tLfX5fEIIi8WSlZU1bNiwsWPHpqeny2O9+OKL8+bNGzJkcDAYtFqtlMpkMBCCcE4JEYQISomUN1W1UEo3btxw1FFHHxqiAqgrCLJlbuOOb5oUVQ74l5YKUGjzCxekxXYxZpsHQkEw2UdRAEKBKKqy5rOKMafnFJ+Wl4Avg7RDdtY+X6OqquaAmXmiNACglPr9gUsvvTQrK+vjjz/Ozc294YZfWywWzrmqqnKEiqqqo0ePHj16dIcHMmL7OTk506dPD4WCNps9lmHc6oixhsm2CZvNVldXV12995AJtKCuIP2akI+tfreGhcGiGO4vo++JDkE0ZMTcLRAA2TOIWIUV6UCjhIb94se3dhYdm2U9JEphHgKEw+FwOGyz2aKFO03l5ziPFoeWW/r9/mnTpk6efHgwGKiqqgoGgw6HA6KzYShgqi/ZZgy8jNNIVWhoaGhoqHe73aYgP7R5YYLI4EpFRUVGRm8kffQCGLdH+jVly5srVgdiNTaiVWTaZIIJ078Q264dhiARRaE7l9aWrq7rsVYjXUX27JqmyYEjRjkvIzQiBJeDkjgXQnBCoKmpORAIBAJBTdMikbDxIRJKqaIoiqIYacryrdnICIVCRtUWERtMK4Q0aMxHbxn+QiltbGzs1VPTk6CuIP2aHfMbtYAg5gIpRgkZk5S0f8rcR+5OdDqHUKO+eUFVD7QX6Q7CmBeeRwuYxoaasFg9U2M9lzPwxcLs3cnRYkw3KVf0sOajGJIWe8kBQNM0OHgqtXQO2ulI/yXczMpX+zv9JYuYxkTfxmZAMd4b84+ZIQBQsrxGCzGM3icWeW0ppZyzWFEWQQg3TesrpMzIUY2MRcctMqbLoHo3DipEdIwkgEw2i8bkDJ2JqVrLa6Ou/qEB6grSf/FXa417IqTFaBfCNH2WaUZk+WeIijE1sjCpTIsLHYgghNSW+ptrwyl5zt77PkgHEACQMzZqmia9lObQSGygIpPCw5icjJFFIhGHwy7nlt9fG0JOC6brTFFkGWNisoGiKmLAuS4P6XBE51M5BEwW1BWk/+Kv1cLNTHqDBQjS4vsiZjMlJiocDDkBMApEQYvkxOacFwAEgr6Ivx51JfEIIVRVdTicjY0NlFI5s7Bhr0h/VExPGGOapmm6rofD4fz8gUYofr+O6HK5GOO6rgmhKoqxezSK01pWdE3TdV3XdS0tLb0Hvn1iQF1B+i96iHOdA1CpBySqDZLYI22rsL0xI7IhIaLVWzAmNhdME1rokHJuHNRkZWVVV1erqibtFXM946jbS2eM6ZGIpmlaOBxRFDp48JD9PYr8WLfbbbNZQ6GQzWbjnBJixPBbfF/SRolpWMRqteblHTrT02HcHum/tKTjtAgDBzBLhbRRuPwTILiRpCqE4Ib5Ep0KxbRjD8/8hXQZmcXr9XozMtJ9vkZN07WOiUQi4Ugkoml6INBUVFTk9SZ3w1iRJmxubl4wGIwdK6Lrmq5HDRMpJ5oWkei6Hgg0Dxo02OVyHRpOMEB7BenPqHZKVMEjHAQRhHDgFCgB3nrwY1QjeFQ2AKIzjLXMOQZyPuDYfMkguACuqNRiw6B9n0B21kOHDmtubq6rq3O73YRQaVbKAY/RoApjkUikqclXWFg4enQxdCs7S8pYenp6ZmZmWVmZx+OJxe2lvRL1g0lbRdP05mZfenr6mDFjune4vgnqCtJ/caWpFjcJ+jkRlBJZoZjT6CgWI+1YxJKPW0wTLk2XmJxwYLFJLQUXUXWxJ9mcKT0yIwvSPSil48aNX79+XVlZmaqqFotFagDnXNeZpkWCwSDnbMSIEePGTTiQLl7uO3x4USSilZeXOZ1ORVGNfDAjtBIOR/z+prS0tKOPnqoo6iFjrADqCtKfcWVYPbkWf0WIEsoJkdLCAAgIOcIRWjKJIeofEzwWrm+xUXjMSyYEF4LJiYHTBrrcabZEfj2kHZTSsWPHZWZmbdu2raGhXtN0IaLjSFRVyczMKCoakZWVHZfSwoSQ4uJit9u9deuWSCQih1LK9DPpBFMUMmzY8LFjx1kslkNJVAB1BenP2D1q7jhX2TI/BUoZcEoJEZRQOcFv62ErMkYvuNQREBw4j04vz6KTzIMcvB0NtBRMSLM68PfVt5AGSnZ2dnZ2dlNTU319fSQSAgCbzZ6amupyuSGumb5CiEGDBuXk5JSWllZVVfr9fjlOxeNxZ2RkFBQUyhDOISYqgLqC9HOGHJuy4v1KHmYAQDkIQgQVFIh55ixhnsFJRFPCDFGJ6QrjgnHO5Au7xzLiuJyEfStk3xjz2Hs8Ho/HY14lWhf+itex7Hb78OHDhw8fLkM4ikKN4ZaHnqJIUFeQfk3B4d6sMc6yJX5VAQAgggIjLPpTl6OzRaxUoTl6L9qJChdSVIAxzodPzCoYn5bA74V0gpFk3OHyHjoWIURVVVWNdrlx17A+BeYZI/0aR7Jl4iXZYGMMNA56VCoEE4KDYIIzw7XFgTNgPJpPzDjoHHQBUks4F4wLaaxwq0M96vIhNjc+tPVpSDt69FgdHr3njphYUFeQ/s7o07OGHJussQgDXUoLk2ZH7I/HxEMqCgOdxRSIAWPAGdc5l/vqnPPiU/NGn5ib6K+FIAkDH6mQ/o7do06/fXDVlqaGXRGFqhTkrPWtSuXHBksagx+jFgwXnHPGhc5BZ8AY4zlF3lNvG4MzryD9GbRXEAQGjPWe+rthtlTQeYSBxkDTQWOmP/mWtzJTGBOMc50LLSYqLDnHcd5DE3JGeBP9hRAkkeBTFYIAAIw5PVsPs0//sKm5KqKqCgEKsYkgjRqUMUtFcCHngTJcZIwxnjrQdf4jh406AT1gSH8HdQVBAAAIIRPOG+BKs855fEPZ6iZKKaHUmDkD5ADJ2GRNQsgBK0wAZ5wBiMGT08+5f/yQKYfIPLIIciCgriBIDALDj81MH+z+/vVtK/67p6kqRAilipzEPjaEJRpi4Rw4Z1yASM51Tr5w0LRrhiXnYEl8BAFAXUGQNqQOdJ71YPFhvxiw/MPSTd9W1e7yR4KMc6NOvhAgCBVWp5oxKHnU9JyJ5xXkjEym9JDNGUWQ/QV1BUHaQhUycFzqgLEp028KlW1oKFvfUL2zyV8f4UwoCnGlWjMHe/JGp+SOSnan2Q/dQQgI0k1QVxCkYwghSZmOpEzHyONyAICz6ESQVEElQZDOQF1BkC6BcoIgXQTHryAIgiDxBHUFQRAEiSeoKwiCIEg8QV1BEARB4gnqCoIgCBJPUFcQBEGQeIK6giAIgsQT1BUEQRAknqCuIAiCIPEEdQVBEASJJ6grCIIgSDxBXUEQBEHiCeoKgiAIEk9QVxAEQZB4grqCIAiCxBPUFQRBECSeoK4gCIIg8QR1BUEQBIknqCsIgiBIPEFdQRAEQeIJ6gqCIAgST1BXEARBkHiCuoIgCILEE9QVBEEQJJ6griAIgiDxBHUFQRAEiSeoKwiCIEg8QV1BEARB4gnqCoIgCBJPUFeQg4wLLrjgxBNPTHQrukn3Gj9mzJiZM2cCwLp16wghCxcubL/NrFmzCCE1NTVxaGWfp66u7qabbho4cKDH4zn88MM//vjj/f2EAQMG3H///R2uSk9Pf/TRRw+4jftNJ02KLy+99JKqqj16CNQVBGlh/fr1hYWFXdnywgsv/Mc//rG/n//rX//61ltv3d+9DPLy8l555ZWhQ4d2+xMOATjn55577qeffvrkk09+/PHHw4cPP++883766adEt6s7ZGZmlpSUJLoV8adnVQtB4oimaRaLpUcPsXz58q5vecYZZ7RZqOu6oiiEkH3tddJJJ3W/cQApKSk33HDDgXzCIcDSpUu///77L7/88uSTTwaAqVOnfvvttx988MERRxyRkPZ0+7YsLS2trq6Oe3v6AoeIvfL3v/991KhRNpstPT39sssuq6qqAoCamhrSjubmZgAIh8N33XXXwIEDrVZrQUHB7373O13X5UdlZWW9+OKL9957b1ZWVlJS0plnnik/DQB0XX/wwQcLCgpsNtuwYcNeeumlRH3fgxdN0+66667c3FyXy3X00UcvWrRILq+urr7iiitycnLsdvvw4cNfeOEFuXzNmjWEkM8//3z06NFGx0EpfeONNwYNGmS32w8//PAVK1bI5d27rAYPPfTQlVdeuWvXLkLIc889BwB79+694oor0tPT7Xb75MmTv/nmG7klIWTnzp1XX311cnIyAKSmpr7wwgtnnnmmw+FobGwEgHfeeWfChAlutzs9Pf3ss8/evn273NHsB+uktT/88MP48eNtNltRUdHs2bMNoTL7wXRdnzlzZkpKSlJS0qWXXiqPa/Dee++NHTvWZrNlZWXdfPPNwWDwgC5bX2Ls2LHr168//vjj5VtVVXNycvbVQe/rfgMARVEeeeSR7Ozsfd0PAPDDDz9MmzbN6XS63e7p06cvXbpULn/hhReys7M//fTTrKysu+66CwD27NkzY8aM1NRUm81WXFz8zjvvGB/S4V00f/78goICABg0aNC5557beZP29evYuHEjIeS777674IILPB5PVlbWLbfcwjmXaztpUo8jhPi4WnxcLQ5e/vWvfxFCHnnkkU2bNn399dfDhw+fNGkS55wxtjXGmjVrcnJyjjrqKM65EOKaa67xer3vvffe1q1b33rrLbfbffvtt8tPy8vLKygoeOGFF/x+//bt23Nycm666Sa56uabb3Y6nW+++eaWLVteeeUVq9X617/+NWFf+4DpxnU/8FvlxhtvTE9Pf//995ctW3bllVd6PJ6dO3cKIU477bSioqLvvvtu8+bN//jHP1RV/fDDD4UQGzduBIAjjjjin//85+rVq4UQ559//oABA44//vj58+fPnz+/uLh4wIAB4XBYdPeyGvj9/ltuuWXgwIHV1dXBYFDX9QkTJgwZMuSrr77asGHDzJkzrVbr2rVrhRB79uwBgBdffLG2tlYIkZWVVVxc/Lvf/W7RokWapi1evBgAHnrooY0bNy5duvTEE08cN26cPMT5559/wgknyNf7am1DQ0Nqaupxxx23atWqn3766YQTTkhLS/vNb34jhFi7di0AfP/990KIRx55xGKxvP7661u2bHn55ZdlJ1VdXS2EmDVrFgDcc889mzZtmjNnzoABAy699NIDuWoJuVW6SGlpqdVqfe211zpcu6/7LS8vb8SIETNnzly+fPn//vc/l8tl3A9paWmPPPKIEGLz5s12u/3CCy9cuXLl8uXLzz77bI/Hs2fPHiHEK6+84na7TznllC+//HL79u3hcHjEiBFjxoyZP3/+pk2bHnjgAQD4+OOPhRD7uosikci///1vAFixYoXP5+u8Sfv6dWzduhUAJkyYMG/evEgk8vnnnxNCPvjgAyFEJ0168cUXFUXpocshr/uhoCvjx48/6aSTjLeffPIJAPzwww/mbX7zm994PJ4dO3YIIWpqalRVfeyxx4y1d9xxh8vlkn1TXl7e9OnTjVXXXnvt4YcfLoRoaGiwWq0PPPCAseq6664bPnx4j32tHqf3Owt5Dl9++WX5NhwOn3/++XPnzhVCVFZWVlVVGVtOnDjxxhtvFLFfzl133WWsOv/881VVrayslG/nz58PAHPnzu3eZW3DPffcU1BQIF/PmTMHAL7++mv5ljFWVFT0q1/9SgghH//ffPNNuSovL8/8acFgcPv27Ywx+VbekPLbGbrSSWvlc6UUMCHEtm3bCCHtdWXYsGHnn3++sfsvf/lLQ1cmT558zDHHGKvefvttQojsELtHn9WVUCh0zDHHjBo1KhQKtV/byf2Wl5c3efJkY8urrrrKeGvoyq233ur1egOBgFxeW1trtVrlJfvb3/4GAJ999plc9dFHH7XpcyZOnCg7pU7uos8//xwApM513qTOfx1/+MMfjFVDhgyRP5ZOmtQLunLQ+8E0TVuzZs0xxxxjLJk8eTIArFq1yljyxRdfvPzyyy+88MKgQYMAYPXq1bqut9nF7/dv27ZNvh0/fryxKjk5ub6+Xu4ViUSmT59urDruuOO2bNlSW1vbM9/sEGTNmjWRSOTwww+Xb61W66xZs2TIoaam5sorr0xOTpbuyuXLl9fV1Rk7GrtIioqKsrKy5OsJEyYAwKZNm7p3WTth6dKlqqpOmzZNvqWUTp069ccff+xwY3MLbTbb+++/X1RUZLVaCSFnnXUWAJi/DnR6E27YsMFisYwZM0YuHzJkSEZGRpvDRSKRbdu2ye8umTJlinzBGFuxYsUJJ5xgrDruuOOEEAdpZLsTmpubzzjjjJKSkk8++cRmswFAKBRqiBGJRDq53wDg6KOPNj4qNTW1zQUCgOXLlx922GEOh8PYZsiQIeaOxfjk5cuXK4piXAIAmDx5stxyv+6ifTWp819Hhzd2J03qBQ56XfH7/ZzzlJQUY4l87fP55Nva2tprrrnm/PPPv+qqq+QSuaqTXYw7SSKEMNaecsop9hhXX301AOzdu7eHvtqhh4wBtDm9ABAKhc4+++xAILB48WJN04QQ5h8YtL5YAJCWlma8drlcAOD3+7t3WTvB5/Ppuu52u40r/uabb3bohW9z3Ndff/3BBx+87777ampqhBDz5s3r8MP31dqmpqakpCTzxl6vt83ufr9fCGFebryWHrzHHnvMaPaQIUMAYF8tP0ipqamZPn16WVnZwoULBw8eLBc+9NBDKTHefffdfd1vEqfTabwmhLS/H3w+X5sbLyUlxbidwHT5fD6f1+ullLbfcr/uog6b9LO/jn31V/tqUi9w0OeDuVwuRVHMz55SyY2f2a9+9StCyF//+ldjA7mqk106RK59++23i4uLzculDYR0BY/HAwDtLbw1a9bs2LHjnXfeGTFihFxSWVk5YMCAfX2OOUbd0NAAAG63u3uXtRO8Xq/dbl+5cqV5oaIoP7vjhx9+eOKJJ15zzTXybWVlZYcfvq/WulyuNr//9mdMdkDm82Bs43Q6LRbLb3/722uvvda8i2HhHQIEAoHTTz9dCLFw4ULzQ8aNN9545plnytfDhw+XwbluexS8Xm8bo7aurq7D29Lr9TY2NgohjAyLuro6eYm7fRcZ7O+v42eb1Asc9PaKxWIZN26cOc1DvpYm6htvvPHhhx/+4x//SE1NNTYYN26cqqptdvF6vcOGDevkQOPGjbPZbNXV1SNipKWlZWRkSAMc6Qrjxo2zWCzfffedfMs5P/bYY996662mpiaIqQ4A/PDDD9u3b+/Enti8ebOUE4g5PEePHt29y9oe47iTJ08OhUKcc+OKOxwO8+95Xy1samoyvgsA/Otf/2q/cSetLSoq0jRt3bp1cvm6devau2hsNlthYaG5t5JxJgCglE6cOHHXrl1GswcPHmy1Wts8eh/UzJw5s7Gx8csvvzSLCgAUFBQcEyMzM3Nf91sXjzJp0qQVK1aEQiH5du/evdu2bWvjkjW2ZIyZPY2LFi2SW3b7LjLY31/HzzapFzjodQUA7rzzznnz5j3zzDM7d+785ptv7rzzzmOPPXbSpEklJSW33nrrBRdcMGjQoG0xwuFwamrqNddc8/TTT3/44YclJSX/+Mc//va3v916662dj0FNSkr61a9+9fvf//6DDz4oKSmZP3/+SSedZDyTIl0hOTn5yiuvfPrpp//5z38uX778hhtuWLFixVFHHTVu3Din0/n888+Xl5fPmTPnrrvuOuOMMzZv3tyhu0AIkZycfO21165bt27VqlX33ntvYWHhMccc073L2oaUlJTKysrvvvtu586dJ5544oQJEy6//PLvvvuupKTkvffemzBhwquvvgoAdrvd4XAsWLBgxYoVmqa1+ZAjjzxy3rx5P/74444dO2688UY5jHHZsmWBQMDYppPWnnnmmR6PZ+bMmUuWLFmwYMGvfvWrDk2NSy655OOPP37ttdfWrl371FNPmV3nd9111+zZs5966qmtW7euWrXqiiuumDp1qsywPwRYvXr1P//5zyuvvHLNmjXzYyxZsqT9lvu637p4oJtuuikSiVx33XUbN25ctWqVjHBceeWV7bc89dRTR48efeONNy5evHjr1q333nvv2rVrb7/9dgDo5C6SSv/ZZ58ZzxAdsl+/jq40qTcQB38+mBDi73//+4gRIywWS0ZGxnXXXVdfXy+EeO+999p/36VLlwoh5NCB3NxcVVUHDRr0+OOPy/xjIUReXt7vfvc745PvuOOOIUOGyNeapj3wwAP5+fkWiyUvL+83v/lNU1NTb3/V+JGQJJ9QKHTbbbdlZWU5HI4jjzxSpjYJIT744INBgwY5HI5jjz1248aNX3zxRXJy8sSJE2XGy7x584xPOOuss37xi1+8+uqr+fn5Vqv1iCOOWLNmjVzVvctqRj7mu93uhx9+WAhRVVV1xRVXpKWl2Wy2ESNGPPvss8aWDz/8sMvlysvLq6+vb/Ph9fX15513ntvtzs3NffTRRxljp5xyisfj+fe//23OM+6ktV999dXo0aMtFsuwYcNmzZp1zDHHyAwicz5YKBS67rrrkpKS3G73jBkzZs+eDQDl5eXyE959992xY8dardbU1NRzzjlny5Yt3b9mfSwf7Nlnn23/uy4qKupw433db53cD0Y+mBDihx9+mDp1qt1ud7vdp5566rp16+RymQ8mox2SPXv2XHTRRV6v12q1HnbYYR999JGxal93ka7rp512msPhOPXUUztvUtd/HRMnTrz22ms7b1Iv5IMRIcQnNQAAZ6X3oHohfZBuXHe8VfoneKsgXURe90PBD4YgCIL0HVBXEARBkHiCuoIgCILEE9QVBEEQJJ6griAIgiDxBHUFQRAEiSeoKwiCIEg8QV1BEARB4gnqCoIgCBJPUFcQBEGQeIK6giAIgsQT1BUEQRAknqCuIAiCIPEEdQVBEASJJ6grCIIgSDxBXUEQBEHiCQUACwEAaGIJbgrSm8jLLS9918FbpR+CtwrSRYxbhQKAWwEA2OyHZrwJ+gdNDDb7AWKXvuvgrdLfwFsF6SLmW4UIIaoisMSX6EYhieAIL2Ra9mN7vFX6LXirIF3kCC8QIQQAVEVgawCaGOgi0Y1Ceh4LAbcCw52Qad3vffFW6VfgrYJ0EfOtEtUVBEEQBIkLmA+GIAiCxBPUFQRBECSeoK4gCIIg8QR1BUEQBIknqCsIgiBIPEFdQRAEQeIJ6gqCIAgST1BXEARBkHiCuoIgCILEE9QVBEEQJJ6griAIgiDxBHUFQRAEiSeoKwiCIEg8QV1BEARB4gnqCoIgCBJPUFcQBEGQeIK6giAIgsQT1BUEQRAknqCuIAiCIPEEdQVBEASJJ6grCIIgSDxBXUEQBEHiCeoKgiAIEk9QVxAEQZB4grqCIAiCxBPUFQRBECSeoK4gCIIg8QR1BUEQBIknqCsIgiBIPEFdQRAEQeIJ6gqCIAgST1T5n8/nW7duXUVFRSgUSmyDEOSgxm635+bmjhkzxuPxJLotCJIYiBCioaFhwYIFRx55pMfjcTgciW4SghzEBINBn8+3aNGi6dOne73eRDcHQRIAaWxs/Pbbb88555xEtwRBDik++uijE044Aa0WpB9C169ff+SRRya6GQhyqDFlypR169YluhUIkgBoeXl5UlJSopuBIIcaXq+3vLw80a1AkARAQ6GQ3W5PdDMQ5FDD4XBgFgzSP8E8YwRBECSeoK4gCIIg8QR1BUEQBIknqCsIgiBIPEFdQRAEQeIJ6gqCIAgST1BXEARBkHiCuoIgCILEE9QVBEEQJJ6ocfysUCikaVo4HNa0CABYLFabzWaxWPrOeP4VK1bs3r1706ZNpaWlAJCfnz9ixIj8/PwJEyYkumlRgp99qq1bG174fWTtWgCwFhfbjplqKR7rOP2MRDethS/rv9wQ2PCj78cNgQ0AMMo56sikI0c7R5+ccnKim9aWHXP9NZsiexYHqzdEACBjlHXAFEf6SNvgk5yJbhqCHLLER1c0TWtoqNc0zbwwEglHImEAsFgsyckpFoslLsfqHqWlpX//+9+lnBhs2rRp06ZNAJCfn3/ttdfm5+cnqHUAANraNXW/uVFbt9a8MPzDwvAPCwHAMqY49eVXLMVjE9S6KOsD6+/YcYeUE4PFTYsXNy0GgFHOUX8a/KfRztEJal0rqjdEvrp7b83GiHlh2U+hsp9CAJA+0nri05kZo6wJah2CHMrEwQ/W1OSrrt7bRlTMaJpWXb23qanpwI/VPT766KPf//73bUTFTGlp6e9///v//e9/vdkqM74nH6869pg2omJGW7e26thjfE890ZutasOfy/582rrT2oiKmQ2BDaetO+3ZsmcP5Cjjx49/6aWXDuQTAOCn5+vfP2tPG1ExU7Mx8v5Ze766u/oAD4QgSHsOVFeamnxdFIymJp/f39zJBiNGjPjjH/9oXvL+++8fuA/to48+6qJgfPTRR3Pnzu18m/r6+ttvv33w4ME2my0nJ+eiiy468Frovicf9z39ZJe2fOqJ5lde7nybmpqaW2+9VbYwKyvr3HPPXbx48QG2EAD+XPbn58qe68qWz5Y9+3rl651v0xOn0eCn5+uXvFDflS03zm5a9WZjJxssW7aMEFJZWRmnpiFIv+CAdEXTtP2yQhobGzsxa3qC0tLS/bJC3nvvvU7MmsbGxqOOOmru3LlPPfXUypUr33nnHcbYkUceuXr16m63UFu7pouiImn43X3a2jX7WltdXT158uQ5c+b84Q9/WLJkyezZs7OysqZNm3aAptj6wPouiorkD6V/WB9Yv6+1PXEaDao3RLooKpLvH62VoRcEQeLFAcVX6uv34wcsaWioz8jIPJCD7hevv/4zD87t+fvf//7www93uOqxxx6rrq7esmVLamoqAIwaNWr69OnXX3/92rVrx40b170W1t10w37v8psbs777ocNV999/fzgcXr16tTFN4THHHGOxWK6//vrTTjvNau1mOOH2Hbfv7y537LjjizFfdLiqJ06jwVd37d3vXe7ee8mnAw7wuAiCGHTfXgmFQrq+38aHpmm9NimFzP7a371KS0tXrFjR4apZs2bdeOONsjc0+Nvf/nb55Zd3r4XBzz7V1u+3/0dbtzb42acdrpo9e/Zvf/vbNnPf3n///dXV1d988033Gvll/ZcbAxv3d68NgQ1f1n/Z4aq4n0YDmf21v3vVbIzsmOs/wEMjCGLQfV2RycTx3fGee+5RTVx22WXdbR0AQCcerW7syDnftWvX6NHxTHbqxKPVjR0bGxtra2tHjRrVZnl2dnZqaur27du7d6xOPFrd2LEnTqNB9b4D9T20I4Ig7em+roTD4bjveNttt60y8dRTT3W3dQAAMoc4XjsSQhRFYYwdSJPaEF74fRx3VFUVADpsIeecENK9Y/3o+zGOO/bEaTQoWxzs5R0RBGnPgdgr3YzAd7Jjdnb2GBMDBhyQ17vb9kqH3jNCyODBg1etWtVm+YFkIkT2nVj8czt24D1zuVzZ2dlr17b9zMrKyoaGhuHDh3fvWJ0kFndOh96znjiNBmivIEhfAOu4dIAQosPlF1xwwWuvvVZRUWHe8oorrrjzzjt7q2ktR+5w6YwZM1588UWfz2de+OSTT+bm5h533HG90S4TYh+N7EunEUGQ+NN9Xen2+PleG3jf7fHz+9rxvvvuKywsnDp16jvvvLN+/fpvv/32vPPO+/rrr6+//vruHcg6pji+Oz788MPJyclTp0798MMPt27d+tNPP91yyy2vvvrqG2+8Ib1k3WCUs23A5gB3jPtpNMgY2c2Et27viCBIe7qvKzabrZd33F9GjBgR3x1dLteiRYsuvPDChx56aOLEiZdffnlKSsrSpUuLioq6dyDbMVPju6PX612yZMnJJ5981113FRcXn3322WVlZT/88MMpp5zSvQMBwJFJR8Z3x7ifRoO8KY5e3hFBkPZ0f/yKxdLNR7x97dg+Wn7xxRdffPHF3TsK9IC9AgBut/uJJ5544on41FPpdr2vTnb0er3PPPPMM888091GtaXb9b462bGT09g+9NJ14m6vTJo0aV9OUQRB9kX37RW73a6q++3RUtXeK2982GGHDRw4cH/3Gjhw4GGHHdYT7WmP44wzLaPH7O9eltFjHGec2RPt6ZBTUk4Z6Ry5v3uNdI48JaX7RlL3GHyyK33EfktL+gjr4JNdPdEeBOmfHFDcPiUlpRd2ORCuu+66XtjlQEj9y6u9sMsB8ufBf+6FXeLCic/sdzWHbuyCIEgnHJCuWCyWNkO7O8fr9fZytfz8/Pxzzjmn69tfcsklvVwt31I8Nunue7u+ffJjT/R+tfzRztG35t3a9e0fzH8wUdXyM0ZZJ9+yH88uU+9Pw2r5CBJfDjTP2ONJ6qK0eL1el8t9gIfrBueee24XpeWSSy45+eQEzEyVdO//dVFakh97wn3jb3q6PR1ye97tXZSWB/MfvC67V22+Nhzx25QuSsuIX7jHX+3t6fYgSH8jDuNXPJ6kjIzMTmItqmrJyMhMiKhIzj333IcffriTWMvAgQMffvjhhIiKJOne/8tasLCTWItl9JisBQsTJSqS2/Nu/3zM553EWkY6R34+5vPEiorkiN+mXPzJgE5iLekjrBd/MuAk9IAhSA9A3n777QMsw2UQCoU0LRIOh+XYaYvFYrPZLBZrn5qHuLS0tP08xL0WqP9Zgp99qq1dE174vRyKbx0Tm4e4FwP1P8uX9V+uD6xvPw9x7wfqf5Ydc/3VGyNli4NyRH3GSGveFEfGyF4K1L/zzjvx+nEhyEFEPHUFQRAzqCtI/wTruCAIgiDxBHUFQRAEiSeoKwiCIEg8QV1BEARB4gnqCoIgCBJPUFcQBEGQeIK6giAIgsQT1BUEQRAknqCuIAiCIPGE2u32UCiU6GYgyKFGMBjsOxWMEKQ3oTk5OT6fL9HNQJBDjcbGxtzc3ES3AkESAC0uLl60aFGim4EghxqLFi0qLi5OdCsQJAEQIYTP5/vmm2+mTJni9XodDkeim4QgBzHBYLCxsfHHH3884YQTkpKSEt0cBEkARAgBAE1NTevWrSsvL8dYC4IcCHa7PTc3t7i42O1O2IRDCJJY/h/QAU2IYZYMkQAAAABJRU5ErkJggg==", "path": "image.png" }
Look at the models of molecules below. Select the elementary substance.
[ "carbon tetraiodide", "ozone", "2-chloroethanol" ]
1
There are more than 100 different chemical elements, or types of atoms. Chemical elements make up all of the substances around you. A substance may be composed of one chemical element or multiple chemical elements. Substances that are composed of only one chemical element are elementary substances. Substances that are composed of multiple chemical elements bonded together are compounds. Every chemical element is represented by its own atomic symbol. An atomic symbol may consist of one capital letter, or it may consist of a capital letter followed by a lowercase letter. For example, the atomic symbol for the chemical element boron is B, and the atomic symbol for the chemical element chlorine is Cl. Scientists use different types of models to represent substances whose atoms are bonded in different ways. One type of model is a ball-and-stick model. The ball-and-stick model below represents a molecule of the compound boron trichloride. In a ball-and-stick model, the balls represent atoms, and the sticks represent bonds. Notice that the balls in the model above are not all the same color. Each color represents a different chemical element. The legend shows the color and the atomic symbol for each chemical element in the substance.
ozone
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABrL0lEQVR4nO19d3wc1dX2OXdmtmp3Vd1UjHDBlmzAgHEjMUkAm95MSYgJYAghDQgkJIRgWl5eCDXJlwKBQAgJ1ZC8NANpQAA7hGZcAOMmuduSdrV9Zu75/rh3ZkfFtrS7WkkwT/g5qy13ZmeePf2eg0QEwxArtra/v7Utms5G03oJDjeizFfu80yvr2moCJbgcC6GC1we9gs47MTN9nj6yffXl+bu9kRdJHjGQfv5VGVQju5i6MDlYR4YZuJmezz98NtrMwYPB4Nl5TUVZb6I1+NXwKuAl4GHgQdBY6AxUBEYgIrAEBDkvwiAKJcSX5sTcCL5L4LJySQwiAxOJqDOSeekE8XS2R2x1Obd0WgitX9N5KypYwfvGrgYfLg8zA9ssE+gf/jPpp0Zg4+sqIjUjguFwx7NAwCA1k0jAAREIAIiEDcUUf4n7rOQrvLttqjNvYQk/rbpAAAEfo82ujI0eezogM+zbmd09a7OknxdF0MULg/zwzATN5s64gBAkZEAkDPLCKxbCiBusLjZ4kWS/wEBkLx9FgMcKka+RCj+dhp91rs0VSkPBwHg/R3RAfuKLoYBXB7mh2EmbryqAgBIHBzmaAm0CljvN03ueMLFZxQuD/PDMBM3DRVlAGC2b4PB0CpZw9jVEQOA+jL/gH1FF8MALg/zwzATN4fXV3sVtisW27Xpo2w2LZ8deK2im3z9trblqzeYJpUHvHMaqgb+u7oYunB5mB+GWWYKAKLp7BPvb9gRT+/7rQOA2kjgzIMah10C0kXR4fIwDwwz6wYAIj7PxJrIoBy6usx/7qHjh909djEQcHmYB9TBPoH8MXHMyGDlSD+DEtQ7fLytfXXrjqDXM3hf18UQhcvDvmP4WTc20PlowH1mEwACPm2Av5OL4QeXh33HMBY3OZQqI+C48y5c9IDLw31hGIub0tc7DN/b7GLg4PKw7xjO4sZ+5GoVF4MHl4d9x6dC3JRKq7hw0RMuD/uOYSxuciiZVhm+asVFCeDycF8YxuKm9FoFh7EZ62Kg4PKw7xjG4iZ3zUulVVy46AUuD/uMYSluRpb5AaAjkZJ/uxkBF4MBl4f9xbAUN6J82zBN+bfrM7sYDLg87C+GpbjpjoHXKqmMDha9XLjoHS4P94VPhbgZeK2SyuoAUBUcZu1FXJQULg/3hU+FuHF9ZhdDAS4P94VhLG5yF71UPjMbvk6ziwGDy8O+YxiLmxxKpVWcj1y46A6Xh/vCMBY3pdcqOGy1iouBg8vDvmMYi5scSuczD1et4qIUcHm4L3wqxE3JtMowDtK5GHi4PNwXhrG4ycl9NyPgYvDg8rDvGMbiJofSaRUXLvYMl4f7wqdC3JRKqwzfBKSLUsDl4b4wjMVN6TMCw1ituBgwuDzsO4axuMlh4LVKWzwFAPXlgdJ8IRfDEi4P94VhKW4ifg0AOjNZ+XeptMqwvFguBgwuD/uLYXnmEZ8HAGJpXf5dsozAsPWZXQwEXB72F8NS3HSHmxFwMRTg8nBf+FSIm9JlBAb+u7gYvnB5uC98KsSNq1VcDAW4PNwXPhXiplRaxYWLvcHl4b7wqRA3Jat3cOFiL3B5uC98KsSNq1VcDAW4PNwXPhXixtUqLoYCXB7uC8Nb3KD9f65WcTF4cHnYRwxvcSMzggOsVaLpLACE/J5SfCUXwxAuD/uI4S1uSqNVDN0EAI8yXIf7uBhouDzsI4a5uCmJVvkU+MwuBhQuD/uIYS5u7P9zfWYXgweXh33Ep0LcuFrFxaDC5WEfMVzFTdinAYAppsGXRKsM/3vtovhwedgvDFdxU+7zAEAqnQYolVYZ1vfZxcDA5WG/MFzFjYA8e9dndjGocHnYRwxvcQMlzAgMZ6XiYoDh8rBvGN7ixs0IuBgKcHnYRwxvcVOaas7hrVBcDDxcHvYRw1vcSLhaxcVQgMvDfeFTIW5creJiKMDl4b4wvMWN6zO7GApwedhHfCrEjatVXAwqXB72EcNb3EiURKsMf9XiYoDh8nBfGN7ixtUqLoYCXB72EcNb3DjvLoDrM7sYJLg87BuGt7hBx90FcLWKi8GBy8M+YniLG1eruBgScHnYNwxvceNqFRdDAS4P+4hhLm5creJiCMDlYR8xvMWNRGm0yvC/2S4GFi4P94XhLW7Q/r8SaJXhb8q6GCC4POwjhre4ycn7gdcqHcnMyx9vEbN+XLjoApeHfYM62CeQD1Zsbd8eT4EdonNqFWZpFcujRgSEnJIQJHBoldxtt7SK0E3ATZ7JZFNZPd6ZAADD5P9p2fWfll11keCMsTUTq8Ml/MYuhiJcHvYXSE7xObSRNsy3WnYtb9mZMbh4pqYiNCocDPu8PlUNaKqmMC9Dj4IeBTWGCqKKwBAQ5L9d7jcAAHACwzRNTibnBvGsbqR1g7iZyBoJg3caBEBb4/rOeMrr86bTmWxWFxcs6FUPGVM1dXRFxDeMpxq6yAO98nBkOBgZQB5yINia0HfGU16vN50ZrjwcHuImms6+un77hzs6siYBgE9TPD5vMOAxTe5RFQRQGAKBxtCvML/CPArzMPQwVBhTFCBChgAEHDgDRkQcOHDQuZkxKctJ54QIWZMyBFmTAyInIpDayeQcEE1OhGCYPJ3Wk6k0N+V1mzq6Ynp9zcgy36BeIRelwD55yBhin3hIDJATJ6A8eAgI+vDk4VAXN9F09pV12z7Y1iH+9GpKIOj3ehQFEQEYIkNg1mNprwIyRABCRERgiESEyIAIEUnE7kSgjsiKzMlHnEjcYwDgBETEAYiIADiBuPcmERFkdDOdzqYtF3p6ffURjSN96jAeqOpiL+gjDwFAcfKQoWCdxUNAFNGZLr87Jw/FT7InDwkk/YY1D4e0uFm+aeer67cJTeL3asGgV7NsGRT31dInCkMAKXfQYgABCQag/BeIE2OMuLSBFR4NZlZF/bO4FDkEiJwTIHBuB/WkVuGcCNAkTgSmvN9gmDyV0VOJNABoCps3sXbq6IrBulwuBgh75CGiEDQOHjIAcvIQERGIMebVN/nMzeIZzinla9IxDGCnqAhBcs/iIQewrBsAIjCJIzKDcxBCB8jkUgAZnCdTeio51Hk4RMXN9nj6xTUtrbEUAAS8WiDoVRXGEC1lInUIQ2QAjCEQMIYMpFEjrBuGiIBoaRgiYogefdOIzicqE0vLsqucR+zwzdwdOGZL8HRTieRkDVFOt4CUQaalZEwiTsABDNPs7EzrugEAo8KB4ybVDXGb1kUf0ZOHisJURGbzkDEEYoAMgTEGREIAgTS3UeUd9bEHqpLd+QYAUd+sHaEFO0JnCPlCJEPGRDI17pA1Ng+RE3EiQjQ5t40dc5jwcCiKm1fXbXttww4AUBUsCwZ8XhWBFERbygihowjblTEAUsSdZpZXZVk0Oa8KQOWxke331bXfsZdDGyy8sfyyzeFFXcxXzgGZyTmAbdeI2w8cwOCcEE1OqYyeiKfE5TyiceT0+uoha9O66At68NC2aKT3tE8e1kV/V99xt8pjezlKRq1fN+K2Dt8sROTE5U8S0eTysRA+fA88JAKTgCweGiZPZ4xEYojycGiJm+3x9F8/2LArmQWAgF8LBLwqY4owYTBnuzIAxhgDkAaOsFcRLTcqJ2uE3CEir9EyfuuFgUx3DdMrdoQWrK+8VscwtxULgNQqgJw4J6lVuEO9mEQGUTKZTacyABDyamcc1DjU1IuLvqAXHiJTmLSmczyU9jX2ysMJO783Iv5kH4+4fsTtu8JnOswcsvz3XACxKw9tW7sbD8kkGLI8HELi5v2t7c+ubgEATcFgMOD1MHF3VYbMEa+R91XqFmKMIZCCDIT/nPOZZUwOgLxGy+RN8xVzb0qmGxKephV1z3Nyxm44AZpE4sbb99gUWoVzDmhy4gAZ3UwmM4ZuqAo7ualhYs1wqoxw0SsPFZB+U3crG1FBFHaNnSFliAdsv7Ai8WK/jrtx5B07yxaAzGwg51yKHhEtBjJ5zuqx7BouDZ8cD4kADE4cIKubiSHGw6EibmzDNeTXNJ9HU5iCqCCM1JfX6MsZYIC3ppU6RNzlPyrhaWZMmDy5jICQQaIo084CIKLGY+NaFvj7Ztc4sSu04JOa28mRmRJ3lHMhaIhLuSODdjKOw4kDmESJRDadzgDAcZPrDxqScTsXPeHkocfv0RgTwkXoOQVByBQZNERULL+JITCUceK69jvHtN2Zx9E/rn00HphNVuEft5JVJNPhOR6KjHh3HhKZYNnanDiCyYcWD4eEuPnryo0rt0cBoLzM5/FpjMgP8YnpP0xIPaDxzp7vT6t1O8oWtFZcZkdqRLTYKtyU0oeIGGMjd90+cvfe4jV7wSej7mkLzhd6xkpDkggSk2XgGCYHRMOyfeSdBjCIkmmZtJo8qvyUpoYCrpCLUqAnD1VL3Aj7WuQlGIDCmB3BseswAEBh6NFbDtw4J78TyGr1qxtfF79ITmTFbgAArBhidx569ZZIellN6iWVx0LGah1DSaUuoYzZrs5o1b6YZpEhxcNBFjdpw3xh9abVOztVhGDQ5/WqCmJD9qXD4ld7ehM0TmTUuo9H3ZPyNjO0qxusHXBWhNijt4zfOK9fbpQTWa1uRcO/iYAQhHyBXHzO6VKR9acVsePSi05njXhnCgD2qwydOqVh6ATtXDjRg4eagqDIcCHYpo0VIWZ24Eaxs93Cyibab8cVVZ1P5H0mrSPvaIvkclVg1fgJFx4cPESzY3T0gYboXXtaKstCH/nOW+NbmMLwEOHhYIqbtGE+9NbHu5JZFSEY8ns1RUEYl3l6eueP+riCwcKbqxfvDi0QOUh03HsEBKDq9t+N3HFdISf58ZhHY/6ZaFVzOqN3QsPIzJTJOaBJxIlMThzQsF7VOcSiCSKqCHjPO2y8K3GGGrryMODVmAKgKsy2boRkUXOxGxSWDoqiG0QgmZPSqHPquikFnYy3ae3YpSJWiFalH1lBYrRiN/7sB5O2fHnvOS+BdnXSK6FfxlitziHWMcg8HLQd4WnD/MN/PtqVzHoUDIYCXk1RAMZlnuq7rAEAlcfG7riiTF+NRApDmaSUFTfEECPRxwo8z/LkUumxIyCRYjvt8j/QGFMAFYYKgoqoIKgKUxBUBAVBZagxiEQCqqa2JzP3/2dt2jALPCUXRUQ3HvqErGHIgBQmbBlQEOWdFRugGMqyL8jlqhBAYaw8sbTA8/FlVvmMFiRSRezZkY218+7h1Ot9lDUAUGGsObbj1BpzjYYQifgHl4eDI27Shvng8g93p3SfisGQz6cxBaiar5neeXUeq43bfKaHYiIFbmkeEvrH1/8IcTcEMqvQwSeGlg8P9rGg3Fg9LvaLqR1XHb7rnFm7Fx7Q+fPa7MuV5moFQQFQGVMZlpV5VU2NpjJ/fGddgafkoljoykO/TxMWja1FhP6QekU8UK27L3QMdpE45DVaCz8rj96qMhS6DS2mMYYIpCAEsivHb7+4j7JGLkidn4t9OwCdKmODy8PBaUDx9Hvr2tKGX0VfmV9jyIBUxg6O/U9+qylmbPTO67aOvtNuNsKsGuLCT9VjtCqIBKQgciJE4ERMtA4gqEgsbWi7qRvJKrPLxIMOddL7ZVdvVQ9XGQKHsjJvtMPc2Zl6bMXGM6eOLfzcXBSIXnioMCE7ajJvRsw1AXNLWF+d0eoyal174OiUt9nOQyEAWnY0MmlNe/SWws9Ko1gaQGHICQT3rEYWSABjd1yh9EfWCAT55s91fvtvkT8Ah7KgNxodHB4Ogrh5btXG9dGUiuAN+DThgzA2IvNmtf6fvNcsjz2xu/py0zMW7Oo+xrzpFYWfraa3CoZxIOFLy91YZnT/bReH0m/u7ayMNZ/vOPfjwNc+8H0rzcLEIRQOxGPJT3ZG/7lh55H71RR+ei7yRnceAqiMec1oU/pX45IPdnlrdhkAjI3enVHrdpUt2FpxqSjtQ5QRHBm7AfIUx7ppURmanBTZMQcJZQq8Mva4P7M6v2VH6MtHZd/c6pkJMGg8LLUz9d9NO97bFgWAYNCnKUwG/4Eas08XuHIk/qI0egFUhgqQ6Z9a+AlnvJOVXKcSGbvReGzili/vXdbYmJB88PiOL4XMVhVBYxAI+gDgjXVb39rcVvjpucgPPXiICsO69IvzO47qLmsc8BqttR13HdjyuaC+Kufm2DWojKUCswo/N8M/hREJTawwUESQSNhceZXz2Dgg/ZACoCBqyuDwsKTiZks08Y912wAgHPB4PIqCoIDUKtX68gIX9yffFMFaIWuEB144uBJx7EFnCKDx2LgtZ/t77LjbCzy884jOb/sppjD0epRgyA8Af/t48+bOVBFO0UU/0YOHpAAc3vnDmZ3f7bXOqxs8Ruv4zWcHs6tynU8EQ4rkv6MS1hhjQKqoZrZC1B59k6YXZD2Nyf7NR50MScHB4WHpxE3aMP/0zic6h6BH8Xg1RqSg2FOLSOQ3txS4vsqjolaCSRuEVIRMeH6By2aCs2SeAkWsDkfvvC6PGuVyY83h8R8rAAzAqzKv18M5Pfz22mHadHb4ojce4uHxH47N/KXviyg8NqHluEDmAyVn85LGMFl2TIGnRyzE/VMRSGPMznUKoRPp566IXlFprhJSbFB4WDpx8+DyD3UOPgV9Aa+IDTOQhqIf44Wv702+qQBY2QQQ6xtlhRq3mdB8uSaAyjCYfL28s6/77rqhNvtyQ/ZlBUFh6PerXp/HNOmR9zcWeIYu+oUcD4NekcGsz77cL1ljo37r11UzKq1pRAZAgammVlfI6WXC8xmQyhCJKwgMSShRFSGPCHFPlPEtwvsTcYwS87BE4ubfn2xpSxteBXxBL0NQRVaPofCZTQwV5SiK3esIpWWbrTyLWP6LZ4MzDV+zkIkKA0ZU2XFfIWe4X+Zpxcqber0KQ2yLp96xesS5GGh04SGAytBLsYOSt+S3mqa3VkXvl3vEAUT2unPE9wo5w9SoKwV7FamPUQGU4ZtiBAeCfLOo3pC+RWl5WApxk8zqb7TsAoCA3ytEDBLJ+gX5Sy7CaejBmaLAT2EgZBkCoFqeHnVl3msmaq6QuoWBAuChzmC8IIN2TPZvId4qxKKmKP4yHwC8uKbFrf0rAXrlYb3+94C5Oe81I+33eXhUMESwOlN+luFrym+1dPWF4GkQvwihL63fiNwtUTisKiFr3ymUlIelEDfPvL9O5xDUGCoooyqMyQpd+Z0po9YWeBTOIuJSyv1yIjYEYIz8hh7JJ4KTHPk9o2y2o44LPOkPCjxJAKg0VstIEJFHYR6Pxjk9vabQ0JWLfaJXHo5NP1XImsyM+ZNvOK0bxiBRf1ceNrXpb8qOupJZe69kn8CcxKGiCJx27XBZGQ8gfEkk8qgl4uGAi5sPt+z6JJZRARSfJu6xjLnKvbbAEFSF7fIdVeCB9Mg8zHU8khaTqInIjP256e+fwsmUn5EacYXsbEKy+2wgtazAkwSAcvNDi+vIEHx+DQDW72hfu7sIASwXe0IPHopsIxVS7SXgS70p5IKUEQSmb0rnuCf7JXFMf1Nq/FPEwqJ6UGEIZNUQWvEBPTCzwFMFgIxWKyvjrRoUkQkpDQ8HXNz87ZOtAODzqZpVrymzUUJyo7Rp2/1HF3IUYiGzbDazZ6KivFvyXxbOTHjaqDizj6ulR16RarjbXo1ZOamizGdGy2cWNekKQiDoB4DnPixChZiLPSHHQ7kXCRhAGc/fjbKhpVYyS4OCtNmB+6ckxi8hT5/CxkZkfmr8U6RErB7+6OxAahcxm2WzCwlEAkBcm5RR63PTI+z5Aoil4eHAiptXPmqJ6uRh4PFqzLIMFUQkyGWmEBjDmG9Gp+/wvA+Uqfk6eRpsVSB2hwtZI3qjkRLJNv4y3XDX3hlgls1K7P9EZtQV4OhMavc0KYo1m7vT1h48TUVFVRLp7Itrtxa+voue6MJDu38NYrCAqI0Ne68mECmiHT8AAnD/lPjEl7OjrtyLjCBPXbrhrnTjA6SE0VoNLFtJSh9L6CBAurKvKrNX7Aierlr7PBVr958VOUZNhYHm4QBuYkhm9eVb2gEg4PdavzFiyKyqOeFPiUFfxJB9UnXr1C0nKrTvOqtu4J66TNUi26iB3GwpBCDGLIlDnFd/OVl1ttrxvBJ9nmVbWPwNEJUOgSmmf4oRnmcEZyMiEqHVRU3uwAJgCFwrNMAEgj1iVwSJfVhcQQgG/bFo/J3WXTPqqobFOMRhhB48BIaSh6woyR5rNqZjqpScGoVqeWbkFdlRV2rR51jiDSWZi/2ZoTlm5FjT34wg+CY5BlJdWprSmj4kvIH0iCt8bY9hH2oReyKj1m6LXICcFIZkEgFyIAcPSUEMBn2xaGLgeDiA4ua5DzboHMIaomIVYjO0ukOAyPOJyK7CGBDX1foN1beO23lJv45CLBQfex+o5fJvtPSDkDLApNwhe98mM8uPNcuPlR8XfYzkfB9gCJxb0+8sc4Y4Z4xxItKK0Amt3TNDQeTAVYZkyjvNkAcC/mQy9e9Nu4+bOLrwo7iw4eAhKkyESJEhKcjMwnwTAXRkJxhjcliLHP8id9iZ5ccb5ceJLkwISMQRGRFHAABClPJFDF9AAGTIOVlSC4SLRZyjWp4YfX3Z5nxy7euqfiZ8PSJiDIkTA2BIKiI3uYLAARiQP+BLJdMDxMOBcqaSWX1DLAUAis/DLPvN0Xsxt78eQWSRGALEyua1VN/a96MQC8XHPUH+qUBkG7FA4o6S6LDFUPYVtW0cBGCd//Zsvtb38Wn+taf7Pj7N/8npvk2XeWLPizsBtlMGILoCCq1llM3iffPG94Kobwai1ISMgdXjHTSPCgAfbN1V4PounHDwUGN2hxqUna0TnmYDywo8hB6cbTNEsAsBESjHQ7R4CIQARNx6p6SYrRFFWzgpfRz9cAHIjg/olWelqhb19yTXV98a880Q3ZQVRw2K+HUojl+oZyB5OFDWzXubtuscQiqCIwtgW7BIpCgKyglQxFBM52EI0BE5I+NrGrv9Yk3fh19tBGcmau8A3345rWLdLalViBAt68byX7S2R9Wtt2G2l0YBatujHiWcrb7IqLmIs7AlbpCAIzLiHBGzoXm+3flX+m0PnCqcSmHTcZMrgBxJATS5oXk0Pau/2do2s64y70O4cMLBQ8a6evQMAYk6vDOr0y8XcggjOAuIUE6YYtIutnkorGzGMLmC8U4hQTgLYWAqtxppou37cwAkYYlzaxYjAlhKWfIwPeYG8tQFtl7fxzPcWPOztuDpCoBBxFDsNUcCYAzQJIUh5+JfzhANbg4cDweqeeivXl0R1Snk1zweRUVUmdxboDGmMlSZtRfc2d3esn3Ek9XR+8s77ld7EzqGb3Km+iK94iywArokO4eiNRrc1iqOe2l0eD8+jaVW7vPkTX9zpv5O0z8FCOREQ2u2IfJYZM2M/JxnAFg++h9Jpc7gZHAyiEwOOucmgM7BINI5xmOJgM9z6exJ+a3vohv2ycOq7LKDdi3Me33uqYse8CZao6Z68pDFXlM7Hlc6nseuDbPJU89Ds7OjrgBPg/0bJIBc0NDuVQzQk4eAqEWfC2y7nmX3lkhK+Gdsqbo26WkyrSlpptVT3SSSPORkAuicGwQGJ4Ng4Hg4INbNuu27ozopAIqmyC5EwNCRdbMsHfIZLbrWIKoMkAnbhyFxBVm0fFG8YpGmtwTTy1W9RcgO7msy/c3kaQCQRiYCk5O/wdIDjrtlx9tYcoVn3fm9GjU9oaRW+j9ZkBr3hOmfIj1tYAScIXIWTo/8nr/PisWJDRU/1tV6RrleFhyJMeScmOxMCgwxmc5uiqUawv48DuHCCQcPmdUNi9l7uAUPY76ZCW1SUF+T3yFSNd9jgAQySsjQYWWbUc/ma9W23tvXYrZF2f2of/ejRuVZeu31pEQAJHGlXyZiN5YAQmFlAyMQvhjp4WPbQ/M9HY95Yku9nV2K3TkLJf2zOoNHt4fPMImQRHSJGZxbkSYgQslDxrhpMpA1cabcqzUgPBwQ6+aR5avXx/WQl2lej9Anoi+EihCiLfulHqrMLi/Tc12CTBaOBo6O+2bEwmeg1eVX5Ork9GU77uMYugBAXbUKkwEasK0bAPGs0eHpm13jBCnh5MQXudYgCGRrFSIKtl7m6ehft/1dwdPWVv9MzoSxrRuSDwwOOpFJkNEpmUjVVYYXHrxfv9Z30RMOHmoqQxVRE82GEVSFaYiqwpAobK6esv2reaREjeDM+P5P2glsZk83A8TUCv+GRX1Ub9zfnGm8nzwNUk12tW4ALOtGPHTwUDwjWvQzfRNmWokg452sKxGTE7cmgljTqYgQAsk3OGCH53DJQyLxHt0kE8DgpBMZBFmDkvHi87D41k08nVkf1wEAPaooSUAAhYGHR6cmb6lLP93zIwqPVcafrIw/mYr9fmf1tenATHs7gq2RcrFbWf1iWy6WVpHBOQAEAqkZGADn3Lvx0v7KGgBAM+bbsCg18SUrBsQRUawcr7sroET6HsTZHTxtfc1taFlbCqKJpCByk3KVhEQIoKoIAK1tsbRhujMbCkFXHtp06mLjiGq6JGvaWHHN/m1X9Wt90zc5MfY+4TTZUULBQ8xu9H+yAPs8boilVvo+PDrdtJxY2E6JilihdKcQEcQzjIAzJvvYAknzhyGYaj1oDWJOg2Ca7HJLGO58PBR/qSz9pnNPucHCu/1HtfpO3e2ZwYkYA85J7m0GUJUB4WHxM1P/3bgdAMKanDSIiAwhYqw+qv2YXmWNE/7s6oYtX67suB8d9Sm2rJH/WaE4eyYvylnuANLRFfF/WbOgxF9Xoi/k912U1Ep19yMy7wD2v4AAqdHXx/Z71PBN3vsKJoY2V16zacRtKH09Qquw2KpSt71L6WT5/D4AeKNld37n7EKgVx7anpQcpSDvLOwqO31DVT/2hZu+yfGG3xGLIAiLRhrdnDiaUd+GRX2XNQJoxrxrT0czatdeSFkj6EJkZ7iknwWiXbaVjZU1RPI9dheeQPKNCZuOqNvx/UjyxW79K1QeG5lYcujuhYft/mq5uaY0PCy+uFm5IwoAqqbIfq4AFeaaI6Lna302Vqt33Vi183pmBffRmo0pTEfpSIkfPYEdo7GvPoDVR1rYCzvvLeTreHfcmcttWTlyAaNsdmzci4mR1+rBXjazGFrtzsrLPhz76u7yRZKR8uTl3giF5fJ0zHoSAbxeDwB8uCNayGm7sHioMit4i9YUebkXCXISHxF2l52+dtSf9H1tFSYWSo24PDb+Je5psHKgAI5Yobbz3jxMaQBgqZXqzntz1g0JhksvSpytlGtdeSgjBpwYoLV7Cxhiefvv6jd/eZ8NACuzyw9vW9iQesqysrvwcE1ReVhkZ4pzHtUJAExFUYEYYBlv/XysH7JGINz+e9PblC4/Ex1pQLQvsNQnuWoabr1qpQZy3m/epo0AZltYtoW8DXZgiGw7lgAA0tUXJasu4kRK+gOWbVUzq1L+mWm1NqPWmwSciDgpDE1OTFjIIBlv265o7bfgwioGAwDaE25f0fzh4CFTidCaDiauvMajNfpbFdnlZfoaBEJAg4UT/hmxwFEf1z1T2flkRfwJb6Z78JhYKBualxxxOXgb0EoYIZPWjcxLZDZqu36X92lru35n1FxESiQXu5F6VAohW65ZNo4sOCYCxpCLSh8AhhDedWd41119PS7vPLjzagJY7z3V8sLQBBMAOorKwyKLmw+37AKAgAJgeciHJ67pr6wRqNj2/R3BWaTVM8uGBMt4EYLFmXti1r1xCh0iUuKvF/6ltNgLes3Xc3UQdq2nSJZxLmKEpm9K1ttMoXkGJy4r02WO3+BUkVzqza4Jpd4UNelptbZTnbzF+0UTa6VWkZKIiEDzqHrWWLMrPqm60CK0zya68ZBJG5m8FN8/+dD4xC97fqQi9RK03ZTwzdhVeenGiuf9ZquWbQlkliNA1j+T+5pQq3BWjUrj22HXcCJvbGl/3Sgn0Iwp0ReMyrNycWK7NseaoumQRDkTHxDI4iED8EYf77ussTGt8+p2ddIuPAARgTgRiQKcIvKwyOJm3e4oAGgqEznvkfryGuOtvFcL7byzs/bOXF2v3OFCBCjvOqDwm7ishrKsG+uusMJaSQsg75SZyJwlBXKYKskdVSj3QKAp9qRwYiJzZkbLO35fHf19N885koGRAOPhp23a4R8Gv7VdOxwRGcmkmubR9KyxtiPhipv80I2HwpkqN9fM2ZdTH0wvC275Six8+u6Rt5FWZ5TNtgqRESEXPQEABw/J5mGBpjQAqLGlRuVZ3TNTjpIcm4cOzScrAwUP0YiGd9yQ39Fnxr7zbPlLjIT+I82j6lm9iDwscuxmS2caAEBRxa6CidmHC1nNH3sSzQ47DmdFZ6SvJDNQVlwNxJMA4LBu+piJ3DssReKo8rTPxPLmQNpc0j4R8QJfZuX4jZ8f2X73XrrMVurLZ3V87ZDOH8lfBYkAOQOA1vY8iwldCB6SotiWyH6Zp4/sWNBHQzsce3LklouBgFkGM1o6D6ALD0HkpCUPSUn0aRbQXiDiPk5ZY5Up2xLH0r7g5KFdfwyB9vtZvhZWwNy8X2aJlS0tPg+LKW4Mw+jQOQBwJnckjCh4nIsv+aa0V7vsY7KiOXZUmHNwNIiwrZsCj26tZt1pkREQckHcbbL2AcuzAhAZVqBQ9PG6zV/uYzvrhvTTc2Nf81BMnLKiEABE3fBNXrB5SEzGhivM1YcmrunXIoHEi1U7rgQg2dXE1nnyT7B+6w4eFmN/uVCQTvYKMtuZVqFfwZFFye2oAmCIgd35B48AYEL6j/YPreg8LKa4aWmLGYQeBgoyIBqp/0eDQjuDKZlVjjw0QC73JOu70XFvuj0gIjNYhDFjuTuN8riyKYDQKpzEvWcg7jcAkTezqmrXjf1SMjX6f6Yl/teKInNFVTinVncQVf/RjYdeis3tvCCPdYLRJ8va77N+0dSFhyJeYpkeOSlQDHTzpLqw2pF1BQCr3RtKywtRjb+e9w4bgXJjTZCLybFQdB4WU9xs2B0DgIAipax9MQqBkl4lElHyDosfvHWzseu96fYAEclbX/g5cF+TlZSU1o1V7UAAhKyL3gMClTprWs7Ow6DdL/P0gen/J+KRXo8HANbsdP2pfqMbDydm/ujJK1kBAGW772ZmVMSFZZ4IZKJYKB4HD4vTfQ162ObdWW3zkJweneShJ1WoNwcAZeYWcfCi87CY4mZ7ZwoAFE1sgSqOL8PMqLib4vqK/Si2lUFd703P2A15GvrYwHEv0MPzpT+FaFs3KEWedfRcDwEMtN2Xt/M8Mf2QlzqBSPNoALCp3W1g3G84eajx6JT0r/Neipkxf+zxnLciC+9yxXVkpallLV7BZONls6BH7KabzS55aFVjoAj6cSqSioca4z9gxSuKy8Niipu4bgIAFz4Fs9LFhYGUiCPyb8tyR+Ssq3UjPuWUQWbV2YWcgF6+oKtWsULHlnUjumeAlLAAQMG2/DtUeKhzcuYhJkIOABl3IEz/keMhQYP5jwJX83a+iJCrX5eaD3L162DlBxDRKLh7uelvht5iN+C02e04sfxFgGVlW1KwMKCMDFDReVhMccM5B4As5aRA4Wsavia0Iv8AOeFtyxrYa+wGAPTqCwvROZmR33Mexa62krEbQCIOll0DAL7Opaww57lO/5sIDQKAOTDtQT7dyPEQYUTBgxa05DLI+dFS4li789DaNikZYuY1YsgJ0cB/T9YNdOEhWDyUlohVE1godCyz69qKy8OiiRvDMKIGgdX/lSHu1KbrUGi63vQ2kdQnZO2UcmoVcdP3GLsBAFDLs2Ouz+/omdGLydPgPIqd+7RTAg5PihBA7f/48G6oND/0Qaf8zZiuddM/dONhGRVhcJKaWWX50dbv2cFDcvBQD8/n/Rwx5AQvm0WBqbBn6wZ65yHZPCQlXNBXBQCADmWyWI1ZuxGLxcOiiZtsNmtQLkkstMFW7xcLXTY0D63NUdKFhl60yp5iN+KxWX6cXttviaOXL9Brvg69aBXZjQK71lwJu9ZTcOUFAFQYqxkjAMhk9MJX+0zBwUPLIi4YaEQhp/MAAJw87GZlZ0bnqdsAIDPie90UJ+zNurF4iGjzsHBvDgCi6iTI1esXk4fFtG7EAyEWRGZqk/eUQtZMVV1g1VDZViL2qlX2ErsR/xojLu6XxDEqzsg03L1XrYIktQrrYuMUw5wVkT/xWOdFWPCzgxwPixLGkGvZoWErdoO4JyvbLJutj7oij4Potdfz0BzxuB/WjWVoiecN/xSuFRSu3q1NN1hESDRRkyFPrxg8LJ51wwkAFKsDh7heu7TDW70n57cgsVCy6jJxdy1fGQD2qFV6PrBfFZ80Rlyc2e++fcZxiIXSY3+Xrr9r31rFit3YO0jJylwUDPv7QsYVN/1BjodWnXfhMLyTLS0ia4j3bmVnRnzPqDijf4eoOEOY0tCVvbBP68by7uwMaWrE5YV82TWBb4Fd4+OQekXhYdHEza5EFgCCqu36iL40sKrsR2llTB4Ldo65DdRyzGXBZRFnf2M39vUiIl5xfKrpP9mGu0S6sRu4vyk75rpU03Ijciz0QauQqLuxPCnhP3JWBOdZCGzRAWBje6IYC35WYPNQ/BjblQMKXJBYCNRy6MbDfVnZ6fq7smOu6+Mhsg13Zcf+XDxGxL3U3UBPHqKDh0CAmI6ckfe8kDbP9DbvDHv7qajtKCIPi7ZF0xbG1q58QoYIqLPwO5FfTG//mkr9SN3HRt+WDc0HWUnFSM7NyAmaLjUIe47dOLWE/YxReZZReRaaUXSMGeOeOq7V99QqIjjffTWrxRcB2P3xEZETGcGZ3niXxrF5YJs63VbMrjPVLzhuHyCD9drJB2QK2riXCR1jlThYXjOA7TJ3q8ZwGtd6zdfNstneLYvF9MReYUbmZ2uvz7UN7cpV+xv1wkP7S8o3Q252FWKs7t7IhjP7W15sYNk75b8iytW0EeWs7KLwsGjixiGMQcgakkIYY1rT8pqnD2z/Vpn+4T7X4SwUG3FtNnIGy7nfZPVMA5BtqLvbL+KxfZOY3gKZFvTWi7xSFyvUvotKhEJzwCIoWre0V1sJzaiSXqVYvDHKZnGtlmv1AIDIpI1NhIjZwMxgYVeyVfsiIhKXt91wpU1/0JWHEFUnJ9mYAM8/P5WOnAEITisbUVSlEGY3qZnVLLVKSa8yfU2oRozgTO6fkhMKgampcU8yvUWNvuDcLE5KhJfNMiLzRZN/m8lMb1HSqzC5kqVWohm135kNHQ3dMqRS4sj8aBcrG8j0NcfG3BZpvbjvX9PA0H+rHsqyEJo24QgRgfMi8rD44kZoFSISbUZEkUJaqX+v6qH65B/GdD6o7rmiPOOf0THmdq7WKtKU6UWr2Mqlm3WDZlSJLlVjS9VYlyYAvGy26W/mkfk8NKebxLEOkYuH9dQqrPPf2q77tM6lzjW9OwAASAlny89M1VwKagWQZd34p+jeyVpmNeSLVu2LTq2iFC/i+VlANx5yovcCP5gVvyy/1fTADCM4CwgIybayCci3/Q7P7vucrW0E6zwA5KnXK87Mjvwe2OzS6vWar4vQTM/YonzS6NC236H12nky9oIHFpvBWenRi7l/ivVZ+S3FAmBP5hRWNlA2fOzuxucqNp7VlyqwuDZpTcUtMWWSiEtBj2gUFImHXX57heDjbW1PrGqNqAB+j4aoMVQRVIZioI/ogM8AAnxzTfrlUGZ5OL3M7n2f8h+e8TYnw6dzXzPKOVOIopWsHMAsPUnbcUUrWgwAiKh0POfbdsPe203oNReZo6/sNbbS014FADSj2vY7PPtqzsY99alR12ZC88kqiNKSb1ZsPCuPawgAO7XpL5U9YBDonGcyPJPJnjClceqIIsyW/YygVx7OSVw6Ovv3/i7FWahj7KOmr9nJQzXxun/b9Up6H9VV5KlP73cfBab2tMF76jyl4znPluv60iwlW31hZvR1uRWcIWTxnzWnweScAMHoCG2/PhB7ck8LGhjaGj5vc9nX0hDWrbFThhjJwLlBqHPKZMxi8bBo4mbt9vbHV7aUa0Bej0dhCpCmMHvei0cRc+yYmKjJEBTGGBFjcsYYIy5n3Yk5U4wxkN6UmDQqbrnDUM5VjvtaLtP6NoaFlLDecJeIBMtnuuawnLLG98mCfbLKRqZ8QaL2Tk5EACanyJbv+fd8j/cEHcv+EX5gF5usczIAMmkzk8mePLWxqcYVN32Fk4eagiqAR2E+iH0udn7Y2Lcv70T7mN/okWNFDhwRGDLf7nv92/rauYqUcLb+TrP8uG5xX+jKNM/G76rtj/f9rPSKM9J1dzpjN4BIBJw4IuOcAyInIgIx8sUkwmyLL77Um1ymGi2+zBoAiPtmGCzU7j+6w3N4WmswODeJdE4mQdY0TQJdzrcrMg+L5kxJ+UBAVuwGyJrDIqYniOvLLEnPOcj+IF0q5awe9OIWIQAQEOsWu7F8137JGgBAM+ZZfwE03GVUSuujW9hfHtbo6JesAQBvxxMAEK+9k3OOiNGRi9XMqv66VO8Hr+5Qm+QV4CQKOgOegRqs/KlEjodgZy1AZ+E3wg/Mip3XR4nDWahj1M8yoflMJiERADwdj/Vd1gAAmjHvhkXpcU+IappetZra9mi/ZA0AaO2Pc60uO/IKsnctdIvdECEAlxNKCABMT3204kIjssgEEJPO5L8kZlSJswKQhhIC5GpZiHPxhqLwsGiJ8IaKIAC0G9K045Z4kKUBogevlUbkPOd/im9o9WEVXpKlDYj2Xnejtj3ad1ljw7PpMpaSOSmnGwUWJ7xbFvdL1gh4O57w7bpXSE9SIjvrH8n4Z/T94++EfrrRdwpYVwMA9KwBAGNCvv6eyWcZOR4CAII9h1tn4X9XPrUpeO4+V0j7Z+yoeyQdPjbHOiI1/UFwcz7Fe96Wy8HoAEfKzPanWOoDz6bL8llzx50s/nqvdTdWtNh6Rp4+dHmVpADtUlmDVrpVLGr/igH1rA5F4mHRxI2q2sIP7TiuTK6IbyCliYzycjsailaUi8jihxUJy5W39FJ3g9lNvm39KBR2wr7Ntl9tWzdq4o3+KhwbgV13MX2TsLxMJbKt/tGO8vP3+am0Mua1qqdafKeB1VdF1lCIUy1Gj7jPDhw8BFt72Tz8KHT1myP/tt1/Sqa3AS+dgaO2j7h1a+2fdV8T59zJuuCWfGQNAGC2xbP5Wuha/yV+HeL5/BDYfEWP6vZcpR+A3M1nSyOpw6xfmdCuQsEScZC/UKtIt0vmt5g8LKahriHoBB7gBIr4buJ5bokckR0XvyjG5JcLJ5YG9A+DqTfEL9701OmeyXp4HnnqpeVjZ5rB6jKDQAC+7Xfk3fWepVaqbY/aPagBwI4Ta9tuy/sKoBkLtN0fHbFY/EkAu6qvbYtcULn7zmB6mWZs7vb+uDapJXjeJt8pJgGZ3OIEck6KogCAqrmDNPuNPfFQ/HBSrPbDilsUxLC5WjVjHujkLMwQM97JTC1nQBoiJ1CZKFdlBOCLPa+m8081qu2P63U3ying1i9ZSa/cSz3OPoHZFi32gh6eb0WWwOQcmewtKX43SvqDQOdLnMibfNNg4Yy3Ka3UdvpnZJQ6WyqJvH5O4oAliSQPOWPF5GExxU2FV9mRNjXCjG3dyGprICJizBHBYczsGNX5hxGdD3Tv5iu6FO68UQ/MTNZcbgRngWUBirHyQg4zM5qHG+WE2vaYc8KGVD6ZjQV2t/Z2vogjr7McXgDErFq3ZeTtJpE3swqMqGa2ppU6zqlTm5RlEZ1z4JCzcnPajwFAQNMKOZnPJnI8FLEbIBIFmc72swhxrUnxIANSmJy0CUQKkxFGTqQIexzA01lo3aba9qgx4mJn7IbtfqTQNWNLdZH0IBDd/MiaeOXreDyw806l6xiSsoT8FnHfjC2R78Z8M6VMkbIml94CALIz61BMHhZT3IS92o60SZyTwjgnUJiVmQOw7RogQBbIrpy0Y6G617bhWvLNyMazUpUXpEZfb9c1WX0+oPABUiz+OppRzsLOuhu14P3cit6qpD8wvc3QVUsQYNLTxDUwScTqOCGSyUl2zAHOiayJiZxzDgwAyoNu4KbfkDwkDsg4J3LyEKS/YFvZwGzPHURmhzFGVmU8IAKClix4vkL8DbK2REnrJq9Jm06oyWWO7cBInCNjpLdHNp6l7jXyWJZeNjF9zq6y0z+pulXMWbSzNODMpgseYjF5WMz2WhG/B6QpA3Y2ToBbshMAa+JP7lPW2PC33V+26UKwfEiy2oYqBdTR2cDkB91iN0UZFMPMThEsIACSUSorK5GroULOiUDagLnrI76gFbspc9NS/YfkIRG3rWkLTh52qYGQr3L7ylv5GiICpnf3gvsLe/g3WNaNcwNNnmtmWwDlL0JYN0rqg4q1c/Yua2xUx5+cvO0rKo+J6g1ORAg9eMjExSsWD4spbkaHgwCQFLNfZIwNyHosIjhBfdV+0Z/2UdYIeDqXBjdfLuPHVtM8MqOFnzDTW20u2rGbwpf1JN+grjVXYmXeJT6XiweTIzouKsY5kZ7RAaAuHCj8fD5r6MFDJLGJ25H1EzJdVKlYsgasV5FbdaSAqGYKNUNAWDfdMlOFtXwUyPEJkPSO0IYz+xXNDGeWjdv9Q0eGHqxrBURAgJy4nslC8XhYTHFTVxkCgIQppQKXJw1gyRrFjE3dtVDt/4X2djzh6XgslxwHUAu2RQWcsRtEJKOjKMuSxQQCtCuvnNEZkYMjS74QkRVZEKEqltV1ANi/3BU3/YbNQys7Q9btQEv65PwpznP6XMbpiQDA5NIXznrz787nRDfrpkhr2ktSeGP/ZI1AVfql+ujdZP1CyUqekzzPIvOwmOKmIuALqGgQeq1+sWSZowDAieqSD+YhawQC264HI2qbxYa/ufAT5lpd97obtbzwZXW1lnJaghCZ5LTIQQI46h4BcrkA4CQFNDKFOHk0pcLvKfx8PmuweegTMTIZ+LStbOnD2v4UJ3n/EaWHy60OKrnQcmHgZbO6WTeFz2wgFrLP0NPxeN65s9r4g16zFeSVkbJ5gHhY5KG9Y4JeAGCmCYjcsl+FT6jyWG3iwbxXRjPmjT4OluGAVlqxIKiRbrEbs7dyjP5C9zcTEQfgIDwjjrnKK+lhEYBIXkl9a2cEROsuTgAwIlTg3vLPLnrlIQA44xTSnyKyBQqnXNTMtOxNIjK1QllBSqSbdcP9Uwpck/ub7YbZ/p135L2OymP7x37h5CENGA+LLG72qwoDQMbgto1K1j2uyC7TCvNXtZjYlo0IoIfnFX62Yn+teCwUHA/NLnRNFkprTTLzSiBmCefiBQJW/ZXQtJZWIW5dq2zWAID9q9ytUnkix0M7v0vALflCVpyCk+1t5arbCbp6vgBZf8HjXCLzu1k3RZjZEJ4nllTSq1i2dV9v3xvKs8vJIYs5kJDIRedhkcXN+BHlAJAypY3Kc7VDMCLztwIXVxNv2qEP0zelQHNUtHfsFrvhWn2vjf76jkRkgZ2VkxqVk9Sxlt/EHf86nkFp9iNkMhkAmOLuzMwXvfAQIBcJ7lqjILW6FV/jIlfIc5G1RKR/nUB7wozM72bdmJH5xAq6v9nQPAAgADVRaFGI39wc0ldbERwhZxEAi87DIosb4TanTPBxLh1m6575zSKM4FDSK0lWFVO24sxCljJGyCkL3fZMZUZ8r5BlYxWLTMFX4UzJiICs2iRnnjUng2QUU4ChSpw8mhrxuYGbPJHjoahsApCWI3W1KDkBsq7Sx/a2rLsDkAnMzAb6sf2tG/RRV4Ba3s26AbVcMDA/ZKoXcW+DWBHNIiS5VB6zs6LiX0Sl6DwssrgBgHGVZQBgGiYHspNT3Fn8UADQiFqOOGaq8p9XZ1ScIQb69NwzxUNzjHw9tY4RP9HVOqE/OchWRc6IAEnGA1lRTLvegaxYTzarA0Cj60kVhhwPLUuzh10JjppaAIcPReCwbggAsH307TwvY4Q8dUbNRSSZ1qX7hDH6+/kNpSJPXWbEFfYvSivYugEAn7kZbDYOGA+LL24OGzsKANqzJhM3GEh2H4QiCBwR3hPWDSmRxNh8xuOSp06vu9GqNcjFbgAAGSOibMNdefAgE5gZrbiQAE3pRaKMUaIdEbDicMLDEjV+Vs6VW+ZPOp0BgC/uPzKPr+bCRo6HKE0bTkCO+gOe0wR2dRjmpL+o5BCfBTLUus6R1/X3HIiFMo2/50rE2nsNAMAYIyLxb6bx9/11qYiFEmPv40pY/gqIitKNX8cyDgSAnMttQgPBw+KLm1Ehf4VXMQgDnPOcVoGiJBRNT73t9xCQ6ZuSqutfTJ5YKLv/A6SW23YNgDRvQMx1Z4wrkdS4J/slcZLh03eOuYdERkNKFpGVQ5Pbe/+dth6aDotG2rEAwpMq83vKXU+qMHTlIVlX3rr+ZMkXUV8j86fcsm7A5FzEAbi0RjERWRAdfXvfT4BYKDNhielrlo0PGCO7xo8xEaUG79jMlLf6zjTT35QY94ThbbYjLARYlKKQDISdnBSeVNF5WHxxAwAHjq4EAEM3RCpNaIx2tQgjOEytXiaMZd6O9MqzE/s/3scbxv1N2an/Nf1T7NRoF9tG7HPjhACkRJITX86OvKIvyideecHu0XeYSrngpWllQ7jVZ8S0IwJOxguuky1xiBOk01kAOHhMVT4XyEVXOHjojN3kvCqTuJUpt3wrUadDIGI63JFdBcBEZEF7w6N9mRun11yYav6P6Z8ipAwI68bhSTEh14i4EsmMX6LXXLj3BYmFMiO/l5jwsuFrzu2JISIgUy20hAcAEkqtJWsGkIcDIm6ax1QBwLYMeUX4BpBToRM1ASATmmc7I7keQkBmaE58wkuZMdftRTQQC+mjr8xM/ofJwla0BgCsYQ+WqUOiS4b4CEB65BXxiS+awT3mQVORBTsbn+8YcZ0018XwdpvBAE5OiwwIJxLeFuecWzFLLjYUKko6lQaAA0dGCrxWLmAPPCTHnaLcngbLw0Xbn+IkY3DAhZVKBIDpwMydE95IjFq8p1lOZtms5MSXMmNuELU25Og8KXjLrdpC0SdQ6Da99qb0AS/pNRf25LDpb9IrzohPfDE94oou+0sBBKMye+ZnHxFVD4iz2hLwcEB2AEZ8ngMqgx+2JXjG4F6PCcSItbFJSWVMoID8VCJyBidg9jR4eS8ZcUKGmeqv65Fj1fjrTG9V469jtgWzrbxsFvfU89Acs/Js0duYddkPafUQ4kL1yL5faEVVAIA8Yzsbn0DGWOw1ZrQqqZWkRAgo45+p+5pNFrYsl1wOTnSldnqRok0158QdtgwhSokj5Q43MgYAjKuOuDmpoqArDzUTQGHMJGJWfY3JOVOEXyP6FjDOSWGMEzAmJAJD2QaOkDGTSEHkRInKC5OVF3qyq5TsJjWzGgjIU2/6myhwoIjRYJeoMDAxeQ1Ei3XkvfGQB6aavinZ2hvRjLLkB5wA1Ijpawa7BJQ4AiPp8eXkJmkN2cBMTwHb1rd4juJ2zRHnhj5QPCxaa/RuiKazv3p9DQBUhz2Eskf6uOxTh8avyW/BTGDG7rGPM0QEYAjiAVr/it5d1tB4ZPY0GJTV6HYfdXHXSc6usvuZStfMfg9YObWco5Xba2rJF5JRcJPAJDIJLJ0pe8GKAIFpRWo4kcHJIDK59cDqQW0QEbKO9jgAfHP2JFfcFAvdechQRVQANAVVRNGNX2VMYcAARd9+tP5liAyBAagMFUQFgQEwBMVKZDIEhgzFjBDLUkHJSvmAJDNz/fG68RBktQRYmUwEIFvnWfE+sotEHVYYtx12Lf5GdUuewz+SypiXI08lISQGMHBk0QHj4UD1N4j4PBMrAh+1J5luZDWPgsCJ1ntOHe35+5i8RnC0j7yOW63WRSxWyBSFMW7F+a22h2DvzUNg1p0Da8ag1bsM7A7KSNw2UdHqo2yJYTOmxf+tdb6ImRY0o8QiAGB46tKhY9L+mcQiBidhaUv9QFa+gxMBcauWjABNywKSUgnRikcSAWQyBgA0uqZNUdGVh5pCyIEYosmJKWgSZ6hwIiaeZ8zkpIjeWlY0V6gTIELF6vJLoIBwZ6Sd4uAh5tQ3gowGin1ze+AhgNSFvfKQy+UQEERHm9ysBZtvAKngrHj49LL+D/8AgBVlP0pjmIhE1Dw7kDwcwHYqc8bXfvSfj9vSZlgjkxARTKL/lv1PMPa1SD9HcOyuWZz2NCkiZk4ElkUq3CAmuhzmZu506fhr6xMuJ89xsIwg+Wa7QavVs13cYzSjnp2/8+6+t+dGWy0J/o7HuRKOlS9qq748J2vAWSkvMq8iTixfNTlxIsuSF5/iHICDzH8fO3F0ES69CwccPNRMAsFDhowTMWQG56gwTqAwMIkriFxoKU5imIjYOcUBTA5CayIit/Y4CB5qmZXcP4Uhck4WDwEAhNbpOw+tySXUVdbY9ei2D8UhxzfgBCbBjtF3aplV3n72gVoT/HaLdhSR7Po20DwcQHEzKuQfG/ZtjKV5KosBn0nAENMQei3yhyOi5/ZR4pgstLNmcWf4DAXkPWRWDx1meUkmJybiu5ZiyflEIrJjzXjgnJjQDyDfLb0q+be1Zw+RJVcEWi5X0ntrc8HMWPnuO/3xpZvH3KsrtZTzfokcOW9h3XCycqsAHNCUkUguHmczJnFyTZuBQHcecmIygsMMzjVFMTkhA+Coyp6hjBMhs2O6ICOFAESkimaS+qay6BP++FKtay+rbHi+Hp5vRuaBWg42D4EAnDwUPQNl74suPMxsVNOrWHKVeAaUsB6cZfqnCLHDgRDQ7stDwkYWJjOAwXlL3WNjtlwYSC3r45X5JHDuSv+3LCsbOVE2YwwoDwcqdiMQTWfvfWONTlBd5iVF+MmoIgaw84DkL/dPPrT3j+ta7cZR92S9zQqi8JmZ9J9RQdESGpn0lIExObqZmTGtcylmWpDHEACUCPfUmaHZpNXLjpAglIr93aX5SkSCYSy5omzdgr53DzGV8IYxf056mgUDANAkboV1iHMyAcXkMIOTSWDIB3JyGCcWi8YVhhfPPMAVNwOBnjzUmBi4iAxBZcyOzigMBcGYHbtBFANdGSBD0MxoZfT3Fbvv3MvhuKc+PeIKveosO+cNVuyGoTNuaPWoJFI7nvdsv73XjqLcU58pPzNZtYgrYVmwzgkQ7al13LZNCDjByF3XVXf8fu8XRMeylaGr13tPEyQ0iHI8RLx41kDxcGDFDQD8/aPWZa1tPgV8QZ+YqKkxxhA0xoJm66TEL0dk/tZzanjcN2N32YKO8AJEUJAhkBAxYvIvsziBQApjQMQYAyJP4o3AjtvVRO8N7s2y2ZmRV/DwEc6vLO1bzoUDDYikd0Q+nNHfTkUmC68Z+6qOYSsWg5zLHd4mgGFyk0CIGFNGiLkJqHOuc0omsqZhHjFu9OfG1vT38rroI/bCQxkMZqgxJjqlI6DKEIgUxhBBzLpXGPPom+q3XezL9Kk7Z7byzGT93UzOHWFkT+91Wt8AmN3k33TZPntvc099dPRt2dARIg7Irf4BwpMS3a/BqvBS9U0j2+4qT7yk9PhlpZXaVv9pn/jPTWPIyUODU2LgeTjg4gYAfv7qBwmdV/pV8qgaYyqCyhgDsrVKubHaS51hY3VGreNKOOWZTEo5Q2G8gNAqCMCsQeMyO2ClqBgiEIW2LQ7s3veeBj18bGbsXVyJgHN/pniNgBOF152+J4G1d8R9Mz8e84io8TPtAA2RYXLLugHxr1QpnAyCrMGT8VSZ3/OdWZPyOKiLvmOfPFQsGcQcdrSdBvWarRNaju8+OGSvMIKzO8c9IRJZzJmTkpkpYKkPAmtP67tu66i9IxE5k3MusxNS0Fjl6V2ypQQAweQbjEcD+hoi2q1NT6h1cawdRB6WQtys3xV75P0NABAJ+VSGmsIUIFVhCoDCUEGpVVRF6BkGRApDRGDQJSuJll2jICKC8KcUhooRrdp4htbnuZemvzk+bgkoEbJ2soiaUSLyxJ4PbVyU9zf9aNSfov5Zzky5zomLuwtgWslvk0A3uYmYNSgeSwDA2QePa6x0m2kNLBw89KoKE6zTZC4cGYLGFJuHCmMoeAjAEFSKTdjyFX+237NVM5VnJurulnU3Vr6cc2IMWWJF8JN+yBqB3aNvj5efKfwma3eezEKQlQO1bR9RRyO4Z1vZwsQ2CEwi3aRS8nBAqoq7obE6PHVECADSibT4qhzRFDVvBOLXaAtpp0eaq4hz/GsSGbYNSWByqGhZ1HdZAwBKamXZJ6eRGbXibbmdk/7t/dgU0xN1bTfauzG5qMSR3w5FjZ/JSd5vAMM0U4kUAEwaXenKmhLAwcOMyWU9lEH2tGx5p6y6TZ6r3gQY1X53HrIGALxtj6nxf+f2fwKaouZTb/e3XJpPd+GtVyipD0wAw/anBIed2XHHjlPTSl0ZJhcVGNyqFDM48NLysBTiBgBOmNJY4VUyHIxUlhMYciI62VVwhrQCbMki6/1tl8SuTyG5M0DGXCPbF3v7X0+ppFb6t/zElmIiP01GRx+HZuwJgexqheekmJCtIvJvyjuNXBo4lMmYpslDfs+pk4uw58VFX+DkoeCP+P0LOpHt8zpYRwCq3jIiuo/g617g3347J7SrPQXfvLt+l/eoqartN/TchSf6mZjOZyyJadq1ppw4iBiilKQGUSZdOh6WSNwAwFnTxmkIcZ2bWYPEd3ZoFbKktWFVvlm7ya1dqvK3mrMhTSKmt0Ta8ulBAQDetsdY579tm9Mk0PIK2XRDWepN+e1s68aUOtO0pKRJZBiQSWcVhl+dtn/hB3XRd9g85FlDyhfIWdm2ZW1rPk4wKpa/rAEALfEGS60Qv3ZR4QI85tt5T94L+lNv+JJvmI5fhKy3sGrcrf002IWHwnazfjs5HmZKx8PSiZuKgO/4yfUA0JHM6iZ3aBXilnUjKt+E7WMLZktaI895WPLKVu3aWz5yn/Dv/p2IpBhEJgDba5VNHxHQ1+g85yGbxAnRttI5gAlgGJCIJwHghKaxbqOJEqMLDw2TAwoOmFLbkW19G5aeC6ULnaLpib2gc86lTkUl9lre4+0FItHH7V+EVYWYs2u4JTEdPCTJQ4e2Lj0PSyduAGDyqIqDRkUAIN6ZThumadX1y9gNcRNycRzblLU7IXG5O55sf7UsvrSQ8/HFXiAjashdBVYlaGEQVphJ3ORCXKJh5RFMAINT1uDxRBIAmsZUNo0oQmMkF/1FjofxdMYwOYEJlqyxohuGyaXcIQhm1xR4RC3+Oke07HfyxF4ocMFQ8kW7it0SOk4/AAzbiuHWM5xzRIOAExqcsiYJHjaXkIclFTcAcFzT2AMqgyZBMp7OmkK+CLlLJqFt3chYugip2LKGrOgyACcKJN9QCh5F6Ik9bwLolnQrHCS8J0Jbq3BAy94B3aREPEWcxlVHTp7khmwGDU4eZqyqKIuHYHLi1mNN31T44Sz/GnUOJoCiFzQ4AQAUM8adGRUSkRp02mi6yU0iE8iU9pq0bgwiJw9PKiEPSy1uAOC0g8eNDftMgnQiJSSL7vAqRfzc2jAt4x25/QFiE4CsZSrCPG9FbzVE1S+BgUWQ8VkoI0CDpHyxdCaKSuJ4PEWc9qsOn3ng2MKP5aIQdOMh78lDAoNIMwodEA4AntQHJqBhWbhYjJHTvvQHRMhzMQe0fShnpMbkYBKYvfMwUmIeDoK4AYDTDh5X6VOzJiQ7U7bclTIYrTiOiKrY2gasuiYCjmhy8BiFqghwemoEiUBBI18Edntn6MJDFu4xlwwziRKJNHEK+72nNtUXfiAXhcPJQ93k3Ioc279MThBVi1D2lvFNMbmVh0ZkhQVuBNDsdNaLGJwbjl0yos5YWNmi54n0G7iTh6W2rwdH3PhU5WuHH1DpUzMmJeOpjM65LfuFZUvcrve3e8RITxXI2h9QhDOx42ocKOltNgsb/ZNSatuUyRzQsDrgCO7qJnXGUoZuhv3eRdPH+1SlCKfuomB04WEindG5qAjLxRCJ0sWweQlkHlpkrHWtCPom6ptpx24MykUhhFtgS0wZCAfQOddN6uwcTB4OjrgB605X+bWMQfHOZNowZUWAtGIwt5URwCASu8hE/FXYI0nP5MJPg+T+bNlTeXflRYWs1uI/TTDVTnhJWdOZNE1eHnBlzZBDdx7qprRu7DgOQUwr1MDpLJtvyRoiwEzB3YVNDNmRYHGewqaWuScu5YvpsLKHAg8HTdwAgE9Vzp0+sTbkMwkSnamMzu3fqmGZNjKi7sjqGVZYN1WMjtApz2Rn988d4fPzNnB0DK0NfM3pIYvYcGdnkjg1VJSdf5gra4YieuWhbpLNwxbfaQUeojMwizAXy0sEC50N3RY8Jlc7I2wZkvLRzrQMQR4OprgB605Prg6ZBNFYMpM2RL7QJDAcsRtZB8G5/ZLBKeZpNrDQmVsx/yxZ0w1kctKV8tbq6/JbakX4xykI5/JQAKmsEYsmiNMBI8rPmba/K2uGLLrxMJ02LK8EDIL13lP1ApgW989MeqdYWXYgxI7AMQW67e3emYYdZ5C/FFm5Lqwzw7ZuaAjxcJDFjcApBzY2j4gAQCyRTnSmdJ6LeNk1eFbMGHLxME67A8cUctyO4DE6i1hZdhCVeLvCZ24rv6C/S60u+84672kip84BdZPHk5lEZwoAmkaWnzaloZDzdFEa2DzsTKST8ZTOpeGQYuG1wfPyXra15vquOxi4oZbvrMjfbY97Jm0JLpAVw1waOPbuBDs7ITRfPDWEeFiKHeF9xPtb21/6sDXLyaeiryzgURhzdDxSrFYAdtMJhug3Nk3fekLPdjl9xIr9Xs+q9aLbntX9T/a+qW27o679rr6eeejqNf6vWXXSkDXMZDJj6IbK2LwDag8cXZHf6bkYFHTnocoUQIbwxejC6uzy/q7WUr14W/mFTDRLRwTZyI2rvHPSpmM8eRXgvD3iT22emXaBn9WGQtavk7VjJqsPOR4OIXEDANvj6b9+sGFXMqsy8Pl9fp9m9/FDBAXRbnOjWN3tx8fubozenc+xyhdtqr4OrH5qYhKDY+cuVMZfGNd+g3evZRdJpfa9sqtbvEdbTdUgldZTqTRxqgx6T2keO7LMl9eVcDGY6MlDhuin2BeiC8uNflQY7wwtWFtzh90P0NnvBogC2VUHtC7ob6nqyspbW/2nA+Z2LdjpcG5HPIcqD4eWuAGAtGG+9OHmD7Z3AEBAU7Sgz6cpCLKPn+ztKKZzWB1wpuy+ckxySb+OEvPPXDXmcQCQ/dU52b1ELYnDRbPhUfEnqpNLR6Rf7rbCFu9RW7xHrfefbnAOgAbnuknJZEbP6gDQPLL8mANq3WDN8EVvPFS9PPr52Ldq9D7ZOBsrLttUfrk1IsYxiQjQmsRAwezKyZvPUPsscT6JXPpR2XfB7jvhyHJYds2Q5uGQEzcCH+2MvfhRa2fGAICQ3+MJeFVEhaHVRNbqtoXIELwUm9RxY22fJU7UN3P1qHsNFhHfXXamBjng3bZuSMz5JrnNvyL9Jrc69e30zrQ72hCAznk6lU0lMwBQ5tXmTaydWONuhvo0oFcejs88NS3+U23PLny7d8b6yKUd/tnCimEM5fApImQIjs6hABDMrpyw43tl2X1MUNAxtLr8mtbAAm4RMhdzlBYNGURDnIdDVNwAQNowX12//a2WXQCgMCgL+lWPqjGGmIvjCBsHABSGE2J3T4jt26tqjVywtmKxeExdexVbsoZ3lTggXs3tf6NcB3yDUyajJ5Np4gQARzSOnF5fPXSUiYvC0SsPgxCvz748Ql9Wbqy23avdnsNjnqbtvmM6/LOELgT5r+iIDqJ1vz3rjhyFqiM7H2uM3uXrzXPXMdQaPP3j0KUZCHXjod0jYbjwcOiKG4Ht8fTLH23e1JEAAIVBwO/z+DyikTV2bSXLEANmywGxu0emXupV82wNnr6u4vKUUpeb9GI3KSY5rlD0DREhHLKH2INlsnIiy2c2OKXT2VQqI25wQ3nwqIm1Q8RDdlF09MJDv0dY3F14SNLTRwBEYMjAmrHJrGlTlnWTW9zmYVl2ZWXmTZXHFDNqKBEi2O2Zscs7s2tDy2HMw6EubgQ+2hlbvmlHSzQJOaGjaYoiYjf2PRazGRCxOvNmubFK452i932bd0abbxYiEifHfB8Aa+YLJ46A9kwoOZfOaioqetxzq7epyXkmbSRTUpPUlwcPr68Zalari4HAnngI9rRfadEAAtp2DQAwy4cCMQGGW9aNHP0iRytyxxjNHjwkU8x74dKjNzlPp43UsOLh8BA3ApvaE6+s2ypuNgB4VObxeX3yfhNDxhAAgMm7CyhnOeRyAU6f2Y4NW8+IW2vPwJSBHNtVNk2eSuuZTNY0TLFAQ3nwc42jGircNsOfLfTkoebz+i254xhgL6fXM2T24y48RGtAPcmBmlwGEoG4NWHRmgLOQcodw+SpdDaT0YcjD4eTuBHY1J54f2vbRzujGVM2qAl6VfR4NFXxelTM3WwUs+5srcIQOXEmpzWDcxq8IzOFphXHEeZrVjezGd00eSaTFYfzKmxiTeTA0ZXD4ga7GCD0h4dyDlrOupE87Da317a1nRlS+fjTwcPhJ25svL+1/aOd0Y93ddnL79FUj1fzeDUE9GhK79YNyjeTpVaE3gAATmQY3ORczxrZrK7rhnPxCdXhA0dXDnF71UWJkScPLScKUPKQpAYU7bI+nTwcxuJGIG2YH+2MbWqPb4+ndsTT3V5VFMYY0zSVMTH8rqs/ZUE3TC7/1/2lEWW+hoqykWX+iTXhIRjqdzFEkB8PrdCNhMVDzi2Lycang4fDXtw4kTbMTe2JjR3xHZ2ptGH2vOt9wYgyn09VxK1tqAgO31vrYrDg8nBP+FSJm56IprPRlL49nkpbcbVe4VOVkWX+iF8boEnsLj7jcHko8CkXNy5cuBg6GBINKFy4cPFZgCtuXLhwUSK44saFCxclgituXLhwUSK44saFCxclgituXLhwUSK44saFCxclgituXLhwUSK44saFCxclgituXLhwUSK44saFCxclgituXLhwUSK44saFCxclgituXLhwUSK44saFCxclgituXLhwUSK44saFCxclgituXLhwUSK44saFCxclgituXLhwUSIwAOjs7Lz77ruPPvro5ubmKVOmzJs375e//KVhGPv88CWXXHLOOecM/EkWhKFwkosWLWrsih//+MfipWQyee211x522GGTJk1asGDBe++9V8iBVq1a1djY+OKLLxbjrEsNl4cDjUHnoQoA5513XktLy2WXXdbU1GQYxr///e+77767paXllltuKeSQheDQQw/9y1/+UldXN1gnUFwkEomjjjpq0aJF9jMjRowQD37wgx+89dZb119//ciRIx988MFzzz136dKlo0aNGqQzHUy4PBxoDDoP1Y8++ujtt9/+1a9+deyxx4qnDjvsMK/Xu3Tp0lQq5ff7i3u8vmDz5s1tbW2lP+7AIR6PT5kyZebMmd2e37Bhw7PPPnvvvfceddRRAHDQQQfNnTv3D3/4ww9+8IPBOM3BhMvDEmDQechM0wQAxroEcb7xjW889dRT9j1+9NFHjzrqqIkTJ06bNu3SSy/dtWtXt+8wadKkX//61/Yz2Wz2wAMPvPXWWwFg165dl19++bRp0w444ICTTz759ddfF+9Zu3ZtY2PjsmXLLrnkkubm5sMOO+y6667jnL/55ptHHHEEAHzuc5/7+te/7jzQq6++2tjY+M4779jPvPvuu42Nja+88goAvPXWW2eeeeakSZOampq+/OUv92oNNjU13XPPPfafV1111YknnmifzGuvvfbVr3510qRJc+bMeeaZZz744IOTTjpp0qRJxx577IoVK8RHDMO444475syZM3HixCOPPPLBBx+0V7vlllvGjRvX61WOx+PBYC9z419//XVN0z7/+c+LPzVN+9znPvfqq6/2fOe3v/3tb33rW3/84x9nzJgxadKkCy+8MBaL/e///u+0adMOPvjg6667rtfjDiO4PITPAA/ZuHHj6uvrf/CDH/zpT3/qdv8ElixZ8sMf/vDkk09+4YUX/t//+38rVqy44IILnMPwysrKjjzyyKVLl9rP/Pvf/+7s7DzppJNM0/za17729ttv//KXv3z22WcPPvjg884778MPPwQAVVUB4IYbbjjnnHPefffd22+//cEHH3z++ecPPfTQX/ziFwDwzDPP3HHHHc4zmT17dlVVlfNAzz//fFVV1Zw5c9atW/fVr361pqZmyZIljz32WFlZ2TnnnLNt27a9f3kb4mRuu+22q6666u233z7wwAN//OMf33LLLT//+c+XL19eVla2ePFi8c6bbrrp3nvvvfzyy5cuXXrRRRf99Kc//fOf/yxeGj9+/Be/+MVe108kEr3q5/Xr148aNcrjyY1MbGhoWL9+fa9n+Pbbb2/cuPHvf//7ww8//I9//GPBggU1NTWvv/76Lbfc8uCDDwquD1+4PITPAA+Zx+P53e9+J4JG06dPP/roo2+44YYPPvjAfsd99913xBFHfOc739l///1nz5794x//eMWKFW+//bZzlRNOOOG9996zL+tzzz03ceLESZMmvfrqq6tWrbr55pvnzJkzfvz4xYsX19fXOyXxvHnzjjjiCE3T5s6d29DQ8P7772uaFgqFACASiZSVlTmPoijK/Pnzu93m448/XlGUhx9+2OPx3H777U1NTVOmTPnZz36WzWaffPLJvXzznpg/f/7UqVMDgcCpp54ai8XOOuus/fbbLxwOn3DCCatWrQKAzs7OP/3pTxdddNGCBQsaGxvPOeec00477d577xUfP/300+3H3RCPx99///2TTz65qanp85///C233JJKpcSC4svaKCsrSyQSnHefSA8AyWTy+9//fjAYPPTQQw844ADO+aJFi/x+/7x588rLy8UZDl+4PLTxKeYhA4CJEyc+/fTTL7744jXXXNPQ0PCnP/3pxBNPvPHGGwFA1/XVq1cfdthh9gcOOuggAOi26Je+9CW/3y8C0YZhvPzyyyeffDIAvPfee4qiHH744fJgjE2fPt1JkaamJvtxOByORqN7OVcAOPHEEzds2PDRRx8BwMqVK1taWsSBVqxY0dzc7PP5xNvKy8sbGhr6+wucMGGCfSbd/sxkMtlsdtWqVbquz5492/7IzJkz169f397evpdlOecej2fjxo2LFi166KGHFi5c+OCDD/7whz/s17kBQENDg61/wuGwfXriz1gs1t8FhxpcHgp8inmo2o8mTJgwYcKERYsWxePxxYsX33///SeeeOL+++9PRJFIxH6beByPx52r+P3+L33pSy+88MK55577xhtvdHR0nHTSSeJtpmk2Nzfb7zQMo6Kiwv7TvjEC+xxYPn369JqamhdeeGHixInPPfdcXV3dIYccIg7U0NDgfGckEul2kvuE1+vdy59EJBY899xzEVE8KcT/7t27nV+qGxhjTgf+0EMP5Zz/7//+7+LFiyORSLfbE4vFysrKuoUw+nh6e/1ywwYuDz/FPFSz2ez27dvr6+vtp8rKyq688solS5asWrWqubmZMeYU9uJxN9MLAE444YRvfetbHR0dL7zwwrRp00TuMBQKeb3eZ599ttvX3ssJ7R2MseOPP37p0qXf/e53X3jhBRFgEwfqppGi0ejo0aO7fdy+PQLpdLpfRxff+s4775w0aZLzeefV6wsmT54MAK2trfvvv//WrVszmYx9z9avXz9+/Ph+rfbpgMvDvmP48pD99Kc/Pe6447oF50SUqKamRtO0yZMnO83O//73vwBw4IEHdlvoyCOP9Pl8r7zyyksvvSQMSwA4+OCDM5kM53ycBZ/P1/Pq94o9iUnhwb7xxhvr1q2zDzR16tSVK1dmMhnx565duzZs2NDzJMPhsFPV9NfKnTx5ssfjaWtrs79OeXl5ZWWlM8bWE+vWrbvkkkuE4S3wzjvvIGJdXd0RRxzBOf/b3/4mnk+lUv/85z+PPPLIfp3VpwMuD/uO4ctDJsI8p59++kMPPbRs2bLXX3/9t7/97Xe+853m5ua5c+cCwNe//vVXX331t7/9bUtLy+uvv/7Tn/50xowZPa+g1+s9+uijf/vb3+7evfv4448XT86ZM6epqemyyy5btmxZa2vrX//61+OOO+7hhx/e+zkJO/nvf/+7yB10wyGHHDJmzJibbrrpgAMOOOCAA8STCxcuzGazV1111dq1a1etWnXllVeGw+HTTz+922cPPPDApUuX7t69O5VK/fznP08kEv26WKFQ6Mtf/vKdd975zDPPtLa2vvnmmwsXLrRrE5YsWfKNb3yj56fq6upWrlx5ySWXPPfcc//9739/85vf/PrXvz7rrLMqKytra2sXLFhw3XXXPfvss8uXL//2t7+tKMrChQv7dVY9sXLlyn85sGzZsgIXLAFcHvYdw5eHakNDw5IlS+6555777rtv+/btHo+nrq7uwgsvXLhwoRCWJ510Ujqdvueee2677bZwOHz00UdfffXVva5+wgknXHjhhZ///Oerq6vFM4qiPPjgg//zP//zjW98I5lM1tfXX3rppRdccMHez3Lq1Klz5869+eabZ86c+cADD3R7FRGPO+643/3ud84apLFjxz788MO33HLLCSecoCjK9OnTH3nkkaqqqm6fvfrqq6+66qojjjgiEoksXLjw1FNP/cc//tGfCwjXXHNNOBy++eabd+zYUVVVdcwxx1x11VXipY8//vill17q+RGPx/PnP//5Zz/72eLFizs7O8eOHfuDH/zg3HPPFa/eeOONt9xyy7XXXptIJKZNm/bwww9XVlb265R64uc//7nzz9ra2tdee63ANQcaLg/7c7WGKw/xUxNidOHCxRCHuyPchQsXJYIrbly4cFEiuOLGhQsXJYIrbly4cFEiuOLGhQsXJYIrbly4cFEiuOLGhQsXJYIrbly4cFEiuOLGhQsXJYIrbly4cFEiuOLGhQsXJYIrbly4cFEiuOLGhQsXJYIrbly4cFEiuOLGhQsXJYIrbly4cFEiuOLGhQsXJYIrbly4cFEiuOLGhQsXJYIrbly4cFEiuOLGhQsXJYIrbly4cFEiuOLGhQsXJYIrbly4cFEiuOLGhQsXJcLgi5vly5cvWrTo0EMPHTduXHNz88knn/zII4/05YOtra2NjY2NjY2xWKy/B73yyisbGxtvuOGG/p/vvnH33XeLE7vxxhsHYn0XA4HHHnvs9NNPnzp16rhx46ZNm3buuecuX768Lx984oknGhsbjzvuuDwOesQRRzQ2Nr744ot5fHZPePDBBxsd2H///WfMmHHeeecNhVHxgyxu3nzzza985St///vfg8HgrFmzqqur33///R/96EcPPfRQcQ+0ZcuWxsbG+++/X/zZ1NT0hS98YcKECcU9isAzzzwjHjz//PPuTORhgV/84hdXXXXV22+/3dDQMHPmTER89dVXzz333BUrVhT3QEuWLGlsbFy1apX4c/bs2V/4whdqamqKexQA0DTt4IMPPvjgg5ubm5PJ5L/+9a+vfOUrgy5x1ME9/EMPPWSa5rx5837zm9+IZ66++uo///nPDz744MKFC4t4IFsECFxwwQX7nEifHz7++OO1a9eGw+FAILB169Z333132rRpA3EgF0XEAw88AACLFy8+77zzACCVSi1YsGDVqlWPPvro1KlTi3igbjy89dZbi7i4EyNGjHjqqafE487OzuOOO661tfWJJ56YMWPGAB2xLxhk60b4QRUVFfYzP/rRj1555RWneblkyZITTjhh0qRJzc3NZ5111iuvvNLrUmeffbbTfvnXv/7V2Ng4ffp0ADjxxBNvvvlmALjxxhsbGxsTiUQ3Zyqbzd5+++1z586dMGHCtGnTvvnNb65bt0689Ic//KGxsfHiiy9etmzZcccdN3ny5FNOOWXlypV7+kbPPvssAMydO/dLX/oS9KCXi6GJbjz0+/3333//8uXLb7rpJvHMXhjSDcKFse2XW265pbGx8Tvf+U4ikWhsbPzHP/4BAMcff/yJJ54IPZypbdu2XXnlldOnT58wYcKcOXOuv/76zs5O8dI3v/nNxsbG3//+93/84x9nz549derUb3zjG21tbX35dqFQ6KCDDgKAdDqd1+UpGgZZ3DQ3NwPAI488csUVV7z00kvRaDQUCtXX1zMmT+w3v/nNFVdcsWbNmi984QvTp09fvnz51772tZdeeqlfRzn55JNHjx4NAIcffvj555+vaVq3N1x88cW//OUvOzs7TzjhhNGjRz///POnnnrq5s2bAcDn8wHAunXrrrzyyqampqqqqvfee++b3/ymYRi9HkuIm/nz58+fPx9cf2qYQPDw6quvvvXWW5ctW5bNZkeOHOn0cfbCkD5C07Tzzz9fPD7ppJNOPvnkbm9oa2s77bTTnnzyyUgkctJJJ5mm+cADDyxcuFAwTfDw//7v/+67777Zs2ebprl06dL/+Z//6cuh4/H4e++9BwCDa9rAoIubb3zjG0LuLlmy5Otf//q0adNOPvnkP/7xj+ISx2Kxu+++GwBuuummX//61+LqA8DPfvazfh3lwgsvbGxsBIB58+Zde+21Ho/H+eqrr776z3/+ExGfeOKJO++88y9/+UtTU1MsFvvtb38LAELwrV279s4777ztttuE1b1p06ZelduHH364du1ar9d75JFHzpw5s7y8XPhT/b8wLkqKm266qaqqKplM/vrXvz777LMPPPDA888//1//+pd4de8M6SM8Hs+1114r6HTxxRdfeOGF3d5w3333bd26dezYsc8888ztt9/+9NNPezye9957T9g+4oMbNmz461//etttt1199dUA8Pe//31Ph9uxY8epp5566qmnnnTSSbNnz962bds555xz9tln9++6FBuDLG7Ky8uXLFlyzz33nH322WPHjiWi999//yc/+ckPfvADAHjnnXeE+XfSSSeJ9x9//PEA8PHHH3d0dBTrHF5//XUAmDp16v777w8AmqYdc8wxAPCf//zHfs+oUaMOO+wwABg/fnwwGASA7du391zqueeeA4AjjzwyEAioqnr00UeD608NB0yZMuVf//rXzTfffOyxx1ZVVWUymX/+85/nnXfeY489Bn1jSOEQR5k3b54wZEaNGnXIIYd0O8rcuXNDoRAAHHzwwQDQ3t6u63qvq+m6/u6777777rsrVqzo7OxUFGXjxo0ffvhhEU84Dwx+IpwxdvTRR998883//Oc/X3vtNWFkPvXUU62tre3t7QDg9XoDgYB4c2VlpXgQjUaLdQLiKM74kTiKU6I5X/X7/QDAOe+5lPCk3n777eOOO+64444TYSbXnxoWCAaDZ5999q9+9au33nrr6aefFu7Vz3/+c+gbQwpHv3goSAh74CEA1NbWrrfw1ltvXXDBBa+99tpXv/rVPKpGiojBFDfxePyFF164++677QhWbW3t7bffrqoqAGzcuLG8vBwAMplMKpUSb7BjY867IiCsTXupPkbRAEAcRdxs52dt0dZHrFmz5pNPPgGAnTt3rl69evXq1cICcv2pIY4tW7Y8+eSTwk0WOOigg6699loA2Lx5s2EY/WIIIsKg8rAnqqqqvvvd7wJAR0fH4FJxkK2b733ve3fdddctt9ySzWbFMy+//LII3NTV1R1yyCFerxcc/shf/vIXAJgyZUo4HO62lAjsiZAYAPzf//2f81VBgkQi0fMcZs+eDQAffPDBhg0bACCbzT7//PP2832H8KQOOeSQ9Q7MnTsXXH9qaGPDhg1XXnnl9ddf/9e//lU8Y5qmiJiMGjVKVdV+McTJw0QiIVJRNvbJw5deekn8FjZv3vzf//53T0fpL+x8bllZWeGr5Y3BrLspKyv7/ve/f8MNNzzwwANPPPFEbW1tNBrdtm0bAJxyyiljx44FgO9+97s/+9nPrrnmmtdee62tre21115TFOVHP/pRz9W+8IUv/PWvf33xxRcvueSSzs5OkUG0vZhRo0YBwAMPPNDS0vL973/f+cHPfe5zn//851955ZUzzzxz7ty5K1as+PDDD2tqai6++OJ+fR0hbrpVlx577LH/+te/nn/++WuuuUZQzcVQw6xZs+bNm7d06dJLL730pptuqqys3LZtm/DWL7vsMugnQ77whS88+uijt95665o1a95+++3Ro0fv3LnTycPNmzf/5Cc/mTNnzk9+8hPnBxctWrRkyZL169effPLJIpak6/qcOXO++MUv5vGlRKhYPI5Go+vXrweAadOmiaDPYGGQrZvzzz//vvvumzt3bjAY/OSTTzo7Ow8++ODFixfbuadvfvObt9566/jx41944YV33nlnzpw5f/7zn3uV9yeddNIll1xSXV392muvjRkzRlRMZDIZ8epFF100fvz4zs7ON954o5u7i4j33HPPJZdc4vV6n3766Z07d55yyilPPfVUdXV137+I7UmJ/LeNY445RlGUrVu3vvPOO/25MC5KB0T8xS9+cf3110+bNs00zY8//pgxNnfu3Pvvv/+ss86CfjLkqquuOvbYY1VV/ec//3nGGWecccYZ4ODhD3/4w+rq6g0bNqxZs6bbB6uqqpYsWXLKKafs2LHj6aef9nq9l1xyyX333ZeflrJDxe++++727dsnTJhw+eWX/+EPf7BLTAYF/x9t2dYNkPLM0wAAAABJRU5ErkJggg==", "path": "image.png" }
Which solution has a higher concentration of yellow particles?
[ "neither; their concentrations are the same", "Solution A", "Solution B" ]
0
The diagram below is a model of two solutions. Each yellow ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the yellow particles represent the solute. To figure out which solution has a higher concentration of yellow particles, look at both the number of yellow particles and the volume of the solvent in each container. Use the concentration formula to find the number of yellow particles per milliliter. Solution A and Solution B have the same number of yellow particles per milliliter. So, their concentrations are the same.
neither; their concentrations are the same
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAh0AAAEiCAIAAADSxvdVAABr6ElEQVR4nO2deXwURdrHq/qYezK5QxIIRzjCfckpIIKCeF+LLuKLB+uusu4iiIq+Ku7q6+It3uKt6Lr6rni8rBwqKgIKckhArpAQQu5rZjJXd1fV+0fNdDqTwxAmB/B8PxFnerq7qnt66ldPPU89hRljCKFSBR32Iy9BGkPAaY+EkVNE/WwozXTCx8KjckYBjwrQSoyPCmaMlSnoJ09nVwroDMbFodQTaS/gUTljgUcFaCXj4pCEEDrkRwihdBMaYEdOsZPrBHQAXoIO+FCJgg76T6yxgEflTAMeFaCVGB8VASFURxBCKAe+/jMGp4gG2BGKfPWtBx6VMw14VIBWYnxUBISQyhBCyAFf/5kE/7WrJzjwDY/KGQg8KkAr0R8VqbNrAgCnADy8hYMx7sSaAEDXB3QFAJqFMcZVJEpLuMyAwABAk4CuAEDT6KKiKEogENA0lTEkiqLNZjObzcYdAAAwAroCAE3CMMZ1dXWVlZWBgJ8QyhglhFJKEEJWqy0jI8PlcoG0AEBjQFcAoAkYQ6WlJbW1NaIoRqwTRCklhKiqUlfn3bPnl27dumVn9+3smgJAlwN0BQCiYYwVFR3z+XxWqxVjIbKNYcwQEhiTrVYsitKxY8cCgcDQocM6uboA0MUQOrsCANDlKCsr8/l8VqtNEERRFERRFAQRY0EQREEQRFHAWBBFwel0lpSUHDx4EDUMGAOAMxzQFQBogN/vr62tsVgsGGNBEDDGGCP+GiFsBCFst9uPHMnzeDwYY5AWAOCArgBAGC4M1dVVGHMdETBG+h9CSPfQc1HBGAuCSCktKMjvvFoDQJcDdAUAwmCMCSE+n08URe5Q4dsZ439Gg4Tpf7Isl5eXU0ohMAwAOKArAFCPooQ0TcMY60JCqS4qjDEaecG4ecMYEwQhEAj4/X4EXhYAQAhBPBgAcPhMFEIIITQiIYhShBBGqIGoUBr+Y4xSShljhBBNUzv7CgCgqwC6AgANoJTqg1oYM4QwQoiLCg1DKCWU8mmSlBACsyMBwAjoCgAgFEn2JUkyY1TTNBSxYPRAL26gaBohRBcVQgjRNE0UBbPZgiBjGAAghEBXAMCIxWKRJFlRFISwKLJIPDGKGCuMEI1SommEEE1VNU3TQqFQYmKixWLp7LoDQFcBdAUAwnADJT4+vqioSBRFSjHGgq4rXFm4A0bTVFVVNU3RNE1VlR49eiBIQwkAESAeDADCcFXo1q0bD/HSNE3TVMNfGFVVVVVVFEVVid/vj4+P79WrN4JBMACIALoCAPUwxmRZzs7O9vnqgsEg1w9FUQ1/iqqGFEVRVS0Y9DNGR48+SxRFiDAGAB0YBwOAeriXPjk5uX//nH37ciVJNpvNlBI+VYVSyk0WSqnf78cYTZgwMTk5BUbAAMAI6AoANIBLS2ZmptVqzc3dU1tb63Q6GaOaRimfz4Kxz1eXlJQ0cuTohIQEEBUAiAJ0BQCi4dKSmJg4Zco5+/fv/5//+R+v16tpGiFEEITExIRly5b16ZONwFcPAE0BugIATYAxppQKghAfH79t2zZFUURRJISEQiGnMy4xMQkhxHfo7JoCQJcDdAUAmkY3RGw2mySJgiAQQkVRtNttUTsAAGAEdAUAWoIbLoRQhHAkjwukLgaAlgArHgAAAIgloCsAAABALAFdAYCmiaSbpI0/IoR0eHUA4JQBdAUAmkCXE0EQoubS62FgfKZkJ1QOALo24LcHgAbwxbsEQVBVdd++fd99911WVpYgCHxSC19t5cMPP5w0adKAAQMkSeJufPDkA4AO6AoA1MNtEcbYN99889lnn+Xn5zPG4uLikGGNYUrpp59++vnnn2dnZ1955ZVTpkxBMJcFAAyArgBAGK4NpaWlL7744s6dOy0Wi9Pp5IsTo4Zr18fHx1NKCwoKHnnkka+++ur2229PSUkBaQEADvwMAAChiKj8+uuvd9999549exITE202Gx/dEiNEFicOD3lZrdakpKQff/zxr3/966FDhwRBAHcLACDQFQBAEVE5cODA3//+92Aw6HK5uJfFuA/GWBRF3SLhw2WEkISEBLfbvXTp0iNHjoC0AAACXQEA7qWvqal58sknVVW1Wq0taIPRRc81hlJqt9t9Pt/DDz9cV1fXOH4MAM40QFeAjoY1orNrhBBCb731VllZmd1u10UFRzDuZtyiv6aUOp3O/Pz8lStXooaeGAA4AwFdAToO3uDiRqDOa4t5lHBubu73338fFxdnFBXUTGZJ40Z9N03T4uPj165de+DAgc4dDWtSqUHqgI4EdAXoOHhslcfjKS0tPX68qKioqLS0tK6ujq9i0olt35dfftk4mkvXjMbq0qQRIwhCKBT67LPP2ru2LcPrSylVFEVRFE3TUKTCoC5AxwBxxkAHQSmtrKyora3VNI0Pf5EIZrMlMzMzKSmpg5fJ4p6VqqqqPXv2WK3WqGb3RNWOMWaz2bZv3+7xeOLi4jplyS/GmMfjqa2tDQYDfL1kxpAsSy5XfEpKiizLsBAZ0AGAvQJ0BKFQMD8/v7q6WhRFq9Vqs9lsNpvdbrfZ7FarVVFC+/btPXhwfwfXimvGgQMHamtrJamJPhbfobHeNCk2jDFZlisqKg4ePIg6NocYr08gEMjPzz9+/HgwGBAEwWQymUwmURRDoVBhYeHOnTvKyko71y4EzhBAV4B2JxQKHT1ayBi1Wm2SJIuiJAiiIAiCIIiiIIqS2Wy22x1FRcdzc/d0ZMV4C1tQUNDYHaIrSuNW2LilcSwypXTnzp0IIUEQeNKX9qh5VH0wxl6v9+jRo4RodrvNYrHIskmSJEmSTCbZbLY4HHZBEPbt25eXdxikBWhvQFeA9oUxdvz4cYyRyWQSBIFPAREEAWOhIdjpdBYXF+fl5aGO8gTwEaHKysom3Q/NGSX6dv21HtimaVpcXNyrr7566623FhUViaLIh/va+yoCgcDx48e5hGAsRGQ7fLNFUcBYkGXZ4XDm5eUVFBSAtADtCugK0F7wlquqqioUCppMJox58kaEMfctC9zHLAgYY4G7vm02a17e4UDA35E+AO7Zbk1y4qh9jAJj3CgIwurVq2fNmvXMM88EAgFRFPkqk+1Q93CJJSUlkiRKkowxFkVBELBBvDF/yyML7Hb7wYMHvF4vSAvQfoCuAO0Fb7lqa2tkWeISghBqTi8wxghhUZQURTl27BjqwOAlXk/+bwutf9Rsm6jXxn81TUtMTKSULl++fNasWZ9//jlv5WM+LMbP5na7Q6EgFxWDcocvjv9FtByJokQp4UYhALQToCtAOxIIBEIhRRBEhFBjP4XeVutvEUKiKJaVlaFm5o7EFl50XFycPlTFDYvGrb++sr1xC4ss/MUFSRceQoimaRjj5OTk48eP//GPf5wzZ84vv/wiiiJCKIbqwm+R2+0WBMF4txhrfLfrPzSZTOXlZaqqQmAY0E6cubrSyiAfoG3wmxkKhRijKHx7KWOIUsQYb4v1hhjxj/g+giD4fD4+NnVCxbXh6+OHZGdnc2OCb6SNIIREiY3+VjdxdI3hO3DrR9M0i8WSlJS0adOmyy+//L777quoqIit04VSyqO/uJYYFYU1gG/hTn4hEAh4PG7UgUYhcEZxJuoKi8z6Nm7k4/ugLrFFb5EZo4w1brHDPX39HW+uNU1VVfU3T85bfP3b1FOqtNIgIITwiZDcjDAqR8NaRZsvRsOFv9AvhItiVVWVJEl69jDuzLdYLG+88cYFF1zw5ptvapomiiK/OXqd+dvmlKw5NE1TVe4f0u8wo5RFlDt8+yPXEX68CSHBYPA3Tw4AbeNMnBeJMQ4Gg2632+/3qarGGMVYsFqtCQkJDocDRQI3O7uapwm8teSvMdYbbt78UUIopXp7SiglmqbJsmwymShlCLHGK5rwVtKYWljTNE3TBEGQZVnfyAttckEUQghPTux2u1966aV3333X6XQ6HA5CiJ4Mv0n08S79PLyl1i8wEAgMHTq0X79+q1evdjqddrud78Otk+Tk5Lq6uqVLl/7rX/+65557zjnnHH6qFlZtaeEqkMHaIISKIqOUCILAWDi2jTHC9Y4QGqXr3FhsrlAAOEnOOF1RVbWsrNTr9aKIyUIIJSTk9bqLi487nc7evfvwqdcgLSePyWTiUsEHf/RbGvFD1PfT+QtF0SRJLCg4umnTpnPOOYexsFWhH0gp5ZKgKEpubu6uXbvy8/Nramr4uJnVau3WrdvAgQPHjBmTnp6u7288nDEmiqKmaf/6179WrFhRWFiYkJDg9Xqrq6uTkpK45BhLRIZBtub8Kyhi/WiaNnv27MmTJ1966aWPP/74/v37ExISTCYTr56maZIkpaSk7N+/f+7cuRdeeOGSJUv69u1bUFBw4MCBoqIij8fDGJNlOSUlpU+fPgMHDnQ6nY2vwnghoVAoFAqKoj3qJuuCRwihDW+zphHGkMlkarevHTjTObN0JRDwHztWhBC1WKz8Rxr57cmyLKuqWlvr/vnn7YMHD05ISARpORn4rbPb7YIgKooiyyZBYIJQrysRe0UjhKiqpmmaqqqapjLGVq9evWvXQ9dee+3ixYu7d+/Ou9g8WlcQBEVR1q1b9+WXXxYVFVFKJUniRgY3Cw4dOrRx48Z33nln1KhRs2fP7tu3r3HMisdlbdmyZfny5du3b3c6nSkpKTzfSWlpqdPpNDo/jCpovDSj1cLNEX7m2traMWPGTJ48mRByySWXTJ8+feXKlS+//HJlZWViYiLPjcadLna7nTH2ySef7N279+yzz87Pzw8EAsbiuEolJiaOGjXq0ksv7dOnj16K/kIQhB9//HHZsmVpaan33XefoqgIIYwFw4PNIoNqHG7XaaqqmEyy0xmHmg/PA4CTATPGPq9ECKFLkju7Lu1MKBQ8evSoKIqyLCOkz4Nj+i9PVTVCNJ/PHwwGR48ezRd3Oo2lpQ3f+wkdwu/ekSNHysvL7HZ7ZM5K+CM+LKM3eIqiBINBURR/+GHTW2+943A4qqurExIS/vjHP9588802m40PUh06dOill146dOiQ1Wq1WCzI4J1GESXgLo26ujpRFK+66qq5c+dKksTb4vz8/CeffPL//u//RFF0Op16N57Pk09NTe3WrRttfjlh46iXri764JLL5Xrsscd69uzJt3O7p6ioaPny5Z988okgCC6XiysWl42srKykpCRFUcxmc1SJ/LSKovh8PlmWZ82aNW/ePJvNxo0SjLF+IZIkEULuvHPxzJkz/X6/JMkRXQkHR3CLRVU1TVNDoZCqqh6POz09/eyzJ7f+8W7vRwU4beDf+xnkty8uLsEYy7IJYyEyD1nkM/L0Od8IIbPZJAh4z55feHPT2bU+heF3LzMzkzEWCARUVVNVRdPUyJ+mqvxP5Zl3KaUej3vt2vW8rUxMTNQ07ZFHHrnwwgu/+OILURS///77e++9t7CwMCkpyWq16qXo353uUccYu1wuq9X6zjvv3H///YFAIBAIPP744xdffPHnn3/ucrkcDoeiKKqq6ipSVVVVWVkZCAT0ASPd06370qM87fpAEx+PSkpK6tatm14rbqBkZmY+99xzH3/88fDhw8vKykKhECHEarXm5OSkpaWJomiz2XjgAEcvGiEkSVJ8fLzFYvn3v/+9aNGiwsJCSZI8Hk/Uhciy/N57q8rLyxljqqqoqsotP0LCN1lRVE1T+fUqisIY7du3X4c+CsAZxulvr/BOWW1tbUlJsc1m46KCcTgck1IWcRfzv/DPr6qqatCgwb179z6NTZYO6ITyu1deXpabu8dqtUsSb0CxwV7hIzNaKKRgzL744ot16zZYrVZ9JEoURb/fHwgELrjgAk3TQqFQc+s5RjnVuUuDpyvOyck5dOjQ7t27k5OTJUnicsLrhjH2eDyhUOjCCy9ctmzZzp07V6xY4XQ6zWZz41Bg1hB9gE5RlMrKyqqqqszMzDvvvPOKK67goqK7Onj014cffvj8889TSrOzs6McTlFF6BfI1UsUxerq6szMzGnTpr366qt5eXmJiYn6hQiC4PF45s2b9/vf/76urk6SRIQwQvXjYHz0S1E0TVM9Hne/fv1Gjx5zQg822CtAKzlT7BX+46mtreG9Qv23pEsLQtg4fs53kGWpqOgY6pDZeacx3O2RmpqWkzOors7LW3BFCf+FQqFQSAmFFL8/4PfXYYz37Nnrdrt5Y40ic9ctFktiYmJJSQljzGKxNCkqKGK46G/5a0JIfHz8kSNHPB5PamoqxphbDLyxDgaDpaWlOTk5H3744VtvvZWVlXXFFVc8+OCDoihWVVVxg7WxvaIPuwmCIEmS1+s9fvy4z+dzOp3l5eULFiy45pprdu7cqXt99Jn2c+bMWbBgQXp6uizLqPlFw4xRA/pVxMXFVVVVvfjiixUVFampqQgh/UJ4KR9++GFBQT7vGPF7q99kRQkpiqooIY+nNjMzc+TIUc2VDgAx4Yzw22uaFgwG9UToRhXR2wjjO8aYKEoejycQ8FutttPYZOkAeKuXkZFhs9n27dtXXV2FEOOOlogrWTWZ5JycnKFDh48ZM/6pp558//33CSEJCQm8EVdVNT09PS0tzTgxpclMkfokJH0HbjeYzebU1NRjx475fD7ecGuaVlFRkZGRcf/998+dO1eWZT2sa+rUqTk5OW+++eZ3333n9/vNZjPPmGmcHxMKhbgPXFEUv9/PjQZekNVq/fHHH6+88srZs2ffcccd3GHDGJMkaf/+/Z9//rnNZjNKY5N5uoxXob8WRTEzM9NkMpWVlemKpWlaSUlJRkbGokWLBg0afPDgAUKI2WziMyUppZpGVFUJBoOUkv79BwwfPpKnPwCA9uP0HwdDCAUCgby8wxaLRZIkQRCNUyAZ4+NgVNOIpmmEqIqiKooSCAS8Xu+UKVMSEzt6sakOoyMHN/RudVVVVXFxsdtdq6oqxshisSQnJ2dm9rDZbPpuv/zyy//8z/9s3LjRbrdbLBZBEAYNGmQymQy2ZoMgYGNBuosFGYK1+IiW1+stKioSBKG6utpsNs+bN++vf/1rUlKSHrOrn4E/IQUFBRs2bNi+fXtxcbHf7+cnEUXRbrdnZGScc845R48effHFFzVNS0hIMA5e8TGumpqalJSUBQsWzJs3z2w2I4QeeOCBPXv2uFwu2nC14yYvRBdR/Yp43Boh5OjRozwLS9SFIITq6ury8g6XlZVxRxFPZGAyScnJyf36DUhJSW3bwwzjYEAr4d/7GaErfr/v8OHDVquVT6bjvvqGg+RU08K9Zz5iEAwGPR7PlClTkpNTQFdO5hAdoxnR5Kf6oBNv4j/77LPHHnvs8OHDI0aMSE1t0CDqkzlYo3W3mCFFij5vkQ9h8eC04uLiiy66aOnSpTk5OSwSsxtVK2qYjUgpraysLC8vDwQCCCGbzZaWlsYbcYzx/v37H3300XXr1lksFj6zUq+MJEmKorjd7iFDhjz00EMOh2PZsmV8PkrUVaCm8tDop9KviF8FQsjtdh88eFBV1VmzZjV5ITzoKxAI8mxgcXEuPXaubU8y6ArQSs4gXQkEAgcO7DebLZIkiaKxEdFnUdBwpLGqqaoaCoUCgaDfXzdt2vT4+ATQlZM5JIpI64n1aRbI+B4hZGjWA4HAE088sWPHDofDYdyhDbqiO0huv/32WbNmIRQ947IxUXZM1FXwSvJP165du3z58tzcXOMsSBSJO6irq6OUjh492mq1Gp1ALVwFMpgpRl3hVQoGg4IgLFy4cMaMGVEX0px4tyzqvwnoCtBKzhS/PUKIL/6haSppCY0QSgjVNI0QPnfMZLPZEXg4YwrGxm66/rbBHeZxw4qiWK3WgQMH6oFVUTTZHDf2VegFEUKcTufZZ5+NECK/lbKFV0MPH6AGeD9DFEU+VZMQMnPmzDVr1ixbtkySpIqKCuOBfBak1WrlC7G08i41Nl+MFxIIBG688cYZM2bweDDjhRi1Sgch1vgmA0D7cfrrCu9y2u22UChIiKaqmqbp849JxK2iz/pWNU3TNBIMBpOSkkwmU3M/b6C94UFTe/fu5e4K40cNG83o7ca3xtd88Xm+9MgJNbK44dqWxmO5hBBCTCbTbbfdtn79+jlz5ng8Ho/Ho6ee5LrIw6OjHCrNXYix8o0/EgRh7969CCFjkrTGdTZoNigK0KGc/rrCSUlJVZTwfDGeMYTnDokIiRYRFVVVVUVREaJ9+mR3dq3PaHBkcRGuK62xS4y7Rb3gRgYhpLq6urnD2wy3GAgh6enpTz311CeffHLWWWeVl5eHQiEehcjl5zeFUMcYMNb4EFEUy8vLUYsJKwGgEzn9n0vuDXa5XElJSR6PR9OIoiiqqmgan5kcnpCsqoqqKqGQommaz+fNyuqVltbtdPWsnCrwjCyodcurRO2jN81RVktrMvC3AT4yxn0hZ5111scff/z8888nJSWVl5dTSvVgttbomXF2p35RxhcY41Ao1Nw8HgDodE5/XUGRnm/fvv1sNmttbQ23SEIhJYI+R0/lgTTJyUmjRo1G4FnpbKLc2i00yqzhZPuo5tg41tSufXx9WAwh9Lvf/W79+vV33HGHqqp1dXWSJPE6tKAHjcfEGltd/C08mUBX5ozQFY4oisOHj4yPj6+urvb56oLBgN/vCwR8fr/f7/cHAkGfr87jcWdkZE6adI4sy+BZ6Vx4x5wH7+ohyE36IXR3ur4xylhhkYkgPPkjaud2mbs9CCEOh+Oee+5Zu3bteeedFwwG9ZmVzeWhaayOzV0In9bTfpcAACdDl3g0DSuotm9TLsvyqFGjhwwZghAKBkMYC9wjK0kipZrVahk3bvykSZPNZjMPoWmnanTY9Z7S8DY0PT1dH7likYjhxkSJit4K00jKYYQQIcRms/F1WToA7nRRVbVfv36LFy9GBrXT01bqNHchxivSP9U0LS0tDTV0wwBA16HT8rgwxCijDDERi9gQr0IZpYgKSBBwu2gepbRHjyy73fGHP/whISE+Pj6eUup2u0tLS1eufC0jIyMStBN7UWny0hhihBGMsIAFDHE7BngbOmjQoP/85z/GUOOWG1PjzER9/gf/V1GUPn369OjRA3WUxxtjzKPa0tPTk5KSqqqq+PxEZLBFmgtAiFJHZDBWKKUDBw5s7lgA6HQ6QVe4oghYEHE4nF+lqspUjLBZMAtYEJCAENJVJ5ZFR6Yli6KYl5dXWVkpihKfZm+32/V1zmMe7K8rh35pIRpiiMlYlgVZwhKKCAyoiw5v+keMGBEfH68oiiRJLX8vUYNIxLBIMN8YCoXGjh3LA7daP5Xk5KGU2u32wYMHr1u3jid0admHHyUq3FtDDWu9OByOs846C4GXBeiqdLSuEEYwxiIWgyT4Q/UP31R+s8e9pyRYolAFM+wUnL1svcbEjzm/2/k5rhy+f6yaWi4YPO6zsLCQr+zEx8F5Q1NQUJCWlsZ3oM0v7nRCcBHl6rjfu399xfptNdsK/AVezcsoMyFTujl9aNzQc1PPPTvlbIto4TZNbNX0FAVjTClNSkoaP378mjVrEhIS9InljdNqRfnDjTPtUaRRdjqdfIJ6p3gmzj333A0bNjBDwpUmZ8VH+Vf0+uvzMf1+//jx43v16sUYAxdL+8H4cDUH4/bu7XVwce1Nh+oKYUTEop/43yh8461jbx3wHVCRKguyjGWMMGKIELLDu+Nfx/8Vty9uUuKkhQMWTuk2hRsuJzMsxpsYQRB8Pt+GDRu+//77/Pz8YDCIIjmXePjpww8/3Lt370mTJs2cOZMnBzxJw4UyihASsfhd1XfPHHlmU80mD/GIWJQFWUQiYogxtj+wf23F2mcPPTvANuCG3jfc1Pcmm2TjN6rN5Z428Jt/1VVXffvtt9xkoZFlu/R9onr9xqZZd6vw9Utmz56dlZUVqx5D6+GLBw8fPnzkyJE///yzvmpky/nBjMNfNLKYGD/kd7/7HTqJZF9ACzDEGKOY92WjssYxglFLiX/aXJzAfQHGp9pYjVOQjtMVjWkSljZXb164d+Fu326n7EywJWCEw44WxhhjWMLYhDHFRCXrK9evL1k/N2vuo6MfjTfHt7mp1UXl+++/f/fdd0tKSqxWKzdKeJSRPighSVJRUdHrr7/+2WefXX/99TNnzmzcirUeXuFatXbpr0vfK34PCSjOFJeG01DE0cIowwxjCWMzZhrLV/IX71z8zuF3nh7z9NlpZ4O0oIjJkpmZOWfOnBdffDE5OZlF0lM23tkYxWvs6fM+fq9evW688UbUqWNHN9xww549exRF0bO8tMa5oicH4+p46aWXjh49uuPV8UyAj89jLCKEvEqVR6nQqIax4JST4s0pAhYj+8TE/8ooY7w4xqhbqfAq1ZQREUsuU4rTnIjrizv1vugO0hXCiISl1wtfX/zrYkESMuwZFFOKKA+IwgxjhsPxlwwhjJCEXDYX0tCbBW9ur9i+auqq/q7+bWhq9X7rK6+8smbNGpvNlpiYyLdIkuTz+fg4GF88ii+zYTab/X7/Y489tmvXroULF5rN5jZ0DHlVD9UdmrNzTq4/N9WWigVMEKGIIoQQQwISKKaMsvAli8histgl+yH/oQs3XPjk6Cfn58wHaUGRzv5VV1116NChdevWJSUlcR++saePGrbReiAvb5FVVZUk6Z577nE6nZ3VHHOBzM7Onj9//lNPPcXTITPGGpsszV2IKIper3fAgAELFixA4FmJNXwYSsBCnVqzu3rdgdofKoOFQeKjlDKKJGSNl7v1c409q9tFybZMxtre3YwqrjpYvLPqP4e9P9WEikMkQClDFJuwLcnUIydh0ui0mU5zImUUn2ojYx2hK7x9fKngpYW/Lky1pYqiqGENccnnvyCGEENclimmiCAkIMIIwijVkXrAd+DitRevmbmmr6vviao3d9I+9dRT3333nf5jRgiJopiTk8OX+SOEWK1WvoofHxaTZTklJWXt2rVut3vZsmU8S1jrHyPuUMnz5V28/eIyrSzdnq4iFWGEhIbXKwgMsbC4UkQFShm1W+xUpAu2LgiR0ILBC0BadO68805FUbZs2WK325vMRMkaortbTCbTAw88MGTIkM7t4wuCQCm9+OKLa2pqXn/99cTERN6niRJI1NSFiKLodru7d+/+8MMP2+12MFZiSzjcH+Mfyz/ZVP6uh1TIokWWTVbZwhijlBFKKpX8Y8f3bir6aEK3q2Zk3yiLZj5O1abiKEaCypTvit/ZVrU6yLyyZJFk2SpbES+OKMdD+/KO7vi28P1pPeZN6nkVr+QpJC3tnieft4xfln/5u52/i7fGC6JAMY2eNsMQYghRhCiihFJGEUGIIaQhpCGZyjV1NYMdgzdctMEhO1p/f/nP78UXX1yzZk1KSgppuFw5zyHInSt83T19FFsf/iovLz/vvPPuu+++1usKr16dVjfzx5m5gdwka5KKVCQ0tJtZ/R/TGGEkfL0EIQ1hgrGKa721H0376MKeF7aftJxCyc91o2T+/PmHDh1KTk5GkfbXmL4XGbwRvEtRUVHxxBNPTJ06VdM0fcHQToQ/k//+979feeUVhJDD4UANZ3EaL4RvJIS43e4RI0Y88MADaWlpnSIqp9CjcqLwH6xKg6uPLs/1rLeZXbJgRji83DRi4RaBUYERHFKU2rrq3rYR80b8T7w1pQ3SwovzqJUf5S8rDO52mONFQWKRbx4xxCillCGCKcHBUMBT5x6RNGPO8PtNouWUkJaOyJPPA4UrQhV37LvDIlsEoSlRQZE2FyMkoLCnCoffIgGpSE20Jf5c9fN///jfKOIM/034z2/jxo1ffvklHzxpvIOqqvzXa5z0oCesJYQkJyevX7/+008/5eMYrSqXUYTQgwce/Nn7c5KlKVFBqP4CEcICxgjX3wGMGGJIQBaTZeHmhRWBChGLMH2S338eIH706NHi4uLa2lre2TcGUPE+AcZYUZTKysrCwsKKioqUlBTUZVI08q7MlVde+dRTT/Xt27eqqsrj8egLQdJwaxaOJw6FQrW1tYyxm2666emnn+4sUTm9wQhTRj7Kf2ivd0O8LVWWJCxqWKSiyEQRYREhURAEAQmUYSJKYqIj9Whd7ss//dUbqsFYOKHfJhcGn1q7Ku+uYmVvvDVVFDEWiCBSgRcnICwIgoCZQJFAZNmU4EzdUb72ze33Eqp1fVHRad9nlDeyT+Y9mR/Md5gcFFNjA6q3reEtkRdR7SzCSGFKij3lzQNvbi/bLmLxN6WFmyBer/f999+3Wq3GjwzJw+tHSLFhtSXjnpRSp9P57rvvVlZW8oH+37xeEYvba7e/dfytZGtyA1Fp8noxQjgSVWhQU4qp3WzP9+U/tuMx1GopPb3RvzK+3ldJSUlBQUFlZWUwGHS73bW1tW63OxAIhEKh8vLy0tJSLjxdsBXmq7YMHjz42WeffeCBB4YPH84YC4VCmqapqqooiqqqfI25lJSUa6+9duXKlTfffDNPL9YFL+eUhiGKEFpf/OoB3/cuayoTNCwyJIZ7tFhAAo/S4nHhIhIERLEWZ08o8R16f+fDbSv0s2OPV6hHnJZEJKhYRLw4zIsLl8tXtUVYQAxric60PRUbP937PEKInSJNQTuODHBj5Xjg+IclHyaYEwgiTTSsxoYaI8RQtCZHWltREEM09NKel15Pe50y2rJ0E0IkSdqwYUNpaSlfezx8soiitBBWhAxxYowxs9lcWVn5+eef33jjjb85n467f14peCXIgk7BSTBpICqGW9MskT01piVYEv55+J8Lhy/MdGRCUKkOb155x//w4cMPP/zw+PHjKyoqJElyOp2LFy+urq622Wx6P6AL3jfuaxFFcdq0aeeee25FRcWf/vSnvXv32mw2RVEEQairq3v44Yevu+46/r23x1xdgPs5Cutyf6r6X6c5mQkqDvcC+UgCf3gQxohhhDHGiGGMBCxoWIuzJ+8u3bi14IvxvS4mVBNaMVJNGRUFcVfV2gPe7+NsyRQ3XZyAEQ3PYOHFYQ2rLnvyt/kfDk8/Nzt5eJv9Oh1JO9aPMIIQ+qL0i1Kl1CSaGGL1jSxq1La28JPBCDFEEHHYHOuK15X4SiQhHCXcHLxzt2nTJpPJFHWy37Q5GpSMMaXUarXq8ydaKBdhJAlSSbBkQ80Gp9UZDv2qL7ip6wr/v5FKYsQQM0mmkkDJZ0c+Q5GbCRjhnff09PQhQ4ZMnjx58uTJw4YNk2X5lGh/+XArH/tKTU21WCw89T0fEAsGg5mZmQghPkTW8nrJwMmwpfxfSKDhGxxu5Q3tlD5eHRlU4P9nmFpMlq8Pv08pEQUJ45aaI44oiJTRrRUfm2QrwjRSnBBdnLHk8H9IEASKyVcHV3XsvWk77Wiv8JwlX1V+xWWgvulkTUkLq3/LJ7U0+EhCjDJzwFxRV/H1wa/n5MypCdU0583mRsbhw4eLiop4lHDjHVBTAtOkBcMYM5lMx48f37lz54gRI/x+f3NjEYSRBDnhm6JvKqorEi2JLJ4h0XCx+vUyw1vG/8+ib0WkaFmUNxzbcOuwW0/FGPYOQPdy8yEv2lTC466McSlMfaCPwyJZ/WHsqz1giGEk1IRKC+p2mmUbw7S+mxf+t/kHCSOEmFm2lnjzfs7b2DdhTEjztWxDMERN2HZM2VWh5FvNdoRovaViLK5RmVxZCKJWk/1AxbbKuuJkR0bXH71oL13hM+R9mm9/3X6zaKaIhptRHL1f9IHMkOVXPySEHO84pKOSQ3Qsf2/589Lz+j5N3mJKaVxcXFpaWlQrYwwfaqLcZlZ+5UJ11113BQKBFr5OhpiABD/xZ7AMQRVIXxJcGESmyIVESSmrl5lwcSz6bjDGzKJ5f81+n+qzy/ZTIhqk4+HfSAsr8p4SNH6uunjDcarDGMVYPFa310/cceZEVO+3YA1e6NlVeLNk+M1SSq12y38/clfxj1S2oZYdH1hAipf1vcA6eWESCVJBbLJnHS7HKDGMb0FMFCSPUnmk8pdkRwZDFKMuPf2g3XSFMYxxWaisSqnio1LhNpE11RWg9aHGerxd/RYzs261WvdYmZMhBRFGalltC0VjjDVNczgcPHo4Snia6882pzQcfqqqqvC1tFC6gAUJSUxgpi0mMpYosxRch8OGS/2pDXHG4ehCw0eo/pGWBKkyUFnmL+vj6tP1OykAcGpR5s9v1Itt8JbScENP9WYpcgBjCAmYaiwYDFIR/6auhEKUaOZIvzZSTuPiwiePJAwzdDopYsXuvJjegPaifSP6/ZpfJaooiYwxzDCiEYeOsXmkhl4AZZRFLBsU3ogYko5LSA4fK2JRbFGr+TCCvjBXa5rjqGR/jQfKGGOSJEmS1JpOMUUUCYiaqHBEaMKY1kWF78ofJdrwo4jkYIRVovpU328WCgDAiRLUvIhhRhlCiGGE9QES3phzUaHhRkHv+Bp/pBjzOGTc+IduhMd68eFNxjBjiFFUP3IW/r0jyouglEZ0Jaxn4SYJ+1Vvu96QWNEhM8X4faEMCzh6NKze2EOIoAaiQuu/PEqoRjRGGKKNfdzRcHvFmHyw5VgafSKk/jZcNYO6cLExTnNp+XIRQ5hgSiKa0XhSJEKIhtcCqL9ewyXXP8EAALQPjNUPkFCKMKvP/Rhed48ixCLtPLcnKGP8X8YQZZQxQqlIf8te4Z1XShlFjFJGRdowSpSfH0WKQ5SXzmcz8UIxOnUahPbVFatolZhEKUUY8SWtwrFPUaNhNGyp8IwmxraV/2ndNHPIzMwMU0wRbXk+B9cVfZFBFJkj2Vha9DloUVv0Fzo8dIdnmvrNcTCufCzEaA8avhxeAjboKEXhp4w2NFZoA4FhlMlYtkm21txtAABOCIvopIQxyn97AuNRxaiBc4NPt0cUURqZek8YJZQShjEiGlGUEJKF39AVESuKpqoao4hSKlCMkMAYCjeH9c0CDRsokeIYRYwwRhijiBJmN7va/abEgvbSFd6Ip5nTkqSkElJiEkyMMoqowASEUdhw4bDIzWQGUdGbV4RwACvDFGG7IBwTmMwkJJlFcwvCjTE25mVBKOxk0+Nt9I1GX72+G3+tp8XV/+VpxFoeB8MIh2hIRSpWMRvOlAkK9mHEEKbYKCq8oLCI8gKJQU5oWFEYZZqmpVhSUu2pCBy5ABBr0qy9qYYpQQhRgTEsCMxgsLCIpRIWFcLqG3qKKKVYY2aLyeWKb5XfHjOT2aSpFFFMKRUQwlhA9TLG6tNY8+I0SgijBFFCKUVEoxgJmfF92/uexIR20xWEKaMO2dHf3r+gqsAiWQgjDDEiEJ69WN8zYoU2YaaE/zTEZFY3r06qkWoDtc+f+/zvB/y+NXHG//jHP2RZjspJbtSVqKOMQ2es/qliCKFgMLh8+fLhw4e3HGccb4r/8OiHf93913hrvJagITNiGkPhSVUGPUNM1w+EUDg5GL9YEv6XUoopDqmhAekDnLLzFE2X3d7o8bj6zI9TVH2jHk6gveFhwT3jhlhwnKKqMhKJwDAjDfud4R8mYYhqjBBCCaJa2FhBFAcCwcceWtEv6azWxBmbBfuRuh2rjtxjt9oZYYRRjGnj4lhEw3iiRKpRbh6pquY0J/RJHooQwu2cJ+XkacdxMD7wdW7KuWtK12CCkRDpiWNWP0cSRfuxwy0saTAiRFWKEFLilERX4syhM20Om4VZWm5nR48enZGRUVRUZLFYjErQ5ChWvcFksFp0k0VRlPT09PHjx5vNZpfL1dyPn1/vDNuMxNLEoBgUscgUxh8AJjQKnjYMiDX+48aKyESVqNOypqFTdhmG9oN/C5qm8bf6PA/uAztVGmjutNOXKOXTJLEhGR2flt+pdTw9wQgzRuMtaX2dZ/1SuyEOJyCBCQJihgAt3cVCCSOUMC4qGqEaooQFQv6eCQOH9ZyIELKi6PnXTTLYMa7b8b5locM2sx1ThpoqjlLECCWUMoKoyriuMIIDId+4XlMSbd1Oifn27T4v8pLMSx779TFFVQRJYAKLTuVijPuiDdtZEv5jhDHKRCJ66jwXDriwu6O7RjURi00qBIf/VidNmvTWW29ZrVZN05qbX2Y0SlDkd44My4ljjIPB4OTJk81ms6ZpxolsUWCECSPdrd3PdZ37UclHCbYEIpDwZZKmrpc1ul5qMFYIVlU11ZZ6WZ/LEEIgKjrcRuHfaUpKyp49e3h+MFEU4+LiZFnm35Q+8tk14f0YnkkTISQIgt1ut9vtmqZhjPncexRZfoZBZrB2Y0qPa/dUfKtIqihgKgr6wAILx4OF/Su6qBANEUKoijWinp8zFyF0QnlcJmde++6v/20WbAhTQRRwZBam7qXn3n1eHFEJJYiolKhMFs28uFOC9tQVLBBGejp6Xp159UtHXkp2JGtU4wndEOIREpFdmxsBo4gRRjTC1cUkmW4ddis/c8tNBv+tXnDBBV988YXf75dlmUaWB9f3MfpOOHpgmC42vP1KTEy87LLL+GlbLpc/k3/s98dPiz5lJBKPGElx1sBMafKSCUIEEUKYxmQmlwfLFwxf0DOuJ6zCokMp5eqelpaWmJjocDi2bdv2ww8/6JPtHQ5HTk6Ox+Opqqry+XxRwX5dBK55giCUl5d/++2327dvp5QOHz48EofKevbs+e677/7888/nnHPO6NGjearKlsMagRMFY4Ey2sM1cErm778sWJnoTGNEM/bfWMSFzriTQ6OUIKIRpokef+X43hee1XMGQ0wUWtWK8sTkI9PP+6Vs466KdfGOFJWqOJyqhc9UYTyymRE+/EWphjSNICJ4/BWXD1/QM3HQqTJu0b7xYNxkuXPwnZ8f+7w2VGuSTeEIqMaz7ptqZBlhhBBEkEzlcn/5/KHzJ2ZMbM2d5SMJ8fHxc+bMMS7P19inok+/NzpXaGSRPkmS3G73TTfd1MoU5QIWKKMTUifMyZrzev7rqc5UlTZMaazrCmraPiOEMMIEKgSUQA9Hj7vH3K3fxjMc/u1IkpSWlta/f38emEcptdlsdrtd301VVYxxUlJSfHy82+0uKirqam0xf5D8fv9HH320bt06j8djMpnMZrMxj4ssy16vd+PGjd98803//v3nzZs3cuRIfV2Zzr6C0wcBCwixWf1uKfcW/lz2ZYIzlWLd7RmJQiaMERYOA9Mo0wS3v6pv6oi5Y+5rW6GzB99T9WNxoTvXZU8mWGtQHOWhXzzkjBGNMk2o9VVM6HPxZcP+hBA7JUQFtXeefIwxYSTDlvHYqMd8Ph9WMdYw0urHuFr4C4uKhiQquYPuISlDHp30KGr174oPIFx44YXnnXdeRUUFjizUoUsLxpgPahnDxvQ1MPgyUNXV1VOnTp09e3brByJ49R4Z9chg+2C3zy1Ria9Oxtfsqr/Apm4CFxVMMCbYp/qePOfJDHsGYaeqLzqGcDdDWVkZQqh///580iv/BvWeAV/rkw948t59YmJir169du3ahZrxq3U8XFQOHTp01113ffzxxwihxMREu93O89DoXzTG2GQyxcXFuVyuvLy8pUuXrly5kn/URS7ktIEhhDGeO3LZ+PTLq2rKgv4gUzFVEAlRohASonwYiqqMKkgJajW+iqEZZ99+zgqrycnYiaVWwggzxqyy45axT/WLG1tRU6IE1PriQoQo4eKIioiKQkHF7a+a2n/2zRMeNkzNPwVo93mRIhYJI1f0uuIhz0P3/nxvqjMVC5gSGv11NOy8U0opodxS8QQ9iZbE9y54L8Gc0AYzcNGiRR6PZ8uWLcnJyfpoGMZYUZTq6upgMEgIsVgsCQkJvLXiSsNFZfTo0ffee+8JFccD4eLN8W9PfvuidRe5fe44S1x4HWIjDf1JjIYtM4EKSENlgbLHJj12Zd8rYQQMoXBi/NLS0oceeqiystJms6FG63Tx75T7xrje8C6CzWZ78803KaXXX399py+KxSuwc+fO5cuXa5qWlJSkW8n6GJfRdOYzsex2O2Ps/fffLy0tXbp0aTgr0hnf1YgVPMutiMXrRt6fnTjy/359tbK2SBIlWTQLWEKMUcI0TVPUkKqpLkvyNaPmn59zvSi08VvAGDPEHKb4P41/ZsOh974+vKqqrlwWzbJowlhklFFKNVVT1JBGtDRn1twx903ofTFj9NRKD9ju6xBzePv4zC/P3Lv9XovJ4jA7NKSFQ6SMkVEsMgxFkMhETHClv7JvfN8PL/pwWPKwNjSy/LsPhUJPPvnkunXrnE6n2Wzmv9v8/PxgMMgbIE3TZFnOzs7mD4qqql6vd9q0aUuXLrXZbG14gHhVf6n65dqvrj3iO5JiT2GYrzbc0MUScQwywjDFEpN8IV+IhB6d9OgdI+9ob1E5JRaX5Tff5/Pdd999hYWFcXFxLfhLjN4UHhjGqaqqWrRo0SWXXNKJ0sKL3r9//7JlyzDG/Dlsck+jtOiBJBjj8vLyGTNmLF26tON15ZR4VE4GPuIlYMGveLcfW7/7+DfF7jyf4qGUYoQtkj0trtfQjLPH9bow3ppCGTXOHDiZ4moDFT8WrMkt2VTmLQyqdZQxjAS7HJcR33dk96ln9ZxhlR0nX1xHwr/3DtIVFGlq1x1bt/CHhQc9B10Wl0WyYIwpi6TAoWFHt0AFqtG6UJ1K1Kv7X/3MOc+k2lLb3Mjq4TRffPHFW2+9VVFRYbfbBUHIz883RqaqqtqnTx/ehCUlJf3Xf/3XlVdeyc/Qtt8wr3CZv+yOH+74uOBjk2RympyiIPIVrMMpfyhCDGGGMcFBJegJefon9H926rMzes7oAEvllGgseHP8/PPPr1u3rsn1pKPQc+0YQ/s0TdM07Zlnnunbt2+nSAtXgrq6urvuuos/gS1HEzQWSF7t8vLyP//5z1dffXUHX8Up8aicPJQRIbLYll/xugOVGlVFQYyzJDrMCZF9qBBZO+XkYJTV+0u8wRpPqJpSIolyvCXZanJG9qGtCTbrOvDvvUPygyGEIgNiM3rM2HzF5hf2vPDOgXfyPfkMMZNokgUZI4woIoSoRFU11SpZJ6RPuGPUHRf1vogxxtf3bVu5XBUopRdffPHEiRM///zzjRs3FhYWcr0xps1XFCUrK2vKlCmXXXZZSkrKSUbg8PWSU22p75///nUF1z296+mfyn/yU78syLIgi1jkk+pVTVU0BSPcO673naPvXDB8Qbw5Hoa/OLz13L1799dffx0fH6+LSgsJqvWZksZVTCRJqqure+211/7xj390yggSf9I++OCDoqKixMREXTOam6VrrCSOrF5KCHG5XO+888748eO7d+8Oo2ExR8AiQ4wxgpFgMzlt4cYdoUiWDIyE2HnOsYBx+LRYcFoSnJaE+uIYY4hiLJxaoqLTcfYKhzAiIAFj7FE8XxV+9XXR17lVuWW+MoUoGGOH5MiKyxqTNuaCXheMSh3Fw6tQjGZv6DpBCNm+ffttt92mKAofB+Ndwpdeemny5MncmR+rGQN6/SmjO8p3fHn0y21l2wo9hXVqHWPMJJjSbGlDkodM6zFtetb0OFMcY4yitovoCdH1O6G86fz73/++Y8eOuLg4Y8wFijS4jWP8dPnRh8L4C6/X+/jjj/PAqo7s7POrKCoqWrJkiT5hBRnEo8kLaWx48WwCVVVVl1xyyaJFizryKrr+oxJzInnqEUL6apGnT3HtR0fbKxwexE0YiTPFXdH3iiv6XoEQ8qk+hSoYYZtkM4nhmauMsdh223mEGA/0ysnJIYTU1tbKsswHSWw228CBA0VR5NMjYvWL5YrI1fSstLPOSjsLIaQQxa/5GWImwWSX62NkCSUCFsBS4fDmuLCwkC/83lyPHje1ymdjBEEghKxfv37kyJHtUt3m4cFs33zzjc/nS0hIMNa2BYOjyeuilDocjk2bNs2bNy8pKQlMlvYD8zWHT9Pi2puO1hWEEEaYq4s+o9gu2+0o3LzyLL8Y499cZ6UtRWPMe4uEkCFDhqSnp/OYnKqqqvz8fN4rbI+1xLlUEEa4s84kmurl03AfRAEUpR7eHO/atcvv98fHxzfeQe/ON97Y5NksFsvu3bsDgYDVau3IFplnQd25c2fjVbF5NRrXubH5om/nkYo///zzjBkzIMsL0DXpBF3hYIT1ZtSYnFjAMRzBbKpcjGtqaqqqKpcte9BqtVLK8zSQurq60tIShFB6eno7FS1iMbJmpqHHargPgBHe7h88eLC5BDyoKRVpTlcYY7IsV1RUFBUV9evXr2N0hUXSf5WVlZWUlOjTbvRPdVFp/YVw9uzZM2PGjHaqNgCcJF1i9iZGWP9r14IIIYWFhaWlJYKABUEIBALBYCAYDEQWrsd5eXm7d+9SFKVdq9Fh13tKw+WkvLycZzExfqQHEEcdYtyov9a3CIIQCoVKSkrQb7XaMYE7SLh58dJLL4VCocYC2cKFNPmavxVFsaioCDWaxAMAXYQz6LmklBYWFgYCAZvNJstmUZRk2STLsizLJpNJkmSTSXY6nR6PZ8eOn43LggGdBaU0GAw26dZubn/9tVFgjP/6/f72qWyDavARKk3T3n777ZkzZ65atUpPPPObh0ftptfcKJBerxecK0CX5QzSlZKSklAoZLVaBEHkYTmCIPDXGGNRxIIgYIzsdntdXV1u7p7Ori/QgJZbZNYoL3ULhkv7wQe+eC6Zb7/99oorrrjvvvt8Pp/L5VIUpTUCGSUqxgmSqOG1dMDlAEDb6DT/Sgfj8/k8HrfVauUTGwSBB/WF80EKAuYZZvnCBna7raSkJCOjLC0tDXqFnYggCCaTicfX8uVJmltP2igqyNDs6gmqWWRSC08DE3NYZOqiKIoHDx584okn1q5dazKZUlJSCCHBYJAPruq7NflQNXkhxhf6v5IkwSAY0GU5/XWFC0NNTTX/MeszHfm/jPGAzvCWyLwIQRCEgoKCtLS0Tqz5GQ5vf5OTk/fv38+3sMiKOFHzIqM671HrHaBIc0wI4Q09inVWYK58oijW1NS8+OKL7777bjAY5CHFiqLwavAlyLjJol+F0Yff+EL0KSx6ylT+MGuaxgPkoNMDdE1Of13BGFNKfD6/MSKT/3jDebAjv2X+FkVih2pqqhQlZDKZO6fepzXG1rPJllG3TgYMGPDdd98Zc06zhiFVjQ+khsUWkWEoSVGUbt269erVC0VEq/W1jaqwXgF+cu5K+eCDD5577jk+o95isfC1xVhkgi1fqotFYsAaS0LUtUQN6yGD7UUIGTp0KEJIVVWTqVUrFQJAR3JGmNKKomqaiup7hSjyx9E7g/VjJhjjUEjx+fwIMpPHDuN4lLHDHjXywxVFluWvv/565cqVvIU1ZgZr3LXnRIlK+EulFCGkaZrJZCoqKnr11VeDwaAkSTzhccu11Vc1FgzwOvM0DdxM+f7776+44oq7777b7XanpKRwM4UfK4qiz+erqanh03KjHPJNmin85I3zg7Hw2oVUluUjR44Eg0GTyWS8ZOOZm7ztANAxnP72Coo0N5FfddQQSn3rE9lNf0kI0Tqx2qcZeg9dVdVgMMDHhSRJtlqtfIF3ZnBRHDhw4PHHH1+/fr0kSQkJCU6nkyfgac6/ghp28PXWlkaWaOOvy8rKHn300U8//XTJkiWzZs3iHzU+J38keE34tNmKiopAIIAQslqtycnJSUlJ/Ki8vLwnnnjiP//5jyRJ3JUSCoV4NQRBUFW1vLy8R48eK1askGV5xYoVPMtZC3NvWUMXi56KRr8crk+vvPLKhg0blixZcvHFFxvvDIssA2E8p1G8YdwM6ADOCF1B4XEVPqiNKK0fXuByQwiJTJCkhOgCA4uKxxKMcV1dXVVVZSAQ0DR+lwmlFGPB6XRmZGTYbDZRFKuqql544YVVq1aFQqGEhASEUF1dXXl5eXp6um49NPavGAvSRcXYKIuiWFFRQQhJTU09evTo/PnzzzvvvLvvvnvQoEF8f72tp5FFgo8fP/7dd9/t3LmzpKTE7/frpVut1tTU1IkTJ5aWlr7wwgu8ntxG0VMnUEorKyvtdvuiRYsWLFgQHx8fDAb//e9/V1RUmM1mbuj8pqPI6F9BBnWsrKyMj48vLi7+4x//OHXq1HvuuWfYsGG6bCiK4na7fT6fqvL6YIvFHB+fEBcXpwtPO37NAHCG6IosywghTdMi+Qr1ny7jckIIJUTTXxCiqaoqSZLV2i6xQ2cglNLS0hK32y2KIp8wxMLebKKqSlVVZVlZae/evb/66usVK1aUlJQkJiZarVbuokAIVVVVJSUl6WZNc6M6xs6+MemkLMuhUMjj8XAbwmKxWK3Wr7/++ocffpg7d+7tt9/O0/noilJdXf3BBx98//33Pp/PbDbLsmyxWPRev6ZpBQUFBw8e1DQtMzOztrY2FAqhiEGGMXa73aqqXnLJJUuXLs3OzqaU8kJnz569fPly7hFpeWyKNcqeya9LkqTKyspQKCSKotlstlqtmzZtuvzyy3//+9/fcccdycnJJSXFbrdbFw9KmaZpdXXekpJSm83au3dvpzMOpAVob86I/rgsy2azWVFChGiaRnQ0LfxHiMZX99I0le8TCoXi4uKsViuCoYOThlJ67Fih1+u1Wm1ms0WSZD5tSBAESRJl2WSz2UwmU0FBwX/+s6a8vLxbt25GF4UkSW63e//+/ZqmsUaRuCgiJ3peat0vortqPB5Pfn4+1wwUCQpwuVwmk+mVV16ZOXPme++9x00WQRC2bdu2ePHitWvXSpKUmJhos9kkSdLjuHh97HZ7fHx8cnJyampqZmam2WzmvZZgMFhaWjpkyJCPPvrotdde69Onj+6D0TTt/PPPv+iii7xeL2o4atfkhaCIhunl8hREXq+X95N4jBl/Sl977bUrrrh87969Xm+dyWSyWm0Wi8VsNpvNJqvVYrPZ7XZbIBDYuXNHcXFxKzN1AkCbOf11hf+EEhOTgsGgpmmqqqiqpmmaqmqqqmmaqmmq4a2mKKqqaqqq9OzZC4HTPhaUlJQEgwGLxarPRhVFUZcWQRAwFiRJMpnM8+fPz8rK8nq9utNb07SSkpKMjIwlS5a4XK7a2lqemTgKo5fe2MHn1sOll1569tlnV1RUcI+97nhnjCUnJ3s8njvvvPPyyy/fvn37hg0bHn744UAgkJiYyD0ZKBJ4rme5Njo/KKVWq7VXr16JiYlutzsuLu7ZZ5/94osvpkyZws/Px8QwxpIkbd26ddOmTRUVFTybg15zXUuMF6KrC/9XVVVBEHr16lVeXh4IBIxXwYfmxo8fn5AQL8uyJMn6hF+OKAqCIFosFrPZum9fbmlpKUgL0K6c/rrCf36pqak2m83n8xFCVFVRVVVXFC4qmqaqqqIoiqZpfn9dUlJSr169ERgrJwVDCHm9Xo/HbTZbeFIDjHH9PCIcfsvbPkI0lyvuoosu5OM8CKHy8nJK6Z133rlu3bobb7zxoYce4g0ri0TrGiMyotplbj34fL5bbrll0aJFb7zxxsqVK9PS0srKyiilfEgNIcTXTUhNTd29e/fNN9/82muvORyO5hYJjlo9RXfJiKKYkJBwwQUXfP/993PnzuXKx2WJq2NhYeFf/vKXa6+9dteuXcFgMD8/3+PxYIxpQxobXtwz5Pf7GWMLFy589913X3vtte7du5eVlfGMlhjjUCiUlpY2b948SpkoiqLIhUTAWNTnbPEXkiRZLJa9e3MjCfEAoF04/XVFp1+//qqq1tXVqaqmKIqiqIqiKmFCihLiG/1+nySJZ501Fvp0Jw1GCFVVVYmiyCN1UWQ6KgoLtrFpw6IoBQLBcePG5eTklJSUuN3uK664Yv369UuXLnU6nZqmZWVlPfvss1dffXUgEKiqqtIjr/QT6l14v99fW1vbo0ePJ5988vrrr+fN9OWXX75u3bq77rqLMVZVVaWLBGNMVVWn09mnTx+TycQXdmv2kgzO9oi7DiOEzGZzXV1daWmpvieLBBk/8cQTF1100erVq10ul8PhQAiFQqHCwsKKigqEEI+LQw2dQ7ovJxQKVVdXZ2dnP/fcc9OnTyeEXHLJJV9++eV9990nCEJlZaUkScFgcO7cuWlpaaqqimL4Jhsm+dYrOMZIlk2Kohw+fBiBLQ60Gx29XmRnoQ+J7Ny5Q1VVq9WCsRDpEoZ9LYqi+v11VqtlwoRJycnJp717swMWAVQUJS8vz2SSJUkWRZE3dnzykCGYm3B7UVHUYDCAMf7mm40bN27829/+NnHiRGZIfKJHWx0+fPiTTz7Ztm0bD/HSW2HeUNpstr59+86aNev888/nwVf6oju8515QULB8+fLPPvtMkqS4uDhKqaIoqamp2dnZxi9df9HYnUMaLUnJGKutre3fv/9zzz3HS6GUfvLJJ88880x+fn5CQoIkSaqq6qNzGOOqqqrExMR+/frV1NSIoqinZuGOE25IZWVlXXbZZRdddBE3obglxM9/7NixJ5544v333x8zZsyLL77AGJIkiVtQ+vQs/Q5rGtE0VVXVUEjx+32EkKlTz+V+mvb43tt2CHAawL/3M0VXUERagsHgvn37SktL+EgFqv8Zq4KAMzO7Dxs2gq9OeHqLCmrnxoLfQK/Xc/ToUZvNJgiiKIrGllqPMzbqiqKE/H5/KBSaOvVch8Oht6HG07JI/LfH49m7d+/hw4fLysp4VkeXy5WVlTVo0KBevXrpw1BRh+sqtWnTpkceeWTHjh1Op9NisQwcOFAP+kINbZGo2C2jYaGPX5HIIsFLly6dOXPm1q1bn3jiia1btzocDh7YpgcN83Ett9s9cuTIpUuXDh48ePPmzbm5ucXFxT6fj8cFJCUlZWdnjxkzZtiwYXw1MOOFGK/i66+/9vl8I0YMV1WNK5OeoIhSRimJ0hVFUYLBoNvtPvvss5OTU1r5nIOuAK3kjNMVZJia5/G4jx8vrqmpDoWCjDGTyZSQkNi9e3eXK9642+lNB+hKTU31sWNFdruN+495Pz3Svw8bLFoEris+n19VQ9OmnWe1Wpv7FnTDpYXSafPpHakh+cqqVaueeeaZ+Pj4Hj16UENyF328izXKhdxYV1DEcPH5fH379nW5XO+//74oinFxcbrXB0UWjqyqqsrIyFi4cOHcuXN5vLVeEE8mJkmS7v5Bzczc1G8Cxvjw4UOUUrPZzAcbDXe4CXtFUZRQKFRdXTN69KiePXuBrgCxpXPWt+9cdJdJXJwrLs7VeAfj6DZw8jCGuFHC32Ks97h1H3X9RFTeueYGgK5ATX4XelyWbkkYNUAP32quVvxwbmHMmzdv7NixDz74oD5cdhIXyywWy6FDh/Ly8uLi4gRBMM6U5E4ds9n8pz/9aeHChcnJyTSSA003y8xms34qGslN2Vyt9LRjwWDQZOKjZEiPNmCMRQSU6nN+9RdccU7mYgGgBc4sXUENG6Dm3gKxQpZlSqmmEd428hmp+gIihPBMB4SrC+9Wq6rKJ06i3/o6jC70NiCKIneTuN1uRVH0Nl2nsaWib2/O482lJTU11e12I8NMSY/HEwqFZs6cee+99w4cOJAZlmnhNTGWyC+tlSInSRJCWNM0QcCMMUFosOoMY1S/ycZ4ZsaoLJ9xv32gwzhDn62o9gjkJObwW2q1WgVBUFUFIRNjTBCi/CuMz0gNz0nVNEKIoigpKUk8KKtjvpf8/Hx9HmJzvnojUWNijT/isiGKoiiKgUCgtrZ22LBhS5cu5SvSc0VpUjbacL3c4a8oIT22DSHMI7wjuSSIYXpMOKpeEASnM+5EywKAVnKG6grQAXBXgcPhrKqqxFiIzKLQM0lH+VcUVVVVVaVU7dEjqyPryaeSoNb51YzGiv5anzTDt3NDhFLKcwfcfffd8+bN09OCneRoW1RlMMZOp7O42CNJEs8YEPHbs8ioF6GU+1c0VdUIIaFQMC7OyV2J0KMC2gPQFaC94G1WRkZ6eXlZKBSe6G6MsOJDZLwTrSiqpml+vy85OaV79x6oQ5o8HEk02dyQVxSsqZXnGx/Is2daLJb58+cvWrQoNTWV2w0xVBRj/VNSko8fLwqFQpIkcf2OVKp+liWf96uqqqpqihLs1WsoOmPiU4COB3QFaEcYYzabvUePrEOHDjocTkHAvDHk/ftIqJKmqqqmkUDAL4rCqFGjUUc1eVwPJEnSdYU2v95XlFHSWGM4giAEg8GpU6c++OCDgwcPjnKltMclmM2W9PSMI0fy+GoCkQmnuq5QnkeVi4rP501JScnO7ovAWAHaDdAVoB3hMV09evQIhUJ5eYetVqssy5Emj+mj/qqq+v0+URQmTpwUH5/Qwf1onszYOKIVFdfLDOgbaaMFxPiBbrd7zpw5d9xxB4tMaom5mWKE1zMrK8vjcZeWljoczsb2ih7JXVdXZ7Vaxo4d30KsHQCcPKArQPvCm7C+fftardb9+3/1eDz6xHLe5IVCIUq1lJTUUaNGu1zxHdne8YJ69erF1+/iG3U90KPSG4+P6ZMcdavFuOfo0aMRQpqmtX5C+8kzePAQQRCOHj0qy7LJJGOMdb+9pmnBYCgU8icmJo0fP8HhcIKoAO0K6ArQ7vAGOjMzMyUl5dixYyUlxV6vV9M0hJgsSykpGT169MrIyOj4TjQvq1+/fklJSV6v12QyGePBmnS3sIaJ+mlkGceIu0hLTEwcOHAgCkcAdyiDBg1OSko+dOhgbW2tpmmMIW6xMMbsdtuAASP69evPB/1AVIB2BXQF6Ai4ZphMpuzs7OzsbJ5PGiHM8zyiSDvewe0dzznmdDpHjBixbt06vlx8C46QKBeLMeswr3wgEJg4cWJKSkrL52kP+B1OS0vjs2eqqip5FmSTSY6PT0hOTuGKAqICdACgK0AHYYzllWVZHyNiXSDHwUUXXfT111+TyEK/za14b7RgiGHpMBRZvViSpMsuu6yDK6+jG3zx8fHx8fFRn4KiAB3GGZQnH+gKGJo2xqfvneS0+ZOETzTp16/feeedx/MKo8iCkkaixr74Mo66c4XHELvd7mnTpg0fPrzjjRUdYxh3VLgBiArQYYCuAJ1F1PornQZvcG+66aaePXu63W7c/Lo7kenrVH+thxH7/f7MzMxbb70VdYEWHDeic+sDnGmArgBnOtzL4nA47r33XpvNVldXhzHWzRTj1ELdv6KrCxeVYDBoNpsfeOCBxMREPiDW2dcEAJ0J6AoAhEfD+vTp8+ijj8bFxVVXV+tT8Y3TU2hTiwR7vV673f6Pf/xj0KBBnTgCBgBdB/gNAABCBkfLihUrxo4dW1lZWVdXxwfEuLFitGC4rgSDwerq6tGjR7/44otDhw7VV4oDgDMciAcDgDBcWpKTkx955JFvvvnmo48+OnjwICEkLi469a/H4xEEoW/fvldfffX555/PD2zXefUAcAoBugIA9eirF0+bNm3KlCm//vrrt99+++GHH6qqigzrVM6ePXvatGmDBw/mC8zA8BcAGAFdAYAG8AAqPqg1dOjQrKyst99+m6ef4anMTCbTnDlzunXr1k5ZigHgVAd0BQCagC8shhDiA1x6QmLGmDGZGIgKADQGjHcAaAk+MsZf63MMucZAPDEANAnoCgAAABBLQFcAAACAWAL+FQD4DXT/Cl+5C0K/AKBlQFcAoGkiCYCZ1+v1+XyyLPN4sFAopK/iBS4WAGgM6AoANAnjdkkwGFqw4DaLxSrLEiFUUUJutycYDKKISx+kBQCiAF0BgGgii3T5S0pKFEW59NJLUSRXGCGUEK28vLy6ujo7Ozs+vkMXTgaAUwIYKQaAKBjG2O12Hz16lFJqsViDwWAwGAyFwn/BYNBms2qatmvXzuLi4y3k1QeAMxOwVwAgCuzz1ZWUFJtMZr5GPZ8jyRijlAgCxVjQNNViMSPE9u7dK0lyamoqWC0AoAP2CgA0gFJaUlIqy5IkSRhjURQEAQuCgDH/w4KA+QtJksxm8969uYqigKgAgA7oCgCE4cNZ1dXVqqpIkhyRENToT1+EEZtMpkDAX1BQoB8OAADoCgCE4TaHx+MRRdG4RjJjSJcMxhroB2NIluXi4uMI0roAQATQFQCoR1XVUCio5wTjihKZrML0/GCRF4wxJghiXV2dz1eHwGQBAIQQ6AoAGFFVlRCCEOLLDDPG+OKQlDJ9mUjDwsSMMcqP4jNaAABAEA8GAEa4nFDKBIEyhiLp8BFjNCI0fAd9QeL6ZYk7teIA0IUAXQGAevjaKoQQjBFjTBAaZMinlPJ17vU5kvwtxkiW5c6tOQB0HUBXAKAek8ksiqKqKhibjS56fSiMUkKpRgjRNEKIRghRFNVsNtvtDgSuewBACIF/BQB0GGOCgO12RzAY1DRV01RV1TSNaFr4X0I0QvQtqqqqmkaCwUBqaqokSTAUBgAcsFcAIAw3NtLS0kpLSxVF4enxEcII8RgwSimLWCoqR1FCooizs/t2ctUBoCsB9goA6GDGmN1uT0/v5vF4NE1TFIXbLKqqqqqmKKqiqKqqcFRV8/m8/foNSEhIhDwuAKAD9goA1MO1oXfvPnV1vtLSEofDoc9lifjqw8NiqqrU1Xl69uw1dOgwBJ4VADAAugIATTBkyBBZlvLz80VRkGWTIGDutyeEKIoSDAYpJTk5A4cNGwGKAgBRgK4AQNPk5AxMSUk9fPhwVVWloih8tgpjTJal9PS0/v1zUlJSwVcPAI0BXQGAJuCrqiQlJSUlJQUCgdra2lAoiBAym83x8fFWqw3BOsQA0AygKwDQNPqCXVar1Wq1Gj/i20FUAKBJQFcAoFm4cjQe7AJFAYAWAF0BgN8AVAQATgiYvwIAAADEEtAVAAAAIJaArgAAAACxBHQFAAAAiCWgKwAAAEAsAV0BAAAAYgnoCgAAABBLQFcAAACAWAK6AgAAAMSSjtCVIUOG/PnPf0YI5ebmYow3bdrUws5z586dNGlSkx9dffXV5513XrtUMRa89tprGGNN0zq7Imc6Xfw5Abos69at69mzp9Vq/fnnn2P+FCUnJz/88MMxPGFXpkPtlczMzJdeeqlv39Nn0dYXXnjhhhtu6OxaAAAQAx599NHk5OTNmzfn5OTE/ORPPvnkhRdeGPPTdk06ND9YQkLCn/70pw4rTlVVWZbbtYiff/65Xc8PAECHUVlZOWXKlJEjR8b2tLwhmjdvXmxP25VpF3vlhx9+GDFihNlsHjBgwP/+7//qafuixsHefPPNAQMGWCyWnJycN998Uz9ckqTVq1cPGDDAZrONHj36p59+alxEUVHRNddck5iYaDabhw4dumrVKr79l19+wRj/5z//GTx48Lhx4xBCoVBoyZIlPXr0MJlMPXv2vO+++/ShqrS0tGefffa2225zuVyJiYlLly6tqqq64oor7HZ7VlbWO++8oxf3wQcfDBs2zGw2p6Wl3X777YFAACE0derUN9988+2338YY79q1i+958ODBSZMmWa3W3r17v/XWW/oZVq1aNXLkSIfDkZycfOmll+bl5fHt11xzzezZs1etWtWvXz+r1Rp1vU2WC/wmgiC88cYbvXv3tlgsY8aM2bFjh/5Rc7c0LS3tueeeu+eee9LS0uLi4i6++OKysjKEUGVlJW5EXV0dQkjTtAceeKBnz55ms7lfv37PP/+8XkpzZ0MIlZeXX3/99cnJyRaLZezYsV9//XXH3RegGTRNwxjn5ua++OKLGOOtW7fqH23fvh1jvH37dn1L375977zzTv66uYZoxYoV3bp1++KLL9LS0pYsWYIM42AvvfRSamrqjh07xo0bZ7PZevfubWz9TpOfPGPsswr2WQWLFbW1tYmJiVOnTt21a9ePP/44ffr0pKSkBQsWMMb27NmDEPr+++8ZYx9++KEoiv/4xz+2b9/+1FNPYYw//vhjxth1113Xp0+fGTNmbNq0acuWLYMGDRo0aBA/81VXXTV9+nTGWCgUysnJGTJkyMaNG/fv33///fcjhD777DPG2K+//ooQGjdu3Ntvv717927G2E033eRyuT744INDhw69++67Dodj0aJF/ISZmZk9e/b84IMPAoHAE088wQ/csGGD3+9fvHix1WqtqalhjH388ccIobvvvnv//v1r1qzp3r37nDlz+JWOHj362muvraio0DRt5cqVkiSde+65q1ev/uWXX2bPni3LclFREWOMP6bLli379ddft23bdt555w0fPpzX4brrruvRo8cNN9xQUVFRW1s7Y8YM/XqbKzdWtOF7j+2j0k5cddVV3bt3P/fcczdu3Lhx48ahQ4d27949FAqxFm8pfxhWrFjh8/ny8vLS09Nvu+02xhgh5FCEX375JT09feLEiZRSxtjtt99us9nefPPNgwcPvvTSSyaT6dVXX235bJqmjRw5Mjs7e8OGDfv27fvzn/9sMpn27NnTOXeq1Zyuj4qRioqKnJycm2++uaKiQlVVvbXZtm0bQmjbtm36ntnZ2YsXL2YtNkQvvfSSw+GYOXPm2rVr8/LyGGNJSUl///vfGWMrV640m82zZs3av3+/oij//d//rTcU7f2T7wD49x57XeGKrf9UDh8+jDFurCtjx4793e9+px911113PfPMM4yx6667zmq1VlZW8u28y+/z+ZhBV1avXo0Q+uGHH/TDR48eff755zPGDh06hBBasmQJ315ZWSlJ0iOPPKLvuXjxYrvdzluZzMzMWbNm8e01NTUIoVtvvZW/5VXdunUrr+qkSZP0M7z33nsYY/4cjBs3bt68eXz7ypUrEUJr1qzhbwsKCvS3gUAgLy+PEMI/+vzzzxFCZWVl/HqdTmddXR3/6N1339Wvt4VyY8Lp2lhcddVVkiSVlpbytxs3bkQIrVu3jrV4SzMzM6dNm6Z/dPPNN48ZMybqzAsWLHA6nUeOHGGM1dbWmkym+++/X/90/vz5/fv356+bO9uaNWsQQl999RXfTggZMGDALbfcErOLbx9O10clisGDB/OWihlamxZ0pYWGiLcG//d//6d/ZNQVhNB3333Htx87dkzfs71/8h0A/95jPw62b98+WZaHDBnC32ZnZ6ekpETtQyndsWPHmDFj9C3Lly//61//yl/n5OQkJSXx14mJiQgh3ujr/Pzzz6Iojh8/Xt8yduxYfSQKIaSfeffu3ZqmGQPMxo4d6/P5Dh8+zN8OGjSIv4iPj2/8tra2lhCyY8eO6dOn62eYOnUqY+zHH39s8vLPPvtsY82rq6sRQmaz+Z///OeAAQNMJhPG+JJLLtE/Qgj169fPbrcby62pqTnRcgEjAwYMSEtL46/5cPn+/ft/85aOGDFC/yg+Pj7qqfvyyy9feOGFFStW9O7dGyG0e/duRVGmTZtmPNvBgwerqqpaONu2bdskSZoyZQrfLgjC5MmTt2zZEqPrBjqU1jdEjdEfj9PyJx97XfF6vXFxccYtLpcrah+/369pWtTarjo2m01/3eSCfR6Px+VyCUJ95RMSEjwej/Gtvqfxrf5a39lisRjPHPWWMRYIBDRNe+SRRywRsrOzEUL6cHlzlTfW/LXXXnvggQeWLl3K7bD169cbD2l8H9pQLmBE75cghLhm+3y+37ylTS42zKmqqrrpppuuuuoqPfyPP0IzZ87Uz3bjjTcihMrLy1s4m8fj0TTN4XDoR7355pvwnZ6itL4hakzjx+N0+snHPh7Mbrcb7yxCSO/B6VitVkmSGm9vJS6Xy+12M8b0iIDq6urG6oUikmbseHIrocmdm8Rms8my/Ne//vXmm282bte7w63hk08+Oe+882666Sb+trS0tGPKPWNxu93669raWoSQw+E4mVt6yy23YIxfffVVfQt/hN57772hQ4ca9+TWTHO4XC6LxbJz507jRlEUf7MCQGfReLVQ3Zfe+oaoNZxOP/nY68qAAQNUVc3NzeVDYbm5ufqAj44oiiNGjPjuu+/0LQsXLkQIPfPMM60p4qyzziKE/Pjjj7oFunnz5iZNzuHDh0uStHnzZn3kYfPmzS6Xq1+/fq28HEEQRo8effToUT2kXVGUoqIivSfCGi1+3hiv19utWzf9LY80a/nA3ywXaIEDBw7U1tbyEQY+LjF48OA239I33njjk08+Wbt2LR/b5AwfPtxsNnNnL99SUVEhCILZbG7hVGPHjg0Gg5RSfcT16NGjqampbbtMoAPgT5HeVy4tLS0pKeGvW98QtYbT6Scf+3Gwiy++2Ol0/vnPf/7pp5++/fbbW265pUm9Xbhw4ddff33//ff//PPPzz333PPPPz9hwoRWFnHBBRcMHjz41ltv3bp166FDh+655549e/YsWrSo8Z6JiYk33XTTY4899sknnxQUFLz11lsrV65cuHChJJ2AoC5ZsuR///d/ly9ffujQoV27dl1//fWTJ0/mkaYJCQk7d+7cuXNnZWVlC2eYMGHC+vXrt2zZcuTIkVtvvZXPDN2+fbvf729buUALMMbi4+Nvvvnm3NzcXbt23XPPPb169eI+tjbc0oKCgoULF1599dW9e/c+HCEUCsXFxd1yyy0PPvjgv/71r4KCgo0bN55//vm6Sdoc55133siRI+fOnfvdd98VFBR88MEHI0eOfPnll2N5/UBMycrKSk1Nfeedd4LBYHl5+V/+8hfdYdz6hqiVnDY/+djrSlJS0ieffFJZWTlp0qQ//OEPixcv7tevn6qqUbtdd911r7zyyocffjhx4sTnn3/+5Zdfvuaaa1pZhCzLa9eu7d+//wUXXDBkyJD169d/8sknRg+qkeeee27+/Pl//vOf+/Xr97e//e3+++9/8MEHT+iKrrzyyvfee+/9998fMmTI9OnTQ6HQxo0bHQ4HQugvf/lLcXHx+eefb5wh0Zh777132rRpM2bMmDx5cvfu3Z9//vmZM2cuWLDgiy++aFu5QAuoqjpx4sQZM2ZcdNFF48aNE0Xxs88+4zNk23BLt27d6vV6P/roo34GeLjgU089deutty5ZsqR///48/5A+faE5RFH88ssvhwwZcuWVV+bk5Pztb3974IEH7rjjjhhePhBbZFl+++23f/rpp8TExHPOOee//uu/+vbty+fAnVBD1BpOm588Zox9XokQQpckd3ZdgI6lDd87PCpnJvCoAK2Ef++QzxgAAACIJaArAAAAQCwBXQEAAABiCegKAAAAEEtAVwAAAIBYAroCAAAAxBLQFQAAACCWgK4AAAAAsQR0BQAAAIgloCsAAABALAFdAQAAAGIJ6AoAAAAQS0BXAAAAgFgCugIAAADEEtAVAAAAIJaArgAAAACxREAIyRghhLykk6sCdCT86+ZffeuBR+UMBB4VoJXoj4qAEHKICCF0wIfq4CE4M/ASdMCHUOSrbz3wqJxpwKMCtBLjo4IZY2UK+snT2ZUCOoNxLpQqn8D+8KicscCjArSScS6EGWMIoTIFHfIjL0Ea6+xKAe2PjJFDRP1tKNV0wsfCo3JGAY8K0EqMj0pYVwAAAAAgJkA8GAAAABBLQFcAAACAWAK6AgAAAMQS0BUAAAAgloCuAAAAALEEdAUAAACIJaArAAAAQCwBXQEAAABiCegKAAAAEEtAVwAAAIBYAroCAAAAxBLQFQAAACCWgK4AAAAAsQR0BQAAAIgloCsAAABALAFdAQAAAGIJ6AoAAAAQS0BXAAAAgFgCugIAAADEEtAVAAAAIJaArgAAAACxBHQFAAAAiCWgKwAAAEAsAV0BAAAAYgnoCgAAABBLQFcAAACAWAK6AgAAAMQS0BUAAAAgloCuAAAAALEEdAUAAACIJaArAAAAQCyR+P88Hk9ubm5JSUkwGOzcCgFAK7FYLBkZGUOGDHE6nZ1dFwAA6sGMsdra2m+//XbChAlOp9NqtXZ2lQCgVQQCAY/Hs3nz5mnTprlcrs6uDgAAYbDb7f7mm28uu+yyzq4JALSR1atXT58+HawWAOgiCHv37p0wYUJnVwMA2s748eNzc3M7uxYAAIQRiouL4+LiOrsaANB2XC5XcXFxZ9cCAIAwQjAYtFgsnV0NAGg7VqsV4k0AoOsAccYAAABALAFdAQAAAGIJ6AoAAAAQS0BXAAAAgFgCugIAAADEEtAVAAAAIJaArgAAAACxBHQFAAAAiCWgKwAAAEAskWJ4rmAwqKpqKBRSVQUhJMsms9ksy3LXmc+/Y8eOY8eO7d+/v7CwECGUlZWVk5OTlZU1cuTIzq5amDz/j5VqQVEwt0LJRwilmHp3twxJMfXuYx3b2VVDCKG1NWv3+fdt8WzZ59+HEBpkGzQhbsJg2+AZCTM6u2oAAHQVYqMrqqrW1taoqmrcqCghRQkhhGRZjo9PkGU5JmW1jcLCwtdff53Lic7+/fv379+PEMrKyrr55puzsrI6qXYIIVSh5K+veo7LiU5RMLcomIsQSjH1Pj/p9hRT706qHdrr37v4yGIuJzpbvVu3ercihAbZBj3Z58nBtsGdVDsAALoQMRgH83o9FRXlUaJiRFXViopyr9d78mW1jdWrVz/44INRomKksLDwwQcf/PTTTzuyVka21v7z/ZJFUaJipELJf79k0Y/uDzuyVjpPHX9qVu6sKFExss+/b1burKePP93mImprazHGkJYYAE4DTlZXvF5PKwXD6/X4fHUt7JCTk/PEE08Yt/zzn/88+TG01atXt1IwVq9evW7dupb3qampWbRoUZ8+fcxmc3p6+uzZs0++Kdxa+89WCsbW2n/u9Hzewg5/+tOfcCM2bdp0MtV76vhTzxx/pjV7Pn386ddKX2t5n//85z98GS673T5s2LCnn36aUnoy1QMAoKtxUrqiquoJWSFut7sFs6Y9KCwsPCEr5IMPPmjBrHG73RMnTly3bt3y5ct37ty5atUqQsiECRN2797d5hpWKPknZIV8V/NGC2YNQujcc8891JCzzjqrzdXb69/bSlHh/K3wb3v9e5v79OWXX77kkktGjRq1bt26LVu23HbbbY888sgNN9zQ5uoBANAFOSn/Sk1NzYkeUltbk5KSejKFnhCvvfYb3efGvP766w899FCTHz3yyCMVFRUHDx5MTExECA0aNGjatGl/+MMf9uzZM3z48LbVcF3lihM9ZH3Vc3PSn2ruU5vN1rdv37ZVpjGLjiw60UMWH1n85ZAvG2+vrKxctGjR/fff/+CDD/Itw4YNGzFixKOPPurxeE62ogAAdBnabq8Eg0FNO2HjQ1XVDlsqg0d/nehRhYWFO3bsaPKjjz/++NZbb+WiorNy5cq5c+e2rYY8+utEj6pQ8vP8P7atxBNibc3aX/2/nuhR+/z71tasbbx9zZo1hJAlS5YYN44fP/7TTz+FleUA4HSi7brCg4lje+Ddd98tGbjuuuvaWjuEEGphRKsNB1JKjx49OnhwLEOeWh7Rao8DT4gWRrTacOCRI0d69+5ts9lOrlIAAHR12q4roVAo5gfecccduwwsX768rbVDCCEeQxyrAzHGoigSQk6mSlHwGOLYHrhmzRqpIVVVVW0rZYtnSwwPlCQptncPAICuSdv9K232wLdwYLdu3YYMGaK/PclQqzbbK02OnmGM+/Tps2vXrigrSlXVNk/NabPZ0cLo2eTJk1944QXjlvj4+LaV0kJgccs0OXrWt2/fgoICt9vtcrmM20/mBgIA0AWBPC5NwBhrcvvVV1/9yiuvlJSUGPe8/vrr77zzzo6qWn25zX3kdDqHNEQUxY6sG0KIoSaqN2vWLLPZ/Pe//924cffu3d27dy8qKuqoqgEA0O60XVfa3MfssM5pm+fPN3fg0qVLe/XqNXny5FWrVu3du/ebb7654oorvvrqqz/84Q9tK6jN8+c7ZuL9INugGB7ocrmef/75p59++rbbbtuyZcsvv/zy4osvTps27ZprrunevfvJ1RQAgC5E23XFbDZ38IEnSk5OTmwPtNvtmzdv/t3vfrds2bLRo0fPnTs3ISFh27ZtAwYMaFtB3S1DfnunmB54QkyImxDbA2+44YZ169bl5eVdfPHFEydOfOONNx5//PEVK0440hoAgK5M2/0rsmyK7YGNveXXXnvttdde27ZSUDvYKwghh8Px6KOPPvroo22tVANibq+8/PLLJ1GdaNqc76uFA6dPnz59+vTG2+Pj41sY3AMA4BSi7faKxWKRpBMe0ZKkjktvPGrUqB49epzoUT169Bg1alR71Kcx2bZxyXKvEz0qWe6VbRvXDtWJZmbCzIG2gSd61EDbwJkJM9ujPgAAnBKclN8+ISGhAw45GebPn98Bh5wMM5L/0gGHtJmn+jQ7sT+GhwAAcDpxUroiy7LT6Wz9/i6Xq4MjSrOysi677LLW7//73/++g7Plp5h6j3Nd0/r9pyTc1JHZ8gfbBi/MXNj6/R/IegCy5QPAGc7Jxhk7nXGtlBaXy2W3O06yuDZw+eWXt1Jafv/738+Y0QnrU42Pv7aV0jIl4aaRcZe0d32iWJS5qJXS8kDWA/O7dai1BwBAFyQG63o5nXEWi7Wmpqa5dGGSJCckdOa6XpdffvmoUaNee+215tKF9ejRY/78+Z24rtf4+GuzbePWVa5obsJjstxrRvJfOmtdr0WZi2YmzFx0ZFFz6cIG2gY+1ecpsFQAAEAI4ffee+8k03DpBINBVVVCoRCfUS/LstlslmVTl1qHuLCwsPE6xB3mqP9N8vw/Vij5jdch7hhH/W+ytmbtXv/exusQd7qjftWqVbF6jAEAOEliub69xWKxWCwn4nDpaEaNGtV1JKRJsm3juoiENMnMhJkzE2aizM6uBwAAXRjI4wIAAADEEtAVAAAAIJaArgAAAACxBHQFAAAAiCWgKwAAAEAsAV0BAAAAYgnoCgAAABBLQFcAAACAWAK6AgAAAMQSwWKxBIPBzq4GALSdQCDQdXIFAQAgpKenezyezq4GALQdt9udkZHR2bUAACCMMHTo0M2bN3d2NQCg7WzevHno0KGdXQsAAMJgxpjH4/n666/Hjx/vcrmsVmtnVwkAWkUgEHC73Vu2bJk+fXpcXFxnVwcAgDCYMYYQ8nq9ubm5xcXF4GsBThUsFktGRsbQoUMdjk5YLw4AgOb4f37O8cTp1dwmAAAAAElFTkSuQmCC", "path": "image.png" }
Look at the models of molecules below. Select the elementary substance.
[ "fluorine", "benzene", "dichloromethane" ]
0
There are more than 100 different chemical elements, or types of atoms. Chemical elements make up all of the substances around you. A substance may be composed of one chemical element or multiple chemical elements. Substances that are composed of only one chemical element are elementary substances. Substances that are composed of multiple chemical elements bonded together are compounds. Every chemical element is represented by its own atomic symbol. An atomic symbol may consist of one capital letter, or it may consist of a capital letter followed by a lowercase letter. For example, the atomic symbol for the chemical element boron is B, and the atomic symbol for the chemical element chlorine is Cl. Scientists use different types of models to represent substances whose atoms are bonded in different ways. One type of model is a ball-and-stick model. The ball-and-stick model below represents a molecule of the compound boron trichloride. In a ball-and-stick model, the balls represent atoms, and the sticks represent bonds. Notice that the balls in the model above are not all the same color. Each color represents a different chemical element. The legend shows the color and the atomic symbol for each chemical element in the substance.
fluorine
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABV4UlEQVR4nO1deZwUxf191TOzM3svN8ihq4AIgqCiHBrUiCgiaMAj8YgKxiPGeBONildiIB5R84sn/tRojP4UTaICaowH8YrBA8ELBTmEBQT2nrPr90cdXd3Tc/fszmK9jx+cqa6uqq56+32vqqt7CKUUWSAcT2xpCTc0tzeGow3N7QAaWtojcTObczU8R20o0Keq/Mihu9WGyjq7LR0KzcOSQq48JOnDzRfbmr7Y2tjQ3L6lJexRCzU8Q9BvzD5o6Pch4jAertvR0hiOdXZbNJzInofu4SYcT7y/ftvHm7bL0TWIEQyVBwJlgbKymsoqQhAKBkKBMh8BAQwCH4FBYACGmgIYBAYBoSCEfzYAAhB7ZgLrA/sXgAEQAiKOEnEi+xeUf4ZIBAVEZvaBUhACgGdTQcX/KCghhHUDBQU/i7AESnlOSilLlDnlZxAo2axDLMWklIIkKDUpTEpNwKRIUEqBBEWC0gSlJoipZKCUn2VCJFKYoBSEfY3E4mvXbwpHYiP7dps2fGDGYe6iYDx8b/1W6V80D7s0D/2uqW+uaXh//TYAhj9Q061XeUVVeSgkR5GNqI8AhHWsAgJKrXESl20NlehEKwMh1mDIAaFiqKCcIo+yWtQSnMXKMVZOYhkoLH5QdowSKo4REApKiBxUAkIJGzBCKKUUEJwgAGWFUKoUziuk1v9AKKXW5YhMSpwnlFJKeaVSASikFvB2sWwAAn7fgN36rF6zoaGl3XUEdw288uW3KzbtAOAvC1XVdtc87Oo8dAk3TFIIMbrtVh+qqDQAn7gAFuMtUPtXkULBexNEnEJBGScoT5Ejx2ihlkAJDPEZxF6LkkJEZlBbLTKd1yISiRhtQojV2xQAFRrioiqgMqc4UT2TdwuxjZpaNnj5JuO7kokQKyMhhIASEFNxmwRyzKlsJ2FKR0goGACwC09yG1rCKzbt0DzclXhoJCexCZQRKAuEKmWdMjDb5l7E/lWkSBsJcZbqLWUMllfrKNO6fFUUYPvMW2IXK7iqCrEVAOFXiVUgUaO3aBIlIoEoJ1JKiXomr5qqKmcrG7CpinJFKVVFpNpVRWbj5jphmgCCPpcR3DUQiSUA+IPlmoe7DA9dMvWpCgV9RiIajsfCsk4XVaFKOIeVaFMVcRaolShVhZ9BncVSdeSUcmAv01as8MlULYRwCbJRUYyTQ1WU89KoinSwUC+RMFFIaiWFPadsq+M4kwshInZVsbWLEEEDQlpbwwAGdavCLore1SEAsXCr5uEuw0P3mDR2UC8A2zesjseiokp2pVBbISXCQhaqArioiloIUUYOSjmOz8mqIvkhVQWq1Ij6OkxVnF/tqqJky1lV2sPRDZu2ANh91w03Ib/vkPo+ALZvWJ1IJFii5mGX5mHKG+FPf7z2y21NPn+grlf/quoatibnI0jEY9FwezQWiUYi0UgkEo3E4vFsatLwHCP7djty6G4hv6+zG1JEaB6WPrLnYcpwE44nnvl47bqdrQCCoYryqqpYOBJub00k9KCWCq46YlRnN6HoUHlYUV1bFgxqHpYasudhhm1+H2/a8coXGyMJZdcmIf5ghT8QLAsGy4KhYDAYLCtjdw18gM8A+yz3O/hFCmEpFIYBtkuCyRQAv/CiPrG7wQAMA4Ty/REg1p4IQsQ+CFgelYhtFFS1itxi2nwsTbojQOUdATFBVufMNKv9DnyuKwuhwlQDULc5qPsdTEpNkDT7HUwKSqDudzApKIhJ6Ueffp3TMHd1aB7uGjx033cjMapft6G9ap75eO03O1orqmt69+xdXl5hjSKBDyDq9iq2JwLKZ7Fjin8W46Gmk+TtVQSgMAw+hAQu/0HdXsVHQlnqcxtjgK+xWet5BNZ+B7G5gc2ZOVNs+x0EJ+SZbN2Nz2TljUw567dDaRIg6gXUObN1zxF8AYJ/Ivxea3p52FXBePj48q8amsOah12Xh5lvX4X8vkPr+xKCSFtLIBi0Vu/F+ra1wG6tzjvvCBB5UDkFohjZA1YKVe4aqIuCCpIW9mFblpfl2u8I0DR3BOyqIm85ZHlHAGLThPsYq/1jdZ0YcHFHAOowWqylsjZC7L3wvUHI75s8pL/mYZfmYVZ3ywd1qxxUV2ma5o7vtlmr98IsWgvsylq27avqLZVTIIqBvWOcEkEA8D5XkbSw77w3YVWsJqe5IyCW/3lvi1sOImfaOwIA+E0EOKuUCcT5wV1VlLMcdwTYKdFYHEBNKOCsZVeH5iE7s+vyMNtNYofW9wWwY/vWeDyarCrELiMOVYGaPbWqJO+tUFWFOgaMuqsKUTLwcpPIURRVQVpVUcSEz63tqsL+laoia3BVlVgsDqDue/BkZjI0D7s0D7MNN4O6VY7s2800za0NDZaqsCZQvschjaogaROEhMUZak9xqArcpCdJVag9Q/IEU7KnY1SFqpURgP9J8O6gtq4kUlVkDa6q4ryk7xM0D7s0D3PYAn/onn0ANDbtiMej1vQvharYwjnlOpMsNTLBVVXU7xRCrNRMdlVBkqpIbbCS81cV5KEqRK1MqAoR3ZGfqjh78HsGzcOuy8Mcwk1tqGxk324AGhoarOlfClWB6jlJZlVRIqilKk5OqDsmiT1FKE+yqjjcbwGqAk9VhWh3kx80D7suD3N7wI8Jy87GHe3hcAZVUb9SfoVpVIUqtwAsVXFwQk2hdp0RJ1o1F09VlIYXoCpUURV+lnY3WULzsIvyMLdwUxsqY4+xbNq0UR0Dh6o4G0KEzqiwawhRXgVAkvJYXxUmEaRUFbUxWaoK5d1PWE+mUxWl4VmoisLOlKrCz9LuJktoHnZRHub8+oKxA3sGfUZrW2trS6vVQLtiUOVf/slNIkTUBtxUheVxnCKvnApVURUsWVVY27JRFcK7n7Ke9E5VLDFRGknsy4n8LO1usofmYVfkYc7hJuT3sefFN23ZbDXQTVWs5ggFsMGK2kB2qsJlhPD8RBYizillVRFiIbhDiNoC9kG7m+yhedgVeZjPy5mYsLS0tTY2NYmwyq6JZ0hWFa4AKtxUBY4T7aewQiiP/PyrWjXv0qS9pFAieDFUBWIEM6gKr9+hKlbTtLvJCZqH1plqS0uYh/mEm5Dfd+TQ/gDWb9oowiqA3FSFWFesfHWcmEJViFAV9SwIVaHURg+1FhRHVXhLrRfBuqsKpdSpKkRtv3hkRrub7KB5aJ2ptrSEeZjnqydH9etWEwpEY7Hm1lakUBW1D7iqUFuKTVWgqIoSq9UYmqwqdn9qVxVZBrHXXGxVsSUrqsIFgVLBI5auXCBXFfAztLvJDM3DrsXD/N90q25edkQ62Tb5nasKsaU4VMU6XeWHXTRcVMVRL3FRFVvNDnHoMFWBoio0s6rIa1F6kKtKPGEC+D78vFQ20DxUm13iPPTmxdqOSOdQFWt+q+RIVhXrYCpVEcOVRlUYD6hSjquqWOJQZFXhV+iNqrDLIe3hCIDach1unNA8LHEeFuU9/kSaN94yLghKAE2nKvILceiVKJMo/zlVBZaqqGt+NlWBd6qiVOGqKlI9vFAVdnV2BddIDc1DpU0lwcOihBuqKADSqoocJ+o4X8ljS5eqIv4jjr4WAwlBEWqnCyNBalVBbqoiqYwUqkJdVMW6vLxUxdndGimgeai0uSR42HHuxqYAQlUkGVxUhY2oXTXkESI1xNHXSapChHGVjUmrKvBcVdj6v6oqkH8G2t0UE5qHSptLgodehhv1mtllyOguFUDmSKUqJDkJVoo8QqWGWD1npagUYRV1oqpYhl1RFX6Z2t0UAZqHJctDL8ONes3sMhwi4FAVqKOrFpIsNMR2lqoqVuh1kKxgVaEeqoqcKmt3U3xoHpYsD4vrbpiwyP8cqgKZoqzeJauKmpKsKjL0OklmVxWr5qxVhSSpCpRfcS5YVUhGVaHa3eQFzcOS5WFx3Q0TlnSqQm1fRX+ILzJPFqpiXb49hUCN3AWpCuSvLMvvNmbnpCo0jarIPnRVFfXWikYyNA9LlocehRt7R8vlLVj39bmqOOe39q+iP6wy4aYqXKxEokNVHCkdpirEXVVA7EyzVEVpKjtClIFNoyrqrRUNGzQPS5uHHoUbYlsGg9y+ad3X56rinN9mUhVerKozQqxkYkZVgdLxHa4qcNxItVSFH7WyandTKDQPS5uHnrkbdRkMYoNDGlVhINa6O092qAovVtUZInpHURUbyZJUBUrHd4KqKFNlqz1CVZS82t0UDM3D0uahd+5GvRShJA5VsaaISXY3e1XhxSYV4qIqSlUeqopVTTpVsbTHMVVmVUhVERlEYpKqULWDAEppPJEAkM0vwH/voHlY2jz0zt1IiRBfmbCoqmJNEdOqioykcFMVXmxSIbL/qdQZparcVAXpVMW65nSqYmmP40YAq0JVFVGmi6qAQDaDFUkIiUSiAPpUlWcYlO8hNA9Lm4ceuxt1DuyiKqryCCSriqo8NlVRT4EtUVUVEYwLUBXkqSqi1uxVhThURS2dj6/sIMJLSO5DDQ7Nw9LmYdHdDUSMFWGVp8j/uaiKIhpUEEWFQ5og2QDlFFGIU1VUBYDHqqI0nSq5rIxJqiJ3lotmKKWnUhXi6A4NCc3D0uZh0d0NbDHWNpsVYdKmKoASmqVE2GvLqCrJedTxKFBVqFJ0NqqiNIp0lqp8X6B5WNo87Dh3IzVEzmadqqJsgsioKtZEWp6iqAqSlEcdjwJVhShF56gq8oaC0lbtbjyE5mFp89BLdwOkVRXp2qgapxVVURSAWAUrxcLK4JhIpzwlqUc6RVVE8yxVAcufWlVEO7S7yQWah6XNQy/CDbUJAktJpypQ47SSoigAVcqG0ps8A+yqwhwscTslqUeyVBUA3qiKKCpZVWT5rEBqVxWIPwB4oSrfC2geljwPvQg3JKWqEOu4bRgcqkKVr8hCVeC4TcC+UrdT8lUVAFmoitXjKVVFFOWuKrBUhaRQFXihKt8LaB6WPA+9dzdqEKTWcdswyDhNhapAzZBKIpQaHarCe0FGbGq1JLmxyaoCNmI5q4rV43ZVgaPiTleV7wU0D0ueh967GzUIZlQVVwVIKRFKjfbwCwJLZ4jI4JhXywKTVQVsxDxTFTgqzkJViHY3hULzsOR5WAR3A6eqwLH50q4qsPpVZHBTFXu8dX6lsDSklFUFShvtqkK1uykUmoclz0OP3I0S/q2Qy4Mn4Hi0JJOq8ExKGqVOGcmoKkB6VbFpBTpKVdTeslQF2t14Ac3DkuehR+5GDf8iTbYwWVVkJhdVsQ85K8dSFZHHpjNuqgKkVxWbVqBgVQGleasKS06jKtSuKq3tYQCDulU6r+17Ds1DlDoPPXY3UIZJ+q9kVZGZXFTFYWjhnsemM2lUxa2x2auKDOgyZypVASFZqopsqLqRgVXuFAzRVgL1bO1tUkDzEKXOQw/CjX1c8lQVSwHcVAVJyuOqKlYWqTNKLbLA7FVFxn2Zs3BVke1WVYVV7pwOq6pinW3LoiGhechOKmUeehBu7OPiVBWCrFTFmt86WJNCVawUUQ5Vh1PqjFKLLC0rVSFSVYiaMy9VIUmqAmh34zU0D9lJpczDorgbFlup7Pr0qkLdVMUKvnYaKXlSqYotRZUFeSqlmVWFSlWhas68VIW6qop6hRlVhVpna3fjDs1DoNR5WBR3w2JrKlUBUcZSpDtVRRENG41SqwrUrpU6Q62jSo2kFFRFvcKMqqJ0lHY37tA8BEqdhx3kbtShBVXGUpyZjao48qhfHVSTqoLSUBXbd3FhVDmejapQ7W7SQvMQKHUeFhpuCJxd7KoqtqtOpSpWEghxURVLeSBOIc48aiU8qRiqws/KVlVsV2hdl/Wm2FSqQhVVIdrdpIbmoSi3pHmYf7gJ+n0AwtFotqoiwbqeiLOkRMAqiCpPo4iuUGQE/BT7SU7pkkneqwo/KwdVUabKMtV6UyyvPElViF1VqK2nNADNwy7Fw/zDTZ/qcgCRWNRpIEkmVQFArcFLpypWkBch1q4q9pOUmN41VcUpGUmqQmw9pQFoHnYpHha8diOuywqm1E1VHHBTFaIUlKwqcDx9q6iKZBFR5MtaRyuWqqALqcquD81D8bGUeVhwuBGTWyuYJqmKfXQAuKuKNTDZqQoU7ypVxYrZkgJZqQrJXVWQQVVUnYV2N0WG5qH4WMo89MLdOIIpj4WWqiSNjtUJyapCFVWxBk9U5OCLpSoycCepiuOkFKpCM6sKkJuqWKfZVEXZHZqPqrRFogB6V4WgoULzUHwsZR56424cU0WZkkpVZIpUFcihUotlH1VVsSO5kGRVcZAsf1UB8lAVKqVQERP5IRtVoXZVoQkT+ic0k6F5KD6WMg+L4G5gpaiqYpsSK4LgGBiqFss+UltFKpILsdqlqoqqC+hQVSFSCiWb3VSFpyfvd+A7QanamRou0DwUH0uZhx64GyC1qoj/qNLvyE5VIPMoquIQFhdVsTeMjzGxJ3e2qjB2KKpCIKt0XgJxqEryhWoAmofySEnz0AN3w9rpoioiCqZSFSL3DUDMD2Evh310PNJiz2ArJKlhFM6Zdo6q4uj6zKpCZbmWqsC6GEVMFFWxrtC2nqjdTfbQPBQfS5mHRXE3PEVEwVSqQuW+AXDRsAqwqwpRKoI9g62QpIYVrCoOY5lZVYgs11IVWBeTWVWUcdTuJntoHoqPpczDorgbnpK1qqiikUZVIAtRMiSrirOirqMqVLJDaZt2N1lB81B8LGUedpC7kaLhoipKBqscVgg7qm4St6uKVbXaOdSZoSNVRbY6D1Uhkh1K2/jEXbub9NA8FB9LmYeeuRshAaKF0mSKwJ1SVZQMVrxW86ibxO2qAgBpVQV2loi6iqgqVkfYVSX5RgBVrzWtqkC7m4zQPBQfS5mH3vxGuBpMrRQhKa6qApJBVdjF2SbSbqoCu6oQ4qIqatd0lqoki4nYnCkHN52qQLubLKB5WOI89CbcZKkqcvoqU1RVQbKqEKscWaxDNByqQqm7qqjFJqkKOkZVhJhAfhAZLFWxjaOiKtDuJgtoHpY4D70JN6JNGVRFTl9dVYXJiKoqSLp0qTOpVMWSL3vTbMU6VQUdqyqQH0QGS1Vs46jdTR7QPCxhHnoXbgjUoJelqoBYX6kog4Hay5HFEvUwBI+U05IUI1lVkvNkqypgY9thqkKdqtIWjgLoXV0ODVdoHpYwDz11N0lBT01QVYUdkyHYUhVH+He5dNHDiqo4ZCRJMZJVRSx5WXnYG8xoRlUBG9scVEWeSSgoN+rZqwqxVIX9E08koJ+ZSgPNwxLmYbHcDYOaIFVFhnNXVVHHBi6XnqQqIo/tK7HlIUp3K4KmFs3ez0o8VxWrAlACopIyV1Vx9K2GOzQPS5iHXrsbOxwyYwVQ8dW6MrmQpowNslAVkjRJViO7TJFUKKaqIFlVIKfKxFIVyFpyVxWNDNA8LGEeeulukptBHSOnqgqsCXB6VWFB3DpLPWwfQkuIHKpij9R5qwrNoCr2upWSeTttqiKWGrW78RaahyXMQy/dDXUmCFVRojts16FE/9SqwoI4sZ8ioaqKVXKSqlj5kb+qWDsU8lEVUM4d3oBkVXG2Fdrd5A7NwxLmYdHcjbgv6FAVKyLzk4BkVVFiqE1VxLioMmKpijpLVVSFdpSqyHIdrbGrCpUZFVVRL88+mNrd5ArNwxLmoWfhhjiaIRb8HapiRWSWIs6FOsZKDLWpiugQVUYsVbHiuK1cRyz2RFWofYzESSSlqpA0qqJevHY3hULzsJR56Fm4oY5miAjrriqOcRIl8FJyVxXbbJzaeswRiz1RFTnZz1ZVOONdVUW9eGGGreZqd5MbNA9LmYdFdDeAXTVUVXGMk8yVpCqAU1VAXFTFmngqTSGlpCrIWlVsNla7mxyheVjKPCyiuwHsg61qSFpVsV0/FQMpz6JZqYo0t8VWFVFAZlVhzXWoiqIY2t14AM3DUuZhcd2NEjL5h2xUxebuiKIYKVSFV2RXFbl0Z2ea96oiCsisKiCgMqPVByKDdjdeQPOwlHnonbuhVqcDNhtp9bGMpjmqChGEkCksgzVYmVTF1q7sVAVsGD1VFSIzWn0gMmSnKtFoDEBtqMxtEDQ0D0uah965G6KMBLJVFXX2KON9sqpQ2Dgkh1aJxTZVIQ6xyktVwIaxcFWRVPVCVWLxOIA6HW5SQPOwlHlYdHcjYyJL5GE3WWeUeJ9BVUSx6kTaoSpUipUcELVdRVEV9fKgtoZIqnqhKhrpoXlYyjz00t3ATVVkTGSJPOymUhUAMiynVRWqEAJJqgKpKklb2oumKurlqRV7rCoa6aF5WMo89NLdIF9VUc4AZFjOUlVkiqUQPEVVFaudVjPyVxWrjZlVRTTdripKsdrdeAnNw1LmYXHdDUS8l4lOVVEHT6YoBUKMhc0hw0VV7KUWV1WsNmZWFa4hDlVRirWpCnVTFefSg0ZqaB6WMg/9+Z8KADCpGY/HDQIT8BGwDwaBwf5lKVR8BgwCk8AAofwDDB5SqWEQAyAE7F92FgEMgxAgIUbakONtCm/IHSIxAVBKAGKIUGwChq3fZPSnkkGADO3JqkLdVEUkuakKVfPyj8RSXWKaXGFsqmJyfhBCTKVGpipEpZaGGzQPuwQPCw030UikubnZIPAREEqJMroGQEAJ+FgSUJ9BCKVsCEQiQKnP4BNJNqgwKbOpPkIAykIwL9wgbFbJTKuIzpQNMwU1uOfjv/hnC+5iuE2xuEdlvwMUlFLKfCxR7m6YlBqEmJS7bdOk4L1O+GDxUeP6yUWA/QYYhQkk2DmExE3TpAAhCUrjJl+qi5vUBEzApDApNSnYgkDCNE0KSvgHdpZJaSwWK3DIdkloHnYJHhYabiQohUEIgfBgFBSUOHqZghBCQQkVjo6NHDNvBt+iwMaY8N8JFUOVNEmmJj/E58vyFCJm0HwazNnADpmU8oxs3OyqwlrJ8oiiYFIbiGGYJqXUVJtkMu4QQilfw5PT5IRpUoASEjdNECNBaSJhmiAmYFKaoNQESZjUBBtjYlJqAqZp8oFnDZB5TNOrIdsloXlYyjz0dN8Nvz72nUdxy8pRHo+JCPVEpvPuldaQdR+VU1LuEGH9B/VWpVjBotT2O6SUWlZRHjJEvOfNtc+Z2RCxPIwZJqMav0bCp7j8cX55KSAGkRcEgBBDHBBzZgCAaZrMYwspEt0gN4NRSqlpuW5xR0BpqkY6aB6WMg893XfD4jmbrVIxfmKKq6qKGBeRLhbDwFO4qgi3KVQFNrtolSB6ivDRkvJieVjC+wtMMQh3xtYUl2sRYRNYS1UMQmxMFQPMZ7GCR9S0DRulpjgAKANkGAYFqEkJJC14NtlLhBiOObMlehqZoHlYyjz02N1AGQOpKjJeWqrCTgFPF+ZRvTpQPruWXxVVIbb1KktV+Gh1sqpQSjOpiqGoCs+m3Y0n0DwsZR56FG4oVxUoY5BGVVgKuzDCl84EO8AS+dq48tVFVfhRoSoGKQlVIYQ4VUW0lhBCAUpNVVUon26Lk9OqikkBIBjQP/ziBs3D0uahR+GGpFQVNV6yf9n6GMTws4EB2/Uo4FAVluJUFZFdqopJk1TFmod3gqpQ0WhJV7aoQIhUFcKLzVpVEiYF0KcqlPdY7crQPCxtHnoQbni/plAVNV4C6VRFKgAVMiJVhRXrVBUZqtOoimhMSlXhKIqqENFoURFbdCSKqnDq67WbwqF5iJLnoQfhhverpRsZVUUOME93qArhqoK0qmKJkFAV6qYqvDEpVYWjSKoCoSpU1lKgqmikguYhSp6H3rkbSzesywUUVRGXRK0BZqdnqyqQwkKVaixVIYWoCi8ng6ogR1VB3qoizbd2N1lC8xAlz8OiuBt5uYCiKuKSklWFZc+oKpDCQiwxkiUnq4psG7JQFc7VDKqC3FQFmVRFGHtVVUxqWg5du5usoXmIkudhB7kbIjqEeUuHqrDsWakKtVSFi0ZqVXG0TVUVHuoVVaHFUBVIdeAFWKrCHngRxl5VFUO7m7ygeYiS56H37gbK5QJibESHMG+ZUVVYsQ5VoWIHp1QVVa/SqApJUhUe6nk7UFxVEak2VaGUEFGidjdeQPMQJc9DD56ZEv0K+firvFxCFFWhUlWowW9YskOqqnA6sB4wKTWUWqT7BWXP2vIBkCphsGpZbWzIGcnEzQIinlWhMGXFnH5SVcSzKow0hiIMQlUMynwwkRSTqkLYqElVkbrICmZLBtQ0CX8kz6YqlIIQYsAw7arCOWpqe5MOmofIl4fBxPry6GcV0U8p8F3Z2BipbvIPLwYPPQg3MtjzcVUvlzs53kEsOhrCixpCVbgthHgQjsdX+MTDcrIiw4BY+qJljYv9kU8JISTRSH01MGpiVeNp+b6sJeKJOxdVMalQFRHRQQkBNUEJbxgfY6Yq0scSAkotVaEACD+FGISaopmUEsOg4PUIzRPiABBiUNOUA8c6ip3OVYUY4i+GUNO0VEUHnNTIkoc+c2dVdBWLI62h8YXz0M4xPpL8ifDS5mFl7LM+O+/uHn5F7cZ6AECTf9iG4PFrK3/qLQ+9cTesAalUBdmpisElwFIVCstASv03Eo2VW+8ob3yKJJocLSkHzLKB4d6XxrudxIaHEOEpO0RVeDDJWlVkR7m6G9Yu7W6yRHoeVkY+6dXyf91bl5TF16tnhYPDmyqP2Vk3m/prWfYsecg/q+5GmCjL3RBSmjz006YeTY/2a7wrVWfWxD8bHv9dffjPyytv3ho4yCseerN2w6On65zZymPNmSG0CNZZYqu4tcInP7LjoBTljU/2WD2+YvuDybGGX090fcWGSyq/nBwIrwQfPeIyZ2YkSjlnNvKbM4uqHHNmIi7TOWe2OsptzszapdduskQqHgZo0+BtF4/ceFTfxgccsQZAKLKq9/bb9vpmXI9ttwHIkoeQN5CFb4f8zNdihLux1m5KhYfl0U+HbpqRJtZIlCc2Tmw6a/fIs17x0Is7U8KpEWFhuSYo/pPIDiHWznHxQXE3EHFaDARLYf9Wb7u9ZuOlRopAo8IXXlX+9Ym+9k8kI5x3BBiJpOdWVYXApGZ+dwREVfyOgCWCgmzijgDf/eVwNyybvCMg3Q30naks4MrDqtgnozdO7t38VPpzfYmmnttvH7h+lpHYmZGHRJBK1iXdDR9+QmSEMU0RSkqDh+WxT/dsOK0svjH7jh3Tcs2g8LOe8NCLZ6aIXVXELQBXdwPxR+ZwN4TYVUUMBEsBULn9gaqtt+fQqESTiDidpir8Cl3cDcnP3cTiFMCgusrs++F7hCQeVkY+GblpZjDJ0aRCefvbAzaciPhOdrorD4W7ERMgu7shirthKWzthq8jlAAPBzac7zObc+3aUW3za+OfFs5DL8KNWDyyVIUId2PNGIUFE39klruRA5OsKvxPEGWtb9U03JBru0iiqfybOSS+k8W+DlMVpHU3VHCOKosLVLubwmHnoT/ROGLr2X4zsxdWEYys6r3tBlZaMg8hUuRaiOJuhGMV7gaKuxGzrE7mYa+ddwVy8TUSAdq8X9uCknE31OFueM/KaZ4VeVR3wxLsAyNVBTJ+EdR9e0meTYuuL/tuIWOMt6oC0dZkVYGiKqrQQb6GUiohL5YQu7tBCnejkQ52Hg7efm0oa1+jorrxqerGp1x5KGtxczfCsaZyN3zttjN52L3x4Tw6hKFX/D+9Yv/p/LUb0WliDKj8+8ngboRFtQ2MVBWIsazY+ZQvtiHv1gW2PYh4o+eqAtHWtKoi7lZIGbTuZRKqXLvD3UC4G6rdTfZQeBiKr+vb+n95l9R9+x3JPMzN3fBHpRR3g6K4G96mLHhY2/y0j+Y8jVKxR/S5AnnoxavR2f1pIhwL4bZR3o9kcHc3/C4jYQPDtkTKaQYbtlDz0oJal2jyNy2Jdz9Zqgp/nT0Fla+hde53MEy+vzvlfgd+5fb9DiLI8v0OEKZGMAAOd8PuUrKpp6nsu5GbQwkhprrfQSMNFB4ObH6gkJL8sfWhtrciFeNVHkp3w5KgDCj745buhp1CKaC4Gwrib33LF15FYhtIZL1ZPiJRPjxROZ4atR3Dw4rwu4X0CYBe8f8WyEMvwg2VVoU7QeluZOS3/k9kRJfplrshIk7zV+RTSgiCbW8V2EB/69uJHqdQdb8DNa3JnkNVwBZrxX4HZYeXMM6EX6mLqvALslTFIGCTI654fEVctoSb7xT7bqjed5M9FB7WhQvlTEXLknDFeJWHYiGaywfLxocVEO6G0RiglEmGaVJffH35+kt9rW/bKmhawv4frzk62nN2ompCsXmY36qNikpzY4E89GztxlqRclu7gbVcpbSVW1Rr7UZ0tqohMHJfSHc2MLo+/zmz6ZwzW03PPGeW7kZM8imV4ZWwx3NIurUbotdusofCw+roqgILC0ZWOnhoczfifyqFbGs3/DU3tHzr7VWfjXfGGgX+piUVX58Y/HYeMRuLysNg5NMC+wRAXfzTkli7YX8c4iv707bWbiAX14jS2KS1G9HZcp5MC7c2AJBoymXOTGxzZsM5Z7aannHODGvtRnQCkeGVn0z12o1HEDz009zuRrmCJJpUHkIOo1gU4EtyikFW124opYbZWLX6qLKGrHZvlG17sPLrE0liZ/F4GAv0L7BPAARocyE89Mrd0GR3I8eCIaO7EWc53Y1XLcza3VDPVMVau5GdYHM3THm0u/EGgofVkRWFFxaMrMrkbhyKanM3PtpU8dUsXzgHk+ULr6pYd07xeGgaNfl1hYot/rGl4G5IBnfD1Zta7oaqIyfCgSUVLA+NVE3woIVGTbK7ISXpbgA43A20u8kSgoc7yg8pvLBwxbgc3A0AUMOw3E1o3SU5xRoGf+vbwS23F8vd+At1NzFUFcjD4rkbahsLrt7KehdRR07IuN3dEIOAwjSqC2ygWTYw2d3QjnY3zL453Q2riCgdY4pHeolYidTuJis4eOhBeTYe2vvfxd2YJnc3vuZ/B/K9nRracgeJrSsGDyNlw/NrksTGsiMK5GHx3A2xjUUKdyM7jpou7oaaFAThqikFNjBRM8XmbkinuBvKZ/V2d0N4GHK6G7i6G21w0kDh4dbyowssrK3qaAcP7Z2fzt0Ety8spOryLXcUg4eN1SckSEHK/W3giAJ52HHuRmZVzrI6jhh2d8OyGAQU4ZqCwg01quNVE2zuhnZVdxNJJAAM6lZVSIfsslB4uDM0vsDC2ivGO3iYpOru7oZEvgk0FbRTrGzn08XgYcKoa644Mu9W7fQN3Vh2ZIE89NLd8FFJ4W7E/4hylqu7sawwU5X2qmOiFePybl2s1znw1XaWu1G7ycXdICt3Q/XaTTZQeLip8uR4AUoerhgXDY5w8DB5QGF3N8QglMKf+5JNMvytbxeDhw09fp33Cs5HFb8qnIfe/Iom+4Pho4K07kY2ludEkruxREReW1PfG/JrWKJ8eKznHGZkOtLd2K5dnO3ibsDcjZHe3RC9dpMdJA/jvtrV3W/Ku5yGPre78tAOh7thf+rIY4U4Gb7wymLwMGHUrut9Tx7tWVE5d6t/bOE89CbcMDfD3Q0sd2M1zM3dAO7uxjpJ7D+Ohfbd2S+Ht0/w043qyIA7TKOGGZk83A2A/FTFzkN+tnQ3lD8RLt2NeL0jAO1uCoDKw81VJzdUnphHIVv63h4vG+TKQxsYhVS3zh7680IViNlcJB6Gy/b5ptf/5LSI81X5aV8GT/eEh565G8DF3VjzojTuhlruxjFchO+OAYD2upMad8sh4lCjun2vpxPl+xIi3ESSuzHZc0qp3Q2ATKoidi+mVhXuoRR3w2Kfw93IjpHuRvSAdjfZwsHD1d1vbMnxdkxzzYlNNSel4SGUVEqVv2bC3Y1HqlBEHu4sn7y6z2PRLGZV7b7d/l3zvysqrvKKh565GyDJ3Yj3hAKWuyEySbob2Zv8CbSUqtJed9KO3Z8yAwMytidROa5573cSoX0hetnV3RiGISqklF1Fzu5G7F5MrSriknN2N6IHrH2JGunh4GHCV/dh/39uydrjbO5z+6Y+d2TkoUxNdjeEeONuEqHhReVhODj8k93+9W3NhWmCzurKn7/a45/flR0E73joxSOasjUmjy/scg3DShG2xnrhi3Q37OahYRBKqfX0LMvCAoOyjBqtnPDdnksrti8sb3zKiLq8lSIRGh7tc2m0+mgxNUOyuzGlu6GmYRgg4E/iiqd7bU/ims4ncdkV82sQdHA8iQtWO+OF5W5MKpRI/qoZdzcwITwNeyJc9gBMU7ubLOHKw9V97trSevKQ7y4OxlO+xqStfNym3rcngrsbBNnwkKUyBy/5zNxNIriPBxdi1DB3U1Qeflt70fqaX1TEPqtrf5mYTdXRz7YHD2ojuzUFhjX69kk4XLYXPPQm3FiqYirPHLIXSjCo7oYK8SCQCyimSX1sPmUFca4qhv3yTKOmrfel7b0v84c/8YdX+mIbWBBPhIYnqiaYRo3BH5+lEE9cc1shnwgnhP0WAvcRqrsBIYB8EhcsaFLZHtFuzsXkOTOEfbWpCqVUOjtTrFubIrcp3Q0FWLCz9QCRf0VejNWujFQ8bK6Y8EHFe7Xht7q3LamMfOKjTeWRVa3l4wA0Vx7dVjE+GtqXDWr2PASlxOB/zYBYu6E0XjmxwKswywbEqyZ2GA9bAsOa/MNMigSlCQqTnU6LwsMOdjdIdjds2LJ0N+CrPABoPDQiERohVz3YyDMCmMqmwTzcjT+2wd+0tKzpJZiN/vAqMzAgFhwRDw2Pl+8TCR5s+msLdjfE5m4Mg5iZ3Y3TzGskIT0Pm8sntFZMIOx3h8DYAv65AB5KhrO/Q9NXE62bVbbz6byvIlp9FCNN8V12R/PQY3dDxEJJCncj962lczdEvMzIOWemfFANN1WRkxQD4u0g6dwNJQTJ7oYkmio3XBZoXqJenRHbEIxtCLYsBZAIDGjs+/tIxfg8VIV9VtwNWG7T1O7GG5QID6O9zsk73FCjOtpjNmtNkdwNOo+HHt+ZouIrpZQoHZS0PK6kmLI3WeAkcnpIuDOxFcKKtZVDKRV3lZipEeGbFwK7u2HsSb4zFdjxVM0X4x2xxgFfbEP39T/utvFnRqIx0x0BfkSqCoS5E3emAICpinrLTr0zJYTMvu6ukQIlwsN4cESk5+z8LiHac04iMND1Dqm8N5bjnakS4qHHd6as4REOgqjdAtktIkXsVuB3poQ7tegCpceYiqjFskTCggy3MKJMHtfl2/NYYeLOFBx3pgI7nqrceFmqX8tzINTyUu+1PwhEVqa9I8CPEKX17K6HuDMFdnHUNLlWAbDfmYJyR8D6m9FIgdLhYXvfGxKhnB+JjNXNau99KSHud0hlZcLdQAYdX3RdWfs7wfZ3ylrfLmUeerl2Ayq8mDJnprDNeK21GwYCajrmzKCUR0Hmha0eU1QFslhZH+8NOVnl9Yh3OTrWbqCu3fjaV1VsvCynSzYSTXWbrtg28AnTqEk1Z2Y+iv/6t2iofc4MfnMR1HXODHXODMQTFECfqvKcmvr9QUnxsG2vpyu+mukLZ/sOvVjdrLYBf0hzh1Q2WK7dlLW9Vd70TKjlZcdvPUaD+7RUz2yqOsH01ZUUD710N5ajS1YVJSdfxmPfXVTFMnSWqojMSFIVsegCaQ7BmcU1IKO7IfHGinVz8rjqQGRV7ZYbHO5G8Fr6bGWrUZKqULmIkI2qiClAyO/Lo7XfB3jFw1DrWxUtS7ptu716x4PBtreN6Dd58JAata1DX8lmVkXLBrTt+X9tA/4gi8nobnyxdd3XndJj/U8qGp9J/l3Zssin3bfdPGjd4d2231lSPCyuu2GfbKrC71CKi5KqQhRVgaUqgPV7TK6qQixVAeQ7uqSYERhysprC3QS3LzSi+fwgEYCKpkVtNbPCFeOluwEoNV3dDesoTke28ZWwuV7WqqKRHgXysCL8drcdC6taXRbvoqHh4dqTWnucwzIjax5G+t2Y6HZSYNuD/sYlJOmt29SojvU6J9z9bBLoxm5ucHdDQGmyu+GNDURW1q07JeOvVxtmU7cdd5VFPm3o/bu4UVcKPPTyzhRzeRDSYYV/JWSypxEh08Q6i0kh7ghwd8PeB8PijQHrHHFHQHylvEwCQD4cwG8qEFCYoAbhyzrE7c5U2daCfiSkounpcMV4eUfAcu2KqsgFRULUfTdCVUyhKhSw3xGAekdAL95kQt489MUbe393fW1jyp8SLwuvKgtfX7l94c5+t8UqJ+TEw0T5vokBf0C/nf7wKl94JXtzdqxiHK3Y1yQ1xGaahLvhvEi6M0XhD2cVayQq217u/+2Gbwb8oxR46Km7UdQllapAzDaS3A2c7oakcDfcQghV4X/lbLHL5m5YYnp3E2h7J1lzckKo9RUoazeKuyGeuBuq3U3WyI+Hgdi6gZtmhyKZn+T2xdb3WHdS4263h+tOypWHxF+XqJqQqJogJzUsjlDX/V8p3A1JNOYUaxiC0U/7bp27scfvlKvvHB56unbDZ53WnBliHYNBKI74DNXd2NZuIFc/1OkkcwvUViwVIiZVRa7dsELSr934U/8iR5YwEk2ByKqktRvL3dg7CmLqS5U5s1BIVqB9zkyUObNGeuTBQyPRuMfGk7KJNRK1315avvMpb3komqW6m+S1G1Q13JBrrGGoaX6mov0dpaM6h4de7ruRswn2Z8fW3pR7RMJmyJgCSAUwiLVhUXpcNnqp3A1UVRGDJYKZ4m54fl6GY9+N0b6y8Ms3Eo1yv4NcpJbrlvaO4qrC/LcQYh5eWVbHfgcq9zsU3tBdHXnwcPfNZwdiOa/c1Xx7aSCyCt7xUDRLeDNQmrTvJtD6dqjxmXz7Brt9d5X83Fk87Ah3I9snV+8h9zoKBcjC3dA07kacJSaWbqrCKnSoCkk0Fn75htmUh7thQqHdjYfIlYfdmp5UNT8nVG2+Ht7xkBeR1t2Edub/q+cAAvENIfFrf53FQ4/dDaCoirAhsn3q6n0adyPWih3uxrFLOElVqE1VePdlUhXqqy388k2jJpO7ESHURVWQUVVkZo30yJWHfXbk/M42ibK2t0M7n/KKh7yI9O6mLc/IKFHd9k90Kg89djeAUBURlV1VxZofubkbuTye3t0QqwBRr2Ht1ObmMJOqmOUjPOmBTO5GTBBdVAUZVQUFq8r3BDnxsKr9rUAs5SspskFZ01KveMiLSOtujMJaC6Ay/A46lYdFczfKtqJkVbHm0XZ3AyvR4W6UM+xipaoKfwMpYL3lMJOqZPOyroyIVIy3nlUpjrvRd6ayQU48rGlL93BcNihre9srHvIiUrsbX7MXv15tNbVzeOhJuKFpVAUyTqRxN3ZaJLsbqGcoYiXCsVUvPypUhSCDqsRrC/1BovbKyVDcjfBrCrP4JQlzlpeqEO1uMiM3HlZECr1LQBJNvvg6T3gIZHY3BbZWohN56Em4Idmrily9t7kbOy2S3Y3tDKVYEY6teh2qIi0uFZPs5LWbWN2sQi6+vXYmgFTuRnCE7/mSVEpWFaqoitIVlqpAULa2PFBIg3dd5MzDwuGLbvCEh4AVJF3dTeE/ucvRqTwsirth7wFxVRW5ep/R3XBX6epulKSMqiJuTPASklUl3PtSmu/vAseCw9qqpiC1uxHDJR7wo9Y/UlWoyZ+Pk6qidIWlKgASJgDUhsrya+2ujpx56Am84qEMVq7uBsHdC29qwqjpXB4WGm7Y8oRDVUwza3fDrlk+YCQhBYE/r2p3N4rhkarCilJVhbJns40MqmIGB0V7npPHtZtG9Xf9H+AEz9rdiJGzVIUYJEtV0UiF/HhYOKiv1isepnc3pmnGQ4W+Bbm5YnLn8rDQcMPmgXw9LLWqCL1Pcjfsr5LC5m6Q5G54ZGWFuLsbVpSqKoSImK2oCnVTlXDvS6K5T6mael+X8A/gBM/a3UAuiueuKhqpkAcPo/6BhdcbD43wkIdp3I1hGJHafH42S0VraGzn8tA7d8OiOQC4qIq4rmzdjbKkY7kbyzRI0vDyRb2OOTNcVIWkUJX2AX8I974ky6s2jeptA/7SWjNLmvIM7oYo7kb2jHY33iEPHjZVFvTb8wBilePgNQ/TuJtw3Yl5z/oBNFaeEAsM6lweeu9ugKzcjTXNcHM3ypJOancj/pqlqshfh1N3W2SvKuHelzYNfStemeH3yKMVB2/b48VoxXiimHKHu+E1KQtOQlVgjZlUFWqpCtXuJi/kwcOW8gmJAv56AUSrpqAIPEzlbqivtr1Hnu8kNUn11m6/6HQeeupuxLg6VAVu7saaZqR3NyITIS7uhrNMURWgIFUxywY27/F/bf1vj9TNckyVqVEdrp25feAT2wc9mQgMEC13dze8Jhd3AxdVIZaqEO1u8kIePEz4ar+ry2fNjhceGNDe7SQUh4eu7gZAa89LIlVH5dHarT2vifkHdjoPC30BhVAVYUjAIjEh/HagbC1YWDUMAv5OEHmIgFJKqGEvlr02QP65UmparwFlQkL4+o3cx8NUhYoxI0T4D0KI0l+EP0dDU+x3QLhuFqk7kd3t80dWId4YrRjHrDh7m4QMfNTpbuDqbqhpghhSZSk1AfkWNWvOzN43wt8zwnLzOMuUUEeclMiPh9/VzunW/FR+e4ub+8yjRi1ncnF4aH/fjcG41rTbrd2+OdkfyfadpAAaes1vrJ4F0+x0HnrlbpC9qogkeYhNFp3bhzK6GzlJd6gKsasKRJByqApAslGVaNk+scrx/GKJlVu0PKW7oYKHICAGK1CoCntpKfj0S7ubwpEfDxO+2nV9F+YxpQrXzorUHNORPOR5AOqr3bH7k+01M7Npp2lUN/Sa31w9s0R46NXajVQVgM+ZRWQRAwxHBCHyEJtvOzdHEzmMAPhb+Jg0iYenYJszU0tVbHNmPsJJc+YkVUk5Z7Yullq5RctTrt2w+tgZ4tVEvNHUNEX7RRl67aYw5M3DcGjf9X0fyinihGtnNe72h07koWnUNva7dWf/+xKBdHv/mqt/tH7gP1qqZ5YODwudTBEZpw3IRW3TpAYRC2ZygLnwCGfLozzEnULn4xiCE9zLsZ8qY3NPp6pYrxylRIysYb3lxBprAES8zQ+UmKb6FjWY1GRW0f4WNVN2MREPxLJsXBFY0fKXGEBhUkKICauhhBimeA01KCWGAfZifeGwAUpN3kUJ9h5dUSU1Te1uMqIQHrZVTlg/4On+m2ZnM6tq6XVpS89LS4GH4eop7VVHBVrfDrW+XBZZBQp/ZFUsODxh1EQqDm6pODLmGwD5nhqUBA89WLuh7KWf6pyZx0qpNhCTDGvRHtYhHlcdRivJ3Zg+MWBspEW8EuMI9p5Q3nHsnaSyHUaGOTMUVXGfM8NyN9a0Ls3aDQFMRm+xq51NlYWqEK4q4vd99NpNISiQh+Hgvl/Xv9vzu9u67XjASPEy2faqKc39ro/7B/jEprBS4GG0Yny0coLkIZs/UkmfEuNhUdwNu33NVuOkqgAsS7buRhRvczcQD1IBMvAqqsKW5RRVAbJUFRCQYrobkqwqsqekqiCtqjDa1YT0A1Mu8ISH3/W4dEfPy4LhT6palhpmYzCy0jRq46ER8cCAcNUU6q81+B0MzcM8eVgUdyOiRwZVsTRBcTdsxgR+Xkp3Q8VIc1vLVIU4VYWVSMF/rqyD3U2CvVzariqU394SDFBUhaZVlUSCAqjTD0y5wUMeRoMjtgdHEMAQ+a14pXlYGA89uDNFhO+QLksGXJ6DJfItESKCiHV8sZYmfjyUWCWrJ1u/sUEIr1cUy0sQ0sGpYD2wL5d0uapQmnxHABnvCIi2EdlI5SLd70wZxOCCZRBeIGOwXPYTDICwqETfmcoLmoddgof5hxv2G3ptkQifBElbIpwmldNHnigGiYpM7P9s/Cj7jXQoNFBPJqYpucRju6QFsTGActNoUrUQueos5p9IrSo535micL8zZTL1oKAm5QVSUAoqqUPEQKqeTt+ZygWah12Ih/mHm5H9ugV9Rnsk0h6JsY7MoCpykERysqooVElSFWF/baoi566KqrDq2ZxZFkJF0cVQFZKjqkBM+9kcwKEqNIWqxEwT+u0TSdA87EI8LMjdHLpnXwDrt20xTTNZVZzCYFcVKsbQXVXEngY5tqqqUKkqVKgKlYWnVhXa2aoC+cSKcPAEYEuGWahKWyQGYGiv2ryHbJeE5mEX4mFBazdjB/YcVFdpmnTtli2xRMKhKk5hyKQqLLKKOSjPxXXCriokWVXkHQGjc1XFSKcqcFcVIwtVaWqPJUz0rgoN7VVTyJDtktA87Co8LHSpeOaoPXpXhSKx+JebNrfH47xtKVQFQgHgpioQq+LsMIvefBYsVIUdSaMq4qfmO0tVTNYSF1UhhMpzc1SVtmiiJRwHMG34oALHa1eF5mGX4GGh4Sbk9526/169q0KmSb/a3LC9tQ3SgSapCoQCIDtVIYZTVdiRnFTFolFHqQoRVydUhbBfAiHy3FxUpS2a2NEaBXDkkN36VIUKHK9dFZqHXYKHHryrWB3pddu2b97ZFIsnxEVYqgK4qIrsTVdVoWZWqmIY6VTFolFeqqIuxeerKmyaL5QSlqqwa06jKo1tse9aogBG9u02dmDPwgdrF4bmYenz0MsNHW+uaVi2poF97lFVMbBbTcjvMwjYXkwCStioEBgisLJuNvi7Aih4ThB2lkHYSBOZzhot4zIjgRKmDSZEtjmzMMyi8zhhKExqGoZhik4XOzjBRhpiDyVRtlGZJpUDx1ggR9o02ZiZ1BSDR4hJaYKCAialCZNSkWICCZOaFAlKKSEJdhSglO/mbIsmvmuNhuMmgEPq+xxa38erYdrloXlYsjz0eP/Yuh2tb67ZvG5nK/taEyrbrba6Z2XIIMytwSCEUMr2a4oxJgSUKGNPYI00UxXDINQ0hY+l6joXITCEmBiEgFJiEMIezxO7OWWQFg6W7+YEt6lWyGd8UHdzSqfNp7rUhJAsiOFnqiIX+9kAg9IEBQhJmKYJUCBBKQVJUGqaMIEEpQlKKTHipkkpTFCTwqRojia2t0baYyaAoM+YNap+ULdKD8fo+wDNw9LkYVG2q67b0fre+q1fbmuSKbWhsm4VwaqyQHnAXxP0G3IUgbxVxfpAra+WqhC2AA+UrKpQappcVVpiibZIoiUWbw7HGYWCPmPsoF5jB/Zk29g08oDmYanxsIi74xvD0Y837fhia+OWlrDjUMhvlAf85QFfZcBPgJpgIOAjBlBR5qv0+xyqQvhkOJ2qmCYlyapCxGYnvo5GO0dVqMkesW2MmjGTmpS2R81wwjRBG8PxOKVMQCR6V4VG9es+sl83HWg8geZh6fCwIx7GCccT63a0NrS0NzS3b25pbw7HsjkrYJC6UEAoAteHyjJfdcAvZ8Ny9cz6IHREWVmzjvGD4pKp9XQsO0l2BVHW0Chfp+enwFYGIZF4Ymckzg8RWykxkzZFE9lcbE0o0KeqfPduVUN71eh9w0WC5mFGFJuHnfPsX2M42tge2xmONoajABqa2yPxBIAd7ZHmSLzj29Mx6F0VYkJRGyqrLS8DsHtdVTDg07e3Owuahx3Mw9J91DgcT2xpdrpfyYzSQcjv61NV7npIh5JdAJqHHqJ0w42GhsYuBg+2+WloaGhkAx1uNDQ0Ogg63GhoaHQQdLjR0NDoIOhwo6Gh0UHQ4UZDQ6ODoMONhoZGB0GHGw0NjQ6CDjcaGhodBB1uNDQ0Ogg63GhoaHQQdLjR0NDoIOhwo6Gh0UHQ4UZDQ6ODoMONhoZGB0GHGw0NjQ6CDjcaGhodBB1uNDQ0Ogg63GhoaHQQdLjR0NDoIOhwo6Gh0UHQ4UZDQ6ODoMONhoZGB0GHGw0NjQ6CAaC5ufnOO++cPHnyiBEj9t133ylTpvzxj3+MxzP/aOn5559/6qmnFr+RBaEUGtnW1jZ//vxDDz102LBhRxxxxL333muapjx03XXXHXjggcOGDZs1a9ZHH31USEWrVq2qr69/6aWXvGh1R0PzsNjodB76AZx55pnr16+/+OKLhw8fHo/H//3vf995553r16+fP39+IVUWggMOOOBvf/vbgAEDOqsB3uKKK6549913r7zyyj322OM///nPggUL4vH4hRdeCODKK698//33b7jhhj59+jzyyCNnnHHG0qVL+/bt29lN7gRoHhYbnc5D/xdffLF8+fI//elPxxxzDEs68MADg8Hg0qVL29vby8vdf3W4qNi4ceP27ds7vt4iYefOnW+++ea8efNmzpwJ4KCDDlq5cuXixYsvvPDCtWvXvvDCCw888MCRRx4JYL/99ps0adKjjz565ZVXdnarOxqah8VGKfDQSCQSAAzDtohz3nnnPfvss3KMn3zyySOPPHLo0KFjxoz55S9/uW3bNjVzS0vLsGHD7rnnHpkSjUZHjRq1YMECANu2bbvkkkvGjBmz9957z5gx46233mJ5Vq9eXV9f/+67755//vkjRow48MADr7/+etM033nnnUMOOQTAoYce+rOf/Uyt6M0336yvr//ggw9kyocfflhfX//GG28AeP/990866aRhw4YNHz78xz/+sasbHD58+P333y+/zp0797jjjpONWbZs2WmnnTZs2LCJEyc+//zzn3zyyfTp04cNG3bMMcesWLGCnRKPx2+//faJEycOHTr0sMMOe+SRR2Rp8+fP32uvvZIrraur+/jjj9kYMwSDQdbhb731ViAQ+MEPfsDSA4HAoYce+uabbyYXcuGFF/785z9/7LHHDj744GHDhs2ZM6epqel3v/vdmDFjRo8eff311yef0rWgeYjvAQ+Nvfbaa+DAgVdeeeVf/vIXx/gxLFq06Fe/+tWMGTOWLFnyP//zPytWrDj77LMppTJDVVXVYYcdtnTpUpny73//u7m5efr06YlE4qc//eny5cv/+Mc/vvDCC6NHjz7zzDM///xzAH6/H8CNN9546qmnfvjhh7fddtsjjzyyePHiAw444O677wbw/PPP33777WpLJkyY0KNHD7WixYsX9+jRY+LEiV9//fVpp53Wq1evRYsWPfXUU1VVVaeeeurmzZvTX7wEa8ytt946d+7c5cuXjxo16te//vX8+fPvuuuu9957r6qqat68eSznzTff/MADD1xyySVLly4955xzfvOb3zzxxBPs0ODBg4844og0tYTD4YaGhieeeOLFF1+cM2cOgDVr1vTt27esrEzmGTRo0Jo1a1xbuHz58m+++ebVV199/PHH//Wvf82aNatXr15vvfXW/PnzH3nkEcb1rgvNQ3wPeGiUlZU9+OCD9fX1v/71r8eOHTt58uQbb7zxk08+kTkWLlx4yCGH/OIXv9hzzz0nTJjw61//esWKFcuXL1dLmTZt2kcffSS79cUXXxw6dOiwYcPefPPNVatW3XLLLRMnThw8ePC8efMGDhyoRuIpU6YccsghgUBg0qRJgwYN+vjjjwOBQHV1NYDa2tqqqiq1Fp/Pd/TRRzuG+dhjj/X5fI8//nhZWdltt902fPjwfffd9/e//300Gn3mmWfSXHkyjj766JEjR1ZUVJxwwglNTU0nn3zyHnvsUVNTM23atFWrVgFobm7+y1/+cs4558yaNau+vv7UU0/90Y9+9MADD7DTZ86cKT+74swzzxw3btzvfve7+fPnz5gxgxXILlaiqqqqtbVVLuCpaGtru+KKKyorKw844IC9997bNM3Zs2eXl5dPmTKlrq6OtbDrQvNQYhfmoQFg6NChzz333EsvvXTNNdcMGjToL3/5y3HHHXfTTTcBiMVin3766YEHHihP2G+//QA4Cv3hD39YXl7OFqLj8fgrr7zCLuOjjz7y+XwHHXQQr8wwxo4dq1Jk+PDh8nNNTU1jY2OatgI47rjj1q5d+8UXXwBYuXLl+vXrWUUrVqwYMWJEKBRi2erq6gYNGpTrX+CQIUNkSxxfI5FINBpdtWpVLBabMGGCPGXcuHFr1qzZsWNHNuVff/31Dz300CmnnPKrX/3q0UcfzaltAAYNGiT1p6amRjaPfW1qasq1wFKD5iHDLsxDv/w0ZMiQIUOGzJ49u6WlZd68eQ899NBxxx235557Ukpra2tlNva5paVFLaW8vPyHP/zhkiVLzjjjjLfffnvnzp3Tp09n2RKJxIgRI2TOeDzerVs3+VUODIPqjV0xduzYXr16LVmyZOjQoS+++OKAAQP2339/VtGgQYPUnLW1tY5GZkQwGEzzlVLKCjzjjDMIISyRhf/vvvtOvahUGDZs2LBhww4//PBgMPjb3/525syZtbW1juFpamqqqqpyLGFk2byMDegS0DzchXnoj0ajDQ0NAwcOlElVVVWXX375okWLVq1aNWLECMMw1GDPPjusF4Bp06b9/Oc/37lz55IlS8aMGcPuHVZXVweDwRdeeEHN6XoNWcIwjGOPPXbp0qUXXXTRkiVL2AIbq8ihSI2Njf369XOcLoeHIRwO51Q7u+o77rhj2LBharrae8nYvHnzsmXLjj76aOnJR44cGYlENm3atOeee27atCkSicgxW7NmzeDBg3Nq1a4BzcPs0XV5aPzmN7+ZOnWqY3GOrRL16tUrEAjss88+qu3873//C2DUqFGOgg477LBQKPTGG2+8/PLLzFgCGD16dCQSMU1zL4FQKJTc+65IFSbZDPbtt9/++uuvZUUjR45cuXJlJBJhX7dt27Z27drkRtbU1KhSk6vL3WeffcrKyrZv3y4vp66urnv37uoaWzJ27NhxxRVXvPrqq456+/fvf8ghh5im+c9//pOlt7e3v/baa4cddlhOrdo1oHmYPbouD/2zZ89evHjxzJkz58yZM3To0EQisWLFivvvv3/EiBGTJk0C8LOf/eziiy++7777pk6dun79+t/85jcHH3xwcg8Gg8HJkyffd99933333bHHHssSJ06cOHz48Isvvvi6667r37//8uXLr7322osuumj27Nlp2sR88quvvjpu3Li9997bcXT//fffbbfdbr755r333lsePf300x977LG5c+deeOGF0Wh0wYIFNTU16j0/hlGjRi1duvSnP/1pRUXFAw880Nra6nDR6VFdXf3jH//4jjvu6Nat2+jRozds2HDjjTf279+frcwtWrTopZdeuvfeex1n7bPPPpMmTZo3b15LS8vgwYNXrFhx7733nnTSSeXl5f379581a9b1119PKe3Vq9d9993n8/lOP/307JvkipUrV6oWNxQKHXzwwQWWWWxoHmbfV12Xh/5BgwYtWrTo/vvvX7hwYUNDQ1lZ2YABA+bMmXP66aezYDl9+vRwOHz//fffeuutNTU1kydPvvrqq11LnzZt2pw5c37wgx/07NmTpfh8vkceeeS3v/3teeed19bWNnDgwF/+8pdnn312+laOHDly0qRJt9xyy7hx4x5++GHHUULI1KlTH3zwQXUP0u677/7444/Pnz9/2rRpPp9v7Nixf/3rX3v06OE49+qrr547d+4hhxxSW1t7+umnn3DCCf/617+y6jmBa665pqam5pZbbtmyZUuPHj2OOuqouXPnskNffvnlyy+/7HrW3Xfffffdd99zzz1bt27t16/fOeecc8EFF7BDN9100/z586+77rrW1tYxY8Y8/vjj3bt3z6lJybjrrrvUr/3791+2bFmBZRYbmoe59FZX5SHZZZYYNTQ0Shz6iXANDY0Ogg43GhoaHQQdbjQ0NDoIOtxoaGh0EHS40dDQ6CDocKOhodFB0OFGQ0Ojg6DDjYaGRgdBhxsNDY0Ogg43GhoaHQQdbjQ0NDoIOtxoaGh0EHS40dDQ6CDocKOhodFB0OFGQ0Ojg6DDjYaGRgdBhxsNDY0Ogg43GhoaHQQdbjQ0NDoIOtxoaGh0EHS40dDQ6CDocKOhodFB0OFGQ0Ojg6DDjYaGRgdBhxsNDY0OQueHm/fee2/27NkHHHDAXnvtNWLEiBkzZvz1r3/N5sQNGzbU19fX19c3NTXlWunll19eX19/44035t7ezLjzzjtZw2666aZilK9RDDz11FMzZ84cOXLkXnvtNWbMmDPOOOO9997L5sSnn366vr5+6tSpeVR6yCGH1NfXv/TSS3mcmwqPPPJIvYI999zz4IMPPvPMM999910Pa8kPnRxu3nnnnZ/85CevvvpqZWXl+PHje/bs+fHHH1911VV//vOfva3o22+/ra+vf+ihh9jX4cOHH3744UOGDPG2Fobnn3+efVi8eLH+TeQugbvvvnvu3LnLly8fNGjQuHHjCCFvvvnmGWecsWLFCm8rWrRoUX19/apVq9jXCRMmHH744b169fK2FgCBQGD06NGjR48eMWJEW1vb66+//pOf/KTTI46/c6v/85//nEgkpkyZcu+997KUq6+++oknnnjkkUdOP/10DyuSIYDh7LPPzviL9Pnhyy+/XL16dU1NTUVFxaZNmz788MMxY8YUoyIND/Hwww8DmDdv3plnngmgvb191qxZq1atevLJJ0eOHOlhRQ4eLliwwMPCVfTu3fvZZ59ln5ubm6dOnbphw4ann3764IMPLlKN2aCT3Q2bB3Xr1k2mXHXVVW+88YZqLxctWjRt2rRhw4aNGDHi5JNPfuONN1yLOuWUU1T/8vrrr9fX148dOxbAcccdd8sttwC46aab6uvrW1tbHZOpaDR62223TZo0aciQIWPGjLngggu+/vprdujRRx+tr68/99xz33333alTp+6zzz7HH3/8ypUrU13RCy+8AGDSpEk//OEPkUQvjdKEg4fl5eUPPfTQe++9d/PNN7OUNAxxgE1hpH+ZP39+fX39L37xi9bW1vr6+n/9618Ajj322OOOOw5Jk6nNmzdffvnlY8eOHTJkyMSJE2+44Ybm5mZ26IILLqivr//f//3fxx57bMKECSNHjjzvvPO2b9+ezdVVV1fvt99+AMLhcF7d4xk6OdyMGDECwF//+tfLLrvs5ZdfbmxsrK6uHjhwoGHwht17772XXXbZZ599dvjhh48dO/a999776U9/+vLLL+dUy4wZM/r16wfgoIMOOuusswKBgCPDueee+8c//rG5uXnatGn9+vVbvHjxCSecsHHjRgChUAjA119/ffnllw8fPrxHjx4fffTRBRdcEI/HXeti4eboo48++uijoedTXQSMh1dfffWCBQvefffdaDTap08fdY6ThiFZIhAInHXWWezz9OnTZ8yY4ciwffv2H/3oR88880xtbe306dMTicTDDz98+umnM6YxHv7jH/9YuHDhhAkTEonE0qVLf/vb32ZTdUtLy0cffQSgc60NOj3cnHfeeSzuLlq06Gc/+9mYMWNmzJjx2GOPsS5uamq68847Adx888333HMP630Av//973OqZc6cOfX19QCmTJly3XXXlZWVqUfffPPN1157jRDy9NNP33HHHX/729+GDx/e1NR03333AWCBb/Xq1Xfcccett97KXPe6detcxe3zzz9fvXp1MBg87LDDxo0bV1dXx+ZTuXeMRofi5ptv7tGjR1tb2z333HPKKaeMGjXqrLPOev3119nR9AzJEmVlZddddx2j07nnnjtnzhxHhoULF27atGn33Xd//vnnb7vttueee66srOyjjz5i3oeduHbt2r///e+33nrr1VdfDeDVV19NVd2WLVtOOOGEE044Yfr06RMmTNi8efOpp556yimn5NYvXqOTw01dXd2iRYvuv//+U045Zffdd6eUfvzxx9dee+2VV14J4IMPPmD2b/r06Sz/scceC+DLL7/cuXOnV2146623AIwcOXLPPfcEEAgEjjrqKAD/+c9/ZJ6+ffseeOCBAAYPHlxZWQmgoaEhuagXX3wRwGGHHVZRUeH3+ydPngw9n+oK2HfffV9//fVbbrnlmGOO6dGjRyQSee21184888ynnnoK2TGkcLBapkyZwoxM3759999/f0ctkyZNqq6uBjB69GgAO3bsiMVirqXFYrEPP/zwww8/XLFiRXNzs8/n++abbz7//HMPG5wHOv9GuGEYkydPvuWWW1577bVly5Yxk/nss89u2LBhx44dAILBYEVFBcvcvXt39qGxsdGrBrBa1PUjVosa0dSj5eXlAEzTTC6KzaSWL18+derUqVOnsmUmPZ/qEqisrDzllFP+9Kc/vf/++8899xybXt11113IjiGFIyceMhIiBQ8B9O/ff43A+++/f/bZZy9btuy0007LY9eIh+jMcNPS0rJkyZI777xTrmD179//tttu8/v9AL755pu6ujoAkUikvb2dZZBrY+qoMDC3KYvKchUNAKuFDbZ6rgxtWeKzzz776quvAGzduvXTTz/99NNPmQPS86kSx7fffvvMM8+waTLDfvvtd9111wHYuHFjPB7PiSGEEHQqD5PRo0ePiy66CMDOnTs7l4qd7G4uvfTSP/zhD/Pnz49GoyzllVdeYQs3AwYM2H///YPBIJT5yN/+9jcA++67b01NjaMotrDHlsQA/OMf/1CPMhK0trYmt2HChAkAPvnkk7Vr1wKIRqOLFy+W6dmDzaT233//NQomTZoEPZ8qbaxdu/byyy+/4YYb/v73v7OURCLBVkz69u3r9/tzYojKw9bWVnYrSiIjD19++WX2t7Bx48b//ve/qWrJFfJ+blVVVeGl5Y3O3HdTVVV1xRVX3HjjjQ8//PDTTz/dv3//xsbGzZs3Azj++ON33313ABdddNHvf//7a665ZtmyZdu3b1+2bJnP57vqqquSSzv88MP//ve/v/TSS+eff35zczO7gyhnMX379gXw8MMPr1+//oorrlBPPPTQQ3/wgx+88cYbJ5100qRJk1asWPH555/36tXr3HPPzelyWLhx7C495phjXn/99cWLF19zzTWMahqlhvHjx0+ZMmXp0qW//OUvb7755u7du2/evJnN1i+++GLkyJDDDz/8ySefXLBgwWeffbZ8+fJ+/fpt3bpV5eHGjRuvvfbaiRMnXnvtteqJs2fPXrRo0Zo1a2bMmMHWkmKx2MSJE4844og8LootFbPPjY2Na9asATBmzBi26NNZ6GR3c9ZZZy1cuHDSpEmVlZVfffVVc3Pz6NGj582bJ+89XXDBBQsWLBg8ePCSJUs++OCDiRMnPvHEE67xfvr06eeff37Pnj2XLVu22267sR0TkUiEHT3nnHMGDx7c3Nz89ttvO6a7hJD777///PPPDwaDzz333NatW48//vhnn322Z8+e2V+InEmx+98SRx11lM/n27Rp0wcffJBLx2h0HAghd9999w033DBmzJhEIvHll18ahjFp0qSHHnro5JNPRo4MmTt37jHHHOP3+1977bUTTzzxxBNPhMLDX/3qVz179ly7du1nn33mOLFHjx6LFi06/vjjt2zZ8txzzwWDwfPPP3/hwoX5qZRcKv7www8bGhqGDBlyySWXPProo3KLSafg/wGfnwGYUBeJwgAAAABJRU5ErkJggg==", "path": "image.png" }
Which solution has a higher concentration of yellow particles?
[ "Solution A", "neither; their concentrations are the same", "Solution B" ]
2
The diagram below is a model of two solutions. Each yellow ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the yellow particles represent the solute. To figure out which solution has a higher concentration of yellow particles, look at both the number of yellow particles and the volume of the solvent in each container. Use the concentration formula to find the number of yellow particles per milliliter. Solution B has more yellow particles per milliliter. So, Solution B has a higher concentration of yellow particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABnXElEQVR4nO19d5xV1dX2s/a5d3qjDJ2BQUCkCSqCgMESoyKCRqMmRmMsscRY3lgSe0sMGpNY3sQSfTWJ9TPEJPYWFewGlaaCClKkDALTy71n7++PXc4+9w5T79yZC/v58bucueW0/Zy1nrXWLiSEQAZi6cbtSzZuq2xoqmyIpeFw/QpySnKypgwtLeuVn4bDOWQKHA/bBco4c7O5puHvS1anp3WTMaQ4/3t7D8+JeN1ydIeeA8fDDiDDzM3mmoaHF3/eGOelJb1yinr3LcrPZcj1kO0hmyGLIYsQZYgyRAgMiBAYgaBeCSBSu5KXzQW4EOqV4HPhC8SFiHPhg2JcxLiICfFNbePX26vWbtnuczGitPjECcO67x44dD8cDzsG1t0n0D68v7aiMc5HDh6U029oXr7Wk6QbTQAEIggBISAblEj9k+0srav6ujG1wUck5N+GDgAEinKzRgzoM3GPoR6jLysqP9la3fXX6tBz4XjYMWSYuVm7owZAVbQIQCDLBHSTArKBZWPLD4X6BwEI1XyaAZaLUR8Jkn/bok9/qyA3u3/fEgBLtlR21RU6ZAIcDzuGDDM32REPAAkOS46mwatAf9/3ufWGw24Kx8OOIcPMTVmvAgD+9k3oDq/SFI9v3VEFYGhBbpddokMGwPGwY8gwc7P/0L7ZHttaVbV17cqmpgb1btd7lZjPV2/a9t4na3xflORlzyjr0/XX6tBz4XjYMWRYZQpAZUPTk0vWbKlpaP2rXYDBxXkn7F2ecQVIh5TD8bADyDB1A6A4J2t0aXG3HLpvQe6p+47MuDZ26Ao4HnYAke4+gY5j9KD++b37p6e/w6pN2z9ZvyU/O6v7Ltehh8LxsO3IPHVjQPZWl8fMPoC8nGgXX5ND5sHxsO3IYHMTIF0VAavlHRyS4HjYGjLY3KS/v0PmNrND18HxsO3IZHNjtpxXceg+OB62HbuEuUmXV3FwSIbjYduRweYmQNq8Sua6FYc0wPGwNWSwuUm/V6EMlrEOXQXHw7Yjg81NcM/T5VUcHJqB42GbkZHmpn9BLoAdtfXqb1cRcOgOOB62FxlpbmT37bjvq79dzOzQHXA8bC8y0twkouu9Sn1jDJpeDg7Nw/GwNewS5qbrvUp9UwxAn/wMm17EIa1wPGwNu4S5cTGzQ0+A42FryGBzE9z0dMXMLHODZocug+Nh25HB5iZAuryKveXgkAjHw9aQweYm/V6FMtarOHQdHA/bjgw2NwHSFzNnqldxSAccD1vDLmFu0uZVMjhJ59D1cDxsDRlsbgK77yoCDt0Hx8O2I4PNTYD0eRUHh53D8bA17BLmJl1eJXMLkA7pgONha8hgc5P+ikAGuxWHLoPjYduRweYmQNd7lW019QCGluSl54IcMhKOh60hI81NcW4UQHVjk/o7XV4lI2+WQ5fB8bC9yMgzL87JAlDVEFN/p60ikLExs0NXwPGwvchIc5MIVxFw6AlwPGwNu4S5SV9FoOuvxSFz4XjYGnYJc+O8ikNPgONha9glzE26vIqDQ0twPGwNu4S5SVt/BweHFuB42Bp2CXPjvIpDT4DjYWvYJcyN8yoOPQGOh60hs80Nmf+cV3HoPjgethGZbW5URbCLvUplQxOAwtysdFySQwbC8bCNyGxzkx6vEo/5ALK8TF3cx6Gr4XjYRmS4uUmLV9kFYmaHLoXjYRuR4ebG/OdiZofug+NhG7FLmBvnVRy6FY6HbUSmmpuinCgAX64Gnxavkvlt7ZB6OB62C5lqbkpysgDUNzQA6fIqGd3ODl0Dx8N2IVPNjYQ6exczO3QrHA/biMw2N0hjRSCTnYpDF8PxsG3IbHPjKgIOPQGOh21EZpub9PTmzGyH4tD1cDxsIzLb3Cg4r+LQE+B42Bp2CXPjvIpDT4DjYWvIbHPjYmaHngDHwzZilzA3zqs4dCscD9uIzDY3CmnxKpnvWhy6GI6HrSGzzY3zKg49AY6HbURmmxu7dQEXMzt0ExwP24bMNjdktS7gvIpD98DxsI3IbHPjvIpDj4DjYduQ2ebGeRWHngDHwzYiw82N8yoOPQCOh21EZpsbhfR4lcxvbIeuheNha8hsc0PmvzR4lcyXsg5dBMfDNiKzzU1g77veq+yoa3x51ddyrR8HhxAcD9uGSHefQEewdOP2zTX1aNarMO1VdERNBELgJCQJLK8SNLv2KtI3WapVAEDc5++v2/r+uq1DivOnDisd3bcoDVfq0JPheNheZJK5aYj7H6zb+t66isY4l+9sqqsblOV5IsIYY0q/QggQC3kV2I5HN6sAiEgYfkhfJASAKEM8Lpp8URkXjLAj7hcXFeQX5FdX19TW1K2vrF2/pDY/O7LPoD4TBvYqzsngVQ0dOoBmeTiw63jIRWVMMBKVmc9DErZa66mobGhauHrzyopK2cCFeTn5RYW9SwpisXhOVhRCeIwgEPUol7Ecj2UxymYUZWAgYkIIIpINTqSCaeKAEKKRi0YufCEEEOei3hdNnAPEhZCvgsC5AJHPBQhNcb+qqvabbTv8uC/PbcLAXlOGlvYvyOnOG+SQFrTKQ8aIBLI8ymkzDwXAJQ994cPmoQBgeAiCn/k87OnmRjbw0o3b5Z8FeTl9+vTOz8tmRERgACMQ1DYFkpWg8m4KdsYt0KdCh9n6L/kqhBBQSpirDcGF2uZCcKC2tmFHZVV1da3c05ShfWeW98+JZPCCqg4toMM8NMkc9UqBwqGAgACCLI2wUsi7GA97tLl5f93Whas3SU9SUlTQp7QkJ5pFEB4RAYyIoPyJ2iYSEIwIAta2ICLjWchExRDq8mWQTUrRCLXN5bYg4lxIF2S2fSEEyBe8Ke5v3169fdsOAFGPHT568ISBvbr5rjmkGkk87JUTjQY8ZERCML0NvU2aewSLgfoV2iNKvslPueaqUTTK1oS1tpDbAQ9FUzyeETzsoeZmc03Dyys3rN1RC6B3UUHv0l7Z0QgDMQIjMBiXQsqN6PliVZ2RyEibsK6xM29keRQIKJkjLIEDgAvzJ3HpW4S0PuBCtjcaY7GNGyvq6xsBDCjKmz1mSA/XtA5tRIiHxQW9+vbKjkQ8RlrOQHs+yUCC1jXM0tehIpS9d1JF70SNo62MCLwguACUxhFc2yAueQhwIXyBph7Pw55obhat3rxw9WYA2VmR/v1KCwtypSdh0pOoNtb+hAhqWxARCRlJBboGkP4EZIlX1dDBq61rhNY12soY3yI1DsgXXIA4F5zgcyFAcc4rq2q3bN4qyTGzvP+UoX17rKZ1aAuSeJhDgMeIBLy28ZBgKZowDw0D0SkeCgHJQKV0ejgPe5a52VzT8PSKtVtqGgD06V3Up0+vLM9jBE9rGUZgYX9i4mRm6xoCwn2KAgUrLMOjdaz5mpY2gcDh1jtG1yjfIqRvEb5WOjGfV2zdVrmjGkBhdvR7e5f3NPfi0BY0x0PGiDxCILGTeQhYuZuAmXaZnBIYmMBDS++EeUgcQmj13RwPBQd8oWROjPOKip7Iwx5kbpZs3P7MJ+sA5GRF+vfvl5+XHZE+hBHTnqTZaFluw/IwifmawNbIBpWfqu0gcuY6crYVrB0th7e1V4GsJpjX2oamTRu3NDXFIh6bN7ZsdGkm9YxwaJaHTOoazUDPzhiGt2GxUQidTwQJS90kM1CbHSF73BBUHkcrGq5zNy1lErlU3ECcCw7U9Twe9hRzY4Rr/z7Fxb1LsjzmETGCiaFktMzQjFdh4WoUpFcJ9ZxSMNt2tGzeAQJ9K9QLibAnCXkVEzlz6VuE1Di+gC/Exo0Vsl4we6+he/fIvJ1DMlrioS1tAKIggxPmIYDQ6IOE3I2lahRCuRv9lgi9I7S+DvGQI5RJ1Bqn5/KwR5ibpz9ZJ0uMZYP6FRblM6NoAl2j4+QgcrZiZhGqSelOnEEVwCgd6TdMTSp431Kz8oZIuxOuVVkxMw+Ujq9rBBzwuXmlOOcV3+zY9s0OAHsNKDlmbFl33mKHNiDMwwIG0RIPk3M3Vh2qZR6GbU6Ijc3y0KpVNZO7aYGHPuBz0XN42M3mpiHuv7zq66Ubt2d5bMCA0sLCPE9GyCpO1l5FtbTyJNq9KB9ivIftW6Asi4JdnwpgaRn9hrEvOnKW74ezOaY+5Vvxsx+On6V72V5Zs3lTBYDhvQuPHV/Wc5J2DjZ2ykOQx5rnoad73CRkDAMe6qoFaZlNycLGQpA5NjyEsjiGh1x/KnTvGz+jeNid5qYh7j+8+IstNQ1RxoaUDcrPyWKECBGD8BiTr3ZNikEwIqY9hlQ6O6tDsaBzg/Ew8p0kXaMIIKPl5nUNZKvrHsbGw5ho2dQIOMjnnIPiQnCBOOd1jfH1azdwIXrlZZ+230hncXoamuOhiBDTsbyw6lBS6QiPmF2HsvM1hocmdwNlaoSO9BMZqFkXehh5oHFCtSouuHxfIMRDqz6leSgZKDgXFBeiviG2rrt52G3mxrRxblZkwKAB+TlRj0i6FEvdBFUABniy3hTO+UuNoyxOuHeDrXSQqHek97C3tXbdSQ8Iodo4pHR8HT9zy89oryIdi/AFGmPx9es3NTXFinOzT5/iLE4PQhIPszyC5mGQqTHqRkVVJIyypnBvLyT3tVEaB/pD+X4gckL9To2+DnVzD/SOETumWgppWawqlW/1C/MtNjbGYuvXb+5GHnaPuTFtXJSbPWDIgOyIxwCZ/4+orDAFkbP2Kgh6DJvWNX0cgLBvUfFUEDMHFQF5DnZZnCdEzs3pGulPTOYY1liqcMxMZgQWt16bfL5u7ddNTbHSwtwzp4xK/z13SEbLPJSKJsRDghdS1gk8VOxK0trJuRsAdhHc1KosBiKZh8bnWZ4vo3jYPebm70vWrNxaVZyb3X/IgCzP8wgRRp6Vk5NexQtqUlbmv7l+DRT4EC1e5eWFPYzROInjGOyBKmimMmX7E9vDhKpUPORVTK4uzlUI3eTz1V+s5ULsUVp8woRh6b/tDglohodS1ygeqkSh11yfL6Os28pDlc2BfiOBhyE1jbbw0HqnhT44iocCcWF46K/+Yl238LAbptd6adXXK7dWZTFWOqg0K6JsTagaRcIjSOvjKQ8TzhOrPI5WuXr8lN6GB0SIItKKEUUZyaNECFHGPEKUyU+Zp78jP/WIjI0zNQittpSvS2Aeg5C/8phR4OpMPO0n5VGiHg0pG8yIvqiofG1NRfrvvIMNi4f9sjUPA1vDiMno3mpZgghXvslmoGSm4iGBafZGtDfVTGMRguRklLEQS6FYGpE8lE5X17+CfiGyRwgjcyYeQR43wVaaa7GvLup5Q7uJh+lWN6YPVXnZoPy8bPmce5atkXdZt25ijwbzTvMaRw6nMu/ICMvq1Znc1UHnakhNtCYS+xBrfyJEUuRsOnravSFMLcDoHUvjiLhAVXXd119vBnDYnkP2G9w7nTffwSDMwxxb1+jnnCI6h5jAw1D2UHFPx1Oamcnfgf7OzjreiEDLhHmYlK8RQo5sCHI3CT3CRND7JmCjrXHiQnQLD9OqbjbXNLy8agOAoYP65eflSFtjqwBmLDSxoBYQ9iRG43hhjWMYY9SEB4oSMa1rlIch7WeMJ2GMKX9CEcsPRI1a2amuSaqMmjNhlNBrQ3k2osKC3H4DSgG8smrDhur6dN5/B4kkHiLCDKOkFiD1jsVAy+4EGifIM2qeGOZYPDRamzGLezYbmWZj1PDT7IECHio1bWUY7L4/4bNVlbXQU2bts6ggt3/aeZg+ddMQ9//41ieNcV5aXNhvYF/57AWRVEJNSusURomaJRgFB9X7RlfHVV/P5Cga4X43ZPXdbLYPsVE0amIRHRUnVAS0xrFGVyVFzr7O48QD3yLiXHy9saK6utbz6Oype2bEPGy7DNrHQz3rAEvSLOHtwPq0wEOlr21dY0FXRVvhoVExdi3c1kH6y0rdtMhDfL1xSzp5mD518/DiLxrjvDA3q3RgXwZEiBiJSChfo6xvkBuW0SmC7QRb7sn8ixUVK49Bpn+E8lpGjxgPoEfBBBGy9BtB3troHeV5KBIoajPnjhVFS0ZKT0WkImedx4kwYiQ0s9nAgaV5+bm+Lx5b8lXamsABFg/7DSxlQMRWo0Y1q/5fiS1Llpo225EEPaKYk5B1tmrq5h3YmkUd1zDT0xkcL2C4Yrudr2TBeQrtoYNowGg0o92MumGAx5BmHqbJ3Ly/buuWmob87MjAIQM9fRciFL7vFLImjEHGL0ShJ1xZpbCtUU+4tCCB8kzUuqYlQvpTFyDszJ+xOyH1a1ioa6KheJ7s2F5ErP4ayuJY2x7RgIGljGhbTf2Hm3akpxUcbB6GnsagpWxrYunrUCZRc8YwWUdG5nmWtoPpp1ramvB+glniLNsB9X3DMUY2wz2bmZTwW9L7t/PZInxdASeNZUwnD9Nhbhri/sLVmwAMHNAv6rGwvVf+34pOdXsIOzoN9I5la4hBRAK7YHuehBqWnf2x61nQSichLxPka4xXScjwWx4vMcdkv29VNGzfBUbI8ry+/foCePHTdQ16xlmHrkMSD82zZ7WONSrYqvtYr1rjBN6IiIFMlTPEwKQaVlgfBTOrJMzoFM5UgtlZRVBgfchoriQGJjCZEp84o6fSycN0mJuXV37dGOelRflZudkR6zqTrj/wJ2bbYzCK0WPwLPWrrX6ylwjdazuby2Styoq3w3WHZvZgIq8EjeOR5YUgGGs2jyhUXTxBq2ul06u4ICc3m3Px1Kdfp6EhdnPsjIcssDgiEuYhhbfVaAb5zIfrEiyJM0Gk04wVSGZj8wy0/SJrloc6OrP1kekpYngYsawqS+ZhSZp42OXmZu322qWbtmcxVlzaOyF6MtY92SqT0RpC3x11r02eRb5SgpZRd1zna0jvDQCzXim8bfNAOi5K1DvhqFvrnaD9rPNMzjeZPJGXtJ9BA/sBWL1l++ff1HR1W+zOsHlo231b7XqBMlV5kBC7SM2s5FlRmH7a9XOeaHECSwGLaUjiZMJ3TFYxyGAG2lz381I8hM7mWIwVNqsD7WNdrxVVETFgYFp42OXm5qVVGwD06VOcE42G82GhvnA78yfBnbK0q7TrZMXDdsREMvEvhHolIggiWP3KQ9tk+pgD0EUDOz7XrzDeIIjSQ7YyFDPbHilhBgP7naxopFfvEgDPfra+q9tid4bFw0iSz7OztolPaYiTVh+xiGWzbJ7I7KFRLoAeUWyYtnM2MrMtDH9AgUXT2Rmy+pQajcZ2xkNl0RLy03bk6BGyIl4aeNi15kZm5vKyIr369GKhWUJCmqXZ+AVC39mQbWKMgve1jhAJe4DtSYQgEPS8jbrXeeL7RlWhGd0rgrYM8vxgdjRH8lih3A0hsDj2OZssgPSKffuWeBGvtqHpxc83dmlz7LaweFhilG9Cxk0rWUEIa4pg3okga+tplR3wRCvrZngozExMmnXYybZQGqo5HjajuTyCJ7OKRF5Y6dvnlpA9TNRfqs8RSwMPu9DcmMzcoIH9mB4NYD1pgYIg5QfUeMtkXWONZkjyOaTbFbbHSHxl1qs1gly/k/Aa1jthj2dplnAeSjNMfYeC8wzZVsN1HWPDIxo4oB+AD9dvzdC1n3sywjwM6xqr/1uyzws4KaMPu6rdvB63edgiG20GovnvhLQPgNDzkpgf9AILGPRyZgSZi4Dtj63ejGRdi9xPV/OwC82NzMwNKCnIysm2VFww37C2HWGfwJTKSNI1ibbZtjVBPKz0i25F03O8ObtjbE3wnaCnuTW6F3qpmbBnkBpHV0DDCkvrGqieYDoXHrSxsLMGeXk5BQX5nIs3137TdS2yeyLEQ2bZDsk9a3wcBXkWIVvQ09qEgUxflWZ4aLJ1AQ9t/RIwkNrAQGWDbPXdXASQ4I/D2UzdD5bZtiaouthju+wIKz+/a3nYVeamIe6v3FoJoKRvby+wHeY6rZpO8ExCxreMiISdwxPh/E7oqZZRro6G7DaDaWmVORM2D8KckNvS1hh9G1goGP6Fo3pjN815Jo+vCeyO9iEgsrLIOjorKSkCsGzj1i5qkd0TAQ/79LIzaHbWT86jZKJsm2NQcYowVXMK5YCDJzmkR2BHQ3q+N1hMo8CO2Py0lA7Clig5pxNwLOTLzXmKEFfVsZD89OkebTrG7FIedpW5WVlR1RjnpYW5XsSjhB5xjELPoQjdO+UBmNXPMnFe9CBage1JkOBJAL16IQjY+SvpGdUSfpvsYSwuhrL9jCGoVSEh222usRmWBPqWKC8vOysr6vvinfXbuqhRdkMEPIxGk/qnKEYBduuE86yQMRQzrewlaQ2LhyozqK0GrNg82A4xEGE2Jn8f4WxjiIe2J7NiPdmrUPYgMSOBwpkHUy+nkA0VXc3DrjI376+rAJBbWEhW9ZesvKmyHeFMjbEjzLp+ZrVr0MZAcqtAKpok7wHoQVM7eW1G9SDkYewoWrdxQu9BfbaUrH6DKDp07VZvAHkHSnqVAHh37ZYuapTdEBYPrTVbrNZJ5iGsmCiIucI1DSTykFrhoWiFgbC+k8TDxIjM5mEz16K9YDM8xE54aM+40pU87BJzs7mmQc78WlCYn6RrrPmGdbRsWwdmeuKEI2SjKhN1Tag9oO0CjHWAsOrioRp5eDvwOQj2Y3OoOY1jW8BQzBh4Krvvj6CgjQULXyMDSooLGFFdQ9O6KjdSPAUwPMwvzLfsu+41qnmoY3C7X0xC398En5esr5tV1mFGtcpGStpO9KaSh6GzJYLNw6Rzhsl261+p7wcWhwVXJH/bdTzsEnPz/toKAKW9C8PWNxxBJGqWUIY/oY1D30dCSwQ5GsuTQAAgspyKWXhKb1NoW37fjNZtxsM0p3FaO2elayj4pgjz3sreERFQUFwA4LUvN3dFu+xuMDxMyBVaEZN5VlXGkKxYOLTqC0tkafO6JqysobalcOkIGwOLlpxVTNQ4oPDZWjou9E3ridOvMN9UWruLeJh6c9MQ95du2g4gv7goMauqrhm2rjH3gsjqQxxWvGg2XxOOkEWQiwl5EjPbOSGYljFxW/kc28NYe2tR45g+O0G0GO7Zafsfsq6Fha9RPgO9exUDWL+tyo2i6iTCPAz7LW07EGgEohAnE78PEcRQaFnXGOZAMUoIQa0y0N5OUNyw7RqSNQ70tdiZUPsJIm0fLR0nvw/1VFLi9XYRD1NvbuTCYANLCqLRSMiTINyKIrh+Y2tIeSFoKwtdFSLsLF+TlKlJ8iSA8SQ7e7W/qfeg3mpR48C2hgKq6kR6GSwRZrOOnBPZbGWRs6LRvLxcAG+vdxXxTiGJhwnZ+hZ5CM1DMlUeGB7KeujOdI2hka1Z0CoD7dcEjYMWeEgQQj7Dui+PHUPoZbDCPGQt8VB0KQ9Tb26WbNwGoLCo0B43xAhEwuRugjgo7FsYmbqysTXN9Who3p8EnsH2GG1HCx5mZxonqX9NEDNLsoZ1jcoK6bwdWflmaI8kioqLAHy2pTI17bG7QvKwqMhE9LoOJYTFqMTsoeKhnUNUmiLItmKnusZSx5pFHTv5gIHay4azioaHoYq78sqqtm3Galo8DGcSLe0WjO3UykAUlaSeh6k3N1tqGgB4uTl2JIUgx6aiD4SjZUvBhn5lnuRwT03Y9xqWPkz2JG1HSx6mOd8Cc3DtK8w1EoXeMboGoetKsDjq/dy8bADba1y2uFOQPGS5OcaaB62j+1KZbIjx7aSfQN2CATMTMylmD81mDAH9zQ7CMNnSOPr9hNEPlGB37HhQBP1mpW01VhVkRnJZT2igcbqChyk2N2u31wIoycsmy+JSoFoDhcKCNgvesdUdrEyH+U6opYlMYoasHE1K0BaNQ0bj6Pft80/iKAA9dgZAM1lw1ZMw6nlZWVEAK7e6MeIdRIiHSVlS47ECjQNAP73NVCfCPBQiIWu704xh5yGE5QUT8jiAyVq2gYf2LLoJitv6ppXxiLLU8zDF5uarHTUACvNz7XaicP9aCtSK9vNBLzgrNgF05KV1qX7OE+Jka7PdimZnaIvGgWpFwMr/J/RaZEr7qL1ZdyP4DoVrmQSRk5cDYNWO2hRdzW4Hi4fmbifwUN15o3HsPGsLPLSe9hAPm80Ydh6G1c3kE63+OCKZh0mZQQRXlPxUBnfDzuOknIeRVO1IYu32GgCRnFxAELHAvgAwVpYZjSO3k/rghnpSmqeUYOXnRNAfHPbKhJxzAELDPjfzqxYi6uSPSK9tCL3CIRFxIQgUrOJMxDmX81RzveZGnAsfiPmcE/mcE/M4QMxT/pALRvAFiEBcZiil9uFElJOdU4Xqddurgf4pbJ3dB5qHOQjF8urplT6AGBDWOCEeyhgf+vkUIKY4IPkpdGYg4JXyiyBSPDRstM+tkzy01xe3V7KXP+ECguBzOUe68C0eCqJ4MzwEI/KtmrofjJZIPQ9TbG4219QDaIw1iOpYhFFUr+nFhIgwIs6JhBovT2SywkwOpQcYhAeQECaD4zHtYYKR30QEAgnBiQg6pDJtIBFaHTXcxgktLayfN/epNpbK6EBAtbSZOt8swCCClcLV9PdxYa8Sb1b/Ua9xgTjncYG4z+F5PiguEOPCFwBQWevSNx2E5GFDUyOE30j2uivcIzDOGZkV6EmvzwtGpEbbyuELEKTHKHmMIZGHUEzjQlmyjvLQfMcQr1mWSoumTR6s1aUhGQhAWCvWAxQXXC/DgLhe2VUEK4Wod+JCyBUaYj4XnsdBcblaAwdSysNUmpvNNQ2NcZ7FUFtb20QUZcwjEWUUIYp6ngcR9dTaN5zAiQiIMMYBxohDyGEekA3PWKKiATNKByAhuFKwVpPYGocxFl4RPKiFNett7G3b9ABCHpertoVhmN6LFKdCegZG4AIMxFV/IkFEnHMiArdzBJwRkeCkiRuPx+OgmM/jQMwXIHAu1lfXDynMTWEb7Q4wPKyrq43pNVTlepVRj3mA4aF89cM8jGoeUus8hOAt8dC2LPY7SGKd/VvJliQeqt8m85AL9UMBCMk0xUNheKiugnPGyPd5wEMueRjMRefbPOQp5mEqczdSweZ5ROoGcqt6LRgzcaM+tm4zUx2HSmSYuFRnZ0yhGzo3TMzkTQxM+yXYGlitm/B+AmyvYn9NZeyICCSEIBZE6VLfaEbCiquVJ7Rq//p6hGA640jqMLJOGeQdPc8D8NnW6nY2gkMyD62+Fy3wkEI8lKLGZFib5yFsHtpsSfRe5qO28DBB+4R5KAIecpOXUB+2wEMrWhdBWGmsoRJqlMhDaB5WpIaHqTQ3m6vrAXhRTzYHI6Zr3qq2Ly+RVMBsrlNXtWGyPGbWD5WNFzozB51d54IjqQ6V7FXMRy2om4TvJCtbmGyxEDKSElwYysmm0i0Ns00WX4Ojq+5FJMz8gQDCvYrk+5GoB+Crba441W5YPBSGhyofLP0QoHmIgIcqR6PaRcI8sVD9uQQQtBQAIXmo4hj7VwBgdIr5qC08RNhOhXlIQqi1o4mR4KFyLCmVzaxaquIYhbltqWzVG4507iahpq54uD01PExlMCVnAOPSghCE4MSYzMkJIZhnVKiE8SSkwmA7QwwVqZp8jTB1PkC+b7LxBgltmexVEvyG+VXyd7AzryKE4JyUelIEhIqfBZm8NefSC2plq7JxOpkoNbPqB8EIPrdqYZwTkZzooNENZWg/Ah6q2y+IKY0phGCMfVH91bIdn7xV8d+aWO3n1WsLI/mjiocNyi09eMB+3x64v/SLyotoGpDKBKt4SjQze0kAw72dqewEpiVEW+ad5nmotIkQXD4j6uhy2U0imdOE4OriYdJMpsohiSjk+TMuuOUvtQYExQUnIpZSHqbS3Mi70ySQDQBgxLQ2A2MqBjEVK32nmBF2clvuiBgzbWlqVTC+iJDcTuiq3E1wdco6MqYidhHsAlwwxnzOZc1CWk9pipisTNkqF5BehXNzXMkVped9rrwoT9eSyrsSAh4SEFaOFY1b7//84bcr/mt/vzpeu/ibFYuBp9e/Pii39Py9Tjhu6Cy5I/MEBjyUrJb5ExayF2trNq+vq3irYjmAofn9yvL7je9VXpJd2N7cTYI9sn9e2VTz1pbly3aslkcBMK6kfFxJ+fS+Y4cU9BcU5G7U86WpFeRuiHwutO1U73BL8enz0d8EATLxnAKkNlVcD90POhRByOtnTAgQC+p2nt427QqLGba6gep5wAQSvErIrbTqVapitYs2LV22Y/Xams3r6ipm9BsP4MghU8eXlNt7SPYq+k/pVTgRk15FSRuhVQnAdSQIrdVlvZ9zod+We2Nc5okJJAi6KmnUDRgH0Og7ddNuhHkYsOI/mxY+8MUjtfG6Fn77dX3FFYv/99WN782ffG5JdiEQ8FBAzsgHSE9i8fDelU8/vubVZTvWJO9w9pCpZ+959Mz+E+WfLahsG8k8rGyquXfl07cufzzhm29uWSY3pvcb//v9fjokv7+MDQV4Mg8ZY3GuhbRKMLeJh00p4mFLAWR7cfOrSwAUFWRFGUUIWYx5hCgjj1GWx7zQiH5SK70Fq+6KKGOeHtwo508jrQMRYo+yWZYlbmYjwR6trdl867LHHvnylWbPvCy/3+UTf3DCsIOSvYq5P0JXIilgA4Q2ID7n0qZwvRq8XAo+LgQHxTgXYHHOua5TxjkXRKYGGecixoUPNPncB2JcxAWqKusB/PKQialqoN0EmodRWY2S3Fu0ZdEfV97f9p3sVTzskZnX9s4pUtkcHZgxYkSaA4wt2/7lj9+cv7a2lZmoZvaf8JcDf1mcVYBwhjHha8kRluThWxXLfrTwN5Wx1rvb/XzsCf8z/vuccy5UUdy3eah63wiLh0IQ+ZwrHgrEJAN9HgfFOI9xVFeljIepHzMlG8NEPbCVTtArN1Cq6ley84Cwts3uAkGobbU1ysM+9M4qAnd/+q/J/zprZ7YGwNraLT99+w+HvHDxkm1ftKRuZFZJCCKm09byrHT+2Ir79K1QHE2I8Em9Q6EcgdBnjqDMniodu7vB5AGFEG+009YA+KTyq5MX3SCCbGPQm1xmEkH02JevHPriz1u1NQAWbV4675Url27/soV8jb1t253HVr96zKtXt8XWALhtxRMXv3u7jIygfaFmrvbTFOgbWcOB8etWVUvxUBMxJTxMmbmR82J4KmEBQMhZQqRpsZ+3ZtWHSV3IbSLzvKksLHSiFVYfyuQsjNywKwI/ffsPVy7+c1suYen21ce+erW0OMk71xUBlY2Tp6aOCxMthjL/JmZWPRIFyNqdvCeACc5V9VHmvMxXG31nbtqBgIcSQmxt3PrXLx7twK5WVK75w6cmeBE6hlI5kcdXv3rh+3e1fW9Lt6+e9/KVOxqr25W7eXPL0gveu7Ndp/3EV69d+/EDIR5CVdZkbtiuZKmISX3FZDNg5arUpynhYcrMzZbqBgD5EdNNgXT23mTLSQ8xM/abmUhFPm+mN4O2UyDjVUyx0eR6dq5uTO7miv/e99jqV9t+FZWxWmlxkndu2s8oNRXsQahslMwT2/Uy0hUNYkJwq/EDP6OLBjL7aFhIEIJ5BGDNdjdyqh0wPDS+bcHaf9b6LeVrWsADq55dp8RLiIdLd6y+5qP/a+/eKmO18165stkqhw1ja3Y0Vv9o4W86cNr3r3rm+Q3vJO4TIpGHAsSYrGRBFYeVdtM+lSCQQh52weSh2qZY0ZMwsYN6h4KKHVHQ9yFQBYGAVVYmsNYC0CWbnakbeaxn1r19z2f/bu/pV8ZqT1v0m8qmmmbUja1ypcwUVr8bpmpSSsGaM9Fxvg4VA6+ijmDqCMH4r4CLTdypm45A3tvaWM2iLW92eCdVsdr7P39a7o+0ugFwzYcPtDG6ScDS7asf/fIVNFchtSE/vaqjRwFw48cPAoaF0P6ME4Ueecvr64pH0As5pLJTwsMuyd3AUje6DsXllah39MijQE+CTOZGexKTqoFJ8piMSVtyN22MoZKxtnbLPSv/3Xxlyo4BCTrHItWNrpuGfkQmswMdUguh9I5xwTpO1l7FqrLHnbXpEOSt/XD7R53cz7tbV0DlH5W6eWvLMlOH7gCu/O+f0YbczbraLe0S5glYV1fx5Ff/0cmbsMq2ZLbmM3QgoVS2LiIFWdSU8DD15sZETFrLIFA3AAKdEsrdCJNhlYY2SJU2l7uxWsU+tJ27ueezf6+rrejwVdz72dPNqRuTu9HGz5yXEDKCg1Y3+kfGqwSXBDJeRdheRf5C9os3lPCaV9wOrUA20aeVn3VyP8t3rIFqJKWyH1/zn87ssDJW+8y6t1vI3cjXRZuXduYoAF7c8C4SVbbseRskHRNVNnaqslPCwxSbG5OeIjk6ntQD2kLuRhilk5C7QbCdmLuxWsU+up27eXZ9KHZtLypjtc9teDd0ac3lbqTAlgaDc64/BYKiQHO5G1XL50F6SgT1jgSvEtlJhO/QAgwPtzamYDXItyuWKR4ShEACMTqAN7csayF3A0AI0fmjvLjxfYR4KIhkD1VzGDt3E6hsO3djTFNKeJjiCShICQArW6H6EzPzDrEgdyNHgX/wzQpPqDUzh+SWlhX0AwViBrBHM0AIgKl+kAltZqtT0/2pw3h2/buzh0wzf5q+NlbtQNkcKL8hxyWQ3RVY2g517b7pRAzuc61srXgzsGUcWg05ddMBGB6mDsFcM1WxDiaeDZZu+9JWN8kgosqmFKRmq5pq8qP5JnejxitYWRjBtQ1SNFS9VbUa4KlV2V1gbtRpkeACnuwrzLgQnow1GMlCjoBYuOWD5za8sfibT6rjoTs7tnj4dwZNOWPkUSVZBVZlTj+AqlrcUq/iZTtWd/5a1oX7U5Dp6aX63ahssQmHZO6Gcw6Th5K3RNetgk4MAkTMVzZFmmc9r4DZgyZjXlaK22h3gLnTqdylAIHequhsjCNh96xJzuMIIdbVpWARy+WVa/bvO06KPWlN7N7tAiAmR8zIOBEywyg4IMf0gYRQ3jMlPEwZlct65QPYHkeREEIqN8a0hxFEjAvBGEltsqp6zf9++rcPt61odlcrKtesqFzzwOfPnjnyqP8Zd4LyKiykbpqtJprtHY2pn7dBmDFTOptr97vhghNjxtbogNlYIq6yxcHeOBGD6vxp2SMuAtXDBYBBhTkpv5ZdGAEPU2dxhuT10yo7NbusjNW2kLuRvcaG5vXrTPJRojgrH5KHRmUTE3qoHsne8MSsfKiu8HARxFOp42FXrKKpAkGurSZgzh5EWLj5/Yveu2lntsagKlb7u0+eOPPtWyoba0wuw6iblnM3LUTFHYaqTGmdCcDudyNVKHTOWwRc15pFZ3+FslnKpljfUXmuBH2UxVJ/LbsPJvea3Mk9DMnrOyS/n4zoARpXPLzzZ1UczW9Lv5vOH2iv4vIwDxnX8VHzPFSVGRidjpTyMJXmJttjALLAZXxheqBwobNQhEWb37/mo9/XtDhMzsbzG9478+1blP/XiRLo/MjOKlND8/ql6qIM1AFVC+k/pP0z2RxdcVM/geoCaKytOV+uegYYz6OCKm40tgD0bCMO7ULAQ4FJvTtrbqb1HU/KiwAQxVmFnT/DsoL+reZuxpUM7+RRBuf1lRtWvB+ukGqVLYwSD1WWmRBKkaeKh6k0N/0LcwFEdfKGm5mHCHIW8c+rvrp1+b3t3e1bFcsvfv8u3bHOXrtyp+pmWOGAomheZ64FwPhe5fafqtuNzgoDViZSCHWNpl1N6sX0u7H64wjoKFpSwfQqEgDUvfJ9ASAvGu3kVeyGsHnYN6fvmKI9O7O344cdpLwIIP3/EYP27+QZzug3vtV+NzP7T+jkUaaVTtCVX0DP5K/qxYDMHyu9ozQM6dSiECAuOIh4SnmYSnNTnJMFQHAuHzZpHaXhlNrs7s/+2nZdY+OJr157q2Kp1eqWIrBg97vpfGsdOThglVJqMrplzMyiZoI3CDA9JkNePLS6MS2tz1x9h1TWXCeL9aeytiWNUUm+S9y0G4qHgssH6piyeR3e1WEDp0wrHQfDNwgCHTG4U+amKJp31NBprfa7OXLw1KH5pZ050HFls4xHtHI3JDQvdT2UAj9n7I5W2anlYUrNTW4WdCUGBLkWinwkORdLd3yyZMenHd7575Y/gdADzqC64ASw+90cOXhqh48FYGh+aWiOEug+v9ZcxToGFjo7w0EmclSxsSBTb7IyWfod051RtjS3VJLPOYACV5ZqPxQPdd/QPQv3PHzQYR3YT2E079Z9zoPuDwXl7cSJ5Yd0xhCcM2ZucVZBq/1uiOjScSd1+ChT+46d1m+C8meah0EtTCcdpd4xqcYEHgpQanmY0mCqIBdAXYwLWVRRPWWVfntq7Qud2flbFcvX1mw2AYxZicGGrU5/sMe3E6KhduHScScFKRhdk4IQdmRknBO0TZGyxrSfzMsIXVnjQmdvdNVc6K9YGWVIfnOfAxhS1NmQcDdEiIcAiJ1c/v39+rQviVMYzfvbzOuKsguFFejqHpi4YdLpHTu3omjeuWPmQeeDd/Y1+WmHOVwUzbt13/N1j5OAh2pdKnM9lorR4b9ZPU3lW7nvI3U8TG3uJgdAra+SFNzEEQDnYtmOTzq5/+e/ft+am1rPgG+5CFudCiHumnZhxw40vlf590ccqo0XIVndhEcqQF8jABNmKYsDS92ER/pzwwbovkjatwi9ItqIEmdu2g3DQ/mnzE1cvNcFs/rPbOMeCqN5D824bq/i4UIIYcb9QXtQwhGDp14y7oT2nlhRNO/fh91cFJXF6TbNd/PUwTd2QEnde8Dlg1U1TWihbVVIg+5fIXWjrlT3+eJcCFKsThUPU5y7KcqJxgVlQ3D72gSWVX5SG+/s4ljLd6yGfiYDBii5EMocy54L40vKO2BxhuaX/vOQmxCEt4BRN7riZuYYFkaXAnJEOFSSX8dT0uZy7UOs2NhklKVt4kEeh3xfQCAr6vXKzerkTdsNYXiYE/AQAM4dfeb5e56VH2llvaS5Q2c9f+hdY4qH6xaE8Zr6aQRAPx930onDD277WRVF836971njS8oNV3eWuzG2hoiKswr+cdCNbdc4RdG8+6ZfPrV0HBSjSBCE8f2613uQP+bqOTIyW+aJu4iHKe53M6ykAADzuel3w5V/SMHO19VuCUbKmdWCdFLWWCJY8918f8Sh7bI443uV/+XAK6T/kd2IRZC7USzhJt8moY8qczFCKC/BAa5rkHpkgx5hFeRuYP6pjA+Bc+HHOYB+hfkpuGu7JZrjIQDMGjDz3mm/O2vkyRN7jUn4yYDcvieWH3n3tKuvn3ReYVa+8vYAVMZQPYGAHjMM3D71gjv2/1lbzmdofum/vv1rKZlt/dLsl22LA2BY4YCnDrnpxPJDWj3KAaXjHp91w2ED9w/xUIQ9pRC6t5jxndzmodLaXcPDFGciy3oVLN20vTHGORNgjAOeVmspgZo3j8DVOpZCjb8CAD0m29Ki0uIMzS89/53bW+2jeeTg/e+admFRND/wPKYnccA5rW4o6DQsqyCyX4MgrW4ghFAWR8fDwcILso25Kp/AqBuZ54rF4gBG9ElBF4/dEwEPPQFiHPAADhEhluvlzS074rvDj/SIttRXVDRWELBf3/EMYHoixUCHUvAE6jXCmRB63SHCCcMPOaB03G+XP76zYeJF0bxzxsy9fMIP5J/GyrQld2O+UxzNv2vqBWePnnPvyqefXf9O8qCtA0rHnTD84OOHH8K5EJKHCHiou64n8VC/wzk3ksfiIaWchyk2N8N65QOo5yKL4Ash15TwwqMWOwPZxkLP2MD04Gu5Ph4PzRoTeI+Z/Se+MfuOP336z0e/fKVZo3Pk4P3PGTN3Rr8JVhtLP6azwlAdbwCEx2GS0K2nxzpxAVuvmr7CgZbRWS2utauuCAAC5AsuEzfjS5256SACHoIUDyE8MJ9zxpjOmon+uaWD8ko9xrQWgFA9LcFUS4HJYXLWCiJ6NREIAcaorKD/ndMuvGmfM97csmz5jtXraivW1mwe33tESVb+7CHTTPQkkRArJSudBH8JPfeAEGJCrxF3Tr3gjqkXvLllqQCWbVs9vlc5F2JcSXlRVoERMppLQoDULP26cKErpKpGIesSvqVurD10CQ9TbG5k2FzVECvmosljXAhBjAuUZneqB4HEAf3G6fYGF4KZWTnUoGzlc+z+Baahi6L5v5h48i8mnry2ZvNXNZvkePHiaMH4XsMn9BphFE0CDwJ1I/t0k61IdV8pQP1PTNb+uYCsAnBdAOByrRhlcQQAOT6TcyGEirF17kbwOCCQFY3I/iMOHYDFQ97keZqHwiPmc848j6s5oWVLcWLM+AaV7IBacVDWdISeBgZy/SI1fyM4VzwsziqYPWTaUUOmQX0YUjG2NWlX7kbzkILxepxP7zdBCDG9dIK0jNywSo2xZFxVhGF6omgeCqLAvkDyUHtHkz0UUu90AQ9T361jdGnxB+u2xuNxzoiRtDjUJ6dvaU6fioZvOrPnccXlQlegE1sRqgKd2MZ6HkDzztD8fmUF/Wf2n2i3t71BugoYvGNmNgPs2iG00+C6F6aMeKXt4BAQJImreuVAiZkkr6KUjmzvxqYYgHIXSXUOhoc+I0/z0JerCUp1o+yIztkTcYCpBoVcvI4rHa2y/qTVekhl6/HDaJ2HgSVqxqZYaI6HenwMtchDsrmkeCgkD4UgIl/39Re6U4avexWngYepH6I5cWBvADuaONO1GBlr7Ndnn87stiia951BU6Ejat1FToc0RFArHKv+AqYfMECyVRhjsLLIoTbWjarn5SGdv1VRG4yX0BEWpBLR/RdMBUSAfKVrSCf7YT7lukDu61kmuBAmWpbKyPd9AIeM6N+Z2+VgeOgR+YaHBJ8LEzXoZ0zXYkw9GOAQXFkcpToFBTEvdK1AR1UWD0UwwibMQ2lz2slDCZ09sKuZpH2YfMPkmDTTiKt3JOsElK0hrnYJrpZzIV/zEFpldxEPU29u+hfk9CvIiQvK5T5Xig6+EMeXHZvXWg2yBZw+ak5CT3/ZgtA1PNOfEAJqxU7oUgJAjJnRj1I5N1cXIMHVTGB6tLc6irY4CGrYVglc9wMW8kpVPCUZoCtZKrusvy/0M2DFzMSFiMU5BApys0pcJNU52DwMshJc95eVsYN8dgO/qCyD/D5Xrzoq0e/DZFhg7I4Zs6J9oYl9hNCD7SC0lZF9RKTdCfFQOS/NUmOJrB4xpkbKhZzXBbr3lroYbU8FV2wEtFUNKvo2b5X9Us+pvN4u4mGX9JGfOLD3y6u+9mM+z/Lk8+YxluPlHjXk8P+35qkO7LAwmnf6Hkdxs5qdyRkrKw+tLdXc8YJz5R+gPIawZuTidp9gHW2BCIITkxbH6t1jalLgEKbPHld9Li17ofPBxJUOAtd20OdcVaNEwHsBWRGAscgCaGqMAZg0qE8KmmG3R5iH0soznwvmEReCC+IEJqucKncT9HKQ3+dEgGD6fRhLoXn4VfWmr+sqxvYaXpJVaCaNVTyUftFYDSKCzDmSZKOurkJ+KncOIuhV0uTr2prN62q3mNkpxxYPH1dSPiS/X8BDLpSQMf2MFLsSeahGXdqs4zpjqHM3vCt52CXmZnRp0curvt7UKPpni5iAamNGx5Uds2L7p8sr2z1y6uFvXV8QzZeqgZHlN0jPYkxqNiBle+w1wu26lX79qnrTc+vfMfMzCmD2kKnje40QwrI1sLyKLA9AeR7VF5NkIkYl/znX/sTqSSXMCG8p5SG4EOo7PucgbvXx8zmXYxcm9i9OVVvszmiGhzp3w2XEIcAFPKNuAGb6VWlFQES+gByDIj99b+vylza8v6JyzdsVoQlqjxwy9aThhxw5dJrFw+QMo8VDvfa0Zpv8kq5/Ec1f+si9n/672bVfpvcbf8aoow4ffIDMGO6Uh7x5HormeahyNz4XXcTDlor/ncHTK9Yt3bS9NJvFsrMihChjHkTUYw3x2uuX/GZNzdq27+rmfX563LCDPMYIYEQE4TEGIYjUnBBGrOp6AUGAWS1N2p8I4NEvXp6/5JFmF1oty+930ohDzxo9p1d2IbdK9wmKRreKtClyuWW11nKcC1+/o9SsjLC4AFGcc1/AFyIuRMzncs3muEBciLhAnIvausZ4zN+jb/EJE4d1vgkcEPCQYtlZEaIsjzEh5Lr1EcYihAhjHqnV6xnJNeyZLIQztVa9iBAxgkdU01R989KH/r72tRaOWJbf7/ZpF8wonSDnrpSvpCYsUb03hB5bl5C7MYrmzc1LfvbOHa0uB3xA6fh7pl9eGM0XemV6ycOY1C+GhzYbiXzO5arhPhcxHvDQFyIuEOO8trYpHu8SHnaVualsaPrjW58C6FuYJRjzCFHVutQQr3voi0de3bSw1Z0URvNu3//SaaXjGZFHig1ExEhlhRkz45qUJ2EkN5WtMak3IizZ9sXP3v7D0u2rWz5ocTT/wW/9cka/CTJMFlZABdUxT2XXhO6nJ42IL2CiZZ+rKjgXwtexEhdCLvzuc2lfZKsjLkSMixgXNVX1AM6bPsaVwFOFBB4q+wJEPfKIIkQRRhHGGIERPChq6VdiBAZ4hAhj/9n47pWL/1jVtnXm7ph6wfdHfNvUrXQ5dWf9blSOUYroK/97b9uXYxyS1+/u6ZePKS6XTAt4yFVu2w9KpeACvuBcUFyIOOdxLvyAh9LWdC0Pu2LyUAAozsmaMKAXABaP+wIyf8EFfC5yI/nn73XWFRMv6pfTUmR40ojZTx/6v/v2Hc/VzSKTT1X5MGvsNZTHYDpXp1bRE1qlLtz08byXrmjV1kCu2/vKVY9+8YqA7pcp8zLKSyDB1nCd4TcxlDUHhYyl1ShBX6t3Dvicy2yxr+1RQ10TgPK+xc7WpBBhHkrm6HhBqPKTnGNB52tMxUrnMgAOWrDm1Z+9e2sbbQ2AC96945Zlj5iISWeTVX5X5ndU3heqK5+siJ3/zh/atfTr+rotP3j9mh2N1Yk8lNciyOR0hBytSswXnOs+gZqH0hJ1OQ+7St1AO5YIQ1FBNoiijDwgqrVrhCjqsTU1X73y9RtfVn8FXQQsjObP6j/loIFTirMKCPCUjoVH5BERYDwPIPQGZJylFQ2pqEr9j2U7vjzmpSvau/7p7ftfcOKIQ00m3yT2tbrh0g4GLkWoypRVWZSCViog6UlEnHNfR09S2vgCTT6vqa6HcNIm9WiBhxFGHlHUY5JgRtp4IEvjYPE3y85+64YOHPrBA6+YPWSa4eFO1E3wDD677q0fLby5Awfav3Tc/828IYGHQtOVA5yDQwjFNxHnlqiRGkeIuECT79dUN3QdD7vQ3AB4csmaVVurSqJEeTkehGljKWIZEPVYhJHMyERUdgYqfgYYgaDiavl9aXE8RhCCERHJ34KplbqDkQ3G4lQ21ez7zzM7sNZycTT/yUNuGlcyQioUX484NbbG1wbFF5C1JxlDKU9iMnZS2YFivh/XdkflbrjK3dRUN/g+L+9bfJLL2nQBmuVhlBEjRBmTrx6Rx4hBeIk8FMe8+tONdR1ZHq84mv/BvD8XZ+XbY2t0jxuYeQLklyubag557sJW8zU7w42Tzz962ME2D4WdPQzxUDo8zUMKcog1NQ1+vAt52FXBlMRhowdle2xHTLC4b/q/cRVBqL4nvsy4IoiMhNXXSFaj5CPNQTo/At2nTukO/b6ZHVnqSRLAPZ/9q2PrulfGaq/98H6eeG6Ia10TnJjO14REkKXJOSjOuU7dQV87lwI4FuO+zz1GR44emOoWcACa46HOpunnMOhvqauKOnJ/9MtnO2ZrAFTGau/57J/QK3PomhSHHE/A9MoHEAJ49MtXOmxrAPzps8eDPIPVa1TnExQnLR4KnTlWT2Uszv0496gLedi15qY4J2tKWSmA2oYmfZ1C9nfkAiqbI4cmGssSHkMk68Q+VzELVz2RZAYemiK6Bxd01Kp7LnxVs/nWpY92+Pzf2rLszS1Lzfn4Kr5lPhc+SP5pLCOILNtEqouNydSAfK5PWF47yBciznl9XQOAA8oHuDCqixDioeCaRYk8DOdrVDs+s/61zhz6vk//bWcYuepXgWC0pM7rPLb6lc4c6Ou6ive3LuOml4blI6VVlZlTaY98K3cj74YvRH1tA4ADRnQhD7vW3AA4sLx/v4KcBh9e3JdtLD1JsM1FPIhBzA0S4VfiQvhAXP8qsMowFgomnyL0OLS3tnR2zcMXNrwrtI2T/+KCc/vouseqLgEYRaOI63NL3QDabpLPBRfU0BAXAgW5WQcOS8EoVoedIeBhzLfuv7A5qXkIw8PPKlevqvqqM8etjNW+uWWJMH3fLVugrY/qDry8DXWMlvHB1uXN8FCo7s6+aImH9WnhYZebGwCHjRoMYFt9nHNdEbAta/BM6sKN7i0uQJyD62qU3I4LwQXFbX0RjANg3FhxIi7w7Lp3OnnyL254z+TtZd2ag4x95Lo7n65A2V6FFIOFUjea3FBtTNTk81hjDMCcPYem4EY7tAiLh0IrZaM9A/9vd1ep7lAYnoA3Ny+zqmDayug5SeSZLNqypPMH+u/W5WF1o0ZR+Zp4hodcu8808zAd5qasV/5+Q/sCaKhtMKVfX45mlB5Gxko8yHeYLE+y0uEi0DgmFWJyN8ZvyAi2qtPruq+v2+IbXoqgR58cTSNEoLqtsSrEdY8bHvgQzgOzJTgh7vv1tfUAxgzsXd7bTdzX5bB42GgCCl9AKWUOXwhf18ilF2l1rdc2Qk4uYzNTVqCD7GQqKjbSyfl65jaV1oRmHQ9yN6q7KQcnSicP02FuABw2alC/gpxGjnh9k1Q0vkBc9pjWveOUb7EydpbFgb0tgLiOreSGHWdJxSjzfwndzDuG7Y3VPiB7DOs4zuShdHZGZ75NS+sCufIq8tx8bYbiXNTVNgmOwtysY/ca0vmTdGgLknnIZT83S2X7Aj5C4xs7Cfl4S1sQV0pKjuzhlhZODXS/m2AUHjc81KpfVr7lMxXnPJ08TJO5AXD8xOHZHquJcb/J18+hjIyE9CdxS/VZ2eLA7nCrpqCeZ5Cv6tDy3glfyO+oGDUl8AXFhfBlZtFSpNoO6lnUrJhZ2yZofU6S08axNDb68bjvMfrh5BEpOk2HNsHiYdwP524kD30hfK4NRIpEh96tMH1ETT9P42s7jwG5/YSVl0jkYXO5mzTzMH3mpjgna87YMgCVdU1a1yk1a+64/NPKHEseBHZHaGvic9l/V9op+IBShkL4QExX+KaWju/8medF862xJwhVUo2t0b05tdWDDhu59CHyfKRcj8V5Q30jgDljh7mJJtIMi4cx3zc8pJDKFiLORVyIEYXDO3/EQbn9TLwfN9lZnQGUFmevkhQ87QPySk2FVEb9Fg9NJGX6sotYLN08TJ+5ATC6tEgGzzXVDY1xzkFx3bS+gC+4FX0k5G7UkxxEK1Y+jOuQKu5zXyi7E+PCBxV2eqXwQXmlJoIL+omDfD2+wcrdcGVrAF9wn0vrScHoTcAXaIrzmpp6AGMH9R7brygFt9WhnQh4WNPQGFdxt68rUzr0EFxgXEnigg0dwJ4l5Tp7IAxD4ootkiHIi+aPKenICnY2ZvSfYiowcf28qO4X0qoSGdva5Iua2noA49LIw7SaGwCHjRo0YUAvX6CupqEx7gfVASHjIPjctEeoR3ZCHkfaI5nrCXrTyX6DUH1240IcPGhaJ0/4oIH7cxEcS/abMFE3N+cjtL9SGSiyvUpM5+ea4rymug4Ce/QtnjfGpWy6DTYPG+K+qQaYvIZU2bmRggm99urMgfYsKR9VVB7nMl8pvaCqb+pt5YdOHXV0Zw40ILfvHkXlNg9VJAVhIgaZOYoLYfNwbhp5mG5zA2DO2KGj+hb5Ao11DTGfG6sfVn3CN2ngJI2j52SDAJl+vTzocSDVBPcF9u10MDVr4P5BJV5l4IKoW/fO1BlHgTjnXCAuuCnSS/0c4yLORXV1HQSG9y1yU0x0O1rnoUBciO/vcVxnjnLyHnNUKYNLPqtMbUzHU2oknRBHlx3SGTF+6qgTdAzFDRtNHspvnofpnuqkG8wNgDljh/YryGnyUV/TEPSjMX1bAo0QxJ+m6iRVTBD3qq46av0DOwPvCzEwr9/JI+d0+Dz36TNucp8JvhVj+xyhmrfuv2DH4XF5DgjiRPlaVVUHgaLc7GPHul42PQIhHqqnVGkN6e24wF7Fe43vqMAZXTx87rBDuXaHqkZJFLeytr6lkW/Yt02L5CVj795jvzP4oLiKB8nYTamy4yoLrp6y6oCH6dbX3WNuciLeyfvs0a8gp9EXddX1jXGuVKUZOS24iafiunIcxC9Gxah8il1v1jVpXSc6e8xJBR1yGgXRvIsnnG5X300cBz0XXDDIGyLmB5bFDMWU/ThivqiqrBVcFOVmnzFlZE7ES/ktdegAQjysaWiMq343cWv2Ig78YsLF+ZF2U6ggmnfdvhfEtTXxjRfkXIiQRjbFo1kDp/2g/d6xf27f6/a5RI3tBmJyyoGg2huoG8lD3n087B5zg3BL11TXNcZVfiuuxnfI3KpRB9wXIibjaq569Gn7bUZ/BLXzYCQIkB8tuO9bN3XA4lw0/vQ9ioYHusaM4lORmlC9frQ15ARf9uDQbSwZ0OSLqqpazkVJnrM1PQ7JPNRpXRhlmhPNv2Gfq9prce6eedPIouHQ/a2ErkzryiZp1axWTZD//mfimXPK2rH0eP/cvtdOvjQnku+bSArwOQL/rVV2U5x3Ow+7dgKKVtEQ9/++ZM3aHbUeoaAwLyuiZh7xGHl6BgCm57jx5KxrckoKPWeotJek5vdT892Y2aflLGkEen3jO9f9946apNVOd4YrJ50/u+xgqBHeevJzO4DSvRtMClnnGrkAKfkKNMZ5dVUtBMp6FRw3YZizNT0TzfGQ5MRMmof0VfVX85f8bktD66PDJ/cZe+H40/csGWHxEIBaXlqI4D+5fJRQI6fUzwXEo5//+8+fPd4qXU8Z9b15ZUfkRQt0AlGlnEzP0p7Gw242NxJyQlkARfk5WdkROVejnHlEzXFDajYcj8n5bhhBeHKyG2V3QFCLODM9VzGsuYohxKrq1Ze+ffPGulZWCi+I5v1m/8v37j0euq+ntDjcmmXCzCFiuvnJvn9WJRW+EPUN8braegB79iv57viyrr2JDp2G4WFhfk62zUMiRuQxqmuqeXbDC49/+fed7aEgmvfj0SecuMfRZrZspufVRjCXNlNWJjzfDYIZKgQBG2o237/yiYWb3m3W6EzsPfacvU4bXjCM65E9ulrCBVHcFz6EieDqG2N1tQ3oATzsEeYGVkvnZ0ey87KjjHl6Pi01jyzZE6yRRwRpjwgEMBDTcxWTciIwy/kqgyQEET295pX7P3usWaNTEM373og5J5TPyY/mQ6/3IgdhBuMVhPD1vOim759veRWZY4r5vKa2IdYUBzC2f8m8cc7WZAYSeehJhxeobI+owa99r+K/7255vy5et3T7J/mRvD2Khk/qM25AbumBA/cvzCpEiIeCrMmKWfNzFSulox5FPbpKvrH4m2WfV66pjtUA6JdT2i+378Te47nQFVtrtLAZImNUdozzmpoexMOeYm4ALNm4/eWVGxp9nhOhnIK8qEceqdhKzvUnbY3ROMb6EOQc6WpWQOlP5LoLUsbqWf6YXANGCL6xbssbG9+ridfK1TiEEAcOnDqycLhccYFCY2oF53JkXTB2Qc9fY0ZXqNaVI26afL+mup77PMLY4XsOnjiwV3ffWod2IImHzKzE0BYeMpiZbZmc3zbgoYqtAh6axXyDlbzVOt/EOScmV51XC/JyOTZY8pALQS3yEGiK9zge9iBzA2BzTcPTK9ZuqWmIMOTk5uTkRCNa3UhFwwgMxEjOHwrGgslDzdoMTKsbpldiMC0drE5leQ/Tzmomc21ThOnvYw0QFXoONONVtEtR2rWuvqm+vgECvfOzjxk3rH9BTvfeUocOIJmHnloLRPNQWxnJQ4+p+YjN5NnGBomd8NBeTyqBh1xRr3kemj93xkNZ5OqZPOxZ5gZAQ9x/eeXXUtDmRb1ofk52xAvyOEx7FRHMkU7GtwReBR4LsnTM9ipEQs31B+gFXYROA8PMe8S5sCYn1SMw1QgGzjm3WlpWBGJc1FTX+3EfwLj+Jd/Zc7BLDGcuWuKhVjoeMa2sQxqHtNKBEIwxtf6zWg3NVjfChFACMA+j5KHPhVbZwZxKsuoKvR0389cEcyrwGEdNdV3P5GGPMzcSKyuqXlq1oaohBqAgN5qVq7I5FGRzgjaWDSyzOaRSPCaPo960VhQLx8x6DUOhV1m2vAoQnmdHeRUhYGbbgeACMc7rahsa5dlmRw8fPXh0qRsMtSugBR4apWPzUNcuFPekimGqNCUIRLqCkcRDEjp5Y0aia/9nFgIJ8TAYw6zFTlyIHs7DHmpuADTE/YWrN3+wbisAj6EgPzeSFYla9SkWtjvGn8g1NhnTtQCAGVsTrC+uV/8BoNubCy5fSc9FIqyWtsdSGK8S56Khoam+rkHua2Z5/ylD+/YcZ+LQeXSah0waGlCYhzpHg0DdWOu1JvBQlykQ5qGsdmcQD3uuuZHYXNPw8soNa3fUAvAY8nKzs3KyI4xUPMUCryL73ZjYClrTQvfKCVcEAGs2E6G6P+iKAFfDPk0MZU80oeYo8nlDfVN9vWrgspL8b48e3EMiZIeUoxke5mZHKImHIMZsHjItrmWJNFiPSASmJoGHJORI4AQeqtxNiIcgivm8ob6prr4BmcDDnm5uJFZWVL2/rsJq7Jys7Ggkwhh0qpjJfjdqrTvtYVQtXEbIpgcE5yJoaV2ZMquAc86JmC+s3A2Xqzuo3I3PRX19Y0N9o9zD0JL8/YeW9jTV6tAVaIaHOdGI5xHgEexVzwB4ujIF5fmE6p+hV68XFg9hYiiSI5A1G4XQPAx6zyNjeZgZ5kZi7fbahas3ycYGkBVhWTnZOTlR1duYmGxRZtsavcam5VV0zBzO4OguNsHM0kKPQZct7fu8oTFWX9/IfTVNYFlJ/oHlA8p6uWmGdy8k8zCak52bE40wRkSMoGtVinVM+UEQNcdDXf+GAFeJRF0LD3I3KlMjhIhnMg8zydxIrN1eu2TjtpUVlY36dudnRygrGo1EsrMiRteoV1mANBUBq9emsOaH5YGmJZ9zYmqWfC5EU8yPxeKxplhTU1x+Odtjo0uLJw7snREN7NBFaJmHQNBXQ42tCfcqJiIuOKkeN6pAJc2Or7PCRGTWbt01eJh55sZgZUXVko3bVm2tst/MikaysqNZ2VECZUU90mOmEr0KgooAdKERABciHuc+57GmeGNTUzzm2zsf1bdo4sDePVyvOqQZbeZhWGXrWrg2NSS0B5Sda3ZJHmawuZFoiPsrK6rWbq/ZXFO/paYh4VPPI8a8qNK5ZByJ9ioKMd/nce77sg4QQr+CnLJeBf0LckeXFvXAVL9DD0FrPGSMsWZ4GB4ztcvzMOPNjY2GuL92e+1XO2q2VNc3xP3kVm8L+hXk5EQ82bRlvfIzt2kduguOhzvDLmVuklHZ0FRZH9tcU98Q91v4Wk7E61+QW5wbdat0O3QFHA8ldnFz4+Dg0HPQbbP5OTg47G5w5sbBwSFNcObGwcEhTXDmxsHBIU1w5sbBwSFNcObGwcEhTXDmxsHBIU1w5sbBwSFNcObGwcEhTXDmxsHBIU1w5sbBwSFNcObGwcEhTXDmxsHBIU1w5sbBwSFNcObGwcEhTXDmxsHBIU1w5sbBwSFNcObGwcEhTXDmxsHBIU1w5sbBwSFNYACqq6tvv/32ww47bNy4cePHjz/88MPvuuuueDze6o/PPffck08+uetPslPoCSdZV1c3f/78Aw88cMyYMYcccsjdd9/NOTcfXXPNNfvtt9+YMWOOP/74jz/+uDMHWrFiRXl5+YsvvpiKs043HA+7Gt3OwwiA0047bd26dRdddNHYsWPj8fibb755++23r1u3bv78+Z05ZGew7777/vOf/xwyZEh3nUBqcemll7777ruXXXbZ8OHD33///VtuuSUej59//vkALrvssg8++OD666/v37//Qw89dOqpp77wwgsDBgzo7lPuBjgedjW6nYeRlStXLl68+I9//OORRx4p39pvv/2ys7NfeOGF+vr63Nzc1B6vLdiwYcO2bdvSf9wuwo4dOxYuXHjttdced9xxAPbff//ly5c/99xz559//po1a5555pn77rvv29/+NoC999571qxZf/nLXy677LLuPut0w/Gwq9ETeMh83wfAWCiJc8455/zjH/8wbfz4449/+9vfHj169OTJky+88MKtW7faX66pqRkzZsyf/vQn805TU9PEiRNvueUWAFu3br344osnT5685557zps376233pLf+fzzz8vLy999991zzz133Lhx++2333XXXcc5f+edd2bOnAngwAMP/MlPfmIfaOHCheXl5R9++KF556OPPiovL3/jjTcAfPDBByeccMKYMWPGjh37/e9/v1k1OHbs2Hvvvdf8efnllx999NHmZBYtWvTDH/5wzJgxM2bMePrpp5ctWzZ37twxY8YceeSRS5culT+Jx+O/+93vZsyYMXr06IMOOuihhx4ye5s/f/4ee+yRfNCSkpIlS5bINpbIzs6WN/ytt96KRqPf+ta35PvRaPTAAw9cuHBh8k7OP//8n/70p3/729+mTp06ZsyYM888s6qq6je/+c3kyZMnTZp03XXXJf8ks+B4iN2Ah2yPPfYYOnToZZdd9sgjjyS0n8SCBQt+8YtfzJs37/nnn//f//3fpUuXnn766fZieAUFBQcddNALL7xg3nnzzTerq6vnzp3r+/6PfvSjxYsX33XXXc8888ykSZNOO+20zz77DEAkEgFwww03nHzyyR999NFtt9320EMPPffcc/vuu++dd94J4Omnn/7d735nn8n06dP79OljH+i5557r06fPjBkzvvzyyx/+8IelpaULFix44oknCgoKTj755E2bNrV88QbyZH77299efvnlixcvnjhx4pVXXjl//vw77rjjvffeKygouPbaa+U3b7rppvvuu+/iiy9+4YUXzjrrrF/96lePPvqo/GjkyJGHHHJIC0dpaGjYvHnzo48++uyzz5555pkAVq9ePWDAgKysYMnEsrKy1atXN3uGixcv/uqrr1599dWHH374P//5z/HHH19aWvrWW2/Nnz//oYceklzPXDgeYjfgIcvKyvrzn/9cXl5+5ZVXTpky5bDDDrvhhhuWLVtmvnH//ffPnDnzZz/72YgRI6ZPn37llVcuXbp08eLF9l7mzJnz8ccfm9v67LPPjh49esyYMQsXLlyxYsXNN988Y8aMkSNHXnvttUOHDrUt8eGHHz5z5sxoNDpr1qyysrIlS5ZEo9HCwkIAxcXFBQUF9lE8zzviiCMSmvmoo47yPO/hhx/Oysq67bbbxo4dO378+FtvvbWpqenvf/97C1eejCOOOGLChAl5eXnHHntsVVXViSeeOHz48KKiojlz5qxYsQJAdXX1I488ctZZZx1//PHl5eUnn3zyd7/73fvuu0/+/LjjjjPbzeK0006bNm3ab37zm/nz58+bN0/uUF6sQUFBQW1trUng2airq7v00kvz8/P33XffPffck3N+xhln5ObmHn744SUlJfIMMxeOhwa7MA8ZgNGjRz/11FMvvvjiVVddVVZW9sgjjxx99NE33ngjgFgs9sknn+y3337mB3vvvTeAhJ0eeuihubm5MhEdj8dffvlleRkff/yx53n777+/OhhjU6ZMsSkyduxYs11UVFRZWdnCuQI4+uij16xZs3LlSgDLly9ft26dPNDSpUvHjRuXk5Mjv1ZSUlJWVtbeJ3DUqFHmTBL+bGxsbGpqWrFiRSwWmz59uvnJtGnTVq9evX379rbs/7rrrnvggQdOOumkX/ziF3/5y1/adW4AysrKjP8pKioypyf/rKqqau8OexocDyV2YR5GzNaoUaNGjRp1xhln1NTUXHvttQ888MDRRx89YsQIIURxcbH5mtyuqamx95Kbm3vooYc+//zzp5566ttvv71jx465c+fKr/m+P27cOPPNeDzeq1cv86dpGIlWFyyfMmVKaWnp888/P3r06GeffXbIkCH77LOPPFBZWZn9zeLi4oSTbBXZ2dkt/CmEkDs89dRTiUi+Kc3/N998Y1/UzjBmzJgxY8YcfPDB2dnZv/71r4877rji4uKE5qmqqiooKEhIYbTx9Fo9gYyA4+EuzMNIU1PT5s2bhw4dat4qKCi45JJLFixYsGLFinHjxjHGbGMvtxOkF4A5c+b89Kc/3bFjx/PPPz958mRZOywsLMzOzn7mmWfsbzZ7DW0EY+yoo4564YUXLrjggueff14m2OSBEjxSZWXlwIEDE35umkeioaGhXUeXV/373/9+zJgx9vv23UvGpk2bFi1adMQRRxhNPmHChMbGxo0bN44YMWLjxo2NjY2mzVavXj1y5Mh2ndWuAcfDtiNzech+9atfzZ49OyE5J7NEpaWl0Wh0r732smXnf//7XwATJ05M2NFBBx2Uk5PzxhtvvPTSS1JYApg0aVJjYyPnfA+NnJyc5LvfLHZmJmUE+/bbb3/55ZfmQBMmTFi+fHljY6P8c+vWrWvWrEk+yaKiItvVtFfl7rXXXllZWdu2bTOXU1JS0rt3bzvHlozt27dfeumlr776asJxBw8ePHPmTM75K6+8It+vr69/7bXXDjrooHad1a4Bx8O2I3N5GDnjjDOee+6544477swzzxw9erTv+0uXLr333nvHjRs3a9YsAD/5yU8uuuiie+65Z/bs2evWrfvVr341derU5DuYnZ192GGH3XPPPd98881RRx0l35wxY8bYsWMvuuiia665ZvDgwYsXL7766qsvuOCCM844o4Vzkjr51VdfnTZt2p577pnw6T777DNo0KCbbrppzz33NJ+ecsopf/vb3y6//PLzzz+/qanplltuKSoqsmt+EhMnTnzhhRd+9KMf5eXl3XfffbW1tQkqumUUFhZ+//vf//3vf9+rV69JkyatX7/+hhtuGDx4sMzMLViw4MUXX7z77rsTfrXXXnvNmjXr2muvrampGTly5NKlS+++++4TTjghNzd38ODBxx9//HXXXSeEKC0tveeeezzPO+WUU9p+Ss1i+fLltsTNycmZOnVqJ/fZ1XA8bPu9ylweRsrKyhYsWHDvvffef//9mzdvzsrKGjJkyJlnnnnKKadIYzl37tyGhoZ77733t7/9bVFR0WGHHXbFFVc0u/c5c+aceeaZ3/rWt/r27Svf8TzvoYce+vWvf33OOefU1dUNHTr0wgsvPP3001s+ywkTJsyaNevmm2+eNm3agw8+mPApEc2ePfvPf/6z3Qdp2LBhDz/88Pz58+fMmeN53pQpUx577LE+ffok/PaKK664/PLLZ86cWVxcfMoppxx77LH/+c9/2nTnNK666qqioqKbb755y5Ytffr0+c53vnP55ZfLj1atWvXSSy81+6s777zzzjvv/NOf/lRRUTFw4MCzzjrrvPPOkx/deOON8+fPv+aaa2praydPnvzwww/37t27XaeUjDvuuMP+c/DgwYsWLerkPrsajoftuVuZykPaZVKMDg4OPRxuRLiDg0Oa4MyNg4NDmuDMjYODQ5rgzI2Dg0Oa4MyNg4NDmuDMjYODQ5rgzI2Dg0Oa4MyNg4NDmuDMjYODQ5rgzI2Dg0Oa4MyNg4NDmuDMjYODQ5rgzI2Dg0Oa4MyNg4NDmuDMjYODQ5rgzI2Dg0Oa4MyNg4NDmuDMjYODQ5rgzI2Dg0Oa4MyNg4NDmuDMjYODQ5rgzI2Dg0Oa4MyNg4NDmuDMjYODQ5rgzI2Dg0Oa0P3m5r333jvjjDP23XffPfbYY9y4cfPmzXvsscfa8sP169eXl5eXl5dXVVW196CXXHJJeXn5DTfc0P7zbR233367PLEbb7yxK/bv0BV44oknjjvuuAkTJuyxxx6TJ08+9dRT33vvvbb88MknnywvL589e3YHDjpz5szy8vIXX3yxA7/dGR566KFyCyNGjJg6deppp5327rvvpvAoHUM3m5t33nnnBz/4wauvvpqfn3/AAQf07dt3yZIlv/zlL//617+m9kBff/11eXn5Aw88IP8cO3bswQcfPGrUqNQeReLpp5+WG88995xbEzkjcOedd15++eWLFy8uKyubNm0aES1cuPDUU09dunRpag+0YMGC8vLyFStWyD+nT59+8MEHl5aWpvYoAKLR6KRJkyZNmjRu3Li6urrXX3/9Bz/4QbdbnEj3Hv6vf/2r7/uHH3743XffLd+54oorHn300YceeuiUU05J4YGMCZA4/fTTW12RvmNYtWrV559/XlRUlJeXt3Hjxo8++mjy5MldcSCHFOLBBx8EcO2115522mkA6uvrjz/++BUrVjz++OMTJkxI4YESeHjLLbekcOc2+vXr949//ENuV1dXz549e/369U8++eTUqVO76IhtQTerGxkH9erVy7zzy1/+8o033rDl5YIFC+bMmTNmzJhx48adeOKJb7zxRrO7Oumkk2z98vrrr5eXl0+ZMgXA0UcfffPNNwO48cYby8vLa2trE4Kppqam2267bdasWaNGjZo8efJ555335Zdfyo/+8pe/lJeXn3322e++++7s2bP32muvY445Zvny5Tu7omeeeQbArFmzDj30UCTRy6FnIoGHubm5DzzwwHvvvXfTTTfJd1pgSAJkCGP0y/z588vLy3/2s5/V1taWl5f/5z//AXDUUUcdffTRSAqmNm3adMkll0yZMmXUqFEzZsy4/vrrq6ur5UfnnXdeeXn5//3f//3tb3+bPn36hAkTzjnnnG3btrXl6goLC/fee28ADQ0NHbo9KUM3m5tx48YBeOyxx37+85+/9NJLlZWVhYWFQ4cOZUyd2N133/3zn//8008/Pfjgg6dMmfLee+/96Ec/eumll9p1lHnz5g0cOBDA/vvv/+Mf/zgajSZ84eyzz77rrruqq6vnzJkzcODA55577thjj92wYQOAnJwcAF9++eUll1wyduzYPn36fPzxx+edd148Hm/2WNLcHHHEEUcccQRcPJUhkDy84oorbrnllnfffbepqal///52jNMCQ9qIaDT64x//WG7PnTt33rx5CV/Ytm3bd7/73b///e/FxcVz5871ff/BBx885ZRTJNMkD//973/ff//906dP933/hRde+PWvf92WQ9fU1Hz88ccAulfaoNvNzTnnnCPt7oIFC37yk59Mnjx53rx5f/vb3+Qtrqqquv322wHcdNNNf/rTn+TdB3Drrbe26yhnnnlmeXk5gMMPP/yaa67JysqyP124cOFrr71GRE8++eTvf//7f/7zn2PHjq2qqrrnnnsASMP3+eef//73v//tb38rVffatWubdW6fffbZ559/np2dfdBBB02bNq2kpETGU+2/MQ5pxU033dSnT5+6uro//elPJ5100sSJE3/84x+//vrr8tOWGdJGZGVlXXPNNZJOZ5999plnnpnwhfvvv3/jxo3Dhg17+umnb7vttqeeeiorK+vjjz+W2kf+cM2aNf/6179++9vfXnHFFQBeffXVnR1uy5Ytxx577LHHHjt37tzp06dv2rTp5JNPPumkk9p3X1KNbjY3JSUlCxYsuPfee0866aRhw4YJIZYsWXL11VdfdtllAD788EMp/+bOnSu/f9RRRwFYtWrVjh07UnUOb731FoAJEyaMGDECQDQa/c53vgPg/fffN98ZMGDAfvvtB2DkyJH5+fkANm/enLyrZ599FsBBBx2Ul5cXiUQOO+wwuHgqEzB+/PjXX3/95ptvPvLII/v06dPY2Pjaa6+ddtppTzzxBNrGkM5DHuXwww+XQmbAgAH77LNPwlFmzZpVWFgIYNKkSQC2b98ei8Wa3VssFvvoo48++uijpUuXVldXe5731VdfffbZZyk84Q6g+wvhjLHDDjvs5ptvfu211xYtWiRF5j/+8Y/169dv374dQHZ2dl5envxy79695UZlZWWqTkAexc4fyaPYFs3+NDc3FwDnPHlXMpJavHjx7NmzZ8+eLdNMLp7KCOTn55900kl//OMfP/jgg6eeekqGV3fccQfaxpDOo108lCTETngIYPDgwas1Pvjgg9NPP33RokU//OEPO9BrJIXoTnNTU1Pz/PPP33777SaDNXjw4Ntuuy0SiQD46quvSkpKADQ2NtbX18svmNyY3SoSUm2aXbUxiwZAHkU2tv1bY9raiE8//fSLL74AUFFR8cknn3zyySdSAbl4qofj66+//vvf/y7DZIm99977mmuuAbBhw4Z4PN4uhhARupWHyejTp88FF1wAYMeOHd1LxW5WN//zP//zhz/8Yf78+U1NTfKdl19+WSZuhgwZss8++2RnZ8OKR/75z38CGD9+fFFRUcKuZGJPpsQA/Pvf/7Y/lSSora1NPofp06cDWLZs2Zo1awA0NTU999xz5v22Q0ZS++yzz2oLs2bNgounejbWrFlzySWXXH/99f/617/kO77vy4zJgAEDIpFIuxhi87C2tlaWogxa5eFLL70kn4UNGzb897//3dlR2gtTzy0oKOj83jqM7ux3U1BQcOmll95www0PPvjgk08+OXjw4MrKyk2bNgE45phjhg0bBuCCCy649dZbr7rqqkWLFm3btm3RokWe5/3yl79M3tvBBx/8r3/968UXXzz33HOrq6tlBdFEMQMGDADw4IMPrlu37tJLL7V/eOCBB37rW9964403TjjhhFmzZi1duvSzzz4rLS09++yz23U50twk9C498sgjX3/99eeee+6qq66SVHPoaTjggAMOP/zwF1544cILL7zpppt69+69adMmGa1fdNFFaCdDDj744Mcff/yWW2759NNPFy9ePHDgwIqKCpuHGzZsuPrqq2fMmHH11VfbPzzjjDMWLFiwevXqefPmyVxSLBabMWPGIYcc0oGLkqliuV1ZWbl69WoAkydPlkmf7kI3q5sf//jH999//6xZs/Lz87/44ovq6upJkyZde+21pvZ03nnn3XLLLSNHjnz++ec//PDDGTNmPProo83a+7lz55577rl9+/ZdtGjRoEGDZI+JxsZG+elZZ501cuTI6urqt99+OyHcJaJ777333HPPzc7OfuqppyoqKo455ph//OMfffv2bfuFmEhK1r8NvvOd73iet3Hjxg8//LA9N8YhfSCiO++88/rrr588ebLv+6tWrWKMzZo164EHHjjxxBPRToZcfvnlRx55ZCQSee211773ve9973vfg8XDX/ziF3379l2zZs2nn36a8MM+ffosWLDgmGOO2bJly1NPPZWdnX3uuefef//9HfNSJlX80Ucfbd68edSoURdffPFf/vIX08WkW/D/AZ/eS8ARgihvAAAAAElFTkSuQmCC", "path": "image.png" }
Which solution has a higher concentration of green particles?
[ "Solution B", "Solution A", "neither; their concentrations are the same" ]
0
The diagram below is a model of two solutions. Each green ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the green particles represent the solute. To figure out which solution has a higher concentration of green particles, look at both the number of green particles and the volume of the solvent in each container. Use the concentration formula to find the number of green particles per milliliter. Solution B has more green particles per milliliter. So, Solution B has a higher concentration of green particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAASwAAADKCAIAAACQdeoJAAC83UlEQVR4nOz9yZIkR5Ilih5mEbXBPQJAZtWif6/X/eV9qaqrEhHuNqgI81scEVY2NfdAAJmX7lu0EshhoaYmKgPPo/yv//W/8H+v/3v93+v/u6sC+J//83/++CERib8AWmv8Z9yPrz58XhUA3H337bIsIqKqqirzAlBL4YfeO99VSqm1ikjvfV3XdV3dPf/W3W1e8SLli5+uuL+bp5nFNNydY7r7+XzsvXManJW7l1I4N97pvXNFy7KclgN/23s3M/6Q1/1+v91uvfeYOQBXKaVwdYCXUsxsXde68Kkxw7k6ef/23puJyPF4fHl5qbWu63q73QDUWksp7h5TEpHT6cT95wgiUkpRVS6E28W/fNGtrflk4+K0uWQ+r/PiyFxvDHU+n+Mc13XlfFS1d/8BsD3DCd879iq9l/sfr+PgImLuZna73e73eynl5eWFh3U8HnlTVY/HI4DL5XK5XH799W/cjev1+v7+3lqrtR4Oh9fX12VZrtfrf//3f4vI3/72t9PpxJ/He7nV67py/HyssSFlqXG+3J/b7Xa5XAAcj8fj8Vh/sB0/c+3Q78M7uz0NlMu4F79y93VdYyWx9VwSgSZAIbYjTo4/yf/8+Yt4HiPwRZwPkZA7GJ9rrWbWWmutES0xTyUGzBtyvV4DmYkGfP7tejmdTsuyqKq78b2HwwFiIgIIsMGZO5ZlOQz8VNIp/kRVOSwnH5tMuMm0ht8+b11s4I488ckyiSMHSVPa0IabwM/runICcVLE1VI+hrrYdr4u5hDEMWbCv8uy7ChvkGYRqbXmE7zf7xw8tohUjIMQwHhksY186eFw+Pr1q7vzq2VZYqjYgWVZSinLssQ0+IHj1DlP7kPvvZRyPp8JQqr6x0iYFx+f8/F8+PlDVAzexRU+I+FuDfm8Ce4Ze/MDPq8fvP0nV/oMf631wCsk+ON5BHuJJRyPx3wzuDcfCAwkeJkZoKUshAausRTlD4mHE9AJYb4sSy1LrbX3fr/fe++11mVZWmtBa+PIA1aIQsHekYA+AzE+kiAyn8wHxA8kjrGHgXjkVGZGAOXqyA8/23/uSYa0oC87FOVOPgNnRoAALcoF67py84mWAMjxSNuJk4fDYYf/5KUc4Xa7USgLGWfIKnP+sRuZHKzrer1e3f1wOAQDP51OPGszeyDVf3jlw/gMD/GEivHljphx9pnI8SID8Sk+5X3PH2LAHQb+5SvgI78xqCmmOIoJ00FQgnzyvMkbzYxfxQIPh0OslwfGD7/88ss8njuHUlVyP6CICMS2mZj03jKE8dWEDE/XTppAAlD+kOAYNC5oWSlL3pbYWJKVOJp4EaEqCzg8WRKjOOvPtIP8onzF/Vjs83nFe3fzjB0I7F2WheKiJLEwHuM/Qzyh2MUn3Z17e71euSiqUTGfGIq893nrvn///v7+LiJfvnwhrRSRw+FQSiFu/1Pi6Idbs8NAJHqMeX78alkWfHSRPHCnJCl+3JHg7AGF/Gc+uZ8nK/nKx593s9aBe0TCYGjEIq4in+7/+T//h1OiznY4HGqthMjdG4k8y+lsHW1trZNpHESk95XiqogACgACd4eiSgk0CKbaeycVD04S1/V6JRcKCp2lVn/kjflM/ZEBPh9TYJ08yji8qKySHsU4qvq0DQ9jPv8zzyrfodrCPcSkI5TxYrExTq315eWF+zCkfSB+xYPjaAA47S9fvoTaGe8tpVD9RtKGYo07cArI5MM7JCcSuvsfc8IMjh+eyo7c7nbz+VBjVYGNu5+v6xriXPAZmdJIwE2cTcacPKD/Sd74rGEGic0jx1cklsHreIr557SvcBWcc8CoT04VzI2SbdIV8/w3BQ/AstTWGq1TYSvqvZ9Op7wtMoXP2L1YJgHi/f09n1HMrX9Cy/Kwoellbp/PGpNFBJTHtyFQ7K44xAz0mPJ/nhJnGxI+HsGMxCgG4TT4PIUUTN2PYkspS+xtJkbBvUVkWZaXlxcAy7LcbjeZAkg8EJawvBxeX758ORwOIkJWHNYNbh1oHf3xFee3g+n8vh9g4O5+vgJidlI1yVisEwApTQajHU7mue1A4eevHd7GODSWYCJ5/PUk8gX/WZalvGwTcPfL5UJAPJ1OtVYef4h/IlKKKnCo1czUFR3u3Vu3biLupA4CUdGyQWHWiPJm7sB3b4lNVuW87RkJW2/PhyiJaOY56EcmtCCUMXhghaqafUwcd5R0Iwq955fGbIn8BJj8iphDbDV/SP05aGVwzmV5IFIxOABaqkkcydjf39/5FRK9CP6WxYoYimabWN2yLDTpcY01hvtr149hPQPibvtCYZXJJT7c5dCyaFk+Ho8Z+OzRJv789j/LCTG3dSdaiOwpTgAW73AmCA9B6zQAAKDt5BHlCgE6VMdffjlNC0HnUL2HFGeS2CZfuLY1ttGTshq4HTQOU1gKH0+G0fP5/EzFdmw/Y3WwlA/Pl3/n/HtMjFfQ/lJKa+uHmx/bHvMP7pTxPB7YWUfjXO73e9BxqnMT+S2rlwF14WrKg8fe+pQ23f39/f3t7e3f//3f8xoD/2nwDGAIVkkaQa5LSZgbEtSh4onFxRWKexxSrDMfw+6fuydFBNhgOpMKrjPE95jG8XAg0HACJGnx3myoJEzHHXkkyR8u6rMrH8YOvHpvGSzyQZLP0DjJwy6lyLJIYtRhEiBC0kHEm6+vr6UUxUIiraqCobxVLc372Eg43Hqz3uDudTnE+WkyFFPcQvJnighdWzLVbBJmbvvlcqHKGvxBkjMwBK3Yili4JuM2gOv1yvvhMQtX6ul02hEjETmfXwMEecpIBjB/VGjzUYY5gD8JUNZpaub+X67XrN0R+imu87Dc/Xa70dR5Op163/hn9iGFQsRTIy7R+RlcOrgxF0hJhxBOn5OZXW/X4/HIJ20awDOt/xOc8EMM/PCxnxww43Y+dX4gsYkzyNadf/LKBEwe5ZAPn98tPAahfBJkL/Q09QdPIJKOLpMThsOg9956X9fVDARyiAlU1NWV75yw2GmhiWCJncUrE02qo0S2sLhm4A7jBMl8UJl1XVH0w63II7h7SHfZaJyl3JeXlyBtIkK9SKYvMShmJsExOC++8ddff8X0UWWkOh6POybMhVNi4hx6umRqbpwkkURElqVK0p8xDWa32y2QGUAIbpk/B2Do9D0giQZx8fSDZPBbSiJ/wjq6O5U/RMWf+dY/kkJlij1ZzIjj/8nZ/vjKyByijj+ZXuJ6VnviPjcxQIdQcqyLJLE5TiLuBIpygb21dV3hCuGRu6irikgJIcLdIe5mgLfeVUooNkFHaKflndjDgKq8t1wLgTh4C42KquqP1oXYlmzjyShBPs9XBGfDo3j8oZcyhuWVTVxZoA2lOm879zM88kimsmCtO3mh1kpJlfsfnoaMKoHP4WTK+iEehdUdElL3i8VGjNdiSxgX40QCvO1P+QnzK+NO/hDQkEFWRID9+PmxTMv5VxPs/szEfjDhD+9n8olHpPrw+VIe7sfEKF9pCrAgCB5K5THLk6WHhxoeggRt7uiAAC5CvzxKUQjcxNHdYeYuDriZS+Kx8YpwhWd7CU3qu7Pjrw6HQ+gaIeAty7Jaj8fymYaLSKYQEaQkADFWKiLkJFSBZCpFvXdiU5x+ICESjGU28v37d5v+GPp7smULEz1iH+K+T1MZyRN1yB1giEhyGfqOqVI1CPDYod8Ofmg+5SAZtgM5A6sxVU3uyU9xwh2z2lGyH6Dl8yBIxFWTqyoD63I8BnmL+zItDf/yKx/ehw9kk3qeJ+WTDBODvtrDIWWswzTrZzgrRcXFTaqiKF/hRUDcd4U7zB1wuPckNCAduUx/YBhpYp85QyQqECcYHrYsV2cAymcdKnqIr2Qm5J9IGBX7Rksgkr66LMu69gxLAdz4iD66ewSsSFJVzOxyuWQNNl6tj/ab2HDOJywR/C0ReweHPmwBHckGEUP1p/ApTDcGh+UInKSZSRkiT3gd+Tmic37ECZ8Z0Y4T4odYh0eW+NnIgdWZouMRaXl9xqk+u37M4Z9X93yHl+2NpdvEAp0YnUgJpLU100tKTVQgdy8SEVEcqq5eXL0UUYU7oQoiTt7ocIiLCMTgXmTEuFryOIUKqvOKXSWqhLEkzOVh+idMMCKk1no4nyx5mWO9tOiERToQKWJuicx087r7b7/9ZmbX65XGbQCn04mGkGAINi31MoP4glTF5nP8TFZkBII/mOiC0JQZcbVD5p1LPbM4fwz0C5K6O/GY8I5dx6zI2WIyHLBMSrcbTaYD40/4CXecEE8YKJ+Ko38gVcawOxq8Q85/1ZX3dPfSD6+dnyruUyEhhc4IGYyCQkjwlnzAGZgATBHUVeFOSBoOLocDxv9EfPrth1GH1pcU7IZQzzKTbK3RjkLWxGkwoFGnw41mvd1R5i3iFcuMb/PmZJ5GuI/EEY4fdhE8EhGdttkIgQiVO8TpeF2ZWSAhfpcUxxfS6e6K/BvyQ9ImTL4a2OUpByUoGmYuSGuNVtbY4TjH2+12vV7XdaW1nLxRVaEPZxECfBCRP0DCZ3x7vvJXP2aMPx5cp/VlqTWIYqa4O3/OX74C4f1R5/l8nnsxVaZ4RikuGNEwbVettSwzgcVTiFmoVWVmKBVR92bGpU3zow75yt2zgwdAETRpEMCkW7PeDK4u5kpOa1afpSbmOgV8B+ujleL19ZVpHIOgfIKBFL8DkgIEs1lfpoiLhJlhuZlMWAJFw/4RYmGYf2K7woxpKZMmxg8mRpihDJAZRrAguiXM7Hw+M78pa4+ZCvOfltLQfAo7t9vt5eUlE1xMJPzv//5vZkIdj8fz+RwMfO0tFhu/otWaK/qROCqPguIzvO6YQ2yKPF6xut3zOySMn9PvlDXGncavjxEPuxH+EP/dQ8rf/uJznRB9WhJERKAqxJXb+4VE0ltHwWFZ3H29XZcTSaz1PiOJUUTk2+//IKgty1KldLi3btZNrS6FUmuQ/+v1OlnWgBB3cRczU6D3hu4qeDmpqwDivnpv7l6ORYvUWiDeHVLKYandGsTN++1+Ne+llFL19ctLcOm13cfhQopXOOAoWsKm0nu/vL9TrVqWRQRwt97N7HA+kckQWEP3IwcjCmVNTGSzGwVyEmRpd8FM+RkoB9zu9zFUKbfb7Xa/l1KOx+NyOAjTFG43M+MDAV203wKo8wrux8wGkoBff/31er0QOWstrTVVHI8hk1trdwDLUo7HX0TEbNPLJKVo0Fl/v99Pp1MkMV4uF6iEn5Bi+fF4PJ1OlETwh5xQElHcwfcPUPfHY/7MtUNL3gwSEBrLThb659/74bUzEQV/zkbOmMOckpcBZ+q0q0x9TB3o1sXdvXczX0+H6lOhChKrM+n2I9Jg4mYwcbhUhbq4CM4vRzOTJC4S+v/zP//zfr9TZeXxc9rZ0IJkMYI/mHziPv1vkkLkymMgeOYn5GCxgYFymeVoMhdR0glt05OVMvYk+y3qo+InySdElKA3QpJ0mkM+MPOY+HO6TEd23xTLQ24PeOP9ZTmSJWJaPkPuYI5FsDhucvctWIq24lDLOZ8fIeEz64ubO+73gxF+8O2Pf7V7e+afu2GfJ7PD3j/13udLdZMI/MlsG7OKv/2+uqpUgsUAc3f6HswBc1cXAAoR0Vpr62tI4FlBwqMqPmDIAOnucKfTYkx+xL64RFKbuIsMZCDgMoSlj8DlghT1uonTfSBA1tkwA6NDp+U8SykdWzx3FlsyfuYdC0UrH3HIOPFPJIIrT7JfnrxPF0sQF1I0GnXoN9oNniHkfr8TN/LSstz7dMr39/d3iipEwjDLRbYUtUdqnpgunyBG3H9m94Oc8Aeo8iG4fwb0H6KNJHH056/nF8ljpAU+cut9hpzPw/+5yQB49D5R98h30sMKjOgkewxWBOCYR0sYriJSPGl9mfNkMh9KkXvvzdEKRUEnUwJMhVYHB62Ixd3h1ntnCo9P1ZQWmp014vml2XZCckC/YqaGgzmUEQvGn0daXbajBuWSaU3Nr8tcLm+XJCtogER4QbcJpHAO3imlnE4nTymCfDgGDxLDkwoDcu89NMDL5RKW7UBaM/vHP75R5GYWKEXQy+Xy9etXSbHBHKrWajMuk4vqM8n7119/3XTCT4HvE1/fjj3u+ORnv/35K9OqfKc8psD4k2Hzz7K+n7zyDmYQzHPTFFO6LEs3SlYirrXUYYWxBpgCKlCFKkRNRNr95u4C1FJK0Rkb4OKGgbECuKgWgUOFVtnSzR1uZgJ3MbmuvZRSdBEVCETE3Ho33D286rQkUS6KWJ+YPAnHem+Bk5mbZc6MCZHurvKQaxaYEESKV8ZDTA3ck27vjwaV+KEl6SD2v8+8IUkXv3p/f2dorqQIAXcPcZpvp4i+risjh3ZXNuTmsE+ikMzAjCA09N9YCoiNlMUYMzihpGTL2+32B4aZDHA7xNg98+Egfw0Vd3saxxasb4cSz1rTjkw8v+FPzsgzCcjTi5ukl/ysqq1Nb6fT41cgdjhUCOVHc+/mHZ1cc/wqc4xgQX1Xlka2lCWhlGHdRa2jO4JLIDHPzChihhFqjMRwaMm4Xe/Ul8JQxGfCAxaYaanojqTKFLxZZt7zTvjc4WcwJTKWONONyM7At8DSTBbjJ/lbmQYhEh0+X2YxBCSgQvJ/SlIsmUBIgZMnG+7rL1++BC5FYsT5fKbpNXN+Uj08sgedUUSMuHIm9X52yec6YXzOH+QTcfSH8P3xez8bDZtcvjcXZcb4l5H/w/ueMGT3TOx1QGRrTRha1h1wL25mxJVaFQKBQRzd3AcRHeUkvLs5y6hZAGZr1G3KTCsZqNVXmCvEOQEI1BeXRQVi5i7dRapCFBKSs7tHbsq6riTV/bGoB7KFZm4m7/SUmJuRkzphnJc+mrIlSZ6kKbUekNz0gRth5AjeOMBgxr72mS8WyBbSZvY3Uu/1qTUQ4jMj4jwpgh4Oh8PhQBGAmxPcLL+IP5mRsRuh9BkpETPhK8IxKyIvX16DYZLSEbFpTz4cDn/OWf+HsPtjxvhnr2ekiu3Y4WcQ4H/+pR9OQ6ZHOCsYQWKDrlNiOW6nLstS6qJibmatdxFXcYGLAAIB4CiFWIfeV7MCmLswZ4KI2jtLPJLSO7U5+vRFFIC4mLhARQTma29wKm/q7t+/f+dUD4cDzXfkeJFpTsbI1dVaa5m1FpMmLE86+XYHXlP1A00RZPnUyBZaa8fjOY6Vu4oE07GT4S7PVmjMQCWdeXrh7rNpsyVSRQBQKGny6DYMv0gohyX5dcke8+HqLPJwu410irDQUkbNDJ8TIBX47fC32GoGD1FMiLyzH4mj9hhoE499lgr8PE5QX3+MFOF0d2LkxmCTwJDF6KjtIY/XM+79GBt384yH66xQGPSeXx3SLsXrPNU4zHzmeDweDgtVu95Xa60ZqpZaihZx727NaISQuUA3cVOHw2AOcRhE3M2K4LRUPS0qRRS9Wbv1Mgoeci1q8N5o8TFTE5EC8SFe3m6329tl+KOo/ERuNDkPbXQEGmFlAK1hgvfpEhCROmu3iAhxmGwHiRHFQWf7hE2vN3nU9XqXJPiFZ+Ll5YUFOd19WRamPrn77X7HlJlDMWutnc/nKLgaQjIDVriW8/lcSrlcLuQ5p9NJHp3MmCIlswTJvohdXFGbRZkAMNqhlEJOHnVN6ZcnRkVmCd9OEtBmlUAReXl5+fr1q826J8NH+gNg/RBk/8IV5C0P9QM8CSgPZJBH0SjGyUEhPz9ns6HDhKa0u/CIbEgYGA/k2QZ9Idnuvbt3ES9VClTEi4gWMWuODh8YyLmIobOWoeDe+nq7N+sKkaJViwuKaCmlKkdqEBdzw6DNRDkUiNi6du/GbEBJrOzXwzEKb0ZxpCBqZAiR11NrbWsPBzpmblRIdJg8MDiS+RC08ulQx4vTDxZkM5cnHzTHDHaR77u7JklvY9cpKl2S2hkriulR9qszxR4pYF0enb3Zq8EZhhhM6sDgu9dXzSOHcNR7p7FHZvVE7hK9FzuRPjjtH1hH8Sh7/OEzn91h2FcGX77+szEDP3eoG2gZ4IXHQ8XP4bknK1wImc8r3YAAexU3SHheznidOAQKqyqqBYAoMc6sdYiN8r4RhAR4X0spAlhb19vler8XEa0VywKG/5qoihkUJm4uEHe4CFyotkAMcvfmMHgXkSJeFAqxWuvhiJnH4LPAZjgS8m77VFqQTE00Ia7rSriRKcvEvtVSQzsKiNTpasNTub1Sqqcrtl0mf8aMDt3JqJh2RZlSaKB9aAqYrpSe6jXj0ZYRi+WEs2WYvA6pSi8/WEpxjGmE66LPuO0YIYTVTKAtefBJdDjyT+UTfoaK+Z8/+PyMS7EFP3jdDhXxhI0hgeTf7jb6w/F1WllKuuSx+hsSpai6BQTnkf1REQ2gEjQpWwq2WbNu7m7e4IMkOTYEYKBac3fGdpLA064wUf2WzCeCERFP/qKqdNyPXXL4tsfu6O0+OEyb1Xi5mcfjMYSuPusIq+rxcAreZbOevLt/+fLFn8QTM+u22QOjWImq5jzG8phNv9vPGFNnXHVJMejX2y0YXfw2NMDdgO7OAM48VUy6EKdGITxUuCDHmanGb1X1eDwGckYsKyaOEYFZ0z6WHFSgzhIYmU5FUJ78OGImNmj34cMH8qTz1gSo7VDrD9/4/Lwmo4gmk1SfGVw7+vrZhJflgEeDZ0akZwpSHstGxMOZ8McbtbhYY9S1mcHcvFnrmz4cyEJMhimwrrdpO6nH4zLtBBy8r2vfXqdVlRVIzR3aYR0mah1VmQoF79YxIKC1Bkcoadn2UFMlaUu+inAhYsJuWCDyEcfab/cb9Tczi8KNYVrcAbT7lrgfCMCL4nGMnJlq9i5gmm1C3I2RiRK///67zOq6IbiSc7bHoszkYBbl6FnwbhqTg7OJyLIsrCjZZ9JMfqnM1EoGBnMaPSL7a+HOkEmSB95uN+rk+MOImR1iPH/YEYz4Kt+nXy5D6p9FxXxmYSKLAwuWlTHwB+uKBK4MGZm4xhVgFwdsjw5of+TnIqKAKCDdzBzd++BX8aTggWzDvXmjrFhmFiyBo85skhx6UuWBG5ubiDDhUFVVlMYui2SZbmUpx6KRQhok/Ha7kWMwJrumtL1MbmT2WsiIR/DyaQgJNhJ/Q1TL2ztP5wFOPjypOFO+vc4yoXgEPE2ekt3zAeI2fD0jTA9TfwsVjgvJkaX8SZ29RgCQExKXluXoyRmIqYUykK3MCms+C3AY3FILAJ0lv8Kk/Ccy6z/crHw/FGU84qHIgz0qnvzMrJKh/BGZEdvt00OwywDOW/OZuPvZ/Wfs5ZMMBwumEbPKRo74lbuTU5l1s1FHl0yXTn91akQGUGXpfb1ba27mkHZfnUkb5n1tIiI04lCeFdo/R0Q4R1ZViAKwDpGhlypc3BQyUCLVbopV5DSiiDk2M4FmWpOZVawxgIlimE+XfQRtk73s8Jm7FMaJ3eGGOXR/+iIyA1aQwqyjOZc82ti+fPkSIlJEOwCIThKYtk1aYgKi8EQXSqqtvCP3sQOZNFjyf2ywCg8xOzTYvNg/V23t+U6G/h36pX9ueQb5gc+Q0FJSQn5XiEySPL/+VIrv+XQ/fAmgu1Q9T0JsHmFtLUOSkiUUKV3oigjqo6paxLuYYXJNL6UUHT5odUBc4BAfRhTzdl9ZX5SENhZiqbBS0B0RKUK9yxh7qqpVq0FXY4nE4TBUVREvXty7QLP+w3WFvEQmsPZ+u1x6s7///e/xZJDOrIOZbREFvffiTpai0zNOQ87r62sG7mBEt9uaTyo2P1w+Qe84hzI5EvOAMHMXWEFcZgajPFJnTTVHiLf/+3//79fXV0oEHM1TGE3MpKRY8PCq+3TV0KZls1pMhMX13tnpoKdqy4NzHg8hEiPVYqX3YlhHZ37p2Iu8cQGfAIJCTU7igNBl7A531HrIOztHMoG4WadrMtlzSyrBkKEfuns14cZn5usEd51WzT5xyU0dBVLmBuFRFgLgTm3hoFrdI7Cwq+rL8eTu5h0jbnP6OYv23rv1Gbwih8OpaDkuREebG+iwDsN97aJVtNYi4tQkO3ozY2QL3N372te13ddua2+tFKGWmCM/AOiyuCMy9AC73t5P6lLLQStczPpqKEVV9HQ6E1hd3NxnFH+ph1Nrrd1vhNeiuvaRVKqq0LJ2672vvbkoCq7X62Hm6anqly9feu8svOlTdr1er29vb8uy/PLLL2/v77fbzd3pJScUkh2FPTCQ1swOhzr/2SJ67n5fSyEADID0EZ+At+/fI+T1eDzCva2ru59myUMCLvFcavUZOw4gykwB+Ld/+7cgIuRFhIpIYuyPxWMy68sXYydYrVREXl5OU7dkzC37Q64TaRdA3FwcS6nu3tuAOlS/vL9fLpcHN/SeW/zwen6+p5haz9eMHqJZqbX2/v5+u93o532+ggrEW3wGDeW3BzVdH5uW+tTuSgr4ThvKvVam9u7IjYjUUvNQ7r7e7mky5q6w5t0qLWxwuDlLu7ubu0gxWBl9BVVhI5562DO7mfV27231fvfeg/XGPImE3759i2TQoKxmZt5GLSlm4rvAFUKfv8BVVX2UNHNx6ettbRaszGeicCgF7t7dRKQuRxU5LCNU0mfwiifrFCZbI+zSCc5pR0wct4uxlD3FvmbHI1KaRUhrnmTRsJyFHSVMcc8HF8Cgqt/f3uJJnw53mXGeOuvihT4ZfvN4Y6ivfaZZYGrC7s4A8cBbbg7rEtAgTAWSnZhYfDVAOqats2a00UWxg8KMDB8iyWfPc7UZkTjCYVlsBq0HOYk+Yf5oc8NjpE7+Nu4HZQ2oyu9FKriQx4nx2+yquTv1Kys3161GixkL40LES5FhGRFRhaoupbp3Mzcz+KybJwCkICHWJiy4WbfeWmvW19YaI9CkFqi48Acq0xC6HA9ai9BGKjC4y/BfqYiIlcGBRdQB77YCYNVghOLo3vkiuIq6j5wjnb7W1ofASdsK2RezzsMoSig/nU5R4aLO3DkkSTULz8/AEKhiKWcvMDyMKNkgxBECA/Wxbt2Hrs6wwdRRdKuF6kgbTPjNA2+38uePEVqJZm2yMWbFcTJwEhqmSr+9vf3+++9lFk8gFB0Oh9Ye2lcGRQvS8zEn3EHnH2JgELY8VLw4CJKlsJLokPrjwWOQHTnJSLWkekqSmLAlO2q+4uB1s54LgFEuTbd6zL2vZnZcDnFC7i7qrCyKCeVEwjFtvo2OCDM4HN3MAW9tRTfra+/dbQhpxMBYS1aWfvvtN0xHcLB3LcW6M5VeYAE08QAGoYUZKYDLbClDyCulqAxiHyLiVDHg7tfL5e3trffONAK+nXkV8lQ802ap71CMywzmzIUtkMo67b4KMMi8ZYe6nFt+Lx5LMPq0DPnsxZnPPSLjQiDKhDsH3yAU0WQNjse4tPP5zBDcbK0J442mNsCcWxiEYvJ5DjX7f2Ja8fkHePiMLXGEAUObuLiutVb2XfBZ+YPhfLFsPCLtDgkzbsfZxNs1GYPyDHeG0901d4ErhbvXpSxLnZmarTVzVxFp/T6EoqLqA85Kkb62gX6BgeLC1mI23mHu5l3M4b3fV/chjoKsuJQiQlRmGTXWrwEAx/025l90kSi7OhuGmplgqKMOQMwnMxUZqUxmDRABVKUQpNQhJo4iaA4ARVCKStk6HPmUh6lQBQkIUPYwvqe6GDo9tzKzY6koSuK62ZamM8QPE/FyH4vANwCsSfMMAFFCcgfDh2WhD0Bn/Sg+nGcYBicRYfpvwGEgYZ9JG5rqBrj7r7/+GgDJujLc89fXV8Yz+AwPXNf1H//4x/3eGDofvsqwKnMOW6GOHbA+33lGPzyi4u7+xvEnYtOwsZMVn/Fkh35xALY5mh6etI+sqfFkHo1fhTEtDjooU/75/JWv98m1xiDmDjNtrUEcs9EXMRAAyxm4u6GbGXojxxlalncAktRaPL5dJjP/f/6f/4fE68uXL+RIrTX3mb5kJjAzk0JzArXch35p3D/rqcMuLRauItJtS8bRVHGQyp7MlLwAzbe3N0nBlkHXQ6bos9cC6ex7KgyV24P1VDkiv/d6vQZskOs+w2FgDoDbjKSJ+Y+zm9nrdV7ciDCEcsxgudzb8ML7jE8IGTVDBf2HbRb51ekvDTsQAEaZMiiHKlj8PNh+sHF57sqUWdMfXvm88RQiGGYx6oSMEogkSIZlZJYb2OL+oZ9j66OQD0aSmJogTyRx8t08ay1zr+dX4uZ9Vr+yMsuNYMp7VVCFYiPxyMwHDxxrB4BhnhEGplFZ7J3yp1kHWRlnJQOVAZR6aNYdDhEXtekX1LpIKS7qotACdSmoIkbdqRu8q5qqAx1wUWC0UhRsMoVqZ5gp3A2dZUwdMy3AQCuLlVKcbstuxJmo0EGIuVwugUvBwczMZaBHT3E2/TFNMViipwLE+WbmBGVGuuQxkSijzjou8ngFoCNFn2aHRybNmgwzkVWUaf1uwABFmmqDXsT8s61BZr/7r1+/Xq93LjnshSRzbVZA/LQ12g844WeomEV8m64kEXEz6vGRyUaTd+T/f/j23eB4bDmQ99183xtZZ/Wu+G1WuCMSZQcBrbVSpNbNYDOkl96CoLp7tzZc5z51YB1GENtSy9k9ovkQwZrRSYiR1R/g4EA5iDz05R0H/z/+x/8IiStM/4fD4cZaMlsJCYvWMaI0yW5J6ICXqnBxochAFuo2CTbz8c2Mfvbe++16Z8U+ypOn0yn6HOl0dnFVBN/zl9estlHbl2l7Q0p95nU+n5FaFMV5sRYOAJoNyVH7LHSfj5gMjawmCG4YdWTG2WEG7uWwhJKiUrmoMMzUVErcZ0nl3XvDWJ3twCGvhhen905BgM3nZEbAUUwlE8KU7yqS4htgij+yzWRUice4GExxos4C1YxOCLTJIkGgq067WWuNaMCRiUhZI8/WM/6qJGU9tp6bGLTcZ551cLkBpjqslyLy7//+9+l4XaOT47qur+ezw0hRySqphbqqo4vDmztAn4cI2nqn3Nd78zY1QOCwlMvlUms9nU5T39De+7dv39pqtVb61u73OyAv5y+qWnS5XC7//V+/11p/+eWXUsr1cjOBaj0eF4ts1KWWUppZUQqHkEKC2N1klF10iEPcuOsKvLyeLpeLdhyPBwcINOfz+bAcdbqqkWj/y8sLceN2u33//p3Gxmjk0GfeMAXL7CTwacRnVqvNODIeVrjC6bgjHgaXUFUWXMr+CcJJSXmxBD8Ay7LUZXl7e6M46jOT6PX11czCpEkcdvfb7UZtTWY+IelRYJRMp0Uw3phwJJoQwn///ffT6cTURC4nIlQD4GnrolgRUvQ/1an3GSfD1kLTS9CVQL94eMdmM4r+YHx/EkRBFe1pTEniaxBLTMS2qNns46UsMkAIRvL2FoV5n3xnwI25i9KtjzmFOQc4DRDeuqVurJKi9QGQPKuiNXt5+bLWtZR6OBxmhifb0Hrv6/2+Xq/XWpfj8XY6nXdrTDvsWirlau8MmilcmzvjVafZzEgy/Levv7j72/fL5XIxDLg5nU69bX7quSfjCvoVmQQ647AwazqwGnwphX0FddrGiX5ItTrjyAgh0cRCkkEBj6FwmdSGTJgpOwBm8WL6NnRa4xkiIyK5IOrxeIw6FKrKxF+f1s6SnIex4f/4xz+CY+faGa+vr9R+M1fzWf2tzkThmHOYc/+VSIgproQlLaR/PGFdnLGka/LDj62a+fk8SGbYmZnvGGb8tluDkKl664xFjixViNTeO31upZSixcxgsy+3OcQcQOf/zQGHic/5AP2+mjfaTn0oCaqi67xDXsGkgd7765dfUcyldMA6MVuau2qV6vVwOpxb0UWXBVqlujSXEVBJstLJh5alups73SKu6qUsIsrmou4uKp3Vo80c/v7+bmuLzTEza+vtcl0Ox0zCYg9DkQsOwH/qzAn2GdjNB0L6IPayRTGdjfHSMNIEDORz5FeHw1YNLQNMTxFRknppkD/r7IJKaGR0NQcnPkTnNmbo99Qj4P39/f39/eXlJd7It8T4kipQS7TEOxx2q/DH9pU5TD+Tub+ChM9IlT8HvQ8KGuapPLkPkYqfc9WLjDzBBjOOBRLuBonPMZMwZ6FvRrnN5Ohe61ZVJU3Yzdrw/gmNJhhCKX0bVBD70IQV1tZbBppAvMw6trnVA82VEPTmIhQg3ToMTUTZJUJnn+e2mghDZAI+wJgB7SsAkSJirD3j7pAuouxy4e6jYrCImH97+95aM2wHBKD3VXsNlW+HD0hELTbZZOuGzSJlEXJJQGdVC/6KoW3jh9NizG+jcXcgP1/aH7Np49yjWGiwTZ2N6TPM8Ic0V0YIQWvt7e2NmPDly5fg8LHwqBmDKT1FDi4l22Cez3xvt2m1DsMkq85EJPdG1H4O7z64digBIFI/svTSWgvVIoASiYDlzdpt3O6SdD3cf/pWkuM7dHGkyCNsppotBVuktNa6rTKTdwgCAkBM3IXB1951Wjghjk7jyzghIb6JC0azQTNr3dz99fWrT/M3zVTn81m0EnGCWsX0GMHDNdosvrCu6/F4xsClSXEcjk5/ZhFRXWTmEwNaw/cIFAVYmFvky5eXy+Vyvd7v17tLoS/rfD5fbw1T2JPUsYwpcHX2ZPcU6XK/39/e3jxFrvVURZfa0XG2naRBJQBAVSnF5XPPR/z+/q4pkR+T/oZhJlguP6xTl8M0pew4T7yd/6RrJDQUAMuyfP36VZOdM/TYbMKIo+EVWSM7vIif66yIQcNkNBX9V3JCjf7PqU/iuq6HL1/iMfe90TXTjM8Uwh3u7U5LH+1JG8Dtql8nosgPcbTxQEyD4NV772bKIPLxwtQGg0JKp/t1hNKLd4Hjo9KmpKYxHxao1bJc7vcqI8peUqAzzYxhwyBdo6HS3dxG7WBRFxMGwQBQccAgBp+MXR14cAbQTqsq5/N5WY6tte5D7bnf76KqMgzRMmUtn7rNMptyh6gpOvwKofPQDvf169fM98IoHViamQbtJQHE2acXIm629PiMUJcp0YTxPIvKlkIdLYlYpZTX11diBVLKUmz1LlC5zLpYniTMByBkOOG8AsAA3G5DQWXhGQBvb2/X6zXKzPwrdcJN3kvSS00FdjKe7LAu2GOZNV7zCmNJ/iTHikiRj+vhx4FlIqebkX01i3DHUatMoqfchDMA1rpKRMHAzFisqbfu7t6bmXnvMBPv7l5UxXoH36uBXbf7NWor8dgMbq3BFaVIKS7CqsCsePTLL7+YGVqTMmJTCiOn2ghYFVgM5XBHB8zRexdlFW6EN6yrLrEtREKaDQ8vJ0yJ69bW63U9v35h7hU3hxtiMzcfqbQZJZ3VOjUrn9bRIGGRWZvNmBGCk+9EkVx/rCQkItEPMPMfzj9YXE/RLXVZMLHOUnRe8O0+a5DLrJxgT47EPaGf6CrT9ZX5Kic2Yo9T6dQMb7FdvBNR7/9iJOShlhmJi2nDvV4ukhSJQMUwE4V4o491EP1RLg2SuVs8+0qrf/x8nHfvXaSY2fF4bO3emps196oUGr0By1K11oWe9sZqn+7dDOLTCuJmBjN3X9eVmUoY8+8AVFxV3XrvbuYipqpLPWotrXspZCZHZxExqavTwbBxm5Agoty6pBrsZlZER3yMw90VC7etohiAhq4OeCmuoqrSexdUwBhPI9OpQ/kwu6qPx+PxoP54THFwPg3LZeZDMCj/++X9119/paGfIhmLQby9vUV6IcPBS4rSDq+Dz/adkVuUMdBTJcUAGJlGHRpgYoZEwuvtFoy0pHIeNl0UsV53Z/OmeC8nHAedxTQkum8zBM9m/yZywuxpDN7DdV2vV0Z+kx/+8ssvAeRMLcFcMD9sYIyPxE6ZPEHiL5keE8IoTpA+tbbe78tCRZkj+zQigvcBUwWzsNzdrFVSccdmXejWWz8ejxBoXXj8rTWpcjgfRaQzkT2Ema3filvrhl5rXcrBXdp6kyKAFdYhdFGFiIqUZTnA6FhvIqWyaa5LWTi37u7qcPM2KifdwTNQEcBhpehSjpfLjdbDe78boGXhnM/n15fXrwDMcTye2JX6/n67XK9SOsOCvXdbez2cXr78MmlnBOsJpCjkH//4/evX1/P59X6/CvR0fDFv379/Px6PzjL7KuKqJqKGDjFoMfENmijf3e6ruy+lHurSzO/3u7dVynJ6OUZYVq111I8r4o7lMIqUiqLWqkVE8fL1SyhLv//+OwNrCJdZFkWK5qWkHYYK2vpZeCrHNvL0L5cblcZACU3BYjLruwRdPk6j6OZnImc2W+/31trlcjGz+/F4Pp9Px+Ples1iZPBPpk1GR8Golu8jJF4AJZHl+L/+em6tsSAQ0ep2u97v969fv/bev3//7u6//PIL3dfh5JTwE8Ya8ofgyxkP/+wls0ZlbFlI/IwuLzP10yIJ0B50zphJji2WaXEpkLV3gzscKgVaSqmimjz47s7GjhxN3KAi6iIqzvvuDmtr752tNkVYu6W7e5FRCdvMxHy4Db0fl2Vdb967CUjOra0XaO9+Or6QG7hspe/OL6+YHsK1e+2o9fDypeqluW7Zj3Um6V0ul6C7eUv/7d/+zd1bu5uh9/72dlmW8vrytbUmDojBwGptzLsGxJ3OYgMYngACVu/djPvTe+/WId5YXyOofpxdyFfx1TB7HA6eDAFlxotG2OTub5hAJVkX3T3K+IbcG2cXJu5giX1G0sRQE/RHSaUoXRElVW1WsgheGvaSPE7YUQKrg/H6sHLXUFaDQ3qy9sW+cX8o9xILzuczvSMsITlOPJaax4qtD9rzk3i4eyxm/+HmxjFkaaGUkjrpPrj7Xl5eAg8xM6fcXQTqhC4EcIiIWU/ZRm2kEKi4u3gfWpO4u3G1K5OMugHQAhHhr2txWDcKLd3cu/cu7n1t1roA4qKiroJaBeX/vP2uUrNZSFQr62rVWpZjaa3PerLN+vn0tblRJAvKHccWWxQbYm34kU+nEz1gva/R7C5vL9FNS51F9YmQThkmiKM/Rt4aKwBMYhdwn8EDU+MoszMR7TQB8aHjbbQvyXI+7ZnyUPbiRv0lW18wo6KRSCoJGVMWwlUQwMa9pZknCljFNEJmzvph8MxASCq0vPKuighG87mNQvGrHBbG14UqEVZlJGwv04VeYzeRaJV/pFz9NQwEQENQmSlVfZblCK1appN0bOWjhTcPG6gbVk1K/u4jXnoIDG2IUu4+6+2KeSuyFGAFS6B5bCKjYbaFi81QLxfrpm6NGLqamY5ahr215ugK6V16X1trh1oPhyVqVMaxsSLl/b6qqkHcnXJO791FD6cBTH2m+YTeIqnAWWzC9X4pKQAyHhgf0kaNsstT1Oc3MaupZAIA2Zeg6JJTTB7Es+iAGbPlM2/v7zYNp6UUxnBRPM4HF++NQy+PaQ3RxTbQIB7rs7puwDdmrGYIUJqKygR4MEqTwkiooMGmJNkjQgPMaw9M6zPSVVWn7LDPho0HfMoFfGmbdfvDS0l4iH9+gITAg/zwGY794NrRv9jWlrKtdWaLtNnWI1iifvR2AN++fePBh4NobMosKQ+4uJnZOiLOhK1XVKXACwRiol4gIlIHPKmZGQuTDSUULGLGAQ2wtnpfrTXrq/soZAHvAita1HFfr4ylPJ2O8lV+/eVvWpeggiJC240J7r1Zx+12u7e1ux1OZ2JsmBMDH3bbLkk7YPzh9fr+H//xH733r1+/vr6+IGlcvgnh5u5aGEzfgqNCxF36kDBV2fmQEL+U3h0qGUYlOZf7Y4xLMPyA2si62mkEmbOFYhKnzFV7yjOOwc0GzmMmWDB1PdYYr8Z0UcSc48n8xjIDzQaHTwHMmgyw2bNPxj5zsrao3axMxudt5+dXMaUIqA68k5zKJI+yaHz4edz7EGlFhHIwowd1Ok9jNrvQhN676oN/jxdFizKTQX0WUCil9OS7kyQv+Qx9dHd1iA7v9rEs4dRwd8CkFB/VclkOxsMfCLfeVmvN2upMVo+vuEzdqqkz9lLLImXUvey9v18ub+8Xd1+tH4/HL6+//Prrr1/xy/1+N6Pl4+H4KS88U8a8GcF2dGYtvL+/s2bPswQRZN49OzBNi5IYiohbjqdX7PISph+szSx7Qjbn/Pr62mYN+eD84enJAtszbARHpQ7ZHlvBBRjoY6mybPWJs44XBU0PfAvdL5heAFtrDZPEhHyB5PSO53dUA5MNZLckprTMONVlWWi/jcnXWq/XK400Eeq99SHanZw8CqV/gQ3GyKqboTk/aSn4IISBUorgYTKxs7l0eQRhi8hMX9iYL9NqKWGyhBdfKDAFig7H4Lwa3GmcETeGogEw79a797Wvd+urW4f7yJ9wFtuFyAgBqTqcH6fjSzNt05jO2obrut57680FxV5lOZ5UFVBm9IVn3JOmkSl3hjMRYeEpVfnb3/7G3Xh//369XiPhKO0E7dGGbScfqihoERWUot6NKccDXc19ypwy+y6ELEO/s9nQYw+n0dLomTmE7IcnlshDZ6caEmUGf0etpBGm11r4WjOHz4AROxZwqykAI+TGZxjmTOjqKKlUadAdTOpfU52boUdMu0uQpzim6GkVkrY/Bt/xeUbMgEiYuXn+EIjxT170d5EqxL5QCw8pFNOwVkrp93X3Xi4jV9EJ5n48Hi/XdzxgbDohdZUadwROH+Ag8z4dRA5W/kRn4z8ejrXWvDfvXRh2MqkhxNxxPp8j9LFqoQz29vb2y2//brd77731ztwIExzdj4fzuq6Xy4VWb3cn53QpYSQIqhRwExwywPd8Pl8uFxpjyGxrrUxZyCcY0JnhfuyMjPMFoNMIVEqhf4kkPQyMmhLtMDMGD4cDi+febjfMph4xbZLIyI7fgVYkSQYShghA272mjLvWWu8WPsY+L3nsb7FDwoyZ/tj4JXAypI8QdElKsvEPGyPZJDUmf2tyQpL1MQQnDE6Ez4D54Nun0+nr16+eInseStBJsnrFSgIOnrF09+H5fj77rMjGUcXIPMV1Xd/e3g6lXi6X19fXWuvb21ut9eXl5f39nXllJLcEX5tVdAgxvXdxG+Luov2+wtmlyEVEaxGoKN6+/S7TI83S2OoAyrqucJqn1947Bn4aeut9dR+TNLPbdb3dbvdbIxUQ6L3dWdN2WWozd4hoIQfWpZ7Loqrn1y/ufr1ev3379n6911pdSvcbM9+iPhcrnfXeWcskH/+wQ/ThIHZ35rZRbhy917HFQA+ixtqn3uGuAlVFgYgXqBm4b1pLrQrYnRLGLCIQMdwyM33IkSLfd1kWKYMbcCiyzTLLPUkSdgiI379/j/W+vLww1CZsdaEPh7GRRmB+K9OFIKlfYp15g0jlmHIAmiQfQ4Bimwm4h+ORwm2QVE+VATCNXgGrrGKoybERGlabnWEInKEQttaYJEW6s7MAVzw1/cyccIdg86u9Hw8/vHYidVwBW33mjJPKVi1UKuos1h/wFLK+Tzt17/10jgxrF7BfdOudXviio/sD49Rg1mSLCXHAxeB0tav02cU6CmjD+qGUWgQY8ehmRlg5nU6kVCi6LOJaVHWpx//8z/8UHVFRVCKXOqxh3JBlWc7TzWkzmgfJvMbf1lkLB9PeQEJ7UBKdW5jdSDVGADE2sWfYSj86H3cXFVVXLSy3zE1eVHpzmnCDHcW2B4fhqfEI6uHYZg9aIiphi1EygTn9MeG7pEBQTmmnsGQ4CWEtsLrO4hfBLeKZdVYekOQOIeHevWgwg4lvgTMZY3ecI7A02GlMmDEAmmLNZXL+UC5iXaUU9hIGxdGwSmXGJUlz+IzR/SQe5p19vnT6PfN7s+TQZ04NaUlNDZAHwbMDMU0LbVCuDnQTURFnCoF3g3dr1m09lAoQO9w9Ool1BRToZt5XluMch2RDclhbu91Wdz++nM/ns5Zyu66trWWpjDtR1VIW0UuttR5OWkeDHlFfIK2tpZSyHE9aT1y4oPeueCj+VWawcmRwZwgA0B1BgHzkAW1FwTwbjQQAmq3b+cx8JgA6DELVp8lX1RddMAPiYqv7DKUIiuBJ19KZtktCQBZHkr+zeeoMl9NkhNyBXABGvC5EyrBJhjE5WNYUpyEztjP/nCRjx2wCbqMwqc0uOvIoxgdq8Ffn82v4FSO6PaNlSLmeskkAkFQxTqiUwjYBxvIWITnEST9zrVhSHG1exvMO7paaZ5kfI1EMD++ALfOSKu3ZtFazNgkSUSjT+SGhO4mJiLphFMDmW226rSGqI8uB4GhuziBSKkJra2vv3SJgQqRNkcyZSlG0lFLL4fv375fbvbV2PJ3lZVl0gUg3Zy8H6Ch8cLvdLrc7ZenT6VQPm/Fz8L26hCznKfSEFrbYt40R2UNdQFXNavAwK00TVT6jMZSYWxMpmfb5RBItpetmRN1NAI/a19DztVASpoAwa0aOlrfBmkKECS5h8woGiwcKEhbUjadl8wbXvqMFPk2AO/a4Y7P5c2yCpcikQJ5AjfiJzWoxGS967/QCxFrarODGzZGkPRIJf/nlFw9nvT9eu1k+IyHwYP/8EPF+5uozfCnOOO+vz/JyoQCwfk5QZZ1mZetNppWfDT0JlEXFrHmPHqsmAi2KbuJwc7jDGt387r62lRqhWxME3EOkuAttYeflSJkZWu6tt24OgVZoNaibm9nX8+u6rn1dAXQ3g69ru9/vy/FcFhfGylxv7k4b4Kp3T4zFH03q9uREViOcbWVnWxuligCwMGmcmEj09mAwG+2l7t7EVUwwqlZ1H6YrL6WwFwAhps++MZIEUcI6aehtbaTrQTf5lzU5aSqUadxuqUVZrIt/Ldk8/UEKk0DawBmfSu8OqDzZIDApdRDrjOfxtz5W7w+OGjJaDP5jaM9qXvxQZzY5p8GMZ0zxk49t4q8/8jFP/HD3+t2dTGg/nNyOkMdFTZpGNkxP6OFwEPPD4UBKQ1M4BXp+CAiI88gAF5OCeK3ae2nWCDkOExFx0e4WxzCJsfsQeh1dJLwkEyVcClBZIb/U7r7e7ofjSZeTqh7PLyQQ1ruLRs+t0NcZuWqIbMCtHjmAy324T0MQ3cFc3sB0XlsVYKpn06SxdxHhmR/OuJlua+8dUBZBdLiblbKUGRId5FxTsmj0u0RSH8j3uK7gFb13WoPJHonYAVqYXlwkNhsIFhMuqflcYFSbmRB11m6xlLBGeA4em5WdDLR80XU2J81QiqfWfemrLQAzNNtSCovoyEz+ohQQESk+o3/ihyH37iNmdsi2o1Xz/gM24o8oxG55uyuTpSlPO9XWdV0JtRRTkUhDkEMzK0w2g4sP94O4Oaxhczc702ABwIoBrBQa/ug+iyaKKb312udvxUYB6zKKgq7dzLrjeDwuWpdlYYmK7uZSDrUCQ1CstUKLux+P9XA43JvRVqm10FE7jsQtkLCkJOPMGTCNWCJioyV1j62I2nYAZNIlVSVh6t5EhoS5g3Iz1krt0K2QmcpWGyabVUgWs1Q2Nb2t+i2XQCxluacpMG+cJ/eECCB5loaCp/EOOXA4EqhZnc/nCIgJ0rzDOp9CbE95rY/k+8EDxDuh9eGJIak+xLXlxxIMb8Fu5CjRWMpnYmGkbm0uioyBmaftMJBSzc9jIJIFKfitT0txTfWqQuBhSD8jzVkdkHak8/msRWZDQDG4tW7Wy3LUIWsxnamzBm5rd3E4C+OKqCibqOVdi533Uca3kMYI1GU1Qzc7Hk9Fa1lG2pehd1GIrt1rAaQAWI0gUsthUZjWwsIX99uttXZYToLignVd197M7Hg6HA4HuKztvtRzbGN459z9w9hLAMfTqbfW+0M5HFUd/jeDqNE7KiJShkSH2R/XDS6e3ygibJICc/TWUbqbaqW9BzNvMFy7ZWYS85+92erD3RfBeuR+kZ4X286vIphzB2xxHjs4DIAmOLFei083OqZh2Z/i3YOC9NkyiUiSqUP4XdosT8o51NQPx5N4HKIBkogrU2rj/rRZeM7df/nlF5qOI3qGGxjtFmkEHxa1nThJUjp1iY2Crq0tS6l1wUjMGYVTh+ltk5TGOGLbjgwKpLRwAA5bG9wPy0KYW9d1hfS1vbx84S6p6pfXl957W++RYFEVKLqoLKWo9JEsMUhzIxLWqgr40HUwMg2h9aTv379/e3srpby+fD0ejrfb7fI+elxya07H0/u3dru0v//7v0lZuuPaWuS/qmrRZVHtLh2uKqyQSxRaloPDrbXLaJ0p9SAdzt7x6+3Kplmvr6+n08tSJvJMrCChnecSsDjW5+5LEairlCKDmQw3jw+PVinSu9/Xu6oe9FBKXS2ZN2VEeABXVV1qmTKSAw4VV6+1CKTbah0YgUT2en4JYl8OoxzO/XqnIFJHCHVfW1vXtRQ9nY6AS9HXr68EShE5nA6BBpkFAWANG53+blW93+/v7+91OZ5Op7ost9uNLtjlcDjRGVCruWspdfoYhg7GkUdkgpRatRTJofAisb+SHBKYn0WEhVhjPiEU+KymS/MvE0ExxVcyPQDMkOSdMMYQ97phWZb/+M//okfxr2TWk131FISKxE4zzebfWj/QnpF0X8IQob/3fjidzUxmj4dSSlEZnG2EX1PeEy0iwlQ5B2QYJlRhwoSjjmnVSNB8eXurtf7tb3/rva/3le7+r1+/fv/+1rsxcrV1lHI4nPTeDN1QVMpyrIfj1Ew0meA4/1gXnfjL8VwPp7Xd+NX9vv7++z+WZSlFImi79/V2a8+m8w+vZ/6wu8KQoMqOUcNlstrqTpOMpBB1teQH1jCxQtHFVEXczBzOtKaSwlOy3CTsJdrVl1E0rdbqswha1g8jSJiRJapKqZLBCeQY+uQ5XJZFnmoySGSTpuQ4mba6liqv5yssTFlCDkjOYMkxI3wi5Fg+n0+/pPqFz9I1r9fXkUdaZpzD7d5IYkRE6vJXkFCnXygWH/PLOxWiRamb1LETR2MHe6pPs2jpjuajSWWZsby9r6JaRFWhEKFz0NGtgVLW6OFH0DGzNkSyYS4b6vvlcmGoh8/iDsssm9laOxxOmKU6jsfj9X53iKBE8EAcJGX6PrPpELVGLmt8pq0y7MCqejgs4arOisdnV5KZN2UswCWfd2SsxWWzcW8+Gkw48xSEGeKWA8tRRSGylaWrZXMuj5rCI+EMLJ9BlZjCZ61VGFd0u5VSluNhWRbG64V7EwmXIqJlJ53KDFe43mg9GpJzoESdpU05/4wDn12STDthOsrW2rxFUSAHSZd2d9KEmioLY8rDcShxTGY2zI0iOlvlXK83T1E4Nf/sJ6+y9UvZCtQj+ev0URF/ptx8IylB3oKJbFsXa6BoETOoMtEWKhCFTMOgu7NY8HgLi/O6Axa9Isw7ZjoMWzTTZ6qqtY5oo+/fvy/Loc8if/f7/cuXL+fz+bb2ZTlILTl8h4uiRVREIniXp8jAFUog3dbY7r///e+qyhi64D+5HtnzFegXiIckdORn8Jika7Okp5kdX475CNwf/MB5BFUVofTl7qndQGKDSPwQM4IkAC4zk8FkUrkKGsCnMDysOMzNNbM1tTqLA6UTinc0scRQ2EIM0ScT6O5zWJ75OupsrbUo9/L8W3k01caS+VW80aZLKaYXCrCZsaRijFNSVvEwiX92/D+4ghcjSSaeqhUEhOHRfLRbpM4rKBmHau1uZrQxFlVxmJuZVVERVwicDrlhDR+uwemqdqO32aUMM4/ZqEfIzrin08lNWm8QnVF8WNfGnKBgbiJSy2FZlpfXV1cJQihTHL1cLs9sCklS6L07tpq/7AZlthd+frzbmdhjGgY0Oe5iY6c5d+xkmVlzmXZkPNk52ThJyEwBgRpt6HCIee9l6FCuMAXEHSZigxgZ3GdApgHufjqdbrfbt2/fguGwCKK4XC4X8slsFAlPt87eD4Sc0+k8RKRZNlem2BKbH8jgj7HXeYejFI09ZgzvOHB8COKYTyqgOlOxjK754HiRHMfMz+dzqQd3X2eLzr/CCW2GsPijvTuMZplgALB1X9aen6NjRtYn83RFUYd64+ZdBBA3M7oeBkihqxZ3ExWKo3DAHGB2fPdZp6z3Dmtmdr2M3D93p5FNRBlLVWaAeLhGCGEjRvQRZHfBzcH5ezLW556e9zsJ9lb1aMfTnq/M2RBC/ozTz88g1WiUxzCuoNw7SrFTwMZCSgF6qZUFLjCkRE1mw0f+bMJkfBrDGD7K0TkZhgHTd/r29tZa++XLL2GyH/bVGYyWATpg93h6wSPVCLNw1swz/OSF59XF5wH906+TNzw+WCrqkZFN9UFGDeYRBC5v6RA4kxglMkodDCVI/xInjDDweHHgJJ6aZuMprCEOPozLPhND+PPDMisZR+d37zLFW5oJYS5itQhQBSbiDrh1sUHtAYOJeeu9t97QDVN+vrX1oLJo6d1urfXeD4fDsS7NIGVZ7021nk8nd3+7Xo7H4+V6lfpgBvCnhG5JEVK9bdbOsMjx+ZDh4yf6WOXx+doRezzqhDsswiPZ5uf13lVZUkWsY0COqEA5NXen+UUQibOiWsxGCR/r3b3Tip4nZWa9u85C4KR0IrIcj9QhSymn46mUwkZOo8BRWWzWE5IZY/m8FTK7SrRZ2EKTGY9AnEm2z0ST3bkEfu7QNW7urBvb2T3Rx4yi8a7IGtnhc1CNwOSkUwhmycnmf6kXRYhDMRvu4GcRBqflEOdmyQEdFkVPBdUDWM3MvbuLqKsba++6dWp9slUi8rXdR0le7+i2aepJvaStVVVFynnZ4oQi1jFeTYA4n8/v7++32+1wGpnEkdkZq4sX+aMo/hAkoZvNsNZyu916b9EKRmc2wIf77I8CUka8D5/PiQV9XgDarNAuSWzRZB7MlzrubTW46ijEBtZ3uDfKDjElHy6hbg2lLFAJWsNNYAoS7THkhMsyCvBE3Zc2U+kxy17MYxqBiufz+e39iplcHwv0KY4GElINJofYYeCOKwRKZKNaPJn1qdglSXIHf8JFlVniAI+ED0mDZUEJTFFFRDADd3vv924/EkfzSmJcblaguE7/SYBUfGXJ2/PhItmVioeUidndTRWlqKgWiFlzc8CXZXEXiDNlzqz17hBHXyEmrkA32BRK/XbvIlJFS2HFBnH37swxWzw5Z63jdl+JKb/+ejazy+VWyvLrr38z919//dV126KA1yBDse82qkho0BSKo4/fshvpzHUyi+7qmtimmQXQZ84pIgpIsgYFigas9BlZ4qyrO0Nw6W3/8uULgO/fvzPnKMjHJi+p32+X+/3eVvNZwrCWReAqW5Cjqi5FD4fD2r21bt0jFh+pbf29rQHu/DtSUtaVpmmdKbyMcQ8VOrxqWW5vs8VaKeXXX3/tvdPJQbrJTL8IrsqHhUlkw1bpMzX+27dvPBGGMVEMHpVKVKmw8Cyoxdkk6NnS47Peyg4P42SDTNA8SPi/3W7f397/Yi+KTJvjb039TAJ0/DHyILBRZ/NHNqAqsxzyfb29nk+iDrHxI2EjaL/frxBWdUr1V2RGG6AH+Hq3YNGzN982/zKz+IgqZqYqy7K8v185T1UtZfiIRlnRJAHqLGpAcSJgK86b/aMnQOfw300Tw0fJ08/7vC0z3fyQrktSDTKlk1lbVmaHSsza1ZYipWICPm2Sx+NxWUZ3e5k1StzdZz/IITiY3S5XaK2HJQ4RM/Qcs4ITo0kYIBUbFWkW7k47DRLD12R1Dxizeclj3mBQt5iYpoJLtENGr4ueYk191gKNLQ2j5bdv32qt4XnXWR6JWR0UhjMTytxyA4bHbsQiUkoJCFmW5eXl5a856x+OLd4dJuYyw3nHM31vvw76UWZB9WywUlVlW/XxA75RrXVnYWAY7Z88o1h579272SxoK+Zu3WXTiQEULa31+7qKlGF96R2QZTnUQ4fK2gywZRlhFvVxsbGVMpWZHRICEEmt4CSLmh4yVcDWzjYjSWIMlPMkiD5v+zZ6At+SiqBJWRj2eTqdy2iCLctyDGskL2YyA+ZqIl4KPUbh9jAf0qkhdCoY+xzTaRipvVIKE0RE6NwZ5jfOk8mvmB4Lnd6zl5eXYLNlprczisOT1SCE1VDJOKympBOdNrZQOGU2MAxQDHKmM7L8/f3dZz0xMr3wviDFyk5lf0vbtdlkIh9HgHSYEmSTZTTw9ng8/kUXhT4aauNzUKmAyN77odTYowA1ACx0ExBMwrAcahWwEBPD4EZWkXqp4i7uzAA0G1HXfTmUjUYOZyDcvaoSaEspqiMlSrR8e3+7XK8UPssIZkcp5bfffuu9364jtiMowjoPW2eMWJu91HfsnVfWSfzBwrlRmdif2M+Mh/Io1ciOE37ktkok4AGlVVVmlSSKf3EuO00m9HAUnwbOB78oo22osUfkDczP5/O9GQcfOTGq7j6rv/H5oZ+bWbuPOTCcMkIgdNpdQngbpZ/uDTN+JYjLsizM3JdUtBZTkPFwEU12RF0x9jBTOr6R6mscUO89asZR+k3CztbtTKYAkrJYHk5nhw7jg0BE6Cf/i9bR3YgydTlSMooEoQP03pevv0iSLgIow3KN6UhVVYij3zeAc9Dr4D49tg7MDkljGn1syeSBoi7uvhyOvXlRrXVRaB8NWypco4BXHc3rWCqmqBiO1OhqKdUdvdvaVhFZU/fvmH8AfRb9WT1tcjBJrHLMOiNbZq0Zef7CueQfhqzl7mYr+ca3b99E5OXlharOc2fZcY2Op2Iigoei9+5wh4pMrggW8GdmSfj97q3REFBKUR/OgFAFl9nUgQE0FMkorwbH02Th1Jm2Fj4wCoFhEcQ08sn0MYanN5RzEh0iTyA5pulSpg8ds16wmTFCKCsaGLxkiL5RwSwsGjvumg86yEEgISbt+4vW0fiQOR77IQdExsbhMZQuNjcSlKKAWu8dbgpSC2a9cQs6HJ2daJ1WU1IsANp7C1GBSas8mFoObivL/47ZmlSx8/lMBSZiOEXKsiz/+O9vPIDT6cQI0lHS73gIY2MoBjSB5hXFpufFJjZoZsy73RTpIP/PWCdP5UWC8MmjmLp7Y+ZdvMI6GrlInop/BReSYVIXGyVmeLL78Jp4Tbw30gtPpxNVr9+/f2dJgVrrIqOuNlXo+/0uLhQyGTUaqmP0lI89IZkrbRSSCIU270ZP+Y3EUvJkGld4WBQXWypqGsKIp9ZoEVyGxzo0FB/WebG8BefP/ST0RvCAzmRCwkxkwyR8SRFOkL+uE+bPnC7b8WQBYxydbysJFKXKy43mXnPjikrvK9tECKY4N0V5DCQcmCnjGGw+IurkRVVExMW7O8QM3u12Xd2lO86/vi4yNBmDsq3m9X6/rnepRaVCYG5wNLcOP6bMHZlFbsoswBHbsqlYsyOnyJYcvMPSUAWzTBsfYkv9Mf7DkoMnXxt+PkUUiIgCrXV3nE6sNiu9WynMekFoSfnIglTHrAcpBDByhHkKYm5MhGKBtvCLlBmv48mzNyaJzateZ3E0um08lRSKJSyzj2cpW+KiJxEs/B8Rf6PTfZd3LxQfpCx4TOUNEwkpBtN8HXZUTDVERA6TJnMJ2W4UlBozpz404Wc+NAxLf00cLUsts3eSTx0a0w4WJUbCB/pyPAUnEZHlUBdd6lLcurECnxsrWNZal+PxvrqrAYW5JtPs2VRV3MwN3plzSJOPS3GHj+rbo3yRiBq8O9g0wgz31nvvB8EZWsvgDByWlf/qLGd2v98DKMt0Oof3JYo+LKlYPZIo2O2uqsCiBbRbBL7J9FCFqpAZ2m40eyxFGSeN+avdff9IJxQRF7TWAby+vvLsbXZOj8lgIyJ2XETUGKgNAA43s02CymwWDpxOC7Sv63q5vM1EHo1wjsyBKeNVrWRWgYSE7y9fvpBfMaQTACWO5XCKpWGKOUTdwMNQcXUm7AXSttl+MOQO4icXIEktJMuKQkxh1KHAyQ/H45FdmWx6F6NrGtXUvC7+Klj3ENZkZHbebrcOL2X5K2Fr9/tdqx7qshyX1jrtFsfzSRz3+/32fjudTktdxAhGXlTd+lJLLQRrEXi738StCKzfWnMBTgcVt3Z9qws7fDmDzmBdzBSucLfu3ZzqX1/h7iYO8TACa4EMZaat7XB6OdYFwLr2FynujqKCcr+3UsrxeL5er//4x+9mfj6f//73v5MolgLdyiJK781nhcUA7qzl583xYYuDY/RamZTSbWR8LiLFnd4zF7HIBoieNhyKzkxyqvleFQFmfskzcc3YHvNxt1I0FkLttDWW8QTVWI8oLe+re5HOQlUYMnOtpVjrqiqU5aBhLLzdLqr1dKjNtSiKojfv1np3XWglV+/29u07Affuq4hQAFl7M0ysECzHw/F8erVBlO/3++V2bX24ZBHBgNPg0WeM4fl85qpZhJdlGWQGTogIDZ5UQOI05/k6FaLWRls1moV7v9/vbVmWUpQ9C47H87Is97aa23I8nF9fSGKadbYohsptvb+/vx8Oh7/97W/n15feO/Mk7/e7u9XDSCjRpepSVUXl5zLZHi4x5ndBN6Wd32RjVEieqljXezIWw71Utc3X56w+GJKPsE2e+zB+uvvQDNk50Lu5C4yQbiJgG0vIGEyYr2nLclTVPrqfoR4Ph8OhLouIeltFRLUcj6cvX7yUQmfRVCw9yGSWDJ+ZDJ7Z1IYb+xIEMWzGNCQm9vxwvrnxus9ORh6OI36ij6bzLKFhir7bu7yrQ0XmAal/hPDpGjUNANF4RkzhzVx9eKQ8c92nWLAgAZm5BRQlxuvZ2BiW0gA2mZazkKuTVWyE/oRLvcz4G5ESkloOCqfXPnyPsQ8sphySNh+73+/0eNERSubJdN7Qt33GixqUyAxAgtr9qauUAnFxzA6bEAdsOOvFiGkhGsGsm7WpyJHoNv5KZIhrKSJFbO2iPjpMmMtwDs/0Z/IXV4GgWHF1FFWFb14TlnIgtIWpmhLCsizX663NZjLB0zIGxvHjUcwL2H3+vKM+/nksf4z2GXDHz/N788OfIaEmz1V+vjwWxpTHAvJ5MiIibo7uAoG6u2HagQAANkWp5znHMkPdqgw9OxxKKdY3k70/TjJoR+jY4QCIHfNHGT6IS1DMPCCd8uWxsDKAnbjIm2bGatl9K+I6BNrIupBHwYcjaMrX49zoRGEmgE7fI63QFEpjqhy/0k7ufwEJXTG7t29Q4vAZ2sM6LgDjXaR3qwVACUDRAoUCEDcg4p5jQEOg3eM1zNAuFM9EBCgoomUBhEg4r6E2BCzytO73u7nf72t3i29pFXh7e2Ni2zPKBUPTFPqARHHjFfFBUmpIjBYP56GymQ6PGPuMnxP4Hm7GVHccb/dAjLZD1MxJiDuKiXIBZHASBolpJEdLwJy7l7K9qNuYEvlfKFF1lpnNQKlKkW/KuE+rDlTMd3Yr4vX+/l5TRydJtsB4Lx5JACamheYP4OXlJct0kkooZHtyxMF6MozlGdLOFHZgM1sbI0iH0fEvWUcBNxgeoMHdra1kamY2IlscgIsUUWfEY8SSuPeiBYiZcM6ptKtveA5jMT4AJu4YQTTcxLLDwEAbdymlLosCsD5I6e12P51OxbdjJs0LeWOHOT9Awng4w9Nn+COp3F2cVsDu7kk82UIzzO0ew+eouxGIkRTomHK7iExVcybJw0Ug7ooypFAmBsrQPZAhTHpUUpzFx9TdS5bAu8vsn9WbB2otCWnHWU8DRlJbdFLnZGJOl09xdHcoHsGuNeu0qqoMpC4zFodUkrpcln1s+jMivzTkXo4fRhfOP15ETt5nWboyyy/0VB3D0uUCd+/N/woSZpjgqmCuqt++fQuqIM7Fi1O8CUgCtQO4uxZ1mE/0GBZwsfyK8ZWFg0WwsUEVEdKW0XNhI4dDLKmzoWTRCQ2961LrLHzCX4X/Gk9IiI/yOOOBTIBj33fIE0wmBJjdUCGG7TAqwDSErnkfuwnkaeRLRFxGwDE+0gbzcsbcoOI+KtfB3VxDdUxscy5EnR7dOawm99oLyxyxpXHKVLCUz5UhKpscNTVRgm/MNlOxcHvEHe7Sly9fyPTa7K/Ecd7e3ggMsbE6ogg3FQCz7MU6233jsfRrYdHKyRhD3skzCbE5jOp1Ji6W0ahQSinNBlP9635ChZRheRFRU9Vv93utVXywWpKP3kUdzPjkbIHpenDzmfMu7iLcL13bCthIDEz5JgQVo1biw5E4AEhl1j4REWHYces3c2/dREfsB1TUlVW0ZJoKdMRhfVDI4ENki7PJsJsfC4SJg7HpbMjEa3fngx1W3ahm/pUW4gM3gD/ADGtw30Ygg2DB1Qz0ebSMh8QoN3Pv4tMhIepaXIukn0+0M4F2M0m4F1/SO68EWWwFcLdfp+3VGQnNO9SvBhXuGzeLVXgqiR/UjRede2HNlhnbHZK/zDhSG73p930dw9HNd+m0wfDnUZYlgwFHo0BLvSwALM8tr3287q8hISdHIWSIBBjyca26zD7GOquyB4EcUKFDvGT/o967eVOHiM4nNyurJRHluWobIOZYlgMAkdQ5CJvFhevlBBiO9F+//4MduUJTjyTuHYjMXX4AX0+iP550LZn97vDY2yCfBJJEusNAebziJ5Z8hvlD/ucueGB8pYK+ydJ5GiXFQ28EBWZQd+8usE5pf7czuytPL0PbsCsOdcPC9nh+fZVUiyjmlncySpj13v0xEQEJWwKoYgRPAS70uUfYGvN1ZAosfXaPpgUhNlOnYzA8Uja7cZEa3ta7iNAWqikmjM+Hw0lTkQ4aUSPHqht676LDifojP+EO2gJi1tvd3btI7/241ForRMzst1++jn1RLwCsuXuBm3ldijh67wI/1CqO+916791WcSsQLSrirC5zWJbb7daSh1dmJwOLzJRlcff7va33e2uX4/l1qdXMita6LOu6vr19P53OURmym3z//kaPPP2B4cNFqqa+W2+G8lh+IFKfocaBbztYRyLzmYT7rAa9Gz8/EEAW4LUBok6T0nDcc6poPVUGEYGIObyZanUZ9QwBiKioqAgBZYT/JRTSsjjU4UWgJhCDSPcZ4oNRYmNMkgiA0GAHj+q9X2//DaBjVMGQ6cJusx2FTBtjNnIGTMeW0kCy21J3v91ux+ORfC/CWVR1Zv0ZQ1KYFsj7OeKC9szj8Sjy0BAppI8+ey1m9U9VD6djRALQn8n3Xq/X2+3GcqMiwhggigOYZkIbPg+/XC7L8VBr7f3+B5ww8DCDyzL75qlq1QA4VknoAhGjMm0AIK6biay5S2sQB8uQ+QCj8ZGL/6//+i8uOJpm8D6TG0opKpV213HY97Ycz4wAfn+/0ij822+/qRZuEP1UOZIwdhyJt2SVKSPeM7PyR3HOk5QVnzOPCkT1pzyaALsfX59hbL6excvxw6L5N/He/HxeqQvFFlOprj4ZxQdscLzF3GUPJ6qjkUCzbmbsDMBNkFJ6tBP/qCeuJN7oqS4orz6zWFoqe5GDyOi4Dw0zGBH7E/aZgOYzCbP3LS8x8+RI5M3b5e4UZdfZuC6wi3wiTjNggCGmsV2lFCmUNUaNtp8SR/PuABAplYW5RIg44mO1ozgvm6SLj6Ik5mbr2DWH9WGxraLTGDOkFmJVu91KKVqKmIE0eUBKUSmlLqUyok+keFnkgAqoGUpZam3ruqoWskER6c3v3iZHLara+uhWvYHRRx+QWN+Hz+xwFY80C8mis/tVPiT/RMbDk4tyg4NHA8nudTuZLY+/m0BYa3cvBdygWpT+htAOaI3OZhjARFVMAvlmq3FmG25eB5VNZMj7pin1MYYN8TLIVuy2T/NjePxCmYzdZoqTzl6r0UqISDIhYSMWrH8nKRUG08rKABpga/9I8SGsemEmJV8NQhCkNjwT+QT5dynq7n8QMbM75rjul6vVWisBwtydxpjZAddFaTLQ2QseI8tW50ECqmBBJFG4gdhMehYhSK211rq7s86SHqu79+7uKxdP2f3r1/Plcvnv//7v19fXcIx++/aNkk9vWz8QVbQGM0juQD8h4Bn9dvvwjLe7n8gjad9dASU+L3ximMnXDgNFBPgAdfMqHqiDYCf6Zk0sZh4DuhYfhe14pO5O+1DDo+wwWAcL/mwEYszBzLSoGSvpg6m9oNz+mDLvuU3iU+KIzzzGvP/BfIiuO98POU9GTs+dThJWl5F9VrI2Ee+yRytubNE6O+/GKmzWxs+gwotVpIP38izcICLH5bSuK/5aFgXja2utpUgtG2ZXRSDhYJMCCErR3hm2ehCRkReP8v3+nWfo7t02xfdYj2UaiwfE6ALXejhcLpfL5R3A4fRCaV5VluPh7fJ+W+/lXkVL68Ycmd9++7toLQtxQ6QYgTJD0g5kP7x23/on0ik+YjsZ03aMER9p3Z+9PU/VHdDBpDDNpJ6JAu9wMu7u5qJFCyM1QkENQHFs/4kYUKA+ghPNfRRKVSCLhSaCgol+OrnZ5HgAbLoWVLWWzQmuj4UGgzUFxyiP2cY1JdTKVCzpfyuzCj1mAodPP15EpTHHgtKjpdZ6ZUt434q+BZb23jkyDY3Dhi+iqrfZVQoz0AoADTlxxMRwS30mkYgOVWRWV/qDiJkduAQ8hblJRKXWZakkFkUcsNGai45gGUnHrTXvLCxpfdY+I4GLNXMxReQ+u/+IyDA3G1pry/EUCjHXGRtBa2eYvFSVsUjYQFOm2NBVRORBg/qQsaS/G3Z5ElCDyu642W60+GdLhbrzrz7jnHjEQN4xeIQf7RA4z/nh/lbubWb3iABoM2MoliMigJqQc8aS98Rl41ez9AgSzsS1ri1zDCSv6fO0MfknZj4HASCE1ZAhQ2KMixgStUx59OHw8GnvyZsZHrxBoOeTYZLhHMJIG6vW5DOMlcqjgh1Inq0Aj+eoIuKCZVncfo4TBh5ziJeXF64WU6ZXaoYqA7NIgtFn3p+1dQWM53q/362NbHoA8G7WvHe4q0KkmvW+Nsrcy4Hmr9FSq5Ty+vVXACNfSUsp5f3yxt4SrbXVGPa+yJYLr71vnU84Z9Gt4HcsM5D2cb/IV7Yo57DUZXCMw8BHSJhxOBPLHfburg85pwMqQjV544SfsOvJgUtwpPFV+qE/6ZYiMIGMiKUtoBkf5St6qJG0gmDEdoXpYuwzNmNVQG22bGHiXiBbMKv7bXO95N3W1HCmzzz93vv1el1mN9xADzoeQ0NLGDhkiNDWAoX4OSoqBDmggSen8Ga60EZTqkLNKCNt7B5DcVtr5/NZ8Ef5hOlnGwc4vbxyy+AOuMK8W2/3qguAEYfmFiLOsVSxDmitxQ1dMIrGQQAYVCjyiAMj0qe1dr3e13U9nPsXZc5o+fbt2+vr6/n1RVXXta3ryhoyNIEOHijM4JY4CTNmbJABFEBUPHySSDjjSSGJLROR7J3OwO0pCGYHJRvOpH3LSnlG18/wcIddQXa92iZVP107upDvB0nmV/XRIjBmpT7SHHiKOafkYWIbCZjZ1XCIm3UbQWF9ZLuPmsI+xJEhtsmmkm20wGbcts5oT1W9vN/yofgMOtPHYAaZTnbGrPFzn4VtMjOM3cAQETevehwQxydGccxAWpb3X2cz5nB7ZAE4lFUkU1m8l5v6X//1XyJyPJz/WBzN4MgP3759U9WX87HWehAVdxXoUtQccJgY3Axm3g3w7rh4v5NKwbWUcqi1lHKbbYqrLuWw9N7X+3q9XF6+frlcr2+3O4BiuLdeCgx6OL3cm+FyZQWhdV39fnezL69fnXXVoD4DGpal3G6XODlaDUi4MSWtiBMPBLLJJfKpMw0yYC4ieOos6JSR2cwij1eny0snxvbe19ZrrYdlob7eU8r57kOSKmJCoxMOb8fJYgiNmFixIR6ghc10tAyLGQCh+88h0CqTXLq5eXddtmgSowYlAqDTSIbNTt5as/u9ORgdwXNvrbfWmoPyCFC0FtVi7mZo3ZZ6pN/87e3N3V9fXwkMrZmq1okq673frqu7M5wwq39mRmejpbI0Mgt70rUQkm1grKQgpJaKZ69rDwGYrE9VWRTUZxQrAYDqZbP+8vLy5csXysBBYaOszjIj1PnDtXvr2ytEaxE3s99++bWIqvxc7Kg/yiGlFAa/VRFRdpDsggEZDog7XEcxPBhaFze2aRyiS+/W+51IOGOSAJSyuKhDpS7LyQDUw6ksSylL2WrdLaWU3jsdg5ldhGAzKPcDN2N238PzCVI3vSg+7HYgo0cWLX68bx/+HI+kzZIn+vnVz1dQhM++zYMwnRKP+Vl06k7SnnwGYgJ4i3DeNoQaALDj8SjqQ35JHLJKcbdmZh3d4Sw6SK6lQ5AwFxGVimoKHwZG8ihGEdp0jkfAGkNesmc/aBb5Ww5zC/mCsNRmexkKVgDKLEcS4kBYIhhxlWHJ3dss5RbWwQxRAQZlZhj32U6jPnZ6C76HZIKKaXAH/hgJMwb6KL9TVLWoqEKGH9B95OaaM7Zz4CcAuGqRUQnC+kacMMJ/4QLoiC9Sd4cu9Vh0kVkLvZSRIhklSciI3CTcvpKc5hkJd9dna3y+uXt+98wjhiMOT0SAD361w7Eg1XjURXnt5OQ/nNvufpZ4i6ibeDJaYpNsO3/h7gzwpebWbQXZlrk6qeqYFWufs92A2+hNYIJuRldQpxVHVMhz6LJwE53Cp2pfR8d5YhSN+AG7AaBZpn2a+cMRx15lrhWWUp3u09jbZ0oaxxEGFZtNgXbbW0phukAwYREJPTA2H7M2pJmxgUyGlolHI8DzD/yEGTgCxFXZRNIHjTN2T28jx1cd8+zIebQU3UbYtjKCVzJAq0h3RIWS/BWrufU+Gtkdj0dhjNLsLZUx0B67/HyIM7vFJix62PcdIsljdaa8s7uRg/Xlrwb4J4P47oc7wPrJ08G0HAQg8isTFRSfHT/zC3MQzDYTc+/mbmIoTBGjNii+tpuZwboZnUyUl6W1RtrarLuLOUxcvK/NXIXBw5BeykIu12cQaUhAtdbTiU6z2djU3WcxmHW2+M1aFscpKRAf06Veaw1OGAOaGbUYTZZVbgSFzHB41NnS4xk8BkwW1Zmkm3XaLCrn44BuAQAZ0mLwP2EdlSmxmHcxZxAh3Lw3mJm1IgoMRyRQnF2VyCVtY9lk0ABLPlOTcbhLFYi4ACpaIi5WurtZ724QNYebtd5Vq4OdhT6wDWKiCp4g+8OH86+egTtvXyaimXzgCRV36IdH5KS7ggNqCpWKQ/3BJM0QZZck5e+VUiECVSllePlECgAUeCRNdwcorbDDFwNizNwirc5NwPK+U04xB6T1Du8UVhsMgHaB6P1uPkpbqBupsru7uTiECRbTnLvBW2Yau/0sKRubfx89CgMf2kfdlNydVpPYedppQ7zMNG4e6EZVQ730VCEqZjj2WUeVMIrKmjLxbVbHcXcWgCqlrH0L0MkEd7TLlh+6KJ6Zg7sD3vsqbB2pwmoIcAOMsilY6wVgnJObo3ezbmtbraObiRSIq1QRCgdQXcqiS62iJrhbl61GCGK/vnz5IiJmdjgcVIf0UmvdgaskQ/PukJ4hO7OjZ1aZ8eqZZX14EfSff5If4P0QR3dj+hM3fpjw/Ob5sb31VWaik4/nzUa1SAAQU10IgrEDZiZugiGd8pv4ea1Ke1vYJMVhjtbZLWTkxrRRCtFRKuVPEJvnJAGE4dpmFBhLM9VaCbsAqBPyZmBgNofmwIOAbw5FthZZfJK8iztgmFi/NZ+OPSSSa3IpjauopawRzKZdAW8ZokSktTVkk3zuGnVAPjvs55OOz713LSamLjp8RyNcaeCgOxx9Jnvy7DGKI4gWKQqBSi0HhcNcihZdRiy/eykaJaRqFfeR07ssy7quvTtVRC5kWZQBuLEjeDJO7LY+FrLDEHkUErYfbiQT+TxC4InRdoPHr2TKRZkiZuIaf/1JVvnwSgD0MMgeeznOdBkHXR/WUXaeGJN0wEVoWGMvRwfrbJux6yNEwr4eGl13QI7mMLM2iyEIqBPSkqoDk93dO/srU92iOZEyZEB8jsewGXFis2ud5biOx+A1n6XvOWyAuIjQZTdlq21vCScsvafJ4SGPbszdrsbbLbk043yjVGmE6UUsax4kJOrW2s+GrT1iIxtFCGCsOC9F3BXG7sqCjROIw1FUzTEanG7cSbXAzMXh2imwmjW308s5EzARMR0GscvlYgYmp/TeVaUUVsLeaoFns8Ru+z68+fPXj3nUz/wcj5gTprzPHv74KiqPAlIGlI0ixPOyPQ8AMjpJsNzW9tSYE9CJNFv3SOIegXsioZM4GqQc1DpWG1FjIGdRXdeBPwBY3okY1Wd/Sy6clZGCs7k7hclAS/ZC8+Sdx7Qqx4noLHU7WgUnwuez4AUrfOeN5Yrf3985hyj/9axdW7IG91G68iGpl+8KTs6vIspcHvMzZAprA0XxFKIaswxKk9m0Ftzvdy3upcKkKMSNpel1NnAB4MQ4UVXpXSTcsj7pzagZw2j9rauhkvKBDFbua+PelVKOx3M9HM2gdSnLIsVaa+/Xy1JqWPnypiSq8QGfzHd2LGWPDE97/fDt02VTpw+zXgDK8+D9KYnxGUokGZy4wQ51h0BG0FCK2OgWbI2/hKoJoOJaxM17d9a/G4YrhQAaihnE2fCD0xuZLd3d2wyyHxPTUkpR6Nvtbl6Y8QKBq3QX604jh6ba9UW1qH79+pW6E2dOcKizcxO7sgxwn2oqdylKRcQ5sjkh+Q8VsGVZWEuGvwpzOltBUbINDz5t77/++itNQcQfmdZOpl/kGDr+8/39nRFagUgsJcr2hqQ1jK/mfBYXso0owh9YPSxJzzD042vSHtJHF4A1fEXEumF6wG10zOJmzTZdUhlsqLOrhqqWUsN2VEoR1fPLy9qGc585K2EZq7W6P8QBlrIAnzON/++uZ1rwrxkNgOuM2Xy4Pv6lipkVEfcIEHGz5jOqgYezPQ7pkxC0VNvAXcyMxNHgrHTuANjHFQBAJ1Vw3SyQ5ysEWpmBKZj06EFmTjUjsk4VV1hWdUa0WGoeaqn4Hf/Wx+4MvvXo3mYlKWY1pN94GICqss1jIBKn+giTJdo/+2Mz2ZhPBHbbH/oJdztItqCT0VNsUTgtAjLylKgDMNifWFhEVVRFN3wjpVZVGvB672S6AO1O3RnOUcmr67IcoiiOqrqJdbogAev7ef/Eldngj2S/P389o5/80OXwGf483ye6GFvm0u7CktdlZpHtYF5oQRu94qYwFcVozB3ex6iY+oOZATSBeO+2duvd3ISpu8PIIiXy1lwLjAW8KDGpjBijWdXrcRNslu3aLZCMwlLHbPxQSMEsyC2pkmogWMiBOaEJMyEwihRyI/wxazFU03xwEuZc3cq18CJOBmyrKrtZkxYIRpRVRAu02Y+RI/+xn3D/z5GvKWZO9bAWoXW6loX+X3c6CYGUZsoK/oMOYdAwo/NhCni997W3b2/fSynH4zF0P3I/VsWaHH8GGZZPUxB+cl34QyT5ZJxPmc/nBqE/Nc7uPv+pUlwkjHof2g+eD84fGkiMb+vsx0DEGHTdXNRhbmZtJFl7787oWxdBEdCeAwhLMEsRGb3YEWqLalR5y/N3d+aIenKy7fBth7c9dY/Ny4wng71g6oqRTFNmS4kw8EiylE6GuVV5yxvINxJKMXk1gO6bghYkoM4uXZRCy4g9gbsX3cLrZDKwMCbhJ/2EebVu5iKzDKgDbiJGb4U7oCN8TSg8MGRTIWI0vomG+wFa1rXdZwtI1YJu/X4TERJ7VzFRE5LUgdIONYirsZGzzszo/7+6npnhv2SowXlEnbxGlK5SBkdP7B+GSNA4Kq7U89yc3RtpUxNRUYebN3MDDWTmAKzTD+Hd0Q0GgRZ3QIsWFZTmUbIeAN2JKqpujUciwv+2dJPBQgCWGvJkBA7c24ltu4U/88MwZgaKBlWK8Z092O/3dV1/+eUX/jDTo8x7swXV3ZkYgIl+IS0fTsd4Pt7CO31e4bEQkTLLF8mUcqkrbtTwB8f/ISd0N1e4C5U6F7HOUs2sReh0VtjsPYYBC4NcseAQ58cEsNZ6GKOWZXE/n15Pva/Ud3u/h4J7PJwnEZCQKKB/Gsrj7ONO0KcPn/+c4f2IE/48Hv4MJ9xgUBVaBhI+leJ8ZnfmpolX5DMNZSkgniB4u92MKGsGVkt3FBWVKrWIFGmNTvvhHB69g72URWQLYMiMTnXknolsgWM7TsgrZhjyHuXJ8KFn/OkzMDp8iTrrx2Z2l0d4xpzgSzGfYDmB0p5UVp3l95Hie2Rm8QYUhTQbeX9lhshyZFqb5cfO+jj+vC8M0J2RooPkkjtSV5wFDopARKm/AoKZ2sSkARWBGWo9lOIA3MQcRZfTSQ+Hw7p6m8IQo6LgulSbfsKN1/duf43XBOT988xqdz2j3197hTxJsKRrpRSXGRIFYFLu0EkysrGvGaxnJJQZ3stnzEaBZhGBK6PP3GEskKBSpLqKSNFSABWHra2xL50aAyeKJIoAA1A0u6NUVSlG0+oY+58JgTxl9OHRM5SFMiR3v85qvOu6vr29sUVfDBiNBwOTI7WicEXJtYsnjTSWEOplmG0x3YOMldvtKj/c1y2NI6qhkhNy/L/UqdcBVIUZA0XFuwvcWBdUxoyhs23TvXUD1MXE4Q6DSBMppSzhqL1d18nxDu/v70FaxtbYULXv93trw7I812mHP88M/9+7KOu5QFFcTFxHMK2YzDu7v3CGTu//AoAWGOP/2MSMWKEuDzzQ3R1dvMC7wmdmkmMoDLYF87tDXGxwmN5Xd4FQJWz0L1EDMgQU1lIKkVBURUrpXXyAsphILSJ4bNE1zIkhdMzvBJAoLx/c26Y3L7axzGRCEWHGE6YAVVL70biv08E4TL6qwQaRuCJnYcnjT5EqWGumBVERI57Xxyr6Zab5snTi7XZzkVqKUWma1DCHtvVZJK5Ec3UaG/NODUhKa45v55qVcYjNGoyNPG3RoooGKYI6qKcDpv3WAThUKq3k1jrUFVKnTbmt5u5S66hPLuyVJu7oZu5Y6tbm5nw+Z4GkFAFKb+uIFH90xH0uXn7sl9PHsOz4NkKuppwZ+PbgMd+eFzUBXFxUoS6uUBMUWhRdn/4aE5wdEBcisAmWujQDzLo7RcGlVKmlezNxieL/UxH33swjW2dLLqG1E0p7jgMMZbLL5Q1iMLe+9ta6NTfWO1SBlslspSylFClKVc66rbf1fr21mT/u7iJQ8aKg2EnizjOSWYWE9hhV7Ybw19GfJsm8Gb4BFlJQ1cNpBG+sPcWyqKz3+/H88pLa91ZRaLndbvVw1BHGbbVWF23mx9P5er0SK5r59+9v7CLYVnMfarC7m/XrbQVAv9/1en1/f+c/4XJ9v75+OefmJe7+drn9/v29tWbw8/H0+vULXN/f382cYQDv7+9rW19fD4fjwVxut9vlehdRd7hNnXCHfj+4XOAu3SFQKNhpBA61rroYbLowoO4CqLv6UB4EgLDAdu19LUsVUZlhYWbmJhA7HE5hMc8EYhfYPhEjF5L5p64P1/4Zxj5/NR6grcLZtk/jL5yYOT/HX7rXZloRZesOF0hjmZ7CFFEV1nPtHaokOjGZWdqXzeS6TCQcbvsnWykrADk6HOajNGg3g8EFtRzXtbd2E5HD4XSsQkny1lYAvZmtzd2LqEK8Ww5nzZJwSeVufZoWa60s4SZZsZ+6WRZBA8TNH7RZS82wwueGye7CGchA6mw1fX9/ZwlDmSGHwVTjNGMOIWXQUG8zlu18Pkel81AvbXQ+os9A13tf7f52vQDiqt4abTxBeijZRruL6Xb7M46yxBvHP1tvglZFoezSKQ7vcHWYwOcxxU+om5beAWffCBk8p1u3KHdP1AoU/Ww+/PWHk/xTlz2lCGOavPOY8TeLT//M5c4AF3V/MAKF/BPiFi0ppdSRSSQy+8jzeTZRdczSIXymz4Y8AAY8Mw+ww7z13ls3t1GZy310zgKBrBSfmsxtbWbW1t5TbT8zoyAaGBjbSLyi7SSWg1lEL8C6zEjRgCtNjQeJfJ4MSyF9RK2XiPvjLoXhkTIt/eZxXrSUujtdeff7nZmrkopKUd+JwvUckBNYluXt/YIkG2MC6ul06r0LSu/9dr+t6yqivffT4RCwFG1DkYj4Qxn8vwK4cHSIG9gDQIevvgwDOKMoNvEdMy/bzDBaVS0qw67FcNAArJgYn/8M6IUW9wk6f2EVvBJxeSjHJI+mqX/mFT9+e6w3zizUhnmHbO2hcRU/5fmLiMp2zL13kVF2JDCF95sxgakD6rqgAK7ruoqU8/lca4XW1hoLvEuprbW2dnf2ZR0BH6pbE9K8M2G92G1maz1bI3XGl2b+k9cS/sZ4xVjjR4WwKMfyGRbJZ5AqQT8C5VSVQeSttbZu1f3i4oDknGyy3WY7itGHM3kphFFcRUXEbVDtUkqtS66biFQ6ETskjN18hoZPLkPiPT4NARMJxau4uMwYYtFqoxC6QPdeYxHRAhcxc1UxE9V9nOuPwTeQ8MeP/eUrT0A+Svz9V1xx+lv0Uy2VvK53Y1yRDAmKsnr36YMf5SqGKWVsbdALcWPaBPkU5s8YCsM+ESpl5Bw5vr+9nw9HqaW5tev1drvd29p7F/PWGhWzRYqIuAzX4od7FUCv0yPl7r131kUJ5hM/zKZLn8pkKcX7Zi/ZedUlucvJr1prt9utz8o9UcjHzBhl6u5kdDTSttQfG5Pcs8IavQiso0E8JEtndZkcQlCkuPv79eI+/AaUikupy7KwJhNXylxmqVVq7TOxe+OE8hgL9ymwjMoxc95uLlAIRNfxc5UuRusoJRYwdIplgphs6kjp8xOkJodMpueSssh+zAnxkU3/T11BAgPTdqPtCNi/5ppRgPJ0ldnm2ix/OzUkZgaOzwyP3lqphEHPezsdqpubdczs6q1TEqviiULVQLOh3243dLv3ZmbrvZtZWerhcGBYRWZBkojHw5rcMQIwRshUn+UMe++nl5fghP5RY/Ad/yyp0mzmfn1m1hOjyKDu9/uyLJfLhQmKmKFt5HvcrPBnUDQ9Hs5IXlPKt2ZGVVCn65+Gw/AWznAFERFDd3fm8gpKKaUuJKDI+ZCxezJ7p3KcT7sy/QCgRaQ4+OLhkBAVkRa8VOAS1fBn3LC5u5cwZKszjhEAoDZ8vibivRujt6lnhw/0BzpYXsJfRsWdcTU4SbC+jKVIzdD/yUtEgM2PvGFbotARD0hHLcQofQw90BxAx7B8ujusixujanvv8GF6YSaEOamMDrsWBC7mzlrV3ezWVunN3btBhJaU0eWwjrhDoeNkN+cPEdKnwyl4I2YYiqcUwUDC+C2/0rpYivOOV/gU34Lu2KwWJUmG95lSSA3QZ0eXy+USMiqDOX1658vM6SEDBHC9XnW2oGh9S4niMTVD750gzqgEYuz1ertcLl+/fiUechVMyaen/oET/imolUcdSVVdUKQAqwkgKlKgRUYJBpLzTslekmlrdhWGqoLl9AvgW6KHzKi8oIufA7Hnuf01JPxwH/KdHZz9S5HwYfBBX58KQJkZxBwO3zhG8MPOwEjZSnrWWh29X+9TyLDOQBgXg0gRF7gUOAzee7+v/X5dy3xjKaXU4RZb17UeTqoKyMhW+ygvOV+j8npylFEOpFMqJm/JCyfTAxEUkEgoj8VEMpGKvCSKiARuIls05eUzb29vlEhfX1+5vbXW8/nc29bhjI3NuNXMTqq1vr+/03dNhfOXX79ISjs0s772YOlMLpt+7MvtdqMjh76K0A+jGqrST9hnhlhJRf8/hOMBfNZA36zqKHbgvWGUxFytSxeIai1aiir62mo5SJVlWephUVUz9N7vbRT2KaWoROqxA1vf6Tge0qHdZIZUNonvjjoEWOyg5DMUDa04Px/njUTUeeljDfy42ZrZE3OO9+6gNv6GZTxeV4Yy/6BF+6ifNxQHdoOQQn1G3N3aus1KDADzTO6tm1kfoTAwmNna3RgB11Z7v17XtcPdVQZeh2ijIjq6pkBnMctPnDexP9frNUPqBmkY4c7X65W+dTKK2A2diepklWu3EFCpwpCgnM/nqNF0v99D5Qt4DoC53+9vb6M75eFwIKJyzu/v70UX+h4iQUlElmU5n89MFATAJgv8FVVazGLbAA6H4+vr69obN6u19u3bt9ba9XrrvZ9fvgBYm7V2D6pU6uH2/n44HOrylE/4z3BFSqnuQjwUYXsQjV1b19VA/XsrAgcZyiDN9EAXLSS2GY53HAkJpvFTxqQ/saIfLDN/q5qtvts8Ga6MT/SlGDDTiLyieEvvW++K/Oreh3/JZ4Y7PHjmdDlPJBSR27r23s3Q6QJREVG4L8uCdV27r+u6NpooTKdYkacXK2Ttrh0G7ghT3DydTiF8ttlRsLWmUhlHVlKGbtgCcigJv7qtWxn8TPLCNBLqls3Im91hcW6USCMWB9P00FbLFkuZrpfX19f393eygZAnKaOGokiGxkrwVKB8GlZKKa+vr6+vrzpLb5BS9Fn/hozamE+4Q7wdQDxfTJjw/LwXB3MfWZhSAHNl2VirpWDK692t1loKmRu31dzdOhNFtyqRoRPnrX8GZYg82GnTEp550R9eO+b52TP8NhtO8ttVhxc+I2GQ2Hx//pM6EihMbM/PKl0A6JbgySzZAKMdDpi4O2y2v0RHn9k3gtudVcMEGtX/1cWXZem9t9uttXZva2NlwVplFKaEiLB/yCSXwxLj2DJ3856EooGPhFWPaC8dHWBDXPTUunh3lBmddsgZkdABJEjkOH4Yz4dRhxyVaNN7v9+GAcJT2cLe+9vbW+iN4ZO8XC51GXzldrvRGENXqc+Ak947ueLxeDqdTg7dvTFXavNdCbodKv6YJe6fR6GDjUJ+HJK61LJZtDwVIWa/Uq7ZxByKAvFF2VgmCXv5JOTRSbAR6Sc6gp/Gvc9+9eEb46vMCWNRdNvho/fKRxcAkQc3jEcTlfmAD3/1ADJ9ZAjcfWCEJEHMzYMfdnh3GANYIWAmFADfWt723q11AMICFbKlUD5sBSfzRFzkcWlxFtEmGcnmmXcj+yfCHBJ3QjOiEiWp6AufyeoJn8wol98S6Dd6McwJU54kP8xnxNH+4z/+w2faUXAzMjSbZRRt1gdY1/VwOooI45xtZfZPdffWG6tvyLQPM1iPCFxDGMhw5j9R8Cs9v1nzDWpiJjCXUWxNzIuUtVNbBeDTWMrzijNm9LDIZoDJ28FtekYD/v/D6hZhTPvBKj5b2u5DrPf5JhLFfRCZPhk5X4lvyFSofZSNeIAnS5vQ3d1yYSiau9wAlFrNrEDgaMP22DtEdBlMVMSZ8O7ujvvlcr/fva8KX4qgM+7X3cX1YRMcCO7Hdfj0P4k/VNbKi2W4CbWmHVnBFAWDAWZ7DK+gcWUW58Y01ciUROTRrxiibAaYEFV0FoOKIJ5ROXtGzOCRurFkRuirAEYp0SoMiAPAHuyGLSIHsimuxNLr9XZbG4DhFOlmEBe9t14PIqV+LI7+OR4oI44DgKCMfg9RFIhyahnhV4ZU/KP3bEeOLbDZXVkmi9+d8Q76gYcoljjsB4b5E9j4/IrPPuwO7GeuzN/0MQ4myEueQKKJ458ErN0b+YykOCRPj7m7u2KpTHqAyMja7d3Mbvdrfygj7QAU9DbLZzsgk3zyM/1iu2nzYh/P8Jtvhzhho8/897kPWxhw7I+INNvIXOBboFwY7WTKmSWl7SEF7hyPxyEdTCTkh1pGQURN1dxKKb/99ptPyyqLRy3LcjqdzFsEIYxwAgPFV3dXqcEzS2nNuki53W70WwZr5XLGIHl/fx4VeWZ7VAQAqFRzc4GNaDa3YqSs7oMKcxPXFuFC43XbhQeNwj+yuwTkhkwaj+2Q9md4+wcjP4qjz8/44zWeF4h8rBN+dvWh++lYzdSTfYSnDdIU6qKWIhEQM3tBArjdL+6OPko5gdq76OpCoygtLPQ0htNZWYVSZLQy5xoi+AFJJ9QN4fMmR6B27FIIjbEtwejMLOTKTYZ3350dHwjk1FQvMO8/Htv68rd5NCTK7smK4zOeptZKb2eIi1GfwmYNRYqsRPX7/U63aVgEeu+QUmu93K6tNfYdyx6HcqrNBkWIREefIUGyyyf8U5A6xBJCwkzE4VaoIlRlc7ioObqNhgg+qhmyDP5wwavDHeoQc0Fn7CPT1FykoPjD3HbB3H8c6LO7XPCc1yeIz/6YB6guPT3pAqW7m3kHBheooetoxLepSXj8sAOX+ZVzB1BUYd1dgQ5WKzdmbCrg6srM6D60JZpbzIZT/n5vaR+KCIMZ1bp1CMzFh999WPylmpiDCR/u0FGpCxp5rulDbBxERCE2KyOKKpJpKtbVUmPA4DPAqN8V8VI2ryC4LvDuBhd/MGUFYuts25JxNZj/OjsQx7eS0iYyPnNit+u6k2N5n26GWAIAFtg/nrYAHfLbOoPgaCErqse6FOjL8fR6eHm/XovgUJdDLcfjWRX3e7vcLy8vX0gWH/yEGZQ/ZD4D5C00GVcpLh2iELMOCPsksLJJdxODfX+/no+L1mWZzaLYR+3ldHb3PvxaXUSsu5tJBdzg6r2oVpVFi1ZBRPq4w8RUtVRR3RyyQYxDXY61xF8AWpeJhA95fcDM91Pf/oq4K5+HKu/D1cSKjnqnAhG2A/OJStygR44atNNT3WgRWQptm43NjlxYudq7NYi5g6XPfMbHAEo9kUV2XPTuvq6rOWGUrEAA3AUuYm4+vA4qoma2mt/vaylFygLA3GmSFkczKbr4NIpKWgUjFFnmjZWCFOICkTLqdRNnpIhWUe3WREYUs7vfZ9XNf//3v2NoLkPMZi+n33//ffyzO9PDVUUgtnZBKVpq3QrhWsfttoZAuNRjHPFyHEkPgyCqqLoUL8tyu93MfFmOqrqu67016V6T0+JwOJzPZ8xIV4aAM1xkXVcWzugua3etolradb1er4eDV6lVqh5GWe56rFQ1728Xgb/Uevq6AOZSHL2ILgcRaFGY97+SWb9drtxNh8MVMHbxSXccgIsyrmeCXRE3d2OgthLQnNqPO5qJwrwsx8L2a4Qq1jikhCUKUeo2vffDJJbZXPkZEcn5fvvsPhmfRwagyT4DkHfmffrkzd0pyfG3nyuTu5sb4TfWuu7TEQ9T1r82cYwINRh8VNaSgVROQ2noiiMvfjYyo0zPKDfolvyW+RWxT4SJhDAMusOTBST93dwSMk0yEGhq2buz0IROGMre8Xg8Ho+jGOGk+2bW58IBuBSB2yggpYBE8ZjYumCJsZzQD0XEBLswNJlx27vQnMEAzYOIh7Gntcb6opQYOdokoB6SLV0Xh8PpcDgwjHtygs1I2+5XAD5qZxsgXrx0bda8yfrzZfA/vIJ5Zi66+0x1xcxua3cpx0VU1QFzLxRo04A+HaC1jIwymffdTUZxzQp4H7KumRnKVnAlQeSDoXXDSUk2h8crryVLOM+P71irP+ozP8bDZBRF8O2REoFBHJjbO9+y5TdzZdNFIcx3NWPP1W4Dc9SZZipwcxc3s2nnkmx4eF6aEP1EgA+WsFtjXGF73O1A1PbMexWjqWxiofiPFIo42dgHTHUrb6ZsVS08BMXAt7gT50Vfpaoa8ySn5InJn2NAmzUUpxK7+TNoZRmxphQEVNy83degPtf7xWYdjbKMSG5V9T46Z/wVJNwBaKasebsDmiVJvEuZlvdRr81kiG8amQS9yTReN3Vhr3lSLo7sbuYNlItUmcahM4gB0437ybnqZ3L2Z8zzs2c+ACxVeQbr3W48bpSjs/jV/Oc25hCnk5smKD9VQXfvzc2sdbPuBsvv4kca7spMlsusI8T1PE8MyVzwRER2aBY4mdeVVxch+FHJ4na73e/3X76+qmpRxGGxzf0D7U47zGX3Ge0dWx3WThuF+Yao1eF8Ucy2zysIUJ1XKaVDIsxVUqIGC0aRlLBuYpCbUCA5Q/52XVvcZxIC97rPGd7buvSlVhat2zrA/XVOKB+xwbyJmVHAhbTk3tVVSnYqkFRBROow3xkwEAlqqFVqKaqjJdXYTnSAagNDikV0WGCptIAxIzsI+6MV4Qny8BMuR550CGN0ysyv4ikXZYnOcdfdhq14POppx3pwmJmGQsRzZ4VsV3eYMSewWx/AKiIRWbYhtrsbJUzW7i6h1320GIQ4+hkSxpLHPx9r8uf3llQeGzNd6O3tTVUZHeVTJ0wU4eEUkCoeBBuPmXjy3MQpNN+ycCwV1wifZNSnGMeakjAyp71er2026w4EBlC1VFGxLVrQne7QMYFSylI3zeho59t6p4ui97vWUZB/OR5q0WX5S0j4jH47ophJmkBGERXSg3sHIKWKkKsoYIy2mcOr6uYW00mcFAdPpSaJhFo+0Lg0FTzfffX8ebeuDz9kHotHVp9/m/jAx8gcP39Aj+3fmXVnEc6D3o8PjeR1E0Th4gL3D17q7gboyKYteXM+2xPWRXjeikykHu7r9q68Opk5ezFzcp623micC2JtszpbfqnI6AX9zGbJi8JQl5HQ3ekPCDUyOD8n4O4RKEM7apUtVSBrsDW1skGC9qxdy0h72Oz87g7V43JAUXV0+LmWt8vF3VeWWptMm8kMh8PhL3LCz9jgDgMD1EQFKN0N68qoYhqoITKK522N8npBdZcARDMzaw1QNhctEFXxqbk5TQQPuMEDaI+dXDe4/CFj/BAVA1x2a8+/2iHh81BBuXdM1cx8W/5GOMZjzpwGuLHQg6wzZKSb92ZmDFpRwI11EVmvnmKrb+8NOh0A9DxDAJCHZlLPG7j7rI8BhoGEu/shLg7G6Jscq6NV2xaVsaNcMqXE4IE832eC6JNqx5H5bLuN2ZzU3Sm+DsSThxrEROBSCm1IfdanCuWQnz0VmFrNb/fb+TRKYJSlipRaFnNfeyuC7maAFBVXAHSf3263ZVm0ln+BOPrjbx3D0rfJHk2tmsiiIg6awbp1mM9aC7UinPVKK+jq7mVRmeFvPTEH+D7FiW/PlDXDU/ukZNQzjeeH4B6Z/uGpJOSHoz1/5amSCGdqUyfMSJi3N0M2tUGl0ZiHOU2Zlkxyz1TDUiYnHpXbRxZHw8wfIN7zAj2dSN6TsG3YDBmrhebu9Jg+ZFTnF7kPz0emGvybqcmmMLtHBdQweDJYnLGskiIBfAoFxDpPSb2a6o7qTIa0WeeXg5MKtNbu3S6Xy8v5tbutba3wWhuamNltXdv10lq7rfegMpz/yGDMSPiMUbs7z3C2u7LhOH8QWgWUOd2+9oab9d7P5yO9HCIOFcWi4q4P+bue2syWrqUs9DdnM7EZu6KPeicBTPVQYybx19gJ+KNLnrg6ryzW5n3YkeENFjHcbJNsjyd7bxjQv1k7MTCHfR0c2CCDhTdn9AZ6X+/3tbV2WI7OghZayqLqPkMazMzW3pROrAn9R33IVHR31bIsErghU20jniyHmg9RHq/MZGwWIIv4mzgUvp3jEFin6fIhjGZs+4fa6byi7nV+74P4F9AyOPDmKtBZS+Lt7S1HyQVPOx6PdQbQBypeLhcqkMTeklI9VbUS+VXpg2EkN4DL7UpQuffW3t7GYgW329pHMCHcIbNOMlSauax9H7b2Y/724fX8k90do192XOpu1tGlm0FVCmtUDW7mIpLjYTZaDuvsNyJb3fJ4JqPZ7sqoksn/v+raDyjRhmPTkHcTe7zjuyKiMecwCXRmAzLmQ6uxtMVkkJhFWmkFweQboeRAR+O+nUSX2UsEtQBgSYvdAjMXyrwuZq6peGGArEwmnDdqHnBia/kV80Xj2VEtbksEC44Xg+8k/KzFkYNxdWzyhWnMDDvNblid3Q53BtuY1bIsrTWbO1BrPWqpDAdV6ca6Pb1Zx3Tv2hOxiH0Thq1tu5Pg5mewMQ+0g/Xd5xFFM04F3c07brfb4VBVpagKirtDTUWH62h4YyyYQ2sjIZq+H370VFZs996YW0w489h/yZW3Lt+Mf8XR4iPvorsP1RcdAQlwWkynEuKbtQBaiq7dAB2W0rE5JiJG0zBEZq3Rbr13V4dI4YuIHmGuFCl9aJgk8UVVMTv77eiLTBMlEhv0lMmek3IyGOxEJEkxAHkDP0NCfyrz4enCo74AIJqTyGP3uCh3T3NIzP+wHHrK6oqRQ9yNTdOU5xFR4Kp6qAUirfURIA9364apLmlldeCBtxgpMzIn+bFO+DNMY4d+8fAOE2TaPd19Er/Cg7vdbgEWI9RK3EdWOgL38rKBO+hXKXV02kpUI8NK0M74KhPyH6zr569nDJww9EDz4rDzFmXMdHfIA2D5ZHOBhAPaRAB2lp2W0rSWtq475BGRUjQeyUeD5O/iUCFWyUf1ppAMLTtrvj+2ZY+3Z9U3b8hExfHPYETPO8yb1MEyy9LHMm3xljFhfYitD+OKzprCGtkP7rTfxqIsdariP5Fod0SQUgrl5KUWdhhwFRigYs19rrS56aStUEGqoRo78NfF0Q/Z4G60+U/S3RHLR8rv7q1b6b2PhKZRuCud2VCSIGPiM1ChCVREw80lpWIYErNOKO4Nw9z3+PfRkPNPXh8ywzDtTkwhEj4UChj7I8bO8BO+p1sPaC2Vfx825A64m7q7ybCaigiL3o1ia4o+K0Fhql4sZ5qpQJAnsq/w/bi7lu3h/JPP/KV9phHtmKc95aDlKwOP44Hi+yMDyBiOZNnaYeA2gTJNgNO/71PN5g+jUxrvvH/7zgC0iH3hxcq/ffYYjRV1WmWdlXcKHvn83LTRQLW4mM9mIwDjTUZHCAdc3X4ojn64d887uDsqeRRHAUjq56bK4M/FrOkMR/JpFJ4BizJ9ZrHXoy0DM3SE+QFFBA85+3khH4LRmNsnVObHS/7x8497aBkJ8Yh1u88ADzgIsNBEDKC1nDkeTNUgSxLXt2vUKZLRniEYTtkV9ZkfWmtReTrMFe6jLEDMMHAACdY98UNL7dfx6EmPs4gjSBNIp5MPKz2vsq9dkDdwh4Q+5UZze3oX4ltMKcmnB/90OjFRMHwPvA6HA6vW79z9xPUh6JbiKu7SR7z4SCbiXFW1m1mKfBBsohJZTu+fBHD/IT/8jA3uMHA8owp3M2FdBdrIdCRx+7oyFn4I3N57QZk/h09RDYAWZwEPoEGLan2G9fzeZ8o9NKt/ERI+/1BEwH6Aj9n+8gjWvDmn7W6Nt0mpfUR0zwc8x6AIjans+hQjS4pZwTDrh7lvUWhAfOYY2fAQXFFE7NHaIUkdyuiKyVuecUMfBdp8EB4RQr6hRFhHRcQTvWATE+8Pff/S1u2vga5PMiqfj9fxijX+8uuvEagdrA+znXteHYdaZhn8HRXO5IY/6dH+berqoAV8iHpqgGck/EPE210/fl6e+CEAN0EBA8zcxb2bdetdtXNdZm7N6lJpr3BR+BaTLmA1Nzdr6IuUrirGvB5sUL6bQ8xk+/sv0gmflzyW6Y5ROW7/It5y7xjhCA4fGkQoWeSHA1ZdbGb6EJ5FxDDJrU9EFCCsiBwWqoplOS7Lcr/ekepHhSoYsBhMrJQSSoGnmgYyO0ZIYok2w5rrYcETCYtfxbsCoJUdUFJQziMSbqZv3m0sI51AXKZOu4OxYf59ZLyZbe48hEGMYtrETD42O0m3nmLBuSomDsBNoQ44yxFQyCPU0fpo1s1K0dy3GtQZJnwaq63FjPOSgtrtbiKZgHekfQeL2OhZE/U6tVs2xRTRtTVAVfR667f72/HYvry8Hk+n9X5VRanLouqwablavUOghYZWW9tKs3tFWYoP1QJD41eBFC0jAFWGh6r33q3nYPGMObuFxJ3e90RUJBFCmXxvDGVaFp/hB1TEi0BFWrtTuxX1MpO4e1+hwqoU7i5SVGpXuNm6cqrSfeRwliLM7TKB2KBpKEzuk3Vd39/eVfV0Op4Oh9PpKKLfv3/vbqp6WA7Mu1nXdV1NVZcjrYXmIPuBobuZoFxuozKfQNraFyxaC9OdMNqqOVSkaJFa62GyTREpjLM3w+n0Eghg5lMGAmYIdZklSRlo4sPH+FDZpBlU1YHmRj9wnMuiJaR0lkIVcxHJ7uLMsqgK8mZP2affL+/h0FdVFG1mtrZ1XVtvHe4qPGZzc/P16qpay6K1QhRMQpsvrdPeU9xVUIv23pZSF8q6MogsgFK0934T+0AclUdR8w855GcPyIeiKeHeeRIVYHEwg6M3u99XAA5Th7uok87wR2XgF/VD7yw/5C7qS1aPyIjitNibklTZTcytFMUjZQX2hDxfowNxuoZL4JFI+dRd++x+ZG6zoIS4d3E4OmsNuJubgeltCIVK3UCINbNaDwC6i3JIgzmku1QVsHYaXCJLSbZUPdHee2t9VDefFWho/Aw7yocnjpmSs2MaAfrZ5lxmae0wV2Zza77yJgcpz2Ajs7UL/7nZKs0ijG53ZX9gJqkZ0nZvzItNRDasYh+I1rwkM2FRiFIIYX76cNpOS0aZojt/ez4sGqX1jRa0wZbdvZTHsLUd+iHh4Ye78Pz8h/efBxlYVZLV1N3Mbrdba+uylJm0NO1IBJrcAMiVliWIgF2iGP1v2ylGPluGm4jb2Pb0o8/5mvlY2B0qm3LOM+tx/J0mE5sGymm6FREbxQiHqQ3Wzc27d1Jzp+DpvbuZlaVyB1RVwWqEKrK5tp+nzdSbOprUdndnKb4AO8zENhaizlAbl83grDCcYqYR5H2QaVkNq2/mYIT4HVTkZybdedrVR9QVecg4zVdPldryIO4PsnekcTF745k0+LRjTZfpNuHMMEP6jd/y/0Ev6J3HJCjxFvaiIdW2RI8CGjfr6DP6JSh8UN9//PxHaPykwmKPkPzhuq6tQeRACw4POHZzprciH1WYL/LxBIXDzLl+pJUAHvDtQ1iMyx6i4fjXY4wdycRQyZhRxMcMCEoBtsHxOEA3CBgQE+sxg3XvfldVhhtNbaeoakt20Tzz6H15OBxY6ZnpAufXF+o5tD347A3G5/M487xGtCTB9zm9ADM+hufS+7ZvRK3cuDOG1U8iJbgVMksk4skke1v3LqUdBGYQilOI2VpqJuOJQcWLYmL2FBWQrVNzc8Y1nBazcpy7r20NipCx3R5SsYAE8/z8gWHmx3j4g+d/PM7Dlk0BiUNnBB4Bfg6giriq8Xlqgu4+vY7bEsXMwjzIMFIXANR8VFW1yBaduFfW5YfcPo5qHtsoNA5gFNFN4dd8RgWjRpnSx+nJnWAGdldmOprDpZtbRx/6LNUPN5nlQfVhJrutjo3NwBf5AapKPUdnCLK7095gj3leuxMPwRIp8j5+kvnMDjwyiOdX6Cypzocz74rBI8kVH8Hb7hVIBbnzOHGUYXDaPZPHzAvM28i57XY7rsBMAH2WFyHpkcj3T7GBtP/PvZVtPuz1G516/0n0+wEb5C92y475UQjbCIMISS+m8U196zTwQO0QNEZ77z5rqMQ4ANb1HiW90i5bKds4mDj24Up5ZQdu2oWttufj6tgBwiHEvYSf3vP58bfd3X1zmkyw4N8q1ECAPgRWA1CPW/vlGMfdj8cj6/OxUB/ZHV3SwS4IK+yHdT6fY+H5xANKduLi8+VDpHz4NlguEjw8/3A3eTOLNteBluOf2LPQWH4GiTwB3nlWGp9/K0m3z+N4Asv4eQaYONQQE0hlOFoWvdiyaIBxSuACpdbghM94FZ93CPaMZjso/MNxxvuDjnrKyAw5u4upmZlLNYOqcwFDCwYAdRdA3GxUkxJGD1cO7e5lNJ/dpPa5rQ+Wg5jYZ/ISHmTdsIjy8II5pD1gyK77qOo4aSU7zs5tcXeWqze3YhhCOw30rAAHGfKeB7eFYxKFzIV4aXJGl1lBzMxyk3RPBpXd2cXpxFeUDyNqLEWcPgAlV5h/mx/ejRz/fFYaszS4Qbk7Po/4zWgT45fZXExS6CLwQE0yguURMu0Ir0zsdt7nHTLjqXpQUkeHPObuniKB6+HI2f/r/YSfHe3zzaG8fjD2c5KoTi0LsUjMAzOzWecC86YAYJVVFvkLQpXhII5QHhnL7spiFUBpkT/f6/EiAjFbmVJLR5FtlLI9EGYiYHcTWeDDbYOBdeLurVsgj+r2oqziIolh1PGYnhNhVrfb7bYOJBxVFZaFZfyiPufzYcm0r+BRepQnNoLZam+H3pjEYrfDMXJWMnW6WDaATd7IT9I/9xgYv0VihprEws+WkNEsjyyTAu7em8XgXKVap/0iv1FVozEuYYEKc+/9RBmHsaO71+wAK3/eiNPTSTyPsy0pbdMYKueep0FqraXogNvGTjJjT5dlcfaO7ei9WW+8r7WIFmzqL9uJKQBR6b31dgdAP5BPOYeTiah/bJLVzuUAzL7njqn72aYcmg2BM5539AL31u3xAqBlmVZybb1fb9e2mohYv5XDsixHGeKiQQoTg9Z1vfe2LMt0V5hMV0SoWD11YmDm+PU6EttKKS8vL7d/3Nl1XaaVZSNe+ZjmKlRHHib9irxZyj76NHbMUoVfSd58PEpuMgnxCBOXB0UjvvUkRmLKTR/D1aMUHfsc8BnYgoQbeCzpLbMucLz9QyCPmyKyi8gJjnc8LBHaxt3AsCp7xIvbzMA8nU5rN3dvdNb7R2aJvIn5kHYn8eHWfLhlGwbKQwuXx/uOGftCYtlFGDSrqgoFpo/Lk73YLGoN4RPqEOt39zB6+6M2qKmWTP6QyW2cuMjmC8pr1+2FD8fpLkjh+b17bzI4wQiEzbMdccbNTRKqRNmOgOPnc5EkixLUXl5eyPpiY5+PGz8hCu2wK5YWJvgMG/ghJOQD+kMi/mevDAa7+WSChdlLOG/j/6+9a21y3Ma1B6Bsd/fMrdr9nfvr924ybUsicD+APIIouXsmySR7t5aV6nhkmQ8QLwIgkIGZP0uSQPu8VtuK6M+QLu3j/UmUeVDN2uWPdV2ny9XdhbcoOB52qHayNuzpM+Pox0B5+uEwqIjEhZ11NfGl87PaS47C3eHN3uAG1whMif8ilXKcN7ZR3GtMkwIEe7Q75UTtK2TGHKMEBGz3jgDwqHYCA1xg4i2zI8Kl6S5mLoLVUF2smfovRS9xo9Lcq6H5TrUfokQMveqqTraOWWrIj6l1MxbZzIICmb6Be52ZS374AQLkjePWk0sMfGd/QNjeiX6GE9QfRYE4EHkeOgiDkaJBDNmnd+yBIQT8eYq2EpHGu1U1/IS0jhJE02ViSGopE0m0WYOzOnogg43MhsXkQyqXl387bPOx5xZkFIs4sCua5sys9ie1FtEwN7d8bHnco+RJQNwVkZR9O+4fEkF2CGRr/ohSeQIIK0Wt0sOpzI0JmiLVKrwAourTdAG0lALf/AGN1yYVTrq201dR4+wj/cTClcYxL9v64hKAlO1cNESlZLAcN+vYTknU9xrBd/Jlwn8ggO9vz6Z6amCLIYJCmE2UiEG9Gsk9I/uwIb6zPyFvR8cijWi1306IdyyZxPnzaZrW5mn03VWmPOPTpZ4ymPztcUfdHem2WOuhf46FbuN2r85mKHOxiqq11gqLs76KaL8sAhFxbcsFEPcHeu3bKiJSwog6GsEyEX7A/hM0ws7WnnFfeVYMWKvDV6DZM+EtFUUk/q/rWk20lLiJJqJTiYOiKlTdLC5oxcYKioqUCcy9592szLVbL/HnPZNf2EKl5yNb1zXChUNHlX4o4oHwuGvPWk01pTNkBrMNnw/vE+MHqmum489uz31/GxbCsdz9er3ebrc45NdaI140qtJznpkIcw+bjV3H+5bSRYsyiC8Ze9/f36PDWuuyLkArVOzBqU+JMCNrXthxqcOa/exAJSK9Gsn2vqROqFW7N/lIe66IoIuUWmvcaWqcJjlbXJuo8s24cgDlwAX2QDyu/fgBO0tGCL1IGLbdxfYAaq3ar75bjwUFsPSq1UUVEEGPhnWR5FgqEfFJE5zu0jdIUaxA0kes1xWPLNHLsvBM2Ew1Xa3tsroFTNMvJ3sx+IwUydoH0RdYeiTCTKIEIH+b7UMU+6fjPmufvp/Jnj/hudp6GrUNtvvDZNYpSITuPpWdKsSf154Lp2PBFsUhPIXWlHGHlj88z5KWjYfHtXG6meSGF9qup9z9+UP/m6B5tDS4u3uNCuxaSpFIdxh3WyIHaUUNw2HiBTlTXVxmNjRrMnqI33gmfLYEhzPAtb+2aS/m7XZVowdvlydbfDng3k6nqhNg0KmUC1Tqam48tzZSVCkQyKSllOpmbr7UZVkiYUkrjdLN+NJj0OJieBSypMIpIqF3WZfbYc7JBCNnYvADIjzCbQAd8fUD/BkkzPDw97c8k4zVIhLlPnl4ZmoZ7HHSUlWvrEy2c0EeZV+2gIrJmjJ2X6/XTR5IsX0YnR8lIdnS96+ZO2rPPDoODBSYuncVB0oEsoFYu5c/BqDuL5XJZjSP/t1bZT/3AjcVMTcR1NVVxMRQ1QuKOCog8AIxuMZfR40nbtJr79X+rQEQc4OLeYUrvLrHYXF7Hnc03NDqIkWOLXFvYaM6TeKiquUywcV1JcRqFLUSqKpJUx3n+3vok2Zr5Ll/eXm7TtBLUWweuSC82+2Grkp5OiiqqgryXdXSS8ySJQ/b/Wz3M55kQmJGXYoLYvBp0xRXeez5D2l+aPE8MlZkqxU1c9l7BalfbOKx6KRFdHo85ijLFRhiUbtSe1JBV0fcCPXYENFSIyVCjDIVW31el4B8DRfFuvJ8pZpCxSMGBQdWV8pmGQsyyHaC3KLbqWzupgagtk4H02zGY1GZoJALM2KoT0VtWetqwGpw1avqFLdPzR21qgpQIC7i4lEA1AWYSqRXXOEirqVAWtiKIVyV7sE9IqOG2Ro1ubzfOXQ3eOSL8B6s43ETReBeV0fTRt0qQimFQm8mxautHtcXuxNZS5TDjQrm7g6BuWlRF9yXebX6cr29vL0CeDweLy+v3759M1vc5VImVSlS1rW+vBS4rtXqPKvq5foC4P5YRCdRv1xbjOg8zz6vLW+Ka6FOi56NZks6FFjb1cUnKaEpKUNfIeUsSZIgIr/Tdlv6pZQiwLyP7Wb7UVL8WFQMoj7/KqIUtuFsReP+vdw8wo1uEIEp0K6fz7ZWPLRc4CilTGUKGz4cAn37+j/rOsfJPS5VRjmcZVmi4LG7R6y3mJhI7cEbH2XgzrTH9VD3ZUPS9ZF01Ge6/gCX+GcQdDAP0mlXzWnvcu/Z1CMgW+OynEMFLlBHv/sEtMyBEuV2IS7xL8EEdZWORi2xort3c0sdnoij9QNxeLtB4bCOvOJwV/gKV4fU6r2kYL8zrkVKiaSFA1TRbjkj8sPO61KWzXpuLa6g5e0LtfP+PkuqKdsoPGFetMxPj98et+ADTBi2b3jyrKt8SPlR9eoPbKfKM5LlgojNpq2m9PYTE8BhIg5fVzN4cUyYzCzycRUU9zVCfFUVCHNABVBZyMDhUHdz2QFtU0ezuug97g6HfQUQ/k3uPR3Q+QjOfjIRDicQbtLwAfknQCmlwsXE62Jmq1RUAZT+6JBTJP4B3JIMCdLNX5YOosSPvD27HjTmBm5Mfz8B1yUqJQES1Xa5ZGoKzzS0eIfBlpF/SfuNz7yEoMNff/mFsA1Bx9NX1qDov8oYxvXmfSF8Tqc3THX4gD0RDtudIUw7x6kL4We0Ad+OC2xw2J8hxwlbCIkWqu5wmqmZzS16y5otn4QUyf0fufB4qRcHVpEZBrp9iTtKJMNe1+fiiVsZHHmskQIBciAR6flCiohUaxfDAYgzie1TI+fwlyJX2s3Yc0N27gGAu7Eqp/ecS/EtscqqexOG7mcxVs86jxasJA5pnupaSrobGoe6eJ8+iXg5axx5X0rPh23pFkWez1GmDez4WRvIzBKE82s0aeT15mk86/b4zcfzOe3niG8Zsfmyu8vBqpQvv0RslrNOlqCUYt09SNlTSmHKgtJrCmT34xEnud5dyuTjGk5bPohz7ykVc2Aub4U+A8cR7vmroJXtczD1uDYqLqal1jz3PPOMZ9kMPQyUiQo72tvTJ2rk+OySL47UPOK2OBoHrF9+l2TjHhjkqTwJd4KnPJma/IFRRIE2FenqKG2k/Mnx8+nOZsEoSVl4tulsp5MnoDLXzrF1xJA/rZ3iG7/Kn8shQi3EQLNhtlwNAVVxgVUFTkLDj0bNvJt4rpOfO+txBmuCOApuDDQtB3VLEv0c2VJ+0/fy0DVSuo/TbQa9LfyyrrK6yzRN8B2sB7oamLSZmZzMYWDb/UM/+TUu2RP1NKkoAAPTtD3oAerDlE5PbiJivWRKXPvwfbKTkJOhdgYqxz1d76FPjKchQ7Qe+SHpAI89g8sT8DOV5+O2Q499txlh+Jxz+IDUn4/7w5LwFN+G6fHDdeq12RntDQFaBenG+tspTlyw2IYR2RpMR2KMG8qL9hw/eW7DSncZuAfWmD280aynG0EiP0/qPg4q6KdicKBAAO6wlkQVJdgJ3OCXkKtAuOHMbKlrDb982mBCJ2PDxulDldcTnHjywc1XtOvHnomwJzH1Xvrb45/m5ltJpo0TPUMCFYlyeehahiTNwvvNtPhn+OJ5S4jy050mgRN1d1jXKdP8/jYsYSBpfsgQYPseYfv72wf4JoemsjtcuLt5ZGuIaHwg5TL1pmJsyzny7kwOx1kdmdRH1lHZayn8G9f1qSxZz7FBdCHG1F4gbgDHx/DKI3rSGDPLZyRN/3Lr0NOjgcY4Ycau5mkMoNl9iPxo/BvWT6hbSELAe8UBkVrn/dVqkX28ch5aRHQqrFlJcUeHcmYr7cZgubKHktLyHomKzDTv4DNx94GMOm1DDyfMZa9/DsTws9vpcvJebAhcF4I65rkazEwsiLBlW/YuCa+XN1Y4Ja/PsodP2j7Wk3NgnttGhJzTUZiQGoP2mMGegi4iM5ioJ6OOJMNA5u6e4ja854Fsw6lDJeyL1R3SEodGGeToJ/I8VqvqtiyLmjCTBQFx7ZmSKU9UNRRX7FdKDsJt4GJFUA3LsixrNTOVCZDV1nWNKt9FRFuS+ZZcxqHiugvjQme0ETyx9ILJvHIWmSYy2N39drvFEqjkmNn7+/vri7ArM7vf7zHt2quUhCcjoB26K+FsKQNNXBfkoOhk80w+PpNpf4ms+6CR8fEJmTiFh3d10czW+T5gvksppUSOUAt7WCvg14XQ1CRN6alTzex2u2XwYn9Ex94qg8EwwwPGIFOecay8qZmyTxmPn8nfrBhkqHWpEbcHUrc25qgU1mMKCbDnSdqvbJHhEe5WfSoXTzrwUfRllAXgLm7iJnB1ABBA4UBUcQv3Y0uurS5u1VjhhF2hn2nneX5/f489e319vVwuuYZrdvqRGq3nBIhynCVVYyd/FZFAAm4/Tym32y0Sz0hPZKiq+eLsf14bUJFMinD2fbiM9stf8X5Y1x7LLCKEcvzP4dWqwXPegMCx+/3OEU8lHr8aHk7oOTmyRB4YydA413wCyQiRJ3E6m0xx2JvOtpEjoYMj6io4MAVCK+BQJ4+RWmuol+ic6ejPJNzbrz70TwA7ISkSGbLdXVQlomjCsk3x1SddPYyxB0lIgZPVhPjq8Xh4r9cVMf4AqMaTWoIIzaxoyZAnDJmuglQacwjK5+2K+PY3Hwj//dsgcNgkmQwy/G+3Gyvyxh7VsLoJ1nWNdGqV4sDNrYZJgpAPkEb564xsncjH+6sDHe5cFPQsxZNn+5Tpii/nVQ10OMCF5Df8k63akn+FjSlsbCxTSTWDbY4QujFZZplwic6GHeLMM4C8a27uLlLqKm5x6RaAhCrdrTLRVUWrH2ykwAFQ8zxfr9eoARQ0JiK8c82lcQIsZMn8hTG94S4cBwokGG4MDis1M9YY+jTA+juf4wfPeD/c/w9aR/GEAumJHSTN169fyLZ4O97dG5y7Fzh+5/2AQ4ziCTPCd3GwzUjShjLac24TgMjEnG0tR8nwbJFEnY/fz7AYiPDkq3BAJ6vxVIqqzstdRLSnEg57pbjXtZpt1nkia9brOERRrat5Ak0mQknMsuexg2gLQGsEF6Gj0mWRmLs3l4eIiEQS2MyJCPdIfZ03ycyCJrm7oTqu6/ry8hLHPCau5K6zh9x6YisJZGIS7i9fvjC9BZJo/c9uGbuI8adYx1v2BFqN81CjzM0XsMF/X9Q1wB4aJdMfEntX2w19nMMEIPaYVk0cOOjQyCqyISRLRT7JU8c+SQnO2FW0ZgXtcy39QC2ryBZD04cIhzU22UVE1H20fnsePr3DVvmhdSBIy/fpBR5H040S8sIj8YzIySXXeC3uHAWZWXfxTdP09vaWTXNxJ3BZlm/fvlkrGlNZPmXgkuRHRAWynvgJ0pWifAr6oP0HSEIcDsySosyGY9f9ficYrYVVaD5170TOYRQkR0A+1gntEWkmR9mIIMK8SR/wDLaaSnkMnuIBBEdAHEkUe3Il/TQnaTMZ1yhSx662CatCFf2Cn3RTFZL82Qs9CDSfCZ+TXxvOKtBK/DUK7EvZBhKFCEShopdyToTdttyusZGLZYe7dUMudacBepJkdV5avsYeLYgwwqkoFYexTvf3/3uTvWuNYGEayIxvAN7f3wkWduLu3ktlmRkvpquI1S07S/bBstvMoIOPy3MxiCBCWtW4tYEc65MrJxk5kBiYHERcXmrGSx9lCPhPd4cZRIqqJJStdb1driKR20K8w8FcVBHZEAG4waqbbjlbaW40M1uru6Nkm+3AOMIGA4TFUwQtp3BTN7lSTaHS8etGIQq3E+aVdyhHdbq7y1Yww3r6QHe/3W7eS67z0II9/+ITM3t9fWUnxJ748Hg8gt+/vr6+vLzIvijff1gjq8qYOXzONBN4TkVjjaOQNP5Lq4y0wolavUqPxs19PnMFSWkBGEfyixb3CVduvB2c/flkFUcUGjykHT8Ca3WaLqFHiUi4p6xV5xmz7paUIhZdSnDc6/VlnuflsQQ7v043cfVq03QB4K2UbNDhVBQwNZ3cQ1uFi8yPpdb71y9vtZorTDsvqKsLpEChPX2ouHtcul1WEymAik5mtpr7WlefAajWUi69eLMDMLegDXfM8yIit+kipbRgpakUVUt3zC/TZV3Xpa6qOl0v0/VCPFCZVIpVn+eHiFyv18uktVarENHr5UVvzb9qZipTlmAh3KZpen19fTwe8zyDdbPNgqTntbrodL2JiEEeS3PztmMt3OFSFN3I9AxXsnaAzHNP3/5IvTxvz8ZVnPOLZ/Mxg3SzXEA4+PjTgXRaDet9TjMvDszzbK1nFYH16xY5IIw6haWSOzwWhTpTnwCIE55yX0fBhX0MOJ6ksmJ3dEDnl5kdDHs/PuFCIdl8L2bSOROVBI28LG1WKXUf4MXFAVNvlWAkNILaaqlDgEaGqg7XVta8yT1vFckkMn8D6m6riTtMVCC8YTgcTsIhTo7L0itBYOjep3j5GMO5MWPZdjT3bymCFJ2/unuOU+tsDugZr/mTRuGqYWXtp52TKi7f2Z4pPvjBfv7YdiT1jMYZq/PM89qPcDA3EbGspjU/8E9p0zDRYdJHyhx+n4U7M6vmz+w2b+GghXqOnRUJdh5f5VTtgW0Zh0Lbukxai4ulywQiIrrUtaBMEFFxVUS9B+f2iJmtLRYU7iI6bbjtm5+Nx60MHxzQkURSpol+4dKTzC7LwoTWuasjePMQp22YAHVOJm4aXr5M02CPIef+YJRj+zckwpPJ9DZgdf5JBuAptFnu889pu+S/SCTBJ3mrhpnllVMLLyndd0iGqL9LOUC5R2M98cMOAW5xIqL2Kz0YkuAz2XK0kfJFRGRa1xmoikkqBJEpEC5ea3UwSChikTbsj/ImUfY9TwaJcjiTDBMKrsxErDv6Mic+RQt2i84BszkUid8dgxCiUTugfPZuu8vHeE/q0ylOHBE6t9zPkaX+nvasn097H0lxn6OI0M5qBfZLwB63zf9Uk9Un6S242djXNsovcJHZyqr9mm8pxayl35NkM3D30nNCU1NCtwLzZaJmNsNySkF4IhBVL8wp4KoiGtehXKy6RC4nVYiLrIu5RBYmtHElFugeqiniuaNXaBnIIz7zmiIdTfHV/f1bjg6L57lgOhIG5IdDHEweMT+3lIMoswO6ZLJvRlXDEos9sv4GysnbRASI7n60qz+wjRS4/3wUKjhQY279Ybtw87MmvW+7iBk/05uPbDv/Pp/xsLf/Sj+hRkBQttsOPgAW34rOv81hC2nZGUiEIRWtF3MmU497SXu7cPRc4GZRAVC8FIuKf9WDWiG9cmjflaD5OL6KSBeyogNYpKfWzTonP2uvyCldXQwLuKWYAcJcJO5kNCqSdAf6mQthuClGSJZUZHM3BHYKmPQr4adYeNxiNoKXuPGxJHzW/7P2myUh9qSoekJyGcMHKOUJyxMF9ae2CQkb+DSzWJpP6NTKK/FkBxcRZnFkgKK7hxAlUiKxopBptL6Qbx1RxHqmAFbw2FI/NNAXhRiWyDoIFykX87VWs2UVkeIaKTsFau3abQRkh5cRq4UdTEQkpAzcAS+6xTAQibVfhpCur1LyhA8gL5B4kNkc+cuaBP4pkx7kGMPWBnTJ1pf8cyoyBC+6EvH9iII9ou/28Yd6+QltmA9RN0ObL2QKHACLvZ7y50wex0RPWUeKfYomvfJW3jxPzcwibCq6Yo3YdV1//fXXCNfamzqBzY/XTmgh6F5fXykt84fcfyQSRyPLWUSgIjyt9VG8FvPwoDhgMsHEpumqHX0PmAwRkaIsxzVoB3nnKKupecbCoRI2celadCwt240zMa+LDQNR2HKSeZvKvoAJqZc3g+Of1uMbdW9VOqLmd7YjrrfZ/oa+fkLL0xto6cjaPqZGd/w2EP221oocRPhiCL04vazrGiTHxCdIhxZWPy+lfPnypdb6/v7+yy+/lJ6A3XvNSkklmmOgL1++hP/kcrk8Ho+wfwYXv16vb29v3i3vvj/2xKAhY2PEELCX22Vd1/nxgLmqalQaMHMzEdXpKiG91V1KUalrKIAZKxt5qGq5XJroCMkmgq5xI93SCEbA5zG9eL70S0OZr4XAj0XRoVRrnefZvUlF60UF44dkdgOrDk9sbvFVDjz0fjKstUILdhi2Mywd27PngyFne+2ZGvmDePxU+Ox964R/Zmq7TnLAYyneCwQE1z7OkGr/xtSYN/NsSpJim5CY4GCSJL97Vl+RbScJ8wcRud/vNDAExsQRf5qmTCGMwKJHkaHoGWToco9DMFLZk/1wnudpD1zu5ePxQLLZbJcPVkQnog3XPeiPZxgrEYPkKnX1yByaIWg9ZVsUMDKzNUXTv91e8iblD1kVp0gcBIV0LZTEA4D5Z+PBgK9P0RFActVkCsReQA10O0Dy0yH+rdqASGxMODb8fSw1bwq3Zuj2lA31fvob2zFypyriLLdgPpXk+Xx6qt1qUSDRIfY3d7EPVQubBDo98DMSa8lqDw2b2vOFxZtMikGibWpbrn+SphRxzCFDWFau2fFVtRtjVdUsOJm4Bz06BBCp5hAmXBKgZZOOAdaWnxuerrQA5xTi7qec+Pg+n1AGes/sFIpDRd6wp34gwrOjxVMqOqVD2StpPyqm/vy2zTDFpmfWk5EeewAeZQB1exz01QGYvb+dhM8/qf3gzYdnhJf4wmeQ3mVby/pGGBi8ZwHwHnsRmiRxKOhBDiZ43xldNqtaJkLyJ+kO8UtXBbnyvFSeCUMav729ubuoQj2iTEWkJJ+edLibtGIsJnCvcBFFS5efQD/PcylFuza4uelUdJ9xNEMpy/YBOfJC0EvGs3P+3HXcSAJw2C1PKnEekYxyGLHxxB+UhH85fY7iPbnKMmxrTziWTfQEIekwyxj+9mM6jPYxiDQ5rvPAA4+TsMZ/2KZhQsMsT+cxYADnxKI/nk5B0zSF1oaEskSXkjA+aLKkbDl5iKD5ZVkiicDlcokAlGVd12pLKJsq4oF24lBzif9EVHSCmFSYIfyFEBVptGXYrVNVXdtsL6WEnWdge+ju0M5oNif4NF0yU+RCaKkiM/KWUeaE2D6ghCwN/nKC+XmNC5S9n/a0ZTqUcon3s58ZSVl7Rofb0GfCiy9ce0Y8bjoS0/SksMT79TMqbEQY083+rmmafv3116AiWiAiPpvyik4q6aFq0WlmDOyWswz3GrpAI3bSokN7KRIvCPyOW3bu/vb2RuPQ++O+epu/XK7bhYN2m0G742Fyqb3YfRNakU8qoPvy8qK90HGFbdwOjQiH1WUfHduRfjLPsh7ayw0zs6Ll+CvseSI7HwbKfGHD2jRVAJ4Qenv4nM7/WsI+rkKTdpO5W4ZGlgfepUL+CWkGz62mfCeSHWZ/j2PzFV9vN6TYFTaqdcOU8JkrqHmcSBV5Xy3dUs/rWZYlxovLqTykZXZFt56IRBUnxnnwpkU00iHNP5dpd1EAyf4R0pJ6iPPOiDfdY51MpBQUVYXCa1WYiECLA2bVzNwqxZfoJICgurv0I4cfaIuzzdhA4PD1MMdRxHGnuTRJnn3wWtP+6tORhgecGzCJf/Nm5f1CP5Czw2dhAP9uLYMi01LWp0i0hMNqm/qaf4U9+WV45oFU1aEAPCN/IkLsKRB9i48c+TvbeexofL7dbtJt5Z5yin779i2IMGQaLbM0Afs+56/3mluUZmEbJOcImGY5fBQ73i+kRugMcb2Ucr1eUVdUa/BziG72q575YgvjNF+zp0G6DTmfnYqrKyYpKrpVltuz5GySRqeoUgo5Qt426cfCoMYczva4L8Nrw6YMbSA2JK9DfrLJjbPUbx9Iwr+85bWISDKVtK9i93N2M+xOd5sWw62RbkHM5Pds3DggFE4AgGx2x/fHA3tTZaATY4Z/tE0ApKiY1lpXqyLiggi8LJfJzBzQUrr2BZUSznQAX758AVBrvd/v4Ydp1fA6ynZHwjRNLUlmrYvqdLmot6h/MUN86+2AVGqXewG+Mk1lmgB8e3+/Xq9airpXs3lZSim3262nLYBquZRJIev8WJbl7e1tnR+RZex2u6kq1F3scrm6O3oSETMTaCnFlkVLEUitdVlWQ/Vynabpy5cvv/zyi3v9+vUrgH/9618Avn796u7LugTo397eLtfrPM///N9/hgJ/uVzQEleam0eQgHsUxiphQLKKR11KKfM8R8614ClULnyPfw2H2j3ADXeCieyPHsLngc6D9MvqGfbM9zvzjrKVP4iYs4kLZBZmkuLUg3/N8+y9SB5TFVovAy5ldyanSKippB9Xjb2MRVdoAcR5p6laVjemJmMVimNDshgxuCKPhcRkt5SHRykfjrij9Y8Uwu60p+tjD5ScHI95L8OEU/f5My3FVWaEoPysdZdvJxq926UUXDc4MiNLwJGm7VK2UB5NPpgBNOERNTPTRwQYBBPNcyDEsn/cuz+QHCQz3WAHDOhblmWe53Vd//73vzd53uFMi8LvQOnf2IiCf34jSLMhVETCP4yD4ZB8hGcfdnUE3SD9MsHwLMZpxCdblqSHJTPY3kRE0tXELPI8Pw0pmpCoTvcx1vl5HonF96JpL1eSdS2khKpdirYTXTwMA493W/Oei4zqU0yGKcM8eTus16anLKXR0nsUC7uiFro7c3eo5VSCHDeHwkZ7eXkBcLlcImBIuhZkKajoyEqeYUC0HOxCjp7vH+bffmry/m3tL6H5YVzue0aAZz/JhhBivKriw1/lNxl9xb32vm3S/YHReBIBokDX1vg8X7YepNTHraU89BSsaMl/EH8pl9FNmnkGkg7BJANPt/6w51venV0lJR1Gd2BwA5BCxiPgi1FImmoJyF6AR/Oe+ChPjMJ52BUKc84w5BKJWVLSJP480v4zUS+XGRoyV5F3i5tEpYAxH1xylsmn+yeyVUH6ne0Uk/7MNpAf+VdWfHxvAMuAyniYIWb7vEHDcH5o6AhDVERCidYPkn8yueKG/aLWRtOGiEDOgzrYWuwo0gUZ7LNUDOLI3a/Tlr1jUCNJHkiZ2NH1QzOb59l6No4BEJRO2TxZ0s2gOCNljPdeHizfKoo3abzJoCeZ5aWR1PNBlC2ck/HDLD9rq9q94yyaQoIISY6eXRqZ13gSmJwnyzPld362sGqw+qljPBl0AAi5s7szqW5+HwdyYieDl4/gpQaUzYTEoprqasYIeR/DDUnbHtKOcOakQBJhU6o/27R2JkTymxOVKaYDxXk3dIXkqRP/KJeI3ASodCUwjluBYewwgx5A5HSRZHT2bn0lRUk/7yGxCUm3FvIGDKOQcjjPIJ6c84ZyL9QVRhHkhXBi8UPuWWgW6NKegGWAe8jzCGpf1zXsPRlW1K4zhv3hbeh2EyZ/imA80p6l++KZmw8/4aYTf3wvIWVfHPq0kRrJQ8n++ENPWFQNpC5P11A9CWE7FDj4zrYRoXb/e+3VmAe+Kz3QrK6bEMgCEHukJ4pTDhDD4ldhqMi/7UfHTWUHECHwy7L87W9/Q8qPwgXzwCmpLEy+dIe9zY3Wqg3tgBA+WbCTvZEms65fexLLYCtxMOYTjqv7TBMZmORZnlT3DMCBd/zQvn5n+0nd/mijciH7Ft+eMgscZNH2/MkoeXORmP6RHbSNSK7FcLNFK5fRdoC9n1b3tsxPQbxVZYoWihyAUOcoxIgxl8vl2/Ir9haI+CpqIZCdS9JLSSpZMsQQfI2CJawpTJpoZvf7/X6/E8vjnWCELJZYekolT+dbEhv5hSf/3gALZiXzveIaBhj0qw9xQL3f75GvNa5oUVSGekxyzVw21CpC7HK5xOmRNSS8m6m8n2kHznrkjL+nHUn9D+z8e1rG+zz0gN/PZkUcy4c3AJF2/sj7+HkYK08DjTgdiJh/0udm6y7pPmfeIGI7tzjap4Y0+cc//vHJK/9t/23/bT+z/R+ZJ5w2IrgGVQAAAABJRU5ErkJggg==", "path": "image.png" }
Which of the following statements is true?
[ "Soap is a reactant in the saponification reaction.", "Together, the products of a chemical reaction have the same arrangement of atoms as the reactants.", "A chemical change occurs during saponification." ]
2
A substance's chemical structure depends on the number and types of atoms in each of its molecules, as well as on how those atoms are arranged. Substances with different chemical structures have different physical and chemical properties. When a substance is a reactant in a chemical reaction, its chemical structure changes. During the reaction, the atoms that make up the reactants are rearranged to form products. After the reaction, the products together are composed of the same atoms as the reactants, but those atoms are arranged in a different way. So, the products have different chemical structures than the reactants. The chemical reaction that produces soap is called saponification. During one type of saponification, oil and sodium hydroxide undergo a chemical change to produce glycerol and soap. As a result of this reaction, the soap has different properties than the oil and sodium hydroxide. Some of these properties are what give soap its cleaning ability.
Soap is a reactant in the saponification reaction. Soap is produced during saponification. So, soap is a product, not a reactant, in this reaction. Together, the products of a chemical reaction have the same arrangement of atoms as the reactants. The products of a chemical reaction are made up of the same number and types of atoms as the reactants, but the atoms are organized in a different way. So, the products have a different arrangement of atoms compared to the reactants. A substance's chemical structure affects its properties. Substances with different chemical structures have different physical and chemical properties. So, a substance's chemical structure affects its properties. A chemical change occurs during saponification. Saponification is a chemical reaction. As in all chemical reactions, the reactants go through a chemical change during saponification to form the products.
A chemical change occurs during saponification.
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAIAAACmkWkFAABLv0lEQVR4nO2dd3gU1frH3zPbki3pDULKJpSQkEDoEJAiRZBmRwEvKEqxK00sWFAERUW8ItwLgoLtpxRFqZcaOgIhJAQISSCUNJJsS9nN7vn9cXaHJdkkW2Y3s3A+D4/P7GT2zNmZr9/3PWXmIIwxeBtXK3XNHhMdIPNATSj3MlSHjiJs6QrUp6bOeKlUfbFUVVNnVNXoVTWGlq6Rw0iETLjc199XHC73TW4V6CMUtHSNKA5DdegOEK+ym2JtzYZTubV1pqYPC5TLEAAAIAQIzP8AgXknAAK4pavWG5spxwNIhMyjycroQBrivAmqQzfBL7tZffxiibZG7CNTBARJxGIfkchHIhYhEDIgABAyIEQgRMAg84bAsi1AwAAILHvINmPZZjcQALJsYwwmACPGGMBowlbb5v0mDCaMrbZv7zcfad4G6xJMAPo6Y1W1XlejV+uqNNoqiZB5/b5OLX1pKQ5AdegmmJY9fT1U1XoACGwdK/UL9PGVicRiACB2iJBlC8zRA1u2bx9gtX3bRMk2Bmz1TWw+HiOEMAaEEACQbSD7yaHIKlwhwJb9CCFs2Y8QYIzBUgJgEAoEcplPaLBfbJtwAGg2SFL4BtWhm+CX3UQHygGgRqcmV5ckXuZbgy1bVjeYbN8+wGrbciwAtkpxLd9E5uMRxth8nwDINpEDUQU5yLINyLIfY4ws+80qsZTAFo0xVOsNABAm9+H4MlHcDNWhm+CX3cQEygFAr9OSq1svUHhLVLFsQ0WFGizapXgRVIdugl920z7UTyJgqrUVNVq1t0eVqhr9rQo1AKS0CuL8QlHcCtWhm+CX3fj7iPvHRQBAWdFVk9HovVHFaDIVFN4EgH7K8HAeJLEUh6A6dBP8shsA6BEV0i7ED5tMN65erjMawQujSp3ReDH/ht5gjA6Q9VeGu+MqUdwN1aE74J3dAMCoxKhQuY++tqbwyuWa2hrviipVNfrMS1eqa/V+PqJHUmLdcX0onoHqkHP4Ne+GpabOuOHU5RJtDcMwYSGhgf7+Ch8fPs93qDUYK6qqyyq1FRqt0YjbhfiNSoziwzxOiitQHXILT+2GsDW7MLOooqVr4TD9lOE8yV0pnEB1yBW8thsAuFqhu1CmOllYervFzE8wxgBD20dGB8r50CdH4RaqQ07g3SOa9YgOlEUHyk4WlgHApD4pJAVFAAjMG/U+gtV+sGStCJv3s3vIhgkDBjBhjAEw2QaMAZkwBvN+RP5qwmDZY/4WZv+KwGAy/Xb8ggChHlEhLXCNKO6H6pAT+NhV3CiWDjZyXxFYdfLfOSLAfiTHAyIdabf/ahkRAAyY3HXSA2ceIzAHCUvqd3sPWyw2H0/656xkRLn7oTp0Fq+yG8sYAIbb/9hbZz0iwH4kxwMmw4Rwx603xxZkvnPYPC5p7u1H5m1SlmUPWywyH48BIWQyYQAQIB7fZwqHUB06i1fZDV+jCjZHFf7eZgqXUB06i1fZDW+jCpgAAPE5i6VwCNWhs3iV3fA9qrjpZ1N4BtWhs3iV3fA2qmAT8LvNTOESqkNn8Sq74W9UQcDvNjOFS6gOncWr7IavUcWIMfD7NlO4hOrQWbzKbvgaVUgdEI9vM4VLqA6dxavshq9RxdJmdtfvpvALqkNn8Sq74WtU4f98BwqXUB06i1fZDV+jCv/bzBQuoTp0Fq+yG75GFeB9VKFwCdWhs3iV3fA1qpDZnAyf51dROITq0Fm8ym74GlX4P5uTwiVUh87iVXbD26jC+ySWwiVUh87iVXbD36jC9y46CpdQHTqLV9kNb6OKie+3mcIlVIfO4lV2w9uoAgD8bjNTuITq0Fm8ym54G1WwCfgdVShcQnXoLF5lN7yNKrx/EpfCJVSHzuJVdsPzqMLnLJbCIVSHzuJVdsPfqALA76hC4RKqQ2fxKrvha1SxDEC663dT+AXVobN4ld3wN6qQ28zj+0zhEKpDZ/Equ+FrVOH/bE4Kl1AdOotX2Q1fo4qJ91GFwiVUh87iVXbD16jC/zYzhUuoDp3Fq+yGr1GF7ONzVKFwCdWhs3iV3fA1qhh5P9+BwiVUh87iVXbD26jC+9mcFC6hOnQWr7IbvkYV/j+rQuESqkNn8Sq74W1UMQHwe8ENCpdQHTqLV9kNb6MKqQiPowqFS6gOncWr7Ia3UYX38x0oXEJ16CxeZTd8jSqkBD7fZgqXUB06i1fZDb+jioDHt5nCJVSHzuJVdsPXqGKZPO6u303hF1SHzuJVdsPfqAIAgPh8nykcQnXoLF5lN/yNKnyf70DhEqpDZ/Equ+FvVEHA7zYzhUuoDp3Fq+yGr1HFyPs2M4VLqA6dxavshq9RhVSCz0kshUuoDp3Fq+yGr1GF/6sXUriE6tBZvMBuijTVAOAjEvI2qviKhGw9KXcrVIeu4wV2k11cCQAxwf68jSpRwX4AkFVc4Z4LQOEFVIeu4zV2Ex0cwNuoEhkoFzLoprpaXaN300WgtDhUh67Dd7u5oa7S1Bp8RMIwhZS3UYVhUJsgPwDILKp003WgtCxUh5zAd7s5TzLYkABAiLdRBQGKClIAwNmb5e65DJQWhuqQE/huN+eKKgEgJijg9h3lX1TBgCMC5CIBU1mtL9HWuOdKUFoSqkNO4LXdXFNVVRnqpGJRiEJ6+47yMqoggKhgf7C08Cl3E1SHXMFruyEZbFRIAFjfUV5GFYRQdLACAM4V8XdcgOIcVIdcwV+7wRibxwKC/MH6jvIyqmCMQ+S+viKhptZwXVXllitCaQmoDjmEv3ZTqKqqMtT5ikXBcil4Q1RBCEWFkIkPlW65IpSWgOqQQ/hrN+dLKgEgJjjAEkv4HlUAICpQAQDniytMt09P8W6oDjmEp3aDMc4pVgFAVHCAJZbwPaoAQKDcVyYRVRmMVyt0brgqFE9DdcgtPLWbq5U6ksEGyny9KKpgjKOD/YHfE8kp9kN1yC08tRsyFhAbEgi3Y4kXRBWEUFSwAgDOl6iMJn7lsRQnoDrkFj7ajQnj7BIVALQJDoDbscQ7oorcRxIg9TEYTZdvaTi/MhRPQnXIOXy0mysVuto6o0wiDpD6gLdFFQDchvcP5lLsgeqQc/hoN2QsIDo4kHz0rqgCgKKDFABwqUxdZzRxemEoHoXqkHN4ZzcmjHNKVAAQFeJP9nhdVJGIRcEKqdGEL5SqOb46FE9BdegOeGc3BeVaksEqfHzIHq+LKoBxmyAF8CyPpTgE1aE74J3dZJMMNiSQDQteF1UAodaBCgDIu6WpNtRxeXUonoLq0B3wy26MJnzBMhbAhgVvjCoSoSDcX4YBcniTx1Lsh+rQTfDLbvLLNXqjyU/qI/eReHVUwQCRQQoAyOblg7mUpqE6dBP8spvzJKQEBYBVWPDGqIIAWgUoGISuVup0el7ksRT7oTp0EzyyG6MJXyy9fZu9PaoIBUx4gBwAsvgRWCh2QnXoPnhkN5fLNXqjyV/mK/URg/dHFYyBvKeah+8BoDQB1aH74JHdkOdTWgea1/Hx9qiCEIT5ywQMKtJUV1TVcnihKG6F6tB98MVu7shgyQ3z/qjCINQqUAEAWSWV3F0qihuhOnQrfLGb3FvqOhMOkPr6SsR3TVQBgDZB/gCQebPlm80Ue6A6dCt8sRvyOthWQQEkCMBdEVUAIEjuIxYKeLsQB6UeVIduhRd2YzCacsvUANA6yJ8EAbhbogrDMK0DefdgLsUmVIfuhhd2k3tLU2fCgTKpr1h8l0UVjHGrIDIMWcnZ9aK4B6pDd8MLuznPZrAAd1lUQQgFynwlIqGm1nBNxa8Xx1LqQXXoblrebgxG06UyFZAMFuDuiyoAEMmbiQ+UxqA69AAtbzeXytQmDEFymVgkArgLowoAtDY/t1LJt4U4KCxUhx6g5e2GjAVEBPqbL+DdGFUUPhK5j7imznilQsvFNaNwD9WhB2hhu6mtM16+pQaAiCB/8wW8G6MKIGgVSNtT/IXq0DO0sN3czmCFors4qgA2vwcgh2cLcVAIVIeeoYXthowFhAcG3Lb8uzSq+IhF/lIfg9GUe4sXLzqiWEN16Bla0m5q64x55RoAaBXkf9vy79KoAgDkuZVs2p7iGVSHHqMl7eZCqdqEIUghFwqEd31UAYCIQPNCHPo6o+tXj8IVVIceoyXt5o4M9h6IKmKRIEghNZrwxTLanuIRVIceo8XsptpQl1+uAYDwAL87LP/ujSoIUESgHOj4FJ+gOvQkLWY3F0rVGCBIoRAJhfdIVMGAwwP8EEA+bxbioFAdcnAR7abF7IasiBoeGAAA905UETIoxF+OLS/fprQ4VIcuXkCHaBm7qTbUXSnXIoDQAD8AuHeiCiAUTseneAPVoYd12DJ2k1OiwgCBfgqhQAD3UlQBjEP9ZAxChfxYiOMeh+rQwzoUeuxM1pAVUYMVcr1eL0DAIKgDECBAAAwAwwCDUB3GDAIEIGTMd1DAIPMB5EhkiS3mj4jsMd25HwEwDAKMTZYbjRAwCJlMGANgBABgJNsAGJAJY4wxuw0ImUwmdpscSaRmwoABTCYMgEzYhAFMGGNAGJvYr5NvYQzmcyHEMBAWIC+q0JwrqugVHdoi159CoDr0sA5bwG6qDXVXK3QAIJOIyW1GAAzC7C1kABAy33UEYEC3by1Ct+9uvZtNNoCUgMx3lCHBAQNCCBHvx5g1enKfjCYTWO66CbAJA7mVJozNN5LcN/NdZO+uCRBjNJlMgDEAxuxfsVkTAEYTUQYp23zXMSAfBgNAdnEltZsWhOrQ8zpsAbvJLlYBgL9MKjJnsJhhyB0kfo1uVN08U3bupq7okjpPo9f1CE1GAIPb9EkMjCeNUjZcIDBnngBAslVzsxqbowfGmEEIEL6dtyLzYRiDqlZztiLPEkNALpIlBsSBWQGkzWwiTWFkuXMYA8bmVrsJm8wnx9CwzWxWhslEfpQJY9Jmxhj7+QgZZF6II1Aq8fQNoACAHToEZL7jVg0Rs4y41SFY+m5M2NwLw3YA3WU6bAG7IWMBgXK5CWMBQgghS6IHp8syvsv58VTpWevjT5aeBYBvsjdEysJf7DTxYeUQSyOX/BdbN66xOX1l81WEAVuasOabiRCsz931d+GRrVeP1KtblCzsgTZ9prQfHSUPx9jcEsZmzSGMMbKSIYMYo8kEYNEmxuSYU+VZN6tKi6pKTBja+ilDfYLjFDGIVIX05wEESkW3dPqs4sp+ynA3XWdK0zShQ9LNgrC5c5eArXqFidO4rkOLeZmNACGETRiZtUb+ipzWIViOBAwMwxhNJtK504I6tHR6ewqd3vBV+nkA6BIXKxIwCICxNIYX/fPZtqu7my2hY0Dc+sGf+IsVliTWHCVI4mrdVEZ3HoAAMQjOll9+4dDSs+V5TZzCXyR7psOYVzs9ZTSZMAC25KUkgyUhyDrFJRnsdV3Jfy/8eqDohKau/ssZI3xDh7YeMDZmuEykINFJXWPIL9MG+Ipn9Elw4XJSnKQJHTKAEYAAIWTVsEKWPh3SjAKMBZY+Gud0CABsdkNaT/jORhMRHmn1OKRDq76b20eS/eQAE9xuZ3lYh54emTpfrAKAAJlMwDDm3i6ENLWaVw7OscdrAOB8Zd6gP5/Jqrhs6VRj7dIcVUiZbIc8Nh+CAPCG3J2jdsxt2msAQGXQfXHup/F75msMOoRQvREBhBDpo2MQw6bPn5/77qH/zfzr2r6GXgMARdWlP1z+bfKBV3dd20fGIOQSoYBBldX6Yk21Pb+awi02dWg9xGyRje2RKTa7sfrngA6xpZ1laVmZR6ZIMoQs40gW1WFECrJDh42NTDEMA+YmG6k6bhEdetpuyFiAv1yOzX4PGONPTi89XXa2mW9aoTZoJ+2Zp9FrLG1mAgK2gW1p/ZKkkWjkx9xdMw99rtLb+x6zIyWZT+59C2Ncb76DZbjA3GbW6LXT0t/9Oe+vZgvU1uk+z/p2Zc46ooAAqQToAw0thE0dWg8xW2Rje96NuQMErP/Zq0NyCrMv3Nl3Q7pjLD0wYFEdMg9SNalDcymNzLth+24w23djmenjSR161G50esN1VRVCyF/qa+kGg3UX1qffPOpoUWqD9qk98+yPKpnlefNPrnL0LNmV+XOPL2s6qjx/aME/ZVn2l7nl6raVOesQQgG+IqDz/VoCmzq8N7MbD+vQo3ZD1rjxk0kZhiFRpUhX9PvlLc6Vll2R93veLjujyvwT39qf11jzW8GeYyVnG4sq755aflFV4GiZf1zdvuv6Pl+xUCRgNLWGQrogjGdpqEO4V7MbjLEndehRuyEPaPjL5WAZ5Pv+wgatwfm3NC87t8GeqPJT7q5DxZlOn+Wr7F9sRpV/yrL+vLrXuTL/e2G91qAJkEkAIJuueOdZGuoQ7uHsBgB7TIeeGwhX1+hvqKsQQv6+vgCAAQQIZdzKcKXMa7ri7Iq8pMA4ACA3ko0qALfnO/xdeNiVsxwrOXddV9xaGgZsVEEACFac/9npMnV1uj8LdzwUNa5UDdnFlUPbt2ZYXVPciU0dAnh03k16UQYClF6U0T8iBWNIi0jhZN7NvhvHLqgKwDKGJRdJ+4X3CPcNg0bm3ZjPCMjfR+gZHXrObrJLVADgJ5MhhgEABHCpMre4qsTFYo8Wn7XYjSVcQP35Dn8XOtw3VI9d149Nbj/Ger7DdW3RSUe6bBpyrOTk+LhHJUKmps5YUKGNC1K4WEmKPTTUYcN5N7mqy2fKMnUG7UVVXkJAHAAk+McPbtMHNchuANj/Nj/v5lBRxqqcLX9ZzfZalLGBbDwY3ef5DmPSIjo7Me/mZlXpivM/7715XGOo3xpalrW2nV/sv9o+2q9Vr4bzbkyWGToSkdAzOvSc3ZB3pvnL5WyUqLI1Zuwo6tttMdtR5XCxA2NejZGjysd3RpWTt1zyGgDI01wprir2k/qVqmuyiyqp3XiGhjq0zm62Xdm1NmfDzapi9vj9N267w9iYIXNTnw+QKBzNbipr1ZP3L0wvalSKf1098tfVI2nhyWsHvK0QyezPbrZc3bPk7HcNjYblkrrg7VOfdQlKfL/rGzKh3GZ2gzH2k4o9oEMP9d2oa/RFmmoGIYXUl70nN3XFzXzNDo7edhPbbWbLPpe4piup12a+4XJeBgAltWV+PiIAyCmlC8J4Aps6JP8DX1bnPbtn5qJTn1t7TT22XNn9wF/PbMrb5VDfzbmKy902PdOE17AcKs68/6+Xsiry7ey7eevk8nf++boJr2E5U5497dC8S+p8m303CCHP6NBDdkNG9RUyOTspnO3EchE/scyyaXtEwLLPVeqNCFzXlbpeZklVqUjA+IqEBqPpEl0Qxv3Y1CGDUK7q8mvpc3NVzcz/BAC1QfvWic8XnVpp58hUZvnlh3bMs39U9Kqu5OFd8zLL86C5kalFGf/dcmWP/b+9qLp09vEPNXpNvZEpUr5ndOghuyGj+n4yKdviRQBhvmGul5wYGG/ZdGN2A3dGFQCkcWFAjUVXVw0AflIR0PEpj2BTh5cqc2cdmuvQCOn3lzavu7i52exGbdBO2fehykGpqAy6149+odJrm8hu/nfj6PrcrQ4VCwDaOt3sEx/azG7AIzr0hN2UV9WWaGsYhOS+UrC8ygwDtJJGuF54Gxn7aJnt7CZaxsFZeoV1qpfdJAQoXS9WqYgCALlEBACXylR0QRi3YlOHGr3mgxMfOjEb4+PTK3dfO9x0dvNpxvqrTvUYnKvI/++FLY1lN2q99pOMNU4UCwCXNVd2Xt/XMLsBj+jQE3ZDpjnI5XLr/nwEECYNj/ePc7Hw3mHJlk3b2U2UIrxTkKtnSfBX1stuFEK5i2UCgEwkBwChAEklQhOGC3RBGHdiU4eb8zcXNd5Z0zQfn17VRHZTqC36T84Wp2u7OuePq9pim9nNpoK9113oOlx/+Xeb2Y0HdOgRuyFjAVIZAFhnNwxCaa36uFJyr7DkKHkryyfb2Q0CNDLKpbMoRNJhkb3rZTeDWvdwpUwACPMNUcpjSJmko462p9xKQx1qDZrNzk5qB4BruuKNebsay262uTb9QmXQ7bx21GZ2s+mqA102DSmuLr2svdIwu/GADt1uN+VVtaW6GoZhpL6+AGCd3Zgwflg5TiaSNVlAU7ySPMGe2ZzTE8Za9Sg7zJT2YxrO5oyUhreWuvQOtE6BiWyZMokIAeSX0wVh3IVNHR4pOqKtc6kPbtf1w41lN9tdm1wKAIdLMhtmNxqDLqcy38WSjxSfaJjdeECHbrcb0jknl8nYidnW2Y1crJib+rpzJT+iHNInrLM9z6r4SxQzOo5z7iwKkXRy21HWIwLssyrTE55wrkwAkAmlT8Y9wpYpYJDMR4jpgjBuw6YOM285/2gL4XjJucaymyMlrhZ+vjK/YXaTXdn88Fmz5GkKbGY37tah2+3mXFEFAMillp6OO7MbAOjfOm1ywgRHi+0YGLek9xtNz3cAq2dV5naeNDKqt6NnUYikPw3+2E+iaJjdAIZxsUO6BSc5WiZhbMyIcN9Qtkxs6aij7Sk3YVOHxVVFLharNmhVek1jOnSRQvNsLxsjUy6iNVTZzG7crUP32k2prqaiWs8wjNTHx7zrzuwGADDGUzpOejR+nP3F9gxN3jDok6bnOzR8Evebvm8kO9hn/E6XqR39lU08iftF77mtHG9S9Q7t9mTcI9ZRBQHIJEKEoFClU9foHS2Q0jSN6VDHxbz285V5jenQdRqbd8NBybayG3fr0L12c96cwSpuW3KD7IY8q/JyyrQ3u74ut6Mf5+n2Y9ffv0QhVjQ7mxOsshsA5C+RHxz9zVPxQ+ypuZ9I+vfwLx+LG9L0k7gKkXxpL8ccJzmw46tJ0xtGFYSQnHTU0fYU1zSmQ5nQ+R49liZ06Dpuym7kQmlj2Y1bdeheuzE3mKXS27tsZTfkxz4YM/S3Yd9N7TihldTG9D+FSDYudsiukWveSp1uz2zOxt4zsqLfrK3DP2kizfETSV9PfvLQ6P8mBcbb856RDv7KHwd81jU40Z4LMi5mxCc93lWI5Q2jCgDIzHlshT1FUeynCR26Tp+wzjZ12Ebm6izWPubZXndkNwl+sS4WCwBx/rGNZTfgTh268RHNYm1NRbVewAh8fXxv70WWh2VtPYmrECue7TjxuY4TL6ku6+q0p0ozASAhIM5fLOtFbiq6nR9Z/mt+HK5Qe3PntaNHSs6q9TryWGZaeIq/RDYyqm9aWKcYRSvz9cS4f0Tn9NH/ziy/fPBm5tbCw6RCGEOUPHx4m169w5IVIhkAmOx+A75CIl/Z78M/ruz578VfblaV2bwaKYGJE9s+khyYiK2exEXI/EZ+8pyKVCxgECrW1tAFYTikCR2GSyNc7C1WiGT1dMhmNyOi+rgy7wYAEgPjGj4R7i9RJAQoXRyc6hPaHbWEDt1oNySDlcruzFctbw/BTb5npH1APAPQI7QzsrwBnyQnNp/EVenVyzJ/XH1hc70KHCo+CwB/Xz3iL5ZP7zh2RsK4QB8FkOwRIDkwvlNg/LTEsbiRN+CDg+v7jIoeNDJq4AV1wanSLG2d7lRZllwkjfeLDfcJTQlMDPMNJW/Ar/ckLliiClGtzEeoqTacK67sTxeE4YgmdNgnos/uwl2uFD7U8laKhk+EP+Cy3TyuvB/b0uFD0YMXVa52uthw35B4P6WpJXToRrsxjwXI5Hc8uNRkdoNIlMAA7CN0cPt4sPWekayK3PG756mbnISu0msXZ2z46fLuDYPeTQ6Ms7RRyfV1eH0fjV6Xoyq4riu+XlXayje0rX9Me38lsqzv094vtp2f0oTxlPb1Vy9s+J6RelGFNJs11YZzRRXUbriiCR0mByfLRDKdHU9UN8aQyD6NZTd9wzv3DU8+7OxrJPuEdUoMjANzb8MdOvxX+9Hrcv+4UeXkQ8IT4x+FFtKhu+ymSFOtqTUwjEAi9rH0zgCAvdkNgF1vUTtWkjHtwMKmvYblqrZ49I65fw5fnBIUh8D8kkiH3qJ2vDRzU8HeTbYew23vHzu1/WP9I3oCNL96YWNRBWMsEQrIQhxFmuoIhW/DE1EcomkdykWKh+LGrb+wwbnCe4YmD2vTt7HsBgBmpUx4eNc85wp/v9vzjekQAN7s/OxLRz5xotg4RczQyAFNZ9nu06G7uopJ55xMLmcYyygRoZGRKcv//mD/O2KzKi7b7zWESr121I65VzRFGFgvs+sdsSq99s0TXz29/x2bXgMAF1UFc058+sKR925WFdv/jljrEQGwDKjJfOgKDZzRrA4ndZgU5+yDe291nWYZlrI9MpUW0eWrvs7MYv2y96tJgXENdciOTA2J7D0z0eFZpuG+IUt7vtuCOnTXKppfHzqvqTWER0RKJT4MYAaBAAEDUFpddKL4SOats7o63dmys3KRvK1/XCtpeGpoSv+IXn5ihf2rF47e8cL5CmdmWPaPSPlr+GJs9+qFqlrNhP3vnLevc04hlL2c9K8RUYOaXr2QXTHeep15sl1bZ7pZoZOKBC/3S+Rk1PNepjEdkg0EwCAorSqavv8FR5tUi3q+/mjcUGTHKprv/PPtqvMOdOJ80PW5qQljG+oQWzSDLWtjfnJ2tf2voYj3i5ndaWacIqYFdegWu7mhrlp3MpdhBFFRseTuIsC3qot+vbRhz7VGe+bkIvkT8WOnJk5kAJBFDeR2stZDTAcBbMzbNe/4507XcMOgd0ZH9yXmYjSZACHSv2ICbF4O1eI+Kr32vq3PqR3U4pudZ46MGlSv78biPohdbpVVkgkTMZlPev2Wts6EJ3aNjwrgYGLIPYtNHZrthgEGgAEQIADA+eq8Nw7Nsd9xPu75+iNxQ1l9sv9lN4DoFpkzhl8u73rpcPNy9RPLFnZ9/on4IQ11yGoDgF2ZFzDApvzdSzLXaAxVTZdMXh4qFcpaVoduaUyRsQCZTA6WoZysWxlvHHyxCa8BAK1Buzpnw7/+94LGoAG2cWXVdwNW6/ssz1rvSg0XZ2yw7rshg0021/eZlv6xo14DAIsyvrmoyocm1/dpON+B7TyS+oiALrDpMg11ePtvd87/ausf/9OQ77qEJNsq5g5ay8LWDvpkXOwQcGSdqfHxQ08/tHZ8k1NMx8cP2Tty+fi2QxxaZ2ps7OC/h337VPyDcpHUZrFdghK/7PXu570WyEXyFtehW7KbZQezqwx1YeGRvj4+AgQHru385uxS+7+uEMlX3PdJx8D4xrKb69qiwVunuFjJq+N/9RMrms5ufs373+zjy5wrv51f7H/6LXEuuzEYTTfKdT5CwSv9E+mCME5TT4dNZDcChEg2nXHrzPKzq2y+RbS1LGxs7NCn2431FyvYLNvO7Mbc1MKg1mv/LjxyriIvs/wyKTY5KC45MH5kVG+5SNZElt1YdmMymQAxRpPJBPhk2bmTZVlm7wCI8A1LC++uEMmdzrI51yH3I1PXVFVVhjpGIJBIfAAgX3XZIa8BAI1B+8E/n6/s/4m/RAG2Rqb+d93VhVwA4Gx5Xr+Izk2PTH2Z9aPT5V9SF6QXHe8b3gMcGZkiFRAgEAuZmjpjfrk2Ppiu0OAM9XSIMbCrYgM0OkKaGtJl7eB/a/WaPHX+qVtniYO0loYnBMQlkviHLFl2g/lfDUemsHkwBLBlnSl/ifyptsMYczXMq1xa9SG6tM5Ut+BOqUFJ2NIjYzEOAMdHSN2kQ+7txjyrSqoAAJ1Bs/DYHCcKuViZt/Tsqg96vAG25t04NBrVGIdKMvtFdG5i3s32wsMuvv98+/V9Ta/v03C+g7lhxzC+YqG+Tp9dXEntxjmsdQjmjlt7538pxIrU0JRuoSnWfYgNdWgZSyX/bX6dKcuApdlUXJz/1XB2u3kWiUVdrKcABoZh+KBDjvtuMMZk5MxXKgeA7Vc265x9fdHWK7svVF4GW303HFWVFNto3012ZYGLp0gvPulc3w02mcgw5IVSVZ3R5GI17kHq6RCa67sBuP3sHtlvedSumT5EO/tuMI/XCPekDjm2m0JLBiuWSABge/4mV0r78dJmsDXvhhOanXdz1IVlxVlKasrAwXk3AIAYhkEgEQkMRlPuLY3r1bjXqKdDAPZRfgvczf+y/GO9DN8+mL2h/F4j3GM65Lgxdb6kEgB8pX4Yw/mKDBfXydx34yjY6rtxvZ4A0CkgDixRpZE2MwfcqCoO9QlxtM2MTSaEGB+xsNZgzC6uTAjz56Qy9w7WOmSTFHv6btj/6Rya3W5/381th7HM07HOblzsu7GZ3Vj33RRXlR4qOaEx6AAQBiwTypICE5QKpcd0yKXdYIxzilUA4COVIwTny11dLVdj0J4szehpfsD/dlQZEtln+TknJ56zpATFgaXzzGab2cXyCeZE3fE2s8lkkkqEKl0tWYhDLBRwUp97gXo6JDjUd4PILcMkX7AU6819Nzuv71976f+Kqm30RYb5hN7f+r7HlA97QIdc2s3VSl2VoU4gEIrEYoyhiosOXbAVVRID4xUimT1rlTZGtDwsWh6B3Z/dmBN1p7IbhE0+YkGN3nihVJ3cKpCT+twL1NOho9lNriq3WFeSq847XWaOlx384xIC4we37uUvVnhddnNBlf/WyU9tGg2hpKb0p7zf/3dj/+yU15XyGLfqkEu7IWMBEqkCMCAGrqg5eIfzhYr8htkNBpjcYZwrCc5TbYc2G1V6h3c6WnrOxfp3DUl2bkTAZDIhhHxEwhq9Mau4ktqN/dTTIcGe7Oamtmjx6c9Zl2H5p/QsAHwqko+LHTIz6Sl/scJbspsDN499fOYbrR19GiU1ZbOPz5/ZcdrAiP7u0yFnXcUmjMnb232kckCAMYRKOXh0vUOg0uaIwJT2YxXOrhgTLQ+b33lisyMCiQGuLobXJSjR6REBhBiMsY9EAAAFdEEYu2moQ0KzI1Nrc36Yuu/Fhl7DojFof7i0efhfzxwvzfCKkalLqrz5Jz+1x2tYvjm/8njpSffpkDO7uVqhq6kzMkKRUCQmmWqILzdvymAzVOvsRiFWLOnt5Iox36S9bs+IwPA2vRWNTAy3kwfaDHR6RABjE/mKj1iIAbKLVa7U5N6hoQ4JTYxMqWvV0/bNXJezwZ6le9UG7eS98zYX7Ob5yJTGoHnp8PtOXMAVOatKa8rcpEPO7Ca7pBIAfMisKgQYQ4zC1ewAADr4x9nMbhDA8DZ930md5miB36S93j+is51R5Zn2Y5yueYRvyANtBrqY3QACHzEDANnFFU7X5J6ioQ4JTWQ3S898ftnWUwtNMP/45+crLvM5u1mWtU7j1Liwrq7q+9z1btIhN3ZjwvgCm8GCuR8uISjFxWK7hSSTFRegQXZD/k1JGPeZIznON2mvPxU/FOyOKs+0HxMpc3KpzJeTpoAL8x1IVAEMEpEQIbimqqILwjSLTR0SGstuNl/edLjImWdiXkj/0LLCFO+ym6Kq0r8L9znxowgnyv65orsCbtAhN3ZTUK6tqTMyIjEjFAOYo4pMpOgfOdSVYkfHDgWrkal62Q3591jcsJ/v/4S8ZrEJ0sKTD4z694S2wxyKKgqR7Nu0+U40qR5TjuwX3hNcmM3JRhVA4CMWAm1P2YFNHRJsZjfFVUVOv8rvuq543cUt/Mxu9hUdd+5Hsey/eRDcoENu7IbMqhL7KpDlZ5ONR9pOdLrMbiHJY2LNmQg0kt2QqNInvPP2Ef/+vPfrw9v09ruz/9hPLBsfP+T7ge/8OfzT5KA4J6JKUmD8hkEfOeQ4I6IGvpw0hRRFshuNQXOk5OSG3N835P7ff3J+2JD72x9XtxdXF9uT3SBAPiIhAGTR9lRzNKZDaCS7cXGN8HUXtlglODzKbg66bDf/3PoH3KBDDgbCjSacU6ICAImvzByoSVRBECqNmJ78xreZjj0RDgBykez1zuZ+GTa7Ifav1mv33Dh2XVdkjioIJQbEDY/q83j8sCfihyIAhOBIcQYA9IvojCzP/t++s1bzHa5qilbkbMksv5xZnqcy6PxFsqSguKSAuMRA5ZDWPf3ECjLfIdFf+cfQLxee+e//bjR/F5/t8Ngz7R7HltmcN7RF63J/23F9f8Mj/3Phe6Ui5nHlwz1CupureGd2YzKZSEInEjEIQQldEKZJmtAhgO15N5tde8hGbdAeL8kcHtXXkt2wkbGF593cqC5x5XcBQCl5+IZrHXJgN/kVWr3RJBCJGaGY/V+bne8wMGrY+fKz+687trzGu91fTwiMJ9vYkq8eL85Yn7tl97UjNr/yeNyQ15MnRMkjEEBaRJem5zsUaIpeOPzFwaI7Rj1VBt3h4kzy6nx/kezdrs89HDuYVCBSFr4i7a2d1458nLG6sTfg3xfR47WkKeHSUGx57/Tai7+uvfRbU5dOc2Xx2S+SAjvO7vSaVChtON+BJOEYsI9YWF1bd66osn8cXaHBNk3rENmad1NS5er/lkdLzg6L6gvEL8z7LGkLtNi8m6JGFjtzFM51yIHdkFlVQl+F5ULWjyozU96QiWR/F2y2pzS5SPZu99cHtu6LrZ5VUes1n2as2lywu4kv/pq3+9e83c8ljPug+7Smo8qG3J3zT6yq1De5VoxB98axL/8vf/fi7i9HysKIGoZE9h7cunehtihHnZ9TmZ9TmY8B2vsrW/mG3RfeXS6Wm7BFSQALz/x7+7V99vzkrIrzc07Mn5X8WrQs2mZ2gxCSSITVtXXniiuo3TRGszqsl91klme4ftKcijyrvhu+ZDdcwbkOObCbi6UqABBL5RbvthFVpiROTw5O+S7725Im07zUkORXO09L8I8HS5sWAFR6zXP75+VU2jVU+Z+czdd0xcv6vh4gloOtqPLjpZ0z7XhrLOFoybnRu15bP2hhgj+7niG0kUdEyiMGRfRi36JGwo7JajbnR6e/ttNrCCU1ZZ9mfrG4+0e+QmnD7MaEsUggYBhUWa0vr9YH+YrtL/newR4dWmc3nIAtJfIqu2klDWlsNVeH4FyHrnYVXyxT640mRiRhBCLWqm2OCPSK6Ltq8PevdH69d0TveoXIRbIHoocu7//J1/2XdPBvy4YjANA44jWEbYVH3jmx0uaIQHpRhv1eQ1AbdBP3vn1dV2z/bM6/r+7Z5ojXEEpryj4481HDkSlsHi/HAsQAQJXe4GjJ9wL269DymZvz8nNkKsLX1eXJQ3yCwQ06dDW7sWSwcmAvZJNR5f7oYUOjhzEApVVFxdVFAoS6hpIOXcxeMesncT/NWOWQ1xB+ydsdrQifnTLROqqoatUT9n7oxG9UG3QfZaz+pu/8ZqMKQkit13yVtc6JswBAgfbqgaID/SPuaxhVzAESoLaOvm3LBo7qEBDIRHLXzxspD+dhdjMgoufpW9mu/K4eId3BVnbjog5dzW4KK3UAIPKRg5VVNx1VyF0Jl0WkhnbpHNIZN/4WtZOlGX9eaaq/pglWZW+5qi2yjiorcraomuyvaYLd148dLTkLzUUVjPGv+X87N5uT8PuVTdBIVEEMAwB6+nI/Wzihw3i/eJmzj92xtJGF8zC7uS+ih4u/q394f3CDDl21G8v0AasLST5bLn5jszmRHW9RW5nl/DPfKoP207MbrOc7rDi/2enSAGDTlb3Q3HwHhNCBohOunKW0puyK9kq9+Q7YHFUAAGrqjK6Uf7finA6Tg5tf6aVpHoodgi29tGxdgO00bqF5N61l4SOjBjr9oxIDEpSKGID6825c16GrdmM+OXOHVduT3eDm3hGrrtX8U+bS6zu3Xz3KRpX0ojNqvUuvFtxUsAeaiyo3dMWXVAWunAUATt76x3ZUQQgAaqnd2MI5HY6Le8iVk3YMjCMTL/iW3WCMn23/uFzozAPGUqHvjA7PN9GH6IoOXbcbADDPaeM2u9l/09XVXVQG7bmKPFLgIS5ePHy8NLPpqNLES4zsp8pQZTOqECWJBe5a1t2rcU6HKcGdU1xIcOanPm9JbfiV3SCEWklDv05734kfNbntpDBpmLlWXOvQVe0yxLGxEbjObm5UFbtYNwC4qi0iBTrda2ONWq9rJqpwMeBxRXvFZlQxGjEABNNZxbZwWofTOk13rgfnodghvS0vfuNhdgOA2ili53ee6VCO80LHaQNb3Xe72lzr0FW78fMVAYBJXwtcZzeckGXJbjLLOXi14HVdaTNRBVDTJdiJzahCVt4Ilvpwcoq7DKd12NY/fnqSw68xSQiIm9/VOrXhXXZDfvyIqEFf9X0vwjek2V8U6hPyfte3Bra6745qc61DV+0myl8GAKa6WuA6u+EEbCkwWs7BZNyOgbEeyG5i5DENowpZZ1WAkFzC/UqEdwGu6PCBmGGzUx14jcngyN5rBy7yEymsUhs+Zjfk+LYK5c+DvpmZ8K/wRkwnzDdkfNzDn/f8OCkgsX61udahq9ptEyCDelGFXARH3hGLMTR8Az4nJAfGkwI5sRuw/BxySxvOd2jNxQsMQ3xCGs53qDVgAAiV09TGNi7qcHj0sPYB8YtPLbW5OjhLa1nYvC7ThkT2tSQWAMD+l0fzbtjZ7diyEsPj8aMeUY68qMo/W35eU6e1eBz0DuseK4/BVmuEg6Xa2Nbsdhd16KrdRPpJAcBoqDEZ6wQCIbbvSVzyU5te36cVF//rtpGHkQI7NfdCHHvoGZpsavJZlQhpaDv/WBcHpxIDOjZ8VqVGrwcAuoBvY7iuw3i/uNWDv9l+ZWf6zcMHGwxTdAtJTgiMm5k4wV+iAMvrihCql92w/QQ8WonBep2pdn7KeEWsCTC2lMOuJg5mFySmdkd2w6EOXbUbiVDQLsTvUplar60U+odwmN0Miuz9/j8u1c1PLEsJaksKfDA6zU8sc2UsfEjrnuzPaSKqjGwzcJlqrdNnCfEJjpHHYADrqGIwGg0GEwB0axPsdMl3N1zpcETM0JExQxmAXPVlnV6LEPiL5QkB8QiAQcCAuT1EnMaLshun1wjnVoccjKqmxYYBQK1OBSbL6kxc9N3IRYpuIS7NwhoR1ce6zfxgVF9XSnu63Wiwo808MmqgPT1zjZ4lfiI0aDPX1BoBoEOov0wscuUn3N1wq8MO/m27hXXuFtq5vb/5RSjs8WDrrZK87bvBVtkNcuGtkpzokAO7aeUnVQbJAeMqdTmHI1MIwbSkCU7Xyk8sm50ywXpEYFH35/zFTk5aTwhQ9g5Lsfo5jY4IKESyVzpNce4siQEJPULNz6qwIwImI66qNQBA9zbOu9i9gPt0COY95uOtsxurf6yX4dsHt/TIFFu+6+/M5kSH3MwZG9Y+UoBQra6ytroKgJvsBmPoHtp5dMwQ56r0fMK4aHmEdVTxl/gt6uHwkCcAKETSFX3ftD+q3Bfe8zHlSEfPEiOPfiPp1XpRBQOu0NZgDO1D/aIDXX3A567HTToE8x7z8fdgdsOVDrmxmyCpZGiHSADQlBeZTEYOo8rszs93cHx5uSfih87pPBEaRJWn2g6b19mxjEkhkn6bNj9SFu5QVHk5aYpDjhMrj5nd6TW5WF4vqqir9HVGHOArHpMY7VC1703cp0O4t7MbrnTI2Yz41NZB7UP9sMmkulVkHUhcjCoKsWL1gE8ccpwH2vT+oNtzjUWVN7tMWtRjmp2tKoVI+uOgj3qFdnIiqryUOGVeykyZHXM6e4R0ez/1rTDf0HpRRVOtr6qpEzLo8c5KEX12wT7cpEO4h7MbDnWI7rgHrlFTZ1x3Ire8ulYkkoSEtxYyDINAYO7Px2SDYYABYAAECACwACEBAmR53w3D9v8jEFhGGRkEWr3m2+wNP1za0mwdpiaM/bD7dMYyIkDei46wubOd7YGvrNXMPPT5X4VNPZY1LLLXO12mRsrDTeZxSDJqCCYMmNy/Bm/zw5aRRRIwjSasrdOtufjrjmv7dXVVDU/RK7Tbg1EPJAUmkvF18nVSfrmmRltjAIDHOyvp+LdDuE+HZD8CQMiyYdlT7yOQ45vTIZjTK8AARpMJECLd3CbAJgzsWLVZci7oEBAymkjZyETm6pG/IvOR7Lwbt+qQS7sBgGpD3fpTl8t0tYxAEBwcLvX1ZQAYwOz9Ziz37/YGYAGDyAYCECCErG45Asv9RnCyNOP7C5v33LDtEY/FDX0j+aloeQRiZ0OYT4QAMIk/jDkCmV3/YFHG1sIjmeV5meV5aoN5jDwxUNknLPnR2MGJgfHkHmDLvSH3g71JrAjq3WNsdSTZjzFcUuefuZWtNerI9e4UmBArj5UKZdYaItt1JlOpurrWYBIy6MkucWQCG8Uh3KpDBgFgLEDI2mhYmRGLYeVnjw6Jv+A7bYUIz9oLONGhCeOG825Y7YGbdcix3QCA3mj65UzeNVUVAMjliuCgEBHDcBhVtAbN/64dvV5VzN7OxIC4B6L6uhhVCtRFGKCNPKxlo4qq2nBLU40xSITM+C5xrf1cWqT8XsbdOry7sxs36ZB7uyEcuVKSnl9cZ8IAIJfJ/RUKH5FILBAIGESjCtwZVWrrTHUmrKnWq6sN5K8Jof5D2rdWSOgsG1ehOuSVDt1lNwCgra1Lzy/KKq6k77u0n7ggRc/oUGUQB6/RpRCoDp3ATTp0o92wnC+uvFKhLdXVlGprauktvxOJkAmR+gTLJK39ZYlhARIhHYFyF1SHTeAZHXrCbigUCgU4nHdDoVAoTUPthkKheAhqNxQKxUNQu6FQKB6C2g2FQvEQ1G4oFIqHoHZDoVA8BLUbCoXiIajdUCgUD0HthkKheAhqNxQKxUNQu6FQKB6C2g2FQvEQ1G4oFIqHoHZDoVA8BLUbCoXiIajdUCgUD0HthkKheAgGADQazbJly4YOHZqUlNSpU6fhw4d//fXXdXV1zX55xowZEyY4tgau5+FDJauqqhYvXty/f/+EhITBgwd/++23ZFVDAEhKSlLeyZ9//un0ibKzs5VK5c6dOzmquEehOnQ3La5DIQBMnjy5sLDw1VdfTUxMrKurO3To0LJlywoLCxcvXuz0+VykW7duW7ZsadOmTUtVgFtmz5597NixOXPmxMbGnjhxYsmSJXV1dS+++CLGuKqq6uWXX+7Tpw97cNu2bVuwqi0I1aG7aXEdCi9evHjq1KlvvvlmxIgRZFf37t0lEsmOHTuqq6t9fX05P2WzXL9+vby83PPndROVlZUHDx5csGDBI488AgA9e/bMysratm3biy++qNPpACA5Obl3794tXc0WhurQ3fBBh4zRaAQAhrmjE2f69OmbNm1i7/Evv/wyZMiQ9u3bp6amvvLKK2VlZdYHa7XahISEFStWsHv0en1KSsqSJUsAoKys7LXXXktNTe3QocPYsWMPHz5MjsnNzVUqlceOHZsxY0ZSUlL37t3fe+89k8l09OjRfv36AUD//v2ff/556xMdPHhQqVSePn2a3XPmzBmlUnngwAEAOHny5OOPP56QkJCYmPjkk09mZGQ0/LWJiYmrVq1iP86dO3f06NFsZdLT0ydOnJiQkJCWlrZ169Zz586NGTMmISFhxIgRmZmZ5Ct1dXWff/55Wlpa+/btBw4cuG7dOra0xYsXx8fHNzxpQEDA2bNnyT0mSCQScsG1Wi0AyGTNL4f64osvvvDCC+vXr+/Vq1dCQsLUqVPVavUnn3ySmprapUuX9957r9kSeA7VIdwDOmTi4+OjoqLmzJnz448/1rt/hI0bN86bN2/s2LHbt2//97//nZmZ+cwzz1gvFyOXywcOHLhjxw52z6FDhzQazZgxY4xG47/+9a9Tp059/fXXf/31V5cuXSZPnnzhwgUAEAqFAPDBBx9MmDDhzJkzS5cuXbdu3bZt27p167Z8+XIA2Lp16+eff25dk759+wYHB1ufaNu2bcHBwWlpaXl5eRMnTgwNDd24ceOvv/4ql8snTJhQVFTU7OUjkMp89tlnc+fOPXXqVEpKyltvvbV48eKvvvrq+PHjcrl8wYIF5MiFCxf+5z//ee2113bs2PHcc8999NFHP/30E/lT27ZtBw8e3MRZampqiouLf/rpp7///nvq1KkAQKKKPaFbKBSeOnXqypUre/bs2bBhw969ex999NHQ0NDDhw8vXrx43bp1ROveC9Uh3As6xBhfuHBh7NixsbGxsbGxQ4YMef/99zMzM7GFkSNHTpw4kf24e/fu2NjYkydPYoynT5/+1FNPYYz//PPP2NjYmzdvkmNmzZo1bNgwjPHevXtjY2MPHTpE9huNxsGDB7/55psY4/z8/NjY2GXLlrEl33fffR9//DHGeN++fbGxsYWFhbgBb7311sCBA9mP/fv3f/fddzHGH3zwQXJycnV1NdlfUVHRrl27r7/+2rqSGOOOHTuuXLmS/fqcOXNGjRrFVmbFihVk/44dO2JjY//880/yce3atR06dMAYq9Xqdu3aLV26lC1h7ty5gwYNalhPmzzxxBOxsbEpKSmbNm0ie86cORMbG/v2228PGDAgISFh+PDhv/76q83vvvLKKykpKbW1teTjiBEj7r//fvavXbp0IZXPysqKjY3dsWOHnVXiFVSHd70OGQBo37795s2bd+7c+fbbb0dHR//444+jR4/+8MMPAcBgMJw/f7579+6sPXXu3BkAsrOzrT3r/vvv9/X1JR3RdXV1u3fvHjt2LABkZGQIBIKePXuSwxiG6dGjx6lTp9gvJiYmstt+fn4qlappcx09enRBQcHFixcBICsrq7CwkJwoMzMzKSnJx8eHHBYQEBAdHV2vks3Srl07tib1PtbW1ur1+uzsbIPB0LdvX/YrvXv3zs/Pr6iosKf89957b82aNePHj583b973338PALW1tQqFoqioaMGCBWvXru3Zs+ecOXPYMFWP6OhosVjMVomtHvmoVqsd+rE8hOqQcBfrUGj9I9u1a/fss89qtdoFCxasWbNm9OjRcXFxGGN/f3/2MLJNGnssvr6+999///bt259++ukjR45UVlaOGTOGHGY0GpOSktgj6+rqAgMD2Y/sjSHg5pb07NGjR2ho6Pbt29u3b//333+3adOma9eu5ETR0dHWR/r7+9erZLNIJJImPmKMSYFPP/00QuY15ck44q1bt6x/VGMkJCQkJCQMGjRIIpF8/PHHjzzySM+ePc+ePcse0KtXr8LCwu++++7JJ590onrNVsAroDq8i3Uo1Ov1xcXFUVFR7C65XD5r1qyNGzdmZ2cnJSUxDGNt9mRboVDUK2jUqFEvvPBCZWXl9u3bU1NTydihQqGQSCR//fWX9ZH1ugMdgmGYBx98cMeOHS+//PL27dtJBxs5Ub2IpFKpWrVqVe/r7O0h1NTUOHR28qu/+OKLhIQE6/3WV68hRUVF6enpDzzwgFxuXuA9OTm5trb25s2bDccaO3bseOzYMYdqdXdAdWg/3qtD5qOPPho5cmS9zrn8/HwACA0NFYlEHTt2tE47//nnHwBISUmpV9DAgQN9fHwOHDiwa9cuklgCQJcuXWpra00mU7wFHx+fhlffJo3Z5KhRo7Kzs48cOZKXl8eeKDk5OSsrq7a2lnwsKysrKChoWEk/Pz/rUONoltuxY0exWFxeXs7+nICAgKCgIDa3tElFRcXs2bP37NlT77yRkZG7du166aWX9Ho9+6fTp0/XC4/3CFSH9uO9OmSeffZZX1/fRx555Icffjh27Njhw4dXrlz50ksvJSUlDRgwAACef/75gwcPrly5srCw8PDhwx999FGvXr0aXkGJRDJ06NCVK1feunXrwQcfJDvT0tISExNfffXVY8eOXbt27Y8//hg5cuSGDRuarhPJk/fs2UPGDurRtWvX1q1bL1y4sEOHDh06dCA7J02apNfr586dm5ubm52dPWvWLD8/P+sxP0JKSsqOHTtu3bpVXV391VdfkQ55+1EoFE8++eQXX3yxdevWa9euHT16dNKkSXPmzCF/3bhx4/Tp0xt+q2PHjgMGDFiwYMGPP/54/Pjx1atXf/vtt48//rivr290dPSuXbumTZuWnp5+9OjRN9988+jRozNmzHCoVg3Jysrab4VXpEtUh/bjvToURkdHb9y4cdWqVatXry4uLhaLxW3atJk6deqkSZOIWY4ZM6ampmbVqlWfffaZn5/f0KFD58+fb7P0UaNGTZ069b777gsJCSF7BALBunXrPv744+nTp1dVVUVFRb3yyivPPPNM07VMTk4eMGDAokWLevfuvXbt2np/RQiNHDnyv//9L3t9ASAmJmbDhg2LFy8eNWqUQCDo0aPHzz//HBwcXO+78+fPnzt3br9+/fz9/SdNmvTQQw/t3bvXkQsIb7/9tp+f36JFi0pKSoKDg4cNGzZ37lzyp0uXLu3atcvmt5YvX758+fIVK1aUlpa2atXqueeemzlzJgB06NDh+++///LLL1944QUAaNu27Zo1awYNGuRQlRry1VdfWX+MjIxMT093sUx3Q3XoyNXyVh2iu6aLkUKh8Bz6RDiFQvEQ1G4oFIqHoHZDoVA8BLUbCoXiIajdUCgUD0HthkKheAhqNxQKxUNQu6FQKB6C2g2FQvEQ1G4oFIqHoHZDoVA8BLUbCoXiIajdUCgUD0HthkKheAhqNxQKxUNQu6FQKB6C2g2FQvEQ1G4oFIqHoHZDoVA8BLUbCoXiIajdUCgUD0HthkKheAhqNxQKxUNQu6FQKB6C2g2FQvEQLW83x48ff/bZZ7t16xYfH5+UlDR27Niff/7Zni9eu3ZNqVQqlUq1Wu3oSWfNmqVUKj/44APH69s8y5YtIxX78MMP3VE+xR38+uuvjzzySHJycnx8fGpq6tNPP338+HF7vvjbb78plcqRI0c6cdJ+/foplcqdO3c68d3GWLdundKKuLi4Xr16TZ48mQ9Lxbew3Rw9evSpp57as2ePTCbr06dPSEjI2bNn33zzzR9++IHbE924cUOpVK5Zs4Z8TExMHDRoULt27bg9C2Hr1q1kY9u2bXRNZK9g+fLlc+fOPXXqVHR0dO/evRFCBw8efPrppzMzM7k90caNG5VKZXZ2NvnYt2/fQYMGhYaGcnsWABCJRF26dOnSpUtSUlJVVdX+/fufeuqpFnccYcue/ocffjAajcOHD//222/Jnvnz5//000/r1q2bNGkShydiLYDwzDPPNLsivXNcunQpNzfXz89PKpXevHnzzJkzqamp7jgRhUPWrl0LAAsWLJg8eTIAVFdXP/roo9nZ2b/88ktycjKHJ6qnwyVLlnBYuDVhYWGbNm0i2xqNZuTIkdeuXfvtt9969erlpjPaQwtnN6QdFBgYyO558803Dxw4YJ1ebty4cdSoUQkJCUlJSU888cSBAwdsFjV+/Hjr/GX//v1KpbJHjx4AMHr06EWLFgHAhx9+qFQqdTpdvcaUXq9funTpgAED2rVrl5qaOnPmzLy8PPKn77//XqlUTps27dixYyNHjuzYseO4ceOysrIa+0V//fUXAAwYMOD++++HBvKi8JN6OvT19V2zZs3x48cXLlxI9jShkHqQJgybvyxevFipVL700ks6nU6pVO7duxcAHnzwwdGjR0ODxlRRUdGsWbN69OjRrl27tLS0999/X6PRkD/NnDlTqVR+991369ev79u3b3Jy8vTp08vLy+35dQqFonPnzgBQU1Pj1OXhjBa2m6SkJAD4+eef33jjjV27dqlUKoVCERUVxTDmin377bdvvPFGTk7OoEGDevTocfz48X/961+7du1y6Cxjx45t1aoVAPTs2XPKlCkikajeAdOmTfv66681Gs2oUaNatWq1bdu2hx566Pr16wDg4+MDAHl5ebNmzUpMTAwODs7IyJg5c2ZdXZ3NcxG7eeCBBx544AGg7Skvgehw/vz5S5YsOXbsmF6vDw8Pt27jNKEQOxGJRFOmTCHbY8aMGTt2bL0DysvLH3744d9//93f33/MmDFGo3Ht2rWTJk0iSiM6/PPPP1evXt23b1+j0bhjx46PP/7YnlNrtdqMjAwAaNnUBlrcbqZPn058d+PGjc8//3xqaurYsWPXr19PLrFarV62bBkALFy4cMWKFeTqA8Cnn37q0FmmTp2qVCoBYPjw4e+++65YLLb+68GDB/ft24cQ+u2337744ostW7YkJiaq1eqVK1cCADG+3NzcL7744rPPPiNZ99WrV20GtwsXLuTm5kokkoEDB/bu3TsgIIC0pxy/MBSPsnDhwuDg4KqqqhUrVowfPz4lJWXKlCn79+8nf21aIXYiFovfffddIqdp06ZNnTq13gGrV6++efNmTEzM1q1bly5dunnzZrFYnJGRQXIf8sWCgoI//vjjs88+mz9/PgDs2bOnsdOVlJQ89NBDDz300JgxY/r27VtUVDRhwoTx48c7dl24poXtJiAgYOPGjatWrRo/fnxMTAzG+OzZs++8886cOXMA4PTp0yT9GzNmDDn+wQcfBIBLly5VVlZyVYfDhw8DQHJyclxcHACIRKJhw4YBwIkTJ9hjIiIiunfvDgBt27aVyWQAUFxc3LCov//+GwAGDhwolUqFQuHQoUOBtqe8gU6dOu3fv3/RokUjRowIDg6ura3dt2/f5MmTf/31V7BPIa5DzjJ8+HCSyERERHTt2rXeWQYMGKBQKACgS5cuAFBRUWEwGGyWZjAYzpw5c+bMmczMTI1GIxAIrly5cuHCBQ4r7AQtPxDOMMzQoUMXLVq0b9++9PR0kmRu2rTp2rVrFRUVACCRSKRSKTk4KCiIbKhUKq4qQM5i3X9EzmLtaNZ/9fX1BQCTydSwKNKSOnXq1MiRI0eOHEm6mWh7yiuQyWTjx4//5ptvTp48uXnzZtK8+uqrr8A+hbiOQzokIoRGdAgAkZGR+RZOnjz5zDPPpKenT5w40YlZIxzSknaj1Wq3b9++bNkytgcrMjJy6dKlQqEQAK5cuRIQEAAAtbW11dXV5AC2b8z6rhBItskWZWcvGgCQs5Cbbf1d1trsJCcn5/LlywBQWlp6/vz58+fPkwyItqd4zo0bN37//XfSTCZ07tz53XffBYDr16/X1dU5pBCEELSoDhsSHBz88ssvA0BlZWXLSrGFs5vXX3/9yy+/XLx4sV6vJ3t2795NOm7atGnTtWtXiUQCVu2RLVu2AECnTp38/PzqFUU69kiXGAD8+eef1n8lItDpdA3r0LdvXwA4d+5cQUEBAOj1+m3btrH77Ye0pLp27ZpvxYABA4C2p/hNQUHBrFmz3n///T/++IPsMRqNpMckIiJCKBQ6pBBrHep0OjIUxdKsDnft2kX+X7h+/fo///zT2FkchR3PlcvlrpfmNC0570Yul8+ePfuDDz5Yu3btb7/9FhkZqVKpioqKAGDcuHExMTEA8PLLL3/66advv/12enp6eXl5enq6QCB48803G5Y2aNCgP/74Y+fOnTNmzNBoNGQEkW3FREREAMDatWsLCwtnz55t/cX+/fvfd999Bw4cePzxxwcMGJCZmXnhwoXQ0NBp06Y59HOI3dSbXTpixIj9+/dv27bt7bffJlKj8I0+ffoMHz58x44dr7zyysKFC4OCgoqKikhr/dVXXwUHFTJo0KBffvllyZIlOTk5p06datWqVWlpqbUOr1+//s4776Slpb3zzjvWX3z22Wc3btyYn58/duxY0pdkMBjS0tIGDx7sxI8iXcVkW6VS5efnA0Bqairp9GkpWji7mTJlyurVqwcMGCCTyS5fvqzRaLp06bJgwQJ27GnmzJlLlixp27bt9u3bT58+nZaW9tNPP9n0+zFjxsyYMSMkJCQ9Pb1169ZkxkRtbS3563PPPde2bVuNRnPkyJF6zV2E0KpVq2bMmCGRSDZv3lxaWjpu3LhNmzaFhITY/0PYlhQZ/2YZNmyYQCC4efPm6dOnHbkwFM+BEFq+fPn777+fmppqNBovXbrEMMyAAQPWrFnzxBNPgIMKmTt37ogRI4RC4b59+x577LHHHnsMrHQ4b968kJCQgoKCnJycel8MDg7euHHjuHHjSkpKNm/eLJFIZsyYsXr1aueiFNtVfObMmeLi4nbt2r322mvff/89O8WkRfh/5YaOhgEzdpAAAAAASUVORK5CYII=", "path": "image.png" }
Which solution has a higher concentration of green particles?
[ "Solution A", "neither; their concentrations are the same", "Solution B" ]
0
The diagram below is a model of two solutions. Each green ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the green particles represent the solute. To figure out which solution has a higher concentration of green particles, look at both the number of green particles and the volume of the solvent in each container. Use the concentration formula to find the number of green particles per milliliter. Solution A has more green particles per milliliter. So, Solution A has a higher concentration of green particles.
Solution A
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABnrElEQVR4nO19d5wV1fn+c87cun1Zls7CSgdRMGKBGNREUVTQWJOosSWWJEaNJRpjT/xiNEZNYjTRqCmWGDRqgog/Y8GCGiwIIqiUBZalbd/bZs77++OUmXt3Ydvdu7s6j34ud+eWmTvzzPs+bznnMCJCP8SK6toPq3fVx5P18VQOdjeoIFISCc0YWV5Rmp+D3fnoL/B52Cmwfmduapri//xwXW6ubmuMKM4/ed/RkYDVK3v30Xfg87AL6GfmpqYp/rflnyZsUZSfX1BSXloQKQ6HohbCFsIcIY4QQ5AjyBFg4ECAgTMwqEcGMKa+Sv5sQRBE6pHBEeQQbCJbkAOWEpQSlCJqiCe3NcQ276yvb47tVV586tRRvXcOfPQ+fB52Dby3D6BzeGfj9oQtBpeWFg8fU1hUFAqGAIDpi0YAA2MgAhHkBWVM/S+vs7Su6u3G1LovMZJ/GzoAIERDwaEDCieNGpoXCX2+vf7jHY05+bk++ih8HnYN/czcbKxrAkDFgwG4soygLykgL7C82PJFUv+DAFKXTzPA42LUS8Tk317Rp98VDFglRfkAPtxW32M/0Uc/gM/DrqGfmZtwwALASMAjR3PgVaDf7zjCs8HHlxQ+D7uGfmZuKkoLADi1W9EbXiVp2zvqGgCMLIj22E/00Q/g87Br6Gfm5oCRA8MW39HQsGPjmmQyrrb2vFdJOWLd1l1vf7zecagkLzyroqznf6uPvgufh11DP6tMAaiPJ5/8cP22pnj7b+0BDC/OO2Xfyn5XgPSRdfg87AL6mboBUBwJjS8v7pVdDyyInvmVsf3uGvvoCfg87AICvX0AXcf4YYPzBwyOcuSg32Ht1tqPN23LD4d67+f66KPwedhx9D91Y8C8z3o8ZnYA5EWCPfybfPQ/+DzsOPqxuXGRq4qA58r78NEKPg/bQz82N7nvd+i/l9lHz8HnYcfRn82NeeZ7FR+9B5+HHccXwtzkyqv48NEaPg87jn5sblzkzKv0X7fiIwfwedge+rG5yb1XYf1YxvroKfg87Dj6sblxz3muvIoPH23A52GH0S/NzeCCKIC65pj6268I+OgN+DzsLPqluZHt27bjqL/9mNlHb8DnYWfRL81NJnreq8QSKWh6+fDRNnwetocvhLnpea8SS6YAlOX3s+lFfOQUPg/bwxfC3Pgxs4++AJ+H7aEfmxv3pOcqZub9N2j20WPwedhx9GNz4yJXXsX7zIePTPg8bA/92Nzk3quwfutVfPQcfB52HP3Y3LjIXczcX72Kj1zA52F7+EKYm5x5lX6cpPPR8/B52B76sblx7b5fEfDRe/B52HH0Y3PjIndexYeP3cPnYXv4QpibXHmV/luA9JEL+DxsD/3Y3OS+ItCP3YqPHoPPw46jH5sbFz3vVXY1xQCMLMnLzQ/y0S/h87A99EtzUxwNAmhMJNXfufIq/fJk+egx+DzsLPrlkRdHQgAa4in1d84qAv02ZvbRE/B52Fn0S3OTCb8i4KMvwOdhe/hCmJvcVQR6/rf46L/wedgevhDmxvcqPvoCfB62hy+EucmVV/HhY0/wedgevhDmJmf9Dj587AE+D9vDF8Lc+F7FR1+Az8P28IUwN75X8dEX4POwPfRvc8PMP75X8dF78HnYQfRvc6Mqgj3sVerjSQCF0VAufpKPfgifhx1E/zY3ufEqdsoBELL66+I+PnoaPg87iH5ubnLiVb4AMbOPHoXPww6in5sb848fM/voPfg87CC+EObG9yo+ehU+DzuI/mpuiiJBAI5cDT4nXqX/X2sf2YfPw06hv5qbkkgIQCweB3LlVfr1dfbRM/B52Cn0V3MjoY7ej5l99Cp8HnYQ/dvcIIcVgf7sVHz0MHwedgz929z4FQEffQE+DzuI/m1uctPN2b8dio+eh8/DDqJ/mxsF36v46AvwedgevhDmxvcqPvoCfB62h/5tbvyY2UdfgM/DDuILYW58r+KjV+HzsIPo3+ZGISdepf+7Fh89DJ+H7aF/mxvfq/joC/B52EH0b3PjvbqAHzP76CX4POwY+re5YZ6rC/hexUfvwOdhB9G/zY3vVXz0Cfg87Bj6t7nxvYqPvgCfhx1EPzc3vlfx0Qfg87CD6N/mRiE3XqX/X2wfPQufh+2hf5sbZv7JgVfp/1LWRw/B52EH0b/NjWvve96r1LUkXly7Ra7148NHGnwedgyB3j6ArmBFdW1NUwxtehWuvYqOqBkDg+skJAk8XsW97NqrSN/kUa0EALYj3qna8U7VjhHF+QeOKh8/sCgHv9RHX4bPw86iP5mbuO28W7Xj7artCVvILVtbWoaFLIsCnHOu9CuIwHiaV4HX8ejLSgBjjAw/pC8iAhDksG1KOlRvE2eos53iooL8gvzGxqbmppZN9c2bPmzODwf2G1Y2dWhpcaQfr2roowvINQ8F1aeIM6rv/zxk5FVrfRX18eRr62rWbK+XF7gwL5JfVDigpCCVsiOhIIgszkAIWizKecTiIc7CnAU5OBjjRMQYkxecMRVMMwEQUUJQQpBDRIAtKOZQUgiACSL5SAxCEBhzBIEhaTsNDc07d9U5tiOPberQ0hkjywcXRHrzBPnICdrlIeeMEUIWi3SYhwQIyUOHHHh5SAAMD8Hg9H8e9nVzIy/wiupa+WdBXqSsbEB+Xpgzxhg4wBkY1HPmSlYGlXdT8GbcXH1KOszWf8lHIiIoJSzUExKkngsiATQ3x+vqGxobm+U3zRg58KuVgyOBfrygqo89oMs8NMkc9chchcNcAgJwszTkSSF/wXjYp83NO1U7Xlu3VXqSkqKCsvKSSDDEQBZjDOCMMSh/op4zRiDOGAie58QYM56FmagYpH6+DLKZUjSkngv5nBgTgqQLMs8dIgJzSCRtp7a2sXZXHYCgxeeMHz51aGkvnzUf2UYrHpZGgkGXh5wxIq6fQz9nmnsMHgbqR2iPKPkmXxWaq0bRKFuTrrVJPnd5SEnb7hc87KPmpqYp/uKazRvrmgEMKCoYUF4aDgY4GGfgDBzGpTDlRvR8sarOyJiRNum6xpt5Yx6PAoKSOeQROAAEmT+ZkL6FpPWBIHm9kUilqqu3x2IJAEOK8uZOHNHHNa2PDiKNh8UFpQNLw4GAxZmWM9CeTzKQQesa7tHXaUUo77czVfTO1DjaypDrBSEIUBqHhLZBQvIQEEQOIdnnedgXzc3SdTWvrasBEA4FBg8qLyyISk/CpSdR11j7E8agnhNjjJGMpFxdA0h/AuYRr+pCu49eXUNa12grY3yL1DhgDgkCE4IEgyOIwGwh6huat9XskOT4auXgGSMH9llN66MjaMXDCAMszhjB6hgPGTyKJp2HhoHoFg+JIBmolE4f52HfMjc1TfHnVm3c1hQHUDagqKysNGRZnMHSWoYz8HR/YuJk7tU1DEjvKXIVLHkMj9ax5m1a2rgCR3i2GF2jfAtJ30KOVjopR2zfsau+rhFAYTh48r6Vfc29+OgI2uIh54xZDK7Ebs1DwJO7cZnpLZOzDAZm8NCjd9J5yASItPpui4ckAIeUzEkJsX17X+RhHzI3H1bX/vvjKgCRUGDw4EH5eeGA9CGcce1J2oyW5XN4PExmvsa1NfKCylfVczdyFjpy9ipYb7Sc/lx7Fchqgnlsjie3Vm9LJlMBi8+fXDG+vD91Rvhok4dc6hrNQMubMUx/Dg8biXQ+EYw86qY1A7XZIdlxw6DyOFrRCJ272VMmUUjFDdiCBNDS93jYV8yNEa6Dy4qLB5SELG4xxhlMDCWjZY42vApPr0ZBepW0zikF89wbLZstgKtvST0wSvckaV7FRM5C+haSGschOETV1dtlvWDupJH79sm8nY/W2BMPvdIGYMzN4KTzEEDa6IOM3I1H1Sik5W70JkrbQlpfp/FQIC2TqDVO3+VhnzA3z31cJUuMFcMGFRblc6NoXF2j42Q3cvbEzJRWk9JNnG4VwCgd6TdMTcrd7lGz8oRIu5Neq/LEzMJVOo6uEQjAEeaR2UJs21lXu7MOwKQhJcdPrujNU+yjA0jnYQEH7YmHrXM3njrUnnmYbnPS2NgmDz21qjZyN3vgoQM4grbvrNvVN3jYy+Ymbjsvrt2yoro2ZPEhQ8oLC/MsGSGrOFl7FXWllSfR7kX5EOM9vL4FyrIoeOtTLjxaRm8w9kVHznJ7ejbH1KccT/zspMfP0r3U1jfVbN0OYPSAwhP2rug7STsfXuyWh2AWb5uHlu64ycgYujzUVQumZTZrLWw8cDPHhodQFsfwUOhXSXffOP2Kh71pbuK287fln21rigc5H1ExLD8S4gwBxjjI4lw+emtSHMQZ49pjSKWzuzoUd5sbjIeRW1rpGkUAGS23rWsgr7ruMDYexkTLpkYgwBwhBJhNJAi2EC0Je9PGzYKoNC981v5jfYvT19AWDynAuI7lyVOHkkqHLMa9dShvvsbw0ORuoEwN6Ug/k4GadWk3o3A1TlqtSpCQ2wlpPPTUpzQPJQNJCGI2USyequptHvaauTHXOBoKDBk2JD8StBiTLsWjbtwqAAcsWW9Kz/lLjaMsTnp3g1fpIFPvSO/hfa616246IEhd4zSl4+j4WXj8jPYq0rGQQ0ik7E2btiaTqeJo+JwZvsXpQ2jFw5DFoHnoZmqMulFRFSOjrFl6txda99oojQP9otzuipy0vlOjr9Pa3F29Y8SOqZZCWhZPlcrx9IU5HjYmUqlNm2p6kYe9Y27MNS6KhoeMGBIOWByQ+f+AygozN3LWXgVux7C5uqbHAUj3LSqecmNmtyIgj8FbFhcZkXNbukb6E5M5hmcsVXrMzMwILFMjSAlKOaJq45ZkMlVeGD1vxrjcn3MfrbFnHkpFk8ZDBitNWWfwULGrldZunbsB4C2Cm1qVh4FozUPj8zyerzM8tAUle5WHvWNu/vnh+jU7Goqj4cEjhoQsy2IIcGZ5cnLSq1huTcqT+W+rr4G5PkSLV/nz0j2M0TiZ4xi8A1XQRmXK60+8HiatSiXSvIrJ1dlChdBJR6z7bKMgGlNefMrUUbk/7T4y0AYPpa5RPFSJQqutni+jrDvKQ5XNgd6QwcM0NY2O8NCzZQ89OIqHBJsMD511n1X1Cg97YXqtJWu3rNnREOK8fFh5KKBsTVo1ipHFIK2PpTxMep5Y5XG0ytXjp/RzWECAsYC0YowFOZN7CTAEObcYgly+yi39HvmqxZixcaYGodWW8nUZzOMg+SmLGwWujsTSflLuJWixERXDOWOfba9/ef323J95H154eDgorHno2hrOuIzuPVeWgdIr38zLQMlMxUMGrtkb0N5UM40HGCQng5ynsRSKpQHJQ+l0df3L7QuRHSGcmSOxGOR+M2yl+S3eXxe0rJG9xMNcqxvTQ1VZMSw/Lyzvc8tja+RZ1lc3s6PBbGlb48jhVGaLjLA8XZ2tWx10roapidYos4dY+xOiVpGzafT0dkOYWoDROx6NQzahobFly5YaAEdMGLH/8AG5PPk+DNJ5GPHqGn2fs4DOIWbwMC17qLin4ynNzNbvgX7P7hpvyNUy6Txsla8hkiMb3NxNRkcYud03Lhu9Gscm6hUe5lTd1DTFX1y7GcDIYYPy8yLS1nhVADcWmnG3FpDuSYzGsdI1jmGMURMWWJAxrnWN8jBM+xnjSTjnyp+wgMcPBI1a2a2uaVUZNUfCWUbXhvJsjBUWRAcNKQfw/9Zu3twYy+X59yHRiocIcMMoqQWY2uJhoMfuuBrHzTNqnhjmeHhotDbnHu552cg1G4OGn+YbmMtDpaY9GQZv70/60arKWtpd5vnOooLo4JzzMHfqJm47v3/j44QtyosLBw0dKO89N5LKqElpncJZpmZxR8FBdd/o6rjq9WwdRSO974Z5ejfb7CE2ikZNLKKj4oyKgNY4ntFVrSJnR+dxbNe3kC1oS/X2xsZmy2LnHzihX8zD9oVB53ioZx3grTRL+nPX+uyBh0pfe3WNB7oq2g4PjYrx1sK9Oki/WambPfIQW6q35ZKHuVM3f1v+WcIWhdFQ+dCBHAgwxhkF0vI1yvq6uWEZncJ9nmHLLZl/8UTFymMw0x+hvJbRI8YD6FEwboQs/YabtzZ6R3keFnAVtZlzxxNFS0ZKT8WYipx1HifAGWekmc2HDi3Py486Dj324YacXQIf8PBw0NByDgS8atSoZtX/lXllmUdNm+eBDD2imJORdfbU1M0WeDWL2q9hpqUzOJbLcMV2b76Su8dJ2kO70YDRaEa7GXXDAYsjxzzMkbl5p2rHtqZ4fjgwdMRQS5+FAEs/7yzNmnAOGb8wlnaHK6uUbmvUHS4tiKs8M7WuuRJp+lMXILyZP2N30tSvYaGuiabF88wb21PA06+hLI7nucXYkKHlnLFdTbH3ttbl5ir48PIw7W50r5TXmnj0dVomUXPGMFlHRuZ+lraD67ta2pr073FnifPYDqj3G45x5mW45WUmy/gs09/vzWdT+u9yOWksYy55mAtzE7ed19ZtBTB0yKCgxdPtvfL/nuhUXw/yRqeu3vHYGsZBAdcueD1PRg3Lm/3x1rOglU5GXsbN1xivkpHh93i8zByTd7unouH1XeAMIcsaOGgggBdWV8X1jLM+eg6teGjuPc/V8YwK9tR9PI9a47jeiDEOZqqcaQxsVcNK10fuzCoZMzqlZyrBvVlFMNf6MKO5WjEwg8ks844zeiqXPMyFuXlxzZaELcqL8kPRcMDzO1v9ftefmOcWh1GMFoflUb/a6rf2Emnn2pvN5bJW5Ym30+sObXyDibwyNI7FPF4IxHmbeURSdfEMra6VTmlxQSQaFoKeXr0lBxfiS47d8ZC7FocC6Txk6c/VaAZ5z6fXJXgrzriRThtWoDUb22ag1y/yNnmoozOvPjKdIoaHAY9V5a15WJIjHva4udlY27xia22I8+LyARnRk7Hura0yM1qD9NlR59rkWeQjy9Ay6ozrfA3T3waAex5Z+nMvD6TjYpl6Jz3q1nrHvX6e42ydbzJ5IqvV9wwbOgjAum21n+5s6ulr8WWGl4deu+9Vu5arTFUeJI1dTM2sZHmiMH236/s80+K4lgIepqEVJzPeY7KKbgbT1ea6z0vxEDqb42EseVntah/P7/VEVYxx0NCc8LDHzc2StZsBlJUVR4LB9HxYWi/c7vyJe6Y82lXadeaJh70RE5OJfyL1yBgDMQZPX3nac2Z6zAHoooE3PtePMN7AjdLTbGVazOz1SBkzGHi3hIKB0gElAP7zyaaevhZfZnh4GGjl87xZ28y7NI2Tnh6xgMdmeXkis4dGuQB6RLFh2u7ZyM1zMvwBcy2azs4wT0+p0Wh8dzxUFi0jP+2NHC3GQgErBzzsWXMjM3N5oUBpWSnXHbpej9HqGrueAaTPbJpt4py527WOoIxvgNeTEDEw6Hkbddd55najqtCG7iX3Wrp5fnBvNMfkvtJyNwyuxfEes8kCSK84cGCJFbCa48kXPq3u0cvxpYWHhyVG+WZk3LSSJYZ0TeHOO+FmbS2tsl2eaGXdBg/JzMSkWYfdPCelodriYRuay2KwZFaRMStd6XuPLSN7mKm/VM8RzwEPe9DcmMzcsKGDjK3h7p3mKggdx6rxlq11jWc0Qyufw/R1hddjZD5yz6NnBLnekvGYrnfSPZ5Hs6TnoTTD1HuYe5xpttVwXcfYsBgbOmQQgPc27einaz/3ZaTzMF3XePrfWvs8l5My+vBWtdvW414e7pGNXgai7fekaR8AafdLZn7Qci2g2+XMGWQuAl5/7OlmZJ7fIr+np3nYg+ZGZuaGlBSEImGPinPnG9a2I90ncKUyvLrGanVXM8/ZhzceVvpFX0XTOd6W3TG2xn2P22nuGd0LvdRMumeQGkdXQNMVltY1UJ1gOhfuXmPyZg3y8iIFBflC0Osbd/bcFflyIo2H3GM7JPc84+OYm2cheQUtrU04mOlVaYOHJlvn8tCrX1wGsg4wUNkgr/puKwLI8Mfp2UzdB8u9tsatunjHdnkjrPz8nuVhT5mbuO2s2VEPoGTgAMu1HeZ3emo67j0JGd9yxhh5c3hpyijjrpZRro6GvNcM5kqrzBl5eZDOCflc2hqjb10LBcO/9Kje2E1tQbjHbqb3m8L1IWDMk0XW0VlJSRGAj6p39NAV+XLC5WFZqZUWy7tZPzmPkomyvRyDilPIVM1ZWg7YvZPT9Ai80ZCe7w0epjHXjnj56VE6SLdErXM6LsfSfLk5TkrjqtoXWt99uqNNx5g9ysOeMjdrtjckbFFeGLUCFsvoiOMs7T6ktHOnPAD39FlmzovuRivwehJkeBJAr14IBuz+kekZ1TI+29rDeLiYlu3nHG6tChnZbvMb22CJq28Zy8sLh0JBx6G3Nu3qoYvyJYTLw2CwVX+KYhTgvTrpeVbIGIqbq2y10hoeHqrMoLYa8MTm7vM0BiKdja3fj/RsYxoPvZ7ME+vJrkLZQWJGAqVnHky9nKXZUOppHgay/o0S71RtBxAtLGSe6i/z5E2V7UjP1Bg7wj2/n3uuq/sIeK+KGjhCQk9DRDDDU8z6G5kzNnrmTDPDWDwzGxkioNVcf3rMFCM9i5qTPnmaWaeB0lcdcwQ5RA4YOGdgFmOCyGIQRJyxktKSbTXbl23cdtCIAT10Xb5s8PDQs2aLx1605iE8MZEbc6XzEOY50nI0Lg/VdDVE6TzcHRsBPY4PLiNbzfLnzokDl4cwUxe3yUM5SwG5s01KHgqH4PKQMxIk2dijPOwRc7OlvnlbUzzAGDHR3NRkgSyACUeWkIOW7L/kOnpkHAAJNyYiEVT5dln94d7aEFeXGzrS4SDinJPK1yjD4V5XbUmYPptCCPm3y4b0udSYvvbyUQjBGBckGNz5/cxwOCEEGLeFkCMzHb3alEOkr7GavdghQQQ5QC7lCDnLn01kC7IJKSEcYoyxlnhyY0OsoijaE5fmSwWXh3B5COFYhodAwDI8lPGO4IyBhFSpLg8ZApyD3CqkN0YmyUMQZ5xU78XueMgYgxDEORNEcM0RAJBnikkSxJjmIQGAIMVDM7LanSOFYAsBxhxBgkmvZuZId3loC0HQazEKw0OWchxbz02R7Eke9oi5Wbp2E4BoiDU3NgW4HH2v5q8C53AYLC6ILM6EZ9wtGOSM0966nYlmGcmKnbTtzBs9cc6IBGMy+iEm366vFvesVOd6lYyhuUxZJBLEuDtKXisctS/vXNYcTIAYEedcEHEGUvOxU4CzlCAVK4ORIM4ZCeKMOSQ7fcDV8YAT9CMjIBwNxVsSr3xec8a00T1xab5UcHnY1CgH2QY5sxgjKXIkD22yOCPGdIcLB2AxwJMB4AwWzDz8ss6oNIbJiQCGXZJaKggiIUwERIonxDgTRAyoF3xlC6tLYVWMH1zoENGsIjVDaCYPPbGVVxkxbXQsxUO5AxAROCPNQw7mCLI4cwQxBggoHnImbR9ziBt/3GM8zL65idvOZw0JACwUYHpskR6LwGVGSs32CjDg/Zbg+lRocMAuCdJ+Udti3GhXBv0pnUsG9BU2VxeciDjjcvZoeXIJ2tYobaI6a+TzjHmnpR6WfzLOSL0HgF7nmYgxTiSYXKmKQRDkvjhjjlBHYkk+QcZHTAd0xDlzhGBM1TjkOx1GFmPC0V0ejDEiBgQDVhzYtKshbjv+DOrdQToPDZ3QItjaVKTKCW6wg+sSwWZiY0LOmHBqWtSeXZgCCaYsjuShIrCpiHPFPmJKw5g738NDPRG6iqGkvdDcY4wJIR7fGXhiR+CNRm/yNAigyKKZhc55g+yDC+w0HkIykxOEVEZMGiHFH2geCtdqKOvGBAi74yHpGIpDCBlbEO8xHmZ/vpuln25+bePOoiDj0VBQixozgUPQ4gHOttvWn2oLPk+GauzMXPUxRYl5xYkDCx1LiVimUlwqq8r0lXbditfSE9K2qIirVZycAfOSfuKmcsh9D0y0pSUueecWEWZWasbk3H2CmCBy1xsj9SiAlBBy5pGUI2T8lVKrO1MiSfFY/KDKIYdVDsrupflSoU0evhgr+ldTYQu1XSEp4HT2gNippTHVsyvLUp7BfWk8lPpFKZcMHqplXlwewvgttqKZXV8VSjc0beCoEvvXo5LFAZVOdnkIkGiLh565iknNhc5snc3RPGQOibZ5KIRDPc7D7KubFVtrAQSCljzFynu7Y4jo0frCR+vyd/fxfzeE/90Q3j/P/sXw5oqw1Kv6WmpTIr0KZE2Km9ybsj5olSGW39ymxZFb6h22soVVJa1NCTY5KooDdHCBoz4EEjI3RGS8itZC4ARH6iwhuN6jjtogk0CcMVu4vTwMkELG4lw4gnMmHGHUDQPC4VA8Fv9kW71vbroDzcOAtAmb7NATTSWfpMJ7+EiTYPfsyFvUGLq3omFAQKoAVeR2yazibkCF4FplS4boSqgpPEjecpUnxOsN/OxPQw0Oa/MAvHi+LrAxye+siO+dJ2AyjJyTEJLzHh4yDjiO4IwRhFdxSzbKnW21rS1J1ugEq1N8r7AdZaIyZHPDQzAhKzYijYers8rDLJsbIURdUgBwLCsA4kjrl1mfCv5qR+k2p31t9m5L4KTPix6pbJocdSDNSPqKGUzaGu0xhH7VlTmtM/9tqZsndgX/WBNY2dKGqzmqxD63PHVwoaOjZRkU66o5qYvNGROKVWrlecvE8HJVGR0zS6vEdD+Y0a5urCdVMRwAtc3+vKJdh4eHPEC0JhX5TcPgDn7200TgzPUldwxvmhy1JeG4zuyoOhRXOlp7O9e3uTxUrjGNhyua2Ymf7MneZWBVCz95bXTxxFhFWCjH62W1IC3niWQWhsDgWjfl+YC/10b+XR/8NJF5sw8OiL0jyZOKmsoswWTmASaryBzmAKjLKg+z3HezdusuAHkWYPqLdP5iQyp4/fYBHbE1Eo0OO3NdweqY5e190jUmyL4GVUXSGTJo55NhZaA+lbbKz0ct/IAPo5esC7VpawA8Xxc4eW305DXROsetXql+ClJfaPJ/THdbqPoazG+HpX2Rif+ZHncHb/egUjdEJIKhIIDVO/wx4l2El4ebnfB9jeWd+nh1il++uaDRkcUKADJVZzK+gGyZY6obQ/JQeHkoP+Th4YY4OmVrJBocdu7n4XpHeVDznbpPRz+k8RBQ3V70cmNo/mfFd22LtrY1AGps/v+aIhduGfhkfQHnJipUPCeRfR5m2dx8tqMOQDDALWNrGBhjzYLdvmtAi+jc7hod9oMN+fWO6XGSm1VpCtqWM73uF/Ql8VoW5n7MvfaP7wyc+Em4Ktm+pn2zyTplbfSjFu5WBEwhC0RmVVYG6I4+NQOTbl113wN3d9IDmkqqVOlcl9zkZf60rrlTp8uHgZeH9zeWx3aTrNkDtqT47dvy5HMdQ3m7QOHhIXWEh3dUdyiGao1VMetP24KeWqqX22pvaIuHf9sVuawqf0uq/d/+REPBHTtLYmQZHspepKzzMMvmZktjHACsgLQOOlWBxc0F2zusa7zYlOK3VEdN9zekJVcdClDpEV1rJM/F3oO6eb2BX7KuE9d+Vcw6eW20ztHfAMDj3zKuvbEvKtQn5WeUulEOxGSydK+6Mc0EDlgWA7CptrELZ8wHNA/JshbFSnaJLhZW/lUX/iQeUBw2PcFI46HqkVE8VPe8oYTh4Uct/IkdXa/v/GlbsMEx3Rs6DwgvDzUztWV8ZGd4wdZOtMy8E4vcuatUqRtd7bJ4lnmYTXMjhKhNOgAEJ865voVYC/EnGwu7/LULdwU3pTjpEXQSKptjssJCwCNk9qBuNsRxzmdd0bSnrI2ScNd1UBE6gXN97bWETrcgjPQar24fqmcUDEsf2aC8EweAej990yUYHhLHskRBd77q4Z1hOWTJZPqh/oSJqF0ectVBalyd4eHj3bA1ABoc9nydpdUNSAh4KmJS3TBXKdOLDaH/64ytkfg4GfpjbQnTnhI9wMNsmpsNO+psYiEOi3EzfoSB/peIdPObX6gLMterANCrf5mM/W68Clqpm0vWh7usae+sCbsL4Sk6MVmVhMrdoFXuRlW1TG4b2gJKZrhbSFfxGBOOYwUsIWiTvxBV52F4WC0iXZY2Ev+qC+k72mgKBnJTOaaHa88q+/m67tZk3mi0yOtfzUAGALo9TPfEs19u6WIr8GuxvNWJsFE3QmSZh1k1N7saAeRZ6l5SfgDstVi3PAyAJY1BmCHbqp1PZkPSLEtrr4J0dfNGo/Vme/0Oe8CftgUbHA7oJLBs6OJpfg8EzrmJm7iuOpmYX/JRReDIOFdubTUcCgFYvd2PpzoNw8OPUnnd/7ZlTQGmc7EyjlduRDocl4dp9JOfNTzc1IEs4Z6xKclNxETG6rkRncvDJ2uDm1Nd390zzYWuys42D7NpbrY1xQFYQcvU4eRxdy1r48WyJjl9sBpSwJhH3XgsS7u5m0W13fq9DQ5T3VkEpkye3rurX+SICq1IzcgJzUtlg7xzMulzBabdJlEwHASwsdYvTnUahocx0d2bHNB+xdSDzHUEYFS2pycDrVR2nZ2Fo1gV42m9HVDDh9UdATVqB0R/3tGt1elWJ8Pyhu0JHmbT3DQmbQBCemxumpCwo9vmBsqyGFtusvSZ6ka+eXfqpvuadnF9QNUgtbqRY0Sh2AZ3C+mKhlE33t9i+nfg2imdW1eZLwAJf0GYzsPwcLPT6SRda7zdEmAZlSl97d2cHcvkofdJ14L3DDQ4zLU1Jk/M3OIU4wyEBsFXx7p7u61JhVVXR7Z5mOVUMYAkuVbAOIHuQ59VmH9ZRidCB3I3WdG0klzQDc9EAtpewFOnNDzgaqyda/uY3g6jxmXmGMT0GByZ/HayPcTkywDDw3HBePe/rYhrjrn9X2Z0HjPDCJBOP+jtjLGRIdH9w5gUddK6VaFDOF2ckhJr1W6ayDqFnU4APcPDbJqbupSA1DU6H5HFL9fGPMOrqHu4I7mbDVngHjYnuZLOuiTgiaRkJk9VQ6Ektxrdu7wlUG1zQ0QYH+VW0JnJ+XHGBAkAScdXN52Gl4fdx6SIIxs61XBIPX7F8JDa4qH8rOFhodXde6HYStuLUvkmYvfO3dVtbEwFPTwkZI+HWRvEkEqlbFKOWmtLOasEJoWSHye7FU9Oijpo5VW8kdTucjduDh9o7GSTYZuoc5R0hhImTM1CImuTRGZOHAb8qy70UmPwv41pv31IQMwsSMwraB4cgurHEbo6bjoJhcorJxKp7h/zlwoeHtJwKwvze0+KOipBAq5VtXZ4u+dhhso+qsT5x85u3Wtziu303I2Hh4yB1Gw4m5NZIHkLcWlrbKFKsNniYdbUjZqzSsUFHnXD2Ohgd6/65KgwNb9OeRXvxinRLFjoKVGhvQoj5VV4msYBMcaWNASPXFP88y35GbYGwFabL6yLnrVp4B3bCpuJu9VxN9pS64RIpIQfT3UCLg/Bxnc7mJoYcYot0l0NkLZFFarQCZU9q6i78dSc4lTb6kYLLbl9eDYCt4pAkqmRpW6MkhUeZs3cxFI2AEvPwGHudoAOzWvp5pefMzBhkjcZXgWdyd10X9MWWXq+NdVYxIiEGUEq93tlVfTijfmb22sef7Ep8qNNA9algvLYdEeP0jhGFSd8c9MZuDwE8rk4KNytBvyzBiZ0cUJlaaSb8aobtJe7IaJTy+wRoa5fx5PL7IowtcrdMM+BKe4V8yywJZ+TW3HX3jorPMyaualpiAHID6i5zJhnJFtlyJ4S7rrAmRR19paaAuisV4FH3RDR0aXdtf1HldjGq6iJlHRHhswmXlEVfbquo5HjNodfW1OyPhl0K+XmmInC4RCADbX+yKlOwPBQ3ozH5dVFWRcv+oSIc2JJUotorWv0pA+dVdl3VXbxFii06NLBcaTvxZO78fAQNDlPDA921y5Mj8TdShwhizzMmrlxk6BkzjJMR+a5JY15vItX/faRcT1zomtovMql4303Mwu7G08dmJeSO9AF0bS+m5u2hJ+q7VyWqlnw67aXtpAFKFXoHj8IfjDVSXg4AMZQxu35+Q1d+6prhrRo/koRIbtdFAGh/+mgyp5Z6PxkWFcyIL+uiI+KuD/NVTfyR6p96d4uogMLu9XnM9ByRgWS6veqkYlAXwumDLw9CLpMxypDyW8VdcU63jYyNiVqMzBjNJRzSdcvHey7OW2g0x1Ne9KAlLzw6V6FSxP7ZqP10I6uNHq0CP5QXSHc2ZvIaEMAtm9tugSpbjhjR0QbZ0U7zb1fDGs+KN82dSjmUTd6jK18Re6rQyr78mGpUwZ2zuH9elR8bqnjpberbtT+03I3YOzHg7uVsfpmYSN0XxnzxGtZ4WHWzI3nrvZ2WMpyEgFsflHTJQPrO/Wd3yxNnlSa0F5Ffb1xLl790sHcDRF1R9PeOCKR5lWUuhFSlty1retDw15tia6Mh4ikbkrL3VjZqed+WZDBQzn74vlFtYdEO5pALLDoNyObThyQcgfLkEpJko5ZPCpbPnZUZd9dmfxNxxhYaNE/xsVOLbMzvlZ/p9pDRu4GRBUhunhwooM/NgMVwZQ8URm/CFniYdbMDeccyiTCM36EoFwBAewbebHLBjbkdyCbNTwo/lrZdPvIWGbMrGXk7mLmPeduZDzVNU37QGWsiOuu+IzcDagqxZc1daub87VYnhk0xXRNHUCA+famE2iThwS6sKT28gG7yq12xMWxxYlFY2qPKEwK5UUMzZjuVJBvNCq70xXSU8vst/eJn1y2p5DnsqHJt6fGZOyf8bUmUwGgXvA3mwNvNHE5J5SM9YjokiGJA/I7HVLlcXH5gFp56rwqO4s8zFrfjT4XID1/MDiXV4X0qAPG+BH5sWmR5F/qC5Y07lYL/HBQ7KyByVJLt+KCu71zpiLg0VAd7LsxWy4fltqYYJ3qg/j1qLg7M76n74YAuebMC3XBrpw1D1YnwyBPTiqrXuXLAy8PwUFEcmUFIpoRie0btd+JhV5qyfsonpZiGxO2x4edecWJA/KSNXbgufrQu7FAo61IV2TRQfn2kSX2yJAw0xBnVEgzeJihsjN4ODIk7tkrdXNF6vk6qyrB3mi0ABRbNDnqTMmjo0tstEVm8+T5+uAL9YHF9YGM4RFziu0jipInDrAF0b2jWr79ef4n8Y66wDxON5bXDg6KpKMXyusBlZ01c6O8CkGucSPHp5rhbPIuJSJwNiQofjqo8YdljW/GIjW29X5LiDEMCzojguKA/NTkiFMSAFezNSgly8H0DcgIxHS2LN3es92pm3QVqjTtrCJxybr207qFFj05LjYl6hi9amyBrEzKvptlzd0dqLLDsbbbVolFaoUZQbKxOC/UUyudfiHh8hCAnktY3zMsnznfKIgfWRC3OFufCrYIXsjFhKiQa35sS7HvV5X8r6WNE76kIXhzNY4sTl03LD4qrJL6LF25ZPDQ+8S8ujHB6m1MzQcRFVs4tUxaluQeojDvk5Ux64ZN4Td3o6MX1wcW1wd+s1X8bFj8G0XJZ8c1XVEV/VcH6qSjQ/bFAxoqgilb6JNlfLkQsm01KzzMGpUrSvMB1NooIrWGnJqch9RQRWlr5LUXgoosdlRB3OKMD2gJcs6hVs4McBkhu59l4G5lqntexbvl1DL74ALn9i3B3cmcQou+Nyh1bnmyiAvX1iBN3UCvbagmpugetjtWCU9B9yWnkjaAYYXdnS3oSwWXhwAYhEcnmlhD8nBMyGaSbwRi7LFdkbt37HaBEIkX6oMv1AfvqIidMiC1Zx6qPRIxxl5v4E/sDLzZaHknqy2y6KgSZ1aROKXM9n4W6bbG++fjOwM3bo60O+BzU4pfuCHv4kH8B4PiC0a0HF+S+N226Ltt2VAAeZxOL22ZV9hsE6XkKgQQ5FmlE2CpZApZ4mHWzE0gYL6KmTwugZGKgSCvMeMgPdu7nJoQjBEJuW4GuLtqCtOJDDK5G6amHemCV0GrqwigIkx3VyZvrkgtquWbkvyjZlbvsJFhGhkSk6Pi6BJbvzltL63UTZrm7C6YWVdP9Q2EsjT250sCDw91XC+FSDoPkc7DX9QUPt/Q0ariTzZG32oK3FER2zMPAayMWddtDLYpRhoc9sTOwBM7cX9N4MYRSdN23LrWIZ88sSv4k42duOHv3hapd9hPh8Zm5NsPjm7ckOAvNQZXJwLVSQ4gnztjws7USGpqJClXp5I6QOc9wDQPkVUeZlOoBxlShBAEwRLStAAAVMGe9DqkjBER53rSGhA4F0JYFofJ++hMjYxW6h2sjgcAjAhSRVjV/tr1KntWN+adHk3btlfRT+BRN/orAUFCGdFsQHpjIciyLKjlunx0DrvjoW7bJp3gheThQ7vyO25rJP6xK3hQgX1Kmb0Hlb2oLnDp+vanxF7Zwk9aE7lxRPL7Q+wMrqqjJloZsy7b0Glx8fDO8ISoM684QcCwkPPtMpFyYgJM6LXDBcERJFeIhafKRvosCSE4zyYPs2luSsPWtrgTJJYw6kbdnyAi4tyTweGuTdHXSZCaq0Gu8U5gy5qDC2uDSxqCGdfs4AJnTrF9UlmqRDbHdT53Y5CR9t9dzAykZaYzrCERDQ8LdDt9MzLotXocQF6wuxnoLyFcHhp1I5P63ulnmZpB5L2WwEO7ujLp3082RkcEm6Uqaa1uHtthXbahEybs+k2hqiS7aaSqkWfw8NzPuzgZ6K3V0dn5yXyLACb02ptgIKHzwXruAXWP6Lo6ydE5jBOyycNstvkVhYMASAgC1G9THSrayrjxszAlbf2byZtR/jgeOP3zgu98nv/P2jb8w5tN1g2bw0evzl9UF9hz7gat+m5MhAy9dyNh0MqrpH0b0tSNyt6AybHgB3W+7piBMsvJY3JeESaEEIIAlOT7iZtOQ/GQhMwSKlujlyHU8++px9/t6vqk/b+pieibM41dK5rZDZs63fD5p23Bx3Ua0cvDx3cGujxPU6PDFtTkQd9lRG4tXzLZ3eLeofJckeIhZZOH2TQ3xdEQ3ACQCXKVhNC/RFfXOLlbZDyiigmC6O3m4BnrCpY1t6O8qpLse+uil6wPt6lHvOpGvn936kY+ZhiszG8zmln7Rt2ToSLEI4q7a272C8eUEjTjAIECvyzVeSgeEgnPXSSRwcPXWyKft7XeWwfxZpO1Kibn2UzrO710Y/sJ3TZxfVWoQaiyveHhn7Z3a/KW/zYGCSC9wqeZdRdancs1xQURMc/5UTzk8uRli4fZNDdDi/IBtKQE9HWVklWoLDfgrQ6oXLKysoKUF/p/jeGzNhQ2dvhq/WNXUFoc7LGbE7tXN+ZJm7kb9cTwyTufoKzxCwJjRVx8s7Rbc4IckdcEQJA6Y6lECsCIoixM7v1lQyseMlKhA5mqn+Th683dupMBSD3izeA8vjPQ5Sn1Ghx2++YAPJZrY6K7E/Q1Ouz/NYRMDOEJlwDTJ63uFOhzBSIQmCCRSiSRPR5m09yMGFAIoNkhgMCYUAcNGFujfg+BMRKqNdKNvIhWxwM/39LpH/aPXcE7qkPwCJlOqRsjYTLskX6JedSNHnQKQNemmJ6V+YeD4l2e4OKEwsaBAUf7HDDGk6kUgL1KfHPTaRgemjEHMpAimJhdPX4Y7665SVM3nBN1V4w8Ie2X5uGmbEyXtSZhkfaL5N6JqmVaqxu5XY3OIHUMWeZhNs1NaV4kL8BsYmE9yxEp1QBItab1m1yXi4h0uooJQcTYbTV5Hdc1Xvy6OrQxkZnEyUruhpkqGFTeEW4igMkqkvylI8PimqFdWY6nIpg6oaCRCLIeSQDjFgkKBa3SaHfvhy8hDA8jgCPkhHSMyKhs0n0lbJvdXf6/1WS53TdCNBLvphhpcNh/ai1vKb2bRyhhKp4wdyKgtJ7Oouo7VP/fAzzM8ojwYflhANxxwJjQ+lXGhDo+VCM7pJ+RXXvyN7/bHFi+m2akjuCyDZGs524Aj61J6/QDoPQ5c3PeOKE0ddWQzlmcimDq2rJdrsSVU3cJAjCosJ2uMx+7Q5s8BLw8hBsXdxOkhrMwzlc0Z6E55eO4ZXjYkI05gj+Jcah+VKZjKGlQCICsSijdp4tTPcTDLJub0WVFABK2MD6fvFZTz+dislZaJTBB9Fhtt7LfbzZZGxNmaZgs5G7Up7TFQWaUC4CBuZkpqd3OHJi4eVhHpzuYHE5eN7A2yhz5WaHPVTJpA9irrOtFky85XB56qi0CnvyFcRrdB4NaI5yo3SkcO/qVmmmTo1mYDHRcRJi7DEizs57MqWuLBUha5KzzMMvmZuygEgAxR/XRCLd3yOSfIHT0ZKypzN282tRdwfZmk6U0YhZyN6bzXfkuXeNgSpbpOJExZuJemRGYX5p6dkz9fnl7qlXlcfphWcMNg3blMYeMwpeynyGRSADYu9w3N11EGzwEdJ6YeeL67mKESsKqmX2rElkwYR81uzwszkZFyHh9KK6q3Ln0kY4g772pGA4GsKzzMMt1Vhk2t9hULETSsoggGASpeEoQE0QWY46gANeVOSJw/r+mLBzJpqQeN67sCPQaT4DHBnl5Jrd45nVv1YsMCBDXay0QEWO6T5oxRnCEruLLDBSYQzQsjHsrGj+OW682Bpe3BKtTvMbmAKZGU4MCztRIav9IPI9T0kmrAsh7gLMACQoFA8URP3HTRbg8dETSsghQypGYuppExNjekdRH8W41sE2OOro7mQuiKXlZMGF757s9yjMLsrAE59cKkrLK4QhSvUh6Qhev/TVVUVLxR/Z5mP22jjEDClZsa3RsR1hcSDvKIPSaNdKHq7EqTPUXecfRdQdvNFqXDVUzkZmsijeq8lqTDAVkEsZMHxWgFYvWNRtjeKsl+EJdoN7RyRvgiKLU4cWpYUGmOheEun4CND7sjAnZ3x3QIrkuSHeOE2wStnDzCFL0SyecTKYAVPqRVPfg8pBzOWZKnm2Xh4SD8xLdNDdzSmxyZ8tlhV2dITcDXh7OKbYX13f9Ph0SFOPCjkNwVO++6iE2KWGH3M4V3X3TUzzMvrnZf9SQFdsaa5NOUThIgAAJYq7FEZALF1icCa0dAowLys51UsMNdG8eV3VlBoBzLoSQj/D0lXp7dhjneoSk/DrGACFEVdL6dXXwyV1tUHNZs3VLdWRGvn1ReeIr+SmpbgRAxFSOkjEhBMHtelDxo+5Ec4ytIRBj8XgcwOF7Dc7KCfnSwstDZe7BiBuLA8FwQDT+RxR0eReFFh1RbOvRLZyIpmYjqTqn2HZ5CJw3uFvm5pTSuFDMYrbkIWQegwQgAIA5JOStCjCV7mI8Hm9BtnmY/bmKhxRGS8OWTSxPCJVAVTrNzUh568cAHCGykrcrsnRiUI6oBMispqjGZKl13aFLUUyP22JM9ewxznXoCgBEeGJX8KjV0TZtjcE7zYGz1+ffuy3iEBGYGpICEGOOMCOtTISsYi6jaJSOBWQkVRANlfiRVPeQzkMyuQl1/gmCaEhAfLuk6wsMnFueKrZ0NxmUupnTvf7yQov2zicizUNgZqFzUEEXnfGQoDi1NA7Zc6Q8nFYx+jw46mzAy0nGrJ7gYfbNDYB9hg4AYKdsmY4y/dEmMpT5DtlmIjvN87OhQqfkCTmJNcnR51I96WQ1d/u4YUqjbl0KgByRIMy80yDCH7cFf7Khoz3p926PXL8l39FGT5ZgGWOOcH+7J0JmQhCRsTgkCPF4EsC0YWXdPxs+PDw0uZu0DIVDYl5RS2WoKwZiYtQ5uzxJSrGqCJoxdu7gbpmb7w+2YSJ9vfGBsfEuTOmfb9GC4U2Gh60qUN6qsTwbpMORnuJhj5ibKcPKAGxNUBiyKOD+TqF+lanJqchibMQZHOiuxZkclefQjaVXtPA/1gRv3xz45urwCR+H7tgSvK/aqkpIdQNAdwlrqWPslDy2x3cGbtzUOev+XH3ozpo807AnOe1WBABBJKMtIYRIOzOMW1Y8Fgewz+Dibp4KH+gYD/OYuHRgQ14nV4MrtOgPo1vkGodm1nQ5unpmoXNQYReZPCJE3xtsw+QWAQAEFHH6016xzvas/3xoy9iw0wEeUs542CPmpjgSmjAgH4BI2Do/qvJzSr+5uQyVjHUE7Rvt1pijQouOKnFItzI/sTNwwAeRI1aGr9sYuH1L8I1G/kYjv31z4Lqq4AEfRk5cHV7awE1FCWauSc/Y9A1x9pPOzCFg8Hht+OWmkIkiocb+K/1itAypGi0z1zuZsAGMGVjs16SygnQekkNEjOnYQalsAiqDqQVDawd12NtNiDp/3atlRNBU03WHhJo7Bg+M6eJwlgfHJIos5S917KMU+JQ8WjSheVJehw6ywKJHRjcckp/Qt4OK+ExXseIhpfOQVMzVczzsEXMD4OsTRwLYnhABCGM1hdFsjKnucq3owNiZpd1apu88LWLrbHbEqsgl60JVux+2/0YjP+mT8I8/D+n8PwCVz1bjMBk6q2u8uKcmanqOTL+DjphIxlCOSDsznFstzTEAc8YP7fJ+fWTAw0MTLzCHlKYmyDiX7RWyfzd81zcK2l+haX5J8i+VzROjju7JdMcbQ9d9ii08Ob7TFuc3lcm981US0+0RkR1eICIaGcbjY2OXDE3u+ZtPK008PaZhbNiR3tQUKBQPoby+sr/w8hAOEbN6kIc9ZW6KI6HxpXkAeMp23DtNVWG0utFnAUwQDQmKbxZ3ZcwRgEKLzilPEfBRi3XUqsjKjo1beWKn9Y2V4XphRgy7XuWjZv5CN8oBW22+qD4sL7ZkIQEOyQwChLG5nk7iRMIGUOlLm6winYdeXSPvLmEUdx4TVwxqum1I3RGFidZrExVYdGxJ8rG9Gm8ZEZNLaJMbnTF9lfUcT8DkPPHkhMTkjomRQoueHB8/ZaAMfEgYla29lBydR0TFAVw8OPHq5JYFFfETBqRm5DsFFgHYP985tCB14/DY02PqLx0Sy+dCdVcQI7B0HjKHhNC5G0dIHhr7i2RP8jCzyzaL2NoY+/M7awOMigojjPEAhwUEOQ9wFuCMA0GLBxizOBhgMc4YWohftrmoC1OQPDo2NqtINAh+1KpIZ+ciOrhQ/GN8XM53TnpewT9tC97UDXUD4MiixJWDmoSucztEDiHlCIfIIbIFbCKbYAthExywxoYWEnTRzIm+uckuds9DBDhvxUPGGCzGP2gJcgbGwBmKLEyMOBZjFgNnsBjjjDEQV0/k2xhnbGMcnLGKiCJSg+AP1Fh/rAnsYeDxyQOdy4amKsImUeP2fwl9b5IZ6qxCcvL25gkiR/swx9hTclWMAISArGDYRA5RyiH5ZluQLZmZEx724OxNQwqjo4oiGxriIpZkeRGHwBlziDiYI4hZ3BHEOBgxizOHRIDxfCbuHNF46abCTlmc2yriBxcJAs77NNyFec/ebOTXVQVvqki5Y0cZW1zX3TPzelOIBpmqvxAERwjZ6SBUpwMTJOTzZMIhQb606Qlk8lAQ59wh4uC2EEHLkjyEYLLT3WJcEE3LTzEii3MGcAYHTPaOBsw6U0zVPd9uDjy1K/h2c9qceyNCdHChc1KZfdkw+6Qy+62mwOJaXpVUk9eMCNHIMM0pceaUONLQyPn/hWdmJUH0ZqMFVUfFQQWOUO8BvHkJKZkBWwhiXBi9ltErDAJjjuKh6roQnsyGyR72KA97UN0AqI8n//jm6hRhYEGYLG4xBDgLMBa0GAcCnAcYC3DpNBjXj82CX7a56LMOWJxCi+4dHT+4yAFhSUPwgs+7ktmVeGNqfGRImJj5qNXRj7s3kwCAF8budIiEIAfMFsIhsgU5BFs9IZuQEiSIN9Q3WZydf9AE39z0BFrzMMiZpCJnCHAe4EyKF4szDnCmHxk4Y0q8gHEGC7A4sxgY8Encuq06+vYe56g+qEDcWJGakid7R9U83ExnfKDmMyEzfxKAJ3YG/rHDeqvV+g0HFjgnDkgdX5qSYwwdbXFUNUYpHVfdQHacaqPjCOEAioGKjZAktIlcHjJ2/sE9xcOeyt1IFEdC+w0fAKAplvDmKWydpXOIbDeLrHLj+Uz8qaLhqsHNe17ed35p6qlxTQcWykQQ+011t7rRf70loBSsIAK6b2sAbElyIgiPV1FsIJUhloFVc3MMwMGVQ3xb00NozUN5l9qkeSjIMZ1QUL1gipOygqM7pxwdszxVFzp7Xf6ebQ2At5r4yZ+EntgZ0JlauLPMyOZDWZkmArCo1pq5IvqT9aHWtgbAsibryo2Rw1YVvNAQ9P4KhyCQ0dvl5oCVrZF8Eyp/KnT/ked7NA/36kEe9vhUuIePH/FRTV1zSuSlbCcU4Iw7RIxxW4gAl+vFwRYiyLnuLicOCKKjiuJHFyeWNoeWNoVqUrw6xRsFmxARRVzsn+98vTg1MkScQcZoG+K0OtYtA/FCnUWjVMWaiAot6tpEX14MDgqH4DgqYjLRtefaM8chx3YKoqFDRpV3c3c+9oDO8BCcwdE85DJwUuOtVGXj2brQjVs6ujpCg8MuWxcEcHKZzXSvqRs3aXVzx5bAnVvad5mbU+ziDdErh7JvlyXcsgNAjOk6L7zZaz01iozld8tDOyc8zMXM28dNqnjsw/W7YnZxIOCAuMUdIZjFZYoLAJdX3eIgNVqXMQiAE76al5xdkGKAzMlxzrjO56lKMwMJWtLJdYJao8FhK1rY5DyShYFJUfH2bpZG7TgEkS3kFRV62I7O3QghGLMdammKATh2wshu7stHu/Dw0HIYSdZJPydH1HBmGR4yw0OCnOqIAYLAGXunOdBxW2Nw2brgxKjYO0/ILnPOdRcMCMANVYE/b+uEPL+tOlLvsPMGxoWnV5ZYRtZG1umFVGSCMccRJtpSuRtBueRhzwZTEpUDi6YOKgQQb47L8EEwZhSdINhCeCs4JiJ1O+I8jyr+khpSRihgDVkYpo96m+m6IA3vfM945q8O247765jQOlZ6FQewHSfWHAMwceiAygH+xH09Dg8PEyZ6slU04V4pHZUI0l0LZlybAOoc/KK6ixP3fv/TEOlZIEzdgMCe2NE5WyNx37bwM3Uh3S+D1rZGRm2OCqZgO0rXyPfL3I3ILQ9zYW4AHLt3ZWnYSgjYsaQg2MKNGNVVFyS3u1ZZN8WZMdamYcnUlW1535KoysYM0m81cZW9Bw4r6laLM4C9wynHdLIK7WEkAwgOUSLhOI4ojIZOmDSi+wfvoyPw8tDx5m6IHAKpjL7eruflEp7czT9qI9VdnbJvU5L9ektAd7tIVUW1Nm7e1MW04501kQaH6Q4aYby1zssIk7hx9C8VOlssradNlIjnjoc5MjcATp0+JsjQlBJO0pbZYsfjVQiQfsY2cYca66FHqeo+a5OHd4gc5Z1YQTZGeBZY0LEP7Z8vCrq6rILEMYUt6tc5ymc6npjZtpGIJy3OTp++V/eP3EfHYXgokrayL3BVtlHWxvOZWQ3kHfufum6lUf+5w/LUniGAP28LdG1RKgBNDnt8V1jGR6Yn0HSTSi+um3G0djP3juFhInc8zJ25Kc2LHDNpJIC6lmTKER6vQkKrG0fo556Mujf7pSMs75gAlhJUkI0c1PiII+29A5bHxfmDkl3+qkMLEgMDjkPkkCDGjEoXgAPYNpqbWgAcO3mUP9FEjpHGQ9sRYA5B501hVLZkgtsNTyBgTdyq6d7iDZuSbGOC6zsfDuHBbd3i7n/qQqSzMG6XjbaYjpY20sbJOcSNxck9D3NnbgBMGlK675BiAE2N8bjtOGDSEqvcDcm+AJXHSZOybp6VTKOkGRsBsMGBLMxYPyQoUoIcVZ/Gt8qS4yJd+drygDirtEGWvR1ithAyHyS7HpK2aGpuATB52IDJg4q6f9g+OguXh03xhO0IggNta3R2w3aEsjtuDhHvdWOlEIM3G7mAuvM/auFN3SuAbrX5mjgXlBEHwDYqRugtsjpBEMRsQUmHJA+n5JCHOTU3AOZOHjVhQL5DaGmKJx3Vd0RMqj5m1I0jLY4wTUpkIixjfbwjX2YXdtfcDA3S4KBQe1ej2One0S1Dgp0LqfI4XTGwLo+5XkWApYSQrizlUHNTjASNGVg8f6Kfsuk1eHmYcIRs59c81PUajzqQDGwSWZgEblOSpQQJsBTRssYsrVpHavyXV6OpETNQgxWMjbOJvDycl0Me5trcAPjmtDGjiiIOId4ck5Yl5YkqZf5cD+VQ+Q63L1sW8Nwaltqex53p+d2yOMcNSDnEjH+T+8rn9NtRTWM6rHHyON0wqHZ0yLFJ2RftM5nsJG5qipGg0QOLTtlnVHeO1kf3kcFD0ZqHpMa1ybybGcHUTQiCAEsJcgj13e7tArA1ZXlGSJl4UP0WR8AhOG3zsDjHPOwFcwPgm9PGDIgEkg5aGmPG7iobzHQeR1bvjLdRHdkQqk/X7YmUPcoXD25/9oDdocCiUwekBBExGQOreEoAQ4J098imo4rbL1RNiaR+N3znqJCdkhGyDI8F6c5xam6Ok6CiaPiEyX6XTZ+Al4cpRwidOTZ3pi7ruNWc7oOYawuyYsBkJtsWwvaMkhGAI4QgJhtH3LhBeHmYa33dO+YmErC+e8CEAZFAwqGWplgiJeTVdQBbKlsSOhjRSkdmwkACJKQGEbqHkjFb0NiIc/KARNeO55IhiXxL9/6480KoSny+RT8d2vL3vRqOLEq2nnIwj9NhBYkbB9ddP6guykgzVSf/AVtQyqHGhpidcoqi4XNnjI0EsrMSq49uIo2HzfFESsiOMDeHqCNiycOBgSz0d40NO3oWCJaVlTxJjwRSvk1NOaAspkqEAykhUg41NvYmD3PRVdwm5JV+5J01O2Mpu7GFCqORoGULgpy9nDgAAnECLN25JOTYf7WArhpfzhiEsDh3BP1ocGJtPPB+S+dO4illyaOLk4L0DEnu+uVmfiyAYVDAuXJIiyD6NGE12GpMLREmhROAqT0JB6ZbXKmblEONjS0kqCQvfPb+vq3pW2iThySIWZwEgcv5a4gTwDEx1PVipcG4iLDlWE2iMeEsNHCMCtpy1KXkIYE5Ai4P0Yd42DvqRiISsM6cMX54YcQhNDfGEilVmVL9ezqcUfktnbezddHK0TNvklrRAgK4eXjzVws60aF38oDkxYMTpv6l5v3ydDzrCI5MVD86ZO8dtadEUpPDqUnhpMzzqyNUVXxmZK25xhWlBb6t6Ztok4cph9J5SDZReUCM6tI86gZjI2JQQJiOu+l5WaioTookbTnuSei4D7qnpI/xsDfNDfSVnjSw0CHUN7Qk4rZgSgHantyN6oMQwrxk6+yd7jhgcmKhfItuHhk7sbT9qCrfoquHxX80JK56ukFuhkh9m+rx8VgcGdmpR62xhVKwOuZXdSgglrQb6ptJ0IRBJd+Zvpdva/osMngYj9s6KoFMFdtCdsrR3MIuTjgpcXJZUvX4MTiC8izR8UJEmxgVsqPM5aHpt7ABUw/tOzzs2fluOo5nPtqwcls9gPxwIJwXDnJucTm9COMclp5/xNKTj5gnakYSAud6cW8Gxlh1gj28M/J6U6C5VfJ/cJCOLkmdNCBpepHlKfDO5gc1QaxnWSJArk5nZpzUdXqma6XQeWukHNESTyZiSQCTB5fMn1KRqxPpo1vI5KHFuZrghlkMcsqbi6sH7uhSs9+YiPPnMTFKXxX6vWbrkg1dHIQF4PrB9ZMjSYdAeio/ExMQWEqIllgf4mFfMTcAPqyuXfLJpqSgSIBFCvJCFueeGY8sz/xbcqJGOYGjxTmILM6h50NijAHE9erAn8b51hT/LGExYJ9oqjDAxoZttVKHXGiOMaFWzszM3Qg5d6xQM6G5szF6OoAcIXQ0J/ukkbSdlpaEnbIDnM+ZMHyfoaW9fWp9dAKZPAxwS06spXm4MRW4ZXtprJM9OPkW/WZUbGzYYYwRCcY4kZDzT1yyIf+DTiYcJSZFUtcNqmubh0Ay1ed42IfMDYCapvgzH63f0ZIMcESikWgkKK2MnkGWWXIaCgaLyzlimVQ60BPHAlAWh9Q8bIwxd50wsy64nt8Iej41mBmkzeq6arwMuY3haiyvnh5NKxqh1Y1DiMVTsVicBA3IDx8/ZdTggkgvn1MfnUdrHirPp3m4PB65a0cnOnHzLbpyaHxWQao1AxljDTZO/7ygtQzfM6Kc7h62M8oog4cyD9A3edi3zA2AuO0s+WTzRzV1APKCVjA/Eglacs5qKWs5VNxk6Rlw3NlwlLlRcRYRcc6lJYJZN54z8qwRrOY0Ea710RZHkBmbJ9f8NL2FOo+joydVEUg51NKSSCVTAKYMLjlywnA/WdN/0RYPAwxk/N/GVODWjmmcPE6/qmjZK2TLpaEZjLpRQTyAT+PWFZvyWzpscaKcrh1UNyKQIg8PCczp2zzsc+ZGYs32hhfWbGpM2AAKo6FQXjjAmMWZnkTWtS/yOdScW67MkfPCSvmjZoeFqj6avXjUjbuaj0fdqPSNme3VzAJr/pTjtlJCxGPJWEsCQEE4OGf88PHl/mCoLwL2wEMG2ulYzzQWLG3ek3A4rDD5vUGxQq5VNne1tnmPZF11iv2iOn99on3TMDJkX1JWX2Y5wsNDQWQT9XEe9lFzAyBuO6+tq3m3agcAi6MgPxoIBYKcM+bmcaTGAWBxBnKVDgDOAIAzRgCHXDocGVk60ltMvkbqmnSLA/mqO/7NrOIO2IISiVRLS1zOB/fVysEzRg7sO87ER/exOx6aTOJOx1oei7wXC+2wrR0OBzAwIAYFxAH5qRl5yaEhki5Q8RDkUdnurSc0Dx+vy3u2LtyyG9EU5TSnMHZ8UbMw1dJ+xcO+a24kapriL67ZvLGuGYDFkReNhCKhAGcWT1M3Jp4yi/4Aah1wqW64N3cDvfqysTskpyhW84bIFI6nJqXljDCjHGALiseTsVhCXuCKkvxvjB/eRyJkH1lHGzyMhqTSSeOh9nmah9xMPKpUtptJdL88nYeMiN5qDr7bEtpuW9C5xYEBMT2a2C+a6Nc87OvmRmLN9oa3N26rqm+Ba3SCQctSuRvyZnCIqRgKMlsMQFbIGWPkmSNWQlWjSDAzm7TM1BDtLnfjCJGI2y0x5UlGluQfMLK8r6lWHz2B3fEQULULyxQrIAsXpLS2jqGgeajUjVr6RUbzSllT2zwkR1VICZqH8bgd61c87B/mRmJjbfOrn1fLiw0gFOChSDiirjdxxlUApa6uasDhnlpAWsxsKlNqi7y0pFf8gKmFq5SNI2LxVCKRdGzVl1VRkn9I5ZCKUn+a4S8XWvMwGAlHtd0xcttURTnj3gqpy0NZn9Iz/IPUNOkEtXCvULULEJHQXWC2I2LxZCKR6o887E/mRmJjbfOH1bvWbK9POKpJLz8cYKFQMGCFQwHmXmyVzTFehTMmSKiVHpQ/keVIb2WKOWl9N5RMOclEynFEIqHGy4QtPr68eJ+hA/rFBfbRQ+gMD4lznqZuFA9V3425DY23g2duc3yBeNj/zI3Bh9W1a7bXr93R4N0YCgZC4WAoHGRgoaDVtrrRaTjSboX0yFxBZNvCESKVtJPJVCqVNkBm3MCifYYO6ON61UeO0UUe6iBKrmum+k7lkGA5yPuLyMN+bG4k4razZnvDxtqmmqbYtqbMKW8si3POg8EA55yxzMqUQcp2hPov86VBBZGK0oLBBdHx5UV9MNXvo4+gazzUqRsFzUMhtGIy+GLwsN+bGy/itrOxtnlDXdO2xljcdlpf9Y5gUEEkErDkpa0oze+/l9ZHb8Hn4e7whTI3rVEfT9bHUjVNsbi9p3G3kYA1uCBaHA36q3T76An4PJT4gpsbHz589B308nw3Pnz4+PLANzc+fPjIEXxz48OHjxzBNzc+fPjIEXxz48OHjxzBNzc+fPjIEXxz48OHjxzBNzc+fPjIEXxz48OHjxzBNzc+fPjIEXxz48OHjxzBNzc+fPjIEXxz48OHjxzBNzc+fPjIEXxz48OHjxzBNzc+fPjIEXxz48OHjxzBNzc+fPjIEXxz48OHjxzBNzc+fPjIETiAxsbGu+6664gjjpgyZcree+89Z86c3/72t7Ztt/vhCy+88Dvf+U7PH2S30BcOsqWlZcGCBYcccsjEiRMPP/zwP/zhD0KohYSmTJlSmY5nn322yztatWpVZWXlCy+8kKUDzyl8HvY0ep2HAQBnnXVWVVXVJZdcMnnyZNu2X3/99bvuuquqqmrBggVd3l838ZWvfOVf//rXiBEjeusAsosrrrhi2bJlV1555ejRo995553bbrvNtu0f/vCHRNTS0nLxxRcffPDB5s1jx47txUPtRfg87Gn0Og8Da9asWb58+e9///ujjz5abtp///3D4fDixYtjsVg0Gs36LtvF5s2bd+3alfv99hDq6upee+2166+//sQTTwRwwAEHrFy5ctGiRT/84Q+bm5sBTJ069aCDDurtw+xl+DzsafQFHnLHcQBwnpbEueCCC5566ilzjR9//PFvfOMb48ePnz59+o9//OMdO3Z439zU1DRx4sR7773XbEkmk/vss89tt90GYMeOHZdeeun06dMnTJgwf/78N954Q77n008/raysXLZs2YUXXjhlypT999//hhtuEEK89dZbX/3qVwEccsgh3//+9707eu211yorK9977z2z5f3336+srHz11VcBvPvuu6eccsrEiRMnT578rW9964MPPmj9aydPnnz//febP6+66qrjjjvOHMzSpUtPP/30iRMnzpo167nnnvvoo4/mzZs3ceLEo48+esWKFfIjtm3/+te/njVr1vjx4w899NCHH37YfNuCBQvGjBnTeqclJSUffvihvMYS4XBYnvCmpiYA+fntLyn/wx/+8Ac/+MFf//rXAw88cOLEieedd15DQ8P//d//TZ8+fdq0aTfccEO739DH4fMQXwIe8jFjxowcOfLKK6/8+9//nnH9JBYuXPjTn/50/vz5zz///O9+97sVK1acc8453sXwCgoKDj300MWLF5str7/+emNj47x58xzH+e53v7t8+fLf/va3//73v6dNm3bWWWd98sknAAKBAICbbrrpO9/5zvvvv3/HHXc8/PDDixYt+spXvnLPPfcAeO6553796197j2TmzJllZWXeHS1atKisrGzWrFmff/756aefXl5evnDhwieeeKKgoOA73/nO1q1b2z19EvJgbr/99quuumr58uX77LPPz372swULFtx9991vv/12QUHB9ddfL995yy23/PGPf7z00ksXL178ve997xe/+MWjjz4qXxo7duzhhx++h73E4/GamppHH330P//5z3nnnQdAepWOuO5AILB8+fINGza89NJLf/vb3/773/+edNJJ5eXlb7zxxoIFCx5++GHJ9f4Ln4f4MvCQiD755JP58+ePHj169OjR3/jGN2688cYVK1aQxty5c08//XTz54svvjh69Oh3332XiC644IJvf/vbRPTss8+OHj26urpavufyyy8/8sgjiei///3v6NGjX3/9dbndcZzDDz/86quvJqJ169aNHj36rrvuMt/8ta997Ze//CURvfzyy6NHj66qqqJW+NnPfnbooYeaPw855JDrrruOiG666aapU6fGYjG5vba2dty4cb/97W+9B0lEkyZNuu+++8zHr7zyymOPPdYczL333iu3L168ePTo0c8++6z886GHHpowYQIRNTQ0jBs37o477jDfcNVVVx122GGtj7NNnHrqqaNHj95nn32eeuopueX9998fPXr0tddeO3v27IkTJ86ZM+eJJ55o87M//vGP99lnn0QiIf88+uijv/71r5tXp02bJg9+5cqVo0ePXrx4cQcPqU/B5+EXnoccwPjx459++ukXXnjh2muvraio+Pvf/37cccfdfPPNAFKp1Mcff7z//vsb87TvvvsCWLVqlddmff3rX49GozIRbdv2iy++OH/+fAAffPCBZVkHHHCAfBvnfMaMGcuXLzcfnDx5snleVFRUX1+/Z+N63HHHrV+/fs2aNQBWrlxZVVUld7RixYopU6ZEIhH5tpKSkoqKioyDbBfjxo0zR5LxZyKRSCaTq1atSqVSM2fONB856KCD1q1bV1tb25Hvv+GGGx588MHTTjvtpz/96SOPPAIgkUgUFhZu3br1+uuvf+ihhw444IArr7zSuKkMVFRUhEIhc0jm8OSfDQ0NnfqxfRA+DyW+wDwMeH/kuHHjzj333Kampuuvv/7BBx887rjj9tprLyIqLi42b5PPZbBnEI1Gv/71rz///PNnnnnmm2++WVdXN2/ePPk2x3GmTJli3mnbdmlpqfnTXBgJam/B8hkzZpSXlz///PPjx4//z3/+M2LEiP3220/uqKKiwvvO4uLijINsF+FweA9/EpH8wjPPPJMxJjfKOuLOnTu9P2p3mDhx4sSJEw877LBwOPzLX/7yxBNPPOCAAz788EPzhgMPPLCqqurPf/7zt771rS4cXrsH0C/g8/ALzMNAMpmsqakZOXKk2VRQUHD55ZcvXLhw1apVU6ZM4Zx7jb18XlhYmPFFxx577A9+8IO6urrnn39++vTpsnZYWFgYDof//e9/e9+ZkQ7sFDjnxxxzzOLFiy+++OLnn39eJtjkjjI8Un19/dChQzM+bi6PRDwe79Te5a++8847J06c6N3uPXutsXXr1qVLlx511FEFBQVyy9SpUxOJRHV1deta46RJk5YtW9apo/piwOdhx9F/ech/8YtfzJ07NyM5t27dOgDl5eXBYHDSpEle2fm///0PwD777JPxRYceemgkEnn11VeXLFkihSWAadOmJRIJIcQYjUgk0vrst4ndmcljjz121apVb7755ueff252NHXq1JUrVyYSCfnnjh071q9f3/ogi4qKvK6msyp30qRJoVBo165d5ueUlJQMGDDAaMs2UVtbe8UVV7z00ksZ+x0+fPiSJUt+9KMfJZNJ89J7772X4R6/JPB52HH0Xx7yc889NxqNnnjiiX/5y1+WLVv2xhtv3HfffT/60Y+mTJkye/ZsAN///vdfe+21++67r6qq6o033vjFL35x4IEHtj6D4XD4iCOOuO+++3bu3HnMMcfIjbNmzZo8efIll1yybNmyTZs2PfPMM3Pnzv3b3/6252OSOvmll16StYMM7LfffsOGDbvlllsmTJgwYcIEufGMM85IJpNXXXXVp59+umrVqssvv7yoqMhb85PYZ599Fi9evHPnzlgsdvfdd8uEfMdRWFj4rW99684773zuuec2bdr01ltvnXHGGVdeeaV8deHChRdccEHrT02aNGn27NnXX3/93//+97fffvuBBx74wx/+cMopp0Sj0YqKiiVLlpx//vlLly596623rr766rfeeuvCCy/s1FG1xsqVK1/xoF/IJZ+HHUf/5WGgoqJi4cKF999//wMPPFBTUxMKhUaMGHHeeeedccYZ0ljOmzcvHo/ff//9t99+e1FR0RFHHHHNNde0+e3HHnvseeed97WvfW3gwIFyi2VZDz/88C9/+csLLrigpaVl5MiRP/7xj88555w9H+XUqVNnz5596623HnTQQQ899FDGq4yxuXPn/ulPfzLnF8CoUaP+9re/LViw4Nhjj7Usa8aMGY899lhZWVnGZ6+55pqrrrrqq1/9anFx8RlnnHHCCSf897//7cwJxLXXXltUVHTrrbdu27atrKzsyCOPvOqqq+RLa9euXbJkSZufuueee+6555577713+/btQ4cO/d73vnfRRRcBmDBhwiOPPPKb3/zmBz/4AYCxY8c++OCDhx12WKcOqTXuvvtu75/Dhw9funRpN7+zp+HzsDNnq7/ykH1hUow+fPjo4/BHhPvw4SNH8M2NDx8+cgTf3Pjw4SNH8M2NDx8+cgTf3Pjw4SNH8M2NDx8+cgTf3Pjw4SNH8M2NDx8+cgTf3Pjw4SNH8M2NDx8+cgTf3Pjw4SNH8M2NDx8+cgTf3Pjw4SNH8M2NDx8+cgTf3Pjw4SNH8M2NDx8+cgTf3Pjw4SNH8M2NDx8+cgTf3Pjw4SNH8M2NDx8+cgTf3Pjw4SNH8M2NDx8+cgTf3Pjw4SNH8M2NDx8+cgTf3Pjw4SNH6H1z8/bbb5977rlf+cpXxowZM2XKlPnz5z/22GMd+eCmTZsqKysrKysbGho6u9PLL7+8srLypptu6vzxto+77rpLHtjNN9/cE9/voyfwxBNPnHjiiVOnTh0zZsz06dPPPPPMt99+uyMffPLJJysrK+fOnduFnX71q1+trKx84YUXuvDZ3eHhhx+u9GCvvfY68MADzzrrrL6wVHwvm5u33nrr29/+9ksvvZSfn3/wwQcPHDjwww8/vPrqq//yl79kd0dbtmyprKx88MEH5Z+TJ08+7LDDxo0bl929SDz33HPyyaJFi/w1kfsF7rnnnquuumr58uUVFRUHHXQQY+y1114788wzV6xYkd0dLVy4sLKyctWqVfLPmTNnHnbYYeXl5dndC4BgMDht2rRp06ZNmTKlpaXllVde+fa3v93rFifQu7v/y1/+4jjOnDlz/vCHP8gt11xzzaOPPvrwww+fccYZWdyRMQES55xzTrsr0ncNa9eu/fTTT4uKivLy8qqrq99///3p06f3xI58ZBEPPfQQgOuvv/6ss84CEIvFTjrppFWrVj3++ONTp07N4o4yeHjbbbdl8cu9GDRo0FNPPSWfNzY2zp07d9OmTU8++eSBBx7YQ3vsCHpZ3cg4qLS01Gy5+uqrX331Va+8XLhw4bHHHjtx4sQpU6aceuqpr776aptfddppp3n1yyuvvFJZWTljxgwAxx133K233grg5ptvrqysbG5uzgimksnkHXfcMXv27HHjxk2fPv2iiy76/PPP5UuPPPJIZWXl+eefv2zZsrlz506aNOn4449fuXLl7n7Rv//9bwCzZ8/++te/jlb08tE3kcHDaDT64IMPvv3227fccovcsgeGZECGMEa/LFiwoLKy8kc/+lFzc3NlZeV///tfAMccc8xxxx2HVsHU1q1bL7/88hkzZowbN27WrFk33nhjY2OjfOmiiy6qrKz885///Ne//nXmzJlTp0694IILdu3a1ZFfV1hYuO+++wKIx+NdOj1ZQy+bmylTpgB47LHHfvKTnyxZsqS+vr6wsHDkyJGcqwP7wx/+8JOf/GT16tWHHXbYjBkz3n777e9+97tLlizp1F7mz58/dOhQAAcccMDZZ58dDAYz3nD++ef/9re/bWxsPPbYY4cOHbpo0aITTjhh8+bNACKRCIDPP//88ssvnzx5cllZ2QcffHDRRRfZtt3mvqS5Oeqoo4466ij48VQ/geThNddcc9ttty1btiyZTA4ePNgb4+yBIR1EMBg8++yz5fN58+bNnz8/4w27du365je/+c9//rO4uHjevHmO4zz00ENnnHGGZJrk4bPPPvvAAw/MnDnTcZzFixf/8pe/7Mium5qaPvjgAwC9K23Q6+bmggsukHZ34cKF3//+96dPnz5//vy//vWv8hQ3NDTcddddAG655ZZ7771Xnn0Av/rVrzq1l/POO6+yshLAnDlzrrvuulAo5H31tddee/nllxljTz755J133vmvf/1r8uTJDQ0N9913HwBp+D799NM777zz9ttvl6p748aNbTq3Tz755NNPPw2Hw4ceeuhBBx1UUlIi46nOnxgfOcUtt9xSVlbW0tJy7733nnbaafvss8/ZZ5/9yiuvyFf3zJAOIhQKXXfddZJO559//nnnnZfxhgceeKC6unrUqFHPPffcHXfc8fTTT4dCoQ8++EBqH/nB9evXP/PMM7fffvs111wD4KWXXtrd7rZt23bCCSeccMIJ8+bNmzlz5tatW7/zne+cdtppnTsv2UYvm5uSkpKFCxfef//9p5122qhRo4joww8//PnPf37llVcCeO+996T8mzdvnnz/McccA2Dt2rV1dXXZOoY33ngDwNSpU/faay8AwWDwyCOPBPDOO++Y9wwZMmT//fcHMHbs2Pz8fAA1NTWtv+o///kPgEMPPTQvLy8QCBxxxBHw46n+gL333vuVV1659dZbjz766LKyskQi8fLLL5911llPPPEEOsaQ7kPuZc6cOVLIDBkyZL/99svYy+zZswsLCwFMmzYNQG1tbSqVavPbUqnU+++///77769YsaKxsdGyrA0bNnzyySdZPOAuoPcL4ZzzI4444tZbb3355ZeXLl0qReZTTz21adOm2tpaAOFwOC8vT755wIAB8kl9fX22DkDuxZs/knvxWjTvq9FoFIAQovVXyUhq+fLlc+fOnTt3rkwz+fFUv0B+fv5pp532+9///t1333366adleHX33XejYwzpPjrFQ0lC7IaHAIYPH75O49133z3nnHOWLl16+umnd6FrJIvoTXPT1NT0/PPP33XXXSaDNXz48DvuuCMQCADYsGFDSUkJgEQiEYvF5BtMbsx7VSSk2jRf1cEsGgC5F3mxvZ81pq2DWL169WeffQZg+/btH3/88ccffywVkB9P9XFs2bLln//8pwyTJfbdd9/rrrsOwObNm23b7hRDGGPoVR62RllZ2cUXXwygrq6ud6nYy+rmsssu+81vfrNgwYJkMim3vPjiizJxM2LEiP322y8cDsMTj/zrX/8CsPfeexcVFWV8lUzsyZQYgGeffdb7qiRBc3Nz62OYOXMmgI8++mj9+vUAksnkokWLzPaOQ0ZS++233zoPZs+eDT+e6ttYv3795ZdffuONNz7zzDNyi+M4MmMyZMiQQCDQKYZ4edjc3CxLUQbt8nDJkiXyXti8efP//ve/3e2lszD13IKCgu5/W5fRm303BQUFV1xxxU033fTQQw89+eSTw4cPr6+v37p1K4Djjz9+1KhRAC6++OJf/epX11577dKlS3ft2rV06VLLsq6++urW33bYYYc988wzL7zwwoUXXtjY2CgriCaKGTJkCICHHnqoqqrqiiuu8H7wkEMO+drXvvbqq6+ecsops2fPXrFixSeffFJeXn7++ed36udIc5PRXXr00Ue/8sorixYtuvbaayXVfPQ1HHzwwXPmzFm8ePGPf/zjW265ZcCAAVu3bpXR+iWXXIJOMuSwww57/PHHb7vtttWrVy9fvnzo0KHbt2/38nDz5s0///nPZ82a9fOf/9z7wXPPPXfhwoXr1q2bP3++zCWlUqlZs2YdfvjhXfhRMlUsn9fX169btw7A9OnTZdKnt9DL6ubss89+4IEHZs+enZ+f/9lnnzU2Nk6bNu366683taeLLrrotttuGzt27PPPP//ee+/NmjXr0UcfbdPez5s378ILLxw4cODSpUuHDRsmOyYSiYR89Xvf+97YsWMbGxvffPPNjHCXMXb//fdfeOGF4XD46aef3r59+/HHH//UU08NHDiw4z/ERFKy/m1w5JFHWpZVXV393nvvdebE+MgdGGP33HPPjTfeOH36dMdx1q5dyzmfPXv2gw8+eOqpp6KTDLnqqquOPvroQCDw8ssvn3zyySeffDI8PPzpT386cODA9evXr169OuODZWVlCxcuPP7447dt2/b000+Hw+ELL7zwgQce6JqXMqni999/v6amZty4cZdeeukjjzxiWkx6Bf8f0uRlvT+zzE8AAAAASUVORK5CYII=", "path": "image.png" }
Which solution has a higher concentration of blue particles?
[ "neither; their concentrations are the same", "Solution B", "Solution A" ]
1
The diagram below is a model of two solutions. Each blue ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the blue particles represent the solute. To figure out which solution has a higher concentration of blue particles, look at both the number of blue particles and the volume of the solvent in each container. Use the concentration formula to find the number of blue particles per milliliter. Solution B has more blue particles per milliliter. So, Solution B has a higher concentration of blue particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABQyklEQVR4nO2deZwUxd3/P9Uzs7PH7C7XCoisWQREEAUVRVDBA1Hk0GgSE4PxvhKvSCQaI57xATU+ag7vRzSeQbwF1J8XRIUoHiiKqICAnAJ778zOdP3+qKOrj5mdo3d2dq3PK8GZmurq6q7Pft/fqu7pIZRSpKGWeGJrQ8uW+ubaltiW+mYAWxqao3EznW21fFdlcah3pOSYwbtXFhd1dF/yKu3DglKmPiSpw81X2+u+2la7pb55a0OLTz3U8k3hoHH2wYN/DBGH+fC7nQ21La0d3Rctp9L3oXe4aYknPli//dNNO+ToGsQIF5eEQkWhoqKKsgghKA6HikNFAQICGAQBAoPAAAy1BDAIDAJCQQh/bQAEIPbKBNYL9i8AAyAERHxKxIbsX1D+GqIQFBCV2QtKQQgAXk0VFf+hoIQQdhooKPhWhBVQymtSSlmhrClfg0CpZn3ESkxKKUiCUpPCpNQETIoEpRRIUCQoTVBqgphKBUr5ViZEIYUJSkHY22hrfO36TS3R1uF9uk8e2r/NYe6kYj5ctn6bzF+0Dzu1D4OepYvXbPlg/XYARjBU0b2qpDRSUlwsR5GNaIAAhJ1YRQSUWuMkDtsaKnESrQqEWIMhB4SKoYKyifyU7UVtwdmsHGNlI1aBwvIHZZ9RQsVnBISCEiIHlYBQwgaMEEopBYQnCEBZI5QqjfMdUus/IJRS63BEJSXOE0oppXynkgAUkgW8X6wagFAwsMfuvb9es2FLQ7PnCHYNvb76+xWbdgIIFhVHKntoH3Z2H3qEG4YUQozuu9cUl5YZQEAcAIvxlqj9rSih4GcTRGxCQZknKC+RI8dsobZACQzxGsS+F6WEiMqgtr3Icr4XUUjEaBNCrLNNAVDBEA+qgMqaYkN1S35aiG3U1LbB2zeZ35VKhFgVCSEElICYSrZJIMecyn4SRjpCisMhAF14kruloWXFpp3ah13Jh4a7iE2gjFBRqLhM7lMGZtvci9jfihKZRkJspeaWMgbLo3W0aR2+CgXYXvOe2GEFT6oQWwMQ+SqxGiRq9BZdokQUEGVDSilRt+S7pirlbG0DNqooR5SUKqLUThVZjSfXCdMEEA54jGDXULQ1ASAYLtE+7DI+9KjUO1IcDhiJWEu8tUXu04MqVAnnsAptVBFbgVqFkip8C+pslqojp7QDe5u2ZkWeTNVGCEeQzYpinBxUUbZLQRWZwUI9RMKg4Oolhb2m7Kvjc4YLARE7VWz9IkTYgJDGxhYA1d0j6KLarbwYQGtLo/Zhl/Ghd0waVV0FYMeGr+OtMbFLdqRQeyERYSkNqgAeVFEbIcrIQWnH8dpNFekPSRWoqBH7yxtVnG/tVFGqZUyV5pbYhk1bAezZdcNNcTBwWE1vADs2fJ1IJFih9mGn9mHSC+HzPl27entdIBjqVtUvUl7B1uQCBIl4a6ylOdYajUWjsWg0Gou2xuPp7EnLdw3v0/2YwbsXBwMd3ZF2lPZh4St9HyYNNy3xxDOfrv1uVyOAcHFpSSTS2hJtaW5MJPSgFoquOmq/ju5Cu0v1YWl5ZVE4rH1YaErfh23c5vfppp2vf7UxmlDu2iQkGC4NhsJF4XBRuDgcDoeLithVgwAQMMBey/sdgqKEsBIKwwC7S4JhCkBQ5KIBcXeDARgGCOX3R4BY90QQIu6DgJWjEnEbBVVTRZ5i2vJY6roiQOUVATFBVufMNK37HfhcVzZCRVINQL3NQb3fwaTUBElxv4NJQQnU+x1MCgpiUvrJF99mNMydXdqHXcOH3vfdSO3Xt/vgqopnPl27bmdjaXnFbr12KykptUaRIAAQ9fYqdk8ElNfijin+WoyHWk7ct1cRgMIw+BASePwP6u1VfCSUpT6vMQb4Gpu1nkdg3e8gbm5gc2buFNv9DsITcku27sZnsvJCppz126V0CRD7BdQ5s3XNEXwBgr8i/Fprajx0VTEfPrb8my31LdqHndeHbV++Kg4GDq/pQwiiTQ2hcNhavRfr29YCu7U677wiQOSHyiYQzcgzYJVQ5aqBuiioyLWwD9uyvGzXfkWAprgiYKeKvOSQ5hUBiJsmvMdYPT/WqRMDLq4IQB1Gy7VU7o0Q+1n40ag4GJgwqJ/2Yaf2YVpXy6u7l1V3KzNNc+cP263Ve5EsWgvsylq27a2aWyqbQDQD+4lxIoIA4OdclWth33ltwtqxWpziioBY/udnW1xyEDVTXhEAwC8iwLlLWUCcL7ypomzluCLANom1xgFUFIece+nq0j5kW3ZeH6Z7k9jhNX0A7NyxLR6PualC7BhxUAVq9eRUcd9boVKFOgaMelOFKBV4uy5ztAtVkJIqCkz43NpOFfavpIrcgydVWlvjALr9CL6Z6Zb2Yaf2Ybrhprp72fA+3U3T3LZli0UV1gXK73FIQRW4boKQsjxD7SUOqsALPS6qUHsF9wRTuic/VKHqzgjA/yT46aC2U0kkVeQePKniPKQfk7QPO7UPM7gF/vABvQHU1u2Mx2PW9C8JVWzhnHLOuFEjCzypor6nELBSK9mpAhdVJBus4uypgiyoQtSdCaoQcTqyo4rzDP7IpH3YeX2YQbipLC4a3qc7gC1btljTvyRUgZpzkrapokRQiypOT6h3TBJ7iSCPmyqO7DcHqsBXqhCd3WQn7cPO68PMvuDHwLKrdmdzS0sbVFHfUn6EKahClUsAFlUcnlBLqJ0zYkNrz+1HFaXjOVCFKlThW+nsJk1pH3ZSH2YWbiqLi9jXWDZt2qiOgYMqzo4QwRlVdoYQ5VEAxFXHeqs4iSApVdTOpEkVyk8/YWcyFVWUjqdBFcWdSanCt9LZTZrSPuykPsz48QWj+vcKB4zGpsbGhkarg3ZiUOVf/soLESJqA15UYXUcm8gjp4IqKsHcVGF9S4cqhJ9+ys6kf1SxYKJ0ktiXE/lWOrtJX9qHndGHGYeb4mCAfV9809bNVge9qGJ1RxDAJitqA+lRhWOE8PpENiK2KWSqCFgI7xCi9oC90NlN+tI+7Iw+zObhTAwsDU2NtXV1IqyyY+IV3FThBFDlRRU4NrRvwhqhPPLzt+qu+Sl13UsKJYK3B1UgRrANqvD9O6hidU1nNxlJ+9DaUu1pAfswm3BTHAwcM7gfgPWbNoqwCiAzqhDriJW3jg2TUIUIqqhbQVCFUps91L2gfajCe2o9CNabKpRSJ1WI2n/xlRmd3aQn7UNrS7WnBezDLB89uV/f7hXFoVhra31jI5JQRT0HnCrUVmKjChSqKLFajaFuqtjzUztVZBvEvuf2poqtWKEKBwKlwkesXDlAThXwLXR207a0DzuXD7N/0q1687Ij0sm+yfecKsRW4qCKtbnqDzs0PKji2C/xoIptzw445I0qUKhC26aKPBblDHKqxBMmgB/Dz0ulI+1DtdsF7kN/HqztiHQOqljzW6WGmyrWh8moIoYrBVWYD6jSjidVLDi0M1X4EfpDFXY4pLklCqCyRIcbp7QPC9yH7fIcfyKTN94zDgQlgKaiinxDHLwSbRLlf06qwKKKuuZnowr8o4qyC0+qSHr4QRV2dHaCayWX9qHSp4LwYbuEG6oQACmpIseJOrZX6tjKJVXE/4jjXIuBhLAItduFmSA5VZAZVaSVkYQq1IMq1uFlRRXn6dZKIu1Dpc8F4cP8ZTc2AgiqSDN4UIWNqJ0a8hMiGeI41y6qEJG4ys6kpAp8pwpb/1epAvlnoLOb9pT2odLngvChn+FGPWZ2GDK6SwLIGsmoQtxFsErkJ1QyxDpzVolqEbajDqSKlbArVOGHqbObdpD2YcH60M9wox4zOwwHBBxUgTq6aiNu0BDbVipVrNDrMFnOVKE+UkVOlXV20/7SPixYH7ZvdsPAIv/noApkibJ656aKWuKmigy9TpPZqWLtOW2qEBdVoPyKc85UIW1ShersJitpHxasD9s3u2FgSUUVansrzod4I+ukQRXr8O0lBGrkzokqkL+yLN/bnJ0RVWgKqshz6EkV9dKKllvahwXrQ5/Cjf1Ey+UtWNf1OVWc81v7W3E+rDbhRRUOK1HooIqjJG9UId5UAbE7zaKK0lX2CVEGNgVV1EsrWjZpHxa2D30KN8S2DAZ5+6Z1XZ9TxTm/bYsqvFmVMwJWsrBNqkA58XmnChwXUi2q8E+tqjq7yVXah4XtQ9+yG3UZDOIGhxRUYSLWujsvdlCFN6tyhoizo1DFZjIXVaCc+A6gijJVtvojqKLU1dlNztI+LGwf+pfdqIciSOKgijVFdKW76VOFN+tqxIMqyq58pIq1m1RUsdjjmCqzXUiqiAqi0EUVqp4ggFIaTyQApPML8D86aR8Wtg/9y24kIsRbBhaVKtYUMSVVZCSFF1V4s65G5PmnkjPKrjKjClJRxTrmVFSx2OO4EMB2oVJFtOlBFRDIbrAmCSHRaAxA70hJG4PyI5T2YWH70OfsRp0De1BFJY+QmyoqeWxUUTeBrVCligjGOVAFWVJF7DV9qhAHVdTW+fjKE0R4C+5zqMWlfVjYPmz37AYixoqwykvkfzyookCDCqOocqAJ0g1QNhGNOKmiEgA+U0XpOlVqWRVdVJF3lotuKK0nowpxnA4tKe3DwvZhu2c3sMVY22xWhEkbVQAlNEtE2PfWJlXcddTxyJEqVGk6HaoonSIdRZUfi7QPC9uH+ctuJEPkbNZJFeUmiDapYk2k5SYKVeAijzoeOVKFKE1nSBV5QUHpq85ufJT2YWH70M/sBkhJFZm1UTVOK1RRCECshpVmYVVwTKSTbuI6Ix1CFdE9iypg9ZNTRfRDZzeZSPuwsH3oR7ihNiCwklRUgRqnlRKFAFRpG8rZ5BVgpwrLYInXJq4zkiZVAPhDFdGUmyqyfdYgtVMF4g8AflDlRyHtw4L3oR/hhiSlCrE+tw2DgypUeYs0qALHZQL2lnptki1VAKRBFeuMJ6WKaMqbKrCoQpJQBX5Q5Uch7cOC96H/2Y0aBKn1uW0YZJymgipQKyRDhLJHB1X4WZARm1o9cXfWTRWwEcuYKtYZt1MFjh13OFV+FNI+LHgf+p/dqEGwTap4EiApIpQ92sMvCCzOEFHBMa+WDbqpAjZivlEFjh2nQRWis5tcpX1Y8D5sh+wGTqrAcfOlnSqwzquo4EUVe7x1vqWwGFLIVIHSRztVqM5ucpX2YcH70KfsRgn/VsjlwRNwfLWkLarwSkoZpU6MtEkVIDVVbKxAvqiini2LKtDZjR/SPix4H/qU3ajhX5TJHrqpIit5UMU+5Kwdiyqijo0zXlQBUlPFxgrkTBVQmjVVWHEKqlA7VRqbWwBUdy9zHtuPXNqHKHQf+pzdQBkmmX+5qSIreVDFkdDCu46NMymo4tXZ9KkiA7qsmYwqICRNqsiOqjcysJ07gSH6SqBurXObJNI+RKH70IdwYx+XLKliEcCLKnCRx5MqVhXJGWUvssH0qSLjvqyZO1Vkv1WqsJ07p8MqVaytbVW0pLQP2UaF7EMfwo19XJxUIUiLKtb81uGaJFSxSkQ7VB1OyRllL7K1tKhCJFWIWjMrqhAXVQCd3fgt7UO2USH7sF2yGxZbqTz1qalCvahiBV+7jZQ6yahiK1GxIDeltG2qUEkVqtbMiirUkyrqEbZJFWptrbMbb2kfAoXuw3bJblhsTUYVEGUsRbmTKgo0bDZKThWop1ZyhlqfKnskhUAV9QjbpIpyonR24y3tQ6DQfZin7EYdWlBlLMWW6VDFUUd967CapAoKgyq29+LAqPJ5OlShOrtJKe1DoNB9mGu4IXCeYk+q2I46GVWsIhDiQRWLPBCbEGcddSe8qD2owrdKlyq2I7SOy3pSbDKqUIUqRGc3yaV9KNotaB9mH27CwQCAllgsXapIsVNPxFYSEbAaosq3UcSpUDACvol9Iye6ZJH/VOFbZUAVZaosS60nxfKdu6hC7FShtjOlBWgfdiofZh9uepeXAIi2xpwJJGmLKgCoNXipqGIFeRFi7VSxb6TE9M5JFScyXFQhtjOlBWgfdiof5rx2I47LCqbUiyoOeVGFKA25qQLHt28VqkgXEQVf1jpae1EFnYgqXV/ah+JlIfsw53AjJrdWMHVRxT46ALypYg1MelSBkrtKqlgxW1ogLaqQzKmCNqiichY6u2lnaR+Kl4XsQz+yG0cw5bHQooprdKyT4KYKVahiDZ7YkcMvFlVk4HZRxbFREqrQtqkCZEYVazMbVZS7Q7OhSlM0BmC3SDG0VGkfipeF7EN/shvHVFGWJKOKLJFUgRwqtVn2UqWKXe5G3FRxmCx7qgBZUIVKFCowkS/SoQq1U4UmTOif0HRL+1C8LGQftkN2A6tEpYptSqwAwTEwVG2WvaS2HalyN2L1S6WKygXklSpEolC62YsqvNx9vwO/E5SqJ1PLQ9qH4mUh+9CH7AZIThXxP6qcd6RHFcg6ClUcYPGgir1jfIyJvbijqcLcoVCFQO7SeQjEQRX3gWoB2ofyk4L2oQ/ZDeunB1VEFExGFSLvG4CYH8LeDnvp+EqLvYKtEVfHKJwz7Qyp4jj1bVOFynYtqsA6GAUmClWsI7StJ+rsJn1pH4qXhezDdslueImIgsmoQuV9A+DQsBqwU4UoO4K9gq0RV8dypoojsWybKkS2a1EF1sG0TRVlHHV2k760D8XLQvZhu2Q3vCRtqqjQSEEVyEaUCm6qOHfUeahCpTuUvunsJi1pH4qXhezDPGU3EhoeVFEqWO2wRtin6k3idqpYu1ZPDnVWyCdVZK+zoAqR7lD6xifuOrtJLe1D8bKQfehbdiMQIHook0wRuJNSRalgxWu1jnqTuJ0qAJCSKrC7ROyrHalinQg7VdwXAqh6rCmpAp3dtCntQ/GykH3oz2+Eq8HUKhFI8aQKSBtUYQdnm0h7UQV2qhDiQRX11HQUVdwwETdnysFNRRXo7CYNaR8WuA/9CTdpUkVOX2WJShW4qUKsdmSzDmg4qEKpN1XUZl1UQX6oImAC+UJUsKhiG0eFKtDZTRrSPixwH/oTbkSf2qCKnL56UoVhRKUKXIcuOZOMKha+7F2zNeukCvJLFcgXooJFFds46uwmC2kfFrAP/Qs3BGrQS5MqINZbKtpgovZ2ZLNE/RjCR8pmLmK4qeKuky5VwMY2b1ShTqo0tcQA7FZeAi1PaR8WsA99zW5cQU8tUKnCPpMh2KKKI/x7HLo4wwpVHBhxEcNNFbHkZdVhTzCjbVIFbGwzoIrcklBQnqinTxViUYX9E08koL8zlULahwXsw/bKbpjUAkkVGc49qaKODTwO3UUVUcf2ltjqEOV0K0BTm2bPZyW+U8XaASgBUU2ZKVUc51bLW9qHBexDv7MbuxyYsQKoeGsdmVxIU8YGaVCFuCbJamSXJdIK7UkVuKkCOVUmFlUg95I5VbTakPZhAfvQz+zG3Q3qGDmVKrAmwKmpwoK4tZX6sX0ILRA5qGKP1FlThbZBFfu+lZZ5P21UEUuNOrvxV9qHBexDP7Mb6iwQVFGiO2zHoUT/5FRhQZzYN5FSqWK17KKKVR/ZU8W6QyEbqoBy7/AOuKni7Ct0dpO5tA8L2Iftlt2I64IOqlgRmW8EuKmixFAbVcS4qBixqKLOUhWq0HxRRbbr6I2dKlRWVKiiHp59MHV2k6m0DwvYh76FG+Lohljwd1DFisisRGwLdYyVGGqjijghKkYsqlhx3NauIxb7QhVqHyOxEUlKFZKCKurB6+wmV2kfFrIPfQs31NENEWG9qeIYJ9ECbyVzqthm49R2xhyx2BeqyMl+ulThjvekinrwIhm2uquzm8ykfVjIPmzH7AawU0OlimOcZC0XVQAnVUA8qGJNPJWukEKiCtKmii2N1dlNhtI+LGQftmN2A9gHW2VISqrYjp+KgZRb0bSoIpPb9qaKaKBtqrDuOqiiEENnNz5I+7CQfdi+2Y0SMvmLdKhiy+6IQowkVOE7slNFLt3ZneY/VUQDbVMFBFRWtM6BqKCzGz+kfVjIPvQvu6HWSQdsaaR1jmU0zZAqRBhClrAK1mC1RRVbv9KjCtgw+koVIita50BUSI8qsVgrgMriIq9B0NI+LGgf+pfdEGUkkC5V1NmjjPduqlDYPCSHVonFNqoQB6yyogrYMOZOFWlVP6jSGo8D6KbDTRJpHxayD9s9u5ExkRXysOvmjBLv26CKaFadSDuoQiWs5ICo/WoXqqiHB7U3RFrVD6popZb2YSH70M/sBl5UkTGRFfKwm4wqAGRYTkkVqhgCLqpAUsV1S3u7UUU9PHXHPlNFK7W0DwvZh35mN8iWKsoWgAzLaVJFlliE4CUqVax+Wt3InipWH9umiui6nSpKszq78VPah4Xsw/bNbiDivSx0UkUdPFmiNAgxFrYMGR5UsbfavlSx+tg2VThDHFRRmrVRhXpRxbn0oJVc2oeF7EN/fvgFSajCS5JQxTacdqoQeZVRjIUMzbJSUqrIZkmhUIUoDQqqyM9tVGEVrD5T9lRa+wnSckv70NWuUlccNTrYh/788AtSUwX2QhH/ib2CDRGSESpV1MBqp4pzRzJXzJkqNigSwiGgoEOliuMjXi6pIqHBj4TKXatUAe8G36XObtKS9qHSbsH60P/sxhECbX2T3U1NFXWmLcdCvSUSdqq4zwL1jSo2KLIxsKNDpQpxU4UKqvBDIxTKMYhdq1QB7wbfpc5u0pL2odJuwfrQ/+zGEQJtffOiiuNDqxE7VWDdEskjsn2+at+TRJwrEncYVfihUQLlGMSudXaTq7QPlXYL1oftk91QZfgVbnhSBfYP1Uas6A47VcS5d1JFNis6447EhUcV6OzGB2kfKu0WrA99zm7giuUyfAPO8O8efWsraq9A+Qo/kb5xMcQGqw6lCt8oFVWIQhXo7MYHaR8q7RasD33Kbqg1lo4x8KSKYz2P1VHX2GwRX3DGTRVns/Jdh1KFWEwUVLH7XnzqKE2LKvGECSAc0j/8Ypf2odJuwfrQp+yGWEfiHAP7+LFNZMYr23CyyE4VVuKkigtWVvC120hVPqlCRadFTxTYcaqIttOmSks0BqB3pNjj2H7M0j5U2i1YH/qQ3fAYmoQqjphqbeKiityKKhixNnJTxQ0r+U7YyA0WJ1VEcXtQhYhO27hgMcd+zO05Z+760j5U2i1YH/qQ3agzRKRBFYI2qMIqUGprxkEVHpTlBso5U6ninjY7qSKK24cqEFRRuJAbVbS8pX2otFuwPvQvu7E6Zu+PpIodGsicKpBgcUw5qdhKvsucKuxQ2qIKMqQKsqaKaFZnN+lJ+1Bpt2B9mGu4IfCgCrXXcARFN1WQHlUgwUKsRmTLbqo4moXyqZsq7Ny3RRVkRhW0RRWiHLOgCuuGaFZnN2lJ+7BT+DDXcEORFlVs0BBHp57ndKlCLaoQ+52jbqrA1TflU8dUnp97n6mi9MTqqGjSZjWFKkRnN5lL+7BT+ND/7MbZH+KcuxLBmRRUYSWOcaDyeR2CKmq4TUEVtR0i/6/m0O1KFd4TKhu1dqmzG5+kfdgpfOh/duPsTxKqEPvSnVVBXkd0UYW4qSI7IahClEd2wKtvHlQRIb5dqWK1pLObdpD2YafwYT6yGzigITjjTRV5HZE6w6gHVRw98WJRIVPF6r/ObnKT9mGn8KE/2Q2B84zbaqjQSE4ViQhJFYd3klJF9kQ5d1RpNm9UgbpRGlSx+u9FFVZJZzfpSPuwU/jQn+yGOkfEKQdVIAZbrUBFi5IqDu9IRMjtPHck4GQ160EVNaR7UIVkRxWoG1lU4bjIlCqsks5u0pH2YafwoR/ZjUggZRGBbQihUIXCWp9LRRX7A8kgSogMt2wrpRuyHV7dGggvqqgh3YMq1BeqiE5wXChU4a3p7MYvaR92Ch/6kN2w8EmUIkptQwiFKjL4OqgCeRREtKnEbqtZeG2ijreVNPLyDqSKOEI3VXhrmVKlobEFQHW3MmjZpX3YKXzoQ3bDMGKjiv1OBCjQkMHXooqsIza3qAKlguspjYB1Jh2jK0vYqVU9lweqICVVrNac7tTZTfbSPuwUPvQpu1HzMfW8KyedKvWhnmf7wEiq2PeRlCoyJbY1olLFji+/qCLR4aaKMrm3fp1HviD8te1vg9ipgiRU0Uom7cNO4UOfshvxLRJRlBZV4KrD3tpir3ydJlXsJVTFl9qBnKkiJ8YpqWLBRKCBdYnwFxKldqpAUIXq7CY9aR92Ch/6md2olHAHQjdVYK/TJlXgOlIPqthLOpoqsFNFdklShbstGVWIzm7Sk/Zhp/Chb9kN5HnzogpUhCSnigzHtjGgVrXsqOLucAZUsT1yUfbMP6pQW8s6u8lO2oedwoe+ZTewz4E9qOIeJxdVZDi2GCKjun045e7ToQq1bZEhVRQ/yNifG1WIoArR2Y1f0j7sFD4MZr8pACBhmvHWuEFACQxCAgQUMEEDBuFjwF6ABggxKSiBwQ7RkCNJ5KHKk03U8abWv7KOLOSbqN+hV0qSUgUp7uaEShVlgBxU4dW8qAIoLVC7Nyn/QR+qbGynChVIEfsm6uVYLS9pH3YKH+YabmLRaH1DPaE0QAgBNQgMAkKpQQgbXwNghTBpwCAElIgSwlfdZGWAUoOQgEEAahACwAAIgaHkduwtqyB5YxhEvmBTWlZisLMsVtVYn00qfsGLgMhfwAA1KTWIIUeabWdSahDru2pscAj7zVNCmCdNSsF/5FRahpmbJEwTxDApNSml/AUSlFJC2AsTMCnYv5S/piAGFXwxKaUgJnX8aLOWTdqHncKHuYYbdkrEILB4DjHNo1YKyoO4+MIJlOxUTc4IACRM0wBMQg1CTFBiAgYBpUTcsmRSGIRQAlZoEBKPU8PgCDAMwkbJ4OBi007C5p8mpQSEUpMPMGCaIvMVDDKpyQaPhXhKec5KKSg1+YhSCuWaqGlScU8ZMfkaHkwAhCRMkw1hgsJUxjVBqWnyFwkKCmpSmBRsRBOmmTApBUye2ZKESaNx04fx6qrSPix4H+b88FCImaE1W2VTTZmGyjrWf1iJmv8BohHAIGJDorqBbyZMYk0lTZMaBptbshd8ZQty2gmrxGBJohwq2ObMrOsGMQQ6qGlaT2xVrwhAJr6scYNYHynHbpqmnPTLqTI7WDbh5jNk5cTI1NbgK4QU1i8caiWX9mHB+9CPcCOpwtfiGVWI0mE7VUQJmwPzs2ChCaaM1VR1A99MrL1ZC+WGQUyTo8M0KSEsleWcoJQSZe4qMlhKiEhr1SFjjVCTLaQRQgzDeh49a5JlxLCsAUIINan1kXLshmHI/FdBLfjUmMpRV+b8YjxNvkJIIH+/OYdpc9eX9mHB+zB/2Y2sqmylLHoRO1XkVk6qyBQ4FVXYqPM23FShnZUq0UQCQHX3SFbj1NWlfVjwPvQzuyEGj3yeVBH/IcpWnlShpnLELqrATRWSjCrMEB1KFek2b6pYo56KKlRSRSuFtA8L3od+LBWDryFRsWjNmULkFT05Wsqg8ZoQS/OglH7YGHi7IbiqJbCqxahPEACjyhL9QuYxlYljKlrFviAIwM8HNakcRUPgQqbEhK3ew6KKuoDPq1FCQE1Qdu4NYphsDY9SeUUAPPZbFxS5NShMSolBqAlKTb5OKI6V0xUACKUmLA5R/kL6RKy+yYVNgxATgGmKiw6+jFVXll8+ZH/EbChF0+59ZePD2gRerQ2tj5J36/nP3R4aSewRNid2S5SzVKZL+9CfcMMoQthiPbGuCFgds1GFypdsPgjgg4bAfduKPmxy/uTwfxsD/0XguV2hfqHwxX2iP+3eSsCu7gk3UBCDUJNfETApNQyBF+keQoh6RYAQapoSDk6qKFcEIK9ost6LsCVeWKNk2qjCU3JYwU5uyEzIewJr1K0TI/84TG4X3nOYOr1pQ7n7ENYNuPZVUeL8K8vUh+ta8L9bip/+wfkX915DAADW4ZQerZf3btkj3JV96MdkSoRRalLBCs4VeYKsObOLKqD0vm1F568rcccaVRtbyR/XF89cX1yb4ImJnPFKqlDK75Lgc2ZBFSSZM5sskiefM/Om5EF4zJmJ55xZskScCrkh/ysQVJFZsHViZOpPxJyZ6CtT6SlHH7K3PLuxZkmsaSvREQVI34dP/xA8blWZO9aomrcjdPxXkXk7Ql3Yh/6EG3ZG+JxZ7Z81YeT/sYaQ18T1m0ru31aU5o6e3Rma/m1JnUmsOTNlN4aKOTOloM45M5LMmQ3DED2RWbdtzgxGFXkQHnNm6jlnlsNGBGHVOTMVd1LAQRV2MsUrqsyZoddu0lAuPuSXrChf04WMI7xpEPufmZLdtOHD+7cU/X5dcV2i7T/TugS54ruSO7cUd1UftmN2QwwPqlhDSADg/m1Fr9RmNqH7ojnwx/XFDqqwljlVSLbZDfWXKkSeCvXYs6MKdHaThrL2ocxuSJLshijLOHxfXtmN24f/3hm6fmO6NGW6Y3P43zuCXdKH7ZjdULMNqnzYGHgg7bxG1Wu1wf/bFnZSBTaqyNPVcdkNladCPXYqYl+mVHHYXcut7HwIlqcYSnbDLKGccfFnq+wrWXaj+PCLlsAV64qzOJAZ35WsbAl2PR/mObuBNYQED27PJtYw3b0ltCvO2+FUgY0q8nQVXnYDJ1WUpBfJqeKwu5Zb2fkQLE8xleyGWSJldgN+w44ru1F8OGtDOOtjuWFDuOv50Ofshij986IK5BB+1Wx8lHJtOLXqEmT+ziLWspsqpO3sBvnPbuSZEFQBIK4e6OzGD2XhwxTZjRph+B+o2gi/YSdpdvN5k/F+Q/YOf78x8FkT6WI+9Dm7oUr/UlMl0yUbt96vN3jL1KIKIURyJmV2g/SzG+m6rKgiD1ksG1hUAQRV1EslKlWgs5tMlIUPrRJXdqPOn/j0Q93Eld04fJj6OlQ6emZHURfzYbtnN/aQalFldTT7wM/0el2Qt0wsqlBXdmPmnN1I12VFFXnI3lSRS46eVIHObjJRFj60UpU0shtbI+J2ZJndOHz4XkOu4ea9xkAX86Gf2Y2MnypVHJ2TVKk3fYK1V3YDJSk0Oi67IWlQBUQk6m1SBYgnKIDekRJ/Tl2XUxY+5CLu7Abu7MY2kuLLVsmymy+ac/3j+qI50MV86Gd2I+OnB1WUmqzk6xYfdr2yOSDSReULKaKEISrP2Q1/b32kgBR8b5Iq1vinQxXxR1IczDUx7KrKwoeS7a7sxhaTeHZjvXFmNx4+9OWIupYP2ze7gZqPso/4HdHoE/JhPIaWJERgUb5uS6zBB8kwu4FndsN3lw5V+HsPqlhtMDcQMbLpU0UrtbLwocV2U4yDzG7sf6DWEHllNx4+9OWIupYPfc1uYA2TCLRsGJSa4lGLfUL+PJhOpQrs2Q07d5llN/DMbpR9pUsVkoQqVNgRWVBFK7Wy8KE9uxGjqWY3IpexhsiR3cCZ3TAflgdyHbHyAO1iPvQ1u1HoYqOK/TBZncHhRI47HVKSgMARowocaze0A7Mb8VW/nKlCdXaTtrLwoT27EaOpZjcil3FmN7wZUDmAdh8OK8kVqENLzC7mQ7+zGzGb9aQKTzMIAIwozXUwTumeYG2SDstuJDpSUcUuKqa+wizMySI8wkUVorObtJWFD1NnN9afnzu74XsS2Y3LhxMrcwXqhIrWLuZD/7MbKm5GcFOFpxkUAMaXx3NZvikP0GMqY7Am20p2I/dqz27YhtlkN0Iuqkh0pKKKXTykQQEFFZHResur6uwmM2XhQ5ndWNMhJbuxYkx62Y3qw2MrW3M8nOMq413Mh/nIbmT/RMTlh3JOVTTrPZ5Z1VrNbyrmmYuV3cA7u2EbZpPdqP33jyoSFDq78UvZ+RCAejWzrezGmtSIZq3sRvVhdZhe3jeW9bFc1ifWryjRxXzoc3YDMUuUayVUGR1ltRwEOKEyPqlbPIvdDSlJ/KZnzEkVastuCCmo7IYvAqyOhhbVFz+6K/KfpuJvokECQP6GYXKqIGeq/EiUnQ8B7+yGf9XTmd0occszu1F8eHZVbI+ibP48+xXRM3tF28+HXtlNPnzo29P82H8ByuK9HDYnVcQvirFx/P1u0dUtxupM7sEpD9DH9mruFqAscFARQQjhj1NjJ5GKiGOyHx6zr92wezEM4pndpP8UNd4BojxFTV23E/7Fk7tKXqkvXh11nu0ywzy6rGlypLlXIA7xVGoif0RRXXXy71aOLqysfahkN0TaiX/ZitWgYD+8SdkrOS8jSOHDygAeGND8s9Ul9Wk87EaqPEDvr2nuFvTfh+xgKG/DmgqwyMXmSu3qw3bLbpTv+LupIplRHqT3VDeNi6Sb4wwpSTw/qLEyQKmcJSlUEbEGFB2W3cBOlVUtwenre9y5PeKONQAaTeOF+sh5m6qeqoukpgrV2U0aytqHjuyGl3lkN9YWYo9t+HDfUnPeoOb0L4qXB+iTezUOK4mn48O6BJY1BeduD/99W8nzu8LLGgPJfOhXdpOjD33JbmgKqgBtUKU8iNv6Nz+xM3zftlBDSgj8rnfsjF6xygCfihviMauGyB755JkQAvkC7JnSanbzeXNgWHEiD9nNrVvLntxVms4ZfKqu/LNoeEaPHaXE9KQKEQerlVw5+RCEgNI6arxTH3yrLvhBU0CmJHuXJIaEzWMq4xMqE4CpRpx0fDis1Fy6b9NZ3xS3+QXx0ZHEfTVNlQHapg+XNgYe2VH8ep3HI1z2Lo5PrYie1r3Znt2wpCXX7CZHH/oSbniWZf3hglLxC8qAQgjxhRQq0yqewJLTesSmVMZe2hV6qyH4YaNtVPYuSUyoSJzYLda/yPZtVJNSIvJcw/blNF7C015CvouSV2tDT/0QXGn/GsvEytbjuiWOqYxXGiDsSdQElNqfgG/7qSBQ2xPw+R3v6hPwQQjj3a3bIk/uyuBLJZ9Hi67b3nNO1TbrWzjshnHTFCkVB2llSSj9Zn9MytWHj+8IP7A95J74rGoOrGoOPL8rNKQkcVWf6OiI7Qp3Oj6sCNB5g5vfqw88sDW0yOtZCBMr42dVxQ6NJHiDyX1YmyBXbSh9rS6pB1a1BG9tCb7ZUDSjqmFwOA5CIH9dATwGsyVfPgOwZzfU5KtU7eHDdsluDLaK7UUVgz8TxEkVGKQyiNN6xqb3ihGg3iRfNRv7lNIKw2QNgipUEbOkNrObugR5YEvwr5u9n3K0qDa0qDa0RxG9vE/LKT1ak2Q3hhJfkGZ282ZD+ImdGX+BbV1r6OHaitMravkfhJ0qoDRhAkBlcfaPJevSyt6H9XFy5YaS5W09gOnL5sBv1pRevFv04j4xIAMfEsA06ZjyxNgKk9KW9xqCJqXvNwZHl8YJwaHlCSi/EZ7Ch+tjxkXflX3R3PaXlT5oCp26rvv1feunlLdATJrYMgMPxK7shq+Ei59aEJHJTx/mGm54XLRTxaTUSJMqMtflS3CsGqkw6KhIgi27sKUX25yZAC6qsPOiUmVdCzl3TfHKtsZmQ4xc8V3Jew3B2/o3eVHFzDS7qYvjuk1Z/tDlgsbIgeHmfcIxeFFFK5ly8WF9gvz2u+LVLel+4fDureENrcac/i1p+pD/URtyDZGMKU8AGFMeBQAK0zQNwxBBMlmWbdaZxrSvy9N5xLrUrE3lFJgcabbOk8huYIr1TZHd8Dui08huslauS8VsHsj7LRZdDYMQpWeEL25BrFtZdzMAIqNTvtPBFrrk+h5fqoEyk6IA/1F3vqlt8RwgIOtacPyq0jZjjdS8HaFTv4kAhDjvu7FOkUxqxJF63O8AihfqSnJ5vMbCxgiRy9vcuNaETstTufjwou9K0o81TM/uDN21JZyOD0W+Ix9wIaNhsvu/qMhunD68YG1ZRrGG6bpN5R80F/EjZ1Sn/BRY2Y34iPWH8tNFfPdhruFGoQpkDDFN5xUBcVw8YKq5ilhFV64IqGvpyhfgrMBK+F7kKeSr94IquxI4d01JpmPzfkPgiu+KXVcErC9bMIu2eWXq8R05PY/mg2jJllYDrisCubTZ5ZW1Dx/aXpTds1Du3lL0fmMAKX0oSyi1ZTeQIcnjCik3mMOH//4huKwxyweP/HVbxDpywi9KWbHDym4gFov54cjo6ZcP/c9ugLSooty54JHdUKjhOEl2I75FYhFAoOOhbUXp5zWq5u0Ivd8QzCW72RgzNsVzPatfthZDZzeZKDsfNiTIUzuzX3e/e3MYKX2o5Du5Zjd3bc2eYV9Fgy/WF/Mjp+IKFVzZDazsRvxFFnJ2I8bVQRV4UUXOptrIbkQlsUBr7VV+R1alCkC+i5I7NmW/mHrD9+FcspvvW3149tW2RAA6u8lE2fnw5do27r1IraWNgZXNgWQ+VEtyzG7ebwhujOX0d/52fRE/cp7dwCO7gZXdiL/IAs1uACshcVIFaWY3sk01uxGV5PUFuVeShCrzcuAVgJXNjifge2Q3cgnNnd2s8rqdL1M1mXrtJjNl58MFdTk/n78hkMyH9tUc7h53dgPQNrObpY259vPtxjDYcq8ru6EysUGnyW6QEVUAZ3ZDbV9pIbAa45Xc2Y3cxkGVhbv8fQK+R3YjXOu1duOH1rYWQWc3mSg7H+b+BNvX6oLJfEjs2Q3kn649uwFIOtlNjv0E8H3cIAZrUGQ3hsF3K3rVebMbEVnEAEOhCgB5dUrOYNXshm1i+YQQU1wvl23KbdgIUUGV3B9J/XlLIOvsZu9wNl86dWhYOAqd3WSiLHyY0feYUimJD93ZDc02u/Glm5tiAWqyBkV2Y5p8t/JPq/CzG/7n56SKiCxigMGrKNmNlSPwAt6mAIJ1nqm4f4FAtmlRRdxJRUFrEz59Cyzb7Cb3R0YCKCEmdHaTibLwYUZfDE6mL5sNTx/KCKNmNzLmIMPsJvd+svZFdkM6cXZDqYsqxIMqfIkmSXYDpJXdELlXWLsj8u5ekJVNPozN0obss5sh4Xgk54hzUHELdHaTibLwoS9Pyx5SYnr6UEYY5VmC6WQ3aL/sBuy7o6xBj+yG1+l82Q21wG9RhdLMshuoyzciu6Fyr8rHFlUoHVrqw9gcEklkv3ZDML4s+8eGAagOtVYF4nBRhd3MXlGsvzDloSx8uHtWT6LxkJcPrexGPhYrrewGntnN6LQfmZBCB5a1EoO4sxtA/dtTEsAk2U0uPmyX7IZY4E+V3fCJkT27oeKKuNKeR3YjQzIhClUIqQz48wMPWWc3oLigV1Muu55U1uBJlUQCALrpL0x5KTsfDizO1S2jIwlPHzqyG4AFkCyzmyHFuT72+ICSVkd2Qyn7XgIAdWYhlreSZze5+DBP2Q3gkd1QXi63AsSwwdYez25kHVgTTh6eVKrsk/MT8I+1PSM24+ymXzBxfs8sI84+RbEjShp9nzN3eWXnwyNyzhomVMST+dCZ3Sh4QobZzcTK1hzXBCdXNINAzW4IQXbZTS7dyD7csN/Qa4pGKbtNiNIUVBEHYOUytuxGVCAkeXYj752CaDUJVX7eM1cPjS5rzSi7gT27ASHn92o6sCTjJ2OXGuaMHjvQDnPmLqxcfHh8RU5PLz+4LLFPSdLshu2ePRZL9iDrtZuzqrJ/7HHEoFMqY6mzGxmhZXbTHj7MPtwM79s9HDCao9HmaCv/409NFQiqiGJ3dsOs4p3dyDvDIVql4oYdO1V+1iMnFBwSSexbSjPKbuB6mh8ova1f7aBMLoqXGuZ1vX6IGCaSUKXVNKGfPuFSLj7cvYiencOf8SW9oyl8yHbPHmkue0BFNMwouwFwcVVzv2x/uWRW73pKTXd2A7k8Ib4npWY37eHDnLKbwwf0AbB++1bTNN1UUWI6PwA1u5Gpind2I64lytm4mt1Qmd2I8ETlJU9KK4P0nN2yp9blvaNtfmeqzewGhFQa9J49dp5Qkday8QmRxn/02fqTUGsKqjRFWwEMrqrM+tC6pHL04c+7t2a3gvObXrFDIokUPkya3dBsshvDMO75SWMWHP1lt6bxkRZCDCu7gfK9cDHV4H9TaWQ3ufgwp7WbUf17VXcrM026duvW1kTCQRUlpvMDSJ3d8Gv+zCPiWiLnhD27Ie7sRtzQxZ4ve3lv5yPX0tSf+0VHR+JtfmcqeXYD2W8KVBqY1bv27/12Dkye5vykqPXGqh/O7l5Xxu614Q07qVLX3JowsVukeHBVRRbH1bWViw8rAvQf1c1lGf4Zn9S99Zrdo2360MfsxjTNoSWJx2oaMoo4kytaZuzWSEBs2Q28sxvW0dTZTY4+zHXtpyWeeGz5N1sbWgyD7NWnd1koaBAYAAFlXyUxAIPAICCUEv6ANWoQEF4NhICwaCKuLLANCUGAvacwDEJNk0UcPi/mj/ijPDRRClliEFDsiuPn35R+0ZRBPD25R+tfq1sA21PU2ImmVMCAmhDIgpirU4CaVALDZJaiNEEpiJEwTZPi+0Tgrfrw5rixOhoqI4m9wok9Q601Ra1VgUSCUkphgpoUptg8YZoJk1LABBqiiZ2NMQBnHTy4d6Q4l/HqqsrRhw0JcuF3JWne+Hdi99Y5/VvS9KGMOCxBIOKZeCzusKQYPKCw9EIi1duHuxLk5u9Lnt3VxlwmEqCndWs+v1eTw4cwSNw0KUjCpCalJkiCUhNIUOTBhz5c8lBHeo8e3XtFSgmowW+yomzU2Q+iGmDDI0p4ckUNfr85ZbGGEYIVsh/fIID8zVIigxR4jkTYQwB4zmmNcW2CnJ3G86iZLu8Tu7R3M5sosTwW4i4DuQQI8TUcyDyUELA7EQgxTfaChR6+FGWCmiAUMCk1KUzApDRBYQIJk5fw8TZ5tEpQk4LI+g3R+A8NMQDHDNp9VP9eOQ5WF1aOPqxP4KmdRU/sSPUd8d1D9OrdW46tjCMTH0K5xAFYywemWMM2qWkYhnAWxBP8UvnwvfrAHzeWfd/qHR+nVEYv6Nm4ezBRaD705wqrHGkAu3er6BUpDQcDDqpAPMlRpQrYj0Dllt3w51EnocrTPwRnbQin+ILM6Eji8t7R0eVsvuOkipzx5ZTdABRIUEoZTExOlYTASzKq7GqO72puBTC8T/fJQ/vnPlJdW7n7cFPceLsu6Hg+fyRADy5NHF0ZP7lHPGsf5pjdePrwuxaysdX4b3PRF01GeZD2C5mDi+IHlcbK5S8jFZgP/byhY/GaLUvWbGGve0ZK+3evKA4GJEMIKKEWVYgwgZXdMCykzG6sBCc5VdiAqFTZlSCLdgXeawh+3mysFNOr0ZHE0OL4oRV0YmVr+lTJLLthMBFUSZiUEuKgCkOKmypNscQPjbGWuAngsJreh9f09muYurx89GFdAt0C1C8f8msdfmQ3ndSHPt8/9t3OxsVrNn+3q5G9rSgu2r2yvFdZcSqqgBBY2Q1R0tRU2Y0YWk+qEMA0bVThR+sTVdLObsD44KIKz109qVIXje9sijW3mgDCAeOU/Wqqu5f5OEY/BmkfFqYP2+V21e92Ni5bv2319jpZUllc1L00HCkKlYSCFeEgnzyLBfDsshvrBfMBpUSliri8hfakCms5S6pQapqcKo1xsymaaGiN17fEmYXCAWNUddWo/r3YbWxaWUj7sNB82I53x9e2xD7dtPOrbbVsLq2qOGiUhIIloUBZKEiAinCoKGgQSkuLAmXBgIMqhNEgJVVM/pvfdqoQfjmd3cgA+DZnzowqlD9esjZmtprUpLQ5ZrYkTBO0tiUeN2lz3Hbfx26R4v369hjet7sONL5I+7BwfJiPL+O0xBPf7Wzc0tC8pb55c0NzfUta9+CFDNKtOCSIwPlQVhQoDwXlbFgu/7Kxh6CNvFvJJkEVech80Q6Qd1jJqtQqYj2gYrx5bUEmxBLmrmhclojGACBmmvWxtG4hqygO9Y6U7Nk9MriqQt833E7SPmxT7e3DjvnuX21LrLa5dVdLrLYlBmBLfXM0ngCwszlaH/Xhu/aFqd0ixQwUlcVFlSVFAPbsFgmHAvpWmo6S9mGefVi4XzVuiSe21juzX+mMwlFxMNA74v2jHDqUdAFpH/qowg03WlpaXUz+PNlXS0tLq03pcKOlpZUn6XCjpaWVJ+lwo6WllSfpcKOlpZUn6XCjpaWVJ+lwo6WllSfpcKOlpZUn6XCjpaWVJ+lwo6WllSfpcKOlpZUn6XCjpaWVJ+lwo6WllSfpcKOlpZUn6XCjpaWVJ+lwo6WllSfpcKOlpZUn6XCjpaWVJ+lwo6WllSfpcKOlpZUn6XCjpaWVJ+lwo6WllSfpcKOlpZUn6XCjpaWVJxkA6uvr77zzzgkTJgwbNmzfffedOHHi3/72t3i87R8tvfDCC0877bT272ROKoROJhKJ+++//6ijjhoyZMhRRx11zz33JBIJ9lFTU9O111570EEHDRky5JRTTvnkk09y2dHKlStrampeffVVP3qdb2kftrc63IdBAGecccb69esvu+yyoUOHxuPx//znP3feeef69etnz56dyy5z0YEHHvj888/vscceHdUBf3XHHXfcf//9V1xxxf777//f//53zpw5hmGcd955AK688soPPvjg+uuv792799y5c08//fRFixb16dOno7vcAdI+bG91uA+DX3311fLly//xj38cf/zxrOiggw4Kh8OLFi1qbm4uKfH+1eF21caNG3fs2JH//baT4vH43Llzzz77bDauhxxyyBdffPHCCy+cd955a9euffnll++///5jjjkGwP777z9u3LhHHnnkyiuv7Ohe51vah+2tQvChwbIpw7At4lxwwQXPPvusHOOnnnrqmGOOGTx48MiRIy+99NLt27erlRsaGoYMGfLPf/5TlsRisf3222/OnDkAtm/ffvnll48cOXLvvfeeNm3au+++y+p8/fXXNTU1S5cuvfDCC4cNG3bQQQddd911pmm+//77hx12GIDDDz+cnRepxYsX19TUfPTRR7Lk448/rqmpeeeddwB88MEHP//5z4cMGTJ06NBf/vKXntng0KFD77vvPvl25syZU6ZMkZ1ZsmTJr3/96yFDhowdO/all1767LPPpk6dOmTIkOOPP37FihVsk3g8/te//nXs2LGDBw8eP3783LlzZWuzZ8/ea6+9PE6xYbz44ovnn3++LOnbty/z8bvvvhsKhY444ghWHgqFDj/88MWLF7sb+d3vfvfb3/72X//61yGHHDJkyJBzzjmnrq7uf/7nf0aOHDlixIjrrrvOvUnnkvYhfgQ+NPbaa6/+/ftfeeWVjz/+uGP8mObPn//HP/5x2rRpCxcu/Pvf/75ixYqzzjqLUiorRCKR8ePHL1q0SJb85z//qa+vnzp1aiKR+M1vfrN8+fK//e1vL7/88ogRI84444xVq1YBCAaDAG644YbTTjvt448/vv322+fOnbtgwYIDDzzw7rvvBvDSSy/99a9/VXsyZsyYnj17qjtasGBBz549x44d++233/7617+uqqqaP3/+008/HYlETjvttM2bN6c+eCnWmdtuu23mzJnLly/fb7/9/vSnP82ePfuuu+5atmxZJBKZNWsWq3nTTTfdf//9l19++aJFi84999ybb775iSeeYB8NHDjwqKOO8jjFhvGTn/yksrKSvY3H40uWLDnooIMArFmzpk+fPkVFRbJydXX1mjVrPHu4fPnydevWvfHGG4899tibb755yimnVFVVvfvuu7Nnz547dy7zeueV9iF+BD40ioqKHnjggZqamj/96U+jRo2aMGHCDTfc8Nlnn8kaDz744GGHHXbxxRcPGDBgzJgxf/rTn1asWLF8+XK1lcmTJ3/yySfytL7yyiuDBw8eMmTI4sWLV65cecstt4wdO3bgwIGzZs3q37+/GoknTpx42GGHhUKhcePGVVdXf/rpp6FQqLy8HEBlZWUkElH3EggEjjvuOMcwn3DCCYFA4LHHHisqKrr99tuHDh2677773nrrrbFY7Jlnnklx5G4dd9xxw4cPLy0tPemkk+rq6n7xi1/85Cc/qaiomDx58sqVKwHU19c//vjj55577imnnFJTU3Paaaf99Kc/vf/++9nmJ598snydQnPmzFm3bt1ll13GGmQHKxWJRBobG03TdG/Y1NT0hz/8oays7MADD9x7771N0zz77LNLSkomTpzYrVs31sPOK+1DqS7sQwPA4MGDn3vuuVdfffWaa66prq5+/PHHp0yZcuONNwJobW394osvWAhk2n///QE4Gj366KNLSkrYQnQ8Hn/99denTZsG4JNPPgkEAgcffDDfmWGMGjVKtcjQoUPl64qKitra2tTnaMqUKWvXrv3qq68AfP755+vXr2c7WrFixbBhw4qLi1m1bt26VVdXZ/oXOGjQINkTx9toNBqLxVauXNna2jpmzBi5yejRo9esWbNz5840dzF79uyHH3747rvvHjBgQEZ9A1BdXS35U1FRIbvH3tbV1WXaYKFJ+5CpC/swKF8NGjRo0KBBZ599dkNDw6xZsx566KEpU6YMGDCAUioTMADsdUNDg9pKSUnJ0UcfvXDhwtNPP/29997btWvX1KlTWbVEIjFs2DBZMx6Pd+/eXb6VA8Ok5saeGjVqVFVV1cKFCwcPHvzKK6/sscceBxxwANtRdXW1WrOystLRyTYVDodTvKWUsgZPP/10QggrZOH/hx9+UA/KU6ZpXn311S+99NJDDz3EFgVYJx3DU1dXF4lEHEsYaXYvdQc6i7QPu7APg7FYbMuWLf3795dFkUhkxowZ8+fPX7ly5bBhwwzDUIM9e+1IvQBMnjz5t7/97a5duxYuXDhy5Eh27bC8vDwcDr/88stqTc9jSFOGYZxwwgmLFi265JJLFi5cyBbY2I4cRKqtre3bt69jczk8TC0tLRntnR31HXfcMWTIELVcPXvJNGvWrEWLFj355JP77ruvLBwwYMCmTZui0agcszVr1gwcODCjXnUNaR+mr87rQ+Pmm2+eNGmSY3GOrRJVVVWFQqF99tlHTTs//PBDAPvtt5+jofHjxxcXF7/zzjuvvfYaSywBjBgxIhqNmqa5l1BxcbH77HsqWZhkM9j33nvv22+/lTsaPnz4559/Ho1G2dvt27evXbvW3cmKigoVNZlmufvss09RUdGOHTvk4XTr1q1Hjx7qGpunnnnmmX//+99z585VxxjAYYcdZprm//t//4+9bW5ufuutt8aPH59Rr7qGtA/TV+f1ocGWeU4++eRHH3106dKl77777r333nvxxRcPGzZs3LhxAM4777zFixffe++969evf/fdd2+++eZDDjnEfQbD4fCECRPuvffeH3744YQTTmCFY8eOHTp06GWXXbZ06dINGza88MILkyZNeuyxx1L3ieXJb7zxBrt24NABBxyw++6733TTTXvvvffee+/NCqdPnx6LxWbOnPn111+vXLlyxowZFRUVJ598smPb/fbbb9GiRT/88ENzc/Ndd93V2NiY0ckqLy//5S9/eccdd7z00ksbNmx4//33p0+fLu9NmD9//gUXXODeqqWl5bbbbjv66KObmpreVxSLxfr163fKKadcd911L7/88rJly373u98FAoHp06dn1Cu3Pv/887cVLV26NMcG8yDtw/TVeX0YrK6unj9//n333ffggw9u2bKlqKhojz32OOecc6ZPn86C5dSpU1taWu67777bbrutoqJiwoQJV199tWfrkydPPuecc4444ohevXqxkkAgMHfu3L/85S8XXHBBU1NT//79L7300rPOOit1L4cPHz5u3Lhbbrll9OjRDz/8sONTQsikSZMeeOAB9R6kPffc87HHHps9e/bkyZMDgcCoUaOefPLJnj17Ora9+uqrZ86cedhhh1VWVk6fPv2kk0568803MzmBuOaaayoqKm655ZatW7f27Nnz2GOPnTlzJvto9erVr732mnuTb7/9dvPmza+88sorr7yili9btqyqqurGG2+cPXv2tdde29jYOHLkyMcee6xHjx4Zdcmtu+66S33br1+/JUuW5Nhme0v7MJOz1Vl9SLrMEqOWllaBS38jXEtLK0/S4UZLSytP0uFGS0srT9LhRktLK0/S4UZLSytP0uFGS0srT9LhRktLK0/S4UZLSytP0uFGS0srT9LhRktLK0/S4UZLSytP0uFGS0srT9LhRktLK0/S4UZLSytP0uFGS0srT9LhRktLK0/S4UZLSytP0uFGS0srT9LhRktLK0/S4UZLSytP0uFGS0srT9LhRktLK0/S4UZLSytP0uFGS0srT9LhRktLK0/q+HCzbNmys88++8ADD9xrr72GDRs2bdq0J598Mp0NN2zYUFNTU1NTU1dXl+lOZ8yYUVNTc8MNN2Te37Z15513so7deOON7dG+Vnvo6aefPvnkk4cPH77XXnuNHDny9NNPX7ZsWTobzps3r6amZtKkSVns9LDDDqupqXn11Vez2DaZ5s6dW6NowIABhxxyyBlnnFEIPxXfweHm/fff/9WvfvXGG2+UlZUdeuihvXr1+vTTT6+66qpHH33U3x19//33NTU1Dz30EHs7dOjQI488ctCgQf7uhemll15iLxYsWKB/E7lT6O677545c+by5curq6tHjx5NCFm8ePHpp5++YsUKf3c0f/78mpqalStXsrdjxow58sgjq6qq/N0LgFAoNGLEiBEjRgwbNqypqentt9/+1a9+1eERJ9ixu3/00UcTicTEiRPvueceVnL11Vc/8cQTc+fOnT59uo87kiGA6ayzzmrzF+mz0+rVq7/++uuKiorS0tJNmzZ9/PHHI0eObI8dafmohx9+GMCsWbPOOOMMAM3NzaeccsrKlSufeuqp4cOH+7gjhw/nzJnjY+Oqdtttt2effZa9rq+vnzRp0oYNG+bNm3fIIYe00x7TUQdnN2we1L17d1ly1VVXvfPOO2p6OX/+/MmTJw8ZMmTYsGG/+MUv3nnnHc+mTj31VDV/efvtt2tqakaNGgVgypQpt9xyC4Abb7yxpqamsbHRMZmKxWK33377uHHjBg0aNHLkyIsuuujbb79lHz3yyCM1NTXnn3/+0qVLJ02atM8++5x44omff/55siN6+eWXAYwbN+7oo4+Gy15ahSmHD0tKSh566KFly5bddNNNrCSFQxxiUxiZv8yePbumpubiiy9ubGysqal58803AZxwwglTpkyBazK1efPmGTNmjBo1atCgQWPHjr3++uvr6+vZRxdddFFNTc3//d///etf/xozZszw4cMvuOCCHTt2pHN05eXl+++/P4CWlpasTo9v6uBwM2zYMABPPvnkFVdc8dprr9XW1paXl/fv398weMfuueeeK6644ssvvzzyyCNHjRq1bNmy3/zmN6+99lpGe5k2bVrfvn0BHHzwwWeeeWYoFHJUOP/88//2t7/V19dPnjy5b9++CxYsOOmkkzZu3AiguLgYwLfffjtjxoyhQ4f27Nnzk08+ueiii+LxuOe+WLg57rjjjjvuOOj5VCcR8+HVV189Z86cpUuXxmKx3r17q3OcFA5JU6FQ6Mwzz2Svp06dOm3aNEeFHTt2/PSnP33mmWcqKyunTp2aSCQefvjh6dOnM6cxH7744osPPvjgmDFjEonEokWL/vKXv6Sz64aGhk8++QRAx6Y26PBwc8EFF7C4O3/+/PPOO2/kyJHTpk3717/+xU5xXV3dnXfeCeCmm2765z//yc4+gFtvvTWjvZxzzjk1NTUAJk6ceO211xYVFamfLl68+K233iKEzJs374477nj++eeHDh1aV1d37733AmCB7+uvv77jjjtuu+02lnV/9913nnBbtWrV119/HQ6Hx48fP3r06G7durH5VOYnRiuvuummm3r27NnU1PTPf/7z1FNP3W+//c4888y3336bfZraIWmqqKjo2muvZXY6//zzzznnHEeFBx98cNOmTXvuuedLL710++23P/fcc0VFRZ988gnLfdiGa9eufeGFF2677barr74awBtvvJFsd1u3bj3ppJNOOumkqVOnjhkzZvPmzaeddtqpp56a2XnxWx0cbrp16zZ//vz77rvv1FNP3XPPPSmln3766Z///Ocrr7wSwEcffcTSv6lTp7L6J5xwAoDVq1fv2rXLrz68++67AIYPHz5gwAAAoVDo2GOPBfDf//5X1unTp89BBx0EYODAgWVlZQC2bNnibuqVV14BMH78+NLS0mAwOGHCBOj5VGfQvvvu+/bbb99yyy3HH398z549o9HoW2+9dcYZZzz99NNIzyG5i+1l4sSJLJHp06fPAQcc4NjLuHHjysvLAYwYMQLAzp07W1tbPVtrbW39+OOPP/744xUrVtTX1wcCgXXr1q1atcrHDmehjr8QbhjGhAkTbrnllrfeemvJkiUsyXz22Wc3bNiwc+dOAOFwuLS0lFXu0aMHe1FbW+tXB9he1PUjthc1oqmflpSUADBN090Um0ktX7580qRJkyZNYstMej7VKVRWVnbqqaf+4x//+OCDD5577jk2vbrrrruQnkNyV0Y+ZCZEEh8C6Nev3xqhDz744KyzzlqyZMmvf/3rLO4a8VEdGW4aGhoWLlx45513yhWsfv363X777cFgEMC6deu6desGIBqNNjc3swpybUwdFSaWbcqm0lxFA8D2wgZb3VaGtjT15ZdffvPNNwC2bdv2xRdffPHFFywD0vOpAtf333//zDPPsGky0/7773/ttdcC2LhxYzwez8ghhBB0qA/d6tmz5yWXXAJg165dHWvFDs5ufv/73//v//7v7NmzY7EYK3n99dfZws0ee+xxwAEHhMNhKPOR559/HsC+++5bUVHhaIot7LElMQAvvvii+ikzQWNjo7sPY8aMAfDZZ5+tXbsWQCwWW7BggSxPX2wmdcABB6xRNG7cOOj5VGFr7dq1M2bMuP7661944QVWkkgk2IpJnz59gsFgRg5RfdjY2MguRUm16cPXXnuN/S1s3Ljxww8/TLaXTCWv50Yikdxby1oded9NJBL5wx/+cMMNNzz88MPz5s3r169fbW3t5s2bAZx44ol77rkngEsuueTWW2+95pprlixZsmPHjiVLlgQCgauuusrd2pFHHvnCCy+8+uqrF154YX19PbuCKGcxffr0AfDwww+vX7/+D3/4g7rh4YcffsQRR7zzzjs///nPx40bt2LFilWrVlVVVZ1//vkZHQ4LN467S48//vi33357wYIF11xzDbOaVqHp0EMPnThx4qJFiy699NKbbrqpR48emzdvZrP1yy67DBk65Mgjj3zqqafmzJnz5ZdfLl++vG/fvtu2bVN9uHHjxj//+c9jx47985//rG549tlnz58/f82aNdOmTWNrSa2trWPHjj3qqKOyOCi2VMxe19bWrlmzBsDIkSPZok9HqYOzmzPPPPPBBx8cN25cWVnZN998U19fP2LEiFmzZslrTxdddNGcOXMGDhy4cOHCjz76aOzYsU888YRnvJ86deqFF17Yq1evJUuW7L777uyOiWg0yj4999xzBw4cWF9f/9577zmmu4SQ++6778ILLwyHw88999y2bdtOPPHEZ599tlevXukfiJxJsevfUscee2wgENi0adNHH32UyYnRyp8IIXfffff1118/cuTIRCKxevVqwzDGjRv30EMP/eIXv0CGDpk5c+bxxx8fDAbfeuutn/3sZz/72c+g+PCPf/xjr1691q5d++WXXzo27Nmz5/z580888cStW7c+99xz4XD4wgsvfPDBB7OjlFwq/vjjj7ds2TJo0KDLL7/8kUcekbeYdIj+P1qxYWmencxrAAAAAElFTkSuQmCC", "path": "image.png" }
Which solution has a higher concentration of blue particles?
[ "Solution A", "Solution B", "neither; their concentrations are the same" ]
2
The diagram below is a model of two solutions. Each blue ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the blue particles represent the solute. To figure out which solution has a higher concentration of blue particles, look at both the number of blue particles and the volume of the solvent in each container. Use the concentration formula to find the number of blue particles per milliliter. Solution A and Solution B have the same number of blue particles per milliliter. So, their concentrations are the same.
neither; their concentrations are the same
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABtHUlEQVR4nO1dd5wV1dl+z8zte+/dXZalFxfpiIqCImiwo4igEUtiF4wtsZcvxoKoMbZY0izRYKKJFY2xUIwVG1EsKIqigLDAUnf33r195v3+OGXOzC17y+yy4Dw/f3jv7MyZM3Oe+z7Pec+ZMwQRoQgkMtqmaKIpEm9JpJoicQBoisaTGb2YYx3Yjmqfu2fQf/jQPtU+z46uS6fC4WGXQqk8JIXDzTdbWr/Z3NIUiW+KJmyqoQPb4HUpM/cb+mOIOJSHP2yPtiTSO7ouDqwonoe5w00io320dsvnG7aJ1lWI4vX53W6P2+MJVwUJAZ/X7XN7VAIEQCGgElAIKACKvAVAIaAQIAiEsM8KAAEg5p0JGB/ovwCgABAChP+V8APpv4DsM/CNgAB8Z/oBEQgBALabDOT/Q0BCCL0NCAjsKEI3ILI9EZFuFHuKz0BA2s34E92iIyIQDVFH0BF1AB1BQ0QADUFD1BB1ILq0AyI7Sge+EUEHRCD0azKdWb12QyKZHt2rdurI/u02804KysMlazcL/+LwcKfmoSvn1ndWNX20dgsAKC53uLbeHwj6fT7RirRFVQJA6I2VQADRaCd+2UZT8Zto7ECI0RiiQZA3FUiHiL/Ss8glWIsVbSwdRHdAMPiB9G9IkP+NAEFAQkSjEiBIaIMRgogIwDlBAJAWgigVzk6Ixv+AIKJxOXwnKc4TRERkJxUKgCC0gNWL7gYAbpfar0/PlavWNUXjOVtw18Br365ftmE7ALg8vmB1N4eHOzsPc4QbKimEKLV9GnyBKgVA5RdAY7wBNH/lWxDY3QTCD0FAyglkW0TLUVrIJSABhX8GYj6LtIXwnQFNZxHb2Vn4RsJbmxBi3G0EAOQakkNVAMWe/ED5SHZbiKnV5LKBla9Tvks7EWLsSAghgASILrlNAqLNUdSTUKUjxOd1A8Au3MltiiaWbdju8HBX4qGSvYl2oBS3x+2rEucUgdnU9yLmr3yLsJHAj5K9pYjB4motZRqXL4sCmD6zmpjFCnKqCjEVANyvEqNAIkdvXiUkfAORDkREIh/JTo2yypnKBjCpinRFeVWFbzWritiNmWtN1wHAq+ZowV0DybQGAC6v3+HhLsPDHDv1DPq8qqKlEpl0Qpwzh6qgFM7B2GhSFX4UoLFRqAo7Aq3FotxyUjlgLtNULPfJKBdCmASZqMjbyaIq0nEFVEU4WJAvkVBRyKolgnlPUVfL36lccBExq4qpXoRwGhDS1pYAgAG1QdhF0SPkA4B0os3h4S7Dw9wxadyAegDYtm5lJp3ip6RXCnIthEQYKEJVAHKoilwIkVoOpHIsn7NVRfBDqArIUsPP12mqYv1qVhVpt5JVJZ5IrduwCQAG7rrhxudSD2zoCQDb1q3UNI1udHi4U/Mw70D4s5+v/nZLq+py19T3DYbCNCenEtAy6VQinkonU8lkKplMppLpTKaYMzmwHaN71R4+tI/Ppe7oinQgHB52fRTPw7zhJpHRnvt89Q/NbQDg9QX8wWA6kUzE2zTNadSugl8fuueOrkKHQ+ZhIFTt8XodHnY1FM/Ddqb5fb5h+2vfNCY1adYmIS5vwOX2erxej9fn9Xq9Hg8dNVABVAXoZzHfwcW3ELoFQVGAzpKgMgUALu5FVT67QQFQFCDI5kcAMeZEEMLnQYDhUQmfRoGyVWQW0+RjMWtEAMWIAO8gy31mLGq+A+vrikKQm2oAkKc5yPMddEQdSIH5DjoCEpDnO+gICERH/Oyr70tq5p0dDg93DR7mnncjsGfv2qH14ec+X71me1sgFO7RvYffHzBakYAKQOTpVXROBEif+Ywp9pm3h7ydZE+vIgAIisKakECO/0CeXsVaQkr15WpjAJZjM/J5BIz5DnxyA+0zM6aY5jtwTogjad6N9WTFQKbo9ZshVQmAnxdA7jMbY47AEhDsE2FjrYXlYVcF5eETS79riiQcHu68PGx/+MrnUg9q6EUIJGNRt9drZO95fttIsBvZeeuIABF/lA4BXoy4A8YWlEYN5KSghKzEPpjS8qJc84gAFhgRMKuKGHIockQA+KSJ3G0s3x/j1vEG5yMCIDejwVoUZyPEfBd+NPC51COG9HV4uFPzsKjR8gG1VQNqqnRd3751i5G952bRSLBLuWzTV9lbSocALwbMN8YqEQQA2D2XkZXYt45NGCeWNxcYEeDpf3a3+ZAD37PgiAAAsEEEsJ5SbCDWD7lVRTrKMiJAD0mlMwAQ9rmtZ9nV4fCQHrnz8rDYSWIHNfQCgO3bNmcyqWxVIWYZsagKyLvnV5XsuRWyqqClwTC3qhBpB1ZuFjk6RFWgoKpIYsL61mZVof8KVRFnyKkq6XQGAGp+BE9mZsPh4U7Nw2LDzYDaqtG9anVd39zUZKgKrQKyOQ4FVAWyJkEIGJxB8xaLqkAu6clSFTTvkN3BFOzpHFVB+WQEgP0k2O1A060kQlXEGXKqivWSfkxweLhT87CEKfAHDeoJAC2t2zOZlNH9y6MqpnCOTGeypUZsyKkq8ncELlbyTmZVgSxVEdpgbC5fVaAMVSHyybiqEH47ylMV6x38kcHh4c7LwxLCTbXPM7pXLQA0NTUZ3b88qgKy5yTtq4oUQQ1VsXJCnjFJzFu48mSrisX9VqAqYKuqEMfdlAeHhzsvD0t7wI8KS3PL9ngi0Y6qyF+RXWEBVUFpCMBQFQsn5C1o1hl+oHHmjlMVqeIVqApKqsKOctxNkXB4uJPysLRwU+3z0MdYNmxolNvAoirWihCuMzLMGkKkpQBI1j7GV4lJBPKqilyZIlUF2e0n9E4WUhWp4kWoisTOvKrCjnLcTZFweLiT8rDk5QvG9e/uVZW2WFtbtM2ooFkxUPqXfcolETxqA+RSFbqP5RBx5chVRVawbFWhdStGVQi7/UjvpH2qYoiJVEliTieyoxx3UzwcHu6MPCw53PhcKn1efMOmjUYFc6mKUR2uACYYURugOFVhMkLY/kQUwo/pyqrCxYJzhxC5BvSD426Kh8PDnZGH5SzORIUlGmtraW3lYZVeE9shW1WYAsjIpSpgOdB8CC0EWeRnX+VTs1uaNZcUpAjeEaoCvAXbURV2fouqGFVz3E1JcHhoHCnXtAvzsJxw43Ophw/tCwBrNzTysAoApakKMa5Y+mo5MI+qEK4q8lHAVQXRRA/5LNAxqsJqaiwEm1tVENGqKkSuP39kxnE3xcHhoXGkXNMuzMMyl57cs3dt2OdOpdORtjbIoyryPWCqgqYtJlUBSVWkWC3H0GxVMftTs6qIMoj5zB2tKqbNkqowQUDkPKLbpQtkqgLsCMfdtA+HhzsXD8tf6VaevGyJdKJu4jtTFWLaYlEV43CZH2bRyKEqlvOSHKpiOrNFHDpNVUBSFWxfVcS1SHeQqUpG0wHgx/B6qWLg8FCudhfnoT0La1sinUVVjP6ttEe2qhh/zKcqvLkKqArlAUrl5FQVQxw6WFXYFdqjKvRySDyRBIBqvxNurHB42MV52CHr+BNh3ljNmCBIAbSQqogvxKJXvEwi/WdVFTBURc75mVQF7FMV6RQ5VUWohx2qQq/OrOAO8sPhoVSnLsHDDgk3KCkAFFQV0U5oOV7ax7RdqAr/j1juNW9I4BRBM10oCfKrCpSmKoLKkEdVMIeqGJdXlqpYb7eDPHB4KNW5S/Cw89yNSQG4qggy5FAV2qJm1RB/IUJDLPc6S1UIN66iMgVVBWxXFZr/l1UFxM/AcTcdCYeHUp27BA/tDDfyNdPLENFdKIDYI5+qkOxNYGwRf0GhIcadM7bIFKEn2oGqYhh2SVXYZTrupgPg8LDL8tDOcCNfM70MiwhYVAXk1pULyRYaYjpKVhUj9FpIVrGqoI2qIrrKjrvpeDg87LI87Fh3Q4VF/GdRFRBbpOxdtqrIW7JVRYReK8nMqmKcuWhVIVmqAtJbnCtWFdKuqqDjbsqCw8Muy8OOdTdUWAqpCpq+8vvBv4h9ilAV4/LNWwjIkbsiVQHxlmXx3cTsklQFC6iKuIc5VUUeWnGQDYeHXZaHNoUb840W6S0wxvWZqlj7t+av/H4YZUIuVWFixTdaVMWypdNUheRWFSBmphmqIlWV/oVIDVtAVeShFQcmODzs2jy0KdwQUxoMxPRNY1yfqYq1f9ueqrBiZZ3hYiU2tqsqIN34TlcVsAykGqrC/mrs6ribSuHwsGvz0DZ3I6fBgE9wKKAqFMTIu7PNFlVhxco6Q/jdkVTFRLIsVQHpxu8AVZG6ykZ9uKpI+zrupmI4POzaPLTP3ciXwpXEoipGFzHL7havKqzYrEJyqIp0KhtVxThNIVUxtMfSVaanEKrCd+Abs1QF5RsEgIgZTQOAYt4A/6ODw8OuzUP73I2QCP6VCousKkYXsaCqiEgKuVSFFZtViLj/KHRGOlVpqgKFVMW45kKqYmiPZSCAnkJWFV5mDlUBAqIatEhCSDKZAoCeQX87jfIjhMPDrs1Dm92N3AfOoSqy8nBkq4qsPCZVkQ8B00ZZVXgwrkBVoExV4WctXlWIRVXk0ln7ihtEWAnZ99ABg8PDrs3DDnc3wGMsD6tsi/hfDlWRRAM5UWRYpAkEG0A6hBdiVRVZAcBmVZGqjtJexo5ZqiJmlvNqSKXnUxViuR0OBBwedm0edri7AVOMNfVmeZg0qQqAFJqFRJjP1q6qZO8jt0eFqoJS0cWoilQpsqNU5ccCh4ddm4ed526EhojerFVVpEkQ7aqK0ZEWh0iqAlnKI7dHhapCpKJLVBUxoCDV1XE3NsLhYdfmoZ3uBqCgqgjXhnKcllRFUgBiFCwVC8YOlo503kOy7sgOURVePUNVgO6fX1V4PRx3UwocHnZtHtoRbtAkCHRLIVUBOU5LWyQFQKlskO4m2wHMqkIdLMl1SNYdKVJVAMAeVeFFZauKKJ8WiGZVAf4DADtU5UcBh4ddnod2hBuSV1WI8XdTM1hUBaWvUISqgGWYgH7FXIeUqyoAUISqGHc8r6rwonKrChiqQvKoCtihKj8KODzs8jy0393IQRCNv5uaQcRp5KoC8g75JEI6o0VV2F0QERuNmmRXNltVgLZYyapi3HGzqoDlxDtcVX4UcHjY5Xlov7uRg2C7qpJTAfJKhHRGc/gFAobOEL6DpV8tCsxWFaAtZpuqgOXERagKcdxNpXB42OV52AHuBqyqApbJl2ZVAeO+8h1yqYo53lq/Ihga0pVVBaQ6mlUFHXdTKRwednke2uRupPBvhFwWPAEsj5a0pypsJ2kbolVG2lUVgMKqYtIK6CxVke+WoSrguBs74PCwy/PQJncjh3++TdQwW1XETjlUxdzktBxDVfg+Jp3JpSoAhVXFpBVQsaoAYtmqQjcXUBU0q0pbPAEAA2qrrNf2I4fDQ+jqPLTZ3YDUTMJ/ZauK2CmHqlgMLeTex6QzBVQlV2WLVxUR0MWe+VQFCClSVURF5YkM9ORWweB1JSAf7XibPHB4CF2dhzaEG3O7lKkqhgLkUhXIUp6cqmLsInRGOososHhVEXFf7Fm5qoh6y6pCT27tDsuqYhxt2sWBgMNDelBX5qEN4cbcLlZVIVCUqhj9Wwtr8qiKsYWXg3JzCp2RziJKK0pViFAVIu9ZlqqQLFUBcNyN3XB4SA/qyjzsEHdDYyuKW19YVTCXqhjB10wjaZ98qmLaIsuCOBSxfVVBoSoo71mWqmBOVZGvsF1VQeNox93khsNDgK7Oww5xNzS25lMVIFJb8u1WVZFEw0Sj/KoC8q0VOoPGX6Uzkq6gKvIVtqsq0o1y3E1uODwE6Oo87CR3IzctoNSW/MhiVMWyj/zVQjWhKtA1VMX0nV8YSn8vRlXQcTcF4fAQoKvzsNJwQ8B6i3Oqiumq86mKsQkIyaEqhvIAP4RY95FPwjZ1hKqwo4pVFdMVGtdlrBSbT1VQUhXiuJv8cHjIy+3SPCw/3HhdKgAkUqliVUWA3nrCjxISAUZBKD2Nwm+FJCPADjEfZJUuscl+VWFHlaAqUldZbDVWimUnz1IVYlYVNN0pBwAOD3cqHpYfbnqG/ACQTKesBpK0pyoAgEbjFVIVI8jzEGtWFfNBUkzfOVXFKhlZqkJMd8oBgMPDnYqHFedu+HUZwRRzqYoFuVSFSAVlqwpYnr6VVEWwiEjyZeTROkpVYCdSlV0fDg/5x67Mw4rDDe/cGsE0S1XMrQMAuVXFaJjiVAUk7ypUxYjZggJFqQopXVWgHVWRdRYcd9PBcHjIP3ZlHtrhbizBlMVCQ1WyWse4CdmqgpKqGI3HT2Thi6EqInBnqYrloDyqgu2rCkBpqmIcZlIVaXZoOaoSS6YAoEfQBw5kODzkH7syD+1xN5auotiST1XEFqEqIJpKLpZ+lFXFjOxCslXFQrLyVQWgDFVBIYWSmIgPxagKmlUFNR2cV2hmw+Eh/9iVeegqae8cyFYVYmxBBCSAAIrZVSKPcwhAzGaVfTOrCtUTsUWAZBVi1IuLGxGf+c5UAcyqkrvPDLytRalCB9hJhDPVdSAEAVDTkZp0BATQEXVEHUFDRCA6Iv2Q0XUNEYiS0XVNx4yOOiACQUQdQEfgR+n0KB1B01EHTKXS5TTTLg+Hh/RT1+ZhpeEmo2Xi8TgBUAkQQFUhBJEAKARUAgoAAVQIABifFQC6hSAqBAjhJNBRfKYfkBel0HZmIRsJgKKwRiBcGAiwBmKTlAgAImtjvjP9q86e/kBN1wkhNHLzZCLREQFQR+RSQwBRo62oo446pQwKTnCjrtPSAHQdgRAddd7SoNM2BtB0HYFovLE12qi01XUEAB3YIZqu6/wDANERkRBN15PpLG114PBwJ+FhxeEmk0kkEgoB1tKICqENA6CjqhC5aQlvbCI1NvuAqCrcUAISAFVhtpU1KiIhoBDC256I9qYdSqPhuRwoCu3fImp0N+RtDMCFgbUcAG1Fql9UVdiTNLrO9kTetSYEdWZlEYFw+6ooCtssVgZhYsWdqs4qAIJttHq6zrvN0pGsikIAic6rV2GT7ZJweLhT8NCGWcUArKsodSYBERSFAI/6yLvEYoo0iqNoOFeIriNKS7cK98i8K+uCmk7MiuXnlf0mUfgmZKVRsVH4XZMqbOozG9vYDrzPTojcZ6ZfiejnEqLrOu3ZslNaqsQJwfUPRZ+ZKArw5L9ptJQAqxjncY60gQMAcHi4k/Cw0nAjWgJ5txP4FhoFkXeD6d0SU6SJOAoIdY2KIufauRcVdlE0jnRiViw/jLlXen91vokYtxgAuKqgVGEuF/wJF+l0RtpMqArbkzcL70WjoiiMctxyiyrRuiLrqzNVESMCkqoYCTx+jVTHKI2krr8DMxwe7hQ8rDhVTOuDoLDLMLZQFyo0Afkwm8KNnThKIYSqCiHM2QKPx0SoCi+Wgbs5RGjJwGut7saUIljX36sfWaPViL6wWVV0lmNHbiNZmKf3mN5MpC1lmFTgvWvqeBk7iXi+hKoKHSykZKF+1Kwquq4z6ULk/XMgigK6jjoQAN2iKkgQdWqXFYVoum5Le+2q2LE8tLgb+o26G4eHFDaMTAEL7UBYY7ItIogiAOEBkXC7qPD4zVylTvvMTHBoEbSfjAh8YR8QPVB63uVx9f5NnoXNua5iDRwQ1C7vk54QzPDC5D6zRVWA0J6wGN3gmiC8dJF9Zl6qtc/cmCZvR30bNOXbhAsBgoo+yJPZzZ0ZH0ggMlXRERg7jHvLlcfJ3RTGDuUhLZEHM0E2AATUkSii37bjeShil5y7Ybew43lom7sB1h82tiikkKrQLQVURXSaiWh4s6rcvM47d4unQK3ej6onfqOe2C0zu3+yRt1hqvJxzP3wtqqlcbeleu/GAACqFH16KHZ0sM0PWgFVQcfdFIEdwkMQcUdyN4RHPIu7gR3tbmRTY/1AFCDtuJsKeWhPuCmsKhvS5P2o6/uk0pQhn8ZUABjs0/q48SehzE+CWrUKVFUUhUVgQ1WASwTfSGnUkiEXfef/sK2oKUbPbHN9GSfPDktWK3oeVQEavDtCVWY3hV9q8RaoXpuu/LMl+FrUf3X3bQNdaYm/JlUhQDTH3bSHIt0NIUCQJ2V5tkK4m+J5CFjI3ShKDncDhdwNdBwPZXcDzNRA1gfD3XQQD+0JN7RO2aoS1eCf2zzPN1uFfWVCXZmAtyOuoIqn1KbO65EmCkuGyaoCogNs2gYXrvYvKS7WUCyPqzNWeF8bmYDcqgIgjQjYpSqtCFesq/44y9TkxCZNvWFz3dXdto30poytjrspA7l4aHE31APlczfF85AWmNPdiIjH+iB06g0AKeRuwBYeNqfx47jn64T6vzY3rcbYQKq3Wz+oKllFLKYGTB8kd2MdmepS7obWiaBJVd6NqH/d4mnKkAIHRTXy1y3et6KuBwbEa9z8hrICGUssqnJLo7ekWEOxPK5e/4P75gFpMbeqPFUB0btuT1XuagoWGWsoYrpyx7Zus7tvG+jmEQcN7y1UJaPrANAj5C/1DvxYkMXDYtyN+N0CNSNF8NCIMuK8bMoMT9AoLH9MgEUxAhZ3YzMPWzLw582+f2yzcoPzMHRMKHF2t2gvF5bsbmziYeWLhxp1EtMtAeC1VtetG72FY43Atwn19FVVK+KK0cZgqApIG9emyGMF8zUF8Mhmz3sRVWFDgASQNRUAABsW5bM/+SmZqtA9CJM35IaZW1TJ3bCD8IEtVS+1lvwUZUxX7txa26bzRiFcthAQkSgEkU0Gc56ZykJuHgJvJNmYIHNALGlMf7/UgAh3U5iHxvmMcoFPxGOUMNwNJwndKtyNvTxc1Oo+cmVNdqyR8XLEN2NN91eiPmEAUcw2ZO7GsGjSHbSNh5WHGyL+T4AF6f9GXPc2lRYU1qfJ7PXeiCYNNtJoar70PzQVyoO0i4ebXEJVgBCLqnBfalIVkWSTVYXn3iQa8PkOACSiK09sK/OJ7c2a+kobfy0hVxXClZOIR2wcWJGDhxS0kQwXQt0NH/0F4W4Im3cDXMeNA7J4aPxd2qTwDhgRhxCWJJaKlOfd2MbDedu9F68NRrSi1P23TeHbNlWz2MHvDCFEjExZQ6t9PLTb3QBEdfLXzSV0IgS+SagPbvYY7ZdLVV5rqUjVF7S4IrrSYe6GJf/+3eKN6EU1fE68EuXhJpeqlF3srg4rDwWy3A2NAKjwBA/zO2Z3U5iHxt9FlCM53A0LNETaAva7m0Wt3t+sL+0Nzq9GfM+0BIj0SHqp7qak0wlUnruRVAUBAB7Z4m4r98f2r22e07qn+7rZD1hk+OjFLYmqRcbvAljcqkypEUQAWVUg12xOuc9sTMTMnbuhgklebK3IgsV0ZUnCt68nZukz6zr3/w5ywMpDAZG7oY9rM5VGoiN7aHNDmrwTdX8SUyIaWRpTQyoO9ep9PTi2KnNIKFPjBgsPiXw+EeUQFIWIOcTApxqijq2a8kGba3mMHdHPo48K4Ei/ZrgbKJ+Ha5PkN+sDZdyvP20NDnKl9gqkS83dVMLDysONrCrQppM3IhWV+cAm78194wAmVaG0+CpuQ8Li64R6NGQIEDq9XB4RQEAFyJokmbfd82VcWZtSxBn3r8qM8GtndEv2dWf42EH2yBQSAi0afJOo9K7+kHbvSzujhKDORgSIQnRnZCovTDw0/RrEj1+k1oAAoqqQiAZ/2OR9tcXUXhGNfBxTP47Bi82ukIqn16VOq0uHVQR5uAqsZ6HuxvBLAAAwf7vrno3u5bl429+DJ9alZ/XIhBUtJw8LjEwBm0mDQOBPWwJla/Cft4f+4ttqjJ3xkSl2CebLs4WH9uZuoIwxIws+blO5iLAOMG0IBKikhyKA+fvMrZpyz0bPQV+F7tnoXdjilqPbh22uuVu8h34TvmhtsDGt5szd0MJWJMrpSFqwPMn9UVafufLCd1GYeGgA2S9HdgqEgKKQFQly0ncBS6yxIKKRP2/ynr3K35gmgocit2EMt3N3w74Q0qKRk77xn7vKlzPWAMDaFPn9Bs/kr/zvRV2l5m6Eu/kqrr7QXObICQB8l3K/F/dLuRsEPusaLEyziYe25W6o99pc3FBUAaxPk8Y0+wED71cTi15VAJKnz/xeqzJlRdU9G9vpB73W6pm+MrSw1Z2du8nR6bWjuk7upjiYeGiA9gDMeRBEeLlZnbU6EC1OwFYk1Bkrq5bHVQJSOYaJYaGH5W4IfBlTDlxe9X60feldmyInfet/aqurpNyNmCnzQVulPvrdmIfnbkSaiX+XYRMPbXM31Ft+YUd/Z31KAcjhbvq6behK5HQ3z2xznfJd1bp0UXcjopFfrQ3O2+7J6W7sC4zAi3XcTTEw8dAAdQhmp7AyqfxpU2n5tYhGLlnjb9FIYXdDCKxNkFNW+ltL6eBcscb39FYaOEpzN/+NlG9tKN6LeUVfwuJuTCGla7obeyDiLf8/VZW+HhvCzagAWtzNl3H1ih9KnjV37fqqrxKuDnI3VYRfqeNuikVed2N0VbhTuK7RV6SvkdGYJr9a7ROOwzACkrtpzpBfrPaVFGsoLl/j+zKulupuWrVSz2NFm67kczemkNI13Y0tIPL/acIMAQH2r9JCaqW/t/HBjMXdnLuqzBm61zYGaO4OwHA346oyFdYQAEaIRxkcd1Ms8robo8uMAADPNXua0mXexiVt6gdRnlvEHO5m7hZPvmRNu7ip0Vuqu1lR8aAEAETYtFLc+dxNvR39nd6sEOZZEXn+j8Dh1RXF88nVmVoXyO7m4c2edaky793XCdcLLV7IcjcHB5OVVBIARnp5CY67KRaF3A1K7ua5bRXl8v+xxZPP3TRn4NGyZpxRfBBV57e4S3I3lVyIQEihPzdC/9lJ3A0CARjtrzTcBFXs55G9L4gpD4jwq54V/ZJv6p+yzObkfeYy8adNfou7ASCHhip6WUJ3VdvNzUvIUhVdQwCo9lXaad/lYOKh8VNhc2fZ55VJpcgHa/LhvxEXmt0NNRuI8GHUVUY3SsbCFle2u0HEfO7GFiuN8v+Ldjfl8dA+d0MAAUZ6K+1NHhzSTNfPe1KUQ/09eGb3VIHDC2BWj/QAL8qzOb+IKV/FK7oDjWllXZLKguFupoUTQ33l8+DC2u3GlxzPqiAA1DjhxgoTD42fitndvBe1ofchZntwX8tsyILKprwDwMIWV7a7YUPUudxNWKlU3Qd5RMeyNHdTHg9tdje9PHhIqKKIO73GfP1mdwMA1/VJHh4u+RQHhPSb+iXB/KzK2lTllw//o4/bSg+bEELm9IqWV9qkQHykR4qnTu6mWLTjboh9Yxkt3MKwYVNkNqSxYjq1aqQkd3N4uNKXju3lS5fnbso7nZ3uBgAQ4ZTa8m/BwcHMuGAhd0Pxu/6JkiLO+KD2yKA4vUeyu1lembWh4MP2xsMmiDjcp83uHSm1qIHu9Fnhlo7oM/8IYOUhA3c3NAO4MmFDvF6RMNwNcjkEgJaKx4kA4L1WpXh3c1goFaxs8OT4UFt57qa809npbgCAEOjpxpndy4k4QRWv6JUwSszjbgCgxoUPDUoU2auaWZ96bmi8xsXkwZS7KaOW2SDSCBr9TggATgslbuxVQsQZ6E7P7r61SsWOUJUfAaw8ZDC7m8E+G+J1Hz4eYnI3ABHNBvUqyd2EVTizW6Lscx0ZjPd2azu3uwGA6TXpQ0vs7wRVfGhgvK9HjP2BcDcAVndDT3RD3+RbI6I/7Zb3RJOrM++NapvTPwXA28zyJG5JVcwHNFyYcDd0LG1aOPHEwOZervY72FODbXf32BxUdOwYVfkRoJC7YVtsitX9pPlfsrvpZ8e8sPHBTPHuBgDPrEsO85Vjq6oUPLO2DS3qzt1NB/HQttX8LH3my3ukCMJ/i3tcc4hPv7F3YphfN8/XJMDHrFm/G42l8IEA6tDPg3cPSPx+ILzfqiyJueg+hMBIv35UddoQCmBtRqRV1ICQ/nbwY5hPB35eY5IEMMkb5s38e7ct/4n4nmwOrExa70ZA0cf7kz+rjnZXMjqfaqXLjek8EV4icuRuwHA3g7w2tPhwn278Sgmgzijaz4MfVlZySM3xRDjlLeZyN4gQUvQ/9o8c/311tMRBsXt7b++lZnQQM0qpBjO/1kE8tC3c0OZEw4zBFb1SR4Qzv2/ybso/9Fil4s9q0+f1SHEBAuCRBQga8w6ATSw2CpJUBREPCGkTQjqVBcm/ABJ5sTLmbljEQX1/O8YR+7o1er2Udkx1aKDj9T4mlDgmnGzWYEXcFUFlQ1ptcKWqVGxwpzUEHUBDoE/iUskyHjN0nggvEdk85KvzAgE4MJipUjxlL5ACAMP8WrUqNZDEw/HBzHPbKvpBTa7O0GgiPxFOpDfwIRhmjVGFkH4efGy3yK9+CK4v7imcKgVv7dk81JfRkK+YAWC4m47kof3uRsxxQMC9Ato/GmKLWl3vRdXPEmobD8C93NjLre9bpR0TTvfzIgAzaTTisHLM7gakTjLQ2M9VhbsVEHOwpewMoTEop7sZ6IN+Hix7mh8ADPNlRvg1xLzuBuifABAgSPR9qzIaoqbpVFV0HlllVZEv03E3pSInD4nxu4GJIW1hwafAC+PM7mmE3Dw8slqbo2IlSzIdEMzkczem3A0LNAryOdMjvJl5u7deuy7werSdkekx/vSv6iJDfJqGgDry1YGwc3hov7uhd8pQFYAjw5mjqjMEMIbKdwky1IchVRcvh0eWhTImafJZEmZ3Iz0XTsDsbtgbevgHALpWG9LDWJk53A0CXN47efmaMhf6BIDjalJG7ia/u+H5S6LpOiGEKJ2tKj8eFOAhvacX1iffjRrKVxL6uPGnNel8PAyr+sz69L0by5wSNcKvnditHHeDAEAwrOh/GBD9sM31j62+N3IFnTH+9EnVsYNDKQ1R03GH8LBj3A0LmExVaCgkhIQI7lOFwrOIrApY3A1h7sZYgQ3M7gaBKMaysoa7QUEs5mX4jz63uyEAJ3XL/H5DmQZnmC9zZreEGJxo190goqIoGqJZVfgVOe7GDrTLw7AKv+yRun1DOSsu/mm3eGEenl2femabu7EsOs3uk4Rcq/kV4274AbhfIDMuEEGAJVE3AHwUdw32ZEKKPsSnVYFGybgDeWjD0B2FqIDQERZHuFuh9wVRzvay7SxmmzJTdE/5q5G+IUa4AAD+y+Y/ccIYRu9XDndjeSL84YZ4GdcbVPG2vjEunIaFAUBd5/YauLtht4i9rYEodL1kKb0vjQgAGBfujEyVimJ4eHR1ZkZtyXPTb+2XGO7TC/OwWsWHG+JlPEh8Y7/UASENcj0RLvLEjFC0K8CWWEdJcE08HFeV2tefPL97/NBQcmwgHVaxK/DQpnCDRqwwVEVKxAAXfUJXjaVdJG4GRIdJlMdG+E1f2Y1BziRxzYT7QIUTi7sbMEIbybsC/ii/dveAkiPOtT1jI3wZbtmZLNBTKez9iezOiD8hX/geUSdG1xCQmyN2l+TFdrOfVUEAAK/befFLLhTNw4t7ps8u+mmYoIq39EscX5suhoejAvrTQ0qLOJf3Tp1bTyuT44lw7tM5oQx3YwSdnYWHNoUbkZnLUhVzvGTuhgcatp1+M3s3k7sBYZJlVRG3ibsbnRPLcDdGPqjQCvgndsvcNaBYivRx64/t1vrT2lROVZHdDfJK8+tVqEAQIlSFsBtVtKpoOgJAz2D5+aZdGaXw8Jzu6Vv7Jnq522n0sVXa3Ib48TVpUWy7PBzh054aHB9RxOPKIRV/PzBxWa+kkEW73E3X5KENuRuWnDNuB4ifM/28MUO+iKtNaUJbKKjAQcF0Xw8iMhdDw440vYZnkSXDwzMkAMD7zLxfJnI3ipFUE7kbnsvJk7vhwJPqMuOronMa/QtbC92TX/aIn9U9FaSTEqQ+s5y7URT6FnjWAeaeDhB19kHX5T6zUBUnd1MJ2uWhpNvMZU8KZQ4OZV5pcb0Tcb1tfnozqOIhocxxNen9gprlLMXwcJRfWzA89sw21z0bvDkzgyEVT+qWuaJPKqzKNK80d9PFeWhDuEEpOS++AgAhZFGr+sTWHO/t/cMmT283ntwtfUq3FI06YsQawIjUpoXvERQTk1BWFQIAyIaGCMAPSVjS5l6bVFp1CKtAAEb69QlhvVpFy8gUv3EEEft58K+D4stiynPbXF8mXB/ytWaH+7V+Ln1kQD+uJtnXpXEGsxEBQ1X4yJSuI1EUIIg60EqzayQKTekTorB3PAPhAoXOyFSFKMBDGgWQ/ZaQarXCt0ytyRxbkyGAUV35NqEA4H5VmsKGNgGxfB6e2C19cl3mi5jyfsQV0aElA9UuIISM9OtH12R05vTRwsPyRqZ2Ch7a526I0QYE4PukcuuGQi/t3ZAm9zZ5ntrmvrN/fJhPL8bdAMiqQnjPU6gKUQDea1XubfJ+kGdV6qNqMjf0TQ705nA3tBwE2COgjQpogEldms3J/6WBpnhVgbJVRXQCHXdTJHLyECDL3fCOAwJ7z5Rw2WEVx1ZlpPBRPg9ll71HQB8dSImzFHbZwHlY0N1Aie6mq/DQhtwNu6/S1/ei6q8bi3pB+IY0OX+N/z/NLjl3Q9gPG+Tj2f0y+swGB+iBLRmY9b3vlO8C+WINAMxvdk34surGdW4jd8MguFq4zwyl9ZkBeJ8ZIWefmRt7uc/M5iXyetkyIvBjQDYP6c2y5m74T8toOhZ02O4V8hD4WjCMUdyMAD9L7hwiwy7OQ1ueYRV3GgBgVUq5baO3+HniUY3MWe/7qE2RVUUMAZjOwrvN1H0CH+EiQFo0cspKf5GzRf+6yTPze2+LrkhBmmtRlqoQHuAlVSFQ3IgAAXYw55xOk/tMXtiVGKpC96TVkFVFHhEo8q7+CGHhoexuAFgDET5YSe8/DzR0f7Z7JTyke1hGSOW6WUZIEXURP4DXZRfmoc3upilNrmssZwLVlev86/i4JGeJVVVE51yoCiVKswY/W+kvaUnq+c2u2Ws9yAWhY1WFUQRNqkIdvuNu7IPF3QD/qcjuBvlULHr/23U3UAoP23U3JMvdEJpq/tHw0ObczZPby3xBeFQjD2/xzekTBz64QPi0Y3EWcUtpnxl4n/mqNXnfVVgAz2xz9/fi5b1TjH55VMXSZ16XIv+Le9iCoQB93PrYqkxft5a7z2xWTtSlPjMhuo45+8wEQbe7z/xjgCV3A0a8MHI3hPBnY3i2mN92i7vBMngo524MRnFfQH++ijl3w9wNsNKK5yGUlLvpMjy0c2SqKU3erOAF4S81u07tpo4I6Cx5ZR4RYFsUbhepqgB8EFEXFRy6LoC/bnLP6Jbu50FAQgD1giMC85q9c7d4cr6nvK9bv7A+fmw4Aaw1+YgAP5iVI48I6Dph734Hy4gA/ckw8+yMTBUNwUNjC4sXNAqwfehm5CNTyAdAue/gI6QiiVocD7lzYS1JABQCiEjf5JvT3ejMX/ARUtYta4eHjC1ouBsEaGdkqsvw0J7cDa3TklilwevNiEt0v4nh5AAARNw19ZkB7msqf5HwVo38fqO3sKoQgC/j6sFfh69Z688ZawCgMa38Zn3VUd/VfhVX8/WZCe8qy31mIb85+8y0Xk7upkgIHhpbAED0klDsI9wNT82YczcKT4KUxEOjBEIUamcAqIsB3u1qJ3fTHg+Lz93QU1Eerki4lsbdH8fcS+PuKCo7lof2uBskoEgr1JeNNyLqBT0NVTFdE/V4Cns0nLbBDynyYRFvYi6ADyNqLlUhSNiciAUt7mvWFfUO1vVpZdba6qt6RI8NJcyqQspTFVovx90UCcFDY4vsbvg+srsBybwId6MjKmByN+3yUHY3Iq+R5W4IMc7C3Y2ioI4sxVOQhyW5G0LIkqjr3y3eN6PeiDm5McSbOagq+dNwLKjonc9DO3I3/EasrmDhGIpvEiqL1CgulLMGDYkAmmnT9SVtFb2iDADWpsiXMXWUP2NWFaSq8lXCdcGaQPGlRTRyw4ZQHxeOrUox+aPqZ+0zI+0zW1TF0mcWqgJO7qYICL6IVAg3Lyhum8jdAOFP1WXlbhTuXornocJTrQjIxztZhNF1VKSVVqy5G13n/aic7gbLyN2sSLpubwp8FMv90/g26fo26Xq62T+jOn56TbSTeWjHM1M8lxarYJE0uTR6WYhckwg/i3CMXCXW2fHmllYNpDwjVTMCBFp15WfflRBrBC5rDDWmVD50AVRLzSMCjOvcruceEaAUlkcEUmkdAAbUVFV+1bsgzDldMRQl/zbEyJQwLWgMh9NeD+v+lMRDEQgICwcoWpO6GxaNzO4GAYmi0IACYqcsHpY0MrUk5jpnTThfrBGI6src7VU3bqqJaKQzeWjHejdGMtwOyKrCt8iqQrcRQlDXK1mIT+CDqOuAYA53M6exnHfLA0BEJw9sDdzUszWnu9FZ6KH6BsD1ynE3lYLzMIe7AbaV8C4Sv92Su6GpNszlbniB+Xio8Fam8UV4FeFuEOCHBCxs8USklYFH+XFydcpGd7Mkqp6zJlz8DVvc5l2frv1zn62dxkM7wg1hHeCAgjYYHMIT/dIWcRaxBBdtg7BiR5RjqmLqM/+Qgnnby++p/afF+/Na1xBPhsqSnLsRTUsA2PMqhBBAXeoziwSlpc+MGSd3kx+ch9JXShlL7oZ9+iSmtunku6QSUmCoX+vt0vp5eYAgpfGQxQhz7obw3M3TW133bPCuzS2N3hO7ZS7tlRjo4+1dYu6G1YngV3H14nWhUu/Z9yn33VuqL6trgU7hoZ3uZjcPLq/stWFDfJpQFShCVartqP74QCZbVRa2lDNZUcabEe+Qbhk2L4O5G5SGKoynZrJVRYwIoONuiofFZSPrd1jczXcJ5e9bPZ/G1GiWNA71aQeHMuf3SMvuphge5nA3iIRAi6bMWukr8FQNADyzzbWgpWp2v+SM2nQZ7oYxBeF3TYHylkleFPUfVpXYw5vsBB7alLtBIAD7VVX6GsGxAU30meXypX9NfeY+dry5JeyG7D5z4WUoisEbUQ/wIUmeuyEodaDoGWnnnJj7zMD7zMSZVVw8OA+J8RVZ7oYAAER08udNnl+sCSyOurJjDQB8k1Af2uyd+k3VR21qSTykqRfhbmhA+CKmTPiy0BN8Aq0auXyN7/IffGXkbui2JTHX/9rKZ+wTzVWdw0M7wg3P3o8LVPoelem1GZbKE5cjjDCP7WwzIYh4ZOkvC7egnwdH+bRsVan8fb7fJF3A8pR0zgKR04rCgVP5EglLwn8csqoQZ95NMeA8ROMrtwUIUZ1cudb3XBEd5PVp8os1gX9vdxXPQ5p6IWwuDyGErEuSk78tav6EwLPb3LPXefK5G2HchLvh1QIAfL65IjO+LOn5PunuBB7alrsBgF5uPDiUKXti8aRgZqhXEz9EALObFZoFRp+52oX7B7VKpt6cVJfO2Weu5PUdBmR3wxKHOgGyIa18mnC/F/PS17zSFh3nS4z1xetVTe4z00Oc3E1REBP2jK8sdxPV4Zp1vu+TJUjIjY0+AnBcbRqK4CFwuyE6PbNWB8oYZ3h0i3d8SD8ynComdwMAIuj8N1L+ZFeKz5Oe3TzpfLkbu3hoW+6GNvYpteklbWoZCeOgilf2TjIryVuXuVmU/uXzH+iMTALkkp7Jn0fLGa4GgJCKM3uks0YETMuYVgiafeNeFDdm1Ee3VS2I+rP3/DLpmdsSHulJnRBqHeFNObmbkiHxkH9lSbM56/0lxRqKGxp9w336CL9WDA+BGLmbZ7e58k1AbxdzGn2Tw2mDhyJ3w5M3krthadx1KVLqKzSz8UHMe2wwurPkbtic/Z5uvLZXsowyZvdJ9nHrhjoZI4PZqkJbm13zASH9p93S5VX88l6pahX5yJToMyMBUsZi+jkh3A0AvBr1z1zXLWesEVie8ty8tftzkZCTuykZEg/FV0RY1OpeVm7X+PpGLxTHQ9ndzF5XftdmXYr8dbNH8NDI3fDrErkbAFa1xrQd6+TvVLkb/pw7wGi/fknPVKCUIeob+iQODqXN8w8ARNyR+8x8HgABcc04u19quL/kLPWJdZlze6bF+SzuZmQR61oXxhBvBrj1JYQ82Rz4bVMoqhd1w5+LhB5sqaWqAk7upkiYeSjczRNby5/QsCKhvtDsLpKHikIQ4YOoq8Ke+MJWd7a7KZy7qeR0DOYcIvDehXA3tvDQZndDvx4WTP+ub6KHq/270MuN/2iIHVuToeHTFGVA9q7SybJUJUT0pwbHR5QScU6sy9wzIIG5Z3MiAXJkdaVJ6LGBFHB381Kr9/4twZIOfyde9USkmqU6HXdTDHK5m+8SpMAr6ovB6y2uInmo60gIFDMUVRgfRtWS3I2lZmVDdjfAshqsdLt4aL+7oV939+Hchtip3dL5gk4vN86sTz0+KDbUpwOwOSkWd2P0luWT5VKVsIJPDUmcU1/Um4Nm90vdMyBOxGMyudzNkeGSX3tmwbRwEgAIIevT5JamEuZ6CiyMhT5K+EyqYhOxdk3k4uEHFa9S8EbEVTwPEeH9isMNALwXUYt3N/tXlZlMkNHDpeV0N5DT3ZTLQ7tGplgSW3ylv9vT6lJn1KW+Tynvt7kIz3gRgJ8EM8P8OrA5oAhAaMgk8lVCTncD+VQlTPQb+yYnV2ce2ezJuYpoSMWjarQreqf6eeizsJjnSVwkhPT34k+7pedtK9OH7xvIDPNldAREvGdzObGG4slI7RhPTIwIJDJpABhQW5pR+rEgFw8/j9nw4/86oY7waUXy0BYQnp0tcmRqmC+zIlHRb3m0L0ljmm48ZoGip0EIAWlkqmwe2jUyRWRzJ0YEaIUHe/Wh3hQBVKg3pCvg80da2Nsy6IOzNJKCFFdzRBxpRIAerxB6OAEYH9QmhBOtGnm3Vfk6YVBtQkg/IJghbE0jQh9fkjPS1pEphEt6JBa1lNMPD6o4p1crvRUrkq6328pPHG7R1cXJ4ERfGxsRcNxNAeTioS0Ft2ZK4KEtZyxpZAoAj6tO3V5ZuDnAnxLuhucY+KOn3N2AGJnake6G5bGNHqVwN7zCwotKlpTtCcTqbsy2NUfzWVSFvjCKtQYBQIQQ0Y+uwSlEE1tE16mIdUaYqgzw4oMDYz//vuTHXq+qj/Zx0zrBx7FKJ0R8kvBN9LaxPrN9I/S7JLJ5aF/R2Zty89AWlOpujq9N/mmLv+zh8OmhtipFQ1AI6AXcDYh5N+Xy0J6X9jI7wwMFYd+ll34a+XwibxHUkHI35ishYJUoukyJ6DPT5+X4SaniKIqReEa2rIm0ihpzN4VyN1RVxgczd5T4+vA5vaPTa1IiZr4VrTTcrEj7wMndFIdsHtpXdLE8PCBU6aM8ADA+pMk8BIDCI1NhBc+sK2cCCgAEFP3UmjZq06SeRY7cTeU8tCfciDtuuBs234TvIfrTWe6GWjfD3ViuhK9SZoC9cIurCjHcjYj5upR4Zv06eZ0R6m6QR3LDUxkjU8CD0Qk1qZeGRPu62x8XD6r4yIDW6dUJ1I1mi1T8iHwc2ZIojrtpF9k8HOSx4ce/X1Arnof7V/wozxHhdDYP2xmZIuSi7rFDg+WMb8yubwkqOgIS08PzIJONDVlVzEPb3A1AlruRVlET7sYQHOFuCAEeIFDalRddlKoQYrgbQKu7oVXKdjeKovATIvc1kK0qI/zai0Miv+qZyBd0gipeWB9fsPv2sYEUACGK0WzfJm3orm7WVXDcTRHI5uHoQKXzp4b6NFpmkTycENb7eSpShck1mZw8LOBuaL7g1r5tQ32lBbsr61v39CeBDbHldjcguZsKeWhb7obdDyl3oyh0RhAAGLkbYUCM3A0i/YUiWz7WlLsRmRcD9EVcxKoqIjkEpB13I3I3OuqKohi5G/aUtvlZFQQCUK3iJT2TF/dIfBlTXot4AHBtSqGsOjSYGu7LINDMPUFE1I2VnYIK5nz4uCQECILjbopANg8PqMoEFE8lyzAdV5OBEnl4aa/klT/4yjtdPw/OqE0Bkpw8zJe7ofULqzB3YOR3GwMvFrF8SpWCV3dvPSAQZ2suU3cDOmTlbkDK3VTIQ3vCjUlVxGxoHY21jmR3IzlekUDRdVRpf4qYrgTB+toNesHGiABf64jwuUjEcDcEiJi2IK0Ry0emFGJ1N6JXZVIVaURghC8zwq8hX0WNHoZIh0WAqgNRCAB9nwcM9WaWxitdULlK0XWk7wNy3E0h5OTh8TWZJ8qd0BBUcTp/SrN4Hp5Ul3lks1beY1PX900Uw0PLyBQbJUMMK3hrn+jBwdSdm6o2pPP2XY4KJc6oifZQMygWYAKiC3dDvaEx0GOMTAFUxMNOdjeQ7W5osxXvbohCU0JZqkL4jNIOcDeFVYVXg08AldxNb7cGlYWbfi62yjqfKOAgL3Ly8LhumUWtrvLmFt/cJxFWmWsuiYdPD45PWF5V6iyKG/omj65O5+Phh1HXB1EVCKxLKcO92gh/Zpg3E2JvjTDx8PBw6rBQ8qu4+mKrb0XShQgRnQQVDCn6QcHUnt5kL5eGQDSU1ngDJIpC9PbdTSU8tNndyNmsXO4GinE3hK+TxPaSCyHAp9gUcjdsbcdC7gYJgTLcTT5VyeduJgVTL7eW6asphruTNIg67qZd5ORhFeo39klctc5Xapfq2Jr0oXxBpVJ5GFbxmSHxWd/7i19O+7JeqVn1yWweNmfglvX+Ra3unCta9HXrt/aN7hfIZPNwuF8f7m/TdaRLDutI/8WMjkCIzmf06NzL6HqHuxubR6akbBby8A8ARvWMqRBii44ArPtDU+4i1rC9zIXQYoVboaGZZ81FgEdBujwjUyTHyBSyx9QsIwLAk805RwQMVeGLafGRKQIA+wbSVZUtqHy4v9VxN0UiHw8HefTZvZMlNcSxNZmb+yYq4eGogP7qsLbxwfaHxkIq/n5g4rLeyWwePrPdPenr0HPbPflWz2lMK2etDl+7PtiaYXXLyUPgS0pSIlOXLj7Qe0aY0+c3UyYbj2UV8tDmkSlJVZiDIPLPU+wptvDZCmxkirlT42pYt1IqRBQrjXrSnhMR82iov/gyprwfVd+NKF/ElKyRKcw5MgVseMvkboAHrHwjAuykYhI9G5lCAAgr+uX10bJv7ARfW71LpyMCjrtpFwV4uHeVdlf/RM8iHhsGgPPqUzf3jVfOwxo3PDMk9vTgeL6gE1Lx8t6pD/aInVSXyebh7HWeq34oaknAF5o9R6ys+SrhysdD4EtKUiLTQVjxgV4c6rrUfzKNTIE0MtVVcjc8Q2fK3ZhcqJy7oSCAuiV3A4hGFKSqgtJvXJgmi6oAz5f/dbNnYbOa/aTcUTWZo2q0k+oyOrL55kXmboS7KTV3QxARyDGh+L+a/StLHxGvU7Wfh1soAwFRISSj6QDQM1hoxZwfMwrzcLBX/+eg2HPb3Y9tc7fl+Q3vU6XN7h3v72U//Up4yLlBJoS0CeF4q0bei6jL4+y1dyEFDwhm9qhCykMAKw/vafL+bUsJj79ENHL2mtDfBkaGetI5eYg8t0R7WzSk8dwNsG4YYM7cDci5mwp4aGfuBrlZknM3hFj3JIDfJpTFURcB2JBW+nh0AvCTYGZkQEc2l8G4UBqtmHsz9Zl5bGav9kACsKDFPafRm6+3PL/ZNb/Z9VCT657dUqN8Wgm5G5AWvG4vd4MIRFFo7oaqHiHkL/2aT1/TbWOmBC/pV/RLarZUgaZLfWZaA5/LjuWUdkUUw8MZtamTuqW+S6qLo2pUg2+TaljBoX69j1ufFNLCiq4qRGh5eTwkYjUV5jQIQQgp+tE1OKW2qBzi+xHXvRtLftQuopFL1gbnD96ej4f0BCJlY3zgQYjHaQBz7kbKk1fEw451N/STaOmITuZtcz+z3Z09FeWhzZ6Qiqd2S/28Lh1WUf5dGj3FXKrC7SHc2+S9d2P7Twwsj6uTv/L/frfkSbXpHO6Gd33N7kacrn13A4C6rltUJUjwsQHbLmys+a44j+NX9N/Ubu7vSutgUpVijv0xo0geAsBgjzakTlMIKACEgEIAdFQUosivDzfnGorkoUwJEOaeUPeSPUKa22VfsbZMA9uYVv68OXBBfSwnD3l9iU5fWSE+AOhYgrspr25gs7vhLxUTqsJyNwhAYGVSuXytv8Cct4hGHtjsfWKb557+8XFVGn/PO3vPfA5V0VnGlyjkyh+8z5Uyt+Ly1V5APKkuA5DlbojJ3axLK4ua3YtaXR9KL9bo69YPC6cODaWyRwS4qgDquqwqIQXv7739b9urnm1pZ2XlEZ7U5d22+SCjo1VVir/AHyeK4SHbU2GZGeQdJZrv0xH4CCl3N6XwkLobI7HK5QsQdPr68CJGSJ/d7mms4PWwj2/3nd+9LR8PbXE3ZdfNVncj7m2Wqsxvdd1ZnDmMaGTW6sDNfRN0EXwgWarC7xrhs3Se2eoqKdZQXL7G19fVNrEa87mbVk3522b3fU05hrEb08rft/r+vtU3LpC5qD42ripT2N3Q5gur+Ku66Anh2N+2Bz9LeJrMfauAoo/zJSb5YyO8SQSi8TdsouNuika7PDTvyvpHAFIOkYDV3bBfWfs85B0o/qwgdzd0Y/Hu5pltFT3WG9HI61HvocGkve7GFh7a7254ct5QlcWRYmONwPWNvpCCh1dncqiKWNxMR6KQH1Lk5sYyF5S5cm3g/eq2nO7my5h65VpfuxND/xdznbUmfEuftuOqk/ncDbDOPKt5L7d+dfdmHeDblKdVAwTQddARR/qSOjKfJKsKHztw3E37KMxD8fPhmf/23Y2Rv2mPhwjA3qUJlbqbyt9x9lGb65CqZGEe6ty/I18Igb0SPGu9GwDbeGjnvBt2k9GY7wAAG1LkrqZyovX1633rUqRdVbmvyVvGC30o1qbIw5s8IHW9af97edz1s+8CxU9Cv2591e+aAkxZCaCuiyQCcE0D3tiEx7Xd3am9fKnR3uRof2oPfwqMmY1Sc4qko+NuikABHqIs1cDzLGIbdyJsWpaISuKoIt2NETRYhQx3QwwmQP75X8vjauXvOFuRdBfPQ0C2EIIYAuk4Hto57wb53H06wk+92+PbPG1lPSAX0cgdG32SpbM84c3mBy7KtU5o8Xhmq2pxN6268otVpb3/EAAe3+b7d6sXubshRJ6PIe4Pm1LE8s/8AXQ6xgV8lodlvgMhfL4DYo4TO5BQgIdEuq2ssYn0k2IpXdT5MBOA5G4A2uUh548QL1Yh9vNFEO+Gp3/JN/+rpdLlK1gVuyYPbc7dAIvsSL3ld0myqIKXbb/e6voqoY7ya9zcAZhVZUFZi3vKWB5X16ZIfw+I3M1Njb7iJ57LuGNj1Vh/uo9bs/SZhaQphGgIn8bdn8bdOsCGtNrTpSHAOH9yoDsFuml0nRVKCOo6Ormb4pCPhyyvwn9AGzNkYYv7k5i6MqnQsYt9AtpQn9bHDcfWpMNEV7ijyeVucvAQuLuhJokAfhlXozphCVqEkQG9RuU1BIBCuRsbQHuRhXkY1ck7bf5P4p6mtPpd2gUADe5MQNHH+eJjfckA0TuChzbnbkD0mQEQ8f22Sh+GfmG7a6RfU+iP0PQMFACivBpx2ViXVPp72Aoj70fKyTpTRHTy5y2Bm3tFcvWZoVUjT273P9MSyH7V1D9bggFFnxpsO7qqLUD07D4zAKCTuykC+XjIzA7AhjR5YLN3cdRK+6UxdWlMBYCHtrjPr0//vFvSyPVYczc5eEgNgkLI2gT8bYtnYYs7W7EOCGon1aVP7q7RH32+3M2IihfoAcndQBYPEaFFI8+2BJ5p8Vuo+EXSAwBL4r6Aoh9T1XZUVZtfEXlje3hoc+4GgPeZAQkhn1W8Dv7/Yir3vLyXbVDKHrX/MqGK3M0zRbyyvgD+0+Jt1Ul2n/mjNvcJq+v+tj2Y77V2MV15ujV09ab61Wl3dp+Z3lLH3bSLfDykf30n6jpvjT871siIauSujZ5zVwe+Tqi53E1eHhKAezZ4Dvoq+OhmT053/H5UvWyNb/9lgS9iCuTP3dTY8frW4V46VJqdu4Fvkq5LNtT+bXtVgTcsxnTlmUjo/zbXr07zn4NNPLQl3BhD+gC8zwwEEb9LVpz0iqu8H8172YJSaE9HN6LxPCEhOd8YUxI+innMfWZ4KeL75fqaYhbZ2qyp12yufysmLcbOJZQ4uZv2kZeHALCw1XXTem+RacSPY+q5q/1fx1WDdwgFeNiskVNWBu4rYpbp2hSZ/HXgqa2uAs/uHRmu9L1R+wYyYM3dAAB8m3L9srGmyOdpNmvqLVvr1tCIYxMPbQk3JJ+qVLKKmlE6AGSpCv1UbUdfsJ9Xp+T8IqZUPijwTVKVVeWlVm+p77R7oLnmywQnrvxuZt7S1f5Ku6i7KPLy8LukcleJUzEiGpm12t+YJLK7ycfDn3/n/7CtBCN/2WrvM9vcOd0NAXJCue+8p+jj1g8PpyzuhgBEdHLhuqJkTyCmK7/dVr8m47aLhx3ibvg6IPaocQ5VYYKDwcrWdqDo59IpOSuPNQDwv5hbqMq6tHL3pnJeQXdPc7dNGZZaFKqCiHTuX7Wv0rc77KLIzcOIBnPWl7PkUEQj16/3M07kdDcIAHDVD76vS1+478a1ni/jai53g0fVZEp6A7UF02uStG6yu0GAqzeUFmsoYqg83FJrFw8rDTe0W2hRFZ2/wilgRzgwsn/0qxjSJOSAIhYTaRcHhDWqKnb1VYSq3LQxXN5CxTFdeb6tGsDqbmyq4C6IAjx8rdXdVO5rwj9qU59vdtMT5OThB1F1Xln5vlaNzF7ryeluEPHGPonyKjzUl7mgLkbrJrubj2PuT8pdVXJtxrM4WWULDysNNzTpzabiZrmb3b2V/oTHVmmii8xpZLibEX6tb4Wr3leLdUbQrl8zVZUVCbWSVYoXxwObNdWiKjZVcBdEAR6+0FxRl/sNms5DyMnD+5rKf0Xq+1H1qS1qtrshhBwQ0u8aUHLECap4f98oMzRmd3P35pLfzihjYVvQFh7a526kZ/yFuzmgqtJc7n5BTagKp5HxoAsBuKRXmW/zopjZI22oSoV1BQCAcYE0VZUXK1szFAA+TgYcd1Mk8vHwuyQpb5VigdcjLjG73cLD5Ql1SdaySiVhQbMrp7sBwBm1qZIiTlDFuQMj/bw6MzSSu4nopMIXEK3NeDZllK7obgAMdzMhWGm4mV6dyutuAIHAjNr0CH+ZUxXGB7UJIU2oyoSQFqp4GLK3WyOKAoS8GSlf9yiWJn2OuykS+Xi4LG7DaML6lJLT3XwYqXSex4IWV053Q2c9z+iWenlo2/5V7WcMxgUy8wa1jvBlQKzmR+fdEAKIKyp7fTjFp6mqLuZu+Ebhbnq58Yhw+RFnWk2avSFMnlouuRvKsrsGJMoIEyP8+sMNMX4NLD4eWV1pfDwkmEJdB8QNpSymlRNbMy7H3RSJfDxss2HSHBizSc08XJ60YaTl3VY1p7tBRAJkVEB7cnDbdb0Tfd25GT4ukLm/f/Sxhkg/N3v9nuxu6JelcRvGFuJIKudhpWGPq4pI3QNQd8NqBhf0SL0XVct4bCqo4oU9eEeJEERdPORGrS1yNRvl158cHD9lpb/4oaWQivcOTNS6+eAmn3dzYm267FnFAHBsdTKsIBA7MuQAW3RVzOYkzqzigsjHQ1sKN/L9Zh422hFuADDHmtnsGSa27tI59clzeqSaM7A8pixPqBGNIOB+gUxvl9bPowN7SsH8JgYEoigIALodEReAC/0OXe/GUBXFSH7oOirsEVgMKnh3/8T5a0penexvu8WNl5+K9RmJ4W74AkmAgKP82lOD4+eu8hezLtGIgP7c0ESY6LpuelZFR/2AUOaIcHpRa5kR58LuMaYqdjkR/qyK424KIx8PbT5NLh5WDJLNQ5JjVUmsVmF8MDM+pCGKB5iY82WxBgDEmtmAlIf23YIuNDKV5W74tEtAGOzVb+pbwms3gireMyA+wq8Z18XWB+FPgyAAWxAIgI9RjvRr84fHLuudKtCxCqk4u1/qtRHxMNGzVIX1me8emCwvg3Nzn2gft2b0mStGnao5uZsikY+HFb51h2KYmAWTi4cVIzcPifWNIHwCENIN3AsxI5T1RhDOQwIwxGvH7HuwgYc2uBtWgzzuhkaEA6syvftr1zf6250B0duN9w6I0xfjgpjkgKgIVYEsd8MXQwqr+qU9kzPr0wua1YUtrhaNrEspIRdWK9jfi5OrtYlhrVpF/iQu5FSVsIJPDY6fXErXDABO65aYHk6CpCpDvJkKhwO6qxnH3RSJfDxs8NjQlRjm5eHGzMPxIW1JKZOJc6KfB4t0N3R/9lSovIxXe+5mmB3hZm9PrEvkbpAutiirChvuZzpAxyaH+PQnB7UtjLif3u7+LpHDVQ3xaad2Sx9Xm+aT+ICIOZyE6Kirxp0mQEDnT4vxx3JBAQIEwyqeVJc5qVuaCJNFxLJJ/F8dzaoCkqrASH/myd1jv1gVaEwXdWev6Rk7vVsCwdRnHutPVRhu9vEmnNxNkcjHw70CWg8XVjIW3seN/b2Yk4fDvZXOMh3h1wd4dSC5eWhxN8zVGO7GSFoXyN0QxD5urbdLr2Tswk/0ge40VszDDnE39Daxt+3xKZ4AoAAcFU5PqU5vTJGVSXVliqXyhvq04T69r9uaT+a9JUNVwJK7YX/kC1kjAgBbblakCTk5eOqf5HI3QIDIqjIqoL08LHrvRs/cgu/6GVeVuah7bFxVBsGqKsdWJ//V3M4q6IWxrzcmuxt6d8M+54GpHCjAwyOqM09sLf+mXdgzmY+HR9ZkQusqevbl6FrNnLux8tAWd0OAHFudeGhr+Ww8siqKiJXzsEPcDe/imdwNdSDUcPTxYF9v5hDGEiBiaViQO6FgvB00y90gW8KaZcuZu+E2h/oXwt+SRydYIpuj1b67oTQNK/oNfRJn16cWNrufa3bLz8X0cevjqtKHhTKHh5JA+ZelKsO9mWPCibJfEH6gP1avarrkbjJpHQBqnAemcqEAD6dXp5/f7irvaeGhPm16TbqAyz67Pn1/EQ+C50RIxZndU+3ysHJ3owOeXBt/scVX0pvOBPyKfoQ/YgsPO8ndAI013ImwnbglEYUQ/sALLdmiKkDvMbtskJ7HK+huQMzkLsHdCFXp59bPqU+e3T1BhxtNIwIAhVXlvLrYW1FvGY9N+RX9tFAzrbuTuykGBXgYUuGKnqmbN5Q86zKo4i39koV5eFb31N82u8szOOf2SNe4AfXOcDdhRb++Z8tFjbVl1PPUUHOVgpqOlfOw/O4cfYdeLJlkly4lrInxCwehNUQ0EvKd6P+N2TTGTQO2syiRsNer8/OwRAnwIUleOCHs9DpfQRZAJPaZOLTnbkoeEaCbs0cE+ri1O/u0lnpj/Yp+fd3WKrqQmjMy1R6K4eHEYObKniU/7HJ1r+Rwn1aYh2EVnxgUK2Moc3J15oo+6c7hIV0VbF9/+rqekVLreXyw9SBfzC4elh9uRveu9apKPJmMJ9Om+8FHCdkG4W5EI/HNtNaGV5R6UsDdDT+Yv0JMcjcKoWs48hJES6DhbkQNkBdN+CpqtM8Mxk6m2ZwgopikKvzMvLvHVYVuRvNsTqoqYwOp63q2Fj8c61f0K2q3DXSl+F0wZhVndARn9YksFMnDI6szs/skq4qLC0EVb+qbmF6ThiJ4uEdAv75vaZMnRgb0extSnclDapyOCSeu7VmC/p0WbvlpsJWe1RYeVuRuDhrUCwDWbtmk8wujkAxHXneDPBDldjfI3I1oW1lVULgbMeEKubvhp8/hbnjXt9PcDa3U1FDiz32be7naH5Ed6E7fWLd1lDdl/GQkVWlLpgBgaH11yU21S6N4Hh4YzPxzUPzI9p6q2TegPTmobVp1mh5VDA9n1KafHBwvMuKcWJd5bUQ8rOidzENAAISpoeR9fbbv3t7QeHdVu65uy5RgG/Cz2sLDSi36E0u/+6G5zet2DerZ060QhYBCgAASBFUhBJC+hlkhAIjifcxsC4t2qLCZgQj0hWR0N1o/YGlmxVhWzdjIozb/yj4Q2d0Yjom3mFi3ka6Ar6OYN6gTNquCsGlc/O5QAcmXu2G005GmEpF9QACiA2qICERHfDnif2RrVVOudN1AT/qYqraDAzFE0AF1BB1RR9ABNF1HIC3xdDSR6RH0zdxvaCXttatC8HC3HvVeVS3Mw89i6mcJ9dOY+m1SaeNpl8E+baxfm9YtM9ynlcfDVo3M3eJ5JH8qZ3xQu6J3akJY37E8RCAa4iutvnfavJ8lrO9lGudLjPMnJvljHcHDSsNNIqM9sfS7TdGE1+3avWcPj6qw17wD0oahbazw4SeFEIJIX3KoiAajfwKmIXJLsy0KQV1X2NA3Ep4vM0amEIFOLKQGVepP8cBszLsBrio0DnEfxFNKPMWoc+1AnqlDBEQduHUCXholCgLqUvOjrusACIS2ExLI6DoCWZdUPk24N2ZcOiAC7ObWBriSPVSNty4VIdB0nTU2QDKNmyIJADhnv6E9g5Wua7FLQvBQUcignj2DHleRPIzqpClNhvl0u3jYopMPo64PIspy/mBntYrjQ/qEYGaPgN51eKjpqCPqQBrTysaMqgOpU9KFeRhNatvbUlABD21IQMot3a9bbfdggFDDQip1N7SNK3Q30rXuKHfDLDdVFR1RY3LBdEMH0JBm/iHb3USTma3RFAAcPqTPuP7dK2ysXRgODzuUh4m01tSahMp4aMMjrT6Xeuo+u/cI+nQdf9iybWNzazpDZ1uacjcAvDMt5W54T5X3Ns25Gxb3keVixF8suRtFMXI3tFw5d2N0fcvK3QgU12fWRV9f6jOzcnTUjeP5SYUoMcVkBTN+tsTSNNaM7lXrxJrCcHjYoTyksaZCHto5vPrOqqbFq5ro57pgoH9t2OdShYbQjrRQFcItrqEqiADtqIohLPlVhd5ZWVUopXaAqhBCNYSSkmmIWVU0RCQkW1ViKW1rWyqR0QHgwIaeBzX0tKuZdnk4POyyPLR5NscP29veWbXxh2aW0A77PH2qQ92rfMzEZuVuAJCuOEakthc2tVCfmR5LCO2Ho27K3RD6mKiUu2FXW3qfWTRzWX1mQnu/yNqb+1idG1dEJEpG1yXvCpGUtq0tGU/rAOBVlRl7NgyorWih2R8hHB52TR52yOSxH7a3LVm7+dstxgh/tc9TG/AGPW6/2xX2uhTRigBlq4rxAc1fqaqw3B1Al1UVRF1nqhJNa7GkFk1nIgk6rQG8qjJuQP24/t3pNDYHZcDhYVfjYQfOVW1JpD7fsP2bzS2botYVnn0uxe92+d1qldtFAMJet1slCkDAo1a5VIuq0I5sYVXR2buWzapC2KMNtDMMUM6IgA2qgjodgGxJ6WkddcR4Sk9oug7YkshkEKmACPQI+vbs3W1071on0NgCh4ddh4edMTU+kdF+2N7WFI03ReIbo/FIoqiXBLoVUuNzc0Vg+lDlUUNul+gNE76z8YHrCCFgBVcV2jZUGghPsIHR0rQ8RNMmBCBS2o5/ICSZ0ZqTGaAHEFMpaR1bU0WtURD2uXsG/QNrg0Prw8684Q6Cw8N20dE83DFP4rQkUi3xdHMi1ZJIAUBTJJ7MaACwPZ6MJG1ZeawrokfQR4Wi2uep9nsAYGBN0OtWnak0OwoODzuZh133wb9ERqNz22QIZnQd+Fxqz2DulZidULILwOGhjei64caBAwe7GGx5c4UDBw4ctA8n3Dhw4KCT4IQbBw4cdBKccOPAgYNOghNuHDhw0Elwwo0DBw46CU64ceDAQSfBCTcOHDjoJDjhxoEDB50EJ9w4cOCgk+CEGwcOHHQSnHDjwIGDToITbhw4cNBJcMKNAwcOOglOuHHgwEEnwQk3Dhw46CQ44caBAwedBCfcOHDgoJPghBsHDhx0Epxw48CBg06CE24cOHDQSXDCjQMHDjoJTrhx4MBBJ8EJNw4cOOgkKAAQiUTuu+++I444YtSoUXvsscfkyZP/+Mc/ZjLtv7T0ggsuOPXUUzu+khWhS1UykUgcdNBB48ePF1tisdgNN9wwduzY4cOHz5gx47PPPquk/OXLlzc0NCxcuLDimu4AODzsNOwoHroA4Kyzzlq7du2ll146cuTITCbz7rvv3nfffWvXrr399tsrOWUl2Hffff/973/369dvR1Wgg3Dvvfdu2LChe/fuYsvVV1/90Ucf3XTTTT179nzsscfOOOOMBQsW9OrVawdWckfB4WGnYUfx0PXNN98sXbr0z3/+89FHH003jR071uv1LliwIB6P+/253zrcoWhsbNy2bVvnn7ej8fXXX8+dO3fGjBlvvvkm3bJ69eqXX3754YcfPvzwwwFgr732mjRp0t///verr756R1Z0R8DhYadhB/JQ0TQNABTFlMQ5//zzn3/+edHGTz311OGHHz506NAxY8ZccsklW7ZskXeORqPDhw//y1/+IrakUqk999zzjjvuAIAtW7ZcdtllY8aMGTZs2PTp09977z26z8qVKxsaGj788MMLLrhg1KhRY8eOnT17tq7rH3zwwYEHHggABx100C9+8Qv5RO+8805DQ8Mnn3witnz66acNDQ1vv/02AHz00UcnnXTS8OHDR44c+bOf/SynGxw5cuRDDz0kvl5zzTXHHnusqMzixYtPO+204cOHT5w48aWXXvriiy+mTZs2fPjwo48+etmyZfSQTCbz+9//fuLEiUOHDj344IMfe+wxUdrtt9++++6757vRuq5fe+21Z5555tChQ8XG9957z+12/+QnP6Ff3W73QQcd9M4772Qf/stf/vKiiy56/PHH999//+HDh8+aNau1tfV3v/vdmDFj9t5779mzZ+c7784Ch4fwI+Chsvvuu/fv3//qq6/+5z//aWk/innz5v3f//3f9OnT58+f/6c//WnZsmXnnHMOIoodgsHgwQcfvGDBArHl3XffjUQi06ZN0zTtzDPPXLp06R//+MeXX3557733Puuss1asWAEALpcLAObMmXPqqad++umnd99992OPPfbqq6/uu+++f/jDHwDgpZde+v3vfy/XZMKECXV1dfKJXn311bq6uokTJ37//fennXZafX39vHnznn766WAweOqpp27cuLHwxQvQytx1113XXHPN0qVL99xzz9/85je33377/fffv2TJkmAweOONN9I9b7nllocffviyyy5bsGDBueeee+utt/7rX/+ifxo8ePChhx6a7xRPPPHE5s2bL730UnnjqlWrevXq5fF4xJYBAwasWrUqZw2XLl26Zs2a119//YknnnjjjTdmzJhRX1//3nvv3X777Y899hjl+s4Lh4fwI+Ch4vF4/vrXvzY0NPzmN78ZN27cEUccMWfOnC+++ELs8cgjjxx44IG/+tWvBg0aNGHChN/85jfLli1bunSpXMrUqVM/++wzcVtfeeWVoUOHDh8+/J133lm+fPltt902ceLEwYMH33jjjf3795cj8eTJkw888EC32z1p0qQBAwZ8/vnnbrc7FAoBQHV1dTAYlM+iqupRRx1laeZjjjlGVdUnnnjC4/HcfffdI0eO3GOPPe68885UKvXcc88VuPJsHHXUUaNHjw4EAscff3xra+vJJ5+82267hcPhqVOnLl++HAAikcg///nPc889d8aMGQ0NDaeeeupPf/rThx9+mB5+wgkniM8WbNq06c4775wzZ46lUxCJROjFCgSDwba2Nl3XswuJxWJXXXVVVVXVvvvuO2zYMF3XZ86c6ff7J0+eXFNTQ2u488LhocAuzEMFAIYOHfrCCy8sXLjwuuuuGzBgwD//+c9jjz325ptvBoB0Ov3VV1+NHTtWHLDXXnsBgKXQww47zO/300R0JpN57bXXpk+fDgCfffaZqqr77bcfO5mijBs3TqbIyJEjxedwONzS0lKgrgBw7LHHrl69+ptvvgGAL7/8cu3atfREy5YtGzVqlM/no7vV1NQMGDCg1F/gkCFDRE0sX5PJZCqVWr58eTqdnjBhgjhk/Pjxq1at2r59e+GSZ8+efdBBBx1yyCEl1ceCAQMGCP0Jh8OievRra2trJYV3BTg8pNiFeegSn4YMGTJkyJCZM2dGo9Ebb7zx0UcfPfbYYwcNGoSI1dXVYjf6ORqNyqX4/f7DDjts/vz5Z5xxxvvvv9/c3Dxt2jS6m6Zpo0aNEntmMpna2lrxVTQMheyNc2LcuHH19fXz588fOnToK6+80q9fv3322YeeaMCAAfKe1dXVlkq2C6/XW+ArItICzzjjDEII3UjD/9atW+WLsuCNN9549913Fy1alP2n6upqS/O0trYGg0FLCqPI6uWrwM4Fh4e7MA9dqVSqqampf//+YlMwGLzyyivnzZu3fPnyUaNGKYoiB3v62WK9AGDq1KkXXXRRc3Pz/Pnzx4wZQ8cOQ6GQ1+t9+eWX5T1zXkORUBTlmGOOWbBgwcUXXzx//nyaYKMnsihSS0tL7969LYeL5qFIJBIlnZ1e9T333DN8+HB5u3z3svHKK6+0trYecMAB9CsiIuLuu+9+3XXXDRo0aMOGDclkUrTZqlWrBg8eXFKtdg04PCweOy8PXbfeeuu8efPeeOMNeRCeZonq6+vdbveIESNk2/nxxx8DwJ577mkp6OCDD/b5fG+//faiRYsuuugiunHvvfdOJpO6rgvH1djYWFdXV0zN8oXJqVOnzp079/333//++++pgwWA0aNHP/300+J+bdmyZfXq1SeddJLl2HA4LEvN8uXLLbJWGCNGjPB4PNu2bROZ/61btyqKIufYsnHFFVfMmjVLfH3hhReeffbZxx9/vEePHrFYTNf1//73v1OmTAGAeDz+5ptvnnnmmcVXaZeBw8NiKkOx8/LQNXPmzFdfffWEE06YNWvW0KFDNU1btmzZQw89NGrUqEmTJgHAL37xi0svvfTBBx+cMmXK2rVrb7311v333z+7mb1e7xFHHPHggw9u3br1mGOOoRsnTpw4cuTISy+99IYbbujbt+/SpUuvv/76iy++eObMmQXqRH3y66+/Pn78+GHDhln+us8++/Tp0+eWW24ZNmyY+Ovpp5/++OOPX3PNNb/85S9TqdQdd9wRDodPOOEEy7F77rnnggULzjzzzEAg8PDDD7e1tZXUzKFQ6Gc/+9k999xTW1u79957r1u3bs6cOX379qWZuXnz5i1cuPCBBx6wHNWrVy95ulR9fb2qqrTmtbW1M2bMmD17NiLW19c/+OCDqqqefvrpxVcpJ7788kvZ4vp8vv3337/CMjsaDg+Lv1c7Lw9dAwYMmDdv3kMPPfTII480NTV5PJ5+/frNmjXr9NNPp8Fy2rRpiUTioYceuuuuu8Lh8BFHHHHttdfmLH3q1KmzZs36yU9+IgRKVdXHHnvst7/97fnnnx+Lxfr373/JJZecc845hWs5evToSZMm3XbbbePHj587d67lr4SQKVOm/PWvf5XnIA0cOPCJJ564/fbbp06dqqrquHHjnnzyyWz5uvbaa6+55poDDzywurr69NNPP/744994442i7hzHddddFw6Hb7vttk2bNtXV1R155JHXXHMN/dO3336bs2NcGDfffPPtt99+ww03tLW1jRkz5oknnujWrVuphVhw//33y1/79u27ePHiCsvsaDg8LOVu7aw8JLtMitGBAwddHM4T4Q4cOOgkOOHGgQMHnQQn3Dhw4KCT4IQbBw4cdBKccOPAgYNOghNuHDhw0Elwwo0DBw46CU64ceDAQSfBCTcOHDjoJDjhxoEDB50EJ9w4cOCgk+CEGwcOHHQSnHDjwIGDToITbhw4cNBJcMKNAwcOOglOuHHgwEEnwQk3Dhw46CQ44caBAwedBCfcOHDgoJPghBsHDhx0Epxw48CBg06CE24cOHDQSXDCjQMHDjoJTrhx4MBBJ8EJNw4cOOgk7Phws2TJkpkzZ+6777677777qFGjpk+f/uSTTxZz4Lp16xoaGhoaGlpbW0s96ZVXXtnQ0DBnzpzS69s+7rvvPlqxm2++uSPKd9ARePrpp0844YTRo0fvvvvuY8aMOeOMM5YsWVLMgc8++2xDQ8OUKVPKOOmBBx7Y0NCwcOHCMo7Nh8cee6xBwqBBg/bff/+zzjrrww8/tPEs5WEHh5sPPvjg5z//+euvv15VVXXAAQd07979888///Wvf/2Pf/zD3hOtX7++oaHh0UcfpV9Hjhx5yCGHDBkyxN6zULz00kv0w6uvvuq8E3mnwB/+8Idrrrlm6dKlAwYMGD9+PCHknXfeOeOMM5YtW2bviebNm9fQ0LB8+XL6dcKECYccckh9fb29ZwEAt9u9995777333qNGjYrFYm+99dbPf/7zHR5xXDv29P/4xz80TZs8efIDDzxAt1x77bX/+te/HnvssdNPP93GE4kQQHHOOee0+0b68vDtt9+uXLkyHA4HAoENGzZ8+umnY8aM6YgTObARc+fOBYAbb7zxrLPOAoB4PD5jxozly5c/9dRTo0ePtvFEFh7ecccdNhYuo0ePHs8//zz9HIlEpkyZsm7dumeffXb//ffvoDMWgx3sbmg/qLa2Vmz59a9//fbbb8v2ct68eVOnTh0+fPioUaNOPvnkt99+O2dRp5xyiuxf3nrrrYaGhnHjxgHAsccee9tttwHAzTff3NDQ0NbWZulMpVKpu+++e9KkSUOGDBkzZsyFF174/fff0z/9/e9/b2hoOO+88z788MMpU6aMGDHiuOOO+/LLL/Nd0csvvwwAkyZNOuywwyCLXg66Jiw89Pv9jz766JIlS2655Ra6pQBDLKBdGOFfbr/99oaGhl/96ldtbW0NDQ1vvPEGABxzzDHHHnssZHWmNm7ceOWVV44bN27IkCETJ0686aabIpEI/dOFF17Y0NDwt7/97fHHH58wYcLo0aPPP//8bdu2FXN1oVBor732AoBEIlHW7bENOzjcjBo1CgCefPLJK664YtGiRS0tLaFQqH///orCKvbAAw9cccUVX3/99SGHHDJu3LglS5aceeaZixYtKuks06dP7927NwDst99+Z599ttvttuxw3nnn/fGPf4xEIlOnTu3du/err756/PHHNzY2AoDP5wOA77///sorrxw5cmRdXd1nn3124YUXZjKZnOei4eaoo4466qijwOlP7SSgPLz22mvvuOOODz/8MJVK9ezZU+7jFGBIkXC73WeffTb9PG3atOnTp1t22LZt209/+tPnnnuuurp62rRpmqbNnTv39NNPp0yjPPzPf/7zyCOPTJgwQdO0BQsW/Pa3vy3m1NFo9LPPPgOAHWttYIeHm/PPP5/G3Xnz5v3iF78YM2bM9OnTH3/8cXqLW1tb77vvPgC45ZZb/vKXv9C7DwB33nlnSWeZNWtWQ0MDAEyePPmGG27weDzyX995550333yTEPLss8/ec889//73v0eOHNna2vrggw8CAA18K1euvOeee+666y7qun/44Yec4rZixYqVK1d6vd6DDz54/PjxNTU1tD9V+o1x0Km45ZZb6urqYrHYX/7yl1NOOWXPPfc8++yz33rrLfrXwgwpEh6P54YbbqB0Ou+882bNmmXZ4ZFHHtmwYcPAgQNfeumlu++++4UXXvB4PJ999hn1PvTA1atXv/jii3fddde1114LAK+//nq+023atOn4448//vjjp02bNmHChI0bN5566qmnnHJKaffFbuzgcFNTUzNv3ryHHnrolFNOGThwICJ+/vnn119//dVXXw0An3zyCbV/06ZNo/sfc8wxAPDtt982NzfbVYf33nsPAEaPHj1o0CAAcLvdRx55JAD873//E/v06tVr7NixADB48OCqqioAaGpqyi7qlVdeAYCDDz44EAi4XK4jjjgCnP7UzoA99tjjrbfeuu22244++ui6urpkMvnmm2+eddZZTz/9NBTHkMpBzzJ58mRqZHr16rXPPvtYzjJp0qRQKAQAe++9NwBs3749nU7nLC2dTn/66aeffvrpsmXLIpGIqqpr1qxZsWKFjRUuAzt+IFxRlCOOOOK222578803Fy9eTE3m888/v27duu3btwOA1+sNBAJ0527dutEPLS0tdlWAnkXOH9GzyBFN/qvf7wcAXdezi6I9qaVLl06ZMmXKlCk0zeT0p3YKVFVVnXLKKX/+858/+uijF154gXav7r//fiiOIZWjJB5SEkIeHgJA3759V3F89NFH55xzzuLFi0877bQyZo3YiB0ZbqLR6Pz58++77z6Rwerbt+/dd9/tcrkAYM2aNTU1NQCQTCbj8TjdQeTG5FahoG5TFFVkFg0A6FloY8vHitBWJL7++uvvvvsOADZv3vzVV1999dVX1AE5/akujvXr1z/33HO0m0yx11573XDDDQDQ2NiYyWRKYgghBHYoD7NRV1d38cUXA0Bzc/OOpeIOdjeXX375vffee/vtt6dSKbrltddeo4mbfv367bPPPl6vF6T+yL///W8A2GOPPcLhsKUomtijKTEA+M9//iP/lZKgra0tuw4TJkwAgC+++GL16tUAkEqlXn31VbG9eNCe1D777LNKwqRJk8DpT3VtrF69+sorr7zppptefPFFukXTNJox6dWrl8vlKokhMg/b2troUJRAuzxctGgR/S00NjZ+/PHH+c5SKsR4bjAYrLy0srEj590Eg8Grrrpqzpw5c+fOffbZZ/v27dvS0rJx40YAOO644wYOHAgAF1988Z133nndddctXrx427ZtixcvVlX117/+dXZphxxyyIsvvrhw4cILLrggEonQEUTRi+nVqxcAzJ07d+3atVdddZV84EEHHfSTn/zk7bffPumkkyZNmrRs2bIVK1bU19efd955JV0ODTeW2aVHH330W2+99eqrr1533XWUag66Gg444IDJkycvWLDgkksuueWWW7p167Zx40baW7/00kuhRIYccsghTz311B133PH1118vXbq0d+/emzdvlnnY2Nh4/fXXT5w48frrr5cPnDlz5rx581atWjV9+nSaS0qn0xMnTjz00EPLuCiaKqafW1paVq1aBQBjxoyhSZ8dhR3sbs4+++xHHnlk0qRJVVVV3333XSQS2XvvvW+88UYx9nThhRfecccdgwcPnj9//ieffDJx4sR//etfOeP9tGnTLrjggu7duy9evLhPnz50xkQymaR/PffccwcPHhyJRN5//31Ld5cQ8tBDD11wwQVer/eFF17YvHnzcccd9/zzz3fv3r34CxE9KTr+LXDkkUeqqrphw4ZPPvmklBvjoPNACPnDH/5w0003jRkzRtO0b7/9VlGUSZMmPfrooyeffDKUyJBrrrnm6KOPdrlcb7755oknnnjiiSeCxMP/+7//6969++rVq7/++mvLgXV1dfPmzTvuuOM2bdr0wgsveL3eCy644JFHHilPpUSq+NNPP21qahoyZMhll13297//XUwx2SH4f0VDvvD61PDmAAAAAElFTkSuQmCC", "path": "image.png" }
Which solution has a higher concentration of blue particles?
[ "neither; their concentrations are the same", "Solution A", "Solution B" ]
1
The diagram below is a model of two solutions. Each blue ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the blue particles represent the solute. To figure out which solution has a higher concentration of blue particles, look at both the number of blue particles and the volume of the solvent in each container. Use the concentration formula to find the number of blue particles per milliliter. Solution A has more blue particles per milliliter. So, Solution A has a higher concentration of blue particles.
Solution A
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAT0AAADhCAIAAAA1cvUqAABOT0lEQVR4nO19eZwcVbX/ubeqep/pnn3JZLJNEghhSSBsIUBAUVF5j2f4IYrAE5H3Q5DHIoII+FRA8xCfgAtuCD79qTz0pyyi/NgXlSUkJCEJ2ZeZyay9r1V17++P032nprq7epmeJKTr+5nPfLq7qu69VXW/95x77jnnEs452Jgyij1GQsgBbomNegCxeVsd8LmVT0vOuc1hG7WCzdupQtd1VVU1TVNVFQyClxCiKIqiKLIsS5IkzrcJbGPqkA92A943MPJN1/VkMhmPx5PJJJKWc15wBCSESJLkcDi8Xq/X63W73ZTSA9twG4chbHlbGeLxeDgcjsfjqqoikxFQSGfGZ8s5Z4wxxjjnTqfT7/cHAgGXy3UQWm/jcIHN23IRDoeDwWAikeCcU0qRrmU+PaQ0Y0zXdV3XJUny+XxtbW1erxdszdlG5bB5WxqxWGxkZCSZTAIAMnYqDw3Fr6ZphBC/39/R0WHLXhuVwuZtYaAM1HV9eHg4GAwCgCRJtXpWSF3Oua7rsiy3t7e3tbXVpGQbdQKbtwWApE0kEoODg6lUymgNriGQusjexsbGnp4eRVFsndlGObB5awYyJxgMDg0NMcZMYjbfBMUYE4cqephC6hJCNE1zOBy9vb1er9emro2SsHk7CciZ0dHRoaEhk5hFLhlXcZCoxgdYbDXIArquY6XI/9mzZzc0NNjUtWENm7cTQLaMjY3t379fkFbwp+R6j/gsJHDBKsRnLAf1ZPxqU9dGmbB5m4WQtMPDw0bdGAUsIcTkL1HsuXED8o+aqIjnoMg1/ojUndoN2TicYfN2ApFIZO/evUb1WJAWhSFjTBAPF4QKloNiM5+6JlEsxgIhciEndSmlfX19Tqezlrdn4zCCzdss0un0zp07jb8gr3A1KBAI/OQnP/nhD38oy7KmaQDw85//fNGiRclkMt9vUTBWsJQx5vV616xZc/XVV2Oxuq5fcskl11xzzfj4uCzLOCiIenVdd7lcfX19tlOkjYKw/ZOzyurg4KDReiw8ovAcSmk4HB4YGBBXZTKZYvJWTFxNP6bTaWMJoVCoIC0555IkJRKJgYGBnp4ee6JrIx/1PpwLW1Q8HhekNXodC8iyjCE+BY+aIIzPxtPwKkopFiLLsumQsVWKooyNjUWj0Sm6Z9k4LFHvvEUxODo6aiRtwbkrn4wyC883RBUspOBAQAjp7+83Tqpt2EDUO28BYHR0VNf1cgxOFSF/dbfk+cavqC0nk8mxsTEobr62UZ+od96mUqlIJGIUtrUquYoCC1J3ZGTEFrk2TKhf3iKvgsGgkRU1pEdN5LYkSalUCgMbbJFrQ6B+eYtewdFolFIqKHEIGm/RbAZ2ijkbBtQpb5Go0WhUVVWTy3ENq5jK/FYUIstyIpFIJBJgi1wbOdQpb5Ekh9oqS0HqohtGOBw+8O2xcciiTnkLAJqmpVKpaRK2iCrCgwqCEBKNRsFWlW3kUI/+UjiJTSaTmqaZPJbKJ4ZIFmUdYAA5t2Rd1y3ihMQlBX+nlGLiSEVRymyejcMb9chbRDKZRAKbYnHKpK7X6/X7/abcyALG0ALkbUNDA2aBKwYLyYyqciKR8Pv9h6DlzMaBRz3yFvs9Ohjnk7ZMYrzxxhvBYDCdThc72RhawDl3u90bN24s2api5XDO0+l0yVbZqBPUI28RxQIDrEkreH7LLbdUV29JvbpYe1KpVHU12jj8UKe8xalp/u9InnLkrSRJleqrxjjbfBSb/Qoy4z4mtpJsA+qWtzjnLBY8AGXQw4KB1cF6RQqnuLWt0cb7F3XK22IQdC0pdfv6+jwejzEgASxtS5TSeDy+Y8eOYidYXHvorDDbOERQp7wtNpkUP1rHxAPA/fffv3Tp0ng8LlaShCEqv2TGmM/ne+2111atWlXML8qiqSXPsVFvqFPeYryrBXXF0WIEVlU1nU5nMhmTe3PBEYExlslkcIJasEYLD42SQ4mNOkSd8rbY/NZ4FAwZZ/J5lZ+hAgycNxVYMkWGLUttVIQ69XMkeXlVTSiHSEaPqDIvsS6n2CEk/DRtd2Lj/Yg65a0kSbIsWzNNuDoZky0KiN19xIfqWlKwcGMbxAd0crQlsw2oW95iWraSeSS4AeUfqiGMhdvplG0I1CNvkQxOp7MiygmPRVM5U2yJtSXZaJSyt8m1IVCPvEV4PJ6DrnMWXDQyHhUfZFn2eDxgW5VtAEB98ha7vsfjkSTJ5DhxIFFSxzZObl0ulx3EZ0OgHnmLkGXZ5XKVjImdPliT1rStLm7zddAVBBuHCOqUt0gAv99fTjj7QYFoFeecUur3+8FWkm3kUKe8RQL4/X5FUQ5Bf32jsMU9wXBya8MGok55C7lUiY2NjYeayDWt6HLOW1pawFaSbRhQv7xFtLS0oIPxAaBuRT5YCNxQs6mpCWwl2YYB9ctbtPe43W6/369pmvB8mo66OOdl5oUztgGV5Pb2dmPogg0bUM+8hZwE6+jowP2BUEEtxhAyGWVWYSrWupB8Yev1elFJtoWtDSPqmrcAwDl3Op3t7e24kIuCsSB1USbj/zLdG02kxQ+MMVVVOeeqqhrZaJrW4qGenh5b2NrIxyGUrf8ggnO+ffv2RCJRcBdctGANDg4ODg6KSxYsWOD1eguqviI8yEhvSmksFtu2bRvkVPSOjo7u7m5N01AfNpFW07SOjg57v3kbBWHzNotUKrV9+/b8pyEi/hwOB3osIYuSyWTBICHkZEE+U0qNPsaqqmJOyXzS6rru8XgWLFhQkU5uo35g8xYgl00qFArt3r07P8zVmHQKctLSKI3FmSUtTyZ+5pMWco4WCxcutAMJbBRDnea7MAGpGAgEMpnM4OCgibqmoU1MVquoyBSsb5pLI40JIXPmzHG5XLaGbKMYbN5mgdRtb28HgHzq1hz5y06CtHPnzm1sbLRJa8MCNm8ncMCoy/MSoCNpAcAmrY1yYM9vzUDOjI2NDQwMAEBtl2EKeneg9djpdM6ePdvn89mktVESNm8LAJkTj8f37NmTyWRkWYYpuwejODXNilHCa5oWCAR6e3sdDodNWhvlwOZtYSB/NE0bGBgYHx/HfFRQOXvFEm5Bxuq6LstyZ2dnR0eHqLR2N2HjsIXN26IQLIpEIgMDA8lkklKKk15rgiFXiy3kCsYSQgKBQHd3t73eY6NS2LwtC5zzYDA4MjKCG4soioK+ivl5mIWzlPEXBHJe13VJkhoaGjo6Onw+H9hi1kblsHlbGkZeRaPRgYGBwcHBrq4uSZJUVdU0DWN9TIs6+EGSJEmSFEWRZTkej3POW1tbm5qa7Dh4G1OBzdtygTKTUrp169aPfvSjxxxzzLHHHnvkkUd2dnY2Nja6XK58mckYi8fjkUhk7969W7Zs+etf/3r11VdfcskltoC1MUXY67flAuelOGUNhULPP//8s88+63a7A4FAe3t7S0tLW1sb5HYDYYxpmjY0NDQ2NjY8PByJRHRdDwaDyWQSDch2ckYbU4HN28qAclKWZbfbjQEAoVBoZGSkYPQf2rEURXE6nQ6HAzfvs0MFbEwdNm+rgdFQLMuyMU7IdBrkFOxDLYuVjfc1bN5OFWXG0NuwUUPUe74LGzbej7DlbbngU94yEwwJ4myTso2pwOZtaeC8lFKKro5T2c9SURRc0RXF2mYqG1XA5m1RoICVJAk9otLp9Pbt29etW/f6669b71VfEIwxj8fz5JNPKopy1FFHYXoqPKTrusieYcNGObD9LgpAuFgAgKZp69evf+mll9avX79//35N09Lp9NatWyulGUYpzJgxA5d529vbFy1atGLFiqVLl6IAF1J9Gm7IxuEGm7eTYGTs8PDws88++8orr+zatQvjY9FdMRaLrVu3rgreqqo6d+7c3t7eTCajaVoqlaKU9vT0nHrqqWeffXZvby/kMsvZsteGNWzeToAxhozdvXv3448//tprr42MjLhcLqfTifkokNLxeHz9+vXV8XbOnDk9PT2qqgrFOJPJJJPJQCBwwgkn/NM//dMRRxwBhz17sctxDvl9D2+ZEDhc771GsHkLYGDs+Pj4Y4899vTTT8diMbfbrSiKKWCgVrwVl2NEkaZpyWTS4XCcddZZq1at6unpMbbqcADngG4nlJbLSUzlgxy2aTwZNm+zgXWMsSeeeOLRRx8dGhryer2yLBfcc6TmvBXANsRiscbGxvPPP//88893u93ve+oyBpyDKVNXOg3hEA8GYXwcOAdgoOmgKMB08PqguZk0tUBDQ4Fyyuf84Y665q3Ih7xjx44HH3zw7bffdrvdDofDYkfc6eMtQpIkTdNisdiCBQuuuOKK4447TjSyouoOMlC6GmjGB/ph8ya+cQPfsQMG+3koBKkUJJMAhu7HGTgc4HaBx0PaO6B3Fiw4gi46CuYtICLsUdeBEHhfj2W1QP3yVoiyxx9//KGHHkqlUrhviPUDmW7eQk5zTiQSlNILLrjg4osvppS+bwQvMjYnYPn2bfzF5/lbb/L3tkAkkj2kKCBJQClQCmB4DgSAMWAMmA6qCloGuA4uF++aAccupaedTpedRDxeAJhQuesVdcpbpEEymbz//vufeeYZn8+HamrJC5FR69evr7RGYU+eMWOGNW9FRZzzcDh80kknXX/99S0tLe8D6qKMBYBUir/wHPvLn/natyEWBUUBpwskCQiZMEcV63gm0xTTIJPm6SRQyntnk9PPks79GJ3bl62uXqe+9chbnNAODg7efffdmzdv9vv9JcWs2FIEP7z77rvhcFiW5fKfHl57zDHH4EYEZV4lSVI0Gu3q6rrlllsWLFiALS/z2gMKQaFUij39FP/db/i290CSwe0mkgSckxxdiUEz5ob/ViAAlADXIZ3WU0ne6JfO+qB04adp3wIAAF03z5/rAHXHW5Ra27dvv/3224PBoNfrtZjNGqWi+EwpjUajGzduFCwqyXmMlZ87d253d7dFdQUhSVIqlVIU5ZZbblm2bNmhSN0cc/iTj+v//Qhs3woOJ7jdhHOJMQ7AJ8ev4MMihs+8LA5zJDDXND0eA59POvsc+fJ/I51dWdFdT4K3xry1NqKIug6WlQU7/dq1a1evXh2JRNxudzEWGddpTMIWACil4XB427ZtmCaumJeiyI8hy/LMmTNnzJihaVoVzaaUomp93XXXnXHGGYcQdVGKUsp372Lf/Q5/7RVwOKjbTRgDzit6x4K3peYqDICBJDFd16NR2tomf/4q6fwLAA6+4LWgUs07fG14W110ywGOicHu/u677958882EEFybLXimmEaa5K14VpicUdO04eHh4eHheDyeH+KDThoOh6OlpaWzs9PtduNWt9U1nlKq63oikbj11ltPP/30Q4K6udkse/S37Mc/hGiENjQSzskU0gNww1/xUxge1yWJqxmIx+npZyk33kK6ug8wdSvtwDVcGpgSb03tzmQy6XQ6nU5nMhlVVcUO7vhfkiRZlh0Oh9PpdLlcDoejWDnTAVSPt23bdvvtt8fj8YKkFa01mn8sBCmmodF1PR6PR6PRVCqFUhELcblcHo/H6/U6HA7cLHOK94hWZcbYV77ylRNPPPEgUxcZEono31nNn3qCeL1UUUiFU4CCMGrOxbsmQ8HMCGGUQiRM2juVm26jK06fsI1NG/IHaNUAE6EURcGdkxVFqWEnr5K3xqYnEolYLBaPxzOZjEizZNQzjWIKP1NKnU6n1+v1+/1utzu/zNoCSx4eHr7hhhuCwaDL5SpIWuP/MluCw4HguUiVDLkbrwljjY3UNI1Sunr16vnz5x80CzPTgUqwd6/+lS/zTRtpUxNFv4jaQSjMRQrl4hQdgEsSpNOQUeVrbpA//ZnpszMbu2gmk0kkEvF4HMdr7FHF2IT6ndvt9vl8Xq9XZAWsus9XL291XQ+Hw+FwOJVKYdc0TvMKFms8immHKaVut7u5udnv90+T9MCWZDKZm2++efPmzT6fL39Oiy3Hh1idwo8fxCZA+VPiWoFSmk6nW1tb77333qampoMQf6/rIEl882b9hmshOE59PlrVpL0csBLTXT2rMANwSgE4Hw/Ln/msct0NNaeueM6c80gkEolEEokEWitEt7c26zDGUKrJsuzz+ZqamhpyPmFVvMRqeMsYGx8fDwaDxgSFlZYjxJGmaZxzl8vV0tLS0tIi+FNpq4oB9cl777336aefDgQCJsuQUcBWXbXp3o3p4KbW9sLAxaGlS5d+/etfP9AJIrOk3aRf90WIRiS3uya6cTEIVbkIe7NzXQ6gA6AfFR8dlz/zWeX6G2tOXcy/GwwG0+k0GOha/lsWfR7nU263u7W1NRAIVNHxKuZbJBIZHh5Op9OoH9aka2LqFsaY2+3u6upqMPmmTgGoST7zzDOrV68OBAL5kpYYMMW6xLAqipq+BI6SJAWDwcsuu+ziiy8+cNoyY0Ap37xJv/6LJBKR3G6YTtIiOFgbmXMTXXGOJE1Qd8pmKkGncDg8MjKC3b4mo6SQWF6vt6Ojo9I+XwFvdV0fGhoKhUKoEtdQmPBcWlPkVWtra2dnJ1YxlWeEHbq/v//aa69FndzUZmEwm/qbMHJVaB8l3TmmWGMqlfr2t7+9ePHiA0FdtPcMDmifv5yMj0keTw1IW/Cx5z2xCQtyobMnzMviHEni+0eVa2+QP3fFVKiL3U9V1aGhoUgkUttuL0wh1fX50i8bG5pMJnft2hUMBsVU0HjOFEUWIQQntyjDR0ZGtm/fnkqlqlC/8xv/4IMPxuPxYr5NVXd3fIuYxQan66qqYkA82tIhl/d8mnLQ4AP/wQ9+gGrb9AIfXSKu3fwlGBudEmkxKgD9kxkDVYVMJvunqtmwATxqeGiT/ZgnFZf7M3RlppO2FvX79+lPPwWSVHVTCSGxWGzXrl3hcBgH9/wuNJU+jx1D9Plt27YlEoky+3yJk5D9kUikv78f8jZfN9lgIW9SVxHreC5hIiEEJ6WzZs2qev91LOG555771re+5ff7C9qioCre4iWqqqbTaTQzeL1et9styzI+HyRwLBZDix0azzGnXG01Z0mSQqHQZz/72Ysuumh6Ra6ugyTpd36d/+Ex2txcpSEKGaupkEyBroMsQ0MjeD2gKFm/ZU2DZBIiEVAzQCi4XOBwYKBCKZHLzdoyoZDWuCQ7H3qEzp1X3eLQ6OjoyMgIWHb7bAsmLyKUX4Wpz2P+k0AgULLPW1WDF4fD4YGBAZPxyShgTbNqYZUx3VKlt4EK56xZsxoaGiqlLtaYSCSuueaa0dFRRVEKKghQIW/xqmQyqet6a2vrwoULFy1aNHv27La2Np/P53Q6hexNJpPBYHB4eHjnzp3vvffe9u3bR0dHAQDpXUP9GfX8Bx54oLOzc7qoq+sgSezJx9kdX5WbmqoRX8jYVApSKWhugcWLYcnxsPAI6OoCfwCcTqAEGIdMBqJRGNoPW9+DtWvgnXUwNAQOBdweMeUo8tSyhM0aqLKQeCRGjlrs+snPQFYqtVENDw+PjIyY1jjy+0y+uDL1/3KAdmaSy6nS09PT3Nxs3eeL8lZI2n379hkbip/L1Iq5AWXeAxqowLCP1uzZsyulLvbgX/3qV7/4xS/yzVHV2aLQT1jTtKOOOuoDH/jA8ccf39TUVOa14+Pj77zzzquvvrp27dpwOIzsrQl1JUmKRCIf+tCHrr/++mnhLVplh/Zrl11MUklJkitep6UUdB3iMZgzFz56Hnzgg9A9o6wLx8bghefgj7+HzZvA4wVZ1hmz9sSYJJY5AMh8fEy+6hrlyv9dkchF0op3JPqJxZTHpGZWpFiJWW72ThgrSd3CvMULotHo3r17TaQ1kgoAUP2zaFD+ogjP7bYOOWdAYxVC5BpbMmfOHK/XWyZ18drR0dFrrrkmnU7nX1Ipb/HMaDQ6e/bsiy66aPny5Xhhwb28jFfl3+DevXtxI79QKFQr6qLt5J577lmwYEHtqcsYUKp/+Ub+wrNSo7/iVR9JgkQCXE741CVw4UXg8wHARM6aCXDzBFYEx2cy8IfH4KGf8nCY+3ysaAPyDMtYqgZc0xw/fUg6anFJ6vKcf45R0oqugj1T9HwLc6aFuBKi1dQxTH2pJHWLyttMJrNz507jqga23uPxYCQa1h2NRq2HFhN1OeeKouCsFctMJpNogjJeYhx+cA7Z19dX5t6TOLN95JFHfvnLXxYUtmA5cJqAp8Xj8XPPPffSSy/F4cP0/opdK5ylhNqPJ4fD4a9//eubN2/GTDTlNMMCKHI/+MEP3njjjTXmLa7WvviCftP1tLGB6hU2VZIgGoW5c+GrX4NFR2ULxOYZYusL12s6bddOuPPr/J21rNHPC1N3Yi13ksjlEo9GYdmJ7h88CFA61D4UCvX39xuHVPE80XFVnBmLxSziqMVrNb5fSmlDQ4OYV2YymXg8LsZ30+yJMTZ37txi9p0C0hIv7u/vx4ky5BjLOXe5XK+//vrGjRtFBoaPfvSjjY2NQn7mQzQL/zscjr1797744ovi9yVLlixevBiTkopLjHNpSmkmk9m7d++cOXNgsj2gYOPRLeH555/3eDwFWVG+eozNSKfTn//858877zww5CjHigAA1wlGR0cjkYimabIsNzQ0NDU1tba2+nw+vCl8PvjQNE3z+/3Nzc3VxQblgzHm9Xr//ve/9/f3z5gxo1JbgBUoBU1jD/+cyBKpVDNA0h59LHz7HmhuzlJRkrJCD9k4NAT7B2FsDNIpUBzQ3ASdXdA9I3tUkFbXYfYcuP8H8NWvwEsvgN9faI5d6JYJgK6Thgb9H3/XXnlJPv1M62WhVCq1f/9+SZJMdhwAcDqdW7dufe2110S/Xbly5cyZMzOZTGF5mOeSgeGfv/nNb4TMmzNnzmmnnYYqoanP49c9e/bMnz+/oLgy81aoColEwjjqoMTweDxPPPHEQw89JM4/+eSTsQtazaENa5sul2vLli1f+9rXxNEbbrjhpJNOwrQsxkuMqrIsy5FIZGRkpL293bpf4g4Dr7766r59+wo6WkCFvE0kElddddVHPvIRdAxG7iFjt2zZ8sILL2zYsAEdUXAZnRAiy7Isy42Njb29vccee+yyZcswPyOyF7vFVGKDTMARJBQKPfPMM5dddlnNeJsTtnzDeuqvUEOmFBIJmDsP/vNeCAQm2IKkDYfhqSfg5Rdgxw6Ix0HNgM6AUlAU8HigdxYsPw0++nFo78jOpSUJmA4uN7nr2+T6a/mbr0NDQx51UdPmZHJoPlAAzqksZR75hXza6cXkLXa2gYEBo8IifNF0XXe5XG+++ebtt98uLvnJT34yf/78VCpVUOESvBVmGlmWx8bG7rjjDnHORz7ykXPOOSeZTGIJJpUTgzf37ds3Z86c/Hc6ibd4OJlMjo2NiVHHOBvknHs8HuyXuGl6RVoZlonZw5EDmqa53e58Xd3USrztoaGhxsZGl8tlUQW257nnnsu3IRcs2bq1kUjkwgsvRNKKTX0kSRofH3/44YdffvnldDqN0R4Y5CReEuc8GAwODQ394x//+NWvfrV06dLzzjtv8eLFAKCqak08PYxAV7NXX331k5/8pPXzqQCUgqqyXz8CikwqmocTAroObjd84+4J0mIJlMLjf4Sf/Rj694HiAIcDHA5wOify16gqbHoX1r0Nj/4WLr4UPnUxAADnQCVgDBwO+h/fZJ+7DMZGQVEmW8iIUTue9LPOiNenr1mjvfyifMbKfJGL3X5kZCSZTBptUUYLCOccF/OwDzPGinWwvIdBwLAZhcvlQqVM0zQxWxRn5ourcDg8Pj6eP9Gl+XUMDw+b5LuRnKjpCZRst7FkoS0bSyimypp6Ng57g4ODFrXgHHL79u1btmwpNnU0WQiLgVIaj8ePPfbYiy++WMwXkLSbN2++6aabnnnmGUVRGhsbMSAR36XYaw+HJ6/Xi5OIl1566ZZbblm9evXg4CC+75pYpIw35XA49u3bt3btWqjJKrGuAyH8jdf5xo3E7akspJZSiMfgyqtg3rwJ0uLff34L/uN2GB+HQBN4PNlDjIGuZzOtEgpuNwSaIZGA76yG226BdDrLarRLt7RIN9wEmmqxqDN5yMf/nBCi/u63AAWctAgh6XTaJKvyLSCmflv+GzR2Zuuen18jJlTKn0hPMuQCAEbkGY1pZTau5igocsPhcDwehyLrY/jjyy+/nEwmCyoCJBdbW/KhM8YcDsfll18uZvhI2nffffeOO+4YGxvz+/1oPytWFBqlULv2+XwOh+PZZ5+97rrr/vznPxNCyhytKwJj7KWXXqpNWSgl/vwkVKp1UwqJOBxzHPzLquwElWdzYsA934L/89/Q1ASKMkFUM5DGGkgStLTAU0/A124DXc8WIkmg6+S0FeTMsyAanaz0cuE4NXm8B0wTSb1ebe3bbPu2rJ/WZIyMjOSbYCu46yIQ4qrMd51fKRp3cPF/kjQ1XTM2NmY8o+brgRXNLQv+MjQ0VOwSnHyuW7euWC4LpF/JZkiSFI/HzzzzzHnz5gnHZnRGW716dSaTcblcFmmihEojHiMK4cbGxmQy+d3vfve+++4bGxur1TqQqNTlcm3atAktBVMqGWehw0P8jX+Ap/KIH12Hiy+d0I2xtMcehd/+BlrbsiQsCXSfammFv/wZfvpjoDR7FS4HXPKv4HTm6cmFkOUyEEpJLKb+5els4dlKOACkUqloNCoeWq1ICwblrupuj+JqdHTUJHInAr4BAOOATauptbqHSt10xZxezwHV8mAwiHlhtMnA2OX+/v49e/Y4HI6Cc+Yye7Ou6x6P5+Mf/7hp+vGzn/0MdwwqmdutYEW6rqO96qmnntq6dWtFiR1LAl/w8PDwli1b8Glo1UHXNVXVdF195WV9dFSXFY1zjYPGQeegcW6lMaNT1IIjYPlpWfGIpB0YgAd/UMiYVAqaDk1N8N8Pw6Z3s3KSUuCcHHEkWXYSxON5Ijc3UALoPPcHoANojOlOZ/qlF1DH1TQNOxVaIky5DQ5Wny9WiKqq4+PjYOhXk+xS4XBYsGWKleWj0jJJzmMTl7zE7+l02iJFy+bNmyORSEFLMjZA6MnFHijObJctWzZr1iy0LqKG/Pbbb7/22msNDQ1lJmQs+BhRZUKDRM0fMupU69evX7JkyZQKwme75k1wOIBSkCc/ag6csWKLfpBKwdkfyGrCWA4h8Ov/huA4BKrwkeRAJchk4Bc/h2/fk/2NMZAkes6H9ZdfNExW8WESAM4APNTg1cgANAAC4PHAvr2wby/MnmOsA8MGDoU+X6wQSun4+Hh7e7votFneIklisZhRxaqhwiBaUP6d4AwznU4/+uijGzduNJrUJUlqbGwseEk0GrVIrUoMDtXF6kVd+pRTToEcvfGqJ554ovzGCwWp4C1PU1yuruter/cvf/nLW2+9NaWCCAHG+EsvQjoF4Riu3BIABtxN6PmN3pO9bsZ4gRmUroPPB6eeli0Ep7Vjo/D8/wOvL39WWRZ0Hbxe+MffYPs2mNcnfJ7IshOhrR3iUci6XhIA4MAJgJOSl+KpP0YSKc4pKsUcAIBTwtMZ6frr6cxe4JxKUiKROOOMM0499VTjMuRB7PPFqpZlOZlMxmIx4fA7IW+TySTu72iq9aCYptDsPjY2dtttt73xxhum4ZAX9/884YQTmpqarFdHrW9K07TGxkZcsyE5f7T+/v4NGzaUdG8yNXI6hnBryLIcCoWeeuqp6p06kG+EEK8PKMn2+NwRAHgwFL61tflLbc06Yyane0inYe5cmDM3+xXtUn97DUZGijhLlAdJgmgEXnwB5vVlxwLOobmZLFzI//YqeHFBiHPgAMAJfHk49PNQTGUcR2kOkyY7/OVXeCaDw3EymTzppJMOfmZMA4oJFc55KBQS4fUy5PpxPB7PV5JrPvaUUyDPeYHddttta9asaWtrK2kxh9xaiLXzVslmYL29vb0dHR3cEF319ttv40551koyMeSvLHmb0wFcyJ0xY0YkEpmq7pddmJnkxUCAMOBfGxl3E3J1axPTGRUPklJQMzB/IcjypE293nh9CjcEAACcg6LAW2/AZz9n9H8kRy7iE6oy4cAclHxjNPJAKN4lSUQu0gf8ftQkVVWdP3/+8ccfb1x9qLmUqlVPoJTGYjHRdWXItRVbP02kReFTZoGMsUAg8Otf//rNN99saWlRVbXkJUgwt9tdkjNiDblgY9AG0NvbSykVLo0AsGnTpnLYyHMo2eBpAmoHsizjQ6tBS8wlcALQLNG7x4If9nn6nA7GDQqzzmBe38RVlIKqwrat4HBUqSSLNigOvmcPCQahqUk0ifTNzynJoAN3ELommfpRKN4pUWZx77mUBolEYu7cuX6/P99Xr/qm5qHSQbzYyZRSTHKMfjXZ5mqalslkyizCCOFsYAE03OGHYo4WxkoVRRkdHX300UeLORgXu9DhcJRcAhHzVYvTuru7xQmYIXnfvn0ll22mb/GsUtTMZaoQOIBMIKqzh0IRoIZOyTnIMvTMBEDzEAcAGBuFsVGwDBoro0oOssxDQd6/L/sVqdXZJbymcLnn+6FYGue0pYpEK8YRRxyRv5Be5shbsuejydrY/0t2Zut6NU1LJBJ4WvaB4iJKQeXTevjx+Xx+v7+Yn4OxHLwBv99vDKooeCb6gu7du7ci3gKAMZd6scKRt8XuC39va2sDg9IbDocx7M66ZPGZWabSnW7g+DWtVgmdg4eSp2KJW1TNJ1HO0SjEweGA1lYAAMhOkmFkBOIJcCh5crtCEAKqCqMjgBVhZ2tqAq8XUilOJQeBPWrm5WTaR0k502hUTHp7e03dvnyt0OPxoO+NdUAY5FbvnU6nD8MYK4cwc6ZSKfxFxobi2JAvUordA56madrVV1+N1pqSU0rIrTGaXDvyz6SUrl27tpzNJk0oJ9CP5QLroMhLIoSYni/6kJXjzMAM8X0HEbIsTytvOYCTkL2a9nYqvcLn5ZxleStJ4PXmTuIAAKEgZNLgdNSAt4xBMDjpN48XPB5IJJhEgcDfkpkxnTVRWg5vMUimo6Oj0sgTIY2/+c1v/uhHPyppARUfKKWYKQUsx/SCh0QVIpdYVobkK8kIXMC0YO+bb75ZrAXWsNDjVVXdvHlzFe5EZQboWgOdv/EzNiCZTOISrsVYAwZHkYPLW5xoTNVlqhQoIWmdbUxnVjR4GeeUUOAMFAXw0aFRGgDSaciPia8cHIBzBvH4pIIUBWQluwhE+IZMJiv5SwEFVUNDQ8FQtpK2GHywGzdurO5eLFByiodmi4l1oGKmZwu5hKhi1xNU/Yu1Gy26+Uay2gLfjdG1TfyOdh3jydZ5LQRpD7qYPdAg0K/qwIEAAQLAOMiyObpV06ZOW56NiOcknZp0QJJAkgA4BQ6Mb81oMiVlTqtwdCsYiyZepXXHxpi2Su4DOOflGFkLXogfxLSxtMEARW6xTlldOyyA9u5gMDh9q2rirRQbmMqcLBQ7vx7AOacAo3p2nwDxq1kfJnTKslYQn4A0ubtmq8OVKh5mFe7cWWSoNS7mWa/zV1Jb9e0RR41freQtGHQ/0w3gV0mSbrvtts7Ozvy5aEEphJOKtWvX/vCHP7RYQdV1vVgaAQtU591lvDWeW7A1zRpMYcbGOzJqyCQXtHDQcRBcZTgHSiCjgmkcdygAZZh3i0Ps7sUJIbkt4LLQNND1HK85raQatCcVFEjWpBV2zS984QtLliwxrSFZKF8YQH7nnXeW9C8o2FrxgRv9pcqZW7O87KGU0nPPPRej/kXrjY02XaLreiAQaGhosOAt+vS3tLSMjo5am3Dz21mR3Ct2MmNMWO2wkZgqwGhzytejDik9+cC0hAM4Jr1EAroOyRS2IPubxwuknHWZolVw8YlSMG3GkU5DOgWUoB4tV0IGHKCLUSj/ARpPw25w+umnf/zjHw+FQiKhgrg2vzNwzl0u17Zt2+66666iN1u8C4nfhXAqIW+NRws2KBwOB4NB5K1pVMgvEyeKsVisWEX4RHDLUD79jkdGPdnYgHA4bDza2NjY0NCQH3kn7vHQYewBAyGEc5ityECAcU4JAUJAVyESFmcAALS0gsdTndMFPtOsEgwcKCXNLbmSOQDhkTDEYiDJnDOgME+RX0lmKpJkJe3GQrrmv+JoNDo2NhaJRESkirH/55fmdDqxX1lUV37Ls0KypCW2mAJAc1tpCOCt4u8FYT2b13VdUZQZM2ZgSoFKUf6di/syjUq6ru/fvx+P4jvzer0tLS3G+Yz1S6oHcM5lAn0OJWuXAgBKIZ2G/YN4OMvbtjbwNWR3D6milpyGDIyBxwOdnRMHAGB0FFIpoIQBB0IWKDJjjMOk/oAan0hCIkAISSaTyLpy3qB1zzdRoFjPtzDZWLRBNJjn1oo559k1HuSt9Q3wQt78PLc1s/EBlXwK1lUQQhYvXoyeVXolMOVzLQdGeYufMYpAfMX2zJs3T5jgTVSv+manCWiQr2ISVUEVACpAiySd4HYC5xMuypzBnt2iHcA5+P3QMxPUTKW85cKMjN9VFdraSVf3RMkAfPcuUDNAOMq7o52ywpmqTeoSwqvJ+COKhFgsNj4+Xk4CcNG9TYfEcDDFbl+wfGNF4rOQr1nRhx6C5dSR3/radmJCSDqdXrJkSXNzc6XG6ipMfKb2o7Tfu3cvZm8Tpy1ZskQkBIPiAXqHCGpu6jSBAiQYO8nt6nIojOesuJyDJMN7WwBySjKO8ouPBlWriLfcOLMFAEohkyYLjwCn07irLd+yCQjH9miML3U7FzkdKV4owDAPuPtEf39/yW5fTJWboqJXPoyFC8+CbKNlWS6W26VkobWiqxC2qVRq9uzZK1euxH30ym9JJpOZurSXZXlwcHDPnj1gWAM7+uije3p60M58KDMWcgPftLYQKfi5QCOAIdMj5+B0wvZtEIlkQ+2Qq8tPy27PVR54Pm8BgANdflq2FshGLPB3N4iIBZWDW6IX+b0JxqXyhgjG2K5du6DsmU4x6pZVmWUzLHhnrIIQMom3qD2X4644fTCOW+gydcEFF/j9/lQqhV57JSFJUiaTmfotYL6Lt99+G3KvStd1l8t19tlnl3TDLhPVLVmVj0wmIwwN1SPnrG/6cxAyorN/bvCubPAwxiZIwjkoCuzfD++sA85FThlYvBiOXATJRMm9AgRXJ5EWw3p7ZpJTlwNANlsN53zre7BnF3pQcgBKIKWzSwK+FR7XqM4cxdsvHr6iKJs3b65ixbGGKMl8o5lalmX07SeETDxKr9c7RTW9aohJAn5FkdvX13fXXXdhIDgmTDIiPRmpVEpV1UgkUoVXswmMMUVRXnvtNZbLb44i98Mf/nBPT0/BDYcqgiRJ6XR66u0sCEKIpmnhcDj/EVWGTCbDufEvnfs/qGlL3M7/7Ggr4FSIBqTnnxWqLDAGkgwXXgSqVeZUMDDWvF+mJEEiQf/5XybsW5wDIfz5/4djAc+t8TIAByE/6G5Z5FQGNS09uf3ZP4CMpmGHAYCNGzfu27dvOnJrlomSjBOWF8aYy+USkTMT8bderxdXKQ9KGBo3pXWmNB6Pn3rqqffdd98jjzyybds2UwKdYvrz1F8A59ztdm/ZsuWdd9457rjjMApX1/XGxsZLL730rrvucjqdZaaYMoEQQikNh8NHHnlkKpUSuZSn2GBTFbqut7W1NTc3T6kgzmF8zMQ0DuAAcm6D94vN/oAkcZ7nn4RW31dfhqEhaG/P5rtgDM7+IDz5BPztFfAHoNDc20jaSZAkiMfgiCPoqv8FPJfpglKIRdlzfwW3C3I79HEACpDmfI5D/kNPx3dHwy8nUynOKRg2SCEAOgO/n3g8kAvB3bNnT29v7zQNo+XAogMY9WfOOSa74Ea/C57bbisYDDqdzuluqxHCXmcaLyil0Wj06KOPXr16dSgUEgOPpmnt7e09PT0mqqOG/NOf/vTxxx8vmZiiJBhjf/jDH4477jj8ilG4Z5555ubNmx999NHm5uZKdRNJkjRNi0Qiy5cv//KXv/y9731v165dBfNOVg2R0e63v/1t9eMvOg8Son7pWvLG38HbCLnNKzmADOCSJOBM41wyLLFOXKsoMDYGv38U/vfVE8u2lMJNt8CVn4XxcfB6BXX55P/mByFJkMmAwyHdclt2ERhTn0sSe+px2LMbN0MwXkgBEjpvo3R1e0tMYxrwSWMBITyd9tz3fWnJUmDZNDaxWGxgYKAmESmVAtXMYuOFUQPlnEuS5Pf7xdFJUisQCGBOygMpcnnxZFE4InLOjUOJoijd3d3FBpdjjjmmogRuBcEY83q9r7/++t///veTTz5Z0zRcoNN1/corr0yn00888URDQ4MkSSXZS3LbeWHCuiuvvPITn/gETgRqPsCjsD366KOnOvJyDoQ4lp/G/v4KkSgYUq9ygLTOKMYR5GaM3EhdxsDnhT88Bh//Z+jpyZKNMejuhm/dAzf+O4SC0NAIus74xHCQ752U3YBTkujX7yJiC0wUtqEg+/Uj4HFzxvKvpRxUBmnOFAIOILo4gRDIZMjMme7jTwADS51OJ2YnPijUtYBRu9R13efzicktCHsyfmloaPB4PCVTUkxH+4p1YmJIoYyBRGIjTxOQQosWLfL7/dZRkWW2SlGUn/zkJ9FoFPkpGnPttddeeeWVhJBIJIJaNLJaGHTE4jshRFXVcDisadqZZ5557733rlq1Cp3GpmNkxCnQsccey3MbKUwJp6zQG/y6mtGBYQpiHYABSFk3i0lLrBP84RxkBSJh+K/vZL8i2RiDoxbD9x/kRx7Fx8eYmuGUcknilHLMREVpdp8+SQJNg/Fx6OyUvnsfXXHGxL61TAdC9B98Dwb6weHkRZI5EwAJgAGouWbrADqlWipFTj6VKwrPPRzU0QKBQDnJKA4kTO3hnLe0tICBzLLxGCGktbV1z549eEsHPd8KN6yXQo42nZ2dpEioA+e8tbV17ty5a9euxY1qp1K10+ns7+//3ve+d+uttxJDjAhjbNWqVcuWLfv973//+uuvY0JqQVSey+yBzO/o6Dj++OM/+MEPLliwAHJb8k2TRSqTycyYMWP27Nmk0PY2FZUFnJNZs8mSpfDqy8TXAGySTBUQejLLCV4KwHUdGhrhpRfg4YfIpf8KmgaynKXu3HnkRz/lv/sN/+MfYO8ejjmWJSlrbdL17HabHR30wovopz8DfsNefpoGsswe/wP/4++hsZHreoG3ywD0As0DAGCMOBzKhz+CPQlyPQoAWlpaxsbGWG7rrSofWu1g0kAZY263u6mpCQzibYK3+FMgEBgZGcHdAY2pIWrbrDLPNGqhqC00NjY2NjYWmxXg78uWLXvrrbem3mxd1xsaGl5++eX777//i1/8IgBouV35dF2fNWvWddddNzIysmHDhk2bNu3fvx+tuGL/297e3oULF86fPx/VG9EtcMeg6VCS0+n0scce63A4ajDmYm7xD39Me/lFiQAAA6DF4mhFyA6ID7pOGhr4j75PW1rIx87LshGp63CQiy+R/mUVe+tNsnYN37MHguM8lSIOBwSayIwZcMxx9IQToKlZNCO7qiTL/KXn2eo7wevlnBewXkxWmidJT0ohkaBHHyMdtTgr/8VFnCuK0tzcPDw8THLbi09Tny/HJmIiLXb79vZ2tMsW4C3k+n1XV9eOHTsgZ+kxdTJCCHpacsvMOsXahIJI+HNaz8uNN4lnYsa2YsCiTj311N/85jc1sRDiSPHkk08mk8kvfvGLbrdbN+xAzTlva2tbuXLlypUrIffE8zmpZ4NUszESOI+auiZvAufc4XCcccYZtSmOUgCQTjtDm9vH+vdShxM4Ayj9ukWP4wDgdut3f5PG4/TCiwByu8gjCT0euuJ0WHF67jJmXt1lOhAqDFEgSezpJ9nd/wGSxAtGm6DKzia+TTqDEK6qyvmfmChw4ggBgLa2NlxuFDOd/Ldj7PkVcRt7suj5kNtQtuDYmi+r0D0eJs8lzftocs4bGhrQjV7MLUVZOKjruo7/U6lUmbMCMZ0AAMxlhQuMxUJtUdU0NgzNyKj9Wk+GOzs7Fy9eXCsfCaTuc88996UvfWnDhg0iaJPngnWNeyKKkC78HaflWI6YBq9bt+7uu+/euHFjySzq5YNSiiveCxcuLNYhKgPJ7mEr/a9PsVQSKGrBlZjo0V/K5WT3/qf+ja/B+HhWH0ZHRc6yWrHwf8JL8EfGAEjWHC1JkEyy++5lX78VJ8Asf1qbR1qTsOXJpHTkkco5HzIJ21xLuSzLnZ2dIlTT2Odzz4OoqordFT+UOfKavPfRdRx7fiKRMJWQL5AJIT09PfkVmVdB8Yyurq5YLIbbF4jpO+c8k8ksWLBgxYoVuC6CDhzWXlow2RdK07TW1tbTTjsNRzVUOE2ysaCq4PP5urq6LEgr7lySpHPOOee1116zOK0iIHV37dp16623rly58rzzzps7d67xKBTaOgSHZ/E1HA6vWbPmmWeeeeeddzRNw1TPtWoh9qqVK1fie6lNqhBKgXP5Ix/Tf/crvX8fdTgJZwYrchlA6jY08Mf/qK15i376YvqhcydiaAnLyl7I7SiADwRtVAhN5c89yx75GX9vEzQ0cuxLBSqaEK8FPDcIgXRa+dTF4HTmb1oNueG+qakpEolg4k7R5wVUVe3u7l6xYgXN7YTc2tpqQV3R4UXHwKQRZ5xxBr4gtPwbe77JFoWVdnV14W5SZmtOMYU7Ho/v2LHDdDbn3OVy4TIDHsJ1GuMJxBBcLj4YT5BlWeT1QQFuFLm8SHTFwoUL3aZ0B0XAOdc07brrrtu1a5fT6ZyKdcoI1I3j8bjX6z366KNPPvnko446qqury2L9QNO04eHh99577+233163bt3+/fsppcjYGlovcVxraGh44IEHMDNozUYEXQdJ0v/v/2TuvIMGmiVduExg1y+7FkmCdBpSSZg1m555NjltBZm/ACzS8aYzfNcO/vdX+XPP8C3vgqyA280mL9VOgE1iqm46h1JIJum8Ps8vfgnobFT84Wiatm3bNiGuxO9IXUVR0D0YH28ymbTIKVewDxNCPB6PsHGqqiqWA/NJi5nr+vr6CurkRTcjIYSMjY3l5/s2TTvRiAp5jCXFQ97FYIafjXOJguZ4Xdfnzp3b1NRUZo/E8exPf/oT9uMpOmCYgOzFDI8+n6+zs7Orq6urq8vv97vdbnzfmUwmEokMDg7u27dv//790WgUxztkeM3XGyRJCofDF1xwwRVXXFH7VQDGgLPMVZ/T33lb8jZQJh6mMFOVx16UoukUJFPgdEJXN5k1i/TOygbWo8kqnYLxcb53D9+zE/r3QTwKDie43YAdo3DzLEkLAJTyWMx9//flU08DpgO1ioAlhBQUVzA5Aozk4j3FZ6N8spYTyGdBXSG9TaRFtXHhwoXFluKt2EUIGR4eHhwcrO0Oy8VQkLSMsd7e3tbW1vLFCDY1lUpdc801w8PD0+F9io8bZ+nG+H48Kt4rRlmJWOfpeIb4jhVFeeCBB0S69lpWwBhQyt7bnLniEpAkAoSCcG8kOftI2TUiexmDTAZUFVhuI/ksOBAASkBRwOFASzI6VxQmrW7WkM0jtCTxUFC54ELXrbcXMH0VQSgU2rNnz4FZEMrXLvGFUkrnzZtXUEPOnlayMx0A6hbTjasgrbiQUvrss8+uXr166j6PFhDzn/xDJjJPE1DYXnbZZZ/61Kema8ld10GStId/pt33HWhpIZpmWBESq7aVyF7IraBmM84Yl5A4cADOcPTlkGcZFshbqjVPaymFVIp0dXke/hXBXVfL6ELY00Kh0N69e2u+GpRfV3WkBZM9uWDR7e3tXV1dGIo9HetawktB/Ehy3gvVkRZyETxnnHHGokWLTBn3agvR/nwcgOAqQkgmk+nu7v7Yxz5Wy2mtCZSCrsuf+Ve64kwIh7gkGZRTvEFm+DP6UOUj9ztnwHTQNdBVw58Gug5M55wzi1J4znUrB5ZPWgAU467bvkb8/olg4FLAvhcIBGbOnCl02nIurAjFuj263/X19VmTFkryFm+jvb191qxZkHP3qVXrhYncVKOmabIs9/X1VUdaBBrALr/88ho19lAEbl1x6aWXWvii1AA5J0Tl1q+R9m5IpQR1DdQSolFQV6zMmM7VDeeYJ6Q872wzzH6VRUgryzwUdFx1tXT8Cdl14wpuN0vdOXPmoOG3tg/Wotu7XK758+dbL3YiSt+PuI2+vj632y3SLE2x6QWXyNAU7Pf7Fy5cOMW+iAakxYsXn3vuubgZ7FQafAhCkqRoNHrKKaeceeaZ0+6USggwRtralbvvASJDJiMCXyfThk/+Y4Y5aD6TCzC2gLprPGMy2Sev2hogy3xkRLnwU45L/7Xgwk8Zt5t1ZOjr6/N4PDXp81Cq2zc3Ny9YsMDj8ZTT7ctNdCqMYENDQ8PDw5iHycJoXOxyVmivOrHYrShKV1cX2lemLkCwlng8ft111+3fv9/pdB5SvuNTAepUDofjvvvuQ4eBA2FHwWWhF19Qb7kRHFJ2f2rRJMPCbpmvjef+c8PXoqfmGYuLknZ8TDnnw667vw1UmojgrxzGPj80NIQaXPl93lhOQWOH6PYOh6O7uxudospENQmKU6nU0NBQKBTCFZdiokyULGID8nUDyKkNsiw3Nzd3dHSU3AuzImCHXr9+/c0334xRRDUs/CACzVE333zzWWeddUAjQDD89cXnMzffBA4KDhn0ye80998U30cmk5NYyFUThBQ2oKhYlmU+Pq6c8yHX3atBkgHKndaWRDKZHBgYiEajAFBso4NJLTQsdhb0yUHGSpLU3Nzc2dlZabevZvAQ686jo6OhUAi9JojBq9O03mtqMeRGILwfp9PZ3Nzc0tKCS1U1n6fh0/mf//mfBx98MBAITJ9t+YBBluVgMHj++edfddVVNfOOKh+6BpLMXnw+c/OXgBLwOEHTS0pYEfpXAYpYuApPfQkBSeKjo/JHznXf9W2Q5fJtUaUbkuuTsVhseHjYGL+Zq3zSRhaQ1+3B0PNRT1YUxe/3t7e3ozdRpd2+yg0BRDWYzSgcDicSCZGWzXppBAAopYqieL3eQCDQ2NgoVjinybKCnfuee+7561//GggEpiNNqWnx1vS1hsBp7XHHHffNb34Tn9t0L1cUAErdNW9lbr4JxkbA7weuTX3/rgnkGZ9MP5tBKTDGw2HHpz/jvOFL2QnttD2WVCoVDAZDoVAqlRKBmfl9nkx2HMTPkiRhUF4gEJiKajmljTyMTNM0LZVKxWIxTLqF82/jOeiHgG6SPp/P5XKJ4WoabaG58gFAVdWvfOUr69evr+GKLs95veBrMw5MPOeeymqXJVOSpHg83tXV9Z3vfCcQCEz3c7OCroMk8d27M/9xO3vrTRIIAAHgrHi0XxkwGqSLHCkAWeaxGHE4HNdc6/jkp7JeHAfksSQSCdzTHNMS6oX2WyWEoPuNy+Xy+XzY8/HQVF5fDTbgKVh9vqVbeEQaL4QDJS6wkeFw+Pbbb3/vvfd8Pt8UqYsF4jpBKpVKJBLi5RFCHA6Hw+FwuVxerxcDYqe+nCBJUjKZbGtru/POO7u7uw/otLYg0FSrqpn7/0v7zf+hhIDbAyxnPjL6YvAiZDYK1SIrvhZrwZh0jofD0qJFzlu+Kh1zrDEr+rQiv89nMhnMOgqTO7bD4UDeWl9eKWq5cVY5yuH0KZAlgR19ZGTkpptuGhoa8nq9VVOXc46MHRsbGx0dTSaTONaKm+I553Kn09nU1NTR0eHxeKYyUmB+fZfLdffdd/f19R180iJyzoPa315Vv/sdvmUzbWgAWQGdAfBJRioMvOc5Ghs/FILgcmEZi1tpxWJEUZQLL3Jc+W/E461uyWeKKJ+BtZVS07vh3aEGQd0777xz06ZNmImq0kKQtNFodPfu3fF4XOxmln8mxuWitbynpweFZBXNlmU5Go12dXXddtttc+bMOVRIi8BYPEnisWjmkUe0x34HY2PU6yWKggnKKyjJ8MFKxnLO43EAkI8/wfFvV0lLlgIUirw/GChmjqo56ou3kKNuJBL5xje+sW7dOr/fX5FDIpI2Fott2bIFgzYsrhVCGBfWZ8+e3dPTU2mmC0mSIpHI7Nmz77jjjkNCPS6IHG3Y4KD621+rTzzOR0ao202dToKx8pwXVJb55P+FH6VwZtY0Ho+DJMnHn6B86mL5jDOzVR8Q3fiQQt3xFnLUVVX1/vvvf/rpp30+HzpXlV/Cu+++m0wmrUkLOd4af1m8eDE6xJRTC9q6wuHwKaeccuONNzY2Nh6ipEXkBC8AsMEB9f/+XnvuWbZjBzBGnE7idAIh2ZgBPBkvKlbaROABgKbxVAo0jQQC8oknyR8/T15xRraQQvkr6gH1yFswTEsee+yxhx9+mDGGuaNKXogpnTFhTcmTjbwlhKiqOmfOnJ6ennJyX+F2R5lMZtWqVZ/97GdFpEgZN3dQYWAvT6X0N9/Q/vq0vv4dtm8fqBmgEsEAPUkqyjcsQdd5JoMZ0klTk7RggXTqafJZZ9OZvdnTDg3F+GChTnkLuVU1SumGDRseeOCBHTt2lCN4cU+ADRs2lLNRYHW8RXJGo9GOjo4rr7xy+fLlB9LwXhsY2AsAPJFgGzbo69exzZv1nTt4cBxiMZ5JA+QJXAJAKfF4SUMDnTGTzpsrHbeUHrWYzpyZPQHfTh0zFlG/vEWgEEskEo888shTTz2FedXzXUkFppW3uBSMyTRWrlx5+eWX44Ym7wMxWxCcA2cAZBLNMhk+PsYGB3koxIf2o67LdY0oDtB1aPTT1lbS2kY6O4nIRAW5gQAzpNuweQs56gLAxo0bf/nLX65du1ZkwMqXvdPEW2Qsptrq6+u75JJLTjzxRGPb3t/AiSg6HlZ0OzhzsemaB5u3AAadGQCef/753/3udzt27ED2iqN4Zs15i5WmUincbeATn/jEhz70IdxDvJi76Psb+EAmpafJg9EoZaMQyt3N/fAGMgSF28qVK5cvX/7CCy/85S9/2bRpE2MMU7pZKM9VVIdLvpqmxWIxQsi8efPOOuusc845x+fzwWEjZgtCJFu1MQXY8tYMI2fWrFnz3HPPrVmzZnR0VJIkh8PhdDrj8fg777xTnbydN29eT09PMpnE/NeBQODoo48+66yzTjzxRJHt8bBlrI3aweZtYRj5MzY29o9//OPNN9/ctm3b+Ph4JBLZuXNnFbzVNK2rq6u7u9vn8/X19S1duvTkk0/u6uoSJ0/HvkE2DkvYvLUCm7xHWygU2rp16yuvvHLPPfeUE4Rl5C2lNBaLXXDBBZdeemlfXx/m9IDJU2sbNsqE3V2sIDYfQwYGAoFly5atWrWqingO3MLn1FNPPeWUU9ra2kSZJJf82oaN8mHbpUqD5Hb6wVg8TFZSXTm4NouZtA6/VHU2Dhjskb4CkNxe8lAo8qMcWAQP2bBRPmzeVgmbezYOImw9uUoUzHdnQhU5O23YKAc2b6uEMRUYBsebwomQtEIrtuWzjRrC5m01kCSJMZZOpzFdhsPh8Hq96NIsLFic82g0Go/H8Rzc+NRmr42awOZtBRBpNcPhcEdHx/z584888si5c+f29PQ0NzcHAgHILfai+B0dHR0dHd2zZ8/WrVu3bt361ltvibQ4BzMVo433P2zelgWRvZFz7nQ6v/rVry5btmzGjBkejwcAxB58MDn9V2trK2axZIxFo9H169f39PRgejdjsQfvtmy8X2EbTsqFruuRSCQUCqmq6vV6MeYOuWqR5x0MOZadTmc6nVZV1efzNTc3+/3+A30PNg4X2LwtDc55MBgcHx9Pp9PIwOp8iTE0T2x86vV629rakL224LVREWzelkAikdi/f38ymRQ+j1Mvk+e2LQYAv9/f1dXlcDhs6tooHzZvi4JzPjIyMjY2hlbi2j4okUxD13VZlru6upqammpYvo3DGzZvzUC5p6rqwMBALBbL9yIuuFtKdRWhwzMu/7a2tnZ3d9si10Y5sHk7CUjadDq9Z88eVVVNYtZofxIfRA4qkrfBbznVCcuWpmkNDQ2zZs3CSm0C27CAzVsz0un07t27NU0zkdbC80nYjfFrRewVG6AhdX0+35w5c+zIPhvWsHk7CalUau/evZqmCRMUUqh8X0Wxa0mZD1aIXDBQd/bs2XaUnw0L2OP6BFRVNZFW0LV8F0VxZvnnC+nKOZdlORaL7dmzp8p7sFEfsHmbBed8YGBAVVXjYo8peEA3oJg4JblNuguq08YShDptPBmpG4lEBgYGYApGLxuHN2w/x6wtamRkJBaLybIsJK2RtJxzt9vtcrmExSgWixXbWa+Y75Qsy16vV/ySTqdTqZQQzoKieObIyIjH4znIm8rbOFRh8xYIIYlEYmxszGiIMqqvjDGfz/fEE0/86U9/wu2qAeCmm26aNWtWJpPJJ5WgumAj59zlcr333nv33Xef8Lg655xzzj///Gg0ij7MJupSSgcGBnw+XzmJI23UG+w+AZzz/fv3C7GGFDJadDnnDodj06ZNTz75pPjxiiuumDdvHno+FisWdwnDjI2yLI+NjT311FPihO7u7k9+8pORSAQKiWhKaSaTGRgY6O3ttUWuDRPqen6L8m18fBw3s8UfC5qgUGBKkuR0OiVJkiRJaNTFYHKKROrihVgIxuuKE/LdORRFGR8fxw0N7ImuDSPqmreEEF3Xx8fHjQZki+CecuxSxvOtSzAt8xabKg8NDVV2VzbqAPXLW+RVOBzOZDJCK66hOlpFepp8kStJUiQSicfjtsi1YUT98haZEAqFjAptDWeSNclKg40cHR2tSZNsHDaoU94iUROJhFiJmY4qKpKQFqtHkUjEeot6G/WGOuUtIhKJmARszblRPnWLnYmGZTQ726qyDUSd8hZjdxKJRK1C4acOa70aeWvDBqJOeQsAmCDKJGxrK28rHREsRG48Hsc0N7Vol433PeqRt2Jym8+EWslenNxWRDOLqimlqqomk8laNM3G4YB65C0inU4X/L38+DsLiHOEv1SlZipTexhjqVSq/ObZOLxRj36OKAZRSTa5NJUvIdHzSZblYjHu6MYs0qCjs5R1mQU5KZqEvLVhA+qTtwDAGKsomicf8Xg8EomgZct0SEhI42c0g1kUWFKQZjKZchpmox5Qv7zFnGz5v0NOSBaEYNfnPvc5a/lpjAeCXC4LqNZYRQhRVRXs/cFsAEDd8tYaxmQXxVDzhRkLPttzWhsm1ClvyyHJgZRs5bTHZq8NgTrlbUkIFbcYe2VZrpTYnHOxH1/+oWK0PCjjiI1DHPXLWwue4NTUlIMCIcjz4x//+Kijjkomk6Y8FQVLZox5vd41a9Z84QtfKBjca8tSGxWhfnlrDaOUK7j62t3dPXv27Hg8jp6SxRiLwEw3mOrNBJHUplgzbHlrIx91yltcfbUOshEGYfSdMJ2ZTqeTySQmyiiZ6JwxpihKwYWccpKkYzMURYEKF5ltHK6oU95SSiVJwoh5Cx1VrMGKbOYCRt24JJGs02iUbADC4XBY12KjflCPfo7IE4fDUdGGIPma8NQnpSVntsajYpd6GzbqkbcIU1q2kpgO01GZwpZzjnnkwJ7l2gCA+uQtdn2Px4N5Ug9WM3huC9xiEEcZYw6Hw5a3NgTqkbcIp9OpKMpBDGotU0NGo5TP57NTw9kQqFPeojHJ5/OVk1H1oMAkihsbGw9WS2wcgqhT3qKMbWpqglzA3SEF47yXMeZyuRoaGsCe3NrIoU55i3C73V6v91ATuXzyjriMsUAgYNpE20ado355izRoaWkpuDw7fTWWhFFDRktya2sr2MLWhgH1y1ukgd/v93g8uOvH9FG3/KHBeBqG7DY3NzudTlvY2jCifnkLOetUW1ubMSvFdNRSJm9NDeCcy7Lc0dFR8ybZeL+jrnmLIjcQCDQ2NuIsF/Ng1Kp8LLD84cB4Ggrbjo4OFLa2kmzDiLrmrUB3d7dIOoNmoXymUUplA6yJJEKITHqvsQTTFrvG0FzcKNDn83V0dNiktZGPOo0rMMHpdHZ1de3duxd3tRUwBtklk0lN0wS7CqaVEz7M+c7MmCAKL8dMUYlEQpRvGiY455TS3t7eQ2c7BRuHFGzeAgBwzpubm+Px+Pj4uNiQ2riImkgkli9fjkISf+zo6MAwQCOvjDkcjSCEZDKZnp6ef//3fwcA9K9csmQJht2bpr6oIc+aNcvj8djC1kZB2K5zE2CM7dy5MxaL5e8lzzl3u93o2Y+IRqNiJlzOM0QjE7pPIFKpVDweh0JiuaOjY+bMmTZpbRSDzdtJ0HV9586d8Xg8n7om85IkSVXkl0KqF/M0RtK2t7f39vbapLVhAZu3ZlhQt7a1mAo3knaaKrVx2MDmbQHour579+5oNDod1BU7BolfUPzqut7e3j5z5szaVmfjsITN28LgnA8MDIyOjlJKa2LUFa4d+WJW13VKaU9PD/oz2rBREjZvrRAMBgcGBlRVxQXb6p6VBWNRzHq93t7eXtt6bKN82LwtCmSRqqr9/f2hUIgQgraoMq3HxlyQpqOCsbIst7e3d3Z24i82aW2UCZu3VhBcikajw8PDkUgEl3NEckaTbwYYpGt+YmT8Be3Ssiw3NTW1t7fb2WdsVAGbt6UhyBmLxUZHRyORCHpcEEIopfmb6IrPQn4Kn0cAcLlcgUCgpaUFGWuLWRtVwOZtWTCyS1XVcDgcjUbj8XgmkxGitZjbIwBIkuR0Or1eb2NjY2NjI3om24y1UTVs3lYAPnmnL13Xk8kkblygqip6HQsQQhRFcTqdrhyM4tdmrI2pwOZtNTAReFqvsmEjHzZvp4SCs9n8ozZXbdQW/x8vOqzDaZTl/AAAAABJRU5ErkJggg==", "path": "image.png" }
Complete the statement. Methanol is ().
[ "an elementary substance", "a compound" ]
1
The model below represents a molecule of methanol. Methanol is found in antifreeze, which is used in car engines to prevent certain liquids from freezing in cold weather.
All substances are made of one or more chemical elements, or types of atoms. Substances that are made of only one chemical element are elementary substances. Substances that are made of two or more chemical elements bonded together are compounds. Every chemical element is represented by its own symbol. For some elements, the symbol is one capital letter. For other elements, the symbol is one capital letter and one lowercase letter. For example, the symbol for the chemical element boron is B, and the symbol for the chemical element chlorine is Cl. Scientists can use models to represent molecules. A ball-and-stick model of a molecule is shown below. This model represents a molecule of the compound boron trichloride. In a ball-and-stick model, the balls represent atoms, and the sticks represent chemical bonds. Notice how each ball is labeled with a symbol for a chemical element. The ball represents one atom of that element.
Count the number of chemical elements represented in the model. Then, decide if methanol is an elementary substance or a compound. In this model, each ball is labeled with C for carbon, H for hydrogen, or O for oxygen. So, the model shows you that methanol is made of three chemical elements bonded together. Substances made of two or more chemical elements bonded together are compounds. So, methanol is a compound.
a compound
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAASYAAACBCAIAAADiyIBvAAA7uUlEQVR4nO19eZBdV3nnd869b+vX3a/3XeqWWrIkSzK2MYuCA7ExiyEZliHghExwkRQEUpWJC6aA4JDUTCaT1EyWSZFJJVDJVGacEDKMgRkmhpjYbBYmxsRY1i61Fqu318vb+q33nG/+OMv97n2vF7Wk7lbrfdX1+r77zl2/8zvfer7DEBGaBFCuyWxRTGaq6VxtLl+bydYAQCJKCS5nABiPsqHOWHdrZCAV6UtFWuMOZ2yz77pJNx+5m30Dm0lVDycz1RcuLT1/Yen4lfJEujyXF/myqHlS2pEIERgAIkPkjLXEWHuC7+iK7umP3zna+srdbXsHWlItbhN9TVojsVtQyknEywvVp0/kn3wp9/yFpalMrVxDBMYZMGB14JEA6hUhICIiSokSEKXDZWeLO94ff/3+1Jvv6LxzrL017mz84zTp5qJbC3LlmnzhUvHvf7D45Eu58+lqTQBnjDMAizNE4BwQAFB/gvpkAKjhhwggAREkIqJECYAdcXbP7tZ3v7rvTXd0DXXFmzKvScvRrQK5qofPnMn/9+/M/9OJ/FxeMMY4Z8AYhISahhzqbbvTf0tSfyICSgAAlICIIKUnIhz3DcV//t7B9x0ZGOyMbciTNekmo+0POUR46UrpL55OP/5cZr4guOMwzgCIZAOKurq3QfGmt9E0kwAIUpr9ElBKKTjKV+5u/aX7h9/56oG2pqrZpCBtc8gtLnmPHV34s2+mJ+Zq3OGMMQBWBzb1abVHS0g+1Sb6f2D/lJIpzU4BEoVXi0fgrXd2//rbx+4Z7+BNRbNJhrYt5BDg2OXSf/jq1DeO5WvSqJFg/xQRKGi4IdkvycmsBwU0wAI/SUABEgCl/iolSiGlt6M7+sjbd/3C64ebnpUmKdqekBMSv/J85rcfnzqbJsLNgs1KOQYGagzAGG8WdAH3CRDgAVEmwUcdSJAI0m5LQCGliDryfUcGHn3P3pHuxEY8fJO2Nm1DyJWq8k+fnP2jb6QXi9JxnIBw0/+tf9JgEJhGGxKw+RCzlpvZtv4VaXdK68YElL6ZJwWCQCnu3Zf6/V84cOeu1Aa9hSZtVdpukFtY8v7z/5v586fmKxI45wCcCDfQLko00TcGTKOH6ZC3CnuDMtuCcs/XM82Gb8JBAHUaigggQQhAASA94d0xkvy9f3PgvkM9G/MqmrQ1aVtBbmHJ+42/v/LY0UVkyi3JfWcJ02Ta2g0j6YibRIfkdNoJEuBRTZIIujDqJEjjwwQJQgIKACGE2Nkd+6OHb3/w7v4b+yKatIVp+yR85cviN780+dgzi+g4jBG8KdmlQ3A0DMcM1Kzf0qKOISAzAg+YkYFo2xCUMmIHAgBwYGhOxgEAOILkgNJxnEvz5Uf+6lgswu8/3HujXkSTtjbxzb6B60OVmvzjr88+dnQROWdM6ZMcOAOmgt5K6in8MYM/pXByauoZgBplVMlFRGBMq6gBhydYEaq++Hoss40BGAfGARwA5nDn0lzlU//z+I8mshv8ipq0RWg7QA4R/vp7C3/yj2kPOeOOxhvTyiRnjDEOVswBgVjgz1p9PiYZADDOHGZEnCKLOoI3RvYAB8YNfo2wNfF3x3VevFj4xF8fuzxX2sCX1KStQtsBck+dyP3+12aKHjDOqaeEaSFlwQYEKjQ4zSmEDIAYacSYFYH+CyM/ch4Mr1uRSbYtqhlzXP69E4u/88UThZJ3Q95Ik7Yw3fSQuzRf/fdfnprMCs7VszDgzAgZqkBCMA7eEHtAdypDjas9aocVk+GQugUphE/IzD+tXirUccb5F5+Z/B9PX9xG3qsmrYlubshVPfyjJ2b++ULZcbgWI0wLOM583c5IGGiEOgjuZ8aP4quXBr4MbEwhfIjaERR09uL2Kye6K2NVD//4q2d/cHr+Br6gJm09urkh983jub/7QYZpvU6LICOKWB0q1vKwYRlI/JkMAIEzirIw3hhtzIL6adDwY4xzfnm+/F//z5mmenlL0U0Mudlc7Q/+YTpTRsZ9vKmObj2TAGCl1vquEpBcjAK4vmndVCBoiE9u9UzHdZ740cyXnrm8vntr0s1INzHkHv/h4nMTJYcTOaOj3cxKk5UQsixRQUejcMRpeVWnbOCU8aMIZQ/+8skLkwtN7+WtQjcr5C7NVz//9FxNKHBRRyUY+RYy1eg3qgQ2JKpY0t3IfFuv7swBTwjzYRZSVpk5njEA5jj8+fOZv/vOpTU+eJNudrpZs0/+93OLJ6cq3LH3z4j95kulleTR2nyFLDRrFQ22pTq5JE1Z3TkZIJBkFGY2OIDUqEMmkf3Nty6+53U7dvS0rOWWbgXK5XLHjh2bmpoql8ubfS/XSvF4fGho6NChQ21tbXCTQi6d9778w4xAZrRK34rj5ksjt6TawXQ2CU3makx1k1bRgo2gyP+NnN+/nJpUwHRaZijhTHlkHH56Mv+NH0390pvGr/JNbE/KZDLf+ta3jhw5ctdddyUSN/2Mp1KplMvlnnzyyfvvvz+VSl03xRIRhRCe53meV6vV1IYQQkq5+sFXSd85lX/x5bJjA3H036r2G+IaFEt7KhUtQBOdY9hg2jg9ov6cSG6H1R2hf6t58OXvXymUr7PrUkppeBJgylbOZc/lck8//fQ73vGOvr6+bYA3AEgkEv39/e9617ueeuqpfD5/TVJOSlmpVMrlcrlcrlQq1WpVCA9U9j0AIjLGI5FINBpNJBLJZDIejzvOtU6Ornr4leczpSo6LvXIAzJrz63ZP7mKOWelnLLoJAAyBII6RkruATBGZhUYQgiISgbATDkj8Gc5cM6fO7Pw/NmF1x/qW9OdL0+e55UNVavVarWKKA1DABFd141EIrFYrKWlpaWlJRqNmiyCLUHHjh07cuTIZt/FDaHXvva1x44dWw/kELFSKefzhUIhXyqV6kZNzVq1VSoVVelHznkikWhvb+/o6Egmk+tm8/l0+ftnCzprkngpzMwcioc1PUzDvXRDzdIhiiTXtb30VUzjsKbKtCYZdquExL5y+LBssfb1H02vG3JSimKxmM/nC4VCpVJRFTfJxX2mVKsVKaWFXzKZ7OhIpVKpWCxeX8Rz42lqauquu+7a7Lu4IZRKpSYnJ68OcohYKBQymUyhkBdCqJ7uOK7iLmPM8BUN5KSUXFdblXJpqZDP56emJtva2np6ejs7O133qjF/9GxhKlvlzB5oFEW0UmsNgYGVNCsMbqDBGwMABEmnywUrNdQTA18oGnDWx+6M9/I7L80uFKpdrdFVbj5InuflctlsNlssFhGRMcZtrql9El/QIedcV8CVKITIZDKLi4uRiNvR0dnb29vW1ra5wCuXy9tDn6ynRCJRLpevoscXi8X5+bl8Po8IjDHXdS1v7JQxO5QCoJTIGGdMIiLnUkomJZMSpRSZzOLi4mJbW9vw8EhHR8faJZ6QePRMoSaY69T13YYpjg0J64VP4ESqEfkEf3K4nTLHKG7Dfs3ASVgQdWEEai8o5+zcdOH0lfxr93Wv/ggAACClzOVy8/Nz5XIZgHHOGePUULX1IhAZgC42rfCGyBhDxhgikxI9z5uZmUqnZ7u7e4aHh1tamr7TG0VrgpznefPz84uLi1JKxVfOAXQ1A2b0KTQMtoac4jGTUjJlbTFgKrQFTEqRzWZzuVxPT+/OnTvXOLDN5b0fXVziAVxp14YhOst7eSSv4j9ogCU9UdyfD04brKCdUpmJAKbgrK+OAujKECy7VHvuzPwaIVcqldLpdKFQAADHcTnX7LBMYRplAIQpakyUkingMcakZIxJJWylFNPTU4uL80NDIwMDA+vQQZq0Kq3+Tkul0szMTLFY5Jw5DueGt4a7dkC1Xy130Y6vUqoiyNaS0VnCQngzM1O5XHb37vGurq5VVZrz6fLkYk1PNwUIOkts5MvS+vK8wrqiERWkFEO4sX6murJfxu3S+BL+keqfkPgvExmJuPKaPoiYyWTS6bTneZxzzhk3KW/2OCPFGzBFSuCcSykBuBoBhQDHsa1ZtVo7f/5cNpvdtWtXU9xdd1oFctlsdmZmxvM8x3E4N/VDSLTZqpZUrGEg/oRKJiKiQhrnKhDMARDAZYwVi0vHj780NrZreHh4ZSXz3EwlX5YMrNsTfY9lA2fl+iAHFHXEP2l0yuWkWr27UlHAY6LD3w3FI2NwbiqfK9Y6ksuac0KIubn0wsICAHNdx8zCBcsU8uaZFW5E7tkC8MrGloojUkrHoW/eS6dnisWlPXv2dnZ2LnczTVoHrQS5xcXFmZkZRHRdxwg3PfGTDqgAAICMcaU6SqmUTNVGD6yGwcA5SCmNpFRWPrpuxPO8s2fP1GrVsbFdK6Du2MtFT6IT/h1ViMCgTmWIcNKn1w68AAzssgNmwtzyCmRoGQP7kwRyDw1vBsHkf3HGLs8VZzLl5SAnhJiens5mM47jWMvNHwXrZKMuI4HgK/sMGGNSSqN0KAUEASCIOgSAQqFw/PhL+/fv7+5uViW7brRs56Z4cxw1mjLOrY2uBleu8z1IFQPSFcA47xmRkGbiGeidnDucc8dxGIMLFy5MTEwsFz33JF6er6AWbLZ7mQ20eh/1f0Dd9gqE9V+M95OWRre/B0/rzyRAP17n+3RQnyTo8SSHAADLl7yphcYpTkKImZnpbDbrOI6CHOfAlWZpGBFkitU27fvXwyU39oF1b1riHCxTXNepVMonTpyYm5tb2wts0urUGHLZbGZmZgYAXddhTFkLmrWUPSEy2APDS2a8LP5O1SG47gJcMVjtUaibmDh/8eLFhukRxYpM5z3GOCAEur7u2yErjrpAoAFCwo2pCRfeo8xSv7nfgIwOAUAaN70v/dBv5l+IujqRMSxWvNlsA8hJKWdnZzKZrONwzh2DolU4QpjCGANl9RkV1DYIHc/NUMg5d1zXrVTKJ04cX1xcXObtNenqqAHkisXi7OwsIjqOggczsPF5wonYCn217FRnW07W2W0rORUBwMTE+ZmZmQY3VhVz+aryBIQjBMZXE+z4FhVGedM7AUKiJow3Xx6BxVvYeWLFSEOt0q5EZ1HJzEEseA/mBhABQCJOLzaA3OLiQiaT0e9IvzqrbjRmCgtqm0b02YwX+/I116zcM4frizmOUy6XTp48WSwW62+sSVdLYch5nqf8Ja7LG3KRGlp2mNTn8n8KDKKhlhaWZhsMAhV/ued5p0+fzufz4XsTWKqEdM4AciwyyG2EGtONekkIBDfMfkVrrSE9XAbOENY56ykk5egFka44slSXaVkoFObm5hhjiikNhZv/zI1kF/FnBn6nzawbmWLSaCVOLpc9c+aMEKLRozXpKijgPkHEubm5Uqmk9EnrLDGa4Qo2ur/NtM8ElGAx7mnLXdtSeVcCPUBJPMdxisXiuXPnDh8+LITI5XJTU1MXJs7/6PRkLn87Y63qXvVZNB6Ig4NJAEaclT6czFfqxvBBiwBmsg0awwtZ2PiiKA3iXzvmg3+hmEHIqykpSvVbOHr06P9iL+3atXt0dLS9vZ1zPj8/D8AchwOokQkooFZliso4MVEBiaQALmPak6k2DL8YsfqY43BELiWfmprq7OzcuXMn3CRULpdrtVqlUqnVqgAQiURjsVgkEonH45t4VwHIFYtFpb3YMY9uBKGlN0g8oL7WuuYfambqAxFVXAjUnDHOGUlTAkRvaWlpbm7+hRdeeOKJf7h06fKlS5fS6XQhny+7nUt3fJq1tIYu7Gt3zJYq0XdHfgYCEuqjr2/vCyyTNxJ6LqqFmuaB5a/AxyjS7aD7BAliSRzt2X9+7uT/fTKZbB0YGBgdHR0ZGenq6hod3TkwMNDW1haJxAxOQnoEuT+TXaOGPwtLE6dBzpmUaMCG5mxmFh9wzlV6ih0TOedcCHH+/Lnu7q5kshW2NtVqtUxmsVar0Z3VaqVarQBAJBLp6OiMRCKbcm8+5KSUc3NzQohIxDUCpwHeGmdZ6W0GAAR49hCbA9H4WDWmzs7OPfvssxMTE8oPXiyW1Cuz13e4dZEogWRRZ+QTIDBQU9lUToppF7pTH2xoom3meHKP2oSjoMPgGXSzOpVSmXBUcaVkZKx/kF02BACAM53Levr06VOnTgFAJBJJJpM9PT07duwYGxs9cuQn9u3bZ184rMgU8MGmv9VbpPR3g1XfCAfft8yXlooXL148cOD2erm6dSifz9VbJZRqtVo6PdvW1q7mjG4w+ZBTSeiOE3CEhMBGO284b96QHVkRw30u+JM9nHHOL126+Jd/+VenT582IpExxtRMH3MDKlOMSAygsk5qu1RrtEwyUOomQR1Qscb8U/h3KSm26EH+PwzjrTFhgzkDISkX8NEE2pmOrm1jlUuZzWbPnj3LGPvmN//pkUceueeee1T6AdRxxL4YK+gAwLx5K+f90cEcyGwKkX5FDIyUY0bYsZdffnloaLijo2OZB99kWhVvtCXnbAWJvX///l/+5V/++Mc/bvd84QtfePjhh69xorpmKiJms1kgIoVkMwT0SetiNgc2OGmdCtrA0qBYrlSqX/nKV0+ePMmsmyxIJhLlMF9Pq0+tQkC11g0CIKIElb8LUpLuBYBqQSqpW9vnQAQ1pYVpx6feTUERxJs9zr8T6btV0GqVxnuJRJVF6wINrT8OzMZTAn1dvwfO+aVLlz7/+c+n02keWBCZGS1jWaZQzd+8fd+HGfzF51DI0q5UKpOTVxpcYAtQrVZbI94UZbPZkPK5AaQhVy6XlpYKxl8MFlT29atmRqZZQRTWYeqI0aEXfNCqkzAVLDp37tyPf/xj13UJunzyry5rXBRNT1XnCGApqOwBogTl4dceEYs0/RcwsNT8Fit2dHMgl6uTb2G8EfUSrd6I5HDwN0icD5CCH7goKkFH3cWUXNc9ffr00aNHLSSIWthY4yOaiyUrIZlxljQ+kPQEpfjwqampUmkrBgzWETzMZK76kGskDblcLieEVHEeKqVCHhGjx7G6PatiTzcn2/4Bp06dKpfLJompvnPo9hyr3CsEIAfLoA4t6kD7bzCIN9PhJaDUk1kslqTf0D+zDN58SKWux6RqL4IADmqVAVltn1fyWl6NFCGhRMnzvBdeeMHz1Bz8ZV9+0KfSWAcOXoUey8hAqYdXBc6lpcL8/JYrMl0ulz3vqkVWrVbb4IpGHACEEPl8ASAEHr/rU64Y0UC6pN+pEJZnLT0D+p0PhJBTU9OrHgUATFSdWhZpzw6s2W2UuoA0MnP4FKgMDvUUFtWrlcDxBaHFVyOE2GcIXBoCDVCCVO+FOHap9uhrlfRY/Yy8VgCLOUL0VXDOr1y5ks8XrDIZYkrwVTdmDSLdsBexbPUtbtNGq5dSwszM7FpYtpGkIgHX98BPfOITLqH3v//96707n1wAqFTKlUo5pENaBjWSOXrOm33pxP4OsRYJLyHoLtOXq1bL2Wx2OcUmcDYUTmmaoQRkwFTWMvVbAvH+69vUWGIWQgwBjXcSAeyMchNcCPZJ+hT+bhtba6xS1pl/Wr4S3NJwnJSAVoQyLkq8mpGm69vXUt+/M5lMuVwCSNlTNWQKJcogoovqAYEZ55YJG1grAG1LfZOcLSzMbbXp25VKZd0HLue5fOSRRx5++GH79Yknnnj00UfXdxVLLgCUSiUppeO41OtBGxlnV8AbFpJyEBaGut8hmYFNOW14D2aqQZj8Udd+oogsXQFZA4gCl6CsCyVw9LIESIwi4+OxAEAAbi5vp4kysofixP8kG7QXB/BG2utbQHLGIDJRAsPGIQTGnOoi95aId6qBJFE4rNVq5XIl5PQP4a2hiLPWNTVFGWNSytBbN9wBhWdqMZZK5Xw+v6Ugt25HyAoHDgwMHDp0yH49duzY+i5BiQNAqVTGcKdqwEUAn0N0gzYjEg0Bwm1sS9OGAahceEftlFJKKYUQqhqfItreLc9wb8l0X9Onad8JACDU6clxQH7RcokeSBuRVyNlI33SXAvRLBFOcIi2vb1bdW5pRFwAe245zeQqCpJ6IcrVRJ8+xBramDKFsss2U+/ZMoU0ZipUELoHIUQ+n1v5PpvUkLgqjKe+EB2NevlZyJYI8RjqRtPg2BxgdlAQSkSMRCJtbW31GGswwDPmVObd8iyA1e6CqPPTqZYBj3/rABROPkiIlx8CPbfRNq5yZntXvuwlGAtBEQBQRIovQyOZHyJEbG1tbWlpobKrIdjsdmCM8Vv6rajdTtkEYJMZAmxVNSC2Dq07m2SD01C4lNLzakSlDA2HEGRbA8J67pmT+I53UNpjAw2Hcz44OBiKGi1DjHvFaGECQMkl6YuyBoM8hRBFUQiTsm5/HdhCQiTQTBIUqZ/ICRmQnwwyAyen6izjXjFSfLk+jNnwnQ8NDbW1tTV8aXVgC/9k8FOnuvuArP8EkpwJiFAqFW9EXeB1UywW2+AD10eulFL5mhWhNr0QTNwGSQYDNMogacQ2RgAGao/lJQS5yxiMjY3FYrFqdQ0eJ5Sx7KmlvtejEwPkgBJsZiByKqaDjnM092C/Nj57Y8kWliBBFCmSQSekekAZPAqlaSYBpUnyMg0Yc0vTTmVhLfEWzvmuXbtc11UFoKDRgBgwy8xgF5KE9Cntg1rGKVcKSfqhrIZqtSqEXbx28ykSubpihKseePLkydCehx566KGHHlrfVSwF3pcZ0iw2kOyxPAtIKnMgBr9JAG34EGajkRMIhLuIcmxsdGhoaIUhUx2s1E4nd84pz+oejNTdR6Qc1jvxoQ4q2GgnhE9i7Tf/JPQoabyRimRA1w3IWAionb6U9h8ylj/LxOpuN6VVqoQv+3JCDaxtZvUOQgGm6PsO+k5UA1th1o6V4EN0uWFr0ygej7vuVauIrrvREwt0XVfKDUNIR0f6aTeob8NsWFz5/YnCmDTTXUFKbG9PHThwAILXpq4U36GCwCuL0cVjRoyojktVR2iAlvqx3VwnoI5SrIYjARCAmb2Wyi+zsgvIIRh0pei0M9tGBqw4YLyWczMnJVJ3UWOSUh48eHB8fByDRF51CFEWM/6JDUf0qw5yMMAsizcbxzS9oi49YLNpHZWRNr6YEidGs/9CLbMo6ijRQdSyyioklp3Bc9oT+pdTXGSMve51r+vp6VG4oh7LBv0Pvdj886yW171fB52DYKBoscCj8Av9mfvWc3BCPzUAm0IR9ZdQUSZBCiPEzP1QBAZicQAAwFgkf54Xp1UF5RXeACK2tra+7W0PtrS0UFcTkhGQgs3ijZwmjFLyjGDaA21q+YjoA89OM986pFxxa2+fSqU2fgqPNQN075cS6Ms171wPyQ0JAAhrqX7iH6BOa36Qtl43ACCCEGJkZPiBB96ookMhjNn+5HletVqtVD22eCaaO4PSaG5ahRV1qAgKnOVEXwhp4dp4IbAZTVKizgsLqaZoFdHgEGCeVx8bmmUgKpH0D2WtbBd4QCLn7acSRw8++OA999wjpViOKeak0jA3YFer1xlEnURf2QEzGvrC3Latu8SWo7VPyUmlUpsy8c8FHQb1BzkpgXPtJaEvd8X8EETjdyFjpH9CCz07iNZ3lDe84Q0vv/zyd77zXSGEjUwY3kMsFuvu7h4cHNy9e/eB/ftm4wf/+NuyIhhwM9NNIDgAuroOkmQrfY+hW/YfKaxA2mPstv9yTJU98BEbQrjeaQMD1okiwdqfEChnICW8erzz3Q/87PlT+8+cOTM5OZnP56vVKpI582BCZ/fdd99DD70vGo2qWst1d2s5ovnSiCmWBQGt0h5Lx0eKT4DAaEgzzrcUtbW1x+OJxcXF5VIuXTfS2bl5U1Qdx4lEIrVaVS0OISVyrvyNjDEuJQNd2JxJiXVvmJEOxwzzQO0JiavgMGl2mD1Syng89t73vre1te3b3/52LpdjjCUSiVQq1dvbMzo6+pa3vHXv3r39/f3JZNJxnMWl2tHJHz91POswAFXzCzhItZib6uu0JCPNCAN6T3UNQlqW3Wa+fggGcgCBoJ80s4J8N4yRhxaBaPNOfATEY/xXfvr29/3kg6rqxPT09MmTJ5999tlLly5dufLy/PyCyrttaWn5yZ/8yQ984AOpVIcq+WpAFZgqRdQHf9A0nNBMoXojkZMQlH4KbCClLwCplEskElu2gnokEunr6yuXy7VatVKpqPwStcRXJBLd5EIMCnLmndoJYza1WTFMiUGwvVONnUwXzEAAkH7eoG+Lm6FUEi7SDauDqgYykYj/zM+8/RWveMXk5CTnrKOjo729LR6P9fcPHDnyOsrgzmTkI2/e8dy53FLVY9zR+JJ+ujvoOvtgxgVG7z9ISD4b7kctrACt5AY9BdXsROu6pH9A9oABZMCKEwLf+Mr+t90zBACO43R2dnZ2do6Pj+/ZM14ul4vFpfn5xXQ6LaUcHBzYu3dvPB6XUgtJ9CM6zCRw+UxB4ma0X0PIIQQAkppqBIRaoZVS9RB1/yyZTK7WuzaZ4vF4PB7fjJnfK5ELAPF4TNneqhaNqUsDnEtEUOUYrPJlQKi+mqHa/g+IMAiyVAYHSzV8WrtOLfkpAdjOnTtGRoaFELVaTUohpWhpaakfUN94uPttd3f/3TOzDmOAXGMMOaA2UXWapc6ipPCzFPoakD+gSmOq3Ghq+IWNNwQEE2SjmS4yqFIiCOFP5zHvrac99uG37mlLBJQcNWmQMd7Z2dnT03PgwH7OdU14VWOLc2YW0wHws0PWwhRUg6MZYTG04GPQBYNmj2WeNtc5Z62tW6wv3yTkAkBLSxIApJSMOYwpGcUAVKlzxTmhinyBZiSVGHrYD42sdXjzN9WoGWRqINNLYU85DBCRMdbQk5uIOv/2bWNHT2cuz1c5MOAOMNAVGRD9mibc3C2j4g7MI9ANhSIOAExUuFfgtTzzSgBcRtqEm0InYt4IkVpaUaQ5mdaZab8G09PIVX/+DaM/dbg/9GiO4yQSLYVCwfM4InCOnEtbtdIsKmBtuTUxhVqs6jVTXUO9aqvsKHZYrhg1xOKTRaOx9vb2FTpWk5YjBbmWSCRSq9U4Z1Kq+mvMcJerQZExoYQG9wWIZqNVaSzYAAJ4M6OpbWYtBGl5aQBHea58dxiNRjs7uxre/Z1j7R99887PfPGMkB5IAMZAJUMg+Lacgp8Wckz7P3zHCQNAKu3c0lRL5seJ7HGnPMOqBfBKyCPSSYh4Xy0xUOq6q9q+F5kLUmhRFtIkAQJ4Q5uPJkJeSiHxleNdH3nbXofX67rQ3t6WTs+qheCUXse5figpmdI11CJVwclViIH1WNCKPfXPQMjnguWVUTrsHjsQBoCojm1vb1cjdZOullwAiEajra2tc3NzJnmHcy4NdyVhqWKGtd+UBAo4xOy4GhJuxiOqtiH4qz+gmkBFYHBNpVJtbcsOqA/fN/LDc5m///6M44DO+eI27YsB1M3T0aKOTENC1PapqLbMP9s+9fVYeUo7FqTq8hXuFdzybCxzLDHzvaXuVy2NPChiPSRjy2DJzhvQr8gYeChDeEOE7rboo+87ONbXuOO2trapcdAMfJIxpryUXC+SSiVzYJqcTdmjwx/ZsEwBwxFp1BMEsBJPGtaglKgzEYyE7+vr27K+ky1OOkjQ0dE5NzcnhDTeedWZuHJTqzacM+rsAgCABmJN/4ASGmBPJ3XZsZNqL2SsRVsZgTHW17fS2oLtCfc33r3n7PTSjy4WHG76P2OmFDkEJs7p2am05Je29JzqYvulx1vmvu9ADbjjQxGNLqregyi2TD/lLl3Oj/5srW13YH4Q0sk4SOBXhzeAiMt+/V/tf+DOgeWeKxqNtrW1p9OzahxUqOOcIaoisH7JJppt7F+ijikEhJLsk8aH6SsdaqVb4qi0HNFDTCwW7+0NK8NNWiNp7SuVak8kEjTnQb1lE7ZGRBTCDn6WDRgSUIaEAZgf0pFSyzchpPWDmSOFQaD+KqUScZBIJAYGlu2XivYNt/7Oz+0b7ohKKQCETv4QgqSA2M+Gf8hktf3yV5MzTzNZpcYeYrgrKwBHc6eTF7/EaxnVSoe/aQQ8gDdRD4mHXj/64Qf3NFQp9WUY6+7uYowZk9a+HElfrxU+pkGYKVZjN0gTZFCT1jWi8GZ/MkyxpxVE54Senp6mIbdu0pCLRKJdXd3qzVrXhRBanbDAsyqH0ToobGQIorajWJxS24D0ExSC9hJ9RQAAwP7+gRW0Sks/dajnP71/X2cL16ijWSmBcBkGsYcAEhhGihfjCz+sLy63bKiXOZHsqejc88DApJtQ+WbAViffAEBIfPs9Q7/9c4db46soZu3tqdbWViE8Cy3zltAOUkjYQL4J++bVMxIc+qLPaIyiTulA80cHU/0sjuOOjOxQs2ObtA7yZxL09PTEYjHPq1lXYYiphs3CbNiIjWopCJ8ChrgBlTRHCYNAm0aoeauQblNh4vHYzp2ja0lxYADves3gJ9+5pzXCUHhGtghAAdIDKQj8pB9DM5/R7GmnljUhx5WKIPhXlMLNnQPh6ZxmBDN3ToW/RX0IDgCExHsP9v7OL9zR37F6NNZxnL6+PgD0PI9M4aUDn2VEiCkWk/7E32DAzQo0q4PQ4dRnik16RaOJdnd39fb2rXrzTVqO/IE2kUgMDg6eP3+OMbVfl3OyISCV/2yK6iGAjroSx4m1GbQtZ+0E1KaCZbZUGmZwTPWBqi6xY8doV9ea1qoHAIezD795FBF/90tncmWPOw6Y0ovaHlNWnL5/ADDOVsaZV2wcJF+JkMkaSSWxySU0wTJAEvH1B3v/5EP37B1aa0Sru7tndnZ2YWHBuns4VyvRqkVatKZnmGKj/yFvFhj3smWHHyQlKNUwVhaE+rTWgWJuJBLds+e2aHSdM9OaBKFlQPr6+tPpdC6Xc10GgJw7AApvzBQGVl/t7FXFb7QWfIivGKCwIkRGVqXeCGujI2J7e2rXrvGryuKLuPxX3jrWk4o++tjJqUzF4Rw4A+AGe+DDz3eoGFXQYA5JCtXKgg4AgonLRmzWx98QAOBdr93xH3/xjtHeq/CtO44zMjKSy2XNKlPqFXLGhHVoKaboZfeMQ6t+CrFNpZQ6lUQSdyUiSiHQsMCqKtq4t8wdHh7u62s6Tq6JApCLRCKjo2PHj78khIfoIIJZEodJydSwagsnsoDbT9pIK6L1OFuvtCTDqhpI7fAprc5JbA9w3chtt+1rbb3qRO+Iwx963UhXMvKbf3Pi2OWCgxyYrW7LibXmy1KjE64jQ5eG3VTkDes9JVJiIup84I27P/meA72pq87uS6U6BgeHL126AACIyLn65CTVy9ZfC1XUw6DfkjJFAljF0ueCHQJJJRo9piBiKpXau3ff1pkGfpNS2ILv7OzcsWPn+fNnDfMUa/0yssYxHZ5YEIIZ1TOplBNCBK0RND4bgaTMztjYrpGRkfU9EmPwlrv6h7sTv/2FE9/4l1khQAeyOIJUySgq/E1DW+u5jgpimWWuGnhKAEBIHOpKfOxd+x9+4+5EdD0uB8bYyMhIPp+bn59z3QgiBJcH06GUem2gbuCzOkiIfLcnUfg1U6zPKRqNHjhwcFOWqtlm1MBpNjw8XCgUpqcnEcFxHMZk3YpzPgXLQiEEcWeUTAow32xQgyuixZs+cmBgcN++fTarcH10aGf75z5615/9w7m/+MbEbK7GOWeSATAQxpzzq6SEo4306ZbTLbXPRGcYhzVJAJAIDmNvONT76fce/In9PXz5eMCqFIlEdu8eL5VKS0tLrotqdpIBnrpNenJmBGDAigOdeu77tCxfhFCKiSQ8UvJNmjPyvXtvGxwcWvcjNMlSA8g5jjM+Pu55tdnZWUSpikyqxQKUXUcK7xndDMAkQFgNE5Xqoj7JIEoRKK3bzeKtp6fn8OE7YrHrML2iszX6iX+9/w0He//gK6efejFd8dBRPhUt20zWMo2Mg715sPds9wemyegHbwA2JV5Guls+9NY9v3j/2DqUyXpqbW297bZ9J04cL5VKiGqNW25qAa3MFH+OonVXgvFRSgnUxlYhU8MUtE89Pr5nfHzv1pwdtwJ97cXiscnad8+WX7xSBYDDw9F798QPD0ffdmgzK942Dg3FYrF9+/ZLien0LOfSroSj9EzwOaz5aq1284kmrqq5izqdz/onG7AWEXt6eu+66+61BOLWSA5nr7u95+Bo+1efnfzzJ869eDHnITjcGHUIoKoJoFRDAQBEIpFEItHW1ppItKBZ8lepW0tLhXw+XyqVPK8mTAoovRwiCMTu1ui7j+z44Jt2Hx7rWCHYfbXU2dm5f/+B48dfKpVKjuMg6nXDQbPDd/qQFGfKFEmEmy0l5IfjzDjo+0vUmXfv3nPgwMGbK73rxSvVX/3beYU0S989W/7u2TIAHB6O/unPdR8e3hy/67LvMRaLHThwgDE2MzMtpXQctUy7VS/BztEC8F0pIWvBSDkACNtvRoD4vbavr/8Vr7jzOuLNUkcy+ov3j73xFX2PH335i9+7fOxitlyVnHMGDJgUyBAh1d4+OrZrfHx8bGy0r6+/vb2tpaXFnkH5VPP5fDabnZ6enpiYOHv61JliSx4BATgDIZEx1t8Rv+9w3wfeuOu1+3qi7vV3M3R1dd1++8ETJ04UCgUp9UpgdrUiADChxYDYDlluIU+y1SRttMAon+A4zu7d4wcO3H5z4e33nsj8/tezKzR48Ur19f9l6pNv7fjEW1IbdleWVinYWqvVJiYmLl68KIRwHKbmj9iAQUiZQZ1XSYEHoHUY336jfjB1lOO4O3fuPHDg9nj8hkv8+Vzlmz+e+cqzV545kZ7PVWMRtm8wfv/Owj2jscGhoUSiRT2dtUXBn32LtrN6nlfI5y/M5H8wGfv+RGUyI8cH2x585eDPvGb49h2pGwE2SoVC4dSpk+n0HGNgl+AzGiatt41G4wh4UJDMizPjoJ/PZdsnEi379u0fG9u1wS7Kxx577FoWuFkVb5R+952dH3nDskP8/v37M5nMyZMn7ZKxzz333L333nsti2M99thjq4xekUhkz549bW1tp0+fXloqKAZLqVjLwawOUSfl/G1lLdA0QNSRK1CATyaTe/fuGx0d25gcou722Hvv3fmO14wcv7T4j/880Rap3jXakmqJ2KV8UPtn9SMgouOgCW2hSXpy2lOpO1Ltt+8WP31HdXaJv+bwrn1jg46zEb2ztbX18OE7JiYmLl26WKvVOHeIoGN0DrEi4seyG6HMckHABoyx3t6eAwcO9vT0bsDjXEd68Up17XgDgN/48qKy7pZr4Hneo48++tnPfvZ63J2m1RUGVcC8vb19YmJicvJKtVp1HIcxBiCtXWdHUyDjaFDDlERu6HE0EokMDQ3t2bM3leq4jo+0KiGiVy32RpfecWcLQgtRlUOFdBUCfRHBmBpB1CNLKdFxoLc91tPm5dIXz3r54eGRZDK5AW6GaDR62223dXd3nz9/bm5uzvNQLfKuVA/DEbBREBsHxyBPTAUhP4qXTLbu2rVrdHTXBpcNvy700b+Zu9pDfvVv57/98cHlfv3Upz716KOPfvCDH7z77ruv7dZ8WquOnkwmDx48ODg4eOHCRDo9p4qZkxpPvslOFBi08VbLe/VrNBrt7u4ZG9vV3z+wwXqL53nz83OLixkhhOM4xjqFhjgxT8HIOGLHFGZm0ANKF6WYnZ1dXFwcHh4ZGhraAInNGOvp6eno6JicnLx06WI2mxOiZmeOq9u3+TSh4E398McYSyaTAwODu3btbm/fBAvn2kn5J6/2qBevVL/2YvHth1sa/rpnz55f+7Vf++hHP/rMM89cr456FWYxY6y7u7uzszOXy05OTs7MzBYK+VrNg2DSvTEOrSGhey0AOo6TTLb29vYODY10dXVtfDZ6qVSamZkpFoucs0jENVPOQmCj08+snmZFnZquxhmTajkAxkAIBgCuyzzPO3/+XC6X271798asvea67s6dOwcHB+fn565cuTI/v6BW56DxOqKDUKaox4NIJNLenhoYGBgcHG5tbb3pIgGWQv7JqzpwOcgh4mc+85kDBw58/vOf/9CHPnQNd+fTVXuiOOcdHZ2pVMf4+J5MJjM3l85kMktLhWq1KoRH9RklOjh3o9FIIpHs6Ojo6ent6uqKxWKbwtd8Pjc9PV2reUq4WbgRX5+V1dT34K9lCaYaAiJKCWruvJTgOBaiDgDOzs4Ui8XbbrstldogcRGJRAYGBvv6+kul0sLC/Pz8XDabLZVKtVpVCBtX9JniupFYLJZMtnV1dfX09La3t29WUcfrSCoAcN0PTCaTf/iHf/jhD3/43e9+9/rOH6J1On8ZY7FYrL+/v7+/XwhRrVbK5XKpVFIFA6VZDsZ13UQiEYvFYrG4sQA3h3K57NTUtJTSdd2gs4FO2KHOW2bTtaVEWi2Sc7DlmDjXLiI1XxsAENF1IZ/PHT/+0oEDt1tn1wYQ5zyZTCaTyZGRHUKIsqaimhMAuqQ5xGIxVW0uGo1eY4rPlqJ1S7lV1dH3vOc9n/vc5z75yU9+5CMfWd8lKF2HeIsqR5VItGz4ggprpVwuNzU1JSW6rqMSggFsBRGwOpg1d8xxjK6aTSOQUuoURymFAizn3PhpHQBEdIrF4vHjL91++8GNRJ29b9d1W1tb15EXfgsS4fiy9NnPfvaOO+541atede2X2/5Z4UtLBYs3413gBG9+7igzv9HIslE+waiggVxTxjitdWfO4TiO47pOsbh0/PhLW2210e1K684mWcuBe/fu/djHPvZbv/Vb67sEpW0OuWq1Oj09Y7JnLCp8nFiMQQh5Ok8fIABLvxXnQAxC/QPnFrEqhOkUCoVTp06te+X4Jq2d7t2zzlzWNR746U9/+rq4xG6mRJ6rJSnl7OxMpVJ2XZdkafjGm/20tpqJv/lzVc0OaabGm92mIQlOqsm7PmIdhyM66XR6YmJi796bLy345qLrLuVCq6gmEomJiYn1XYLSdpZymUwml8srtw2RUD72QggEIsvsVyPrfPXS/kJSq5hxzzJl11EVlXN28eKF+fmrjtI26aro7YdbDg1dtd/10FBkuQjBDaJtC7lqtTo/P286vk0NDcOMscCf2RPGIYD9C8zNJXqpRaYNMzDG9BQMz/POnj3XVC9vNP23n+/ZgEOukbYt5BYWFqrVqpJwyoSjIYHldDzimfQj+yt7tEyg3z+DuQQwBkbQ8YWFhampqevzbE1ahg4PR69qcsDvvrNz46fwbE/IlcvlbDajprYQBZJRsIWEG/hosV8DyicQAUhzxIi01JIwqLcyo53ihQsT1Wplw17CrUlrn5Kz8jSCG0fbE3L5fM7zBEmKY0Tlqydm/CVrOrlqu5aGxsWi8MlzuVw6nV7TNZp0DfTJt3Z8++ODK9h1h4Yi3/744KbgDbalx9LzvGxWz+BoJKDsVwDw6yYxxmjmYQh+zA+U6x3GZenvoY3thrkQYwykxCtXrgwODjWLZN1oOjwc/c6/G/rai8UXr1TrCzFssL8kRNsQcqVSsVKpcO4QZVKn9lIt0aSVMLMdNtkamnBs2QJEaJJUWF3imFUv2cLCQqFQaBb03xh6++GWzUVXQ9qGw20ulxdC1vn0rfbo48HOZwnhyG7bvXRjVf1TTaijeDZ3wMvlytxcU7e8pWm7QU4IUSwucV2sklHwhLBiv60QoA7KNDu3AEK2XNBKRL1eGIblpALg3NzcWpL6mrRdabtBrlqtVKs1EqdujChbPKK+85MqEvSzsTIZbBw4g20TPITlctmm3/JWpu0GuUqlKoRnvqG14mibeoQY5DQojBU8fehANYVHErUzfK2QCGQMKpVKsVha18M1aTvQ9oNcxeKHKpbLEaL/Z/YgBRspDWKb2anuSJMzw1N/AqW1jFuTsVqtVioVr9sDN+lmo+3msaxWK3WaJE1EBghaaDTLhB4QUikDFUN85RNIGx9XBLEWq/5kPERsSrlbmbYb5DzPQ7T+ejQzu0FFCFQbOwug3uNfZ8IB6HXbLKJ8b4qRdepACB4CwfZI1Fes1dY5f7lJ24C2G+RMTSvfrFIxNwCgkqwh2BrF3Ky4MwvsACIys1QBow0soqw8pKsEry1hpUnbn7YV5Eh3RzUt1QLJiLgwpjA4Uy7YIqBV2h/tYnq27DRZkpuurQdqURR6ZvNTg2WxmnSL0LZyn5hEE9/hAQBWqaNYCimQaoP4HqnLxEeKVSZDQCIt7b1Iu6IN+GOBVlCbCV8rUDweL5W2p61bKpXi8fh2473t3EbWaaWOrhhqJFKY1AkIIO1SNfrktuS0FaSqvS2cDuAXHkdE0DVn7VEBv0uTGtLQ0FAul9vsu7ghlM1mh4aGthvkOHeoTAvqhP46hgBg1j2lfhEKV0mPtVEBu9ocmiCBwiSStTWIbBN1qEYAFok0l7dflg4dOnT06NHNvosbQs8888zhw4e3G+RisZgVdGTxEUHUy3p4YHDtbC241PIDRsNUawYFzEWKLmu20f1kwURf3eWct7Rs5pKCW5za2truu+++xx9/fHp6entomKVSaXp6+vHHH3/ggQdaW1u3lfsEAGKxmPJnKL8ioqoCpJ0ZJvES67PArB4YTATTks0KPCqv6IaUYJXYIOatmad12kgkQleua1I9pVKpBx544NixY5OTk9eystQWoXg8PjQ09KY3vUmVFd2GkOOcS6kictKsy6Vqb6loAQPgdTkiwPz1tVUbCh4ISTAAfy0hirDgN/tVL3ujThKLxTdmuYKbmtra2o4cObLZd3FDaBtCLhqNlkplNVnGrF3OpZSc69UF1Io5Zm4bgL8CgSJfWIEJuIXwVoc0K+ICbhvzO9DVgFOpVDR6860j1aTrRdsNcq7rtra2LS0tSckZQ85RgQ0ApLQlK3WBSjKhTosyG6KzmiRAQ/lGoQhovJdoF4nVS92rX+1ClsgY6+npXb4kRJO2P2039wkAdHSkwDjrjXYnLBLqlEH6i14s2zghkfwmjXyj6qK/NiwAWNXSHAIKeFIK2zgeT3R3b3QVtyZtKdpuUg4AksnWRCJRLJYYY46jgmbAmABwEG01ZQCzAEhdRrLdsKadCpRTl0nI50nWZZbChhn0QtwSzWrj0N3d3Vya4xanbQi5SCTS1dVVKFxWKxtyjlKqdT8EY0z5ME1Os+81AbBeEwiCzeqZNtDnG29GbOr4QVCltOJOmhXG3eHhkWbqyS1O2xByANDV1T01Ne15NQAXkTuOVIacclpa4IEp0WWMK0liA0Bj6QZv1mDDOoclKvlmhaEQglhxDFF2dHT09vZt0itp0lah7Qm5lpaW3t6ey5dfBgBEB8DhXHkslU6JyqECYAUd2Dp5JLsSrMCDcM609Zf49pvwDUatTJq8ZyXinLGxXdFoM+/kVqftCTkAGBgYnJubK5VKkQgIAYgckXOOAByACaGi4XTCTniqAQWbyU3xQWbxZiw2QZJdfL+LBXBfX//Q0PAmvIgmbTHatnZFPB4fHh5GRM8TUgophRBCCBRCGA1QEhURQh5N4/mwHn80QkxYM82KNSGEEJIizVxF4y0Wi+3Zs3cbrMfdpGunbSvlAKCvrz+TyczMzAAAInKOymPJOVeTVmlZZQUPW33ZapVWmQRf3PlxAqJGqixNSZFppuqw8fHxnp7eTXoNTdpatJ0hp8ynQqFQKBRc1wVQQXA9b9VkgdGiCWC2A6VKjBpp59Tp/1IKoljaPdZlovO8hoZGxsf3NMPfTVK0XLnv7UOLi4svvXSsWq2qtVSZXnjRXys8OG0c0K/IYMEGZING27R/kiqZCn0Wb52dXa961atbW9s28xU0aSvR9occAKTT6ZMnj1erNcfRayza5R3BBMSVVDPBOj8wAHrmjp2Gg8ZFaXVLq18KE4XTEjKV6rj77ns6Ozs379GbtOXoloAcAMzOzp44caJarTiOwzlzHAeAkzV3fLIr8ljnh8rVEkJaQafcLdY5aY06W9QEUTbx1qSGdKtADgDS6dlTp04tLS0p1JHVHgEM8EiYDoJx8HDsm6iXAklRBnVkd3fP4cOvaOKtSfV0C0EOAPL5/KlTJ+fm5ozf0kLOd16qfzYsrjKWKfxIqhcNvmmR6Dh8x47R/fsPNOehNqkh3VqQA4BqtToxMXHp0qVqtaosO5PcTCs3+8vNkQCBH+ZWm8aZaZVJaG1N7tlz2+joqONsZ1dwk66FbjnIAQAiLi4unj9/fnZ2Rko0Dky9wmNwhjgEAEdm7piwm5reKqPR2MjIjt279zSXa2zSynQrQk6REGJmZvry5ZcXFhaq1apazpuE6Ww9We0yAeO6NAYbqnBCLBYfGBjYsWNHd3dvc5ZAk1alWxdyioQQmUxmenoqnU4XCvlazVN4Cy5B7LtTzK8sEomkUqm+vv6BgYH29nYlJ5vUpFXpVoecpWq1ms1mFhcXs9lssbhULpc8TxpRBgqErhuJx+PJZGtHR0dnZ1dbW1szbbJJV0tNyIUJET3Pq9Vq1WpF2XIGciwWi7mu67puM3urSeum/w8Y2S/vPUVdqgAAAABJRU5ErkJggg==", "path": "image.png" }
Complete the statement. Ammonia is ().
[ "an elementary substance", "a compound" ]
1
The model below represents a molecule of ammonia. Most of the ammonia produced every year is used by farmers to help crops grow.
There are more than 100 different chemical elements, or types of atoms. Chemical elements make up all of the substances around you. A substance may be composed of one chemical element or multiple chemical elements. Substances that are composed of only one chemical element are elementary substances. Substances that are composed of multiple chemical elements bonded together are compounds. Every chemical element is represented by its own atomic symbol. An atomic symbol may consist of one capital letter, or it may consist of a capital letter followed by a lowercase letter. For example, the atomic symbol for the chemical element boron is B, and the atomic symbol for the chemical element chlorine is Cl. Scientists use different types of models to represent substances whose atoms are bonded in different ways. One type of model is a ball-and-stick model. The ball-and-stick model below represents a molecule of the compound boron trichloride. In a ball-and-stick model, the balls represent atoms, and the sticks represent bonds. Notice that the balls in the model above are not all the same color. Each color represents a different chemical element. The legend shows the color and the atomic symbol for each chemical element in the substance.
Use the model to determine whether ammonia is an elementary substance or a compound. Step 1: Interpret the model. . Use the legend to determine the chemical element represented by each color. The colors and atomic symbols from the legend are shown in the table below. The table also includes the names of the chemical elements represented in the model. You can see from the model that a molecule of ammonia is composed of three hydrogen atoms and one nitrogen atom bonded together. Step 2: Determine whether the substance is an elementary substance or a compound. You know from Step 1 that ammonia is composed of two chemical elements: hydrogen and nitrogen. Since ammonia is composed of multiple chemical elements bonded together, ammonia is a compound.
a compound
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABoVElEQVR4nO19d5wV1fn++56Z28t2OotLZwEFFaVo0FhAVNRYE2OvmBg1aozG2KLxZy/JN0Vjj7GjMRYQYyyIogkqCNKUsiB9y+13ynl/f5yZubMF9ra9u6vz6Ge5e+/dmblznvu85bznPUhE0AuxbEvT0i2NLSmlJaWW4HR9gt5yr3vS4JraikAJTuegt8DhYU7AXic322Kpl5auK83otsegssDJ++zllaVuObuDngOHh3mgl8nNtljq6SVr0xoPBwLB8pqKoLfM4/ZJ4JHAw8DNwI3gYuBiICMwABmBISAYPxEA0TiU+NicgBMZPxF0TjqBRqRx0gFVTionlSiSUrZHkpt3tbTEk0Nryk4dP6T77oGD7ofDw/zAuvsCcsOnG3ekNd63oqJs4LBQOOx2uQEA0Bw0AkBABCIgAjGgiMb/YpyFuhpvt6Q28xKS+N2iAwAQ+Nyu/pWhMUP6+73ub3a0fLUzWpKP66CHwuFhfuhlcrOxOQYAVNYXADJuGYE5pABigMVgixfJ+B8IgIzhMxlgMzHGS4Tid7vTZ77LJUvl4QAALN3e0mUf0UEvgMPD/NDL5MYjSwCAxMHmjpbAqoD5fl3nticcfE/h8DA/9DK5qa0IAoDetBW6w6oomrazOQIAg4O+LvuIDnoBHB7mh14mNwcMrvZIbGcksnPjakVJGc92vVVRdb5ua+MnX63XdSr3e6bVVnX9Z3XQc+HwMD/0spkpAGhJKS8uXb89lur8rV2AgWX+U/ap63UTkA6KDoeHeaCXeTcAUOZ1j6wp65ZTVwd9Z+43vNeNsYOugMPDPCB39wXkj5ED+gYq+/oYlKDeYc3Wpq82bQ943N33cR30UDg8zB69z7uxgPZHXR4z6wDg97q6+DM56H1weJg9erHcZFCqGQHbyDtw0A4ODztDL5ab0tc79N5hdtB1cHiYPXqz3FiPHKvioPvg8DB7fCfkplRWxYGD9nB4mD16sdxkUDKr0nvNioMSwOFhZ+jFclN6q4K92I110FVweJg9erHcZO55qayKAwcdwOFh1uiVctM36AOA5njS+N2ZEXDQHXB4mCt6pdyI8m1N143fnZjZQXfA4WGu6JVy0xZdb1WSaRVMejlw0DEcHnaG74TcdL1VSSoqAFQFell7EQclhcPDzvCdkBsnZnbQE+DwsDP0YrnJ3PRSxcys9wbNDroMDg+zRy+WmwxKZVXsjxw4aAuHh52hF8tN6a0K9lqr4qDr4PAwe/RiucmgdDFzb7UqDkoBh4ed4TshNyWzKr04Seeg6+HwsDP0YrnJ6L4zI+Cg++DwMHv0YrnJoHRWxYGD3cPhYWf4TshNqaxK752AdFAKODzsDL1Ybko/I9CLzYqDLoPDw+zRi+Umg663Ko2xJAAMLveX5gM56JVweNgZeqXclPlcABBNK8bvpbIqvfJmOegyODzMFb3yysu8bgCIpFTj95LNCPTamNlBV8DhYa7olXLTFs6MgIOeAIeHneE7ITelmxHo+s/ioPfC4WFn+E7IjWNVHPQEODzsDN8JuSmVVXHgYE9weNgZvhNyU7J6BwcO9gCHh53hOyE3jlVx0BPg8LAzfCfkxrEqDnoCHB52ht4tN2j941gVB90Hh4dZonfLjTEj2MVWpSWlAEDI5y7FR3LQC+HwMEv0brkpjVXRVB0A3FJv3dzHQVfD4WGW6OVyUxKr8h2ImR10KRweZoleLjfWP07M7KD74PAwS3wn5MaxKg66FQ4Ps0RvlZuw1wUAutgNviRWpfePtYPiw+FhTuitclPudQNAMpUCKJVV6dXj7KBr4PAwJ/RWuREwrt6JmR10KxweZoneLTdQwhmB3mxUHHQxHB5mh94tN86MgIOeAIeHWaJ3y01pqjl7t0Fx0PVweJglerfcGHCsioOeAIeHneE7ITeOVXHQE+DwsDP0brlxYmYHPQEOD7PEd0JuHKvioFvh8DBL9G65MVASq9L7TYuDLobDw87Qu+XGsSoOegIcHmaJ3i039tEFcGJmB90Eh4fZoXfLDdpGF8CxKg66Bw4Ps0TvlhvHqjjoEXB4mB16t9w4VsVBT4DDwyzRy+XGsSoOegAcHmaJ3i03BkpjVXr/YDvoWjg87Ay9W27Q+qcEVqX3u7IOuggOD7NE75abjN53vVVpTqTfXvOt2OvHgYNWcHiYHeTuvoB8sGxL07ZYEjq0Ksy0KmZEjQgIGSMhSGCzKplhN62KsE02r5UAADSdf9qw89OGnYPKAgcOqRlZHS7BJ3XQk+HwMFf0JrlJafp/G3Z+0rAjrXHxzNZEYoBbkkhmjDHDfwUiQNbKqoDd8JjDSgCISBY/hC0iAgAXA00jRacWjRhCs6aXhYOBYCAajcVjiU0t8U1L4wGPvO+AqvH9K8q8vXhXQwd5oNQ85NSiEkNq6f08RLJ7az0VLSnlg3XbVu9oEQMc8nsD4VBleVBVNa/bBUQSQyBwSehjzCsxN0MPQxcDBoiMiBBRDDiiEUwjByCiNKc0J52IADROSZ0UzgGQE4mfhMA5AaLOCRAUTY9E4rsam3VNF9c2vn/FpME1fYPe7rxBDkqCTnnIGCKBW0Jv1jwkAC54qJMOdh4SAFg8BAS99/Owp8uNGOBlW5rEr0G/t6qqMuD3MEREYAAMAcF4jBmXFcHIuxmwZ9wy/imZYbb5m/hJRASGJ8yNB8TJeMyJOEA8nmpuiUSjcXGkSYOrD6rr65V78YaqDvaAvHloJXOMn5jxcDBDQADIZGnIlkL+jvGwR8vNpw07P1i3VViS8nCwqqbc63IjkISIAAwRwbAnxmNEAmKIQGB7TIhoWRa0omIg4+OLIBsNj4aMx1w8JkTOSZgg67FORIA6cUXTm5qiTY3NAOCS2IyRA8f3r+jmu+ag2GjHwwqvy5XhIUMkYuZjMB+jyT0EGwPNn2BaRME38So3uWp5NIbWtPa1STzO8JAUTesVPOyhcrMtlnp79eaNzXEAqAwHK2sqPC6ZATIEhsDAMilomBGzX6wxz4houTat/Rp75g1tFgUIDDeHbA4OAHCyfkUubAsJ9QFOYrwhrapbtuxIJtMA0C/snzV6UA/3aR1kiVY8LAtWVFd4ZFliaLozYFo+wUAE069hNv+61SSU/ehoTHq39XFMlaGMFQROAIaPQ9zUIC54CMCJdAKlx/OwJ8rNwnXbPli3DQA8brlvn5pQ0CcsCROWxBhj054ggvGYEBFJRFIZvwZA2BNAm/NqDHTmp92vIdOvMVXGsi3CxwHUiRMg58QRdE4EqHHeEolv37ZTkOOgur6TBlf3WJ/WQTZox0MvAkgMkUDKjocINo+mNQ8tBkJBPCQCwUDD0+nhPOxZcrMtlnptxcbtsRQAVFWGq6oq3JLEECTTl2EIrLU9seJkZvdrEKB1TVHGgyWb8Jh+rPU207XJODjc9ozl1xi2hYRtId30dFSd79jZ2NIcBYCQx3XyPnU9zbw4yAYd8ZAxRAkh42K35yGALXeTYaZ9mhzbMLAND23+TmseIgci0/vuiIfEAXQy3ByV8x07eiIPe5DcLN3S9PpXDQDgdct9+/YJ+D2ysCEMmWlJOoyWxWOwWZi2+ZqM1ogBFa8ajzORMzcjZ7sHa4+WWz82rQqI2QTrZzylbN2yXVFUWWLH1deOrOlNlREOOuQhE36NyUDJnjFs/RhsbCQy84mAZPNu2jPQlB0SFTcIRh7H9Gi4mbvZUyaRC48bQOPEARI9j4c9RW4sx7VvVVlZZblbYhIiQ7BiKBEtM+jAqrDWs1EgrEqryikD1mN7tGw9A5Dxb8n4gdTakrSyKlbkzIVtIeHj6AQ60ZYtO8R8wawxg/fpkXk7B+2xJx7aXRsAxEwGpzUPAaDV6oM2uRubV2OgVe7GfIpaPUOmf92KhxxaZRJNH6fn8rBHyM1rXzWIKcbaAX1C4QCzPJqMX2PGyZnI2RYzU6s5KbOIMzMLYHk6wm5Yc1KZ523erLghQndaz1XZYmae8XR0c46AA+jc+oka59t3NTftagaAMf3Kj6+v7c5b7CALtOZhkAHtiYftcze2eag987C15rRiY4c8tM1VdZC72QMPdQCd045dzY09g4fdLDcpTX97zbfLtjS5JdavX00o5JdEhGzEyaZVMUbaTPUTFzOIZmxs5uesT2UUhpOVk2OtlMV4W6usjZWxM2emhFtLGU/HUB/dGHUAZNyMpQ1TA0CAhMgBhXlpaolt27oDAPaqDJ0wrrbnJO0c2LFbHgJKrFg8NGMr0/IBWKmbPfPQlscBU3cAbDxEbpQLmk43AAFyROphPOxOuUlp+lP/XbMzocgMq6rK3DKzLImMiAgSAnDOEIG4hIwhmHOQmUyNxBgQMcZM2wJozI6bWRubhckojgnDknCesSqcTL8mkyFGs5pTRMtkRFLECTTOCVHXuZAYTmR4N6YGaYRNjREiqvB7zt5/uKM4PQ2teFhd5pYky6+RGSKRhAhk8RAZongVERka7GrLQzTiKWPWwszUAMDueIiI3MZDzrmZu2nDQ24ZwkxET6RxLvxuM54inYSXTcakVQ/gYbfJjTXGbgl9AZ/HxSQAmRlxss3HyYyuxNCaihKlN2gMORr140JiANCuPgyB6FuFvReRP0uwzQquSUoAMNLH+7v4vn7+g7DS300ISES2/JxRxGn8NF+1ZiJNp0bEyaATNytxOAfUOVnBs8ZJ4xSLpTRNL/N5zp3kKE4PQhseel2M7YaHEjPSN4KHAMQARVSV4SEQAjJTVsw571b2LxPFm5VfwuE2fBkEIGjFQzE5ZRWFCR6aeWL75JSVteEEOuccUeekmU9qnDTOY7F0N/Kwe+TGGmOvjL6gV9gTmTEJQJYYEsmM7dDZ/5K+nTquV1wAEJJomEefGlRHeHRjjA2rYnk61k8A41VgDFs0+Nt29zM7XXu4nqPL1V/2V4KMWxbGNtLAiSMy3bQ8ZrQsXFbSdSJEjXMxM2V5NzpxnUT8jBrnGlE0mtI1vSbkO3/SiK6/xw46R2se+twSY0SyxCQEmRk8ZGZoLzEmNCiTGza5h8KvgVYzpJavLbweM2sDiEicM8Y459aVCN+HkzUnZazUy/AQQPg7uvU8wftR19KktDYtA0CUQxDBz/QD/Mp+vrQPuZ2Hmjlj1b087B65eeHzb9Y2xnwyeoM+F0MxuoZVAVipeF6KBFekOxaIIKOf9UnMKleNaBkzKoNiVQpm5iBXpaSLvvFGdezwUHaEJPpLXXKkVwczR5NxbcjSHSPOsk0TEBEYaTkiTvBFUtquydtVxoFGupUKplcwzRrplqY4AQyrKTtl/JCi3lEH+WAPPLScmp26tFF1bVDlIIPhXm2YRw9LmUkoa71C60q/tjwE0we3Z3BsZTeZiAlsKRtuZHAsBpLFwzcj7sd3eLdqu+1XdUpZ/Khw0gvc7mUbPOTU0tw9POwGuZm/atOSzY0yQjDkc8uGJWFEMmMSwl+by9+Ld16SNNyr/35gYqCbm2PcyrYIBqxK4gXf+LLRGoGQRDcNSk8PqWANLQAA6NzwbK05SOHcctPmALLNafh7k//juDvO257Ox/gET/rkUMQFuqLxWCRBAFOG9j9kr5pcbpuDIqMtDwFk07thAKtUz7yo75NkB1ScFlQOCqpHlSliLjyTuwEjd9OGhwjEkJHJzyjHlXFgiCO8PCyZE99mvsbK3eg8o0Giy5aoC2vW6LpNgc8SnbeO8TN+U5+WwS5FeNkcQOVcB9Q5pTWKReKl52Gp5caqoSoLet0uSWYiQgYZMUnSbTsrNqh7inrsCEr0f0Pio7yW4rSKqFcm8LxctEYgJNHfhiZHenXDjAjDQkSABK1zN2aijgCe2OWd2+RtLzR2+JCfHGqZ5EmkVD0eSwHAEaMG7T+wMqfLc1AstOMhSggie5gk6elI6L24b89HmODTru2fGOQhs3oYM+szzWIcq0oDEV5pcr3TzP7d0komQhIdVqYfX6EdENKFKy3caiuSspgmHkR0vGSDf00q25yLn9FZFdEf+FN270Yn0IinlG7gYUnlZlss9dR/V6scwn63x+uSAGShNRJDott2VX+1mwBqdwhK9Peh8YFublR5MiuuprO/9n8ay6c16iif/uKIZGakAXTOkTHd7IPTyscB+P0W/1sRT5YHH+FSzi9vBEVJxlOM4U/3Gz4w1AmtHRQd7XhIMjLBw42KfNuuygTPijlBif5YGx/t49YMqZRhYKYlxdvN8h3fujcre7JGBwT16wYpozy6WXGDOvHW8xLQrNKcDYHVWWuNgJ/RTX2aBskqB9A41wk1kVUkSKS1EvOwdL2KU5r+9/+tUTkE3JLb42JEEoKY20aiV2KhXLUGAGI6/qrB5zLnrSRjdRX9s8mVn9YAwKqk9GqTLDOUESQECUlmyIzqdbFS1Fwvinj71kD2WgMAa1T3g01VPrfkckmc09NL1vbSprO9Fx3xEAUPc9IaAIjp+PONgTUpJljhYsiAhAWVQFTrwJ+2un6x3rNnrQGAT2LSGWu8/2xySUY2mlyMCa9fHE1C+NtOT65aAwAJjnfvKJfEtTEmIcmI4vJKz8PSyc1T/12j6OSV0Ov3iE8uxoMBNJLrxUgwv8OuTkn/apJlRAlIAhAe05M7clauVpe608WAxOWJsTF+ZqqZiSE83+iZ35Jzx8bNmmtuvCwQ8MguSdfp2aUbCrlUB7kiw8OAJ1M3jJDkLCetEYjpeE1DIK6DjMgAXIwxwUMEGfH2ze4/bs2WIVEdf73R83KjzIBkhkhcQmBIwohuVfGZXTkYNju26+ylloCYaxOW0rTNWGIelkhuPtm4Y2dC8UjgDXgYGt9biRnlDC+1BAo5+F+2eYXHIczUpjSuTBb0uVYmpS0KkzKVzcAAJAaMhKcDDHGrIv1he57+57uJ4Bbd7fe7EaAxlvxsa3MhV+sge7TioTkTKnj490g4V60R+FbFh3d47DWBwm2f2yQ/kbvZu22Te2VKQiLJsMcoAUoIf96Wp9YIvB71o2XjTYUV8/ql5GEp5Cal6e9/swUA/D6PGFrMfG+BAaxIF3QrN6u4Ji0xAAbEEFeli1C89O+Iy6jpQpAQZCbyiJnReq6poE7Ub8ZDLkny+j0A8NbKhpTZcdZB12EPPNypSx8k8k9evNrsTpCN1QBRzn6/KR+GRHSc841XYkz0OTC/I/jvSEG7GMQ5NmhutHlzhnkGKCUPSyE381ZsVDkEXAwl8Qkp49chblTdO/RCL2NxVBLlWAygQNdGIMaNtb/GFIOxUoZLCBKQjPB67mGUHUsVX5Kj1y1LEuOcXln5beHX7GDP2AMPFyb9hRw5quMrjS7h3TAGDPG2Te5IjrOiFjYp+OIuSWJMRO4MYGWKxfI9moVPEm4zg2FoooglkcjrKREPu1xuNjbFv9oZlQEkr8vKsyKQWaMJSSr0PgJAjBhDUVjVqltoASAxuSBsoJhrkNEYrdVpqfDh36K7GII/4AGAddub1u6KFeOyHXSMdjw0+9cwxhBWpAvdNeXTmCSqb5AAAeY2FuSMPLbDZfY8JkSIakXgdIIzY65DrD00ursYMyGl4WGXy82bX20AAK9XdkmmsmKmgwRD3MmLEPssjjKGYlcfKIraIGSOxsw5KQQSM1//ixeUihZYo3okBJmh2+MCgDdWbSr8mA52hwwPGUMrH2eObOFy80lcMubCEd9qKXT7thUJFiVmFe98Wwy5+UaRZcbQtg7D6qrBEEvDw66Vm4/Xb2tMaW4Gbo+LmZ6hhIgE1sxUkBWh8KdMIgQQpmCQuwgHDEkkitBbdyw1fsZ550foFGY3A/R5XcgwnlLeWrulCMd10A6teGj2bBPfNFksfCoYEd1YwYdYnHB+RRytjnGDi7FjXYgRAskm6yRs21XK55W7moddKDcpTV+4fhsA+H0eU02NqMT0Y5EhhlgRvrv1fm4UjBNMDhYh3TUtqCMAENn6J4H1uEjhWsZj8vk8APDZpp1OGU7R0Y6HwLAtD4tyIokhEBkKUTA2qwyJWLHIBjDMowk1NLq4gGlByeyIitjVPOxCuZn/VYPKIexClMze5kwoDiCAmOdjAH3lIqjDYMujQRjipQIdnEFuGuvnYPQQyOwcxFD4tzDQXQSJtHuzbhdzuWTO6cONuwo/sgM7bDw0emUxQIaW1rOifAdCEhn9bgCWx4sgEQ3pTJ8uwcYC0c/NgTI7mpgN3smoSkFA7HIedpXcpDR9za4IAEhetxU1WF2HJZbR1P4uqvNoBZ7uyDLN7KgGQHBqdUESdkq1cTQAANveHWhq5aBiyM1gWWEMrFja5ZYB4MstOws/sgMLNh66rF7XRnSMIGZ/JIZ17kIZWO/jiEjEEWBcoAjh/Fg/F70oEaBM4oX77FP9abGSWbLVoIh+u5LtG+pydSEPu0puvtrapHIIyQi2WQCrS4ioYhKpFgSaEUwXcq7JQb3CZez8LpobXTlAydvBCUl0fh8NyGwQaXUFNPt1McQpQT0kFUqpcV4NCSQQfQtRlpFJTNfp402NBR7ZgQUbDxlrHdEzBDS78O3tLTR2mBriQKIzQXEQlsyexwAIeHJVQYI4LaCUSWDtUyJqUIyOy2aEJb6hsqsLedhVcrN4wzYAAJds5lnJmt9hAKbWIAIyxBPLEn3l/P2FXw5QibjpjxAAIOL9e+UpYffvpZRJHE2lAbObeivFATy8rKDhH+NRgky3cjfCtoipgcUbtxdyZAd2ZMNDhjjFX6jcnFSpMIaChzPKipAfOCjMAcji4SlVaiEpgp/VxMG+27W5n4SUyd1k7kzX8bBL5GZrNNmU1iUAySWJCSORl2q1t7eoKQACAInhJdV5zvafW6NOCWjCqlgSQUTTyui+upw5dF+dMrPcmHUUOT/RAFIojtEhCQABLuubyu+CBU4JxSQx6iyTh/a4JARIpJSNkWQhB3cgYOMhM3jYeobRemaCT93bq+Z9oiPLtFoPkPBuCMb5eYHZwxnlOnHK8BAAAR8emszPpz6nKjnAxRkyMtlrbmIjvBuRk87s5tZ1POwSuflw7WYA8HuYESK2HWOQMh2kkSEA0fSg8vPqeK4nmhzUbx6cNqwKICCIniEISJxOq9Lur1OyH6H79lJOqVARUfxBi44fR9kLO+VHtns+irGIbu//CEM88It+eTpQhwZT430qZOLnTE5B9sgA8N432/I7sgM72vPQjKesHKLgITCES6pjgbxqMkIS3TgwLayRtSvD+X3yFy8AOL+PigytqxFe9jg/v2lQzpQ7qix9XnXSiKGY6PgFVlaIMQRzHxtm8326iIeF1iO1R0rTVzclAADdMpp7mEpM2Ba2XZeaNXlFyo2IQUbDvdpwt1YhIwCdVpliiA/uyLac/Mgy7Z4hKdHSXHRLE4GuEB1EIIDTqvWxPn5Dg/uj6J6EdUqI3zwoPc7Pxa4Mzze65jdL85rb3pxBbhrr1387IDXQTUBwed/0Wy3yymRuZYp1bu3Cypjw9bhuWRtEIgTwuGU1rW1qjKQ03emgXgha8xAZWMk4MmcYrY76AADDPdrPa+J3bMu5M8FNg9KDPRyRZXgIdGFf9W/bXZs66zvRIaaE+LQwJy5yz2B0Vwckzk+t0gFSN23yZNk37ugy5fp+CQ4gNEXnHM0qeSKSEHUiCZETMQack+Ah6zIeFr+91kfrtr67bnvYhczndiGKxjEyw3/Gyz5I+HfoHVz6QYH0yeXp/QKqhPhBzH3fdv8WtRO364r+yi/7KWBuxkBmVoWg1TNGLES0KCo9u1Oa1yzZxykk0cxyfWa5flS5Jv5kWRxv2uT5KLan+xuW6Nwa5fJ+ChE16fiTr/3ZK06dR7ujX7Ofkcq56Kum6lwH0Dipxu7OlEhqqqJOrut3aF2fLA/roD065qHxAF0Sk8UqTaOuH0Vs+1bUe3suinPPkNTJleasaIaHSEDLE+zE1Vn1ybZjkJsW1CfDzNQa8de2bykBfBlnN2/2fLxHlgYlurpvclZZWjc32BTbv2xS4MOYJ8ozm8ns603XulSVGx3Uu5SHxZebv3y4vCmtV/plkGWZgYy4VvU8GqnqdLHCRJ9656BYpQxRDZ5r9r0Tda1q10xooJsmB7Vf9ksP9hh5e8asXtOt9kkVKiM64JtPGLv5LIsjAIzzc+sZ8Z4Po9J5X3uyXFlX79Pvqk3Ve3Wd6LGd3ge2uTtdRTXVn76yb8yPxIlUzjmgqnONSNO5DqhwLoY5rVEynqoI+C4+0NmwIX+YPHSBSzKEBsElMQnAxZjMWq3vt2IrJJoX8z6wIxDvbDTH+PR7h6TH+nSj/zlj9l3rxHue2+W6Yn0OFcEhiV4ambKYaWzJaIKIUOzfgEhELzS65jXJH8elNoo2yqcfX6bMLlcCjOuAGjc2fnk94nm+yfN1uoOAxs/4UYH4Yf64F7micx1A5aRolIinygO+OcXjYfHl5vZ3lgJAWcgjI7gYLk4HH4tm2wm1v4vfMzBW79NEkfW3qvStyr7VpKjGxvq0MhnGiuphUz7EsLbybsyUUKt9Nnazp52AeGZRVDppdect2e0IS/TayNggN3GCZg2uafD9O9rxWqoJPu3MisQ+flXnnANyIo3I8G44F5s0aAQagcYprevxaBoArv3h3jldjwM77DyUGRoODsOM7iBKZk2GldkR6pMkdt92/7uxjk1ISKLL+ynn1aQZILLM/rwMxZ4trbzsZXHM0sep9/NHh6ZqPaIjemYPXzBapAOYW/xa+y+KvqLLk6xFAwDgBAcENA5A1p52RDqHBoX9bkvgs2QnmRM/8h+HIwd64oKNiq7His3DIsvNup2RZ5eu90vg8rvdjH2iBJ6IVuV0hJBEbwxrrnRldn2X2u7gk9lJyrAnAG2sCtjjKfNXaO3LCIhnmlSa/KU/j44B9T79XyNiiKhzY4fmxTG5QcGvUvJmBUd4eV+XPsGn9pF0MveK5wQcjD7Vis51TionHUDVuQaoca4SJBKqpmon7D10dHWeTQ6/52jDQ6E4MoJLkiQAl4QSosyY6DhlWyct9pZCCdHFEInejXlWp6WVSSnKcXJQH+jm43y83qfnxMNmDW5ocL+wa7ff9pBEF/bVLuirhZl956m2X0xOZCmatQkMtNuFSjDN2PUMcHmSXbQhFNtj3347ZgciRwWiKudaF/CwyKniNdsbAcAlMwlxk+Z+PlaR6xGiOp6/MTR3WBQyXoxZ88LMQBZEj3tAQAJAMQbGax17N9CR1oApQ+d948uvO8mKpPTgdu9lfdNo7kR+QECbFASNKzqBDqAR6eaO8WgYJwCz+pkh6pDhEBM7LhLJLklTtbXNcUdu8oOdh2jslGDtMGcphRH7MJHkA8isVjEew+Fh5UhzWbbYnxfBUhOLh7RnHpbL+GCdcvVA7c0m6aMoa9HxoygLSTTOT4PcfFqYzyzXyyTDhzGkpL1dNF0bMTdiMhyMXDKB0DuLhzonieGmFF68MQetAYBX42EP0nRfFHnxeVhkuWlojgMASDIQvZioSFI+E+2rUvKTu7znVKcFBRCNWXPjZkMmaCIiBkici116reHpMHrqMJ4iogaF7Xneas94bIf78n4KmGOPaFohICRAc+zFRSNAnNAvVnsyRJ0Yok5WhAjIxVweAsCmpihA37wv7PsMwUOSJCBAZm7XbXnHgFtV6dOk7xtV2qHJAIAIE33qSK8+PZBmzDZvJRK/RrMBBlZ0Y/JQPGPykEQm0TJ1dh4OdvML+/KL+u3Jy27DVftLCMABGAC3rK/p3YgSEOHdmH/LEYGILt8UyjVXDQAvxMoGSMpQOVV0HhZZbhrTGgByRut0/xo1/5agf9rhPbc6bY06IpJZkSWAYN5xAETckKRvNSmis7DEAWBcAERuH7Lwbu7+tqDmNREdX2yUf1SuWNMIDIUvY1jUzWl4odm/JCGvtWXp+sp8nFeZHkiOcaWFd8MQOBk1EbIMANASd4r98oTgITEw9/A2JowQYEXa80I09GW7BjefJ10AEGTBn1QkT69KVyAJDwhtK3UtXxuN7zoC2njIUHznM8nE7Lxs+3vsz1izHMYDy8cx7atgi1ECYmYbuOlH/2mHP4+dGwT+Hq28oeJbqdg8LKbcNDRGNEI3AwnZx+mCvK+ojm9HXEeWqUBk3lnLqgAAEBACNOv42A7387tcDe0KHMb6+QV91FOr9U69m+UFdyf5KCb/qFxhICIj0DkxQA70rcL+stP7eksHsrtNY9ti3n/HvGM9ygmh6Gi3AjxTgwNETGZc45uiyUHORlQ5ws5Dq5pUCMOfmiveS+ypsCvG8aFd/tci3gdrY2M8GtoEoBUPbfXrQgWYUAHTqTH/KCsvu02e0Xp1Yxo/jkmLotImxaDoWL9e7+MzyrQwmmkb4wBAnANjxLlZAQ9P7Mq/Tc4uLn2iBPZ1xYrLw2LKzfpdEQDwSwgAS5VCL+7tiGtGmZopgRQCjkBESIiID2933bd1tx1hlyfY5es993xLN9eqR5VrsHvvZkWiULnZrLBMLM2BMaZzviolnbehc1d2edq9PF11YXnzVG8cjQ9KDNHjcie11ModUUducoWdhyJ6QoAEsQebqr5SsvK4v1XZOetDfxgUnRzURYmd2MkbbQW5RIRGUsiIa9o4NdBaR7LJIVoPNqTglxt87eu/rGdOrtRuHJgqk8WpSfhW9pzOW82uAvvbLk379nfHi8vDYi5i2BpJAIDkkhhCKq+sjR2bVWbExsaIotgqWZTuXb7Bc/PmzmtkGhQ8d6374W0uaGdDBIoyMbc4Jll2T0TOn8Zdp3wTzj5sfqi5fH48KNxlwWWX2wUAG5ucBsY5w85DMxMMD7dUZKk1AlEdL90UWpmWhb9iji+Za+kyXjaAmdJpnbKB1sqyO19GwHoPET20zTVleWDPtaYvNMpTVwTmNcvGNwKQrPwgIhDsriYje6xVPUXnYTHlJpJWAYADrlFzK2DpEFEuZgLsmX8jO3f5Bu+LjTnczRsaXH/dKndoVZbnuARhtzDYBgC0KuW6tCHnnbOeiZZ9mAwI+8kYE45y2tkQJndYPBRVoAD0SrxsSTpn4xzV8WcbAi06tpohNdbrGjIjNMPSmrbZltbejTjsnnM3l6333JTdjjERHS9Y53uhSXwRyKwAEjkm2KwU+tVOEkuhXFweFlNuxB1UilTHY6m9yBObYwX3bvXkpDUCNza43myW21uVsb4i3McDg7qVq0PA27bkXLou8EwknCTDFSfOAUAv4Q7u3xlYPBQqkCBpQSLPTOJmlT25ywNGjiajOObqPGMVpT1KApsjk6V3Y71nz+U5HeLKDd55LbLwiMGqDAQw3a+CsEmViRMUj4fFlJsmRQcAxnCQXIRGp2GjCkVojZGV36jgfVvznPC6caOrw5i58EZZxiwYEQK8FZE/jeeZEUsS+1c8LHI3OukAoOiOd5MzLB4CAEP8dzKYKCC0f3ynx+KhWP4LYP5rmxsFs6Lvo5h07xb3FRu8J67y3rjJ/dBWuUFhsEfvRrz6RpP0t+35REBXbfRuTFt+jRENWGnkQsAAddKgeDwsmtxomqaJttAIAca9WGh7zYFusYzMvHeIAJS31gBAg4J3bZbbx8wzywu9lZND3LIqT+wsKJBclPQLLsoSA4B0uqA+Bt9D2HhopFHzCKPsiOhiI5fW32Eiy7sRZ9mYxpNW+8YuDZ602nfPFvfzu+SPYtLD21w3bnIfuMx3+Arv643Gd213uZsbG/KcSIroeP82L1lag9aMeaEYICsSKyYPiyY3nBv6Ij7sKFdB3acAYHJAE9kaMvPELTrmEUbZMa9Zam9VCpebI8OKGOkIZ5/EC0oGJYl9nvYyc7YVAFTuxFM5IMNDQABo5PImrdBtU75Kyea318zdiDDKzN3ct807dUVwD8nd5Ql23teeE1d5W/SOqzGeb8yzW4XAi42uTQojM55CgIHuQlntRR5kZClsUXhYNLlJKCoASGC4nPu4CyoNCkl0eFgFIjG6IlYufLew5QnW0DqFRkSzKvRCeq+dWKnWeowZgcLn1AFgs+4mIss4pR25yQUZHgIgwk69CKUeH8ck81tHwv5Z3k2zjkeu9N+7JStFWxRlP1rpjnDWPnfzZmOhzJnf4rK8GwI4Ilxos/dRrrT9OovCw6LJzfZoCgACsuFyTvPGq1j++np2VbpMMipBzVlw2lRwsh0ANrb2usTdzLuxcUiiK/qmLKsSKXizcwBIcGM+zuNxA8CGppybHH6fYfHQWFNSjGOae3wYPBTPEUCLBqes8a3IZXJzeSKjOPbnF+1x2jsbLI5JorhYaMQR4Rz6WHaIfTxJMadeRB4WTW4yt8+sdzot1JTfoYISnVWdFhMAwlkiIERsKVSvAQA2qW29GwCYGtLz6/Z4T21qkJtbVuWrVBHu5ybNbc7HATjBVI6wzQqBLSQt7JjGomvhZZsFNwA3bfbmpDUCyxPstxva5hDzm8q0o4UzY2WPqThnVeW/wUmVpE/xJuxeds8KpmzzfEbufV934vhgJNfjBCV6aq9oGROLRDJWhQiK4t00pFuNqxVF/65WzXVvjXtqkzPLVEQGplUZ4yvC/lMj3Wm0ukYCaI7a5ILWPCwOvwe5ud3LFrmbj6JS3pnE53fJC1syPFxWjG3wFsckw8s2qpzpsn7pUd48I4xzwk1grqGn4vGwaHJjm+fLKM4JgcjBvkT2BwlK9PuBiTFezWgGTXarUpy9BKeGWh3EytsR0QN7pR8Zls4mjxOS6OG65CmVGgAScTCtSrgYGxCLq7KsilSUeOB7gzY8HFHwlAUAjPHqdi9b5G4e2VFQBtqe7qktQlUsDHRnZsGNbhic/q82Hsw9pPpxKCKmeuy5m6LwsGhyI7YrFYVu1voRAJpT3nRJRbM/i+9hfxd/fEj08GAajB0VBHUyViVUjALgDteqiHUuADCzTF1QnzyvZrd1QyGJzq1OfzQ2PrNMEz62wT9EIqovRtHgCDltq54AGR29yQHteTjBnYPB6xBHlml2LxsAWnT2VqSgSdJFUdZiBlBlBVd+AcAgN7fnbsTPQW7++F7RnBTnR6HojGDMqqIWiySgSDws2hJN83sLoukQEQFjIqM23Rff26s8Hwm9E++4AiIo0YVVibOq0pLY7JA4mMWbCADARPeJKUENIP+6GwAISXRQWSvBsVeCkumh3DJYuXKA+mUcV6TkLxO4SWFlEtX79Hofn1mmiUILAKO5F5Hows8RMSzR4WH17QKI6EM+yp1WeabxsuPd5AQ7D4EBEe3rTX2uZLu9R3uM9umDXMKKMLPiFJYnijAqH0bYrArDPg1yUyET4WBGfIKHogcFJwKAMV79hbrI9d8G/pforHko42eVR6d6YjoJq4xF97KLJjeGVSEgEUkxa2IAAbCPpF9e1fLLqpaPU74Nqhzn+HXaNdGvIsL0oFrv1WRj+Rua+10IGTCWxzFAIhjr0wsclaMqeHvvhohadHyrRbZPWtX7+MxybWqoVbItUzFhKRQAir0+bPm5QuTm8EDc8Ng5ceIA4HcXf3Oe7zAyPAQAAmQ4zRNf4Ao2qHnGPtf3S0LGsAsfh61IFWFQViQNuSGimeVafiXFFo4s0+x1N6ILl1CcQR7+t72iLze5/9HkWdvRlfsZzQ4lZgbjXtBV0frPWgXGuThIUXhYNCrXVgQAoEmDMBGIz8kYABiiI76lDKf6Uj8IIALI5v7EDACAceISY4ZnJDqnmX+LwqogAsAV/VJXbsy/SPTK/kqbCqsPI+zeLe5Fu+nmd0qVdnnf1GA3t7xTo5zD9G4AgBNHZNy0KpOD+qSAlt86Bh/jh/miYNolVdEAYECoGJH99wYZHgIAAicCxAvCTTfsyqcf3QkVyuSgZtboolV3Eynq2hJEPKWqILkJSTQ5oCKitU+D8E2MWTQCIppdrhwVTm1Spfci7hgZ3Y450WS/updL0YhUnXRCAE5mC3NOBICqokKReFi03I0sW18wI1NFZCa1wfRcrNaLQo/M5bRmPEIGP8wIGRBNQ2V8w0+p0sbkmx85v486xJvJ3bToeM5a90mrvbvTGgB4fpc8dUVQrJxA024YSUhEMU+PtmgZAAjoz0MSeeTnAODSssYAy6xKFU+6mRNN5QAbD80cIlCtpFxY1pjroUZ59d/0SwB0wEModkJtfIBynRi14/J+SrlsZgZMHgrraBJRfONYf1k/pTJ5VkX8zMrEGRWJn1YkhroVMBu9kKWsmZUWxeRhMZdouhAAwA0cTF0Uz3NTcoxpNStjQqJsmACN3XMgk2M2/oTMfjdm2Tj8ba98dkqu9/OrB+lWpqZFxxNXedrvk9kh7t3quWKDt1lDm3cDZtkqWh6suYIGg4w/WRfLVXEuKGsa41G46RtKkgQAssvZSDNndMjDH/gSF5fnUAg2KaA9uVckLJudCYw8sXG0cF7b+7ZB2Da2RHTVADW/wrwxPv2CGoVzEhGQuU7d8JEBBFuNyEiISqbqhwiRZXwCI0VAZPCQM1ZMHhZTbio8EgC4yObdGN9KECZbhCCZ76cA4mYFlyRdn8SlT5LyiqSEhuMAVr8b4e8If7bWw18YkZvi1Pv5y6MVc2dCElqzPJcFBy80um7e7LF5N2C0jsx0zAayWZXRHu2xIdH+rqzmxf2MX1TefLA/aY660GIGAH5XoU2SvofI8ND0bgQPp/sTd/XdWSN17h2fXpl6bEgkLJl/aUwLWF4nFmUK0mp+Ika81kMvjcx52j4k0fPDkwSEzPi8YLPoRPBVUvo0If8v4eLcXIFhFtNYmgJWDw3bYg0ikdMoJg+LmYYMe1zbUzpxThLjnEBiZMSNAMyy/wTIiDgwFuH4VFPgs6Rrbeud/UISHRjQzqpKTwlqAICMWXkT4V2M9ekvjEhescHzVRY1nTPL9fvrlDIJwNwx4/J17py0RuCFRle9j5/fRxHejUFCsb8PY8BJVDoAGPmC0V79uaGRP233Ptu0p6C33qPOKW+qknVFJzJVlnPOgQFAecBJ3OQMg4fEARnnRDYe1rnUhwZsfzfhfzXqX6e0/Qr1c/H9fOrF1claD8/MCVi9JpCZsxY0JaiHJCqkFDgk0bSwtarZYOY4P39xZOqcr7PdAnyMT//bXskyicjcj0RECc0qzG3yzG1yrWzdGr2/zA8OKUeG0sPcqjDnorex8d3kHITimDNTnHOOxeRhMeWmzOeGlpRh5hlyIma2MudEkunjiTnyJxr9c1v8He6AI/qivx1xHRjQrh+QGuvTrTX1ol4SAcf5+ILRiXu3eh7e7trd2Axy082DlaMreSZzhriwBec15+kZ3rfVfUqVFpa4rQrRnPU32AmcGxVWBBCS6Mp+yZMrUu/F3O9H3Z/btjGsc2vjPcqhwdRgWRGbZ4LNE7S8v6AzLZU7DB4ScQLJHB3xkuDhYYHkkcFUgth61YVAO3S5v8zLZBrl1WRECUFEIhKYQYU51yG8GzFlOqNMK6Q/QZs+BFZ0My3MXxqZuqHBvectwAHgpEr1pkHpsGRmHJgR692/1fPYTneHX4otGnu+yft8k3dGKH1xdcyPXHxSkTMmBN6Wh0wEIcXiYds2P4Vg2aYdr63eUiYD+jwSgtvcI1VCcEtM7EzIEJIg3bcjvCiRVQVNWKK/7JWYEtDEeDDMRJ1CgRjiG03SxzHJagOKiFND+sxy3dQp40kAIKIfrfIWsqvUFf2VX/ZLA4CVBeecg7AqgDpRg4ILWlwRHQmIE3CAg4LqMLdKgBrnHMQumqDrnBDFjr2q2L1X5zqAwkkjUjkpaZ5OK0eOqd2vf3neV/v9RDseil00QUZ0SZKE5GJM7JnJiCSJMQCx+53MkIHxqsvczxcBGAIDsHYBRwBEbEjjtK/ybBIYkujfY9OD3a32zBTzShZj32iSXtglz2/XBSEk0Ywy7fw+6jifLrKigoc65xFiV2/0LmjJSgQDjO7q37KXWyFzr3qLhxqAxkklUDkvLg+LaTwHVYYAtsR1CgIBMm7kNgAAOIFkVtb8akvFOiXb80Z0/MnXgX8Mi08Jagxt80JWB3yAWRX8qHJNVAbTHvf3KXAHOwB4cZdLyI3RVcmqaQR4odH1h22ezWrb4z+80xdkdHJ58oSKlB+s3ebBtCrCfSUyJz2IAJEpahoAhpbnX5/2vYXFwwAYERCJZITwWQw/1OgOw8VedACIwIniwL6OS6I+o0yCsT7dSBlaO22Y3s1gD79xYPrmzfnUnV7UT2+vNdBqBQbNqtCPKtdadFyeYES0PCmN9emAODWoERGKqpFMogYQ8bQ1/pVZLxmNc7x6S9n/69+8l0slcz5H8BBMThadh8WUmwq/1y9jQgMPgMK5mbsxkryciBDv3RnOXmssXLze/8ywhBh7c0GuMffMAIi4sDzWsFkz0/Z5LkR8s6nQBHuDgsuTUr1XNxOIwDnfpLKL1gf2kEiKcXys0f9Cs29OTeyIYDqTL+cGWUTAzK0l8EwiTm6XVOErtDXU9xAWD70ACueSxAiQCDiQETsYWsOIiDHGiWIcX27xfxB3d5hGPKFcObJMlawcojn25/dRlidZriHVKdV6m/ovu3UEezUpQJlEU4IaIk4Lc3OPcCObCRkXGwHhyg3e7LVGIM7xd1vLHhjU6AEdwLB/IsnVRTws5swUAAwIeACA6TogcjK/SKYlX5p07W4dw54R0fGWzR4jY2I4SbY9whnjxnOddMCP5rJZ8u7QokHmSoi+SsnHrA5mk7SOcbxrW+ipRr+4LSK/Y9QZWTMCCCTCMIA+oZy3c3Ag0CEPAcCepxC14JzoyabgTzZUPdbob6M1YKYRf7Yx8NNvgssTzGhVaePh/XulT6rMoV7mlGr9gb3SbWpNwcbSNr659ZJZDwKZPcIhw8NFUTa3KZ9E0nadPbQr2IaH1GU8LLLc7FUVBoC0xq2cE9lU89loKO8jL47Li6LiK41oxiPWWntm1SO19m6gVUcC3FCE5cGwPClZh1yRkn78tb/T7a7seKrJvyDmtd0ZNO8PcfNeKYoGAEOr8r9d33NkeGjN7wrvBq27DQAY0fHuHeEnmzqesrBjcVw+/ZvA/GY5U4NqlkLcv1fqxoHpTiszBrnpxZGpB+uUNmoiYHHVbi/tb8CM4lgrJ8G6kqsb8g92/hPzblEZ2bSYAwlFLjoPiyw3w/uUA0BSN9Zr8EztEKxTXSvabcycE15scpsBJhiVOGiutbdmHwzN2e3+PoVcgHEcEKVS0KzBVRu9OWmNwL07QkuTLktlLN0xUgwI6XQaAMbVOHKTJzrgIYBZ+ZbR999tL18Qy3aKN6LjnA3+ec2yzbc1yowv6KvOH504v4/aYfeSQW66coD673FpMfPdJsYHGzM74CqaJV7mq1ZFPpl54uVJtrmw5Z1vRP0ieuLmNwsAAbDoPCzyPKsZNlMZ54okEQFH4ASE0H4T+FzxdosMYJREZnI35nyBGHtLc4QFYKxVhDzYzQEKTd+M8xm77jy2M6vCnw7xcFPw3v5NwvgSAQFy4mR4ajJxcrvkMq+TuMkTGR7qXJEkAjA8R0IOxJBxonsby5elcg5ArtnkG+xJjPNzMJtPCR4O8eJNg9K3DFaWxdkmla1IshCjcX4+LcwtloojdJhVbGML270HEYiLDDG3aoIMxXlxV6E1eJ8mvaeHI5wysQgnwi7gYZG9GwAYVhkEAF3TORjejbj6rwqWm4iODWk0A/FMjbJtBZbRcBMN+5CxCQBARIM9RZj1F213WnR8bEf+w7xecb0d9WTqHcQYAxCAoqgAUOdEUoUhw0MiolZxPSdalnK/k7VfY0dEx1s3iz+08RAzPBwX4EeV67/sr1zYVxVaY/ngZvxF7b3v9hUbRk4a0UgeWBGWMcNgxXSwIlWoBd2hSyLqNNjYZTwsvtzsP6QfADQputh3lgMJ1YwXvGs4ADQoaBZ6ipjcqIgzFpaDudMVmHGWMa+MAMAYmxIstPZ8oJtE7flHMSmPMMqO5WmPUE6dm1pDQIipVBoAfjg0nxXMDixkeIiGayO8bKE4z0Xy/xZ9HJfmtchGah+slYAmDwkEDy2VIZv9A6t+JzO7ZGSXBAwNM2bBrHOipT6G4oCRu2yT4skb61WXMXPHhbaxruBh8eWmX8hX4ZE0Qj/nPGNVAIrUFd/Kphn9HMla92Ht/gNg5dLM3RRFjnAvH04JZbWOaXc4uUoVw1v4LjSfJt2WR2P4sQAikgr63OVOJFUYWvOQrNwEAWxVWYFpxJd2uayFLBYbM162uRTbUBkAEApiRUmMcbNAzPBuzCMjmjU+LLMMlKy5EVPXbOfFlmJ0w4jpSIC66WUjSl3Bw+LLDQDs3b8SADRVMyprrXnHgkFmMt6446biiP4VJNrjmP29xHhzM1nNEDnR1QPzX+YfkuicagUAeDF2oUlwxjkRWYpDnCCVUgBgwoCqAg/uAFrx0MrdACf4b2H7agLA4rhk8ZCMsjjkZtxEZsNNMlUGTN2xIimRbbScE7uygBVtWecTiQKL87ZZVwIKF+NLXCXpptZ0IQ+7RG7GDqgCgK1p8oj0DSAnqspiJW6nODCokzE3ZK7AAtO7MecLwJ5pM71Z4d0g4pSQnve2mZf3U8pkw6YVpcHS8rTHNvuITJJSyRQA7N23rAhH/96jQx4SwAa10NxqRMePYpLJQ2rFQwDIgodcxEpmzsYoXzUTOZnKGnMWP3MWq0YUQCQrw1IRGvJXSVoJeNglclPmdY+qDAAAT2ucQCfihIVv4zvKp1vRmS3uRRIr662X2lUVi6ksZlqV+4eq9blv6nBipXpeH5VMC1DgZxEQo8s5cUBOpKQ1ABhWXebMSRUFrXlIot2RTrRDL0L3FiKLh2jxEJFZ0gC2jK/prRjr/gzvRhwHTM3KdBowVvkaEZPBtdZaY1kpgkmBQuVmkEvlgKK1OuddyMOuWnB82OjBqxat3JHm1R5OwDjRPp5C5ebwsGamgYihsSf3203SRzF5RQLFBmNhicb6aFyAn1SpjQ/Yxxssq1Iu4dzRyo9WurPfY/fESu2eIelM9h4gVAyhHu1RVFNrGJMS8RgAzBjZvwiHdgAArXhIIjeBRdrsTnzbGTKwWTVOYkcqsTkMCtUQq+osxcl4N1ZLZbO4w2pRyokinM1vYg2K6AYHYQaDPPzAgD7Ig6JzDScuan8PCyu3byloy4CDvElRnaQToSQlIl3Fw66SmzKve2SFf3VTgqma4nJLCD7QD/dF307mOSMQlOinlWmjsAqQEzy+0/PgVleb6aGIjh/F8KMYe3ibPCXEb6nVxvp1NGoCmbVrQpkEc0crv93oemFn54bu8n7KFQNUnZNZIYacaKCbfxovyEj6GNdtlcTptAYAdY5rU1S05qFLIuRWLW5hIDM6E96KxBgnYiwzPy38G1NrmKEvrXlovNHqOsIBkL6Ms/u2yLtrNXlgUL+sr3JAUDNiQ4IBbj67XH21Oc8I0cf4ZF+CzFU1SlfysEuCKYFpwwcCQGNKZ0A6AQc4JhDx5bvx20+r0iHJ+HI2a3Dsav+tm917nor+KMqOWO5+fpcsZg05ccMmGBEv3L+X8sLI9IzdpHJCEp1YqX1QH7+svyIUQSdOpjr8MJzPJr92TPSkhF/DATgY899HOa5NsWHjIQgejnLnv5uthf4unlmBBabvbO5sS2RWb3Ky5q065CGZUYwwpTdsdM/4yruHtraLY9JPvvbNWe9r1sBMgcPFNfmHDkf44340LV8X87ALuzf1C/mGhL0bIimeVNDv1Ql8SD8L77q7uSbXQ00PqhfVpMQq7BjHE9cEN6vZTqtf/o2rIY1XDtDQ6DYgetOAiImnhPWpYd6kwVstkrGfLwEgjPbymeUaABCBzgkZirl8i1v7+7WgRLECSm9GuRWRu9GJK2mdODmuTVegLQ85DZQKNRUDXDTAze3eDSLqnBhDTsAgszWQoTLAiFtxPeOcM2ZpkyjeoIjOzlvj/qizrloCC1rkBsX/WF08xIgD9HfzGwbEb/k257WUEz2p2aGYqmeyh13Kwy70bgDg6HF7uRCaVZJ0TgQ60Uh3+tyyppwOMtyr3zAgoRNwwCYdz/omkL3WCNyzWX52p8QN1eCZHSAAhOUpk+iUKv2X/dVzatR6PweiBS3Sqau9N29y3bfF9XFMMr0b4ycHDEp0etVuN9vsFCPdymRvXETLAFIqlZYYOq5NF6EVDwH3did8WFB69dCwIuZALN/E6GnPyZqssOahbNVhIvfHDT9IbKRm7n9wxTpXllojsDIpnb0u0KSjTqATHVOunp+jjzPYpZ5T1qxzI2tDwFKptIRdyMOu7U1Z5nXvO7By8abGWDLtDXhFhmyaN1HN9D+0VCZ552I3syx9RZ+Un3GdEID+vM27Kq+S7V+uc00JcWvHKACwGhMhIhHfmMb7trhf3NXqhpgNHN0hic6qVs6oVoOMm3NJcGpF+p2IvCav6zk2EBF+jU6UiCcBYEpdP8e16SK05+Fh/thr8XB+RwtK9ONKhQOIBZoMEYnmNrn/3SIvbl1rPqNcmxyik6q0CpeZIQawssW2gmC851t5fu49bVclpRs2++4alOCAOufnVaf6yPrvt2Tl4xzkT54WirhB1wF1Ik4UFzwc2oU8LGbz0N3hwQ++jKu80ieTW3YZnRxZkuMzsfKFid0WXPWV+a/7xfYLaAyQISDAVk06YW2eFAGAk6r0+4eqRrUVANjmy5/fJV+1vvNbPNDF7x+SHOHVOAEn0IFWJaU5G4PxHEOqc8qaD/QmNE4agaLxRCwZ9LkvnTI6r4/lIFvYeaii/Ntd/ZJ5Law5vyZ1cU2aITAECfGfTa4/b/PuweMOS3ReX+3KgXrb+gyz8nhDCqZ9mX/l4Z9qY/sGNLEIhhNtVtjtWwNfJHfrSVRL/IRQZKovqROJPtkl42Ep5GbdzsizS9cDQFnIKzN0SUwCkiUmAaRAWpL2/i/pTXBmLrjHYS51ZpkywquJdkYSQwRgiPdv8z3fVNCE39IJqQqX0f8ZTaf3yg3ul3Zl6+WFJLqyX+roMoWbHWpWJdnPG0LZK86p4chh/riqcx1R0SgWiQPAaROG1VU6zbS6FjYeemSJbeWe2xr75HqQiX7tT0NiDJEBSAg3bvb/K7spoXo/f3aUUi6RmUM0ezkC/XJ9Dgxsj3392v8NiemcCJFzI6O0Oi1/npA/jLuBaFnKVSPzPrI+RFZHedT9vIbQ6GLnzBLysBRyAwCvfblu2faoh4Ev6HVJTGYoAciIEkMJUUKQGUqIMkMxkIjA0HjMEEQ/6pO+KdvarhNwTri7TjV7rxkR9f1bXA9syXkG8amhsREeXTQiIsBvFfz9lj3ZEwEf4+eGm/fxpnUilZPGeTyW1nU+un/lCWMG5fWBHOSGNjz8JB14IlKR/Z8P8+p/GBwtl4EBAtAlG0JLEjlEQGP8/LlRaphxa1WneH78595C9pABgDdHtAQlMldpGBlGANSJdCIuXBjOOYDGSfzUiDQOOpFaQh52barYwjHj6io8UpqDllTEhxfZKaPWE1Djxk0xZxbRLJo0qrNaOBaoNQCwKGIdFjjRvGYpD60BgDkbAs26WOuEOud9XfzeQZGr+8aHejpekOVj/IRw7K6aHRO8aU4kcnvptK7rPORzO1pTMth5qBMc4IlfWbEzy+KMaQHl/kGRICPOiQPd/K0/J60BgK8S7II1LhI9AJAJen8ZxwK1BgDej7l0zq3ZDFF8b9ZtgG5+y3RTa3QydgTRiNKp0vGwdNsYnTpx2COLV8dULisaemSNi2UFAAAa5zJDjUhG1DiXzJ0zGYLQGoawOlkEZdykMN3mzd26Kc+UWEzH5xs9Z1elzJUyQABHhtKHh9LfKrgo7olxc5E30URPqtalaZzr5kjrRJoG6ZQiMfzpxKGFfy4H2cPiYbmiMY9rmJy6vXrb89GyRcnd9t/sK/MzqxIzw4roTA6IS2Lymy35kGdxjN33rXzZAM2sxoCNhTXiE9iiMouHtp+ocdLJEBeNczE7ISx9hofp0vGwdHJT4fcePWbwKysamhNKmczckqRzEm1qEJnGSWaoc0KJESdZQjRuGUnGfSxG30+zbx4AzG10FdJy8dGd3hMqUkEGZkW5UW3cx0XHhOOcxKwT6JxzQFXnYu6AA+gAmgbxWAIAjqkf4jSaKDFa8VBiLlnyAD8n3PzjUGSp4l2S9CZAQqNpEgxza1MDygS/hrYaYk70+6359wZ+bLt8Ro1aJht5jBXFsKNRHXRONsUh06nJ/CRETTe0RvwsPQ9LuknjmH4V6xojX2xtiUVT/qDXI0tIgGh4NzpxQAacS4g6J2AgcjeczCrvYkDlImamBQVvAvNB1DUjpJCxXs6oD9a4Ubmnc+AAOqFOnBB1TsK7UXRjxrF+QGV9n/wn2hzkjQwPYyl/0OuVJR3Jx/gUb+Jgf1ISKUUAM7GIHFrxcFHcU0hcH9XxpV2uM2sUsY9IUXgdYJn17gYPzQyOzkH01dQ45yiyFqhxbvFwbAl5WKLcjYVZ9UNGVQZ0gkQspehGfEEovD4RW6LGSQfQOemcrDtY4yrCKvsgy3iSn8QL/ewLoy5CMHwWS2sINJ1zMrJ0oiZQ5Vwn0AlUneKxJHEaVl123GgnZdNtsPMwrXOd7DwEnRO3HhvZ1szqts9yTNm0x+IockCVSCca7i0CscHI1KCdh6rOdSIdSDeypSh2SNGI7DycXUIellpuAOBHE4YNCXt1glQ8KZRFNaJK4gDC3xOZc51IN7Jf2FfW+8qFDsx+QVI5aQAaQSHrDwRinOlcZOBEbCzGlROgRoa+WP6ORqRxisWSxGmv6vApew8p8OwOCkQbHvL2PCTQxIQxJz2zSw983W47qlzxn4gsdsjVCPoXw47WyLrhX5Np88zPonPQCfSOeVhWYh52g9wAwI8mDKv0yooOiWjS0l1Dgw1/D8TXNWNtAMf7Cl3qcnBI4Yg6p8WFbd0rsE1lYpaB23LABmsJhFBqZgylE8XjKeIU9nlOqB9c+NkdFA47D0V+zcroi2+mlQExbQlxgMJnSAHA0AKC4V69v6vQgGpKQNE4F1KiE2giO8MNL1sjysQN3M7DUvvX3SM3Xlk664BRlV45rVMilkyrXIyuDqAJz5a4GYyYng6nw0MFLeTdN6AP8BixT7CzTciygV/ixjVzrgPZGImalaITu7vrFI0kNVUP+zznTRrulYvQ3slB4WjFw3gqrXKeybJZcTfZFIc0Ttu1YjT5TxMHFFmViYH8G9oCwJSA4kVuZSFEWGAppjDbIoZQdYpGu5OH3SM3YI50lc+V1igWTaQ03fARjBUcKETauoMaUb1XPawAxbmiv6Jxwx8uSsAcYKATqJZfBqAbttGIpMT1qzpFowld5+V+R2t6HNryUNUN7yaTuzF5SEaA36fgoB4A+rut+SO4vL8SKMD+HRNOCR4aMRSBzg190W1edk/gYbfJDQB4ZenMSSMHhrw6QTyaTKuZ76pmmhQjo256s+dVxf0sn4E5r48y1KNbsQ8nKGSABaol3czzGzGzLuoVzQhZ5Iaj0QRxqq0InrO/ozU9ER3yUNWpNQ9JMzMjNXIR+lRbPCSAAOPn1eTZXeDYcLLeq1g8NLww4/g9jofdKTdgjvSY6pBO0BJJpFMaR8MD1Gy5G7PymnuR39o/kqvizCzXzq5RCEU1J+qcdKKDQwV5sAAwya+I3LDhwZoxv2VVkooWaYkTp1F9yk+fONTRmh6LNjxMpTQzKgGRKtZsswFDXIXmEA8KahxFBlpMv8JJlemZ5Tkfdi+3dk5V3MxycuHICB5qlndDPYiH3Sw3AsfvXTe2TxkAROKpeDSp8kzGy/hp5WI51LrU3/WP1GTt0M4o164dkORG5TiKmJwDzCwriDR+Rvt5UyL/L9bUmrNsJOr6Yol0PJoEgPq+5T8aV1vIuRyUBhYPo/FUIpZUjYVFpIniTLNebn9//n2OBCYEueXdmFUU+LM+qSNz4eQQt3Zzvxadg4jyrPkKa3ZCWL5YsgfxsERLNLPB0i1NC1ZtUjh5ZfQG/W6JMUQJQWJi9S0yY90mMMQEsccaA+9G97RAvK+LLumbOjikig74onM1M3rEIgFdsSHwRb41FGeUx2eGEiJfI1RMrEnRCRRNTyTSmqrJjM0YNXDv/jksAnTQ7WjLQ5lJgKw1D6/dVrlRyXM6PCDRM8NiYRkFD63VwoDAOT25y/vkzs7bHhwdSp5dFTdX/0EHPARQ1B7Hwx4kNwCwLZZ69cv1OxOKzMDr8/q8LjG6EiIiiBJPBBBjjwDbNemNiG952rU+3Uo1pgTVKUFtZpmKaGwc324fGALENUl2ZYM/1241AFDr1n7ft0mstRXVX7qZ9kum1GQyRZwqA57jxw7pG8xnI2oH3Yv2PDQsn8nDVWn373eU53fwM6vTZ9UoYO7fYvXZMvZkAPxWxad2ehbFXAneATMn+ZWzKmJ9XNzY69nYWCnDQ7FCqmfysGfJDQCkNH3Bqs1fbmsGAL9LcgW8XpeEwqqAYWEYQ/EMmo8Z4naV7dSl8T6NIYr+FUTEGDN3ibH2S0Xi3Fr7P7/Fde/W3Dob+Rjd22+njxljrHEOgBrnqk6JRFpVVAAY27f8yFEDnWRN70VHPJQRyLJ/DzeGP0zk/B0e79fvqU2YOzHYehUTACLn3NohU+e0LCl/nZYT5taxo93KOL+ucw7mSgVLcQQPRX+CnszDHic3Aqt3RN5avSma1gAg5HO7/R7RHKdNBxwrtgKhPohCXKydw1A8BmNPH9aqY6OxDmtBxP3AtmxX3FVL/NLq5sEu0dCPdAICUDlPJZVkIg0AQY9rxsiBI2ucxVDfBeyBhwj0x13ln6Vy6Pe2l0e/ozYRRI4d8BDJXBdIJjPN3sYgNr82t7ID+9ooi4ecSCPq4TzsoXIDAClN/2Ddtv827AQAiUEw4JPdsosx4c1aiiMJrWEIlPF0AIAhABgtLpixdThQ6x6xZD7zdZL9v23BHZ2Vb43yqD+vavYh6aKPEYDGKZ1WE4mU6Mx2UF3fSYOre44xcVA4dsdDwcBHm8KLsvNxxvq06/ongozbvOzMV8/cN8bybkTfAmPVpVjJKV7VLa0h82fv4WHPlRuBbbHU26s3b2yOA4DEwO/zur1umaHVUdTu6SAAmp0AAQDN5y2/xtrJ0OpVDNYDhP9EPa+1eDpMAU70pg8PJke6zdl0AI1TKqUkk2kxwLXlgcNHDuwhEbKDoqMDHvrcwtP5LOl5viW0S9+trfIzOrkiNbs8LXabMjOJmTe05iESETd2uTO0pvWGVsA59VIe9nS5EVi9I/LJxu0NLQnIiI7LJUlG7sbm16DYKhWRIYh9wcHsXYKIJHYCslkVc0cOjubeHVsV2KnL69NSkrBK0qskPkBWApKxx6BOpHOeTmmJpGFJBpcHDhhc09O8Vgddgd3xEAC+SHs/T7pXp92W7vgY1XvU/QPq/n4lJINQGTB5aHg3Zpt+sfeL8GgMTnJu9FESm5EDiY42OicweZhKaclexcPeITcCG5vi73+zRQw2ALhl5vZ6vMZ4E0NmBFAATPQBREAzj2OfnzIOZ80IGM+IobV6ZbUNlXWdJ1NqOq3omlFUWlseOLiuX22F09L8+4X2PHR5PT5Tdyx325oVZcjsM6QZHhpdK8FoW0zAjS3ugMyebSByN6IrNgEBaDpPppR0Wu2NPOxNciOwsSm+dEvj6h0tad2o9At4ZHS7XbLkccuYGWwjm2NZFWbW3XBjzw1jpBGNjnwiZtbN+Fm4r4qqK2lV13k6bRR3eSQ2sqZs7/6VvWKAHXQRcuEhMcZaeTcGD1vX3WR8bStPnHn83eBh75MbC0u3NK3e0bJmZ8T+pNsluz0ut8eFgG6X1LF3Y1YzmN3wDbsBAJxI07jOuapoiqKqaquFDiOqw3v3r+zh/qqDEiNPHppBFJi7MpBhAUHsKfSd5GEvlhuBlKav3hHZ2BTbFktuj7XdtFSSGGPM5ZIZY6LzY5s5SAFV07nxX9uX+gS9tRXBvkHfyJpwD0z1O+ghyI+H1g6LAiYPOTc9JgvfDR72ermxI6XpG5viG5pj26PJlKa3H/Vs0Cfo9cqSGNraikDvHVoH3QWHh7vDd0pu2qMlpbQk1W2xZErbU9MAryz1DfrKfC5nl24HXQGHhwLfcblx4MBBz0GPaEDhwIGD7wMcuXHgwEGJ4MiNAwcOSgRHbhw4cFAiOHLjwIGDEsGRGwcOHJQIjtw4cOCgRHDkxoEDByWCIzcOHDgoERy5ceDAQYngyI0DBw5KBEduHDhwUCI4cuPAgYMSwZEbBw4clAiO3Dhw4KBEcOTGgQMHJYIjNw4cOCgRHLlx4MBBieDIjQMHDkoER24cOHBQIjAAiEajDzzwwBFHHDF27Nhx48bNmDHjj3/8o6Zpnf7xnDlzTj/99K6/yILQoy4ylUodfPDBkydPtp4ZO3ZsXWv861//yvv4K1asqKure+utt4pxsaWGw8OSobt4KAPA2Wef3dDQcPnll9fX12ua9uGHHz7wwAMNDQ133HFH3ucrEPvtt98///nPQYMGddcFdBHuv//+LVu2VFdXi1+JKJFI/OIXv5gyZYr1nuHDh3fT1XUzHB6WDN3FQ3n16tVLliz505/+dNRRR4mn9t9/f4/HM3/+/GQy6fP5in7KTrF58+bGxsbSn7ersXLlyscff/ykk0569913xTPxeBwAxo8fb7cz3084PCwZupGHTNd1AGCsVRLn4osvfvnll60xfu655w4//PCRI0dOnDjxsssu27lzp/3NsVhs9OjRf/7zn61nFEXZe++977zzTgDYuXPnFVdcMXHixFGjRh133HGLFi0S71m7dm1dXd3ixYvnzJkzduzY/fff/6abbuKcf/zxxwcddBAAHHzwwRdeeKH9RB988EFdXd1nn31mPfP555/X1dW9//77APDf//73lFNOGT16dH19/Y9//OMvvvii/aetr69/6KGHrF+vueaaY4891rqYhQsX/vSnPx09evS0adNee+21L7/8cvbs2aNHjz7qqKOWLVsm/kTTtHvvvXfatGkjR4485JBDnnjiCetod9xxx7Bhw3Z3oznn11133VlnnTVy5Ej7rQOAQKDzLeV//vOf/+xnP/v73/9+4IEHjh49+vzzz49EIv/v//2/iRMnTpgw4aabbur0CD0cDg/he8BDNmzYsMGDB//qV7/6xz/+0Wb8BObOnfvrX//6uOOOmzdv3v/93/8tW7bs3HPPtW+GFwwGDznkkPnz51vPfPjhh9FodPbs2bqun3XWWUuWLPnjH//4+uuvT5gw4eyzz161ahUAyLIMALfccsvpp5/++eef33PPPU888cSbb7653377/eEPfwCA11577d5777VfydSpU6uqquwnevPNN6uqqqZNm/bNN9/89Kc/rampmTt37vPPPx8MBk8//fStW7d2evsExMXcfffd11xzzZIlS/bee+/f/OY3d9xxx4MPPvjJJ58Eg8Ebb7xRvPPWW299+OGHr7jiivnz519wwQW33XbbM888I14aPnz4D3/4w92d4umnn96xY8fll19uf1JYlWxMtyzLS5Ys2bBhwzvvvPP000//5z//Oemkk2pqahYtWnTHHXc88cQTguu9Fw4P4XvAQ+Z2u//2t7/V1dX95je/mTRp0hFHHHHLLbd8+eWX1jseeeSRgw466NJLLx06dOjUqVN/85vfLFu2bMmSJfajHHPMMV988YV1W994442RI0eOHj36gw8+WLFixe233z5t2rThw4ffeOONgwcPtivxjBkzDjroIJfLNX369Nra2qVLl7pcrlAoBABlZWXBYNB+FkmSZs6c2WaYjz76aEmSnn76abfbfc8999TX148bN+6uu+5SFOWll17q9PbZMXPmzPHjx/v9/hNOOCESiZx66ql77bVXOBw+5phjVqxYAQDRaPQf//jHBRdccNJJJ9XV1Z1++uk/+tGPHn74YfHnJ554ovW4DbZv337XXXfdcsstbUZUWJWXXnrpkEMOGTNmzMyZM1944YXdXV4ikbj66qsDgcB+++03atQozvl5553n8/lmzJhRXl4urrD3wuGhhe8wDxkAjBw58pVXXnnrrbeuv/762traf/zjH8cee+zvfvc7AFBV9auvvtp///2tP9hnn30AoM1BDzvsMJ/PJxLRmqa9/fbbxx13HAB88cUXkiQdcMABxskYmzRpkp0i9fX11uNwONzS0rKHawWAY489dv369atXrwaA5cuXNzQ0iBMtW7Zs7NixXq9XvK28vLy2tjbXb+CIESOsK2nzazqdVhRlxYoVqqpOnTrV+pPJkyevW7euqalpz0e+6aabDj744EMPPbTN8+l0OhQKbd269cYbb3z88ccPOOCAX/3qV5aZaoPa2lq3221dknV54tdIJJLDR+2RcHgo8B3moWz/kCNGjDjvvPNisdiNN9746KOPHnvssUOHDiWisrIy623isZBDCz6f77DDDps3b96ZZ5750UcfNTc3z549W7xN1/WxY8da79Q0raKiwvrVGhiBTjcsnzRpUk1Nzbx580aOHPnGG28MGjRo3333FSeqra21v7OsrKzNRXYKj8ezh1+JSBzwzDPPRETxJOccAHbt2mX/UG3wn//858MPP1ywYEH7lw444IClS5davx544IENDQ2PPfbYj3/84zwub3cX0Lvg8PA7zENZUZRt27YNHjzYeioYDF511VVz585dsWLF2LFjGWN2sRePhZ9pxzHHHPOzn/2subl53rx5EydOFHOHoVDI4/G8/vrr9ne2SQfmBMbY0UcfPX/+/F/84hfz5s0TCTZxojYWqaWlpX///m3+3BoegVQqldPZxae+7777Ro8ebX/efvfa44033ohEItYUIxER0bBhw66//vpzzjmnzZvHjBmzePHinK7quwGHh9mj9/KQ3XbbbbNmzWqTnFu3bh0A1NTUuFyuMWPG2N3O//3vfwCw9957tznQIYcc4vV633///QULFgjHEgAmTJiQTqc558NMeL3e9ne/Q+xOJkUE+9FHH33zzTfWicaPH798+fJ0Oi1+3blz5/r169tfZDgctpuaXL3cMWPGuN3uxsZG6+OUl5dXVlZavmWHuPLKK+fNm/eGiYsuuqi6uvqNN944/vjjFyxYcOmllyqKYr35s88+a2MevydweJg9ei8PmUjznHjiiU899dTixYsXLVr017/+9dJLLx07duz06dMB4MILL/zggw/++te/NjQ0LFq06LbbbjvwwAPb30GPx3PEEUf89a9/3bVr19FHHy2enDZtWn19/eWXX7548eJNmza9+uqrs2bNevrpp/d8TcJPfuedd8TcQRvsu+++AwYMuPXWW0eNGjVq1Cjx5BlnnKEoyjXXXLN27doVK1ZcddVV4XD4xBNPbPO3e++99/z583ft2pVMJh988EGRkM8eoVDoxz/+8X333ffaa69t2rTp448/PuOMM371q1+JV+fOnXvxxRe3/6t+/fqNsqGmpkaSpFGjRlVUVNTW1i5YsOCiiy5auHDhxx9/fO2113788cdz5szJ6araY/ny5e/Z0CvcJYeH2aP38lCura2dO3fuQw899Mgjj2zbts3tdg8aNOj8888/44wzhFjOnj07lUo99NBDd999dzgcPuKII6677roOj37MMcecf/75P/jBD6xqRUmSnnjiid///vcXX3xxIpEYPHjwZZdddu655+75KsePHz99+vTbb7998uTJjz/+eJtXEXHWrFl/+9vfrPsLAEOGDHn66afvuOOOY445RpKkSZMmPfvss1VVVW3+9rrrrrvmmmsOOuigsrKyM84444QTTvjPf/6Tyw2E66+/PhwO33777du3b6+qqjryyCOvueYa8dKaNWs6DIz3gFGjRj355JP333//z372MwAYPnz4o48+2j6TlysefPBB+68DBw5cuHBhgcfsajg8zOVu9VYe4ncmxejAgYMeDmdFuAMHDkoER24cOHBQIjhy48CBgxLBkRsHDhyUCI7cOHDgoERw5MaBAwclgiM3Dhw4KBEcuXHgwEGJ4MiNAwcOSgRHbhw4cFAiOHLjwIGDEsGRGwcOHJQIjtw4cOCgRHDkxoEDByWCIzcOHDgoERy5ceDAQYngyI0DBw5KBEduHDhwUCI4cuPAgYMSwZEbBw4clAiO3Dhw4KBEcOTGgQMHJYIjNw4cOCgRHLlx4MBBieDIjQMHDkqE7pebTz755Lzzzttvv/2GDRs2duzY44477tlnn83mDzdt2lRXV1dXVxeJRHI96VVXXVVXV3fLLbfkfr2d44EHHhAX9rvf/a4rju+gK/D888+feOKJ48ePHzZs2MSJE88888xPPvkkmz988cUX6+rqZs2alcdJDzrooLq6urfeeiuPv90dnnjiiTobhg4deuCBB5599tk9Yav4bpabjz/++Cc/+ck777wTCASmTJlSXV29dOnSa6+99qmnniruib799tu6urpHH31U/FpfX3/ooYeOGDGiuGcReO2118SDN99809kTuVfgD3/4wzXXXLNkyZLa2trJkycj4gcffHDmmWcuW7asuCeaO3duXV3dihUrxK9Tp0499NBDa2pqinsWAHC5XBMmTJgwYcLYsWMTicR77733k5/8pNsVR+7e0z/11FO6rs+YMeMvf/mLeOa666575plnnnjiiTPOOKOIJ7IkQODcc8/tdEf6/LBmzZq1a9eGw2G/379ly5bPP/984sSJXXEiB0XE448/DgA33njj2WefDQDJZPKkk05asWLFc889N378+CKeqA0P77zzziIe3I4+ffq8/PLL4nE0Gp01a9amTZtefPHFAw88sIvOmA262bsRcVBFRYX1zLXXXvv+++/b3cu5c+cec8wxo0ePHjt27Kmnnvr+++93eKjTTjvN7r+89957dXV1kyZNAoBjjz329ttvB4Df/e53dXV18Xi8TTClKMo999wzffr0ESNGTJw48ZJLLvnmm2/ES08++WRdXd1FF120ePHiWbNmjRkz5vjjj1++fPnuPtHrr78OANOnTz/ssMOgHb0c9Ey04aHP53v00Uc/+eSTW2+9VTyzB4a0gQhhLP/ljjvuqKuru/TSS+PxeF1d3X/+8x8AOProo4899lhoF0xt3br1qquumjRp0ogRI6ZNm3bzzTdHo1Hx0iWXXFJXV/fYY4/9/e9/nzp16vjx4y+++OLGxsZsPl0oFNpnn30AIJVK5XV7ioZulpuxY8cCwLPPPnvllVcuWLCgpaUlFAoNHjyYMePC/vKXv1x55ZUrV6489NBDJ02a9Mknn5x11lkLFizI6SzHHXdc//79AeCAAw4455xzXC5XmzdcdNFFf/zjH6PR6DHHHNO/f/8333zzhBNO2Lx5MwB4vV4A+Oabb6666qr6+vqqqqovvvjikksu0TStw3MJuZk5c+bMmTPBiad6CQQPr7vuujvvvHPx4sWKovTt29ce4+yBIVnC5XKdc8454vHs2bOPO+64Nm9obGz80Y9+9NJLL5WVlc2ePVvX9ccff/yMM84QTBM8/Ne//vXII49MnTpV1/X58+f//ve/z+bUsVjsiy++AIDudW2g2+Xm4osvFro7d+7cCy+8cOLEiccdd9zf//53cYsjkcgDDzwAALfeeuuf//xncfcB4K677srpLOeff35dXR0AzJgx44YbbnC73fZXP/jgg3fffRcRX3zxxfvuu++f//xnfX19JBL561//CgBC+NauXXvffffdfffdwuveuHFjh8Zt1apVa9eu9Xg8hxxyyOTJk8vLy0U8lfuNcVBS3HrrrVVVVYlE4s9//vNpp5229957n3POOe+99554dc8MyRJut/uGG24QdLrooovOP//8Nm945JFHtmzZMmTIkNdee+2ee+555ZVX3G73F198IXwf8Yfr169/9dVX77777uuuuw4A3nnnnd2dbvv27SeccMIJJ5wwe/bsqVOnbt269fTTTz/ttNNyuy/FRjfLTXl5+dy5cx966KHTTjttyJAhRLR06dLf/va3v/rVrwDgs88+E+7f7NmzxfuPPvpoAFizZk1zc3OxrmHRokUAMH78+KFDhwKAy+U68sgjAeDTTz+13tOvX7/9998fAIYPHx4IBABg27Zt7Q/1xhtvAMAhhxzi9/tlWT7iiCPAiad6A8aNG/fee+/dfvvtRx11VFVVVTqdfvfdd88+++znn38esmNI4RBnmTFjhnBk+vXrt++++7Y5y/Tp00OhEABMmDABAJqamlRV7fBoqqp+/vnnn3/++bJly6LRqCRJGzZsWLVqVREvOA90/0Q4Y+yII464/fbb33333YULFwon8+WXX960aVNTUxMAeDwev98v3lxZWSketLS0FOsCxFns+SNxFrui2V/1+XwAwDlvfygRSS1ZsmTWrFmzZs0SaSYnnuoVCAQCp5122p/+9Kf//ve/r7zyigivHnzwQciOIYUjJx4KEsJueAgAAwcOXGfiv//977nnnrtw4cKf/vSneVSNFBHdKTexWGzevHkPPPCAlcEaOHDgPffcI8syAGzYsKG8vBwA0ul0MpkUb7ByY/ZRERDepnWoLLNoACDOIgbb/reWtGWJlStXfv311wCwY8eOr7766quvvhIekBNP9XB8++23L730kgiTBfbZZ58bbrgBADZv3qxpWk4MQUToVh62R1VV1S9+8QsAaG5u7l4qdrN388tf/vL++++/4447FEURz7z99tsicTNo0KB9993X4/GALR755z//CQDjxo0Lh8NtDiUSeyIlBgD/+te/7K8KEsTj8fbXMHXqVAD48ssv169fDwCKorz55pvW89lDRFL77rvvOhumT58OTjzVs7F+/fqrrrrq5ptvfvXVV8Uzuq6LjEm/fv1kWc6JIXYexuNxMRVloVMeLliwQHwXNm/e/L///W93Z8kV1nxuMBgs/Gh5ozvrboLB4NVXX33LLbc8/vjjL7744sCBA1taWrZu3QoAxx9//JAhQwDgF7/4xV133XX99dcvXLiwsbFx4cKFkiRde+217Y926KGHvvrqq2+99dacOXOi0aiYQbSimH79+gHA448/3tDQcPXVV9v/8OCDD/7BD37w/vvvn3LKKdOnT1+2bNmqVatqamouuuiinD6OkJs21aVHHXXUe++99+abb15//fWCag56GqZMmTJjxoz58+dfdtllt956a2Vl5datW0W0fvnll0OODDn00EOfe+65O++8c+XKlUuWLOnfv/+OHTvsPNy8efNvf/vbadOm/fa3v7X/4XnnnTd37tx169Ydd9xxIpekquq0adN++MMf5vGhRKpYPG5paVm3bh0ATJw4USR9ugvd7N2cc845jzzyyPTp0wOBwNdffx2NRidMmHDjjTdac0+XXHLJnXfeOXz48Hnz5n322WfTpk175plnOtT72bNnz5kzp7q6euHChQMGDBAVE+l0Wrx6wQUXDB8+PBqNfvTRR23CXUR86KGH5syZ4/F4XnnllR07dhx//PEvv/xydXV19h/EiqTE/LeFI488UpKkLVu2fPbZZ7ncGAelAyL+4Q9/uPnmmydOnKjr+po1axhj06dPf/TRR0899VTIkSHXXHPNUUcdJcvyu+++e/LJJ5988slg4+Gvf/3r6urq9evXr1y5ss0fVlVVzZ079/jjj9++ffsrr7zi8XjmzJnzyCOP5GelrFTx559/vm3bthEjRlxxxRVPPvmkVWLSLfj/A5DtcPy8ZOYAAAAASUVORK5CYII=", "path": "image.png" }
Which solution has a higher concentration of blue particles?
[ "Solution B", "Solution A", "neither; their concentrations are the same" ]
1
The diagram below is a model of two solutions. Each blue ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the blue particles represent the solute. To figure out which solution has a higher concentration of blue particles, look at both the number of blue particles and the volume of the solvent in each container. Use the concentration formula to find the number of blue particles per milliliter. Solution A has more blue particles per milliliter. So, Solution A has a higher concentration of blue particles.
Solution A
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAU0AAACPCAIAAADxxR6YAAA+/klEQVR4nO19eZQc1Xnv992qXmbtWTQzmtE20kggicULJoC3gCEO5MUGxxsY7IDxA8e82CZSRELykhOfvMMOESQH/GxicLzEwRgRY2xjHGHiY4OxCYvsPAuh0WiZkWaf7pnpre793h93qVvVPaPRbGJ66neknurqqurquvf37fdeJCKYJwghAICIEFFe1nGc+bp4hCUE0xMAQHYGxhginuz7Wr5w53Ky53mFQiGXy+XzuUKhUCwWiYBI+Fd3Y4lEIqkR0b5SwTm3e0KhUCQNyXPXdROJRDKZSCarksmk686p40U4UczmcXPOJycnM5nMxMR4oVDgnGvJDdI4ICIAEgKIhGxsxpxkMpFKpVKpVHV1TUT4yoAQIpvNjo9nMpnxQiHPOReCAHyDzuoJRCSIABETiXh9fX0q1VBbWxsRfnGAJ2S3FwqFTCY9NjaWzeaE4IiIaNtjZHguGQ4AQggiEkJwLoQQjGFtbW1LS0tDQ2MsFpv33xNhceB53vh4ZnR0NJvNeh5HBEQGAKYzWDyXsh50R1A9ARFqaqqbm1c0NTUlEsmT+WOWAWbKc869sbGxoaGhQqEAgIwxRJDNKltWMxxsekvKa6qTkK3MORHV1NR0dHQ0NzczFun2pQQhRCaTGRwczOVyADBNT5A0l+2ve4I07xTbOfeIKJlMrlzZ3tLSEsn9hcPxeU5EExMTAwP92WxWKnCmBDciIpFpXbJfNWRIxlDdF+ecewDQ2Ni4Zs3aurq6hf6dEeYF2Wx2YKB/fHwCNMMRUXYGAEAkANT0Vn0BAKSIt4U+keDcyH1PCKqvr1uzZl1DQ0MUrlsIHIfnQoihoaHBwUEichwZNA2ZZ2DahUg2s7LTtOgmY8YTkSS5UeycF2OxxLp1nW1tbVJ+RHhjgohGR0f7+/s59xyHSX9NQh9Q2hNIBmVlH9BsV1Eb3Q2IKxQZc1avXrN69eoofDPvmI7nhUKhv/9YOp1BRNeVfrgS4bpFEXSsBYARkYy/aNNdhV60FBeWDS+1Ouece55HRB0dqzo7OyPL7Y0JzvnAQP/IyCgASHGvDTqw1K/pSxjqCbrdzYbdEYyJxz3P45y3tLR0dXUlk1Un56dWKKbkeaFQ6O09Mjk56Wg9bmOKq/nmutW+AKBkuaQ65wJAti5x7kk/zfOKbW0rTznl1IjqbzR4nnf06NF0Os0YYwyDnQGkrC9BaU9QQt/uCbbQ55xLuV8sFhsaGjZv3lJdXb24P7SSUZ7nkuTZbNZxHOmRlzAcTRZNQ75RoRe7gbXprhrYb1zfQ+Oe53me19bWdsopp8bj8YX90RFmDENyx2GMKXNddgcAkCSfpifoCByYniA3OBe29a69OS4E9zxeLBZTqYatW7dGVJ8vlHGJi8Vib2+vJDmTMlyBAchEGtMBOf9TAPXPJNt0GFZ2CzCH6TOMcmCMMcdxHIf19fX99rf/z/O8RX8OEcqAcy5J7rqMMUfrc7sn4PQ9wd+n3wKACeIaOI7sCY7sCK7rjI4O/+Y3v5Eh/QhzR5jnQoj+/mO2ua6bkOl0muao3YC+qsdgK4Y+V/3A0F5vSKozxlhfX193d/cMs30RFg5ENDQ0qDW5IxvcUunhnlDa6lIWlO0p8tQQ4a1LMsacoaHBvXv3RkJ/XhDm+cjIcDqd0UYa6rJkuxnKkFhdy6ph1s2pYrDyrW3vycqK4PUcx2GI2NNz4NixY4v0ACJMgXQ6PTw8IiknW98Kv5WlNpguwRiz/HbUXUi/wdBVwO9oIL+IOQ5zHOfo0b5Dhw6dnN9fWQjwfGJiYnBwCBFkO9kkL0vsoDC2L2XrdigR5IGrBcUHcxyHc753796JiYlFeQIRyiCfzw8M9JMefyKbBoCF2s70hKn4D/7HtsRH89bKvSuGG99Q9qj9+/cPDw8v5m+vSPjkFEIMDg5y7mmfOURRu4HBaicoPUjvCxyjT5QHSNFg2/RKWMjX8fHx7u4DkfV+UkBEw8ND+XxB6nDZTFAqswEgQGAAi/zBnuBvm9CdzXCL8+b6yufP5/Ovv/56ZL3PET7Px8bGJibGZYDdrnOy2xggwPBQGwNA8ODSV3WMzsf4rW456oiIjsN6ew8PDw8t0M+OMA0mJydGR8ek72bibSGzDoLiPtQNDIJK3dfh+nQl4u2wjjzCmBGuywYHB44e7VvAH7wMoHjued7Q0JAOhjPr6QP47A3zWW/7lyvRwAiB1kW7pe3DQiF6RFYoFPfv7+acz8OvjDBjCCEGB4eIhIyVlLpoUE6+G5R2BqtH2N3JPtPuJIEQnewYQoju7u58Pj9/v3LZQfF8fDyTz+d0oAXAEremaQ1M3bLZadoyYIGVKP+ysMwHkLE6WTjtOGxwcHBsbGy+fmqEmSCbzU5OToSC4RCU7BKo0+Z2K9ty3joR7VYGoODFKGT562uiDvI7Y2PpgYH++f+1ywYMAIQQo6OjJv4BlsQ1LV3iKZe2O4Clz3WFc1hsWyMcyl4koNOLxeKRI4fn+hMjnAjGxsY4FyYzYlgqPw022FTb08AUxsrOQPpcP6bjX1Hn2xGRiA4fPhwZd7MGA4BcLpfNZnXiJBBHJYuU4EvZwCXsAQz2uQCqFirkz9uXh4CeDwXwkDHs7+/PZrPz93sjTIdisTg+ngnmWcofKfdLAxAANYHLQA9/MDWw8nQ1pZQ8xDo9EJmT81JIK29kZDiTSc/Hr1yOYAAwPj7ueTwkkktD5eBrY0VIY7ZND2vyiTLXLIXuZICIExMTIyMjM/wxEeaIycnJQqFg0Q9KFXWwJ0AJgdUGkc3kAEp7QjkgAGiNIuM1hYGBgRP6OREMmBBifHzc9pAltCgty0VVpey/t0YmgdW6Jc0ZaOAS2quv0xoAEFEIMTAQ1cwsEjKZjNXuoRTJVD3BvIIhfOnBpX57MD6HoU+lTSeNQeP/DwwMRKb77MCKxWIul7Os5YBItvxt/xxbfpuP7Ka1TTXTFcpGaIPXIUuHoM69wejoaLFYnOsPjXA8cM6z2UkACPpT/nAz9d5q/VBPMAiGaSBo1au+YUXdqPRcE8GxQjksk0nncpETNxuwfD7PuRcUseXt6VIrPdjkvhlnxdn8Y+SGmX8i1FdCUQBrGycmJqPWXQQUi8VCoWg0+TSdwWjasrBJbslusK4Z6Angc9uHdRn/a/L5gpzKJsKJghUKeTMTs6blNDGVQFNZ+4n0DL6maYkIwMzx7O8kIm07hIS93ehgwnKeV5icnJzzL41wHBQKBSG4rcbBMrJKjbsS0pq3FGpIfUH/mtrJLyMCgiBEMjqfc29iYnxuv3KZws3nCyamIgQwplrIcpUVgjqftNT3D9BzP5oDpu8KokxnCPYh2ck451HIfRFQLBaEEDKxKoU2AEgfKtQfShxsAAAhyPb49G6y9LT6yLbgbAVun2c8PjsRS0SRxJ8d3GKxANpN0vP4Qeihh6DT6QEfLGCLB6x082GA1iG7wPq0TJNH45AXAYVCEXyHWTaH3yssX2yq7RPoCWXDsaUS3wgFg8iDmx2Y7TDLByqUrR3wrKAkuBI05OwjRdDFopBEsGQ86MNsJ802GSIsHsiH3IGmne0WDNP0eD3BNuSDPpqvxsFntYQ5sfSsBfjlywBuqAnBEsylpjtYJn3oLMNhO75iHUKW2UbWweZ4YVrd2qm6ghACIiw47EYhq6F9H00qcBOIKVdSFeBkyR7TuEbEG60g/NP8o5Xct1zCiOizgWskqNHtAECEjBGAHS9BDCymo2DzGYKNbY41LrclFIwDRsFzbbnuH3DcUpwIc0dQo6p9QpieYKz3UAI1bOiFeoJlsZceGbLnffvOupTqh9ZdLRTS6fSePXv6+voqwE9MJpMdHR2nn366XBzBNa6Xka9yDAMRAAirtjngiVlvyxjzVmsKy8sSZrJ+qznNKWZmb/8YfaGpyy8jzB80l3R7CCELYHVPYDoyF3Kkydpj+18hkpvm9lu8bE8wB5vpQ0nNJylvcqF6wujo6E9+8pPzzjvvLW95S1XVkp9VOpvNptPpp59++j3veU8qlWLaSrefKViP3jShMMJV09LXxhZXbSPNrLLjk5aCm3qWX7/55cFBqlO0hMMiwA6qGeKZniCbSZeyU7AzhN9qYW2TXO3R87f7Fpw5kgIQlpcuTxeoZjqaf6TT6WeeeebSSy9tbW2tAJIDQFVVVVtb2wc+8IHdu3dnMhk3FosDgBDkOGraXcYEkeS/mnBfF5wLa+CadNKACCxJAQAQoLNaPS9gg5FyuUk63bpRbYkQcOMRsaoqmt93wRGLxa1YCZqG0ONPUQihi1Jl6/ulbIiB8G3ZnmC3bMis0wu2yCW6/O4R7AwIsFA9Yc+ePeedd95CXPmk49xzz92zZw9LJBKaY2a9JNBRD6nZTduDZUrJtlErLoBa+xZKLyVhmGzOtmw8KoVtAriuWxki9g2OeDzOGJr1UuTjN+thQsCBN4vtmPYSAMJW40GSm50hte+HbCS0+1bazUB66TU1NQvx2/v6+urr6xfiyicdqVSqt7fXTSYTiEyKcGlsC4GOI6U1Igo5WtgKwivJbXtrOmYW0MOk5uW3jDnfRJfrcvgHaztfWCRXHS4er47m618EJBIJxhwhPCJmyMuY3AZtzdlD2QBAGXRm2/SEKXxy2dxaMihlDpZwCXjveo1dSXVy3dgC8TyXy1WqLqmqqsrlcm4ikXRdt1AouC5D5IwBAONcTtAljXYGOrMCALqlTYtiML4aMs9Ax96E/tQoAbCaUy2pJwIaQkiDora2NlofexEQi8USiUQmU0Ak+eSlercjcMZfAwBTUmW9VQy35HuoY/itD2DsvoBYF5rZJR9RVVWypqZ28Z5IBcGNxWLV1dW5XE5GWAGEpDqR4bbQo/8Vt029sSSyzqf6mQ8jrkG/C4b3AisxGZkdXCZdXwugqak5WkBzEcAYq62tTafHiAQRE4IQpZUno18m7MpMtjXYE4gokAAjMjZdSMQHNDYFYuxG4oO273zHoaGhMZFInJyns8ThImIqlRoeHhKCEGWrCMZkubKaCVA2nj1RjO1SGeccLK0Oul1B0R4AAkwmIiIOQLJqKugWCuPAx2Kx5ubmxXwiyxl1dXVy3kUAYAyM3S4jcDoIJyxD3c5ySfOttCfIDdsmVw1u9QRFaS3lBREPeXaMsdbWtijDOjswAKivr4/FYpxzs86hiX/a5rSlhO1X4Nw/3m/DQAgdbCPNXhnXtKu9hqZZKBuRvfTSy4888u3x8WiU0oJjYmLi0UcffeGFX9gNrbtEwJwWAuS/gHZWO8v0BFMKHYy8mCCf6WalCt/UXEB1dU1z84qT/ZCWKlwASCaT9fWp/v5+KSwZk3EyNJ65FNvWxIAKOoIqt235DcZcD/rhgSaU/UCulSn3yhVUpTJnDLu7D3zve0+OjIx2d3ffeOONq1atWuSns3xw7Nixe++99/HHH29sbKivr9+8eYs064iYTqfJcGygJ1hmXaAnWKk1aXILredtEeBzXrt6xDmXNp9UHrozAAC1trYtUBBuOUBVHaxYsYIxEIJbOtaQU1gbtp4XNl3J8rKI5Dq3huGBE434tz8iIk14ITvWyMjoD3/41MjIKBHt2rXr85///AsvvHByH1al4qWXXtqxY8ejjz4qhBgaGv7Odx4bGOiX+tbStL5jpf0vEdwIaGOTQBFCcC7FvS3QjaIO9SgKWu8qDxePx1evXn2yn9MShuJ5fX19KtXgeVwIrp85N+1nUVoIwa1t1TBaHpudUpDbdrifb9f9hHNuFr42zcqFEIiQzWafeupH3d0H5JLJruu++OKL27Zt+853vhPNITWP8Dzve9/73vbt25977jm9OrXz2muvPfbYrkwmo/nGtfrlQcLb/cE204QW9EJz3na/TWQuIC+MQLF0jOQ5ElFr68rGxqaT/bSWMFz5hzHW0bFqdHSUc48IiOSaO3b0RZWmheaN0hum6MXfY8LsU6kCWyFwq2MIwZ999tmXXnrZfBkixmKx3t7ev/u7v+vp6bn22msrtaphMTExMfHwww9/5StfSafTrusya3bV559/vrGx4bLLLnPdmN0TQmMZwc/CKOieAPb4M6PjbQJbtOe2qrdDNvIiyWSyq2tjlHOZC1yzVV9f39LS2tt72HEAwAEgIrmqoZmS0Z9XJAiynTGrFipUHmc2ucVxo/DVTkTx6quv/vznzwtdZSkhqT45OfnAAw/09PRs27ZtzZo1C/10Khh9fX07d+787ne/K4SIxWKhZhVC7N79THt7x3nnnUtk9wQVwyFSrSNEaDEWu0jG37LDNBbJuRXqU+Kec64TLkpSrF27rqkpUuZzgs9zRFy9evXY2IgMbhOBXCiTSK7fINNsYES2PEmfbVPdL4+1pblQdcs8FNL3PN92Zwy6uw8+9dSPcrlc2QyK67pCiCeeeOLgwYM7duw499xzF/LhVCxefvnl22+//Ze//KU01EsfNSJms9ldu3Y1NTVu3ryZc46IQqDjyOV6ZJ48PHu3NaVMYEOo2glVvq57gm+rWzYdN44AABBRU1NzV9fGJZROy+VyxWIxn8/LmZpisXgikYjFYsnkyaz1Coz+SSaT69d3OY7DeVE+calmPY/rNvDD47JcsdSz4tyP3gXtc6Guonkt/XPZxEIIRBgeHvn+9384PDwyTbsyxlzXffnll7dt2/bII48UCoWFf0qVg2Kx+MQTT2zfvn0akhscO3bskUe+fezYMRNU49xEVYKtKwxRSX9KpqGlL2Z1HsXnYHRGdQohfJInk8mtW09fKqOYisXiwED/8PBQJpMuFPJSvRUK+UwmPTw8NDDQfxJDS27ofVNT07p1nfv27SMqMuYwxhhTg5OIQE4SKGEmG7G9dP3GmGq2Z06WJucmhSZbGxFyudwPf/ijnp6e4wpvacMfO3bsC1/4woEDB6677rpUKjVPD6SSkU6nH3744YceemhiYsJ2yEshyYaI+/bte/TR71x11cdqamr1Yh5yLGOoJwQCNDo0C9arMdf96KyJ1GhxL3SIDgDAcdzNm7e0trYu3AOZR2Qy6UwmM80BUgrU1dXLiR8WGWVauqNj1Zo1azxPeJ7Hufxn4vD+hoaw9nOjnI1sNnpbCO55Zn+A5ADEOf/JT5595ZVXZmihSarncrkvfelLN99884EDB+b5wVQcDh8+/IUvfOGBBx6YmJhwHOe4JDfxthdeeOH73/9BoZDXzS01MxfC02o50BXsTmL3DXOM5ynFbtt3xjOX98AYbtq0ad269Yv0dOaG45LcPnL6qak3b95855132nv+9V//de42f1ifA4DjOOvXbxCCDh7sEUI4jsOY0DWwqkCi7LIqQQFueosff7NUupTniuSI7Ne//vXPf/6cCMbejn/3riuE+MEPfnDo0KEdO3a84x3vWEKO3GLixRdfvP3221966SXp9Uz1lExj2TuFEP/xH7tXrmw/55zfQVQ9wSyAZ9fAmokqrJ4QCNCYSgvhF2WQkQh6HDQxxjZuPOXUU7csiRh7sVicIcklxsbG4vFELBZbuFsqRRmeA4DjOF1dXQBw8GBPsVhkjDGGjDnWMmymo8jRrGqakdAIRBtCCFN6QSQ4l+1KjOHBg4eeeurpqWJv04MxFovFfv3rX//5n//5n/7pn37oQx+Kx+OzfhyVB8/znnzyyZ07dx46dEjG1achufGNQxgfH9+1a1dTU1NX13oAzhgDkNFZ1GNa7Endp+oJvh9ngjum7MJY/q7rbty4aamQHABmsc7n6OhIS8ui+iPleQ4AjuNs3LgxmUzu27evUCg4DpNaHXx9Hsqgqki7Sa2RP5zYV+aWGyYr2HFkZOzJJ78/MDAw6ymBpA0/MDBwyy239PT0fPrTn25sbJzdpSoM6XT6q1/96kMPPZTJZGKx2Axt9dB+aWQdO3bs0UcfvfrqP25ubuZcanWzSDYGzwvNPuArdiPrja9u1LjM2lZVVW/ZsnXt2nVLZaawXC7neSccXZOLGi5mBH5KngMAY2zNmjU1NTV79+4dHR1BRMYC1jsoQQ5WXg30+CRjBNr63BQ5SVCh4P3whz967bV9cxTekur5fP6f//mfDx48uH37dmmPLGccPHjwrrvuevrpp0W5DLkNzbfj7P/v//7vXbsev/zyyxOJuLTeGUPOITQ7oxWNK2u6U7CSUp2CCC0trVu3bl1ag1Vk8mx2J07F85tuuukv/uIvzFsimruRPx3PAQARm5ub3/rWt/b09Bw8eDCXy0kbXs/BWnYudywx2P15v8yRiFBf39Da2vbCC7968cUXOefSMZuLg+04jhDiqaeeOnLkyPbt29/5zncuFbUw73jhhRduv/32V155Zfrk2TS2umwRuS1jZoyxlpaWDRs2DA8PZzIZxtCMXIag3Cc9YpzCc42ZmvbAbO3V1TWdnes7O9ef3CTzLJDP52d94lRx9xtvvPHqq682b3/wgx/89V//9ey+xeA4PJdIJBKbNm1auXLl/v37jx07WijkAWzFDtpLN0WRYBInWr2TcdsQsba2dtWq1Z2d62tqav7mb/5m9erVX/nKV2QwQ1oNs/49trt+ww03fPSjH11uMxPIDPnOnTv7+vpkyO1ESW7vJ1XBwmtra6+++mqZwpyYmOjpOdDb2yvXvTNst7x0snqCoreW9SDjMlIiVFVVr1zZ3tXVVVdXvxRjqLNOiU9z4sqVK08//XTzds+ePbP7Chsz4jkAIGJ9ff2ZZ56Zyazv6+s9evRoJjPueUXbUTew6C3fKgcsHo+nUg3t7e3t7R3V1TWyXevq6m644Yb169ffc889PT090oCfC9URMR6PDw8P33bbbT09PZ/5zGcWbqYKEkXO07w47BWHeXHY80YEnwBAAgISiA4BIMadWLPjpmLxFa7b5MRSjMWnWnx6jkin0w8++OC//Mu/TE5OHjdDXtZWJyLOub3NOV+7du3nPve5yy67TBqQNTU1W7ZsXbeus6+vt6/vaDo9Zq3SB9YEUqrpreCc2u+6sbq6uvb29vb2VXV1dcvW7Fo0zJTnEoyxVCqVSqU2bNgwOjo6MNA/PDw8OTmZzxd0agRMGwOA4ziMOYlEvLa2rqmpuaWlpb4+VepsuK77/ve/f926dbfeeusvfvELqQ3m6LG7rlssFr/61a/29PTcdNNNmzZtmsvVbJDIF4v9hcl9+ey+Qr7Hy/dxPirEJJAQwgMp1FD91T3bBWDIEug0xOIr41XrklVdyZpN8eQqx5m36QcPHTp01113PfXUUzJqPUeHXCfDxdlnn33zzTefddZZ9pGIWFNTs3HjpnXrOtPpsYGBgeHhwfHxiXy+IKstAMDuCYwxxtxEIl5TU9PY2NTS0trQ0BCPL3lTKxaLza4i8w2RVzsu4vFEa2tba2ub53n5fC6bzU5OTuZyOctgQ0Ssrq6urq5OJpOJRPK4vH3Tm950991333333d/97nc9zwOAeXHXd+/e3dvbu23btgsuuGAueoOoUMj1ZMdfyo7/VzF3gHvDSEXQiWSGiAgMHUT1M4UdmBTy/6QojmfzhybSvwBwmVMfT66rqX9LbeqtyZoux5l9dScR/eIXv7jrrrtefvllmSGf5uCpSF7qkLuue+mll04/ZCgWizU3r2huXsE5z+dzuVxucjI7OTmhO4Jagy2ZTFZX11RVJeW8o7P+pW80JBKJ2fF8kd1JLHXPTi4mJiYeeuihL3/5y+l0Wo6InqPbRkTFYrGpqekzn/nM5ZdfPovpe7k3nB3/r8n0T3MTewQfRdBVQwByKIc/1zGptyQZTmZwJggzTyZJP5WEkPlGRKc2WXNqfeO76xvfFk+uLFukOA2KxeKuXbvuu+++Y8eOzaNDXl9f/8lPfnKZDAH++te/fuWVV87ixFwuNzw8NIsTm5qaFy3o+PWvf/0NJ1lramquv/76DRs23H333a+//jook2+u7vro6Ogdd9zR3d392c9+dsWKmWZuvOLAxNhPJkd/XCwcQCggMtdFAAcs9xqtMdiqaEQN4gUiOb4XAIAhCELJf0JGRMjIkcOBaGIy/cLE2EuDfStTzRc0tb43UbV6hg786Ojol770pW984xvZbHYmJeulJC+11aVDvm3btve9732VpHsXAslk0nVjJ5pCd93FHr72RmxF13UvueSStWvX3nLLLc8995y0J+furnue981vflNWyG7ZsmX643lxcGLsmYnRH3mFA4icIWPSIJdT5kljHYAAQW2QUujmLyqqSsIDAUPQPEe9sBE5QCgIHEcIUcwfGTjytZGBHzeseE9z28WJquPMlNTd3X333Xc//fTT8gdOX806E5LLR3322Wf/5V/+5VlnnbUUA+CLj8bGxoGB/hM9ZYFuZiq8EXkucdppp9111107d+587LHHZBJiXtz1Z599VrrrF154YVnZIUQum3kuPfhtL78XUa4ZysDMWo5y0B6pRIMu6da3hYRkSr1NwYC08BGABJBkO8qZNkEAyOVpOcp1EaCY7+s//LXRgZ+s6Lisqe29rlsmzUpEzz///B133LFnzx45KGVeMuTGIe/o6Dixh7uMEYvF6urqZl7inkqVCUUvNN5w/nkIk5OTX/va1774xS+Ojo7Oo7ve0NBw/fXXX3XVVaEVnYr5nvTAv06k/xMhxxhTETYgWS8AAIiAoMdhWmsQ+WNz5QsByIi7IK3m9XwMyldXe2Q1sCoSFsAJuADBQQhBgtU2nNW+7hM19afZI4ILhcLjjz/+j//4j0ePHp2drV7WIU+lUtddd90111yzDKdVnbV/bjDDIWupVGrxl5R5I/rnIVRXV1977bUbNmy44447XnvtNZgndz2dTt9zzz0HDhz43Oc+19bWBgBE3uTYs2ODXxOFg4wh0+PzUNf0A0i3G0yOWF9Rmu8AAKSLhqRZzkCvTGfyyQCAwAgEBwQQCA6iACQSTOg6cSZ9fiYQxkefe318X9uay1s63i8zcMPDw1/84he/9a1v5XK56Umu68/CsG11kyHv7OzcsWPHxRdfHDnks0NdXX0yWTUyMjKVr+66scbGxsXX5OrbT8q3nhAcx7noootWr1596623/vSnP50vd51z/m//9m+HDh266aa/2LJ5dWbo38ZHngCYYI6s52Rymiy0aF2uJghAxuFkyafeoT9hyAgIBQgZqiMZgUdQ9BRAasJ8JtebdYhAkIm4E7nCG+rd/8BkZt+q9Z883Ju98847nnnmGZiBQz7zDPk555xz8803v+UtbzmxhxghiFgs1tramsvlisVCPp+XzqZctS4Wi5/ckt4lwHOJzZs333HHHffdd98jjzwyX+46Y+ynP/2ZV/zz//O/t8TZHuONq7FYANJYZkH6EhjD3Xe/pXK2DHlARBJyolw1IQ8ikYy5AxADIEAGKBTzEREYkCBHhuaVHEOBruB8pP/7I8Ovf/Ghkd0/+U0sdhyHvCzJS211Ob7lfe9737Zt26I1MOYLyWQymUyejDljpsOS4TkAtLS03HzzzZ2dnffff//Q0JAk6txKJrG2Nv6u3xmK4cuIcpC9nEVB/pfeOIDW2Cr0RjbjFV2BgFlesMq0OQAEIBAIAYWs6FYfkY7MyQuaYQKMkSDGSAil84kAmcMQefG3b95aePmV2MTklPJthhlyOZFLY2Pjpz/96auuuqq2NlqEtMKxlHgOAMlk8uqrr163bt2dd965d+9euXPWVGcMLr2k7pLfq3dcVfiixtCg0uG23R5wyEEl2OydiMoON1E69alaa5Rpt51UXM6YBlpiyAuRqiYkBGAIciI2IZAx521vTg6N4He+mytyKmX6NBlys99kyLu6unbs2PHe9753qUznEGEuWHrjBxhjF1544c6dOy+44AKjmmZxHSHg7WdXXfmR+qqkGkvN0GEIyIChYjg62ig3bFcGvXoLKNNi5uYAmX04gArRg+Xr6+kZ5KUYIAIDYABMXp+B9BgYADJg6h8yh7kOvued8XecE4Mwl830LOUz5DbJiejtb3/7vffee8kll0QkXyZYejyXOOWUU2677bZPfOITiUTC8zw7FTwTCAHr18b++IpUU8pRvEOUFAWtxvUqksF/AIjA0JIFNufBPyVEcrUhx+0T6BGcOranr4MITNfKW6k0eQWGDKuS+L6Lk5s3uka4TSXsQvtlXN113Y985CP33HPPGWecMfPHFWGpY6nyHACam5t37Nhx0003NTc3m7lEZ3IiETSk2HVXpzZ1xUgl6pAxxV6p0n0FDorSgD4ngfnMBEtvG3GAWhCAZcPriRPVghcMdNRd2wh+OICpoTEOKn2uhQIDwBWN7MOXVrW1MEEn4JDLDPmf/dmf/e3f/m17e/usH3uEpYglzHMASCaTV1111e23375161aTJZr+FCKIxfCKD9afc1YVoOS4nORMa12mmIya88quNpQDnSjXGhiZz3kFyVspO2ylzeSFUdno+lg/b2duA/1P5FvGABkyxgBhQ6fzwT+sqk6qVTFCv9FUsIJF8g0bNtxyyy3XXXfdMiyDibC0eQ4AjLHzzz9/586dF110EWjrdHob/sJ3V196Sa3rMB1cB9AGtuGbMcPBKOSglw4WA/1TzGFWYA0Cm6DWkjeXDAb8/C+R2p+hcRCUVpc+BsBZb4r9/gVJxso75Gbb8zwiete73vVP//RPf/AHfxA55MsTS57nEhs2bLj11luvueaaRCIhDfiyVBcC3nR64pqPpaqrmKIQKpXLQEfUjC+tFbWvuslno/yjdLs9QNVE3cz365ycnaXTRr6eFxkCdjvow9Ql0f8HgIgOIjouXPS7yd95a8JeD6fUIY/H41deeeXdd9+9devW+XjSEZYkllhebRo0NjZu3769s7Pzvvvu6+/vlzVzdqJZCFjV7l73xw0r21zFMG0++5ocg0y2KK1eSZW4kwqmqdFpqD8Fu/RdniTHrhH43EdAYqYYFlGPcpNeuwCGauA6qVw+IYCdfkcGyKG6Gj/wB9VDw+K3+4pSkcsLmpL1pqamP/mTP/n4xz8+i1H3ESoJFaLPJeLx+BVXXHHXXXedccYZQghbuRFBbQ1e87H6006Nk5C63A+V2RFyNVcEM8kwfXU5AlUyGcn35G09bBSvpcyBAClg2OuD/cgdC0oWfbYu2VFvfDEkfXUiaGtxPnJpTUszch4oWfc8r6ur67bbbrv22msjkkeoKJ4DACK+/e1vv+eeey655BJENO664+AH31d3/jtrjK1s8li+6rVr4CjIPBNuZ6jYrged2prWGAX+uWoKTHO4/0W2NU+2FWAC9XLgOgJYZolmvpxbGwigq9N9/yVVVUmUSyDIKbfe/e5333fffVEZTASJSuO5xPr16//+7//+U5/6VHV1tcy4veddVR++tC7m6MxWUAnrILimrhWIQ50O86+OgGACZOp40iIDpaEOlrCwKmfsmAHqXfI6zNqJOrwvv5dZ/rlVa+PH7M95a9XFF1YBcM/jiUTi4x//+D333HPaaafN93ONsFRROf55CA0NDTfeeGNnZ+c//MO9LU2j13wsVVPLgGQQG/wSFDtybp2uPPBSdsqPUM8poxxy7WDrC0rnGxmYuSaUXw0AaKaElRwn86m8lvH57Vsk+z0CKFdAuQ+uixf+bvWhI4XXDtT8rxtuuOKKK5bcggcRFhQVy3MAiMViH/7wR9atbRofuLOtVQABOqrYDKzacsNvY0drd932o80xehIJe85Hy9IOG+H+iUHoyByYaSn0fjXPlPpqeQAxBEFBlR68+Zoq9pEPNDau/OzvXvBRxoLfHWERwfPPiWI3L7wqivsBgMU2OPEzWGy9kzj3JN5VJfMcABDhtFOzYymAoLttQmJ2FE1Zz6Xa20p7WbO/KWlhPvXHpkAgmGaMAuOSAwLJf+QTXg5co2Bg3676waDokMW6JEga8AKwKSVWt/dHHD9ZEN7+wug/CK87sLPwqii8CgDMXR9v+DxzN5yUe6tM/9yAe6OZ4R8I8gAAUcWuJAJ0MFQnsOdFtgteAXxKM5OP0/FwZeQbLwD8bd/nVxfx02x+vB4suWBtqBQ6qrCdHtkuX/24ASLI+ODRwz8ezwT6WYTFQXH8G7nBz4VIbkN43bnBzxXHv7mYd2VQ4TzPTbxazHfrpboBTaxMwmS8LHvYkNlsq1We5UytFufVPzWlszK2Sc8to3hpf50VqFM7UI5RpUAcIBgn0F8XuE9dMKNLaVTBj5PP9g8e+9m8PsIIx0dx/BszJHBx/BvexOPTHJDL5f7qr/7qlFNOqaqqampqOv/883fv3j33O6xknhN5E2PPAuURAIP15AzBTluTCOS9qMRlZlauHQz/SeXR5S67cFXuDYTThDot7BZIgRJS/uaL1ffZtTzypwUuYaUJRH/vM8XC2Ak/rAizhfD2n5CWLmS+LLz9U31644037tq168EHHzx8+PAvf/nLt73tbRdffPH+/VMeP0NUsn9ezB8qTL5q5nEsVefGL1d/jVOtk+d2/YutzNVO2xYPecVWjN0odrSFhx1XR7QD9nZsnXxvH+XcvEQ2yVWsHpielIax8fS+sZHfrGg778QeVoTZojD6D7M4Jbni3rIf/fjHP/7sZz/7rne9CwCam5vvvPPOTZs2zX2dyUrW59nxV7zisG/dojawjVJVVrPa9qPcKiTH9FHlRsUEDYDQJ4BlzrH3qCCcEOZW/Cg6hg+WUkCKDCuFDqHEviwL4Hxy6Njz5Z5HhPkHzz83jU8+FYTXzfPPlf1o69atDz/88IEDB8ye66+/vrOzc7Y3qFCxPCcqZsf/C5GjIoCdKVO2rh91N3t1aYqilvbJrYmZtUmPmv/GBFDfq96i8dJtB8H6KvW5mekpKG5Y8Gi0qmXAygjaEQAdZcSRwf8qFEbn+AAjzAQyeTaPJ95///0tLS1dXV1nnnnmDTfc8O///u+ywHGOqFiee4X+Ym4fMgYISMrk9kmCOrlFPmcAwlrajsaV2N1q0RUwOXOhzg2MlNOXtXdqv106E2Tsd7LO0JPAyhNIhugpePGwl641fHbi8EQ6irovBnjh1fk9sb29/cknnzxw4MD27dtzudwnP/nJM88888iRI3O4R4AK5nkh1y28YaO5TUQ7EMwmFSf3CabVOGjVbRW8B0xpJEVy+Re1StbRd50bD55pRfo1saXUscvpMHAkIvh5tbAc8YlvTkdEz5sYG/nNrB5bhBPDHPT5dIJ4zZo1n/jEJx588MH9+/cT0R133DG7bzGoWJ7ns6+TKPgBNgjqU4uWAaL4kTUKaW/fStenB9wA1GkzVAE2slPefohNb2hn2+xi4W+yQ27aV8CgsWBGtQRBJDJje4lmMz1mhMVCmaDP66+/fvnll4+MjJg99fX1p512Wl9f3xy/rDJ5TsQLuQMmT10mXmYYamgZ4JUxAORZFsP1HsVH9EWG/UoQZjjowS2K4XKnAAASesVFO1Bg/RadxdM3bP0INHl7PTJHSbbJzEGvONOV/SLMGiw2y/q2sieuWbPmV7/61WWXXbZ79+4jR47s3bv3zjvvfPzxx//oj/5obrdZoTwXPFPMH7EyX2S0r1GV5q0ZXmLDZMhlklyTuUQGh7xl+591DFLgcC1+rHXXLGERunCJrW4B/RobeYwKJSDmsv2F/HC5cyLMJ5z4LKfNLXtiPB5/9tlnt2zZcs0113R1db3jHe944oknvvWtb330ox+d221WaP6ce6PcG/Hj0YSg+YxmZRXLULepTtYcj6AcdgDQIrEcF5WKJp/GgetbRTjBaJzR0GRLhlCwDdHU3IXZLkP1vu1gneQVx7MTfTV164/3qCLMCfOrzwGgvb39gQcemMMdTfF1837FNwK8wqDgWVlWKoG+p2v/UbrXtrSV9S63hY7MoaIUaW6pEjoCE4QThqLCCsJBSQmN/FqphxGIRCAMAGHSKioHDQffxSi5uDRhhMjnsv3HfVAR5ggncS5zT1iYMnexh69VJs85T5PII/g5M/I9WQ3ySQ6gtLE/pyKoOBmBlaEmX+dbCj98STtFp/14ID21jKEoycXRgyk3+5YC8YJg4Q2F5AGab9HJeKJCfmjmTyzCrBFv+PwinDJHVCbPveJIIFouvWw1xMTSjjokrrPUAFb1q56zSaloaX4bWtqpNl9ABBkbVs7+F2t+k3YZzKeWL6AHwvlyIBRsl2aF+ZJQhCGfi/zzxQBzN8Rqr5j58fG6Ty3+6NTK5Lng43bozA9yWVpRkTBUxxLMp9kalcAnNviE9U8h+zNzNcNfw0VLn5tbKiMl/FvyqR7Mq+mAv18JZ90hkVccn9HDijBnxGo/NkOqx+s+5dZcutD3U4rK5DloagVibVaBaSChHmKa9sxJB9iMNU7kj2zzN+Q1hKWWIaj2rXsSQo1b0z52MJCGIAJSRjrvaAIBwX/qzgSoGxNky6jycYEIC4RY7ceSK3ZO46szd31yxc6TQnKo1Hg7kbB1r9K6qDJkavSXIbzwY+n23Gyq/pT8OWYQQVgWu5lcJjSjmzT4SwtUyX4TshxCfrvwK2SMLWCTPHBGwBlBX8CoQtyI7osE5m5IrriX558Txf0l80ZtiOaNWhigKkqRA0qJyLZsSQ4LIe0Gk1WjboZ6E5AeT0Lalwd1DQDLUFeevF1+ZhFbXjPoypNeBj14iokL6MsazpYrbbMqeYyMKLP8eYRFhZM410mcGzvZtxFCZfIcgREJAoeMdlW0F4Qox4ASWsqOwlpP6lqUsy+CYr5x0X3n3GK/tO2NdgXrGGX/+9a2yomb6xgTwDbafe7adxUIDGj3RAfb0U7H+8u+RljuqEye+0lssgNUBACCkNn1MODrXj/Sbq4Dij3KPrd2Wm+0Ki6JsZHFeT8rT0AgTODANstBk9Ze2xzAIrPlnJMQ6op6IRYIWPURIvioTJ4DxghkaQsKAiaA9ErjWj1qjltDUezInBWXC2psCKTH7f1kGwVkHUwyXKAOFIbP+kgMSQTt6+uFjYEEUNje8IP88iyho3omlsDYG814jHDSUJk8j8VbQDmrakinr5BD9S2WZpZOu9o5VQDLJ1Jwp/XX19sIIEAoIhMIrexNpIw0Y63MnDa8TekdAAIJO9Mm5Fg0IusKQGZuGnl/yarWWT28CBWIyuS549YCxhA8kAFzNEPNSdGPQNbCmskbJW+VNx4Ku9nQETvbVrc/NSQH0L6DttmNkw7WSUYhqzPMaogiQNtAOl1p+6DMIiLhG/wIGIs3nOhzi1CpqEyeu/EVyKqESCPz421aDftxLURd9i6P0ccJACBdWhCsP7Er5+R+HXoLUBeVfa6z46QL3wzJKSAUhOWBg9b8ZOaK1h8JAiJh9LxxAWRUz7YwkLnJqrZ5e6ARljgqk+eO28RYPedjquIVgIQKPxvv1x/OacXjWDDEhjal9U65h5l6dbC8cRNzM66CVr0A4dmjA4fIHb7y969mcumkxQnpghgk9amQdrt1aTdWk6yOeB5BoTLr4Ry3LpboIBIklP1rh6yFVcqmGESqqERQ4COTtQ4eD2APSgldnIBACAKh+ShIh9SsoIBxyIUKodklL8bvDsTY1Rea4wz/lXse+D3xRHPkn0cwqEyeMxaPJ9cIQkNjYYWsQNFFRbpkxSjYvBIBghnK+ca2dSmw9K0xofV/lQMT+jr2FfyQuxVRk0PYQjcg/Le+M0AAQgDnKtJuldABAFXXrnZjdYv2wCO8wVGZPAeAZPVGAAeE8MvareQ2KetX/uGalECkp4Wwj9Qf+fpc+/CBT4kIBOgwOREQ90eXG1fc2A5+WA2MyPFjcpYON9vaRABd0qqK+UgQCQG+2ACsre+K8mozRzKZzGazJ/suFgTZbDaZTFYuz2s2MqeBC1lP4geuDMe0Qkc924MQJEyUC6QW1cU20lmXFBVciQOhySkMtwUJExgzZSwl3rtvZWt1DcoQECbQLvdLLc0Y+KKAfJfB3xssi3WcZEPT6Yv3rJc+Ojo60un0yb6LBcHY2FhHR0fF8jyeaI8n1wrh55mNS2xPtC58+pg/UkOaDW11m+FgklnWicbQl2eU+MvK17cc+JDvrSwL0OrfNz18QaAuLKRnrmWQkLutyAGRSFa11qY2LvojX8I4/fTTf/7zn5/su1gQ/OxnPzvjjDMqlufMqa6ue7MgFAJIcCGEMDwxTrhvw4PPdlCKHTT9SJAgZRxr60BSGomAhCAB8iCw/HwftqtvsdcoZP+7ASAQlvMFgRDy60NXkzcW+umUajo9kVyx8M+4clBXV3fBBRc89thjR48erQwDPpvNHj169LHHHrvoootqa2srM68mUZs6a7Dv20KMq0GoTFrppk4GUAAgCAQAYLK2lPyZG4QZ4obqM7WUoUmiGzajpVFtNx5AxvD9SLimsfrQiAXbOdf17cJYCcoTsMKBAATAldcANtUZize3nYPozPPTrHSkUqmLLrpoz549vb29uVzuZN/OXJFMJjs6On7v936vtrYWKjV/LlFV01VVc+pk5gVkDiNCEkIwxtCMN1dDUEVwnhkKrl+qB5dLcqGMh+lZXPU56oXsAjnD5xKHHNSGtriFtvMtTW7F2C3D3I7ACyrV50Sipm5dY/Ob5/9pLgPU1dWdd15lrjNbsXY7ADCnqr7pHUSOstiFDrKTyo37haKGZgBgLGewjHhjKEvOCRVvN0cKw0MBwC3dHnQWwI//qQC9dPv9RH3YyCeSkURdD+Pb7aAjcBT41SvazktWr1yExxthCaGSeQ4AdY3nuPF2zoUgEATCCr8DKPoJzUMTLSsTRbPpZ070P9Rb+q8JlVvmvLWTZDDNpMm0irbVtaW+TUABhLqIsAKEFigWT7V2nL/ADzXC0kOF8zyRbE81/a4QKAyBhdKQpmJUWMFw3wE2utfY22Bt2/QlPRusOd0WH6VRN637RUiaWNE7pckFcS5kms1cSggQ0hARoZw5EInm1rPrG7YsxpONsKRQ4TwHwKa298bibZIwgsw4bRKCODfMAa3wNWOFX4uiOG/n0iVvhW+ZW3F7P2FuImpaRWuDW/hWBRFwrrS02QDJcj8Zr79Uct6P+Nu/lGLx+lWd72dOfJEfcYQ3Piqe55CsXpdqPl9wEgK45AknoYLUwg56CQpozmCaWu0JWdd2TYutw4OHya9T+TFZjxPKk4vAlYmIS0kgzBdxZa4TCBJCcKAyyvycKAIXoSwqn+cA2NR2cSzRzjn36SQ1KidZCKeT4tr9lsNLQA8y0bpd8dYKv5F21I0sMArZZMVIT7ws89/COl6IoNMO+n44SevD+AjyLQfiQhjpY4Fi8YZVnZcyJ3FSHnGENziWA8+hqqZzRftlJJi01bkALtRYTuJC6nYdkw8Qz9bwRn369NZCwSY56UgfaHVMptLG+PmBiHrAe/er7MxXmJtRVTpQEmIHImpf8/tNLWct7nONsGSwLHgOAE0rL66uO4Pzoh+B8xWmLDcRJLgqPLNqyw3z5VsejNjZ9rkisg6hyZCbXz8X+EYAy7YXqvTO+N0kCLhQwQLpbigfwg4caBCJ2vr1azZ8KKqNiTAVKrlOxkYs1tDe+cfdv9kveBrAJQLGgAiIAQMgAkQ51SIiCCLUc09AaJp08wrqLACrpkZ/prNl4Fe5geamGUBqQnTKXFcvVlTfNyusHEFYm5PjJjs3XVVTt27+nlaESsNy0ecAUN/wlhWrPiQECsFtrc6FH2wXQnClVqWSVXFvKgcTFCehK9Sk2a5Td/bayZbqtuJ2OghP0piwHAHSUX1BJNQdl5IciKh99e+vXH3RSXqoEZYGlos+BwBA1rbqg5OZfaODux3HBWAAyBiA1sxML7BEJKvcidQUkaYgXr+QKXUFokBlLOhp20AzXM7fGnLI/fkeZZhO2ft+YN8XDUrV6+GrFohEQ/OZ6zdfw5zkAj2zCJWB5cRzADdWt3r9p/KTh3OTrwG4REwIZAxQ2+nylQMAAaI/nyoFV2XTe/2/ZE/6blEaMeDDm08BtCeuAgT6GOtgro0DYQbDWJDjTzdt/XRVdfsCPrIIFYFlZLdLVNV2rtl0gxNbyblHgpNlw3PuV6qYqlUB4Fek6aSaKJlJLhhyB9B8Dgfw/ZCbyudxQUIAt6a1kBfnQggSXBAXIHjpAmsUi9dt3Hp9YxRjjzADIAXzsMsEQ0d/3P3bOwVPO4whIjL131bsaAfjQO0MwY7Jld0wwTZEkzaThrptmStpYeXzVCW+mrum5GuRxTduvW7dxo8hLjtJHWEWWF52u0FT2wVecaJn3/2el3EcQCLG5GosTPJKRuMNJOdDlDOON2hWl+4xtr0QJrDnu+LKk7fqamTEjwsBlmkQBCGLd266cu2GD0ckjzBDLFOeI7LW1X9IQAdfu9/jGYcxAsEATXZNmFVSQ4suhq/jExsCnrnZJQew6hGxduk7+XPFClO3QySnvtGnBkBEzIl1brpyw6lXR6VvEWaOZWq3SxDx/t4fHnzt/3qFAeYwZIAITM49wxgiAhjbXS7UNiXhAWx6EyhiS6aiYbjPc11IKynN5RSSarh7mfwZABCJWKyu85SPr934UScKsEc4ESxrnksMD/ys+//dl5/sYcxBHXtHAMl0IkREAIHI9DpsJr6uV0JGyX9GUkejPwE76FUczQTyanC70eRqklfluYcmgTIgEsmqlq4t13Ws+x9R3VuEE0XEcwCAzNhvu/fenx76FUNiDKUWR6Z0Oyj/3M+zKVuetNfur3yuM3A6CC9h6l7AHsoms2og55C0GB5uECKg+obNm067obn17CmWcY0QYTpEPFco5IcP7f/60UOPE88iYwxB6nY5hxzqxRhBL65q+BxeMZV8NU/aii8Nzgl/HtmAox4GCWTxttXv2bjlf1bVrF7IBxChkhHx3IcQxaGj/3ng9YcmMq85yBhjkuG+k240euni5+jb5HKnHYzza9qBQAbVpTIvV+VmrktE1TWr1m26smPtJY5bPd8/N8IyQsTzMLKTvUcOfPvo4Sd5YZQxB5H5SXUrjaWUOQIJPyZvoC1zXUgLemoJAq4XTIYpXHEAIOJurLa14/zOjR+rTXVFtnqEOSLieRkQ8dGhl4/0fGe4/3nO0wwdSXZQabYyEXdjrqtV1PUYNjUiVRW4AoCy0gHKq3Ei7jhVjSvevHrDB1e0nhMlzyLMCyKeTwnB86PDrxzpeXy4/3mvOIayck4SHTDEdcVrOfO7WaZVZs5AR+lKatSt84lAOG5VY/ObV62/tLn1XDcy1CPMHyKeHweC58dGfnPsyH8M9T+XnTwCwlMJNwCwNLsfkAvWvZpQ3BQgIoHoJJItza1nt646v3HFW123ZqF+TITliojnMwKRyE0eHR745eCx59Ijv87nhwQvAAAyVGOBcFp1HbyW1PHI3HiisT51SnPruc2tZ1fXrkW2TMsTIyw0Ip6fGIQo5ib70qO/HR16ZTz9enayr5gf5TwHcsaJaWrlkCEy5sRisYZkdVtt3YZU0+mpxq1Vtaui4rYIC42I57MGcS9byI9mJ3uzE73Zyd58bqhYGOVeDkApbVm4xlg8lmiIJxqrqtura1ZV1XTEE02OWx2NQomwaIh4Pp8QvEDEAcDKqgMii8LmEU4u/j+gUOYebEjXtQAAAABJRU5ErkJggg==", "path": "image.png" }
Complete the statement. Hydrogen sulfide is ().
[ "a compound", "an elementary substance" ]
0
The model below represents a molecule of hydrogen sulfide. Hydrogen sulfide is a poisonous gas that is produced by some types of bacteria found in swamps and marshes.
There are more than 100 different chemical elements, or types of atoms. Chemical elements make up all of the substances around you. A substance may be composed of one chemical element or multiple chemical elements. Substances that are composed of only one chemical element are elementary substances. Substances that are composed of multiple chemical elements bonded together are compounds. Every chemical element is represented by its own atomic symbol. An atomic symbol may consist of one capital letter, or it may consist of a capital letter followed by a lowercase letter. For example, the atomic symbol for the chemical element boron is B, and the atomic symbol for the chemical element chlorine is Cl. Scientists use different types of models to represent substances whose atoms are bonded in different ways. One type of model is a ball-and-stick model. The ball-and-stick model below represents a molecule of the compound boron trichloride. In a ball-and-stick model, the balls represent atoms, and the sticks represent bonds. Notice that the balls in the model above are not all the same color. Each color represents a different chemical element. The legend shows the color and the atomic symbol for each chemical element in the substance.
Use the model to determine whether hydrogen sulfide is an elementary substance or a compound. Step 1: Interpret the model. . Use the legend to determine the chemical element represented by each color. The colors and atomic symbols from the legend are shown in the table below. The table also includes the names of the chemical elements represented in the model. You can see from the model that a molecule of hydrogen sulfide is composed of two hydrogen atoms and one sulfur atom bonded together. Step 2: Determine whether the substance is an elementary substance or a compound. You know from Step 1 that hydrogen sulfide is composed of two chemical elements: hydrogen and sulfur. Since hydrogen sulfide is composed of multiple chemical elements bonded together, hydrogen sulfide is a compound.
a compound
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAhQAAAEkCAIAAAD4ij+CAAEAAElEQVR4nOy9efxtR1Un+q2qvc85v+n+fvfezDMkJGEKAUkgRFsUHFtFhNeorY/Gfmrb2u3Ur1tstVuhVdTn1NLYTm3biG2QSREnWkCRIAHDECEEyE1uJjLe+5vPOXtXrfdH1apaVXuf3725uSQXctbnl5tz9tl7r6rau9a31qo1KCLC5y1ZR9sTSwRHpJRSQG3U4tA81u2a05zmNKcvcKoe6wY8bNqe2Nvu3f3obZs33rpx2327nz0ycUStdUYrpWhxYM49OHzK+StXPnHfk89bPmv/qDLq5DZgY6e9/b7dW+/duf3+3Qc3GxBa6+pKKeDM/cMLT1+45OzFcw8sLI4+Vxi2PbZHtpp7j052p5YI1lFllNbqrLXh2lK1tlRrfZK7XFCG2VBKzTF7TnN63NHnDXi0lm65e+fP/uH+P/+HB286vPXAZtM2DgQEOUkggByIQARNiyN93oHRNZetfcNzz/qSpx48fXX4CBvwwEbz/luOvvMjD97w6Y1P37NzZKtpWgcCgupGIAJoNNCn7asvP2/puZeuvfDK07/okrXlhZMwyK2lOx4Y3/Dp9b+/Zf3DhzYO3bu7sdO21hEREbSCAi2PzFn7B0+9YPm5l+2/+tK1y89bOYkCfWtsb7tv96O3bX7k0Matn925d33qHFlHSkErLA70eQeHl5+3/KyLV598/spZ+4fmZAPY9tje+cD405/dPvzA+N4jEwDT1g0qBeC0lfqC0xcuPnvpgtMWVhY/V6/01tiubzWfPTrZnVpHICKjldHqzLXB/uXB6mL1ucbsOc3plCJ16putnKMPfHrjd/7PXX9+44N3PTBxDlAaCowbsf0EOAAggnMggrMgNxqqp12w8q3PP/dbn3/+mWujh8udCJ/+7M6brr/3Le+//2O3b+2OLZTiBkTulKGXc3AOcPuWqudcuvqS5539omvOOWv/w2btaXO3/bubj775+vv+z0cfOvzAuG0JUMjEFAXIJAfnQE4ZHFypr37S6jddc/ZXftGZ5x1cUCcq1hpLn7p7508/dP9f3PjATYe3H9xs2oZAlHU/DrjH7IOj512+9g1Xn/UlTzvttH2DE2TMtL7TfugzG+/8yIPvv2X9k3dtP7jRTBrLo04Rswe1OrBSP+nsxasuWX3hlac/57L9B1YeKWsAraXDD+x+8NMb7//k+o2HNg7fv7u+3bSWyBEBGlCKlkb63AOjp1yw/JxL166+dP/l5y3PlbA5PR7oVAePww+MX/fnd/7uX9/z2YemUBpBCqo+5Mj/gkRzIAdnDdxzLl/7ty+65EXPPWc0ON65ff/G9PXvvud1f3Hnp+8eewsNVC9r7MVa0bOftPpvX3Tx1z/nnJWHo4WMG/eujz30K28//N5PrG/vWu5+wb3DOnC3cK4yuPy8xe/4igu/7csveLi6l3X0wU9v/MZf3fmXH37obo/ZOo4/+jGb0QvOjYbqGReufPPzz/uWLz3vBDAbwJ0Pjv/4hvvf+L57P/Tpzc3tdk/MFqzJLY70lU/c943PPeulX3zuRWcunRhubuy077v56B9df++7PvbQ4QcmbUNQErMZNXPMPm2lvupJqy+59pyvfObp5522eEKc5zSnzw86dcHDOnrHPzzw6jfedsMtmwQFZYLs9jpHaHU0Gfl1qMslqQsrYliQQ9suL+hv/bLz/8P/dfkTz1o6Jve/+fjRV73x1r+56ai1GloDCt4uQQoAFKU2EErWIFgbmkQWrR0N8OLnnfPKl13+9ItWj6f7n7x75+fectubrr9vfcsF7hlwsvBKHEUbiGBtEOttW2l67pP3v/KfXfaVzzqzMvp4uB++f/xrf3bH699zzz0PNIwZKmg8hBw5OphtHeAAB2uNcs+5bO0HX/ykr7v67OPH7I3d9s3vv+9X3374o7dtW4t80TCbe1SA4GCtgrv8/MXv/bqLX/ZPzjtt38MAznHj3vmRB//rn97xdzdLzN6Te4nZdNm5S9/1NRd9y5ee/8jtpXOa06lJpyh47Ezsr/3ZnT/35tsf3GihqyC/+o0vFMRZtBqFKc2S1FqQA8KKGLZ9zpPX/r/vvPLap5w2i/v2xP73v7jzNW8+fN/RBtoE8dFtALHUjovfTJy5aL/y4gzWXnre4qv+76d+07Xn77GN31p60/vv+6nrDn389m0oA62F/Cq484cEnAgf4kocFo7Qtgf2Vd/1tU/4dy+59ODKXuKstR6zD33wU5sEXWK25FuyLjCbx7xtVxb0P3/BBf/+pZc94cxjYDYRbjy0+dNvOvT2Gx6YTAFtOpiddzzqPbENUecjB2sr7V5w5ek/9i1Pft6TDx7PnsTNd23/3Ftvf9P77tvwmJ3pmkiPOwE2dVgTYNHa2tBzn7z/R192+QuvPPOke23MaU6POZ2K4PHQVvOaN9/2q2+/c9woaAOtoDRP4O4kjBLcT+BCiLtSljkL2z7p3MVf/K4rv/bqc3RHKB/dbl/1xltf+467Jp673xGGym1lSsgOiLWnlKQuCBTnAAsQnEXb7l+pfvLbn/JdX3PJsO5RAiaN++W3H/7ZN91+dMvBGCgtuM/ueEKvKEl59yV23LZG2Rddc84vfdeVF5zRL8R3JvZX//SOn3vL7Uc2XRr5tL0kmec6XzHmGWYTrIVrr3nK/l/4zmc878kzMbtp6Q//7rM/8Qe3HvrsJMPsYo+nxOwCvdJ2V8Dvtj3n4OCV33z5//NVT9xD+2kt/dH19/7Udbd94o4dQCfMVh63RH9jM0rMdkn/8KytPbDPfM8/vfgHX3zpwZOxBzOnOZ06dMqBx87E/vDvfuo3/uJuBxNkt5LSs5BixcaDCxI8yDInpAkvw4lgW7j2zLXqN3/g6q9/7nnydg9sNt//W5+87r33t07DRO5Sys/YcvDD6Ciw6FV9EMTo4oB+6Jsu/bFvfdqwzmSZx63X/dndu1MVlr1aAXtYe2KvWZZ1O24tw5iFs3DNlz3jtF/67mc944n7i3s9tNX8lz+67bXvuHPysDAblI85c+9idttedv7iL37XM7/mqrNVB7N3p+61f3bHq647tLFDrG8Vj/4EMJvxw7YLA/zgi5/0Iy978spC3R3HceN+8Y9v//m3HD665VFTarrdV04qu8fC7LY12r742nN/8TuvPP/0+S7InL5w6NQCj2nrfvpNh372TYcnjZfdABCkQNFOpeDRBdKa5IIkdZTkda80cS1se+m5i7/9w8/54qee4S/eGtsf/4PP/Oqf3OXAyOE3V4JYFEJE6ZwvkrD2sqOU4J41QxfZ5QH9zHc843u+7lLDBo1J61513aHXvOn2lkyQ3eiqJr3GdyTW3lwj1+DU6XjbfOkzTvu9//caqX9sj+0P/Y9bfvOv7qEMs3XOV3Y2fogKX2fME3RF/aM5a63+7R+6+muvPlfebndqf/wNt772HXeNG0BX0AVs9HbZKx8OQACPAr0sLxcCZttK25e/8IJf+M5nrS1nSsCRreYnrzv0G3/BmK1j32fZmnLoyjC787IRwbaK2i97xmm//K+e9fSL1mbcc05z+jyjUws8fvddd//b37xlc5egVJp7ySoFXu658FkBMNAV9AC6hkJahjspyOIanKWMtYBF2zz3yft//5XXPvGsFevoF952+0+84dDU+hW3l7w24VZm6QbgjVoVdB0wLEnwXIwGKwqx8cp5DeDAkv6NH7z6JV98IQBH+NU/Pfyjr791d+LlV+6yxewDhikNZQJ3pfm4Y/uVy/SPrgZAFrb5pmvP/e8/8By/kzxt3auuO/Tzbzk8sTrgVljO2xmYrYG4DRMVL+rB7Og1AAfrQC1sc/l5S7/zw8+95imn+1s2ln7l7Yd//A2HxlMFY4KZ7mFgNrGHNOXQlXfcWlBbKfvvXnr5T/zzpy+wN+2kcT/5h7f+3JsPWxheMRSYPQvAImvwVseMxYq1IIu2+fIrT/8f/+65s2yGc5rT5xedQuDxkds2X/qaj3767h0YOV0L31AWVcQiw09gAMqgGsEMoHTwuinsCbaQ4C1g0TTf/XUX/9fvu/qdH3no23/5Hx/cbKEAcsLQrzJ5kbF2Acx0BTMMrMNinzLoCqKEAI8cDmjRNpedt/Tm//ylT7lg7c/+4YGX/8rH799oA/5F27r0borIlOzsGtrADKEHLNmizUQshKUE99CF1rj2h196+atfcWVt9O/8n7u+/7c+tTUGc5+F2axnBMw2jNlKWJCOC7Ovfer+1/+HL77orGUAr/+be773v39yYwfQmodItKEfsw10DVWFRUYvZveomxbUjoz72f/nyn/7osuUUo7ol//k8I/9/q27jebdHd4vCZgtXjyloSqGbc3PphezuxtOFrCwzUu++Nzf+IHnHNjTZ2FOc/q8oFMlwvyOB8Y/9Ye3fvqeHRgtdqd7owoIiqAIpIOACKv+FpN16Ar1IvRQ3IGv1RrOhs3PsMB0MPoNf33o8gv2v/mDGw+uT2H89qyZyd2zRgQJB+XgGtgpoFAvohoKl1awh6uCUkEQa3+tRmU+ecfmz/3hTT/2bc989XW33n90wqipAaT1tWLuijHDuYQibgo7ATSqEapR4BU2eLn7qePglmgL9Zvv+PSXXnHGeWeuvfq6Q1s7rdhbUazQRO4Ss73EtGgbYAylYYaohlAaBMFdB5hR7FftAzXIoTJ/d9ODP//Gf/zlf33VTYe3/9Mf3LqxbaEB10IRb4/r1PHCQGTbACrKBMzWxr8CoPjUNOAy5+aw8a7Hrf3pN9x0xRPWvuwZZ73jQw/+zJtu350SlIVrAsdM24ldJjgLTHh8KpgBzIDtew7k3ygLKEBDOR4KxR0naPPWv7vz0nNXXvXyK83c/2pOn+f02GsejaW/uPHBV//RoRtu2XRQgAkSB2DfUH+iMI/IvxTMEbzsAQczRLUEZUB25mLQG3BgQVhYWpnS0BJbuqV3JpFY/kdJ2nEMjSqFqVEvQdWs5SBXPuTy38K2ywv6qZee/6HP7LZUQKY0kggJnjouuuMXyxE4HStYcckf412CImIBi2Z61eUHVg+c8c6PHAmhJHtjdi/rgKAa9SLMEKTy5X/e8aCItHDtvpH6xe959l9+bOe6v703YHZ/31GyjvpNGHmFaoRqAVAdgyHbDJMiEtTNFz7r9Nd859X/5rdued8n1hmz9+i7C29CUq38eGqYIepRWEwkrYstfsHzivh9a2HbA0v69a+89muuyjw15jSnzzt6jMFjfaf9xT++/b/+6V1HNtvg5YLoGhsp2i4QjCd7R1R4GaE06mXowZ6WaAdjUC1AVShiGmZ6Z0bWSOwSfjg4CwVUCzAL4fI97BjawCxA+V0TnbjjYUVBCjgEwYxQLXHzIMx0HehSCnqEagFKJ+6BImxHzEbJXUZB+mYk4OzFbMvbPxawcG5tbW3XDSctBGajRI5oQJOYnbaRXPAi0waDJahhidly0z523LW1pksuOvtT97nWFaA1C7e4+90liDKoF2BGcDhOzP6Spx1803/6stNPKPB+TnM6ReixBI/71qevfP2nf++vP9s63RdREYwd2eq79G/pTlSxRQlCtYRq1A8ezkFXqIZABaWPHVHhJWlCL7GbImVZsKtY6CHqZd757wp6B1OhGiXuZRBigV4EB7EbISRpEQVJLXSFahm66iz/o7QtULM3CrKL2QV69WK2QrUEMxSD47IFu2+tVqgWoerQd2ifKCrHbJU99LTTU4xnxCSHagSzFLYu9sJszZhdPQLMppC5wGs2ZgizFFwtZr1vDF2G2p/7zmf+0EufdsJzZ05zeszpMQOPOx8cf89/v/kdHzzioPt8Q0PzxBoQLEr8tCQhSTtiIojUFmRRLaJe6gg7Cj5a8Luv7MlzDO9MuTtKxxATXojXK9BGSHbmriqYIcBhgHtFVPDO7TGAU5rjWkChXoEZ5OoRD5oyqIah78eJ2V6SZpaZ3o63gEO1iGqBG985x3NXNcfiPayIithx26MEkIWuUK2kvfeuVVMb1COgy73zxBPr48NsZVAtwQz2wmxYUItm+tQLV97x019xwZnLM963Oc3pVKfjynR00umhrebH33Dr2294yHn/SB/N683llDvPEEqrgp/tWglPfBXWj8FwHzecNZRGs412Jze/+GCCIVQFY2D8DrnOuJQbACpxURA5CvkEGdEWgpMN3BTTDZDNe69gBjCj4LeTXHd6/8AN414rVeKc7LjyfTGAw/Qo7CRdG9UIUweNx+d98X63qfs6cUTcBBKqSeKugZgtUXPHDaDQbGG6CVAHDxTMAPUC1ADKwETgLJjG++tMLVN5w7KO62D6c1NMj8BN0+AoMVDVAPUiUDN3zffUPX+KO55OU6mpmnUmpUPHyaJZh91NK56CexoE84k7N/7ig3cd/5SZ05xONXoMvK2mrXvNW277vXd/Nix745qRbFrhAkHcB5tGJcIadFiMKwAaBF6bK4BYSip2aiIoh+kmAJgBtAdLA1WFVT8AR6Bpn3cmoEz400J2BK+nyNpjlYPWbFlx0BqWoCq4KSYbGC6HBgY5WIdoCYWkN2QqIAX4UVooJb5JFJpB7NgDB+V9yRygoAHSIAO0mG5gsAJt2PnYi8IBUMEw/hF4i0Jy8WIRPLAIHdf+fMXn69BZ50D82RooQrsLpVDHjR9/DwM95CGViiYlRhTlrGiSil8jCnpQFB0PTk0G1GKygeFqeNxx10TX0AN+psfMXKDSGwUXRtXFN0QFUPFPXBG0gQXQYrqOel/wfMv0ZnEh4Fp6898e+tYXXLw0OlU8Huc0p4dFj8GL+0fvu++1f3qnc8j8I6NKEfWDYCRwQAvHLpJ6gGoUzFz+HDn/k0esDhvC5HUai+kWRgegK8DxJQ6uERqJsLCjsFQoKA1dwwyhK57/0ReTxaiKGMZLTlLQBnaMxmCwIiSgBvzWiOASITNYSxzfR0NV0AOYyNqfqDPUDKSDTd8SlIZrMfVi1IgTvGNrC7AnUuAYDf0UuOgKyisoldCxELxy00gic0vVGs5AE5ptAKhGUBoGwUoGE9xwnRVGp1zIhijIKnyILEL7Y1P5KUfuWsMRYOBaTNcxWEmaIhR0HXaYNJLJK60YENYECbblq8UNS6GL/s4qOOmG1YMGCNNNKEBX6SF6ZcWwMU1VUNUNn964/uMPPP8Z87SJc/q8pEd7z+NT9+x8089++Kbbt/Pd6e66j5JYl/Ff3pClK9QL0IOOf2RnayHufLgW1QKG+5MRKS2rYxso495lDQVVoR7BDEDoBFR33FL99oNrQYTRgbADQSqkc1eSOzLu0c5OTgCJ4YgK1Z8OpEiiRcy9XsJglU9TghfyjqOn15BRkDWU6QsGJN6LJu9Gxcb9Bi52XOgWces7qhYkd1bi9jjCgIcATH+mC32Xfk09+9ItbItqiMFqWJFAcZYwfk/2wmywvhujIF3Yd5nZcbEhTy0IGK0y6ErXg2iMdYA798DwmsvW/ulVZ77wyjPOfQQ1u+Y0p0efHlXwuO3+3R/5vU/94XvvY+uTSPQNlVa+4d+4PwlAbrpaWAsA1QjVImBCEpE4n3u3cF0DIiwc5Plc7HAI6QkSbXAAyhuSgxmgXoSqZ0RU5Fu4sLANzBDD/QDyzZJClBd974uo0Ab1IvQgAEwapUKGUohpcC3IYnQadMUmr1ncO6xTRIUNylm9gGoE8hEVlq+NrqhOPII2SHAzwPCgsDQi51503wEsYdNWM0FpVMMUzLHHiiFuX1MLZzFcQ7UYTHzHhdkyfQA7FwTMNhye6fi1jP5j8hF46GpgRhjt73+7Ijw7B2erSl16zuI3Pe+sl7/wwkvOnm+hz+nzgx4l8LCO3vaB+3/qukMfObSd7PiFowuJOUYxHpDBI7kMiVmqNapl6DqTodRJJeuNG8bHYIuICqnxxBUo9ghFdLyytlAK1QLMYgItSLdUmQTF8cmjYDUCZteV6rCGjKhwQY+pBqiWeftHdFx6r4ZVsAURBstB8pYRFdJYJ4GTRbOTQXYWzsJUqJegBkKG2tBy6zueuaUCxAbDfEs8cO7CtpCwsa5UdC+ul6AHcAjHM/CgMqLCNtAGo4MAxI53oWj2cSdRV8r7aCkdgjm6UZAk0rBTjIK0cC1G+1Gt5GsCfpmLlYG1itzl5y9939df/M+/7ILVpZ7Uv3Oa0ylFjwZ4jKfuV/5U1qiQVSKiSQFpdoUF4PEFFoByx9A+1/5jxzQgty0gLXvDbfsi8shCD1AvZ979yTuTDThVBeO5qxncTzQKMjmGdhbgUYZqg2oBus48l3o67j8eX0QFHMwCqkV+ajOGHZJ7JwoScrmAvsfdO+aEaohqKexaRUE8KwpSrhhwonWlEnrVqJeAmtXN2S8GHOwUymDxbOiKx7kTZCpXG+TQ2kFF//Q5Z/3YNz/5WZfsP77pNac5PTb0OQePI9vNT//Rba99x127vjBc8rJFZ6sDuQ2B4CBWeb1ighULH1YdbNO5DPU5JLx7VXJ1ncWdl+FlREWffPRbGsqgXuGt+Lj2pCBqVZUiKrRkHfFS7rUgaV1FjYpkyeG6UgE4l1AtdBbgLEO1gRkFL7WTUFeKM20EYKgZOGfYjrIoyOOpK8WbPRI1cXxRkNTJwNi7Yohb34l1vl4pFiuyU0HjBKpFmNHMdzK0toVrYRuM9mPhYFgc7LUysKmztr30vKWffsXTXvy887rFyuY0p1OEPrfgMZ66//iGT//KH99pEcupSsEt1Q5P0ojBEXnZFmWvBPcReQsYLpcrQZ/5FdXDrCslA00EePSvcFuQwnAfdJ0tkOGCbyhkcaG9A2uYNdBTV2qWL4BZwGC5R0GRcYjHwOzYfd4WTjLOpWdR5vlogSq4Ancx+2FEQQp7Dh1fXaluFGTxVvgUyzBJ2coe/XFjds8Tb4PiVS+GEUvnULJqepOda6ArLJ/P3m7dDkouwjzYtmesVa9++dNe/sInDvoqTs5pTo85fQ5dda2jX3774f/2Z3fbKD2Dyd514ubAvv9s3IhmcVDISOp1CKDMV6oNLEEZ2F1MgXoBRGGF64ttoAoVfiIOUY5YPrBO+mVCpWAOUBZREXPigvizAXxgwb5wxFNEDsN7PMmJCKIB7KCcWHvgAUg6hkL4pEZ/XA1FaHdSREXBXRVBiAXrSHFADDscgxssJL53fZYdpwbTdQxX2RjFF+oaus4jKoq6UlJ2i60XxZ5OqeMU3H8tiScOoMH0KAb7YIblBoYZiNwBvZitRZfjCsZBKU6s6/g0/8QRVAft40iAdhuuDa7A2bJDkOdrp2i2MdwPuPBeKYSqAWlAiINUADgoDWPuW29+8NdvnDbuX3/9pXP1Y06nIH0OwePN77/vNW++fTwlKAo2lmgl8JS5ZlKYw75UgxmwpRicAh1h+sWddmKACfmuHZptaM37H5R2p6lFG+05Iu1EXOYDIUhY1cEhNaEXyogKJaRqiKgwcE3AD6WgKoBCTEOKgmzFcp6FUZAaXshWIbIhMPL/z6Mglebd9dhxQBGaLSjADJOG4c10vvuxQEXC7CisTQ4wYPRCELgUWfvOOhEYSIDv+DqGKyCkIHBfbCMkDkAI1ilU3JgCIO3e8+NWCi7CMEdBRugKn30U5CYGgDbhZD/4QdvjOMQezKYwtuGz4q8es1X5xLWC8wdteuJ2jEZhsJhuGJ9R4KsBBUtotjBcTcPrkSvENlJ60+SSSGkosz1pf+r1Hzt9dfjPvvRCzGlOpxh9rsDjM5/defV1tx7dnGaVnVS+AFSMGXKPgVq0U7Q70FUo7gQEcZmkmwCPIM351+k29CgYUgCgTYJeqSBMFXJjhWOfohY0RuNDEYchKI/i/eM8VyzIRISa0nBTtLsY7OOba6CFcyIKEmGHICypHcibp6ZJ89ADmCFMlaKsSXY8QpcOK2Xi1CPTLYwGwXQW9SRqYSM2M2DshdlDUdk3Zx1wDqkuiOeiDewUzQ4GK2IV70GrEdsnMzBbMWtdh+WCXwqoWZgd49gZs1MUpEorBo8EliEzdBlhSBEzF5gQCFlmfEH+xKNkj8GABK3R7gBAvZCiILP9G4IhVC2IMN2E5vofYgKUil2BH9rct9688nduvOCMxec++fQ9J9yc5vRo0+dkz+OBjekP/+4tv/fX93DeJGEOghRk8Q9BTBSb4cG1ZhGqyl37u0nxXNgAsA3qJQz2BdmacZckmIKzaUWztYcTM8BgCcqIYEAI23dn58Mv8EcHYSIkq9nc+4Azut/4yhxmEFjLPYBel6oQEzfCcL8Ic0POXVqKZrD2SkM1gqlB4DHJN5xkWfIsCnI/zAjkeHFPeRvksMu1gmMs8ayHMDWgOhEVnVCSrOOLGK7y02GFKWJ2ZE2MnaVTmcDseEI3lKQnGNBHQe7nLMLSfiV2UGIflYIeohoGVek436um+eqrzvxfP/IlvmbwnOZ0itBJBg/n6G8/cfSnrjv0npuOWlJc2SlXOOQCkIQYDUfEhnMo1aBQLUGLzOq+YEOMZIZw7QfYczfGIUpbP3c2mTIK1vnGLIB6EWYBpEQwoISuIqLCYrDC3HkJCa8fIC1LMyHOkiUJLJZTwSc1RkEiFzGiIjpsSLUyKqIgVdnxErCLYEBepyfMppk1KiJmw8E20BVGB4D4uHs35zuYDQihbOEoxJHourNz3gng96nvPYAND8AM8ijIXu7Hj9lCZwodpxSOGnbOLWwLXWF0mnjJqYdRirV0IKBeRDUC9Owlkah9Qq0h++pXXPEjL3v6zIk3pzk96nQyzVbjxv32O+9+1RsP3ftQE8zoKaYh39IkXvG5Aj9cSD3kJZTfZncW0w2YCaolIZg6+42kYWr2zlRpq1YhWJ/8yd5sohVIwUXB5G/ib6yS6cU6TLegJ6iXoUxaqKa+CJuGGaBagB6InKzHEwXpWfNK2R8zgHNoxrBTVEvQg2ygk93MJeeCaggTIyrksCeeiAwy1hQ2yWP0g2fdTlAvQi9k/VUxe5g03xFMDTNiw6D3a5A75BKzo96pgt2yUrA2HNYOtoE9gmoB1WLIS1Z2XKWv3moHA1gopHgO/9AhHz3Ea0Zh4xoEp+B8XyzsFHaKaoh6KQxjaL8Ke+kk32QF+J38CdodDNb4ycpFieO6xXHDTsE5TLdgd1Eth0wBPSS6oLS19jfefsvXXnXuFU880Hv2nOb06NNJ0zw2d9tfeNvhn3/L4d0pQpJqXZiMSMgynmC0d2ABrwr9GlOJ8hhpHcpLtpnemQXxupu6FoxZdiFf42gFpk66QmFh8NyVjGmQ3KPEZMuJ/zdzDKUZhouOY2g3okIbgZocz1H46CS9BwKz3ezbWpAPoFlMwRzFsPvPRqNagKoDd+gQi6dYcCsebRV7na8YZKwcZHjjMu/iFKfJOE2dMPtkZi7wmC30nvKdZHXTNlAay+eETAfxvSqeLIlA9PBkfXyrz7/ret6rYKazcC3a6fe+6NJf+d7nGt19pec0p8eATo4L+c7E/ujvf+Zn/uj23UbBVKFER1mhQRpSdDhSlmqAWOip9FkbwDuGHoVr0gYjEOSyX/Wj4iIZXGsha0Bshsk0A5WfoFR2eSjV4NAcRbvLLcwp1KioQzbWrPyD7Htkzdy7o6TjQQ/ABlCw25huhD2JghTXqAhp3g2MCc0oq1PE2H6G9jREWnScn4t3m7a7aNbh2r7HrqAUTI1qKdTn8JnzjU4PVMWiF6IYidF5x0WT/Hrfd8G1aI7C7kqG2WelYIYYrECPoKpQHCVW6Sg6q/lrWT5EDgWPubOYrqPdlszKRijxoroppptp1aL7SoAkl2XxZNstNJv8ZIvuIYNApf/4+js+ecd634OY05weAzoJZqtp637xTw7/1l/e0zg/K/xKy1vDKZsSWURFnITg0wzbKBSALKIieMHHHOP7AIS9WZ/2PNZpSN6Z0bLPN0yLcbaMp5iGWam2Wd75KhFeQBjONuHvH+pKmSSdE0fkEkGw9pYTEIcRRLeinHsILCDYXRCFuiCSHl6NCh3anH4RBj1E91+XMNsBrsHkKIb7RDp6JlOHGMxjRLBHliRcjV0yQIUBEeY4Y2AJZDFdR7WEejGNW7zEDGAGKYK9jILMbx5656MgFRwyy6ev/OEPaAAVXIt2K+QkVsVipRTrUBrNFob7uVhAulH2XpVcAEdod+FaDPblW4NsGAzPRUPrO+7fefv1h59y4Vrf8M5pTo82nQTweMPffvY1b7p97PWBEFERXWiEiSZOe7+Wj3FkEFMxeGfqoMJH70zFuxo6RlSsBGlFHFGB6J1pU2S43+EAgBl1pTL8oPAh+eCKmDiYUOpnsBLEqA8b1hWXf0AeBSlkDXAcdaVsOhiqDFHgbrWIglzsiWlQIgpSxhUG1ntgto9etNxxl3dcgXxERYPpJoYrAWy8NE7R+6xJHC9mE5SDUwKz/TYJ++AGLDEg4igWhSp6NHnMjnWljidzQSSdMDvhRwFdcbFCsDsgh+FK362iVuEABTtGu8Op7zW7oeexMuFZ5OsSGNgpppsYLId1QzjBZawAOPzp39/x3V9/+erSoGzLnOb0qNMjBY8bD23+1P++dWu3hYaIqNBBRgBs5XcAgq3cOyC2YyhZ3MnP996ICuI1uPd39FuUA9QrgN/2VMHdqL+ulAo7Kz5UbWZdKRL78Jrj2ClJlhDM0fAaM9aV8g1r2H0obm9E4HRCqvpV5ICjIFUQ4nHFHdqP0AwQawMErdHsQGuRkdDjn8fs6DjUxezI10BVMIOA2ZFRxlqMub+KEErqBsxWIgqyCtshrhE7B72YLaMgVdZHQtxNFkNBHGMfa0ESzABQMAYEaK4FqU5u5gIW/SlzwThhdnjZDEAwBqgAB6rhatgp2l3USxxhSjwFZMVJ1wMeRFwxDBgsi6eW+sBvrLrp0JFb7li/6vJ5zMecHnt6RODxwMb01dfdeuizOzBaTE7k5gUKEgEEo4IlyjkoBzi0u2h2UA1RL0JVYm9TgofKJbiCUmi2YEaca4+FY7hQkF8A+n8967g5b3fR7gbvTF/wZw/uYZ47KAPboNnFYCWISGXFJbENlLiDYS9ENli022h3Ul2ptFIWo1dCF+tJ023oBREFaeE4okIpoMoxm8IeLAhkYVvQGK2CEhEVNCsKMtrNKBRktBO0Q9TLvBUcMTs+AnAUZBezGdd1DTMSUZDIoyC9/5JN+h/5PacG0y0sHAj754qX/FnmApX1mmIoorfCdTIXaILrzVwg+kI+c8FOcEmIr3R4UzgVmKphhiDC5CjHWtZpUbLH8MbPSqHZCSbQ7msc3i91ZGvyoVsemIPHnE4FOkHwcETv/cT6T11367s/dhSmzv0jpblGpiSh5LmofL4HBa3gLJoxrHcMHYn1IACpxYPBiXewqYEeiniOyF3GEoOX3tEdtvDOnMBOQl0ppXmS97JGmu3tNqoRG9mPI6IiusNG1uTgphiPU12pY0CXHy6NtkGzEcwjCsnFqIc7gonGB/l7Nx6fOMuO0e7CDDBYzN+BY2H2dBN6GDTFIJQfLmaPBWYP8mtZLSjVTa/ztZhuJY9YJVKt9GN2BGwtMhdsQ9WpFmRkKh9u1nGJ2SORMid232uWUXGMHTSoFtnUNmt4kZQP5blsYWhSRzqekGTpg5+839Hl82y7c3rM6UTAY3tsX/cXd/78Ww/fd6SI50AQvl6Oh0UZhH+kJwdFIYmQ1+aVgrOY+GCO5SSpkzSM8xkgBTPMalTECRmp3zuTj2gvxwEARsE5NDuwE3YMFfdJLRFJUEI8R+61Ja9K0JWnAPGmGA+cXu44oJ3ATnsiKrgFoRmRexWzXMSICiUkIF8e9hJMwGzEoBkX7DTk0E5gJ6h9SSuVce/BbBVyftAUatTBbARVIw1BxGzqYLYP5jgKMwh2nrQwZ+4ldGkojXaMagpdpWVE9p4QewRE1sgxWwMWboLxGGYYHOQyzM6HOqkFGrZBs4nhQcHLCC4kuPgOtrDraAeol4BqxvCydhWH1zaYbqNezl+DzIR1y53r44ldHH0Os9LNaU7HQw/7FXxoq/nxN3zmt//qnkmrYKrgChkoX/4rSgKN2IgRZ7hfuwWTOm832DFcw+UxCmJPx2qAapg8fFTONIgARgviqS6jHKDZ1yV8C9410/UQm+bZhWVsblfxuLV3XSkpj4h3euBS29ghIHivOovpJgMnC8RkQtEhch4apsoiKoqsgj6+OmC26UFNxYn/nIJCiM6bbkNPRHmMXMzJNbivkOG1vZmYLQY8RVR44FThiRBHQXrgrJZEZlxm14UuM4AZwcyOggyPtxezlQBOBXJoo7LbGwXZVTc1mm1Uy6iXOh3kLseVgeygm8IswYzEeHaHFwkg7S7b1oTeHB+jwn1Hx0c2J3PwmNNjTg/vFbzrockP/s4tb7n+gdbpkLXUW056SEySKMqDdw2foGKqbR3wwyIEc4RSDVKGAlCoh5l/kZLLTwhRIlj7j35KZ96ZCtACPwycRbsFsqgWGZBI3Eqjqrgs3Z51pRSSwQoxgTkYOF3oeNw48B23E7h2BnACyuscw4BbOsfsQHpPzEYYZ9+A5BELOD/myyENJaTKxfBgBqhGULUIoZBPOaKXZ62giEMRVRp2PxSWeMwBZ9FswPlaXuiXrVHbS6jZh9lAek9cASExcwGCjchUjNnTY2Uu4EEgQnMUg0VWR2SCEx7/mDaRWKW2LdwG3JQ7WLwo8g9Be2t3MVgWezaQq5/xtN2ddvwC5jSnR50eBnis77Q/8QefeeN774c2qGQS71zxTx8oTQmfDYIA14moCLmpI04YkBWpUsXyWVcc03D83pmKV9x+ox7COzOa16NNhgBCsw1ywe8FQo0wfjPTHF9dqWiBES2RRvaMtccSA2pFRAWEcFQcURGDECX3or/Hh9n+IcAl1s06aIlLnefWs2qQ+cUeT0QFopbj2JrEmwRaYjbgvEesRR2FuOxQRE3DqFlwl6PN6p3xrsAkXIElZjvGbJqt7Eq9B2GZ0u6inaBeCltHvr8Bm4WnnNenfXt8rIzdgWsxWM40NopWr9wvw03gRj1D4TkRHoXS0XOa0zHpeMFj0rqfftOh//nXnw3x2yC4NiTPSGVteK2tNBeo6FQi8qtLksYWYWX2C2EQqA1VIsIy00dU1EDF53vvTCvEItNe3pnS7yX640oJTtAG7S6UQjUCUYifCHWlTFZX6mFHVFBWVyoZvvO6Uj6iQsXM5AI1Y9xytM8IHqwlHB9mFwIrslYq6R8ZZlczMHsWaa5qlReuSFapGEoSoyAdBislJuqI2dFMV2B2PJsHOXFH6QpcYraBA6jF9CgGqz2YHa1Fvs2OMN1AvZTeH3h1KgY8asBxfIx8shpujKnDYDUfsxynfe/IwU7D6xfNVsEMC6I5dszplKDjBY/r3nvvf3vHXdYBiitxQggE/yVagZ0FOJzCBxb4PV4/LYmlZ9fzPZrXlYZtMd3GaC3s0wZOlh1PKZt1mXcmW6KzGhWhOYAqwxqi3SC5vjg0W1Aa1Sh0DbqnrlTcRyHuvqeyrhQYvTA7ooK4RoUOUZCDTl0pL1ZCptW4phaG/iDcq5ApJKmG/v9FeaU+6FIUgjm8p6mOERUVB5QcR0SFXC54MFMxClIGA9og61MU5AQNUC+liAoldE2tWY/pqwUJCS2xy7xKiOYsIElzUAJOalMUCzHien3UKM59YKAU2jFcw44VRZinUGo9ZKb6UQYKsFNMN3rSBIgWhw92yhBO/HqHl1xrpefpreZ0CtBxgcfNd23/7JsObe20CEJY8aal/xY3G1l5J5mGeopmgkaHBFBeG+h3S4WQ4DrkK23GqJeCfOzxzoRgLfAjRFTEulI+rMHXlRLLybD8jO5P0btGwQHNdgglCUKhU1cqoqb/13eZunWlRjBe9O/t8g8BnFPYMeqVBIQeNY9RV8oBbYLtoq4UsfUGEKxJRFT4kW8w3cLoQNizVXzVCdeVgo+oiJgtVwmU+hIiKnahNOolHljFcllEQSa05mEP7wCzTnWlWMjukblAYvZ0I6QJ0SpbGfgOagJGIItmE2qAatgJ85RPNr7eQsHVGu0utA41g3vJTwTXwFrWIzlPIhEArebgMadTgo4NHvccmbzqukMfv2M7SMBkKwhraT4xihWEiArFwRzKgRyabbRj1Ashd3eheivpuQiGB4t2C9WQvxbcpSDjP4UyoiK63scaFVlibZQONr4l2ntnbgUJHta2vbYafx8HVURBEmDhdjHeQRV9UlOHS/CIAsjDZyyJqHAcERWKhXgRBbkDXacoSMQIGMmdwkrZi8iQkXAHg31cV+qYUZB7YLavK6Wg0BcMmGtdXs42OzAL0BXIBwPalBHSYzaiVgHBmouR2AkQ60pV4U3rx+wIXfGJe8zex11DeKPA5cJ82Ac5uB3YHagK1Si8n9mk4E55/y6Ad9EdlEKzHcoXZtMnnwuuBbVB76SoXDoQrS4P1pbn6Unm9NjTXuDhiN75kYde9cZD77t5g4Mq/MQDEKV/vkBjF9SwaA1LPb9NilSZwyzxBjULhWRYEC4u1QjVQsj/480mhcKR2jDLOxNlKGKoK6UEdySOsZqQ0qgG0BUUgtEGKgcPaTJywus/RkG6ILY0R1RUizALIhYBoe8SusJalUKhOhVDBPIt+uR5LD54zPZRdSngYAo74bpSeiZqAknOKoV2J4x8wmwhFtPocwO6rMlj9jikD2ClVQygHHb+7DF7uoHhWlIQg5ydhdkIORYTZju4Mca7MDXqJejquDDbG758AL/J82j5F6MnZKTBZIK2Rr0INSi5ZAouwpPV3h67GSAqdCU+RHEH1waHESf0LcKFZy4vj2rMaU6PNc0Ej0njfuOv7vovb7ztXh8JmFyMmJJiTuy5yEEGUg8wCtYFK7YGnEI7gW1QLcEMMhtIuBsLqWoEM8q8M1PSVjHNpHemZJ28M2NdKcA5TDfYO7ODBFGyZHWlZDxHbvUiCAWLmQZ5xJ1l0wucxXSLgzlMWgXLvkcZ+rmtKyVgIO18RPVCc10pMzOiogezFQOnt1syKjuHZjcA5x4RFRBAYgaoBgKz5YpBXE4Ss1UHswEdgTPWlZqN2clqN0WzgeqMhPF7h4w4hIDHKsZadll0IMpOocZhR23W9rev/EEiWRkRQKetLhij+i+Z05weReoHj42d9hf/5PAvvOXw9sSn3VbBbgN0FoAIUiPMEFbPA7HziZPBgASyaNZBy6zy55JR62B2QPTOlBk4ZBtirjoOWU87yYV3Jm9vWO/Y06BeETnskG6rFKph4K4EckQ1JS2c+cLEWonUioB2ouMKroWdwh1F7UPZEdiF+7KI0cNj15VKUZDeykEsTMG70KwEQkRUTNdFXamC+BFn1Rj3riuFHLPZuOSj8KLO540wJWbLiIpjRUEGTZfCcPkFSlYLUixWZBSkUbAWzQ7sdEYUZPys0gi0O7C7qJfDCYQ8taUMGYnsLJpt2ClXnETnvRJP2T/NdgemFgNLUbdgxHIhdxYo+Ylo/ecfvOf6T9z/xU89o+8hzmlOjx71xPdNGvdT19366utu254qmKpTWAnCjhG/6kw/0Do7R4nySoorOwFo1tHuZiu10Kga1QiooGNdKckO+Qcd/s1ix/K5qmRLDGBCjQrX5lhIvPIdHXddKd3HenbHlY9iOQo7Th1RojsnVlcqlZASZ86sK9VbfQhQCvWJ1pUKPyHZ97R4LroCfF2po6DeulIeszt1pWJxqoglOI66UqpbV6op60oJxrkOqgDCdAOAQK9uZSdRQkrp8GR9rKWbZp3q+awADWphJ7wCyC2B8Zuj5F3mz9H6rgcmP/2Gjx7ZnPQP45zm9GhRCR6to1/908Ov+/O7rTMcQ15Ipa4Y9SQkpor728gOhukthNp0C+046eZKhaiCGFGRuEPIayUOFqyRT3UvRqUM4nv65XCUZX55GyMqjIbRHe7djotOHaPj8VcDAiYbsNNs1QxAVyGGXEdx3wtaBXby8ryLNJJ7FHZ2B81mbmH374KvQ87VAPfCbKSGKZWkedFxLc7xmG0lZqtMngaNp05VTxJodTFbBvHI4A9/W3DHNXfcgAjTDbQ7gV1pg1XpODTaXdipeGHkk1X5HWQHNchicjRs2pcrA/m2KigFOxZh5BE2hF0uqjvOpTekqt75D/e88T23lbed05weXSrB4y3vv+9n3nT7zgQwXJWvX3gV0rOQL501eLa+4ymqNBRhuglqoTVMBRNj8UwfaO3RGGZdznOdjvv+RrGiTage6n1gtIGJtZV6ufe2AanjPVJGpyZJ/FAGijBdh21ACAJOc98zhaO3yyhZR/zIoEss0sMgsN7Q7mK6lWN2ned92XvwI9/YKfRgdtlxv6nAmE28EwZwJGAFXSgTmNF92UH0Y7aErqiyTDeTspsktT9Ns8ZTAb6CiBzbeB/RpJ5FiQmKi9Q/0oPKn6Bt4Nq0ExPaw3/Ra87FSFgFU0PppqHX/cnNd96/3cNiTnN6tCgDj0/evf1Tf3jrkU3Xhxy9smyGQFFRXrPI7s5nzSo/WUx3OEesznWOPXBrhgSH4rmZw1taaarM4NCO0U5DYF1IgNFbgH0PxOpAV+yyFD2FPFUGzqLZAhSbaCrue9dIWAx+cQL3PeGHaLwEoazj27CTAJmmYu4Favau+rtPPHLP9cJerUsZuEkQzV7RlCuGcuSPA7MlMhVaqep2XGG6CTsJuGUYLcwA1RBmhGoR9TIGq4BDuxPqhaCjzcRmyMetGZvJYrKRx1Hm/lRhWAi24eMi9DWzYrm0g6grqBoAtPnYbUff8YE7Mac5PXaUwGPSuF946+033b4LM1uCFBIj+6SzI6pvqktbQRIrBu0YzU7YfyxX/VIYFTx7JXhsZwfP5LpPRZBTaLbg/ByOVdBnSUxkXEpBxiOQWSo63OMy2QcWtGOBmr3SswCSY37OWaf2yI5rAJhuw1GO2b2+uXtACDNS8enkTSrtZszdJ7UNaRbFimEvzO7+FLmAGyB+9VpXfC5R2QVhugUAug7FDT2ARRDVNfQQukazjckRTNbRjkOAZ3pvZz1Z7qlrMN0SVikFdC2FBDsVmQKEzhGucMFX0H8P1c8UlLItvflvDm3tNpjTnB4jSuDxzo8++Ma/uy9tEgLZFO0K6kQ9kMJTWM04LZ9p3v7r26OllJdSr2xRpzUdkV20tRe6tE6RZaprMNGJu+ow6RkR1Rk6yToX5V5MN5twTfjavzPf25tug+Jtu7J1lurT8uZHxOw+eb3X45adVZ0WImMNIcGVwnQLzm84xdLus/TaPR9r/6sp+huHJXJ3LabbvHcS/3RwkTAGhjVRpeAmmKxjfBR2zPgkWAQdmilu5im/ceI3P6iLG2E0qE06R8x5EzUPsnCsvlQj1AsB20yNavCBWx762K1Hem47pzk9KhTe+43d9tf+9I71Lcc1vfsEd/fS3uP+WpJf430K0cYNUBrVQjC498qCWRgkOWafKW9b94QoyBRUBcM1KtJVHdhAT7t6ISVDqXKMImsVkBKeaRezu+J4xi0z6OIGzLosgYeCUiDL4NHNOdhZMaS79sprFCflnS1gxsC1vH0tN+fzm8zi02WkovYjzutHTcVWuykjhEmb8AEvddK/PbC5FuN1TNc5Q1feLDngvg2+R81WJwmY1yq8quHduy3AEfJA2gIJ++SAMhitYeEgqhHMAGaIahGDlaPN4o/8r0/+6h/f+rHbNpq2kx50TnP6HFOI83jfzUffe/M6jI/i7kxZ6hOSGTx0FlZKnqZSjJX8WXE+K21g6nCkRJdeW1lB3WWdEmFZ1Pkpl3fB4i82P0vZ1Om4kv3qa4/ao+NyKFUW0lH+mvUm/Vs2i3pOliwCTngLlc0keMRsJc6PyNF727LTvdxjW1U2GiomvnTQVajslHHX2a2KXpbDPuvhqvSr1H0jZisHR5iuo17gzpIIGVFhs8EYjiePFSfHaKeol6EH2QaGigGATgyggm2gd0Pxc7mT4bhVATM4gFG6MECBCNUCRvuzBJ2cjoXI/M1N63/7j0fO3j/8sisOvuxLzv3yZ5y+NC8SNadHizQA6+iP3nfv1o7jlZckNr8WIreUmTPleu/Z5RHvx5mW3h2adXvV+xt1FqoQa0//TdiR/F6xKsQlyUtzcdwV4n3NLUx2pdGMP+hYAb6DK/kNJH/xpSs984XwHi3UOgSxl5jdga6+w52WsaZScJfqlFTIgn9XYaVk/M6BrBfQZ7al+FIuR/i+dgftTvLOKF0VdFCJYr1h7xFHFtN1tL2eTipnp6AU2t2eqgHSPxsiR0AED2joCsN9WDob1TJrRYZNfBwHYypS1d1Hpr//13d+82s+8Ipf+uDf/uMDre1d0MxpTieZNIDb79t918eOBOmZrUALEsaoTHDRjPPjOlGeJm6h2D9V1Zzlm8pJnqSNym6TfZ7Fuve7RAX2zgxLVLnWVeL/Uer1qji9x3uPSdYsoXQlcKVPgVMIKS6OSyaIoIHsPmL1nrYB2KxfYjb1vwLZLbsNPk6ZFTGb7UXZyB8Ls5Ef6b19OrtzmrRcAeyPK51xO2AlS29pHRJtNZth132PJZVXZMnCTYB8PzzLLuM4W7BLNiufzN/nqcxsa2JPJUawKoOq2pmqN/7N3S999fWv/t8fv+/oeOb4zGlOJ4kqADd8auPwAxPhKe8pX6wlp/j4taDOoQgtFIt4A0rDADAi5bVPZj6Fm8IqqAp6CDMM0ztKgOSC0rn/MdoiG0Bhe5M0DM9nAtpd6Gmo+KQHnZU7lYKI5Keu4KMSNYlLUCiwW6cJMQF+u97XufIpvst+shAt+UjMzgchSxvszetcKNs3WHPSqmg2yZzlVLqxUp2bFx2XCwrqfRpQwmgTVicmZE3XyKFLsE7cjwlLKhnH9rCmSr3HG5raHbRTVCNAcekqhASL0jKWCi9arj5CaLehMCO5utA8iNBOoOosx3v4QADgfEIwx+XF/BypQQQ3QbOJ0YFwT0KeKEWmY/EjWd233r76929+38cfeM13XPHMi/cfa9zmNKcTpwrA+2852jYOxmQiq6tPUCmROicXXynEgvkcUzCZ/FPxzFj8wwvZKewErYYecXLAfrVhNneWVmRDdrkgsCrBFAm3fDSWa4EpWkBVMCOYEXQ9c2GdySVpgpAHXeAe5LUSN2GB7mUBNXDToAroIcyI3YWPE7O7LWMbSCgFASgVsjGSyfrupnATWMOsBwmz4zAKpeUYYrwHs2P3PXeB2QDaXSjNFThqDsEDiLGMcseHErPzNoW7qjQI2RaCBgHG10wk6Aqugp2GXP2FUUwVxZ3i2GquLEtQhGYLSqEaZoNQqnEarmHLlRMNjQ+OmxorcuoKyoTcB80mhquclcuPi8wd51UoFxqsAAPr8Fcfuu/uB/7+1773mV96xZmzdbQ5zekRkdrYab7+1Te+56ajQVPuSaaULwZ7hEh3Mji4lh0x5bQs1qqU/ZEsIWVBDqRRL6FeDiXtemwblN+n4E5lL2Zxz1i7kPrJx4sVpa17Oo4OdwfXZHXl9uAuy1HEGnl6hHo5OBF0uasIKgV3nzPchmqDAbO73Bm6wNWros3EQ0i1BF33WIayR9/HnVgIUptAq8udBHBGR1VlYHw235pVtD4quQtxHCpiWcAmE2jGXHbc38ECCPUKzSBUnAy94LaFdYCDtflnG8KDRmuA5sTp/uk7wAIW1oIa2JZrpFvAwdqwrLEtQDADKMC1DB4KgxVoA2phW1CLxbM4Qb1Y7iQbFz876xtgQQRr4ZrzThv+6vc868XXnj9jKOc0p0dE1ZGt5vb7dzmcqpcoqMwoTVkdUeg/OtAULhpDlLh5vvomuRBzIas2Yrk5BecwXYfdwWAVVTcXbB93ODjPnXWdzP9V6BxSAKWE3mxtcDakshjsQ7UYHMNUIT0L7h45GvbNj5pWHLUuboErYeSFs9ot2B1UyxisZOa7ZJnp7TslzFYKKIxg+SU+L6+vXuXYA4os2i2026iWA2b3D3mB1nyEGDWTotmHmorTMFMsnOUAi2YrVG+sV0rgnInZ4iARF0imPFuJZyq4+389d7/Z1m6j2YGpQyxFqF6V991nQ/Bj6ws9hWSIWxislAMlLgMIrhHIxGMV0dgJtaMawQxDtnlfp2S6gcEq79bwaaE2Ir8WClwQU4cqv6juvH/8H37rxtP2Db/k6fMUvHM6+VR99shkfbuIUy2Ui2gf6M5h5MILoBZuCkInn7m8LsKMScsor4+DghHcV8LwtgvbYHw/6n2oV5Nlo597A9ck7iGQQpKoH5exRoCQOCW1x5IWkwdglzDYH7SfxL0jv8iygYK3NGPkAeVDmnLeMXflQnEInzre5xKfHoXdxWANZtQxlMU2kOA+FRsYHPcQS2uQ4B5Yc68NF6gAGDgZs81Cz3Z6z+eImgxae2E2N76oOKljbvNd1Cuol9Pj3guzEarkBk23E4TRC/Pd6lVwaMdox6iHqBb5PlE6q4DxqSkxZGQcTJ396wn/ArSsIrA2I8PI41ZHvRSWC/7NNMNQMd7b1oJ/gSjsSAIgk8cw14U01afu2v7+133wD3702svOW8Wc5nRSqdqe2MZSeqEDTDBaIH4ulmF9c9g1IVganEw7cz/le4ZaFCqsB4l3AsNp4JrPXmvxd7aYHoVrMDwAVYlSEGKKuilckzJtZNwFyUoYpEBK1P+gUNQ6LOlcwJJmC26K4UHooWCa9z3glgIqzi0obejSEA/udaz/QYCGolC4yXfOAE7BTjC+D4P9qJfzp0B93MFZHWNAnHxiseOSNQNn3HclQKtgk/GYPVgV2+m9qNnCNSBKYZ4y6No/1hKzKZVy8uMckTSg1xHYXQwOpMIn2eOWb6Nl3IqeSAibRhKziS8kcXksnBU1Vecw9bvosXBWPFlI5xR7qAEVau4WzgWE9AJEm2QZRs4FUcwQo7UQdyK1E1+J1m5zWd8hbw5RiCwJQYsuax44yKkyN37qyE/8z4/89g89b3lhHgIyp5NJlQveH3GN5kTFUCHlZxrumdwUrk0RuQqdGHSdFmLx/Q4svGVGqOFe+njbV5BvFDJ5LJzB9XYK5GiT6AxZkpA3AHzE9zgKES0MaKz1h5LaPD3tGLv3YngaqoUeERZQM0YGKCFtVck6Fc5ieZ2wkNNdpKpOBtRi8gCoRb3avxMwE7PjM5WYDSguOuSk6UNDOTaRudAG1zJmHwwCKz13gVu2CQqHio6tnZEvMVumH+fA/viieRWk3YW7F8ODMAv54y70rQkIAbOTu62/YY7Z4IKPKQu6BigCaBhzVEH38iUIQ8uEwhFvTszOtbB9wYAJsOV2RZ5iHYRqH4Zr0HV6QLEgI7F6pBzcBJMxlMFgKWBVQkepfPCL5FdglXnb3935Zc/4zL/6usv63p45zekESVNRvZWQaiYHijNNHqdsGrsmyG5fCiLkpo4ioTdsO67dfHzJMRN6cy7x8QO8Hcpti8gRClEYYXDv/kXWs1Ntq24C4CqsxO1EdB/c9yagptk7I68YjWjUKrIBFtEGvhYFFCYPYvqQeCJO9N1zrzv1V8IjFgOuuePiT7ZQVtHQXMSp2cTuvaKIk1wxeOTQoQaJ2SOTvAhQSGOeP+6scJYOOwrjezkBVw4bQKin5LU9XSR2jCER/Nkz1XmNrNg2WdIqVFIB2i00G30hfoUl1gcDxrI0cSrlWhpR2ISPmUiUCo5V1WJIeihzS0Pk2tIcHugTc42PhrT2PcFJvHARutGkpV9588c/dddGpyNzmtOJkzbGr1XiG++XPMgnKuV/Lvs1eJpGYaTz91jNkCaeWKR6/IAQPV3w8BO72cTkoY70LJLrYTZ4dKa9Qi7LZnBXFajB+D64aQ9yJNTs7f4ewFkY91QmW2PHlcFkHdOjpexOqKlS+bxwq2NhtkanwbE9grsyaHew+yBjtlwxcN9nlq7SgrvAbC3xI+949sQNnMP4fs6CJWVxG+o1KS432Z9WshiNiNlFCal4hM1ufoOh3cGUC2cFwJDzIkhnQAXbHfJJI9scHZdjGl1fdwsKzQbIhhdYd+IB/czSPL+MgVJodjE5wulEeR6l56y4wWFNcPPhzf/+9pudEy/PnOb0yEhrBYXouYiwYqICLSTlX8mGtWeSnl3ZHb/OEGfR1NArRguhpjQm62i2APCMZelZ3l8uQovGIH1IXETje1grKA07xvhBhtgWJKTnTIWjGIQOcGbqAkvteH5ajwPjh9Bus/R8uJite1inMVfpa+SeMNugjZgNHvlpQLWuBrNXr+PDxWzMjhLcC3GH8X0sKAvkOCZmF49b4EdgBL5E4gcCEisDu4vpVg4Y4HGTEwFoJyJBFh+N2xvEG+ZRghvOSG+naDeDVqRUTzEuVSiFBroKvogpUUoxwuKDUlDqje+57eY71jGnOZ0k0mesDhcGOovBJt7Qo66RSn52wS8W2KsIR6/g6P+A8jS5Kk9rcBajbpzsRf2lqwpJPUuCRxmK7IRe1UdpNNtoNoN/EanZyNGLZB3WXb4FayBBFzmMHwQ1szEbfewKROfTogaAXgmet0Qpgdk2IEfg3tvxvfUAqXV1rHbhnNhxA9dg9/5gOgvcFeuavaDV+9f7duUWy+6v2j/x3c4iitLNoKAA13AOXWHjJTlrXNrt8MElkdF0K+zwKdbMykRbM4rSN1tclJ6fqXy+sTtaH75/50+uP4w5zekkkT64Up+1NoDLTbR+fURg+2zXYOUACn6EKadhRzr3z99CgPIH3TfP5QyP+oFfrE3WQ6bYWav+okU9DeIjpd6T2AsphiDBAUweQrsduPdYS3TgXnQxMdX5bx0b+iwJrjXaCcYPzcZs/lz0o2csRGeLFh4DsyegBiS5zwKJGeziT+mhzOh40roM7BiTo4zZyOucdwZ/5lf5xFWQ+/FMBfYTUwBEcQ6FZpsrhs2y/Ci4Nln2HHsERK8qkCgoC3a95bfOTtDu9NnW9rDscdvaHTQiUWOhEsXOOrz9+tuPbE1mtH9Oc3p4pA+sDC47b0ns9cUcbRbOBVCREOI/+92/VMVIikWBHJH2kqT8lfID3RPi5SGj4oBld3FJzr380NMUoECOKDfzr3ECOwq+od65S7QsiKRZAjM7E+mG6M75XtYeOCegtoPZ4m6Su5Idl6z5YKHlxNGQ+BG52ykmR+HsjBUDo2bZ/aJB4rOKElwOu3yO8aDG5CiaTdAs7vmj73nTus+j72uvuZIcmi3hSdUhBYBArdgtz7cGnRWRgIsYLMPUMAPoAcwQyqDZLrMSKBxjK87b1rRGu41mOwc2uU/jb6A/duvRm+b1o+Z0kkhXRl39pDUo4pfbZeoFsZXWAY74g//Ra+gzIipygVYeBPIXPRdbPRI3Cln+1WdDguqrPNgvUmaIctEehfzs+P/8FkqhGkEPoNiNOPyqMYvUXj+WG7DhY58Bx3M3C8kzNbHWe3Wv/KX/kZRtyCQ4awAhVO1YK4byw/FzzBuZ1E0FgDG7QA6+SfdYD4t4sup5dWcZDH0wYNygTsYoJgJIwVmeNd6nQAQDhg8Go/1YPAgzYuQYoV7CcBVKY7KBdgyy4m2HeHv68CPpRlvBFTDpOsjQTqn1nekHbr6vM/5zmtOJUAXgOZftX10y6zsuBM0ple/48UucYpX977YjFDv4QfmnpMH7M6UTpEjAJ2/hp0o0qSmOqvU+jkrncoFSe7oy6hieJiq0IQM1UU4qLeIUzEDsbHfkXZc7dYaiYB3SdfhfVX6alKEIKVcLIZJOKxuyZ8dVGnbZ0+wEYVJTgI5VF3v1lT7WPY8V2RmBrUpnp4cuDkIFaQuTrxhmPHHFr4MrDuXcy6Z3G6oBztjf7kBzes0ySy7ErqF/3jZtRcAAFvUihrKyEwEazgcD+ipPUzQTNBpmgGoB2mdlVwIP4ozgz1rBaSgN5zDdwmCt0zXRQaIP3Hx/a11l9lrLzGlOx0MawBUX7bviopWQI8+J6gLlVkfMr+A491zf2g3S3N8nOUicWVA5c2doJ1Ahe7lS+T1yAVquN4tb9cmzrG0dLIyr4Mi9K61n8Tw2Udlf1bk5FLSBinUPczktluDpqgKMe5h2SW5c+wN8U1/ce2/UpPzIzMctMa/vVgV3BZgBlM/9PJt7gWiZLZSyk4uudbh2HoGCa2CnQL6ilystjxwhniOqHQraoF7E4lmolkQwB299+0gOpYEqeJc12xg/hGYr4Rbyx1EaFTW0hm3Y+YpEI+W/6pY71o9uTfv6O6c5PTzSAFaX6hc/92yl2E7lXFo6CSuVwBIC2X67QVdgxVc3k9h7C+5jkprtEyzvI8Rxyb0zIXtaM3trNC29MeM+ndpNWcc7ch9IGl6nG9ln1VtyUeUcRW/LpvV1eS/Mzq9VMm9Vfs9sxdC7hO+7ebaKl3fofo4rhm73HxZg90FIuku3d2A01VCA3e1Bi/i2UIwez8PItYFr4Zrk2RxCArlEoA/g0GwbNBVAmGxiciS4lvWTwA9/z2aHN/b7z7x/ffzAxrxU1JxOAgXt9WuvOvOi00ewbLH1+x/ZFrpAjpTTAmLtH6UtTy1iodCxD+fnnxCltIPdn8Tt5V8P9xkC+his2ecqMUM2vWPHZ964o2Rk50nM6xNkM+MYZsjidO8TwOxCrOuOzeqRYXZSU1Tn8kK3UHlJmO56HP2Y3a9NUvH/7Oxe5wV/f9fAtiLviP9/DObgYEASNqtYJWW6HpKnad3xVYsOuHkwh20xPgIrgzm62x5xrBTg0O50HmrypVzfnm6WiVDnNKcToSAELz1v5dtfcL6KVinisgQZhNhcF4lUvKlC+SjOKkWYEufFqdgFoV7xVhht9xTWmQTpIgkFuZadk3ckI7aizGpAcWO+/YwzZ49kSp8nmXv/Tuo0QHCUn8vkGn0Pay8qjDx65hUPA7O77ZEPfUbBXaXEiuHhYnb/+uVYVACJAjSIYKPProyOijfPIwF1LBCpYMeh/pVPnVkGcyhA9SdKaTaDCauXIn74/XM3Cc4sUSUiGW7ySJZsc5pTouQt9B1fedEVFy2jtaKiMuOHZUUkue0K6l27gSWmRIrsbCnYpATJhSnlwiUlsu7K+j7BIZewVPzQkdRZA6hsVeqItxEVQrRvJTsTF7rd7Duvd8eIf+vvC5UHxA26Qr14BMfEbNWH2X0d7/yYnyFb2QcVMzveBa4Zwy6QqMN0xh1mseuOg5tmcjljCUDOEQUzChEkft87VE0Xls8sPr/jTxWTm7Xb4toZFN5Mgp30vTUEgIiatputa05zetiUZMGFZyz+vy+9dGkEtK3w2Y1RHQwhSR0BAFB3CSzEUwkKs2VbdkzCQN/qOy78ib+Gf3NZVnLrFR95O3sQpfga0avohWhQ/CUbmZ4GZYtWomNwD3ykS26fyKRe8VKiqPjApf0y8Zc3NUVTS9TsiN3iQIbZfUI262OXe/G5MNEUd+vDJqAY0RJxM1iVHaHy5pEUUjBgyp0u4J8se7ED1QjVKCRG8zsf7Q7sNEFFwAudxY0qmYyEYxWVRlskSimaJRRiOwFZgXCIo62Uqqu5q9WcTgJlr9E3XXvetz7/fIBBIrldWQEkriNS0ScaoiiPf65zRN6kEKC9ADPrJ//V5XeeJUuKc/LSnvKEftwqqLit4Jv1Mv7kymvDaZ0epQxjYnwQHZqlstJpTznGx+JeiFTk7ekfBOr/2vMAe6U4iV9iwwR3GayQTlUC50jsYVBxlrhUvi1dNavo/qz+ii6EAjAcSU7SNxcAhUhApTHch9GBgB8+mMNXpfT44UsdR4mv8q2sBJOa99h0CAZsd4E9d2WUgmvhuGhu/JcNBse0VM5pTsdDWX2YhYH5sW99yi13bbznow8EP5BUH0KigpjSfp6HEwpbCma/qLm06ll6dwVoR6jBgXRgW968K6oKCOn9aZaU7AJbFF8kOt4dhKK/vSziwjCT9+WSvByc+KFrGZRfu73OW0JdtSPeuzhYjGHRtYJjMRTda8VzL/s1wxZUvl2q09NZe1R9rKHEfl7epFnAGeOcQmSGCmkQ43JKcfmNaoThftQcz0G+3i0BBlUNspiuQ2noIaoBtOGqt3FmKSCGdygA0BwOAmC6xUUHun0ED4KDbUIp30w9oqVRtTiaV4Wa00mgUoG94PTF//o9z3rGE1dgG8AGt6u04UF9C/zcWzH7VXpqFT8huxUhT6LVJ6Go9/4F66ISyayG8clRenY99ynvV1r768C6lHGu0wDk3FEeJ5kBqdgBQuLe27YeMHCdDnZPk3fqDku347LvfNvY7LJHrq9VvcgRj3UeGcnGy0dD6YTEeRa7YkDkNbyTkTGSY97tWt4ef2cHKZQBQBnoGsNVLJ2NehmogjNuLMuRKnNowKHdwvgIptuAzXlJlyqwMUoF4xU5TLc67YzAGTsiEqWIdp6+NjptddTp3Zzm9LCpx/r59Ces/fJ3P+tpFzF++OrQtoW1sBbWwVl+TQmgNIt6xLSU6b0o4oOq0EEOaU1CR2IiHCTKJR063As5Eslb4eLvnTMLu9AsE5brNCnrr7TGdEYjTGnZL8k9lw6FAEUBt+j8W4Bofm0aungT5I3M++5/VWDg7C4X9sZslL9S8XyRsxZtiG9a2OwpXiF04pCKu3W5u0yedplGeEif+x5H8ivh0mS6SlnXypocnNPFhwT6X70n1XQLu0dgx2XgVOEPnSVKmaDdzUYp67sHEps6G3tKOHP/4r5FWdl3TnM6QerfOnv+M858/X943rVPPYDWlxuyyU+XLAs4JGlbyl9PxSSHOM4HqSsEgZnTGGLys1wmecNCsvQ2oMOolIPMWraKhJySVX1ISLeyd70SOW9JQE3Xx52yr4m7lP69rAvQ6gKMQMe9MFv2nXioXf85ZcepjzvSGiIzl3W5Q3wV+zRpv6c7yLO6j5y76Eum9JC4c+xQ/t4m4ypbriCcR3zaGJ+x345znDDsSWXCHkbwoTLQGqYCOUzW0WwkO1UPfiDbDml3uKhM4V8Q++Kbx+30tjWNm25f/8AnH8Sc5vSIaabfxTOeuP/1/+Hab3vBBUPj0DRwFmRBbcjYk/LsQojR7nSN1JHvxDqHiytHJHFDVJqkKZeb8Z4hb2NndyTxndEGkrI7VxESL5da2/MrZcvYTEpKjjO4E/Kreu/f4S47nsbczWDd2/0oFvfG7C7rAlSKTvV2p28oSN65Y6xzrv/aLLVzoTTs0ZKiMV3cEuPQRcTslZMchf+IJ69tKAU4Dgbk3FOxLmGAEC38qQyUrx7oM6sf5Yognc3CItzENZ0sjZI63WGEu/eh6at//6MPrM8Ts8/pkdJeTnsXnbn869//3P/6fc++9LxFtFO0DZyFbUMZj0xs+SUYxGpOOPtmMzlm0CJeFvWJHsqPkNhuofyrnCTdlWxkGlvluUe8IczGLSYJY0SwtmxYUlPyXmQNyM93lFaFBXcJXRmISkbxhCjEkfNFpw1CerrYqT24c38Td1d+PmmY3TXWSYDpe7jp2RUogvxI31VEgjufNpO7yy8XdyapdgwABMne7sJOk6lKqdIGVQRz+ORXMJzxvuFbCYrnx7vZiVDLCOB6oGFkxCN2DHJaox686yP3/sFf34o5zemR0TE8vpdG1Xd+zaVvf/ULvv+bLjtzfwU7gZ3CNsJnVwgyZ5NMLH6Kgo/EBC5lPc9nFw1TUdx0BGgmQy1XryIhEwvYkJIRLEFsx8TRaVimhTBfyZ1sanBW5duVHxJyQDQSJS8Xm8TtiSe4btui6tNhBwjWBWoWmC0UrCRAwY3xd/C2mg5wdsV6+UApWRozzO7jLtUO5wT3WEmJu+PkkxJjmH3ODY/ElQVKzJb+IF3uyN8BClsv/m33ZIahLKDm4h8poC+Ke502wENlQFE1XXHNXWox3Qg1E2eRRxFfwd7lgJe9xi7ZCTzpGkpbS6/7k5tvvWdzLxZzmtOx6LjChZ507r5f+O6r3vFfvuI//vMrrnji6tBY2CnQl4I3BKUjLa7jH0UBFKV/Vy9BPo35pU9qRxRDljero3gSXmGOErxlDYgAYzusu4tfaVOW4lJCY1S8uHjczMJZknu377KnXWkuBJzLudMszJa7C7lWQZRzZ15ZcA8fCUPBvDKcsGnME2a7jHvGNz7kou/cccmu0ANK4U4hGilhdhc7O4uPpPFQ1q80zgX3DkxGtKAILSpU46gGqEYwC6gXUS/C+QrzJCI50Cn2Ho1RMhjQwDWisuwsUiAXpmHqUTGq3OaoHumBh7FP3LH+pr85dDxzf05zmkWKkhp+bCLCfUd2PnDz/b/713e9+e8fDMndjEmLKSDb3ytDmTqWgeylR5L+UppLaRsrVg1WoIcwpoyuykJtZYiZCkae8DXX98M0k9w5O1Di7r2WLZTCYBW6htGi44VXjOhcCEjwYghizZtzz4BBcucITefgWpgRBiuiQKnO+c4IrCGGIhTj75L0zAAAIAqJMsFlJclhsIJq1MnIJHIMF0MeB5yQi/7Yhi53fhYxzQFxDb7hatiUzuLptGDtAyYotSF2nzoD/jC42wBRtgUosCOCrjBcw2ApdLXEZgUYmCEqToxIYgc7vuHW8orEhZ1FWNgG9SLqpQzOrde9WjjvQz+FqlEvh5eTLKz41W/gk2UrK2BGqBcBC9einV771NP+5NVfsX9l2P/CzGlOx6KHFy6kFM48sPj1z7vwjIMr777p/Q9tuxBspTXPFs3TUrGsDJfmaOEpGgGQJl4PcoildJiZfut+EFgreU8W2GXuKck6yk1uRmkv6pOnJM0dFmTg/GpR3tZnalKdwlmSHeX/OqCLmsj7zupUWO9bOMCo7D4+xMxzjxASnkMXM/KvGXdK3Mult5DjGkJtdaGMWIHZ1MXsoiWCV+9KP311UAjr/bBKYe7kQgUzUlCUOJSYTX3d35u7UPiSuomQm7JewHA/b3UQQCFilAikGXtaNFM0CtUQ1SI7Oss1FkHr4PuuAK1hCXAhubquoNittlzkUYgkJwuFrI9RZQmJUrjN9QKUL2yloasbP/3Q3998/1dfdR7mNKcTohOMNX36RavPu3z/2z9wHyoVpKL2E8MKzUNSId9zCZLJ7o6dOlo5LK/CfKIt42WWn2xiFZyxQHTw7DQgit0+7hT1fbEapfjBQTF35TJDhOwv5V97uaNP38r6TqHLQf9oE6wmzI59lJjNqFw2IGK2sPXvoe2RRNA2jdgJYnbsO6NmhtlyxSC5e/NUC6qYtRPPOmI2WPmIbPsAYyZmF9zzfZ3QTgVdQSkM96NaDD9B/Cn/p+AUSEErkEWzg3aMehF6lGAjvTAqHVQAKWgNa9FsoV7NpkP5VjuQ5SqEscH8e/T7MEMM9sEMQzc1wdiddvo7f3X4tLXly89bXl6Yx5zP6WHTCb40i0Pz4ued/Wcfutf6JaEDiHgDkHLPdE+UC3ExDdJ0RUd2u47s5r0N7/HlWQfHx3jbQpTLKSe/ChmdkENYwNPOhNgM8HYk20BXIBWUD4WcL+VAUrDeg3sBpSxAZVSBt0voArOpg17Ie110XDDKUKpvdyH13cK2qByi6N4LsyHtVj3dP/aKocPdWWgnOu76ez0TsyH0v+PBbN61gktKp4/MsC2azaBMKPTcRzloBVJwvgaignWYbMCMUS0HDcAPkUJKNxnLAoKgNNoGaleUrS2epl852azZEWAIIAelMdiH4Qp0lT/xCoP6je9/8P987Povunj1xdec9TXPPuvCMxZnWT3nNKcunfiK459efdazL1n9+0+uh3t4SapiaVjqyA6XHSGeq8XCMxyUspvE4pdXWK6BszAq2Ex6WHf0gOJzaaoSwquwgEtRHjbA26BzEGAZNRNrCJMO9X8ol/y5QHcul+aRO3EBYB1GNGG25N6L2ZQ1o7f7GW6J/gbMJijG7IAfXcyW3IWk3gs1xeBLD6uCOznYBtUQ8C+bY5vhiWJ2L2pKzCZW+EqHJQPl0O7A7mKwHODKq6EU2WkoX5kcwXznwc5O4BpUyzCDzhzxmkfMUa+gALsLM8h2jxI6+r44TpwVbZsIge5KY3gA9WKyn6rStvbQlvurGx/464/cf8k5n3n5C87/Fy+86OwD8+QlczouOvHkzGeujf7NN1w8qgHrssmWcmEVDrXIpqhzsC6bq5nszpEjW3565aCFa3gLscM63FOWrooLSUpnZgpHn80E3E4wdy9Eor9yPCdjTXnhLIkEwjep2M6BGJlorSr67i+3U7GdGy+RK1/JNG9AHGGfYD81tcAtcXN/rT/ZbxpHgW57K066GX8Cia10luO+pyZF7pS4E/GOC2+9lKzlyxaP5G518vWTsN1vu8tfGwBKw/gdZl+cYyNMIr9pr1XuTKUApIOKCwiSQ7MekuNmlFuxQmWnFi4G9HXWHwkLC/XIQFcwA9TLoeL9rEQp2sBUVplP3rHz4//zE9/4U+978/vunM4LfszpOOjheVsVtLXbvuKXbvijv7k7JH0rpo0S/wKQjCguA/MlYbIkCJkVfTGDOwpBadRLqBZAbcjxIH2uVIc7cY7SoO4wOzjxbx/3JLttMJsAgEK9iGoEAkzVz7pX/08NKLovUTNiT46a1MJy+rx6EWYB2pe8Zu4pEg3ZsMsBp2gTp9ncC9yyyWTk+z5YgRlm7l6q4N7RAGSv4yAkqJvRd8vS37W8S28w2AddQ5uSddblQuXtDH6vqSrhFiXvsjDyfGa1gGoBcKEgOYCVC2CiWYkBr/CnSujODnv+w2AF1TCBNMWOczYg28I10DUGK+k9DA5UNuRdN0Mow24UNvSxXgguv6ODGKxl3Yy97r7hRGjb1SXzL77iglf+syefuX+ugsxpL3pE4AHgxs8cfcl/+btD94yhq5CPocd8Ia0o8QNlM7w0mHTW3XFumCFGa6gXAKAdo51CRfzo5V6QFNzoEx/UN69skGV6gNEq6kWQQ7MLghDi+V6LFN/ZIFOnDdFcgz6dw7JAcVAGwxXUy0H5CItZ6bfKHe9yp+7gC+4ZaroUKJO4M2bXi3BtStd/IpidN2BvzI7cAVQLqBfzMdc4HsyOjzjjjkwXyTQeW751AMwIw30hAYlzcA3sFKMDGB1MtyUHQlCS5LsU/HEtQAGJfbGm4QpMLbRtGzQwOKCFbUEtnMNwFaS4eR48/K+OC6S78BWAMhgsAQQ7ha6wfF7IwOjXDckKylAtdX1ysK2G/apnn/kr3/3MJ5270jOec5oTgEey5+HpiiesXnXp6YfuOgRFcCYlYwBy8CggKoeNYImSayIpPYmdDjWGKxiuQdcsTRYBhXYiNh4k6/hvr+xm7pnJQkiQwhynFOp9GO2HHgAEBdQKzU7whlQRvZhvf51a+W+Xu7BuyfnsWVSLGO0P26e6CqxdvnFNkbsc/4eF2bzLEmW35y4x207Q+DE30B7zdOhvj7dV0f1ezEbed8r77qBrDFdQrwCEdpeXESZojaR593iGylU2oIua1Hnr2DjmNV3PXZtgSVMEM0C1AHKYbkAPYAYZepFmjZaBjQh+3yP4yxLQYLqJ4T7A5MuLSP6ZOtgmvHWIm0D5EoTYoAoEXYRaKA03RbOD4RpzJH5Yjq/VUI5dhDUUYCpn8WcfuOfo5uSXvvuZz7n8tBkPdE6Pd3qk4LE9tnevE8wQNAH8XFViA9lTnw0BQnSGc4QIS6Z/P4cJ1RJGB1AthpPDMlahWoIyaHfhvAlLCdYzlKo4UUvY4GlJHLcVFnq+vM8B1BwO5v/0ELVGy/jRXziL21k0pge0uAEubhSz7FYVhqsY7gsRBkEJWEa7A9vAESe3kHwlx86HOP7ZlnUXsx1j9j4MVxNm++jIZhLGXCkoISgfIWaXshuolzHaz5sNQK3RbMM5WLD2E2300Vc4cqe+BoiAf6kfSOQA20irRYzWUI3CPQ0BGs6BNJS3Mk1gx2hMCDL3m+TBgYofvfY7514z4KgUv6XR7KBeRi/FG3jjFVh18F1IveGNQAC6ghmGLRa/mJhuYLDKMaRyoCg9KeXrTbmgxmkD0PX/+OC/ee0HX/8jz7v03H39zZvT45seKXgc3W7uOTLBYBEtQiZqP7Wg0ypslgGnlJtRoMgJ7KBrLO3HYJXDdIntMwgnmwUog3YHroWL+5MzrDflB8p2PpwT3L3xwWBxFcP90FVpfiEHPUDNhamdAM7Q8Tg/HU91nvM9sMEdT55dFg4Y7MPwQNhiCewpWITqZahd2DEcBd+ehF59wNlj90e2lU02515gNhhTDcwiVIVmO5iwlIZ+ZJgNEqjJyKFrDPejXmHfVq9b1KhXAnCWGqdncQKYTUnPiNYqVWG0hoHA7LRuUGHEnMdpB7KYbqHZRb0gHpZAstAWxhLruDjHLlTFioXABjmQziZ462oecT9f1xjsYz8uB1XBVSALO2F/3+gTyBHvsZEJ0vzyy6CiG2458m9f+8Hf+eFrzjm40P9M5/Q4pkcKHuOp29xpoRTqFcCg3QpSDI7LaqoZwoSSOACbrWRcno9+Gu3H6AD0MM0kJVZeCiAN55UAAzuGHYNaQIFkNG+XNTqyo8Md3k51QEw8YunPVogoxPUE7Q6ohYs7EHubUChrRvTCkhqAHmHxAAYraQuBhyAsY0mhWgomrGC4OCZm922Y743ZftUcBlyFXpODHmLgM8g2IBc6/rAxOw5+9M1zwRd5tIbhgRDCLbdtyCXgbMdhpXIMzBZ3oBwywX2PRb/9vsVgFaMDMKNyxOTliqCRgjk04Bwmm7ATVEtQFedX58ehRBBlCInXcBbNNgZVj6Ye8cY/XMXvJyEpMWHcFAZLGK5CV9xNBwWYIcih3YIdwwzZtqYByqvexkcWwUOBNIz5yw999r+84aP/33c/ezQoCt/O6fFOJyOyNLx1GoMVaIPpOlwT/GHSNgD67BgQkksKbgcA1TJG0Usd+X0QlnLBMVHBOSiDahG6RrvDOenkVZJy8KAiZZ4DEcwCRgdQL3NKCdEFj15hfa+Co70ZQbMKElZ2EjW7RqSu4GaRSg6qwuhgUHdiRyJqhn91GCs9xKCC3Q3AebyYzejVi9nD/Rgd5DUswnJV8XI4YraqURvoMdrdE8JsBP0m9d0C8tHHMVcBp0FwLPuqReiKNc7jwexO98ml8QeF3WM9xMJB1MtJnhI/ggCiLqXhiSY7h+CtS34TbopqKfn1phfAg4wVYtoX59hFtSBaSwJe/RELYtwlBkWvEukKw/2cYss/KccYr8OagBo0UzQaxtvWTGlY80qzc0L50CBNSv/eXx36kqef8c3Pf0Lv+zSnxy09UvBorHNhU5EAhXoFeoDpQ2gn7P8OoFiKsjCiuBKUk9nBjDA6IMwFBUlU0FAOEDZlXWOwDDtBs8t5rVUmysJk6XPc9BJE1xjtx2At+Kj0yEGebGEHUofFoKpYBRkHP87+gN24iBYZT6O2obRY80Z2xQf5UYM8cC4lSVpedXyYDQtSqJYxOoh6oQ+zPZCwzhej3M0Cb+BPvRCdwb0PsxEdkxyIoAd9j95DAttYND8yQgDOdgftmB+tnoHZgnXWfeHe5qVw2N2R/CnruzMpoiI0iWM2A0wYkEWzAVoKkFCQyh+lUrDjoBb0tNZ/EwpQdC3xS7TBGgar+fDqsKuvKChGpKAcyKHZRruLehFm1MEPOdr89LXe2m1+7n/fdM1TTr/wjBl7M3N6XNIjBY/aKB2sqDwnzQiLZ2G6gek67DRlXMgmsnzRwdvUXnAfxHANeiCY9Mh+8ZMw4wYYMDBD6ArNLlq2YmUU5yGC4AgT0rDgHnZEZ8FaWkjA+KEAHVi3YzRjuLaErsi9sLn7tWS1iNFB1Ets4o85P4o2AFBQMdJbM+wNMDBoBXD2oNcszCaYIRYOYrACZTJGaaAiax40rTmk2WP2FO1uqmV0vJhNwQt5tIbhfhbcnUcGTunBuwzsNaRRLUHXwYCG3jGPffeYDbZoRcw2GKxhtB9mlL9g4MbEFYOD5q0Oir9StmcQnJcIzSbIBj+LcALfOW0waECFwBFdp+eSNYEYPESkqtLQNcii3cFgH691YmRl1I0oBLeTtK3JRCk82qmFUdtTgILRH/7Mkd9+xy0/+fJnzfOXzCnSyTBbBQhgWeDf0NF+1EuYbKDZgpsCSIlmo3KdRImPYPCzd0EIjmgy4kuiLTt8RWbW4MkRsKr2Vqwx3CTkE0z3oSTOghvuChb8znCR+hSiDfIOfFDxB+JsS0qjXoCu0fjdbNe5kFGTImwMMTqAel+wWYNNT1nfkX9Q4v+apZJBNYKu0IyDB5qS9ivK7yMxey3H7DgIJAahg9lE7KVDDJwmsCYW4pJ7P2Zr1CsYHUQlH71k2sFsgDc2eBdBAucsta/rJuAHv17CwmnB7TsNvuyy5O59WwGnWWPTAKBctuHsYVURmm0oxdtmXRII3U5Qy/ko0R1wnFc4wo+uoA0swY7RbmK0PzTTm85kMIdSMArOJ5jxibYAO4U7imppRqIUMRRKEdT/eudnvuXLnvjkC9dmdGROjzt6pOCxNKr2L1f3HW1geJnsxQEBZoDF0+H2o9lGsxVkWQjpEMsq5df7+1Ev5mihMmERDqIjziJgQKzs4hyuUC2CBmEv3TZiTed9ljSqRSx4lx5pp+pyR1zx9jdD8V66b482qBdhBmE3IqzHEbofDS9mgNEqh4/IvssuIxeglGZ72EtHGgQoaIN6AbqCm6LdBRoQwoZBufNcYRitZN2OK2QyJXaWG6bZ1h/DGnzqb13DjtGOc8xG0M/8xq93DK0XsXAA9cqxMFt4W8mOQ7CGRjWEqtCOYXdTNvJMeUK4j38PvQd2spJ1uXc7LvuuWX3h900qH/4pK4fpJpTi5O3ojCePs2uSDS0qSSReV0SnBgCKXXIVlMJ0E4O1EDgZbGsxmINZhG0MhJfTAdSiWQctJWyT6pGM2Nf6tnu3/+T6w3PwmFOkRwoea0vV2fsHn7xjO8wTmPCKOw0FKII2IUbBWdhJKGTr7fLBbWYV9RJnNwELX7AqLZglKwF61krhWy7vghOnX48PoCZw44BhSqFewGANgxWYOq0rpQTpUTaKQ16QzWatDKoFmAFa3guJU1rXGK5itIZqyF3OuZdUqCAQqCkPC+D0CfL8DlBEbn+ThNkLwN6oWegfcvBVsKpLRAmBAguBddgBEnYY7x1ULWC0huEqVCUYzcLsQvES468gDPcKWqMawXj02uUUlv70uMNE0ENWtmrBZVbfOx0vmPozJXhEs4/SIIvJJkZrmZ7RZeJauFb4ozN4+FspiRyAqaFrgIsR2AnaHQxWWfd1UIDS4olHfci32gcGGqBFswFyIn+ibJgKtVKUAqm3ve/2f/m1lx3cN68fNSfgpGgeTzl/+d0feQjOhRy3wQuIQCJyzaOIXgouNH4OB0laZ2ucNBWPh38uyhWAWV5GKqz+tAlJFevlsL2vC+NYDlplM7oSXMBMv+hXUBrVCKoCNSEfcL2EwT6YhRw1hfAqtKwMGyAOFYmEc+iiyLoO+Vy9AlQvYrCKaqmfe9F8QodpZ7gSd26DUkCFSkMP0E5gx0AbbC/VCIM1DPahqsVCIV8x9HS8GBSS3U1tSG6mI+iaMXuaDFZmgMEqhh6zZ68YZjEN5zuGB+rjHj/r4AThLJotVMtJf5LxHGG4CK6FqXn6RPAAoECUEqUog3oJqgr52DXBWkw3MVhJYxd2zbSwmsr07xFLDEBotqAUKrnRWJCCUh+99ciNn37ghc86d/Zpc3oc0Yln1Y109aVrukJ4uREdXil4XgYnesBRsLo6tuHGuAQfPZDkl0AOKZriHJ9FqnONEum2oqFDKega1QJUJeLLIpu+1ScK7n0L5JI7Mu6BtYGuUY0wXIUeZs718VnIe6vsfsfR927bojZQoxqhHmGwL5j49WzQKu6sZn0nviR/YHK/QWuYAepFDJZQjzBaw9LZGK7CVPnTBUu33mZ0f4jPtPMs5IOuhqiXMVhGvYBqiIWDWDoHo4MwUuGId+vH8X7uSjZAsI5HUjM0lEKzCztBRsUyR3GtLSdsVnwOMXL4XgyWUQ1gRqgWw0JE+WQ5rZgqfX9lPIeGMlDAdDOzrHZJqa2d5u9uunevc+b0eKKTAB7PvHjtjH0144TY5Uv4IZJe+HMccfxUby4s/hYO8/FkseiV3X1yv/ccANoI5Mjlu+TekZPiC/VfUgpEeQIfDJlQO6KnQE3/R9k9Ot+Lm+8h+/nfagQU3KNkye96DNyKUrIPP8pB8Ob4KkTPRR/uXu7yNiewYgDyN0pBVTAVqkUM9kEP8ueuUy+6ty1RsziHcr6qPDktXDRAaLazPadIQQkhzssSP7BLbghzMRjtx+KZGCxDVzAVTAVdQdcwI5gB2h1MjmKyDjvmsBjx1sUkklqn5iluHjlMt1IEyQy64eb7J43d64w5PW7oJIDHk85ZevYlq6JGhRP6B3gDkCdDCIS2IYQ7W/h3XttoPibx48yXmzq/zpI6vB9QCqzjgJ9j37zbvnz70e9GoEj/lV8YMSO2kArU3Hs4VDm26YOGrgRydPAmSf4cs+Ntu6zQOZw9ViHKvaTrEbgCgAs+Pf0rcAIdDBatTYPsH7rJlIOyz32NymC785tCybpY2qc7arhp8DyEMFsRki2rMFhFm5WqYIZYPAujg9BDUZYjFOSAqaCqoEPYMcZHMTkKOxHvTP44gq4v4E3r4GkN2Z5iRNUtd6zfe6RbiWROj0c6CeCxMDDf+NyzjKaQyC/pH3kdHqmO+NzU5VTUnbccyTCSycxyNT6D9hCsvQHwndOKm/VsPIgDFNGOL+jximfupdLTEWdqjy4ck/pnPrM2pXCPTYtnUucmew/2sTFbAV7h49JJxU+znsPet+0Zpdi1zvaM5rJIs/qu8ot6RlFI+f4zZg+TZ2rHJfCTXPSIuMW4Pa51qJquI0KYhB/gSlPGhMxyPl+9nWJ8FNNNwOaG2U5ro/IBhWa7dAvM1jTqvqPj+4+OZ/ZxTo8nOgngAeArn3XmZecuhRzmznJJODBOuBJFiL1EeuaaeFnjvOpfCXU1Ff+/3pVgQToXV91zpLlZ3nWG1KBcInhopJ5Gh4kak4j0/c4L0qw5xxDQJasZUrDYg5H/zoLaxL0Ps4/nucR7eemW3XoWy+79qPNTfD1UebBHF1HQRgx5dz2O/hdyjxXDrLPLV05skNgJnA2Rlenu/Iq7mN9MpFj3Ph1EmB4Napav41IUB4QKlQFhoHQoU9bsYHIEdpK97T0bgYxAZGF3Op1KgzCetnfev91zwpwef3RywOP80xe+7cvOUxD5aH2pURlIXAKJAvbYSOhI6VJ6FgtAlrZUnteR4H5661x0UPF7D/fyjOKk7mq3l/wJBff8d8q6tSdr+W3GT2XbdL7fEE8QSLkXZpOIdJnNcBb5cIrMcJQ/bqDE7D1v14Gz3mcdGclt5A75jsf1R88ioQ+99mpkDiQenMhx4rX40saoDk8OsLAcDKg0+5Er2F20u9A61B0o6oD53umIKwraQBu4FtOjbI/qKLiyhQCgYSfsSd99EYkIreu8AHN6XNLJAQ8AL/+KC599yT40bdjS8EBiRa1piv+6GUtyT1KLTwfEwp/yD92rZp+QbuSjcAu+HbFViPJuO+WFtEfzBClpV5k9DsdAzb5md2+YjXOUod31ey+WC27ZFSrr43GCZry2XJV3UHCvDnVWDOFw51mTaHcKedOdvvS1gsS4lSf3DlD3/ehwD18VALRNnhuGRIO58SmMfJDMjERoNv3RPauma9bwvDNVBQDNBprtDv7FkWHLlfK1p8ai5TJQEUTU2uNfLMzpC5lOGnicc2Dhh19y6fKiZptV3CRnLcSyw1UqQDSL8pWvOk4hIiZkOpF6JAsQ3Oqzu+VSUB7rWdh2RQZ1bohMCnSFSNYkcbfIuhTcvdxlg/MGUH5ODDcD+ur9dYR4bCwV0rkjpruoWRrx4t10cSBvoeTYfeLdo+Kq7OAMbO5Bgj3BO/0+43GTPFv8mg1Ih1yTrLhZDUffQpdi432EaYIBjWYbtgl6RsSP6D0FBsiIH3FvXKmQ5SFTHGcY4nyRY+oONUFB99uB5/S4o5MGHgBefM253/Zl54VI5uR2ZZO1ilz+UhYfCukgpZ78tUe0zJA1yCaAFOVp2sxuQ8mqy12c6dBBKeR3RnlJj9RD+ete3OPJhVzrdlaMQ89mct6AgnUmH/v6XrQ849jXcewpW0kI/35jVMG9733o0WspCFaSDVPZiqFoUanpIs9MI55jT8e73MVp3ucQwq/diRwkluM5fMKxehHVEBXHc+gB2h1RxEkoDYX+EU7Q0BraBPyYboZYk97XIOz6qBDrHrqc+d8rcHTQnB73dDLBY1DrH/2Wp3zpFQdhGzgbQgLDayc3PJyYSDJ1D8S0lBNVHu+TnuD1L7lsPiSfesqOlBK8Kw27HF3faQpQeXSLuJBm2yLCCbJte7CexV10oQyvKcZnFvWixCyh35HR2QC67ORZ0NXTqr5mZ99m96tsUR/3WTpQeX2HdXnbYnxUZ7lwzI5HSJTxHPyqSGiBwmAZS2dguAJTQ1ehRrpZwGAZ1GJyBNMN2CmIraAK2Y5OT+yUDrEmk80Uqd7d//AfyIUscBDNIweC1mo0OBnZVOf0+U8nEzwAnH/a4i999zOvvHgfbAOycG2wYmUSVirOcvIUQqorNQo5y3cLIOHyc3gyz5SnNAOiXH5+l6O83OUw0NvCnLVf3/nj2SKul/Us7nyEChDi85MU6zamSLcn/y1QqnhknVsRleIya3J8uMguDI3t7WaXb/5AAynBOv8p63h8BwruvW9U95Wbxb1zz57n3hkRuYWQIgGFS64P9jZDLJ6BhTNhFgCfncwE7cFHtvr0cXaMyRH2pCJkfmId/Ii76N6fqtnKGtyrufp0ZGk8w2gvDKtzT1vEnOZ00sEDwDMv3v8L33nlk85dhGsAC2rhbPiztgdLsm2JvfGjEJFCDmZCRAh0KblcYXbw8qELXfGEjofxcXEXU44gTou/ihgO1yuvISRX9yektmWqVa+Y63LPj6cjvey6EjbvOwrRI28rbh4ZKS3ugD52ReOLD7GpTvwySy2bJRkpjX/quOuw7tyqaGq5nSZFrfhajgnyy0UYuceGegkDnyzSaxIm/Hn33OSM64M5GoyPYrLORWuEtlGmxgEjika7i3bSN7BIZ5IwNYsGn31g4Yz983rmcwJOTj2PDr3gmWe94Uee969/7YYbbn4IxkC5PKxBZ/LFV2Ein5RX6trxzVadic0fSIKEtJwI6ZZ9duI0NhwT8lWb5NXdrO9wd5Tfdoa87lqWgvAFV5TawwWLOl95/d4DPxAbS1KiFeLMBY/h1H/qdL/Lncdtb8yWF5aenQQQHKCjEFc5axIHiwbI4QU/dIkBUnyD+ytv4rkTtHzZ4giIHLTZJbO45yhIva+cuDQ9IEqiOVqQfOy93YWbolrsQBS/ihpQvjggYADn0E7gpjBLXMSMT1YxS2N0qdJQBIe+qum52zExbCQ9iaCwsdPe/eDuOQfnykcPbWxs3HTTTffcc894/IUZRzkajc4555ynPe1pKysrABR1bQ4niT5558Yrf/vGt7//rsYChvPqAFAGZhRK2fgkS35br9f9PyPK/o2wQXLVHE0B/K/PPEoEa8PWCzkM9nEFCxO85mel68i4qwQSJW5JcIrRXsKpxrHvgM+Frji9hHeYwd4dl31no/ks7v5gcnhDxt0MuXiGhjZsLu/t+CzMdn19D1AWWJMAVMsJaUCol2FGzF2LjndZYyZ3IKTXBD9ccDMK7hTz5VgoYLAWVvTKBBHcnzlrT2eKnreOuSeV2oqH7gC//9cCFrYFORifE9Py4AC6Qr0EsnANqkUsnZXi/HvZpffZf24BBzNCtcQLApFQLvrN+7RArgW1qJZRDcU5FmTDObYBgMEiCHAWYMsBAFW99PlP/O0fft6+xbxS7+Oejh49+p73vOeaa65ZWVlZWPjCVM52d3c3Njbe9773ffmXf/nq6urJN1tFuuy8fb/9w9f89L98xnmnDdBMYVtYvwXSpryhUfT0zJCOYEoyQohI6js/WY14mSx9IjOp54KvS2Y6KxaVkjvSzV0hPSNUkPAUyE3zRFxGlLKOpK3+GavdeDAEynRld7H0pvwry1YS9ySGgcRLUrcNUXqC2yybHfsyozGUP6ysnV3WxZHIArkXRt7Uou+A4C474viUPbj3vQyxg71mqMCud98ojr/4KVWwR5ausd2BnQIc3qFE3IbcEo9B5kqFYuZ2B816XgOKKeVAZKi249LNoWcwebp59VEpmPqPr7/juvcc6mHxOKaNjY13v/vdL3rRi84444wvVOQAsLCwcOaZZ774xS9+17vetbm5+TkEDwD7lwc/9JKnvOU/P//lX/WEfQtAO4Wbhr30bAY6EHtnheS70RAkHLSiyHYsv9A3V7Pp7X/pbLEUkONZE3HexnzOS0xyLjWjZ0ekMGgQALEWLmQri9SEXq6HaSZ9ilV/l3sHq0ro6oBohtld1vn5If1lZwAzqEA/u5BKWd6tc0kptYunz3/Z4Av1Tr4SibsYusS6eEm6ArQ7sAxdCTW5hVR0FpmrYcTsMM4+1MbyaAC6EmUBNchiysGAMRlBGU8e8YADy70ua8eYzsAPIAEPNFzDkeTc5WI04nubkvsamGra0Ov++ObD9209fHnwBUs33XTTNddc81i34tGj5z73uTfddNPnFjwAaKWefelpv/79z3vTTzz/X37tJReesaCpQTMNIjsTTy5I0ihTKJ/nccmfzBHF5C/UESmvIwvi5L65+JNCPBl8izTy/CGZpDpbHRIqkCMHxB1K1rHSSd7a4qo0MsIq1d93luYuH164fDQsj3k0ufRiNjfP3zP+VHCfidlRDBUdt8eL2fLRHwM1kSOZ/+w6V4l8BwUSFLCdHj0yU2S6BDnrOEo58MRhUQgvv79EGwz2oRrCDKAHMEOYYaiBGM7mBMyZ/qE5QwljidaAgfKFIzeBTl7O4is5tNOynQllEXoXUBAAYAZ+3/7GTz/0xncfepiS4AuZ7rnnnn379j3WrXj0aHV19e67736UXLZHA/PCLzr3+Vee/Zm7N9794Xv+8L33vPsTO0QOFjAGcMLvy4J8JU6xi5sWRy7fxI4f8sWpPCKxJAoUr+jo6Dgrqx96dirsY1M0/vsLkSZb+Blp7hVmtGJN7bkrtgOEHvt9FJ9FUQt2BRHzpE4DhMCSqAmIr0K1cg5aQfGYhyFVoJjziiRb/tCnVHXle+Te+9ULpuQZ4cW64sAzAhDycBQN8KyVRI74c7fvxdcI/xba8EHv7OvTDBPXuyzEK4mH3Ata0owpGiZfA7nzHBWCcFChHmG4BjNIN9EOGIEsmo2AJSGFPgIepMzN0W3Pp11x4Vet0exCaVS5/SSOasrSOIUedmBYDn2uduiBbwOResvf3f6Kr7n0wMq8JC0AjMfjL2BrVZcWFhbG4/GjGu9TGX3Z+WuXnb/27MvP/pr/dP39mxZQcA5a5/LS5rnNMQMw8g9lNEmfPI1r9rDiVjDxDp6FYE0qd7bqAgbElOtDDsotJy4CWAvnLdqO15IRbGKV0HzskiFCGvq73EU7ncswL60rHVwHs6Nkoe6+fdeylHc/416guBgKPw5egiubGfGd4swlOWYjNrvbDGQ3T1mcJfccxryzuAEvF/w9bEBN1cmCTNxNisPuip/L1QnyjmfrFW6/MgBBVxiuYbASYvdUPEfzMsKh3UG7C1WhGqEaCJcK4SemNZwN46E1nF8AOTTb0BVXp59BrgXZkKrHxUF2fHPH+3MAgGoBygA2Kh/v+8d7v+65F+x1/zl9QdPn3GzVS0++YOU5l66FsrVpnhfGEHmk11zQZxDvLgk9JEB4v5B3fYmJtqiPdVx2+T9ZmwRlk0rkYO4ZcuSmMEgDl+3c1gabOHEFrdRZpB71cOdzkqsPd8TzCrelTseJy7EwRxJtKO05ol9d6dnte8LsNk9uJoWsDXzjpldMckOSe25iovhY0eHOZ7rYAFs2DDz+iV20ELo0GmVZAdfX995nIW1BLJR9RayF0zE8AFWLtOocvZGCOSoowE0xOYrxUbhpvqRQOZzEzXANHSsD8nuV4SLxVZR2oUiOCcQrBCgVSvkab1UboVrYmZo/vv6u9e09K9fO6QuaHptMA4tD803PO+fPP3RfCwdScLz71+Mvmy3+AWSrznCgs/JNB6UAFXIcLcgFC5WDUH32rnpKJXcqcMtlx2N7ojjzwtE2MIPE2hvBU8e7ne12nPJu9qImMgkbIYRciLyhGGnhBGvJsduYeNti5AvkmIHZtkVFQefTusOIWKL1dh9Zx/fA7Eyax50e3qD2J4Qx1+LOKmfY++IJtS/TdIvnzm+d490OGUZuKtgWdopBoXSKEfDu41531AoOsBPYKaoFmMX8uShhyyI2umooDTuBGqMaivMjbMThbAGV9oSkA5hHWTPAcBX1IltWfZTMAGb4+vc+dNNd7/+KK0//huec9dQLV0aDPbWcOX3B0WOWpuYrv+iMp124/OFDWzAqaOvB+5DyaA/50qP8HMQH8hUxG53lHmyx8CcLZ2EUiCd82Ht0HeOA5CgaQ4JRONjlzhxj1IU/7p2VFV9UAidKq1E5DnviVtF3udaO3LUGKTjiun7UWcZ6Kqw0e3R/xqq/wGyfbkADTvoL4TgwOzagy51K7lF8k9Q1HWwLY3PMtpkJq4dp/OCyg7OQI3NmY702qR2AqaEMlEO7DbeMaimMOSHf1XdQGprvrQFScBbNFuwU9VKojOKtfKFRcQB1uBwKdhuGgwF7tBB+Txz4YXE7fSOrFYzWwlYH2Lamgnltt3HXf+Lo9Tcf+fU/O/RPnnbgO7/qoudfcfqgemyMGXN69Okxe9LnHlz411/3hIGhYLyKM5yEoC+tJSwNidO8Z/FoQnomf0oHRI8RxgwA1Ia801G+p7wpkbU0FolmRAmVCS8ruOcaj1x+ejuAz1pKotelHCyY2vQTCVtNYtSLW1HbkMPr4Bo2YfmbWMF6779i/Dtmt26TiqV3GH8/LFzrBchHW2oSnQZE7oW9CBBvjs2amkR5mzqeXp4Zr1n5IHIurg+zC8/guGKIEKs0zABAWOxPNlIYR4rnYNOT1x5ScnUf1GngJpgeTbXQMyryIfr8uNPQbICHAuW4+UcW1Q5f6L5awMIZ0At5yUITCqdrLp+uzX0b7R/9zd3f/LMf+N7X3viPt2+cHAExp1OeHstlwkuuPe/5VxzM6n+QTWLRCakqxaUrBH0uWZyYtAk5WDZFN0RvXHZ56ZEuU+mqW7Qhwy0pVnKh46Tsjnsb/DXa0zM4jBJfznBXNiATnVKkStwSi9/I3U5h2yTEqXvPPTG7p+8zUNM63tbyocsAWbiJCI3uZW07sC0aEDE7e/SSO+V9FysG18A26cJyGF1nxWBL7k7ctvvWSV0z4pZUO/QAqkrxHO0u2imX64h/OlP+ipKxSgMGZDE5CjsVxzt6Wwo5jFXTKfxDFL8JkIvLJoTsD66F3Q05GZXhdFs6A7aQb9Ggro5su9/6s9te8ur3/Y+/PLQ7tSdRUMzp1KTHMrvygZXBj77s8o/ddvSeB6dAxa87BY+jnoJFkTp2DMRFtxQEMi9InPYK9SKGqzAV2jFsCzJssyKQZtsugNx3Uyr7Xe6lIuIlI6W97pgHu17AcBVKox3DIVgnQL5WAojd86XzT/lBsqYOd0polMCJuZsBBsuAAlk4hDpCBJBKHKMw8o2huD6VI1AsXTs78FIFcVEq1dB1cPcK1XDZeiY7ngZZ9Fr+24tqUl2QIj6uGIhBVDMXUrAkzIa++0jjEHv9cLnHjZaI2brCYAkwgIX2j2yKZhPViDHAhZcfGhTtaS4UMCcNEH82QIvpBob78q0jfmljKjnlIdNG37Xy/UlqR3SsUiGeA8B0HYPlkESHSGSl82dyQVxrAQ0D6PqTd+5833+78aOHjv7Ytz7l4NyR9wuaHuPU/F/y1NO+6drzXvu2TwVnzVBWk/INc8zeufXfpOhEMvKkaD42kuia/SMVAFQG2IZtgxhNRnCEuUcF0z7u3vBCfutFrkaFBczPTF1hsA/DfamP7S5PQ823ZdQssTNydNlXEktyqSuQWAhH1BwsY7gKU4NaNDucrUhDWUCF8Joe1rIBOWiVg9+H2SF9k0K9iNEqdI12DNtAcY4/SMHkx/7EMLujcyAWlQGqIYar0H7FAGiP2apcqXSX8NTLuovZQpciwd23v1rAcF/YPPBPygzhWjiLdhdmAGWSuAdAmh903AanhCWWoAxcE/Cj2JxLwwiQBjWwDXSdxifCXuxUgBAAXu2owiNzUzQ7GK4CxFv7fnc9Ng9hqzI01sGYnan91bd9+v718c+84orzT1/qe5fm9IVAjzF4KKV22wq6AlqQhtVQciWIHDMEZcvh3MEGlM9hFxzhh2sY7oeOCd0ISqFahtpBO4V1bGKG4FtsXM9oQFdwS+6+Nly9guF+4fpCITNjuxuUkugvkPiqvu73wobUOeJGsZekLZyDGWK4H/USRxUY1ArNDlzLyRk1JxmU2+bUYZ2jZuIOYamTmO1AHcyuF4Fd2CkrXlrcuYvZscvFisGBxAtQ4lY0TFkojcEqhqscIQi044Ao3bzl1DvyfZBZPnph4ZT6R1gxrITwjqiskIOqAEKzhUZB16hGMFXoftAeKDNMhRFi9yqtYadotlEt8YgVzeYZZKcJPEi0gR9kUkyhQuZKRZwoZQODfRxX6LumAZfBm9d+WBsB4Bz9/v+5fX1r8ls/+Nwz948wpy9EeozBYzy1h+7dRbUIuwM3hTIgAqmwheipuw6Ni6awKpSwIdxSQWFWmAWMDgTRKVeyfjVXLUON0e6CbG7EALshRV55GygKTSSFQ+5Y+NgFM8BwPwb7OA7OX+4AwIygDNptOMu+sxJCOsgh7VcuqiCzUdPbE0b7MdwPXYleE9QQtQ74cTysu30vANv3V26H+H2OgNkDcWeFehFKoZ2E+wTbXeR7opidUJM3z6pFjA6gWhCYvQBlGDjjZvUeaJ23YQ9Vr2fFsIzhflQjcRMHheQq7Vzw8XNjjHdhBhgsQlVC+WPw0JqtT16su7Dx0OxC10DNjemSArVBHS+fmr+f5XcJqBZQLybQcsQuwgwAsXwAxcfEulE0l/m9GVO94wOffeXv3PhL/+qLVpcGfQ2bUw+99YajHzm8++6Pb374th0AV160+PynrFx54cKLnr32WDetpMcYPDZ22wc3G2gDs4LpFuw4zGdyeQmQgqSAYxmadrZZfJADKizsx3ANuuLZogQS8GezAFWh3YGbglTY+UDHiBFFf/iSL/ldl7vG8ABGB2BqbmRkyjCpFWoDu4N2EgwC3mJQcJesE2iJVX8ylAlDf72EhdPYqs43USwBVY3BCtpd2DFIoFfJmvo+dDA723q1IIfKY/ay2L+hoC5AoVqCrtDsgFqQDr7aCbPF05HcE2ZHhQP86GOCLK9wVFg8DYNVaBM4RuDUIww8fjShy4o3vfw2TPbQ8+5nmM3rBpf33RtIRwdQRxMlGGxMEM0+J0oM5lCAdrAT7E5Q+2AOYclMxisVBsYf9Igy3UK9r/THTf+q4OcWnzsopauKBitlMFxBvcyzj6AJNAJZtDuAgx6E3L0JMrzyIaxtcmOfyCn9v95524VnLv7Hb7miMntsYc4JAD582+4rfv3Qh2/flQff/fHNd398E8CVFy78j3/1hCsvOoWSoDzG4EEECgvhCoNVTDXa7ZClp3A76VzK/4qVYJQdwci+yqtOT8I0rHgCE+A0yEEPUBvYXdjdVJctWwBSzl3ITSBsj0uvlWo5qDuI9gew4s9yKgRIAtUyVI3WS1IVPHD6V//U0wDK96t9d4YHws58pCxbF9v6q0XoGu02p8o/HswWS9cSs72cqjA6rQ+z/ZirYDr3QrzdhZ2yJX3G3kO28yG4gz2hJXcoDFYxOohqWF5OvAeu4uMe8+WynAw6Kba6ffcohWx7iVjVGx0IcaB+uImgVYitCY+J3wEtXgMDWIfpNvQEdbR0cXsCeOiUxspfb6fQ46QcxIGK2eF8CxVH+SXA0KFP1SJG+3m4eHM+qNEGcGi2gW3oOiRw9GiRbGVxM8Zmdjbo1tlfffMnn3PZaV991bl9b9ScAv3nP7r7J990zx4nfPj23We+8uP/+aXn/KeXnP2otWpveowjehxRa3l1qbyBZQ2gUPzDWVALsuy+ydVsKJa1iaVt48EW5FAtYfk8LJ2DKpY8U/m/OvyrYmkEhFxygxVOVGdL1t1mSNfheNAMsXg2ls9DvcwctWiGd81k1tG73wwx2MciwALtDNYua4O17BHLR2AwPA3LF2B0IG3DggWNt3VI7tDQA9T7UC1A0cz+JtZCuQmxGnLwgcEals/HwumhNF7m38kd1yq0TdWol1EvQSmg5V47kZ3FiuwswouX+AVwnEAlGAkXsHQOls9hU1XssmAdKo8ZVIuoV6Cr7JmScKTOGmCzBjj2RY6u2ORg/It3dtjQyvqrRNyGSU8kts031RjeDD8CO7sgnczFoBTsbtrx9hRwS4BuVEyjS64y0BVGa1g6G5X3BNMhkiMEc1Sp6q0C7ATjdYzXQ+yIxFr/Nbp+xcWfNg9tNq9+w0c/eyRbUM9J0jGRQ575y++4b+9zPvGJT3zzN3/zmWeeORwOn/CEJ/zAD/zAQw89dDKaWdJjDB5KKe0dVcMiGhjsw+KZqBdALVwD28K1ASEiTnQxIxZLVwMsnInlc1Gv8KJbJ6jI1tQMJDrih0rizHsoOhswzIlK7I5FdmpAC2rD5vPoNCyfj+F+1pzyGj6JNUOXRkq1rQyqJQxWoGo4F/LWyT/H3QwNcIE7OGNVvQ/L52HxDK5IqjrcBWsZWKA0qkXU+6AHIAdq+2H72Jh9LpbORrU4g7UATs2OwtAwIwxWYIZs8toDwCJmCMz2469rLJyJ5fMxWOUXuxezBZBAQdeoV1AtQinm2+bI7RJqRlyxEbR4fWMGWDwLK3LFIDHb5GOeD45//eJr4ItzkEOzjnZXvKv9UwgoggELnTgaDPlg3OHw4e7kAlr4vzKYw8CYAHjaF04fY3wU7RYbA4vmdd5zY67/xwd+7y8/fVwS4fFHH75t9ziRw9MP/q87PnzbTCT+0Ic+dPXVV+/s7LzhDW/4h3/4h1/4hV9497vffe211+7s7JyMxmb0WIOHt86QsAMQwYyweCYWz4AZABZuCmpYnIk/8AePMTBYOA37zsfoAFTFt9cdKdaVpOj8pGEGGK6EPBBejif8YO4QsAFguCpW3MhKL/SwFmOgohhFEGeDpbC9b9scNWMpRssjwHhmRlg6h5WtbqfieOd8i8C0wHoZMHAu4+7/WkbTErNrLJwVMDu8VL0DLo5nrAFVofbAWYVSqcfGbAu0YcN/cADL52N0MCQwTyuGWayRdL6kcY5Cr12EahuebwSMLnelMTyI5fMx7Kp6BfdcC5GPSSKKisGAwHQTdpKbTPPZEyNU2knmtRyu4Aut61c7lIIdo92CZp1Mm6QG9cQD6jDC021Mj4CaDD+KXvAHR/jNd9zyyTvWZ4iBxzX9i9cderiXvOLXZ17yPd/zPVdfffXb3va2F7zgBU996lNf8pKXvOc973nCE55w8803Azh8+PA3fMM3nHbaaeeee+53fMd3rK8/oifyGO95DGu9ONB50VYfQaYw2Id6Ge0uppto2CIPQCFNDK+b6wqjVYz2c1nyLjb0EqVzFPr8IzWqIXQFN2G7PGcSzFytDAYrWDiAaqmPr/xQ7Jr4+cY2ceh0gmetKpgJ2jHcNO2ixxUlOI12PcJwP4b7QvRyTwMoXdvtuO+OzKNUDaANWmYNJ+4mPNz8IOgaC2sYrAVTeOqyHHnK7iBbpQGn0tarrjFcRjPhakhO3Iqy9ofQP4V6BaODIXMfIKCrSzlrRfAFVOA9lyoMFmFqTHfgJmlLObtcLOp9bONgH0YH2URWcC8eN9JPoXXR989no/K7GiIYEDIYsJiqncW+m4IWBC/q+SMn1I4Be20h+ONqdib2r2KAGZ4LYuSgAUdwDaZHUa+wfVKJEfb/511DrT999+bb/u72f//NV/Q9l8cved+qh3vVh2/ffesNR7/xqrXi+B133HHDDTe8853vVGLLcHV19R3veAcAIvq6r/u6q6666tZbb93d3X3Zy1728pe//K1vfesJN/4xBo+VhersA0PQOojTroW3VoctvnoJ9RJcg3YS/IIsl88EQStUyxisYrCYF+kU0jO+8RS/Iz+kAPYyIjkHwHbqIQYV7BTNGG6S4qWVQb2MwQEMl4Su06teFKxRTEQ+IAR9sKQx63YXdhKmetyGNQMM1zBahR72cC+7LEnILM+L5LT3rpYROMeBdRyz4LNUY7SK0dpxYLYEzhy6nMQVL0MjZk9hd2EncBKzwQJOoV7CaL+wTxagFb92hbhAzWLFoCsMlmEHYcVAeWx2dI6AxmCJHSJ03vdZrJHeOgWxYmCAVDHIXwM2NExpuAaTTYxW+55gZKXgWtg2AUDaGxfnp1dXp8K30KGzg31AnIZgZKWEbVrDIkwWbWABajE5yibHvG3S1V5pEN783tv/5ddednDfPOw80YdvP0Fr0odv3+mCx2c+8xkAT33qU3sv+cAHPnDTTTe9613v2rdv3759+370R3/0a77mazY3N1dWVk6sDY8xeFRGXX7u0tv8Wx7Bwy9vHUebKz+lawyWk92ZANcCFmoYtO9AufSMx3ooR5EgQKKPU0f8eXcsNwA1cC10jcEqqkWYWkQJ9HGPRPKoFCuK5UyuLsSlqLdN6yHcJJhQTI3BCup9qIZCdM7ueybEcgzzLmdJhsazFIiBsx0mBYgIpkK9jMEqaonZQoLnuJwz7cROA8mVNrJWOviG6iGaXbhpyvMRrEz7MVxhI9VxYnb3Q3EaS3BdQ+sQDN+O2QkYzH0RowMYLB/HikEeiexYycscugR3PxpB5rqwf+6DAfcgIrgmROo4AR5hkKms7KRrVrk0nFc+VrgZce9d5/oHoBWc10IctIbTgMV0EwMFI6dhPqoAtP7YoSM33Hz/V1993l69eJyRd8M9WRdWVQXA2v7EYrfeeuvBgwcPHjzov1588cXOudtuu+3pT3/6ibXhMQYPAM++ZK0eqMY6IG7B+BBWlaS5QnIz9a87EMrwpXDCjsIhqVdoZz8zfsiDKkpVxZVKTVg2DvahWkyZsWUDZi27s/sX8ity7y5XwaLEwIxgWjiL4RpM5B5v2Ol7jo95U5A+KxJOyf5YLtd8jlUM4BpAYbQfegHaiJEXI1a0oYdUalMPZssRUDA1oBNm+3DxejnI92Lke/kmVKay4yGsPmcaMVsb1IvQA7gpXANnUQ0wWEW1BFMLH+gO9xwK8+EQqk+m90jWKnwOZyoohWYHqJPrc7gVZY+JWsBHkkePOP6VOE2L0hj4eA6vyQ2gLWgAB7RjmCHvAwkFURaXTC2MezMANZiuY7iav5BF79XO7vRdH757Dh6S9tj63ps+cnvPhRdffDGAD3/4w+eemzlGN01T1zUAac4iouLIw6XHeMMcwBVP2Hfmai2CkynF/cXado7Cn1fDHbgCmmaBlZsOunpI/0zuHFRIN8lOk/MZ0CbYeTPPmc6d5T16eIr5WTLdm3sNPehwz/su76TlzeJw5BClZEuEmACLifBBo1qAHqa0huHWbBPvkp5xvLxAfC5HFVAmJFX0O2GqEn6i4tH33k91D/FXKo71DrsO8Q3VCKMDqJagjThLxqbkfNLNZrwEqQv5sCfWKjw/nxmh3U4ZpXrbHLfEXbRZ8TsWYo9GWDoDC/tRDcJ4mhp6ALOIeoRmC5MjmG7CNaHj4RFH1zUlmpe/Fa7FdLOveZlqdcMn798et51z5vSwiajn4Nlnn33ttde+6lWvksrH5ubmFVdc8da3vvWSSy554IEHHnzwQX/8lltuMcZcdNFFJ9yGxx48Ljxj8dmXrAZrrItR0zHXgksOmtLvPmx7RK+Vzlj2yQHxoX+BOlOcJTOuny2GwxT6TsuOqeIXPiJXwfGqrkznc6RdTtchIVXmaC8EYdFZQi4lc4tZ/HfvJYji9oTdUQh/IT4jt8F0YFv18WD1Lrss55qs59FSj7zvooUFn+yUbsfRf6t4FynKTQ1Vi1cu/yt6oDImM6gvoB3oYDbf101g2R9XRk2mAEYXTL7+kTt+nXzExugAls5GtQJUwofKwBiYCqoKMYntDsZHMPHBHPkI+H+1SB0UPmtoAztFO06tkuMc9lDULXes33X/9t6D8riiE44Yn3Xh6173uptvvvkrv/Ir/+Iv/uLjH//4m970pmuvvXZlZeWrv/qrr7rqqiuvvPKVr3zl1tbWnXfe+apXveqlL33p8vLyCTf+sQePYa2//uozjUHQsm23aDYEosg/9rkEZkzTTpD2MfWPYOLwP/FmcneG64pzABeSTio9UXJ3eUixKgV3LsUykSpkijf0K503KgcAb1jot9HNoGNKeb8I1VyRIl2jslOOITF7ucp/e9vkxVYMROgHh5mYrZCPOf/W09Soz8UDUVAa9u6VnOQuUbHBU2B2H6+yB10ggQBLguXiHMklN19wOJHbjfgF9oly6xXooYjkMBx9wkU8Q8SogVJoJtg9gmYz+K30tDC+7YoBFZhupVWdjMnni45sTm+/d2uPEXm80fOfcoKb1bMufPrTn/7BD37w3HPPfcUrXvGsZz3rR37kR170ohe9+93vHo1GAK677rpDhw6dccYZ11xzzTOf+czf+q3fOvGmnwp7HgBe+MwzLjtn8eN3bMMApOHA2W1JSCMx+Ul6cPZ+AK+/5Nd4g1miCoxSca0eN1qKk71oLpaffIMgV0lwLG7Q2QOZKTz7flBdW78UdgDiDo0sCpKdsafUplzXEdjmt156zGVZ+5JPc8a60+vshPh8o5LXua0yIo9hLtEkZgfni16S3BWv08um9F2lRB2n4idk3LsmwcQ3Z10y7IyM1DyUBmnYachCFi8OD5AVDmLdPdVQqaAr2AbNOuqFMIyA0PIVQFCOE6goKMAAzmG6DTNBtRwSAMdFjBIvf9oC0XAN2h3UvLEfgS08ebU7bQ/fNwePRFdeuHjskx7mhZdccsnv/d7vzfrpr/7qr06MY5cee80DwAWnL770i89hz32R9yJtgRDbr1j/ULMlF8r15XEswGcBCZLVOGNiciHSKw1n3zhrVtHWLmt0BKXu6Xd2D2IE7NW89hgRAcPZtRFvdN+w55idpYTqb9/spvf9Kp0+E2oiQ69ZCl66a98ZD0Mzk2F9nfDDYsXQ0yHKL5HIobpnl088fiALO+XuFD2M74yofwVAD0LL2x2uDOjhQcS0Q4kARhFbrgxsg+lR2DFj2ywtBOE+dgzXskoEgdAEEFm3PW6OY7QfL/SNV60944KHbbl6xgULXT/dR59OCfAA8PIXXvj0i5bRtgEeqCi5WuyFzJL1rvxJSuPsumLdzVvx/VIGYmZ27jxLayhYdy7LT+2EBAPCNFRcVZRZ7LSqi53EF/YqGUBHxSmGkb+q7tK7e3LOl2af6YVRt+OSY/aZ/SNUgYJCFpNY6paDfVzriD4ioLtimHFv2WvVPSN/NqqnlYljIgGZ7VTMgpiQMZ7Pebf8HXQV8h0Es5L374yh9YUGqQGVQCXYsioQoVlHI/Yq5A5c5hWmQQ520jco4Z+e4MvHN/3u9zzhUbjkc0GnCng88ayl7/v6i4c1eM+DUwm5vL53qjsNoJD1+bKuZ/Yif5s7niHUES5ZAnBB0U2zlIw567INXTyhzkHxNUsly2JRCe4la8E9NTU2oJepPNAv7/fCxeK77O9MGdHt8h6YnVPMAtv5IR3vAmd2VJWDQH3P/RjUD03lKRn37skUnNGze86GJsX/hlQLBHCKgeJVkfEcvmAMWGlrtrnyuQ6bdlru/3MDkpeXj1Q1gEKzKfbDu8Q4pBSHlPIoZW8X3Bw9crryooWHlSj3l779/FMkMfupAh4AvvX5F7z4eWehbbjcd/RVjw67ETz8FSTEIvL5ytK2nMPowAaJ97v3Vshnfn68x7ae3/AY3Du3lOwyV8tZAqsQOlEgFv3ovVxgUg+iFJux/nOv422O2T1isBe3XM49b1KPwY3YyN4dLoFexaZGeXMnPqMzLBQEcUq2xi30PkV7vCfFy7LXiqHv8pI7BCTE+6tguSIrThAFmBWCvdd/8dkZTAU9gBkGR7VGhjSzuM8iPTnrcPpVAQZKYbqRtIqZ/iAc6569dRS7My/s0aXjT7T+S99+/g987Rmf6/YcJ51C4LG8UP3Hb3nK0y/el/LxJbcrmQ9cbMaSKFow819iqdFBF8j7oOcEKcVKiVaYueS1Snztcs/FdBRVMWNdKcdFA/r7CHF/YekqMaPgHkVVnywuOhuzXKj8tLLjlP1YytkCs+NpXRlafMibR1386gjxdGD2kJYnHIu6++T9N+zte5d7/Ld8AHl7BDD4nhPCvIjm3Owt9cG2FRb2Y+EAqhGMR44R6mUMV0EWkw20Yy5hEk2R0n6Ve+hqTvmsCJON4E/VG2ig/H8OdprefCJpT9aPICrtC5j+80vPufFnnrLH/sczLli48WeecuogB04Rb6tIT7tw9ef/5RXf9Ss3HL5vDG1gKajVSmWTnCLmOV4ugeczl9kJ04DytWghKaLUBiDFZTExuqJNzP/wtcvlmJNE3La7AM/Wv7I9Kru6ZFJkEpRc9pCSHUZ7Kzoes6M4K//tnF90Nv1IAjzEOb32Onk3B2jJLkq6Pbh3upOJ75w7FS3Jx5C4mFi6YZd1YR8rXrnejlPGOo6PP8HJyy0ro8SJcsETwYWUX2bA5/uEJV6Ia8DBTeDGaDTMANUI2oBQzhefmZFY1dMazoVgwGYb9bEcTF0Lw0EncZzJ1QNz1oET9C/6gqcrL1r48Gue8tYbjn749p13f3zTB59fedHC85+ycuWFi6fCDnlBpxZ4APiqLzr7p19xxfe99oNHt1poA6eAojaqgqE0gf18S4IMaQKkmdmV7Mh219NMpr6ZLGUKxG35SJDghTRxuWjvSBAgJOnKREZXgsvPTkxyBzJZxdY+MOnjjnB57BQ5dMcnuboVdyiQphez81v1gnHP0rsrvikT334Nkcnu48fsjvhO3MU51FlDUOfCnrVzl3WON73NSX0XvTgGbItm+MtdfAk1dAUzwOgM3hUTT0rz0DkVXk5yaLbR7qJegOlW24Twx42901Aa7S5UBT3MxyefbtTyTn50oSQQlkb1hWedeFTa44G+8aq1UxAneumUAw8AL/snF1ZK/fvfuvHw/bswJuS5Cjk+vcnbpFlB5NO7CTGKfO6pzjZDLpQdUhnR8Kucn8WFOX4kg7gU4gWX7k343ww5orCWFXsKGBPN8HKEJHShI097G8A9dXL9m3MvcMu5/FY+SQxBR46SdfdBFKgpGt+LHMXX1BhplCPRcXlCEQNUNECOKoQXH/XshHUbE/pOIa9ahtndYe9cmJ4m8pPdzL6nporuEEcCgjhPD2AqaBNqvZiabaHxSh8w6GAUnA/mUNAKzmKyCTNBtcTBHDykRRqrYM7ScArNNgbdNIjiayh8C0aO0JdBrStzCpnK5/RI6FR8kJVRL3v+hb/5g895xhP2oWlC9txYfClttFI+IeURSZR/Fn9Oyq9i3kYWruf+xbqYXIdXV+gUx9lpcZbVuzieOEacc1lLyi70NqC4YcFF/FSoXEDJLuhMBYuiMa7zq2hJL2YTCW+63tvGa2f1On51eQPyx1feQbxFknuyXyGJ42J8Erve7ncGn+LdXA93+QIUSk9MdBiVxeBagpA2RmmQxXQdCqKyUwwpV+FDquykYAx0BTvF9Ahs3EtXGRKEY2L/3LV9JXJJjAe3luLbQlDqviPT1/7xJ8dNf9rXOX1+0akIHp6+8ovO/oMf/eJve+GFCxVh2qQKet5VMRPlRTghOtM4l2XElwRR5XjV6bKF/yybVaYHsPdXukkBA90GeOdjv3iPHgHI8KBf7ShEjOhFZvWSrLttICBmmdxD3xKD2YuavV/Ljs8Yh7D07kp2eXKxERXNa3EMu/iBGXdDdhpFneNYxrqEIgUwdEe1d5zjEcEorRg6/hE9mIT0SmTHOQFJ1Ah1zdWiNNpt2GnIpBLrAxblLJMPruaqt0CziXarM3Ry/9wf8P644+D0JRdSEdu8zuHiK82dNdUfvOu2t7z3dszp859OXfAA8OQLVn/9+5/7uu+/+plPWtU0RcslzYPzbo4fzgWBmORCR3BHUUtINQ9KvJFQAfGVb+KiA0kUZHEZHnWCAhXEBHOxDVJ4ubKFWWME7Lm8g6XK1f1z6YNEzUyCd7kjcE8gipIXRRTsYjbyBuQ3jwmSe1FTCqN0WsRU+cSR2taFga4oJ9Y5nECIfu7Fc8/7HtM892N2em/yz8WKIUeOIp9C6iwSeBAyXSQarJRK9biUAjlMN5Oq4QMby2BynXlYaU702WxzIKEqnXGl5cr747omb4/oNYFnIqVqKErD1Du79tfe+ol7j5xgKvI5nTp0SoMHgKVR9fKvuOStP/nlr/4XV155yerAtGgnaKdBiEvxJKd0lGjEcELipyi+C9kap7GTIhUCLaLw9bEmUppYgV5SpshmsMju4S6EVCYi86ZGa0C6JMZORta5XauQ2uGw6J0Uf5nSU6CFS31PQs0ycMosAJ1RpaINlEvPGbjlR14K0IJFdDcoILAcVY4zpdn6FiBYi0HrNVqCMgyexVRy9y9n6kIHt1IDUI68BK00MjapHWYhBAP6NFZKo/EJClXCDw1olc13FTUSHRx24354w7nf+/MNI2yK+MLMEm7leHq1g0Q7deWT+L7/Ew/873fd2nfbOX0+0am4Yd6lC85Y+pFvecYrvvpJ7/rwPW+//vB7P7F+x4Yjn8RNQ3jrupSvjVSK4Euz0oX3ftYbn8kvabsQ1pIwJSxnb4zR5g5QIB1q83VXo0lGCI49yJFzl8hBEasImrg7DuRLzuk8aJHYgBAHIabpLlhLXki40sPdwhFMZK24PG303GWnuCgKY4sc8ch0kCP1XQyOE7bEuAIgWSfVhULiCsH/Kgk6Sl2OHUUHA+SKoUfDy4HKORiJHwApaA2K3KncNg9MJXcnfhPI1F0xRDhMz52HN2XMNRgso14ONTfJwRDMCNSi3YZZCFjixyVs6vs6hkXxY8W+uQTt0GxBAdUoG8ySFOwUZiSGMXYHnb4AULHwrWvxv99167d/xSUHVuYlaT+P6fMDPAAohbMOLH7Ll1/8z57/xPf+4wMve82H7l1vg9OIkjOWOGzQz+pwjElO3fhvV4LwTxTNRF6cxbWwX3F7eeEYPyhUhcsqwUWGhcjOuZfrbolkclr6Dy1cBRCvHBFEORFIWhuU6LsXhSrN6sSIcaIoxpVJT26e8sA5A7NlyUWWGIwWnmGh63BLnCtR08lHQ8nQ5BwHuTP38CC6kedy5JH1peBeqHfpKtY1g9JgA/fQMQeogF7+TfAoQsfJvRc1C8yOD13mOmRsrhYwWmMR78/UIII2QAXXwE6hTAgS1DqE5lBUJhRULIWrwutkKeDKdAu6KutLRgq+4jbUdpRtDi1XPHRRPRqEwrdKweiPHDryvpvu/bprLui//5w+H+hUN1t1yWh19WUHrn7SGqwN0qSs/yFXbfJX21l1ulJ0Sj2jWH7KW7k2rUbTrZDdlvICVmULxWfiLJAFVMjtDYoC1AZjd9eWki3SZQMs4x+H6EsLT8Y91znikfiZXF7zUbAm8WssKeFEdpkew45EKXSkOV+SKnI3bAbp63XMxJz9Fe9AH/euc0SvwwLJUZId99XJhFGOkIxU/dwZYbK+y9EQz50kfPpaMhWGa1g6G9UyUIXKHMpwZScDVQEGSgMWzRbGD2G67SvuChLeU9G9KhqvyKHZypqaWdW8kudCAt1slCjcG06Una8wWA61C3UNU+/u0tvff4eT95zT5xt93mgekhYG5iXXnv2OD95rvaXIFfU/YoTUrGAuuQBkUSWNJPFgaT1wDFc+OZ03FkVrie3zcaTO53zlm+kcrnOQ/6JflrOwLYw39yu24Yj5n3HsjXHpLLqlrIyqgJSSUf3yrm6K4By0hnJiwOOYU94K6uOOjFEmkaXSgwAM4JGPsKo1m840X+hXu7Lv1GmASy8GUecpyxWDS8/drzyoAYbcccq5ELNW4v4QnUXe8T5rVWqSfA1Y+wl2KgVdgQi6gh6ES7JRdVAEQyAV+qoB5zDdQruLegl6uFfVdOVL82oojWYM1CFSnfKRVIBTIK5ui7g3Ht9kgYv1Aoar0IM01GYIs/DmG44u/fY/ftUXnXHVk/bvX64xp883+rwEDwAvuPKMJ5+3dNPhbRgFAiyFbG4KLMQh/pUTWHwoxUdXpMZpLIxX5AALZ2EUoGGRVxWkDoRQpw1iNZfWnh01KCoHUQUJTgFtiMByCkSdwlmy79Tpe849Qw5emZbS0wnUdHAtdBWEbWBtBetezEY2vP2Y/f+39+bxkiVVnfg3Iu69mfn296qqq6t63xt6hwa6aJClFZEdFFAUVFARAVFG56fOyM9xmRkVhRHH34yOzjg64rggzrg78tEREAQFZGlQoGlauulu6Nrfe5l5I87vj9hOLPmqeu/qzvN5n6rMm/fGieXG+Z5z4sSJEjVN0nZjgCmMhhQOEKUFrSpm87FGyjqT3Yx7qFVQ/DXjrjUa7RvOoo9iw5H+m9Wk+oJRUiVufXJDJyyV21Vx02N6DN0S1IJ3EoZqe0eiMC5BAwlXW91jchhqhGYhmRoOM/wqiAVj+zL3xyGbijoUzXFr/VNRTwkykA0Gq+iW3ZJMHF8Jpe48an729z77n//k5mvOX/na6/e98MD+s09bmOEme6jTcDjc2toajR4SyW4fANra2hoOh6ee28rSmbtHr3rGOUoQjHbemOB/4GLXeasKv0Hw1STOIpP8FB07XIRpEMFo6Gm0Big7d8Skf5QcY8Ull9aeu64hB7d4PIpY9d85BDRjnbYir0O4SJFLGVdGBM3bzmWcRxGXEtyAfJ78nHX4C6x18lOdOxfo4YrxQTvkfWJ+NF3vlY3l3KsfWPOBpFZZ27nsNrbhmVgvWSPtgexVrHJnbc8dVl5NCWnM1cBF2ZLB5LCLoQqbOdx+QLAgK3s4h4KQUA1IoD+OyWGflxeuPsFcyE6cNVOYcbwtti4+nDis3D0CooEaYGEfBhsQnT/ylvnWpP3QHB/Tuz9+8F/80see8yPv+cU//uzBY5N7JRceJNq/f/+RI0ce7Fo8cHT48OH9+/efquAB4GVPO/u6S1fRs/ztQZwZ5sfP/gw7GqSEjUz7yxVAFndIvQ+XNIkQD6vuSVwpYrCQ5a51LjpRIgcVuGVFvIaZQntAouykkxnClNjyhmHFZqjJL1a560nED5gaa50CtskrUAIkuEjl3INs1X50JjXMLsV0wOy0gRXM9gtISRRvWKD2owAC2UzjxvW5S/xchckdMXuWxmDSqga7hPwrJLyrym62mG6inybnkFeT4/Lk6lIBCnqMyaEYy1s5s93naRcC/bYDb8DXJ9waMMMPh31DpIRq/P6SBiKgmj813VbYQohQUMoI+bGbjr3+Fz7yijf/7fs++eVTbi3k8ssv/5u/+ZsHuxYPHL33ve+94oorBJ1q48TpD/721pf/9AcOHdNQyiWOTlw3RcgTSgXKxOuJH8NKRq/wBhlNBKnQraBdgJ44D7hU+YzNuIdOjr3NldPAPZVEhqKiHbgLiW4ZzRB6CqG8aikqgiALmQ1cHHd4XrbF3GjLcEu75WgiQKBdcPqvVG59lbc6k0Ql66T/WfNnoqZVvb2m3C5CDSHDcLMT8cpu531Ofik7twxOmrsQaJegBpDK97mMfJ3zp0ibyLm7ryfkrqE9tJjev5MC3RLkwEVM6B40wXA3Rntif9qw6URxMQCx0w3sZw3qIRoMVpwRk/hF7QtvGz4FGXSrsDHZFh1DCbp3C+C2SiFXis0DrydQLRb3QygHOYlXwFePDDRTRPr+zNMGb3rZo19xwzmDVlVepIcqHT58+F3veteBAwdWV1cfrv6rra2tw4cP/83f/M0NN9ywsrJyaoNHr+mNv/jht/2vTztzOOpZSP8NlMlu+7Fc+ZglPe3q3zqaAQBQj+kmjIFsIEUFupIKlLDhucNLEO5jqcruZoThKpoRQOjH6MdMiJcLHiVlgjs037D9H7ORQ7YYrKBbhNHot0FgQnw2ZicvGKV14KIztfaC9CTthItsHGabCbSBkDlwBr4lZsfPlNaBoybjboLG4NvuMHvk4l/dcUnBR8RPY826fEfIzL1V3mi2JlHw7Fnu7aIrxIWWTSAUFvZCNiF41gEkd7oG69DaOtb2hYaZQnUYLLv77VgDDhsCeJjeL7OH4bC/9jDabUuE8U8BQqJbAgDdAz1GezFYjfZTUjff59zqMga6XxzgX774kjd+7aVLw1NpUfbo0aMf+9jHbr311u3tHY5cPIVpOBzu37//iiuuWFpawqm7YG6pUeLc/asQEuhhyCfqyXZ+8HVssOvZ7EXiZDAmanDWGyZbDNfQLTtNCgTRoZWYbsL0IJ7yAUyIU8KxrEAiOpk6xpVBrSEUhisYrMbUp40EBPQ2DPnjtTlulcECyCtTR03vL4qqqAYB3TIG61AtAKgWEOi3okqeYXa+P4CKf0vuzEvDcyJZvbtdwnANagAAsgE2oTVMtnDt+RJwQswOFTBmRs8Tw+whButohwAgJabbMASpIKxNYDfo+eYno11TVnZGzeiU83VrhhisoR06s8lWWxBUBxhMDrsFBtX5zS7kA6jI9YzbAGirqt2vUqLfhlRowgEbwvmdIgkA0BOILo5O/OCbExxWAOQAovFcgMkRdCv+DTEA/L4QxshVTwL2HBF1fNz/xNs/cdtdmz/1qmuWF06ZQKzl5eUDBw482LV44OjUBg8i/OOtW1Aj6E1QD6FgyM2W6MQgJ0NLPTSRm2FWpEvfRgMCgzUMN6A6LwH8/BEt2iXoLfRjN2lFCPpCARtwyldgXeVObCXZCq9uGcMNqCErgQCBZsHlk7B7tRL0KlmnbTfe285FZ4KaHjnkAMMNtItJBJcaOre76U8Cs2f0fImaXAnNMdtHYAuJZgnYgp74HeYZZqNATeR1cM33qxH5Gg85P4xQGKxisOo1BkCNAIF+G7r31o93KyUNz5hWNQZE2HA6Stp2IRl3uLBs+68xgICxhztNoccQEs0QzchJ7VgZH1JlOdpVdLsZ0I6gbHaSAwIum5yoro3DRzEQAMgG7cjFVkkJLdFvQY/RLACWI0ESiGObBIw7bIr8Z1ITTb/yJzedvj76gZc++tTyXz1y6NQGj6k2n79zC7KBXMb0CKh3CeDs1OKujECJFyXIjiC4uftIg4BmAaMNNItRKLsCwoGgwp2F0G/57Xiy4sRwEp9XI4ONNNbISnA1wHAd3YrXrAH4k6+so0mNIBr0m849LfwaQNbwbNElrMHCxH85bIBgNITEcDeG625vga2A3URNBnKATqHfhJ7CMOB03UNejJqIl3kFZmM2aZDAcB2DdajOLbdEzBZoFyGkP05VskDt2N2VcU8MTWbuIF2ytpv+2mUMdzlzxw196HOFfhNGx8MuQTvBdgUyUXNREuO+hOEGmmGir4Q/e7iTIGhv+RmN8TH022gXILoIG2442OEc9hUiezjHFJNjaFd8ydkEgTdHbDy0N5WITZxwGpUaYrDiB8tAElQPPUW/Bdn6dUFyk0LY43n8PBWI1bPwZtTEmJ/6rU+cvj74jmddXF1Hm9ODS6c2eBBhe6IBQLUQ65gcgp7krvC6Cs4wIwhuSqPsZYvhOgZrUeuEn7HRHyUdnKghZONMEPT+oNwqd84aXrayYHkrPkSD4QYG65AtEwEUy5D+FEXZoltGvwW9DeoBG7NfnW1cEc4EN1vMtM7rdsUdgu1YZ8vvNnK/RbsEOUa/Beo9350xm1jbybvpM8wmqAUMN9B5cyc+LkBwykGzANk4w8twzJ696DILsyNq2gwoHRbXMVj1OaMYbNub5QCtcmq1EYBxhtGsYIETc9defbHcN6KxFaCOEMcI3gpRFvW9B8/0GB+GGqJZjMI6kc7M0Wet1X4Cse2X8cK4pK+NRejoTiT2ShgIhcEKumVIxRpFIAXZARrjg5At1ACqdbAh4PxU7l0yzHb0XlChNsfTH/v1j15+7tr1lz2Ezu6ek6VTHjwoaPSywXAXJocxPQ7o6MaZ8Wh8PnP6u8mw4XReR9wpERQoim8/GYgGzSJEC32c5TQNT1HKnaI44EFWdpa2q07rzBfAfTnOgwEYj09Okm7CTOFWA1DjnqKmOw6Lq70ENcRwA23wFLFqC7iGE/wGY+US8FlJGrrobmO2d91UMVtwoWaiE18O0DXoN31E6Qk1BkrqUKKmUBiuYbgB2THuiAm7BEAKZIAWrYJqHXrZgYt8q4suvA4Z9/DirWMYNAYRx9qlzwr7uk20IaQHFPdZo9+EmaDx0jx5ARiihNbpTag21Te4f9UihD81nbzPzR58KzsMdyVZFIX3rdl8nUZAGJgJ9BhCoFlwN1vrJzbTGhyafTZQ6gtf2v6J3/jor//Ak+ZZFB9qdIqDB8gkol9hsAvNEOOD0FOvilaDR4Mel05mgnMXRBd/1XseJl5Y95POhaU6SAW9jam3A0T5KMHAa3CBu/WSjWYI7pI1AcYf5C4AQHboFPQY0y1Q728rno6ea/h1S7+tQTZOcEdzJ+s675mx0kFK12miQbsI1WC6BdMDM3TwOmZ72DgBZoePTGO16NUsQrboNx3rnTDbd3usgOcOOD9VBbN9UXbsLDbb4ZZDtAp6C3rshjvvK7A60AzuGhBolzHcQDOqawzCP+4ajjhATtQy/NCAmWJyCO0yVDbHRdIxNmbM9DAT73HyMJkBbYiSMt5nJRsIBdm6tbdkNsG9nHYCugSmBkZjfAT9FtoliLZoo2DlwCGcUn/+d7e9/V03vfb5l2JODyU6tcFDCqEEf9ENoNAuoxlifBiTIzC9T73AdJxc/fQytBliuAvtslufjHO49GUzPU6wF925BSSaEWSL6Rb6bRiTCjHOHdFvozoM1tGt+SPhfPkJ00yFDNggvekgoQaQDSZb0Nuu+QlRKhf8lkah0K1gtMvlzU4aXnL3AshydCq/hByia9Bvu/XkDLoC95mYvQvtgufC82XxCsBhtr3LSCd5LXD2DDgTz5WvLTHsDNxBUBazl/zQhx4uucPFBdhk7MHitMNtJm5JxtUzvJy2DLbgnHAfYrCLpfEohmymskLxNSjWDEBTTA5hsAap0tKY5wo+n5UeQ7bsnjTAxBjXakoPvgWgt9EfR7fKEqUYNoI+DzGFawJ6CnMQzYKLPsiVM+a5goAU/ZR+4X/d+MzH7b9g/wrm9JChUxs8hECjvOtf+NloANlitBvtCqZHMTkGM/ZvPCISBClGgBpgtIZujc0fZtfHK2DSk9jUFVGAQvsAEoV2AbKFHkNvgXrP3c8xOz8NQbYYrmK4DlkV3IFv6X0ScV06SbWt0C2gb6G3vUacAqcrzLjgtC4YW7LgHjs7xTyvKiasAaHQjiAbTO16gElZ+wrASxkC2mBsBczOmp+1Oly04KR8sg2FZuhZb0PrBOxMyh3e/SJbDIKxhYJvBp9wur3w8pG8KeDMvgkm1nNY9BvxCnh/newwWGPcy84vBKvDbJFwt2sGHD+EBBrQFOPDGK4wQ7ZqEdrDOXRULOKHUO2w599OpRaycV6myWEMltxZtgIgCQMfRSZdBV2iRpZoa3oMZoJmiSEZH18Gh1Le+Pkj7/jrz33/S6+sVX5ODw6d2uDRKHn2nqFbZhSCTUsCgGbgIvTt4Wj9FvTEL056Uh26VQzXoDp2TidmCFDUrBD/0gt2NEJ4++1pPKpBP0a/zU7u9Ib/cAXDNTQjJrir3KsCxQsyCjONYiy/aiAWoFrobfTb3qUTUBMQQLOA4Tq6ZYiGlVltO7M5ss928hOzwKT1Yg1gttFvJcKUO83UAAtrGKxBVEVniR/Ch4cFq8uKOemzOgqP2R30NvQ2aJpUNbwbdnFlsILhBounyjSG0vLgFqdwnqvwq5BQHToJM4Hehp74lQlfAoU6GIgGw3UMN2ZrDJmawuoQA//CcgcK8LDnoSmYKcZHMViJ1eAkfFt0Dz317kqKC+MZeJDv/2bgh0DCTDDdRrfij7excBbwINhG0sci2qSNQL8No9Exg8/FGacb9YUgwjveffO3PvPi3atDzOmhQac2eEiB8/eO2Gqqf+9d+L9xr2y3hG4JZNyOWXsIgUURtQA1hFKpuLSRMwU/N+8yOW5xwqdnj3OTzX+nj7fQE5iJW05vF9CtoR1BqkLlF1wo1VgHMQpnf4S14kzMiQbNCLJDP4YeO/QSAs0Q3Sq6FajGc5eRO1hJjntZIXublcUiecDlC1FQQ8iWAaevsxqgW8VgFU1X555TaX5lHxJZA6kgRlAN9BjTbZgpszwAqdCtYbiOdsS48/6v8kXeAyJoDP5ZyxoDyAZqgqnXV5zxAYA89zW0C8w7V2J2VpNUK8+7YobxQQQhocfoN6F2zJkhADOFbDxmZEzh93MAsCc7dU7ECwFDmBxBtxy1GTC3niudkurZkAdImDHGhMEK68ysE9z9H/nswffdeMdzrjt7p1bM6QGkUxs8AFx13upwILenduaQt5Stfi39fPRzTHY+tZzf+gTFdBwRJ/MsCRbM+ZwKjwqCMhgURgnZQkqY3slumzYuPpgix6xqpLXxj1BeKc7dKsVSuZRE7QIGqxCdTy6C5N+Z3EuxtdPdvmISzRCiAU0dfrRLaJdTzE5FZx04a7+JAJycI6LerYYQHLOBdhHdKpqFE3AHZz0LOO2qhkg6RPgM57JFp9BPYcYwU3dusdMYFv2+B1QwO2E9q+Fw4vgEh3MIp0VNjmNgj42yxZQvMEA9Mzj8LndXeEgDDKgBBis+00EDoWEU9BR64hfMuFsP0XklTFzYh4aU0AoCMGNMjmKwNLNiQgBia2v65x/8whw8Hjp0yoPHo89e3r/effb2MUtWgRi9OOt4VJAPhfIRWVwIzpKHUZQUnmgEL4rwZsFsCSvsec4hmDhND8XvDfJKlJhV+JGiKOHizOuh7oN0PiX4vKe8CWWThfeEVREzVEsE64S5VviuNAiIBhIQEt0KRJvE9VcxWyTlzej5cLn6k1fAA2arAQZrgM1FFnjUYGNHhuk9glXPtz2uXTcQAqqF7tEtol1mbQfjXgYX8EqgwGzEB5NXhNVb+L51mwGPo1tmj1NeWtjpEhbkrN1gbQtrxHRLGKw4L5NdNLKJUshgegx6G2oA2brRt8YQfycFa3XAeCnRb0GKJFFKOcUE/vbGOw4eG68vzWN2HxJ0Cqdkt3TmruFjL1j1x2yw/VPBhWUdteTTo9rPLpKVZ7ZISRSipKL/8t+o8CTAS22knwWESuMUZ3N3K9Kcew3ZytqCPZ59Vq0L6BIolnlqdcgrUHIXaQVqtREemWRXy8SFHDU5/EWqwgN/AHmZ/EPEbOExmz1bchf1piTV4dKQtzS5KABAKqiRs3RFVttCXwmQmvRq8Tmpm29jrgz54oxdhrEqlO/JMLJhpyQPCXN3SQiBZoSFvRjtcdmr3MkcDaSCaNyqlZlgcgTbBzHdZA6rFOQE7xPpUkIIgWkINKjpKYIg5KdvO3rzF4/lP83pQaJTHjzaRj7r2tOUgs8lZ988zaeFD/wIfz6yXqSqUC4n/JUT6p6B4tpA/F5IHwseVdxiXzNnSI3TjlQFRQEIt8QiZFp+CkUzLwYtOK1L3vCMLRMfboklCP1aHWMT+MWqILc9XLRCsHpyzJZt3P2TNTDh4K9T5be8qoLfOgM1IdyuiCpyZBxEyb1Wvntnq2AZbhD+PZcgQG85VEiKZcKab1kNSzWygfLhi+FADnc+h2QHpyt36hRpTI5i+yD0mAWy+xpX4E24DUOTozO2uDucPnR08qlbDuc/zelBolMePADccPWei/ct+EzR7OymABXIZothU3G2bhlCTfLJfPJgAs8lfcpFUgb1EpVqCPZIUgCxp/wVKlpZr6RV/ZSTy6UMjdO5qHPCvdZjCX5QomBGkhANBHwGe+SlWZC4u/1MlU8VBdwlHUANVnkNhOvSu819R7Jxd/nLIMI/gNcYqn7/kpMb8R3Y87bble2JCzWMG03S9ybs9jc+sEpIqBYETI+7cADpcSKiiGQZ8qW7xyZKmRxlMWmsMtFOCufBSOgJ+i1X8xxFBCD63txyx9zyeKjQwwE8ztqz8IIDp8ftyoYdhGBzJWWWB/mwzpwYSISXlqw6NuOJ/Fn+WPiYTW/y6Qt3bJWLKK0b8TXfN6/ejtJHZKp3FQlCdoqcSYHE/HN4ZoYCHg2IGbr/rFrP9BnOLqSUPkIy8c2bnz3uNYakgBmGRSyE38Z/9CxCzkohZvD1GgMvbGfTB0g22YBmmpv2gzHoJxVwiq4qP0FiivXWHX7VH4fZclkgZejM8Cfc4YAiYIkCJPpNTA7BTGMdYg1rkWZ6M7IOI8ig7ra7NiudMKcHgx4O4AHgFTecc9H+Efpw7l52pDnlbqvKHKsJ6apsjF8ShGFShkmdihbp7YZkjbdQKpEXP+NncjG7VOO1A/e8tBl8a3dVv5+AdYhnFVlUdMo9tGInW6rsq5PRvr3NlAjhrMGce7VMk18glBVNbwg/8RWM2cYur05yV8kiVJ5hdh7qGooK0nmSZoUhZojDXY/bO4RPFSNAhMlRj38cP4IBLZ0DSnBbxG9012Om5YhKxewqlOlhxjXLb6YaNacHix4m4HHpWcvf+ezzlEh9VkbH48qzI82jIlnOVDaBK5O9FGHstZ4pyDiQUFTDuW8qKSRlItIbKrOoVitKb+ZSrHJYU8q91rgcF/nPM6ElY30SdkZZfP5D9eeybsXzLkltWaaoF1C/sxyCE0o0ctxz3CL+e/KvqZaaVXHn7JM1EoCZugy+AMtkxUomHpXbQbYRMKab0BNvZwhI4dPRiwQYwgnBwp+aDpPjR6yQ/xCWAPttlj+GJfEFAEz7Ar/n9CDRwwQ8AHzLV577VY/Zg+nUhVRFJxUDD6OhTXwXKaRhQComKbmQS89sZoebC1lGNEOBFYx7RilrcO7sBv4bBdCiSsXqzLMMV0UVctScLaaJt51fpxws4ZPy5szS0sBEdJ17cTF33KfdngxBFb0o4Z7fO2skWPMrYMlvDu7QUtxT9n9seFRsqiNbrdVs2CBfE3vAV/J+mmhnxF8BodAu+sCqBlKBNCbHcsejW7eAtz8Ew4+QKEUBwOQIzKTefF6ahTceDxZqC7TN/GCohwo9fMBjY7n74W941Nl7h9A9O+DTJMseziixVMrZQi4nn01tlnoJYlA8xQvfQaaX7JCy5r+aym3R15FKEy7UMisEVSnKmFK1KSatWFWE1VoXuYv02bITZsnqGexMXsW0vUVN6k0+Ife0hrGHy1qJqLZnz8ZkwKGcdJ2MfA8l3bNzLxXV5cDJV30Esb4PZ4f49yekqwlHHDZDLOxGt4imgxqiGaFdQrcC0j57ccCGEPdcLuR4R5b1YpHG+EjcO1J5VYQDMD1lrQv1LPp1Tg8qPXzAA8ATH73737z8spVFCTOF7qG13+hE+ZrHTlKsKsdLsV48klseYSZnsib8iuTmBCGq1zPpzApJQNFfodS8oLQJFatrFlNT485cPTMbnlbG/ioyUynpiJRvxr3o+fg01e4pR6rKNFwR8XOOtTXuJrBGfg/v6krsafhsisK5iJzV/8R+n9XYoiHxd/Lg4ZfHIwALl195uIHFvWgXIRvIBqqBbCFbd+LZ9BjGhzA+7I5vcQvhaQhGcg60Rxe7V3F6fIZFLqKFqqex1a6T3Bu+a2W+Q/ChQqf8DvOMXn7DuV86sv2v/+tHx7oHFLSJR0IFZcfl/IGbVIYgjVeduHC0kypb3S2EBdXSjKOYHsk8hxMKxDeaIJ3/GVVFHpcRmaxJKxxlt3f9x9YRazgxEZDVJxNPIY9Fre317mJFEWody1nXnso6hIIETLnMwuyoMJB/GcrApnJVY3bPU6YxIIHJRGSDPcJyIYdsOgnfHdouUr7FO0bFxVhAreZB7RACokHbYrAbzSgytYlGBADpfL9267jeRr8F1brU0RSq5yvJ8wtI6WeixHQzbioEezN5Mw1LlBL3ZpFs5Dl7lyqtm9ODQQ838FBSvObZFx3f6n/mdz95dGsKqUAhWToAuGxIfBbZoMxkN1N1BpaS1EvPeBQge7YUYZnl4S4iFWSz8GMGd4NUXjBefFrmMoWJj4hepQjjVSqkZ+kK26HtyZ0E2Mz54iQwe0fuScm1UUtu8Kjp8KPkWPWlzOBOYG2cwT2pm69PDl2zRpw/fjLcs/bOuMH1gD92Nx4LaDdwAKrz2UdCt/jXWyoIEU+9JQM9gZ6gGaJZyHuPJ9py/Syc82p6DO3qjOAJ67nSIAORghxhYdCcsWdxx+6a0wNHDyu3laXFYfOvvuHyn3zVVXtWWvRTUA9owP6r3VocD+dIvpYigF/kIIFiDiP+S1QToJQ6YUxNCnCm2Ol64pUqfDu5EPF3RlW9yvpkvjLuptZ1dZ8V+QK4+ONlwjcktMWk3FkPuN9rdYvLXWVlWIEz+9wU3qTshlmYnQ26cZVJKFS+9ATS7L+CO8q3LlMX0q+hq8OzJiBHCKxqIRWMxuSwk/uS7+QQbleg8HsA7WZy1QAC002MD8JMEs9VJLa7xfqv9BR6u+gWf7xmeBMS5DAQOL6t//BvvzDV84CrhwQ9DMEDQKPEq5910X/9vusee9Gq0D36HsbChnaL51yyUxnCW8ospFPduIOMguM4PmLyaYxClHNGFdYZR7CiAguk3NkNsUD/U9ZYpJ8NLxk1jhn3TPM1yT1V7u7XMvNYVUqWvZ0yyoGZidcSsznrcsQrAhpufCslBBZFh+QDXW14wOwdSih7G8mHaOlm4x4ggbWiYhiFShq/jZwAuNyRNlxqegxmDCldJG6EEMECcFlCT5uYxPSYHILeQk4sjCqsqAsBvRVnUN75/EUyfrzsD/JX/vgzf/qBLxRc5vQg0MMTPABIKZ79+DN+501Pef0LLtq1LNFPoO0qeu9jebk0NEyJTpEg+WDcFDVc70Z6v73ARRX5ZA9sVvBIYirEer0aYSKFMql4JLBGImq59AmRmiDXkLqUqdWE/Ew2GWqagl3xNa+J7/McOFMhwi/SLMwugYrL0+xzGJSstoEvJ/4TsxRzjaEKWqi13b9FScMzjiV3SjSGBLCznRCsvaEEbvnFiyxmXQ2cq0oIkPHxuD7rc7KZw4MBBxUpXYb26RFM7Q5wtm8jI5uZxp6aDl5J/gFsJZ9l2Wrau45M3/K7n7jryLg2WHN6QOlhCx6Wzt279NPf8bjfedNTX3D9Gcsj4Vy0ZgpkKXht2l0DTalEC4KJGyhB6JgotjKBNUuABl9BFByeNcFjTCiThYc5wCCPI6nIznhxqcSrWtG4/dmiORgUyEG+ZwwPkOXcueLvf8r8WnELJxL8iIxSJZ3XwXjZPQuzM7MjRwtTgWdCwcgUnw2rKmqYzXsecbwyrOJPkTf4KvpK1vN89EN3FQ49osSJR+y2wDoubwhndtibZeMOshT+b3rMB+My/EiOfvGbBMPGDmH9WgLTo+i3Y8US4vBD0GP2trB3GKl1ZfyeD6kgWyj5fz96+2/91U0nLQPmdH/Rw23BvKSukU+96vTHX7L7fZ+88/fe/bk/++A/f+6O6cQeh2kMJAACFJMmdv289v7bl9gJCCSvOxdYXCJkyGG87m8MlACMj3m1RyNIQIDCWi4lNSFfh1xZNjtxz0WYh5B4cFYIKBDuuoD7HBseWlkIzZncwewt5jUizzSc2QUBzXZfC84STr4T+5D4lJi43AGzHWqGhpNrte1zARf+lLHOuAsULr4UGyqYTd7OyCDHgASM8Js/RBqvgbQc3lCTsy6RCSnCBTsp2h8mArBq0a1CDVwvSQPqoafot9AqtvvP/p+emm6rTRIgSAkQDEEYTI5ArECFo4XT10j4QCw9hSpQM7bXRnUbfwQkIFt7sFU/pf/+559+8VPOm4ftPrj08AcPSwvD5ulX73vKlaff9uXjf/Z3X/zBX/v0HUd6mBCE7oU4dHp+lH/eCfGwUsedy1XkyGRKBiQGZKDtxltm/JF2px+SiFzJ18BlJy0kV84LKXLwrxQNneTgLPusT9wdZFmUopaFiMCQ1yEVlygcKVYKCA2jIaRvtIUuewK5TJAyIe5bA+sBhiI7Y3YYBW3gcmv5brfBeDY5P1UDoLitWeN+Ao0hDI32QeGeuxWUQrq9LxXURLwtG+6Zbx2YecdAK9RfeGVFCLRLGK5CNiAwq7SFGsBMMD4I2UENoBr/FHnYQDQ43EUdLRWaYnIEg7V02Twj4Q6EFso3BP4lD+8BM4+EhBq6+iv1kc8efO/Hb3/ugbNnlz+n+50e5m6rjJQUZ+5Z+sYbzj9w6bpz/SfacRCL9rN2IYMh1Wjltllz2DtSDPN+RB2w9y7sUhyw06uSfzl3/oFcK2IiYZ9eggsRMLeGLdOUrTCxvSZUg/3ZcLX4CHOp2RxiGZYYk3L3XriQ95t758ijWnAbhr98jCiptuVex2wuN8mFS8R0yxTLJL96bMI6EBh3ypme0NoLDeTcXdYNk4yjc1r6NRj+Y1YU794duIdfw0Ak4GGjpAYY7cXCaZBDFzcVjuWwhztZlUJvYXzQncwBsPNvEJ1X8cASv4ouFIx2mwFdZRi5U3IBkHMgI3hNQyXhHVZeXWsWIFsIZeu/udm/892fMyYteU4PLD2ywMPSoJUvPLCvaYSb23w1u+IWMMXUzYS4l93Ef0Iiv+z0CPGRuneyOFnkMDOYzuJuIvedHBfhniAl+9hwpE8l8jSkstdFBWZJT4+aSUp81jlBgEaZ6KEutsjHxQUQjT+BoSNDzTpmZ+KbrTbxX12ZvskRuT1sO44FbFS4Ext31j8xz/msMAeGnUkdsncjfeuqlm7S8wG/2ZqzbCAadEvoVoGGHevko2+ldBACBaEgJfQU24cwPuyOUOPuxexkJ372VL/pICeh8KbB7ecIY5S8h0g2oAxWMViBGkANoEboljBY/ouPHv7td3/htru2TbRx5/SA0iPFbZXR06/efcm+hY/fchxKgAQMfDY3yqeHI0oXH8Irnum5foqaYGcwsRXnM8H0UBJkaqw5dz7ZKP834Y7IPa8PRw4D9M5rYSVnVB7Dfr3C857wZRXIk97XuEfpaRNT9pAtSMAYKL/UxNdRc44ld8qbnyFHhprGApJxollI13BpNScuEDOms7inQ1+Oe8JdR42hMa7hzmcYVhRCsdVdmeGziV9zjWFG22OoqwHgdmYYg34L3QRqxBCO2EtOYT8lyGbFNei3YcZoliA79p7ww+pDPK6EIBigP462gQB7RXnLKE2UQnElRkgHHs0IwzU0Q4A7Dw3a5uaD5pvf+uELT1/4mmtPe8F1+x570dqwnedMfEBJ0CMVt3/iNz/5w7/2SbKbZmPEYXrqeE58AhTuES7UDEML8nLTqp9aA0C3gnboIyB57DyKPVY1eUqZqKJEChAXYQZae0NHw2jIFoNVfxwsj8UEw61SmKagZbm7z1XUtFfCwVwGpofRaJfQLcYjH4TItdedMJtVgPi2BsY9+sco6vIw0D0ADFbRDFjDyyNpZw16yZ0L7rLtftBtz2sN2WK46s9q5cO9wzkfvPMLyCx7PtocGmSgA2r2bsjUAO0IpoeZol3EwulOssdiU/M3jB1MBEI1QrsAIL7e3K7VfiuungIa7TJU5ytjgB7G2r4aegqh0I2g2RhZkFMDwKBdwWDVL4ogtjTGPboeXl9Sz3zsaW94/oWPvXC9UTsstMzpvqRHLnj885e3Xvhv3vvBfzqMtvWSS7pAowAhAsl8DtMMXJliExjZHOYzUIO0jzskNAtoFv3Jax4/xOzo+KwCsSZM8axyDzPT4RZBCLTLaIY+6xcDTiDlXqxfUyq/MtTMZDeXOKHtaoBu2R1OV8Hsquz21Tghd45bFcwmtEtoF1yeV4gUvcCsnxk20CyNgRhsR5Hq/U7UQ2vIBoNVKL8XD9LHv4Kxrgx5/DfHbJP2PPdoMdS0GoNl0S1DSrdSDWDpTKfUuyYgWaZKTLeAHz2gIQdol1ykCQcP2PUnDWjoHjSFaDBYARG0dqhm60M9dA+p0Azd7HD1JEgFNQQMhnvQLDibIxlr2wPs8B6jofXeje6Vzzjn9c+9cN/GsNaTc7qP6ZELHgB+7V03v+ZtHzo+JkgZTyCwFnspSYnSD0EbQpzb2cqHi4n0ywZaR8VqsAwiJ784a843hriwOiTcC4U08fVb7t5tEpYfVYd2CRAuVVEQ4gE44X1ZGeukAkiEV2IKhIzfHjWdUkkAIBt0yxANlHUyyKTVPBXrLNYJZiPK7h0wW/uVFTXwyWIZZmNH2K5oDKkijBNhdtip0C1DDV23W+7Sv2w7aAxZ20uNIcYLcAkecMuwti85Ca57mAmGuzHaEzvT4kfcEONXI3Js6EE95ACDldzyiOBhHESRxmDVhcVby0MbUA/S0L1bug9Vsm1sBlAD6AnUAAunxzyeSZw0eW8wOf0AhF5L6CdetvFjL7/8KVfs2blH53Tv6RENHlsT/fr/7+9/+U9uhrRrg1z9rLpQ+GeKVxKFNIhUDV0gh5AYrKBbgVQwU0y3QHb3k5zNN6MZsJFwt94qiguSdmeJkOiWHPd+C7p3K6LRa8TSR+ZsiVWgaP5JomYzwnAVENBjQCZiFAVqZnypaPhMzKaod4eFaMt9sOIke97nM3Ar8J2lMeSrPhlmh5gIQA3QLYH83mzh7Q+cCDXDEJedTyxOqex5jluyw2AVUnm7pIeeQDRYOhNS+ZI9fjjIp3gx9idB94CG6dGM0C0CiFgVcUs78DBTNItQg/RlCOChoNrCPFpyq/Smx+JedCvRMMqnWGkbafTTM/cM//0rr/iGp54j5wByf9IjdMHc0qhTz378mb/2rlsm0x5EIHvqMryMyBauORXaaKIPer07mVGEZgHDdTQj5xWREq3AdMtZ64KveWAGflBek8rCadB8w2cNMlADDNfRLriS20VgE3oKQy6dKuBXj1GcUxt6IK1Axf/u5zP5r1Z6WqdNt+y2xQlgOoaBZ63Zue4ld27rsK91zKZEd3abWiz3JQgF0qBNmB6UAidhx7ZnBl9mbAV2QXaztguFbhmDZQgFvY1+AmEhxD4lQCz7rLX/COlAU6X/Twq3CEKiW0S34jKI2Eekca6h6RHIAVQHqbz1aTfx8f0clp8fOLtVUEpMNyH99ouSnMtXQE8gOz80xD4gHS/LpIVsAOP4To6gXXFbYSx3YzvHBB7eSrZ7FRUU/vnO8Rt+4e/vOLj9Xc+9eNA+EgNKHxh6RIMHgM9/aTyhAbAJ9CAFTWwxk8sLRlwVjWu2qTXNQ1G1gWgwXMdgJU12TZADdArTTRc+61xYxLjXaCfXvzfkg+zWGpAYrmOw5ri7Cgu0ixBb6MfQ5FgnfGfHC+yMmjH0WTvUbJcxXIcaxHLUAiDRbzvfhZOknGm1B6qwUWB2CIm2ymzCnSAk2kX0Ww44RRklUTU3TwKzk7YbrzGMMFj3K8yEZgEA+knKmqkLAcNy7nTS3Nk6RKIxMMFNPpyJNPpj6AVki2bot4VnRjB5H2b4bJ2NBpPjGDRFxD/TvQScnSHYwAE++kt4iCX3tR15lBIgiX4Letvle7c5EYSH28hCQEoY7QBPSpD68tH+Tb/60ZWF5pVffeHc/Lif6JEOHjffsQU0aBcxOQr0EBLkD66xVHUjgAEAENXe6EbwcxgCg1UMN9AMPBj5M73tRBISrYLehB6DdHJ6VZV7UNmcckqJUAhyM3iE2yWMdrnjfXI3iECzCNGg30xYO98Rb2xRh7L5FOwtr/KTgeow3IV2iWW28F2nFiAU+k0YzTC7ZFl0PtEMzGao6QyODqNdboHHdZpVYFs0CmIT/dgNR2x4YdtlFTCm0vPByODchcJwHd0qO30LAKFZhFDot91mexGWzYPMna21RMhEfOsqFo8GBIYb6NYgm7yvBCCMP9zJZ1iwhzs1Q7QLEIoxZ2tCxD9L51yaHkOzzGCJUmNduE0zIfrWvZl+lINbT0h0yw5cYSBbmCn0BNNNb6yLxAyyk8uycPaQcdWTElDHxtMf/JWP7FoZvOCJZ9UHdE73jh7R4KEN3XVsClh/tMLkMEzvXOHkHeJ1SZK5EULgIJvMIKiRF53CTVrA51ayz/lF6WYRsnWnQ5PxR7DN8lwhlVxIghetyk8GcoDhrugpAlw1nAZpvSXGLeH2W9ATkPENv1vLHl5yBXOHNKAw3MBwDZKfGWdrK7zzZIC2cbvJCNAscDZBzdBqFHITHjY4Zntja7gB1bHeJoiA2QLNImSDfsuHElTjzdIKEGMauSPZ7GklY7eC0S5n7vB+IwIJqAWH2Ua7URAhTKP2wkWFPQOt8OJx7oR2EcMNJ4hj73HIt45TNpgSMAbTLegxmkXIYc34424iuGDrfgzRQXX+FhF9ULHyGhD+/eRvgjdBmiEGq2iGsbFEzhgiwviQS5QS/avwcySrVVi+EpDqzsOTH/zlD12wb+mK89YrvTqne0ePaPAA/DyCgBpgsIHJIeixV0XTrHD5Y4iqll3NQ5jABNlhsI5u1a9G8nL8nBRhjkkQnCTVW+6og5ngwbgnFWBud3sM9WAN0k9p7glxSQDt0qgEGYgWrYLcRr8J8ulUE92TKqzBGh42q1tZ0C5juMtrkV5UBckYjjE3EkKgXYJqoyQ9AWYz7iVmW1HeLGG4gTYcOSddq4NC7NALkEO0jfONwAMnhSbPch9R0vlJ5hWCGjKNAa69ATXDg7JDq6C3oMfe6c9G3K188F7IAJscZjvuTGMYWAepjM8FwEhyGAvfN8ItJDgsMZgcRjOGWoyLcDH6zqaxCm+UBHr0xyGb6JiyXINtYesG6VgTc1IJBUHoltlM8Zkrg28NBOrRTzHdhGrRjKAaEDxU+CpxyHeOLAMlP/n5I//u7R/9pTc+cXH4iJd19zU9ojuUgKlm++xUh+FuTA9jctTFJoUgnFyM+9iPRJsj99RgDYMNr4tVVw7sRcXww2d4bRagWkw3oSfeo1I8OmvJwQqgdgXDDX8MdagAMYEYhLj9UTq9W40gGi/OeqCmg7u2lxUoRWfwg0vWZBFrInxmXxIeODfRj4st31nXwXd1FbMHGAVjixNvdZC/FjgbF7yrN2PAT9J1nDXcUi0ZGERLy8pE2To/lcymFWNtPxqfuTlanFO20kDpoj2l/87WGAbrGK4zjQG+vb4OFiqcfWmcliDsseTK2x8AEfotmB5t2ZO2MO5EkjBTmAlUG5Ejzgt/ISSTj+ChIBWaEYZ7WEt9CcIeQ+tPvbXBBf02+m20QzQjlwE+eaPYqemuyRJKvePdn3/Gtfu/5RkXVhoyp3tBj2jwEECrWGSLm4G70CxgfBD9FgCnjbpVivAoFZPZQAh0yxiso11MDOoKhYJCLm7pKgC41EP9GNMtnzkuFSWJThe0ORsIu5FO+Mzc4fPK/y+8/QGCbCAXIS16Tb25kNWdfB0YbhkvOgfMT1XX3xkYS6tdAjAQyknS6Rb0pMKagskSKsDMHdFguJYaW2WfBz3aeCHuHeXWJaLHmG6B+iTsLaA1PF6GTgiwAYluDcMNvywvZrK2YtE23AAwkB06Bb3tWMNvuMlLYGhd0RisqTdij3ClwQ+EA86Qh9/fafV0koC3PwzBjDHWGKyyrTC2IswSDS4sve3BgxzbBPKCSzMAHqBaCAk9hpmiGfrxDa3zfaUEjE1fb6AAozE5jn6MdhEig8lyYUZAyvG0f9vvfeKGq/edddr8/PP7kh7R4AEgkYDWshYCzQLUENNjmByB3vaLEGCz2qu9wi7eCrR2eWOZRTSlPtkIGJkQ9+u0iQ9XoBlANOi3occwk+hncNx9zS1sqAEWNtDZXA4i5R5IFHWAU+4EEu6qg1Dox079jGGRNRXYGEir81rRyZuc1UEwoVIqjAQIJ0n7CXqLXvzRqgJuICTaFQx3oRkW3Hm388+Zd8h2hUIzgmww8a4kwW7mOjXgDB07KM0ihhtsWR5Fz2fV4BGxtuEKauSA0y6kB33FPVoCdhj6IUa7vMZAaZ9X1YVCWXFvQiZ5JUjBTDE+gsFy2qCyGwX0BKZnak2oql/kcJs//L4Te/AtGZge00NoT2eA7W0UV0+/NhMuQMD0GB9Gs+DxMjM4eMIbAak+9OmD//MvP/t9L7miGJc53XN6RIOHkmLv2sCHwwclWri8dYNVdCvotzA95vxINqkDmCoKgWaIwToGy+kCQ2l5cE0Q/jPiS89lqHMySBc9acYORWKkjVd+VYfhGoarkIM4W5I6ZFRCl0XB1IMsJZoBZAMzdmvpHHiMVxIh0S1jtIFmkbETKXfynitinQAnQ4XVR9n9QqLpICX0BHrbLePXMVuiXWDxVGJGz8/oAWdNCnY4lYFs0C1Cd959FxxZXHwjmnqjDbQ+AnsmdAm2Q4W9Bg66wsFKCu0CRAu95V82fr+XyOQVeTXAyHrJgqkn04Zn6kIYcX8zsTewAh4EqWDGmAgMFosCPQv7lE1mJdq45SX2mCUf1+CYdxDK6Wp2cjUjgPxSHN/MAcAHpEX8aGB69EdBPZpF9uqxhSLhV86EIMLv/PXnvvWZF8/Pj7oP6RENHgDO2TOEIgYe8Ba9AOyBOQtoF9zc0GNnZYelv2YB7Qqajq2uMxGW4QVVL2V6YoofACAhO3QN+gH6bZgpqAcBqkW7jMEamkFxxLTnnsITINgKBFNInV7PuQf1cICugZ5gug0z9gvjACTaJQzW0S16cyeV3QnTHRpeAifcUqocQDZQE0y3oxy34lsIF8k2WIJo6j2fcA/EtebAml+0sZ4NxAJU55zsNPX9E0Kc/bq0bFO0ztjNHmVrfHDfkWWtGohFqA7asu6jCA7+OtliuILhOtugt7PGwNtu+ydoDOTfClPDDwMh0G9CKchhuoDP2ygAgp6iaR2jfG2cWFSF1Q/8yU5CwkwxOeo2c1j8kAYk/IK5HyxePSlBCkToj4M0umUPYwW2uQGVH/nMwfd87IvPe+I5s/tnTnePHung8eizl5eG6ti2nTneEWHDWOMBpf51b7za4oJ8poBiq6M15Mg+UPwv0ePc3BeJyIshLnbC2LOmW5jehaJKniiJVaBknRPXiz3r9EIyFW1okOlAU5gpRIvBKppFqJZxx07cE+BMayL4r75bghND2kiwDmYCMwVpqAG6VRejlWC2jAXw8iLDTILDSfDY7bzt0pkCsoWeOPQioBmgW0G7gmaQ+EaqGkMCYPxSOH0WEZb4oKNBswDZoR9Db4NYZrDBMrp1dAOW0Z2FBeYv146YnagLYNI5fLYxhwaTYxg0yRsbKLwkZurTmqVRJO5XHZGgXfIprfwpADbWTqpYE1e4jAEUIigZNrxKghQEod+CkH4bZkZxamxvT//o/bc898A58z2D9xU90sHj4v1LZ+0e3vj54xDCG/0hxtEeChskeDptTDh3U3jFHyeQnsIrztVJaO8nPp9Tjdh9kC4oS3Z+O6H9SVa4h2JkMpFTlqgI9CDB7Vy1UWHCRtkLdCtup1ssQbJKnpAy+eWXr7kgA6KaKWwOxwGkAgHDdUge8i+SCtd71TNi32s3ecmV+HMUZAepYHpAMMzOuqumMcSGztAYCDl0cQkuFdQAsgFNoadQHQZrkEOoJkcszj17Ae4uZgcrMECj3Qw4OYZ2yd3L159COTbgmC96B7dTSD6mBhisuE1/1i6RBBqCNKZHoQZQHZtNtnDmVIxbTISPHJMQEtNjEMJZM0ljKXa7EO/7xB1fOry9Z22ec/e+oUd64pe964NrzlthW6OJbUCjuFs4pPu2kfUukacPQalSeb3uSNnxKVFLmWcXG4MutoPU3kn7Tm9zZbBfM0EsvAwSynOvncPBZVHx44z68YZklQxw6AtXLWTjWaeYzSWOKCoQfyhrwavIb/DQFT40Q8gubXgq6VA0Ymc8Ffw/UXD33WITCHZLkIOZJ68Uj6YXy8GglHtWrXDRq0d6G2Za3MlXNcgtbIQQ9rB13DZksIbF09GtQLaQCqqBaiAayBZyAOoxPYbxQUyOQk/dK5HZdnE6CF+ydGAzOQYzrU0x/wpJ8bnbj/3TFw4XTZjTPaRHOngoKb76MXuaRjgXLU9pziEk5NuwmUHtNghkmbRF+rEm1pNvpb6fSfliVjtRIt15GNUY/PLRXJTsLM92uMfqocotcoiMTdhCnzKirISMiF1L3Wgiq7fl3hTLwsVd/DulKw4z7K8CrmY0X3U+fX02uCLv8JOCbQ63Veji3yTELMwWWfVrVDUukXZy8VkwFkToN105fCegM6Y9WpDf6h9Cci3yDXdjdBrkAFA+nbCEkFASMpx6KwFCv4Xtgxgf8bMsrTNvvhRxRpDB5FjiK8sC5IQ4fHzysZsOVntnTveAHungAeCpV+6+aN/IpZ6l7IBrDiEplgB+ss3y2FAuqigTJTMnenl3ShIoN64Xn7ntHv6NzpMqt4rMK5irJPtWZO03vsXyKX6sV3IW91kk3AqTmCHfHVsv7O4JBZ9S0UAhneMuGGFZL9nxrLrEZvISrK+o+BXM7gmYPavCOzRqBmaXyoTgA5daXULAsIDD+FYRsz/YTkDj54hqfCplBdG4sxTjn3SZMd0JXT7V8XQL2wehN70exmrItRbBqteP0W/v0AvQ+OytR3a6YU53h+bggbP3LDz38af7RAgaxhSn62Qo4sM3hY+ZKalEHJRmRyYvWBjuDrIbKNRe5HKLEIsidkviYUjrckK+UQmVcbpW9GVbTMGdsu8F950kLBflpauqlPLkXPaV7qwBdo5bRSWFV8NFZnbUjIkMf3ONoeBNvC2Z1OYFK7bElQ59NBj8p7wFVG913QarYaB1EpKBnrAcJyx22VI8Nd2XLr2LdXoUZhtSuPMTpYz2h4UQqfzBmso5tYgwPoLJEZa7hbciW2iUANAfZ+mzfN1CS4luvv3YPVQq5lTQHDwA4GVPPeuc04bQfcwup3Vc5Qu5g+DPFwKK2UjVj/EK1b/EK7Pe6crL7iPBcpZVsVgpMf96Qo2fV2OWryyUnYlsU97BqWqxcY4ifhbh2PPZrInih0qxNZEp+K871FaeYL4k3Hnh1dLCb1zFCNK/NGtCQASHLpGUSulblL91tc+VFu8oXPU47StKoCI3O+DCOiBABpMjDoBDLmERutSjsvTHZDnfrILewvRQ7sJK8JIpMTZRStKQRImbhnMV53SvaQ4eAHDV+auvesbZgmcnhT+hLCyVk5eFpVpdfs8kVXQGcMlafYkpnZzpRXfNiowSvSh/jv+SKYn55K8JrDqVSw6zG578TukfPDAHWT+rQzil4nLnCmdyfBZmJ6x3gK5S+T2RxjC7Ku5i9RXirAPlqFmUVrRgtk7AvUDpYzsgh22+O/+c3NjxxY9w0fDVjoF7Vkj0m9CTuAIvSvtVRPMufrYb3Q/F9F9lfFq4WQB6K6lY6GQCAG3IzG7inO4WzcHD0Su/+rwDj1pD33vTW0cdSmtniGgNbZIJlryIIpnSFZiYLVnj+51JhJq8447pKtV/4RXKzYGUkUeUJCNIxj1rCBOOVBVbOYqyDxmiIOJZKdES7lkhRdcmojarczlSfFirI1VdaKkBZ+BeAcSd0LVyJ9/AWEHBtAnFGBY3px1OxSuXvVrZWyHgj9gigKL/ivyLIYjt5wCaEUTjfUoCpsfkqO8ajxxCRrSwekkwPhCsEwXqMTnitkwCtYGwV+z5tbpQCNxXOTs6ck53l+bg4eiMXaN/9fWP2rXSMIeVSf54OG+y1EHF3KXa9VkXeba7dH2eJyNJqFR+C/mbXwi3mfRZSu/hGJCK72w9hmb52ZgQPzH3AjU49wpwilSGlp1QdEntO3uuxK0q68CdFwhmiFD+S96rtZ/juO/M3Ytm97H8tahg+WuOHGXd4GFgFgUvWR/rH/IZWzLGJSARNknoCpoOauhOO28WoCcs16fPT+OcV8ywEx4JALc6InyirVzL4RW01TM+KxoDNv9BCDHfJHhf0Rw8In31Y0//vq+7uGs0qIfRyQk/8U+zJ0xN8FEqJavCPZsAM6Rbpv9SeudO4puKyszmTtznkJVUlaG8hKx1syqQ/fEmVLnPlm6V7goXRfxM1Zsz7uHCrFZknVDWsOxVSm8MF01ecmS1Qx9yslI1i2xO25W1MuGeUv29RQJdmd0ZG+qN8rifg1wN3RloHUZ7MNqA6qBaqBaygxyiXULTYXIY48Po/aE18RQs5rySaWiANUSkhB5jejzvk6SjBAB3nEF8GcK/GHVqRhz2nO42PdJ3mHNSUrzueRfdfnDr537/nwwRSLH3OPWBUPhqAOVfXx6jUsSr2AdzAWT8EivVVSquN1WdSK4OEuC/hoAZkd5fPB591jWxnokVV6BIv3Iu7IasIZXeyLolE+tVicYEWUXN5oEMhUCvMC25o8IuW3clAklvemYjbmodPqMaFdSsiW9K6+l6nWrNpxlfCxwi36iZRg/lbU/eQ+NqYq/wFQ4QuiUMbK5G/6wIt0l/TPIUkzEg0QzQjpIjisOrK3xiHruKro1bRZ9uQrZAk0BmRjEVNLmDwmzThDhn7/IcOu4rmoNHQkvD5l99w2V3HNz6rf97S08EIV3GdR46qbiG6+eb+7GKGZay634GUpjM4c8kJSdAAnZbSDGLVJBxX3sVP0ruht1fk0FchAlfPgEIh71XsSrz8/B/jWt1EEZ17tUO9G0XFJMjRdw6OaiwXWcK3EoeSYfAueZ9zj6BAqiqa1EFPIBYOCml3YJcfOcFhpby3g7jXkUU/rgXqXbs8m1MKbu6C8t3izHM/gCEdDv/B+vuGLTklSZIDwnGHrMhQBqTY+i30S1ADPIUOjxNi/1q080ZjckxdCtFrVg/kAFpt0LDqiGVvPis1Vqj5nRPaO62ymn3yuDnX/e4737BRQNpYHoXoUva7TAPp4VHQZBOkkQSzZZK8fNsIcIVQ/IytwQPKsvkBZY+K175gBxpsSaLC2BPhfvrujOxTZTha9a6cMZDIWIc90zVLepf93cF1ll2gBIS4FlnuLUzZrN/KRSO9NfqrlLO3dRGjXHnBeaVCSNedilvfpV7qBtzNyUVK9nxHuMvAOKpw8HskA1UAzLoj7k1cCnZfkC2pTxE6Aq7mUNj+zCmR9w550Cx8pHuVZTSnVCQjI79LOLFuN3ER04SrS8PLj93HXO6j2gOHhVaX+p+9BVX/cQrrzxtRWE6AfUgu8mjj3lD44Q3/kjUTFJYKuZhLiVNIW2JaUwmTuxExPhfS/9SnXshUExQPzMRw581KbtUOCaujzJ8vio6gwCy12dwp/Q6ldzLhp+Qe+hJpDXn4jsIUI8KvHVkYodQ9jiKmlR/9WW6xwvFP24tQvFgkNcns6JT7Vj7eOiBtFcznxXvXmIX7Q02HJH8yU4AVOvk++QozNjvBOSbOar44RPt9FuYhGBcAAw5IpCwP73lrTfUOsG/IYbNJsIF+5fP3beMOd1HNAePOi0Om+954aPe/kNPeto1e5TpMZ1C99AapvcmCJuiZBOI1iRsvML0PuMTLEYhgmQaGz5RwaK/7ORnJZP3/+QcZ/wRReMpRgSwGkazgwmRID4MRa3TeS3KCYzi31S0GYIB4562veJ2p8g9aTi3UQK7jEL/g8kRhgSclzFp36ZrQknFeMOpYF1Kf9YE4u9Dyn1mVxjGq0T0sr38KwMSx8FUHswsvORrZqyEd97fLFuI1sVNWWdUwAmBZOsGNyAS/FCgKSaHoK1JMXthwi6ex82AbICyfjBhyriufvIV+zaW54dB3Wc0X/OYSUqKp1+974rz1n/t/3zmP/3vT336C0eJACEhppAdjGGLHxpEMH4d1Qa8lx5wJ+X5Z+73CD9lXpFC96fg8bfTWDvWlumsvQjkC09YJJXzgpXJYvLe7YgWmfFhnAoiTM3pz1X4WdwpStKMuzERq4LCHhtuF1GLlgJFTQJOZ2KxgIpZApT8Dga75BPq79ZdqpRyz8s0vn9q3ONX4yGH2aaGIARkmRqgaHX4N2l7zVGZ2FhpF5kwguS5hDyhAATU0GevEhAC02MwGyzxsy1B+jcnBOmGhP/kDudAj8kRdKtQVbkk4rME9ONkWT7UkFIk9mbH8lL3rOvOmjFSc7onNAePE9Ce1eH3vujRz73urN/968/93rs/99GbDm6Nx2iGLnREihjsZI86L3exJSI68zmEV59JT5P+yie8kylMitkIHyJ/9Ijn53bhpnVwwhdMgpTcTbxSdWUk0GVXj4kdnBUyqBvGmiJ3zObOoYKLA87dGEh+ETAiSi4EnTVrOPkLqVcqNC32c/mVafpJwwkkQQLSy9C4hM54h1bHz5nGUONebXsMq7N2D+OVtDpdSDdgLAy7jeMi35KdVobbSaEPbSC75dUuoFsECKQgNISAnmK6icFqrJnTpUJUVXk4hwSRx4/DGKxAhtSfKblOtplIdILKvF1EECFRCsHQ4y7Z87hL9tTLnNM9ojl4nJiEEBedsfIDX3/lt33Nxe+78Y4/+ttb3/6eLx/a1DDBJA+z2p9CmIsS8vqa/cpXCArh6C4aoOpI8UeMQECCqb3+9FzHvYQu48RKIqTY50SC8Anp4cShmoYxxcFZBpCulZRw9TdkMzz+kOIWbzsT38FPaDSM8mylRy8PlpnojlL0RJhtTIKasTf8aoeFDacfhIYbkICxhlfWKPa/xQx78utOqMl6g+8xcrqzZtAFwMAIQEJ6Nln0FxErj3d+Me47oSZbWzLsWVu4bDFYQbvgB4JABDVEo0FTjI9AdVDh+BP7oPTY6XeYkx8nKaFtfGOPyVEMVjCTBAScD1modB0uTLHw1QBoWvkNT79weaGdXeac7jbNweNu0O7V4XOuO/sZ155557EP/s57boOSXoxKL5oRtb889xTYvLVk4ocEOVIfDjc7eLp4kl6asPLJm/aUVidhR2kduEnBNFNjEu7BWW/tHmNDlr3PygkUr0jy9K6i0AqTruAYyW5wlSklmobhZwZLd5Gk6/PY6z4r+07cS8z2bY8DYb0uBugdZjudmJ046UxPOQOz7ZUZWn8y7h41+T3Gw2fEbOEUeViPpR/xCmYbF7pa6fYMt0zR1cx/Fd10EkKBNLolDNZcVC7IWRUO4yVgYMYw25hKqAHaIYR0oxMPqw/4wfd2SAgJPcF0E031ZFk/uDDQUzQyqbOrp3Btt03T9JTH7H/RV5w7u7Q53ROag8fdpq6Rz3nC6e98/xd78k4ba4O7+RxkdpjJ5eaDVAesIAd3Juj41coXTTAaUjrh6RIB8cLt5AkAAlaBQoxyZ1Qm1DLV2632917jNpABNQVjHfwboRpIeyD4vk3KPWt7qnrDABrUA9mCk99+YTlS6HDBrvPmp8gRcav03XHtlVzEHUkY8q6zQNrJRN7wXF6HtiPp5MxTFxJx2rZH88titoDy2onr+eDCCsAZMrhwROTVMCl3Vr3MAgsQ7lV4SAXRoFvAcI/f4uPLFxQXhIzvfDKYHkO/iXYBip//6mOoAniEz9aanx6HaCCafO5EjBTuZeDmkUM4AL4hhJWl7vUvvHy+VH6f0xw87gndcNWei/ctfOKW41DCOa+kdK8s0hBDIAWSQr8GUvll3PVEnrKVauOdGFBujkt/xjhEsXhLxedUjuTSs8o9yA6brL53Ky6WpwwShDe55J6xrurdGW4F1dtzNwZGQxmQgNZpn3vtNWlp2fa08zNGyOoTnOYes0lDKN9wML6CtQ41zGat5p1fco89D/ZZQ/doLGaDYTYvvMz6NZt7HPeCO0cO41EzplhvIQTMFDAQbXyQlyMISsAIGBtYJWA0xkegttEsuSOtQt3iygeiBiYMDGF6HO0ya6UtHHGKuUQpAeG8Pw3B7wcQffMzL37WE+ZL5fc9zUN17wmduXv0tdfv8xPbi5j8CMLqX5DIXjTkB095gR5jnFKHlRO4vTcFyqNHMkZlBViZ+YO+VlmEleHN1P4Id59yOPqXUhaxDlRpvjGppE5rFW4Oaw8uw/HUbzIoK29i4UkdKO2NjBFycUmsFXGtxcBoduJLahvFZiLljrT5bBDtuGfWHl9oiRqDDezunaysvGmzmoykdRVGqF30JQfU5AfKysZJ7clhdrKT8vsB2X6OcOKTEO6gWT3B5CD0lq8YFz4i2iLwqXb1GGbsG0HxQ9JpzLkaz02AQw5tDlx++r94yZVtMxd09z3NLY97SN/yVef+3ntv/djnjqFtnNLn4o74CYOUK+PRC19TPIFUgnhTw01jHfNd6zFkC6mcIhasH4T0IbMp8RQhEXwld+5XCXqonkIoSDtjpfNfxYCfqv1BeQUywc0rxoVsdODY3uhhdExKYogddEFMpc06IeWeiE5TtJ1Yzwdc8dzJLn1rF94meZ4rFDaHyJtfcRKalLvJuZNfBzYaSvoRoxrrHbyUOw59hTtzWIUTMFQHoUAECEyPQ0/Q2OM6yL3/Bq45tj5uQzggjLfNNKZHQAtoRsUwZVHmAgD6baiWDRYncstaxJoQmgnA0IVnrb35NU84Z+8S5nQ/0ByQ7yGdf/ria559XteQV71TE8RaA4aS6Wr8r6bcoOeV8Vx2m0R6hvhI6ws2nDV5pvwMq6IC4R4uJcFuSLiz1ML8nAYYJ8ThjYBw5AmxRYJM2w0V0JnuzGR30HZDZwaHlfNCaJhpvJ70qonyrtS1efMTe2UWZmvmsPJbqc0Euo+GF/GuLq2BWvca1qjM1szH3X+1cVZkj4Bl/kOjU9bkhiOzsVC8ga75/s78rUt70jCzg5/sRBrTY37ByeN3tg88Oe5J+IQlAtNjmB5zb3IkhiLwKx9m6k5ND/hBzKiisCrDzCP3htLejYW3vO7AEy/be5/M9zmVNLc87jl909PP+YsP3/GOd98KNH7hOgTLohZthVQTTKdB4oPmvhHtJIhFDtVhsIp2BNOj34a2x0TDK2JpLrmcecaXaWqJB4ljlUcO+6tsMFhBM4KegDR00H896+CS5ty5vRUrwJofoC6RXxSzfzvuCt0y1ABmCmMFFwHSs/bhVeFDpQKUViBTxsu2B/gEhEKz4DL6Gbu9w1uc8L77stuDmk/l0HNoZxLf+JC2RGOAg7QQcBVilDn3wEKI4PQvKsC4xxuYzREdVmwnYLsA1YGMC58TGpOjGG5A2OAzCWEg4SxRZw8JCLgYXLcZULiYtOkmINCO8oCrSD5iSk+ghmy84MHVPmGSN8SSpvPPWPnJ73zCfKnjfqU5eNxzWlloX/e8i/78w7cfPd6DlEveHnPyIFWsAlEySXI/RvDYGOhUBxcC7TKG625jrWoAgX7LPZSf6FmiF1UqMIs7d6yHmdkuYuhzpsoG000YAxKAYcAZuPPml7CRNt8w0QkuT/2iDgjNCMN15yfpt9GPoQlK+WAByViX3Z6hJhOmJWZHb5Vf6gDQjDBcgxqANKabMD2gICWgnfZN5FEEvg6lm4Xyzt+Zu9MYCLLDcBXNCHoMHV42yWKUPWA4XGEsKj2QGVuYiZrWYeU0hgVfIEEa0BCmx/Q4mpFbCAnDLexYGBezaytmR8dtBiRIg+kxSAE5SGvoyTZE2J3kISA4WGbw+OThNjyu6aqLd7/1tdc99er9xWswp/uS5uBxr6g3oscA4hhAMIqdzGx/p/pjYUobrxtyLwcZ5i4wIA1t0Iww2EC7wAJ7CGro8MNo7xYQbM2Dy24ePIpE5YzcPVQQl54axkB1GKyjXXRnNoAgJNpFJ0bt8qZguxyQKZLFh1CBOO1TrApuE60hFQbr6JY9d6BZAAT6bbetLMabgcFnsd6QgVYiuJnWn9hbGrJBt4rBiuMuFFqB6aY76zQJdUO0O+usT4TZ3Etpx10ItCsYrEO1ACAUsAnde8NLADoKbuKRymXPn6TGkFo87aJDzdxUUpAtzBjjMWQDNYDqYvAuMT1GsMM5QNEQgcHkGAZqho0OZ5FYB6l9q0NSyOhBJX/oLGBo0DUvevp5b3rFNZeevVYvc073Hc3B417RZ764ua0bNCNMj0MQSPo0IX4xqfTe5B+Yxg04uRm89kZDKCzswmANsvEy1y5REoigRhAN+uMwvUt5JPzpVSCmh9ZsHVcW++OC2y5sQGK4hsEGVOfL8EJEtOiW0G+in4AIwkTszMyLjHX8wGGDnJ+Ko6YhdMsY7vKOCwa0zQKEQr/pvGciHNuVSe2Ue9L8HdrulxO6ZQx2OV9/aLvs0ElMj8MEx12mLsxatw94WWgMdqy5zaEN1ADDDbSLsRwh0CwCm9DTIlgAMyxd1hs5bOyMmh2G62iXXPYX90b5Xe7WPUX23PIp+jGERLcANciXwcPiR7IZ0C9pTI+jWdxpvECg3i3yUTpZrNvKxXHQ2XuX//UrrnnZDRcuDudi7YGgeS/fK7rtrjFpQrMAEuiPAQZCgYTb2XuCyVwKLzY97PEG3QqGG2hGUXY4mx1uHhJBtmiXobeht0BwmULcLbVYr5w13PoK8QhdDUNoFjHcQLdUPC5A1mwSaJYgttFvef+4jEyrwIngc+Bt934qHh2gOizsQrfshJdVq6UN7LHAOYRs0B+H7kFwEFK2OqtABTY8bhHTwWWH4YbnjlhnIhAgJFoFvYl+DONbHbkXij9fdYgSEM6rU2oMkBitY7AG2SaYDQIE2iXIbfTbDt0lVxdmR/cBBWyEFy/Ei2sHCYM1DHdBdvFdzR6MmzkMBKAEtMb2ETQtmiWIJnHc8ZOd8s2AWxAtJE8cwoHErirZXU3eUiQKlfIWKhaG7Y+96tpXPOOiytDP6f6hOXjcKzJhWlqXzuQwaOp8OCdY9kCchy43u4kOBGtSDHehXWRH9flnXf5BFh8pBJoFyAb9ptvAFVcgqtxTiUA8vIdABrLFaA3Dde8pstPeCy+ngEs3jdUIskG/BT0GTJIiZSZ3Bl0JahqQgVAYrmO4zoSXDeYxvibwLpoW7TKkRa/eZWmlsttL1ETScM4dEsMNDDcSiSZ8NRzSCABoFiFb9JswvTteMFQv3Dyz7fA+OjBXlQEI7RKG1kUZngvc4XpYLUD44TbSafezlJWKlQkfkcHW6m1YlxphZF884THbv28GSRAXyLnOjAABCjAC/RT6IJpF51P1o+WrYleJ4BK62GWb6XF0K24dPh8x8oqUifhdZtki+oanX/Dip5xXb/6c7h+ag8e9ol5TnBjtIlSL8UH049R9JJJJTfByn6m9QQcEQbYYbqBbhQy5GbLVi6BmEmAgfcyP7NAqaG8HYIYOHnT/3IPhBfdgIx4mCrAD0sNCgmAZ+iTIQLRoFWQDvQXdp4Isc90EzMjCnMgt/7bLGO7y+wCQCkS76gAfJ2bz8Unnu9Ob0JMInAHzIl9WgZy7ccZiu+S5Z10XHEfkuJMEADlAq6C30G8DvUfNjDtvvvFDQHEbrWYxRQAAJQ9JREFUR8TsAYbr6Faj29MxZ+JSSBiAtB9uy9qvnFcazvo8WhtFnILRkC2G6xisQ6o44sJzJwFJgPS+NbghEMbFUCGki+wxPQIzRbNYg7NiP4eZwEyg2ggGscJgg8VWBN0vBACGnnzVvh9+xWNGg7k0e0Bp3t33iqRgvns7+Rf2YnIE48P+WDSbcrWYzE6NQjQ1YACFbg3DDeZkr27EYYgSUxBKQEMoNCPIFv0W+m2/0lg8HqArShMNEmiXMNrllqMdi1IEB0Rka9RWObV+JDF2dkCl4Yw7ZdyBZojhLrTLqejMljGE65YkyMpAtpDLkGP0W9BTf6NgBXhhVIVMx323d/FX+5ypAtYQIekSljSLkA36behJwpo32SG+8c239fe4JVsM/MpWhdhqAQwkwUj3wgTrR08831qfu2p4zd12WqYxDNfZi1dgp1v3Nj50io2+9FsXYV/YBqaHPg7To1t2tYo5dO1DwXMlAAFtNwOC6RbsM3heThZYBUCbKy/c/bbvfuJ8J+ADT3PwuFckhWBiCCCCkC4wafsQ+mMwkwghTIREgWKdNkKhW8VoA2rEBHcpBYTXrIld8f+TT3kkFdoFyAbTLZiJryFjHevgdT0bzeUimrBjHRhrEYwP+KBMhXYE1WCyCT126EX8WW4BeJeR6tCtORd/wp13WsraCnEiSOm3QAuogRPiU2sAsS7KVVrGXbYYraNbSz3vOzYcIcmSdDAgB+ga9GNMN9H3ELUlH8o633vJujWMNlI/T8a0AE4Jjx8E2aJbRu+BMykjC9utYXa7hNFupjGwNibk0UuST0TPwsyyVQ1IQEFvYwp0S0VRvEwLHhPn+outZo8QsR0/7Lqhyy7Y9ZbXHbjqgl0zyp/T/Uhz8LhXtDRSEIAhSGOdviAAEqrD4mnQ65gcxfSYE6PO4QMAftHPxrwuY7SOJlvemCW4Rf45XhDxWSGgOkCBptBb6MfOFLAPWta2Ds0Qw3UMViHCyyAK7hlcmXib1YUF99UQZIN2EaqD3oYeMyuEEjFKfgeDW95g9U9qkokeJkklXIwZ+StCohlCNNBj6C2YadqE1GUnG899UOv2HViHcRR+NwMBEs0AQqHfhrar2dl4MQvAwka7iOEGmqVi6KuUagwWPxxsSzQeOPsttyu78iwx7oAaYriBbqXQGJBqGyJpeOwbNuIRPCSEgZIuDq3fAgQ6nlw97VI3LAZ66pe4mGmYhHiw7e4EEB244vRfeMP1V184R44Hh+bgca/o3NNGjUJPwRrwhohdxFYdRrswXIceOz+SnsBMQeRcH80I3Sq6JbbNShRTlAuxMJ8DlVeQejkaNIuQHabb0GMv0QAINAO0KxjaUxk431lGD5gQST9w8R2lSYNmAapDv41+G7pPZIFs0C1jtMEWGGZx3wFEy/rAZeLDELJxPW+mKW4BUmGwiuGGOxRyJvdZ1o+/Hl0x/nGp0Iw8cG5BT1Pd35fQLGC0gXbZZx3foe18cIOw5q9EYC3RDCHbyJp3VEBNEJRfXInGlihGgXKm9nqirIST0AzDDwuuNmzdYHocSvmNfmWLPF89KdL0skSHYClqDA069bVPOf/HX3ntefuWMacHiebgca/o/NMXl0fy4HG778Hr485LFGLwBZqhC7cln/uTDMwUsoXoIDNpldoT+VwWhegM18TM+EjZoF2AamF6J0m7FbTLUF163qdIpAOnOncvrK2/zq7SB4vE+bUVmhFECzPxqYoEukW0K2gWoFQqN9O256yRCjK42lJ4PFWEodAMIFvoCfQYZgoyUA2aRXSraBcgA3cWHVfhk4JTbDhVut2RhBpCthBj6G3H2vZSM0K7isEKVOtL3jk2r6xQ2LkNJl79WAjPWo6dvsLXCayHcLjqN2SAYefOmM3hOTScm2JlPK5056RNjmGwmmyfzOPQ4M6J4eBBDG5Ju63+hs45ffmHvunqb/zKCxeH85MBH0yag8e9ovP2Lpy7d+Hgp49CCH88EdzCg/VLkI+pdaeQCkBBANRDNoBKc8mF/RkpmyBhDArp6e8QxK6J9J7gnlZOTIkW3QrQsGQqjHuVSp47E9dDhYBQkB2kgu7RjtCtQDQMNVNji1MOlKLSAwLMXZ613eZ2bSEkqIXRGKygWSy4h5sr15hRVXY70m4PDfcGmRpAKKB3yeQHK2iWIVuXHzdyqqFm0mqkDfdLPgl0sdEUAs0AooHymG3T27QraAb+FJbQXSeD2eEt4g1PnwmYAR1fbCmhp5iUmwEpedAYUO/W5B14mHiDcZCzsTJ86+sPvOD6c4uemtMDTfOsuveKNpbaa85b9iez+mh9BKNb+8S0PlyE4CPrdcxFmrkLMjEYvQRgt3EKYjd7AGznM5L122bg5Euub9a4J7dUuQt/j0jbwh4JF6SEGjpdW8hU7S1kd1nBqscjcq/VjfePbKEGficjx+wduYusTP4hrJxzDGB9636Vzp1lT0OqcK9VP79Y3JGMCx8IXpPGnSXerWCwBtWmGsMMzK7XRyQfk24XlTvtyrnd9tSz9afS7HAuNePNjvDBYoZzWAkhXvmsS5593dllzeb0wNMcPO4VSSluuGpP0wrvkqKIHID/4FHE/rm0H+SkZ1VkgGvP6YytUNUi8HIhEbbCMZUN2xRdTP5MAOUcSgW1XHEJ7OBbGqSbhFTJRvRce0X6eKHalw2tXo0b3RGbqRonu/MtdUUn55g9i2Um93OoARCFtc3+dELuGWjFH6kG9jWOSU18tyuvMQiGlw7FZ3Cf1bcQ3iLkN6WlZJs5YNBvFr3JNnaQX+Rwq4YmXyvS9JWPPeN7X3xFq+ZS6yFB82G4t/Tky3dddPrIHflg2J6vmIKC2F+wTtK5XVX83LUwhTIxWuh6ycT0d5c7LYT0ApSXVnBPDuU+CSqdGKWCCXsINk8/zDjmsMEeD86rmWA7o6j8usrFZXHLiSy8Eix3dOjFjaLCYXYVOKvqe6XYjDsV96UdGxFUQjRscaXgsZPGUAxHWdVQRM49XJQwY3Y4B7EiGUiEM9uL8zkee+meN7/muv27eODWnB5MmoPHvaWzdo+e87jTk3MF8tN+0owOblZwV0+VmODmDu14qVDi8geyXwNxxXOG/humd67+zxCT1VWBKEf4RVms0NaMpHQZ2F+pcXf9KtJLJQkPHpm9lYrvKP5KzC4Vf154fnfRtwJCpTK6NLlqhe+E3zzIjd1dAWblzNzyp6ySVcifbYYkrGdCsi3ZQE/S6Ns0GNfFEPtEKYEMXXDm6s++9sCV52+cqA5zeuBoDh73Ab3kK87Yt9G5A+aIHdWXQ0iwSDDD4GAylBstCZ28LVCUHCVLqXqLRFyGD0R8K9iJC0/KqYCeF6NcVhbqM3m19MTND4rzyXVL4iesSmq/NEWsQQm7DKFrun+lqhSdRbMcTba3g92TFDyrdTu3mgGJjcJK3rpqNag2JrVxjD2xM6ikfi09TvPx+ILcuVVMAwtNM3Tto0779R962ldcefqOjOb0QNMcPO4DesyFay9/+lnFebR+FT1JBGIAk+romWsrvYbKj/Wfid/KfuV7C9w1ySU8KyRV/zM7gLIvVPut4J5/Fn4/Wl5o5L6DQZWXSemFk8APkfltqPqxdqVej9mqeu3OeqqxghchlnliZ12tzzlsu7gvxTB7VkkMsytcTHm1qPqMX4VXWUzvNzCG6cCy5AI+W4ytCUngOdef86s/8JTrHn3ajlzm9CDQPFT3PiApxKufdd4ff/C2j950DEpBAggnwrKzBR1mEKL8pNT9zed8Oc/5LDXJxTDts5lMhVipapHZT1TVSqt4wICEKJdfCW6Fz8J1TpU1vxD046RdNWzJb8iyV6UP5h0bbvANz1nv0Ankknplnkl+T7IP40StnsWqghCzNYZKbkH+EMUjm7IOR6W3WDkiDQOZUbGZXi9bgIHp3VGYIckCP9kp7H4nOm1t9NoXXvZdz3/07tVhrcw5Pcg0tzzuGzr/9KUffOmli0P4474puqooHM+X2uMIk7c6cVPnSbzHpHdmQoRdJ0pmcj6rKZ35mQCqScI6d3utkKpFI1NG1aV4fz2vVCYNqbi5UtcZxF/42v1F4yp4wLmjQE2AQVdWgvAZzuG+ciO03m281ZnIpvDoiYiiBlNpJFU6L3kzRVq59P3kXDLcyrfWA6C4GZD4qji57DX2ZBGi9eXBz3/P9T/88mvmyPGQpTl43Gf0oiee8W3PPFdAw2ho7U8dCKsd2n+wRAAlojiXjIhzO5flmaiyf8T03+zn8m77/4wlhwquZJhRlkep9o2aHCnlXAldgn3NKlZDiFx8M3ZccjnXTbVbauwqg5L1LW9UcZFqlcwLRIVvWZ3InX8ld45LDlEF9/hZxntmUdGLM+rMBz2ta9l2dzczr8lPhJC9KlgeMTxXfOszL3nB9eeKHRx9c3qwaQ4e9xkNWvVDL330Cw/sA01BvYOQqF4FIKmKLXuxjPFFOqdRebzcjpvIkfQ2wKl4dZgpRWQmUTIIYZkkSsFEnLUn4Z+irFHEKsCrFK4XbSf2b4U167oEXUyl6fzmfFwK+c4FKNEMZGXyNG9LVp+yE6q9UQ5WUWx+sWwaf7Yc0FC3amXYg7k7dIch8DdQ+BDMDj98kaFLXfXEy/e+4esub5u5dHpI03x47ks6bW34M99xzVdctgu6B3pQD+1RRBsWhcUkS901TwxIMEM6sMXGZDLzyelvjhOZYihqjAcrpUlVcmXCIi5spt7wEhsYkHAVmDKOJfdSwvI7s7Yz7rzTKmsA7Fi6rMDKV9Q+hzSLyO8p225/CoeDEaVOoUxjmMWxbHvpHCu4VxaiOOtQWlVfKfsB8V1KuAt2Je2K2FehuwgUDsIyiecKgKHzz1j5qVc//uzT5udzPNRpDh73MZ27d/GXvvfxz7tun9BTkAbY3nKjGXiwHHCJIEMxaTPZR8nkpDBFU928nMaUTenweMm92JtSFaxEMPDeOcq5c7GVKKGh4SYXbXVepTFkIvdYW8Ra1dfqkVxJLELeyWXDC5cR+MnBaW0zO4NDuGD9bKiGjmBOzrSxGfdk3NMRqTe8uK36Os188YpCcu4l8qXd7kryBQbM4McCAjC0Z3301tc98frL51G5pwDNweO+p4vPWPlP3/34b/3q8zph0E9BPaDZX00OEmqTELPndilBigK5aKv4ryj6nRMuJ+QOVyDNuCFzl0XuJuEeNfcTevP49ZR7udqRsGMCC1RrbCF/Z7WXX4/2Vrjo61+akrn2TfEwwbx1BRTNFNxgK2rhhrSxSWUYl+rFHAPoBJhN2c0cs8tXrqi/DRuxGeECGTpr79KbX3Pds55wFuZ0KtA8VPd+oX27Rm99zbVXn7/2s7974+duOw6pIP3mOGpgjM8OokAGJCAB8BjKktg0tjIimcOUTHgKSyDZNLaTPzwiQAZGQRJQhozyqFVi/xonu03GvRQiXnxzuWnYI2RAEpInYqltW0s+MJuDUvkVWpcZPbn4Nu74PyPZnrlqEG3KN3AnMGCe1fZCmmfQRcLbIqG3T8gdMzQGYhUrf+JLbtIdOkv2BAGRR3wlgAF2RUTuKFn4uvFBjw1nryWvlWFmmaZLz1t/62sPfPXjzsScThESRHTiu+Z0j4gIf/fpL7/ldz7+v//mlqPHe0gJIdCM0IwgFaQElDf+rAz1m4Grsox8ofZzRX7Z9UbuGTNennp/iOkhGgzXICx3C2mMe56vgoMW4mw394y7hhpisORSPLnkjCFtBt9eUQaVBuF1Qu6Gqcmeu814MViB6iJ3yVnvsPeFLRXEA8D5Mg+cFy5GaXsYI593ABLDNZ9cS8YEX/UkiSVkWu4oNAbycF5wD2meSUON0C2ybg+Yzbu9bDivgH8BKPUTJtxNHAj3VYM0tAY0dO+gSzX+IoHQKvmMx5/546+8dn4m4KlFc/C432l7ov/0g1/4L3/0qfd+4o67Do+hhhisQDaQKs1vKuKaalCHw+gkel4qMfln4skZy2lsYLQDD+nlCBATpFtJWhEjlHBPpCcSiycq/jrlbtyqjxpisOwzXKUNt02u2x5heaaUnr4TMtyK3EPaGGCwgiaAR5V1YQHkmF3Kbqpwj10R8ihLDNdibsSkw3fY+X2fYHYPNbqPMBuVzo/cdQWzjXaLf/YoSfva+/0cGyvDf/n1V33Hcy9dXxrM6IE5PURpDh4PEG2O+4985q7ff8/n/vxDd/zDF0xPDYTVfFMxCi9KgjCJ40NRA03AxP8lsjtTva0IMzAaUqFbhbSnIfE0hTJnzSlx9PM6VJFjNnc1QLcMKV3CjKTVMpFjde4oUDPjntUncNcwBt0K2qFPUhKAM0PNlH1sbia1q233Vzhmw0AbQGC4BtWkwy29ELec064PUtvBZ4FYucYww+zQGk2B2SHbVQKcWcNZSAWdTNtrmK0N7OYnowGClCBYt6qS4ke+5bE/9LKrpay+c3N6SNMcPB5o+vwdx1/y7z/4/n88DNlCSm8BZN4DJsQz8IiXUkkatT/mTODKr0u01UNKtKuOeyJGkYpyxjayBhPciNIkkV8ld/KHYvVQHdoVCOkPoM3aztHLnm5r+fCV4QI4Z+IWa7vWgEG3BDVy/sMqZs/q9hyzUeNVoqaVm9bgEw6z84aLiF4ZkedF2HEF+2Qwu0O3UlFWBBvu0PAIInwdhffAbNQkcv4ojtnBZwXEYxYNPePxZ/2Pf/W0+R7yU5TmC+YPNJ192uIzH3Pa+z91CDAwVuHNli4tURQU9mvymZIrCXL4ZeTox/Cz2i6TGC9P7YkdAkCoADnh4crOzJ9McolCgqTqcORu/PmJgbuAMZDSl5NmW+Lco9QWrBqMe46aM+wAB2nWdwcomZdJouBetjpUBjXMNgX37NcepDwiGtZq8pnQPIQQUu4lbtmnTDwAo9p2zt01XCSsbavJHh/rG07h9WP9fALMZldc59ivnnV0wDrkuPjstZ/4tsfNkePUpXmo7oNAz7tu32mrrbPiY8KrsN7IpF6OE5T/hcS9pfyK/vGQ5trq4L07ytCEXVqcNefCr2cXWbGJ5ssdF74+xvh1YwMzdfiR1FBXPFH1WhXck3UOjlv+Ive/694JdB34EmNt0r/qQDALIOdexWzPPSQ9ywyFrLHkVwjymiBtvh1iynu+rjHYRRftpTm7P3y2sErsA5gBkbedinFnHZJgtm9yfIcBQ2fsWXzLaw9ce/Hu+2eGzemBoDl4PAh02TkrT71il5fm3q1BqRBJ5Jd3gPDrASFM2KbLlE0uTymdxkROhgaJlqNXiRaUVoZJydLiyb0o7KtrqU4FUCiZyynMAJKUe6b5huu8l8J+NG1geicWY7b8rMmBsmqkt+WYzeAki0UOmG20l+Bc7OrYolIzSDBDJ+Myy9acyb0vTsugvMz8TZvR/1V9pRz3MLLc7ADsTsAfe9Xj5vs5TnWau60eBBq08tVfc97/+fCddx3TsAcyGwEBSAkAgmpLxoyoDOovRGq4ziVsgCg9hdZQcD6K4DARAKrcU8Gaw0aQVuEvyG4GD8YLkX4KYTeXSBhygQMA424pqwYl3A23VExaq0LIItShh9HOdWN8yhDnPUPFcxjXAVLutiGcUdLzQcim1TA9iCAMCNDkll6cC6vKnX/Iml8MfWb/BeSA7yut0djFaumHm69y1MMk8n/zzufcuQbDkIObHYbO27/yH15/4NnXnV1jN6dTiebg8eDQk6/Y8+In7//Pf3ATZOMCXaxAcaEvzP3NKYqtUlfFDPnFgyadMn7mRjuV6vbDGo0CDCBgmDSpcud8TaYUV7kHj3zOfWmgx2Smxtq9EmSgKW56iGwprwBR8iHAhv2cc9es7cbJO9OjHwOiApwI6JVwrTW/hltV2U2+JnatWE/Q92j8iNs+l+FwwwDb+ZJ9UoFZmJ20nd3muAuYCYxyvoY6a8HqUAzBzpidceeY7c7ngAAOXHH6T7368U+8/PR5cNXDgOZuqweHWiW+9wUXPfqcJUz7VNyn/qjyL2rWqRsn3HAC5MBo0Pzot179/S++pJWGnX7o3SnVP63jv6Z0blS5hwD/hPvCoPnxb7nqmdeehr5nRbHlE60jo3oPZA40gjEu72TCneOW24+2Z3XwsqedNWoBzXxWpuDITatyOJLO3xk5tG87YOjs3YNHn73g+9zL1tBeYi6+4OopuWfNr2O2iYcia1tJM5J9Ax7CyxqeOKBq5pTm7k1K2p7pK7Y/k7cOIFpfHrzxpVf+5ptuuH6OHA8XmlseDxpdcubyD7zkktf8/N8f3+5BysePsoDd+nF7SLwoQBR23I+RIEf4DBC99GkXfP3TLtiemr/8hzv+4H23Aa3XQLVTJqjkXrpQqk4kJhMNW3tg3L/uqed/53MvfcKjD/39P931hS9PgAYyBD7ZOJ8d2r6zF4VzZ4EA3l0mgG/9mkt+4GVXT83f/fZffQFNw/pcxHgnVwXhyk/qQGkdeOfXuMflDQw69UPfePWFZ2287Cf/9o5DUyibYqBkPTtgNzM086EvNAaEc8kw7JoffvkV7/nk0T98/+1omnjYZQi1qnKvm7m+PjtzJ3+kDdHGyvA/fs/1X/cV5zVqrq0+fGg+lg8mvfQrzn7d8y5Q0qdwyPXKMuSGmRpBJ6Vs4Tdo/ZkmCBi6/sp9b3rFY0aDZn2p+5FvuuySsxahpzC9O3ok4atnVCNVeEtl3EkQHzKkg9OGrr10z79++TWDVj3hkl3/z0suGXaA7l3DQQWXWX9eKa6bAqnsjtzN0x97xhtedPn6UvdDL730orMWoPvcYggtJRYltQN3rROUqspuj5ovesp5L7vhwqddtffVzz5PSm5GpH/kB5RMWgedmHrB3HGjxrfyBJvGhHF/3vXnvOFFl/3QSy89Y3fnbD6qMS2tnDwYL+18Ksed2RyWO8S3P+fSFz/l/DlyPMxoPpwPJnWt/MGXPOqbv/IcmCnQOyHujpCifGZS1amlfVQlm8CazWEmPS87f+Nt333gvH3LlvtjL1x/87dffcauDrp3dzoIQeqdqLnXiWaITo5bjLuhi85ee8trD1x0xioAIfBtz7zgu559fqt0PDgrivISSBh3Yn6qwChsSeu5zyRyv+qi3T/16sfv370A4OoL1v/tt1yxa0XBTCN65c5AwwJ5a5hdiv7Ydu38RZ77Ey8//ce+9drlhVYKvOF5F73gwD4XspyXM0tv8NzzCrCg3iivfR4aj9mPuXjPj37rtQuD5sCjdn//iz1mm6wDS6al7pJ2fkVjyD4Dmr7q2jPe8LWXq/ke8ocdzcHjQabVxe5HX3Hli598poJ2ydvtdgTtj5DSJh4kxdcDKJ3e5DNAGJ/7PZWejzpv4y2vPXDNhUlk/XMev//HvvnyjSUJsqdXcdbpMkB+JYiblB339TPpuX/P4k9/5xOedEU8p2HUqTd94+Uv/YozYfzBWUbHVjsuteUfrRl3/292PW37WXuXf/Z1Bx5zUWz7i64/88e/+YrFDjB9rHlc8ODqf23ZI4MN4mCWyW7zqHPXf/4N11+wf8Wy3rUy+KlXXfWUK3dBT1yrw0EvJVqjqEOO2eSbb9gKE8fs1be+/sAlZznM/vZnnv+aZ5/XSF2wLjGbcsx2Q8NNUo/ZfPGMcb/64t0/9eon7NtYuN8m0JweNJqnJ3lI0F1HJz/8qx/+L3/02YkmqCxhSUmpDzou7XpRQmmIpKEnXLb3F77nei49A/Wa3vneW974n//ulju20WSJtmZxLytgYoZ2K0S0567pknPXf+71B77qsWeUR1LfcWj73/z6R3/pjz8z1cLn2koXfiqtRipbKUr5RAt23K+8cNfPvva6pz/mjKy47al+2zv/8d/95scPHu8hQ6Itr07xFCl521kPOG9PqYO7nr/qwt0/811PuOExZ2QN/7t/uuvb3/r+D33mMGOdZkgUKet84SHgCphziRKt39CZe5d+7vVPfOGTzuWsDx2ffNfbPvD2v/w8ZEjxy5KUZBTqkIV4RUOE/MYdk3E/Z9/yr/7AU59y1b5KsXM69WkOHg8VOr7d/8L//tTP/M4nbr9rDKViht06peFAQKKEOiABDHWtetFTzvvxV14bNN9aWXjXh7/4/b/49x/6p7tS1jvG/scKIOqq5FfLQSASwJOu3Pfm11z3+Ev3zOJ+dGv6M7/9ibe845NHNnsoVSRIL9ftOWYgcTcRReFFEMBTrtn/5u98wmNn7GQ2hn79L276wV/58K1f3oYKmb44xyxBCxK5mWM2bzsE6ElX7X/b6w9cdUE90/gnbzny+v/4gb/4+9spYV3CdsHafjYsOquGW5edv/Hz3/3Ep169v2R9+8HtH/n1f/jlP/7s1Ii4bh8xm2Zkpslgg3EPKzQOs82VF+1+6+sOPPXq/XN31cOV5uDxECJD9J6P3fGj/+Mjf/Xh26e9zb80Wx+Mqqj3MBg2e4lAuODM1e97yZXf9FUXLo3aE3L/zK1Hf/K3PvYbf3HT8S3tkvfxfHmMN8jrodzdkUgTQNPqyuBVz77kjV93xRm7F3dmPenN77/38z/x9o/+w6cPUdwzyABMWI4iSm0E2Ag6uIk/aVpdHnzL11zyfS+54sw9O3Enwrs+8sU3/bcPv+/GLxkSPk9+Le5I+A8Rs1nbueg0tDhqv/6GC9/0imt2Pov7ljuP/7///R/e/q6btqeU9Hml3/2wIqtAiZqkpLzhsWf8++94/DWzT8g4sjl9829/4j/8XsBseVKoGTGbG1s5Zj/1mv0/813X7cB9Tg8DmoPHQ46+fGT8239103/8X5/8xM2HjIbPhGqHKcvWR14D9SIMgCEAp20svPip57/uhY++5Ky1k1f9tqf6D9//z2/5nY+//8Yv9T0l6BVfk9RtxRcGLK4Y03XN0x6z/w0vuvyrrj3j5GNsPnPb0be988a3v+umO+7ajkG0gkkx4hUofVau+U0jr7/i9De++IpnPv6srjkp7l/40ubPvfPG//Znn77jrrHTxEWWWjjYW1kF2NIIAENSiMsv2PV9L73y655y7qg7cSj8sa3p2//ypp/+rY//0y1HIdiJkzZToWAND2pBrADbleJB/bSNhdc8/9Hf9fxHnbY22pn1pDe/957P/9vf+OhHPxswm+elD5jtuccKGNZ8b2wB0LS2Mnjlsy5544tPrDHM6VSnOXg8ROmWO479wftvecdf3/yBT915+NjUab727Ieg+wvE1HgGAAbD5qIzV59z4OyvffK5V12wqz050ZnRHYe23vHXN//mX372g//4peObPWBXI6wyHs0aCIrcnfMKq8uDJzzqtJd95YXPf+I5a0vd3WXda/O+G+/8xT/81F986NbbvrRFBLYLWniBhcJx5Ko0Wmgfc9Hul91wwUueev7dTdfaa/OBT33pP7zj43/6wVsPHZsAAlIxzPZM7Qe30pBIbSnFuftWvuGGC77j2ZeevXcngyMjAj75+cM///s3/s+/vOnLh8Y+Y8qsJZ+s7cGJhIWF9tkHzn79Cy878Oi9jTpZneHTtx552ztv/I133fSlg2NI6dCLO6+INRzwllaIZrYoRm0rn3TVvu/9uiue+bgz79mLN6dTi+bg8ZCmY1vTj3zmrr/6h9s+cOOdH7/54JcObR/dmvZ2zzAAQAgsDduVxe6CM1Yee/HuJ19x+nWPPu309YWdlktOjo4cn7z/k3f+0ftvec/Hbv/srUcOHh0bE0EiqsNSqEbuWhleeMbKk6/c96wnnHXtxbsXhvdq8+mkN5+65fAf/M3n//SD/3zjzYe+fGRb9yY1vSyGAURQYnHUnb136frL9z7viec86fK968v3/Ey67Yn+wKe+9M73fO6P//afP3vb0fG4B9lMHn75OoEugAhSrC4Nrr5w1/OvP/c5B866YN/KPTvaaNKbD3zyzv/5lzf98Qf++abbjuqenP0RM1Ax44P9CSn37V58+jX7X/q08592zf7Fu9/5vTbv+dgdv/wn//h//v7WL355k5KD5QvMNt5n6DF7caG96sJdL3/GRS956vkb96Lz53Rq0Rw8Tg2aTPWdh7dvufP4bV/e3Br3hkhrahsppTh9Y+GMXQun71pYPomFjbtLRDh0bHzTF49+7KaDn7n1yM23H532RhsSQkghhp06e+/SxWeuXnbu+jl7l1YWunsPWpyObk5v+uKRj3zmro985q6bbjty56GxIeq1kVJIIRaHzVmnLT3q7LXHXLzr0rPWTlsf3VebCYyhL961+cF//NL7P3nnh/7xS5++9cjBo+Npb+xPFhsWhs1pa6NHnb32+EftecKjTrv83PWVxbttaZWkDd18+7H/+w+3vetDt37401++5Y7jRzanRnsFP3gPpVgetft2LV5+3vpXXHX606/Zf+lZa/dS35/05sabD/3h+z//Zx/8widuPnTXkW09NektzO5UcmmhPeu0pSddvvf5159z4LK9c9h4pNEcPOZ0t8kQCZRht/cv9dpsjnuiyL1r5Ghwv+fX2Zr0h45O7ji0dXSrJ0Br0ygpgD1rw43lwdpSdz9tnNaGvnxk+7O3Hr359qOf++KxrYnWhojQKNEqedZpC+ecvnzBvpW966P73Ed0dGt6021HPvKZuz786S9/7otH7zi0TYReGyWlEFgatWfuWbzs3LWrL7yPMXtOpxbNwWNOc5rTTOo1Hd+eAjBEUggAXStPJhBgTg97+v8B7yDQeYMx0csAAAAASUVORK5CYII=", "path": "image.png" }
Complete the statement. Cobalt is ().
[ "an elementary substance", "a compound" ]
0
The model below represents cobalt. balt is a metal found in substances that make paint blue.
There are more than 100 different chemical elements, or types of atoms. Chemical elements make up all of the substances around you. A substance may be composed of one chemical element or multiple chemical elements. Substances that are composed of only one chemical element are elementary substances. Substances that are composed of multiple chemical elements bonded together are compounds. Every chemical element is represented by its own atomic symbol. An atomic symbol may consist of one capital letter, or it may consist of a capital letter followed by a lowercase letter. For example, the atomic symbol for the chemical element fluorine is F, and the atomic symbol for the chemical element beryllium is Be. Scientists use different types of models to represent substances whose atoms are bonded in different ways. One type of model is a space-filling model. The space-filling model below represents the elementary substance copper. In a space-filling model, the balls represent atoms that are bonded together. The color of a ball represents a specific chemical element. The atomic symbol for that chemical element is shown in the legend.
Use the model to determine whether cobalt is an elementary substance or a compound. Step 1: Interpret the model. In the space-filling model shown above, all of the balls are the same color: . The legend shows that dark blue represents the chemical element with the atomic symbol Co. So, the model shows you that cobalt is composed of one chemical element. Step 2: Determine whether the substance is an elementary substance or a compound. You know from Step 1 that cobalt is composed of only one chemical element. So, cobalt is an elementary substance.
an elementary substance
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABV6ElEQVR4nO19eZxUxbn2857unu6BYQfZBDNsIoiCinpBg0aNighuUaPRuMYlZrtxSYx7TAxG42fMTVyiVxO35KeoiYporlEhGjdcUDQRgYhsLmzDLD3dXe/3Ry2nzumemV7OzDRYT/LD7uraTtUz7/O+VXXOIWZGEWjJ5j7Z2rK+oXlzS+v6hmYA67c2p7OimLIOkaNPKjG4rvbgccP6pGq6uy9dCsfDqkKpPKT2zc2/P9vy7083r29o/mRrS0Q9dIgMybh35t7jvggWR/Lwo41bN7dkursvDmEUz8PC5qYlm3tt1Wdvr91gZtcjL5mqTSRqEjU1vXvWESGVTKQSNTECAR4hRvAIHuDZKYBH8AjEIFKfPYAACmYm+B/kvwA8gAikfyVdUP4LVp+hE8GAziw/MIMIgMpmg/V/GExEchgYDFWKZAKzysnMMtHkNJ9BsLL5P8kUwcygHLNgCGYBCEaOmYEcI8ecYxYgYWVgVqUEdCJDgBkkv6Yz2ZWr1rakM5OG9Js1YUSH07yNQvLwlVWfGv/F8XCb5mG8YOrCFetfW/UZAC+e6N1vUG2PutpUysyinNEYASQH1gKB2Z8nfdn+VOlB9DMQ+ZNhJoT1VMEqYn6Vrdg1hKs1c2wVkhkYPj9Y/sbE+jcCMZjITCqBmOSEETEzA5oTBLCshNmqXDXI/n9AzOxfjs5k2XliZmbVqFEAhtEC1S+ZDUAiHttx2OBlKz5ev7W54AxuH/jbB2uWrN0IIF6TquvT3/FwW+dhAXMjJYXI6zesPtWjpwfE9AVIG++Dg191CkONJkgXYbDkBKsUM3OSFnYNTPD0Z1CwFSuFdGZwoBWTrlrRiaRnm4j80WYArDWkgKqATU5d0C6phoUCs2bXDVW/kHy3MhH5GYmIwAQSlrdJMHPOpp8klY4olUwA2I6D3PVbW5as3eh4uD3x0MtPkgGUl6hJpHqaNo1hDsReFPyqU4wbCV3K9i2NDTZXG6rTv3xbFBD4rHoSFCsUVBUKVADtr5JfIdnWW3eJSSeQVZCZyS6pmmZb5QJ1AwFVsa6oTVXRqUFVMdmUc50TAkAyVmAGtw+kMzkA8WSt4+F2w8MCmQbXpZIxL9faks20mDYLqApb5hx+YkBVdCmwn2hURZXgcLVsz5xVD4J1BqrVfjLblZCSoAAV9TyFVMUq146qGA8W9iWSFIW8XjKCOU1fQ79LudAiElSVQL+INA2IGhtbAIzsV4ftFDv0SgHItDQ6Hm43PCxsk6aOHARgw8fLsplW3aS8Uti9MBLhowhVAQqoil0JWTMHq57Q53xVMfwwqgJbanR7XaYq4a9BVbGylawqzS2tH6/9BMBO26+5ScVj+9UPBrDh42W5XE4mOh5u0zxscyP8obdXfvDZllg80XfQ8LpeveWaXIyQy2ZaW5pbM+nWdLo1nU63pjPZbDEtOUSOSUP6HTxuWCoe6+6OdCIcD6sfxfOwTXPTks09/PbKjzY1AkimetTW1WVa0i3Njbmcm9RqwY+/slt3d6HTYfOwR68+Ncmk42G1oXgednDM7+21G//279XpnHVqkyie7BFPJGuSyZpkKplMJmtq5K5BDIh5kJ/NeYe4TiGZwvA8yFMSUqYAxLUvGtOnGzzA80CszkeA/DMRRPocBHwflfQxCrZdReViBvxYztsRYLMjoANkO2bmos47qFjXVMLaqQZgH3OwzzsIZgFq57yDYDDBPu8gGAwSzG+9t7ykad7W4Xi4ffCw8Lkbg92G9hs3qPfDb6/8z8bGHr167zBwh9raHv4sEmIA2cer5JkIWJ/1iSn1Wc+HnU75x6sIYHiemkJCgf/DPl6lZsJa6is0x4BaY/PX8wj+eQd9uEHGzIopgfMOmhOmpFx3U5Gs2cg0UX8QVpcA3S5gx8z+niPUAoT6RGqvtX152F4heXjf4g/XN7Q4Hm67POx4+yoVj+1fP4QI6aatiWTSX73X69v+Aru/Oh/eESDzo1UEuhozAn4KW7sG9qKghbyFfQSW5U29wR0BbmdHIKgqZsuhyB0B6EMThefYHh9/6PSE6x0B2NPos5ZNa0TBUfjCIBWPHTJ2uOPhNs3DonbLR/brObJvTyHExs8/81fvtbPoL7Bba9mBr7ZvaRWBrgbBgQlLBAFQY24jb2E/vDfhN2wnt7MjoJf/1WjrLQeds90dAQBqEwHhJk0ChT8UVhWrVGhHQBZpzWQB9E4lwq1s73A8lCW3XR4We0hs//ohADZu+DSbbc1XFQrKSEhVYGdvW1Xyz1bYqsKhCePCqkJWBlVvHjk6RVXQrqpYYqJi66CqyH+NqpgWCqpKJpMF0PcLcGdmPhwPt2keFmtuRvbrOWlIPyHEp+vX+6oiu8DqjEM7qoK8QxAGPmc4mBJSFRSSnjxV4WCG/ADTsKdrVIXtxghQfxJqODgwlGRUxbRQUFXCl/RFguPhNs3DEo7A7z9qMIDNWzZms61++NeGqgTMOSudyZcak1BQVezvDC1WdqagqiBPVYw2+MnlqwrKUBWyG9OqQno4ylOV8Ah+weB4uO3ysARz0ydVM2lIPwDr16/3w782VAW2z0kdq4plQX1VCXPCPjFJwRStPPmqEvJ+K1AVRKoq5Lyb8uB4uO3ysLQb/KSwbNq8sbmlpQNVsb+yusJ2VIWtLQBfVUKcsFM4qDO6oN9y56mK1fEKVIUtVVGlnHdTJBwPt1EelmZu+qRq5G0sa9eutucgpCrhjpDWGRtBDSHrUQCUl8f/ajGJ0Kaq2J0pUlVYDT/JkWxPVayOF6EqFjvbVBVVynk3RcLxcBvlYcmPL5g6YmAy5jU2NTZubfQ7GFQMtv5VnwpJhLbaQCFVkXlCRcyVs1YVW8HyVUX2rRhVITX8LEcyOlXxxcTqJAWXE1Up590UD8fDbZGHJZubVDwm7xdf+8k6v4OFVMXvjlaAAHyrDRSnKkpGSOUnU4kuU82qosVCc4fI7oH84Lyb4uF4uC3ysJyHM0lh2drUuHnLFm1W5TWpDPmqohTARiFVQahgsIishJXlV1/tptWQ5p0lhWXBO0NVoGewA1VR7YdUxe+a825KguOhX9LuaRXzsBxzk4rHDh43HMCqtau1WQVQmqqQf8XW11DBNlSFtKrYpaBVhTlAD7sVdI6qqJ76D4ItrCrMHFYVsvuvb5lx3k1xcDz0S9o9rWIelvnoyd2G9uudSrRmMg2NjWhDVewxUKrCgZSAqsBSFctW2zY0X1WC/mlQVUwdFGy5s1UlkGypihIEZs0jmW5doFIVqBLOu+kYjofbFg/Lf9KtfXg5ZOlM38x3pSoUSAmpil/c5kdQNAqoSqhdKqAqgZZD4tBlqgJLVbhjVTHXYo2gUpVsTgD4Irxeqhg4HtrdrnIeRvNg7ZClC6mKH99aOfJVxf+xLVXR09WOqkgesFVPQVXxxaGTVUVdYTSqIi+HmlvSAPrUOnMThuNhlfOwU57jT8Z5Uz1TgmAZ0PZUxXyhkF7pOsn6f1hV4KuKveYXUBVEpypWEwVVxahHFKoiry6o4A5tw/HQ6lNV8LBTzA1bCoB2VcXME4fKW3kC6UZV9P8pNNZ6IqEpwkG6SBK0rSooTVUMldGGqnABVfEvryxVCQ+3QxtwPLT6XBU87DrvJqAAWlUMGQqoipzRoGqYX8hoSGis81SFtONqOtOuqiByVZHr/7aqwPwZOO+mM+F4aPW5KngYpbmxr1lehrHuRgFMjrZUhfKT4KeYX9hoiD9yfopNEdlQN6qK77BbqqIu03k3nQDHw6rlYZTmxr5meRkhEQipCuzZtSvJFxoKlLJVxTe9IZJVrCocoaqYUNl5N50Px8Oq5WHnejdSWMz/Q6oCk2Kt3uWrip2SryrG9IZJFlQVv+WiVYXyVAXWW5wrVhXqUFXYeTdlwfGwannYud6NFJb2VIUDX/V46C8mTxGq4l9+MIVgW+6KVAXmLcvme4DZJakKt6MqZgwLqoq9teKQD8fDquVhROYmONBmeQv+vr5SlXB8G/yqx8OvE4VURYmVTgypSiily1SFCqsKKMg0X1WsrspfyJrYdlTF3lpxCMDxsLp5GJG5ocAyGMzxTX9fX6lKOL7tSFVUtbbOaLEyiR2qCqyB73JVQWgj1VcV9auf1Xk3lcLxsLp5GJl3Yy+DQR9waEdVJMhfd1fJIVVR1do6Q3p0LFUJkCxPVWANfDeoihUq+/3RqmLldd5NxXA8rG4eRufd2JeilSSkKn6ImOfuFq8qqtq8SgqoitVUhKriN9OeqvjaEwqVZRNGVXQGnZinKmwPEMDM2VwOQDFvgP/CwfGwunkYnXdjJEJ/lcJiq4ofIrarKsaSopCqqGrzKjHjz0ZnrKZKUxW0pyr+NbenKr72hDYCZBO2qug6C6gKCKYbskoiSqdbAQyuq+1gUr6AcDysbh5G7N3YMXABVbGVRyNfVWzlCaiKXQSBRFtVtDGuQFVQpqroVotXFQqpil27ml8zQKRqyB9DBwXHw+rmYad7N9A2VptVlWL+U0BVLNFgTRQbIWmCYQOsIrqSsKrYCoCIVcXqOlu5/Ix5qmJOlutuWLW3pSoUGg4HA8fD6uZhp3s3CNjYQDSrzWRAVQDLNBuJCLbWoark57Hno0JVYavqYlTF6hR1l6p8UeB4WN087DrvxmiIiWbDqmIdguhQVfxA2hSxVAV5ymPPR4WqQlbVJaqK2VCw+uq8mwjheFjdPIzSuwHaVRXjtbFtpy1VsRSA/IqtauFnCAXSbRbJG5FuURXdPV9VIPO3rSq6H867KQWOh9XNwyjMDQcEQaa0pyqw7bSVYikAW3XDGk2VAUFVkR4sFSqSNyJFqgqAaFRFV5WvKqZ+WSEHVQX6DwBRqMoXAo6HVc/DKMwNtakq5P8emIaQqrD1FUWoCkLbBPIrFypSrqoAKEJV/BFvU1V0VYVVBb6qUBuqgihU5QsBx8Oq52H03o1tBNn/PTANxk6zVhXYGdqSCKvFkKqoUTAWm/2e5Hc2X1UgZ6xkVfFHPKgqCDXc7aryhYDjYdXzMHrvxjaCHapKQQVoUyKsFoPmFwRfZ0hnCMXVpsJ8VYGcschUBaGGi1AVct5NpXA8rHoedoJ3g7CqIHT4Mqgq8MdVZyikKkF7G/7K8DWkmlUFVh+DqsLOu6kUjodVz8OIvBvL/PsmVxlPIHRrSUeqojJZacxhGelQVYD2VSWgFegqVbFHy1cVOO8mCjgeVj0PI/JubPOv00wP81XFZCqgKsEpl/X4qqLzBHSmkKoA7atKQCtQsaqAuWxVkcntqAoHVaWxuQXAyH49w9f2BYfjIaqdhxF7N7Cmyfhf+apiMhVQlZBDi8J5AjrTjqoU6mzxqmIMusnZlqqAqEhVMR21DzLIxsOCoftKsEs736YNOB6i2nkYgbkJzkuZquIrQCFVQZ7yFFQVP4vRGasVU2HxqmLsvslZuaqYftuqIhsPh8O2qvilA1kcDBwPZaFq5mEE5iY4L2FVIRSlKn58G2JNG6rip+h62J5OozNWK6a2olSFjKqQnbMsVaE8VQGcdxM1HA9loWrmYad4N9K2shn69lWFC6mKb3yDNLLytKUqgRRbFkxR5o5VhY2qsJ2zLFXhgqpiX2GHqsJ+aefdFIbjIVDtPOwU70ba1rZUBWTNpU4Pq4olGgEata0qsIfW6Az7v1otUjWoin2FHaqKNVDOuykMx0Og2nnYRd6NPbVgay51yWJUJZTH/hqimlEVVIeqBL7rC2Pr92JUhZ130y4cD4Fq52Gl5oYQHuKCqhK46rZUxU8CUQFV8ZUHugiF89iNqKTOUBVVqlhVCVyhf13+k2LbUhW2VIWcd9M2HA91vVXNw/LNTTIeA9DS2lqsqhjIoSddykgE/IrYuhtFD4UlI1BFgoXC0mWSolcVVaoEVbFCZZPqPylWNZ6nKhRUFQ6MlAPgeLhN8bB8czO4Vy2AdKY17EBSR6oCgP3Ja09VfCOvTWxQVYKFLJu+bapKWDLyVIUCI+UAOB5uUzyseO1GX5dvTLmQqoRQSFXIqihfVRC6+9ZSFcMisuTLX0frLFXBNqQq2z8cD/XHauZhxeZGB7e+Mc1TleDsACisKv7EFKcqsHxXoyq+zTYUKEpVqHRVQQeqYussnHfTyXA81B+rmYdReDchY6psoa8qebPjD0K+qrClKv7k6YZCfPFVxRjuPFUJFWpDVbhjVQFKUxW/WEBVrNOh5ahKU7oVwA51KTjYcDzUH6uZh9F4N6FQ0aS0pSomxagKzFTZ1cqPtqoEkV9JvqqESFa+qgBlqAobKbTExHwoRlU4qCqcE3Cv0MyH46H+WM087ATvBn6KrSqBkNgShNDEsF2t/MiBhmzkV+L3y1YVWxfQpapCRgoNmwupikrPP++gToKyPZgOBeB4qD9WMw8j8G6AtlVF/5+tcUdxqgKTx1KVkLAUUJVgx9QcUzC5u1VFssNSFYJpMnwJFFKV/At1ABwPzS9VzcMIvBvZzwKqoq1gW6pC5twAdHyIYD3yY+iWlmCGQCV5HWOEI+0SVSU09B2rCpt6fVWBfzGWmFiq4l9hYD3ReTfFw/FQf6xmHnaKd6NStBVsS1XYnBuAEg2/gqCqkNUQghkCleR1rGJVCTmWHasKmXp9VYF/MR2rijWPzrspHo6H+mM187BTvBuVUrSq2KLRjqrAVGJlyFeVcEPbjqqwYYfVN+fdFAXHQ/2xmnnYRd6NEY0CqmJl8OuRlchf7UPiQVXxm7YHh8MZulJVTK/LUBUy7LD6pgJ35920D8dD/bGaeRiZd6MlQPfQOJnacLepKlYG317beexD4kFVAYB2VQVBlui2OlFV/IEIqkr+RgDb19quqsB5Nx3C8VB/rGYeRvOOcNuY+ilaUgqqCqgDVZEXFwikC6kKgqpCVEBV7KHpLlXJFxN9ONNMbnuqAufdFAHHwyrnYTTmpkhVMeGrSbFVBfmqQn49ptqQaIRUhbmwqtjV5qkKukZVtJjAfNAZfFUJzKOlKnDeTRFwPKxyHkZjbnSfOlAVE74WVBUpI7aqIO/Sjc60pSq+fAW7Fqg2rCroWlWB+aAz+KoSmEfn3ZQBx8Mq5mF05oZgG70iVQXkf2VdhwQH6zHVkv0zNI+sYnmKka8q+XmKVRXIue0yVeGwqjS1tALYoVctHArC8bCKeRipd5Nn9OwEW1Xkb8YE+6oSMv8FLl2PsKUqIRnJU4x8VdFLXn4e+QQz7lBVIOe2BFUxJYnBylEvXlXIVxX5TzaXg7tnqh04HlYxDzvLu5GwE4yqGHNeUFXsuUGBS89TFZ0n8JUCecgabkvQ7Krl81kpclXxGwATyCZlqaoSGluHwnA8rGIeRu3dBBGSGd+A6q/+lZmFNGtuUISqUF6QbFt2k2Ko0JmqgnxVgQmVyVcVmFZKVxWHDuB4WMU8jNK7ye8Gh2bOVhX4AXD7qiKNuF/K/jk4hb4QhVQlaKnLVhXuQFWCbVs1q34GVEUvNTrvJlo4HlYxD6P0bjicoFXFsu4IXIdl/dtWFWnEKVjEwFYVv+Y8VfHzo3xV8U8olKMqYMUd1YF8VQn3Fc67KR2Oh1XMw07zbvS+YEhVfIusCgH5qmLZ0ICq6HmxZcRXFTtKtVSFu0pVTL2h3gRVhU1GS1XsywtOpvNuSoXjYRXzMDJzQ6Fu6AX/kKr4Flmm6LKw59iyoQFV0QNiy4ivKr4dD9QbssWRqAoH50gXojZVhdpRFfvinXdTKRwPq5mHkZkbDnVDW9jCqhKaJ12DqqV0VQlE4xwYsZAtjkRVTLBfrKooxhdUFfvitTPsd9d5N6XB8bCaediJ3g0QVA1bVULzZHLlqQoQVhVQAVXxA0+rK1RNqoKiVSXgxjrvpkQ4HlYzDzvRuwGCk21rSLuqErh+1hNpSnFRqmKc285WFV1Bx6oiuxtSFUsxnHcTARwPq5mHnevdWCZTfShGVQLeHVmK0YaqqIaCqmKW7oJMi15VdAUdqwoIbDL6Y6AzOO8mCjgeVjMPo/Nu2B90IOBG+mNsrGmJqkKaECZFZvAnqyNVCfSrOFWBnMZIVYVMRn8MdIbiVKW1NQOgT6qm0CQ4OB5WNQ+j827ImgkUqyp29Gjsfb6qMAIcMlNr2eKAqlBIrMpSFchprFxVDFWjUJVMNgugrzM3bcDxsJp52OnejbGJMlGZ3Xydsex9B6qiq7UD6ZCqsBErMyF2vzpFVezLg90bMlSNQlUc2ofjYTXzMErvBoVUxdhEmajMbluqAsCY5XZVhS1CIE9VYFQl70h7p6mKfXl2wxGrikP7cDysZh5G6d2gXFWxSgDGLBepKibFVwiVYquK30+/G+Writ/HjlVFdz2oKla1zruJEo6H1czDzvVuoO29SQyrij15JsWqEHouAh4yCqhKsNbOVRW/jx2ritKQkKpY1QZUhQupSnjpwaFtOB5WMw/j5RcFAAgW2WzWIwggRpAfPIIn/5UprD8DHkEQPBCrD/CUSWXPIw8ggvxXliLA84iAnJ5pz8y30L6h8hBJAGAmgDxtigXgBcbNWH82DAKMac9XFS6kKjqpkKqwnVd9JF91SQilMAFVEYofRCSsFqWqkE0th0JwPNwmeFipuWlNpxsaGjxCjEDMZM2uBxCYoOaSwDGPiFlOgU4EmGOeCiTlpEKwdFNjRABLE6wq90hGldJp1daZ5TQz2FM+n3rjX8C46+kWenGPzbgDDGZm6ceStbshmD0iwcrbFoKhRp3UZKlZU/qpREC+A4whgJwsQ5QVQjBAlGPOCrVUlxUsAAEIhmAWDLkgkBNCMJjUB1lKMGcymQqnbLuE4+E2wcNKzY0BMzwigvbBGAym0CgziIjBxNqjkzMnnTdPHVGQc0zqPaF6qvKCZBbqJxUvmyKkI2gVBis2yJ8Es8oo5y2oKrKXMo+uCoIDIM8TgpmF3SUhuUPErNbwTJicE4IBJsoKAfJyzLmcECABCOYcswDlBAvIOSbBLAAhhJp42QGTR4iopmy7hONhNfMw0nM36vrkd2XFfVeOlT0mberJpKvhNa6hHD42IanyEOH/H/ZWpV7BYg68h5TZdxXNT56296q7wZhZTpHMI5khJNXUNZIKcdXt/OZSQB6ZCwJA5OkfdMwMABBCSB9bS5EeBnMYjJlZ+F633hGwuurQHhwPq5mHkZ67kfZcRqus50+HuLaq6HnR6XoxDCpFqYr2NrWqIOAu+jXokSI1W0ZefB+W1HhBKgYpz9gPcZUWkQxgfVXxiAJM1ROsoljNIxaBaWMW+gfAmiDP8xhgwQRDC5XNjBKRF4qZfdFz6AiOh9XMw4i9G1hzYFTF2EtfVWQRqHTtPNpXB1bRtflqqQoF1qt8VVGz1c2qwswdqYpnqYrK5rybSOB4WM08jMjcsFIVWHPQjqrIFHlhpJbONDsgE9XauPW1gKqoX7WqeFQVqkJEYVXRvSUiBpiFrSqswm1duF1VEQwAyYR78UshOB5WNw8jMjfUpqrY9lL+K9fHoKdfTgzkqUeNkKrIlLCq6OxGVQTnqYofh3eDqrDutKGrXFQgMqpCqtqiVSUnGMDgulTZc7U9w/GwunkYwc6UGld1sIDVHEh/lQLRIJRZZU+rCpGvKmoZH7IqkNz8s1phQwQGWXbS7Ah4ajjIXs+XtMsu49zn2dwaZD/OxQZ4Xn/yhlPNJGObC+wISNJ4lq+pJ9hTBCJDMaMqpP1xoSRUqYo6J6pURQjSJ0dhqYpad4DnL/qzYpsUu8onazvGNsFDM5vhnSmF7ZyHEZgbNue75SvWA/Mq42StOUTM7JGZYFk8sFMIgLR/G/N8g8wsD1DImqHmXLm/TACY5VkqOfieVJUmtCzMNs8PnBHILFPDSLVIHZCo2S9GPfRpTs1Xwb6qGD/WUio1YSBVhDxioXvKTJ7HECygTn2oQVGONJHHKrd2UKESlKoYFhOxEL6qOIPTNqqZh6q6oHcTOncjM23fPIzOuyFfVYwzF1AV7bCVrSqArSr+RZvTDZ5NGubsMm66vzW3oc2x4WY0z8+kX87WHhWPT/JUzNyeqqBEVUHZqmLY7bybIlG1PCzJu1H1bKc8jGDtRo0j/JjZ2GDAipn1JRnR8FUFsGNmpRmMUMwMEzbLxsIxM9sxc+P92YbfpNuxNQZiAzfelcm8kisiZkZpMTOgY2Z9jaGYWTv2dswsWJi68mNmh7ZQnTyUrZuFpDbXbhR0RLid8jACc2NiZh0V+5cLqGshPSDSD9QTLIur7Gb1nqGKCH8apA+oOKS8T+0G6x0BMjsCrc/lWl/JlnQVTQ9kc8uUVW97RwBmguVk56mKvCC1I0AIuZ3ywBgxCx1OB1RFFvbIM3XBnbspGlXIQ/LDFr9vMkV5N9DHhBS0zdxOeRi9dwPrcgE9N3pATFyNdlVFVhtSFROcG1Wx9cqoSvYD0fRoOTd0NP1vhhs7QVV0akBVpIfvvJvoUG08zPduKM+7US6H6gc617vRqd3Iw+i9G1iXC7SpKtZkB1XF94HDqkL5qqKa81UF4OZHyryJkZvR/Fi2k1TFFwfn3XQOqo2HJXs3KgTsXO+me3nYFd6NzBNSFcuVDaqK7wOHbtkvpCqwapA3qr4tcmvKv4kx82ou9zl3mar4A+W8m4pRVTw0P24T3o3sf3K9F99MncrDaHamCGB93gHW5aoEqSpsVIU9LRFEvqp4WjUYai7NliSg1ElRguWTRPSGJSmV8ICWJbkKLyf7jqAve+XtCCglMzsC0B1WqcLfESASgn35tXYEPL0jIP8sItkR+CKgeB7GlwuPOL5ciGFEtSQGe+gZMQ+VUSKSG9hE+q8/uDPFEL4zFvJuKtiZKp6HPf/pxdYhsR6JdeYSY00juWFnsWUMpftytDyM5twNEzwzrzDzRJYvppKlrYESDflBWWi13Wi25tjnDaBib/JArFVCN6SVigFkP6z0+QzZZSI5Iy6Unxk67wBmX1UYCJ13UKwy5x1U/7QI2ucdhDATJwfKnHcQLEiLFLtzN0WjQx4mloueL2YSK3JeS7isGOXl9oyJveJR8VCt3TDr51qYaQ6eu5HGzNx0zkRg4Z+78TqPh/EV1PfRmLepwEj2+Ih6fBQb/Aw+3V+snSYi5GEU3g2CquKHxGycUOPdgPRdJO17N2ypihos7Z4CkG2xryqsH2gkitj5bh/cDMEiElXRnrpJNarCzruJHO3wMNaCfvPSqffa9Hy95cJbLvj1XPbIBA33Kueh790I9jw/jgp7NyxgFn8KeDedwkNq4p5PeTVvdDykgxZ6df9OfHBCViRFJDyM4p4p8q27+qpCYssDNYtZOvYLxcxkboRTS3kyox91q9UN43hqfwlGYZizH0fw6Knch8Ijr7yYWQuYipl1b0l32MTMVMzajQw+7Zg5k2UAI/v2rPwyt0O0wcOadTzwrpZ2bI1fwXKRuD3Ny3KyeNk8ZOVO+N6NWkcIejdaZPwO563dRM9DNHHPu6kYWyNRu94b+2A8lvYi4WEU5ka7V2aB3aiKtR7urzmplTizI2AmRhdnXYlee4Op1sSgsi1ZQO8yUHzHaO44larCpe8IKJ6ZO3FNiK/JprwbVh+Md2OMr70jYLwbuJ2pYlCIh7EWDLqzObG2aB1qRuL2VlrDlfDQhG/kPxJUsSO8MyWNmYn9bO+GOoWHqfsptra0ca39xBv9SLxadqb0oNmqokbWWg+3VnHI/q8aKDMxRlVgeNOBqmhPQalKpYiN9opRFei+5qsKLFWxhU7FzGup9p/o+Rz1ft7r9bzX8y1KbPYo6N2gDe/GoT0U4uGgO5vzV2o6ROz2NDZyZTzM825UdBOxd6P6VBwP428gtrLk0QBQt8ob+o9Y5TyM4lnFatD0mpw+SSB9Sz3SsJe5QGa+LO/GC6zdwNQQjJlVKT9mVvMhH5QfG0a5NRUZHa8/FRMzK/+jUMwMP2YGeQQWALwWSryIxBvkbdKDYgYASA+mDfvntozj0NoNu7Wb4pHHw75/z9SsKyu+bgY9neUT4mXzEMzyL1+u3WgpIc+LeO2mJB7WPFG+qRj8enzdHjlOdffOlLT3HmmPhZTbGFjPN59C3o1ah9OLajIOZdhyYFRFJqnB9ncEfFUBEBsey60p7faFEGJjqJgdAdWnQjsC0DsC0E5NbCknH2FqaXOyk+tp6EPxPiP542Ny2ZQwxyeISNg7Ag7tIMhDrwW9Xyr/rRX0ehb7xzBcr7qUyEPSx+eMdyOaKLs8l1vN2Y9FbrUQzRwf7nkDvMRoSuwdK3tnSvWpCB7GlhKlyx/deJoGvRNbs2e2KrwbHQIV9m78/7br3RDyvBs9mWYZUFdTWFWSM2Ktr5ZvbiiF5N6xgKqYQxZaVXSgU6yqxF4XNfOKmqIeH9HoW2P/OQlNg9l5NyUjyMMe72XLCKMCeDWHYfHyeBjybpqfyzY/leHmQPWZZQLLRPpl0COZ1AGJ5Fdj7Xk3FfPQe69S/vT62KO9qmFnSv9x6K/htRv4y1VWX6WLaa3d6MG2NcSPme3/2OGuHTPHdvTio8u/qJoZsXDMLMIxs9/1jmNm0OtcpK2RiLXQTvfFEpvIeDdu7aZYBHmYWlHpgU9amiubh9CPpOE13HBLuumRsK2xIR+E0nBDOrdaK3b+2k1lPGRm2ljheKDXKq9CHka0M6X/OPRXuRzm70zBLK5Zu+MqYrK9G9KFjG0yAZkOxuQnO9y1dwSYucfJNVTWozWpP6UOSxBRYEfAC+8I+F3vaEeA1iLxcMndiKVp5LyY7d3A7UwVgyAP45sqHq+NXAkPiSDW8OZfps3j3NpHbjVv/Z90djXrnanIeAiAiMpbJLYRT1OV7EyZW9Z878bMhUSH3o3ZWerIuwlZsoCqeB55/anHSYmSLyKFHqfHZS1RqUrs8VJ7oVC7noYsijnvpjQEeZhcW6l3AwDSJSmLh9mPRcNvSlss4WY03ZURTRwtD2G8sIpRJd6NuWWtDe9GnSth37the+a0jPtSIfN0pCoAwJ7nq4oQTISa3eI9vp4o3sfx+lPPC2riw70IVYVeh7ey2A7kY+BrMa9FWhnn3RSHIA+9CpZFfTRLSSyHh033txdAtQWxgVsezHaGd1NyVwqhar0bDsyFWuiy1rvInjkt40HvhjxLVfxiYVWRJsaoioyZk/vEe38nGR/e8QWmDov3+mEyPpx0zByNqtCK4kewAGJp6rVKLbk776YoBHnY/KUo3o0zgFAWD9MLsrnVZZ5xz7wjsh/kIvduxJDyuuMj3Zur1ruhwFy04d2YgZO3EYW8Gxb594MV5d3I0w2xHb3eFyd7npQoaHQohZpJsT4XJVOHxqmHtSMQkap471YypgDQ+4NY2LtxDk47CPKQUxWb51T5PEy/UlEo1/qCiNy7EfWV9AgAmnYQFfIwqnM3rNwVvQzO0u8yQ0R6dizvhtU9/gwQyeNPCLpEHkHkW1OlKjrZVxUAxrsx3mNqn3hyn7j4nHkjsh/nuAWx0Z7Xn2L91cNEBHNJ5x0AWKrS5nkHpCu9gSu5GUQE69xNOpcDMLJfXYU1b58I8rC53uvxfkX18cSY7zKUwsPcaubKbhXOvJNjjkfCQ4aQXntuF8RfqqRT2DhGVMjDqM7d6LMCQkVG/tqNPSxgY3igb61Sd9vKG2e1K6wKCeu8g90e1KEo+ZU8ksUJkMcclJsDefSAiSg+0OMBnBibUG/SEML3SBm6UXX7SgTnHSp+DgYALw29perO3RSBIA+bxscHzG+tqL7RXnk8zC2LYJU6t4y9MVwpD81bNAExCqIvCj5xoqj+1PCnu2YJ3X7uBmorirUCFFy70f9hO8W4hdK7UR6QKVR4XSoUM8sh1ms3RMwQVmhGFPB35BMAzLEIXZ+O/SJauwkRszyoG/XUaXe3dtMxbB5m+9HWyeWrKfcj7KVWf0rloWiOQBiyH+ai4aFFm9bDy+/YisMzlfMwGnMj3Rm1ogZ/7cbvWMC78VMKrd1Y8xc8f2xSiaxRlPeD6EYF+2s3yotSj9ex7sSVf8Nt3onrx8yQ0ZnfMvwJliXbiJkxKgrCJVlZRrczVRxCPNz0lRqRLLMqPt4/S1E6D8tsNIgoeBiwh8hNQGbfcrry2cTcxnGich5G5t0ABbwbf7O/He+Gfe+GrKzQqhI+MSAdE6uekHcDhL0boLB3I4TQDRb2blRVfsvIUxV9ejFfVSp+i3drH3NG3nk3RSHEw2xffH5MOfZGHBLHaH9jq3QeltX7UPUpRMNDYw+ZAaSPQOvk0nrSvAN/dEQ2Eh5G5t0Aed6N9TQ/4934lt94N5aBYCsrSlEVIt+7AYe9G6Cwd+N5nm7QrG2X6t3o04t5qsIVbwRsHpsz3g2cd1ME8nnYMjG+4ZiakioRe8bFIfHKeFjJRSjEhnuR8NC3h6pb3HwMF29x1k3PfnBiJioedqJ3Q14B78a3/EHvxmvDuyEUpSrMlndD5Xo3HKV3IyZWMKBALslbR2jLCOuOZIe2UZCHzXsmPj09VWRUlT0+kTs+XiEPY6OieJ9S/6i8G1VO/+kRMzceLbacxrm+7XWgcYRYdkZ2/X65XCoyHkaxM2WrimC9AAIW6inoQNC7Ye3EEMwCihAcU48CCauKF7o8ZvKsHQH1LA/WOxLsgbR34+9Mkf2MWLUzRR7leTcI7ExB76zrlnW/O9oRAJingP8G2lTmkH66Vy6X0ms38l+3M9UR2uJhZrT36YU9er6UqXu2zUdS5PaMZw+Oox9iVCkPE+NilAJXcD96bBjFBniR8ND2bpjZRBiZenz+vVx8pZd6E7FNSP6HAGT6cHowWgaLlh14yzgWAPQT+yPhYTTmxvSDjKrIAdIp/qSYh5JZ3g15ykDoZ4Oo61EhmXU2EGqVB4Bfs7p+YsiH5nfk3Qjj3bDwPA8Ede5GP7skcN5BtH/eQTlsofMOcoc0eywn7ixnPFv78Gd7CtV5Yc56lVPVFwrt8FDUovGgRPPBieS72cQ6EV/L1MwAxGiP+5HYJY5a9jxpMSLgYc3e8fQL5T8IJTE1Jr3sSHio7JPv3Qil9UStXxLpL1GOOcfM5OWEyAlmQDAEC5BnRiASHkbs3ZBeKGnDu0Ex3g1ply0cM7OaVK8j70adUmjPu2EidKp3AwaPQnYm4k+WNpi5JH90bC5Xq1aunXdTPIrhYeuEWHZiTD6u1SN4ABE8vQoTFQ9rvhxrfSVbnoND/Sl5QBzR8dAMjvRu5GehT4eYZ/YKYV4RA0jRNVccEQ8jXrth/bWNtRtjYq0UYa3dEAAy4aFadAtWQvrcsJ/Icl2YWd/nqc23qgQF1m5Q/NqNidrLiJlz0ylzYAnTk0vyipMyLYN9jpiY2Xk3HaJ6eBgb6NUeU/JjCSRqTww/mQAV89BaNtV/DtoA6YqYlKevuiGfma2vLhoedrp3Q/aw5Hk35rRC+6pC5slJvqposHrZD6m6mYLejX6NYWXeDetMJasKZw8i0Y9rnuj40Y3pHXjNrFzrYGs+nXdTCqqKh8m949ll3PpKaSFV7dfjibFeUTxsIvEu595haoFYzgAwDJQCJoB3IfQP87AY78aMBoLeTVQ8jHLtRv65aSuvYmZGIOL1124kCCxCazdgVk6XZIt/5MFSFZhqTXtqn84Eq6od/SzH0NoNil+7MR0uNWaW88MsslOQHY/4/6HmTRQ0Opk+/Pn+YvNuIhQzw46ZgWyOAQyuqy13orZzVBsPe54UpxSKXMShFHqclEhM8jrkIZqRW8jZRTn5OB7/r38NGMBy0OOMPYEDWRodw0O7o3LtRr1/Rpol6RNpG9MZPIzSu5HOGQqqipVTbtwre1BAVZR5DagK/DIhVWH239OsnUPSnCNiCHSpd6N5bX5SqsK1aJ4pmo8gWo74CmYiaqJsrRBJbB3H6T4sdIE2VYUlnZGKR/Fohe0R0fBwE7AmR2v1n3d/4mEehlN5POxxTDwxKdb0QGv773et2TteO0c/maBdHnIT0rdmucPXjbzOsXchjmPeJcBDc/m2d6MaFfomx07jYed6N/JTQFWEb0EAS1XIUhX4qgKwH04WUhXyVQUwz+gyYkbwTLBajHdDYM5XFd3ZIrwbgFmEvRtroCDq0fol5JgZLHcEBAiMYlTFoX1UyMPYeyL+twwF/5JV8NSPvKkx3j+B2pJ5WDOWEhelWpdkM0tE65LA3Zux4V5smFczlWp2jvtPJmibh2I1t9yaRZFP7WqBdy/4ONAU5POQtNGR4qleWF6cd1M2IvVuoBTDqArpk41mQU4qAMKqwoIR9m4Y8u5+9Z55XcZXFfnVUhUEvRvZnZK9GyqoKkBp3o1eyQmrCipRlUgmaztG2TykRtTc2+otb/M+ft7Iuaez4tVc7IREbIxXKg+pFjV7x1L7xIko+5ngjUCK4yNism96dQXt81A0ovXPuWJtjUbsIYg+wKiq4GGUO1P+X5jeEUBgFUVnUUtTkP+Ru0j6Ve2AYQWpADjs3VCgWiUqrCYrsHbDABVYu2Hj3eTvTKHgjoDqu/KXVB9NFwH4OwKkWvc9e3t6jKqwVhXWCz1t7Qiw2REoY2K+YCiPh94akfxlczu2xi+0kbO3tuZey6ECHsYHeomxXmJErFQetj6WE6vL+VNP3Ac0VwUPo7xnSv6X1GlOtYJN1gVoxdGfYXs3TBuBDwV9KLwPBZohdxTBliZpDtnVshYxoyowqyfSN9RhvCyo75kCFbxnSq2fBe5VMTTV3g1gJQW9G873boIDBTZ80p3X/rrK6pE1KdIXg1yGcugAZfCQ1ojUHWkqxWXIPpjJvZrrYh7ycmRfK/cxOi2IvVgVPIx07QbauqNwzKzMOwIxs7csF39DeO+GI1LuR9g1hv1jXn99hUHvhixV0fGXvgXUVhW/WaC8tRt9AaG1G3ltba/daD/KsjhGVeRsWzEzIFTWUMzMbu2maJTKQ68ZtQ+3lmRrJDKPZbxhSezYdTxsrexppLEXgQP9r93Fw67wbkz/lOkmKJ+lCTX3tNbc0eq9Vmj1ayPzwqy4KZ17Oqv8oba9G8BSFfNzUFVkreV4N3b/Le+G9KokyvJupFA47yZClMrDmhczXnlvlG9G5rEMupCH4p2Kng9JLYgttb52Ew8jXrsBwPrmbOOGmP4p4WGAEFsjan/ZHFvakc1uhng6m/ltGk2hU8KBmFmlWKqihs+KmdUFl7F2Y/ffWrtR3o38qe21G5g2bFXRYbC6EE1LFIqZTWaH9lESD9GEmn+Uf1uT+FDklomu4WFuGVdyw6dqcR26nYcRezeAVhVtlQuqSmyNqC0lYBYfisxtaTTKSgLV+qpC+gmkAODHMdXh3bDuar6qoENVQcWq8gVBSTxMvJelyv6Gs6/muoyHlYM2UrfzsNO8G+tJWvmq0uOOdKkzzas58yfpvgbEylYV1ussjG7zbvR+RMTejVu7KQYl8TC+vNI/Y/FOrmt4KMp9ZZUN2oRu52Ek5obbURUgrCq1T2TKUxXxbs7eEbDMsd+u+lWrCqGrvRu9H2Exy7Sh6yhDVch5Nx2jNB56Gyv9G+bmLuKhV8TbGTtGLbqdh5GYGypeVWiDqFlcfsCcXZC1q9Xm2G83pCrGxWUdZLetKtQZ3o2muDrzZaiUrypsqYpvqSxVgaZsn9oybzXe3lECD5nZ2xSBAReruWt4GEFXh3C387BTvBv5HJCCqpL6R0X7ebyRcx/kJHGKVBW9MaEC17ZVhdvwbvwhKsO70dOlb/Bj/x+jKizU/XFGVXyGWaoCICcAoE+qtIfvfmFQAg+j+htGl/DQGxZBb0U/dDsPKzU3cnkipCpCtKkq8ffKd20kxLvK/IZUBQirCst7s70KvRvf5Y7Eu9Ez56sKeVSkqji0hVJ5yMyibwR/w95w6gIeUg/EJlb6pyrGo9t5WOk1yDhQrYe1rSpa7xHbWOmfjVitX3scVBUgrCpE2mZbqsLd7d3omUMZquLQFkrlIRFxbaVDSilVbRfwMLF3RY8ByE0hlms33crD6Lwbac0BoICqyOuKr4tggd20asywURURiplRQFWoW7wbslTFjIzzbqJDSTyUMpGZUCn5vUkxdBUPvYnwKnjBQ+4gAN3Pw+i9G6BNVUFTha0BAK/R3o3+azaq4mnpsE9bdIt3o62R715rVYE/Z0ZV2FcVdt5NWSiJh1ImsrvEubJXD8ZGe+hCHiaPilFZHc4eC+4HdeXdysNIvRs9ryFVgf5FDIvi/TvDPOPdKJZZqgJUhXejrVG+d4MCqkK+qpDzbspCSTyUf1rcA63Ty79n0BtG8b2Vd9M1PPSGU82JJYdUYg/iPaqFh1F5N/DXLPJUBfoXUfF7bAFQreVhFFIVDqoKuLCqAFy2d+NHS8V5NyxEvqqwHjPn3VSOknhoZCIzLVG2gxOfHe96HsZ29WrOjRfv44iDII6tIh5G5d2gSFXJTKj0wZfeaE/PbmFVoaCqgAqrCuSzoFGOd6NZ2553w4aHBPJkhVpVPE/3X9fhvJvKUCoP1V9aDzSfnSzD4iROTMTGxrqFh7ExVPPfCRrVwZ8994M4GXwQVRUPO8+70cKvJxgAM7L1Fa/P7erBVGypCretKtwd3g1p3QBD37yvVUUI3X9dh/NuKkOpPDTjKYZ76eNqSrI48a/GY3vF1Fx3Bw+pH2rO9RLnxGhPQr9g5+SbGI4DX0Q8sep4WOnzbsjYaQ9mUVsI9kgvmJkJBghI7xFP/V+ZNzEAiO0V8wbkeTf+I0eZ9Mx6/jPc/LkGQPo5I2ASwn7OCAQLKvC8G2GGmPQNsTKbUgRZtXkTAxiCiUgY75pA5KmHlgJgJs+DfLC+qoIA+chiEJAz77gGQJITzrvpAKXykPWjI8HI7Rpr7Z9M/LHV29jRIKcQPyoR2ysGUv9D9/HQG4PEaE8aPV4LNDFGE8u3iUvbUX08jMC7UTNnq4o/sr6qKFPeg5pnlXkGn1KIHxoPqIpMJzXjZheaAs9wK0ZV0DneDWtVYVVhAVUh591UjlJ56I8nAQwxzGv9USrztQT3a2OcU/D2i9f8pJb20q/OrCYe0lBgNKHqedgp3g2DwfLmRl9VAJmFM3vGM8s5UfqdU7E5Cepv1k+M4bVUhVmbaPZvrSxKVUCgzvRuKF9VzEgZVUG7qiJvVOmdcjdMFUAZPDTejf6JxV6x7NQ4rRbehzlKg5qAHiCAhns0Ud3RrV6ZR2qlA46HpaBScyNtqeerCuvrYkttoKdBebbpIxLeRhFbUcKpv9gJ8fjeMTWXINYzTeSLiY6ZSaoK6beTMdTryqBOeUrNaUtVQk/A94wDqVWFjKpw2LuBrSo5+fhFfc8es5wwOaWaAVJkWFPHPAFfabIsyESUyzGAvu6GqUIoj4eA+Vs0virTMBLD4gSYt1OZvCASLGLacDgelooIdqZI23uY4dAGV+WQiaxdUIB7oPlbycwexRm7FGInJOJ7xwHfDSZdsbLuMJVrKvgPjjBBj1KVQjsCZlWvzR0BoOSdKY88JVgeqQol441jbO4eJu0Yu52pslAeD1Umla6iCm1Y/Jrtwv67XhwPS0f55ka+Q68pnWZWq01mishe1jAdNpOk5hOZ4xPps5M8tL0+0J6x2H8nY3vHhTBcUrbd0IICDGDlNAod4OrgVIe70a/dMArHzEKqRzBmZgYb6pCeSD14DJBbuykFlfPQ926Uz6IUXiJYmBwPK5irCoKpSUP7LVy+rjmdbk5neiQTaopUX8Mxs7wAO2aWoy5Gey3fq4mt4dh7OVomCKAW5lqiWqJRRJPi1E/JhKfd34CqKFoEYmZpqmXMbHrAmoWdETMDQKGY2SNPGNrpmNlXS0XVcMws2oiZM0LAPX0iD5HwUAdH2ulg+Esufi7Hw0p5WL65ScVj+48a8rcP1qz67JOxQ4fGyAvFzL5Nt2bM02xg6828PAy54XHvYFWBmmkdactiQghPOoW2fLGOmZmZdOUeEUgI9jwyPdC+a6fEzJaqoFDMzKpRCLA89WBPN4lgzEzq3Z7hmLkpnQEwblCfsqdsu0SEPJQz5ek/Y1mNfJkbkeNhBDysaO1m6oiBI/v2FIJXfvJJJpcLxczhsNe4oAG98GNmmDmGcXFVNM5BVaGgqsg6lap4YVVBnqpEHjOTHzN77cXMMHesaA+eoZYDrJiZC8XMW5ozOYEd6lLjBvWuZMq2Szgebis8rHSp+NjdvrRDXSqdyX6wdl1zVu1tW2Gsnkw9KyZm1nbVj5mNZZU/y9hURcE6Zpa/sO8A6phZ2WPSr5ovFDNzF8TMQvakQMxMxKYs6/VJAqRT3W7M3NSa29qSBTBrwsgK52t7hePhNsHDSs1NKh47eY/RO9SlhOAP163f0NgEPUf5qgKtAChOVcgLqwqg7XLRquLTqKtUhXyP3VMk9YiZyZQtRVWaWnMbG1sBHDx22OC6KG5y3R7heLhN8DCCJ0LYM/3RZxvWbdqSyeb0RfiqAhRQFTOaBVWFRVGq4nntqYpPo7JUxV6KL1dVWO9iWOV1o+2ryuamzOdbWwFMGtJv6oiBlU/WdgzHw+rnYZQHOhauWL9oxXr5eUBdjxH9eqfiMY/gyRNTYLmiJlOkYZXD7Mm76aTTKK2yLOWRnGky6bLTxi5LElhm2vPUGpgVM2uHWQ+eIox+N7PQg653ASBnGvoMpVmKg3wxg544yQIz00LIOZMr+nLfgQRzjsGAYM4JZp0igJxgwcgxM1FO/gowq9OcTa25zxtbW7ICwH71g/evHxzVNG33cDysWh5GfH7so42NC1es+2hTo/zaO1UzrE+vgT1THklvDR4RMcvzmnqOSa78m7kn+DMtVcXziIXQfizb61xE8LSYyB0B8ojk7Xn6NKe1g6j3BQRDW3KtP77jbe8IGE9bhbosoCULwR0B1uGwers7c44BopwQAmAgx8ygHLMQEECOOcfM5GWFYIYAC4ZgNLTmNjSmmzMCQDLmHbdb/ch+PSOcoy8CHA+rk4edclz1o42Nr6z69IPPtpiUPqmafj2SdTWJ2kS8dzLumVkEylYV/wP7X31VIbkAD1StqjALoVRlaybXlM5tzWQbWrKSQsmYN3XkoKkjBspjbA5lwPGw2njYiafjN7e0vr12478/3fzJ1vDzJlJxrzYRr03EeibiBPROJhIx8oAeNbGe8VhIVUgFw+2pirzpPqwqpI9yq3U07h5VYSEYDGxuFRnBgrm5VbTkhABvbslmmaWAGOxQl9ptaP9JQ/s5QxMJHA+rh4ddcTNOSzb30cbG9Vub1zc0r9va3NCSKaZUwqO+qYRWBKUPPWtivRJxEw2b1TP/g9YRa2XN/039qC+Z/btjZSEzFGStobFap1dFEKiDKJ3NbUpn1U8UqCUjeEtrUa/x651KDK6r3alf3bhBvd254U6C42GH6Gweds+9f5tbWjc3Zza1tG5uaQWwvqE5nc0B2NicbkhX+t67qsUOdSkpFH1SNX1qawDs1LcumYi57e3uguNhF/Owem81bsnmPmkIe7+GGdWDVDw2uK624E/OlGwHcDyMENVrbhwcHLYzRHDMz8HBwaEYOHPj4ODQRXDmxsHBoYvgzI2Dg0MXwZkbBweHLoIzNw4ODl0EZ24cHBy6CM7cODg4dBGcuXFwcOgiOHPj4ODQRXDmxsHBoYvgzI2Dg0MXwZkbBweHLoIzNw4ODl0EZ24cHBy6CM7cODg4dBGcuXFwcOgiOHPj4ODQRXDmxsHBoYvgzI2Dg0MXwZkbBweHLoIzNw4ODl0EZ24cHBy6CM7cODg4dBE8AA0NDTfffPMhhxwyceLEXXfd9dBDD/3Nb36TzXb80tLzzjvv5JNP7vxOVoRq6GRTU9PcuXP333//8ePHf+UrX7n11luFEOanK664Yq+99ho/fvxxxx331ltvVdLQ0qVL6+vrn3766Sh63dVwPOxsdDsP4wBOO+20VatWff/7358wYUI2m/3HP/5x8803r1q1au7cuZU0WQn23HPPxx57bMcdd+yuDkSLiy666OWXX7744ou/9KUvvfrqq9dff302m73gggsAXHzxxa+99trVV189ePDge+6559RTT12wYMGQIUO6u8vdAMfDzka38zD+73//e/Hixb/97W8PP/xwmbTXXnslk8kFCxY0NzfX1hZ+63CnYvXq1Rs2bOj6djsJmzZtWrhw4ZVXXnnssccC2Hvvvd9999358+dfcMEFK1eufOKJJ+64446DDz4YwO677z5jxow//OEPF198cXf3uqvheNjZqAYeerlcDoDnBRZxzj333EceecTM8Z/+9KeDDz543LhxU6ZM+d73vvfZZ5/Zmbdu3Tp+/Pjf/e53JqW1tXW33Xa7/vrrAXz22Wc/+MEPpkyZsvPOO8+ZM+fFF1+UeZYtW1ZfX//yyy+fd955EydO3Guvva666iohxD//+c/99tsPwP777/+tb33LbmjhwoX19fVvvPGGSXnzzTfr6+tfeOEFAK+99trxxx8/fvz4CRMmfP3rXy/oDU6YMOH22283Xy+55JIjjzzSdGbRokXf+MY3xo8fP3369Mcff/ydd96ZPXv2+PHjDz/88CVLlsgi2Wz2V7/61fTp08eNG3fAAQfcc889pra5c+eOHj06v9G+ffu+/fbbco4lksmkHPAXX3wxkUh8+ctflumJRGL//fdfuHBhfiUXXHDBt7/97XvvvXefffYZP378WWedtWXLll/84hdTpkyZPHnyVVddlV9k24LjIb4APPRGjx49YsSIiy+++P777w/Nn8S8efN+9KMfzZkz56mnnvqf//mfJUuWnHHGGcxsMtTV1R1wwAELFiwwKf/4xz8aGhpmz56dy+W++c1vLl68+De/+c0TTzwxefLk00477V//+heAeDwO4Jprrjn55JPffPPNG2+88Z577pk/f/6ee+55yy23AHj88cd/9atf2T2ZNm3agAED7Ibmz58/YMCA6dOnL1++/Bvf+MagQYPmzZv35z//ua6u7uSTT163bl37F28gO3PDDTdccsklixcv3m233X7yk5/MnTv317/+9SuvvFJXV3fllVfKnNdee+0dd9zxgx/8YMGCBWefffbPfvazBx54QP40ZsyYr3zlK+200tLSsn79+gceeODJJ58866yzAKxYsWLIkCE1NTUmz8iRI1esWFGwh4sXL/7Pf/7z7LPP3nfffX//+9+PO+64QYMGvfjii3Pnzr3nnnsk17ddOB7iC8BDr6am5ve//319ff1PfvKTqVOnHnLIIddcc80777xjctx555377bffd77znVGjRk2bNu0nP/nJkiVLFi9ebNcya9ast956ywzrk08+OW7cuPHjxy9cuHDp0qXXXXfd9OnTx4wZc+WVV44YMcK2xIceeuh+++2XSCRmzJgxcuTIt99+O5FI9OrVC0CfPn3q6ursVmKx2GGHHRaa5iOOOCIWi9133301NTU33njjhAkTdt1111/+8petra0PP/xwO1eej8MOO2zSpEk9evQ4+uijt2zZcsIJJ3zpS1/q3bv3rFmzli5dCqChoeH+++8/++yzjzvuuPr6+pNPPvmYY4654447ZPFjjz3WfC6I0047bd999/3FL34xd+7cOXPmyArlxRrU1dU1NjaaBTwbTU1NF110Uc+ePffcc8+dd95ZCHHmmWfW1tYeeuihffv2lT3cduF4aLAd89ADMG7cuEcfffTpp5++7LLLRo4cef/99x955JE//elPAWQymffee2+vvfYyBXbffXcAoUoPOuig2tpauRCdzWb/9re/yct46623YrHY3nvvrRrzvKlTp9oUmTBhgvncu3fvzZs3t9NXAEceeeTKlSv//e9/A3j33XdXrVolG1qyZMnEiRNTqZTM1rdv35EjR5b6Fzh27FjTk9DXdDrd2tq6dOnSTCYzbdo0U2TfffddsWLFxo0bi6n/qquuuuuuu0488cQf/ehHf/jDH0rqG4CRI0ca/endu7fpnvy6ZcuWUiusNjgeSmzHPIybT2PHjh07duyZZ565devWK6+88q677jryyCNHjRrFzH369DHZ5OetW7fatdTW1h500EFPPfXUqaee+tJLL23atGn27NkyWy6XmzhxosmZzWb79etnvpqJkbB944KYOnXqoEGDnnrqqXHjxj355JM77rjjHnvsIRsaOXKknbNPnz6hTnaIZDLZzldmlhWeeuqpRCQTpfn//PPP7YtqC+PHjx8/fvyBBx6YTCZ//vOfH3vssX369AlNz5YtW+rq6kJLGEV2r8MObBNwPNyOeRhvbW1dv379iBEjTFJdXd2FF144b968pUuXTpw40fM829jLzyHXC8CsWbO+/e1vb9q06amnnpoyZYrcO+zVq1cymXziiSfsnAWvoUh4nnfEEUcsWLDgu9/97lNPPSUX2GRDIUXavHnz0KFDQ8XN9Ei0tLSU1Lq86ptuumn8+PF2uj16+Vi3bt2iRYsOO+ww45NPmjQpnU6vXbt21KhRa9euTafTZs5WrFgxZsyYknq1fcDxsHhsuzz0fvazn82cOTO0OCdXiQYNGpRIJHbZZRfb7Xz99dcB7LbbbqGKDjjggFQq9cILLzzzzDPSsQQwefLkdDothBitkUql8ke/INoykzKCfemll5YvX24amjRp0rvvvptOp+XXzz77bOXKlfmd7N27ty01pXq5u+yyS01NzYYNG8zl9O3bt3///vYaWz42btx40UUXPfvss6F2hw8fvt9++wkh/u///k+mNzc3P/fccwcccEBJvdo+4HhYPLZdHsbPPPPM+fPnH3vssWeddda4ceNyudySJUtuv/32iRMnzpgxA8C3vvWt73//+7fddtvMmTNXrVr1s5/9bJ999skfwWQyecghh9x2222ff/75EUccIROnT58+YcKE73//+1dcccXw4cMXL158+eWXf/e73z3zzDPb6ZP0k5999tl999135513Dv26xx57DBs27Nprr915553Nr6eccsq99957ySWXXHDBBa2trddff33v3r3tPT+J3XbbbcGCBd/85jd79Ohxxx13NDY2hrzo9tGrV6+vf/3rN910U79+/SZPnvzxxx9fc801w4cPlytz8+bNe/rpp2+99dZQqV122WXGjBlXXnnl1q1bx4wZs2TJkltvvfX444+vra0dPnz4cccdd9VVVzHzoEGDbrvttlgsdsoppxTfpYJ49913bRc3lUrts88+FdbZ2XA8LH6stl0exkeOHDlv3rzbb7/9zjvvXL9+fU1NzY477njWWWedcsop0ljOnj27paXl9ttvv+GGG3r37n3IIYdceumlBWufNWvWWWed9eUvf3ngwIEyJRaL3XPPPT//+c/PPffcpqamESNGfO973zvjjDPa7+WkSZNmzJhx3XXX7bvvvnfffXfoVyKaOXPm73//e/sM0k477XTffffNnTt31qxZsVhs6tSpDz744IABA0JlL7300ksuuWS//fbr06fPKaeccvTRR//9738vauQ0Lrvsst69e1933XWffPLJgAEDvvrVr15yySXypw8++OCZZ54pWOqWW2655ZZbfve733366adDhw49++yzzz//fPnTT3/607lz515xxRWNjY1Tpky57777+vfvX1KX8vHrX//a/jp8+PBFixZVWGdnw/GwlNHaVnlI280So4ODQ5XD3RHu4ODQRXDmxsHBoYvgzI2Dg0MXwZkbBweHLoIzNw4ODl0EZ24cHBy6CM7cODg4dBGcuXFwcOgiOHPj4ODQRXDmxsHBoYvgzI2Dg0MXwZkbBweHLoIzNw4ODl0EZ24cHBy6CM7cODg4dBGcuXFwcOgiOHPj4ODQRXDmxsHBoYvgzI2Dg0MXwZkbBweHLoIzNw4ODl0EZ24cHBy6CM7cODg4dBGcuXFwcOgiOHPj4ODQReh+c/PKK6+ceeaZe+655+jRoydOnDhnzpwHH3ywmIIff/xxfX19fX39li1bSm30wgsvrK+vv+aaa0rvb8e4+eabZcd++tOfdkb9Dp2BP//5z8cee+ykSZNGjx49ZcqUU0899ZVXXimm4EMPPVRfXz9z5swyGt1vv/3q6+uffvrpMsq2hXvuuafewqhRo/bZZ5/TTjvt5ZdfjrCV8tDN5uaf//znSSed9Oyzz/bs2fO//uu/Bg4c+Pbbb//4xz/+4x//GG1Da9asqa+vv+uuu+TXCRMmHHjggWPHjo22FYnHH39cfpg/f757J/I2gVtuueWSSy5ZvHjxyJEj9913XyJauHDhqaeeumTJkmgbmjdvXn19/dKlS+XXadOmHXjggYMGDYq2FQCJRGLy5MmTJ0+eOHFiU1PT888/f9JJJ3W7xYl3b/N//OMfc7ncoYceeuutt8qUSy+99IEHHrjnnntOOeWUCBsyJkDijDPO6PCN9OXhgw8+WLZsWe/evXv06LF27do333xzypQpndGQQ4S4++67AVx55ZWnnXYagObm5uOOO27p0qV/+tOfJk2aFGFDIR5ef/31EVZuY4cddnjkkUfk54aGhpkzZ3788ccPPfTQPvvs00ktFoNu9m5kHNSvXz+T8uMf//iFF16w3ct58+bNmjVr/PjxEydOPOGEE1544YWCVZ144om2//L888/X19dPnToVwJFHHnndddcB+OlPf1pfX9/Y2BgKplpbW2+88cYZM2aMHTt2ypQp559//vLly+VPf/jDH+rr688555yXX3555syZu+yyy1FHHfXuu++2dUVPPPEEgBkzZhx00EHIo5dDdSLEw9ra2rvuuuuVV1659tprZUo7DAlBhjDGf5k7d259ff13vvOdxsbG+vr6v//97wCOOOKII488EnnB1Lp16y688MKpU6eOHTt2+vTpV199dUNDg/zp/PPPr6+v/9///d9777132rRpkyZNOvfcczds2FDM1fXq1Wv33XcH0NLSUtbwRIZuNjcTJ04E8OCDD/7whz985plnNm/e3KtXrxEjRnie6titt976wx/+8P333z/wwAOnTp36yiuvfPOb33zmmWdKamXOnDlDhw4FsPfee59++umJRCKU4ZxzzvnNb37T0NAwa9asoUOHzp8//+ijj169ejWAVCoFYPny5RdeeOGECRMGDBjw1ltvnX/++dlstmBb0twcdthhhx12GFw8tY1A8vDSSy+9/vrrX3755dbW1sGDB9sxTjsMKRKJROL000+Xn2fPnj1nzpxQhg0bNhxzzDEPP/xwnz59Zs+encvl7r777lNOOUUyTfLwr3/965133jlt2rRcLrdgwYKf//znxTS9devWt956C0D3ujbodnNz7rnnSrs7b968b33rW1OmTJkzZ869994rh3jLli0333wzgGuvvfZ3v/udHH0Av/zlL0tq5ayzzqqvrwdw6KGHXnHFFTU1NfavCxcufO6554jooYceuummmx577LEJEyZs2bLltttuAyAN37Jly2666aYbbrhBet0fffRRQXH717/+tWzZsmQyecABB+y77759+/aV8VTpA+PQpbj22msHDBjQ1NT0u9/97sQTT9xtt91OP/30559/Xv7aPkOKRE1NzRVXXCHpdM4555x11lmhDHfeeefatWt32mmnxx9//MYbb3z00Udramreeust6fvIgitXrvzLX/5yww03XHrppQCeffbZtpr75JNPjj766KOPPnr27NnTpk1bt27dySeffOKJJ5Y2LlGjm81N3759582bd/vtt5944ok77bQTM7/99tuXX375xRdfDOCNN96Q7t/s2bNl/iOOOALABx98sGnTpqj68OKLLwKYNGnSqFGjACQSia9+9asAXn31VZNnyJAhe+21F4AxY8b07NkTwPr16/OrevLJJwEccMABPXr0iMfjhxxyCFw8tS1g1113ff7556+77rrDDz98wIAB6XT6ueeeO+200/785z+jOIZUDtnKoYceKh2ZIUOG7LHHHqFWZsyY0atXLwCTJ08GsHHjxkwmU7C2TCbz5ptvvvnmm0uWLGloaIjFYv/5z3/+9a9/RdjhMtD9G+Ge5x1yyCHXXXfdc889t2jRIulkPvLIIx9//PHGjRsBJJPJHj16yMz9+/eXHzZv3hxVB2Qr9vqRbMW2aPavtbW1AIQQ+VXJSGrx4sUzZ86cOXOmXGZy8dQ2gZ49e5544om//e1vX3vttUcffVSGV7/+9a9RHEMqR0k8lCREGzwEMHz48BUar7322hlnnLFo0aJvfOMbZZwaiRDdaW62bt361FNP3XzzzWYFa/jw4TfeeGM8Hgfwn//8p2/fvgDS6XRzc7PMYNbG7FmRkN6mqarIVTQAshU52XZZY9qKxPvvv//hhx8C+PTTT99777333ntPekAunqpyrFmz5uGHH5ZhssTuu+9+xRVXAFi9enU2my2JIUSEbuVhPgYMGPDd734XwKZNm7qXit3s3fz3f//3//t//2/u3Lmtra0y5W9/+5tcuNlxxx332GOPZDIJKx557LHHAOy66669e/cOVSUX9uSSGIC//vWv9q+SBI2Njfl9mDZtGoB33nln5cqVAFpbW+fPn2/Si4eMpPbYY48VFmbMmAEXT1U3Vq5ceeGFF1599dV/+ctfZEoul5MrJkOGDInH4yUxxOZhY2Oj3Ioy6JCHzzzzjPxbWL169euvv95WK6XC7OfW1dVVXlvZ6M5zN3V1dRdddNE111xz9913P/TQQ8OHD9+8efO6desAHHXUUTvttBOA7373u7/85S8vu+yyRYsWbdiwYdGiRbFY7Mc//nF+bQceeOBf/vKXp59++rzzzmtoaJA7iCaKGTJkCIC777571apVF110kV1w//33//KXv/zCCy8cf/zxM2bMWLJkyb/+9a9Bgwadc845JV2ONDeh06WHH374888/P3/+/Msuu0xSzaHa8F//9V+HHnroggULvve971177bX9+/dft26djNa///3vo0SGHHjggX/605+uv/76999/f/HixUOHDv30009tHq5evfryyy+fPn365Zdfbhc888wz582bt2LFijlz5si1pEwmM3369K985StlXJRcKpafN2/evGLFCgBTpkyRiz7dhW72bk4//fQ777xzxowZPXv2/PDDDxsaGiZPnnzllVeavafzzz//+uuvHzNmzFNPPfXGG29Mnz79gQceKGjvZ8+efd555w0cOHDRokXDhg2TJybS6bT89eyzzx4zZkxDQ8NLL70UCneJ6Pbbbz/vvPOSyeSjjz766aefHnXUUY888sjAgQOLvxATScn9b4OvfvWrsVhs7dq1b7zxRikD49B1IKJbbrnl6quvnjJlSi6X++CDDzzPmzFjxl133XXCCSegRIZccsklhx9+eDwef+655772ta997Wtfg8XDH/3oRwMHDly5cuX7778fKjhgwIB58+YdddRRn3zyyaOPPppMJs8777w777yzPJUyS8Vvvvnm+vXrx44d+4Mf/OAPf/iDOWLSLfj/vO6VMwcLRiAAAAAASUVORK5CYII=", "path": "image.png" }
Which solution has a higher concentration of pink particles?
[ "Solution A", "neither; their concentrations are the same", "Solution B" ]
2
The diagram below is a model of two solutions. Each pink ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the pink particles represent the solute. To figure out which solution has a higher concentration of pink particles, look at both the number of pink particles and the volume of the solvent in each container. Use the concentration formula to find the number of pink particles per milliliter. Solution B has more pink particles per milliliter. So, Solution B has a higher concentration of pink particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAasAAAEOCAIAAAC4oq9nAABu80lEQVR4nO19eZgeRZ3/t6rfd+77zMxkJic5JgckIYFwxAgSDjnFVdDFh1P0WWRdQJTnWcRzWcXFVVF+qyIuKgqigquEhCuK5CAHIefkzhyZyWTu+533fbu+vz+qu7q6ut933rmP1Ieh011dVV3db/Wnv1dVEUQEjbMGEdbfHW7rjDS19zd2hVu6I+0AwNAkQAhQQEgLZmcl5WcnF2cnF2QE85KMlPFusobGKCIw3g3QGHUgYHe4rb7n8Kmeg/U9R1pCdSGzO8xCDE1ABEL4V9D6HxGQBmlKipGenzy9NGNeeebC6ZnzM5PyCKHjfSsaGiMMomXAKYx+s7e+53BV++aa7r1t/fUR7AdAAoRSi8ts5rN2EAERkVn/m4wBgwBJzk0qmZm9dGH+RRXZlSmB9PG7IQ2NEYZmwKmJkNl9tGP7By0b63sP97MeQoASCgQAwNpyiB+f2fIfACAg41TIGAL/lzFMJmll6fOWFV+xsPCitGDWGN+RhsZoQDPgVEOE9R/r3LGj6c91vQdN6KeEEkI46xEAIASEzksIIhJH/wVARxhk/JAhMi4TAppgMtNgwekZ8y+Yfl1l4SXaSqgx2aEZcEqhsff4ljMvHencEmZ9lFKgQAgRkp/FgJLkh1zvdQ5tpViIhAwAERkyLg8yQAZm1AxgcGHBRZfO+MT07PnEJVVqaEwmaAacIoiyyL62t949/dv2yGlqEEIpAeBbFzgfSj86AgCi5QyxtgBo68VgsR4gmowxRGDATGAmY1EzO6noQzNvXVl2ddBIHrM71dAYQWgGnArojrS92/i7D1o3RqGPUoMQIIQQQiy+A9v2h5IRUPnZOQmixYWIjl7MLA8JAHNIEBmwKLBohELSsmnrPjL3tpyUorG6XQ2NEYNmwEmP5lDNm/XPHOvaTigQSgxKLeKTWY8AAR76Apblj6ejSyUGsBwgKBsHGZhou0cYM7lRkAFjwEzAaNRkODd3xbXzP1eaNXdcnoCGxpChGXBy40zfyVdrf3Cq76BhUEoIkeiP2MSngBBgaLMfukkQLGHQhu0eQaEOOzZBiwSjDE0WNc3S9HkfX/JQefb8sbp1DY0RgI5xncQ403fi1bof1Ifc9Ecs+hN/6iG4DnkGmSn5LuU+FApAwAqkIVYqpZSXogSIQYlBDcM41X3kpT3fq+04NB5PQkNjiNAMOFnREqp7tfZHp/oOUkoppYL+CCcsQYacp9zpVKFFKpEgIUAppdyL7GjTojaLBAkBCkCBUgBKKSWGQU91H/n9nicaOo+P42PR0BgUNANOSvREO96q/8WpvgOGRX8EKAFqcRy12cqhNmpJcxaIk8ypkCr6MrFAiXNCkhltdrTLAqWUgGHQU51H/u/ATzpCzWP4MDQ0hg7NgJMPJka3nnnpaNdWalBKKSFOqB8VEp/gPke4s7fU3kHbXAjSKVkddqq2zhP7H4ccuWjJjwkYhnGoefsbR34VMcNj8zQ0NIYDzYCTDwfb3nm/+VWgyK1/lvJru0AcIpOpzesQQSuno94Km6DIgmjpwsIg6JAgIXymBF6KAhBqSaCUvle7fkfthtF+Dhoaw4dmwEmG5lDNu42/C0MPkelPkv4ceFwcLqmQ2mIgHyknZ7cNgsQOn3bVIdRi++qWx9m2HBJKImbojSO/OtVxdPSeg4bGiEAz4GQCQ3N70/81h6up7awAyekB4FZyQSQpf269GGyvrt/YNldYta0jizgbpwIChBKw3cfUMFp66zcdfTHKtC6sMaGhGXAy4UTn7v1tmygV4pkFIvMbeukPPENAJBIkfqeFX1hJcV9R9ocQO5W7iw2DflD/9oGGrUO8VQ2NMYFmwEmDCOvf1fJqP3Y6I964gU6O6XMxmeA+hd88wh46IiTxnHeJgWAbDe16ZD+Jk5cCpUa/2fvuiVdCkZ6h37OGxihDM+CkQXXXnpPdu63Zrmyoqqujmir2P+rJ5+Mm9tKfq4AkMCJIXIhSPaJxhBgGPd7yQVXj9sHcpYbGmEIz4OSAidG9rW+GWTehxInGkzVZl2mPeLZIiJzPhkc5Rg8Hqlq0sACizXi2a8VSgoWDhNB+1vte9WsRs394d6+hMVrQDDg5cKbv5MnuD/jAD4v8/AgNAGTbnx3DTMAaAO7MguBTyP7XNVKcl+fu4DjKNAJBpw4uIfLxc8db9tS2HR7s/WpojA00A04OHO3Y3httd8l+Xg6MocD68F2MLHwWLFc1fIIEXz+xDEcaRXkUCSW0J9Kxv2HzwA3Q0BgPaAacBOg3e493vI+CyGw+Qmmr8JZ8jK4c6M3tKuQvV/rDqcsmUEBJPbcbe/jMzp5wZ6KVamiMITQDTgI0h2qa+k9SZ8EPCcIR7OMFtmb8kzwnYsdeIE6dGsu/AbFkSCJ5RbzViIiZ050nGzr0dAkaExGaAScBGnqOhsxu/+U4fIx7CMCcA2shEJe86FOJcO9KS2hKGVCcdQQ/dA0XkaJkXGEyBEgo2nuy9UBCt6qhMbbQDDjRgYCneqoYmE7EnVetja3aumqytkKbls7ZM6E6GaViPpqxJES6nCTuIBwuBiKymtaDJovGb5+GxthDM+BERyja3dxXQ2Xbn4jCU+Q1VcJTeNFDk34FkSl1SIvJoYv4QI7CRnvGabA1YkvFtibTOt15sjfSlfBNa2iMETQDTnT0Rjs7Iy1EFdgAZOnMI95J64DIlIYWV4nMdgK6KnYu5Ki8irqN7uoc9RldMylYPmLS3d/R2dcytCegoTF60Aw40dEZbu43e51jmaXQTXrgJUF3qq890F4lXRUJxdJx8lIyqGZEiUaJXKFUFQHSF+lq72tK+KY1NMYImgEnOrojrREWlkKW7R10yBDBR9RTge4tc+jMjp92F5SGA8ehSFf9zE1/UhtNFu0MaRlQY8IhMN4N0BgAfdFuhlEKBoCLsDhkCrK8r2qOGPt2ccF7LhVYNv+J2m1jn02IthHSIUfHAe0cWhvUIYEaExBaBpzocNiMeYnK5iPnWNpnHmFQeC7QEeBQ7HtcwMCYxYPSWZGLcTuhJBjadGofIjoq9iDirDU0xg5aBpzoYMgsAqIAYJnmrIEXtozFpT/PgDb3jkRhRHAf+JjtwL1csMtn4uzb9kG3LwUkMrXise2rMNXNrKEx/tAy4CSATEYIgEyiEkmOE1qq46NF9x+4srmIz4mhdq4KABK3KQ2ym0RsiZJZMiMvhXZzvaU1NCYOtAw40UGAOoKVHXTCECk4gYHoNvw5zg13VUKBJkKg82ZiTCQLBdbiOJ7IhIZri33EUomt0SfCGCgfEqBEf241Jhw0A050ECBclEK0mAsIAGNIqaIL+5WVTkk5GDrimwOHwtQIGEd+ZO6aUPb/IghidG/dzdHQmEDQDDjRkRbMMkgQEa3BFlziI4QAINqzHggS5BNZ2QTH57VyGJBIXCYSJThmQNexZOOzTiOTjICWTo6OXOhwqa2vE6BZKXkj91Q0NEYGmgEnOjKCeQZJirI+ZAYaQBCAAVJEToOMWYF7sq9WRLhIQqBjFnTyiX3BbJLwJ8l3iMBsBwgAyPSHAMAAmeQN4XKiqAkBAIJGMFMzoMbEgzbNTHRkJeWnGBkMGaLjaQAEhg7UyGSJ5lzBLujJIMADX4Tljkm8KVfLkPFGcCJGYJYPxI4fdGRMRGaNMkbE1GBmTmrhSD8bDY3hQjPgREdqICsrWMBkrrMD/RwKZAwUB7H4Y+5DhxwROKcyxrhWq4wKtr0fDIHZoYgMgCkBicIHwtnQ+rOCBW0axayUPC0DakxAaAac6EgJpBenzUaGyBi4BToUhjlLyZUCnePAzuOIkIyh7c6VuZLLdCjoD5FZBe2rM9s9LOvFnJJNuSFYkj07NZgxWs9IQ2Oo0Aw4CTA9cz7FAENExpxBadLAXs45KJRkS1FVR35Y0qJwZUg+DcdKKHErojPaWDh60RYtbS5GiYu5WGmryTYoMWbkVepoGI0JCO0JmQQoST8nNZDdy9oIQYMhIwQAqD33FRLLS2yv6GZtpTkUkAgPLyFoe2pB6MSyfVC4NFyEiIzZijK/KAjx0E5mTjHHcwKAgOlJWRV5C8bueWloJAz9WZ4EKEgrK00/x+YgBBMZs4xuljDIhNMDEYXairbU5kh8yCsBAA/NCSshV2+t+pldxE1/DIEhAjIulgq+4wIgMrk2VpY9tyRr5jg9PA2NeNAMOAkQpMnn5J5PmIEMTMY4rzExuE0hL8nAh7bxjkmsZyvOtpPE3gq/h1UZ93rw4owJOdES90zb/ys5Z4ScKAdCE0LnT1uZHEgbjyenoTEANANODszLW5mdVMgsgQuRITDLA4yyMIiyPOjyiyh+ZNVHDFZoCwMpukXIjG73izVljGkxqz1ODnhexoRGDIiYk1KwuOSicXtwGhpxoRlwciA/tXRuzgrTRGTAGDLGGENg3A3rRCwjs5VimeBMVdyTz/IEU/h2TSvimSGajEnGPVs1ZhLbSaPfGGPWRDbSJAsI7JyiFcWZM8bz2WloxIZmwMkBQuiKkivTabZFggiMsyA6gpjpuIY91j2mCn1WsghpdqQ8ZIxb9yzqc9sZAaXwFzuHrXebCv1helLWhbOuMah2uGlMUGgGnDQoy5q/IH81i5po2uMxOFUxRBOlAGdbnxWc5eZAZp81heRoj+sQxGfHSFvFLG5kgCaCyYBZgiCX+EyTMWYCMidCEAAAENnCaRfOLlg6nk9NQyMuNANOGhgkcOH067ODBSxqcm3XscVx3zBPFMZBZhGiQ4X8FAjKk4b02iKlyZjDfbbnFxlwiuOEKuhPOKAB0TTtoSMAAICAWSn5l865KUCD4/rYNDTiQTPgZEJZ1rwVpVejiaaJjAEXBhlDkzOXrRcDAjJrWC4yQBOYsBgycHRVhsAYL2lKLmOZ/pglV1oD76ywQLs2Zg0TZpb3wz0J9KqZV80qWDJOj0pDIyFoBpxMIEAuKLuuPHuRGY0yEwXvCPcId5Ew00TTchVbgXzMpRijzWVcgWay3Ge7TSzhkdmuYa5uoyNgguUKMZlpcbEAQ1aeM2/N3Jv1OBCNCQ7dQScZslMK1s25IyOQx6JRNJkZBebos1agsomWVGhKbg1bRmRCWuSinyP0ORMuWDIjlwzBNIEx2/0ipo3hNZvesciImJGcc83iu/PSpo3bY9LQSAyaAScf5uQvWzvzVsKCLMqAMWYin4bACYWxWUm4Sbh1jzMjs6IJ3aEzUlSN5U6xRD/T8jULFzNwedNETotu/y8AUGpcNu+Ti6atHq/no6GRODQDTj4QIBeUX7uy7BrGkEUZmJY4J5hLpkIhHjqJphobyGdAYLbohybfMwEZMvuUKavbJjLncuASANmqGVetmXszIXpOfI1JAB2oNSmRZKRcMfczXf2t+xrfQQCKCIwAIUgJUEIIELCmy3d4SJ4v2tZbib3SG+OhfVbgjBXu5xp6DGCPELEMgmi6Rr8BACJbVHrRRxffnRJMH7NHoaExHGgGnKzITM67sfJ+QNzb+A80CCFICBIkhPE9ay0RTnwE7XXmpKVC+BJvTtAgiEHFlqPYCZ8WEyxwzZfZpkMJnP4+sfxBPRe0xiQCQdmIrTHZ0BFq+tO+H+5rfIdQQinhrldCQJID3dooAdttIVZUsifLck8nKI0XtkQ/kHzBbvpDBFhUctEnlj+gvR8akwuaASc9uvrbNhx+dlvNXxFMalAg1sSAVLbxEmKLgQicscRSmcLLoRKfmGOGT6oqWf1kzRfQIIGVM6786OK7tfSnMemgGXAqIBzt21r9lzeP/ror3EqpQSjlwh9fQs7rk3AWChaBLJzXCI8EtGRCwX0gNF93Z2HIMpNzL59/6yVzbkoJ6vmvNCYfNANOESDikeZd6w/+/GT7PiDEoJQQanGf2Mqin1WMl7VqsDcMAYVSjL5WP0AAmJFbec2iOxdMW6UjnzUmKTQDTil0hJo3n3hl68m/tIcaqWFQyufSJ5ZZ0PL/EkcXBuf3t4Q9ifgA1GAXsKyGLDulYPXsay+efUNuWvFY3qCGxshCM+BUAyKrbT/87vFX9ja80x1uJZRSQgjxU4ZBeEWcgGdr6yE+sLkvIzl3cclFF8+5fkbeIi36aUx2aAacmjBZtKatatvJ9VVn3mvrPc3Q5EzoeIYRgFgxMS43CPgLfZQYOamFC6ZdsGrGVTPzK/WMLxpTA5oBpzIYms3dDQcbt1Wd3lbdWtXd304MPqbXzhHrx7cdysggIymnPG/+wmmrFhSvKsosp8QYi6ZraIwJNAOeFYiyyL5jO779g3+PpLRnlQSTs2gwldIA8U7ejFE0IxAJsf4Os70hzNpTvvbQd8+bf0GAJo1HwzU0Rhd6TMhZgQAN5iWVNe/H+vrupFQjmEqTs0hSBg2mUgDg1jwuGIZ7zVBntL+ThXtZqDucl5ufl1Sm6U9jqkIz4NkCBOSKbTSEkZDZ2+qfzTRN5NZBbh6k6qASDY2pBM2AZx+4OyQGrxFpTIiGxpSHjmbQcEHMakUI0TNcaUx5aAbUcEF7xjTOKmgG1NDQOHuhGVDDH9YSSxoaUxqaATX8oe2AGmcDtC9YQ0PDH52dnfv27WtoaAiFQuPdlhFDSkpKaWnp4sWLMzMzQTOgRixoLfgsR3t7+9/+9rfVq1cvW7YsNTV1vJszYujr6+vs7HzjjTcuu+yy7OxsrQVr+ENrwWczOjs7N23adMMNNxQVFU0l+gOA1NTU4uLim2666e233+7q6tIMqKGhoWLfvn2rV0/xFZ8vvPDCffv2aQbU0NBQ0dDQkJWVNd6tGF1kZ2fX19drBtTQ0FARCoWmmPLrRWpqaigU0gyo4YK2/WmcVdAMqOGC9v9qnFXQDKjhDx0No3E2QDOghobG2QvNgBr+0PGAGmcDNANq+ENrwRpnAzQDamhonL3QDKihoXH2QjOghj+0HVDjbICeG0ZDQ2MUsWvXrtra2qqqqpqaGgCoqKhYsGBBRUXFsmXLxrtpAJoBNTQ0Rgk1NTXPPPMMJz6BqqqqqqoqAKioqLjrrrsqKirGqXUWtBasoaEx8nj55Zcfe+wxhf5k1NTUPPbYY6+88spYtsoLzYAaGhojjJdffjlBanv55Zc3btwYP8/BgwdvueWW4uLi5OTkWbNmffGLX2xtbR2JZgJoBtRQILwfOh5QY2ioqakZlGT329/+No6ouHPnzlWrVvX29j7//PO7du363ve+t2nTposvvri3t3ckGqsZUENDY0Tx85//fLBFnnnmmVinPv/5z69ateqVV165/PLLFy1adPPNN//tb3+bNWsWNyYOH9oTouGClvs0hgPu+R1sqZqaml27di1fvlxJr62t3b59+xtvvCEHZmVnZ7/66qvDbagNLQNq+EPHA2oMAXH02SEUPHbsGAAsWrRoWG2KC82AGhoaI4YhK6e+BQOBAACYpjmsNsWFZsCzBVqg0xgDDFkG9NWd58yZAwC7d+9W0iORyNCu4oVmwLMC0Wi0tbXVNM3B8iBjrKWlZQQ7nIaGL3wN0CUlJRdffPE3v/lNWQzs6upaunTpyy+/PCLX1Z6QqYy+vr7a2toDBw5UVVUdPny4vb09cQbkPbKnp+eHP/zh/PnzFyxYsHjx4oqKirS0tNFsssbkRkVFxaFDh4ZW0Df96aefvvTSS9etW/fwww+Xl5cfPHjw61//emZm5lVXXTW8llrQDDgFYZpmfX39rl27du/eXV1d3d3dDQDhcJgxNtiqELG9vX3Xrl27du1KT0+vqKhYvnz5ihUrpk+fzm00GhoyFixYMDQGXLBggW/6kiVLduzY8Y1vfOOOO+5obW0tLy+/5ZZbHnnkkZSUlOG11ILuxFMK4XD4xIkTmzZt2r17d2trKyIahsGpilKan5/f1NQUXxcmhIhYaMMw8vPzk5OTKaUA0Nvbu3///gMHDrz66qvnnXfe2rVr582bl5ycPGZ3pzHxMeRxvnEKzp0797nnnhtqiwaAZsApAtM0jx07tn79+j179nR3dxNCDMOQM1BKS0pKMjIy2tvbe3t7I5GIaZqc6fhW0KJhGElJSWlpadnZ2ZmZmZz+eDrfb2tre/PNN7du3Xruuedee+218+bN0/KgBsfy5cvLy8sHGxJYXl7uDQYcG+iOOxVQX1+/YcOGzZs3d3Z2UkoV7hMghHBSM00zHA5HIpFIJMIYC4fDiMhlvUAgEAwGk5OTDcNAG3INAGAYBiGkt7d38+bNe/fuvfDCC6+//vry8vIxuluNiY277777scceG2yRUWrMgNAMOLkRDoe3bt365z//uba2Ng73gaTeEkI4zYlTigwopyAitx4qPMiFQUTs7u7euHHjvn37brrppjVr1oyUdUZj8qKiouKGG25IfGjwrbfeOo5zZGkGnMRoamr64x//uGXLllAo5OU+zmicxcRWpIAn/sA3HIGTnTc/T+fkaBhGQ0PDT3/60/37999yyy0lJSUjfJ8akw033ngjACRCgrfeeuu6detGvUGxoRlwUgIRDxw48Pzzzx87doxSKkx1IBGfOORQ+EvQolyn77V48ViSIBcSKaWmab799tvV1dW33XbbsmXL5CZpnIW48cYbly9f/vOf/zyWTbC8vPzuu+8e9xlSSax+rzFhYZrm5s2bn3/++ba2NkE0CuUpib5QbHwDxsowxrxTZnEGFEJiNBrNzs6+7bbbLr/8cu0embz4zW9+8+lPf3pEqtq1a1dNTY13lvzxcn3I+M1vfqP76CRDNBpdv379n/70p97eXpn+BBKvSuQX9kGIOzeMPHWgbyXcwtjZ2fnzn/+8o6Pjpptukq2NGmcnli9fPhHILhY0A04mcPr7wx/+0N/fz+lPENBwpnLxpbZY2bzqMzcICucJpbS/v/+FF15AxI997GOaBDUmMjQDThpEo9HXXnuN059X5x3+xAeJ8KDXpCjShWOEU3MkEnnxxRcB4KabbkpKShpm2zQ0RgnaXD05gIgbN2586aWXBP1x0hmC8usLWY/m1cbKKS7qW1wcUkrD4fCLL7745z//eVRnN9LQGA40A04ObNu27U9/+pNX+hvZOa8SrND30jJ1igzhcPill17atGnTCDZSQ2MEoRlwEuDYsWO//e1vu7q6vNLfiF9LFgPj1O971ushIYR0d3f/6le/2r9//4g3VUNj+NB2wImOjo6OF154obGx0ev5HaUr8pp5iF+cDF5roOwSETVQSpubm5977rkvfelLBQUFo9TmsYGJZne0uz3S3hXpOtN/JszCABDFKAVKgSJgZiCzILkgM5iZE8xJDaRSLWFMeGgGnNBgjK1fv37v3r1jRn8gUVssposD2VUi3COU0n379v3hD3+4++6744zbm5joM/tOh05XdVcd7DpY1VVV11vXHG7uiHSEzTADBgDIkAABAoAQgEAyTc4N5hYmF85KnzUva97irMVzM+cWJBcEqfaJT0RoBpzQ2Lt375tvvikOB8t9Q6AwkIbNEb+hIxw8nY8J8Sq/CocCAKX0jTfeWLp06erVqwfVmPFCT7TnUPehf7T8Y3PL5iM9R5rCTSEzhAQJIQQJASJYT5bzwhDuMXtaoi1Heo5sbt1MkKTT9JKUksrsyjWFay4suHBGxowkqj3jEwiaAScuOjo6/vSnP3V2dnK5SXbXJlJc9pnwncSpkNjD4HzpL0669yqCRnt6el544YV58+bl5+cn2IyxB0NW21f7ZtOb6xvX7+va1xZpM8GkhFJCjYABABbr8a0A2lsEYhCCBIiV0sf6jvYePdx9+K/1fy1OKl6Zv/LasmsvKryoIGVyGwSmDDQDTly88847hw4dEmpjgvSnZBCDPSAubXkh4vvijBeORY6ilCwSGoZx5MiRDRs2fOpTn0qwDWMJE839nftfqn/p9ebXT/ae5MRHDBLwviNE2ooU5UkYFiECAYqUC8v14fqXT738WsNrlZmV10+//trp15ZnlBMYRYOGxoDQDDhB0djY+NZbb8kTuiROf8oQN2U/QRIUQ33jFPE9RTyzMMja9JtvvnnppZdOqMkEEfBQ16H/rf3fvzb+9XT4NNfuDTC8Sq4o4HNI3DzIpENmsSElFChEWGRXx64P2j/43YnffXzGxz8x8xPT0qaN4u1pxIX2VU1QbNq0qb6+fmgzrBB3ZLLvLKdDqG34+Q3DqK+vX79+/cSZj6Mp3PSDYz/4zPufeabumTORM9Y82AaAAUDtrf1HKCGUOCmGTXxEEgz5H5WERColUgAKBjWAQlVP1eP7Hr/9H7f/4eQfeqO94/YIzm5oBpyIaGpqeu+99+SURGhISItxUiBha6CQOofAVrFGlfAKt23b1tDQMNg6RxwmmpuaN939/t3fOfad6lC1QQxi2OxGAIj9BMDeAgEp2bpBkV8QIgeRCJSAXK3YNwwDKOxq2/Xgew8+9N5Dh9qHssCQxjChteCJiG3btnkFwPgkqJxV1GFxOFg6GzB/LE+xnEEOLaSU1tfX/+1vf7v11lsH1ZKRRUe042cnf/ZM7TMtkRaDGFw/BQACBCg4rl4BAoCABAGAAgUERCRAEBAI8K3lIQFJF1Z+MZ6H2WxoAlAwwAix0EvVL+1u2f3g4gevm3HdFHMWH+vd1hw5WRfa1xQ+AQCFSbOmpywuTJo1O3XVeDcNQDPgBERPT8/27dsZY4oPJFb+AU/JtrzBynRxAmISh3dKwS1btlxzzTXZ2dlDrnM4ONJ95PEjj29o3mCCyRVSEHHghAIBTm2ESg8WOTvaETAAQAARKaHi7pDYPCj+wJb7mFMJUPvQsMyFhBCDGEe7jz68/eH9bfv/pfJf8lMmrrs8cTSFT7ze8iNOfAJ1oX11oX0AUJg064r8LxQmzRqn1lnQWvCEw5EjR06cOKFM+xyH5pRVPsREp8r8z4M158lXH2YRRTGnlFZXV4/XOLl3Wt75/J7P/6XpL4wwQgkYVpMo3xhc5QVCicvGR6UtATCAUEIJJUCcHSE5ypZBDupO8TMaGgGjh/U8XfX0A1sfONF1Qm33ZMPW9t893/CAQn8ymsInnm94YFvHC2PZKi80A044fPDBB319fbI3I0ERLL6/WPbtJkhqshM5ToZEPNTK7YRCoZ07d46xP4Qh+/PpPz+4/8E93Xu46MfJy+E+g7hsduptuHfsnBZj2kZDCtS/EuL5k+ukYNEuhfWn1t+/+f7dLbtH6TmMAba2/y5Batva/rv3O/8vToYFCxYQN0Z27nHNgBMLnZ2dBw4cUCyAiUhwXhufTDpK4mADYoZJVb4RM/v27WtpaRlOtYMCQ/ZSw0tfPvjl6lA1d0EQQgif/0GIe0773KKfl7lENvt2bAIElINlvG5i8NRG1T+DGlvObLn/3ft3NO0Y1WcySmgKnxiUZPf3tl/EERUB4Ctf+coRCYcOjaTLaIzsgBEW6Yh2NPc3n+k/09TfdLrvdAQjwEeVI6WEAkB2MLswqbAktSQ/Ob8guSDNSOPpZxVqamoaGhqGrLGK+e4V0pSlyEHRn1I21hWVxAGdNpTS06dPHz9+fGzmSkDAlxpe+trhr7VGW6nBPR2EEso5SxXuwHZZCJISQz6IU6PL9WEVIjwnAcKAuTKLaoURUOzIFdoqdhCCBzoOPLDlge+v/v6KwhUj+CjGABubfzjYIq+3/OhTJU/GOpufnz937tzhNSomRpEBwyzcEGo43H14d8fuA50Hqnurz/Sf6Y52RzEaNsNI0GUtRghAIEiCSSQpN5g7LWXaOZnnLMlesjRn6cz0mXnJeWdJ6HxVVVUoFFLk/AEJRTYFim2swbyJNwZtJHJ1paCSx5utv79/3759q1aNhUPwraa3vnn4my2RFov+gFBKHZud1Uo3qcleXa9LN0YGQok1Ng4JgOU7tiA7Rjio7RoGmxClNgSN4P72/Y9se+TpNU/PyZozEo9hLMA9v4Mt1RQ+cax325y0C0ahRQNg5BkwitHq3uptrdvebn57T8eexv7GXtYLCFzjAABCiDXEUhlfiRDBSJiFu0Jd1X3V21q3GWhkBbNmpM1YXbB6bdHapblLpzYVRiKRY8eODbhmmwLFEyInyoeD0n85BnQEJ16bL0seOXIkFAqN9iLrO9t3/nvVv58Jn6FUoj/u55W5jG99tQ750aLnlPQVt/zIKAYGg/Wll3NSe5QIePiX2A2wSXBXy65Htj3yo4t/VJxWPMT7H1vE12fjF5z0DNgd7d7atvWvp//695a/N/Q3RDHKdQ0rqkN8M4m7G6G05RZlJCKeoMPs2N2xe3f77ueOP7cgc8GVpVdeVXrV3My5AToF43i6uroaGhq840AStAPKsS8y3w3Biie0aWJPkRAnZyK1eRO5Itze3j5t2iiOCavrq/v64a8f6ztmuT7AnshacUSAx8bnhSjCbJ4i7tFvQoSkAMz+MgFBig7lybWh3+sADg8SIIZhvHXqrSd2P/HNVd9MDaQO8SmMIXiky8gW/PKXv/yVr3xFHC5evHj37t1Du4oXI8MjreHWjWc2vlT/0q7OXd3RbkLdIyvB3UvA0/NACqESORkAAgFiUAMY9LG+ne07329//7ljz60tXvupWZ86N+/cKTbnWktLS3t7+5CNgOCR9QSLDZYERSVD84Ek6Llub28/c+bM6DFgyAz94PgP3ut4j9MfN/xZfg/wdMXEnzp1m/ZQ7d48RIaZDMB2jCjZqNuGSKQByMxOIbZAQMnvjv1ucd7i2xfcPuhHMOYYsgwYR3f+t3/7t9tvv10cjqzSMFwG7DV7N57Z+GzNs+93vB/CEKX2JEIcxP1jo/uHR3dPcnOfow4wK+bAMAwwoT5c/+uTv37t1GvXlF1z5zl3LsheMGUcJk1NTaFQaDhuEGUnVuJoI0HODYfDjY2No9eM39f//vcNvwew+o+L/gS8n+QE4f26u0+pD8GbTbEMorRvpxNKKNK+aN+THzxZmVu5qnhCjKMYDcTpMNOmTVu8ePEoXXfo3MGQbW/bfv/e+7+4/4tbOrZESMQwDGfcuOEeFGl/zVTfP/H51V2xVMSd06bC1mjrcyeeu+2d236w/wdNoabhP4iJgObmZtM041v0BsSIMB1KGMKFEmyDaZqnT58eSvsSwL7OfU+dfKqP9RHL50Fcyq/y54s4tOilUa+tUMhxjqPEXUru5LF4mQAQoJTW9dT91+7/autvi92mCYEhj/EYr8EhQ2TA9kj7j0/++J499/y58c8hDFlDi6hDdpRQCtTaIVQsmMC7IbG1hXijypXB5Ia0T4FQYlCjrq/uiX1PfPbdz/799N9NnPRLMra3t8cinTEOHk5Q/42TTZFDY91Ue3v7UNsYD31m31MnnjrZe5J7P7gG7ApRHlD0GzAnepjLm0fQH4l7RW8l1Hk1+ZATwzA21W96/vDzsVs8ITA9ZYjC2pALDhND0YIPdh38ztHvvN78ehSjhmHI3zrXIAE7BRFdX0K0jSMIQOyIAZQipBSLIZMMzODSnSmhSPDdM+8ebj/8uQWfu33e7ZnBzKE8hgkARGxtbY1Pf8MxESYO33F1vk2K1drE+bqtrS0SiQSDI2zPfaPpjQ1NGyzpTwpXBnDLfX6c5QORGeMmysqsHRiIquorZfbqzjKkCEFCCBKMQvSXVb/8yPSPzM+d71/nBMCIy4BVVVXDaM7AGJwMyJC92vjqvR/c+2rTq4wwalBlaBHf4ZZgYhCnC9rB9wIUKLdMU5Ais7zDJ5X+6pliCCgYAaMl0vKdPd95+L2Hq7urR/YBjSWi0Wics2NMf4nkHKafhFJ64MCBH/zgBy+99NJ7771XXV3d1dUV/yEkguZw809P/rTH7HECnqmnU0EMsvNGKchm61j8SKT8IhGAoLWoiJrTe+jLxUILJpY6dbzz+DMHnomy4T6i0cOctAsKgjMHW6ogOHNcQmFgUDJgmIV/WfPLJ48/2RZts9ReoV+A9aVycpN4W8KkPsFcX1FroiE5kbqn1iDSjh1HSgximuYfq/9Y3VX9Hyv/47z88wb1FCYIYnGc7Ngd1QbIbpMh693xC8pn+UxZTz/9tGEYKSkpubm5BQUF06dPr6iomDlzZkVFRWFhYX5+fmpq6qCGgr56+tX3O983qGFrJdJUV/Gfn68xDmOc9ZZFJYEgIBLk4YFI0PHzxnKhxKjKSSfwfyf/75PnfHJF0cQdKLKu4P7nGx4YbJFRasyASLRjdUe7f3j8hz+r+Vkv9opxRdJ48IH6hwIqqQliXRmuDXOlmKrMaG3luHkqRWYxPm0b3dGy47537/v6iq9fXnb5YBo0zjBNs6Ojo7u7mxsNYpHdqJLgoOgvjvlPKR6/NkqpYRiI2NfX19PTU1tb+/777wNAMBhMTk7mnFheXl5RUTF79uwZM2YUFhbm5eUlJyfHWnWzqb/pd/W/C0PYIIZlh1G6pq8oJ5MOgkqXA34LYhEW2INDwE8bjlWt+MZL/Z8SygijlDb2Nf728G/PKzjPoBN03dHCpFkXZH8y8aHBa3LvHMc5shJiwO5o93ePffeZmmdMMK3AentGIJdOoWgNvh1ICaSSBB9EVEeViyLEvUOlsCmQTIQABhiHOg89tPWh717w3SumX5HI3Y0XotFoa2trXV1dVVXVnj17Dh8+zBhLSvKfHVPQ4miT4JAjnBPP7BusAwByKDhjzMuJqampeXl5hYWFFRUVFRUVM2bMKC8vVzjxH23/2Nuz1yCGPNWzqntCDBKUuy4mwJVxEEMvjhkarTRJMVmicxeEktdrXr+r8q6FeQsTaMf44MKcWwAgERJck3vnsqzrRr9FMTEwA/aavU8cfeIXdb8wiSkCC2Tl14Gi7XqjRkGS49CVk1irThNEtEaVexRkAKmvUA8hUkswDBiBur66h7c9/AQ88ZHpHxnigxkd9Pf3t7S0HD9+fN++fYcOHTp8+PDp06d7e3t5EMzMmTOTk5NjyYCjx30KSQ2oxsYKlEnQL5x4wxRO7Onp6erqOnny5Pbt2wEgKSkpNTU1NzeXc+KMihnTZ0z/Xeh3ETNCsygmIwQBCTpGQCX+TsD3rEyCIkOctns+7Tye3+rMsboxuukvtiwpIqsp0Lruur+e+OtEZkAAuDDnljlpF2xs/mGsUOeC4Mx1BfeP+wypAzBgFKPP1jz7bO2zURLl9MeFP9cc4nG6lFdCBHeXkvITag2opEgR0DIIgpRTvpA3fBSdbYAGanpqHtv+WH5K/rKCZYk+jFEAIvb29jY0NBw5cqSqqmr//v01NTVnzpzp6+tDe9FxAAgEAmIoG0gSn1IbY0yIgSPFhoLLBhUBEyun4h5RDhFxsKOeFcicaJpmd3d3Z2enzIlm0MzIyMBsZIWMFTEoAigCzEXMREgGCPiJYPKDRHenUlLiQCI+kYKA/KPuX0TRjdBTg1Q5NzbxaaiR4oaaDXcsumOCTyVdmDTr06XfP9a7rSl8wjtL/ni5PhQMwIAv1b/0/ePfD0OYC+HU9ub6qLrg6Treby+4f12PnCgWXnCm1lBsxnKnlLfEpQsDQNAIVnVWfWXrV/7nQ/8zM3NmAo9ixGCaZmdnZ319/aFDh/bt23fkyJHq6urW1tZwOAxgz0hsryXEX2m+b5rmgAEoI8h9otrE5TJOvrFYLH4oD4cyUmLIDmUBhRPBBNJHyBlCj1AAgABAEmAmYg5iEWIxsnmMzWWQItGN93F6PRVeEc8X7u5N0EN/vrqRx+rnb1Cyc1JKD7Ye3Hlm57qKdbGbMlEwJ+2CCUJ2vojHgNvatj1x7Iku1sXXkVHHFXllQF9JUN5RBDflh6eWOowMXZ3AqywQACX8WWkMAUJJwAjsaN7x+K7Hv3fR90Y7TjAcDre3t1dXVx8+fHjfvn1VVVUNDQ2dnZ08toPznWEYTmwa+Hh+xXJCcUiBMcZrG06QoCxjyhbGRErFOau03JvfmyJueSQh9zEGEALSR0gjAT6xZiqYq8zoJ6OYgy6Ck7/QsqEZ3dwU64p+jg5LlUmc4ZV63Pwr5A4CpDfa+3bt25OCASc4YjJgfaj+8aOP14ZqecwzH+DhP6rcqwXHglckBNveJ2WglPJR5c5ZX8lRJkfi7rU2CVKDvlL9yqLcRV9Y8oURN6KFQqEzZ87wJS/27t174sSJxsZGbtQDm/V4GEcc1hNAxHA4jO6pDXzzc11YVBgnZ3wkbp4b0E3sqxp7h/d5CTESiQy22UOB3EVDYPzdAAKRz0QsSVD5Eis+EOJO8X1OfkZAsDkLCaqV+5Yd8BbA1arN9ZvP9J4pSitKrLyGP/wZMMIiT514amvbVieoypf+fEW/ROA1moDr0Hp5+AfUqyb4froJKOTIg0ijLPrjfT9emr90bdnawTfUBe6gPH369OHDh/fv33/o0KHjx483NzeHQiHFqAeJsZ6CSCQilogTsp5vTplKFMaUDYjKvsggy2uDUoETJEoOr7Lsy4Cj5+HxBwFAMDYbbB4zP2wCxCY1X1OPN1vsU9b9xqE/kBh2oDZbajUgV4Sru6qPtB/RDDhM+DPgxjMbX6x/0RGmgDgrB3pVYF8kaC4h7hTi3hGH1KOMUHf98imJoDkJNoWantz95MK8hcWpg55m0jTNrq6umpqaQ4cOHTx4sKqqqq6uTjHqcc4SfDe095kQEolEotGoiHTjfgPvdIHirBI8KORBRbiLxXqD4r44+X0FQCXRlz0ZY9FodEzpj4MAhMH4h2GuMiEtRgb09Elfi6ECvyfkSICKFOn9/CtigfJ2SBo1AdId6f6g6YOLSy8eqE0a8eDDgPWh+qdOPNVpdvIFZUTkn0Iu1o4v5GxeWY9IncnX+mufjekPUa6lKMVSq/is5YZhbDmz5VdVv3po2UPxHoaNSCTS0tJSW1u7f//+AwcOHD169NSpU2LAFme9IQt6sYCI0Wg0EokkJSUlWJsiCQqe8qqf8s6gPA8icxwfbhwGjNVajmg0OvwxcEMEAXKK0NOUzWEuRdir6sbaj5Noc5lqAkxQ1gO/t8ZWq8XrYKL5/pn3TTQNMkFDoycFfBjwhVMv7O7czSPOXaM+OGQqVEDcJOVrvBOH3rIgcRkDAoRhjLeOuHKq9YuuTADQGlXOgP3q0K+urLhySf4Sb32IGAqFmpqajh07xh24R48ebWpq6unp4ZF6gzXqJQ7BSlzi6+vrS0tLkxXbOGKgXImvN0OuR77coJDIHNEDkp2vlTAcDo+KJyQRECDdhNQQmGMdyqcA/CwtXiC42FMhLDu+FVzSm18l3n1FIFCuCNabebzjeEd/R15KXpwb1YgPlQEPdh18vu55Rhj3/3J/gtMD4ryJ3p+K+PUMbymR353ozCvjewlekHmoU5y19/n8MZTQup66Xxz4xRMXP8Fn2EfE7u7u+vr648eP7927d//+/XV1dYpRjwOkkIsRkfXkrUJPPE5QTiEJjwPxMt0Q+M5bQ5xKEtF/Y1WCiL29vbJXZ6xhAmklLmkrlpY64FNUMhAAws2ANv3FyqnwrLce92xJ8tJLFGh9T31TX5NmwOHAxYAI+OKpF2tCNWJNGdd4Io+OqSLWh9SX5kD6yf26hWzyGEAR9tYpvsxCDDSQAHn1xKvXT7u+qL9o3/59Bw8ePHToUE1NTUdHhzdSb5hGPS+8djGfthPS19cXiURkHwjniDheEd9rDbOpIJFvnGzoF+HsZUDfoD/TNAUDgmRFhZH4zCQKRQD1qhHxBbdYFMl9IHI3jlWPV2eKKxK63gWA7mh3XXfdRJ4sa+LDxYCHug79ufHPlp9Bmu8PQGI0rwosrH6+em4i309PWSfIg8dIx++OSmNk8RMACNB+apwyjNNGpCHy6G8ejXZEOzs7I5GIV72FkWM9wQKDEscikUhfX18wGJQpT1Q1BtQgi36JCIC+iQPq3Zzr+YdHeT7iHseCE+OotzAQ/Xn3pUT0eoF9C8Yo7mvvRoZOKQRCSCgSqu+uj9FKjYTgYsBXz7x6qv+UtewGsUhQ5T5f+lNSJGuFKgwO2HukSpwJJmXJzjezV/zkiRRIL0ndmBo8ECQRAgjN0MwZls/KSWzEbkqiUNTGoQlijLGurq7MzExF85VrGz0eVETUOLfAxTpf/TfBCwkba/w2cIyKnEgB8xGoRxKMjwFVYwRrMJycg/iFtZogM5paM5PiZPlLQAgDJuthJpotoZbBtF5DhcOATf1N6xvXM2BiWiEAD7PE/2aCxD4g/bpEsmjIiKUF+6ZAXDIFd1USBQcPB4P7gyTKZ3SQZvQa9lskv6vDYT1F7Oru7g6Hw3yKBEUMHEFzZJzGyOKY7x350h8vqyjFsQTJaDTa1dUlh45D3JvyPt7hciICpiOWoE+3jFvK9YH3leyYVT0KTdhqsZvjYn3OY70LzO2Sst+Fxp5RXGrqbIDDgFvathzqPsTpD8A2Aiq+BfTjRCVR1pQT1F69DhP72gxijBvFGAXlBiCACcHjQcM0wBhJ9RaGx3rxa+jv7+/u7uYMCO4XW5kZYQRvR9TPU3icCudcwzAMw6CUKkztrccrEvpaABljK1asuOWWW44fP15dXd3Y2NjU1NTb28t9UPyiQ+NEXw06RnnAMmSlzHGmeTL49GqIIa+JfQZ8SlSH+5RPcozG+O/4yg3uUoMZc6fhA4sBTTRfb3y9j/UFjIDDIIrn1/fr5KsXK99G8XN6K4n18xEABIbMGlck68LKVZTruimbhEmwI0idlZqGiNFmPZGHs0ZTU1NmZia3BoL7TRa0KO8MmQqV9kSjUT4DFXfIcDKilCYlJWVkZGRnZweDQV+mk6tS0r1XTE9P/9jHPrZy5UpEDIfDHR0dPPqypqbm5MmT1dXVp0+fbm5uFpwIErvF50TlivHkRAJsKYMMT4/yuiYgRtf1TZHMNS4SjMOAsdQg9yn/2qbIMrHjCYsBT/Wd2t6+nbuABamp6xvE0oLlfqNIiOhmJV9hzZfUbG/aoD9xaH85GQAAiRLSr04SnFA1wxhBodQTS2gSdXJBiauEgUAgJyenoqIiJyenq6sr1tg4UdsQtGNehHgGkHR2dnLekc1zvFWhUKi9vb21tbW0tDQ1NdW3wlg3rqQzxhYuXMiXfyWEJCcnFxUVFRUVLVy4kJfic0y0tLTU1dXV1NTwmXUaGxtbW1t7e3v50GlIzICr3KAjISKBMjAvMF1d1CusKcSn6LDqxcBWfT2jgH3VFHRnEOnMncFVyFMzgwiLcLNjnOcwvtjQtuFA74EtnVsO9B4AgMq0ytVZqxelLVqXOyGmdbAYcFf7rlMhxwfiWtAyDnzFPZkoY308leIKuMDHmyAvLDdgM8DNxeg2Jw+EkRL0IO5ya4L1OAAgOTk5Jydn1qxZCxYsWLx4cWVlZXl5+eHDh//7v/+7t7cX/cbGKS0UMSU8kVNDrEuLexTCI2Osubm5qamJc5+XVnhKd3f3yZMnp0+fzh01clXKncbSf7kAePXVV3tpVFwoOTm5uLi4uLi4srKSFwmFQm1tbc3NzVxOPHHiRG1t7enTp2VO5PO2AcTrsWj7ZzEZzRtMLEKXqyFWb/RaWmLRH/9PCYH2vgKJdCuZIsERCLx6VYAGJiz97e/d/+DxBznxCWzt2rq1aysAVKZV/tfs/1qUtmicWmfBYsAd7Tv6sV9eecD/w4J+7OZ9/qI/xf9pvB9G+fLy++P9Pnu7lJwiejMFNOL1uOGzniieiHrLt4SQ1NTUwsLCGTNmLF26dMmSJXPmzCktLU1PTxfsc955561YseJvf/ubIKk4Io9XrIujOMuN5DstLS2NjY0oTbzqvQt+qr+/v6GhISUlhccPxRL0Yj1GxtiyZctWrBjEKj/8WaWmppaWli5duhRsTmxvbz9z5kxdXV11dfXR40dfP/B6Z1Mn7aHQDyAG2hFpa7UAIAXYDQxX2p9V2brn7dLerhWj0woCVL3ALEZf9RUtvTsYuw0EAGHC0t+Tp57871P/HSfDgd4DV++7+t/K/u3fyv5taJdob2/Pzc3du3cvVymGhgAAdEW79nbutRIIQCz6A3dnUuQ+Jd1XNhwsFC3Y+5UeiBkxCTEZ5auPiHo7IG+KdC7oIaJhGOnp6cXFxfPnz1+6dOmCBQvmzJlTUFAQSxoKBoNXX331nj17Ojo6wCa1+HHRMtPFYT0ZhJCenp6mpqb42cAWAymlvb29XV1dubm5cfRc34F0iJiTk3PdddelpKTEuoVEIDixpKTk3HPPBYCuSNfBTQd3NewK9ARIKyEthDQS0kxIOyFdxOFECliEeCWyjzAI+shT1j7x9NtYHUTqeDxYj3dXp9v66h/M3W+9+97rIDp1ovRHErJ7jD0GpD+B75/6fqaRefe0u+PkOXjw4Ne//vW33367vb29tLT0hhtu+OpXv5qXNzIjYQIA0BBqONFzQnYWWCPSwLWKmzjnD5Q+ubH6lreIbz22suLSgn3ze63X7mwYQJZh+TeHz3oK8XkzQAyj3ty5c5cuXbpo0aLp06cXFBQkuPbj/Pnz161b9/vf/17UH3/KLLkZ3n1fMMZaWlp4cLic7lWihWaNiN3d3Tk5OcJxrFQYZxzxunXruBw3skg2kguzCrEfWRGDubYhOAKkl5BOQpoJOUNIH8FpCPMBStwTCykCl5yIA3tj0R3xAnKHjdsz1St6D0UK2gwo12Dr5hNwdqz9vfsTpD+Ob9R8g1sGfc/u3Llz7dq1H/7wh59//vlp06ZVVVV985vf3LBhw86dO0ektQEAON5zvCPaEe+98g0LUM56NQ5vWRlKL/G8qnyG8QE8IUqH8O4bEM2OBsyAPKAycciUF5/1ZKNeQUFBRUVFZWXlwoULFy5cWFFRkZmZOeDsBl5QSq+55ho+/arQOoU6PCIf/3A43NPTM6iqCCG9vb2RSISvcimfwtjLgHAHyI033jiE5zAgAiRQkFyADC3xygAgAEmAKYgFCHOBAAG0o0FBGgvs25ZYnCV6vnSLVg/loQt2KKC19apBsfRZ5ayvMOjNQMAgRn7yhFsq5IHjg1ssGAAePP7ga4tf8z31+c9/ftWqVa+88grvpYsWLfrIRz5y6623VlVVzZ49e7ht5Qx4ovtEyAzRgGprd14MlKQtX6sfeIjM6yTxFvHu2wX9uc/7hRQ78rXcEmu0IopBhMQmYRKvtK+AI1Jk9ZYQkpaWVlBQcM4553Av5/z584uLi8UUL8NBTk7OLbfcUldX197ezucNFCa/4fMgsWcklO8uToUi8qa/vz8UCqWnp8tn49AfImZnZ3/605/Ozx+V15USWpZSRoAAAzCkDskJkQFfYAhMQLAfHRCL/rxf9DiwO5jSOVUZzctisWiRg8XozAwAAZn99fUIm6lG6vTM6Qm3fiywoW3Dwd6Dgy11oPfAhrYNV+ZeqaTX1tZu3779jTfekLtldnb2q6++CgDt7e3DaywAZ8CavhqXpimUVub+SMZ3bsSip1g5Y/UGbxxMItKbV6mxD6OlUTPfNE4bsVo+BKMepTQzM7OkpGT27NnLli1buHDhrFmzioqKkpOTE2jr4LB48eKbb775l7/8pewRVngQEouD8SKWbOsLcSE+qYHMgELx94VhGDfffPPy5cuH0MIEMSN9RhCC1qAx0W/dj8Sy6oiuxWw7GnNn9jVqE7kWBEn/tRYDAY+Y5q1E4Ud+yGKckiVNQDUDACBkBDNK00sH9aBGG/t79w+5oJcBjx07BgCLFo2ivzgQxWhdX51X4LLWbANJDAS3RW9Ing2roFtMU7sLAiJaa62C+1eX8rjgV4l1G+kYnRk1GlwMmLh6K97tYDCYm5s7ffr0ysrKJUuWzJ8/v6KiIi8vL0Gj3pBBCFm3bl11dfXrr78Otj1ONBKlCaKVs/K9+CZi7LgZiGsK5P6T/Px8YRmMP3/qmjVrPvrRj46G/iswK31WupHeyTody7Xs5LWvbBlD0Ar5ssRDfrOAfEZep7jUz61ZCWwFBcD5Qrvoz/tR9ybGCQJjamarf3opEoABK8koKUwrHOyzGlVs6dwy9IJlaiJ/uUZ1EslAn9nXHm53MR3vC1xTYG7NF6Up+YaMWH0FnO4lPP3OOiG+lXhrk7+rYHXlyLxI8IMg6bXCFOKwnnifhVEvPz9/1qxZ8+fPP/fccxcsWFBSUpKdnT3GDriUlJTbbruttbV1+/btfICaN9gFbecvxOBBmaTE7QeDwUAgEA6HZVaNQ4schJBQKBSJRILBYPz5U3n4y5133qmozCOOsrSyacnTOno6CCHWMq1uwc1uukRY9pZQwoCJlS2t+afkrzUvIQl9dq1SVe5ZDFTIZxUBEDy9VzpEWyFS5QAERJyTPScnOSfxpzQGUKL/Eoev7jxnzhwA2L17d1mZix153xvahRQE+sy+brPbN/TP0hr8upFzOHgbiqsqGbYygs6HL0Y9vuqGV660/6Ll0f55/cGdQZ+7tMHX6iWE8JiVWbNmLVmyZMGCBfPnz582bVpqaur4hh3k5OTcc8894XD4gw8+gNhMJ9hwwKAZDsMwUlNT+/v7E7w7IQNGo9G+vr5AIBCHKBljlZWVn/vc5woKChKpfDjIT8qflznvYNdBSqmLX4SxD+wU+4tujblEQFOaCZEAEuQkyBVkzkJcSBSXc/aZu37lYTC/rq5kRk8i2tMrIPqYxO06DWKcV3jelJki3/d9Lykpufjii7/5zW9eddVVYv2crq6uVatWPf7442vXrh3+dSUNTlEc4gQGKlzjBbrT0U2avt0FLc51/eC+dBk/QEHkl0Jz0MD+Vf3GCYO2UKCSrGcyk5mBQIAb9RYsWMBdGXPmzMnLyxsNo95wUFpa+i//8i9PPfXUnj17xHjhWMExCVr3OOPzkENvcV9FWGTo7u6OI9lx+vvXf/3XGTNmJNKSYSJIg8tylv3l1F9cagrx9D2+Qy3lV3Rv122irX9IXZEv2OCKdo5DbRCvk6tk5ysA8l1ES/v2yIAImBHMOLfw3IEfzdiiMq1yW9e2oRX0TX/66acvvfTSdevWPfzww+Xl5Tw2MDMz86qrrgqFQsNrLABAABFjLsch/ySxAmJkZcFbVsCrO3s7kOQ+dpl+ldZhDKsfxu5tCGax2Xd5X/LGZNJCEBAosBRWWlZ66bJLly1bNm/ePG7UE9+ZiQlOgj/+8Y85CaIUHIPS6ODEgYipqamGYSg6ciyRUDYF9vX1mabp+8TGmP44luctzwxkdrEuYhCrk/BeJ3tFFJYRSrF1ZAXKcOeGv3Fc4S+x787n9FI5KMJPz3WdEqKr3QxX5VIeBKzIrJiXMy/x5zM2WJ21emgMuDprtW/6kiVLduzY8Y1vfOOOO+5obW0tLy+/5ZZbHnnkkZSUlJFhQAaMMeblI+fzaHvQXKyn7HuFNeLOKashXqAUUq94gX37lrdLgaejgCsbIkbmR8wcM3AwAFFgeSycF77iQ1d8Y+03hmvWHFuUlZXdd999v/jFL7Zts/qZkNfk0cGQsHc4GAwmJyf39vYOVhEOh8PhcFgZ08Ibs3Llys9+9rPl5eUJ3tSIoDK7cn7m/Pfa3jOoYX04qf0FVaK4ZCERnB2n48X6wCvaqC/8RDYfK6G367qLWG+lV0i0vTEXlV40AcOhhzzON07BuXPnPvfcc970nJycxCMZYiFggBEgAQD3h4t/ZwgiImGEGLIbFQDcvUqRvOSuRtw/oS/s67ocFF7ui4X4wqD4liIAAitm4cIwn5uXMZaakTq56I+jtLT0vvvuy8vLe+ONN8RwDvH0hIkQ/VZZ8qq3iJiSktLb26tcJY6PGOyYmL6+PpkBGWNJSUmXXXbZbbfdNkqhf3GQnZR9aeGl21u3OwRnWus9AHh6pvfLSiSpTRAWLxLfy+GtM7YuEi9FKmj5PxDVInZ/Tgukfbj8w3FbMz64MvfKhWkLBxsSuDBtoTcUZmxAwX7cvmKgtcPc0rg7k4/oB+pv5pMT7IlbhNinnCWeIujpPXLlXi3bTX9qDZ641kmEnJycu++++5577snLy1NiBWR3tmmaYofvC7ePiG0EAF8/T3xfMN+RV7YzTTM/P/+uu+763Oc+N/b0x3FZyWV5wTyf8BHmdDYXYnQMV7oo6CepqUC/6a3ikKBcueiW/BdE5j1lfciRzc+df37R+SPz1EYaT85+cgyKjBQoIcQghhMjyuH+zRyLrBK87v2FwP3renkQpOLiW8cQGarGF6+W4duTxNY3P7iZTmoPIcQSficnkpKSrrrqqkceeeT8889HRD6ls29OWdxTIoH4YXJysq9X1zeqRqRQSkOhEL8uIWTFihWPPPLI9ddfP8yJD4aDxTmLV+WvYoypnAXuPqlAJjuZwmTSjEN8vnTmrcHbBu/7AgAMkLlN8556KNBrZl2TnzrhxsNxLEpb9MWyLyae/6sVXx3HObJoVjArN5jrUj/BJUDZ3yQ7g1fzBc9vqXQ+Jaf41jHkHzSfryXzFEe3AwQ9Z5V0qUkuWQ8tfSdAAyXpJbGfzCQAIWTBggVf+tKXbr/99qKiokgkwmN6BltPIBBISUlRmDH+dfk2Go329/cXFhbedtttX/nKVxYvXjy+MUOpRur1069PhmQXnTG3XCZ3sFhI8BHKn3mvvw493VJO9JIjOAKglcFLuwQYspKMkqtnXp1YE8cHD5Q9kCAJfrXiq/Enhhlt0AAJ5CflOw/aq8bah9b4ROZHT+D8hANA0J/NrXyfAfOR1JRSijlG+XSDp8MBWNqEHy0GSKAwdWLF0w8NGRkZH/vYxx577LHrr78+MzOTD/UVSq4i9AGAksIPU1JSEicvkZMxVlFR8eijj37yk5/MysoaqTsaDtYUr1mUtciMmi56UsjIlrZUqS1ByKKcss+rNf1EAeZHl3I6d0oic5n/ZLHUdtdcMeOK+XkTfY3gB8oeWL94/cK0hbEyLExbuH7x+vGlPwAIGMQoTysnaA//4M9aiiO1RmWANVKNqzxWpLT76+QDVN1qskZmVW5vXYIkuEqpnQljZ5bTYw04R0CCaYG0aWnTEnhEkwCEkFmzZt17771r1qx5++23t27d2tLSAgDyMiNyKJ9clh8mJSWJtZDkdF9/iDxoJBKJlJSUjK/oJ6MwpfDWWbfu3bWXmczqxnwr3CNKjLRwCjPPSBIF6Nnx7nt7ZqzPuXIWJRuFr/wIlrewKLXo0/M/PSkCoRelLdqweMOGtg37e/d7Z8kfL9eHggAAzEyfaYABYLOGiCqTegmPiVECRwkhao+R/W7ikwiq7iyFmkr050tq0uWcs77dy++DbxkWRYXMahsiFqQWTMBgguHAMAw+yf7VV1+9efPmbdu21dXV9ff3A4DCbl4Eg8FgMKgMDpHdykp+EYF47Nix2tpavsrHBMFHp3/0Dyf/sLV1q9WrwY4KRInpFF2HDtTxFAuMN4P3LEovgtIDPb1XVolchkhRCc8EeMPcGyZgIHQcXJl75ZW5V3rH/E4QBABgbsbcdCO9G7sJEucH80SQInGND1HeCsIIgPuLCnbEqS3zi2G5Yl+ccHUL33TllLttLu6T6U9xC0qNL88sz0sdmWlmJxQopXPnzp07d+5111136NChnTt37tu37/Tp09xvG2suGUppSkoKp0uBAd3BlNL29va9e/dOKAYsSCm4a95de97bE2Ih6yMtWIwDJRKU4108Y6J8KEyGtwfKp+QPM3j6JzqnLNcvMrU2dOkxDNjMrJl3VN4RoJPYgzfREACA8rTywqTCrr4uR6ZDd3exNQgxtYalEYM1bYFLPEQXD/LxlVY8jSBBiaViclx8TvQWRDWPsDL6FlmQuyDFGDev5RggNzf3wgsvXLVqVUdHx8mTJw8dOnTs2LH6+vq2trZQKCQW5xX5k5KSvJXEmSKBn4pGo++9997HP/7xUZ36ZbC4ovSKK0uu/FPNnyxtkbp7kQz0U3ogRp9UUphfIsQwvzB3QdFLGVqLYiu91BO+YxDjzkV3LshbEOuuNYaAAAAUpRTNz5p/tOeoOqrcN+ZZHkhkfy05IQo2tBKZLfG5xx75jCqPE/oHsRNlilS+q8Kn5vUDAgBAkpG0rGjZUB7YZAOlNDc3Nzc3d9myZaZpdnd38/V529raWltb+/r6AIAvEdff3//rX/+6sbFRnoWQ78QZIEwp3bt3b3Nzc1HRBDIppAXS7lt43+7W3Sd7T1rLPxBphByHEAxNdXCItYPurVIw1r4i6IFfp7VTLOFPfKeZeyu1x2Tm5dMvv3X+rUN5HBqxEQB7VPn6+vWyuOc/jBedUZacyOShlE426xi59VANblIqBD/6i7+jdDK/kH3VpyadRcD8lPzKPP+R2FMYhmFkZ2dnZ2dXVFR4z5qmefjw4VdeeSVBaU6YAuvq6g4dOjShGBAAluQt+fz8zz/2/mP9rN/6PFOJVsSf6BuK2qt8+2NpKvJZb1VKd3Vn4zHPlpnINzNYjWHAytLLHjr/obyUKWi3GV9YfX1l3sqsQJYz9kMWwpUf3u1wkMOYuZjAgPE/f4UX3JWA5xJxom38pDkfMVAOqpKvaB8yZJX5lRVZPixwNsMwjPPOOy/xuSGEPbGnp2fHjh2j2bQh4pNzPnnzzJvRtFUBZQBGrMEezG/HG53nW494R5hboPOU5WHbLvrzfekAEDDFSHlgxQMXTLtgrJ7cWQSLAStzKudlznMNxpY7gUCsXsKkkYwAaiXo1xVQ/aVdkO3H3ogtudeCT23qMD6xQwAAKKFrp69NC6QN8ZlNXZx77rnZ2dm+MTEuzwkCMCCMWJ6xALx/8P3mnuauaFdHpKMr0tUV6eqJ9gwhNntkkWqkPrD4gZX5K53wQIUHReyel6dkLvN2Y+ZXG9gFlUTPvjXuDZizupMoKC4tOaxvnXfrLfNvGf0HdjbCcirlJOVcUniJM6ocY1hM5EP5LJHyCJ1UcSuDu28pUD6t8r5CdkzqTCB1GvuPMeZ8Wt2nAAABC1IKLim9JN5TOVsxc+bM2bNn79y500cSFO9nErB0xvIYy2dmrmnmmpiG7+a++5kdnwkEAgyZQQxACNBAYVJhQXJBRWrFjPQZM9NnTkudlhXMGuMVvqenT39s+WP/8u6/VPdUO2uBiW5JXHELzlbu0uDugcTNU+DJg34FpR0TTUBb+lNCo9FthkJgjF1WftlD5z+UGvBfV1pjmHDc6utK1j134rm2aJsTEwNuH4UvLXrhpUKvLBaroC/9+fImqh2L/zlj+OSPtvQRZoxdUHLBxA+pHxdkZmaed955ykqsfMJkzMRIacScYZrlpllsYgZiCgpTWg/07OjZ4TALWpIOAUKRJtGknEDO9NTpi7MXL89bvix32cz0mcnGGE1Au7Jw5bfO/9YXt3yxOdxsGIbLv+drELRuW/p4K4mKOgLufgjSvjuFj6py+T1A6qWKDIhgMnN58fLHL3l8WvoUCd2fgHAYsDKncmXeytdOv2YQw2E6ZtuPRdiUHE0q4OW4ARUgpRt5ew94eht4tG93WdWzhlJ+u57kQPK1s66d2nEww8H555//m9/8JhKJWCyWhpEZkfCCcHRulBUxTEYneFgKMSFADOoWGyW9L4KRM5Ezp/tP72jd8euTvy5KLjov57wPF3/4Q8UfqkivoGTUw2g+UvaRR5c9+tjOx9qj7Qa118xSVstUtkqHlMMGQUpXeNMrCdqnrEGK4PF7yF1Uol3GWGV+5eMXPz43Z+6IPAQNXzgMmGqk3lx+86bTmyIsAuAOklK+h0qnGTJwoK330CsYyn/ctOxLpgBAwGTm0vyla8vXDq/dUxnz588vKiyqra2FAohURiLnRcwKE1Pd61URP9YQUL5bFACBIOFfVgRsCDfUn67f2LCxPK18bdHaj1V8bGne0lRjFLU8Sugn53wSAB7b8VhbpC1gBJzBIeCWAb3RML43JRLBnQFV7ceKCfOqJuA247i51USzMr/yyTVPrpy2cjg3PmSkpKQokz9OPfT19aWkpLiCyy8pvuTcnHO3tW4zwAAEa0wR87AhSN1lUFQof+hAGokJbkbzfoG9lCf2eSA9uvULWcuQrDwBErhp7k1TY0KEUUJhUeHsC2YfnneYXcjMaaazADn6/cqiG8hcoIhRRP29KKU8hvRk38lnTzz7Su0rlxZe+unZn76w6MLRk80poZ+Y84kUI+UbO79R01MTMAKESu4dJVQQ3N3SC3TftZfX7D7pjPTw7bpuBYXDZObq0tXfuuhbywrHLWS1tLS0s7NzajNgR0dHaWmp62fPT86/ddatyZCsOvJNP6cYunVSb+yxtwYlEfy+ouAJWfBlQ09/4t0tVgg0AJjMnJ83/8Y5N474o5wyaIu0vdD4wgeXfRC+MWyWmc7MAtSebNmQDuU/Q2IQYVkT6YITRT0UwABqUMMw2ln7K6deuWfLPQ9tf+iD1g9irlozbBjEuGnWTd9f/f1FOYsi0YgZNZnJnLAB03YNmzG6uhzgIv+J/AAA9hA3xhgya5ZT5fVRqgLn+fDQsatnXv2jtT8aR/oDgMWLF2/ZMsSVfycLNm/evGTJEjXWv7W/9Z5373mn6R3DMMBwR9LLZmMZxL2vyIngEfRkKMKgV3v1Sn8KSwLwDudyrqE0Q5ENSug3Vn/j3iX3JvZ8zi4wZFtat/zwxA/fbXs3AhHLNueR8cViaQQI3/cZ3x1rX/kd3SyDDFmUlaWU/fPsf779nNvzU0Zx+s9D7Ye+vfPbr9W+xoi1zhShhCAhlMg3qyrC4N+BnemOAJ3Rn0pYmCjujX2x3w4Tzcxg5u2Lbr9/2f2jevsJoqOj46233lq9enV2dvZUEgb7+vo6Ojq2bNly+eWXZ2Vl+Yz6fK3utfu23ddtdhODuKQAcH/MUUqR4TuQSIFX9JNTmHsnlgYBAGh1O2sSQPmlcjOgieYlZZf8ct0vdVS9F23htmdqnnm29tmmSJNBDPlTx4NXrOBncIIERLg7BcrtD65BQcT9tnPIPxz46xDMZBTpRYUXPbT4oQuKLhg9J0lbf9tP9//0Zwd/1trfalADKBAr6pHwPRTrxHp7MoI12h2tKX75vjMLkaLiiG+29yHY9SHgnOw5D6146MY5NyYZPgO0xwVdXV379u2rr68fkVXZJghSUlJKS0uXLFmSkZEBAD4M2G/2f3n7l3974rc0QB3uozHs3/IHMxEoXQTiviQgMZpXEkQQk4ACxFDJrUKYlZT148t+PMFn1h0XHOw6+J9H/nNj80YGjFvoOAWATHw2EblW15U8Y874H8GPXike7ENvuLv4vRiACWbULE0tvb/y/lvm3DJ6getRFt1Uv+nJ3U9uP7OdAaOEAgVCiDwHkliFSuxbNyFEPCLtK1vw67SgPhATzdRA6kdnf/SLy754Fo7UHHf4z/xxpPPIne/cebjrMDWoowh7tWAh7imKsN9n09lJMKhK6T2gGhC56BeT/qQmIeK9S+792uqvBWlwMA9nisNE842mN751+FuHeg9xOYiLecT6x54HF6Sf2CvdSz8TUhSrnrqmffTK+HI6cydyYTDKkknyLbNueXDpg8WpxaP3EBp7G39V9avfHP5NdXe1tfx8rE+7r29H8YeAtC/3ZCWIGgEATDANYiwtXHrvknuvmXVNRjBjFO5PYwDEnPvopRMvfXnHl3tYj9UnaFxroBJMIL8tEKO7gJ2Inn1ZawD328JfK0QnuNTXbSIZmE1mXjDtgp9d8bPpGdMH+XCmMiIs8vv633/7yLebI82UUk5/FCihFgH6GHzjwKYGaykFsMKh+dhXALdGrPygggHdJIgM0cQrSq/41vnfmpk5c0Tv3gWGrKqt6tkDz/6l+i+NfY2EEHVuiPimQDldnPXer6gKwUTTIMbcnLn/NO+fbp1/62Rfr2ZSIyYDhln4P3b/x/9U/Y/LFeiVAQf1nnB4P6S+H0/vC2Pv8/HLDJhl7OOQB3jazWOMlaSXPH3505eWXTrIVk5l9LP+n5z4yVMnn+pm3VzzJQKKN0CAuF9j8OMCm+yEUYyBXywI+A2HUD5jfBsF0zRX5K944oInFuctHsEn4EWURfe27H3x8Itv1L5R3VUdxSg16MCz/ysd1ZsopfN5AFOMlIV5C6+fc/0Nc26YkTVjjIcJaiiIyYAAcKbvzP2b73/r9FuGYfjIgCAdQgyRUEYstVdJVD6eHkmQoW37U4aFMLXnIWAyTf76hV+/a8ldup8J9LP+n5z8yQ9O/CDEQpbER4ijAMbyhNK4v5p8yDViO0IzpjrsqwJLMqCVaELEjCzPXf791d9flDfqayoyZCc7T75e8/prJ1/b27q3LdTGnR6UUP84B/A8AU8wD58BIUADRelFK4tXXjf7uktKL5liKzRMXsRjQAA42H7wvnfv29u+1yJBxSokh4C5anUfulUAVwq4Wcz3kL9BzJYpePyBTJTyC2NfGhENanx28Wf//YJ/H7MhqBMfJpr/7+T/e+LYEyEMEYNYmi8X/WTNT7GC+Qp93gAmsWOTIEg2QXVEBHiGNioRo0KoZxCJRlbkrfjJpT+ZkzVnBJ9GHHSFuw61Hfp73d/fbXj3aPvRpr6mfrOfAeN2UuLYC9XHYpE/IO+BqYHUkvSSRfmL1pStuaj0oplZYzcgWiMRDMCAALDtzLbP/+Pztb21ASPgYwqM4wuOJQkqxkFlCx5l1g558R9Vrtj+bDBkn5j/ie9c8p2spKz4N3hW4cVTLz566NEOs4NTHgFCDeqy+olvG4KP1EP8PmM8j98IH+dXs35GH5uGc+gNG0bLO4wMo9HourJ1T1705Biv8Ncb7W3objjYdnB/8/5DbYdqumqa+5p7o73d4W4TTQBXP08yktID6RlJGcXpxbMyZ83Pm784f/G83HmFqYUTJ8ZFQ8bADAgAG+s2Przt4VN9pwI0oNKfr7AA9lvhS4LgkfjA80pwMCvagIf7qWspgPSeyBcFQMRrZ137n5f8p55UQ8Y7Le98Ye8XGsIN3PVhKb/Uz/upOH+9iCPLi0MEAMtoC2DbBH0H+Xh1Yc/oC2Yy0zT/ee4/f/uCb6cH0of7LIaECIv0RHra+9tb+1tb+1rDZhgIRFmUEkoJBYS0YFpeSl5+Sn5WUlZaMG1SrGl5liMhBgSAjbUbH972cF1fnUENy1Mma8ReSTDWmyPOyvu+8iCfRhykCZ8VpQndKda/CASunXXtf16s6c+Fk70nP7fnc7s6dxnUsMx/lDg/pUx5NO5vJyPO7ygl8hE71geM+A2LVLgPfIagIUPTNIMY/OqKr95bee/EWaFYY1Ij0Zj7K8qv+PElP16UtSgSjZim6cxtyzzKi6+OI/dvU9pn7hrs4ojIB21aEX/MTXbKRSX6M4hxR+Ud3730u5r+ZPSYPU8ee/L9zvf5YEcu/Yn4ZxcSpz/wiwP1Cw4lQAja0YUYtwbwfFntP0KIQY1+6P/h3h/+veHvCTdRQyMeEmVAAuTiaRc/delTa4vXsiiLRqMmM63gL+bhMi8tepnOkw2ZPaScMT7Yw6JL002gcg2S7MmQZQYzH1j+wFcv+GpRqna0ufBS/UuvNL5CpGBn2ZTvkM6g6E8p6xUAwfk+SSPO3AW99Xh3wGFSgxin+05/Z9d3TveeHmRDNTR8MLhxl0vylvx4zY/vmn9XKk01o6ZpmsxkjDFnMRqPDVv26HkNPZxDHd5DN/0pcp/prgecrcnMOdlzvrfmew+seCAzKXNkn9Fkx/6u/U+feJrHvoixHirrxSe+AQM/0SO7iYIAgm2dkbZKv/PKkjJEC6klCW5v2v6zAz+zHBEaGsNAonZAGSEz9Pujv//vPf99ouuEiCNzQmr5tOp2d+cjzMXWZbDjE6nzUeWiGX7jh9R4MXCMVgxYgAYuK7/skZWPLC1YOrSnMIURZuGH9z/8fMPz1vh/r/dDkbYE4nOit9f4GnPB/tSJAEEAx6or50QpxWtUsT9+iMhMxkxWmFT47GXPXjjtwsE9Dg0NN4bCgBz7Wvd9f/f3N9Ru6I32WjOP26qK8+UXnEccQhSdHoln/DyJzX0gZbMrYMjKM8vvWXLPPy/455zknKHdyNTGG2fe+Pyez3dhFw9/oUQy/8WhP7ATieerw+Hba5RPlB2fxGM5uWvLf9IEr7HYu2P/mcxEE82oecPMG55a81R6cHz8whpTA0NnQADoifS8Wv3qT/f/dHfzbhNMa6UIxXwjQ+Y4r8FI7KDfuyHnRWTAspOzr5117d1L7l5asFQP+fBFV7Trs7s/+2bLmzyg3RIADftZyVa/RARAxY8RRwxE9ZBPnGc598ET1QTuTx2L6REGBC4DIsNUmvr0mqevnXVt4g9EQ0PBsBiQo6Gn4Y/H/vjCkRcOtR+KYMTSi50rAIBHvhNQ3ijlFQJ3nC0BZMiAZSZlfqjsQ5+p/MylZZfqCPs4+Mvpv3xh7xf6oI9QYhkBKbFUYP67yNM+gr2PiTEgxPhBfRmQ67/MHifHpMwcvgyoWJDtsBjGGDI0I+a66et+dvnPMoPa8qsxRIwAAwIAAp7qPrWxeuMfjv1hb/Pe7ki3K9bMndUF3tGJ550RmYklMzBklNBpadPWTl970zk3rS5ZrZc8j48+s+/eD+59rek1I2DNAEoJdehPMKCX7BT3rpwYnwE9xOekozOucWAZMI4pEAEYMMaYydDENJr2zGXPXFFxxVAekIbGSDGgQHt/+47GHX89+dctDVtqOmtCZshxkCjwvjyS5YiDz6VBgOQk5yzMX3h5+eVXzrzynJxz9DR/ieDd1nfv3H1nh9lBCOFMZxCDjwUGkByysfRfWRj0SoVxTBmySVdiNCe+3ZcBBdmBxH0gCYCmc8gVYWBgRs1PzP7Ejz78I90lNIaGwMBZBoOc5JyPVHzkw+UfPt1zekfjjs31mz9o/uBk58m2/rYoi4q5hfkQIgv22yUt94YGNVICKcVpxfNz568oWnFJ2SUL8xZmJmVqe1+CQMD1p9e3Rdr4GuHcR+9jnZDhjewjHh6UC8b/dMrsZrvIrMmW7cVG/A0jcuWKCdhbJyXvNLxzuO3wovxRnzZGY0pihBmQwyBGWUZZWUbZdbOv64p01XbWHu04WtVadaLjRH1PfUuoRYwqZ8isNxMhJZCSkZRRml5allE2J2fOwryFs7JmFacX69XNh4C6vrq3mt9y4u/A4/n12vt8BT3OONSPieIbdpX8PEjKCojyo71YFQpIBM21CiRICW3sa9xYvVEzoMbQMCoMKEAJzU7Kzi7IXlywGOZAlEX7zf5QNNQaao1iFABMNLl9CgDSg+lZSVkpgZRkmqxHfQ4TO9p21PbVWrI2JyBCVL6D2B4PGb6CGHELhnJZL4sRAD7KW5bglLKyDWRAw4xUDwO26dSmuxffrSPhNYaA0WVA9WI0EKCB9GB6fur4LwY4hWGiual5Uz/2y6t/OKfjD/AQzIhSZnDLaEqcoFyzTKxuT4gVKu/r8lJAXBznvRBXGngiJXR/y/6qtqqVxStjVKehEROjtRqhxjiisb9xZ/tOIUc7ArUiyilQfCBKNiXA00t/cRKV+mM1wAvfcEV3FDchpK2/bVvDtgSq09BQoRlwCuJo99H6/npBfAjIxyn6660yhH9WYUMcSGoDj/SnhMIg+vCjb22est6WuwIYCDBgO8/sjLJo7MZpaPhDM+AUxAcdH/REe2Td11oDc0DvLfgpsHIG33TfSgSHxplvJo6x15cr7baJJT35ISW0qrXqTO+Z2NVpaPhDM+BUQxSj+zr38eA7GS4PbBwi85r2vOEvA4awyBN3M0uolGfFsLa+Wnmcccq+IEAIaehpqOmqSbiMhoYFzYBTDd3R7pM9Jy3Pr6X7OqKgA1+bnXxWzpa4czbWWeT/SkvHJVJVDIK26rG1dQKkN9J7pP3IQK3U0FChGXCqoam/qbG/kQcYuTy5vkTmK2p56c/XN+Jb0M9B7EyRLy4a3ysSh3NtynP5oxEiGDnecTx2yzQ0/KEZcKqhub+5M9Lp9Uj4xyHHQXxZTD6lBLi4JU1rInGxbCa6hwDHumLcZjhR1ZLKXNtdq50hGoOFZsCphjP9ZyIYIUhkvlDpb7BKri98nbZ+eXzGMsahv/gO4lgeZ4AzPWc0A2oMFpoBpxpOh06HWdg5VnhKmX3AHCr9QWwPieQDQUQkGI+Cwc3CytbXZwI+beZRgZ3hziHch8bZDM2AUw0hM2StzOsWvCxjHPgxFwxeEvTlLG8GMeeFQoJxfDIoiXgxLu0yK3LLIJKwGXZRv4ZGAtAMOAVhaZ0e0Uz1SICUIY467Cuv+YpsSjaw58f3lpUze70xEnuqN+I1C9p6MVFHPmtoDIwxHResMQZwTUBgg69UBTI5ymF3CYhdrmwi0dd45/a9OBMCgh/9xTEmepeIkW7HWwlfXTrGDWho+EMz4FSDaykicJMXAkPmmrBWzumdAUGGHMLC3Pk9LQCwJsSPKbJ5i8SSQz0ipzPALpaVUEMjYWgGnGowwPAV2TgbWWPjBjUcjcTgxNgpCOg/21Ucdhuw8littXNSQq0oSA2NhKEZcArCNQ29e3pna34qBoQSQMkO7OuLEGDuABRf6Q9dMpq1NBJ3gBA/svMKfb7mRfkQLTeIL2/6eJw1NAaCZsCphvRAukEMAA+DEECwpmlGQIpUlQdj6b88hXlSvNmEDCg7f+Noqaiym7cqVdVVvDmCFgFTjBS9cKDGYKEZcKqhKLkoSIJRjIKyxIfwmSrOENkOGEtdjQXZO4HIl7VyyWKxbH9e+VHeR7+CFp36sSoBRMxOztbLZmoMFtpuMtVQnFKcRJIcOcktWFnSGSJjTCxNFZOn4kOUYvaEfXbAjTMATs6miHjMj3y90p+0j9JiWq7MCABQmlYaNPSKcRqDg2bAqYaC5ILsYLbLYepmIiGjIUNr9XG0g6Xjj9iNXZs1+Bc8AYde9ZZ56mHuROWUnChIU5nugQABUp5Vbqn/GhoJQzPgVENBckFxUjEySVsUBCQRHALy5ZjFKZdI6MtHYO8wXh6BWRMfuOY+AA+vyYgzG428JAjzIz5Oucw2SkqVB2lwVtasIT4yjbMYmgGnGjICGXMy5vhwGYfgFOsIHQJjdortL5alMOHhRbQlR/6fzX0M7PEfzI835UvHkfjknB7mdTgaXMURMT2YPi933sg/TY2pDs2AUw0GMRZnL7aiAn2HSHgEKyYEOUSuGgt2Q4kh+VkQXGRLfMzmTh+9VbmuDN8VSLwGPkFzwrboqRwRSzNKyzPLh/HYNM5SaAacgliauzSDZrgUYeYnYaHjxHCUYjGjHzgSn5XIHBcKOJU5CqqYEF+FLyd66Y9J++4MznX9zjJglXmV+Sl6CVaNQUMz4BTEnPQ5Zall3E7ncrl6Ccidbrk1AGXtGAEZMqHnWl4UO49L9OPcxzwXkreKqCjyKATtLusSAMFFfwBgEGN50fIA1aFdGoOGZsApiKKUolV5q9R5WZgfNzHJ3sdsex84Ic3yn0OUyqgMxWjoW79XKWbusqKIx0Qo5FBVR7aOMD8l/8KSC4fzxDTOWmgGnIIghKwtXptCUxwOim+eU8jF66mQMyjM5a1QVAueeGwvEXuv7jEFykq3KxsBIMCQLSlYot0gGkODZsCpieX5y2elz2KMqRTmS1te4gNQC4KfrOeV+0ROcRb8KlRUY5CYGlx5HFeMl5cZAAIl9PKKy9MCaSPx2DTOOmgGnJooSS25fNrl/nIc89OIOXxFP3TTE/hroyqU6fhlklWuBZ6tJP05g0CUShAAgCEryyi7vPzyoT4njbMdmgGnLK4pu6YgWGD5Q2QiAw8reRFHC5bZyreIb8SfV+r0XsVzaTTRmvBVVr2lqyPiZeWXzcmZM4znpHFWQzPglMWSnCWr81cz02aQWFwDEnMNFoqCrEiX6JEE5URflrRPWcGIliYs1SDqIYCA2SnZN8y5QQ+G0xgyNANOWSQbybfOvjWTZqKJLrlMGXDm6yrxqqgQW0E23SQFMUrJh76NkaU/MeDEV24lAAAM2ZqyNRdMu2CUH6TGVIZmwKmMiwov+lDxhxwxUFGHvaY6M66+rMhxsiinGPjcETaqiKewpNIGACfYUG6G23CJiNnJ2Z9Z+JnUQOroPUCNKQ/NgFMZqYHUu+fdXZBUgCY6HOeVAWXIJOUrOXoVWxleuvRNxBgXAuDDjl1rjCiZ7QVPPjrro5eUXTJyT0vjbIRmwCmOVQWrbii/wRkfAjahgJ9o5iuUxdJVQcoWJ+pQXDeWBCpRqhh7569x238M2fTM6XctuktPCq0xTGgGnOII0MDd8+5emLWQmWxga6BXdeVQZD1FBpQrZJ5EkQ5uIgP1cowD3a4bJsmtxPozqHFn5Z3LipaN+uPTmOrQDDj1MSdrzhcqv5BO0y1J0PRQHvgRVqzgZ4U0TTejcfgaB2PRH3DLnxT57EvT9oQLJjPXlK35TOVnRv/JaUx9aAY8K3Bt+bW3zL5F9fwqNBeLrRSPh7eIYrCL5VY23XUyp5Ql/CG6avbTzRljMzJnfGXlV/JS8sbq4WlMZWgGPCuQbCR/YdEXVheuNqOmD5HJgqGi28ayA4KHznztgHJx8FRiK7+uOWa8l+YggIhpwbQHz3/w/OLzx/TxaUxdaAY8W1CSWvLoeY/OTJ9pRk1VEozFZd5TYsf08JRXZPPSorug8HtYs79IUqFTyrb9AQAh5I7KO/7pnH8ap0eoMQWhGfAswvKC5V9b/rWi5CKTmT6eWa9BUCFE+Sy4iU/Ay4nenPaaJIwxE01n1gOwzvpaGBmym+fe/K/L/1X7fzVGEJoBzy5cXXH1l5Z+KYNmMJOB6VF+mYfUfAU98FON4zOmJFTyteUs5VfWu2W3L9iuDzv6b23Z2kcveFRPBK0xstDT6p5dIEA+PffTERb59u5v90R7DMNwaZryBPfUKeOiJA707MspAMAAiCQtAoA0/aoV8oLuDLJoSZzrmmB+aPqHnljzRFlG2bBuXkPDA6JOP6lxFiDKov97+H+/u/u7LeGWgBEg1OY2zjuKYiBmOfXuKzxI3FKhfAqBs55rbn2vRwU9TErgw+Uf/s+L/3N29uyRuHUNDRc0A56lYMj+Uv2XR7c/WttbG6ABSikhxFE8hbgn76Cb9QTfEbcYqGjQls+D+S9hLHRkT3EEpEA/Pu/jj134WHFa8UjevIaGDc2AZy8QcMvpLV/b8bWdzTs5AxJKCCdCQYUKiEdGs+tSdpwFNgHFoYv7vJE3ogYCjLGspKy7l9x937n3ZSdnj8Ddamj4QTPg2Y6a7prvvv/dPx7/Yz/rp5QSSgjYNEh4EErc8pIMKBbeFMuox+Q42QIoBEm7MAN2Ts45Xz7/y9fNuS5Ig6Nw0xoaFjQDakBPtOe3h3/7k/0/Odl10hIGuUbsSIMWGyIiIQQBRTonL2TII5YB3MQHUkgzeHwdggdt+mPIkgJJV8286sHlDy7OXzzK962hoRlQAwAAEHBP854f7fnRhtoNPdEegxqONdDeCtZzMaBNeQSIM6WVnyfE2fHKgwQYMAA4J+ece5bc84lzPpGZlDmKd6uhYUMzoIaD3mjv6zWv/3T/T3c27Qxj2CA2DyL4WAYl1dU5VHqTQnnyvp2ZzwY4LX3aTXNvunPRnXOy9aIfGmMHzYAaKlpCLetPrv/1oV/vbdnbx/oIIZRQh+zimAUVf4ji4VVcxgRMZhIgJRklV8246lMLPrW0YGmA6gBVjTGFZkANf7SGWv9R/4+Xj728uWFzU6gJASmRIma8VOiNi/YG94E9Hg5YqpG6IG/Buhnrbphzwzk552ju0xgXaAbUiId+s/9g68G/nfrbptpN+1v2t/W3RTFKCKFAHcsg8aM/6ZB7hxkwAiQ1mFqeUX7htAsvK7/swpILC9MKSTypUkNjdKEZUCMh9ER6Drcd/qD5g12Nuw62HazrqusKd4WiIQbMWdPSHS/NqS1Ig+nB9PzU/NnZs5cVLjuv8LwlBUtK0kso0WPSNcYfmgE1BgeGrCPc0djTWNNVU9ddV9ddd6b3TFuoDeyxH3z13gANlKaXFqUVTc+cPiNzRllGWX5qfoqRMt7N19BwQTOgxnDBNVywtV0h3OmFzDUmPv4/Je8dIVXu1HIAAAAASUVORK5CYII=", "path": "image.png" }
Complete the statement. Trichlorofluoromethane is ().
[ "a compound", "an elementary substance" ]
0
The model below represents a molecule of trichlorofluoromethane. Trichlorofluoromethane was once used in refrigerators and fire extinguishers. It is no longer used because it harms the atmosphere's ozone layer.
There are more than 100 different chemical elements, or types of atoms. Chemical elements make up all of the substances around you. A substance may be composed of one chemical element or multiple chemical elements. Substances that are composed of only one chemical element are elementary substances. Substances that are composed of multiple chemical elements bonded together are compounds. Every chemical element is represented by its own atomic symbol. An atomic symbol may consist of one capital letter, or it may consist of a capital letter followed by a lowercase letter. For example, the atomic symbol for the chemical element boron is B, and the atomic symbol for the chemical element chlorine is Cl. Scientists use different types of models to represent substances whose atoms are bonded in different ways. One type of model is a ball-and-stick model. The ball-and-stick model below represents a molecule of the compound boron trichloride. In a ball-and-stick model, the balls represent atoms, and the sticks represent bonds. Notice that the balls in the model above are not all the same color. Each color represents a different chemical element. The legend shows the color and the atomic symbol for each chemical element in the substance.
Use the model to determine whether trichlorofluoromethane is an elementary substance or a compound. Step 1: Interpret the model. . Use the legend to determine the chemical element represented by each color. The colors and atomic symbols from the legend are shown in the table below. The table also includes the names of the chemical elements represented in the model. You can see from the model that a molecule of trichlorofluoromethane is composed of one carbon atom, one fluorine atom, and three chlorine atoms bonded together. Step 2: Determine whether the substance is an elementary substance or a compound. You know from Step 1 that trichlorofluoromethane is composed of three chemical elements: carbon, fluorine, and chlorine. Since trichlorofluoromethane is composed of multiple chemical elements bonded together, trichlorofluoromethane is a compound.
a compound
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAIAAACmkWkFAABClUlEQVR4nO2dd3wU1drHnzNbsy276YEksKGFhAChE0pARKSjoGJBUVAEuyLYAAuKoOhFvAooXPCCoi8iepEu0gQp0gKhk0AoaaRsSbbOef84u5sljS2zm1k43w/6mZ2dnXZ++T3PKTMHYYwh1LhcbrzlNklqeRDOhHInQ3XoLcLGPoGamGz2c8W6s8UVJpu9wmSpMFkb+4y8RiJkYhVh4WHiWEVYerxGKhQ09hlRvIbqMBAgXmU3hQbTqsPnzTa24c00CjkCAACEAIHjHyBwrARAADeMVRb7LfYTBCRCZky6NklDQ1woQXUYIPhlN0sPnC0ymMRSuVIdIRGLpSKRVCIWIRAyIAAQMiBEIETAIMeCwLksQMAACJxryDLjXHYtIADkXMYYWAA7xhjAzmK3Zcd6FgOLsdty9XrHlo5lcN8DC2Cx2SurLEaTRWes1BsqJULm1b7tGvvWUryA6jBAMI17+BpUVFkAQNOkuUylkYbJRWIxABA7RMi5BI7ogZ3L1Ru4LVebKFnGgN1+iR3bY4QQxoAQAgCyDGQ92RS5hSsE2LkeIYSd6xECjDE49wAYhAKBQi6NjlQ1T4gFgFsGSQrfoDoMEPyymySNAgBMRh25uyTxchQNdi65FTBZrt7Abdm5LQB2S3Gdv0SO7RHG2FFOAGSZyIGogmzkXAbkXI8xRs71DpU49+DaNcZQZbECQIxCyvFtogQYqsMAwS+7aaZRAIDFaCB3t0agCJWo4lyGsjIdOLVLCSGoDgMEv+ymdbRKImCqDGUmgy7Uo0qlyXKjTAcA7eMjOL9RlIBCdRgg+GU34VJxn+Q4ACgpuMza7aEbVewsm5d/HQB6a2NjeZDEUryC6jBA8MtuAKBrYlSrKBVm2WuXL9jsdgjBqGKz28/mXrNY7UlqeR9tbCDuEiXQUB0GAt7ZDQAMS02MVkgtZlP+pQsmsym0okqlyZJ97lKV2aKSika3bx6I+0MJDlSHnMOvcTcuTDb7qsMXigwmhmFioqI14eFKqZTP4x3MVntZZVVJuaFMb7Dbcaso1bDURD6M46T4A9Uht/DUbgjrc/KzC8oa+yy8prc2lie5K4UTqA65gtd2AwCXy4xnSioO5RdX15j5CcYYYGDrpkkaBR/a5CjcQnXICbx7RLMGSRp5kkZ+KL8EAMb1bE9SUASAwLFQ4yO4rQdn1oqwY71rDVlgMWAAFmMMgMkyYAyIxRgc6xH5lsXgXOP4FXZ9i8DKsmsOnBEg1DUxqhHuESXwUB1yAh+biuvF2cBGyhWBWyP/zT0Cro9ke0CkIa36W2ePAGDApNRJC5yjj8ARJJypX/Ua126xY3vSPucmI8rtD9Whr4SU3Tj7ADBU/3MVnXuPgOsj2R4w6SaEm4reEVuQo+Swo1/S0dqPHMtkX841rt0ix/YYEEIsiwFAgHhczhQOoTr0lZCyG75GFeyIKvwtZgqXUB36SkjZDW+jCrAAgPicxVI4hOrQV0LKbvgeVQJ02RSeQXXoKyFlN7yNKpgFfteZKVxCdegrIWU3/I0qCPhdZ6ZwCdWhr4SU3fA1qtgxBn4XM4VLqA59JaTshq9RhZwD4nExU7iE6tBXQspu+BpVnHXmQF03hV9QHfpKSNkNX6MK/8c7ULiE6tBXQspu+BpV+F9npnAJ1aGvhJTd8DWqAO+jCoVLqA59JaTshq9RhYzmZPg8vorCIVSHvhJSdsPXqML/0ZwULqE69JWQshveRhXeJ7EULqE69JWQshv+RhW+N9FRuITq0FdCym54G1VYvhczhUuoDn0lpOyGt1EFAPhdZ6ZwCdWhr4SU3fA2qmAW+B1VKFxCdegrIWU3vI0qvH8Sl8IlVIe+ElJ2w/OowucslsIhVIe+ElJ2w9+oAsDvqELhEqpDXwkpu+FrVHF2QAbquin8gurQV0LKbvgbVUgx87icKRxCdegrIWU3fI0q/B/NSeESqkNfCSm74WtUYXkfVShcQnXoKyFlN3yNKvyvM1O4hOrQV0LKbvgaVcg6PkcVCpdQHfpKSNkNX6OKnffjHShcQnXoKyFlN7yNKrwfzUnhEqpDXwkpu+FrVOH/syoULqE69JWQshveRhUWgN8TblC4hOrQV0LKbngbVciJ8DiqULiE6tBXQspueBtVeD/egcIlVIe+ElJ2w9eoQvbA52KmcAnVoa+ElN3wO6oIeFzMFC6hOvSVkLIbvkYV5+DxQF03hV9QHfpKSNkNf6MKAADiczlTOITq0FdCym74G1X4Pt6BwiVUh74SUnbD36iCgN91ZgqXUB36SkjZDV+jip33dWYKl1Ad+kpI2Q1fowo5CT4nsRQuoTr0lZCyG75GFf7PXkjhEqpDXwkBuynQVwGAVCTkbVQJEwld50m5XaE69J8QsJucwnIAaBYZztuokhipAoCThWWBuQEUXkB16D8hYzdJkWreRpWmGoWQQdd1VTqTJUA3gdLoUB36D9/t5pquUm+2SkXCGKWMt1GFYVBChAoAsgvKA3QfKI0L1SEn8N1uTpEMNkoNCPE2qiBAiRFKADh+vTQwt4HSyFAdcgLf7eZEQTkANItQV5co/6IKBhynVogETHmVpchgCsydoDQmVIecwGu7uVJRWWm1ycSiKKWsukR5GVUQQGJkODhr+JTbCapDruC13ZAMNjFKDe4lysuoghBKilQCwIkC/vYLUHyD6pAr+Gs3GGNHX0BEOLiXKC+jCsY4ShEWJhLqzdarFZUBuSOUxoDqkEP4azf5FZWVVluYWBSpkEEoRBWEUGIUGfhQHpA7QmkMqA45hL92c6qoHACaRaqdsYTvUQUAEjVKADhVWMZWH54S2lAdcghP7QZjfLqwAgASI9XOWML3qAIAGkWYXCKqtNovlxkDcFcowYbqkFt4ajeXy40kg9XIw0IoqmCMkyLDgd8DySmeQ3XILTy1G9IX0DxKA9WxJASiCkIoMVIJAKeKKuwsv/JYig9QHXILH+2GxTinqAIAEiLVUB1LQiOqKKQStUxqtbMXbug5vzOUYEJ1yDl8tJtLZUazzS6XiNUyKYRaVAHACbx/MJfiCVSHnMNHuyF9AUmRGvIxtKIKAEqKUALAuRKdzc5yemMoQYXqkHN4ZzcsxqeLKgAgMSqcrAm5qCIRiyKVMjuLzxTrOL47lGBBdRgIeGc3eaUGksEqpVKyJuSiCmCcEKEEnuWxFK+gOgwEvLObHJLBRmlcYSHkogog1ESjBICLN/RVVhuXd4cSLKgOAwG/7MbO4jPOvgBXWAjFqCIRCmLD5RjgNG/yWIrnUB0GCH7ZTW6p3mJnVTKpQioJ6aiCAZpGKAEgh5cP5lIahuowQPDLbk6RkBKhBrewEIpRBQHEq5UMQpfLjUYLL/JYiudQHQYIHtmNncVni6uLOdSjilDAxKoVAHCSH4GF4iFUh4GDR3ZzoVRvsbPh8jCZVAyhH1UwBvKeah6+B4DSAFSHgYNHdkOeT2micczjE+pRBSGICZcLGFSgryqrNHN4oygBheowcPDFbm7KYEmBhX5UYRCK1ygB4GRROXe3ihJAqA4DCl/s5vwNnY3FallYmER820QVAEiICAeA7OuNX22meALVYUDhi92Q18HGR6hJEIDbIqoAQIRCKhYKeDsRB6UGVIcBhRd2Y7Wz50t0ANAkIpwEAbhdogrDME00vHswl1InVIeBhhd2c/6G3sZijVwWJhbfZlEFYxwfQbohyzm7X5TAQHUYaHhhN6dcGSzAbRZVEEIaeZhEJNSbrVcq+PXiWEoNqA4DTePbjdXOniupAJLBAtx+UQUAmvJm4AOlPqgOg0Dj2825Eh2LIUIhF4tEALdhVAGAJo7nVsr5NhEHxQXVYRBofLshfQFxmnDHDbwdo4pSKlFIxSab/VKZgYt7RuEeqsMg0Mh2Y7bZL9zQAUBcRLjjBt6OUQUQxGtofYq/UB0Gh0a2m+oMVii6jaMKYMd7AE7zbCIOCoHqMDg0st2QvoBYjbra8m/TqCIVi8JlUqudPX+DFy86orhDdRgcGtNuzDb7xVI9AMRHhFdb/m0aVQCAPLeSQ+tTPIPqMGg0pt2cKdaxGCKUCqFAeNtHFQCI0zgm4rDY7P7fPQpXUB0Gjca0m5sy2DsgqohFggilzM7isyW0PsUjqA6DRqPZTZXVlluqB4BYteomy799owoCFKdRAO2f4hNUh8Gk0ezmTLEOA0QolSKh8A6JKhhwrFqFAHJ5MxEHheqQg5voMY1mN2RG1FiNGgDunKgiZFBUuAI7X75NaXSoDv28gV7ROHZTZbVdKjUggGi1CgDunKgCCMXS/ineQHUYZB02jt2cLqrAABqVUigQwJ0UVQDjaJWcQSifHxNx3OFQHQZZh41jN2RG1BiNmny8o6IKw6AYtQIATvBgIo47HKpDCK4OG8Fuqqy2y2VGBBAVriJr7qioggDFqGl9qvGhOgy+DhvBbnIKKwAgIlwlEgjImjsqqmDAUSqZUMDwYSKOOxmqw+DrsBHshvQFRKvV1QVxh0UVAOSY2JAmOI0H1WHwdRhsuzFarPnlRgQQGa6qLog7LKogBCSPzabNN40E1WGj6DDYdnPKkcGGCxnmjo0qGINaESYSCsqrLIX6Kn/uJ8U3qA4bRYfBthvSFxClVuPqAroTowoAxNIXbjUeVIeNosOg2o3RYr1aUckgFKFSouoCuhOjCkKOajPtnwo+VIeNpcOg2g2Z40YTrhIwzB0eVTDGSplUKhbqzdZ8OiFMcKE6bCwdBtVuyAMakWo1VAcPgDs1qgDg2IhwAMihM94FF6rDxtJh8OxGZ7Jc01UyCEUolVAdPADu1KgCgGLCHXksnRAmaFAdNqIOg2c3OUUVAKAJD2cYBmhUQQgAy6RiMhFHHp0QJlhQHTaiDoUB3bs7OQVlACCXSo0GAwJgEAgQIAAGsIBBZAEBCBBCCCMABoBBgMCxGULAIACMBQiR9c7/IwBMFhBgsqUj5ty8AQLEOCMXcX0MwALGGLNk2bmAMWYxxoDsLEs+YkAsxhiAxcBiDKh6YxZjjMH5LcaAsNuWZD3ZgAXHfsC5JYtxmJgxmCCnoDw5Qhm0sriTIe/ui1SrXdmKK+SS1IO5+QtiEOCW3SBXduNSGtyUDZH1BNfPHdkNuB2iVnbjTEqqsxu2Znbj0M9N2Q2uzm6c31ZnN2x92Q3GCFXvP0qjMlwvCbQOg2Q3OpOl0GBiEFLKwrCzhFiMBQghRFyW3CHAgJEz7SRgtxJFiFi5Yz2Q7as3dG6MHCHEYfkOjTiKhXznTGsRizFCCLMYAUIIExtCjvJwCInEAVJCCBApUgYxdpYFIDJybI9xdVkCBoZh7CxLwg7C1Zpw7V8lFRXrTKeLygenJAhcMqQEBp3JUqCvYhASMUhvMDAAAgQAWICQI/i5hToGADmDInKuYdyCn2u96/+uBSDbO3XoiHnYoUyEHDoExx8CYAA7ywJCLItJFHQENrgpsBHvcEU+DMCyLCDGzrIsVAc27BbPAMDOYkDIzpJ9I2cURK7AiQEJ7DYAOF1cMZgNoA6DVJkivfpKuQK5eT1D/pgd991VdUUN1JmJGbjXmd0CCareGLviAXbu0GE5jmyzZlRx1IFdFW9XhMEY16gzk3wFELCYdZ1cfXVmlmXBkSrj2nVmjLFIwISJhFYWn6MTwgQeqsNb6NDOBlSHQbIb0quvkstcuYkzUSRZA7iKFZOWsnrqzK7sxu2fe0XYuTFy1XaRc4eOO+8oj5vrzCQIIWcN173OjBCqUWdGCJE6M4MY18nVV2cmDQSO7KZWnZn8SiUTAe2fCgpUh42rw2BUpkorzUUGE4OQIkwGzqosBhA4owrDkPyUlIarslJHnZmYsXudmVSHwbGho2JVbtbllOWSDXrHdwCEq0vW2ZTjHlVYZ+3XFVWcdVqWnIp7nZmEoOqoguuOKuzNUYV1RZWb68wAoJCICqHqXEmFxWYXCwVBKJE7k+DrEDuMDDDGDEJUh8GwGzLMQaFQuGICCkzbzab8vUvP/JpvKMw3FrqfQLom+eGWAx9JHqCWqvjWdgMYCwVIJhFWmm1nSnTpcZrAF8gdStB0WL1xANoQT1fkXjEUnarIxRiayGPipVFdYtqHig6DYTekTypcJgeAAEWVfEPB1P2f7ys8XucJZJddzD64eO6xVR93m/RIi4F8iyoYg0oqqjTbcgrKqd0EDtInFVAdgmND7rObfEPhFydXb722X2etOfZXKZL3j+/2dJsH42UxPNdhwNtuSivNJZVmhmFkYWEAEIg689LT64ZsfKE+r3FRYTFM3jN/8p5PgWd1ZoRALhEhgNxSOiFMoCitNBcbTQHVIbht6NiYo7ab/5z93/Ctr/x8aXttrwEAvdX42+U/h2+dvOTMjzzXYcDthjTOKeRy1y10RQlOegTWXNz6/uHFFVZPhyd9f2HblD3za0SVRuwRIPsUMEguFWI6IUzACLQOA9cz9dr+BR8c/bZOo6nBktM/TT0wV28x8FaHAbeb7OulAKCQKRyfOY0qm6/snfr3Z96e0qoL2/6ds45X2Q0GUEho/1QAIS8AD4QOT5ZdyDcUBCi7eW3/gjW5f3h+mTuvH/jg2Fe81WFg226KjaZyk5VhGJlU6ljFXZ1Zb9HPPrzEtxN78+DioQk9kpRxPGm7QQByiRAhyK8w6kwWlVTs23VR6qTYaCqrsnCow7UXt/xTnL3t6t86t7Q6UR57T0LPexN7Zsa256TtZunpX//PG68h7Lx+4PMTy15Ke4qHOgxsdnPKkcEqkStGcBdV1lz848rNPVBe8fHxVcCn7AYhpJCKwPlQD4VDONThwaJj929+7u2Dn6/N26a7uQqfbyxcembdA9umP7Bt+mVDAfiX3eQbCj8/8YNv1/vjxQ3XKwt5qMPA2s1JRwYrq17FXZ3557yt/pzb9xe2VZj1PGm7IbuRO/LYMn+ui1IbR8ON3zpcl7f1yR1vnC6/2PDh9hYeH7Thhb2Fx/xpu5mf/X2FB+019bH07P/xUIcBtJtCg6ncZBUwgjBpWPVajrKbk2UXTpXdotRvSXbZRf5kNwAgEwsYhAoNJjohDIcUGkxlVRb/dfhVzsoZBz1tKKywGkZvfePHi1t9zm42X9nnz1VvyN/BQx0G0G5IBiuTy29ay1F2Y/C4K6oB9hRm8yq7AQC5VAgAJ+gbRbmDEx3+lrd10clV3h565sEl2aUXwPvsJrv0os5a6dv1uth1fT/fdBhAuzlB+qTkiuoKM3CW3fxdlM3JSfIqu3FVm0l3HoUTHH1SfuhQb9F/esyXTokKq+HJHR+A99lNjt+ZOwCc0+f5qUPO5/MNVM9Ugb5Kb7ExjEAiljrjBgDU7BE4X3Fh3/W9DEJHS45nRKUjgDbqlllNe4AHPVOcwJ+eKSJBiVAgYFCFyVqgr4pThtV73hTPKNBX6c3WW+oQGuyZWnxqld7XbPqysXD1ha0PtxjoVc9Uvh99INVg8FOH5VUWbnUYKLshjXNyhYJhXMUKAI6oYrTq/5f76y8X1hls1aV4pMQxLFgpUgxrdvek1EdU4urXO9bIbjBwg+fPqjjXVMuQq2emEHJoAiGEAMulIl2lJaewnNqN/zSsQ+QMLQ0/M/Vb3jZ/zmHJqXWPtLzHq2emuAmnzv3zR4eBqkyRPimZTIFdLSIEDLm6Cy/sfP6/Z1a6e407eqvhh/Prhm986re8rVBP202PmHT/TzJJHsurthtyNNIvcPx66U33jeITxG7q1KGHbTd/Xt1r8KOHCABOlF0sN+u8artRCRUN79MjMPivw2xOdRgQu7mmqzRYbAwjkEqkzsYOB39c2fLCzucKq26dK+qthncPffZb3tY62266xXTw/zzTI5L51naDEIiFjJBBVVb7lQp/GwvvcK7pKklNqrYOPW+7OVvBQTPKybJcr9pu2kVo/T9ovCzGfx1WcqrDgNgN6QuQyxVQnQ4AAJy4cWzBUe+eOZh16DOS49TIbhDAaO3d/pxkekRyekQLHmY3ACCTioBOsOk39ekQwIvshhMuGQq9ym56xrT3/6B9YrvwTYcBsRvSoB0mU0B1OgBFlQVzDn3gw95mHPzsdPmF2m039yf7ZTdT2o4C/vVMkV85hnUWlNEJYfzhREE51NKhA8+zm/IL/p/JFWOht+NuBiV09+eIfeK6KMVKTnR4irsJYbi3mysVlZVWOyMQSCRScIsqP55bZaynseaWzDu6pHZ20zOmg88JTu/Y9EdaDIRaUYUn2Y0AgVjImO1sbimdEMZHrlRUVlpttXXowOPsprW6hf8nk6ZJ9nZU8XudnvHniA8lD+NKhyabnSsdcm83jlFVMsf0ESSqFFUW/HnF92cODhYfP1h0rEZ2gwFmdHomVZPs7d7CxfI53SbVF1WAB9kNYpgwsRDoDOJ+UKcOq7/2OLvhBLVY4W12k6iIndBmhG+H6xvXtVNkGg91yLHdYIxzCqtrUuCMKgcL/RqRDQDr8rbVyG4QQLhYuaTPTK8cJ1wsXz9oboeIFvVFFeBBdoNZVi4VAcCZonKbnfXz1t2BYIzJX0gNHbpt4Wl2kxXf0//zSdNovc1uAOC9Tk+narxuM24V3vydjlM41mFxBSc65Nhu8p01KbFEQtaQqHKgcK+fez5UnF07u8EACYrY1QM+9rBffGhij91Dv2wf0aKBqAL8yG4YBBKRwMri8zf0ft66O5B8Z02qhg6rt/A4u0nRtFCIbn4AwksGJ/ZQS1TeZjfk25/u+sgrx2kd3vzrnu+qxEqOdWhnOdEhx3ZzqqgcAMJkKlcgIVGl0ubXyAUAuGosrJ3dIAAEKFys/Onuee92mpQgj6nv54mKmJX9Zn5/17vNVPFwq6jCh+wGIUZK61O+Up8Oq7fw5pmpR1uN8udknmk7Cvv6Nj+VSL66/0ejm9/lyYGy4rp+3fNdpVjBWx1yOaoYY3y6sBwApDKFK5AgBAhQno6DwQs6sz5conTFJVcUIoea2HbU021Hbcrfm1N+0fXe4iRFXDtNcnqEtr2mhVqiIDcV1T+akw+jijEGxDAsy8okwgqjmU4I4y0Y49OFFVCXDp2qcWQ3yJndNDyq+JGWI3/L23q9ssiHk8mMTe8V2wH5MRNDuFj+afeXR2vvWnBi9f7iE3UepXNk2jNtH+wc1Q5jYHmsQy7t5nK5sdJqFwiEIrHYUWgkqnDU5qaSKIkZI3RTduPUEALAgxMzhyRlOr5CgNzmCHcELudH96jCn2em3KMKwqxULDBZ7GeKdenxGk7u4Z3A5XJjpdVWpw6rq1PePDOlFCs/z5w5dtvz3p6JSiRfnjXDsXPkxTNTtXXYPTp9Vb92+caiv4uyr1YW5ZTlAkCKRqsQyPvFd42Xx7KORJzXOuTSbkhfgESmBAzIWUsjUSU1Ij2n1O9nuN3abqBWdkNWOEIWcoqGu/l9PM9urlcVk0hoZ7FCLNcqmvkWVRBCUpHQZLGfLCynduM5DejQt+wGANqoW7zf9dWZHr/vBgBUIvkvg+apJUrgTodN5bGjtbF1zhFOLioQWTaHOuTMblhnX4BUpgAENaKK3L/GNgBoIo+Bm58IrzO7cVU+wVGQwZu98JqxaPXF33cVHLheVex+5gqhvFdMl7ub9k2PSPUqqrAsK5UIwAh5pfoqqy1MFIxJwUIdFmMyi0CdOvQtuyFbjmo+MEEe89JfH+g9eIQqTZP8r8xX09TJ5OfB1CFwnd1wqEPOFHy5zGi2s4xQJBSJa0eVrrGZBwv/9mf/A5r05HN2882Zn745/VOdZ26wGTdf27n52s7MmC6vpE2Si5SeRxWEQSoWmiy2nMKKzgmR/tzAO4TLZUaTzV6fDv+8svlUafaBgn2uEacKoaJ9dHrv+Mw+cT2UYmV92Q0AYICu0R1+HvjlVzmr1tX/jLhKJJ/YdtTENiM1EmXjZtkcZjdc6RDd1FzvBxtOXzl2rVSmilCoNAwCBkCAgCwwgEuqCl7f85w//VNr7vkyVdMCMBYgxDgaZW5qmmEQQoBdTTa1224QIMYhHUdUwQAsYIyxIy91LmCMWYwxIDvLOszeERaAxY4Q5Nq4wqyf9NesMxV5nlyFQiif0/WdZGVz1rlP1hG5wLXsniFjBFVma7nBkhAuG9e5pc93786hPh3uvrLl5/Mri+t/NlghUrzQftLgpIEMYAQgQAghjAAYp9IEyCEqBsFV/fU/r+3fdnXv1crCq8YiAEjVJCfIYwYlZGbGtk9SxAZfh6Ttxvktxo5OKMeWLMZ6q+Gvwn+uVxZd0OcZbJXpmrYxYTHNFYlapTZoOuTGbliM/7XrpNnORsQlCYUiBkDAOMpJgIABQIDXnP/vj2e9fv0ioX+THl/2nuUqbFKK7qbjWgAABjmsB1xljB2G7XJxcGSqgAHsLAsIsSwmpe4oSLipIF0lUaPOXG7SPf3XTA+9hqAQyj/q8k6yqrm7klgMTnFUl7TLj4rKKzGG5zJT6IQwDcNivGB3jslmr6HDJdmf7r7q0aD2Pk16vpnxSrhYSawKIafLgDN2upmOtzo8UXrhxwt/ZJddyC69WGExNFPEpkckp2uS22laDEnq6Y8O7SzLAibpj7vjkD1UmPVfnvpuT8FBQ13xXi6UPdxizJCEQUHQITd2c/GG/sdjuYxIHBGbxACund0wCEw2/Wu7nyuq8ro3USmS/9/ALxMUcQyCQGQ3l/QFCfJY36LKhN0z/ik56e0VxUqj/9XjQ1KrumVUYTHWGS1VZlv/FvE9mkV7e6w7ijp1OHPf5MvejMNoFZ68sPfHaomqgezGWx3uLTw249CS7NJ6TyM9Inlh5itp6mTOs5vfL/+5MGdFnUbjjlaRNCX1Wa2iWUB1yI3d/H4q//j1MqkqUhmuQRjXmd0IEFzSXXjn72lGL19W9G2/j7tHd/AnqtTIbios+h8u/rGn4Pj6yzc9WjE4sUfPmPQx2gFKkRw8iCq/Xv5zxj8LfbtjA5r0fSntWU+yGwxgttjLDKYYhXRCt9a+He4OobYOl538dI9neY07fZv0nNtjJlfZzTuHFi059asnx302ZdRr6Q+rxAquspvVF9YvzFnu+YVPaTupX1yfwOmQg1HFdhY7uh7D5A7vQuAyMddYAADQqlp82HOe571UCpH8vS6vdovuAODoLXA0q4P7P1dnA3L85960Xms058fHV3ZY+9QbBxbX8BoA2Jj/98x/vun564RlZ37FzhZ7jOsdVfz1qdXe3y0Hf1zbVVhV7N4jcNNpsyxCDOl6wIBFIgYhKKITwjSIncWniyrATYeHi/7ywWsAYNe1fRsubXV1aREcZQTe6fCFv+Z76DUAsOj0uvu2vVFu0bt6pjzRYX2j23/00msA4KtTi3dc3xU4HXJgN7llBiuLBSIxIxQj52W72vPRzc+qJIe3+KLvv9Mjb/2IU7ws5pusuSOaD3Q62E3jbtz+ubIzR88UgNtDH25vwK8w64Zunvbx0VXlloaepq+wGmcd/vbpPR9VWPSI7KiuZ6a2X91/rbK4gf3ckt8ub2zgWRWMWZKiER2TgeQn6Azi9ZNbZrDYWXcd/nBmkc97+9fxJXqzHuCmninwUoffnF7340Xv3nN8oix39LY3XZ30iKTn9esQ6nl276zu4hdeeg1hxfmVxaaSAOmQA7shqY0wTIlcoaCe7AYAAEOcLG5u5iczu85sEV73k9yt1MkzO7/6v8Er2qhbgK9RpUZ2U2HWDd/6xp6C4x5e1OYrfz+8/e0Ks76+qLL9+gEPd1UfJ8tOeZjdIIQkEiEAZBfQCWHqpYYOjxT9dcP7hkIXeqth5/W/wY/s5kTZhRmHFvtw6BNluSQh8ie7WXBiuW8XbrRVfn16ScM6PFFY5tvOORh3c6aoHADEMoWjukJuwq1Gc/aKz+wV37PKasjVXzxWcpy4aWtVcht1clN5HLp5vAOqFVXAy3E3j+34oIGGujo5WZ47++jSed1fxnWNd7jm0xM07lzUX7rleAfX+AiRQMAwqMJkLa2yRITR/qk6OFtcAW46PFLk7ztPdl7bO7z5QJ91OPOgL15D+Cz7+weSByhFct/G3Ry5cfLIjRyfj55TfqrEVBwpja5Ph+VVFt906K/dnC3RWVnMiCSMQIRcgdrj0ZwKsbJDZPtO0R0QgGu8Q43RnK6ognwdVbzo1C9/FfryCMWavO3dotvd3/yu2qM5/bcbADBY9GFCOa5/NCcJpKS8BYhhwV5psVK7qc3ZEp3Fzrrr8IYHr99vmCMlJ8BXHZ4su7DPj5kXK6zGny7+MbHNCN9GFa/P3+HXlQPsLNx9f7P7Odehv5UpZwarAFdjLDTUduOKCci/WTQ9b7spN+vmHfNxvA8AfJGzus46s58NN4Qi8w3woO3GKW4MAGYbfdtWHdTW4ZkyTyvO9UGmsvNNh5v8m+EbADZf2edz2805XZ6fR88pOwUB0KG/dpNfbgQAkVQBjqomANyi7cYVJfyZI9zztpuN+X9X+DGh+BVj0dYr+2rXmbtEpfm8TxdaRTPwrO0GACOGAQALfblfXdStQy7wTYf7PG4lrI99RSd8brs558240zopMZdAAHTor904Lt5h+nzMbn7P9/dFgluvHagjqnCBhz1TrtQdAEw2OyeHvs2oW4dc4JsOOeGyodC37MZ/ik0lEAAd+ms3joMzjsyCh9mNb6027pwuv1g7qtwV79e8HADQPbqz5z1T4HzDo5naTV3U1mEbjb9TNZF3hvqmQ04m+b5aWehbdsMVnOvQf7sBAMdT7vzMbnQWf99bmlOeVzuqdIn2tzLVI6aLV9kNUZJYEKh5lkOa2jqMDIv1c5+dotLBVx1yQlNZbGNlNzJhGARAh/5qlyH3H9uBr9mNnxfo2nWNqJKi1vaP7+rzDmPCogY06edVdmO3YwCIlEk4uJ7bjto6zIjxdwaFrCaZ4KsOE+X+mh0AJClifctuMiJT/Tx02/C2EAAd+ms3qjARALAWM/A1u/HzAl27rh1VprWf6PMOH0ke48pLPcxubCwLAJEyKQfXc9tRW4cZMb0iw+p9Vf4tUYjkWfE9wFcd9ozztyqXqtE6Ved1dtPZ736MVHVbqE+Hdt916K/dJIbLAYC1mYGv2Y1K7O+LBNuqtXVGlXhZ9HudvH5/LQAMaNJ3QJO+cPNb1G467VpRBWMWs1iAkEJC3+lXB3XqcGSLcT7vcGLKY0qJEnzV4b0J/uZWmTHpTtV5nd0MSejnz6FlwrC+sX2gPh1i33Xor90kqOXA7+xmSKK/Bd9W7YozNaPKiKS7nkl50Ku9pWvavpI22b3VzZPsxmzFABCtoKlN3dSpw95N7unddKAPe+sT3+OhVqP80WGapkUD0xB5wsQ2I33ObprIY4ck9vP50EMS71WI5RAAHfprN01VMgCwW02s3cbP7KZ3rL9p7cAm3RqIKpNSHpqV4WmOc3eTrI+7zkSoOmqBZ9mNyWIBgBaRSj+v5XalPh1ObDc1SeXdtM4tw5Pf7vSq/zpckPmqz5czsc2IREWsz9kNxviltPEKocyHQzdTJA1uMihAOvTXbiRCQasoFQBYDOX8zG7GthyYqPA9zjSVRw9M6NlwVBnerP+vd389tMF40l6TOq/rjNfaPYs8m73QParY7HarlQUA+rri+mhAh291ndfH4xynY1T6F70/VoqV/uswM7bDQy18ya3SNMlT2z8C1S2GvjwRrhTJv+z1nreOIxPKnms7SSFWBEiHHLxe67qucvmh84CQJk4rEDD1vc1PgKpfuIXcFwALGITcnpni8C1qZP0P57c8v9eLKTvc+brXmwObdPfwLWpXjYU7Cw4eLjlhsFbqbZUKoQwDdIhMzYzumqxsxgJ2vc/R83cVsxgbqqzGKmub6PD705v5WVi3MQ3rcPeVLT+f/29x/c+Iy0XyJ1Mee7Dlfdzq8P4t0/Z68/CUSiRfO3BOqjoZA2C/3+Z3Vpf7wt53DbZKTw4tE8re6/ROM3lSvTqstBpNfumQm7f5rT56MbfUIJGrVRFRDbzNjwFgyHoAAQIALEDI6T7VRcv5O2IRhuf3fvbDBa/ftDS6+V2fdH/Z53fE2lkMCNlZ8v5Zh7k4vkXg4buKbXb2hs7EYvxoRoskjb/N3rc3Deuwyqo/WLj3UOHekzeyjW4v0+wZ16N3fGbf+J5KsZJzHeosuk+Or/LwDVvtIpK/6PFKmiaZw3cV662GZWf+b03ehoYPnaZu+3zqpChpdAM6LNFVYQz+6JAbuymtNH+7/6wdY1VUE6k0jG/ZDQDWmfXDt75xwpt3UKRqtOsH/su3qOLakqwnG/iQ3bCAb+jMVpu9dbRqdHpz/0vq9oa3OtxbeOydQ0salt+ktiNfT39EJVZw+65isuXhGyd+zt1wtDTHWCvT6R7d+a74vl2juzSsw5KKKpsd+6lDziZ+OXKtdNPpK4gRRMYlChkB37IbhJDOrHvr0Dffe5bjPKAd8Gn3l/x8A77/2U15pcVYZVGHiSd2ay2i44k9wKlDJjIuiW86XJyz7kTZxeyyC+6+kx6RPDSx58PJdzeVx0BgZmJw12FBZfF5Xd55fV6MNDomLEqrbCYTym+pwzKjqdJk81+HnNkNAPycnXe2WCeWhGmi40n5NXpUcd8AAWIQrDq/5eNjKy8b6q3DJ8ijX233yBjtAE6iij/Zja7KWmE0CRn0VLfWdDCx5xAdiiTSiOgmvNXh8dIL4SJZc2UcJiUOGAd4nimfdVhRadZVWjjRIZd2Y7LZVxw6X1ppFoklUTFNhAzDk6hSe56p9Zf3/n55357C4y7fSdMkt9MkD0roPiihZyCiirfZja7SWm40AcCDHbS0/9srTDb7ioPnS6vMIpEkKpbXOgRHFy1g/+Y7C5wOS/Umg8kKHOmQS7sBgCqrbdXhi8VGk0AgjIiMkYWF8S2qAAAEd/ZCb6OKjWXLjFajySJk0MMdk8kANopXVFltKw9fKDGaGYEgMjKW6tA3HRbrqsxWlkMdctwcECYSPt6lZUK4zG63FRddKystYUm/vYugj7tx7pCUrHMclHP/1aNgMLhGCGE/xjuQs3Ttn2EYclHIceq44XE3ZhZdL6s0miwSIfNopxbUa3wjTCR8okurhHAZa7cXF127caOI6hC80aHBbLtaajRbWW51yHF242LfpaI9uYU2FgNAuDJcpVSKBYxYIBAwiEYVuDmqWOwYI2Qw28r0JpvdDgAp0eF3t26ilIgCUTR3FO46VMgV4UqlVCSiOqxTh2Yba2Oxvsqiq7KSbznXYaDsBgAMZtue3IKTheX0fZeekxyh7JYUrY1QNPaJ3D5QHfpAgHQYQLtxcaqw/FKZodhoKjaYzLTIb0YiZKJk0ki5pEm4PDVGLRHS3u5AQXXYAMHRYTDshkKhUIDzpmIKhUKpD2o3FAolSFC7oVAoQYLaDYVCCRLUbigUSpCgdkOhUIIEtRsKhRIkqN1QKJQgQe2GQqEECWo3FAolSFC7oVAoQYLaDYVCCRLUbigUSpCgdkOhUIIEtRsKhRIkqN1QKJQgQe2GQqEECWo3FAolSDAAoNfrFyxYMHDgwLS0tHbt2g0aNOjLL7+02Wy3/PHkyZMfffTRwJ+kX/DhJCsrK+fOndunT5+UlJS77rpr0aJFLMu6vpo5c2aXLl1SUlLGjBlz7Ngxfw6Uk5Oj1Wq3bNnCxVkHG6rDQNPoOhQCwPjx4/Pz819++eXU1FSbzfbXX38tWLAgPz9/7ty5/hzSHzp37vzrr78mJCQ01glwy+uvv75///5p06Y1b9784MGD8+bNs9lszz//PABMmzbt0KFD7733Xmxs7IoVKx5//PHNmzfHxcU19ik3AlSHgabRdSg8e/bs4cOHv/rqq8GDB5NVXbp0kUgkmzdvrqqqCgsL4/Z4nnD16tXS0tLgHzdAlJeX7969e9asWaNHjwaAbt26nTx5cuPGjc8//3xeXt7vv//+zTff3H333QDQoUOHrKys7777btq0aY191sGG6jDQ8EGHjN1uB+ckey6effbZX375xVXGP/7449133926deuMjIyXXnqppKTEfWODwZCSkvL111+71lgslvbt28+bNw8ASkpKXnnllYyMjDZt2owcOXLv3r1km/Pnz2u12v3790+ePDktLa1Lly7vvvsuy7J///137969AaBPnz7PPPOM+4F2796t1WqPHDniWnP06FGtVrtr1y4AOHTo0IMPPpiSkpKamvrwww/XmQ2mpqYuWbLE9XH69OnDhw93ncyePXsee+yxlJSUXr16rV+//sSJEyNGjEhJSRk8eHB2djb5ic1m++yzz3r16tW6det+/fqtWLHCtbe5c+e2aNGi9kHVavXx48dJGRMkEgm54Xv37hWJRH379iXrRSJRnz59du/eXXsnzz///HPPPbdy5cru3bunpKRMnDhRp9N9/PHHGRkZHTt2fPfdd2v/JLSgOoQ7QIdMixYtEhMTp02b9v3339coP8LatWvfeOONkSNHbtq06d///nd2dvZTTz3lPl2MQqHo16/f5s2bXWv++usvvV4/YsQIu93+xBNPHD58+Msvv/z99987duw4fvz4M2fOAIBQKASA999//9FHHz169Oj8+fNXrFixcePGzp07L1y4EADWr1//2WefuZ9JZmZmZGSk+4E2btwYGRnZq1evixcvPvbYY9HR0WvXrv3pp58UCsWjjz5aUFDQ8MW7ICfz6aefTp8+/fDhw+3bt3/77bfnzp37xRdfHDhwQKFQzJo1i2w5e/bsb7755pVXXtm8efPTTz/94Ycf/vDDD+Srli1b3nXXXQ0cxWQyFRYW/vDDDxs2bJg4cSIA5ObmxsXFicVi1zZJSUm5ubl1nuHhw4cvXbq0ffv2VatW/fnnn2PGjImOjt67d+/cuXNXrFhBtB66UB3CHaBDRiwWf/vtt1qt9u233+7atevAgQPff//9EydOuLZYunRp7969X3jhheTk5MzMzLfffjs7O/vw4cPuexk2bNixY8dct3XDhg2tW7dOSUnZvXt3Tk7OnDlzevXq1bJly1mzZiUmJro78aBBg3r37i0SibKyspKSko4fPy4SiZRKJQCEh4crFDdN4icQCO69994axTx06FCBQLBq1SqxWDx//vzU1NR27dp98sknFovl559/buDKa3Pvvfemp6fLZLL77rtPp9M99NBDzZs3V6lUw4YNy8nJAQC9Xv/9998//fTTY8aM0Wq1jz766P333//NN9+Qn48ePdq1XCfjx4/v0aPHxx9/PHfu3JEjR5Idkot1oVAojEajqwHPncrKytdff10ul3fu3LlNmzYsy06YMCEsLGzQoEFqtZqcYehCdejiNtYhAwCtW7det27dli1b3nnnnaSkpO+//3748OEffPABAFit1lOnTnXp0sX1gw4dOgBAjZ0OGDAgLCyMNETbbLZt27aRyzh27JhAIOjWrZvjYAzTtWtXd4mkpqa6llUqVUVFRQPnCgDDhw/Py8s7e/YsAJw8eTI/P58cKDs7Oy0tTSqVks3UanVSUpK3f4GtWrVynUmNj2az2WKx5OTkWK3WzMxM10969OiRm5tbVlbmyf7ffffdZcuWjR079o033vjuu++8OjcASEpKcsUflUrlOj3yUafTebtDvkF1SLiNdSh0LbVq1apVq1YTJkwwGAyzZs1atmzZ8OHDk5OTMcbh4eGuzciywWBw30tYWNiAAQM2bdr0+OOP79u3r7y8fMSIEWQzu92elpbm2tJms2k0GtdHV8EQbjmlZ9euXaOjozdt2tS6desNGzYkJCR06tSJHCgpKcl9y/Dw8BoneUskEkkDHzHGZIePP/44Qo455Yn937hxw/2i6iMlJSUlJaV///4SieSjjz4aPXp0eHh4jeLR6XQKhaJGE4aHp3fLEwgJqA5vYx0KLRZLYWFhYmKia5VCoZg6deratWtzcnLS0tIYhnE3e7JcI/UCgGHDhj333HPl5eWbNm3KyMggfYdKpVIikfz+++/uW9Z5DR7CMMzQoUM3b9784osvbtq0iTSwkQPViEgVFRXx8fE1fu4qHoLJZPLq6OSqP//885SUFPf17nevNgUFBXv27Ln33ntdOXl6errZbL5+/XpycvL169fNZrOrzHJzc1u2bOnVWd0eUB16TujqkPnwww+HDBlSo3GOtBJFR0eLRKK2bdu6p53//PMPALRv377Gjvr16yeVSnft2rV161aSWAJAx44dzWYzy7ItnEil0tp3v07qs0lSg923b9/FixddB0pPTz958qTZbCYfS0pK8vLyap+kSqVyDzXeZrlt27YVi8WlpaWuy1Gr1REREe5tbLUpKyt7/fXXt2/fXuO4TZs27d27N8uyf/zxB1lfVVW1Y8eOfv36eXVWtwdUh54TujoUTpgwYePGjaNHj544cWLr1q3tdnt2dvaSJUvS0tKysrIA4Jlnnnn55ZcXL148ZMiQ/Pz8Dz/8sHv37rXvoEQiGThw4OLFi2/cuDF06FCyslevXqmpqS+//PLMmTObNm16+PDhGTNmvPjiixMmTGjgnEievH379h49erRp06bGt506dWrSpMns2bPbtGnj+nbcuHErV66cPn36888/b7FY5s2bp1Kp3Pv8CO3bt9+8efMTTzwhk8m++eYbo9FYI4tuGKVS+fDDD3/++ecajaZjx45Xrlx5//33mzZtSlrm1q5du2XLlkWLFtX4Vdu2bbOysmbNmmUwGFq2bJmdnb1o0aIHH3wwLCysadOmY8aMeffddzHG0dHRixcvFggE48aN8/yU6uTkyZPuKa5UKu3evbuf+ww0VIee36vQ1aEwKSlp7dq1S5YsWbp0aWFhoVgsTkhImDhx4rhx44hZjhgxwmQyLVmy5NNPP1WpVAMHDnzrrbfq3PuwYcMmTpzYt2/fqKgoskYgEKxYseKjjz569tlnKysrExMTX3rppaeeeqrhs0xPT8/KypozZ06PHj2WL19e41uE0JAhQ7799lv3MUjNmjVbtWrV3Llzhw0bJhAIunbtunr16sjIyBq/feutt6ZPn967d+/w8PBx48bdd999f/75p0d3zsk777yjUqnmzJlTVFQUGRl5zz33TJ8+nXx17ty5rVu31vmrhQsXLly48Ouvvy4uLo6Pj3/66aenTJlCvvrggw/mzp07c+ZMo9GYkZGxatWqiIgIr06pNl988YX7x6ZNm+7Zs8fPfQYaqkNv7lao6hDdNk2MFAqF59AnwikUSpCgdkOhUIIEtRsKhRIkqN1QKJQgQe2GQqEECWo3FAolSFC7oVAoQYLaDYVCCRLUbigUSpCgdkOhUIIEtRsKhRIkqN1QKJQgQe2GQqEECWo3FAolSFC7oVAoQYLaDYVCCRLUbigUSpCgdkOhUIIEtRsKhRIkqN1QKJQgQe2GQqEECWo3FAolSFC7oVAoQYLaDYVCCRLUbigUSpBofLs5cODAhAkTOnfu3KJFi7S0tJEjR65evdqTH165ckWr1Wq1Wp1O5+1Bp06dqtVq33//fe/P99YsWLCAnNgHH3wQiP1TAsFPP/00evTo9PT0Fi1aZGRkPP744wcOHPDkh2vWrNFqtUOGDPHhoL1799ZqtVu2bPHht/WxYsUKrRvJycndu3cfP378/v37OTyKbzSy3fz999+PPPLI9u3b5XJ5z549o6Kijh8//uabb/73v//l9kDXrl3TarXLli0jH1NTU/v379+qVStuj0JYv349Wdi4cSOdEzkkWLhw4fTp0w8fPpyUlNSjRw+E0O7dux9//PHs7GxuD7R27VqtVpuTk0M+ZmZm9u/fPzo6mtujAIBIJOrYsWPHjh3T0tIqKyt37tz5yCOPNLrjCBv38P/973/tdvugQYMWLVpE1rz11ls//PDDihUrxo0bx+GBXBZAeOqpp245I71vnDt37vz58yqVSiaTXb9+/ejRoxkZGYE4EIVDli9fDgCzZs0aP348AFRVVY0ZMyYnJ+fHH39MT0/n8EA1dDhv3jwOd+5OTEzML7/8Qpb1ev2QIUOuXLmyZs2a7t27B+iIntDI2Q2pB2k0GteaN998c9euXe7p5dq1a4cNG5aSkpKWlvbQQw/t2rWrzl2NHTvWPX/ZuXOnVqvt2rUrAAwfPnzOnDkA8MEHH2i1WqPRWKMyZbFY5s+fn5WV1apVq4yMjClTply8eJF89d1332m12kmTJu3fv3/IkCFt27YdNWrUyZMn67ui33//HQCysrIGDBgAteRF4Sc1dBgWFrZs2bIDBw7Mnj2brGlAITUgVRhX/jJ37lytVvvCCy8YjUatVvvnn38CwNChQ4cPHw61KlMFBQVTp07t2rVrq1atevXq9d577+n1evLVlClTtFrtf/7zn5UrV2ZmZqanpz/77LOlpaWeXJ1SqezQoQMAmEwmn24PZzSy3aSlpQHA6tWrX3vtta1bt1ZUVCiVysTERIZxnNiiRYtee+2106dP9+/fv2vXrgcOHHjiiSe2bt3q1VFGjhwZHx8PAN26dXvyySdFIlGNDSZNmvTll1/q9fphw4bFx8dv3Ljxvvvuu3r1KgBIpVIAuHjx4tSpU1NTUyMjI48dOzZlyhSbzVbnsYjd3Hvvvffeey/Q+lSIQHT41ltvzZs3b//+/RaLJTY21r2O04BCPEQkEj355JNkecSIESNHjqyxQWlp6f333//zzz+Hh4ePGDHCbrcvX7583LhxRGlEh//73/+WLl2amZlpt9s3b9780UcfeXJog8Fw7NgxAGjc1AYa3W6effZZ4rtr16595plnMjIyRo4cuXLlSnKLdTrdggULAGD27Nlff/01ufsA8Mknn3h1lIkTJ2q1WgAYNGjQzJkzxWKx+7e7d+/esWMHQmjNmjWff/75r7/+mpqaqtPpFi9eDADE+M6fP//5559/+umnJOu+fPlyncHtzJkz58+fl0gk/fr169Gjh1qtJvUp728MJajMnj07MjKysrLy66+/Hjt2bPv27Z988smdO3eSbxtWiIeIxeKZM2cSOU2aNGnixIk1Nli6dOn169ebNWu2fv36+fPnr1u3TiwWHzt2jOQ+5Id5eXm//fbbp59++tZbbwHA9u3b6ztcUVHRfffdd999940YMSIzM7OgoODRRx8dO3asd/eFaxrZbtRq9dq1a5csWTJ27NhmzZphjI8fPz5jxoxp06YBwJEjR0j6N2LECLL90KFDAeDcuXPl5eVcncPevXsBID09PTk5GQBEItE999wDAAcPHnRtExcX16VLFwBo2bKlXC4HgMLCwtq72rBhAwD069dPJpMJhcKBAwcCrU+FAu3atdu5c+ecOXMGDx4cGRlpNpt37Ngxfvz4n376CTxTiP+QowwaNIgkMnFxcZ06dapxlKysLKVSCQAdO3YEgLKyMqvVWuferFbr0aNHjx49mp2drdfrBQLBpUuXzpw5w+EJ+0Djd4QzDDNw4MA5c+bs2LFjz549JMn85Zdfrly5UlZWBgASiUQmk5GNIyIiyEJFRQVXJ0CO4t5+RI7i7mju34aFhQEAy7K1d0VqUocPHx4yZMiQIUNIMxOtT4UEcrl87NixX3311aFDh9atW0eqV1988QV4phD/8UqHRIRQjw4BoGnTprlODh069NRTT+3Zs+exxx7zYdQIhzSm3RgMhk2bNi1YsMDVgtW0adP58+cLhUIAuHTpklqtBgCz2VxVVUU2cLWNuZcKgWSbrl152IoGAOQopLDdf+uyNg85ffr0hQsXAKC4uPjUqVOnTp0iGRCtT/Gca9eu/fzzz6SaTOjQocPMmTMB4OrVqzabzSuFIISgUXVYm8jIyBdffBEAysvLG1eKjZzdvPrqq//617/mzp1rsVjImm3btpGGm4SEhE6dOkkkEnCrj/z6668A0K5dO5VKVWNXpGGPNIkBwP/+9z/3b4kIjEZj7XPIzMwEgBMnTuTl5QGAxWLZuHGja73nkJpUp06dct3IysoCWp/iN3l5eVOnTn3vvfd+++03ssZut5MWk7i4OKFQ6JVC3HVoNBpJV5SLW+pw69at5G/h6tWr//zzT31H8RZXf65CofB/bz7TmONuFArF66+//v777y9fvnzNmjVNmzatqKgoKCgAgFGjRjVr1gwAXnzxxU8++eSdd97Zs2dPaWnpnj17BALBm2++WXtv/fv3/+2337Zs2TJ58mS9Xk96EF21mLi4OABYvnx5fn7+66+/7v7DPn369O3bd9euXQ8++GBWVlZ2dvaZM2eio6MnTZrk1eUQu6kxunTw4ME7d+7cuHHjO++8Q6RG4Rs9e/YcNGjQ5s2bX3rppdmzZ0dERBQUFJDa+ssvvwxeKqR///4//vjjvHnzTp8+ffjw4fj4+OLiYncdXr16dcaMGb169ZoxY4b7DydMmLB27drc3NyRI0eStiSr1dqrV6+77rrLh4siTcVkuaKiIjc3FwAyMjJIo09j0cjZzZNPPrl06dKsrCy5XH7hwgW9Xt+xY8dZs2a5+p6mTJkyb968li1bbtq06ciRI7169frhhx/q9PsRI0ZMnjw5Kipqz549TZo0ISMmzGYz+fbpp59u2bKlXq/ft29fjeouQmjJkiWTJ0+WSCTr1q0rLi4eNWrUL7/8EhUV5fmFuGpSpP/bxT333CMQCK5fv37kyBFvbgwleCCEFi5c+N5772VkZNjt9nPnzjEMk5WVtWzZsoceegi8VMj06dMHDx4sFAp37NjxwAMPPPDAA+CmwzfeeCMqKiovL+/06dM1fhgZGbl27dpRo0YVFRWtW7dOIpFMnjx56dKlvkUpV1Px0aNHCwsLW7Vq9corr3z33XeuISaNwv8Dig5r5fqgXYYAAAAASUVORK5CYII=", "path": "image.png" }
Which solution has a higher concentration of green particles?
[ "neither; their concentrations are the same", "Solution A", "Solution B" ]
2
The diagram below is a model of two solutions. Each green ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the green particles represent the solute. To figure out which solution has a higher concentration of green particles, look at both the number of green particles and the volume of the solvent in each container. Use the concentration formula to find the number of green particles per milliliter. Solution B has more green particles per milliliter. So, Solution B has a higher concentration of green particles.
Solution B
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAIAAADrWcgOAABRiElEQVR4nO29eZwU1dn+fd3V3TM9wzCAiIIIZmQRQRBQ1ICKO4oIGtfEaFwwLjHG/OKSGHdNDEbjY8wTt+ijxi15FTVRATVGhZhoFBcENSoQEQEXtmGYmV7qfv84S52qXqaXmp4eONfHD3ZXV51z6pxr7u99TlVXEzOjALWl0l9salvT3LqhLbGmuRXAmk2t7Sm3kGOtQleveGz7hrpDhu/QK17T1W2pqKwPq0rF+pDyh5v/fLXxP19uWNPc+sWmtpBaaBWaaqPOmXsN3xoijvDhp+s2bWhLdnVbrIIq3IfZw01bKv3Giq/eXbVWj65DTm28LharidXUNPZoIEK8NhaP1UQIBDiECMEhOIBjbgEcgkMgBpF87QAEkH9ngvdC/AvAAYhA6lNSB4p/wfI11EYwoHYWL5hBBEDuZorV/xhMRKIbGAx5FIkNzHJPZhYb9Z76NQjGbt5HYovLzKA0s8twmV3AZaSZGUgz0sxpZhfkGjswy6NcqI0MF8wg8bY9mVq+YlVbe3J0/z7TRg7qcJi7qYQPX1/xpc5frA+7tQ+jWbfOX7bmjRVfAXCiscY+/erqG+ricT2KYkQjBJDoWEMEZm+c1Gl7Q6U60duByBsMPSCshgrGIfpTUYtZQrBYPcbGQWIHhucPFp8xsfqMQAwm0oNKICYxYETMzIDyBAEsCmE2CpcVsvc/EDN7p6N2MuI8MTOzrFQTgKFZINsldgMQi0Z23GH7j5d9tmZTa9YR3DL0wkefL1q1DkC0Jt7Qaxvrw+7uwyzhRiCFyOmzQ1O8vocDRNQJiBjvif1v1RaG7E2QOoTBwhMst+iRE7YwS2CCo16D/LUYW0jtDPbVorfLWtRGUqNNRF5vMwBWDMlCFbDeUx1oHim7hXyjZpYNWb4r/G7sROTtSEQEJpBrZJsEPeas20mCdETx2hiALXiSu2ZT26JV66wPtyQfOpmbxATKidXE4j10nTow++Ze5H+rtug0EuooM7fUMVifbaBM7/RNKMD3WrbEDytkpQr5CoDKV8krkMzorZrEpDaQcSAzk3mkrJpNyvnKBnxUMc4oJ1XUVj9V9G4yuU67LoDaSJYR3DLUnkwDiNbWWR9uMT7MstP2DfHaiJNOtKWSbbrOLFRhI5zD2+ijijoK7G3UVJFHcLBYNkfOKAf+Mn3FqjyZzUJIIshnRTVOAaoYx+Whis5gYZ4iCShktJLh31O3NfC5wIWCiJ8qvnYRKRsQtbS0ARjcpwFbqLbrGQeQbGuxPtxifJg9Jk0Y3A/A2s8+TiUTqkpxpjBboRHhqQCqAFmoYhZCxsjBKCfwOpMq2h+aKjBRo+qrGFWCb/1UMXYrmiqtbYnPVn0BYKctN9zEo5F9m7YHsPazj9PptNhofditfZjzQvhj7y7/6KuNkWisd7+BDT0bxZpchJBOJRNtrYlke6K9PdHe3p5oT6ZShdRkFbpG9+9zyPAd4tFIVzekE2V9WP0q3Ic5w01bKv34u8s/Xd8CoDZeX9fQkGxrb2ttSaftoFaLfnbQmK5uQqfL9GF9z141tbXWh9Wmwn3YwW1+765a98J/Vranjbs2iaK19dFYbU1tbU1tvLa2tramRlw1iAARB+K1vt8hqraQ2MJwHIi7JASmAERVLhpRdzc4gOOAWN4fAfLuiSBS90HAy1FJ3UbBZqooU0xfHssZVwRYXxFQE2RzzswF3e8g57q6EFZJNQDzNgfzfgeX2QXlud/BZTDBvN/BZTDIZX7n/aVFDXN3l/XhluHD7PfdaI0Z0Gd4v8bH313+33Ut9T0bt9t2u7q6em8UCRGAzNurxD0RMF6rO6bkazUe5nbKvL2KAIbjyCEkZPkP5u1VciSMpb5sYwzINTZvPY/g3e+gbm4Qc2bpFN/9DsoT+kix7iZnsvpCpp71+2U0CVD1Auac2bvmCLkAIV+RvNaaHw9bqoQPH1r4yZrmNuvD7uvDji9fxaOR/Zr6E6F986ZYba23eq/Wt70Fdm91PnhFgPSHxiFQxege8LawcdXAXBQ0lLGwD9+yvC7Xf0WA81wR8FNFX3Io8IoA1E0T2cfY7B+v69SAqysCMIfRcy3r2oj8vbDVKB6NHDpsoPVht/ZhQVfLB/fpMbh3D9d11339lbd6r5JFb4HdWMv2vTVzS+MQqGLg75ggIgiA7HNTGQv7wWsTXsXm5jxXBNTyv+xtdclB7Zn3igAAeREBwSr1Bgq+yE4V46jAFQFxSCKZAtAYjwVr2dJlfSiO7L4+LPQmsf2a+gNYt/bLVCqRSRXyYyRAFZi756ZK5r0VJlU4MGCcnSpk7CDLzTBHp1AFealiwETOrf1UEf9qqugaslIlmUwB6L0VfDMzU9aH3dqHhYabwX16jO7fx3XdL9es8agimsDyHoc8VEHGTRBanmfYvyVAFWRDTwZV2L9D5gRTu6cyVGGzMgLkn4TsDvZ1JWmq6BqyUiV4SluTrA+7tQ+LuAV+v523B7Bh47pUKuFN/3JQxRfOWXImEzV6Q1aqmO8ZClbmTn6qIIMqmg3e5tKpghKoQmZliiqkuqM0qgR7cCuT9WH39WER4aZXvGZ0/z4A1qxZ403/clAFZs5JHVPFiKAeVYKeMO+YJP8WRZ5MqgSy3zKoglCpQja7KU3Wh93Xh8V9wU+AZf2Gda1tbR1QxXzL8gzzUIWNSwAeVQKeMLewnzPqQK/mzqOK0fAyqMIGVeRRNrspUNaH3dSHxYWbXvEa8TWWVatWmmMQoEqwIaQ4Y8rPEDIeBUAZ+3hvDScRclLFbEyBVGHZ/SR6Mh9VjIYXQBXDnTmpIo+y2U2Bsj7spj4s+vEFEwZtWxtxWja3tGxq8RroJwYb/8pX2RChojaQjSpin8Ah+sxZUcUkWCZVRNsKoQrJ7mfRk+FRxYOJ0UjyLyfKo2x2U7isD7ujD4sON/FoRHxffNUXq70GZqOK1xxFAJ+8qA0URhWJEZL7ky5EHVPNVFGwUN4hMlsgXtjspnBZH3ZHH5bycCYBlk2bWzZs3KjCqjgnuUMmVSQBTGWjCgIH+g8RhbCM/PKtWbXs0ox7SWFE8M6gCtQIdkAVWX+AKl7TbHZTlKwPvSPNllaxD0sJN/Fo5JDhAwGsWLVShVUAxVGFvDM23gYOzEEVUlQxj4KiCrPPHmYt6ByqyJZ6D4LNThVmDlKFzParr8zY7KYwWR96R5otrWIflvjoyTED+jTGY4lksrmlBTmoYvaBpAr7tvioAoMqRqw2Y2gmVfz5qZ8qugzy19zZVPFtNqgigcCsfCS2GycoqQJ5hM1uOpb1YffyYelPujVvXg5EOt02/V5ShXxbAlTxDjf94YdGFqoE6qUsVPHVHIBDxagCgyrcMVX0uRg9KKmSSrsAtoaflypE1odms6vch+E8WDsQ6QJU8ea3xh6ZVPE+zEUVNVx5qCJ8wEY5WaniwaGTqSLPMByqiNOh1rZ2AL3qbLgJyvqwyn3YKc/xJ528yZZJIBgBNB9V9BsK8EqVScZ/QarAo4q55uejCsKjilFFVqpoeoRBFXF2foJb5Zb1odGmqvBhp4QbNgiAvFTR48SB4419fNs1VdR/FOhrNZBQFmG/XYQJclMFxVFFWxk5qMJZqOKdXklUCXa3VQ5ZHxptrgofVi678RFAUUWbIQtVxIj6qaE/Ic2QQF9nUIVU4qobk5cqCJ0qYv3fpAr0n4HNbjpT1odGm6vCh2GGG/OcxWno6K4JoPfIRRXK3ARvi/6ENUO8nvO2mBYRFXUhVbyE3aCKPE2b3XSCrA+r1odhhhvznMVpBCAQoArM0TULyQQN+Y4yqeKF3oDJyqYKh0gVPVW22U3ny/qwan3YudmNAIv+L0AV6C3G6l0mVcwtmVTRoTdoMj9VvJoLpgplUAXGrziXTRXqkCpss5uSZH1YtT7s3OxGgCUfVdj3VvWHeqP3KYAq3un7txDMyF0WVaB/ZVm/9zm7KKpwHqroPsxKFfPSilWmrA+r1ochhRt/R+vlLXjX9SVVgvNb/1vVH16ZyEYVCSu1MUCVwJaKUYWyUwXkd5pHFaOp4hMyBjYPVcxLK1Y+WR9Wtw9DCjfkWwaDvn3Tu64vqRKc33ZEFVmsyRkFK72xQ6rA6PiKUwWBC6keVeSn3q42uylX1ofV7cPQshtzGQzqBoc8VBEib91dbg5QRRZrcoZU7xhU8ZksgyowOr4LqGJMlb32KKoY+9rspmxZH1a3D8PLbsxTUSQJUMWbImaku4VTRRabUUgWqhhVhUgVr5p8VPHYE5gqiyo0VdQOamMGVdjsIICZU+k0gEJ+AX6rk/VhdfswvOxGI0K9FWAxqeJNEfNSRUdSZKOKLDajEN3/rDljVFUcVZCPKt4556OKx57AhQBRhUkVVWYWqoCgmyGKJKL29gSA7RvqOhiUrVDWh9Xtw5CzG3MOnIUqJnmUMqliksdHFfMQ+DaaVFHBuAyqoESqqFoLpwoFqGKWLsdXdxDJEjL70ErK+rC6fdjp2Q1UjFVhVW7R/8tCFQMarIxiKoAmaDfAOEQVEqSKSQCETBWj6Wzs5e2YQRV9Z7lqhlF6LqpQoDustKwPq9uHnZ7dwBdjfbNZFSZ9VAGM0KwR4a+tQ6pk7mOOR5lUYaPoQqhiNIq6iipbi6wPq9uHlctuNEP0bDZIFeMmiA6p4k2k9SEGVZBBHnM8yqQKGUUXSRV9QcFoq81uQpT1YXX7MMzsBshLFZ21sRmnDaoYBCCvYKNYeDsEJtI5D8nokS6himqeRxWI/XNTRbXDZjfFyPqwun0YRrhhHxDElnxUgRmnjS0GAdgoG0Zvyh3gp4rIYCnbIRk9UiBVAIRDFVVUJlV0+aJA9lMF6g8AYVBlq5D1YdX7MIxwQzmpQt7nvmEIUIWNtyiAKghcJhBvOdshpVIFQAFU8Xo8J1VUUdmpAo8qlIMqCIMqW4WsD6veh+FnN2YQZO9z3zDoOM2KKjB3yIUIo8YAVWQv6IjNXksyG5tJFYgRK5oqXo/7qYJAxV1Ola1C1odV78PwsxszCHZIlawEyIkIo0Z/+AXB4wypHQLzal1gJlUgRiw0qiBQcQFUIZvdlCvrw6r3YSdkNwhSBYGbL/1UgdevaodsVPHH2+BbhseQaqYKjDb6qcI2uylX1odV78OQshsj/HshVwZPIPDVko6oIncytjEHMdIhVYD8VPGxApWiitlbHlVgs5swZH1Y9T4MKbsxw7/apluYSRW9Uxaq+IdclONRRe3j40w2qgD5qeJjBcqmCphLporYnIcq7KdKS2sbgMF9egTPbSuX9SGq3YchZzcwhknnX5lU0TtloUogoUX2fXycyUOVbI0tnCo6oOs9c1EFRAVSRTfUvJFBVB4EhmorwTza5jY5ZH2IavdhCOHGPy4lUsUjQDaqIIM8Wani7aI5Y9SiCyycKjru6z3Lp4put0kVUXlwOmxSxTvat4uVlvWhOKiafRhCuPGPS5AqhIKo4s1vA67JQRVviyqHzeHUnDFq0aUVRBXSVCFzz5KoQhlUAWx2E7asD8VB1ezDTsluRGxl3fX5qcLZqOIFX7+NjH1yUcW3xcSCPpS5Y6qwpgqbe5ZEFc5KFfMMO6QKe0fb7Ca7rA+Bavdhp2Q3IrbmogrIGEu1PUgVAxo+G+WmCsyu1Zxh71OjRqoGqphn2CFVjI6y2U12WR8C1e7DCmU35tCCjbFURxZClcA+5tuA1TRVUB1U8b1XJ8bG54VQhW12k1fWh0C1+7DccEMIdnFWqvjOOhdVvE0gykIVjzxQh1BwH7MSuakzqCKPKpQqvjP0zst7UmwuqrBBFbLZTW5ZH6pyq9qHpYeb2mgEQFsiUShVtETXkzpKIwJeQWx8G0V1hYERyEP8BwXRpTeFTxV5VBFUMabKeqv3pFhZeQZVyE8V9vWUFWB92K18WHq42b5nHYD2ZCKYQFJHVAHA3uDlo4oX5FWI9VPFf5AR07snVYLIyKAK+XrKCrA+7FY+LHvtRp2XF0w5G1UCykYVMgrKpAoC3741qKJdRAa+vHW0zqIKuhFVtnxZH6qX1ezDssONmtx6wTSDKv7RAZCdKt7AFEYVGLmrpooXs7UFCqIKFU8VdEAVk7Ow2U0ny/pQvaxmH4aR3QSCqYyFHlUyRsfrhEyqsEEVb/BURQG/eFTRgTuDKoGDclCFO6YKUBxVvMN8VDHuDi2FKpvbEwC2a4jDypT1oXpZzT4MJ7sJTBX1llxU0Vs0VaCHyixWvDSp4ldmIZlUCZisdKoAJVCFNQoNmOgXhVCF/VThtAv7E5qZsj5UL6vZh52Q3cDbYlLFNyU2gBAYGDaLFS/ZV5GpzEK8dplUMbmAilKFNAq1m7NRRW7PvN9B3gnKZmdaZZH1oXpZzT4MIbsBclNF/cdGv6MwqkDvY1AlAJYsVPE3TI4x+Td3NVWEOwyqEHSVwVOgAFUyT9QKsD7Un1S1D0PIbkQ7s1BFRcFcVCF93wDU/BD+csTLwFda/Dv4CsloGCM40y6SKoGu75gqrMv1qALvZAyYGFTxztC3nmizm8JlfaheVrMPOyW7kVtUFMxFFdb3DUBCwyvATxUyKoJ/B18hGQ0rmyqBxLJjqpAu16MKvJPpmCrGONrspnBZH6qX1ezDTslu5JaCqWJCIw9VoAsxdsikSrCi7kMV1u4w2mazm4JkfaheVrMPK5TdaGhkoYqxg1eOKER8at4k7qeKV7XZORzcoZJU0a0ugSqk3WG0TU7cbXaTX9aH6mU1+zC07EYhQLVQJ5kqcOekirGDF6/NfcybxP1UAYC8VIHfJaquTqSK1xF+qmReCGDzXPNSBTa76VDWh+plNfswnN8IN4Opt0UhJStVQB1QRZycbyKdjSrwU4UoC1XMrukqqmTCRN2cqQc3H1Vgs5sCZH1Y5T4MJ9wUSBU9fdVbTKogkyrklaOLDUAjQBXm7FQxi82gCipDFQUT6BdqB48qvnE0qAKb3RQg68Mq92E44Ua1qQOq6OlrVqoIjJhUQcapa87kooqHL3/TfMUGqYLKUgX6hdrBo4pvHG12U4KsD6vYh+GFG4IZ9AqkCsh7y6oMIfaXo4sl82MoHxmHZRAjkyqZ+xRKFYixrRhVOEiVzW0JANv1rINVVlkfVrEPQ81uMoKeucGkivhMh2CPKoHwn+XUVQ8bVAlgJIMYmVRRS17ePuIJZtwhVSDGtgiq6COJwTJRL5wq5FFF/JNKp2G/M5VH1odV7MPOym6EzA2aKjqcZ6WKOTbIcuoZVFH7+N6Sbx8yutsAmlm0eD4rhU4VrwIwgUxTFkuVQN9aZZf1YRX7MOzsxq8AZrwAqt56Z6YX0oyxQQFUoYxJshnZ9RZthc6kCjKpAj1VJo8q0LUUTxWrDmR9WMU+DDO7yWwGB0bOpAq8CXB+qogg7h1lfuwfQg9EAar4I3XJVOEOqOKv2yhZttNHFbXUaLObcGV9WMU+DDO74eAGRRUjusN3Hkb0z00VEcTJf4iWSRWv5AyqePujdKp4dyiUQhWw9I5sQCZVgm2FzW6Kl/VhFfuw07IbdV0wQBUvIsuDgEyqGDHURxU1LiZGPKqYs1SDKlwpquhyA63xU4X1jgZVzNPzD6bNboqV9WEV+zC0cEOBZqgF/wBVvIgstqhjYY6xEUN9VFEdYmLEo4oXx33lBmJxKFRh/xipgygnVSgPVcyTt9lNubI+rGYfhhZuONAMFWGzUyUwTqoEWUrxVPHNxtnXY4FYHApV9GS/UKpIx2elinnyKhn2mmuzm+JkfVjNPuzE7AbwU8OkSmCc9F4ZVAGCVAFloYo38TSaQtVEFRRMFV8aa7ObImV9WM0+7MTsBvAPtsmQvFTxnT+rgdRHcUFU0cltZ1NFFdAxVURzA1QxiGGzmxBkfVjNPuzc7MYImfJFIVTxZXdkECMHVWRFfqropTu/08KniiqgY6qAwHpHrw/UDja7CUPWh9Xsw/CyG/Y6HfClkV4f62haJFVIGUJvETt4g9URVXztKowqEMMYKlVI7+j1gdqhMKokEkkAveI12QbByvqwqn0YXnZDxkigUKqYs0cd7zOpwvB5SA+tEYt9VKEArEqiCsQwlk8VbdUwqJJMpQD0tuEmh6wPq9mHnZ7d6JgoNsqwm8kZI953QBVVrDmRDlCFNaz0gJjt6hSqmKcHszWkrRoGVazyy/qwmn0YZnaDbFTRMVFslGE3F1UA6LCclypsGAIZVIGmSsYt7Z1GFfP0zIpDpopVflkfVrMPw8xuUCpVjCMAHZYLpIre4hFCbjGp4rXTa0bpVPHa2DFVVNP9VDGKtdlNmLI+rGYfdm52AxXv9cYgVczB01uMAqHGwpchIwtV/KV2LlW8NnZMFcmQAFWMYn1U4WxUCS49WOWW9WE1+zBa+qEAAJfdVCrlEFwgQhAvHIIj/hVbWL0GHIJLcEAsX8CRIZUdhxyACOJfcRQBjkMEpNVIO3q8XZUbygyRXADMBJCjQrELOL5+09GftYMAHdozqcLZqKI2ZaMKm/vKl+RRl1xXEsZHFVf6g4hco0ZBFTKtZZVN1ofdwoflhptEe3tzc7NDiBCImYzRdQACE+RYEjjiEDGLIVAbAeaIIyeSYlDhskhTI0QAixAsC3dIzCpF0qqiM4thZrAjcz75i3++4K6G21WLe6z7HWAwM4s8loyrGy6zQ+SyzLZdlyF7neRgyVGT/JQQEL8BxnCBtDiGKOW6LgNEaeaUK5fqUi67gAu4DJfZZYgFgbTrugwm+UIc5TInk8kyh2yLlPVht/BhueFGixkOEUHlYAwGU6CXGUTEYGKV0YmRE8mbI29REGNM8ndC1VBlTJLZlR/J+bI+hNQMWk6DpRvERy6z3FGMm58qopViH1UUXPaJHMd1mdk1m+QK7xAxyzU8PU1Ouy4DTJRyXZCTZk6nXRfkAi5zmtkFpV12IcaYXGYXcF1XDrxogN7HdcMasi1S1ofV7MNQ77uR5yfeyyjupXIs4zGpUE96u+xenRqK7mM9JZUZIrz/YF6qVCtYzL7fIWX2UkX9kaPivWyuf84shkjsI5zhCqvJcyQ5xZVf59enAnJInxAAIkd9oObMAADXdUWOrVCkukHfDMbM7HpZt7oiYDTVKp+sD6vZh6HedyPiuZitsho/NcU1qaLGRW1Xi2GQWyRVVLapqAJfuuiVoHqK5GhpvHg5LMn+giAGyczYm+JKFpGYwHpUcYh8TlUDLGexykfs+oaN2VUfAMYAOY7DALtM0LaQu+leInICc2YPelYdyfqwmn0YcnYDYww0VXS89KgiDoHcrpJH8+zAcnat3xpUId96lUcVOVpdTBVm7ogqjkEVuZvNbkKR9WE1+zCkcMOSKjDGIA9VxBZxYiSXzpQ7IDbKtXHjbRaqyE8VVRyqCqoQUZAqqrVExACza1KF5XRbHZyXKi4DQG3M/vBLNlkfVrcPQwo3lJMqZrwU/4r1MajhFwMDcdejUoAqYkuQKmp3TRWXM6jizcO7gCqsGq3tKhYViDRVSBZbMFXSLgPYviFe8lhtybI+rG4fhhBuZL/moIoZL4F8VNEEYIURTRVRbJAqOlTnoYpqTE6qSHUKVUg1WlUkFh3JoIq0vl27KV/Wh6h6H4ZwIZz1/d3iJ9Z94yrmyYo5RMzsqC3y3FvYeT8dWezSsjS1GsWOiji7ORgZQQ9Zi6NGlkhwB2qhjgkAs7iXSrjO0TdBKXZpqgTudxA7CaoItIl9NFX0SBukYpGOguQh5BC7qj+YyXEYLruQd33ITpFWI3JY7q2GEHKDpAopDBCx63pUsREnt8r0IbPvijXE2DAARBwvMbA+LMeHIYQblTWK2ya9exzEqHvxUiVsDHYUVaILUzUvpGhdtuYvTruL06hLOodFnf1jemIt/keOd9L67gbHNI1OaAVlct3vAFWiTElJ3+8gRtox+lak4USOHGzSCbSmiqAVFFXAiiqCsHLO7LqkvhcDgyqi7QTH9c6UdcvldNkqh8rxIVEgu2FA/MGDxC12Zi3Wh6WqU7IbeXktQBXIuZ9AhdOK+LPJ6JupDkpvhftUKvUJR06IUb3mlQi/euyzUwU63S2AKgR2O6YKmFX6uo7cJS63AusYfQgA+gNNQJ1BFZVs56SKKNFPFZdd0i622U3BKs2HZnYjpycdZTeEKvJhQdlN1fiwQtkNEYgVVZgjrai7py3yeaGtdt9L8zq35pxarhdFi2+jsMGrHFRRtnP8VGG4eoRlYwumCi9G8jmXfY33dqE9iA4i7uOCPb96n2qqyJvWs1DFsdlNSSrBh4HsRuxeUHYjc4mu9GER2U3V+DD87Abm6SqqqIRNjnHtM8nCY42sZSUnH03Wnlkjs2JmtcLXMVVU2wyqQH3hRDa9IKqgFcn7XHdp3pa/yc6b4EMofZBcLTQWLA2quC6R7B2b3YSiEnzYYXYjig1kNwAcB13owxKzG+XD2PvkLEN0OaKr5WXsdC9u74/Nu3DzME7XytDTPbIboAOqxN5M1izsaA6VTe7idOqlVGRyxKOKaIBBFe26IqiiE9q8VHFXcuK+FK8rrE9e4Mha8LEeVUTBNrvpPBXrQxFxyAs6/uyGdbQKZjdestAVPkQZ2Y2zFLVzyVkV7LrIBqrfgPoPaZs4f70f1k5wO8mHIVwINyO33AJAT0dV8qnmqRz/WymxRij5fBKbParILmYZt0UYNxmSlSrSSKzBBO1VUWzm/Q68GcmCY40QLUTkcWV5M7sR9zuI9QXdUcb9Di67pI+zdxUXrGJ9KEOAXnmRR6n7bry5WODREV4aVXkfQp4RVKZc2H03AAjRF1H3f1lijSmnjfo9Hxn0YNTZjM7wYTj33Qia6DCtTxeQY06qQ2qWuM66MijdivTitMw+dRerhTuBNfGhK6ct6g/df7+DoJC6FgEfVbLd79B+X8otJtYIOQsRWSBPluSCgrrfgUgPnM5uxG4OOYJQol3egTa5yauifCj7X2U38I5SN/Wxjlb6pfhcHsLaahX0oWyCzG5IB51AdqOqIp3dRP4/xF4sNE7Uf0qDH4nE2iKh+zCc7EbODbNSxduHAUSXpMuszn3P1XWZVGFWvQwwm3NmH2ckVYSJclLFMamS+ndH6zW55bwIaiXVyOKyG9Eum90UqKJ86K3vZGQ3rnKFzm7I7HryUpUK+7Dw7EZVJbMb52+IvFWcgeNraMfZTug+DCO7UetQOkiTXM3yzlBTpazUBgCQ/iSt69JUkcHcpIqrhjArVYSJclLFNamSmFd6iKQ2RP4p+GZmN2yzm9BVlA+h7r7rILvxrp3roOKlKhX2YWnZDX2CyIul9GePT51+852qy27E5NCjijclzkKV2LJysxu0igJ9VCGDKmKLeFqSzJvLoErqM5fLC5HRhZnZDZWW3SRTDGBw7x7ltGeLVTE+hAr2gexGT3/UpMvIbgi6WOjl3Ur5sOTsxikp1gj1fcOJtlKIPgwj3KhLYx5VSFFF/Z2SLx8NQQZVVKagqAKDKiq7LZ0q/Em5SQWtB63zshtWnmNjcYFtdlO+ivKh6k8vu9EBIjO7MVZ/dHajiqmQD0vIbkCEz11aVnqPRtqoz3tO9WU3HKCK7FkdY4wRD0cGVVSmkIsqIPFpaVRJrw2htbTOy250iCFjcYH82Q3s2k0JKsqHZnYjNvgDhM5uoONXB9lN5/owV3YD1dbM7AbMtKRc0/RZ7FTX2o3qNDUGrP9+slAl2VTug1ooLgrMQRVmIj9VUF52U+TtiNnb3KYabH7LziBqILuBym7YZjeFqxgfmtmNmir5AoTObqDjV1HZTdg+zJXdQLU1e3ZT6iUOrbo1Tog+DDO7QW6qQA2W26fccOsMjSAPVdSXZcOiSlhpmWxwMLuRbsuV3ZDNbgpXMT40sxu1EFxodiM2qWIq5MPSshuEYZpoG4Xlw9CyG/HHod4GqQJ13smR5WY3zm4OiqQKUDpVosPCuFcgnju7YZvdhKRifJg/u1F/9GZa4mU3YpMqpkI+dJxgdmOcTc7shpaFYJr4FxSWD0PLbsQfh3qbjSoMAMmRTjkJDsURGeVlN1BhPj9VjL/boqmC2hAGjPuY2Q3pFza7CVPF+FDHCyBLdqP+6I1cRicKKlyp0irkQ9cNZjde03NnN9wUgmmSvTgsH3ZidgP4qaJGru3g0r+oFT06hnqGMgPUJFZThbNRxfi7LYQq5MtuxpT9Q6P9wX3ka5K3rqsXDJvdhKYifWhsEv/kzG7UErSsRf2voj4sLbtBGKZp78XVlt3om7o9quixENJUSYyPJsaX8jfs7BaJTIiKLjYc5KOK4wSpQlQsVdiX3fRmKm+9KT3Sex3IbkQOY7ObcFSkD41N4h9vsmP4QpScNbupqA9Ly24woFzTtG7HIfowrOyGOqCKpLf8X9vxMXdAcVXTDhQ7MRakCgDIoRVUcd0gVZizU4UKpkrtSWUkOHGkv+k5u8PsBkAgu4HNbgpU8T4UW8z5kQwHni/EPh1lN0AFfFhCdsN7lGuaDcPSIfqw87Ib9o2FpDdpqmz+UW2y4BzH2S0SO6cW9chKFTG0AaroNbxcVOGCqRIdSpFRJXZU8lhwnQSPaGEguxEVkdcx4tGy0I2HzW4KVEk+9OKIuZTrz27IMbIb77BK+7CU7GYHh5vK6tS1u7kh+rDzshvyjUU2qiROiCWOj3WwchyHc2IsenoN6tVhBVDFcSRDslOFiqZKzYkRZ4eiuzn9TfAoD4tyVu/PbkiGoWB2oxvvo4pNcPKoVB/KVQ4RPtws2Q27RnbjHdYFPpQ1FZ7dsOseVHqPfrFvOtmbQ/RhCI/XklQRA0KKKiIi6i4iNToGVZiR2iOa3iMSfTMdWcrO4hTaVJlxYEiERjvOrhEKfjNDUkWNs0cVAAGqQFEFBlVcfeEAyltM5HuKmuPKZ0TIp6hRPWrOiSbuSLmFP/B0PNLTjJ4BMbsKtSrNIbkIR2D9E+8uuyAHOrsxnqLWnk4DGNynoYjR2XpUhg8ZEAkMOerObzMlcghuJtW7wIcyxhD0/VuyJf6n+clmMJPjuEPc9DhE3iq6O9u246/3FJ0Vmg/DCDeKKkTySV++ObPZLdB/exIwImK6e0Z5D3ZOjAHysWkOQPpKZDCPZfWhyhocYpcdhwhwxQuBFzFbYZVWMJN+GqPrkryMkUEVyPsd5FPU9Hdq6lFzdjTxl5T7ZkcRJw53GtxxwW4SnaIegKKehAJyVXYjKnLIcdV5snQk6761yqmyfQhAGAlqSiYPcpmqxofwshtSZ5GZ3QCyUheM9HGgdXCWF9GX6VpecWw6Xcdww/RhOL+iKaYDrAiQdc6s/sfmFp0WCqpI8uiDsq9LBebMoovVnJmIGa6REhP5OCOe3ljinLkHYidGYmdHnFE5JlZxYCKlLwKPJwR3ybZ2I/AonkCZe+2G7NpNYdpafFj42o36IHkWUkH+5VT7dvzJuen2Xml9nmH5MIzsRmFERj7yqOI1LBtVkIMq3kFiZhuojJkcgyosEkgxJYHLYVIFKitWNQNgZyjRkAi3sLua+RP1YS14Z/AOkFm5z4fyaJ3d6JZAZje+h1fb7KZkbVU+LCS7MX2YPBbpJo69SM76nB3o1vK6vdy1e3I6zuJZxQjVh+GEG9kakXPqpSp1sxNgzJkzqCKX1xxi+UMc3j6kpsJkDrV4MBIpD5FHFUA+VjZAFcBHFT1ndtl1HKeDObObY85cD2eIw0NkxaxSbjFnhlgvYOiGmWs3pJ4LCbDMbuAiY+0Gas4sPWezm460NfpQ1C0Tj+DaTcCHqXFIjoPzJsc+oOgyULt3NontedMYNO/itjfKS/ed4cPQshsYK2qSKnqM4VGF9LRBUwVyYCKO+M2NUqgCNqgCcpyCqCKvAWmqEAlHhUsVkhcjis5uYFAFNrspQNaHhfgwOR6J8ZxmTrtM651kb9dluIw0c5q9XuoMH4a2dgME58xkdJCeM7PepOfMXm+KiO2bMxO8RQ29ldnsRbArQrmcM4M6oIqeM7viapCeM3NwzgwBKK9m3TxNFUXNLHNmMjvHXLuRnvOv3egT0ms3MObMsNlNAbI+LNaH6d5uJX0YTrjxqMLyLRk5LeCnirGFSHSQHBi9Yid3ycxgIWHlwYZBDqkrEvKHUOX025jLqNDuu9/BcTKoQqIQVyWn6Oh+B/ZTxVsJ0PZUp6zvu5GeUwuSxDq7AWDcdwNNFUhfWuWX9WGV+7DC2Y3uFo8qYsYrqULGrjmoQuqOBl2OpAp8VFHJZBVSRa0maKo4BVElaHerDFkfVrkPQ85uSL3NQRXdLfmoQmrezGoSah7C6tsoemMmVahjqqDyVJHN8KgiCiJ2bXYTjqwPq9yHIWc33vAURhUgC1X09JAkEXyFZFJFdK8gghhw7pgqKJwqxoABRVNFLxOoZnhUEQUxyasS8oRMqqiLEDa7KUjWh1Xuw07PbsjslgyqKAJ0QBWzEF+xYiN5VOEMqui7eEumipGOAkVTRS8T5KMKclAFNrspRtaHVe7DMLMb75wNqgQax4H3lEkVb/FbU8WIywgWm40qMJJC9TOGXUAV0d4OqQKigqgCpNIMYPuGusKGZauT9WGV+zDM7MY750yqGHvKsRTvs1DFO2WPKmpnZFCFPaoodLAaNQBcaaqwql17n4wuCFBFVirbLPfJSRX1RxKPlvu85y1V1odV7sPOzW6ADKq4rMdS/E9Sxbj1U58yqTCuojqQQRXyqKLQoagiDi6OKshKFaOujqiiDJZJFdEz2o4gRcTCqWKVX9aHVe7DULMbvSqlqAIVYb09naxUYXmTpUkVEZfNgBugirSWRxX4qSIKKo4qyEoV2fhiqOJ5308VbUeUQBWr/LI+rHIfhprdGHTxUYX8u2ahCmWhiojLZsA1MmVdrIQKy8HyzZm5C6niZfZlUoVtdlOwrA+r3IdhfmdKtJ/k4rw//GuSiJCut3lUQUSt0unMlcEEMMGBdwzL756ot3IRjjVVRP0iHoPhgh1BOd93VZgI2b+rQtm+q6IJJhvuQc1PFS991p73dxRchSIGyUpdfWqA/7sq0N+uIp9drLKqXB+udWmp66wHrXSxDdEOhG0IOzvWh2H5MMxvhMvzFBtE+sfqEwBQa+KQYVRuYoZ8ehCrn0uF/M03NX5ZqUIGVeSgK3T4qALizWhflEyt5PRK2YHRYZHIDkR9EBsUAUF+E1fklhz8Jq7OQsn/TVxxbqL79TdxAWZXPrJJ8ssYaU0VkcuSuD4qynflruY3cSG+xWf8uLhVHpXsQ2epG3sh6Sx1s5QJYFSEToxRfbk+VNUC3jfCwZnfCN9yfViJ7Ea3jyUCZN4iqCL8UUB2I4/JThU2qEIeVbgFLU8m2l9PBxqc/Fgaq2Z0JD4j6vRV09dcVNHtN6gixrFkqnittdlNSCrBh2hF7eOJ6JKgQ0zx4nT6hjQfFo3tHyvNh4HsBmrtpujsRre/e/ow5OwGqi90bsk6shgT0/zZDdQQ+rObwN2ZGVRhEDyqEFH7a6nNTyS5NV/LE4vSyY/T8SnR2smRzqSKDKFuFqqoaXhuqsCu3RSmYn3otKL+njankOdPt8J9KpV8z41+rwY9RCGF+rCaspsu9mHIV6YAeYJ6RT1IFbV6L3vdy268KwKyW4JXBALfPfHWykTtROrJjwBAba+lWh7uINbIJrSi9cnUpv9N5rwiYLbfuCIgFvP9VFHRVDcU+pTkuUr6qEV++dehCImMKwISoPbKVAEqyodFxBol9xM39adEUT7Uf+n6ypQsqoQrU2b7u6cPQ74yBYDFLZHGhTfdPkkV83IbyR52zCTNzG5Izav0EYoq7BWg6lUESH6U3vxwsqhTSH3stj6cFO0LXhEw229cEZBUER/puznlGWlnGX8AMObMChTsJcWKLhlXBGDXbgpTUT6MP5OMFBNrhNzFbuq5FArzIcPIbiiY3RR9Zcpsf/f0YSjhhvNQBTpO5Mlu/LbIzG5gHmFQRYVjr15m5s1ouTdRwmkk/u0mXnfLpIrK1wxnyVPyFi9LoArZ7KZjFeHD6FKuWZgqrZr0cyleyx36EACp7IZQ6eymOn0YSrjRI9oxVdhY5gJ0pPXZIjO78R1hFKvCsVcvEXW4XpNHbU8m3ZYwqaI8Iq+KesuAGVRhgypGV3hUgbJsr7pYiae3hasIH9b+rRQgaaXmpTr0IYzsRk+1WI53nuyGOiO7qRIfdkp24zg5qUKqqzrMbmRWmTW7MTYFqOK2cOLfJVILALcitdj1U8V86geKpYoaLvHVPS9RNqnCrvx+nKaK0RUeVQCkXQDoFa8p+QS3aBXqQ1rLsWVZrnkXrvTidH4fZmY36uZm6eTc2Q3nyG62BB+WG27EtDBAFdctOLuRsRm+7AbwgCCvl/uzGyPh0VQRRaUW57uiWYgSr6T8VDGfaabOuAyqqJHzqEIOFUgVq1wqyoex5eWaBK1wP+E8PjSzG2Y1ymVlN1uCD8sNN2IeKNfDclNFxdmM7EbGZviyG2RkNzKyikKyU0UUlfyoLGoBSK/kTqUK9KJ48VSxyqWifOisDSN2t+bzoZndEKlRNrIb7urspkt8GF52I6I5AGShijqvQrMb0rHJyG68YK2Dlyxf1cvMoThpLYVMFTKoYt6UYbObkFSsD8uX+znn8aFv7UaPspHdUJdkN13tw/CzG6Cg7MZL77JlN6xjU57sRvWipooTio+A1NpyqaJc4KXXiirwxkxThT2qsM1uSlKxPgynznw+9LIb6Nyh4tlNtfkw1OxGDWOAKsiW3XjpXf7sRu1ElCW7kS4zqFLm6Qg5KDe7US7IpAqyUIU8qpDNbkpSsT4MocZ4fh9WRXZTbT4MK7tRCYko1E8VFJjd+Is1QrY820B2g07LbrAN8lPFC3yFUUU8BTZAFfYncTa7KUdF+TDVP4QLss4QJ68PRVzxshtw9uwG4JKzm27nw7CyGxRIFW/s/dkNELx9qMPshlQhJlWiw8o+o20o2rcDqniBLzdVWPuQQI4oUFHFcVT7VRk2uylPRfkwtXO5T1+lOJwdnTw+lBHGyG5A2bMbgErObrqdDzsvu1GRxUhffRGE9EcyxgfCJulhBCCfDwKoW42hJsdQVGHAIYqNLtdJ0R2cUKhCihtgqC/vK6q4rmq/KsNmN+WpKB+6cSRHluWTyP7R/D7Mmt1wV2Q3VeXDELIbmXcEqaIiiwo0kLsY2Y0Xm0EZN0ezHkYAzI6qJUt2o3ZlcGSg42xTVo/E9nfCowr5qUI2u+kkFevDtollPAshjuh+0fw+1BHGzG50zEGls5tq8WEI2Q1zBlW8nvWoIqJmruyGM776lTW7kcV6BasSVLcCXHd06ff4R4Y4sWGR8KjCiiosC8xCFbLZTfkq1ofpIZH2UiNO7LAo1XfsQ+F240nJhWQ36Jzsplp82CnZDZsBV1GFubjsBvpgeNmNHDAyPzOowgxQzZhIdEgp50Vx1H872jlUoUyq6J7SVEFeqojrbo1x+4WpLCrBh+0Hx9wBRfvE2TPi7B8txIcyu9FfrSwou0EnZzdd7MNOyW7IDLi5sxvZQf7sxgxHebIbVp8RGVRRc+aGM2sjOxQdhuu+E3P6OiFSxRVo81OFGayto79fo57SlIcq6TQA9LZfmMqmEnzI9dg8szbdVMSfgLNnNHJStHAf6uwGMCYsFc9uqseHFcpugCzZjewguZZGeth0yYHsBt5YqsV2yasgVVDHjT+MF57jUBwN59VEd6NwqeKQA3CAKkQojSoFnsvWqdJ8yPVo/X5t+/ExjndUQRzOYdHoSdGifOjLbrywUOnspnp8WPqCmfgNvc3t7czsQAyjjNwqVmrayBNg9TxXMUpGdsOiEPmhiq/q2xsAkeu6jug29h66QYIqymLybk4iAnGcGy+oTbybbnkowW15u2CIU//tGPVVNQWfEevoLlZU8S7Js7CGRxWYVEmLxy8yyzazK44VL+QJqN9mFufOAMkn1wrYiQNZU9EqoPJ9mN4j2r5rNPZMMrI4hUyrxEG7RejQqNOXSvCh67LjkMqv1BKJ/C6VyH1yZTdboA9LDzejB/SZv3R1a3t7a3uyvjYGPX4icWHxQCD1BQwxxjrjVaMuCaCDPcOb6np7AcyOujPcRxUZjL15lp6aiccR1Y6JxIbUtc5Npla6qU+C396M7ebU7h2Njpb3a7nsUpZnxLo6pST1qFY5JIIqYjzUM2IZDJeJyJUPl5YrU65yp4damYjLIWRFOJddr9fUM2KZOem6sE+fyFAoPuR6JI6POsdHnfWgta6z1CUC+hD1IWeoI4gIlO5D3QJWOCX1rGKwCGGO2om2YB+Wld3st3P/Fz76fMVXXwwbMCBCToAqOlxnpQqriVz27Ibl4+5JHWZSxZucs6IKM5Mq3PFRheq5x7ExMWbplexuZhBRnCMD5Qqaqya2nU4VuGBx14M53OQWRpXN7UkAw/v1KnnItkiF7MM+oD4OD3VYkU9k2eX70JfdUJdmN13nw7LWbiYM2nZw7x6uy8u/+CKZTgfmzGYAhZHL+PMWb+0GxkxKTbXkbJz9VCE/VUSZ3lTZTxUYVInu6NQMj0SHUmRHJ8Q5M3lzZiffnBn6GytqJsmQy1LGnJmzzZk3tibTLrZriA/v11jOkG2R6nY+hE7n9d85tgoflrtUfOyYb2zXEG9Ppj5atbo1JR+jZyzSexM90h/4YKN2ZdaRVXzMEDFVzoJd1/uEvQQQpMoUDhAJoNjfbIHOh3Wim5sqRV8RMKjiQl2tIPlwaQLLZ2WzPpbNr32Rq85ddkvGFYHNifSmthSAaSMHlzleW6qsD7uFD8sNN/Fo5OTxQ7ZriLsuf7J6zdqWzVBjlEkVKAKgMKqQE6SK+KQoqng2qhRVyMvYHWlS8Yt9+thiqLI5kV7XkgBwyLAdtm/o8ArKVirrw27hwxC+GmuO9KdfrV29fmMylVYn4VEFyEIV3ZtZqSJ+Y7BDqjhOPqp4NiqJKl6AL50qYmatSAmPKuKc81Blw+bk15sSAEb37zNh0LblD9YWLOvD6vdhmDd0zF+2ZsGyNeJ134b6QX0a49GIQ3AA8ZwwsaImtojAKrrZEd+mE0mjiMriKEf+qinp7aLROi4LExhhWv1yuzlnVgmz6jxpGPXrha7qdHUVAGKkoe6h1EtxEOvKauCEC/RIu64YM7GiL3/h1GVOMxhwmdMus9riAmmXXUaamYnS4lOAGWl2GbQ5kf66JdGWcgHs27T9fk3bhzVMW7ysD6vWhyHfP/bpupb5y1Z/ur5FvG2M1+zQq+e2PeIOiWwNDhExOyQHEmAHJFb+9dgTvJEWVHEcYtdVeSyb61xEcBRM5I80O0SAuCIAyGmnPFt9XcBlqEiur0yJXQDfFQGdacupLrtQyIL/igCr6bD8dXfmNANEadcVP76cZmZQmtl14QJp5jQzk5NyXWa4YJfhMpoT6bUt7a1JF0BtxDluTNPgPj1CHKOtQdaH1enDTrld9dN1La+v+PKjrzbqLb3iNX3qaxtqYnWxaGNt1NGjCJRMFe8Fe289qpC87wpVSxVm15VU2ZRMb25Pb0qmmttSwkK1EWfC4H4TBm0rbmOzKkHWh9Xmw068O35DW+LdVev+8+WGLzYFb9WMR526WLQuFukRixLQWBuLRcgB6msiPaKRAFVITobzUcV1mTKpQupWbrmOxl1DFXZdBgMbEm7SZZe5NeG2pV0XvKEtlWIWANHariE+ZsA2owf0sYEmFFkfVo8PK/FlnLZU+tN1LWs2ta5pbl29qbW5raBf74451DseU0SQfOhRE+kZi+rZsF49814ojhgra95n8kN1yqzvQ9cLZmpXYw2N5Tq9PAS+MojaU+n17Sn5EflKSbq8MVHQTxo1xmPbN9Tt1KdheL9Ge99wJ8n6sEN1tg+75rt/G9oSG1qT69sSG9oSANY0t7an0gDWtbY3t5f+G5hVru0a4gIUveI1vepqAOzUu6E2FrGXt7tK1ocV9mH1ftW4LZX+ojmY/WpnVI/i0cj2DXVZP7KhZAuQ9WGIqt5wY2VltYUphNv8rKysrAqRDTdWVlYVkg03VlZWFZINN1ZWVhWSDTdWVlYVkg03VlZWFZINN1ZWVhWSDTdWVlYVkg03VlZWFZINN1ZWVhWSDTdWVlYVkg03VlZWFZINN1ZWVhWSDTdWVlYVkg03VlZWFZINN1ZWVhWSDTdWVlYVkg03VlZWFZINN1ZWVhWSDTdWVlYVkg03VlZWFZINN1ZWVhWSDTdWVlYVkg03VlZWFZIDoLm5+dZbbz300ENHjRq12267TZky5Xe/+10q1fGPlp577rknn3xy5zeyLFVDIzdv3jxr1qz99ttvxIgRBx100B133OG6rv7oyiuv3HPPPUeMGHHccce988475VS0ZMmSpqam5557LoxWV1rWh52tLvdhFMBpp522YsWKCy+8cOTIkalU6h//+Mett966YsWKWbNmlVNlOdpjjz2eeuqpHXfcsasaEK4uvvji11577ZJLLvnGN77x73//+8Ybb0ylUueffz6ASy655I033rjmmmu23377+++//9RTT503b17//v27usldIOvDzlaX+zD6n//8Z+HChb///e+POOIIsWnPPfesra2dN29ea2trXV32Xx3uVK1cuXLt2rWVr7eTtH79+vnz51911VXHHnssgL322mvx4sVz5sw5//zzly9f/swzz9x9992HHHIIgN13333y5MkPPPDAJZdc0tWtrrSsDztb1eBDJ51OA3Ac3yLOOeec88QTT+gx/tOf/nTIIYcMHz583LhxP/rRj7766itz502bNo0YMeL222/XWxKJxJgxY2688UYAX3311Y9//ONx48btsssuM2bMePXVV8U+H3/8cVNT02uvvXbuueeOGjVqzz33vPrqq13X/de//rXvvvsC2G+//b7//e+bFc2fP7+pqemtt97SW95+++2mpqZXXnkFwBtvvHHCCSeMGDFi5MiR3/72t7NmgyNHjrzrrrv020svvfSoo47SjVmwYMF3v/vdESNGTJo06emnn37vvfemT58+YsSII444YtGiReKQVCr1m9/8ZtKkScOHDz/ggAPuv/9+XdqsWbOGDBmSWWnv3r3fffddMcZCtbW1osNfffXVWCy2//77i+2xWGy//fabP39+ZiHnn3/+D37wgwcffHDvvfceMWLEzJkzN27c+Ktf/WrcuHFjx469+uqrMw/pXrI+xFbgQ2fIkCGDBg265JJLHn744cD4Cc2ePfunP/3pjBkz5s6d+7//+7+LFi0644wzmFnv0NDQcMABB8ybN09v+cc//tHc3Dx9+vR0Ov29731v4cKFv/vd75555pmxY8eedtppH374IYBoNArg2muvPfnkk99+++2bb775/vvvnzNnzh577HHbbbcBePrpp3/zm9+YLZk4cWLfvn3NiubMmdO3b99JkyYtXbr0u9/9br9+/WbPnv3nP/+5oaHh5JNPXr16df6T1xKNuemmmy699NKFCxeOGTPm5z//+axZs37729++/vrrDQ0NV111ldjz+uuvv/vuu3/84x/PmzfvrLPO+sUvfvHII4+Ij4YOHXrQQQflqaWtrW3NmjWPPPLIs88+O3PmTADLli3r379/TU2N3mfw4MHLli3L2sKFCxf+97//ffHFFx966KG///3vxx13XL9+/V599dVZs2bdf//9wuvdV9aH2Ap86NTU1PzhD39oamr6+c9/PmHChEMPPfTaa69977339B733HPPvvvu+8Mf/nDnnXeeOHHiz3/+80WLFi1cuNAsZdq0ae+8847u1meffXb48OEjRoyYP3/+kiVLbrjhhkmTJg0dOvSqq64aNGiQGYmnTJmy7777xmKxyZMnDx48+N13343FYj179gTQq1evhoYGs5ZIJHL44YcHhvnII4+MRCIPPfRQTU3NzTffPHLkyN122+3Xv/51IpF4/PHH85x5pg4//PDRo0fX19cfc8wxGzduPPHEE7/xjW80NjZOmzZtyZIlAJqbmx9++OGzzjrruOOOa2pqOvnkk7/1rW/dfffd4vBjjz1Wv86q0047bZ999vnVr341a9asGTNmiALFyWo1NDS0tLToBTxTmzdvvvjii3v06LHHHnvssssuruueeeaZdXV1U6ZM6d27t2hh95X1odYW7EMHwPDhw5988snnnnvu8ssvHzx48MMPP3zUUUddd911AJLJ5Pvvv7/nnnvqA3bffXcAgUIPPvjguro6sRCdSqVeeOEFcRrvvPNOJBLZa6+9ZGWOM2HCBNMiI0eO1K8bGxs3bNiQp60AjjrqqOXLl//nP/8BsHjx4hUrVoiKFi1aNGrUqHg8Lnbr3bv34MGDi/0LHDZsmG5J4G17e3sikViyZEkymZw4caI+ZJ999lm2bNm6desKKf/qq6++9957TzrppJ/+9KcPPPBAUW0DMHjwYM2fxsZG3TzxduPGjcUWWG2yPhTagn0Y1a+GDRs2bNiwM888c9OmTVddddW999571FFH7bzzzszcq1cvvZt4vWnTJrOUurq6gw8+eO7cuaeeeuo///nP9evXT58+XeyWTqdHjRql90ylUn369NFv9cAImblxVk2YMKFfv35z584dPnz4s88+u+OOO44fP15UNHjwYHPPXr16BRrZoWpra/O8ZWZR4KmnnkpEYqMI/19//bV5Urk0YsSIESNGHHjggbW1tb/85S+PPfbYXr16BYZn48aNDQ0NgSWMApvXYQO6hawPt2AfRhOJxJo1awYNGqQ3NTQ0XHTRRbNnz16yZMmoUaMcxzGDvXgdSL0ATJs27Qc/+MH69evnzp07btw4ce2wZ8+etbW1zzzzjLln1nMoUI7jHHnkkfPmzbvgggvmzp0rFthERQEibdiwYcCAAYHD9fAItbW1FVW7OOtbbrllxIgR5naz9zK1evXqBQsWHH744TonHz16dHt7+6pVq3beeedVq1a1t7frMVu2bNnQoUOLatWWIevDwtV9fej84he/mDp1amBxTqwS9evXLxaL7brrrmba+eabbwIYM2ZMoKADDjggHo+/8sorzz//vEgsAYwdO7a9vd113SFK8Xg8s/ezKleYFDPYf/7zn0uXLtUVjR49evHixe3t7eLtV199tXz58sxGNjY2mqgpNsvddddda2pq1q5dq0+nd+/e22yzjbnGlql169ZdfPHFL774YqDegQMH7rvvvq7r/u1vfxPbW1tbX3rppQMOOKCoVm0Zsj4sXN3Xh9Ezzzxzzpw5xx577MyZM4cPH55OpxctWnTXXXeNGjVq8uTJAL7//e9feOGFd95559SpU1esWPGLX/xi7733zuzB2traQw899M477/z666+PPPJIsXHSpEkjR4688MILr7zyyoEDBy5cuPCKK6644IILzjzzzDxtEnnyiy++uM8+++yyyy6BT8ePH7/DDjtcf/31u+yyi/70lFNOefDBBy+99NLzzz8/kUjceOONjY2N5jU/oTFjxsybN+973/tefX393Xff3dLSEsii86tnz57f/va3b7nllj59+owdO/azzz679tprBw4cKFbmZs+e/dxzz91xxx2Bo3bdddfJkydfddVVmzZtGjp06KJFi+64444TTjihrq5u4MCBxx133NVXX83M/fr1u/POOyORyCmnnFJ4k7Jq8eLFZoobj8f33nvvMsvsbFkfFt5X3deH0cGDB8+ePfuuu+6655571qxZU1NTs+OOO86cOfOUU04RwXL69OltbW133XXXTTfd1NjYeOihh1522WVZS582bdrMmTP333//bbfdVmyJRCL333//L3/5y3POOWfz5s2DBg360Y9+dMYZZ+Rv5ejRoydPnnzDDTfss88+9913X+BTIpo6deof/vAH8x6knXba6aGHHpo1a9a0adMikciECRMeffTRvn37Bo697LLLLr300n333bdXr16nnHLKMccc8/e//72gnlO6/PLLGxsbb7jhhi+++KJv376HHXbYpZdeKj766KOPnn/++axH3Xbbbbfddtvtt9/+5ZdfDhgw4KyzzjrvvPPER9ddd92sWbOuvPLKlpaWcePGPfTQQ9tss01RTcrUb3/7W/PtwIEDFyxYUGaZnS3rw2J6q7v6kLaYJUYrK6sql/1GuJWVVYVkw42VlVWFZMONlZVVhWTDjZWVVYVkw42VlVWFZMONlZVVhWTDjZWVVYVkw42VlVWFZMONlZVVhWTDjZWVVYVkw42VlVWFZMONlZVVhWTDjZWVVYVkw42VlVWFZMONlZVVhWTDjZWVVYVkw42VlVWFZMONlZVVhWTDjZWVVYVkw42VlVWFZMONlZVVhWTDjZWVVYVkw42VlVWFZMONlZVVhWTDjZWVVYXU9eHm9ddfP/PMM/fYY48hQ4aMGjVqxowZjz76aCEHfvbZZ01NTU1NTRs3biy20osuuqipqenaa68tvr0d69ZbbxUNu+666zqjfKvO0J///Odjjz129OjRQ4YMGTdu3Kmnnvr6668XcuBjjz3W1NQ0derUEirdd999m5qannvuuRKOzaX777+/ydDOO++89957n3baaa+99lqItZSmLg43//rXv77zne+8+OKLPXr0+OY3v7ntttu+++67P/vZz/74xz+GW9Hnn3/e1NR07733ircjR4488MADhw0bFm4tQk8//bR4MWfOHPubyN1Ct91226WXXrpw4cLBgwfvs88+RDR//vxTTz110aJF4VY0e/bspqamJUuWiLcTJ0488MAD+/XrF24tAGKx2NixY8eOHTtq1KjNmze//PLL3/nOd7o84kS7tvo//vGP6XR6ypQpd9xxh9hy2WWXPfLII/fff/8pp5wSYkU6BAidccYZHf4ifWn66KOPPv7448bGxvr6+lWrVr399tvjxo3rjIqsQtR9990H4KqrrjrttNMAtLa2HnfccUuWLPnTn/40evToECsK+PDGG28MsXBT22233RNPPCFeNzc3T5069bPPPnvsscf23nvvTqqxEHVxdiPmQX369NFbfvazn73yyitmejl79uxp06aNGDFi1KhRJ5544iuvvJK1qJNOOsnMX15++eWmpqYJEyYAOOqoo2644QYA1113XVNTU0tLS2AylUgkbr755smTJw8bNmzcuHHnnXfe0qVLxUcPPPBAU1PT2Wef/dprr02dOnXXXXc9+uijFy9enOuMnnnmGQCTJ08++OCDkWEvq+pUwId1dXX33nvv66+/fv3114steRwSkJjC6Pxl1qxZTU1NP/zhD1taWpqamv7+978DOPLII4866ihkTKZWr1590UUXTZgwYdiwYZMmTbrmmmuam5vFR+edd15TU9P//d//PfjggxMnThw9evQ555yzdu3aQs6uZ8+eu+++O4C2traSuic0dXG4GTVqFIBHH330Jz/5yfPPP79hw4aePXsOGjTIcWTD7rjjjp/85CcffPDBgQceOGHChNdff/173/ve888/X1QtM2bMGDBgAIC99trr9NNPj8VigR3OPvvs3/3ud83NzdOmTRswYMCcOXOOOeaYlStXAojH4wCWLl160UUXjRw5sm/fvu+88855552XSqWy1iXCzeGHH3744YfDzqe6iYQPL7vsshtvvPG1115LJBLbb7+9OcfJ45ACFYvFTj/9dPF6+vTpM2bMCOywdu3ab33rW48//nivXr2mT5+eTqfvu+++U045RThN+PCvf/3rPffcM3HixHQ6PW/evF/+8peFVL1p06Z33nkHQNemNujycHPOOeeIuDt79uzvf//748aNmzFjxoMPPii6eOPGjbfeeiuA66+//vbbbxe9D+DXv/51UbXMnDmzqakJwJQpU6688sqamhrz0/nz57/00ktE9Nhjj91yyy1PPfXUyJEjN27ceOeddwIQge/jjz++5ZZbbrrpJpF1f/rpp1nh9uGHH3788ce1tbUHHHDAPvvs07t3bzGfKr5jrCqq66+/vm/fvps3b7799ttPOumkMWPGnH766S+//LL4NL9DClRNTc2VV14p7HT22WfPnDkzsMM999yzatWqnXba6emnn7755puffPLJmpqad955R+Q+4sDly5f/5S9/uemmmy677DIAL774Yq7qvvjii2OOOeaYY46ZPn36xIkTV69effLJJ5900knF9UvY6uJw07t379mzZ991110nnXTSTjvtxMzvvvvuFVdccckllwB46623RPo3ffp0sf+RRx4J4KOPPlq/fn1YbXj11VcBjB49eueddwYQi8UOO+wwAP/+97/1Pv37999zzz0BDB06tEePHgDWrFmTWdSzzz4L4IADDqivr49Go4ceeijsfKo7aLfddnv55ZdvuOGGI444om/fvu3t7S+99NJpp5325z//GYU5pHyJWqZMmSISmf79+48fPz5Qy+TJk3v27Alg7NixANatW5dMJrOWlkwm33777bfffnvRokXNzc2RSOS///3vhx9+GGKDS1DXXwh3HOfQQw+94YYbXnrppQULFogk84knnvjss8/WrVsHoLa2tr6+Xuy8zTbbiBcbNmwIqwGiFnP9SNRiRjTz07q6OgCu62YWJWZSCxcunDp16tSpU8Uyk51PdQv16NHjpJNO+v3vf//GG288+eSTYnr129/+FoU5pHwV5UNhQuTwIYCBAwcuU3rjjTfOOOOMBQsWfPe73y3hrpEQ1ZXhZtOmTXPnzr311lv1CtbAgQNvvvnmaDQK4L///W/v3r0BtLe3t7a2ih302pg5KkIi29RFFbiKBkDUIgbbPFaHtgL1wQcffPLJJwC+/PLL999///333xcZkJ1PVbk+//zzxx9/XEyThXbfffcrr7wSwMqVK1OpVFEOISJ0qQ8z1bdv3wsuuADA+vXru9aKXZzd/L//9//+53/+Z9asWYlEQmx54YUXxMLNjjvuOH78+NraWhjzkaeeegrAbrvt1tjYGChKLOyJJTEAf/3rX81PhQlaWloy2zBx4kQA77333vLlywEkEok5c+bo7YVLzKTGjx+/zNDkyZNh51PVreXLl1900UXXXHPNX/7yF7ElnU6LFZP+/ftHo9GiHGL6sKWlRVyK0urQh88//7z4W1i5cuWbb76Zq5Zipa/nNjQ0lF9ayerK+24aGhouvvjia6+99r777nvssccGDhy4YcOG1atXAzj66KN32mknABdccMGvf/3ryy+/fMGCBWvXrl2wYEEkEvnZz36WWdqBBx74l7/85bnnnjv33HObm5vFFUQ9i+nfvz+A++67b8WKFRdffLF54H777bf//vu/8sorJ5xwwuTJkxctWvThhx/269fv7LPPLup0RLgJ3F16xBFHvPzyy3PmzLn88suF1ayqTd/85jenTJkyb968H/3oR9dff/0222yzevVqMVu/8MILUaRDDjzwwD/96U833njjBx98sHDhwgEDBnz55ZemD1euXHnFFVdMmjTpiiuuMA8888wzZ8+evWzZshkzZoi1pGQyOWnSpIMOOqiEkxJLxeL1hg0bli1bBmDcuHFi0aer1MXZzemnn37PPfdMnjy5R48en3zySXNz89ixY6+66ip97em888678cYbhw4dOnfu3LfeemvSpEmPPPJI1ng/ffr0c889d9ttt12wYMEOO+wg7phob28Xn5511llDhw5tbm7+5z//GZjuEtFdd9117rnn1tbWPvnkk19++eXRRx/9xBNPbLvttoWfiJ5JievfWocddlgkElm1atVbb71VTMdYVU5EdNttt11zzTXjxo1Lp9MfffSR4ziTJ0++9957TzzxRBTpkEsvvfSII46IRqMvvfTS8ccff/zxx8Pw4U9/+tNtt912+fLlH3zwQeDAvn37zp49++ijj/7iiy+efPLJ2trac88995577imNUnqp+O23316zZs2wYcN+/OMfP/DAA/oWky7R/w+AsOk5yKhMMQAAAABJRU5ErkJggg==", "path": "image.png" }
Which solution has a higher concentration of pink particles?
[ "Solution B", "neither; their concentrations are the same", "Solution A" ]
2
The diagram below is a model of two solutions. Each pink ball represents one particle of solute.
A solution is made up of two or more substances that are completely mixed. In a solution, solute particles are mixed into a solvent. The solute cannot be separated from the solvent by a filter. For example, if you stir a spoonful of salt into a cup of water, the salt will mix into the water to make a saltwater solution. In this case, the salt is the solute. The water is the solvent. The concentration of a solute in a solution is a measure of the ratio of solute to solvent. Concentration can be described in terms of particles of solute per volume of solvent. concentration = particles of solute / volume of solvent
In Solution A and Solution B, the pink particles represent the solute. To figure out which solution has a higher concentration of pink particles, look at both the number of pink particles and the volume of the solvent in each container. Use the concentration formula to find the number of pink particles per milliliter. Solution A has more pink particles per milliliter. So, Solution A has a higher concentration of pink particles.
Solution A
{ "bytes": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEjCAIAAABxX9s5AACQ8ElEQVR4nO29eZwkRZk+/kZk1t3V1fc5V8/BnMDMgMAwHIKKKCi4uoqLftWfrivqgq4HoBy6cgjitbry/a6i7u4HZQ8VDy4RAbkFBpj77pnumb7P6q4zMyN+f0RGVORR1dXV1Xc+zKfIyoyIjMrOfPJ533jjDUQpBQ8e5h4opQih2e6Fh3kAdbY74MED6LqezWYzmUw2m8lkMoZhAAAhFCGglCqK6vf7A4FAMBgMBAKq6t20HizwbggPswZd15PJ5NhYPJlMZrNZwyCUEgAAoJQCpQBAASghlFkMCOFAwB+NRmOxqoqKCo/OPDAgz6L0MMOgFDKZ9OjoaDw+mslkKAWEkM14pJQCULZBKSWEUEoJoYQQQgwAFAoFa2pqa2trQ6HQLP0OD3MFHot5mFFkMpmhoaHR0RFdNxBCGDP+ypEYux/Zbcn4i1MZE2WEUmIYxDAMQojf76+vb2hqagoEArP3mzzMMjwW8zBDIISMjAwPDAxqWhZjjDEGsKswhIDSHIUBADMnKSUykRFCCKGEGAzhcKi1dUl9fQNr08Nig8diHmYC2Wymt7dvbCwOgBQFI2SSGAACTl7sEwC4X4wKFca+csvSIASYIhNERiltbGxcvnyFJ8oWITwW8zDtGB8f7+3tyWSyioIxxrIJKYQY2zAZCwBAsBizK003PyEEgAkxU5UZOejRaOXq1WsqKytn6Yd6mB14LOZhehGPx3t6unXdUFUFYwzAfGGAEAgtBgDMl89vSHOMkt+chPnHKAVOXobsIxNcpmlaMBhYt259dXXNrPxYD7MCj8U8TCPi8dGenh7DIEKFYcyEGCMvZk6aKgwAOJcBAHD7EeR4C0ZkhBjSwKVw9huGYWSzWjAYWL9+Q02NR2SLBR6LeZguxOPx7u5uSomiKAgxEjNHJIGTl7AorYYkcOayeccEl1FBZEyXcUWmG4aezWrBYHDjxk3V1dWz8sM9zDC8MR0P04J0OtXX10uIoDAxHImQRGnAhyltX5mxiRDwUcdcEV5M+NewaBBjjLGiqmoymdq/f38ymZzFK+BhxuCxmIfywzD03t5eTdMUBfOgMMz+Cf6SiQzcuIwbnoK85H+mQSr0nWBJdjpVVeLx0UOHDrHJTB4WNjwW81B+DAwMJhIJFhSG8gCszCWoTTTCywBXZJYq0rAA2GgRIYV97enpPnHixEz/eA8zDo/FPJQZiURieHhYyC4ptELWWXkh05wYxOROMyzuWJkeeUngco+ZlphSevTokbGxsen6qR7mBjwW81BOEEIGBwcIMZgtiXIeLtnnBSCJLB51YYGV6eT4MpdPodrEV6YCFUVJJlPHjh3zhrAWNjwW81BOjI2NjY8nMFaE0ScbjDw1RQHyYp8WCrNpOOuMS5PgpNaQfE5FwV1dJ4eGBqfvJ3uYdXgs5qFsIISMjIyw7IYoN9M7B+TYAVyUCRqSS+SxPe2yTqIzJNEZE4M4m82eOHHSk2MLGB6LeSgb0ukUc+rLQkwcRSjn4aIUKHVhKHbU6T6T6wK4iDjImZZIqsF24r6+3kRifMq/z8MchcdiHsqGeDxOiIEx4gajhcuEOQkOm9FGT/JsSgbObpavkIfOgDMa6wDGOJVK9vX1leEXepiT8FjMQ3lgGMb4+Lg8YsjA3GEO25AixPIgsqN5+Uiu4tgAeeiAiTuHDcs6AH19fYSQyf8sD/MAHot5KA9SqVQmkxGmn0wmNgtRllQ8lVjO0hSQFJngO7DxI2ND5xxMAFsH8PDwsGdULlR4LOahPEilkoZBxIihze0lKEnyi9lbkLO8Shs2CUZERcFyMmExZQdWqxMhlM1mRkdHp/gbPcxNeCzmoTxIpdIAsn+d5jMSXQ27/CoMpMBXkeLCQos2QpS+5npACPFYbKHCW0XGQxlACMlkMlYjjskiIZdEsJgcHmGH06/vthPJNCfYjG2DRZpR0RkASCTG3Tx0HuY9PC3moQzQdV3XNbDYg2IpNhe4mZNUklfUsT9nb1K+PJKjumXDdhQAksmkrusl/DoPcxwei3koAwgxdF0XcRJ8N2XeMZme2MIf4mse2hIrudnIzTYUII5RKTesSEBmJzNNy3ostiDhWZQeygDOMqYDi7MSAiAIIQAszEnJojRZRg6AsA5KyrKLynzG0vDLZ7eZiYLO+Cfi/7wI/gUIj8U8lAd8ESNBQ6aPn1KEEBXOLNfF1iQ7NMdZwGWXbVBS4iaexJovMmJVZ7lvfA9xsTY9zH94LOahPJBHDwkBRRHyi3KtlIvgd6ueG5QUEky2JV2ZzrpTZi6Lmcl2SOOnHhYUPBbzUC4w1iCUIh6RjxiJ8PB9VggA5KUnLS1IqgpkxpNVlSApYR5SSqyDCTYiowCEyUNvfHJBwmMxD+WBLJooBUIoxiaRARDmk7KGWVA+uCSoR/yPSmWALwxuiSOjFNjaIjZ2k76CsCJFtIdHYwsSHot5KANUVVVVNZvNsAyrlFIuxwiliLvGGITjHyEkAvGlkFaTywCAgHVEko0DcGIy2YoQwmlL7Gcb5kJwlDIhRgMBv8/nn8nL4mFm4LGYhzJAURRVVTOZNKcPhDFmcknMx6YUMM55/dmnYCjZxpTDMISSolaxJ5mWIJYKNzmMUM5fQpIBAITDYdexBQ/zHR6LeSgDMMaBQGBsLJ5jEgIIYc5cpkeKxVQ4Yi3YF7DpMtkw5BxFwEJkbFVdtt/Jb4zOCCGmU6yiIupZlAsS3qvJQ3kQiUQoBZsm4mRE5CgHvlP+x+iKERMRkbGCyGguCNbiI5POIr4avHLuE4AqihKLVc3qFfIwXfC0mIfyIBKJYIwJYWGuSFEoIQRjTCmiFBCifGZlLmciV0ZUsiXz+cIoWBhScByAuYq4qQCZNGP1BIVRSkOhUGVlbDYujIdph8diHsqDUCgUDofj8TjGiFJECCCERFi+lBFfOKrM8AvKhwJYSWFCAsgazWEsEsqlH5E/bbYko0UAqKurDYVCM31RPMwIPBbzUB5gjKuqYqOjI4bB4rPYkpGmg5/5Lpj+Yo58NmrJjlIpPMzx6UpgIChMCC5CiMGtSabIWElmTjY2NnlOsYUKj8U8lA1VVdUnT3YZho6QihAQggEogMGFWG4xNwBgMRmQC62wU5gcfWalM5DdYXyA0jQmmY4TrjXWWDRaWVtbP0HvKaW6boyNGWNxqmkAQDUdqYq5AEk0qlRElVComNTaHmYYHot5KBvC4VB1dVVvby9CGABhTIDnlWYFWFg/02I5ZxiHIC8WeiEGBASFyfETlBpMlpEcLK4xPjRJEUKtrUuCwaBLjwnRh4YyR4+mdu9O7duXOXpU7+/XBvpJOgWAKCGAEQUAjJTaOrW21t/aGtywIbxhY3jdOn9TMw4Epu9ieigeHot5KCNQQ0PDwMCAYbAEOArLaYEQRogIv740oVLoGvskcHmaJLcjLdOPuArLsRiAGN80uBADAJTNZgMBK4VRqvX2Jl99Nf7EE4mXXsx2HDdG42AYzNAFPt1SDl8zunrTlABQghEKhdSmxvCpp1W95W2x7ecFV63Efo/OZhM5he/Bw9RBKT169EhXV5eqqoqisrV1xQqV8jJutuz4vLa8lbMfmRcMzDQ+RPbfS0qMGAY1DMMwdFYMAFFKHnroYVX1f/3rX29qaqKGkd6zd/jXv4o/+kj2yBGSSmIEgDHG5twCREEIQqBAEQA1twkVCYMIobpBCPhUtak5um17/d++v/rNFykVFTNyjT3Y4bGYhzIjlUrt3r0rnU6rqoqxgjFCgsf4qmvWidlsjFJO7CMmeMsmJJXmGDkpjBoGIYQwCmNxsBjjo0eP/vzn/zk6Ovr2Sy/9ygc+oPzqV/E//VE7eRIhirFisqpb4rGcccsiPwDYRCY25EmAUqAECCFEJwRHo9Gzz2m4+kP1l7/b47KZh8diHsqPnp7ugwcPYowwVjDGCDEmY2vcIpGlBwBsBCIZkSBiMiQ/fW6mETMbhWvfMNgAJSHEYBSGEEokEr/85X/t27cfEDIIuRijT/b3VgIF1pWJfoWcN4Mw2cjDdE2XGyMyoIRSwzAgHKm86KKln722evt5yOcr90X1kBcei3koPwghhw8fOnnyJJdjmA9Tig3L2uBSEBkwCpM8YpSt3sbVmU2BiQALC4UBACH08ccf//Ofn6LmXEsChvHObOZj6UTE6pOTu0KlT/O38D3sH4uAM6ccmKKMEKAEwADQDUOprWv6yEeXfeazgeaWsl9YD67wWMzDtCCTyezZs2d4eMjn82HMeQwJB5lYYdc+qVIel7S6xnKBrIK/hCHJPfoijxjaseO1X//6N+l0WpyCEAKEXJ5JfyydqLDe9/IMdZD0l/gqG5hMl1EiRJn5jQA1AAxKDYDo2eesuuVrNRdc6EVmzAA8FvMwXRgfH9+7d8/YWFxRVEVRTBrDjMXyTeClLCDW6hHLzcTkURQmrRkG5RRGKTVYCwih/fsP/OpXvxkeHrZFujIie18m9bFUwufwhVn6YWUukOSY+Y8AySkyZl0aBgAbVtANQ21pWXH9jUs+/BHsGuThoXzwWMzDNGJ8fGzPnr3x+KiiKIpievrF+uHCmJPGKxmLmeuDCEOSSzBTo0keMUqIYRhEyuaK9u/f/+tf/2ZoyE5hDAYhfkI+nE68L51icUY2USZ/pZJFyUBkG9PM1CiIjBhAKADjMp0QGgot/ey1q750vRKJlO2aenDAYzEP04uxsbG9e/eOjIwoCuZRF5i7xsxhS1GYe/EBclMpBYuBmBBuGKZDTAxcigb27dv/4IO/GxoaKjDfyCDET4yPpZLvzaSEJhSeMmLlMpsQA86XbMNkMSrkGKHMrmRERinx+Zqv/vApX/u6v26iyQMeSoXHYh6mHalU6tChgz09PQDAoy4QV2Q5OcYHKAE4k4mJkJDLWpGbb8TXc6Os2Uwm89e/vvTEE0+Oj49POGVSJ6Re1+9OjLYZhtBWlvyNDh8/tVKb2MN8+1yjmaOWgsgMSjWAlg9/ZMPd96jR6BSvpAdXeLH7HqYdoVBo48ZN0Wj06NH2TCajKKarX8qDb18eifv4CddlIoI/5xgDPsEIAA0M9P/5z0/u2PGaruvFzPpWMR5VlA6srDIMKnqQ37q0TTKQywACwIAIK89sZZqTeAgplHb/8v5AQ8PqG25UQuEiL5qH4uGxmIeZgKIobW1t1dU1R44c7uvrMwwiDVyyIkiMUrJPMesbhJef+/WFMMIYJ5OpnTt3Pvvsc93dPZNaHwRjDAijPGyFJFEGPDKWSJ+YyzGMgFAABNh0kCHMpwCwWgpCoOvHfvgv/sbGFZ/6NPKyZpcbnkXpYUZhGEZvb++xY+0jIyO6bthEmU2NUTNLYo7IRGQZGwHYv3//Cy+8ePjwEU3TJptT30/p18ZGtmUzhjilldGIlcjAOUzJPf1EcvNTAAKEABHjlcLZjxsaNv/4p/VvfVtJV85DXnhazMOMQlGUlpaWhob6wcGhrq6TAwMDyWSSEOJYaI3KGXs4kbEWcCRS0dDQGIlEHnvs8V27drOQtEl1gwBUU7LU0EHK2k6kAkKC5QsrQ1IBPuQKbNIlAoQAYXP+JbD8RAhjrbd3/z9/LbJmTXj5ikn11kNheFpsDoFSqmla1kRG13UAIMRcHwhj7Pf7A4FAIBDw+/0LYDkfQkg6nRocHBwYGBgdHUmlUtmsxidyy0CKovj9/lAoVFVVXV9fX11dEwwGEUInTpy46eabn376aVVRJndqgMvSqX8aH2XVbCOSYBVctv2yRuPTKm2DlUBMfcZ9/PyfTumyT12z8Y67sN9bU65s8Fhs9kEIyWQy4+Pj4+PjmUxa13XJe52bWsj2IQQYK4FAoLIyWlkZi0QiyiQf4DkISqmu6+l0Op1OpVJJTdMAECGEMTXjr2AwGAgEVVW1eb4O79hx7cc/vnd0VOVTNCc+HUA9MW6Pj6zTNdmcdG7YuAwcezhnAaG56eKUR12IwUoDgALoADqlqLJy849/2nzZ5aVfLw9WeBblbELX9fHxsdHR0UQiYRhEZH1QFIW/YHKubr4uBiWEjI+Pj42NdXd3h0Lhmpqa2trawHzO2IcQ8vl8Pp8vOvlYhKpnn/nkyc4fBEJH/H5fcSyGAd6bSp6ia3bJ5xiCBMfopNPGpOYSwUBZhgxqL2BmvGXbCGkjI0d++C+1287119QU+yM9FISnxWYHhmHE46ODg0OZTAaA8gmGzhBQc0M4ufmSsYRSouvm/MFAIFBf39DU1OhfZOn6MocPt1/1fnrwwGG///vhiiM+vzqRoU0B3plOfSYRl6dS2qSWvJNaN4QEA6suE3JMjoBls8SJzagESnz+U7/93RUf+3i5rsMix7z3rcw7UEoTifHOzs6uru5sNqMoWFVVVVUUBasqVhTxDykKYvHuioIVRcFYQQhjjBUFY4wxVlRVUVWfqqrZbLaj4/iePbv7+voIIRN3YqFg+L//Wzt4ABS8ztD/MTXerGt6/p/PCOi8bObjyfGoYzZ4ARXnkn/D6uOXT8CbQkgaARD7WWwZTaeP/eynmf7+on6kh4ngsdiMghBjYKC/s7MzkUgoisLYSzFpKcdTCGGE2FckJlHzdF0KxozUEOc7hU23TiSSBw7sP3ToUDqdnu0fOhPIdnaO/O5BRhIUYKOufzaVaNB1VyIzAMKUvj+V+OL4aB0x8lEdkv4J2Fxj+SgP8Z5IBV2C0RAAVpT47l09j/+xuB/qYQJ4LDZzyGazJ0+eHBgYAACfT1UULOXeMv/PZhoyPzXfn4PgNF4BC3WmKGaG6J6erj17do+Ojs72z512xB97LHNgP8ZYcMrZWva61HirrmvUYsphgNN07frx0b9Pjtew+ZkOuAa+ypD3I0cx51HbHgYsAmhTqc7//i89kZj0z/bggOfdnyGk0+murq5UKqWqqqIwPy/wCCk5/Sll3ylFPNSTZXNGCBGEKCHmmrUACGODmhHslFLmR1YAIB6P7969a926dbW1dbP2g6cZJJkcfegPSNOwz3IPb9Oy9ST+YCB02OfTMVYBlur6WVpmezZTQ8xIVCeodZu6qa18vjNbKIa8Mx8PAgBWlOFX/jq6e1ft2ecU/qUeJoTHYjOBdDrd3d2VyaR9PhVjzBM355LQg2mPiMEWKqURpHxBH0Z8FIBijAkhlP+fTacBAEIoxlRV1Uwms2/fvnXr1tfVLUwiSx88mHrjDaQolAscBgpwiqF/ITmWRJgiwABhSgOUslHCfEBWbgI+zUgccs6ylCuaG8iyy+l3o1KbCCFteLjvqSc9Fps6PIty2pHJZLq6ulKptKKozNWlcDuS38/CPBTUhvi4vGlmSqoNiYQ2rBY21+dgJRXmNGNEtnfvXmbALjyMP/OMMdCPsEtsBQHAAJWUxAipJESlNJ8EE7BJJ3lypW2kEqxfLQOaFMTam4g34+xe7iyU9j75Z20sXrBrHiaGx2LTC13Xe3t70um0qrIcgcD5C0vurZzu4rSFrXSGMAaxvLbwmokqnA1ziaHZCEAmk96/f//4+PisXoPyg2ra+PPPU8MoMLAoMue4GnfFnihP3cJjmuAQYu7VMY7v35doby+pax5y8FhsGkEpHRgYGB9PsEFIMf4IgLiAknPUyKwEtp08fNJ0pfF/JoWJZthQJttgw5eJxPiBAwc0TZvdS1FeaD09qX37sFJoKSOb971AVCR1fHXG609YBRy1kLQTHP00jcqhoZGdO/N3zUNR8FhsGhGPx4eHh9kYImcfJBEUEjtdwRphrAcACFEe0ZmrCAASqQlqy0kyRVH6+/uPHz8+WxdhOpA5flzv6Ybc4GQhonGlGHDb6WonFuY4+1AA94jJQReu8WWsDNH14Z2vF/ytHiaGx2LTBU3TBgb6KaUYmx4uvnCGrLCk/0tOFORwp7BalIoqOVrkmexzXjZOZELowbFjx4aHh2fiZ88I0vv3k2TSdXkhpwMLHHtsZWyiCazyzZXIbBvmapWWMubylaI1d0lI6djBg8biiO+bPnhjlNOF4eHhTCbDI1oZy9jtR4F88/9YDIUcZ44Qi8DIPTZ8cUWEEKVUNG5qMRaAlslkjh49unnz5gUwdRwAMh0dVNcBqxRZpBC7JAXezMiNgyC/8x6shWXzkEojm+aG4C2zMLU16KIHEUp3d2mjo8q0rZMUj8d3797d3d29kGKhg8FgS0vLpk2b2MRbj8WmBel0enh4iNGIGFK0SjAAbgyyTBXO+aysJKcw06gUxRidcbuSipgyifKEKCOKovT19fb19TbP/6VeqWFoXV3iqzPoVA6MQA7eAX4IrKQG1kPOPTZD0laS8u/yKKWtioubH6PM4KA2Fg82Nhb4ySVjZGTk6aef3rZt25YtW0Kh0HScYlaQSqXi8fif/vSniy++OBaLeRbltGB0dFTXDTHSyM09kIlMpNazfQr3FmvK6iOzPAiUArclWXUhyuweN4yRrhsnTpxYALMsqaZlu06CVcC6GpIA9gJi4NJm39n2uOsmR+M5huJbUkXXqpYWGNnpyWSmr69A4ZIRj8efeuqpK664oqGhYSFRGACEQqHGxsb3vOc9Tz755NjYmMdi5YemaaOjI7Jll89g5IahIKncfnDzjklHhb4zqwpRkss7mtuDEEKKggcGBkZGRqb24+YACKHZLAJEqAvdFKYhZzHxSdyqFPOVAlApwIxaCxZoHPGfQ7LZSfz8orF79+5t27ZNR8tzB+ecc87u3bs9Fis/xsfHs9ks94UxuNiS/NMWEpA7KjxikgtMHGX7+aMiWZ0yJ8o+OIRwNqv19HSX7XfOHpjYyRdjYWMoV5lGpTStrlXczpj3K/BFwqX9LEmPSyMFzlJedHd3V1ZWTvNJZhmxWKyrq8tjsTKDUjo2NiYNGloOufn1KXfPM/swV1gqY2mG7ePFWAEkPzHMR8Y2bYZqf39fdnre/DMGSgwwDAAkiMPcL224KyaHRivwSRwN5mvWTE1N7Yfkr7YNSwuEEF2fzAUoFul0eoEZkk6EQqF0Ou2xWJmhaVoqlZBJRLIr7epBHmdk1iVfMiMn3ORcfozvXPNaytkV5d1ctZlybGxsLB6f31NeEFZAUaRBWolQpB9P3JbClakKHNUntENt5Z2FJNFMqdsZnadAGGPVG2SbEjwWKzPS6XQ261zYNWf6CSORm432Fqxr/1i2rVQlm5PyV3tTXOUhhEDT9OHhwVJ/3FwBhZz9Jq/l4eQIVwor8E+uIreQV9/xLakFKlz7MrdStz54KAs8FiszUqkUpeY4II+fYLRlUoko6SqpZAqzpiOl5uA9f26sJdk/KopZa+Vcb5TSkZHR+Z2mHCPk97Hrms9Yk3dSrsuc24Vl18RsyOWzlaHchRh12wCmxbz1kKYGj8XKjEwmwzeRxFoWLSb77HNPArXJKCrKc9rKkY+DheQnjojqrrMCksmEPj2OmJkB8vn9ra0EiJnqHtzlGFj3QJ79NrlkO0rcGgfHWaTGWdp9dwpzaYFSJRyepmCxxQOPxcoJQkg2mwGrjLIG2VvgZk7KNOcsLxOZuXq2LMdk3WdrQBxNp9O6Po8nhyNF8bW0mj+XDwRStxU9nCzjpKFi5Jitlslr8uuHF6dA8vGjjSV5IzRQV69GF/hI4nTDY7FyghCiaRrz6MtkxBkkR0I2tpK/igL806woZVoWJalUUrRkaZAtbUkpRchUZ7quSYJxXsK/bBmoKiMyYnWNgYN3nHAyFzhYRtCigEWUyXRlEWKWppyESKxDEEBpsKnJt9DjIaYbHouVGYJHxFf+aecXuQCv6DwkkZNZlgjaYgQll2TgU5csZ+Cf8qym+YrQuvUoEgZKcprIahVSt39QkNSodVjTSUAgNJTkvZdOSlwbscg3qUHhOq1cu276JlEuEszoEC8FahAjZaSSRpLtMaihIAUAMMJRNerHfozmNbE6b34z5IJShBBl/nX2xaWyndoopebcSWEwcio0D3N2y5WhFKSlxW1qT7QwfVdgJhBcvsLX3KIdPIiQQikAAYIBo9zVt83Tdk6rlCH/nZzzsywkKBz5bMnJXAGmz6wvkzxkKjeIfb6q008vz0VZxJheFqNAx7XxrnRXe6L9aPLo8eTxrmTXsDY8ro8DAKWUUKKAAgAYcLWvujZQuzS8dEV4xaqKVcsjy+uD9X48n4ZvJEcVZVoJY3a7MhOTZc3HvLALlwjbkxeQxBbkWmZUxSvlbB1JysnST/RN9h3NY/gaGwPr16f370NYBUAK+3XI8qtsMyWR9LOdUTCuBqB8lL8TzE+wT36i1CHBDKsQsyk+VslfXVO16dSyXZfFimlhMZ3qXemuV4dffWX4lV3xXe3J9rgeT5EUUKBAWRg5gHSnEAAEhBKggChSkBJG4YZAwynRUzZXbz6r9qyNsY0xfwyVmHZ45sBi6Jk/ilLM1jEyo8wpRQi4IjPVEEKua7MLqhI6ih/grOQwVC21BLhPTLZVXeYPzDtgny+2/byR3/+OAqGACUUYgBAAZGZOFO8K19xhMkOBY5s6quT4i6kwCytRVyFWWIWZpyCkcv36SNvKMl6ZaUI6ndY0LZPJaFoWAHw+fyAQ8Pl8wblhC5eTxSjQwczgc0PPPd73+Csjr5xIn8jSLABghBFCiqrY9bqQ8goABQxY/JGTNHk0dfRw4vCjPY9G1egpFadcUH/B25rftrFqY1CZExcuHxACSikhTHZRQgBjymcImXevW1y+gMlxVoZiZcW4Vo6SJKoCG4XZiknnmvcsBgCx8y9Q6utJXx9CiAKiFBAFggCw+ZJky1AKU9GWk0cGdeQLA+kzp8JorrxUjDFbzq9P3PSXK4shhBovutgXjU7PFSoPNE0bGRm2ZTzPZjNsLN7n81VVVft8vlnqnYnysJhBjcOJww/3PvxQz0MHEwdTNMWWslawNSef0+XlvHf4NgaMMQYK42T8leFXXh189d+P/vvZtWdfseSKC5surAnUlKXn5QXGWFV9mUwagFCKCEEYs9SFjEOcOsCMKeNPiDA1qDTTKEdnbjwl3PZiNNKkLV4xp8zYp6qqgUBg5i7K9CC85pTwlq2jjzyEFIyAEkAYAFEglC0eBcCvpm06q83SlLdtM8PZeyensGhuP99J2N9E5izbttPMFH9jX01Nw5svKvN1KSvGxuJjY2MFCmia1t/fF41WRmeVi6fqSieU7B3b+40D37j61avvOnLXzvGdGtJUrGKMc5peLIiMHG9GlKcME2gYAAPCSFEU7MPDxvDDXQ9f98p1/+fZ//PLo78czgxPsfNlB8bY7/cT4qQbIpiIEJDUk2AcwlmGHc2NdeaaIOKorLBYyznTUVAYIWypSlmvUQAIBoOqOssvz6kDh0K177yM+vwEKAEiqAT4RRYjiTY2IQ6ikT9tSsockbRGpfGj/O/sJrVssbK2ZgGAGkbtGWfGNm2anctXBCakMLlkIlFona1169bdc8898p4HHnigjNbolLRYd7r7gZMP3H/i/s50JyDACCtIsTBRzojhGzaJL8t3UYWtaCqbnxgAACGkIEUj2l+H/vr60Ou/Pv7rj6/5+EXNFwWUOaQsAoEAYw2EmBwDhDAzMMXMcElkmbJL1miSlSkTk/RdMhIZ00nEZ5NpdgoDQJFIhbogph/XXvrOrh//W3rXToQxAMGAmR2PedYeCrklIV3vOxnidpO8kDlfl1WCyQPCLuRlo0sbRTIoofCyq/5ODUem48pMHZqmFUlhDKOjo35/YLZMyxLv5izJ/rHvjz9s/+EbY28QIBhjV6nFEo4yjz77q5uhTOLWAOn+Elym8JVRnb4EDACgIMUwjKf7n94xtOPdS979mfWfWV25urQfUnaEw2Ew7TuFu8ZM/sKYiIw9wvEPAA4zUwRVCJqzjH5K4itHYYRJL25Ykhwo30kACEJQVRVbAH4xADiZzb5RGVtjLvpNERAATFkqNwpUzLdH0oZ0l4G0ALiwHE33Br8zZV8Yc+tTU/DlosNcKcz5Vb6LqWFUvWlz89sumYGrVBpKWGtmZGS4vr5hOjozIUphsa5017+2/+sDJx8YI2MKUjDCYo15NoyIhP8YAVBAGCHKB+MoECCIl6ZIGrKWFYlwzArfBr+PAAMQAAUUpCRI4v6j97/S/8p1G6979/J3z4WwjFAo5POpmqYhhAhBikIJIRhjACAEMUUG5kAhWJ8pk60A7K59RkN8PyMpMQJArJLNdH7J5ip3mAEAqKpaXV0941el/HjjjTe+cfvtfUePfdofWKJrBAABxUAQIAKYuShkVYWQSVWI0xkDIzIRjALmn8HckK3CCSWYK6MRqxZj7eFgsO3DH/HX1s7MtZosSpujpmlaOp2elVHLybEYBfrX4b/eefDOF0dfBAQKNu1Hprls/wFIxIQBKCBAlFIMmFJTnbHbKsdltqgeWazITlpsijUESFGVA+MHvvzyl3cP7/7Mhs/UB+vLcl1Kht/vr6ioGBgYxJggxCxKRIi5mhHGiGsEwVmIkRoVAsDy+BEHr1kgSy1KTYpMpdKJREJVFQCkqioryBitsjJWWVk185eljCCEPPXUU3fddVd7ezvy+Z6JRN83OsQsGQoUm9YkIuYLFZBsPTJjkwkqfoPJIRKyYgKJxQAo01+Q3xEGVtqSW8s59QGoQRou3L70PX8zHRenLGDhFKVVzMdi119//Q033CC+UkrLaH5OgsU0ov2q61d3H7n7ROaEOfiILUv75PQXSIwjWZfAk/8hxlvE3AkAFFF7YLVgLvFqw1ZFZpjDAgooSSP5f/f/34MjB2/aetOGqg2lXo0yACFUVVU1MDDAXGMAgDECAEFnfNEjS7oLYTayPbIXjH93eL2s4WAsd9jx48f37Nmzf/+BkZERv9+vKMoZZ5yxZctmjNm1g4aGhlkfF58KNE379a9//S//8i8DAwOKolCAlyMVm9PJtZm0IA6myBAgBBjEjSMxk3TheeCe1Q0rkRfwgUizrG2KksxZxG0YgVjLAKX+qupTPvOPvqqq8l+dMqHkabaZTCbfWOXnP//5j370o+Lro48+etNNN5V2FieKZbGUkbqv477vHf3eGBlTsML4Czh5ISzxVwFI1IaI+RwT0+EAiJEbOO4pxMUXtW4LUkPAOvB49+M9z/V8803fPKvhrCJ/13SgsjIWDAbT6TRCKkJACMaYvY8RpeaySJSa+otpNLm6lbzMHQCU25Q5CuPfCQA9ceLE448/8dprr42OjrLGmVesvb19YGDg4ovfrKpqMBhoaprHK7mNj4//9Kc//fnPf55IJJiRjgHiivpoZVXzYF+UEMgFu1IEFJumJDKELpP0PUii30FhOeMSeCwFSO9TcGgxkJhLLmmf/g2w4kMfbnzr28p7ZcoLW3RYWSo2NTVtkgZkd+/eXdopXFEUi43r49868q2fdvxUA4058oUJafr1IQ+F5RsQgtw9JUL5mYFpEhl2/PFl0xKkT0FtCFRQd4/svua5a+58052XLJk116nf76+urj5x4gRCGAAUxRRi3CkGLP8+c/AbBh/xsCmx3MtbOPKBO8Vk05JQSl9//fX//d9fdXd3Uym1P1vQV9f1J598MhDwnX/++fX1DbFYbMavR3nQ39//3e9+97e//a1hGIzCAAAQwkD3BYN/qYi+PT4q7mZ+c7HFiYQfDPEri6Qb0/IOERYnzW1bXF3gtsd1+jdIQsxs3DBqzz77lH+8Fs9nOTwHMTGLjevjdx+5+76O+wwwEEYIc/5C2KQPBsT1kStzUV5SdnuZ/0eAgBKKiDReJEY8iaWwWVeR7g7RLAHAoFClI9Hx5Ze+DBQuWTprRFZf39DX15fNagAqAMKYYMyEGGEkQ3MTwimltp9HJb+YrMwEWNQYAaCGYbz88iv/+7//OzQ0xMcQiJhiiRBSFMUwjCeeeDISqTj33O25539eob29/Y477njmmWcALGt6Aleqf66obMlmT0+nqHQbIgAMLJKF8RGf+gaUDWNaT0IlkqLgxlwAdv6SvzpjzSwURkiouXnTLV8PL102fReqLPD5fKUtMTNbzooJ7uksyX7/6Pfv67jPQAZSEMIIA0YYmeOSMoXJjEalnXIEBkjb4pPHgolDlvmStorO/trOooCqqCeTJ69/6fpne54t/kKUF+FwuLGxkVKDEMMwDMMghmE64AmRwyDYTvbP4BtUREpw2jJEcV7doJQYhvGXv/zl/vvvHx4eFvSEMZapihFZKpV65JFHd+7cNUvXY0p47bXXvvjFL/7lL39xzgClfHxkHCu/j1Wf8PkIgAGgc4e6+DQADKCEBR0DMcAgQKj5jxIzstXcEBVdPVxiv2E9KmsxfsZcR5VQaP2Xrm+48M0zfPVKQMlTO2ZrTkghLWZQ4+cdP/9J508MZCDMV/HB0hAkOAxJ5PikjjLOWmwfnzZChccVeAu2xoUVSfm20HoEAIGqqJ3Jzpv+etMPtv/g1NrZyRnQ1NQ0ODgwPj6uquw3KJQShBDGwqKkXFKI97o5gklNKQAsC4WICwMATm0EIbRnz57f/vZ3yWTS9mwLUca+IoRUVR0dHb3jjjuCweCFF1442d9CKdU0LZVKpVKpdDrNdhqGoSgKaz8cDgeDwVAopChKGYPRDMN4/PHH77nnns7OTkHNrrNQEcBJn/9/q2o+MDzYqOu2dx+SLjG2usPEiCXwAmJDbBNpj81sdH4lDhUGlGK/f+11n2v76P+H5oMW9vlKjFjKV3H//v22PVddddVVV11V2lmcKMRij/Y9+p327yRJEiuYmZAI5xSTCadTzJXXnKDSzSVUGPdgIIoIImYZ29ilzUMrUxvkWlMVdefwzltfvvVHF/yoKdxU4GdOE/z+wJIly/bv36/ruqoqbFyS25VmvBgbtZQfTADg04ZAdvHLXjCGkZGRhx56KB6PuxqJrkTW2dl5++23V1dXn3baaRP2X9O0oaGhkxx9fX3xeDyZTCaTZm44YRQjhCoqKsLhcFVVVVNTU2tr69KlS5uammKx2FQM2Ewm8z//8z8/+MEPRkZGbBRmGw8xDwEcCIR+H6t+3/BgjBDuY7AodWq9lZywHbWNSIoNWXwB2C1KQ26HUkBo+dUfWvf5L86XbIhsjtpkQ8ZUddZSXORlsb1je7956JvD2rCgMIttyD5tTrEC72DkuEGcewCYsx+Y20h4LmwMVWCP9MgginyK7y89f/nuzu9+/U1fn5VMGHV1da2tLR0dHQAUY4qxwkYmEde1VtnCGCFHXq6RFmBOBkA7d+48dOhwgbMjhDDGgsgwxj6f78iRIzfddNNdd921fv1611qZTKarq2v37t379+8/duzY6OhoJpMxDTeHyBJhbmy2CtvGGAcCgbq6utWrV5966qnr1q2rq6tjqq14xOPxn/zkJ//+7/+eTqcZhYmxXVcKM/sD8HowjCrJu8ZG6gxD7AQ3b4Tr3UqtnzZpZnPeu6owQ26NUsUfaPvIRzbdfKtaUTGpKzC7qK6u7u/vm2yVaerMhHBnsWFt+K5Ddx1IHmBBFUyDIeEbtXEZOLZdYSsgVJgbu5mPh2w8EqmAq7HpKMNCQH5x6Bebqjd9eO2HJ+pf+YEQWrp0WSKR6O/vUxRQFIoxt8wRAkAizAKh3IWQwyz4E0vkeFcAOj6eeOGFF3VdNwMO3CSP87HHGKuqunv37jvuuOPOO+9csmSJKEwI6evre/3111999dVjx47F43FKzd6qqirYyjaQ6tzPkMlkOjs7Ozo6nn766bq6unXr1p1zzjnr16+vLC7BfE9Pz/e+973f//73YjiygASTwRyKfw2G4gj97dhIk64LNY/B/uID6eUryzSZucSGK3lRqwqjshUJQAlRI5FTrv3c+n/6ohIOF/PD5w58Pl80Gi1+KmUsFpvFOEQXFqNA/7PzPx8feFxBCvCwCks4PkgOhtJ8ILaK4n4RIf5AzchY2ep03sOudMbvTSZGknry+zu/v7lu86w4yHw+36pVqzOZzMjICKUqxgrGiFEZgD1FopSiB0CaRyk2CDEHx/r7+0+ePGkG3BHidHsLMDlmI7Lnn3/+1ltvvfPOOxsaGnRd7+joeO65515++eW+vj5CiKIoTulkGxkEblHKLCk22JAC61tvb293d/fzzz+/fPnyiy666E1velNtbW0B39mhQ4fuuuuuZ5991nY6uX1XUD7XCgHsDwR/jqqvGBtdq2URd4Fh6e4AiblshoRMXk7asn2lYHftm3UNI7xk6YYbvrLi6g/h+ZkHKRqtBK6yCyMWi0Uis6k0XVjs5eGXf9LxEwMMlgLfZC9sfYWBG38JgnP9aiuWH8KQNIkM8lAYWG9JsPYQ5Yisfbz9e2987/vnf7/CNwvXOhwOr1+/Ye/ePSMjI4pCMMaKghHCTMpIzykSifnB5Ajg6x6x59N07SOExsYSbKomq8mILJ8iwxgbRs7QYfzy9NNPf+c73/nIRz7y0ksvPf/88/F4HBzjm4Uhhz2DRCJyGdYgGxw4ePDgkSNHHnnkkUsuueS8886rcgtef+GFF+6+++69e/cW9uU7YT87pe2K+tNo7O2p5Pl6VslkMJuLL90pNkVm1pM2bNYlSLIL8vMXc4TVX3DhpptvrT93O5RvrGPmEY1WBoOh4eHhfD4yVfVVV8+9LIkJI/H/jv2/nkyPoigmc2EeBgGSm9QVToWVr6SrH43fCEjK45ybbmmrDhJ/2Y5KpqUw3x7reOzhYw+/f83783RoehGJRDZs2Lh3757h4WFFwYRgblpKM7es107y7tvBaghGE4XyKTKbgwy4InvxxRd7e3vZmOPU48jYWWz6URxiY5eU0o6Ojp/97GdPP/30u971rrPPPluMzRuG8eijj377298+ceKEUIJFUpgcIpf7SmnSHwh/6MMbNqzruvdHo6+/higVTF/4LpY3XPWXbE5a1DMhgfr6lR/7+JpPfTrYNAtjSmWHz+draGhIp9Oals1kMiw63+fzBQIBn88/RzNWP9r76BODT4hMOyzZtF3juEIW6MWMBjnLCGqjFiLLW9dZUZZmKNcUwiipJ/9tz7+d33J+c6S5YLemC5FI5NRTTzt06GB3dzcAwRghlPOR8afVvCg8bw/w6ArKDUyTr6qqqurq6jo6OuTXYAFFxkiTKTKEUDQabWhoiEajmUymjIER7JewboCVegSTMqY7ePDgD3/4w9dff/29731va2trOp1+4IEH7r333pGRERG9IeqWQGGEkIqKik9/+tMf/ehHI5FI6wUXtv/kx53/9UC64zjml8jp1JVP4xRiIhzfZmCaXTQMtaKi8S1vPeUz/1h7zrYFFp0fDAaDweCcza1tYbHB7ODPO36eJEmWrEKk2XGx12QU3p/PGIRCR9kYJbAlRcQt5kpeYP0EqTAye48AKUh5Y+iNXx3+1WdP/2z+3kwvgsHg+vUbKiqi7e1H0+mMomCMEfCMY/Jjy+1KJDEXgJlmh1JKo9Ho5Zdf9t///d+Dg0Mi5aFkiuZVZBjj2tra+vp6pxUgqEc2Ep1DBBO62BlPMTpzJTJKqaIomqY98cQThw4deve73/3aa6/df//9YjhSRoHTOW1YwzDYzoaGhi9/+ctXXnkl+5mhpcvW3/r1lr9537Gf/qT3j4+mOjoQpVgoPrlNh7/M9V+uPCFAiK+ysm77eSv+7urmd1ymRuZo4sMFDIvk+cWJX1y/73oddBaXzwYnczFiTo8C8D3guBdscHIQSJO6QfI3sOKEAgGRtzl37xBrXbFTnrcm7zQAKBiGQXVKCNlQteEXl/xiaXRpsZdnGkApHRkZOXLkcH9/v2EQRVGsdmWumNgwr4IJM74fAO3evet//ud/E4mknLtVDIM6zxsMBhsaGmIxe5ZEm+feeVS+SVxtRleIuQfO/UI9ZTKZoaGh0dFRoeCKVGE2ChNfDcNYs2bNzTfffMEFF7hwoq7HD+w/8Ztfdz/8UOLQQT2RQMyatolhUZ5/2l6UjLyw3x9qbqnbvn3Z336g/vwL5hp/3X///VdfffVs92Lacf/99+fu/rge/9+u/83QjKJwIcZyRdiUd2EKo1IZG3M5b0jblG+pMEI5z34ONiEGjrrIul/ugAIY8IGRA48ef/TvN/29y8WYKSCEqqurN2/e0tvb295+lD/AmDNPzhPEhiypGSMmMlqIR5euX7/+8ssv+93v/pBOp4UvidGBc5CxoqKiubk5FArZOmMxaHmyDWef8/2cAkTDRJnT5S88aKlUqre3N5FIiD6U5ssXXwkhZ5999s0335wvrBepamzjpsoNG1d98lPDr+3ofeJPAy88nzh2TIuPEk0zZ07w6RSWW4z7KZGiKOFwqLml6rTTmt7ytrrt2yMr2haY/TjvkGOxF4ZeeC3+mhiXxICL8pjYnPQyndn2gIPIqOPdJx3K5YPNd0O70Z8FfL9QEzrVHzz64PvWvK86UJ3vB80MVFVtbW2tr68fHBw4efLk4OBgOp2m5pwkwSmmFwwA5AVxzQlaCAKBwGWXXVZX13DfffdlMhnBXEySyERWWVnZ3Nzs91smiEheOSTvLNxzmenkjXyFbaEe4rzxeLynpyedTjs1YAkUxjxul1122Ve+8hU5Di5fr4INDc1vv7TpbZdooyPjR4+O7tkT37d3/Fh7qqtLGx4m2SwAUMNA7Boi5I/FAg2N4aVLK9eti23cFF1zSrCxEftnP7ewBxAsplP9oZ6HEnpCUa3LfzC4Dk0i5wtLcrE76cz1zhTOeJCn/7MPypvkgWP5GikMZIoCiijGeNfgrpd7Xr5k+ZxIee73+5ubWxobmxKJxMDAQH9/Xzw+mk6ndV1nsksuzB5+RVEDgWA0WllXV1tf3xCNVp5xxpsCgcAPfvADOWUNe7bZ18rKypaWFtkRJoRPaUOTMpEx/9eE5cHKTSMjIz09PdlsdrIU5urLp5T6/f6/+7u/u+666yYVQY4w9lfX1JxRU3PGmUAp0TQjk9aGR4xMBkwWwwAIYeyvrlZCIRwIzIuJkIsNJosdTRx9ZvAZcz62ALKSkY3IqJXmIL+XXVCV7f6U3fM2iuQlJzFS6VrAqvUQQuPa+B/a//DWZW9lqnMuAGMcjUaj0ejy5cuz2WwqxWYrJlh2FEIoyxarqmo4HAmHw6FQOBgMYL7Wp6IoH/3oR/v7+++//37BXMAnUcZiMSeFOSXYZCGzjwjjcP1jOf1cY2NjXV1dhmFMyhEGVgqTrcjKyko2HGmzlyf7k7Dfj/1+X7SoCQYe5g5MFnth6IXebK/lzWzjLKfIAocWQ9xbT9xc/k44rVHRDgbm3c8dsr3vUR6KdKM2OXQWIfRiz4snx0/Oro/fFRhjNqRdXT25NYNDodDnP//5TCbzX//1XzI9VVRUyBTG9stzeqYIYapPaFcCNz8NwxgaGtJ1vVy+/NbW1i996Uvvfve7F8bydB5KAAaADMk81f+UDnqhgk4KcxYQhqEssmAiLgNe0nVkk3GQU+Xl64PbNpJC3jDCnWOdL/e+XESf5hOi0eh11133tre9jUUbAEA4HG5paRG+MMZu+UYwS4Ygo8L2qTg1IURk4JOtyBIojBCyfv36b3/72+95z3s8ClvMwADQleraObpTeNOBz6O2FMznPgeJL2zSTHbeu5KUqOXw+lOWVF7WYs5acq9cjVmpIpK2MiTzbNezEwYKzDs0NDTceuut27Zty2azqqq2tLQIC0umsLKf1zbKOWFhOUcFlDocSSndtm3b97///XPPPXc6fpSHeQQMAPvG9vVr/bncOwy2sAZX57pMItROHC7lnchTwGluFIsCZ5S8eLsGdo1kRybd+JxHU1PTTTfddOaZZ9bX11fMRiqYAkKPj04oPp9P8NeEFCakJQAQQgzDYKEkl19++Xe+851169aV/Sd4mHfAAPDayGtpkrbzlMxKBZQUOEYkCwR5FYBVRlFiriWSW0XcqbNsQI5PcONiBBjw8dHjx+PHi+vZPMMpp5zygQ98oL6+XrAJk2DTnXG/yEEDjHFFRUUxKoxxlvyVIRAIfPSjH73jjjtaWubxek4eygicJdm9Y3tzZAEA7CWJqIsdN6Fl5wonr9n+Oc+CrO4w21mQG9tOSHPSSOVodvTA0IGCnZ6v6OrqeuGFF2ycVYyh5zQMJ6uFbc7+fIhGo36/v4SICkJITU3Nl770pS9/+ctFpirzsBigDmWHOlIdZtiBMygMHFLLNWoM8lCMK5zizrZty2LhbNA2dECtpCbXyvM0aUQ7NHKoYC/nJXRd//3vf3/ixAk5s00J7nzXCP4ia03ocPT7/ZWVlf39/fkayTccuWzZsuuvv/6yyy6bpys5eZgmqP2Z/oHMgDzPKJcWMV9cBVh38mrFjiRSN66RZBelFAEiIuazcLP5rF2pFpuDKJekQA+PHNaJruIFNba1c+fOl156SZZUxVMYtc4DL+HsKE/qV7kAO1pbWzs2NpZKpWx9K+DL37Rp080337xt27YSOuZhitixY0dnZ+f+/fs7OjoAYNmyZevWrVu2bNmWLVtmu2sAAGpXuitpJHMsxqmK8qwSOSBLATtK8n8591CR4zS3GKpb4zZDsrDzTpThdIkAdSe7k3qy0r9wDJNUKvX4448nEgk5P1cxFCbbj84ArmLkldxU4WlJ7JDf729sbDxx4oTT8yWfnR0lhGzatOmee+7Jt1aAh+lDR0fHfffdx8hLYP/+/WxZo2XLln384x9ftmyWV9jEg9nBjJHJ7UDAskWDHOgg+6cKh00UhizBbHusZ6Fi9RCSh8JsX20ds3KcyYZStxFCo5nRsWyxacXnBXbs2LFr1y5bisHCLGaLe7ARlthTvHU5Id+J1iorKxsbG+WZBnJd2bVfVVXV0NBQUzO5SGAPU8eDDz5466232ihMRkdHx6233vrb3/52JnvlBO5OdVtmKXK3FKVWBimZuQRsTbm1xuw+801udY65tCOayveI8bM4G0KAhtPD8Wx8Ev2f28hkMs899xxLxSkwIYWBwwUmR7Ha9hTTjQltWPlQbW1tU1OToihiOiTbL0QZQqi+vr6lpaWvr++FF14opgMeyoUHH3ywSHp68MEH//jHPxYus2/fvquuuqqxsTEQCLS1tX3uc58bGhoqRzcBAHDKSDnfnzkGsc7QthWanBVZwKlPcyl6KFAiz4IuwFCu2+CYq+QsAAAAGtE0MrkV9+Yy9u3bt2fPHtuq4IWpxzaeKN8GIpLL9egUYSOy1tZWMWTJrEhGYYqiNDc3NzY2KopiGMYTTzwxPDxcrj54KIyOjo5JKaxf/vKXBSTbq6++etZZZyWTyV/84hc7duy45557nnrqqe3bt4u1TacIbLe2hHhx9daXbFTKiy7kqU6pm/hyLSw35TrriFo+84i6hQNCyEsvvSQ7y53mYT7I/ni5luzbmiyFTRhvITcYi8Xa2toaGhp8Pp9gz0AgsGTJErZaEsZYUZTjx4/v2rVrUt3wUDJ+8pOfTLbKfffdl+/QNddcc9ZZZ/32t799y1vesnHjxve+971PP/10W1ubc83w0qAa1HA9YBoaMlPIkkreAF7GNb5fgOQpYGNPfnZzp2thkDogL7ZFrPwl1cpRpDAzqVX0zWf09vbu3LlzUjFiNoMRrF584Q6brIOf0RCacPlba4PBYLClpaWmpiaVSrFEaZFIxO/3y85+ZjKfe+653pTJ6QYbkZxsrY6Ojh07dmzdutW2v7Oz8+WXX/7Tn/4k35CxWOzhhx+eakc5+H3vEFzUzG5J7UfBXtJCT04/mqvT3daIRCaUOk4qVyGFqMqyIZ3UosakWgtmKuX+/fuHhoZs5mThKnI0g6v/voR4MSh6VNS1YjAYrKqqamxsrKursy2uwxTZ/v37e3p6Smjcw6RQwDYsoeKRI0cAYOPGjVPqU0FgBRSb/SWrFdNL5XRCuXq4rGZpriniVgVy6omdhRCSl5jEV9eofWdJuVJujUJLMYSQgu1pnecjDMN444035JCFkuG0BEujpAknSLo2SyU4yyOEBgYG9uzZU0J/PEwKJRt6rhWZdi7L/ZkP2B5OISBGKpk5ZhuvRBJJgcOaK2wJivIkZ4qylYqoJMVyTcnbTsElH3Ij1pyizNe3eY7BwcHDhw/bqKcY9pHtR7HBSETEmk7WLzYhf9lObetz4W7rul4uvvZQACVrMVc7dNWqVQDw+uuv2/bbxtOnAhxVo4iinFwCNzqgkqMKwL5RmLxcTUjBKlSs6WM1YF0pyRUFVCFXlPYyCAAgqAQDyrxcet6GY8eODQ8P25xikzKWnSmnS5NgxdQtkubytXz48OEyjtB7KC9c/7LNzc3bt2//xje+Ib9+xsbGTjvttAcffLAs58UNgQZnUKj4KmhFhNTnJSapVm7DldQICJmXW58MrCu25VNz7NO+KLO1fSrvsCpNIdAojQViUf9cXSZ0Mjh06JCcwL4ECAlmuwtLYBym42DyPOjsgPPUGOP+/v6TJ09OqmUPk0XJsfj5Kt5777379++/5JJLHnvssb179/7qV7/avn17NBq99NJLp9DNHHBDsCGEQywTjisHESAECGMfJpomsMsK84sYN6A5k3UCCqOSDSuQLyLX2n9KqKBimQEp0OpA9QKYfqRpmlPGu3rr86HwSGLhAq5VCg9Q5uuY05x0NTDT6fSxY8eK74+HElBy1rZ8FU899dRXXnmltbX1Yx/72NatW2+44YYrrrjiqaeeso3hlAy1OdgcVsIpPQUg0YEYcyQACMylIRE7It1Ycn59uSLw6sjBL9JTQUzulI5SS0nLNrHQkGUndVSX/9kcdgCAgFLaUtESVMpzEWcRiUSit7e3ZCEmj1SCW7DFZFuTIy0KnNH1qHOn3BnWJiGks7NzUjTtYbIouxYDgNWrV//Hf/xHqT2aALguUFcfqM/51F1NQi6bzOSFhLK1u0HcZzZZRKVxSWJqIkJJbrjTqZ4ALEwkI49ItFd3RGBQoMTspb1BBGh11eoFkNBiZGQkHo87VQyUqqHEnhIoTDRVuK7rUZtvzmldiq/d3d1ldAx7cGLr1q1Ll056bZ2lS5c6g8VmBrjaX90WbstFOVAHxXC9w3jOnO9GgfBFqs33r2yTSjMxc54vShmXsaMESM44dfVzUbfQMOqgLeSoJTpAHFYqrxtQAmur15brIs4ihoaG0um0c/+kOGiyA5EF2pnQlVbkWfKNVyKEhoeHyzVzxUM+fOITn5iBKuUC9mHfxthGTHFOQIEbocguLZE8h48w5hz27CuvIrhLtEkoISAZkqJ9G5FRab9V1tnL5/lHCTXdeQ4zkwKtClSdUn1KOS/kLGFsbMwpTEpgpalTWDFNTeiDm7AiQiiZTCYSiZK756EYLFu27Iorrii+/Ac/+MFZzM+jAsDmqs0hHEqTtCWhGJW8Y1bPOkUmT7HS9pWK+ApGiCLLBAC5JJWadVVhzj22DRnEpYBlAgC1nIhQ0lbZNgfXoywBQ0NDlFJn7lPhnJoZ/1ExKgzys5irRyxf4fHx8fHx8RI66WFSuPLKKwGgmDnhH/zgBy+55JJp71B+qABwSuUpjYHGY6ljCCEgANjhrZdvJwRATSITiQxNyiC5TF6CvORPCyG68pdtv1wSrFQldsr6keQ/ZBV6p9WftgAGKAFA1/V8D/zMUJjt1IWJrMDwZWESlONybckUPUwfrrzyyq1bt/7kJz/JN61y6dKln/jEJ2Y9S6IKAC2hlq3VW9uT7bmnnfDZ3eIfg9BQwOmMcQMfvrQEyoNbrQJ2KzhoC/LTmVNkSa0Jn50rV4Z8oQtaLyjm6swjuHLWTBJZkR6x0kzXMhq8HiaFZcuW/fM///OOHTs6OjqcGatny51vgwoAKlbf3Pjm3538nTmGSB0SzPaVAmCpGD/kngBH0I1rqh8ZxHHURmdCYTnVnOz2IubAgqUpIv5P2irbtjbMias/deSbjkOltNHTR2TFk4vguHzGY4EwC+d+XS+4jr2HcmPr1q1zhLBcYfpTzq47e0loiTlSSR2+c9e8g0SaCymziavfHfh+16acZASOBkHaKVcEy4nMgVA5NNew8CMFur11e2OksfRrNpfAPGKF/U3TKmRE48U4xYp0/FM+AcC1IkJIZOX24AEEiy2LLLuw4UIzNIE4uAMcX2X6INKGTGEkv2fKBqdVWHiPK1eapbghaesnmEsKxPyxd654J7IHaMxXFMjFOq0URqXFimykk698vs442W3CPnshrx5kmCyGEX7XknfF1Jg9xoo4Pl1vMFfGcW47aznVnNwacZTP9w/4BCkihYk5WiaUnNF4xoIxJ2EiKUStKONJGYoMry3QgWIMzPJ23sPCQ26Efmvt1jNrziQGcScXmRcK0Flh2MjRyUSuSpBwq7AAi1FgcwNytqTcZ77tw74rVl6xMCaBM0Sj0QlT45eRBWyyq5jhQpnvCpRx3QZH5ymlwWCwXPPvPCwM5FgsokauWnFVCIWoQS0sZkuvWoBN8sGmjBicVOiUYNR6alsx6V/uBS5JM1v7BjVOqzvt0hXlmUY/RxCLxYRrrLC9xjZKjlGQ2y/eF8bK5JuT5KrRbHznZLFwOByJRCbbfw8LGJZoyYubLz6n9hxTjlErrdi4zGmy2XiqQBknD9oGCsBN97m2xinMnFguGFCmYA4/9l+97ur6UP1MXNeZQlVVVSAQYM+5bUlHGbINWII0k2lrUiaqLdti4cblKuKrU8RFo9GKiopJ9N7DQoeFxaK+6CdO+YTpHSMOcnEYaO5cIwxAIh11dcbb+M7JgDb95czG4xyUBAefIgAAgxrbWrZdseqK6bqQs4SamhrZvJrQ/eTkI1sZeb+TsyZFYZTnyXAVgK7tOL86Z4nX19f7/f4Jz+5h8cA+c+WCpgve0foOYpC8rjGZlYDvByvROInJBlf6sx3KJ8GkmZUiT6xLU1KbFGilv/ITmz5RHawuz2WbM4hGo3V1deLhLyzH2FGxhK0MRhaCqkBimWL0lOvpCtTKd9SVWGUghJYsWeItg+RBhp3FAkrgU+s+1RZpsxOZjXScSg2shOVUUuyfYW0K3IqBlYlcjUrCs/0AsZcR21Kw7t+s/pu3LntrmS/eHEA4HG5ubnYKlnzlZVXl3MMgp36VixWgSNez2E7k7OGEFOakOVVVZ32+i4e5BjuLAcCGqg2fXvdpP/hzbn6bYSgblbajrr4t+Sg4/GtgJSDXkQSwl7dkiLUNaFrFHQHSgls+tuZjCyPLvg0IoZUrV8qzwYvRTYJECIeNd5wovks2QVe4QOFuO79Go9EVK1YU3xkPiwEuLAYA72t735XLrrSwmMF5IR9bEetRm4izGZj5aM7WoKuI4ymAzPlShqM1woUYBUCAM3j89+N/+dVfFuraOWvWrAmHw05tVRiuxWip9qNcXYRf5GshX/uFKYztWbZsWWPjApl34aFccGexiBr54mlf3Fyz2dANCzHl81gx2ISVXAakMjbhZjj4y8Z31FLAfFRYGlfD2qx8Lk5kwR1Bupfe+//u/c///M8FOf+utbW1paVF5mjBJsU3YjMep9KfwiSYT3MV2dv169eHw+GpdM/DwoM7iwHA8orlN2+5uTnUbBKZU1UJgUbAvYBsDDqtTqe16DxkYzQCxCCEEApcJIrGRWeQlHIDge+gL/BqQEVqIpG45557/vu//3uKj+gcRCQSOfXUU12dSjOWwaZI2zNfAWddZ+cppeFwePPmzWXqsoeFg7wsBgDbm7Z/dfNXY74YISSnmww3UUYc/6hDahkFdZbTSpV2ChPSzBPrtD1t/UEACNQONfRMCKURIFBVdXx8/Hvf+95jjz228Ijs9NNPD4fDrqnrhUu+mGVrS4PgoMLu/3xlipRmzJxcuXJlGXvuoUikHvpD/K47+9/1zpMrlp5csbT/Xe+M33Vn6uGHZrtfJgqNWCNA72t7X1+y7+6dd2eMDKYYkDUnD+NAak/Rk9tw3tKuBWihDUZhltXexPCCc6CAQ+lXQk+F8DAWfVNVta+v79Zbb0UIvf3tby/ww+cd2traVqxYsWfPHoyxzFOCHQgh2WxW0zSMsaqqgUAAYzx1Npf99MWoMCc3CTecs7CtJELojDPOqKysnGKfPUwK2q6dQ5+5Rtu9S96Zee7ZzHPPAoBv06k1/3qv79TTZql3JiaIu8EI//36v9eI9p3d38kYGQUrJmexfLDinpQzKYK0bVtEkkqU58pi4OAv8462LE1iFnMMR4rzKgNK6I8hpUeRe4UQUlW1p6fnjjvuqKurO+OMMya6OPMGkUjknHPO2bdvHyHEmbUmkUj09fUlk0lGIoqiVFRU1NTUVFRUOFNdFwlBNMVQmKhSoB0BV0FHKa2urj7nnHNK662H0hD/5h3xu79ZoIC2e1fvhedVXn9j5fU3zlivnJj4Jg4ogU9v/PQXTv1CBEd0QzczRhiSdem0KA3HBnEUdjUGxSgk4aNd8tQiZ9yG0w4FUPqU0B9D6knVmX0HIeTz+Y4dO3bjjTfu2LGj3BdzNnHmmWeywDGZBRBCY2NjHR0do6Ojuq6zo5qmDQ0Ntbe3nzhxIpPJTMrGpNIgJkzkyJcL5DMki9nJ9m/dutWLsZhJTEhhuZJ33Tl+778WLrNr164PfOADjY2NgUBg+fLl11xzTRnXeC/qVRxQAp/Z+Jnb33R7ra9W0zViELHukbtHDNzc/DJVGW61iIW/TAlGrA414vCvyWm1MagdavihsCuFMTAiO3DgwM0333zo0KFyXcdZR3Nz8znnnCNbbYzCTp48mc1mnQtWEkIGBgaOHTs24UocTmNQprBi+paPwlydX64UFg6HL774Yp/PV8zpPEwd2q6dRVIYw8hXb9R27cx39Jlnnjn77LNHR0d//OMfv/rqq/fee+/+/fu3bNlSrmXeizUofNh31eqrfrD9B+tj63VdN9hgoUEsybycWiwfYTldWiKEgusvSqg57JiPCm3GKQH/bn/40bAyoOSjMAZGZHv27Lnlllva29tLv3hzDBdccEFTU5MQPoLC8pVHCCUSiY6ODkZkToVFreFj4u1iU3yuoNKEJ1diKtKWZIXPPPPMDRs2FH8pPEwRQ5/+1KSrfOYa1/2U0k9+8pNve9vbHn300Xe/+92bNm165zvf+fjjj7e0tHzuc5+bakcBoHgWAwCM8NuWvu2+N9/3rqXvwgTrus6ozIx+EOrMRmo2Y5BaaItNhGSNGIwUKTVt1XzyTdiPwumGAaVQ8Jlg6E8hPIoLUxgDy3r8/PPP33rrrb29vaVcubmH5cuXv/nNbwYASmkikShMYQwIoVQq1dnZmUgkqAO26ZaunngnnO3kK+Nay1mysrLy8ssv93KKzRhSD/1B27N7srW03btSD/3BuX/37t379+//6le/Ku9UVfWGG2546KGHxsbGSu8ox6Sdu2ur1n7vvO/dsPmGpkCTYRjUoEQnxOA0xAWaWG1XfJqExSlPMJdBjVwUa4EYDnALKEMAAOoJNfxQOPhyEGmTyETNRuueeeaZO+64Y3BwcLLXYW7ioosuWrFiRSqV6unpyWQyxVRhRNbV1cUWhTMMQ1ZbBZjIFYUprICOK8B35513nifEZhIFbMMSKh49ehQAnH/BjRs36rrOFlWaIkoZoqoKVF172rU/uegnl7ReolLVMAwwgBJKDZOkDMNgHMV4zWQ3yR5hzEUptRubwsx0mqJiphEAsOcBCE5i/wv+yO8jvvZSPCYYY4zx7373u9tuu210dLSEFuYaGhsbzz777J6enlQqVaTbnv1FRkdHh4eHadEDjvmaklWb61HXSQX5ZhoQQpYtW3bllVd6SSxmEplnnyljRfa3c87/Y3/xsgQwljjQriBlW9O2f7vo37517rdOqz4NEWQYRo5uHBIs98+gdvPQNsiYz5XGQRE1wIj4I+9f+/5/XvvPzXuayQgpeTEQQWT/+q//mkwmS2xlzuDw4cO/+93vUqlUkeWp5L3q7+8veYZWkSakK7Wxd55rs4FA4G//9m+9JBYzjKw1OmwyFV3s0NWrVwPArl32Nvft2+f3+5cvX17auWRM6RVX6a/80NoPXdR60W+P/va/Dv/X/uH9WZJVsIIAucS7CsihYcga82WL/6KW0DPm9Y/5Yue3nv9/1v+f7S3bg0owNBC6++67k8lkyat7YYwNw/jZz36mKMq1114bCoVKa2fWcfjw4ZtvvnnHjh1FRoHJogkhlE6nk8lkLBablBajRYRc5HOo5VNtAuPj4wtDIy8auPwp165de/rpp99+++2PPPKI2EkI+da3vnXFFVeUJfl4GYR6a0XrNadd8zer/uaJzicePPrgq32vjmRHAMASRy488cjKUwwybRF7rCwBQoD4wLc8uvwty95yxaortjZsDavmlOC/+7u/I4Tcc889qVSq5BhORVEMw7jvvvuqq6s//vGPz8flDidLYeAYEzQMI5FIxGKxCSvaKKkAfxUQaBOOFaTT6RMnTnz7299ubm7evn27rWFCiKbpuq5lsxqTcoQQdr+pqur3+3w+v6qq3ppvJcC/6dTM88+VVtF1/49//OOLL774ve9977XXXtvS0nLs2LF77rmnp6fnd7/73dR6aqI87gYEqCnSdPW6q69cdeXr/a//ufPPz5x85uDIwTFtjFCCEbbM4JMiVF2mLiEAAAJmvJgP+ZrDzVsatly09KILWy9cEVuhIAvFqKr6oQ99aGho6N577yWETIXINE37wQ9+EAwGr7766vlFZIcPH77llltKU2EMzJvJXPv5qsgbgjIK0FABnpqQwnRdHxwcJIR0d3d/9atfvfPOO7dt20Yp1TQtkUgkEuOpVErTNGGNypIQ+DyNQCAQiUQqK2PhcHh+/UFnF4Hzzi+NxQLnne+6/01vetNf//rX22677YMf/ODg4GBzc/Pll1/+H//xH+VKslRmp2nEF9nesv3clnNH0iN7hvbs6Nuxo3fHweGDvcnehJ7IGNZRM8pnZUp7FKwElEBVoGppdOmmuk1b67dubdjaFmsrkONQVdVPfepT6XT65z//uXi6SoCiKOPj49/61rdisdgVV1xRWiMzj6mrMOZcF2tuCyJgO22yy/bphCy+SqMwQsjg4GAymWRk1N7eftttt912222NjQ3x+JimaQDA/sjWPrMzAnP0ZbPZdDozMjLS3d0dDAarq2vYGgWeOpsQJc+LLFBx/fr1999/f6k9mgDTMvSDAFUHq89rOe+8lvM0og2mBrsSXUdHj3aMdXSNd/Wn+ofSQ8DHGRVQAEDFamOksT5UvzS6dEXliuWVy5siTVFfFKOinsxwOPy5z30umUzef//9iqKUdqeyR2JsbOzOO+8MBoPzYsb4ZFUYANgElxgfVBQlGAwahsGYS14tqXhPGZUi8ifl5pcLDA4OxuNx9lWEKN94443XXXftihVt7O+LEE+DCZRSk8UYWPcxxiJEd3w8MTY21t3dVV1d3dzcHA57C8EVQuiyy30bN002ZMy3cVPossunqUuFMe0D2D7sa4o0NUWa2IrclFKd6gYxh10NajALEQFSFRUDLvlVyYgsHo//4Q9/sKV2KB5ixvitt94aDAYvvPDC0jozM2AU9uqrr06dwgCAzQ8vgblEU1Cqj0wuMzg4aPPosz/K/v37f/rTn33+85+vr6+j5jK9rJ9MLSIqpw+ghFKKECHE9GYYBtF1vaenZ2hosLGxqbm52efzFlLKi5of/d/eC8+bbJVp6syEmOkwHISQD/l8eFomxNXV1d1yyy26rj/yyCMlRxixZ6a7u/v222+vrKzcsmVL8XUJIZlMZnR0dHR0lAmK4eFhdsgwDGb7IISqqqpisVhtbW0sFovFYoFAoATOZRT2yiuvFO/xKUBhtbW1zc3NJXRDdkhNhb+AU9jIyIizGPujvPLKKz/60Y8+//nPVVdXE2K6VxECxl/M9uWkhgkhlDKlxpwMTL6hbFY7fvzY0NDQihVtVVVVk/29iwS+U0+r/PINxU+lrLr9zlnMz7PQggnr6upuuOGGoaGhl156aSpExmaM33DDDXfdddeE+UVTqVRvb+/hw4ePHDly8uTJwcHBsbEx5nt2TfavKArG2OfzRaPR2traJUuWrFq1as2aNY2NjUXOszly5MhkKczVF8a2q6urW1paimxKdvPbXP6uhSkfDSjcrGEYjPfzNcXs/eeee66mpuaTn/z7SCQizs+IDEAs3QSUAsaYEMCYUIoIAUXBuQFzhOLx0b179yxfvqK5ubnkEaGFjcobvgIAxRBZ1e13VlzzmenvUV64Lz0/33H06NEbbrjh5ZdfnkrMN6U0m82eddZZ99xzj2tOmEwm09nZuWvXrl27dnV2do6NjTHOcj4Vwl9uu9rCz40xrqysXL58+emnn37qqacuXbq0wMKxR44cufnmm8tlSDJXEUsXITxiotvyQKRzXfHCN4/gzQnvMU3TBgYGJsyuAZwNr7nmU3/7t+8Tcoz7xcQn84fJMb0Gu9JiYgkhuq4bhJAlS5a0tbUpykJ7nQPA/ffff/XVV0+xEW3XzqFPfyqfj8y3cVPNj/7v7GZJvP/++xcmiwHAzp07v/jFLx46dGiKRKbr+vbt22+//XaZyEZGRl5//fUXX3zx0KFD4+PjjIYK5IPmXmck21/OAsyzHo1G169ff/bZZ2/dutUZvVVeCqusrFyyZImrCsvHZcWgSBOSIZFIDA4OFjnrEwB0Xd+0aeNdd93F5Jh0QuAnNP1ibLySEGLLx2EYxDB0xmS6bixdumTVqtULLxSjLCzGkHroD9qunZlnn2Fh/f5NpwbOO9936mmz5c6XsZBZDABeeeWVG2+88ciRI1O5Qdm9/ta3vvXuu++ura0dHBx89tlnX3zxxY6ODk3TShgPzT1nebJrsQdOVdVVq1adf/755557bk1NDStQRgojhESj0SVLlhQQfSWgeP2FENJ1fWRkZHR0dFKL7BFCGhsb77nnniVLlkjXkAgWo5SysFhKqTSl3TCMXFohNtPXMAxd1wzDWLJk2erVC43Iyshicxn333//AhTSAmeeeebXvva1L3zhC729vSUrMpb64sknn7ztttsuuuiiF1544dixY0x8ldamYD2R+V488EzNYYzZk3bgwIFDhw49/fTTl1xyyfbt27u7u8tFYZTSzZs3V1dX9/b26rpecmyKaBYAiiQv0Y1MJjMyMlLa3FW/3+/3+9nl4mdEPIKM2ZIIIQxA2E7m78fYDNZFCGMMlFKMqaIohkE6Ojp8Pl9bW5sXTTYfsZBZDADOPffcW2655etf/3p/f/9UJloSQh588MHnn39++fLlZZnXIp5A14ef8RQrcOjQofb29r/85S/Hjh0rlwq78MILb7/9doTQww8//Mwzz/T397NZ8bJfrMBvlE1F50YBMBI55ZRTWltbH3jggbGxsRL+KJTSpqYmNrwoXUYAYDY7c/ZT/iMogPlikF4TBqViTSisqko2q7e3H41EIt6SvfMRC5zFEELvfOc7DcO4+eab4/H4VIgMAPr7+30+35IlS5xU4vSLF9k9kLzmci2m1NicKkLIzp07NU2rq6sbGRmZcLwPiqCwpUuXAsAnPvGJCy+88LHHHnvllVf6+vrEk+3az0kRlgz2Q1RVXb169fnnn3/xxRdXVVWFQqEf/ehHbFmmSbWGENqyZYtYuU4aeQAxRxdjYGEWLKxMErss6B9hTCnFLAgDIawoWNO0Q4cOVVRUlGV+soeZxAJnMYZ3vOMdAwMD3/72t6eY+oIQ0tXVBQBLly4Vz5545mVKcrrD8z35NsqQiwnrklKqKIqiKH6/PxQKDQwMpNPpAlqpSApjP2rt2rWrV68+fvw48/eJJUVkOivNeSp4uaKiYu3ateeee+62bduEj+8f/uEfNE279957ZfYvps3m5uZzz93GvtqGIHhTFtoCAITEKcxSnNEwxpQQisxpG/GjR49s3LjJi72YX1gULKaq6oc//GHDMO65554SXv4CjFO6u7sDgYAcI5rvIZQHJZ1hFraSwKcu5iMy1oFoNOrz+QrEJRRPYQKKoqxcubKtre3yyy/ft2/fq6++unv37r6+PpanLJ9Ac4UQlRjjioqKZcuWbd68ecuWLatWrbKlPAoEAv/wD//Q39//P//zP1DQgJWBEHrXu961cuVKmyDll1duhMqpVJiZKdYcZJYoK4exeZExxl1dXY2NTQ0NDcV0xsMcwaJgMeCpL/r7+3/6059O6uVvA0tGdvz4cYxxc3Ozaxm5cSd5FRZlMmeJ/badgUCgoaFBVdXR0VFba/lCWwtQmHyimpqa7du3b9u2bWho6NixY3v37j106FBPT8/w8HA2m81mswWIWEhFFse7du3adevWLV26tKKiIl+VioqKT3/60/39/X/+85OqOrFGJoScd9557373u2zJm6wX2TwkQmFFfD8vmyvO2RkxryDGOJvVjh49Ul1d7a23NI+wWFgMAILB4LXXXmsYxr//+79PhchYMrJjx475fL66urpiqkzKa+a0RmUiQzyFVl1dHUJInq9TWIXddtttBShMBsa4rq6urq7uzDPP1DSNzabq6+tj04PEJEdd19koLcaYzaZqaGior6+vrq6uqKgoxnInhADQj3zkI/F4/NVXXy1chRBy5pln/uM/fraqqooQIr8pZAOS+/VBhPVL24hSOXGwoDAgxJyipCh4aGhocHCgqcn9FeVhDmIRsRgARCKR6667bmho6De/+c1UwguYImtvbw+FQmwGdYHCsr+M7ZnQtHSWkSWEGGmrra0FAEZkE1JYaXmfGVPX1dWtXbvW1jGZl0u7kslkYnx8vLGx8dprr73nnnveeOMNVwVEKVVVddu2bZ/5zKeXLGllFMamGQkgx7wCCbIcQ/xrzqLkPjLzz2QYRmfniYaGRs87Nl+w6P5O0Wj0xhtvvPzyy4sZ6csHRiKZTKanp6d4z7d4Tgq7mQRJue5n2ywqghEZ0ybTQWEFusfOPimXmROjo6NMjrW2tlxzzTWnnLJG0zSZJdkPqaqq+tCHPvTVr351+fLl8l9NPi3loRPsCACi1JaB0zaKYmkEWYAHB/vLssKYh5nB4tJiDPX19TfffPP4+PiTTz5ZsvuD3e/j4+PCsCqyFvN8Q/5FZCFnGSGbXSkbm6JMbW2tpmkjIyOsmExhF1xwQXkprIxgWVsRwmxMY+3aU2688cZf/vKBV155JZ1OU0p9Pl9ra+tpp5128cUXb9iwXlUVQgywLKScF5RSJrXkyDa5AJNmzKKUdwMAxjiTyfb39xWTvNvDXMBiZDEAaGhouPnmmxOJxFRmjJcsQ1CeaAxnmQI7hY2JEKqvr9c0jc3olCns9ttvn5sUBgDJZDKbzQpfGKV05cqVX/ziF0+cONHb20sIqaysXLFiRXV1laoqfCIRcvKXrN0opSJkjJucthUfLFUhJ+goDyUzCa6/v6+tbeUCm5O0ULFIWQwAVq5ceeedd37pS1/asWNHyYrM7/dP9ka3EZ8rW4FtLM26EyQ5xsqoqlpfX5/JZNLpNMwHCgMAthq5dDUoIcTv969Zs4b54PjPZzMiGcXYRntzhqEtNI97wahtv7UFRClhxyXz03Tzj46OplLJiopoGX+yh2nCovOLyVi1atVNN920Zs2aSc1GlhEOh0v2Ck0o5fJ5x1xbCIVCdXV1bChz7lMYISSVSgKA1WI2DxkcTF1xoslVl/jLFo5HeUOiNJVT90hVgNookQLnSkAIZTIZzzU2X7B4tRjDli1b3vWud5U2FUZV1erq6nxiqjBkMipQPZ93zGlXAkAsFksmkxs3bpyzvjABXdc1TWMkzMY8pCBVZ0Yg4cYC56USccXyDvmCCabjh0Geq8RVLQiLkn01DFJMvrNFgseGH9ub3PtC/IW9yb0AsCG8YVvlto3hjZdUXzLbXQPwWOzgwYMHDhxYvnx5e3u7YRjFExmltKamhqW4EpQ0KTqzRTm5lsnnHePTm+0RGEuWLPnkJz85xykMAHRd13UNzGT5SGSekH8LWIkM7HKMyp9CiNFcfh5RUj4zdVKYID4b0yWTien6/fMHe5J7vnD0C4y8BF4ce/HFsRcBYEN4w7dXfntjeOMs9c7EorYoU6nU73//+4GBgdra2ra2NlVVi6QhSmk4HG5tbRXLiOUPVpoSijFXRRmEkKZpzz//fPEZB2cLmqbxTK0gGX25Ag6fvWW/c4/0zXKIM5o8XpmzKBn3WT1oYnyAJpOJqYTjLAB85+R33rH7HTYKk7E3ufcdu9/x3ZPfLfkUIyMjCKHduye33pINi5rFduzY8cYbbzAmqq2tZRJmQjJiQQBLly5lTrGSw6bQRAlwimxTLoYxfuGFF3bs2DGpnsw8iDnomGMWrraozERUOkytRWV2k4QYFWUBiK261VnGtyxnl0c2wTAWO4V97+T3iin53ZPf/UnPTwqX2bdv31VXXdXY2BgIBNra2j73uc8NDQ2VoZcAsJhZbHR09I9//CNbopWhoaFh+fLlhf1clFK/39/W1uY696gEOpMNKFc4G3SeRWaxdDr9hz/8YT54pgWtuHCNjbbygcfcmYRISM5tLw9fWpuShRhYtZgoWX5ZPb+wJ7mnSApj+OeOf96T3JPv6KuvvnrWWWclk8lf/OIXO3bsuOeee5566qnt27eXliPTicXLYq+99trhw4flBDsIoZaWlqVLl8rveRmU0nA4vGbNmoaGBmfQgyhDi56kWXLEma2Hcjuqqu7ateu1114rodkZg9x9WWNxDiI27gIHl4FdghFhmfINyjkrx5XirHlYUTAgtZVfbPino/802SpfOPqFfIeuueaas84667e//e1b3vKWjRs3vve973366afb2tr2798/tW6aWKTe/UQi8cwzz9jc+Wy7ublZ07Tu7m6WmJQdQgixGYVNTU3hcJjtpJZZL/Yp38VAMGCBpyWfgz9fLUqppml//vOfzzrrrCLXhZt5ICQWwSWUKhIfAZjRW2ayVpl3HM1QQVhgZUbmdJMpDIDy6DCZm6hMeVIx8+9SchjNvMZjw4/tS+6bbK29yb2PDT/29uq32/Z3dna+/PLLf/rTn+SLGYvFHn74YQAQc06mgkXKYvv27Ttw4IBMYYKDFEVZsWJFZWXl4OAgm9bn9/srKipisVgkEhFVqGNoUmaWIt/hSJrDPNmIjXzlmatu165d+/btm9SSwDMOWVghQihL023VmJS5qPhO29RIIbVyMkqmIafUchNhbJ0k8wvb4GdfjBQGAAVswwkrOlnsyJEjALBx4zSOYy5GFiOE/PWvf81ms2Lukc3ThBCqq6urqalhQ1QsJz07RAtFA5RifYgGS6heQKYlEonnn3/+9NNPn5uJGVRV5VpMJhiEECUEISSy64h0FEhKQSHbkuwrSIak+YeQVj/K0ZygKkIIX+1NDEra+xMIBBcnkb0Qf6H0iq32newpKzmwvBjMxVt8utHb27tnz57Cj7fQZfkS+Ajqsb26ZYKbEHSSFqizuji109n/2muvDQwMlNz4tMLn8ymKwq8fcTIOIYyGzNXYBD2x8mK/zIF8UJJwH78A4QrLprZy+ks0Jdz8MLWJGfMaBUIrCsPVDl21ahUAvP7667b98sDaFLEYWezAgQNDQ0M2c7Lw/cpu8WLE16R0WfGBFJN6nJhR2dvbWy7vadnh86mqqnL2YqvemhJJWtFSVk9EHCUkNxYpVBjNLQYOIC267qA/O7VRyy6TMQGAZdye1Ys0/0Ddxnabm5u3b9/+jW98Q5ZjY2Njp5122oMPPliW8y46FjMM44033tB1vYS6Tm6ieezB4rUYOAYc85Up3L5zTzab3bFjR5F8OsPAWAkGA5yVQMgrbg8SSg2urWQ6kwMpcs54QUiMyCSFRnnLIEjKwV5EIlOT3QCoqvqi0UU6FXxDeEN5K95777379++/5JJLHnvssb179/7qV7/avn17NBq99NJLp9DNHBYdiw0PDx85csRmfxWpiVz3CJqQN4rnDjoZC9R2drmWk+YQQgcOHBgeHp5syzMAhFAkUiHZjCCpI5tLi4VQEMhF1RMR0SrxF5WFG6dCiy3pjLqglLAFw7kdKqLPaCQSXrRLum2r3Fbeiqeeeuorr7zS2tr6sY99bOvWrTfccMMVV1zx1FNPlWsMfdF59zs6OgYHB23pdGgR/inK4yrErJSyOE0KW6DSw+xyaMKWe3t7Ozs7xeJpcwrRaFRVFcMgCDGthACAEDntKgUptTTlyXkoXzcXLN595tEXiSepTXJJX4kMmwoTV7WursHvD8zGhZl9lDwvskDF1atX/8d//Idzf1VVVfGv/HxYdFrs6NGj2Wy2ZAKiBed+T0qFyVVK+0PKteRtxOc2pVKpo0ePltDyDCAUCoXDYcMwJD4RbnsiPO7cDBTsI3aCOCRTktXGzA1KSsItp+MEtRkGNQwitJiqqot5Mbe3V799fXj9ZGutD693hlnMDBYXixmG0dnZaaOMYoSYXDgf70z9leJE8R1j0zltOwkh7e3t09GxqQNjXFNTQyllPMYd/IQQg/v7Zc6isqXJ99uiv3Jjl1xV2YYyqTgLpYY4gWFQ3gFzzkAsVlVdPRcF7IzhOyu/MwNVyoXFxWLpdLq3t9cZY1GkGqJuPqySxVQxtWieGFpnXdfWEELd3d1scdw5iKqq6kDAbxg6IcTIsQojI0M2/YSSIoTm1BsxBOsJR76kyFhJwV4GZy7K3GFCoMkUxmzY1tZWv98/25dnNrExvPFzrZ8rvvwty26Zxfw8i4vFxsbG4vE4uNlfk4JwZk1Kx8mgeYzBwiVLqDI4ODhnWSwQCNTU1LG0rhKbyAFcRNJlsieL8pUlbeYh5L4RQghYedAsyynMTpHsylVUVDQ3t8z2tZl9/FPrPxVJZLcsu+UTTZ+Y5u4UwuJisXg8zhJ4FhjdmxA21VOyvSYev8JlXPcXMxbBiiWTybk5TMnQ1NQUDIY4i1GZViQCMqWZ858cRMbJiPCmqLVkrrDEYtQwCDs7AJungdraVkUiXqQYAMA/tf7TI5seKeAjWx9e/8imR2aXwmCxjVGOjY3puo4c07ZdTcXpQz470bVY8Q06v6I5nz8+GAy2tDQfOXJE13VFAUrZZC/CJkcghPjQJIBbRCWP2gehpKgZ6y8CX3OhGMz2FF58iTSJaKS2trbIFdQXCTaGNz626bHHhh/bk9zjzFg9W+58GxYXi8XjcRZA7EpYJZuHJaBIInMtM6GNKf+KbDY7x/PHNzQ0Dg4ODg0NIQQAmFKFECSlnmREJpbLZSFjwqIHicVsE49kCpPNUnOPYTCfmiFYzO/3r1mzNhCYo4lAZhFvr37726vf7pwjOUewuFhMwElYM0Nhk5VX+cq7+vJLOMtcgKqqK1a0jY8nstmMoqgYA8aYB+eZsb1W4QxixVyQgsXEJ2Mlq1/fYngyK5JtCAoDgJUrVzU1Nc/CJfAwNSwuFitACsiaqWK6+zAVoinBkVfyuWYG0Wh05cqV+/fv0/Wsovh4sCtCCIN1loI0rgIgsTn/jTkZBpCbfSm5/IUKE4ObwNIBtbS0rF69ZnFO/57vWFwsxlzps/VUC5ackMjYM4fyZxCzjQkUkGYTDiDMETQ0NCSTifb2dko1ShWMMcYIgGCMKEUIYVf5zP4POV4j1Dr3m08wosKXL40Y5NxhNTW1GzeeumiD9ec7FheLiYlH+R4Jp+O/XHBYPRMzqSv7cC+PZZDU1prNRzbZ1ctnBQih5ctXEEKPHTtGiKYojMgwpYh7+iG/P5DKHjEwF/6QojIsOTMMm0e/pqZmy5YzFu3c7wWAxcVi4vFmt7ZrsLuYvlPG8xJp7UgbB7l2clI+LyeFzX0T0hUY47a2NgBobz+qaYzI2OroNpsS0dwKu7kBSp6GzGUGpaS/TDcZrwg1NXVbtmyNxWKz97s9TBWLi8WKyYxYXi3mFE1FUphrMVcKs7XpLDM30726ghGZz+c7cuRwNpvFWMGYYIwkIkNiLXHqSPHKL4X5fxEUJsYoBX8BAABqaWneuPFUT4XNdywuFqupqVEURdd18eS72pWuhyYF6sg7VrxEyucOk5sqcF4bo4XD4fklNDDGbK3PgwcPjo6OMLsSIUZk8h/FchnY7+beejHvkqmy3EQkod38/sDKlatWr16zyGcaLQwsLhaLRCJ+v1/TtMKay0kTJTCaU4UVU6WAEHNtZ0ID0+/3zzutgRCqq6uLRCLt7e0nTpzgokwQGViXFAHg4a9Wc5LIG4K/MMa1tbWnnLKuoaFxHqlUDwWwuFissrKyoqJifHxcCKV84a9sgxWb1L1eAnk5yxdWW65V8hWORqOVlZXF92HuIBQKrV+/vrGx8ejRI/39A9mshhDTZew4+58tZCzHYSzSQipDEcLRaLStbeXSpcsCAW84cuFgcbFYNBqtqqrq6elhX4shMsgjzSYUQYXTH+Y7ozOKQu6qM8DC9tVZoL6+XiygOe+AEKqtrY3FYkNDQydOdA4M9KdSGSpFxPIrYHKZ8BNCblkjAABVVWOxqtbW1ubmlsWTwTUYDKZSqVAoNNsdmUakUqlgMLi4WCwQCLS0tOzbZ67UUoDFQJI5Fq+yxE3iKHWkTizQbOFzFaAwV94szLYAsGTJkvmuO1jOwrq6ukQiMTDQ39vbOzo6mk6ndd2QXPVUUmcIADBGPp8/HI7U1dU1NjZWVVUvNhdYS0tLPB5f2Cw2Ojra0tKyuFgMIbRs2TLbPHBCSDFjl2xbxEzIFAYS+9CCKyTlaz8fT4FEVRPaks49iqKw2IUFAIxxNBqNRqPLl69IpVLj42Pj4+OJRCKZTBiGAYAoZVEyKBgMhMORioqKiooo84TOdt9nB5s2bXriiSeuvPLK2e7INOL555+/5JJLFheLAcCqVauCwWAmkxFcU0x0hayw8skfsT1Z/gI3ApKBELItSupkPVelVllZuWBYTABjHIlEIpFIYyOA2/tDji5bzIhGoxdddNFvfvObbdu2xWKxhSTKUqnU6OjoCy+88Na3vrWiomLRsVhra2tTU1N7e7scx882iiQymAxPFW4wn85yFsvXnwLFKKVLlixpbZ2riQjKBG+csQBisdhb3/rW3bt3d3V1pdPp2e5O2RAMBltaWt72trexNUMXHYtFo9G1a9ceOXJEJKoX3jGE0Iw9EkUKNynQyVJ3wklIDJs2bVo8zmwProhGo9u2lbgy23zBonuPIYQ2b97s9/tdtUxhy65cYGcpZipSvrrFCLFwOLxly5aydNiDh7mMRcdiALB69eqWlhaWYUreP90URt1QoLBIiOVsYcJuU0qXLVu2cuXK8v4EDx7mIBYji1VXV2/dujXfw+9qxE0dsgk5Yfv5lJqoKNzY+UoihM4666x5Gu/qwcOksBhZDADOOeecWCzGl43IQbb1ysJlVBqCJMRcqKLkZiml2Ww2Ho8PDg729/ePjIxks1lXsqutrV3w3hAPHhgWnXefoa2tbevWrU8++SR1ixdjpCOiw0vO1SNTYZGcmM/YpJRqmjY8PMwWQBFUGwwG6+rqgsGgrfDZZ5+9bNmyyXbYg4f5iEWqxVRVPf/888PhcIHsrzZRVqQzS2iuSZmQINGcK4WNj493d3cPDw9rmsaOsmQPqVSqt7dXHkSnlEaj0Te/+c3zIjmiBw9TxyJlMQA49dRTzzrrLCovweoGwUG2zKHCMHQWYBUFlxVPYdTNyUUpHRoa6uvry2aziqLIkpDlcc1mszKRUUrPP//8DRs2lHxlPHiYX1ikFiUAjI2NdXd367ouoi5oETPDJ9zv5KDC3bBRofPo8PDw8PCwOIQxptKsb0FkfX19DQ0NgUCgtrb20ksv9YSYh8WDRarFOjs7b7311j/84Q/xeFzwSAFFxuBqXRZpbOZrsMBIAqV0ZGRkaGhIPuSMzmVElslkent7NU279NJL16xZM6luePAwr7EYtdiBAwe++c1vPvfccxjj4eHhUCgUDofl1KzTPRGP8vmYBaI6KKWpVEpWYQJymIXYw4hsdHR01apV3ixCD4sK80+LyZ6swi4tV7z++uvXX3/9888/z3xMuq4PDQ2xUT/RfmnCalKY0BOn6/rg4KCmaa5lmByzKTJVVYeHh+++++49e/ZMS6c9eJiTcE/xPteg63o2m81k0plMJpPJ6roGAISYGfIQQj6fPxAIBIOBYDDk9/vzTYd88skn77jjjo6ODlZAiJra2trq6moxsxKkuAq55FTgZMl8JZlAGxsbY9kc5V45YZuBQAjRNO2000771re+5dmVHhYJ5jSL6bqeSqXGxsYSifFsNivWsGFdlv3ibBUvAFAUla2XUVlZGQqFxPNvGMaDDz74L//yL93d3czzLVMDxripqamiosJJf0jCpDpPpTQ+rJPy5PN8VQRYLkDhBZsskV144YW33XZbvoQWTM/quk6IAQCEmH3DGKuqalN5HjzMccxRFstkMmNjcZbSkz1jXDcB8DTEnNFyIISyNVMJoaqqVlZWNjQ0VFZWapr2wAMP/PCHP4zH40Jb2TglEAg0NTUFAgFnZgubQLN9pdaRTfl6yhRW+PfazFjDME6ePJnJZMSJChAZdcRnsCCPN7/5zV//+tcFkVFKNU1Lp1PJZDKdTmezWV3XCWGLabOgOUAIFEXx+fzBYLCiIhKJRPz+gOdl8zDHMedYTNf14eHh4eEhTdMAkFgtwsoUwCiCP/aWsT7mcjIMYhg6xkogEPjTn/70n//5n9ls1pZFz8Yv4XC4sbHR5/NBQTvOGdPPtsWKvE4iKwBXN5yu652dnbquyyctgcguuOCCr3/96y0tLePj4/F4PJlMiKBZcSXFIAF/DRC+Bgf4/b5IpKK6uioWi/l8izRjqoe5jznEYswZNDDQn0qlEUKKYhFNIqs6QuzJF0rHXDyVMZh4npnKGBkZeeCBB1544QXDMGxKyvWHV1RU1NfXq6oKnDhgIqeYYLFJXUlR2HXyACGks7MzlUrJYV+TJTJd16uqqj772c9ecMH5yWSSEMqq25Qjr+JUtea8T0ppKBSqq6utq6u3TXXy4GEuYK6wmK7rg4MDQ0PDlFJFwZIrKmdIihWhAYA9dcDXT4XcY8xWgaYA0N3dc//997/yyiviLIUpjCESiTQ0NAgig/I5+AVc9ZetwMDAwMDAgHMgshgiI4QEg8Gzzz777W9/+5o1a1RVQQgL+nKwGHBhS/gnIQTEK8Ew2CR2gyXYrK83L44HD3MEc4LFMplMT09PIpHAGCsKQghbF4JGzHPPQ7oAHCt3CXUmDKLh4eF77713x47XZEdY7pHND0JIJBIRpiWD7OAvmc6oxBkF+ItB07Te3t5EIqEoyqSITNf15cuX/c3fvPess85iqdYxZn12GaCglosoX03CTXRCCDUMQoih6zqlJBaLLV/e5uX88TB3MPsv1XQ6xZKCq6qCscJYgpk+AMANSQwgFh9CbJtSIAQ4OzHhgDDGhADGaM+ePTt37pKf/yIpjBAyNjZmGEZjY6MwoNiTzYhM5MBAeZYdodaF3WT1WLgDlE8topSy5cv6+voSiQRI2eUpT8Lhel6M8fbt537gA1ctW7aMXUYA7ORe8T5AiL0hkIj5pZSF4wLGwE9ldlhRgBBjeHh4fDyxYsWKxsYmbyjTw1zALLNYKpXq7u7KZLJsgN8R1iDMSUSp+cAgRHmwLsUYOL1gSglC7IHECEF3d7emabbp08VQGNseHx/PZrMNDQ0s/MI2GsC8bMixEqXNYpU/CzvOXG1Mn8/X2NjY29ubTCbBQWS2mZKUUr/f/853vvOKK94di8UAgIk2yA2t5q4n4y9qDoxYppdTSsTLAABhTAzDkrlIVUHTsgcPHkgkEitWtHnWpYdZx2y+SzOZTFdXVyaTURS2cr0Zj84tSkFqWJhR3FOGhJEnHlJeABBiD7Di9GTn6wmlVM6YyNgklUp1dXVVVVVFIhHbQmpgdUIJ+rPNKHAKMddTi7M7y6iq2tjYGA6HbQkdWRX5q9/vf897rnz/+99fWRlDCGGssOvBrii7quxiikvHDyGMkXzBmQUqLrh4uWCMmHmrKCoA6ujoOHz4sDyQ6sHDrGDWXqS6rvf29mQyGWZICiuS85SZvAEKhmUhxAwfxI+bWgMhaG1t9fv9wkCb0I6T6YZxEELokksu+cpXvtLd3f2LX/ziwIEDUDACo7DQcy3sOkBpg6qq9fX1lFJXRcY64/f7r7zyyiuuuDIYDAgCYkJMvKikbsuqkJnGFGM2F4KpWooQ4X40jDEQQhAy/yBsQ1EUSunJkycA6OrVazxF5mEWMTs3H6V0cHBgfDzBVZhgByYWcoODBRxP7EkUEVqiFNtYvXp1XV1dT0/PhKacTGFCQ6mqevXVV1933XU1NTWtra1tbW0PPfTQH//4x8HBQTFuOFk3v9WVXhTlsZKtra0f/OAHX3zxxSeffFIWmIzFFEW59NK3X3HFFYFAQNJT2LwYDsvX2h/EzHAAEOY5xkAIYlO7AIAZ7AgZAAhjoBQDMFNUYREhGCurV6/2fGQeZguzM0YZj4+ePNmFELAgACYdrLN98hKEzALcs0O4tBGxF1TXjfvuu++hhx4q8HTZ7DJhCUYikU984hOf/OQn2ZqdDIZhtLe3P/LII88880w8Hmf0wRzqrhxh67D8tZhLxGpVVVVdcMEF73jHO9ra2rq7u7/2ta898cQTqqrKRHbOOed85jOficVi3ChH3KkvxKndf+foG5WjiK3xFuawL6d3M6KYEMMwDF3X2QSA9es3LFmypJjf5cFD2TELLKbrekfH8XQ6raoq875j7EJh8mQjGTKFSU+gCByjPF4Mtbe3f/Ob3+zu7nYlMltWCTYbkRBSXV197bXXfvjDH5YjLQQ0TTt48ODTTz/9wgsvDAwMMBazlREmcAkXR3ju6+rqtm/f/uY3v3nlypWiJ93d3ddff/2zzz7r9/sRQoSQpUuXfOELX1y1aiX3BmLbxYT8JrnjZUD5hggWMy+sIDK2X9fNCDJGZJqm+f2BzZs3V1VVlfCTPXiYImaBxfr7+/v6+lRVUZScEHNVYbK+kbvpJDLZ/0Vpzkx8+OGHf/7zn2uaZtNK+SissbHxpptuuuyyywrnSmXzHF966aWXXnrp2LFj4+PjjM4ma2PKv4gFNVRUVLS1tZ1zzjlvetObWltbnRS5f//+r3zlK6+//rrP5wsEAp/85Cff+ta3YA5+CbHgr2JUrfwyAKCEANdlhFLKwvfFMAalxDAoozDDILquGYahaVpdXd3mzVs8B5mHmcdMs1gmkzl+/JhhEGFL8kHJnOOcuefBnOUHPDQfgEcJWB8/sM2e4TRGKaXpdPpnP/vZ448/LvfBlgSCfTUMY/Xq1bfeeuv5559fvIsnkUgcO3bstdde27Nnz/Hjx+PxOEtVVpg+QOo0QkhV1Vgstnz58lNPPXXz5s3Lly8Ph8MFKjIi27HjtQsuOP9zn7suEolYWSw3mCv7CgurWutcCCqzGFdkhBDDZlQSYui6oeuarhuGYWzcuMlbeMnDzGOmWWxgoL+3VwgxMZzvzmIiah8kLSbNoLToCOdyRWzP8PDQvffe+/LLrzBusq1OJJw9mzdvvuWWW84444zSflc6ne7p6Wlvb+/o6Ojo6BgYGBgZGUmlUiLNIZUMOp/PFwqFampqamtrly1btmLFiuXLl7OMGkWebt++fXfdddell166ZctmJCxJbktas6eZVWQikzbMoVLpklpUrYgYkY1KPi3JnGhpGJqmGZqmRSKRN73pTYUp2IOHsmNGWYw5yDOZDPeIgaJg4Ye2ecQgpyVyRCY/fnlYDPhTaTp0AKCvr/eXv3zgmWeekYObBIUBwJo1q2+99dbt288r189MJpPJZDKRSIyMjLCduq6LuZmxWCwSiUQikXA4XPLQ3tGjR8bGxoLBkKJgAKQoWDbMwTQnLaoW7IZ5Xu+YzGKUgpXCcpMrKSXMNcY+NE1ft27t6tVedkYPM4oZ9WIkk4lMJo2xwp5clJvsbfeFiUBztk/4ymVBgaQQChYyZm5S27NK6uvrP/axj9bX1z/88MNseBG4awwhtGXLliuvvMLnUwkxMC7D0kGKokSj0Wg0OvWm8sEwDIyxyJbj9MjZviMk5qJaLHRRsvDLDCHEeFD4EtksVx7Pl5uk2dXVtXTpsuJFpQcPU8eMstjY2BghlGValfdTaaRP+MIQYs+V+fxYDSJTPkhERjmLsUAnKvnuESFGOBx573vfs3bt2ieeeGLfvn39/f2U0mAwuH37ue94xztCodDQ0ND4+HhlZWxar0C5kEolE4kkc4Xxi5lz59skrRxMZwOyz5CnNg8ays3AF7OXbHIvB4xxPB4fHBxoaXHPMevBw3Rg5lhM1/VEIiHpLyG7LHEAMmFRS/oKALtBRCUFQWUnmhWUt483bdq0evXqrq6Thw8fzmazdXV1bW1tiqJks1o6nRkcHJwvLBaPj1FKeXS+TFhmpjOrvBXBqyAukTxOAjk6Q9xClxsUfxEkX2SEECGUvWzE384wjJ6enubmlpKHaz14mCxmjsWy2Wwmk3WO3VF7HJN9w7HfSVXU+kk5CdpLUkpUVV22bNnSpUsNw9B1LZvVDUNHCCilQ0ODK1a0zf3HT9f1RGLMOldBnliaMyfd2E3syTVofRkILkMFXyGsfWSdNYEQwoODg6lUyvPxe5gxzNyskXQ6TakhHjCb2SKXnHC8QfZJcxVm7rdRmKUgBxHBTkToDgQAY2Nj82JuM8uazwZ2OZzh+BY9y2ga+AiJk+XzvxvEUZr701kq2h1wqVQyHh8p9cd58DBpzByLZTIZYSFKRkrOKSPzjXgC5aeOH5Kft7xUZYUYfXOpzoAQSqfTYsGOuYxUKmkYLNuaHJLiAvkyynukArarITz97IrJWTRAZnypuvwuQcyoHB4eLvnXefAwWcwQi1FKM5mMJJQQ323+T+Ivi5Rg+8R+W7ob6ahFekhawxJGIDcln4J91TQtm50HLJZOp0VcK+eU3C9lcMgx+8tAKkMl2nKPKRMiV/aaMaszZ7yaTjdT1ZLJLHXswcNUMHNajMV/CgkmPTCWZ0seMhMiy83DlaMkFtMkCy6Qt8ByRrHTmc6LECOdTpfxJ08HCCGZTFbmLFdVK8rLRMb35NOuSKx+JO3JOS4F+YuzS15/9pVtoGQy6czI5sHDNGEms6lQagmztAgBIbXk0lYuo/Iem6oSNQCA0lwwOt9pJ0r5pFILc92vDwCGYWhalm1L5raLh8uVrfIclT9BLsC2CSGyBJP+joS9R6wuAZrJZLLZbPl+tAcPhTBDY5TSE5GzgNhYGB9icxMHDnFhe+r4EwWSXSmXFEfFAy/7cXJmFCsvXOBzGdTUnjkHFt8GFiwhR7FKYynuv0t+BxBzhV2QL6z05rCYk7w6e2fYzFXEhk/K+8M9eMiHmYx6Nd/elCK2RAUnMuD2CEjeZff6kiIguX3WGUiyxHDkurDBfDjnoRNHllFUzCST5zOIwDH2U5E1W6RViJl5jWTtK5uowqXo5goQLwNK8/zhPHiYVswQi0mOFQHEsozKj59r6gUJsi/MFAgMjMLMQvwhlJ9AIbishqR4XE0umPvBYlayYOKLSsGoBAA72cRJZOLiOBWWOG69UIzxhe/M8UKQ3P+UUnl804OHacVMajFkFUFsuTBqMyfFxCNRS/ba8EdYpjD2wFDgXCaIyXE6ItFfDoIBEUJlmUc5rWCBpqLnfDIjFVeMpcy3xtABpzBzBTxZwYkCViekfE75qsrrGFhJTGJYFv46MxfEg4eZ02J+v99695u2DgBwXSaDKSOL44ZvI8kXRplfBrjjRpyCEMr3m8wlSTlZTeSeSYyVUCg4A1djirB2Xnj0BN2zmaQgsZuF9MWnjYMcLeeWKOZ/JuYFk8lLvANYbkVXWefBw/Ri5rRYIBDI3fmEKQVzxVb+EILVK21/9mzGkESIAFYhJh4tEWFGcg+fyPwnawqgFAKBgN8/15MxsEnXhqHz32JyOrPIGVNLU1NBpjYAkMRZ7gvbLwlYsMXlcVNR3kmlF4l5qQW1Yax4SV89zBhm7lYLBgMAwOYPY0zEGtQI8SQJPNOL4Kw8GatzOoJJAP6VyLxGKfAE/DkKE3nHJCnBUlcTAAiHw36/f8YuSGlQFMXn82WzaQDCTUJECMVYKDLBXwJysklq4S7zwhKuanPkLl1MyqWZYH8iXUBhy4P4EwQCAddVCzx4mA7MJIuFMFYoNRh/sYFBnp6UPTM55zpXCuJZtMgw8WkbkZQUAbAgJ/ZkypJBWvHW/KTcjxaLxQqn258LwBj7/f6xMSAEEDJVLcaYUraCJBaqFkxTHWxXj29Lm7krmZOvIHEYWxKJl7FRWO59INqPRCKeFvMwY5hRizIUCsbjYwgRPlhmEhlfHNZ8dljCGbbNwsH544GElBAGkbQwrWwqyrosp7kYfzHxJSsyAFAUpba2bsauxlQQCoX4SmtYUcy1dQlBTOSymUlC1UrDJnY9C5JBnueVIF9A6yXjdGYYlErylnniotHKuT/a62HBYOZYDGMci1WNjo4SQjAWjxnTFCKrjBl6Ko5K/hchwQCkVbWFknLNu2+1JQmxm5YGi0qnlEYiFdXV1TN2NaaCcDgMgDh5EYwx+wQwE37x5Ku5gUvIpSanYlvmL7AqL9frKa4251DCrx7hpEYAqKJgb0k3DzOJGZX9zGQzDMLTYGGMCaUgMoWC6UhmR5lZmEsYL3SF/ESBTTNIJCVJBlN8ScYkNQzCjSAKAPX19cFgaCavRskIh8PBYCCVSmEs4oeJ/DJAiIp8uWL4Uhq1pPLFtIWe8E3xmiC2kRChZ4U9TogQv0ApjUQisVjVrF0dD4sPM8pi4XC4srJycHCQrXzENISIbzIMKvn45bWs2Se1fVrpC5xsJta84BuGGKAUMQSMwnw+/zxKsqyqamVl5fh4QlEoG5dACGEM0qzYXEJEZyiGsMfBblGKUUjgjkXLW4GtVUClhZH4tsF1GQBAXV39vAhY8bBgMKMshhCqq6sbHBw0DCLSUSGEEaKM19jkJK4jzLSl7GnhrjTBX4jbMsAfQ4tqIIRQaggL0jCYghCPpklt7Pmtqamprq6ZyUsxRVRVVff09LK5iggBAGakzEStuHTWNwGRPWWOt4JslYPQa3y0V8guKpmTlP8jfLo4VVVfY2PzvJhX72HBYKYHkmKxqsrKypGREYQAQMGYYEwBMHuRM5sSQBYOwjsmQgTYfsFfRGKuXBCA2J/z6psDbdQwLNpBVX0rVrTNrzG1ioqKiorI6OgoYyqMgRAsBdkhMYkSLJMr7U59W9iKQ4WJlwOR2V9aLZxyhWu+D6qqqmpra2fhinhYxJjpR1dV1ZaWlnh81DAMNjYIAAgRtpaPYTB1hvhMF9srPefd54KBSJKBCsnA3DqCwQwjFykm1oIVk2mampqamppn9jJMFYqi1NXVj4yMMDlGKWAs/GJEJFDkVOVcri23IV06EPLW5liUYlMIG5SU3w58agQghFpbl8z9mDsPCwyzIECqqqrr6uq7u3t8PgCglCrMSy3yl1Izdgwk+xHEhHGaS6FDxfMGOf0gRzOZ61eLR1B85RQGoVBw9eo1cz9MzIna2tre3t54fJTPmiR8jMS0LMGyoAHzNppjJo6hEhGqkmM0MfQhvRgMPiQi+EsIMaCU1tbWtbYumYVr4WFxYxZYDGO8ZMnSkZHRVCrp86mUUkoVEWuBEOZZ+dkTaJk6IxLygSTKrPMic/57ISGY7SMzGu8JWrlydU3NvLSAVFVtbW0ZG4sbhg4AlGKMWdCFOf9UGJLIXHINACghufFK55ClY2xXFmOGPMLLKEzyiIGiqCtXrgoGPb++h5nG7DiDwuFwW1vbvn37NE1XFIVSYBalWOOajVU6K4rnTXxyvSDbP4YYhWQPHfeDmfalIMGWltaVK1fP6C8vK6qra+rq6nt6upmTkVLGXew1IJz7YqFJsL4PclpMeMSYr5ARk/CNyddOeh/khkdYIy0tzfNonNfDQsKsubTr6uqWL1925MgRSqmiAKUIYySUgpzXRRpocxlWk4wgKntw+JfcQ2gY4qlDlJLq6pqNGzfO6+l+GONly5bF4/FkMqGqgDGlFMvzUjEGa44jECOVkIt3pXlUrRyqkts2DGoYBo9cMV8hlZWVa9eun4+GuYcFgFljMYTQkiVLM5lMZ2cnpVRRFEKYFjNtH5H6VYIwJG38BdwtlqMwYVdaDUnmwSGVlZWnnXZ6RUV0pn92uREKhVauXLlv315N0xRFVRTKtRhGCPGZqlSeEC4pMmrVttQK2Sg3lZlh2A1JAPD7/evXb5wvy6p7WHiwZDGeeRiGceTI4Y6ODoQAY0VRMHv8hDlErZktwGIJUeEp46P+poEpDEluYMoUBpWV0S1bzpgvsyaLQWdnx6FDhxECVVURYi8DhBCWJ9hbY8fswcPsU0zrEsYjIWawKzMkhY8feLI2jPG6dRtOOWWtN3HSw2xhloOkFEVZuXIVAHR0dOi6TgjGGHEiE4Gv5swkABAqjFEV5PQD4Q8hkUIxDXHUrExpVVX16advXkgUBgCtrUt03WhvP6ppGsYYY4WrWsFigsvMKuwdgJAcrSI0rQhwzVmW3Co3hC0PABjjNWtOWb16jUdhHmYRs6zFGAghJ06cOHLkcCaTZXKMOXSk4HPLKrzCGy2GLKUHjooQTRErYDaBoLm5ZcOGTdHovDcknSCEHD9+7OhR5mdUMMYiiJ/lCGHXUMpsYVO1Jo9xFstNgZCdYoQHqQCnMM8d5mHWMSdYjGFoaOjgwYPDw0PIpDERewHyEBtXEPIYJQjtIJ43WTJQSoPB4MqVq1etWuXzLdiYTEJIZ2fnkSNHdJ0pspxtLpmV8hJwbKecVweE+BKORWaV8wJmsLHfHzjllLWrVq32KMzDrGMOsRgAMGf/8ePHk8kkfw5BSjeWA3/ocsGZ7HETUZqimKIojY1Nq1evqa2tWwyGT39//8GDB+LxMWwCJFVrl7QsmQ93jYHEaNwZZs6aFJKWUgqVlbENGzY0N7cshuvpYe5jbrEYw9jY2LFj7b29valUCnKPoPzACN1ghjhJKeFz45iq6qupqVm+fEVzc8v8miY5RSSTicOHj3R3dxmGgbHiMM9FwLBF1Up+RiIb5rKkVVW1paV17dp10WjlLP04Dx7smIssBgCU0kRivLu7p6enOx6Pa5pGKbU8iFKUk+zyBwCMlXA4XFdX19LSWldXp6rzOCKsZBBC+vr6jh49OjQ0CADCupTLWJ2MwqgkYqhXeitQjHF1dc3q1Wuampo9K9LDnMIcZTEBXdfj8dGBgf6hoaHx8fFMJmMYOpsCLYAQUhTV5/OFw+HKylhdXV1NTU0oFPbsnWw229PTffLkyeHhYU3TJCeZnMya8jFfsdy6PH0VVFWtrq5esmRZS0tLIDDX14jysAgx11lMgBCiadl0Op1KpbLZLNvDvD4Y41AoFAyG/H7/vI7Fnybouj48PNzb29Pf3z8+Pq7rGo/Ck0NhLeHECCFVVSORSH19fWNjc01NjXdhPcxZzBsW8zB1ZLOZeDw+MjIcj8eTyWQ6ndI0NpPczESmqmowGAyHw9FoZVVVdSwW88SXh7kPj8UWKQzD0DSNEJaejPLIMkVV1UU1EuJhAeD/B0l4YQCVqCM9AAAAAElFTkSuQmCC", "path": "image.png" }
Complete the statement. 2-chloroethanol is ().
[ "an elementary substance", "a compound" ]
1
The model below represents a molecule of 2-chloroethanol. 2‑Chloroethanol is a poisonous substance used to make chemicals that kill insects.
There are more than 100 different chemical elements, or types of atoms. Chemical elements make up all of the substances around you. A substance may be composed of one chemical element or multiple chemical elements. Substances that are composed of only one chemical element are elementary substances. Substances that are composed of multiple chemical elements bonded together are compounds. Every chemical element is represented by its own atomic symbol. An atomic symbol may consist of one capital letter, or it may consist of a capital letter followed by a lowercase letter. For example, the atomic symbol for the chemical element boron is B, and the atomic symbol for the chemical element chlorine is Cl. Scientists use different types of models to represent substances whose atoms are bonded in different ways. One type of model is a ball-and-stick model. The ball-and-stick model below represents a molecule of the compound boron trichloride. In a ball-and-stick model, the balls represent atoms, and the sticks represent bonds. Notice that the balls in the model above are not all the same color. Each color represents a different chemical element. The legend shows the color and the atomic symbol for each chemical element in the substance.
Use the model to determine whether 2-chloroethanol is an elementary substance or a compound. Step 1: Interpret the model. . Use the legend to determine the chemical element represented by each color. The colors and atomic symbols from the legend are shown in the table below. The table also includes the names of the chemical elements represented in the model. You can see from the model that a molecule of 2-chloroethanol is composed of five hydrogen atoms, two carbon atoms, one oxygen atom, and one chlorine atom bonded together. Step 2: Determine whether the substance is an elementary substance or a compound. You know from Step 1 that 2-chloroethanol is composed of four chemical elements: hydrogen, carbon, oxygen, and chlorine. Since 2-chloroethanol is composed of multiple chemical elements bonded together, 2-chloroethanol is a compound.
a compound