Datasets:
text
stringlengths 0
601
|
|---|
পল O
|
আন্তঃৰাষ্ট্ৰীয় O
|
বিমানবন্দৰ O
|
. O
|
ইয়াত O
|
অভিনয় O
|
কৰিছিল O
|
হিক্স B-person-artist/author
|
ৰ O
|
পত্নী O
|
এলালিন B-person-actor
|
টেৰিছ I-person-actor
|
আৰু O
|
এডমাণ্ড B-person-actor
|
পেইন I-person-actor
|
। O
|
`` O
|
সময় B-art-writtenart
|
`` O
|
আলোচনীয়ে O
|
কয় O
|
যে O
|
ছবিখন O
|
`` O
|
বহু O
|
কোটি O
|
ডলাৰৰ O
|
ইম্প্ৰভাইজেচন O
|
যিয়ে O
|
শিৰোনামে O
|
যি O
|
প্ৰতিশ্ৰুতি O
|
দিয়ে O
|
তাৰ O
|
বাহিৰে O
|
সকলো O
|
কৰে O
|
'' O
|
আৰু O
|
পৰামৰ্শ O
|
দিছিল O
|
যে O
|
`` O
|
লেখক O
|
জৰ্জ B-person-artist/author
|
এক্সেলৰড I-person-artist/author
|
( O
|
`` O
|
দ্য... B-art-writtenart
|
চেভেন I-art-writtenart
|
ইয়াৰ I-art-writtenart
|
ইচ I-art-writtenart
|
`` O
|
) O
|
আৰু O
|
পৰিচালক O
|
ৰিচাৰ্ড B-person-director
|
কুইন I-person-director
|
হোল্ডেন B-person-other
|
O
|
ৰ O
|
চৰিত্ৰ O
|
ৰিচাৰ্ড B-person-other
|
বেনছন I-person-other
|
O
|
ৰ O
|
পৰা O
|
এটা O
|
ইংগিত O
|
ল'ব O
|
লাগিছিল O
|
যিয়ে... O
|
তেখেতে O
|
তেখেতৰ O
|
চিনেমাখন O
|
লিখে O
|
তেখেতে O
|
কি O
|
কৰিছে O
|
তাক O
|
দীঘলীয়াকৈ O
|
সচেতনভাৱে O
|
চায় O
|
আৰু O
|
জ্বলাই O
|
দিয়ে O
|
'' O
|
. O
|
IAEA B-organization-other
|
ত O
|
কাম O
|
কৰা O
|
পাকিস্তানী O
|
বিজ্ঞানী O
|
আৰু O
|
অভিযন্তাসকলে O
|
ভাৰতীয় O
|
SampurNER: Fine-grained Named Entity Recognition dataset for 22 Indian Languages
We introduce SampurNER, a fine-grained named entity recognition (FgNER) dataset encompassing all 22 scheduled Indian languages spoken by more than two billion people across various countries.
We have proposed an entity-anchored machine translation (EaMaTa) framework that leverages the largest manually annotated English FgNER dataset, FewNERD, to create a large-scale FgNER dataset in 22 languages.
On average, the dataset comprises over 153k sentences, 354k entities, and 3.3M tokens in each language.
The languages covered are: Assamese (as), Bengali (bn), Bodo (brx), Dogri (doi), Gujarati (gu), Hindi (hi), Kannada (kn), Kashmiri (ks), Konkani (gom), Maithili (mai), Malayalam (ml), Manipuri (mni), Marathi (mr), Nepali (ne), Odia (or), Punjabi (pa), Sanskrit (sa), Santali (sat), Sindhi (sd), Tamil (ta), Telugu (te), and Urdu (ur).
Various rigorous analyses and human evaluations confirm the high quality of the dataset and demonstrate the effectiveness of the entity-anchored machine translation (EaMaTa) framework with up to 9% increase in F1-score against the current state-of-the-art.
EaMaTa Framework overview
Figure: Overview of the EaMaTa Framework.
SampurNER Dataset Statictics
| Language | Train set | Development set | Test set | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Sentences | Entities | Tokens | Sentences | Entities | Tokens | Sentences | Entities | Tokens | |
| Assamese (as) | 107,249 | 237,260 | 2,194,925 | 15,438 | 34,560 | 318,105 | 30,658 | 67,466 | 625,870 |
| Bengali (bn) | 119,296 | 287,264 | 2,484,304 | 17,513 | 42,877 | 368,063 | 33,374 | 79,340 | 689,690 |
| Bodo (brx) | 117,659 | 262,792 | 2,354,696 | 16,762 | 37,496 | 336,269 | 33,615 | 74,576 | 672,246 |
| Dogri (doi) | 112,329 | 264,154 | 2,885,149 | 17,619 | 42,526 | 459,537 | 34,931 | 82,597 | 903,796 |
| Gujarati (gu) | 126,581 | 315,919 | 2,828,298 | 18,122 | 45,431 | 406,929 | 28,959 | 69,207 | 619,889 |
| Hindi (hi) | 124,887 | 290,192 | 3,298,116 | 17,882 | 41,824 | 457,573 | 35,713 | 82,440 | 908,513 |
| Kannada (kn) | 115,565 | 266,523 | 2,083,241 | 16,962 | 39,781 | 308,326 | 26,327 | 59,365 | 453,817 |
| Kashmiri (ks) | 123,679 | 288,544 | 2,910,937 | 17,417 | 40,350 | 408,053 | 35,106 | 81,181 | 823,040 |
| Konkani (gom) | 83,415 | 182,806 | 1,637,018 | 12,276 | 27,262 | 243,817 | 23,759 | 51,483 | 463,980 |
| Maithili (mai) | 108,826 | 256,701 | 2,763,005 | 10,224 | 22,706 | 245,657 | 19,899 | 43,530 | 472,498 |
| Malayalam (ml) | 91,743 | 199,485 | 1,504,839 | 15,608 | 35,140 | 265,049 | 23,480 | 50,319 | 377,213 |
| Manipuri (mni) | 110,068 | 246,084 | 2,264,925 | 15,561 | 34,869 | 321,556 | 31,463 | 69,739 | 644,709 |
| Marathi (mr) | 125,543 | 309,220 | 2,614,024 | 17,650 | 43,407 | 367,882 | 36,237 | 89,295 | 754,851 |
| Nepali (ne) | 125,695 | 311,439 | 2,661,064 | 18,252 | 45,778 | 389,382 | 35,498 | 87,112 | 747,802 |
| Odia (or) | 118,633 | 289,943 | 2,427,051 | 18,090 | 45,247 | 376,152 | 32,477 | 78,893 | 657,395 |
| Punjabi (pa) | 96,986 | 234,436 | 2,348,393 | 17,655 | 44,415 | 443,788 | 36,920 | 92,655 | 928,798 |
| Sanskrit (sa) | 69,581 | 152,269 | 1,214,021 | 10,043 | 22,175 | 176,574 | 19,729 | 42,643 | 341,208 |
| Santali (sat) | 87,650 | 153,533 | 2,223,951 | 12,526 | 22,159 | 312,706 | 24,921 | 43,264 | 619,556 |
| Sindhi (sd) | 90,362 | 214,371 | 2,218,078 | 17,221 | 42,845 | 440,340 | 32,159 | 78,317 | 809,085 |
| Tamil (ta) | 96,004 | 216,285 | 1,711,203 | 10,702 | 23,542 | 183,893 | 25,160 | 55,927 | 441,141 |
| Telugu (te) | 85,893 | 193,425 | 1,505,321 | 16,790 | 39,909 | 309,345 | 21,729 | 47,988 | 372,946 |
| Urdu (ur) | 122,794 | 298,069 | 298,069 | 17,570 | 43,205 | 465,417 | 35,198 | 35,198 | 929,427 |
Citation
If you use this dataset, please cite the following paper:
@inproceedings{kaushik2026sampurner,
title={SampurNER: Fine-grained Named Entity Recognition dataset for 22 Indian Languages},
author={Kaushik, Prachuryya and Anand, Ashish},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={40},
year={2026}
}
- Downloads last month
- 170