Dataset Viewer
Auto-converted to Parquet Duplicate
text
stringlengths
0
601
পল O
আন্তঃৰাষ্ট্ৰীয় O
বিমানবন্দৰ O
. O
ইয়াত O
অভিনয় O
কৰিছিল O
হিক্স B-person-artist/author
ৰ O
পত্নী O
এলালিন B-person-actor
টেৰিছ I-person-actor
আৰু O
এডমাণ্ড B-person-actor
পেইন I-person-actor
। O
`` O
সময় B-art-writtenart
`` O
আলোচনীয়ে O
কয় O
যে O
ছবিখন O
`` O
বহু O
কোটি O
ডলাৰৰ O
ইম্প্ৰভাইজেচন O
যিয়ে O
শিৰোনামে O
যি O
প্ৰতিশ্ৰুতি O
দিয়ে O
তাৰ O
বাহিৰে O
সকলো O
কৰে O
'' O
আৰু O
পৰামৰ্শ O
দিছিল O
যে O
`` O
লেখক O
জৰ্জ B-person-artist/author
এক্সেলৰড I-person-artist/author
( O
`` O
দ্য... B-art-writtenart
চেভেন I-art-writtenart
ইয়াৰ I-art-writtenart
ইচ I-art-writtenart
`` O
) O
আৰু O
পৰিচালক O
ৰিচাৰ্ড B-person-director
কুইন I-person-director
হোল্ডেন B-person-other
O
ৰ O
চৰিত্ৰ O
ৰিচাৰ্ড B-person-other
বেনছন I-person-other
O
ৰ O
পৰা O
এটা O
ইংগিত O
ল'ব O
লাগিছিল O
যিয়ে... O
তেখেতে O
তেখেতৰ O
চিনেমাখন O
লিখে O
তেখেতে O
কি O
কৰিছে O
তাক O
দীঘলীয়াকৈ O
সচেতনভাৱে O
চায় O
আৰু O
জ্বলাই O
দিয়ে O
'' O
. O
IAEA B-organization-other
ত O
কাম O
কৰা O
পাকিস্তানী O
বিজ্ঞানী O
আৰু O
অভিযন্তাসকলে O
ভাৰতীয় O
End of preview. Expand in Data Studio

SampurNER: Fine-grained Named Entity Recognition dataset for 22 Indian Languages

We introduce SampurNER, a fine-grained named entity recognition (FgNER) dataset encompassing all 22 scheduled Indian languages spoken by more than two billion people across various countries.

We have proposed an entity-anchored machine translation (EaMaTa) framework that leverages the largest manually annotated English FgNER dataset, FewNERD, to create a large-scale FgNER dataset in 22 languages.

On average, the dataset comprises over 153k sentences, 354k entities, and 3.3M tokens in each language.

The languages covered are: Assamese (as), Bengali (bn), Bodo (brx), Dogri (doi), Gujarati (gu), Hindi (hi), Kannada (kn), Kashmiri (ks), Konkani (gom), Maithili (mai), Malayalam (ml), Manipuri (mni), Marathi (mr), Nepali (ne), Odia (or), Punjabi (pa), Sanskrit (sa), Santali (sat), Sindhi (sd), Tamil (ta), Telugu (te), and Urdu (ur).

Various rigorous analyses and human evaluations confirm the high quality of the dataset and demonstrate the effectiveness of the entity-anchored machine translation (EaMaTa) framework with up to 9% increase in F1-score against the current state-of-the-art.

Read the extended version

EaMaTa Framework overview

EaMaTa Framework overview

Figure: Overview of the EaMaTa Framework.

SampurNER Dataset Statictics

Language Train set Development set Test set
SentencesEntitiesTokens SentencesEntitiesTokens SentencesEntitiesTokens
Assamese (as) 107,249237,2602,194,925 15,43834,560318,105 30,65867,466625,870
Bengali (bn) 119,296287,2642,484,304 17,51342,877368,063 33,37479,340689,690
Bodo (brx) 117,659262,7922,354,696 16,76237,496336,269 33,61574,576672,246
Dogri (doi) 112,329264,1542,885,149 17,61942,526459,537 34,93182,597903,796
Gujarati (gu) 126,581315,9192,828,298 18,12245,431406,929 28,95969,207619,889
Hindi (hi) 124,887290,1923,298,116 17,88241,824457,573 35,71382,440908,513
Kannada (kn) 115,565266,5232,083,241 16,96239,781308,326 26,32759,365453,817
Kashmiri (ks) 123,679288,5442,910,937 17,41740,350408,053 35,10681,181823,040
Konkani (gom) 83,415182,8061,637,018 12,27627,262243,817 23,75951,483463,980
Maithili (mai) 108,826256,7012,763,005 10,22422,706245,657 19,89943,530472,498
Malayalam (ml) 91,743199,4851,504,839 15,60835,140265,049 23,48050,319377,213
Manipuri (mni) 110,068246,0842,264,925 15,56134,869321,556 31,46369,739644,709
Marathi (mr) 125,543309,2202,614,024 17,65043,407367,882 36,23789,295754,851
Nepali (ne) 125,695311,4392,661,064 18,25245,778389,382 35,49887,112747,802
Odia (or) 118,633289,9432,427,051 18,09045,247376,152 32,47778,893657,395
Punjabi (pa) 96,986234,4362,348,393 17,65544,415443,788 36,92092,655928,798
Sanskrit (sa) 69,581152,2691,214,021 10,04322,175176,574 19,72942,643341,208
Santali (sat) 87,650153,5332,223,951 12,52622,159312,706 24,92143,264619,556
Sindhi (sd) 90,362214,3712,218,078 17,22142,845440,340 32,15978,317809,085
Tamil (ta) 96,004216,2851,711,203 10,70223,542183,893 25,16055,927441,141
Telugu (te) 85,893193,4251,505,321 16,79039,909309,345 21,72947,988372,946
Urdu (ur) 122,794298,069298,069 17,57043,205465,417 35,19835,198929,427

Citation

If you use this dataset, please cite the following paper:

@inproceedings{kaushik2026sampurner,
  title={SampurNER: Fine-grained Named Entity Recognition dataset for 22 Indian Languages},
  author={Kaushik, Prachuryya and Anand, Ashish},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={40},
  year={2026}
}
Downloads last month
170