Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
image
imagewidth (px)
256
256
mask
imagewidth (px)
256
256
End of preview. Expand in Data Studio

Satellite Segmentation

Summary

This dataset contains paired Sentinel-2 RGB tiles and corresponding land-cover masks (derived from ESA WorldCover) prepared for semantic segmentation. Each example has:

  • image: RGB image (PNG)
  • mask: integer-labelled mask (PNG, uint8)

Key details

  • Source imagery: Sentinel-2 L2A via Microsoft Planetary Computer (STAC)
  • Land-cover masks: ESA WorldCover (derived)
  • Spatial resolution: 10 m (aligned to Sentinel-2 grid)
  • CRS: EPSG:4326
  • Number of samples: 790
  • Train/validation split: Train

Provenance & license

This dataset was derived from third‑party datasets:

  • Sentinel‑2 (Copernicus)
  • ESA WorldCover

The user of this dataset must respect the original licenses and terms of use. The repository contains derived files (tiles).

Data format

  • Images: PNG, RGB, 3 channels
  • Masks: PNG, integer values representing classes (do not normalize/convert to RGB)
  • Filenames: {prefix}.png and {prefix}_mask.png (paired by prefix)

How to load

Example (datasets library):

from datasets import load_dataset
ds = load_dataset("nikolkoo/SatelliteSegmentation")

Example evaluation/training snippet

Use CrossEntropyLoss with logits and integer masks:

# pseudocode
images = batch["image"]  # (B,H,W,3) -> to tensor & permute
masks  = batch["mask"]   # (B,H,W) ints
logits = model(images)
loss = torch.nn.CrossEntropyLoss()(logits, masks)

Citation

If you publish results using this dataset, cite the original data providers (Copernicus / ESA / Microsoft Planetary Computer) and this dataset repo.

Contact

Feel free to add a comment in the Community 🤗

Downloads last month
70