Datasets:
Search is not available for this dataset
image
imagewidth (px) 256
256
| mask
imagewidth (px) 256
256
|
|---|---|
End of preview. Expand
in Data Studio
Satellite Segmentation
Summary
This dataset contains paired Sentinel-2 RGB tiles and corresponding land-cover masks (derived from ESA WorldCover) prepared for semantic segmentation. Each example has:
image: RGB image (PNG)mask: integer-labelled mask (PNG, uint8)
Key details
- Source imagery: Sentinel-2 L2A via Microsoft Planetary Computer (STAC)
- Land-cover masks: ESA WorldCover (derived)
- Spatial resolution: 10 m (aligned to Sentinel-2 grid)
- CRS: EPSG:4326
- Number of samples: 790
- Train/validation split: Train
Provenance & license
This dataset was derived from third‑party datasets:
- Sentinel‑2 (Copernicus)
- ESA WorldCover
The user of this dataset must respect the original licenses and terms of use. The repository contains derived files (tiles).
Data format
- Images: PNG, RGB, 3 channels
- Masks: PNG, integer values representing classes (do not normalize/convert to RGB)
- Filenames:
{prefix}.pngand{prefix}_mask.png(paired by prefix)
How to load
Example (datasets library):
from datasets import load_dataset
ds = load_dataset("nikolkoo/SatelliteSegmentation")
Example evaluation/training snippet
Use CrossEntropyLoss with logits and integer masks:
# pseudocode
images = batch["image"] # (B,H,W,3) -> to tensor & permute
masks = batch["mask"] # (B,H,W) ints
logits = model(images)
loss = torch.nn.CrossEntropyLoss()(logits, masks)
Citation
If you publish results using this dataset, cite the original data providers (Copernicus / ESA / Microsoft Planetary Computer) and this dataset repo.
Contact
Feel free to add a comment in the Community 🤗
- Downloads last month
- 70