cleaned_nhanes_1988_2018 / m - nhanes_1988_2018.R
nguyenvy's picture
Upload files
a3161fc
raw
history blame
9.05 kB
#############################################################################################################
############################### MAIN SCRIPT - FORMING NHANES CURATED DATASETS #############################
#############################################################################################################
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Assign Directories of NHANES Datasets ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
mortality_directory <- paste(working_directory
, "Mortality Datasets"
, sep = "/")
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Compile the NHANES Datasets ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
# Upload the cleaning documentation for all datasets
# Extract the individual mortality datasets and compile them into the unclean mortality dataset
mortality_unclean <- compile_mortality_dataset(dataset_directory = mortality_directory
, current_directory = working_directory)
setwd(working_directory)
response_unclean <- compile_datasets(cleaning_documentation = list_master_files$Response
, current_directory = working_directory
, name_dataset = "Response")
dietary_unclean <- NHANES_dietary_final
# response_unclean <- clean_duplicates_of_seqn_from_cycles(response_unclean)
demographics_unclean <- compile_datasets(cleaning_documentation = list_master_files$Demographics
, current_directory = working_directory
, name_dataset = "Demographics")
# demographics_unclean <- dumb_compile_demographics_datasets(list_document_cleaning = list_master_files
# , current_directory = working_directory
# , name_dataset = "Demographics")
# Fix this due to change from df to list for the cleaning documentation
medications_unclean <- compile_datasets(cleaning_documentation = list_master_files$Questionnaire %>%
filter(grepl("\\bPrescription Medications\\b"
, .$file_summary) == TRUE &
is.na(.$SDDSRVYR) == FALSE)
, current_directory = working_directory)
chemicals_unclean <- compile_datasets(cleaning_documentation = list_master_files$Chemicals
, current_directory = working_directory
, name_dataset = "Chemicals")
weights_unclean <- compile_datasets(cleaning_documentation = list_master_files$Weights
, current_directory = working_directory
, name_dataset = "Weights")
occupations_unclean <- compile_datasets(cleaning_documentation = list_master_files$Occupation
, current_directory = working_directory
, name_dataset = "Occupation")
setwd(working_directory)
questionnaire_unclean <- compile_datasets(cleaning_documentation = list_master_files$Questionnaire %>%
filter(grepl("\\bPrescription Medications\\b"
, .$file_summary) == FALSE &
is.na(.$SDDSRVYR) == FALSE)
, current_directory = working_directory
, name_dataset = "Questionnaire")
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Clean the NHANES Datasets ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
# Clean the mortality dataset
mortality_clean <- clean_mortality_dataset(mortality_unclean
, list_master_files
, "Mortality")
dietary_clean <- clean_dietary_dataset(dietary_unclean
, list_master_files
, "Dietary")
demographics_clean <- clean_demographics_dataset(demographics_unclean
, list_master_files
, "Demographics")
setwd(working_directory)
response_clean_test <- clean_response_dataset(response_unclean
, list_master_files
, "Response"
, demographics_clean)
medications_clean <- clean_medications_dataset(medications_unclean
, list_master_files
, "Questionnaire")
chemicals_clean_test <- clean_chemicals_dataset(chemicals_unclean
, list_master_files
, "Chemicals")
list_chemicals_clean <- clean_chemicals_dataset(chemicals_unclean
, list_master_files
, "Chemicals")
chemicals_clean <- list_chemicals_clean$only_harmonized_variable
comments_unclean <- list_chemicals_clean$harmonized_and_unharmonized_variables
comments_clean <- form_comments_dataset(comments_unclean
, list_master_files
, "Chemicals")
weights_clean <- form_survey_weights_dataset(weights_unclean
, list_master_files
, "Weights")
occupation_clean <- clean_occupation_dataset(occupations_unclean
, list_master_files)
# process_fix_categories(list_master_files$`Questionnaire Fix Category`)
#
# check_num_cycles_documentation(list_master_files
# , "Questionnaire")
# process_lower_cases_fix_cats(list_master_files$`Questionnaire Fix Category`)
# check_new_codename(list_master_files
# , "Questionnaire")
#
# eliminate_fix_categories_same(list_master_files$`Questionnaire Fix Category`)
questionnaire_clean <- clean_questionnaire_dataset(questionnaire_unclean
, list_master_files
, "Questionnaire")
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Create dictionary ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
# List of tables on inconsistencies for each type of module or dataset
list_master_files <- upload_nhanes_master_files("NHANES - Master List of Files 1i.xlsx")
# Dictionary of drugs and their descriptors
df_medications_drug_info <- create_dictionary_drugs("RXQ_DRUG")
# Dictionary of all variables in curated NHANES datasets and their descriptors
df_dictionary <- create_dictionary(list_dataset = list("mortality" = mortality_clean
, "dietary" = dietary_clean
, "demographics" = demographics_clean
, "response" = response_clean
, "medications" = medications_clean
, "questionnaire" = questionnaire_clean
, "chemicals" = chemicals_clean
, "occupation" = occupation_clean
, "weights" = weights_clean
, "comments" = comments_clean)
, list_documentations = list_master_files)
# Dataset of harmonized levels for categorical variables
df_levels_categorical_variables <- create_dictionary_harmonized_categories(list_documentations = list_master_files)