phone
stringclasses 39
values | phone_stress
stringclasses 69
values | phone_ipa
stringclasses 39
values | phone_position
int64 0
16
| start_time
float64 0
24.3
| end_time
float64 0.03
24.5
| speaker_id
int64 19
8.98k
| speaker_sex
stringclasses 2
values | file_id
stringlengths 11
16
| subset
stringclasses 1
value |
|---|---|---|---|---|---|---|---|---|---|
CH
|
CH
|
tʃ
| 0
| 0.16
| 0.31
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
AE
|
AE1
|
æ
| 1
| 0.31
| 0.41
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
P
|
P
|
p
| 2
| 0.41
| 0.53
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
T
|
T
|
t
| 3
| 0.53
| 0.58
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
ER
|
ER0
|
ɝ
| 4
| 0.58
| 0.71
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
S
|
S
|
s
| 0
| 0.71
| 0.87
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
IH
|
IH1
|
ɪ
| 1
| 0.87
| 0.92
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
K
|
K
|
k
| 2
| 0.92
| 1.06
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
S
|
S
|
s
| 3
| 1.06
| 1.22
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
T
|
T
|
t
| 4
| 1.22
| 1.32
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
IY
|
IY1
|
i
| 5
| 1.32
| 1.51
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
N
|
N
|
n
| 6
| 1.51
| 1.84
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
AY
|
AY1
|
ai
| 0
| 3.31
| 3.45
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
M
|
M
|
m
| 0
| 3.45
| 3.57
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
AY
|
AY1
|
ai
| 1
| 3.57
| 3.65
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
T
|
T
|
t
| 2
| 3.65
| 3.74
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
HH
|
HH
|
h
| 0
| 3.74
| 3.8
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
AE
|
AE1
|
æ
| 1
| 3.8
| 3.85
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
V
|
V
|
v
| 2
| 3.85
| 3.94
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
T
|
T
|
t
| 0
| 3.94
| 4.04
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
OW
|
OW1
|
oʊ
| 1
| 4.04
| 4.11
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
L
|
L
|
l
| 2
| 4.11
| 4.2
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
D
|
D
|
d
| 3
| 4.2
| 4.27
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
Y
|
Y
|
j
| 0
| 4.27
| 4.34
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
UW
|
UW1
|
u
| 1
| 4.34
| 4.46
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
AH
|
AH0
|
ʌ
| 0
| 4.46
| 4.5
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
V
|
V
|
v
| 1
| 4.5
| 4.61
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
DH
|
DH
|
ð
| 0
| 4.61
| 4.65
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
AH
|
AH0
|
ʌ
| 1
| 4.65
| 4.69
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
B
|
B
|
b
| 0
| 4.69
| 4.76
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
IH
|
IH0
|
ɪ
| 1
| 4.76
| 4.84
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
G
|
G
|
g
| 2
| 4.84
| 4.93
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
IH
|
IH1
|
ɪ
| 3
| 4.93
| 5.02
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
N
|
N
|
n
| 4
| 5.02
| 5.08
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
IH
|
IH0
|
ɪ
| 5
| 5.08
| 5.14
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
NG
|
NG
|
ŋ
| 6
| 5.14
| 5.24
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
AH
|
AH0
|
ʌ
| 0
| 5.24
| 5.3
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
V
|
V
|
v
| 1
| 5.3
| 5.4
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
DH
|
DH
|
ð
| 0
| 5.4
| 5.43
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
IH
|
IH0
|
ɪ
| 1
| 5.43
| 5.5
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
S
|
S
|
s
| 2
| 5.5
| 5.7
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
L
|
L
|
l
| 0
| 5.7
| 5.75
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
IY
|
IY0
|
i
| 1
| 5.75
| 5.86
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
EY
|
EY1
|
eɪ
| 2
| 5.86
| 6.03
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
Z
|
Z
|
z
| 3
| 6.03
| 6.15
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
AA
|
AA2
|
ɑ
| 4
| 6.15
| 6.34
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
N
|
N
|
n
| 5
| 6.34
| 6.56
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
IH
|
IH1
|
ɪ
| 0
| 6.56
| 6.7
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
N
|
N
|
n
| 1
| 6.7
| 6.75
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
AH
|
AH0
|
ʌ
| 0
| 6.75
| 6.84
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
F
|
F
|
f
| 0
| 6.84
| 6.93
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
Y
|
Y
|
j
| 1
| 6.93
| 7.02
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
UW
|
UW1
|
u
| 2
| 7.02
| 7.14
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
L
|
L
|
l
| 0
| 7.14
| 7.24
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
AY
|
AY1
|
ai
| 1
| 7.24
| 7.51
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
N
|
N
|
n
| 2
| 7.51
| 7.68
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
Z
|
Z
|
z
| 3
| 7.68
| 7.95
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
B
|
B
|
b
| 0
| 8.29
| 8.39
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
AH
|
AH1
|
ʌ
| 1
| 8.39
| 8.42
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
T
|
T
|
t
| 2
| 8.42
| 8.47
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
AY
|
AY1
|
ai
| 0
| 8.47
| 8.55
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
W
|
W
|
w
| 0
| 8.55
| 8.67
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
AA
|
AA1
|
ɑ
| 1
| 8.67
| 8.72
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
N
|
N
|
n
| 2
| 8.72
| 8.78
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
T
|
T
|
t
| 3
| 8.78
| 8.85
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
AH
|
AH0
|
ʌ
| 4
| 8.85
| 8.89
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
D
|
D
|
d
| 5
| 8.89
| 8.95
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
Y
|
Y
|
j
| 0
| 8.95
| 9
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
UW
|
UW1
|
u
| 1
| 9
| 9.08
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
T
|
T
|
t
| 0
| 9.08
| 9.12
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
AH
|
AH0
|
ʌ
| 1
| 9.12
| 9.18
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
S
|
S
|
s
| 0
| 9.18
| 9.32
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
IY
|
IY1
|
i
| 1
| 9.32
| 9.51
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
EH
|
EH1
|
ɛ
| 0
| 9.51
| 9.63
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
V
|
V
|
v
| 1
| 9.63
| 9.73
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
R
|
R
|
ɹ
| 2
| 9.73
| 9.83
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
IY
|
IY0
|
i
| 3
| 9.83
| 9.91
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
S
|
S
|
s
| 0
| 9.91
| 10.05
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
T
|
T
|
t
| 1
| 10.05
| 10.13
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
EH
|
EH1
|
ɛ
| 2
| 10.13
| 10.23
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
P
|
P
|
p
| 3
| 10.23
| 10.35
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
B
|
B
|
b
| 0
| 10.35
| 10.4
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
AY
|
AY1
|
ai
| 1
| 10.4
| 10.49
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
W
|
W
|
w
| 0
| 10.49
| 10.59
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
IH
|
IH1
|
ɪ
| 1
| 10.59
| 10.65
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
CH
|
CH
|
tʃ
| 2
| 10.65
| 10.79
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
W
|
W
|
w
| 0
| 10.79
| 10.85
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
IY
|
IY1
|
i
| 1
| 10.85
| 10.93
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
K
|
K
|
k
| 0
| 10.93
| 11.06
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
EY
|
EY1
|
eɪ
| 1
| 11.06
| 11.27
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
M
|
M
|
m
| 2
| 11.27
| 11.5
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
AY
|
AY1
|
ai
| 0
| 11.89
| 12.16
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
T
|
T
|
t
| 0
| 12.16
| 12.33
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
UW
|
UW1
|
u
| 1
| 12.33
| 12.45
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
AH
|
AH0
|
ʌ
| 0
| 12.45
| 12.52
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
G
|
G
|
g
| 1
| 12.52
| 12.61
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
R
|
R
|
ɹ
| 2
| 12.61
| 12.69
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
IY
|
IY1
|
i
| 3
| 12.69
| 12.77
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
T
|
T
|
t
| 0
| 12.77
| 12.89
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
UW
|
UW1
|
u
| 1
| 12.89
| 12.93
| 374
|
M
|
374-180298-0000
|
train.clean.100
|
End of preview. Expand
in Data Studio
Summary
Phone annotations for the LibriSpeech corpus. This dataset can for example be used in combination with audio from the librispeech_asr dataset to extract phone embeddings from an audio encoder model.
Data sources
Phone start and end times are extracted from the LibriSpeech Alignments, obtained using the using the Montreal Forced Aligner by Lugosch et al. (2019).
Phone position is derived from the same source, using the word alignments to enumerate phones within each word start and end time. missing_alignments.json lists identifiers of files in the LibriSpeech corpus for which alignments are not available (by dataset split).
Speaker sex is inferred from the SPEAKERS.TXT metadata file released with the LibriSpeech corpus.
Columns
phonephone label in ARPAbet transcription format (excluding stress marker)phone_stressphone label in ARPAbet transcription format (including stress marker)phone_ipaphone label in International Phonetic Alphabet transcription formatphone_positionphone position within a wordstart_timephone start time relative to audio file onsetend_timephone end time relative to audio file onsetspeaker_idunique identifier for each speaker in the LibriSpeech corpusspeaker_sexspeaker sex as reported in the LibriSpeech metadatafile_idunique identifier for each file in the LibriSpeech corpussubsetsubset of the LibriSpeech corpus
Example usage
from datasets import load_dataset
# download phone annotations for the full librispeech corpus
libri_phones = load_dataset("mariannedhk/librispeech_phones")
# download only phone annotations for the development sets
# similarly, specify "all_train" or "all_test" for downloading only phone annotations from the train or test sets, respectively
libri_dev_phones = load_dataset("mariannedhk/librispeech_phones", "all_dev")
# load annotations for only the dev.clean split
# (this may still download the full dataset first)
libri_dev_clean_phones = load_dataset("mariannedhk/librispeech", split="dev.clean")
- Downloads last month
- 98