Dataset Viewer
Auto-converted to Parquet Duplicate
phone
stringclasses
39 values
phone_stress
stringclasses
69 values
phone_ipa
stringclasses
39 values
phone_position
int64
0
16
start_time
float64
0
24.3
end_time
float64
0.03
24.5
speaker_id
int64
19
8.98k
speaker_sex
stringclasses
2 values
file_id
stringlengths
11
16
subset
stringclasses
1 value
CH
CH
0
0.16
0.31
374
M
374-180298-0000
train.clean.100
AE
AE1
æ
1
0.31
0.41
374
M
374-180298-0000
train.clean.100
P
P
p
2
0.41
0.53
374
M
374-180298-0000
train.clean.100
T
T
t
3
0.53
0.58
374
M
374-180298-0000
train.clean.100
ER
ER0
ɝ
4
0.58
0.71
374
M
374-180298-0000
train.clean.100
S
S
s
0
0.71
0.87
374
M
374-180298-0000
train.clean.100
IH
IH1
ɪ
1
0.87
0.92
374
M
374-180298-0000
train.clean.100
K
K
k
2
0.92
1.06
374
M
374-180298-0000
train.clean.100
S
S
s
3
1.06
1.22
374
M
374-180298-0000
train.clean.100
T
T
t
4
1.22
1.32
374
M
374-180298-0000
train.clean.100
IY
IY1
i
5
1.32
1.51
374
M
374-180298-0000
train.clean.100
N
N
n
6
1.51
1.84
374
M
374-180298-0000
train.clean.100
AY
AY1
ai
0
3.31
3.45
374
M
374-180298-0000
train.clean.100
M
M
m
0
3.45
3.57
374
M
374-180298-0000
train.clean.100
AY
AY1
ai
1
3.57
3.65
374
M
374-180298-0000
train.clean.100
T
T
t
2
3.65
3.74
374
M
374-180298-0000
train.clean.100
HH
HH
h
0
3.74
3.8
374
M
374-180298-0000
train.clean.100
AE
AE1
æ
1
3.8
3.85
374
M
374-180298-0000
train.clean.100
V
V
v
2
3.85
3.94
374
M
374-180298-0000
train.clean.100
T
T
t
0
3.94
4.04
374
M
374-180298-0000
train.clean.100
OW
OW1
1
4.04
4.11
374
M
374-180298-0000
train.clean.100
L
L
l
2
4.11
4.2
374
M
374-180298-0000
train.clean.100
D
D
d
3
4.2
4.27
374
M
374-180298-0000
train.clean.100
Y
Y
j
0
4.27
4.34
374
M
374-180298-0000
train.clean.100
UW
UW1
u
1
4.34
4.46
374
M
374-180298-0000
train.clean.100
AH
AH0
ʌ
0
4.46
4.5
374
M
374-180298-0000
train.clean.100
V
V
v
1
4.5
4.61
374
M
374-180298-0000
train.clean.100
DH
DH
ð
0
4.61
4.65
374
M
374-180298-0000
train.clean.100
AH
AH0
ʌ
1
4.65
4.69
374
M
374-180298-0000
train.clean.100
B
B
b
0
4.69
4.76
374
M
374-180298-0000
train.clean.100
IH
IH0
ɪ
1
4.76
4.84
374
M
374-180298-0000
train.clean.100
G
G
g
2
4.84
4.93
374
M
374-180298-0000
train.clean.100
IH
IH1
ɪ
3
4.93
5.02
374
M
374-180298-0000
train.clean.100
N
N
n
4
5.02
5.08
374
M
374-180298-0000
train.clean.100
IH
IH0
ɪ
5
5.08
5.14
374
M
374-180298-0000
train.clean.100
NG
NG
ŋ
6
5.14
5.24
374
M
374-180298-0000
train.clean.100
AH
AH0
ʌ
0
5.24
5.3
374
M
374-180298-0000
train.clean.100
V
V
v
1
5.3
5.4
374
M
374-180298-0000
train.clean.100
DH
DH
ð
0
5.4
5.43
374
M
374-180298-0000
train.clean.100
IH
IH0
ɪ
1
5.43
5.5
374
M
374-180298-0000
train.clean.100
S
S
s
2
5.5
5.7
374
M
374-180298-0000
train.clean.100
L
L
l
0
5.7
5.75
374
M
374-180298-0000
train.clean.100
IY
IY0
i
1
5.75
5.86
374
M
374-180298-0000
train.clean.100
EY
EY1
2
5.86
6.03
374
M
374-180298-0000
train.clean.100
Z
Z
z
3
6.03
6.15
374
M
374-180298-0000
train.clean.100
AA
AA2
ɑ
4
6.15
6.34
374
M
374-180298-0000
train.clean.100
N
N
n
5
6.34
6.56
374
M
374-180298-0000
train.clean.100
IH
IH1
ɪ
0
6.56
6.7
374
M
374-180298-0000
train.clean.100
N
N
n
1
6.7
6.75
374
M
374-180298-0000
train.clean.100
AH
AH0
ʌ
0
6.75
6.84
374
M
374-180298-0000
train.clean.100
F
F
f
0
6.84
6.93
374
M
374-180298-0000
train.clean.100
Y
Y
j
1
6.93
7.02
374
M
374-180298-0000
train.clean.100
UW
UW1
u
2
7.02
7.14
374
M
374-180298-0000
train.clean.100
L
L
l
0
7.14
7.24
374
M
374-180298-0000
train.clean.100
AY
AY1
ai
1
7.24
7.51
374
M
374-180298-0000
train.clean.100
N
N
n
2
7.51
7.68
374
M
374-180298-0000
train.clean.100
Z
Z
z
3
7.68
7.95
374
M
374-180298-0000
train.clean.100
B
B
b
0
8.29
8.39
374
M
374-180298-0000
train.clean.100
AH
AH1
ʌ
1
8.39
8.42
374
M
374-180298-0000
train.clean.100
T
T
t
2
8.42
8.47
374
M
374-180298-0000
train.clean.100
AY
AY1
ai
0
8.47
8.55
374
M
374-180298-0000
train.clean.100
W
W
w
0
8.55
8.67
374
M
374-180298-0000
train.clean.100
AA
AA1
ɑ
1
8.67
8.72
374
M
374-180298-0000
train.clean.100
N
N
n
2
8.72
8.78
374
M
374-180298-0000
train.clean.100
T
T
t
3
8.78
8.85
374
M
374-180298-0000
train.clean.100
AH
AH0
ʌ
4
8.85
8.89
374
M
374-180298-0000
train.clean.100
D
D
d
5
8.89
8.95
374
M
374-180298-0000
train.clean.100
Y
Y
j
0
8.95
9
374
M
374-180298-0000
train.clean.100
UW
UW1
u
1
9
9.08
374
M
374-180298-0000
train.clean.100
T
T
t
0
9.08
9.12
374
M
374-180298-0000
train.clean.100
AH
AH0
ʌ
1
9.12
9.18
374
M
374-180298-0000
train.clean.100
S
S
s
0
9.18
9.32
374
M
374-180298-0000
train.clean.100
IY
IY1
i
1
9.32
9.51
374
M
374-180298-0000
train.clean.100
EH
EH1
ɛ
0
9.51
9.63
374
M
374-180298-0000
train.clean.100
V
V
v
1
9.63
9.73
374
M
374-180298-0000
train.clean.100
R
R
ɹ
2
9.73
9.83
374
M
374-180298-0000
train.clean.100
IY
IY0
i
3
9.83
9.91
374
M
374-180298-0000
train.clean.100
S
S
s
0
9.91
10.05
374
M
374-180298-0000
train.clean.100
T
T
t
1
10.05
10.13
374
M
374-180298-0000
train.clean.100
EH
EH1
ɛ
2
10.13
10.23
374
M
374-180298-0000
train.clean.100
P
P
p
3
10.23
10.35
374
M
374-180298-0000
train.clean.100
B
B
b
0
10.35
10.4
374
M
374-180298-0000
train.clean.100
AY
AY1
ai
1
10.4
10.49
374
M
374-180298-0000
train.clean.100
W
W
w
0
10.49
10.59
374
M
374-180298-0000
train.clean.100
IH
IH1
ɪ
1
10.59
10.65
374
M
374-180298-0000
train.clean.100
CH
CH
2
10.65
10.79
374
M
374-180298-0000
train.clean.100
W
W
w
0
10.79
10.85
374
M
374-180298-0000
train.clean.100
IY
IY1
i
1
10.85
10.93
374
M
374-180298-0000
train.clean.100
K
K
k
0
10.93
11.06
374
M
374-180298-0000
train.clean.100
EY
EY1
1
11.06
11.27
374
M
374-180298-0000
train.clean.100
M
M
m
2
11.27
11.5
374
M
374-180298-0000
train.clean.100
AY
AY1
ai
0
11.89
12.16
374
M
374-180298-0000
train.clean.100
T
T
t
0
12.16
12.33
374
M
374-180298-0000
train.clean.100
UW
UW1
u
1
12.33
12.45
374
M
374-180298-0000
train.clean.100
AH
AH0
ʌ
0
12.45
12.52
374
M
374-180298-0000
train.clean.100
G
G
g
1
12.52
12.61
374
M
374-180298-0000
train.clean.100
R
R
ɹ
2
12.61
12.69
374
M
374-180298-0000
train.clean.100
IY
IY1
i
3
12.69
12.77
374
M
374-180298-0000
train.clean.100
T
T
t
0
12.77
12.89
374
M
374-180298-0000
train.clean.100
UW
UW1
u
1
12.89
12.93
374
M
374-180298-0000
train.clean.100
End of preview. Expand in Data Studio

Summary

Phone annotations for the LibriSpeech corpus. This dataset can for example be used in combination with audio from the librispeech_asr dataset to extract phone embeddings from an audio encoder model.

Data sources

Phone start and end times are extracted from the LibriSpeech Alignments, obtained using the using the Montreal Forced Aligner by Lugosch et al. (2019). Phone position is derived from the same source, using the word alignments to enumerate phones within each word start and end time. missing_alignments.json lists identifiers of files in the LibriSpeech corpus for which alignments are not available (by dataset split). Speaker sex is inferred from the SPEAKERS.TXT metadata file released with the LibriSpeech corpus.

Columns

  • phone phone label in ARPAbet transcription format (excluding stress marker)
  • phone_stress phone label in ARPAbet transcription format (including stress marker)
  • phone_ipa phone label in International Phonetic Alphabet transcription format
  • phone_position phone position within a word
  • start_time phone start time relative to audio file onset
  • end_time phone end time relative to audio file onset
  • speaker_id unique identifier for each speaker in the LibriSpeech corpus
  • speaker_sex speaker sex as reported in the LibriSpeech metadata
  • file_id unique identifier for each file in the LibriSpeech corpus
  • subset subset of the LibriSpeech corpus

Example usage

from datasets import load_dataset

# download phone annotations for the full librispeech corpus
libri_phones = load_dataset("mariannedhk/librispeech_phones")

# download only phone annotations for the development sets
# similarly, specify "all_train" or "all_test" for downloading only phone annotations from the train or test sets, respectively
libri_dev_phones = load_dataset("mariannedhk/librispeech_phones", "all_dev")

# load annotations for only the dev.clean split
# (this may still download the full dataset first)
libri_dev_clean_phones = load_dataset("mariannedhk/librispeech", split="dev.clean")
Downloads last month
98