Dataset Viewer
Auto-converted to Parquet Duplicate
formula
stringlengths
2
15
target
float64
0
0
Ho2In1Ni2
0.00005
La1Se1
0.000046
Mn1Si1Tb1
0.000044
Cs1H1
0.000393
Ag1Al1Se2
0.000071
Pd1Sb1Tb1
0.000045
Ge1Li1Y1
0.000063
Ag1As1S1
0.000078
Hf1Rh1Si1
0.000027
Er1In1Pt1
0.000042
Ir2P1
0.000024
Al2Ni1Y1
0.000045
Pt5Se4
0.00004
Ag1Er1
0.000066
P2Zn3
0.000072
Th3Tl5
0.000054
P1Ru1Zr1
0.000026
As1Li1Zn1
0.000095
Au1Ge1Ho1
0.000051
C1Re1
0.000018
Ca2Pb1
0.000086
Ba1N2Zr1
0.000036
Mo2Zr1
0.000022
Co2Fe1In1
0.000061
As1Hf1
0.000032
Er1Pt2Si2
0.000034
Dy1Hg1
0.000055
B6Ni21U2
0.00004
Li4O4Pb1
0.000091
Au1Er1Ni4
0.000061
Pd1Yb1
0.000068
Sn1Zr3
0.000034
Bi2Ho6Rh1
0.000045
Pt1Sn1Y1
0.000041
Re2Sc1
0.000021
C1Ru3Ta1
0.000021
Al1Pd1
0.000043
Ho1In1Zn1
0.000062
Li1Pb1Pd2
0.000084
Al2Y3
0.000045
F3Y1
0.000055
Ni1Sb2
0.000053
Al4In3Sr11
0.000089
Pb1S1
0.000062
As1Hg1K1
0.000123
Be2Ti1
0.000039
Al1Ge1Sr1
0.000084
C1Ni2W4
0.000021
Ni1Si1Th1
0.000033
Hf1Pd5
0.00004
As3Yb4
0.000072
Al16Hf6Pd7
0.000039
Ba1P2Ru2
0.000034
B6Sr1
0.00003
Te1Zn1
0.00008
Er1Rh5
0.000032
Au1C2Cs1
0.000059
Pd2Si1Tb1
0.000042
Cd3N2
0.000063
Au1Ca1In2
0.000096
Cr2Cu1S4
0.000059
O6Os2Rb1
0.000029
Li1Pd2Sn6
0.000073
Ru3Si2Y1
0.000031
Hf1Pt1Si1
0.000028
Ni1Zr1
0.000035
K1Zn13
0.00013
Ga1Pd2Sc1
0.00005
Ge1Y1Zn1
0.000054
Pb13Rh4Sr3
0.000068
Ir3Th7
0.000028
Au1Rb1
0.000349
O6Pt3Zn1
0.000039
Ge2Sc1
0.000053
As1Ga1
0.000068
Au1Dy1Pb1
0.000056
Tc1Ti1
0.000025
Nb4O5
0.000024
H2Sr1
0.000131
As2Cu1Y1
0.00005
Al1F4Na1
0.000065
C2Dy1Ni1
0.000033
N1Os1
0.000022
In1Ni2Zr1
0.000046
Se4Y2Zn1
0.000051
Ce1Rh3
0.000032
N1Re2
0.000018
In1Pt1Y1
0.000042
Sr1Tl2
0.000136
Cu4O3
0.000064
Ba1O7U2
0.000033
Re1Si1Ti1
0.000023
Ti1Zn3
0.000088
Pt1Sn2
0.000059
Cd1Pd1
0.000065
Cd2Sr1
0.000124
As1Pu1
0.00006
Au1Si1Y1
0.000045
Mn1Pd1Te1
0.000061
Ba1Li1Sb1
0.00009
End of preview. Expand in Data Studio

Benchmark AFLOW Data Sets for Machine Learning (Thermal expansion)

Dataset containing 4886 thermal expansion coefficients

Dataset Information

Fields

Field Role Description Units
formula input Material composition
target target Thermal expansion coefficient K^-1

Splits

  • train: train

Usage

With Foundry-ML (recommended for materials science workflows)

from foundry import Foundry

f = Foundry()
dataset = f.get_dataset("10.18126/qmrs-jg02")
X, y = dataset.get_as_dict()['train']

With HuggingFace Datasets

from datasets import load_dataset

dataset = load_dataset("Dataset_thermalexp_aflow")

Citation

@misc{https://doi.org/10.18126/qmrs-jg02
doi = {10.18126/qmrs-jg02}
url = {https://doi.org/10.18126/qmrs-jg02}
author = {Clement, Conrad L. and Kauwe, Steven K. and Sparks, Taylor D.}
title = {Benchmark AFLOW Data Sets for Machine Learning (Thermal expansion)}
keywords = {machine learning, foundry}
publisher = {Materials Data Facility}
year = {root=2020}}

License

other


This dataset was exported from Foundry-ML, a platform for materials science datasets.

Downloads last month
11