Dataset Viewer
Auto-converted to Parquet Duplicate
formula
stringlengths
2
15
target
float64
43.9
2.11k
Zr1
268.987
K2Mg5Sn3
194.685
C1In1La3
248.043
Al3B2Ru4
536.231
Au1Ho1Pb1
174.85
F2Xe1
121.56
Dy1S2
327.586
Nb3Te4
252.974
Rb2Te1
119.013
Sb2Tb1
209.205
Hf1Pd5
290.738
O3Pb1Zr1
417.509
Ag1Al1Se2
213.309
Pd1Sb1Tb1
218.792
Ga1La1Zn1
298.434
Ag1As1S1
179.214
Ca1Pd1
239.886
Cd2Yb1
180.449
K1Li1Se1
262.784
Al2N1Nb3
560.437
Pt7Sb1
168.261
Ag1Er1
194.442
Ca2O4Pb1
401.37
Cl4K2Pd1
177.39
P1Ru1Zr1
440.648
As1Li1Mg1
429.918
Au1Ga1Zr1
280.281
In2Li1Rh1
261.367
Ca3Ge13Ir4
304.608
Ba1Mg4Si3
441.897
Mo3P1
431.5
Ni1Zr2
186.771
As1Hf1Ru1
335.638
Co2Ge1Zn1
177.644
N1Ni2W3
437.29
B6K1
997.505
Lu1Pb2
107.714
Au1Dy1
173.744
Pt3Sn1
216.151
Sn1Zr3
248.565
Bi1
70.1777
In1P1Pd5
293.09
In2O3
406.181
C1Sc3Tl1
438.646
Al1Pd1Y1
267.734
Ho1In3
203.247
Dy1Rh2Si2
417.538
Al2Y1
472.956
Pu1Se1
198.162
Co1Y1
201.353
Al4Er1Ni1
424.062
Er5Si3
306.544
As1Hf1
290.455
Be2Re1
593.266
Al1Ge1Sc1
423.378
C1Pb1Pd3
218.246
Cu2In1Y1
270.653
Hf1Pt1
162.128
As3La4
231.622
Al16Hf6Pd7
403.516
Ba1Os2P2
274.343
B6Os1Y2
746.739
Ho1In1
170.363
Er1Ru2Si2
390.134
Au1Be5
630.03
Rh2Si2Y1
456.646
Ce1Ga1Ni1
273.716
Au1Ca1Cd1
169.827
Ga12Lu4Pd1
316.029
O6Os2Rb1
438.488
Dy1Ga1Pt1
189.692
Pt1Sb2
247.753
La1Rh2
260.816
Er1Ge2Rh2
316.732
F6K2Mn1
217.996
Ho2Rh3Sn5
228.839
Cl6Cs2Te1
121.03
Ni2Si2Zr1
480.417
P1Rh2
399.457
Au1Pb4Rb3
91.9333
N1Ru2Zr4
374.553
Ca1O3Ti1
749.293
As1Fe1Nb1
349.755
Au1Cu4Tb1
157.576
Ir5Th1
294.768
P2Zn3
365.797
In1Pd2
221.119
As2Cu1Er1
314.693
Al1F3
730.728
C2Ir1
424.387
Cu4O3
266.444
Ir2S3Sn3
233.51
Si136
492.719
Ce2Pd21Si6
267.622
O4Sb1V1
616.724
In1Pt2Tb1
200.711
Sr1Tl2
140.184
Ca1O3Rh1
523.085
Ba1O3Ti1
512.805
Re1Si1Ti1
483.243
End of preview. Expand in Data Studio

Benchmark AFLOW Data Sets for Machine Learning (Debye Temperature)

Dataset containing calculated Debye temperatures of 4896 materials

Dataset Information

Fields

Field Role Description Units
formula input Material composition
target target Debye Temperature K

Splits

  • train: train

Usage

With Foundry-ML (recommended for materials science workflows)

from foundry import Foundry

f = Foundry()
dataset = f.get_dataset("10.18126/33r4-8t58")
X, y = dataset.get_as_dict()['train']

With HuggingFace Datasets

from datasets import load_dataset

dataset = load_dataset("Dataset_debyeT_aflow")

Citation

@misc{https://doi.org/10.18126/33r4-8t58
doi = {10.18126/33r4-8t58}
url = {https://doi.org/10.18126/33r4-8t58}
author = {Clement, Conrad L. and Kauwe, Steven K. and Sparks, Taylor D.}
title = {Benchmark AFLOW Data Sets for Machine Learning (Debye Temperature)}
keywords = {machine learning, foundry}
publisher = {Materials Data Facility}
year = {root=2020}}

License

other


This dataset was exported from Foundry-ML, a platform for materials science datasets.

Downloads last month
9