Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
Cement (component 1)(kg in a m^3 mixture)
float64
102
540
Blast Furnace Slag (component 2)(kg in a m^3 mixture)
float64
0
359
Fly Ash (component 3)(kg in a m^3 mixture)
float64
0
200
Water (component 4)(kg in a m^3 mixture)
float64
122
247
Superplasticizer (component 5)(kg in a m^3 mixture)
float64
0
32.2
Coarse Aggregate (component 6)(kg in a m^3 mixture)
float64
801
1.15k
Age (day)
int64
1
365
Concrete compressive strength(MPa, megapascals)
float64
2.33
82.6
540
0
0
162
2.5
1,040
28
79.99
540
0
0
162
2.5
1,055
28
61.89
332.5
142.5
0
228
0
932
270
40.27
332.5
142.5
0
228
0
932
365
41.05
198.6
132.4
0
192
0
978.4
360
44.3
266
114
0
228
0
932
90
47.03
380
95
0
228
0
932
365
43.7
380
95
0
228
0
932
28
36.45
266
114
0
228
0
932
28
45.85
475
0
0
228
0
932
28
39.29
198.6
132.4
0
192
0
978.4
90
38.07
198.6
132.4
0
192
0
978.4
28
28.02
427.5
47.5
0
228
0
932
270
43.01
190
190
0
228
0
932
90
42.33
304
76
0
228
0
932
28
47.81
380
0
0
228
0
932
90
52.91
139.6
209.4
0
192
0
1,047
90
39.36
342
38
0
228
0
932
365
56.14
380
95
0
228
0
932
90
40.56
475
0
0
228
0
932
180
42.62
427.5
47.5
0
228
0
932
180
41.84
139.6
209.4
0
192
0
1,047
28
28.24
139.6
209.4
0
192
0
1,047
3
8.06
139.6
209.4
0
192
0
1,047
180
44.21
380
0
0
228
0
932
365
52.52
380
0
0
228
0
932
270
53.3
380
95
0
228
0
932
270
41.15
342
38
0
228
0
932
180
52.12
427.5
47.5
0
228
0
932
28
37.43
475
0
0
228
0
932
7
38.6
304
76
0
228
0
932
365
55.26
266
114
0
228
0
932
365
52.91
198.6
132.4
0
192
0
978.4
180
41.72
475
0
0
228
0
932
270
42.13
190
190
0
228
0
932
365
53.69
237.5
237.5
0
228
0
932
270
38.41
237.5
237.5
0
228
0
932
28
30.08
332.5
142.5
0
228
0
932
90
37.72
475
0
0
228
0
932
90
42.23
237.5
237.5
0
228
0
932
180
36.25
342
38
0
228
0
932
90
50.46
427.5
47.5
0
228
0
932
365
43.7
237.5
237.5
0
228
0
932
365
39
380
0
0
228
0
932
180
53.1
427.5
47.5
0
228
0
932
90
41.54
427.5
47.5
0
228
0
932
7
35.08
349
0
0
192
0
1,047
3
15.05
380
95
0
228
0
932
180
40.76
237.5
237.5
0
228
0
932
7
26.26
380
95
0
228
0
932
7
32.82
332.5
142.5
0
228
0
932
180
39.78
190
190
0
228
0
932
180
46.93
237.5
237.5
0
228
0
932
90
33.12
304
76
0
228
0
932
90
49.19
139.6
209.4
0
192
0
1,047
7
14.59
198.6
132.4
0
192
0
978.4
7
14.64
475
0
0
228
0
932
365
41.93
198.6
132.4
0
192
0
978.4
3
9.13
304
76
0
228
0
932
180
50.95
332.5
142.5
0
228
0
932
28
33.02
304
76
0
228
0
932
270
54.38
266
114
0
228
0
932
270
51.73
310
0
0
192
0
971
3
9.87
190
190
0
228
0
932
270
50.66
266
114
0
228
0
932
180
48.7
342
38
0
228
0
932
270
55.06
139.6
209.4
0
192
0
1,047
360
44.7
332.5
142.5
0
228
0
932
7
30.28
190
190
0
228
0
932
28
40.86
485
0
0
146
0
1,120
28
71.99
374
189.2
0
170.1
10.1
926.1
3
34.4
313.3
262.2
0
175.5
8.6
1,046.9
3
28.8
425
106.3
0
153.5
16.5
852.1
3
33.4
425
106.3
0
151.4
18.6
936
3
36.3
375
93.8
0
126.6
23.4
852.1
3
29
475
118.8
0
181.1
8.9
852.1
3
37.8
469
117.2
0
137.8
32.2
852.1
3
40.2
425
106.3
0
153.5
16.5
852.1
3
33.4
388.6
97.1
0
157.9
12.1
852.1
3
28.1
531.3
0
0
141.8
28.2
852.1
3
41.3
425
106.3
0
153.5
16.5
852.1
3
33.4
318.8
212.5
0
155.7
14.3
852.1
3
25.2
401.8
94.7
0
147.4
11.4
946.8
3
41.1
362.6
189
0
164.9
11.6
944.7
3
35.3
323.7
282.8
0
183.8
10.3
942.7
3
28.3
379.5
151.2
0
153.9
15.9
1,134.3
3
28.6
362.6
189
0
164.9
11.6
944.7
3
35.3
286.3
200.9
0
144.7
11.2
1,004.6
3
24.4
362.6
189
0
164.9
11.6
944.7
3
35.3
439
177
0
186
11.1
884.9
3
39.3
389.9
189
0
145.9
22
944.7
3
40.6
362.6
189
0
164.9
11.6
944.7
3
35.3
337.9
189
0
174.9
9.5
944.7
3
24.1
374
189.2
0
170.1
10.1
926.1
7
46.2
313.3
262.2
0
175.5
8.6
1,046.9
7
42.8
425
106.3
0
153.5
16.5
852.1
7
49.2
425
106.3
0
151.4
18.6
936
7
46.8
375
93.8
0
126.6
23.4
852.1
7
45.7
475
118.8
0
181.1
8.9
852.1
7
55.6
469
117.2
0
137.8
32.2
852.1
7
54.9
End of preview. Expand in Data Studio

Machine learning in concrete science: applications, challenges, and best practices

Dataset containing concrete compressive strength for 1030 materials

Dataset Information

  • Source: Foundry-ML
  • DOI: 10.18126/8k1f-mx77
  • Year: 2022
  • Authors: Li, Zhanzhao, Yoon, Jinyoung, Zhang, Rui, Rajabipour, Farshad, Srubar III, Wil V., Dabo, Ismaila, Radlińska, Aleksandra
  • Data Type: tabular

Fields

Field Role Description Units
Cement (component 1)(kg in a m^3 mixture) input Amount of cement kg/m^3
Blast Furnace Slag (component 2)(kg in a m^3 mixture) input Amount of blast furnace slag kg/m^3
Fly Ash (component 3)(kg in a m^3 mixture) input Amount of fly ash kg/m^3
Water (component 4)(kg in a m^3 mixture) input Amount of water kg/m^3
Superplasticizer (component 5)(kg in a m^3 mixture) input Amount of superplasticizer kg/m^3
Coarse Aggregate (component 6)(kg in a m^3 mixture) input Amount of coarse aggregate kg/m^3
Age (day) input Age of concrete days
Concrete compressive strength(MPa, megapascals) target Concrete compressive strength MPa

Splits

  • train: train

Usage

With Foundry-ML (recommended for materials science workflows)

from foundry import Foundry

f = Foundry()
dataset = f.get_dataset("10.18126/8k1f-mx77")
X, y = dataset.get_as_dict()['train']

With HuggingFace Datasets

from datasets import load_dataset

dataset = load_dataset("Dataset_concrete_compressive_strength")

Citation

@misc{https://doi.org/10.18126/8k1f-mx77
doi = {10.18126/8k1f-mx77}
url = {https://doi.org/10.18126/8k1f-mx77}
author = {Li, Zhanzhao and Yoon, Jinyoung and Zhang, Rui and Rajabipour, Farshad and Srubar III, Wil V. and Dabo, Ismaila and Radlińska, Aleksandra}
title = {Machine learning in concrete science: applications, challenges, and best practices}
keywords = {machine learning, foundry}
publisher = {Materials Data Facility}
year = {root=2022}}

License

other


This dataset was exported from Foundry-ML, a platform for materials science datasets.

Downloads last month
9