Search is not available for this dataset
Cement (component 1)(kg in a m^3 mixture)
float64 102
540
| Blast Furnace Slag (component 2)(kg in a m^3 mixture)
float64 0
359
| Fly Ash (component 3)(kg in a m^3 mixture)
float64 0
200
| Water (component 4)(kg in a m^3 mixture)
float64 122
247
| Superplasticizer (component 5)(kg in a m^3 mixture)
float64 0
32.2
| Coarse Aggregate (component 6)(kg in a m^3 mixture)
float64 801
1.15k
| Age (day)
int64 1
365
| Concrete compressive strength(MPa, megapascals)
float64 2.33
82.6
|
|---|---|---|---|---|---|---|---|
540
| 0
| 0
| 162
| 2.5
| 1,040
| 28
| 79.99
|
540
| 0
| 0
| 162
| 2.5
| 1,055
| 28
| 61.89
|
332.5
| 142.5
| 0
| 228
| 0
| 932
| 270
| 40.27
|
332.5
| 142.5
| 0
| 228
| 0
| 932
| 365
| 41.05
|
198.6
| 132.4
| 0
| 192
| 0
| 978.4
| 360
| 44.3
|
266
| 114
| 0
| 228
| 0
| 932
| 90
| 47.03
|
380
| 95
| 0
| 228
| 0
| 932
| 365
| 43.7
|
380
| 95
| 0
| 228
| 0
| 932
| 28
| 36.45
|
266
| 114
| 0
| 228
| 0
| 932
| 28
| 45.85
|
475
| 0
| 0
| 228
| 0
| 932
| 28
| 39.29
|
198.6
| 132.4
| 0
| 192
| 0
| 978.4
| 90
| 38.07
|
198.6
| 132.4
| 0
| 192
| 0
| 978.4
| 28
| 28.02
|
427.5
| 47.5
| 0
| 228
| 0
| 932
| 270
| 43.01
|
190
| 190
| 0
| 228
| 0
| 932
| 90
| 42.33
|
304
| 76
| 0
| 228
| 0
| 932
| 28
| 47.81
|
380
| 0
| 0
| 228
| 0
| 932
| 90
| 52.91
|
139.6
| 209.4
| 0
| 192
| 0
| 1,047
| 90
| 39.36
|
342
| 38
| 0
| 228
| 0
| 932
| 365
| 56.14
|
380
| 95
| 0
| 228
| 0
| 932
| 90
| 40.56
|
475
| 0
| 0
| 228
| 0
| 932
| 180
| 42.62
|
427.5
| 47.5
| 0
| 228
| 0
| 932
| 180
| 41.84
|
139.6
| 209.4
| 0
| 192
| 0
| 1,047
| 28
| 28.24
|
139.6
| 209.4
| 0
| 192
| 0
| 1,047
| 3
| 8.06
|
139.6
| 209.4
| 0
| 192
| 0
| 1,047
| 180
| 44.21
|
380
| 0
| 0
| 228
| 0
| 932
| 365
| 52.52
|
380
| 0
| 0
| 228
| 0
| 932
| 270
| 53.3
|
380
| 95
| 0
| 228
| 0
| 932
| 270
| 41.15
|
342
| 38
| 0
| 228
| 0
| 932
| 180
| 52.12
|
427.5
| 47.5
| 0
| 228
| 0
| 932
| 28
| 37.43
|
475
| 0
| 0
| 228
| 0
| 932
| 7
| 38.6
|
304
| 76
| 0
| 228
| 0
| 932
| 365
| 55.26
|
266
| 114
| 0
| 228
| 0
| 932
| 365
| 52.91
|
198.6
| 132.4
| 0
| 192
| 0
| 978.4
| 180
| 41.72
|
475
| 0
| 0
| 228
| 0
| 932
| 270
| 42.13
|
190
| 190
| 0
| 228
| 0
| 932
| 365
| 53.69
|
237.5
| 237.5
| 0
| 228
| 0
| 932
| 270
| 38.41
|
237.5
| 237.5
| 0
| 228
| 0
| 932
| 28
| 30.08
|
332.5
| 142.5
| 0
| 228
| 0
| 932
| 90
| 37.72
|
475
| 0
| 0
| 228
| 0
| 932
| 90
| 42.23
|
237.5
| 237.5
| 0
| 228
| 0
| 932
| 180
| 36.25
|
342
| 38
| 0
| 228
| 0
| 932
| 90
| 50.46
|
427.5
| 47.5
| 0
| 228
| 0
| 932
| 365
| 43.7
|
237.5
| 237.5
| 0
| 228
| 0
| 932
| 365
| 39
|
380
| 0
| 0
| 228
| 0
| 932
| 180
| 53.1
|
427.5
| 47.5
| 0
| 228
| 0
| 932
| 90
| 41.54
|
427.5
| 47.5
| 0
| 228
| 0
| 932
| 7
| 35.08
|
349
| 0
| 0
| 192
| 0
| 1,047
| 3
| 15.05
|
380
| 95
| 0
| 228
| 0
| 932
| 180
| 40.76
|
237.5
| 237.5
| 0
| 228
| 0
| 932
| 7
| 26.26
|
380
| 95
| 0
| 228
| 0
| 932
| 7
| 32.82
|
332.5
| 142.5
| 0
| 228
| 0
| 932
| 180
| 39.78
|
190
| 190
| 0
| 228
| 0
| 932
| 180
| 46.93
|
237.5
| 237.5
| 0
| 228
| 0
| 932
| 90
| 33.12
|
304
| 76
| 0
| 228
| 0
| 932
| 90
| 49.19
|
139.6
| 209.4
| 0
| 192
| 0
| 1,047
| 7
| 14.59
|
198.6
| 132.4
| 0
| 192
| 0
| 978.4
| 7
| 14.64
|
475
| 0
| 0
| 228
| 0
| 932
| 365
| 41.93
|
198.6
| 132.4
| 0
| 192
| 0
| 978.4
| 3
| 9.13
|
304
| 76
| 0
| 228
| 0
| 932
| 180
| 50.95
|
332.5
| 142.5
| 0
| 228
| 0
| 932
| 28
| 33.02
|
304
| 76
| 0
| 228
| 0
| 932
| 270
| 54.38
|
266
| 114
| 0
| 228
| 0
| 932
| 270
| 51.73
|
310
| 0
| 0
| 192
| 0
| 971
| 3
| 9.87
|
190
| 190
| 0
| 228
| 0
| 932
| 270
| 50.66
|
266
| 114
| 0
| 228
| 0
| 932
| 180
| 48.7
|
342
| 38
| 0
| 228
| 0
| 932
| 270
| 55.06
|
139.6
| 209.4
| 0
| 192
| 0
| 1,047
| 360
| 44.7
|
332.5
| 142.5
| 0
| 228
| 0
| 932
| 7
| 30.28
|
190
| 190
| 0
| 228
| 0
| 932
| 28
| 40.86
|
485
| 0
| 0
| 146
| 0
| 1,120
| 28
| 71.99
|
374
| 189.2
| 0
| 170.1
| 10.1
| 926.1
| 3
| 34.4
|
313.3
| 262.2
| 0
| 175.5
| 8.6
| 1,046.9
| 3
| 28.8
|
425
| 106.3
| 0
| 153.5
| 16.5
| 852.1
| 3
| 33.4
|
425
| 106.3
| 0
| 151.4
| 18.6
| 936
| 3
| 36.3
|
375
| 93.8
| 0
| 126.6
| 23.4
| 852.1
| 3
| 29
|
475
| 118.8
| 0
| 181.1
| 8.9
| 852.1
| 3
| 37.8
|
469
| 117.2
| 0
| 137.8
| 32.2
| 852.1
| 3
| 40.2
|
425
| 106.3
| 0
| 153.5
| 16.5
| 852.1
| 3
| 33.4
|
388.6
| 97.1
| 0
| 157.9
| 12.1
| 852.1
| 3
| 28.1
|
531.3
| 0
| 0
| 141.8
| 28.2
| 852.1
| 3
| 41.3
|
425
| 106.3
| 0
| 153.5
| 16.5
| 852.1
| 3
| 33.4
|
318.8
| 212.5
| 0
| 155.7
| 14.3
| 852.1
| 3
| 25.2
|
401.8
| 94.7
| 0
| 147.4
| 11.4
| 946.8
| 3
| 41.1
|
362.6
| 189
| 0
| 164.9
| 11.6
| 944.7
| 3
| 35.3
|
323.7
| 282.8
| 0
| 183.8
| 10.3
| 942.7
| 3
| 28.3
|
379.5
| 151.2
| 0
| 153.9
| 15.9
| 1,134.3
| 3
| 28.6
|
362.6
| 189
| 0
| 164.9
| 11.6
| 944.7
| 3
| 35.3
|
286.3
| 200.9
| 0
| 144.7
| 11.2
| 1,004.6
| 3
| 24.4
|
362.6
| 189
| 0
| 164.9
| 11.6
| 944.7
| 3
| 35.3
|
439
| 177
| 0
| 186
| 11.1
| 884.9
| 3
| 39.3
|
389.9
| 189
| 0
| 145.9
| 22
| 944.7
| 3
| 40.6
|
362.6
| 189
| 0
| 164.9
| 11.6
| 944.7
| 3
| 35.3
|
337.9
| 189
| 0
| 174.9
| 9.5
| 944.7
| 3
| 24.1
|
374
| 189.2
| 0
| 170.1
| 10.1
| 926.1
| 7
| 46.2
|
313.3
| 262.2
| 0
| 175.5
| 8.6
| 1,046.9
| 7
| 42.8
|
425
| 106.3
| 0
| 153.5
| 16.5
| 852.1
| 7
| 49.2
|
425
| 106.3
| 0
| 151.4
| 18.6
| 936
| 7
| 46.8
|
375
| 93.8
| 0
| 126.6
| 23.4
| 852.1
| 7
| 45.7
|
475
| 118.8
| 0
| 181.1
| 8.9
| 852.1
| 7
| 55.6
|
469
| 117.2
| 0
| 137.8
| 32.2
| 852.1
| 7
| 54.9
|
End of preview. Expand
in Data Studio
Machine learning in concrete science: applications, challenges, and best practices
Dataset containing concrete compressive strength for 1030 materials
Dataset Information
- Source: Foundry-ML
- DOI: 10.18126/8k1f-mx77
- Year: 2022
- Authors: Li, Zhanzhao, Yoon, Jinyoung, Zhang, Rui, Rajabipour, Farshad, Srubar III, Wil V., Dabo, Ismaila, Radlińska, Aleksandra
- Data Type: tabular
Fields
| Field | Role | Description | Units |
|---|---|---|---|
| Cement (component 1)(kg in a m^3 mixture) | input | Amount of cement | kg/m^3 |
| Blast Furnace Slag (component 2)(kg in a m^3 mixture) | input | Amount of blast furnace slag | kg/m^3 |
| Fly Ash (component 3)(kg in a m^3 mixture) | input | Amount of fly ash | kg/m^3 |
| Water (component 4)(kg in a m^3 mixture) | input | Amount of water | kg/m^3 |
| Superplasticizer (component 5)(kg in a m^3 mixture) | input | Amount of superplasticizer | kg/m^3 |
| Coarse Aggregate (component 6)(kg in a m^3 mixture) | input | Amount of coarse aggregate | kg/m^3 |
| Age (day) | input | Age of concrete | days |
| Concrete compressive strength(MPa, megapascals) | target | Concrete compressive strength | MPa |
Splits
- train: train
Usage
With Foundry-ML (recommended for materials science workflows)
from foundry import Foundry
f = Foundry()
dataset = f.get_dataset("10.18126/8k1f-mx77")
X, y = dataset.get_as_dict()['train']
With HuggingFace Datasets
from datasets import load_dataset
dataset = load_dataset("Dataset_concrete_compressive_strength")
Citation
@misc{https://doi.org/10.18126/8k1f-mx77
doi = {10.18126/8k1f-mx77}
url = {https://doi.org/10.18126/8k1f-mx77}
author = {Li, Zhanzhao and Yoon, Jinyoung and Zhang, Rui and Rajabipour, Farshad and Srubar III, Wil V. and Dabo, Ismaila and Radlińska, Aleksandra}
title = {Machine learning in concrete science: applications, challenges, and best practices}
keywords = {machine learning, foundry}
publisher = {Materials Data Facility}
year = {root=2022}}
License
other
This dataset was exported from Foundry-ML, a platform for materials science datasets.
- Downloads last month
- 9