metadata
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
license:
- apache-2.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|other-MS^2
- extended|other-Cochrane
task_categories:
- summarization
- text2text-generation
paperswithcode_id: multi-document-summarization
pretty_name: MSLR Shared Task
This is a copy of the Cochrane dataset, except the input source documents of its train, validation and test splits have been replaced by a dense retriever. The retrieval pipeline used:
- query: The
targetfield of each example - corpus: The union of all documents in the
train,validationandtestsplits. A document is the concatenation of thetitleandabstract. - retriever:
facebook/contriever-msmarcovia PyTerrier with default settings - top-k strategy:
"max", i.e. the number of documents retrieved,k, is set as the maximum number of documents seen across examples in this dataset, in this casek==9
Retrieval results on the train set:
| Recall@100 | Rprec | Precision@k | Recall@k |
|---|---|---|---|
| 0.7790 | 0.4487 | 0.3438 | 0.4800 |
Retrieval results on the validation set:
| Recall@100 | Rprec | Precision@k | Recall@k |
|---|---|---|---|
| 0.7856 | 0.4424 | 0.3534 | 0.4913 |
Retrieval results on the test set:
N/A. Test set is blind so we do not have any queries.