index
int64 1
500
| problem
stringlengths 37
987
| geo_code
stringlengths 81
4.63k
| answer
stringlengths 3
32
| category
stringclasses 3
values | source
stringclasses 7
values | problem_type
stringclasses 6
values |
|---|---|---|---|---|---|---|
301
|
As shown in the figure, the degree measure of angle $A$ is
|
[asy] unitsize(12); draw((0,0)--(20,0)--(1,-10)--(9,5)--(18,-8)--cycle); draw(arc((1,-10),(1+19/sqrt(461),-10+10/sqrt(461)),(25/17,-155/17),CCW)); draw(arc((19/3,0),(19/3-8/17,-15/17),(22/3,0),CCW)); draw(arc((900/83,-400/83),(900/83+19/sqrt(461),-400/83+10/sqrt(461)),(900/83 - 9/sqrt(97),-400/83 + 4/sqrt(97)),CCW)); label(rotate(30)*"$40^\circ$",(2,-8.9),ENE); label("$100^\circ$",(21/3,-2/3),SE); label("$110^\circ$",(900/83,-317/83),NNW); label("$A$",(0,0),NW); [/asy]
|
$30$
|
Primitive Recognition
|
HARP
|
angle
|
302
|
Segments $CM$ and $CN$ divide the square's area into three equal parts. Square $ABCD$ has sides of length 1. How long is segment $CM$?
|
[asy] pair A,B,C,D,M,N; A = (0,0); B = (0,3); C = (3,3); D = (3,0); M = (0,1); N = (1,0); draw(A--B--C--D--cycle); draw(M--C--N); label("$A$",A,SW); label("$M$",M,W); label("$B$",B,NW); label("$C$",C,NE); label("$D$",D,SE); label("$N$",N,S); [/asy]
|
$frac{\sqrt{13}}{3}$
|
Local Relation Composition
|
HARP
|
length
|
303
|
A cube has edge length $2$. Suppose that we glue a cube of edge length $1$ on top of the big cube so that one of its faces rests entirely on the top face of the larger cube. The ratio increase in the surface area (sides, top, and bottom) from the original cube to the new solid formed is
|
[asy] draw((0,0)--(2,0)--(3,1)--(3,3)--(2,2)--(0,2)--cycle); draw((2,0)--(2,2)); draw((0,2)--(1,3)); draw((1,7/3)--(1,10/3)--(2,10/3)--(2,7/3)--cycle); draw((2,7/3)--(5/2,17/6)--(5/2,23/6)--(3/2,23/6)--(1,10/3)); draw((2,10/3)--(5/2,23/6)); draw((3,3)--(5/2,3));[/asy]
|
$\frac{1}{6}$
|
Local Relation Composition
|
HARP
|
ratio
|
304
|
Points $M$ and $N$ are the midpoints of sides $PA$ and $PB$ of $\triangle PAB$. As $P$ moves along a line that is parallel to side $AB$, how many of the four quantities listed below DO NOT change? (a) the length of the segment $MN$ (b) the perimeter of $\triangle PAB$ (c) the area of $\triangle PAB$ (d) the area of trapezoid $ABNM$
|
[asy] draw((2,0)--(8,0)--(6,4)--cycle); draw((4,2)--(7,2)); draw((1,4)--(9,4),Arrows); label("$A$",(2,0),SW); label("$B$",(8,0),SE); label("$M$",(4,2),W); label("$N$",(7,2),E); label("$P$",(6,4),N); [/asy]
|
$3$
|
Primitive Recognition
|
HARP
|
count
|
305
|
If circular arcs $AC$ and $BC$ have centers at $B$ and $A$, respectively, then there exists a circle tangent to both $\overarc {AC}$ and $\overarc{BC}$, and to $\overline{AB}$. If the length of $\overarc{BC}$ is $24$, then the radius of the circle is
|
[asy] label("A", (0,0), W); label("B", (64,0), E); label("C", (32, 32*sqrt(3)), N); draw(arc((0,0),64,0,60)); draw(arc((64,0),64,120,180)); draw((0,0)--(64,0)); draw(circle((32, 24), 24)); [/asy]
|
$\frac{27}{\pi}$
|
Local Relation Composition
|
HARP
|
length
|
306
|
A square piece of paper, 8 inches on a side, is folded in half vertically. Both layers are then cut in half parallel to the fold. Three new rectangles are formed, a large one and two small ones. What is the ratio of the perimeter of one of the large rectangles to the perimeter of the small rectangle?
|
[asy] draw((0,8)--(0,0)--(4,0)--(4,8)--(0,8)--(3.5,8.5)--(3.5,8)); draw((2,-1)--(2,9),dashed); [/asy]
|
$\frac{6}{5}$
|
Primitive Recognition
|
HARP
|
ratio
|
307
|
The plane is tiled by congruent squares and congruent pentagons as indicated. The ratio of the plane that is enclosed by the pentagons is
|
[asy] unitsize(3mm); defaultpen(linewidth(0.8pt)); path p1=(0,0)--(3,0)--(3,3)--(0,3)--(0,0); path p2=(0,1)--(1,1)--(1,0); path p3=(2,0)--(2,1)--(3,1); path p4=(3,2)--(2,2)--(2,3); path p5=(1,3)--(1,2)--(0,2); path p6=(1,1)--(2,2); path p7=(2,1)--(1,2); path[] p=p1^^p2^^p3^^p4^^p5^^p6^^p7; for(int i=0; i<3; ++i) { for(int j=0; j<3; ++j) { draw(shift(3*i,3*j)*p); } } [/asy]
|
$\frac{5}{9}$
|
Local Relation Composition
|
HARP
|
ratio
|
308
|
Four friends, Art, Roger, Paul and Trisha, bake cookies, and all cookies have the same thickness. The shapes of the cookies differ, as shown. $\circ$ Art's cookies are trapezoids: $\circ$ Roger's cookies are rectangles: $\circ$ Paul's cookies are parallelograms: $\circ$ Trisha's cookies are triangles: Each friend uses the same amount of dough, and Art makes exactly $12$ cookies. Art's cookies sell for $60$ cents each. To earn the same amount from a single batch, how much should one of Roger's cookies cost in cents?
|
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8)); draw(origin--(5,0)--(5,3)--(2,3)--cycle); draw(rightanglemark((5,3), (5,0), origin)); label("5 in", (2.5,0), S); label("3 in", (5,1.5), E); label("3 in", (3.5,3), N);[/asy][asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8)); draw(origin--(4,0)--(4,2)--(0,2)--cycle); draw(rightanglemark((4,2), (4,0), origin)); draw(rightanglemark((0,2), origin, (4,0))); label("4 in", (2,0), S); label("2 in", (4,1), E);[/asy][asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8)); draw(origin--(3,0)--(2.5,2)--(-0.5,2)--cycle); draw((2.5,2)--(2.5,0), dashed); draw(rightanglemark((2.5,2),(2.5,0), origin)); label("3 in", (1.5,0), S); label("2 in", (2.5,1), W);[/asy][asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8)); draw(origin--(3,0)--(3,4)--cycle); draw(rightanglemark((3,4),(3,0), origin)); label("3 in", (1.5,0), S); label("4 in", (3,2), E);[/asy]
|
$40$
|
Local Relation Composition
|
HARP
|
count
|
309
|
Four friends, Art, Roger, Paul and Trisha, bake cookies, and all cookies have the same thickness. The shapes of the cookies differ, as shown. $\circ$ Art's cookies are trapezoids: $\circ$ Roger's cookies are rectangles: $\circ$ Paul's cookies are parallelograms: $\circ$ Trisha's cookies are triangles: How many cookies will be in one batch of Trisha's cookies?
|
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8)); draw(origin--(5,0)--(5,3)--(2,3)--cycle); draw(rightanglemark((5,3), (5,0), origin)); label("5 in", (2.5,0), S); label("3 in", (5,1.5), E); label("3 in", (3.5,3), N);[/asy][asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8)); draw(origin--(4,0)--(4,2)--(0,2)--cycle); draw(rightanglemark((4,2), (4,0), origin)); draw(rightanglemark((0,2), origin, (4,0))); label("4 in", (2,0), S); label("2 in", (4,1), E);[/asy][asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8)); draw(origin--(3,0)--(2.5,2)--(-0.5,2)--cycle); draw((2.5,2)--(2.5,0), dashed); draw(rightanglemark((2.5,2),(2.5,0), origin)); label("3 in", (1.5,0), S); label("2 in", (2.5,1), W);[/asy][asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8)); draw(origin--(3,0)--(3,4)--cycle); draw(rightanglemark((3,4),(3,0), origin)); label("3 in", (1.5,0), S); label("4 in", (3,2), E);[/asy]
|
$24$
|
Local Relation Composition
|
HARP
|
count
|
310
|
The area of trapezoid $ABCD$ is $164\text{ cm}^2$. According to the figure, what is $BC$, in centimeters?
|
[asy] size(4inch,2inch); draw((0,0)--(31,0)--(16,8)--(6,8)--cycle); draw((11,8)--(11,0), linetype("8 4")); draw((11,1)--(12,1)--(12,0)); label("$A$", (0,0), SW); label("$D$", (31,0), SE); label("$B$", (6,8), NW); label("$C$", (16,8), NE); label("10", (3,5), W); label("8", (11,4), E); label("17", (22.5,5), E);[/asy]
|
$10$
|
Primitive Recognition
|
HARP
|
length
|
311
|
Equilateral $\triangle ABC$ has side length $1$, $M$ is the midpoint of $\overline{AC}$, and $C$ is the midpoint of $\overline{BD}$. What is the area of $\triangle CDM$?
|
[asy]defaultpen(linewidth(.8pt)+fontsize(8pt)); pair B = (0,0); pair A = 2*dir(60); pair C = (2,0); pair D = (4,0); pair M = midpoint(A--C); label("$A$",A,NW);label("$B$",B,SW);label("$C$",C, SE);label("$M$",M,NE);label("$D$",D,SE); draw(A--B--C--cycle); draw(C--D--M--cycle);[/asy]
|
$\frac {\sqrt {3}}{8}$
|
Local Relation Composition
|
HARP
|
area
|
312
|
The $8\times18$ rectangle $ABCD$ is cut into two congruent hexagons, as shown, in such a way that the two hexagons can be repositioned without overlap to form a square. What is $x$?
|
[asy] unitsize(3mm); defaultpen(fontsize(10pt)+linewidth(.8pt)); dotfactor=4; draw((0,4)--(18,4)--(18,-4)--(0,-4)--cycle); draw((8,4)--(8,0)--(10,0)--(10,-4)); label("$A$",(0,4),NW); label("$B$",(18,4),NE); label("$C$",(18,-4),SE); label("$D$",(0,-4),SW); label("$x$",(4,4),S); label("$x$",(14,-4),N); label("$18$",(9,4),N); label("$18$",(9,-4),S); label("$8$",(0,0),W); label("$8$",(18,0),E); dot((0,4)); dot((18,4)); dot((18,-4)); dot((0,-4));[/asy]
|
$6$
|
Global Abstract Integration
|
HARP
|
length
|
313
|
According to the figure, the equation of a common external tangent to the circles can be written in the form $y=mx+b$ with $m>0$. What is $m+b$?
|
[asy] size(150); defaultpen(linewidth(0.7)+fontsize(8)); draw(circle((2,4),4));draw(circle((14,9),9)); draw((0,-2)--(0,20));draw((-6,0)--(25,0)); draw((2,4)--(2,4)+4*expi(pi*4.5/11)); draw((14,9)--(14,9)+9*expi(pi*6/7)); label("4",(2,4)+2*expi(pi*4.5/11),(-1,0)); label("9",(14,9)+4.5*expi(pi*6/7),(1,1)); label("(2,4)",(2,4),(0.5,-1.5));label("(14,9)",(14,9),(1,-1)); draw((-4,120*-4/119+912/119)--(11,120*11/119+912/119)); dot((2,4)^^(14,9)); [/asy]
|
$\frac{1032}{119}$
|
Local Relation Composition
|
HARP
|
count
|
314
|
Hexagon $ABCDEF$ is divided into five rhombuses, as shown in the figure. Rhombuses $\mathcal{P, Q, R,}$ and $\mathcal{S}$ are congruent, and each has area $\sqrt{2006}.$ Let $K$ be the area of rhombus $\mathcal{T}$. Given that $K$ is a positive integer, find the number of possible values for $K$.
|
[asy] size(8cm); pair A=(0,0), B=(4.2,0), C=(5.85,-1.6), D=(4.2,-3.2), EE=(0,-3.2), F=(-1.65,-1.6), G=(0.45,-1.6), H=(3.75,-1.6), I=(2.1,0), J=(2.1,-3.2), K=(2.1,-1.6); draw(A--B--C--D--EE--F--cycle); draw(F--G--(2.1,0)); draw(C--H--(2.1,0)); draw(G--(2.1,-3.2)); draw(H--(2.1,-3.2)); label("$\mathcal{T}$",(2.1,-1.6)); label("$\mathcal{P}$",(0,-1),NE); label("$\mathcal{Q}$",(4.2,-1),NW); label("$\mathcal{R}$",(0,-2.2),SE); label("$\mathcal{S}$",(4.2,-2.2),SW); [/asy]
|
$89$
|
Local Relation Composition
|
HARP
|
count
|
315
|
Consider the $12$-sided polygon $ABCDEFGHIJKL$, as shown. Each of its sides has length $10$, and each two consecutive sides form a right angle. Suppose that $\overline{AG}$ and $\overline{CH}$ meet at $M$. What is the area of quadrilateral $ABCM$?
|
[asy] unitsize(13mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4; pair A=(1,3), B=(2,3), C=(2,2), D=(3,2), Ep=(3,1), F=(2,1), G=(2,0), H=(1,0), I=(1,1), J=(0,1), K=(0,2), L=(1,2); pair M=intersectionpoints(A--G,H--C)[0]; draw(A--B--C--D--Ep--F--G--H--I--J--K--L--cycle); draw(A--G); draw(H--C); dot(M); label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,NE); label("$D$",D,NE); label("$E$",Ep,SE); label("$F$",F,SE); label("$G$",G,SE); label("$H$",H,SW); label("$I$",I,SW); label("$J$",J,SW); label("$K$",K,NW); label("$L$",L,NW); label("$M$",M,W); [/asy]
|
$110$
|
Local Relation Composition
|
HARP
|
area
|
316
|
In the figure, the outer equilateral triangle has side length $4$, the inner equilateral triangle has area $1$, and the three trapezoids are congruent. What is the area of one of the trapezoids?
|
[asy] size((70)); draw((0,0)--(7.5,13)--(15,0)--(0,0)); draw((1.88,3.25)--(9.45,3.25)); draw((11.2,0)--(7.5,6.5)); draw((9.4,9.7)--(5.6,3.25)); [/asy]
|
$\frac{4\sqrt{3}-1}{3}$
|
Local Relation Composition
|
HARP
|
area
|
317
|
Triangle $ABC$ has a right angle at $B$. Point $D$ is the foot of the altitude from $B$. According to the figure, what is the area of $\triangle ABC$?
|
[asy] unitsize(5mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); dotfactor=4; pair B=(0,0), C=(sqrt(28),0), A=(0,sqrt(21)); pair D=foot(B,A,C); pair[] ps={B,C,A,D}; draw(A--B--C--cycle); draw(B--D); draw(rightanglemark(B,D,C)); dot(ps); label("$A$",A,NW); label("$B$",B,SW); label("$C$",C,SE); label("$D$",D,NE); label("$3$",midpoint(A--D),NE); label("$4$",midpoint(D--C),NE); [/asy]
|
$7\sqrt3$
|
Primitive Recognition
|
HARP
|
area
|
318
|
Segment $BD$ and $AE$ intersect at $C$, as shown, $AB=BC=CD=CE$, and $\angle A = 2.5 \angle B$. What is the degree measure of $\angle D$?
|
[asy] unitsize(2cm); defaultpen(linewidth(.8pt)+fontsize(8pt)); dotfactor=4; pair C=(0,0), Ep=dir(35), D=dir(-35), B=dir(145); pair A=intersectionpoints(Circle(B,1),C--(-1*Ep))[0]; pair[] ds={A,B,C,D,Ep}; dot(ds); draw(A--Ep--D--B--cycle); label("$A$",A,SW); label("$B$",B,NW); label("$C$",C,N); label("$E$",Ep,E); label("$D$",D,E); [/asy]
|
$52.5$
|
Local Relation Composition
|
HARP
|
angle
|
319
|
The keystone arch is an ancient architectural feature. It is composed of congruent isosceles trapezoids fitted together along the non-parallel sides, as shown. The bottom sides of the two end trapezoids are horizontal. In an arch made with $9$ trapezoids, let $y$ be the angle measure in degrees of the larger interior angle of the trapezoid. What is $y$?
|
[asy] unitsize(4mm); defaultpen(linewidth(.8pt)); int i; real r=5, R=6; path t=r*dir(0)--r*dir(20)--R*dir(20)--R*dir(0); for(i=0; i<9; ++i) { draw(rotate(20*i)*t); } draw((-r,0)--(R+1,0)); draw((-R,0)--(-R-1,0)); [/asy]
|
$100$
|
Global Abstract Integration
|
HARP
|
angle
|
320
|
In quadrilateral $ABCD$, $AB = 6$, $BC = 17$, $CD = 6$, $DA = 7$, and $BD$ is an integer. What is $BD$?
|
[asy] unitsize(4mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); dotfactor=4; pair C=(0,0), B=(17,0); pair D=intersectionpoints(Circle(C,5),Circle(B,13))[0]; pair A=intersectionpoints(Circle(D,9),Circle(B,5))[0]; pair[] dotted={A,B,C,D}; draw(D--A--B--C--D--B); dot(dotted); label("$D$",D,NW); label("$C$",C,W); label("$B$",B,E); label("$A$",A,NE); [/asy]
|
$12$
|
Local Relation Composition
|
HARP
|
length
|
321
|
The two circles pictured have the same center $C$. Chord $\overline{AD}$ is tangent to the inner circle at $B$, $AC$ is $5$, and chord $\overline{AD}$ has length $8$. What is the area between the two circles?
|
[asy] unitsize(45); import graph; size(300); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen xdxdff = rgb(0.49,0.49,1); draw((2,0.15)--(1.85,0.15)--(1.85,0)--(2,0)--cycle); draw(circle((2,1),2.24)); draw(circle((2,1),1)); draw((0,0)--(4,0)); draw((0,0)--(2,1)); draw((2,1)--(2,0)); draw((2,1)--(4,0)); dot((0,0),ds); label("$A$", (-0.19,-0.23),NE*lsf); dot((2,0),ds); label("$B$", (1.97,-0.31),NE*lsf); dot((2,1),ds); label("$C$", (1.96,1.09),NE*lsf); dot((4,0),ds); label("$D$", (4.07,-0.24),NE*lsf); clip((-3.1,-7.72)--(-3.1,4.77)--(11.74,4.77)--(11.74,-7.72)--cycle); [/asy]
|
$16 \pi$
|
Local Relation Composition
|
HARP
|
area
|
322
|
Two congruent squares, $ABCD$ and $PQRS$, have side length $15$. They overlap to form the $15$ by $25$ rectangle $AQRD$ shown. What is the area of rectangle $AQRD$ that is shaded?
|
[asy] filldraw((0,0)--(25,0)--(25,15)--(0,15)--cycle,white,black); label("D",(0,0),S); label("R",(25,0),S); label("Q",(25,15),N); label("A",(0,15),N); filldraw((10,0)--(15,0)--(15,15)--(10,15)--cycle,mediumgrey,black); label("S",(10,0),S); label("C",(15,0),S); label("B",(15,15),N); label("P",(10,15),N);[/asy]
|
$225$
|
Local Relation Composition
|
HARP
|
area
|
323
|
Quadrilateral $ABCD$ is a trapezoid. According to the figure, what is the perimeter of the trapezoid?
|
[asy] pair A,B,C,D; A=(3,20); B=(35,20); C=(47,0); D=(0,0); draw(A--B--C--D--cycle); dot((0,0)); dot((3,20)); dot((35,20)); dot((47,0)); label("A",A,N); label("B",B,N); label("C",C,S); label("D",D,S); draw((19,20)--(19,0)); dot((19,20)); dot((19,0)); draw((19,3)--(22,3)--(22,0)); label("12",(21,10),E); label("50",(19,22),N); label("15",(1,10),W); label("20",(41,12),E);[/asy]
|
$75$
|
Primitive Recognition
|
HARP
|
length
|
324
|
A circle with radius $1$ is inscribed in a square and circumscribed about another square as shown. Which fraction is closest to the ratio of the circle's shaded area to the area between the two squares?
|
[asy] filldraw((-1,-1)--(-1,1)--(1,1)--(1,-1)--cycle,gray,black); filldraw(Circle((0,0),1), mediumgray,black); filldraw((-1,0)--(0,1)--(1,0)--(0,-1)--cycle,white,black);[/asy]
|
$\frac{\pi-1}{2}$
|
Local Relation Composition
|
HARP
|
ratio
|
325
|
In the given circle, $\overline{AB}$ is parallel to $\overline{ED}$, and the diameter $\overline{EB}$ is parallel to $\overline{DC}$. The angles $ABE$ and $AEB$ are in the ratio $5 : 4$. What is the degree measure of angle $DCB$?
|
[asy] unitsize(7mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4; real r=3; pair A=(-3cos(80),-3sin(80)); pair D=(3cos(80),3sin(80)), C=(-3cos(80),3sin(80)); pair O=(0,0), E=(-3,0), B=(3,0); path outer=Circle(O,r); draw(outer); draw(E--B); draw(E--A); draw(B--A); draw(E--D); draw(C--D); draw(B--C); pair[] ps={A,B,C,D,E,O}; dot(ps); label("$A$",A,N); label("$B$",B,NE); label("$C$",C,S); label("$D$",D,S); label("$E$",E,NW); label("$$",O,N); [/asy]
|
$130$
|
Local Relation Composition
|
HARP
|
angle
|
326
|
In the diagram, all angles are right angles and the lengths of the sides are given in centimeters. Note the diagram is not drawn to scale. What is , $X$ in centimeters?
|
[asy] pair A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R; A=(4,0); B=(7,0); C=(7,4); D=(8,4); E=(8,5); F=(10,5); G=(10,7); H=(7,7); I=(7,8); J=(5,8); K=(5,7); L=(4,7); M=(4,6); N=(0,6); O=(0,5); P=(2,5); Q=(2,3); R=(4,3); draw(A--B--C--D--E--F--G--H--I--J--K--L--M--N--O--P--Q--R--cycle); label("$X$",(3.4,1.5)); label("6",(7.6,1.5)); label("1",(7.6,3.5)); label("1",(8.4,4.6)); label("2",(9.4,4.6)); label("2",(10.4,6)); label("3",(8.4,7.4)); label("1",(7.5,7.8)); label("2",(6,8.5)); label("1",(4.7,7.8)); label("1",(4.3,7.5)); label("1",(3.5,6.5)); label("4",(1.8,6.5)); label("1",(-0.5,5.5)); label("2",(0.8,4.5)); label("2",(1.5,3.8)); label("2",(2.8,2.6));[/asy]
|
$5$
|
Local Relation Composition
|
HARP
|
length
|
327
|
A square with area $16$ is inscribed in a square with area $8$, with each vertex of the smaller square on a side of the larger square. A vertex of the smaller square divides a side of the larger square into two segments, one of length $a$, and the other of length $b$. What is the value of $ab$?
|
[asy] draw((0,2)--(2,2)--(2,0)--(0,0)--cycle); draw((0,0.3)--(0.3,2)--(2,1.7)--(1.7,0)--cycle); label("$a$",(-0.1,0.15)); label("$b$",(-0.1,1.15));[/asy]
|
$4$
|
Primitive Recognition
|
HARP
|
count
|
328
|
A circle of radius 2.5 is inscribed in a rectangle as shown. The ratio of the length of the rectangle to its width is 2:1. What is the area of the rectangle?
|
[asy] draw((0,0)--(0,10)--(20,10)--(20,0)--cycle); draw(circle((10,5),5)); [/asy]
|
$50$
|
Primitive Recognition
|
HARP
|
area
|
329
|
Three circles with radius 4 are mutually tangent. What is the total area of the circles and the region bounded by them, as shown in the figure?
|
[asy] filldraw((0,0)--(2,0)--(1,sqrt(3))--cycle,gray,gray); filldraw(circle((1,sqrt(3)),1),gray); filldraw(circle((0,0),1),gray); filldraw(circle((2,0),1),grey);[/asy]
|
$40\pi+16\sqrt{3}$
|
Local Relation Composition
|
HARP
|
area
|
330
|
In the accompanying figure, the outer square $S$ has side length $20$. A second square $S'$ of side length $15$ is constructed inside $S$ with the same center as $S$ and with sides parallel to those of $S$. From each midpoint of a side of $S$, segments are drawn to the two closest vertices of $S'$. The result is a four-pointed starlike figure inscribed in $S$. The star figure is cut out and then folded to form a pyramid with base $S'$. Find the volume of this pyramid.
|
[asy] pair S1 = (20, 20), S2 = (-20, 20), S3 = (-20, -20), S4 = (20, -20); pair M1 = (S1+S2)/2, M2 = (S2+S3)/2, M3=(S3+S4)/2, M4=(S4+S1)/2; pair Sp1 = (7.5, 7.5), Sp2=(-7.5, 7.5), Sp3 = (-7.5, -7.5), Sp4 = (7.5, -7.5); draw(S1--S2--S3--S4--cycle); draw(Sp1--Sp2--Sp3--Sp4--cycle); draw(Sp1--M1--Sp2--M2--Sp3--M3--Sp4--M4--cycle); [/asy]
|
$\frac{375}{4}$
|
Global Abstract Integration
|
HARP
|
volume
|
331
|
Angle $ABC$ of $\triangle ABC$ is a right angle. The sides of $\triangle ABC$ are the diameters of semicircles as shown. The area of the semicircle on $\overline{AB}$ equals $8\pi$, and the arc of the semicircle on $\overline{AC}$ has length $8.5\pi$. What is the diameter of the semicircle on $\overline{BC}$?
|
[asy] size(100);import graph; pair A,B,C; A=(0,8); B=(0,0); C=(18,0); draw((0,8)..(-4,4)..(0,0)--(0,8)); draw((0,0)..(9,-9)..(18,0)--(0,0)); real theta = aTan(8/18); draw(arc((9,4),10,-theta,180-theta)); draw((0,8)--(18,0)); dot(A); dot(B); dot(C); label("$A$", A, NW); label("$B$", B, SW); label("$C$", C, SE); [/asy]
|
$15$
|
Primitive Recognition
|
HARP
|
length
|
332
|
Two squares with side $6$ lie exactly on top of each other.
One square is rotated around a corner point through an angle of $30$ degrees relative to the other square.
Determine the area of the common piece of the two squares.
|
[asy]
unitsize (2 cm);
pair A, B, C, D, Bp, Cp, Dp, P;
A = (0,0);
B = (-1,0);
C = (-1,1);
D = (0,1);
Bp = rotate(-30)*(B);
Cp = rotate(-30)*(C);
Dp = rotate(-30)*(D);
P = extension(C, D, Bp, Cp);
fill(A--Bp--P--D--cycle, gray(0.8));
draw(A--B--C--D--cycle);
draw(A--Bp--Cp--Dp--cycle);
label(" $30^\circ$ ", (-0.5,0.1), fontsize(10));
[/asy]
|
$12\sqrt{3}$
|
Local Relation Composition
|
HARP
|
area
|
333
|
The triangle ABC has sides AB = 137, AC = 241, and BC =200. There is a point D, on BC, such that both incircles of triangles ABD and ACD touch AD at the same point E. Determine the length of BD.
|
[asy]
pair A = (2,6);
pair B = (0,0);
pair C = (10,0);
pair D = (3.5,0) ;
pair E = (3.1,2);
draw(A--B);
draw(B--C);
draw(C--A);
draw (A--D);
dot ((3.1,1.7));
label ("E", E, dir(45));
label ("A", A, dir(45));
label ("B", B, dir(45));
label ("C", C, dir(45));
label ("D", D, dir(45));
draw(circle((1.8,1.3),1.3));
draw(circle((4.9,1.7),1.75));
[/asy]
|
$48$
|
Local Relation Composition
|
HARP
|
length
|
334
|
In the figure, it is given that angle $C = 90^{\circ}$, $\overline{AD} = \overline{DB}$, $DE \perp AB$, $\overline{AB} = 20$, and $\overline{AC} = 12$. The area of triangle $BDE$ is:
|
[asy] unitsize(7); defaultpen(linewidth(.8pt)+fontsize(10pt)); pair A,B,C,D,E; A=(0,0); B=(20,0); C=(36/5,48/5); D=(10,0); E=(10,75/10); draw(A--B--C--cycle); draw(D--E); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,N); label("$D$",D,S); label("$E$",E,NE); draw(rightanglemark(B,D,E,30)); [/asy]
|
$37\frac{1}{2}$
|
Local Relation Composition
|
HARP
|
area
|
335
|
In $\triangle ABC, AC = CD$ and $\angle CAB - \angle ABC = 40^\circ$. Then $\angle BAD$ is:
|
[asy] defaultpen(linewidth(.8pt)); unitsize(2.5cm); pair A = origin; pair B = (2,0); pair C = (0.5,0.75); pair D = midpoint(C--B); draw(A--B--C--cycle); draw(A--D); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,N); label("$D$",D,NE);[/asy]
|
$20$
|
Local Relation Composition
|
HARP
|
angle
|
336
|
Point $F$ is taken in side $AD$ of square $ABCD$. At $C$ a perpendicular is drawn to $CF$, meeting $AB$ extended at $E$. The area of $ABCD$ is $64$ square inches and the area of $\triangle CEF$ is $50$ square inches. Then the number of inches in $AF$ is:
|
[asy] size(6cm); pair A = (0, 0), B = (1, 0), C = (1, 1), D = (0, 1), E = (1.3, 0), F = (0, 0.7); draw(A--B--C--D--cycle); draw(F--C--E--B); label("$A$", A, SW); label("$B$", B, S); label("$C$", C, N); label("$D$", D, NW); label("$E$", E, SE); label("$F$", F, W); [/asy]
|
$2$
|
Local Relation Composition
|
HARP
|
length
|
337
|
$P$ is a point interior to rectangle $ABCD$ and such that $PA=6$ inches, $PD=8$ inches, and $PC=10$ inches. Then $PB$, in inches, equals:
|
[asy] pair A, B, C, D, P; A = (0, 0); B = (6.5, 0); C = (6.5, 4.5); D = (0, 4.5); P = (2.5, 1.5); draw(A--B--C--D--cycle); draw(A--P); draw(C--P); draw(D--P); draw(B--P, dashed); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, NE); label("$D$", D, NW); label("$P$", P, S); label("$6$", midpoint(A--P), NW); label("$8$", midpoint(D--P), NE); label("$10$", midpoint(C--P), NW); [/asy]
|
$6\sqrt{2}$
|
Primitive Recognition
|
HARP
|
length
|
338
|
In this diagram, not drawn to scale, Figures $I$ and $III$ are equilateral triangular regions with respective areas of $32\sqrt{3}$ and $8\sqrt{3}$ square inches. Figure $II$ is a square region with area $32$ square inches. Let the length of segment $AD$ be decreased by $12\tfrac{1}{2}$ % of itself, while the lengths of $AB$ and $CD$ remain unchanged. The decrease in the area of the square is:
|
[asy] draw((0,0)--(10,20*sqrt(3)/2)--(20,0)--cycle,black+linewidth(.75)); draw((20,0)--(20,12)--(32,12)--(32,0)--cycle,black+linewidth(.75)); draw((32,0)--(37,10*sqrt(3)/2)--(42,0)--cycle,black+linewidth(.75)); MP("I",(10,0),N);MP("II",(26,0),N);MP("III",(37,0),N); MP("A",(0,0),S);MP("B",(20,0),S);MP("C",(32,0),S);MP("D",(42,0),S); [/asy]
|
$24$
|
Primitive Recognition
|
HARP
|
area
|
339
|
A parabolic arch has a height of $16$ inches and a span of $40$ inches. The height, in inches, of the arch at the point $5$ inches from the $A$ is:
|
[asy] draw(arc((0,-1),2,30,150),dashed+linewidth(.75)); draw((-1.7,0)--(0,0)--(1.7,0),dot); draw((0,0)--(0,.98),dot); MP("A",(-1.7,0),W);MP("B",(1.7,0),E);MP("M",(0,0),S);MP("C",(0,1),N); [/asy]
|
$7$
|
Primitive Recognition
|
HARP
|
length
|
340
|
In $\triangle ABC$, point $F$ divides side $AC$ in the ratio $1:2$. Let $E$ be the point of intersection of side $BC$ and $AG$ where $G$ is the midpoint of $BF$. The length of $EC$ divided by the length of $BE$ is
|
[asy] size(2.5inch); pair A, B, C, E, F, G; A = (0,3); B = (-1,0); C = (4,0); E = (0,0); F = (1.14,2.14); G = intersectionpoint(B--F,A--E); draw(A--B--C--cycle); draw(A--E); draw(B--F); label("$A$",A,N); label("$B$",B,W); label("$C$",C,dir(0)); label("$E$",E,S); label("$F$",F,NE); label("$G$",G,SE); [/asy]
|
$3$
|
Local Relation Composition
|
HARP
|
ratio
|
341
|
Inside square $ABCD$ (See figure) with sides of length $12$ inches, segment $AE$ is drawn where $E$ is the point on $DC$ which is $5$ inches from $D$. The perpendicular bisector of $AE$ is drawn and intersects $AE, AD$, and $BC$ at points $M, P$, and $Q$ respectively. The length of $MQ$ divided by the length of $PM$ is
|
[asy] draw(unitsquare);draw((0,0)--(.4,1)^^(0,.6)--(1,.2)); label("D",(0,1),NW);label("E",(.4,1),N);label("C",(1,1),NE); label("P",(0,.6),W);label("M",(.25,.55),E);label("Q",(1,.2),E); label("A",(0,0),SW);label("B",(1,0),SE); [/asy]
|
$\frac{19}{5}$
|
Local Relation Composition
|
HARP
|
ratio
|
342
|
In the adjoining figure $ABCD$ is a square and $CMN$ is an equilateral triangle. If the area of $ABCD$ is $4$ square inch, then the area of $CMN$ in square inches is
|
[asy] draw((0,0)--(1,0)--(1,1)--(0,1)--cycle); draw((.82,0)--(1,1)--(0,.76)--cycle); label("A", (0,0), S); label("B", (1,0), S); label("C", (1,1), N); label("D", (0,1), N); label("M", (0,.76), W); label("N", (.82,0), S);[/asy]
|
$8\sqrt{3}-12$
|
Local Relation Composition
|
HARP
|
area
|
343
|
In the adjoining figure $TP$ and $T'Q$ are parallel tangents to a circle of radius $r$, with $T$ and $T'$ the points of tangency. $PT''Q$ is a third tangent with $T'''$ as a point of tangency. If $TP=8$ and $T'Q=18$ then $r$ is
|
[asy] unitsize(45); pair O = (0,0); pair T = dir(90); pair T1 = dir(270); pair T2 = dir(25); pair P = (.61,1); pair Q = (1.61, -1); draw(unitcircle); dot(O); label("O",O,W); label("T",T,N); label("T'",T1,S); label("T''",T2,NE); label("P",P,NE); label("Q",Q,S); draw(O--T2); label("$r$",midpoint(O--T2),NW); draw(T--P); label("8",midpoint(T--P),N); draw(T1--Q); label("18",midpoint(T1--Q),S); draw(P--Q);[/asy]
|
$12$
|
Local Relation Composition
|
HARP
|
length
|
344
|
In parallelogram $ABCD$ of the accompanying diagram, line $DP$ is drawn bisecting $BC$ at $N$ and meeting $AB$ (extended) at $P$. From vertex $C$, line $CQ$ is drawn bisecting side $AD$ at $M$ and meeting $AB$ (extended) at $Q$. Lines $DP$ and $CQ$ meet at $O$. If the area of parallelogram $ABCD$ is $8$, then the area of the triangle $QPO$ is equal to
|
[asy] size((400)); draw((0,0)--(5,0)--(6,3)--(1,3)--cycle); draw((6,3)--(-5,0)--(10,0)--(1,3)); label("A", (0,0), S); label("B", (5,0), S); label("C", (6,3), NE); label("D", (1,3), NW); label("P", (10,0), E); label("Q", (-5,0), W); label("M", (.5,1.5), NW); label("N", (5.65, 1.5), NE); label("O", (3.4,1.75));[/asy]
|
$9$
|
Local Relation Composition
|
HARP
|
area
|
345
|
In the adjoining figure triangle $ABC$ is such that $AB = 4$ and $AC = 8$. IF $M$ is the midpoint of $BC$ and $AM = 3$, what is the length of $BM$?
|
[asy] draw((-4,0)--(4,0)--(-1,4)--cycle); draw((-1, 4)--(0, 0.00001)); label("B", (-4,0), S); label("C", (4,0), S); label("A", (-1, 4), N); label("M", (0, 0.0001), S); [/asy]
|
$\sqrt{31}$
|
Primitive Recognition
|
HARP
|
length
|
346
|
In $\triangle ABC$ shown in the adjoining figure, $M$ is the midpoint of side $BC, AB=12$ and $AC=16$. Points $E$ and $F$ are taken on $AC$ and $AB$, respectively, and lines $EF$ and $AM$ intersect at $G$. If $AE=2AF$ then $\frac{GF}{EG}$ equals
|
[asy] draw((0,0)--(12,0)--(14,7.75)--(0,0)); draw((0,0)--(13,3.875)); draw((5,0)--(8.75,4.84)); label("A", (0,0), S); label("B", (12,0), S); label("C", (14,7.75), E); label("E", (8.75,4.84), N); label("F", (5,0), S); label("M", (13,3.875), E); label("G", (7,1)); [/asy]
|
$\frac{2}{3}$
|
Local Relation Composition
|
HARP
|
ratio
|
347
|
In the adjoining figure, circle $K$ has diameter $AB$; circle $L$ is tangent to circle $K$ and to $AB$ at the center of circle $K$; and circle $M$ tangent to circle $K$, to circle $L$ and $AB$. The area of circle $L$ divided by the area of circle $M$ is
|
[asy] size(150); pair K=(0,0),B=(1,0),A=(-1,0),L=(0,0.5),M=(sqrt(2)/2,.25); draw(circle(K,1)^^A--B); draw(circle(L,0.5)^^circle(M,.25)); label("$A$", A, W); label("$K$", K, S); label("$B$", B, E); label("$L$", L); label("$M$", M); [/asy]
|
$4$
|
Primitive Recognition
|
aops_forum
|
ratio
|
348
|
Each of the three circles in the adjoining figure is externally tangent to the other two, and each side of the triangle is tangent to two of the circles. If each circle has radius two, then the perimeter of the triangle is
|
[asy] size(120); real t = 2/sqrt(3); real x = 1 + sqrt(3); pair A = t*dir(90), D = x*A; pair B = t*dir(210), E = x*B; pair C = t*dir(330), F = x*C; draw(D--E--F--cycle); draw(Circle(A, 1)); draw(Circle(B, 1)); draw(Circle(C, 1)); [/asy]
|
$12+12\sqrt{3}$
|
Local Relation Composition
|
aops_forum
|
length
|
349
|
In $\triangle ABC, AB = 10, AC = 8$ and $BC = 6$. Circle $P$ is the circle with smallest radius which passes through $C$ and is tangent to $AB$. Let $Q$ and $R$ be the points of intersection, distinct from $C$ , of circle $P$ with sides $AC$ and $BC$, respectively. The radius of circle P is
|
[asy] size(100); real a=4, b=3; // import cse5; pathpen=black; pair A=(a,0), B=(0,b), C=(0,0); D(MP("A",A)--MP("B",B,N)--MP("C",C,SW)--cycle); pair X=IP(B--A,(0,0)--(b,a)); D(CP((X+C)/2,C)); D(MP("R",IP(CP((X+C)/2,C),B--C),NW)--MP("Q",IP(CP((X+C)/2,C),A--C+(0.1,0)))); [/asy]
|
$2.4$
|
Local Relation Composition
|
HARP
|
length
|
350
|
If rectangle ABCD has area 120 square meters and E and G are the midpoints of sides AD and CD, respectively, then the area of rectangle DEFG in square meters is
|
[asy] draw((-2,1)--(2,1)--(2,-1)--(-2,-1)--cycle); draw((0,0)--(0,-1)--(-2,-1)--(-2,0)--cycle); label("$F$",(0,0),E); label("$A$",(-2,1),W); label("$B$",(2,1),E); label("$C$", (2,-1),E); label("$D$",(-2,-1),WSW); label("$E$",(-2,0),W); label("$G$",(0,-1),S); [/asy]
|
$30$
|
Primitive Recognition
|
HARP
|
area
|
351
|
In the adjoining figure, $ABCD$ is a square, $ABE$ is an equilateral triangle and point $E$ is outside square $ABCD$. What is the measure of $\measuredangle DEB$ in degrees?
|
[asy] real s=sqrt(3)/2; draw(box((0,0),(1,1))); draw((1+s,0.5)--(1,1)); draw((1+s,0.5)--(1,0)); draw((0,1)--(1+s,0.5)); label("$A$",(1,1),N); label("$B$",(1,0),S); label("$C$",(0,0),W); label("$D$",(0,1),W); label("$E$",(1+s,0.5),E); [/asy]
|
$45$
|
Primitive Recognition
|
HARP
|
angle
|
352
|
The edges of a regular tetrahedron with vertices $A ,~ B,~ C$, and $D$ each have length two. Find the least possible distance between a pair of points $P$ and $Q$, where $P$ is on edge $AB$ and $Q$ is on edge $CD$.
|
[asy] size(150); import patterns; pair D=(0,0),C=(1,-1),B=(2.5,-0.2),A=(1,2),AA,BB,CC,DD,P,Q,aux; add("hatch",hatch()); draw(rotate(100,D)*(A--B--C--D--cycle)); AA=rotate(100,D)*A; BB=rotate(100,D)*D; CC=rotate(100,D)*C; DD=rotate(100,D)*B; aux=midpoint(AA--BB); draw(BB--DD); P=midpoint(AA--aux); aux=midpoint(CC--DD); Q=midpoint(CC--aux); draw(AA--CC,dashed); dot(P); dot(Q); fill(DD--BB--CC--cycle,pattern("hatch")); label("$A$",AA,W); label("$B$",BB,S); label("$C$",CC,E); label("$D$",DD,N); label("$P$",P,S); label("$Q$",Q,E); [/asy]
|
$\sqrt{2}$
|
Global Abstract Integration
|
HARP
|
length
|
353
|
Circles with centers $A, B$, and $C$ each have radius $r$, where $1 < r < 2$. The distance between each pair of centers is $2$. If $B'$ is the point of intersection of circle $A$ and circle $C$ which is outside circle $B$, and if $C'$ is the point of intersection of circle $A$ and circle $B$ which is outside circle $C$, then length $B'C'$ equals
|
[asy] import cse5; pathpen=black; pointpen=black; dotfactor=3; pair A=(1,2),B=(2,0),C=(0,0); D(CR(A,1.5)); D(CR(B,1.5)); D(CR(C,1.5)); D(MP("$A$",A)); D(MP("$B$",B)); D(MP("$C$",C)); pair[] BB,CC; CC=IPs(CR(A,1.5),CR(B,1.5)); BB=IPs(CR(A,1.5),CR(C,1.5)); D(BB[0]--CC[1]); MP("$B'$",BB[0],NW);MP("$C'$",CC[1],NE); [/asy]
|
$1+\sqrt{3(r^2-1)}$
|
Local Relation Composition
|
HARP
|
length
|
354
|
In $\triangle ABC$, $E$ is the midpoint of side $BC$ and $D$ is on side $AC$. If the length of $AC$ is $2$ and $\measuredangle BAC = 60^\circ, \measuredangle ABC = 100^\circ, \measuredangle ACB = 20^\circ$ and $\measuredangle DEC = 80^\circ$, then the area of $\triangle ABC$ plus twice the area of $\triangle CDE$ equals
|
[asy] size(200); import cse5; pathpen=black; anglefontpen=black; pointpen=black; anglepen=black; dotfactor=3; pair A=(0,0),B=(0.5,0.5*sqrt(3)),C=(3,0),D=(1.7,0),EE; EE=(B+C)/2; D(MP("$A$",A,W)--MP("$B$",B,N)--MP("$C$",C,E)--cycle); D(MP("$E$",EE,N)--MP("$D$",D,S)); D(D);D(EE); MA("80^\circ",8,D,EE,C,0.1); MA("20^\circ",8,EE,C,D,0.3,2,shift(1,3)*C); draw(arc(shift(-0.1,0.05)*C,0.25,100,180),arrow =ArcArrow()); MA("100^\circ",8,A,B,C,0.1,0); MA("60^\circ",8,C,A,B,0.1,0); [/asy]
|
$\frac{\sqrt{3}}{2}$
|
Local Relation Composition
|
HARP
|
area
|
355
|
In the adjoining figure, CDE is an equilateral triangle and ABCD and DEFG are squares. The measure of $\angle ADE$ is
|
[asy] size(100);defaultpen(linewidth(0.7)+fontsize(10)); pair D=(0,0), C=D+dir(230), E=D+dir(310), F=E+dir(40), G=D+dir(40), A=D+dir(140), B=C+dir(140); draw(E--D--G--F--E--C--D--A--B--C); pair point=(0,0.5); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(-15)); label("$E$", E, dir(point--E)); label("$F$", F, dir(point--F)); label("$G$", G, dir(point--G));[/asy]
|
$150$
|
Local Relation Composition
|
HARP
|
angle
|
356
|
If $AB$ and $CD$ are perpendicular diameters of circle $Q$, $P$ in $\overline{AQ}$, and $\measuredangle QPC = 60^\circ$, then the length of $PC$ divided by the length of $BQ$ is
|
[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair A=(-1,0), B=(1,0), C=(0,1), D=(0,-1), Q=origin, P=(-0.5,0); draw(P--C--D^^A--B^^Circle(Q,1)); label("$A$", A, W); label("$B$", B, E); label("$C$", C, N); label("$D$", D, S); label("$P$", P, S); label("$Q$", Q, SE); label("$60^\circ$", P+0.0.5*dir(30), dir(30));[/asy]
|
$\frac{2\sqrt{3}}{3}$
|
Primitive Recognition
|
HARP
|
ratio
|
357
|
Sides $AB,BC,CD$ and $DA$ of convex polygon $ABCD$ have lengths 6, 8, 24, and 26, respectively, and $\angle CBA$ is a right angle. The area of the quadrilateral is
|
[asy] defaultpen(linewidth(0.7)+fontsize(10)); real r=degrees((12,5)), s=degrees((3,4)); pair D=origin, A=(13,0), C=D+12*dir(r), B=A+3*dir(180-(90-r+s)); draw(A--B--C--D--cycle); markscalefactor=0.05; draw(rightanglemark(A,B,C)); pair point=incenter(A,C,D); label("$A$", A, dir(A)); label("$B$", B, dir(B)); label("$C$", C, dir(C)); label("$D$", D, dir(D)); label("$6$", A--B, dir(A--B)*dir(-90)); label("$8$", B--C, dir(B--C)*dir(-90)); label("$24$", C--D, dir(C--D)*dir(-90)); label("$26$", D--A, dir(D--A)*dir(-90));[/asy]
|
$144$
|
Primitive Recognition
|
HARP
|
area
|
358
|
In triangle $ABC$, $\measuredangle CBA=72^\circ$, $E$ is the midpoint of side $AC$, and $D$ is a point on side $BC$ such that $2BD=DC$; $AD$ and $BE$ intersect at $F$. The area of quadrilateral $FDCE$ divided by the area of triangle $BDF$ is
|
[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair B=origin, C=(15,3), D=(5,1), A=7*dir(72)*dir(B--C), E=midpoint(A--C), F=intersectionpoint(A--D, B--E); draw(E--B--A--C--B^^A--D); label("$A$", A, dir(D--A)); label("$B$", B, dir(E--B)); label("$C$", C, dir(0)); label("$D$", D, SE); label("$E$", E, N); label("$F$", F, dir(80));[/asy]
|
$5$
|
Local Relation Composition
|
HARP
|
ratio
|
359
|
In $\triangle ABC$, $M$ is the midpoint of side $BC$, $AN$ bisects $\angle BAC$, and $BN\perp AN$. If sides $AB$ and $AC$ have lengths $28$ and $38$, respectively, then find $MN$.
|
[asy] size(150); defaultpen(linewidth(0.7)+fontsize(10)); pair B=origin, A=14*dir(42), C=intersectionpoint(B--(30,0), Circle(A,19)), M=midpoint(B--C), b=A+14*dir(A--C), N=foot(A, B, b); draw(N--B--A--N--M--C--A^^B--M); markscalefactor=0.1; draw(rightanglemark(B,N,A)); pair point=N; label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$M$", M, dir(point--M)); label("$N$", N, dir(30)); label(rotate(angle(dir(A--C)))*"$38$", A--C, dir(A--C)*dir(90)); label(rotate(angle(dir(A--B)))*"$28$", A--B, dir(A--B)*dir(90)); [/asy]
|
$5$
|
Local Relation Composition
|
HARP
|
length
|
360
|
In $\triangle ABC$ in the adjoining figure, $AD$ and $AE$ trisect $\angle BAC$. The lengths of $BD$, $DE$ and $EC$ are $4$, $6$, and $12$, respectively. The length of the shortest side of $\triangle ABC$ is
|
[asy] defaultpen(linewidth(.8pt)); pair A = (0,11); pair B = (2,0); pair D = (4,0); pair E = (7,0); pair C = (13,0); label("$A$",A,N); label("$B$",B,SW); label("$C$",C,SE); label("$D$",D,S); label("$E$",E,S); label("$4$",midpoint(B--D),N); label("$6$",midpoint(D--E),NW); label("$12$",midpoint(E--C),NW); draw(A--B--C--cycle); draw(A--D); draw(A--E); [/asy]
|
$4\sqrt{10}$
|
Local Relation Composition
|
HARP
|
length
|
361
|
In the adjoining diagram, $BO$ bisects $\angle CBA$, $CO$ bisects $\angle ACB$, and $MN$ is parallel to $BC$. If $AB=6, BC=12$, and $AC=9$, then the perimeter of $\triangle AMN$ is
|
[asy] size(200); defaultpen(linewidth(0.7)+fontsize(10)); pair B=origin, C=(24,0), A=intersectionpoints(Circle(B,12), Circle(C,18))[0], O=incenter(A,B,C), M=intersectionpoint(A--B, O--O+40*dir(180)), N=intersectionpoint(A--C, O--O+40*dir(0)); draw(B--M--O--B--C--O--N--C^^N--A--M); label("$A$", A, dir(90)); label("$B$", B, dir(O--B)); label("$C$", C, dir(O--C)); label("$M$", M, dir(90)*dir(B--A)); label("$N$", N, dir(90)*dir(A--C)); label("$O$", O, dir(90));[/asy]
|
$15$
|
Local Relation Composition
|
HARP
|
length
|
362
|
In the adjoining figure, the triangle $ABC$ is a right triangle with $\angle BCA=90^\circ$. Median $CM$ is perpendicular to median $BN$, and side $BC=2$. The length of $CN$ is
|
[asy] size(200); defaultpen(linewidth(0.7)+fontsize(10));real r=54.72; pair B=origin, C=dir(r), A=intersectionpoint(B--(9,0), C--C+4*dir(r-90)), M=midpoint(B--A), N=midpoint(A--C), P=intersectionpoint(B--N, C--M); draw(M--C--A--B--C^^B--N); pair point=P; markscalefactor=0.01; draw(rightanglemark(B,C,N)); draw(rightanglemark(C,P,B)); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$M$", M, S); label("$N$", N, dir(C--A)*dir(90)); label("$2$", B--C, NW); [/asy]
|
$\sqrt{2}$
|
Local Relation Composition
|
HARP
|
length
|
363
|
In the adjoining figure the five circles are tangent to one another consecutively and to the lines $L_1$ and $L_2$. If the radius of the largest circle is $18$ and that of the smallest one is $8$, then the radius of the second circle is
|
[asy] size(250);defaultpen(linewidth(0.7)); real alpha=5.797939254, x=71.191836; int i; for(i=0; i<5; i=i+1) { real r=8*(sqrt(6)/2)^i; draw(Circle((x+r)*dir(alpha), r)); x=x+2r; } real x=71.191836+40+20*sqrt(6), r=18; pair A=tangent(origin, (x+r)*dir(alpha), r, 1), B=tangent(origin, (x+r)*dir(alpha), r, 2); pair A1=300*dir(origin--A), B1=300*dir(origin--B); draw(B1--origin--A1); pair X=(69,-5), X1=reflect(origin, (x+r)*dir(alpha))*X, Y=(200,-5), Y1=reflect(origin, (x+r)*dir(alpha))*Y, Z=(130,0), Z1=reflect(origin, (x+r)*dir(alpha))*Z; clip(X--Y--Y1--X1--cycle); label("$L_2$", Z, S); label("$L_1$", Z1, dir(2*alpha)*dir(90));[/asy]
|
$4\sqrt{6}$
|
Local Relation Composition
|
HARP
|
length
|
364
|
Triangle $\triangle ABC$ in the figure has area $20$. Points $D, E$ and $F$, all distinct from $A, B$ and $C$, are on sides $AB, BC$ and $CA$ respectively, and $AD = 2, DB = 3$. If triangle $\triangle ABE$ and quadrilateral $DBEF$ have equal areas, then that area is
|
[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair A=origin, B=(10,0), C=(8,7), F=7*dir(A--C), E=(10,0)+4*dir(B--C), D=4*dir(A--B); draw(A--B--C--A--E--F--D); pair point=incenter(A,B,C); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$E$", E, dir(point--E)); label("$F$", F, dir(point--F)); label("$2$", (2,0), S); label("$3$", (7,0), S);[/asy]
|
$12$
|
Local Relation Composition
|
HARP
|
area
|
365
|
In an arcade game, the "monster" is the shaded sector of a circle of radius $2$ cm, as shown in the figure. The missing piece (the mouth) has central angle $\usepackage{gensymb} 60\degree$. What is the perimeter of the monster in cm?
|
[asy] size(100); defaultpen(linewidth(0.7)); filldraw(Arc(origin,1,30,330)--dir(330)--origin--dir(30)--cycle, yellow, black); label("2", (sqrt(3)/4, 1/4), NW); label("$60^\circ$", (1,0));[/asy]
|
$\frac{10}{3}\pi+4$
|
Primitive Recognition
|
HARP
|
length
|
366
|
Pegs are put in a board $2$ unit apart both horizontally and vertically. A rubber band is stretched over $4$ pegs as shown in the figure, forming a quadrilateral. Its area in square units is
|
[asy] int i,j; for(i=0; i<5; i=i+1) { for(j=0; j<4; j=j+1) { dot((i,j)); }} draw((0,1)--(1,3)--(4,1)--(3,0)--cycle, linewidth(0.7));[/asy]
|
$24$
|
Primitive Recognition
|
HARP
|
area
|
367
|
Diagonal $DB$ of rectangle $ABCD$ is divided into three segments of length $2$ by parallel lines $L$ and $L'$ that pass through $A$ and $C$ and are perpendicular to $DB$. The area of $ABCD$ is
|
[asy] defaultpen(linewidth(0.7)+fontsize(10)); real x=sqrt(6), y=sqrt(3), a=0.4; pair D=origin, A=(0,y), B=(x,y), C=(x,0), E=foot(C,B,D), F=foot(A,B,D); real r=degrees(B); pair M1=F+3*dir(r)*dir(90), M2=F+3*dir(r)*dir(-90), N1=E+3*dir(r)*dir(90), N2=E+3*dir(r)*dir(-90); markscalefactor=0.02; draw(B--C--D--A--B--D^^M1--M2^^N1--N2^^rightanglemark(A,F,B)^^rightanglemark(N1,E,B)); pair W=A+a*dir(135), X=B+a*dir(45), Y=C+a*dir(-45), Z=D+a*dir(-135); label("A", A, NE); label("B", B, NE); label("C", C, dir(0)); label("D", D, dir(180)); label("$L$", (x/2,0), SW); label("$L^\prime$", C, SW); label("2", D--F, NW); label("2", F--E, SE); label("2", E--B, SE); clip(W--X--Y--Z--cycle);[/asy]
|
$12\sqrt{2}$
|
Local Relation Composition
|
HARP
|
area
|
368
|
In $\triangle ABC$, we have $\angle C = 3\angle A$, $a = 27$ and $c = 48$. What is $b$?
|
[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair A=(0,0), B=(12,0), C=(9,5); draw(A--B--C--cycle); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, N); label("$a$", B--C, dir(B--C)*dir(-90)); label("$b$", A--C, dir(C--A)*dir(-90)); label("$c$", A--B, dir(A--B)*dir(-90));[/asy]
|
$35$
|
Primitive Recognition
|
HARP
|
length
|
369
|
Using a table of a certain height, two identical blocks of wood are placed as shown in Figure 1. Length $r$ is found to be $32$ inches. After rearranging the blocks as in Figure 2, length $s$ is found to be $28$ inches. How high is the table?
|
[asy] size(300); defaultpen(linewidth(0.8)+fontsize(13pt)); path table = origin--(1,0)--(1,6)--(6,6)--(6,0)--(7,0)--(7,7)--(0,7)--cycle; path block = origin--(3,0)--(3,1.5)--(0,1.5)--cycle; path rotblock = origin--(1.5,0)--(1.5,3)--(0,3)--cycle; draw(table^^shift((14,0))*table); filldraw(shift((7,0))*block^^shift((5.5,7))*rotblock^^shift((21,0))*rotblock^^shift((18,7))*block,gray); draw((7.25,1.75)--(8.5,3.5)--(8.5,8)--(7.25,9.75),Arrows(size=5)); draw((21.25,3.25)--(22,3.5)--(22,8)--(21.25,8.25),Arrows(size=5)); unfill((8,5)--(8,6.5)--(9,6.5)--(9,5)--cycle); unfill((21.5,5)--(21.5,6.5)--(23,6.5)--(23,5)--cycle); label("$r$",(8.5,5.75)); label("$s$",(22,5.75)); [/asy]
|
$30$
|
Local Relation Composition
|
HARP
|
length
|
370
|
A triangular corner with side lengths $DB=EB=2$ is cut from equilateral triangle ABC of side length $6$. The perimeter of the remaining quadrilateral is
|
[asy] draw((0,0)--(2,0)--(2.5,.87)--(1.5,2.6)--cycle, linewidth(1)); draw((2,0)--(3,0)--(2.5,.87)); label("6", (0.75,1.3), NW); label("2", (2.5, 0), S); label("2", (2.75,.44), NE); label("A", (1.5,2.6), N); label("B", (3,0), S); label("C", (0,0), W); label("D", (2.5,.87), NE); label("E", (2,0), S); [/asy]
|
$16$
|
Primitive Recognition
|
HARP
|
length
|
371
|
If $\angle \text{CBD}$ is a right angle, then this protractor indicates that the measure of $\angle \text{ABD}$ is
|
[asy] unitsize(36); pair A,B,C,D; A=3*dir(160); B=origin; C=3*dir(110); D=3*dir(20); draw((1.5,0)..(0,1.5)..(-1.5,0)); draw((2.5,0)..(0,2.5)..(-2.5,0)--cycle); draw(A--B); draw(C--B); draw(D--B); label("O",(-2.5,0),W); label("A",A,W); label("B",B,S); label("C",C,W); label("D",D,E); label("0",(-1.8,0),W); label("20",(-1.7,.5),NW); label("160",(1.6,.5),NE); label("180",(1.7,0),E); [/asy]
|
$140$
|
Primitive Recognition
|
HARP
|
angle
|
372
|
Four rectangular paper strips of length $10$ and width $2$ are put flat on a table and overlap perpendicularly as shown. How much area of the table is covered?
|
[asy] draw((0,0)--(1,0)--(1,4)--(0,4)--(0,0)--(0,1)--(-1,1)--(-1,2)); draw((-1,2)--(0,2)--(0,4)--(-1,4)--(-1,5)--(1,5)--(1,6)--(0,6)); draw((0,6)--(0,5)--(3,5)--(3,6)--(4,6)--(4,2)--(5,2)); draw((5,2)--(5,1)--(1,1)--(3,1)--(3,0)--(4,0)--(4,1)); draw((1,4)--(3,4)--(3,2)--(1,2)--(4,2)--(3,2)--(3,6)); draw((3,6)--(4,6)--(4,5)--(5,5)--(5,4)--(4,4)); [/asy]
|
$64$
|
Local Relation Composition
|
HARP
|
area
|
373
|
An $8'\times 10'$ table sits in the corner of a square room, as in Figure $1$ below. The owners desire to move the table to the position shown in Figure $2$. The side of the room is $S$ feet. What is the smallest integer value of $S$ for which the table can be moved as desired without tilting it or taking it apart?
|
[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair A=(0,0), B=(16,0), C=(16,16), D=(0,16), E=(32,0), F=(48,0), G=(48,16), H=(32,16), I=(0,8), J=(10,8), K=(10,16), L=(32,6), M=(40,6), N=(40,16); draw(A--B--C--D--A^^E--F--G--H--E^^I--J--K^^L--M--N); label("S", (18,8)); label("S", (50,8)); label("Figure 1", (A+B)/2, S); label("Figure 2", (E+F)/2, S); label("10'", (I+J)/2, S); label("8'", (12,12)); label("8'", (L+M)/2, S); label("10'", (42,11)); label("table", (5,12)); label("table", (36,11)); [/asy]
|
$9\sqrt{2}$
|
Global Abstract Integration
|
HARP
|
length
|
374
|
$ABC$ and $A'B'C'$ are equilateral triangles with parallel sides and the same center, as in the figure. The distance between side $BC$ and side $B'C'$ is $\frac{1}{6}$ the altitude of $\triangle ABC$. The area of $\triangle ABC$ divided by the area of $\triangle A'B'C'$ is
|
[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair H=origin, B=(1,-(1/sqrt(3))), C=(-1,-(1/sqrt(3))), A=(0,(2/sqrt(3))), E=(2,-(2/sqrt(3))), F=(-2,-(2/sqrt(3))), D=(0,(4/sqrt(3))); draw(A--B--C--A^^D--E--F--D); label("A'", A, N); label("B'", B, SE); label("C'", C, SW); label("A", D, E); label("B", E, E); label("C", F, W); [/asy]
|
$4$
|
Primitive Recognition
|
HARP
|
ratio
|
375
|
Let $ABCD$ be a tetrahedron with $AB=41$, $AC=7$, $AD=18$, $BC=36$, $BD=27$, and $CD=13$, as shown in the figure. Let $d$ be the distance between the midpoints of edges $AB$ and $CD$. Find $d^{2}$.
|
[asy] defaultpen(fontsize(10)+0.8); size(175); pair A,B,C,D,M,P,Q; C=origin; B=(8,0); D=IP(CR(C,6.5),CR(B,8)); A=(4,-3); P=midpoint(A--B); Q=midpoint(C--D); draw(B--C--D--B--A--C^^A--D); draw(D--P--C^^P--Q, gray+dashed+0.5); pen p=fontsize(12)+linewidth(3); dot("$A$",A,down,p); dot("$B$",B,right,p); dot("$C$",C,left,p); dot("$D$",D,up,p); dot("$M$",P,dir(-45),p); dot("$N$",Q,0.2*(Q-P),p); label("$27$",B--D,2*dir(30),fontsize(10)); label("$7$",A--C,2*dir(210),fontsize(10)); label("$18$",A--D,1.5*dir(30),fontsize(10)); label("$36$",(3,0),up,fontsize(10)); [/asy]
|
$137$
|
Global Abstract Integration
|
HARP
|
length
|
376
|
The side length of the square is 4, what is the shaded area of the square?
|
[asy] draw((0,0)--(0,3)--(3,3)--(3,0)--cycle); draw((0,2)--(2,2)--(2,0)); draw((0,1)--(1,1)--(1,0)); draw((0,0)--(3,3)); fill((0,0)--(0,1)--(1,1)--cycle,grey); fill((1,0)--(1,1)--(2,2)--(2,0)--cycle,grey); fill((0,2)--(2,2)--(3,3)--(0,3)--cycle,grey); [/asy]
|
$8$
|
Primitive Recognition
|
HARP
|
area
|
377
|
The area of this figure is $400\text{ cm}^2$. Its perimeter is
|
[asy] draw((0,2)--(2,2)--(2,1)--(3,1)--(3,0)--(1,0)--(1,1)--(0,1)--cycle,linewidth(1)); draw((1,2)--(1,1)--(2,1)--(2,0),dashed); [/asy]
|
$100$
|
Primitive Recognition
|
HARP
|
length
|
378
|
Each corner of a rectangular prism is cut off. Two (of the eight) cuts are shown. How many edges does the new figure have? <i>Assume that the planes cutting the prism do not intersect anywhere in or on the prism.</i>
|
[asy] draw((0,0)--(3,0)--(3,3)--(0,3)--cycle); draw((3,0)--(5,2)--(5,5)--(2,5)--(0,3)); draw((3,3)--(5,5)); draw((2,0)--(3,1.8)--(4,1)--cycle,linewidth(1)); draw((2,3)--(4,4)--(3,2)--cycle,linewidth(1)); [/asy]
|
$36$
|
Global Abstract Integration
|
HARP
|
count
|
379
|
Let $ABCD$ be a parallelogram with $\angle{ABC}=120^\circ, AB=16$ and $BC=10.$ Extend $\overline{CD}$ through $D$ to $E$ so that $DE=4.$ If $\overline{BE}$ intersects $\overline{AD}$ at $F$, then $FA$ is
|
[asy] draw((0,0)--(16,0)--(21,5*sqrt(3))--(5,5*sqrt(3))--cycle,dot); draw((5,5*sqrt(3))--(1,5*sqrt(3))--(16,0),dot); MP("A",(0,0),S);MP("B",(16,0),S);MP("C",(21,5sqrt(3)),NE);MP("D",(5,5sqrt(3)),N);MP("E",(1,5sqrt(3)),N); MP("16",(9,0),S);MP("10",(18.5,5sqrt(3)/2),E);MP("4",(3,5sqrt(3)),N); dot((4,4sqrt(3))); MP("F",(4,4sqrt(3)),dir(210)); [/asy]
|
$8$
|
Local Relation Composition
|
HARP
|
length
|
380
|
An equilateral triangle is originally painted black. Each time the triangle is changed, the middle fourth of each black triangle turns white. After four changes, what fractional part of the original area of the black triangle remains black?
|
[asy] unitsize(36); fill((0,0)--(2,0)--(1,sqrt(3))--cycle,gray); draw((0,0)--(2,0)--(1,sqrt(3))--cycle,linewidth(1)); fill((4,0)--(6,0)--(5,sqrt(3))--cycle,gray); fill((5,0)--(9/2,sqrt(3)/2)--(11/2,sqrt(3)/2)--cycle,white); draw((5,sqrt(3))--(4,0)--(5,0)--(9/2,sqrt(3)/2)--(11/2,sqrt(3)/2)--(5,0)--(6,0)--cycle,linewidth(1)); fill((8,0)--(10,0)--(9,sqrt(3))--cycle,gray); fill((9,0)--(17/2,sqrt(3)/2)--(19/2,sqrt(3)/2)--cycle,white); fill((17/2,0)--(33/4,sqrt(3)/4)--(35/4,sqrt(3)/4)--cycle,white); fill((9,sqrt(3)/2)--(35/4,3*sqrt(3)/4)--(37/4,3*sqrt(3)/4)--cycle,white); fill((19/2,0)--(37/4,sqrt(3)/4)--(39/4,sqrt(3)/4)--cycle,white); draw((9,sqrt(3))--(35/4,3*sqrt(3)/4)--(37/4,3*sqrt(3)/4)--(9,sqrt(3)/2)--(35/4,3*sqrt(3)/4)--(33/4,sqrt(3)/4)--(35/4,sqrt(3)/4)--(17/2,0)--(33/4,sqrt(3)/4)--(8,0)--(9,0)--(17/2,sqrt(3)/2)--(19/2,sqrt(3)/2)--(9,0)--(19/2,0)--(37/4,sqrt(3)/4)--(39/4,sqrt(3)/4)--(19/2,0)--(10,0)--cycle,linewidth(1)); label("Change 1",(3,3*sqrt(3)/4),N); label("$\Longrightarrow $",(3,5*sqrt(3)/8),S); label("Change 2",(7,3*sqrt(3)/4),N); label("$\Longrightarrow $",(7,5*sqrt(3)/8),S); [/asy]
|
$\frac{81}{256}$
|
Local Relation Composition
|
HARP
|
ratio
|
381
|
In the arrow-shaped polygon [see figure], the angles at vertices $A,C,D,E$ and $F$ are right angles, $BC=FG=5, CD=FE=30, DE=10$, and $AB=AG$. The area of the polygon is
|
[asy] draw((0,0)--(2,2)--(2,1)--(5,1)--(5,-1)--(2,-1)--(2,-2)--cycle,dot); MP("A",(0,0),W);MP("B",(2,2),N);MP("C",(2,1),S);MP("D",(5,1),NE);MP("E",(5,-1),SE);MP("F",(2,-1),NW);MP("G",(2,-2),S); MP("5",(2,1.5),E);MP("5",(2,-1.5),E);MP("30",(3.5,1),N);MP("30",(3.5,-1),S);MP("10",(5,0),E); [/asy]
|
$400$
|
Local Relation Composition
|
HARP
|
area
|
382
|
An isosceles right triangle with legs of length $16$ is partitioned into $16$ congruent triangles as shown. The shaded area is
|
[asy] for (int a=0; a <= 3; ++a) { for (int b=0; b <= 3-a; ++b) { fill((a,b)--(a,b+1)--(a+1,b)--cycle,grey); } } for (int c=0; c <= 3; ++c) { draw((c,0)--(c,4-c),linewidth(1)); draw((0,c)--(4-c,c),linewidth(1)); draw((c+1,0)--(0,c+1),linewidth(1)); } label("$16$",(2,0),S); label("$16$",(0,2),W); [/asy]
|
$80$
|
Primitive Recognition
|
HARP
|
area
|
383
|
Five equilateral triangles, each with side $2$, are arranged so they are all on the same side of a line containing one side of each vertex. Along this line, the midpoint of the base of one triangle is a vertex of the next. The area of the region of the plane that is covered by the union of the five triangular regions is
|
[asy] draw((-7,0)--(7,0),black+linewidth(.75)); draw((-3*sqrt(3),0)--(-2*sqrt(3),3)--(-sqrt(3),0)--(0,3)--(sqrt(3),0)--(2*sqrt(3),3)--(3*sqrt(3),0),black+linewidth(.75)); draw((-2*sqrt(3),0)--(-1*sqrt(3),3)--(0,0)--(sqrt(3),3)--(2*sqrt(3),0),black+linewidth(.75)); [/asy]
|
$4\sqrt{3}$
|
Local Relation Composition
|
HARP
|
area
|
384
|
The ratio of the radii of two concentric circles is $1:3$. If $\overline{AC}$ is a diameter of the larger circle, $\overline{BC}$ is a chord of the larger circle that is tangent to the smaller circle, and $AB=12$, then the length of $BC$ is
|
[asy] draw(circle((0,0),18),black+linewidth(.75)); draw(circle((0,0),6),black+linewidth(.75)); draw((-18,0)--(18,0)--(-14,8*sqrt(2))--cycle,black+linewidth(.75)); dot((-18,0));dot((18,0));dot((-14,8*sqrt(2))); MP("A",(-18,0),W);MP("C",(18,0),E);MP("B",(-14,8*sqrt(2)),W); [/asy]
|
$6\sqrt{5}$
|
Local Relation Composition
|
HARP
|
length
|
385
|
Part of an "n-pointed regular star" is shown. It is a simple closed polygon in which all $2n$ edges are congruent, angles $A_1,A_2,\cdots,A_n$ are congruent, and angles $B_1,B_2,\cdots,B_n$ are congruent. If the acute angle at $A_1$ is $20^\circ$ less than the acute angle at $B_1$, then $n=$
|
[asy] draw((1,0)--(2*cos(pi/8),2*sin(pi/8))--(cos(pi/4),sin(pi/4))--(2*cos(3*pi/8),2*sin(3*pi/8))--(cos(pi/2),sin(pi/2))--(2*cos(5*pi/8),2*sin(5*pi/8))--(cos(3*pi/4),sin(3*pi/4))--(2*cos(7*pi/8),2*sin(7*pi/8))--(-1,0),black+linewidth(.75)); MP("A_1",(2*cos(5*pi/8),2*sin(5*pi/8)),N);MP("A_2",(2*cos(3*pi/8),2*sin(3*pi/8)),N);MP("A_3",(2*cos(1*pi/8),2*sin(1*pi/8)),N); MP("A_n",(2*cos(7*pi/8),2*sin(7*pi/8)),N); MP("B_1",(cos(4*pi/8),sin(4*pi/8)),S);MP("B_2",(cos(2*pi/8),sin(2*pi/8)),S);MP("B_n",(cos(6*pi/8),sin(6*pi/8)),S); [/asy]
|
$18$
|
Global Abstract Integration
|
HARP
|
count
|
386
|
Square corners, 5 units on a side, are removed from a $20$ unit by $30$ unit rectangular sheet of cardboard. The sides are then folded to form an open box. The surface area, in square units, of the interior of the box is
|
[asy] fill((0,0)--(20,0)--(20,5)--(0,5)--cycle,lightgray); fill((20,0)--(20+5*sqrt(2),5*sqrt(2))--(20+5*sqrt(2),5+5*sqrt(2))--(20,5)--cycle,lightgray); draw((0,0)--(20,0)--(20,5)--(0,5)--cycle); draw((0,5)--(5*sqrt(2),5+5*sqrt(2))--(20+5*sqrt(2),5+5*sqrt(2))--(20,5)); draw((20+5*sqrt(2),5+5*sqrt(2))--(20+5*sqrt(2),5*sqrt(2))--(20,0)); draw((5*sqrt(2),5+5*sqrt(2))--(5*sqrt(2),5*sqrt(2))--(5,5),dashed); draw((5*sqrt(2),5*sqrt(2))--(15+5*sqrt(2),5*sqrt(2)),dashed); [/asy]
|
$500$
|
Local Relation Composition
|
HARP
|
area
|
387
|
The rectangle shown has length $AC=34$, width $AE=18$, and $B$ and $F$ are midpoints of $\overline{AC}$ and $\overline{AE}$, respectively. The area of quadrilateral $ABDF$ is
|
[asy] pair A,B,C,D,EE,F; A = (0,20); B = (16,20); C = (32,20); D = (32,0); EE = (0,0); F = (0,10); draw(A--C--D--EE--cycle); draw(B--D--F); dot(A); dot(B); dot(C); dot(D); dot(EE); dot(F); label("$A$",A,NW); label("$B$",B,N); label("$C$",C,NE); label("$D$",D,SE); label("$E$",EE,SW); label("$F$",F,W); [/asy]
|
$306$
|
Local Relation Composition
|
HARP
|
area
|
388
|
In $\triangle ABC$, $\angle A=55^\circ$, $\angle C=75^\circ, D$ is on side $\overline{AB}$ and $E$ is on side $\overline{BC}$. If $DB=BE$, then $\angle{ADE} =$
|
[asy] draw((-5,0)--(5,0)--(2,14)--cycle,black+linewidth(.75)); draw((-2.25,5.5)--(4,14/3),black+linewidth(.75)); MP("A",(-5,0),S);MP("C",(5,0),S);MP("B",(2,14),N);MP("E",(4,14/3),E);MP("D",(-2.25,5.5),W); MP("55^\circ",(-4.5,0),NE);MP("75^\circ",(5,0),NW); [/asy]
|
$115$
|
Primitive Recognition
|
HARP
|
angle
|
389
|
The convex pentagon $ABCDE$ has $\angle{A}=\angle{B}=120^\circ,EA=AB=BC=2$ and $CD=DE=4$. How many times larger is the area of quadrilateral EABC than that of $\triangle DCE$?
|
[asy] draw((-1,0)--(1,0)--(1+sqrt(2),sqrt(2))--(0,sqrt(2)+sqrt(13-2*sqrt(2)))--(-1-sqrt(2),sqrt(2))--cycle,black+linewidth(.75)); MP("A",(-1,0),SW);MP("B",(1,0),SE);MP("C",(1+sqrt(2),sqrt(2)),E);MP("D",(0,sqrt(2)+sqrt(13-2*sqrt(2))),N);MP("E",(-1-sqrt(2),sqrt(2)),W); dot((-1,0));dot((1,0));dot((1+sqrt(2),sqrt(2)));dot((-1-sqrt(2),sqrt(2)));dot((0,sqrt(2)+sqrt(13-2*sqrt(2)))); [/asy]
|
$\frac{3}{4}$
|
Local Relation Composition
|
HARP
|
ratio
|
390
|
Amy painted a dartboard over a square clock face using the "hour positions" as boundaries.[See figure.] If $t$ is the area of one of the eight triangular regions such as that between 12 o'clock and 1 o'clock, and $q$ is the area of one of the four corner quadrilaterals such as that between 1 o'clock and 2 o'clock. If the area of $t$ is 1, find the value of $q$.
|
[asy] draw((-1,-1)--(1,-1)--(1,1)--(-1,1)--cycle, black+linewidth(.75)); draw((0,-1)--(0,1), black+linewidth(.75)); draw((-1,0)--(1,0), black+linewidth(.75)); draw((-1,-1/sqrt(3))--(1,1/sqrt(3)), black+linewidth(.75)); draw((-1,1/sqrt(3))--(1,-1/sqrt(3)), black+linewidth(.75)); draw((-1/sqrt(3),-1)--(1/sqrt(3),1), black+linewidth(.75)); draw((1/sqrt(3),-1)--(-1/sqrt(3),1), black+linewidth(.75)); [/asy]
|
$2\sqrt{3}-2$
|
Local Relation Composition
|
HARP
|
area
|
391
|
If $\angle A = 60^\circ$, $\angle E = 40^\circ$ and $\angle C = 30^\circ$, then $\angle EDC =$
|
[asy] pair A,B,C,D,EE; A = origin; B = (2,0); C = (5,0); EE = (1.5,3); D = (1.75,1.5); draw(A--C--D); draw(B--EE--A); dot(A); dot(B); dot(C); dot(D); dot(EE); label("$A$",A,SW); label("$B$",B,S); label("$C$",C,SE); label("$D$",D,NE); label("$E$",EE,N); [/asy]
|
$130$
|
Primitive Recognition
|
HARP
|
angle
|
392
|
Around the outside of a $8$ by $8$ square, construct four semicircles (as shown in the figure) with the four sides of the square as their diameters. Another square, $ABCD$, has its sides parallel to the corresponding sides of the original square, and each side of $ABCD$ is tangent to one of the semicircles. The area of the square $ABCD$ is
|
[asy] pair A,B,C,D; A = origin; B = (4,0); C = (4,4); D = (0,4); draw(A--B--C--D--cycle); draw(arc((2,1),(1,1),(3,1),CCW)--arc((3,2),(3,1),(3,3),CCW)--arc((2,3),(3,3),(1,3),CCW)--arc((1,2),(1,3),(1,1),CCW)); draw((1,1)--(3,1)--(3,3)--(1,3)--cycle); dot(A); dot(B); dot(C); dot(D); dot((1,1)); dot((3,1)); dot((1,3)); dot((3,3)); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,NE); label("$D$",D,NW); [/asy]
|
$256$
|
Local Relation Composition
|
HARP
|
area
|
393
|
Rectangles $ABCD$ and $EFGH$ are drawn such that $D,E,C,F$ are collinear. Also, $A,D,H,G$ all lie on a circle. If $BC=16$,$AB=107$,$FG=17$, and $EF=184$, what is the length of $CE$?
|
[asy] import graph; unitsize(0.1cm); pair A = (0,0);pair B = (70,0);pair C = (70,16);pair D = (0,16);pair E = (3,16);pair F = (90,16);pair G = (90,33);pair H = (3,33); dot(A^^B^^C^^D^^E^^F^^G^^H); label("$A$", A, S);label("$B$", B, S);label("$C$", C, N);label("$D$", D, N);label("$E$", E, S);label("$F$", F, S);label("$G$", G, N);label("$H$", H, N); draw(E--D--A--B--C--E--H--G--F--C); [/asy]
|
$104$
|
Local Relation Composition
|
AIME-24
|
length
|
394
|
Consider the paths of length $16$ that follow the lines from the lower left corner to the upper right corner on an $8\times 8$ grid. Find the number of such paths that change direction exactly four times, as in the examples shown below.
|
[asy] size(10cm); usepackage("tikz");label("\begin{tikzpicture}[scale=.5]\draw(0,0)grid(8,8);\draw[line width=2,red](0,0)--(2,0)--(2,3)--(5,3)--(5,8)--(8,8);\end{tikzpicture}",origin); label("\begin{tikzpicture}[scale=.5]\draw(0,0)grid(8,8);\draw[line width=2,red](0,0)--(0,3)--(3,3)--(3,5)--(8,5)--(8,8);\end{tikzpicture}",E); [/asy]
|
$294$
|
Local Relation Composition
|
AIME-24
|
count
|
395
|
Eight circles of radius $34$ are sequentially tangent, and two of the circles are tangent to $AB$ and $BC$ of triangle $ABC$, respectively. $2024$ circles of radius $1$ can be arranged in the same manner. The inradius of triangle $ABC$ can be expressed as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
|
[asy] pair A = (2,1); pair B = (0,0); pair C = (3,0); dot(A^^B^^C); label("$A$", A, N); label("$B$", B, S); label("$C$", C, S); draw(A--B--C--cycle); for(real i=0.62; i<2.7; i+=0.29){ draw(circle((i,0.145), 0.145)); } [/asy]
|
$197$
|
Global Abstract Integration
|
AIME-24
|
count
|
396
|
Torus $T$ is the surface produced by revolving a circle with radius $3$ around an axis in the plane of the circle that is a distance $6$ from the center of the circle (so like a donut). Let $S$ be a sphere with a radius $11$. When $T$ rests on the inside of $S$, it is internally tangent to $S$ along a circle with radius $r_i$, and when $T$ rests on the outside of $S$, it is externally tangent to $S$ along a circle with radius $r_o$. The difference $r_i-r_o$ can be written as $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
|
[asy] unitsize(0.3 inch); draw(ellipse((0,0), 3, 1.75)); draw((-1.2,0.1)..(-0.8,-0.03)..(-0.4,-0.11)..(0,-0.15)..(0.4,-0.11)..(0.8,-0.03)..(1.2,0.1)); draw((-1,0.04)..(-0.5,0.12)..(0,0.16)..(0.5,0.12)..(1,0.04)); draw((0,2.4)--(0,-0.15)); draw((0,-0.15)--(0,-1.75), dashed); draw((0,-1.75)--(0,-2.25)); draw(ellipse((2,0), 1, 0.9)); draw((2.03,-0.02)--(2.9,-0.4)); [/asy]
|
$127$
|
Global Abstract Integration
|
AIME-24
|
count
|
397
|
Find the number of rectangles that can be formed inside a fixed regular dodecagon ($12$-gon) where each side of the rectangle lies on either a side or a diagonal of the dodecagon. The diagram below shows three of those rectangles.
|
[asy] unitsize(0.6 inch); for(int i=0; i<360; i+=30) { dot(dir(i), 4+black); draw(dir(i)--dir(i+30)); } draw(dir(120)--dir(330)); filldraw(dir(210)--dir(240)--dir(30)--dir(60)--cycle, mediumgray, linewidth(1.5)); draw((0,0.366)--(0.366,0), linewidth(1.5)); [/asy]
|
$315$
|
Global Abstract Integration
|
AIME-24
|
count
|
398
|
The results of a cross-country team's training run are graphed below. What is the ID number of the student who has the greatest average speed?
|
[asy]
for ( int i = 1; i <= 7; ++i )
{
draw((i,0)--(i,6));
}
for ( int i = 1; i <= 5; ++i )
{
draw((0,i)--(8,i));
}
draw((-0.5,0)--(8,0), linewidth(1));
draw((0,-0.5)--(0,6), linewidth(1));
label("$O$", (0,0), SW);
label(scale(.85)*rotate(90)*"distance", (0, 3), W);
label(scale(.85)*"time", (4, 0), S);
dot((1.25, 4.5));
label(scale(.85)*"1", (1.25, 4.8), N);
dot((2.5, 2.2));
label(scale(.85)*"2", (2.5, 2.2), S);
dot((4.25,5.2));
label(scale(.85)*"3", (4.25, 5.2), SE);
dot((5.6, 2.8));
label(scale(.85)*"4", (5.6, 2.8), N);
dot((6.8, 1.4));
label(scale(.85)*"5", (6.8, 1.4), E);
[/asy]
|
$1$
|
Primitive Recognition
|
MATH-500
|
count
|
399
|
The volume of the cylinder shown is $45\pi$ cubic cm. What is the height in centimeters of the cylinder?
|
[asy]
size(120);
draw(shift(2.2,0)*yscale(0.3)*Circle((0,0), 1.2));
draw((1,0)--(1,-2));
draw((3.4,0)--(3.4,-2));
draw((1,-2)..(2.2,-2.36)..(3.4,-2));
label("$h$",midpoint((3.4,0)--(3.4,-2)),E);
draw (((2.2,0)--(3.4,0)));
label("$r=3$",midpoint((2.2,0)--(3.4,0)),N);
[/asy]
|
$5$
|
Primitive Recognition
|
MATH-500
|
length
|
400
|
Suppose $\sin D = 0.7$ in the diagram below. What is $DE$?
|
[asy]
pair D,E,F;
F = (0,0);
D = (7,7);
E = (0,7);
draw(D--E--F--D);
draw(rightanglemark(D,E,F,15));
label("$D$",D,NE);
label("$E$",E,NW);
label("$F$",F,SW);
label("$7$",(E+F)/2,W);
[/asy]
|
$\sqrt{51}$
|
Primitive Recognition
|
MATH-500
|
length
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.