YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
π§ Gemma Finetuned 4B-IT β Convai Innovations
This model is a mirror of google/medgemma-4b-it, republished under Convai Innovations for fine-tuning and experimentation in medical multimodal AI.
π Example Inference
# pip install accelerate
from transformers import AutoProcessor, AutoModelForImageTextToText
from PIL import Image
import requests
import torch
model_id = "convaiinnovations/gemma-finetuned-4b-it"
model = AutoModelForImageTextToText.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
processor = AutoProcessor.from_pretrained(model_id)
# Image attribution: Stillwaterising, CC0, via Wikimedia Commons
image_url = "https://upload.wikimedia.org/wikipedia/commons/c/c8/Chest_Xray_PA_3-8-2010.png"
image = Image.open(requests.get(image_url, headers={"User-Agent": "example"}, stream=True).raw)
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "You are an expert radiologist."}]
},
{
"role": "user",
"content": [
{"type": "text", "text": "Describe this X-ray"},
{"type": "image", "image": image}
]
}
]
inputs = processor.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True,
return_dict=True, return_tensors="pt"
).to(model.device, dtype=torch.bfloat16)
input_len = inputs["input_ids"].shape[-1]
with torch.inference_mode():
generation = model.generate(**inputs, max_new_tokens=200, do_sample=False)
generation = generation[0][input_len:]
decoded = processor.decode(generation, skip_special_tokens=True)
print(decoded)
π’ About Convai Innovations
Convai Innovations Pvt. Ltd. builds multimodal generative AI systems for healthcare and applied sciences β enabling models like Ai4Cardio for ECG and image interpretation.
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support