Yolo-Models
Collection
3 items
β’
Updated
A YOLOv8 nano model fine-tuned for detecting cracks in infrastructure (walls, roads, concrete structures).
The model detects cracks in infrastructure with bounding boxes and confidence scores.
This model detects cracks in images of buildings, roads, bridges, and other infrastructure.
Use Cases:
from ultralytics import YOLO
from huggingface_hub import hf_hub_download
# Download model from Hugging Face
model_path = hf_hub_download(
repo_id="cazzz307/yolov8-crack-detection",
filename="best.pt"
)
# Load and use model
model = YOLO(model_path)
results = model.predict("crack_image.jpg", conf=0.25)
results[0].show()
# Process multiple images
results = model.predict(["img1.jpg", "img2.jpg", "img3.jpg"])
for result in results:
boxes = result.boxes
for box in boxes:
conf = box.conf[0]
print(f"Crack detected! Confidence: {conf:.2f}")
# Webcam
model.predict(source=0, show=True)
# Video file
model.predict(source="video.mp4", save=True)
best.pt - Best model checkpoint (use this)last.pt - Last training checkpointresults.png - Training metricsconfusion_matrix.png - Performance analysis# Install
pip install ultralytics
# Download and use
yolo detect predict model=best.pt source=image.jpg
MIT License
Built with Ultralytics YOLOv8 π